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Abstract 

Van Erp, S.H.M. 1996. Major histocompatibility complex genes in the common carp, Cyprinus 
carpio L. Doctoral thesis, Dept. Experimental Animal Morphology and Cell Biology, Wageningen 
Agricultural University, P.O. Box 338, 6700 AH Wageningen, The Netherlands. 

This thesis describes a study of the major histocompatibility complex (Mhc) genes of the common 
carp (Cyprinus carpio L.). The molecules encoded by Mhc genes play an essential role in the 
specific immune response, by presenting antigens to T lymphocytes. Knowledge of the Mhc of 
carp, therefore, contributes to our understanding of the immune response mechanisms in this 
species. In addition, it may give important insights in the phylogenetic development of these 
genes. The common carp was found to contain several distinct lineages of Mhc class I genes, 
denoted as Cyca-U, Cyca-Z, Cyca-TC16 and Cyca-CA. The Cyca-U sequences probably represent 
classical Mhc class I genes, of which most likely only a single locus is expressed in each 
individual. Cyca-Z genes are present in multiple polymorphic copies in the genome, but it is not 
clear whether these genes are expressed. The sequence of Cyca-TC16 is most similar to the class I 
genes of the coelacanth, a fish which is thought to be a representative of the evolutionary lineage 
leading to the tetrapods. It is, however, not clear whether Cyca-TC16 is expressed. In addition, 
the sequence encoding carp ß2-microglobulin was isolated. Although two B2m genes were detected 
in each individual, apparently only one of these is expressed. In contrast, at least four class II B 
genes may be expressed in a single animal. These genes are linked in two pairs, which, however, 
segregate independently. In addition, two expressed class II A sequences were identified, most 
likely derived from two separate loci. Both the class IIA and B genes are likely to encode bona 
fide class II chains, the components of the cell-surface class II a-ß heterodimer. Although carp 
thus possess a complete set of class I and class II genes, it is not yet clear whether these genes 
reside in a single genetic Mhc region. 

Cover: Drie werelden. ® 1996 M.C. Escher / Cordon Art - Baarn - Holland. Alle 

rechten voorbehouden. 
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Stellingen 

1. De aanwezigheid van zowel Mhc klasse I als klasse II genen in de karper wijst erop 
dat al bij vissen de strategische tweedeling aanwezig is tussen immuunresponsen 
tegen intra- en extracellulaire antigenen. Waarschijnlijk zijn er dan ook CD4- en 
CD8-achtige T-cel co-receptoren aanwezig die hierin een sturende rol spelen. 
dit proefschrift 

2. Naamgeving aan Mhc genen is gelijk de kip en het ei: een nomenclatuur die de 
relaties tussen genen helder en juist weerspiegelt is van groot belang voor het succes 
van het onderzoek, maar zij kan slechts juist zijn wanneer ditzelfde onderzoek de 
relaties volledig heeft opgehelderd, dit proefschrift 

3. In termen van zijn Mhc is het juister de karper evolutionair gezien een vroegere 
vertebraat te noemen dan een lagere, dit proefschrift 

4. Twijfel is een eerbetoon aan de waarheid 
- Ernest Renan -

5. In evolutionair opzicht is het ongunstig als carrièrevrouwen kinderloos blijven. 
- W.A.M, van Erp -

6. Dat karpers een hoge aaibaarheidsfactor hebben kan experimenteel worden 
aangetoond in het hoofdgebouw van de Landbouwuniversiteit Wageningen. 

7. AIO's zijn als jonge hondjes: Hoe vaak ze ook kwispelend al experimenterend tegen 
een boom aan lopen, na de ergste duizeligheid kwispelen ze alweer. 

8. Het is een schrijnende tegenstelling dat voortschrijdende verlichting door de 
wetenschap juist geloof in het occulte lijkt te stimuleren. 

9. Bezuinigingen die tot gevolg hebben dat wetenschappers eigenhandig boekenplanken 
voor hun kamer moeten kopen en ophangen, leveren waarschijnlijk alleen de 
Gamma geld op. 

10. Hoogstwaarschijnlijk is de volksgezondheid meer gebaat bij een radicale vernietiging 
van sigaretten dan van Brits rundvee. Uit het uitblijven van eerstgenoemde 
maatregel kan dan ook worden opgemaakt dat een gezonde economie al snel 
belangrijker is dan gezond volk. 

Stellingen behorend bij het proefschrift 
"Major histocompatibility complex genes in the common carp (Cyprinus carpio L.) " 
van Saskia H.M. van Erp, Wageningen, 29 mei 1996. 
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als persoonlijke zin. Jan, Martien, Tony (ik mis je confronterende grappen nog steeds, "Ik 

dacht dat ik een kameel hoorde...."), Carolien, Beja, Rosilde, Tineke, Esther, en alle anderen 

die in de jaren kwamen en gingen, ik heb genoten in jullie midden. 

Peter, jouw opgewektheid is legendarisch. Dankjewel voor alle zonnige hulp aan de 
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Chapter 1 

General introduction 



All warm- and cold-blooded vertebrates possess a more or less integrated immune system 

by which the organism defends itself against unwanted invaders like parasites, bacteria, and 

viruses, but also against dangers from within, like tumor cells. Harmful attacks by the immune 

system on self antigens have to be avoided, however, and a mechanism should therefore exist 

by which the immune system can discriminate between self and non-self. This discrimination 

is performed by T lymphocytes which are selected early in their development for tolerance 

to self, but reactivity to non-self. Antigen recognition by T cells is performed through their 

T-cell receptors which, however, can only recognize antigens when these are presented as 

peptides by Mhc molecules, the transmembrane glycoproteins encoded by the genes of the 

major histocompatibility complex {Mhc). 

In mammals, there are two major classes of Mhc molecules, class I and class II, which 

are distinguished by their protein structure, function and tissue distribution. Mhc class I 

molecules are heterodimers of a heavy class I a chain (Mr 45,000), complexed with a light 

chain, ß2-microglobulin (Mr 12,000). The a chain consists of three extracellular domains, a 

transmembrane region and a cytoplasmic tail. The membrane proximal a3 domain has an 

immunoglobulin (Ig)-like fold, whereas the membrane distal ax and a2 domains together shape 

a peptide-binding groove, made up of a floor of anti-parallel ß strands lined by two a helices, 

which form the rims of the groove. In this groove a peptide can be anchored, which is restricted 

in length to 8-12 amino acids because the ends of the groove are occluded (Bjorkman et al. 

1987a,b; Saper et al. 1991; Fig.l). 

Mhc class II molecules are also transmembrane heterodimers of an a chain and a ß chain 

(both approximately Mr 30,000), each consisting of two extracellular domains, a transmembrane 

region and a cytoplasmic tail. The membrane proximal a2 and ß2 domains have a tertiary 

structure resembling an Ig-fold, whereas the membrane distal a{ and Rl domains combine to 

form a peptide binding groove, very similar to that of the Mhc class I molecule. However, 

the class II groove allows peptides to extend beyond the ends of the cleft, so that it can 

accomodate peptides varying from 12 to 25 amino acids in length (Brown et al. 1993). 

The tertiary structure of the two classes of Mhc proteins, as elucidated by X-ray 

crystallography, is highly similar. The two classes differ in their function and, as a consequence, 

in their tissue distribution. Mhc class I molecules mainly present intracellularly derived peptides, 

including self peptides and viral peptides, to CD8-positive T cells. Activation of these cells 

elicits a cytotoxic response. The role of class I molecules, therefore, is to mirror the internal 

affairs of the cell they are located on, and consequently, all nucleated cells in mammals carry 

class I molecules. Mhc class II molecules, on the other hand, mainly present extracellularly 

derived peptides, for example from internalized and degraded bacteria, to CD4-positive T-helper 

cells. When activated, these cells provide help and guidance to B cells which results in a 
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S - S bond 

ß2-microglobuIin 

Figure 1. Schematic representation of the three dimensional structure of an Mhc class I molecule, A. 
as seen from the side, and B. from the top. (Modified after Austyn and Wood 1993) 
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humoral response. Mhc class II molecules are mainly present on antigen presenting cells of 

the immune system, such as B lymphocytes, dendritic cells and macrophages (Klein 1986). 

The human major histocompatibility complex 

The major histocompatibility complexes of many mammalian species have been studied, 

and although certain differences exist between them, they are sufficiently similar to limit 

ourselves to describe only the one that attracted the most attention, the human Mhc. Other 

mammalian MAC'S are reviewed by Klein (1986) and Trowsdale (1995). 

Mhc molecules derive their name from the fact that the genes encoding them are clustered 

together in a single genetic region, which was first implicated to determine strong allograft 

rejection. Hence, the name major histocompatibility complex was assigned to this cluster of 

genes. The human Mhc, or HLA (Human Leukocyte Antigen) complex, spans approximately 

4 Mb of chromosome 6, and it is generally divided into three regions, in order of physical 

location from centromeric to telomeric: class II, class III and class I (Fig. 2). 

The class II region of humans contains several polymorphic Mhc class II loci (DP, DQ, 

DR), each composed of one or more A (a chain encoding) and B (ß chain encoding) genes. 

The A and B genes are not necessarily present in a one to one ratio, so that the product of 

a single A gene may combine with any of several B gene products (e.g. the DR locus, Fig. 

2). Some of the genes are pseudogenes, and for the products of some loci, e.g. DNA&ndDOB, 

although related in sequence to DR, DQ and DP, it is not yet clear whether they encode genuine 

antigen presenting molecules. Interspersed between the class II genes are a number of genes 

encoding molecules that are involved in processing antigens. The latter include the DM genes 

that encode molecules involved in loading peptides onto class II molecules, the TAP transporter 

loci, whose products are involved in transporting endogenous peptide into the endoplasmatic 

reticulum, and the LMP2 and LMP7 genes, encoding proteasome components, which are 

involved in protein cleavage (reviewed by Trowsdale 1995). 

The class III region does not contain Mhc genes proper. It encompasses a variety of tightly 

clustered genes, some of which encode products involved in the immune system, e.g. 

complement components and TNF, but many of which encode proteins, such as collagen, with 

functions that so far seem to bear no relationship to the immune response proper. 

The class I region contains several loci, including the polymorphic HLA-A, -B and -C, 

which encode the classical antigen presenting Mhc class I a chains. In addition, numerous 

so-called non-classical Mhc genes are present that are distantly related in sequence to the 

polymorphic A, B and C loci, but which are expressed in an aberrant manner, and which are 

invariably oligomorphic (Klein and O'hUigin, 1994). Many of these non-classical sequences 

are in fact pseudogenes. Those that are expressed do in some cases present antigenic peptides. 
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Class II Class III Class I 

DN DO 
DP DM DQ DR C4 HSP70 TNF B C X E J A H G F 

m n i—ii—i n n n 
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TAP, LMP Bf C2 G7a 

Figure 2. Genetic organization of the HLA complex. (Modified after Salter-Cid and Flajnik 1995) 

These peptides, however, generally are of a different nature than those of classical class I 

molecules, resulting in different activation patterns (reviewed by Shawar et al. 1994). 

Comparison of the genetic organization of the HLA region with that of the mouse Mhc, 

the H-2 complex, showes that the class II and III regions of these two species are similarly 

organized, and to such an extent that orthologous relationships can be found. In contrast, the 

class I region differs greatly in the number and organization of genes, and there are no 

orthologous relationships between human and mouse class I genes. This suggests that the class 

I region is less stable than the class II and III regions, and more prone to recombinations, 

duplications and deletions (Klein et al. 1993a). As a result, the class I genes of different species 

have different origins, and seldom orthologous relationships are present. 

MAc-related genes outside of the Mhc 

A number of genes with sequence similarity to Mhc class I genes are found outside the 

Mhc proper, even on different chromosomes. A group of five Mhc class I related genes, 

encoding the non-polymorphic CD1 antigens (CDla, b, c, d, e), are located on chromosome 1. 

CD1 molecules are expressed in a restricted group of tissues, and it has been speculated that 

the CD1 molecules are involved in antigen presentation. Recently, CDlb has been found to 

present lipid antigens derived from the cell wall of Mycobacterium tuberculosis and M. leprae 

to T cells (Beekman et al. 1994; Sieling et al. 1995). In addition, CDld appears to be able 

to present peptides to T cells (Castano et al. 1995). 
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Another class I related gene outside the Mhc is that encoding an Fc receptor expressed 

in human placenta, which is related to the Fc receptor expressed in the gut of new-born rats 

(FcRn). Both molecules have been implied to take part in the process of the delivery of maternal 

IgG to the immunologically immature human fetus and newborn rat, respectively. Interestingly, 

the three-dimensional structure of the rat FcRn, as determined by X-ray crystallography, shows 

overall similarity to the structure of Mhc class I molecules, with two exceptions: (i) the groove 

of the FcRn molecule is closed due to a different structural position of the a helices, and can 

not accomodate peptides (Burmeister et al. 1994a), and (ii) the FcRn binds the Fc portion 

of IgG in a manner distinct from the interactions of Mhc molecules with peptides or CDS 

(Burmeister et al. 1994b). 

Other class I related genes are found for which no function has as yet been found. These 

include the gene encoding Zn-binding ^-glycoprotein (Araki et al. 1988), and a recently isolated 

gene, MR1, which, most interestingly, was mapped to chromosome 1: the same chromosome 

to which also CD1 and other members of the immunoglobulin superfamily have been mapped 

(Hashimoto et al. 1995). 

It seems clear that some class I-like molecules have been enrolled to perform various 

antigen presenting tasks, in addition to other functions. It is most likely, that many other class I 

related genes are present in the genome, but finding these genes depends for a large part on 

chance, or results of the human genome project. Judging from the presence of these genes 

in different species (for example both CD1 and FcRn homologues have been identified in 

humans and rodents), it is apparent that diversification of class I-like genes has been happening 

since early mammalian evolution, and insight into the structural and functional relationships 

of these genes will benefit from studies on other vertebrates. 

Polymorphism 

A remarkable feature of Mhc molecules is their polymorphism. In a population many 

alleles of a single Mhc gene are present, with large sequence variability between the alleles 

(Klein and Figueroa 1986). Most of the diversity between alleles is found in those amino acids 

whose side chains point into the cleft to interact with the peptide (Bjorkman and Parham 1990). 

At the DNA level, Hughes and Nei (1988, 1989) showed that the ratio of replacement over 

silent nucleotide substitutions (d„/ds) is significantly higher at positions involved in peptide 

binding than at other positions in the protein. This apparently is the result of positive selection 

for variability. The selective force driving the evolution of polymorphism presumably is the 

advantage from being able, as a population, to present and respond to various peptides from 

many pathogens, leading to increased fitness. However, other selective forces have also been 

proposed, including reproductive mechanisms like mating preferences, their function being 
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either to enhance immunocompetence (by increasing Mhc heterozygosity), or to avoid inbreeding 

(Potts et al. 1994). 

Much of the Mhc polymorphism of a species is derived from the ancestral population, 

i. e., polymorphism is transspecifically inherited, a phenomenon described in the trans-species 

hypothesis (Klein 1987). In general, after speciation, only minor modifications accumulate 

in already existing allelic lineages (Lawlor et al. 1988; Mayer et al. 1988). The enormous 

diversity observed thus can be attributed mainly to the age of allelic lineages, rather than to 

a high mutation rate or a high intensity of natural selection. In fact, Mhc genes are found to 

mutate at rather low rates (Klein et al. 1993b), and data from Satta and co-workers (1994) 

indicate that also the intensity of natural selection is low. 

The Mhc of non-mammalian vertebrates 

Next to mammalian species, Mhc genes and/or gene products have been identified in 

birds, reptiles, amphibia, and recently fish. However, only in the chicken and the clawed toad, 

Xenopus, evidence has been obtained for the presence of an Mhc, in the sense of a genetic 

region encoding class I and class II molecules, directing the specificity of graft rejection and 

other phenomena dependent on T-cell recognition. 

The locus controlling these traits in chicken, named the B complex, has been mapped 

to a microchromosome, and it has been found to contain two to four class I (B-F) and two 

class II (B-L) genes. The only, and non-polymorphic, class I IA gene identified in chicken, 

has been mapped at some distance from these genes (Kaufman et al. 1995). Besides the B-

complex genes, the segregation of which correlates with serological typing, a second group 

of Mhc genes has been found not to be linked to the B complex. This so-called RJp-Y system 

contains two class I and two class IIB genes, the latter of which appear to be less polymorphic, 

and less strongly transcribed than the class IIB genes in the B complex (Miller et al. 1994; 

Zoorob et al. 1993). 

Exclusive for the chicken is the presence of another highly polymorphic multigene family, 

named B-G, which is unrelated to Mhc genes. The B-G genes are strongly linked to the B 

complex, and one member was even found on the same cosmid cluster as the B complex. The 

proteins encoded by these genes, so-called B-G antigens, are cell surface disulfide-linked 

heterodimers, which presumably play a role in the immune system, but whose exact function 

is still unknown (Goto et al. 1988; Kaufman and Salomonsen 1992). 

The B-F and B-L genes contain very short introns, on average 100 bp, and intergenic distances 

are also very short. Both phenomena could be due to the location of the B complex on a 

microchromosome. In addition, no evidence has so far been obtained for the presence in the 

B complex of homologues of the intervening genes of the HLA class III region, except perhaps 
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the chicken homologue of the human HLA-livksd G9a (BAT8) gene (Spike and Lamont 1995). 

In combination with the limited number of B-F and B-L genes, this makes the chicken Mhc 

compact and simple. This has prompted the hypothesis by Kaufman and co-workers (1995) 

that the B complex may represent a 'minimal essential Mhc', containing only the minimal 

number of genes that is absolutely essential for the functioning of a complex integrated immune 

system. 

Descending the evolutionary ladder towards the ectothermic classes, the reptilia are the 

first encountered. In comparison with the knowledge of the Mhc in chicken, however, very 

little is known of the Mhc in reptiles. Mhc sequences have been isolated from two species, 

the Northern water snake (Nerodia sipedon) and the Amieva lizard (Amieva amievd) 

(Grossberger and Parham 1992). In addition, molecules that are structurally very similar to 

known class I or class II molecules have been immunoprecipitated from snake, caiman and 

turtle. However, since there is still controversy about the strength of T-cell related responses 

in reptiles, it is as yet unclear what role the Mhc molecules play in reptiles, and neither is 

it clear whether the genes encoding these molecules reside in an Mhc proper (Kaufman et al. 

1990a,b). 

The best-studied ectothermic vertebrate in terms of its Mhc is the anuran amphibian 

Xenopus laevis. The Xenopus Mhc has been defined at the biochemical and functional levels 

(reviewed by Kaufman et al. 1990a), as well as at the molecular-genetic level. Three class II B 

genes, and a single polymorphic class I gene are expressed in Xenopus, and the segregation 

of these genes correlates perfectly with serological typing (Shum et al. 1993; Kobari et al. 

1995; Sato et al. 1993). Similar to the situation in mammals, several class III genes have been 

found to be linked to the frog Mhc genes: two to three HSP70 genes, two copies of a 

complement factor B (Bf) encoding gene, and probably also the gene encoding complement 

component C4 (Salter-Cid et al. 1994; Kato et al. 1994, 1995; Nakamura et al. 1986). 

Some of the major interest in the frog Mhc stems from the natural occurrence of allopolyploid 

Xenopus species. Xenopus laevis itself is a tetraploid, and although it still expresses many 

duplicated loci, it seems to have functionally diploidized its Mhc, apparently by deletion, or 

perhaps by silencing one ofthe diploid sets (Shum et al. 1993). Similar functional diploidization 

is observed in other naturally occurring polyploid Xenopus species, like X. vestitus (8n), but 

not in laboratory-made polyploids, which express Mhc genes of each parental species co-

dominantly (Du Pasquier et al. 1977). This indicates that the diploidization process takes place 

over evolutionary time, probably as the result of a selection pressure working against an increase 

in the number of expressed Mhc genes. 
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Another interesting observation made in the studies on Xenopus Mhc is the presence 

of a large family of non-classical class I genes, mapped as a single linkage group to a different 

chromosome than the classical genes. This non-classical gene family (named XNC) is composed 

of at least nine subfamilies, and all of these are expressed at the RNA level. Similar to the 

characteristics of mammalian non-classical genes, however, the XNC genes are expressed 

at much lower levels than the classical molecules, and show a different tissue distribution. 

In addition, polymorphism of these genes is minimal, and the amino acid sequences of these 

genes lack some of the conserved residues involved in peptide binding found in classical class I 

molecules (Flajnik et al. 1993; Salter-Cid and Flajnik 1995). 

The Mhc of fish 

Fish represent the majority of all living vertebrate species; of approximately 43,000 

vertebrate species over 30,000 are fish, which have been diversifying for more than 400 million 

years. Extant fish species can roughly be divided into three major groups: (i) the jawless fish, 

or Agnatha, represented by lampreys and hag-fishes; (ii) the cartilaginous fish, or 

Chondrichthyes, including the Elasmobranchii (sharks and rays) and the Holocephali {e.g., 

rabbitfishes); and (iii) the bony fish, or Osteichthyes, consisting of the lobe-finned fishes (the 

coelacanth, and lungfishes), and the ray-finned fishes (with primitive representatives like the 

sturgeons (Chondrostei) and gars (Holostei), but also including all modern bony fishes or 

Teleostei). Teleostean fish make up the largest group, with 20,000 representative species in 

an immense variety, ranging from perch, plaice and pufferfish to cod, carp and catfish, and 

many more. 

In an immunological sense, the teleostean fish occupy an interesting position, as they 

are the most primitive group of species displaying acute graft rejection. For a long time 

however, this graft rejection and other MÄc-related traits, like mixed leukocyte reactivity and 

cell-mediated lymphocytotoxicity, provided the only evidence for the existence of an Mhc in 

teleosts. Strategies that were successful in the identification of Mhc molecules in other species, 

like the use of cross-reactive DNA probes, monoclonal antibodies or xenoantisera, all failed 

to identify üshMhc molecules (Stet and Egberts, 1991; Kaufman et al. 1990a). With the advent 

of the polymerase chain reaction (PCR), however, times changed. Using this technique, the 

first fish Mhc genes were identified in the common carp (Cyprinus carpio L.) by Hashimoto 

and co-workers (1990). The strategy exploited the presence of two evolutionary conserved 

amino acid stretches around the cysteine-residues forming the disulfide bonds in the or3 domain 

of class I and the ß2 domain of class II molecules (Fig. 3). Highly degenerate oligonucleotides 

were designed, complementary in sequence to the conserved stretches, and these were used 

as primers in PCR amplifications on genomic DNA from carp. Fragments of the expected 
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size were sequenced, and among them two fragments, KI and KII, were identified that showed 

similarity to known Mhc class I and class II sequences, respectively. Screening a genomic 

library with these fragments then yielded two genomic clones, XTLAI-1, which contained part 

of a putative class I gene (TLAIa-1), and XTLAII-1, which contained part of a putative class II 

gene (TLAIIß-1). Similarity with other Mhc sequences was low, 30-33% identity for the exon 

encoding the class I a3 domain, and 30-40% for the exon encoding the class II ß2 domain. 

In light of the general failure to isolate these molecules using cross-reactive reagents, however, 

this did not come as a surprise. 

Nevertheless, the carp genes appeared to be enigmatic, as was experienced later. First, 

the genes reported were not complete. Only the exons encoding the classic^,a2 and a3 domains 

and class II ßj and ß2 domains were identified, and although major stretches of the genomic 

clones were sequenced, no exons encoding the leader, transmembrane or cytoplasmic domains 

were identified. Surprisingly, the authors did not report on the expression of these genes, which 

would have been an obvious part of this study, and which would also have facilitated the 

identification of any remaining exons, if present. 

Soon after these genes were reported, we started attempts to obtain the corresponding 

cDNA clones from cDNA libraries prepared from lymphoid tissues (spleen and head-kidney) 

of the carp. Initially, the KI and KII fragments were used to screen the libraries, however, 

no true positive clones were found. This could have been due to the small size of the KI and 

KII probes (approximately 190 bp), and therefore we subsequently tried to obtain cDNA 

sequences through anchored PCR on the libraries. This, however, also failed, and finally we 

had to conclude that the TLAIa-1 and TLAIIß-1 genes were probably not expressed in these 

lymphoid tissues, although this was a reasonable assumption. Nevertheless, three years later 

Okamura and co-workers (1993) reported the finding of cDNA fragments spanning all three 

extracellular domains of the TLAIa-1 genes (which at that time were already renamed to 

Cyca-7), from carp kidney. And in addition, we later obtained a truncated cDNA fragment 

encoding part of the TLAIa-1 a3 domain from a carp thymus cDNA library by anchored PCR. 

However, no complete TLAIa-1 or TLAIIß-1 cDNA sequences, encoding all of the domains 

that constitute a genuine Mhc molecule, have as yet been found. 

Aim and outline of this thesis 

The carp and other cyprinid fish species constitute the majority of fish grown in 

aquaculture systems, resulting in a contribution of 6.7 million tons to the total of 9.5 million 

tons of fish cultured worldwide in 1992 (FAO 1995). However, the high stocking densities 

increase the risk of infections and subsequent disease outbreaks, reducing the yields of 

production. To gain better control over disease it is essential to acquire an understanding of 
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the immune response of cyprinid fish. Mhc molecules play a leading role in the immune 

response, due to their central position in the process of antigen presentation and T-cell 

activation. A thorough knowledge of the structure and functioning of the carp Mhc can therefore 

be of great value to the understanding of disease control by vaccination, and selection for disease 

resistance. In addition, the study of the Mhc in carp may give important insights into the 

evolution of these genes, which helps in understanding their basic functions, and the mechanisms 

which have led to the evolution of a complex, integrated immune system as it is observed in 

higher vertebrates. 

The study presented in this thesis aims at the identification of the Mhc genes of the 

common carp (Cyprinus carpio L.). At the starting point of this study, only the TLAIa-1 

(Cyca-Z) and TLAIIß-1 (Cyca-YB) genes described by Hashimoto and co-workers were known, 

and although expression of these genes could not be detected, we decided to study their presence 

in laboratory strains of carp, using Restriction Fragment Length Polymorphism (RFLP) analysis 

(Chapter 2). The existence of class I genes in carp suggested that a ̂ -microglobulin molecule 

could be present as well, and, to verify previous biochemical data that this indeed was the 

case (Shalev et al. 1984), we decided to isolate the corresponding B2m cDNA sequences 

(Chapter 3). 

Meanwhile, evidence was accumulating that the Cyca-Z and Cyca-YB sequences probably 

do not represent bonafide Mhc genes, and based on the hypothesis that perhaps other class I 

sequences could be found in carp, we used a heterologous zebrafish class I probe to isolate 

a novel class I gene, Cyca-UA, from a gynogenetic carp clone A410. To ascertain that this 

gene was functional, we studied its expression at the protein level, and its polymorphism 

(Chapter 4). 

During a study into the expression of class I genes, a serendipitous finding of a class I-like 

fragment, Cyca-TC16, which was completely different in sequence from Cyca-Z and Cyca-UA, 

made it clear that multiple distinct class I lineages were present in the carp (Chapter 5). 

The only member of the carp Mhc genes not yet identified, was the class I IA gene, and we 

set out to isolate this gene from the gynogenetic carp clone A410. In addition, to type this 

carp clone for its Mhc genes, we set out to analyse the expressed class I IB sequences, and 

performed preliminary analyses of genetic linkage of these genes (Chapter 6). Finally, in 

the last chapter, the pieces of data obtained in each chapter are combined and discussed, and 

future directions are given (Chapter 7). 
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Summary 
Restriction fragment length polymorphisms (RFLPs) have been identified in the Mhc 
of the carp (MhcCyca) using class I (Cyca-Z) and class IIB (Cyca-YB) specific probes. 
The Kl-5 and K2-1 probes were obtained as polymerase chain reaction products after 
amplification of genomic DNA from a European carp using primers deduced from genomic 
sequences, and were shown to be 90% and 80% similar to Cyca-Z exon 3 and Cyca-YB 
exon 2 sequences, respectively. Six carp strains of different geographical origins and 
genomic status were studied. In homozygous gynogenetic carp strains the class I probe 
Kl-5 hybridized to 9-12 fragments, whereas the class II B probe K2-1 hybridized to 
3-5 fragments. Thus, the Cyca consists of multiple class I and class IIB genes. The level 
of polymorphism of the Cyca genes of the strains studied was calculated as the percentage 
of polymorphic fragments among the total number of fragments observed, and was shown 
to be 70% for class I and 40-66% for class IIB genes. In addition, a possible correlation 
was investigated between a serologically defined locus K, which was demonstrated 
previously to incorporate class I-like characteristics, and molecular genotyping using 
the class I probe. Two gynogenetic families, which were serologically typed Kl and 
K2 homozygous, also differed in their RFLPs using a class I probe. This would suggest 
that the K locus is part of the Cyca complex. 

Key words: MhcCyca, Cyprinus carpio L., restriction fragment length polymorphism, 
serology, gynogenesis. 

The nucleotide sequences reported in this paper have been submitted to the 
EMBL/GenBank nucleotide sequence databases and have been assigned the accession 
numbers S62610 and S62611. 

Introduction 
The major histocompatibility complex (Mhc) genes and gene products have been studied 

extensively in a limited number of mammalian species (reviewed in Klein 1986). Of the 

approximately 39,000 remaining non-mammalian vertebrate species, so far only one bird (Gallus 

gallus var. domesticus) and one anuran amphibian (Xenopus laevis) have been shown to possess 

a similar complex based upon the identification and characterization of its genes or gene products 

(Kaufman et al. 1990a). The initial identification of the Mhc of the latter species resulted from 

cellular, serological and biochemical studies, but the corresponding genomic and cDNA 

sequences have only recently been reported (Bourlet et al. 1988; Guillemot et al. 1988; Flajnik 

et al. 1991). With respect to the chicken Mhc, or B complex, the class I (B-F) and especially 

the class II (B-L) sequences show a reasonable degree of homology to the corresponding 

mammalian sequences. Therefore, the B-L genes could be identified using heterologous probes, 

whereas B-F genes were isolated by screening of cosmid clones with a B-L gene. Such strategies, 

however, have remained without success in lower vertebrates such as amphibia and Osteichthyes 
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(bony fishes), possibly due to too much divergence between the classes of Aves and mammalia, 

and these comparatively old phylogenetic classes. Indeed, zXenopus class I sequence, isolated 

by screening a cDNA library using monoclonal antibodies and polyclonal antibodies raised 

against immunoaffinity-purified class I molecules, shows only a low degree of homology with 

mammalian Mhc sequences (Flajnik et al. 1991). 

Since serological reagents for bonafide Mhc gene products are not available yet in fish, 

another strategy for the isolation of Mhc genes was adopted, based on the polymerase chain 

reaction (PCR). From comparisons of the amino acid (aa) sequences of class I a3 and class II 

ß2 domains from man, mouse and chicken, highly degenerate oligonucleotide primers were 

constructed, based on the sequences surrounding the conserved cysteine residues involved in 

the intramolecular disulfide bond of these domains (Hashimoto et al. 1990). After amplification 

of genomic carp DNA, two different fragments KI and KII were cloned. Using the KI and 

KII fragments as probes, two different clones could be identified from a genomic library, one 

containing a partial class I gene sequence {TLAIa-1), and the other a partial class I IB gene 

sequence (TLAIIR-1). The KI and KII fragments correspond to the class I exon 3 and class II B 

exon 2 of the putative carp Mhc. 

In order to reduce confusion in future nomenclature of the Mhc of different teleostean 

fishes, the gene designation, as used by Hashimoto and co-workers (1990), has been altered 

in compliance with the proposal by Klein and co-workers (1990). Thus, the carp (Cyprinus 

carpio L.) Mhc will be symbolized by MhcCyca, while the class I gene TLAIa-1 designation 

is changed to Cyca-Z and the TLAIIR-1 class II B gene to Cyca-YB. This new nomenclature 

was cleared through the register with the consent of Hashimoto and co-workers. 

The availability of the KI and KII probes recognizing the most conserved exons of the 

two classes of Cyca genes has prompted the study of a number of characteristics of the Cyca, 

such as multiplicity and polymorphism of its genes. Both traits are important hallmarks of 

the Mhc in higher vertebrates, and have revealed important implications for the erection of 

hypotheses concerning the evolution of the Mhc (Figueroa and Klein 1986; Klein and Figueroa 

1986; Klein 1987). In this study different class I and class II B probes have been used to 

estimate the number of class I and class I IB genes in the Cyca. Also, the polymorphism of 

these genes has been investigated by restriction fragment length polymorphism (RFLP) analyses 

of a limited number of carp lines with different geographical origins. Although most of these 

carp lines are probably derived from Denube carp, and thus may have a common ancestral 

origin dating back to the 16th century (Berka 1985), it should be stressed that these cultured 

carp strains are hybrids of different carp races, European feral, wild, and even Chinese carp. 

In addition, these hybrids have also undergone deliberate selection for growth and natural 

selection for disease resistance in adaptation to local aquacultural circumstances in the past 
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100 years. This has probably resulted in largely unknown bottle necks in all carp populations. 

In this study, therefore, no attempts have been made to study the polymorphism of the Cyca 

in terms of gene frequencies, but instead the polymorphism of this complex in a number of 

laboratory strains was investigated. 

In a previous study a major histocompatibility locus K was identified by alloantisera 

produced within a gynogenetic carp family (Kaastrup et al. 1989). This locus was shown to 

incorporate class I-like characteristics, based on skin transplantation data and distribution of 

its gene products as seen in flowcytometric analyses. Using a Cyca class I-specific probe, it 

is also investigated in this study whether the K locus is part of the Cyca, in order to establish 

a correlation between molecular genotyping and expressed polymorphism of the Cyca. 

Materials and methods 
Animals. 

The laboratory strains of the common carp (Cyprinus carpio L.) used in this study were 

originally obtained from different geographical stocks. The A strain originated from Israel 

and is known as the DOR70 (Wohlfarth et al. 1980), the W strain was obtained from the 

Netherlands, the D strain from Germany, the R8 from Hungary, and the R3 from Poland. 

The latter two have been bred by means of brother-sister matings for five and six generations, 

respectively. In our laboratory, second-generation meiotic gynogynetic families were obtained, 

essentially as described by Nagy and co-workers (1978) and Komen and co-workers (1988). 

For the A strain, two second generation families A4.19 and A4.3 were produced from first-

generation meiotic females A4-19 and A4-3. These carp had been previously serologically 

typed Kl- and K2-homozygous using alloantisera defining allelic specificities of a putative 

major histocompatibility locus K (Kaastrup et al. 1989). For the W strain, two gynogenetic 

families W11.49 and W11.52 were generated from randomly selected females from a first-

generation gynogenetic W11 family, without prior knowledge of serologically identified major 

histocompatibility K locus alleles within this family. 

In addition to these strains, two Fl hybrid families, R3 x R8 and E20 x E6 were used. 

The latter Fl hybrid family was a cross between two individuals of a homozygous clone (Komen 

et al. 1991). This clone was originally produced by mitotic gynogenesis using a D x W Fl 

hybrid female carp. Random outbred carp (WK) with unknown family history, were obtained 

from the OVB, Lelystad, The Netherlands. These carp, however, showed different phenotypic 

characteristics, with respect to scaling and shape. 
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DNA isolation. 

Blood samples were obtained from the caudal vein of three to six individuals from each 

carp family or group, under proper anesthesia. Erythrocytes were isolated by centrifugation 

at 400 x g for 10 min and washed twice in cTBS (20 mM Tris, 150 mM NaCl, 0.8 mM MgCl2, 

0.2 mM CaCl2, pH 7.6, and adjusted to 270 mOsmol). Packed cells (50 /il) were resuspended 

in 500 pi cell lysis buffer (10 mM Tris/HCl pH 8.0, 1 mM MgCl2, 150 mM NaCl, and 1% 

CHAPS) and incubated for 1 hour on ice. Nuclei were collected by centrifugation at 13,000 

x g for 10 min. Recovered nuclei were subsequently lysed in 50 mM Tris/HCl pH 9.5, 100 

mM EDTA, 1 % SDS and incubated overnight (o.n.) at 50°C in the presence of proteinase-K 

(1 mg/ml). DNA was extracted by consecutive extractions using phenol, phenol/chloroform/iso-

amyl alcohol (IAA), chloroform/IAA, and chloroform, and finally precipitated in 0.1 vol 3M 

sodium acetate and 2 vol 100% ethanol at -20°C. The DNA was washed in 70% ethanol, dried, 

and dissolved in TE (10 mM Tris/HCl pH 7.6, 1 mM EDTA). 

DNA samples of the R3 x R8 Fl hybrid family were obtained from liver samples. Small 

samples were homogenized in TEN (100 mM Tris/HCl pH 8.0,10 mM EDTA, 250 mM NaCl, 

1 % SDS) buffer, and incubated o.n. at 50° C in the presence of proteinase-K (1 mg/ml). Further 

isolation of high molecular weight DNA was performed as described above with the exception 

of an additional precipitation after the extractions using 0.6 vol 2-propanol. 

DNA digestion. 

DNA samples (20 fig) were digested in a large volume (400 pï) with Pstl, TaqI, or £coRI 

(generally 5 units/jug) according to the manufacturer's (Boehringer, Mannheim, Germany) 

specifications in the presence of RNAse. DNA was precipitated and dissolved in TE and used 

directly for electrophoresis. 

Electrophoresis and Southern blotting. 

Digested DNA samples (10 ̂ ig/lane) were separated in 0.8 or 1.0% horizontal agarose 

gels in a TBE (90 mM Tris, 90 mM boric acid, 0.25 mM EDTA, pH 8.5) buffer system. 

Electrophoresis was carried out o.n. at 15°C in non-recirculating buffer tanks. 

Following depurination in 0.25 N HCl, denaturation in 0.5 M NaOH/1.5 M NaCl, 

neutralization in 1 M Tris/HCl pH 7.4, 1.5 M NaCl, and equilibration in 10 x SSC (SSC; 

150 mM NaCl, 150 mM Na-citrate pH 7.0), the DNA was transferred to a nylon filter (Hybond 

N +, Amersham, UK) by vacuum blotting in 10 x SSC at 40 mbar for 1 hour using a Vacugene 

XL system (Pharmacia, Uppsala, Sweden). Subsequently, nylon filters were placed on filter 

paper soaked in 0.4 M NaOH for 1 min, and briefly washed in 5 x SSC. Filters were air dried 

and either used immediately or stored at 4°C. 
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Probes and hybridizations. 

The probes KI and Kil hybridizing with Cyca-Z exon 3 and Cyca-YB exon 2, respectively, 

(Hashimoto et al. 1990) were a kind gift of Dr. Hashimoto, Toyoake, Japan. In addition, 

fragments comparable to these probes were obtained by PCR amplification of genomic DNA 

from a European carp using primers that were constructed for the amplification of class I and 

class II B Cyca genes. The primers for Cyca class I were 5'-

d[TGTCTGGTCACTGGTTTCTACCC]-3'and5'-d[AGGCTGCTGTGAATCACATGACA]-3' 

and for Cyca class II B 5'-d[TGCAGTGCCTATGACTTCTACCC]-3' and 5'-

d[GAGCTGGCGTGCTCCACCACACA]-3'. PCR amplification was performed on 500 ng 

genomic DNA, in a mix containing 200 /xM of each dNTP, 1 itM of each primer, 2.5 U Taq 

polymerase (Perkin Elmer, Emeryville CA, USA) and reaction buffer in a final volume of 

100 /xl. The mixture was subjected to a thermal cycle profile (1 min 94°C, 2 min 55°C, 2 

min 72°C) for 50 cycles with an additional extension step at 72°C for 10 min. The PCR 

products of about 190 base pairs (bp) were cloned into the Smal site of pBluescript SK-

(Stratagene, La Jolla, CA) and sequenced. 

The probes were excised from pBluescript using EcoTU and Bamffl restriction digestion. 

The probe was separated from the plasmid on agarose gel and recovered by excising the DNA 

from the gel, followed by centrifugation and precipitation (Heery et al. 1990). Radiolabeling 

of the probes (200 ng) was performed by multiprime labeling, essentially according to Feinberg 

and Vogelstein (1983). Probes were recovered by precipitation in 1 vol 5 M ammonium acetate 

and 6 vol ethanol at -20°C. After a brief wash in 70% ethanol, the radiolabeled probe was 

dried, and dissolved in TE containing 0.01% SDS. 

The nylon filters were prehybridized in 5 x SSC, 5 mM EDTA, 0.1% SDS, 5 x 

Denhardt's, and 30% or 35% formamide for the KI(Kl-5) and KII(K2-1)probes, respectively. 

The prehybridization mix was filter sterilized through a 0.2 /xm filter and 100 /xg of denatured 

Escherichia coli DNA was added. Prehybridization was carried out for 4-5 hours at 42°C, 

and hybridization o.n. at 42°C by adding 1 x 107 cpm. For both K1-5(KI) and K2-1(KII) 

hybridizations the filters were washed at low stringency, i.e., 4 x SSC, 0.1% SDS at 42°C 

for 10 min, and 4 x SSC, 0.1% SDS at 45°C for 10 min. Autoradiography was performed 

at -70°C using Kodak X-OMAT AR imaging films with intensifying screens. Fragment size 

was scored using an imaging system (Cybertech CS-1, Berlin, Germany). 

In a number of experiments, filters were rehybridized with another probe after removing 

the first probe. Filters were washed in boiling 0.5% SDS, and were allowed to cool down 

to room temperature. Subsequently, filters were washed twice briefly in 5 x SSC, air dried 

and reused for hybridization. 
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A. 
Kl-5 TGT CTG GTA ACT GGT TTC TAC CCC AGA GAT ATT GAG ATG AAC ATC AGA 

XTLAI-1 --C 

Kl-5 CTG AAC AGA ATT AAC ATT GAG AGC CAG ATA TCT TCT GGA ATC AGA CCA 
XTLAI-1 --- --- --- --A 

Kl-5 AAT GAT AAT GAA AGC TTT CAG CTC AGA TCC AGT GTG AAG ATC GAC AGA 

XTLAI-1 G-- A-G 

Kl-5 AAC CAC AGA GGA TCT TAT GAC TGT CAT GTG ATT CAC AGC AGC CA 

XTLAI-1 

B. 
Kl-5 CLVTGFYPRD IEMNIRLNRI NIESQISSGI RPNDNESFQL RSSVKIDRNNH 

XTLAI-1 D M 

Kl-5 RGSYDCHVIH SS 

XTLAI-1 --

c. 
K2-1 TGC AGT GCC TAT GAC TTC TAC CC* AAA CCC ATT AAA CTG ATG TGG ATG 
XTLAII-1 --C -CA 

K2-1 AGA GAT GAA ATG AAA AGT GGC AGC TGA TGT GAT GTT CAT TGA GGA GAT 

XTLAII-1 --T -*A -G- G-- -A- -A- --C --C --C -C-

K2-1 GGC TAA TGG AGA CTG GTA TTA TCA AAT CCA CTC CCA CCT GGA ATA TTT 

XTLAII-1 -G- C-- C-- C--

K2-1 TCC CAA ACC TGG AGA GAA GAT CTC CTG TGT GGT GGA GCA CGC CAG CTC 

XTLAII-1 C-- ---

D. 
K2-1 CSAYDFYPKP IKLMWMRDEA KVAADVMFIE EMANGDWYYQ IHSHLEYFPK 

XTLAII-1 T--DK E-TT--TST- -L-D 

K2-1 PGEKISCWE HAS 

XTLAII-1 

Figure 1. Alignment of Kl-5 (A) and K2-1 (C) with XTLAI-1 and XTLAII-1. For inferred aa sequences 
of Kl-5 (B) and K2-1 (D) the reading frames of the XTLAI-1 and XTLAII-1 were used. 
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Results 
In order to obtain a realistic estimate of the number of putative class I and class II B 

genes present in carp, probes should be used which, with a high probability, will hybridize 

to the conserved parts of most of the class I genes present. These conditions can be fulfilled 

by the PCR products KI and KII described by Hashimoto and co-workers (1990), which were 

obtained after amplification of carp genomic DNA using degenerate primers based on the 

conserved aa sequences surrounding the cysteine residues in the third and second domain of 

class I and class II B, respectively. 

In order to validate the general use of the KI and KII PCR fragments in assessing the 

number of Cyca genes and their polymorphism, it was investigated whether similar fragments 

could be obtained from a European carp. To this end a PCR was performed with oligonucleotide 

primers, which sequences were based on the conserved elements of the genomic sequences 

reported for the Japanese carp. After amplification two fragments were cloned from the 190 bp 

band. Sequence analysis of one of the cloned fragments (KI-5), excluding the primer sequences, 

demonstrated extensive similarity to carp class I genomic clone XTLAI-1 (Hashimoto et al. 

1990) of 97% at the nucleotide level (Fig. 1A), whereas another cloned fragment, designated 

K2-1, was shown to be 87% similar to carp class II genomic clone XTLAII-1 (Fig. 1C). In 

the Kl-5 sequence six substitutions were observed of which three were non-synonymous, 

resulting in two aa substitutions, one conservative and one non-conservative (Fig. IB). However, 

the number of non-synonymous nucleotide substitutions in the K2-1 sequence was much higher, 

giving rise to nine non-conservative and two conservative aa substitutions (Fig. 1B,D). 

Kl-5 and K2-1 were used as probes for the Cyca genes in all experiments described 

in this study. In addition, in a limited number of experiments hybridizations were repeated 

with KI and KII. Hybridizations were performed on restriction-enzyme-digested high molecular 

weight DNA of carp of different geographical origins and genomic status. A total number 

of five different geographical origins, i. e., Dutch (W and WK), German (E), Hungarian (R3), 

Polish (R8), and Israeli (A), were represented in the essentially homozygous mitotic gynogenetic 

clone (E20 x E6), partly homozygous second generation meiotic gynogenetic families (A4 

and Wll) , inbred lines (R3 and R8), and outbred population (WK) used in this study. 
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Figure 2. RFLP patterns of EcoW- (A) and Psrt-digested (B) DNA of different carp strains, hybridized 
with carp class I probe Kl-5. Arrows indicate presence of hybridizing fragment correlating with 
serological typing for the K locus of the A4.3 and A4.19 families. 

Table 1. Hybridization patterns of £coRI-digested DNA, hybridized with Cyca-Z exon 3 (Kl-5) probe. 

Carp line 

A4.19 

A4.3 

W11.49 

17500 

1* 

1 

1 

11700 

1 

1 

1 

8150 

1 

1 

0 

Fragment Size (bp) 

7100 

1 

1 

1 

6100 

1 

1 

0 

5750 

0* 

0 

1 

5000 

1 

1 

1 

3150 

1 

1 

1 

2450 

0 

1 

0 

» 

7 

8 

6 

1 indicates presence, 0 absence of fragment 
# number of fragments 
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Figure 3. RFLP patterns of ftrt-digested DNA of different carp strains, hybridized with carp class 
I probe Kl-5. 

Class I genes. 

Southern blot hybridization patterns of ÊcoRI-digested DNA obtained with the 32P-labeled 

Kl-5 probe, homologous to a Cyca-Z exon 3, showed that in the gynogenetic carp families 

A4.19, A4.3, and Wl 1.49 six to eight hybridizing fragments were detected (Fig. 2A, Table 1), 

five of which were present in all individuals tested. Although only three gynogenetic families 

were analyzed in this experiment, they all appeared to be characterized by a unique hybridization 

pattern. 

The analysis was subsequently extended with the inclusion of other carp strains using 

digestion with Pstl. In these experiments 9-12 hybridizing fragments were observed in the 

carp families studied (Figs. 2B and 3, Table 2), with four fragments seen in each individual. 

No differences were detected between individuals within each family. In contrast, most families 

were characterized by a unique hybridization pattern, except that no differences were seen 

between the W11.49 and W11.52, and between the R8 and A4.19 families. Particular families 

were characterized by the presence or absence of certain Pstl fragments. The A4.19 was lacking 
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Table 2. Hybridization patterns of Psd-digested DNA, hybridized with Cyca-Z exon 3 (Kl-5) probe. 

Carp 
line 

Fragment Size (kb) 

14.6 10.6 7.0 6.2 5.7 4.7 3.45 3.0 2.6 2.25 2.1 2.05 1.95 0.85 

A4.19 

A4.3 

W11.49 

W11.52 

E20xE6 

R3 

R8 

1" 

1 

0 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

1 

0 ' 

0 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

1 

1 

9 

10 

9 

9 

9 

11 

9 

*# Symbols same as Table 1. 

the 2100 bp, the E20 x E6 the 850 bp, and the R3 the 3450 bp fragment, respectively. In 

addition, the R3 was the only family showing a 6200 bp Pstl fragment, compared to the other 

families studied (Table 2). In a separate experiment where the segregation of Pstl fragments 

was studied in an Fl hybrid family R3 x R8, hybridization of Kl-5 to /M-digested DNA of 

R3 and R8 revealed that three out of the eight polymorphic fragments (14,600; 3,450 and 

2,600 bp)(see Table 2) were seen to segregate in the R3 x R8 progeny. With respect to the 

number of fragments, essentially the same observations were made in hybridizations of Taql-

digested DNA from the gynogenetic families A4.3, W11.49, W11.52, and E20 x E6. Thus, 

from the total number of eight to nine fragments per family, five were seen in all individuals 

(Figs. 4A and 5A). In contrast to the analyses with Pstl, however, where the R3 and R8 inbred 

lines showed differences between but not within the particular families, now individuals were 

also different within the families. The number of fragments (12) seen in the WK individual 

was higher compared to that observed in the gynogenetic families (eight or nine). In all the 

above-reported hybridization experiments no differences were observed between the use of 

the Kl-5, or the KI probe. 

The level of polymorphism expressed as the percentage of polymorphic fragments among 

the total number of fragments observed was calculated to be 70%, when using Pstl or Taql 

digestions. However, in hybridization experiments with Kl-5 performed on ZscoRI-digested 

DNA of individuals from only three families, no more than 45% of the number of fragments 

detected could be classified as polymorphic. 
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Figure 4. RFLP patterns of 7agl-digested DNA of different carp strains, hybridized with class I probe 
Kl-5 (A) and class II B probe K2-1 (B). 

Class II B genes. 

The hybridization patterns of restriction-enzyme-digested DNA with probe K2-1 were 

assessed in a number of carp families under low stringency conditions. A difficulty in 

interpreting the hybridization patterns was the frequent occurrence of weakly hybridizing 

fragments. The hybridization patterns of /M-digested DNA showed three to five strongly 

hybridizing fragments, with an additional number of weakly hybridizing fragments. If the latter 

were included in the analysis, a total number of six to nine fragments could be observed in 

the four carp families studied (Fig. 6, Table 3). The same was found for Ta^I-digested DNA 

hybridized with K2-1, revealing three to five strongly hybridizing fragments, and accumulating 

in 7-10 if the other fragments were also scored (Figs. 4B and 5B). Each family demonstrated 

a characteristic hybridization pattern, except those of Ta^I-digested DNA of the E20 x E6 

and R3 carp, which appeared to be similar. No differences in hybridization patterns of Pstl-

digested DNA were observed between individuals of the Wl 1.52, W11.49, A4.3, A4.19, and 

E20 x E6 families. However, WK individuals from an outbred population showed differences 

in both Kl-5 and K2-1 hybridizations, whereas individuals from R3 and R8 families only 

differed in their Kl-5 probe hybridization patterns. 

The level of polymorphism of the K2-1 hybridizing fragments among the families studied, 
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Figure 5. RFLP patterns of Tagl-digested DNA of different carp strains, hybridized with class I probe 
Kl-5 (A) and class II B probe K2-1 (B). 

Table 3. Hybridization patterns of ftfl-digested DNA, hybridized with Cyca-YB exon 2 (K2-1) probe. 

Carp line Fragment Size (kb) # 

+ + + + + + + 
12.1 8.6 7.75 7.45 6.6 6.2 5.2 4.75 3.95 3.6 3.4 2.6 2.55 

A4.3 

W11.49 

E20xE6 

R3 

r 
0 

i 

l 

i 

l 

l 

i 

0* 

i 

0 

0 

l 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 1 0 1 1 5(8) 

1 0 1 0 0 3(6) 

1 0 0 0 0 4(7) 

1 1 0 1 1 4(9) 

§ Total number of strong fragments, and weak fragments in parentheses. 
+ Weakly hybridizing fragment 

1 indicates presence and 0 indicates absence of fragment. 
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when expressed as the percentage of polymorphic fragments, was calculated to be 40% and 
66% for Taql and Pstl, respectively. 

Serological correlation. 

In a previous study (Kaastrup et al. 1989) alloantisera were raised between carp from 

a first gynogenetic generation of the female A4. Two alloantisera were described that were 

shown to correspond to two co-dominantly expressed allelic products of a single major 

histocompatibility locus K, incorporating class Mike characteristics. These alloantisera were 

used to type carp from this gynogenetic A4 progeny serologically. Two families, A4.19 and 
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A4.3, were produced by gynogenesis from female carp typed Kl and K2 homozygous, 

respectively. High molecular weight DNA from individuals from the A4.19 and A4.3 families 

was digested with iscoRI and Pstl and hybridized with the Cyca-Z exon 3-specific Kl-5 probe 

to investigate whether a serological typing for this putative major histocompatibility locus K 

would correlate with the molecular genotyping of Cyca-Z genes. The A4.19 and A4.3 differed 

in both the EcdKl and Pstl hybridization patterns (Fig. 2). In the EcoRl and Pstl hybridization 

patterns the A4.3 showed an additional fragment of 2450 bp and 2100 bp, respectively. 

Discussion 
The Mhc of bony fishes (Osteichthyes) has remained elusive for more than two decades 

following the first description of allograft rejection in this class of vertebrates (Hildemann 

1970; Kallman 1970). Although the results from genetic analyses of tissue transplantation, 

mixed leukocyte reactivity, and serologically detectable alloreactivity, in combination with 

the presence of an integrated immune system were seen to be indicative of the presence of 

an Mhc at this phylogenetic level, these observations have not led to a proper identification 

and characterization of Mhc genes and gene products in teleostean fishes (reviewed in Stet 

and Egberts 1991 ). Also, antibodies recognizing bonafide Mhc molecules from other vertebrate 

species were unable to unequivocally precipitate teleostean Mhc molecules resulting from 

putative cross-reactivity (Kaufman et al. 1990b, c). It was not until the advent of PCR 

technology that a beginning could be made with the identification of the Mhc in a teleostean 

fish (Hashimoto et al 1990). Two PCR fragments, designated KI and KII, were shown to 

correspond to carp class I (Cyca-Zexon 3) and a class IIB (Cyca-YB exon 2) specific sequences, 

respectively. Invariably, these exons have been shown to be the most conserved among distinct 

loci of different mammalian species (Klein and Figueroa 1986; Figueroa and Klein 1986). 

To assess the conserved nature of these exons among different haplotypes of the Cyca, specific 

primers were constructed based on the genomic sequences of the Cyca-Z and Cyca-YB genes. 

Two fragments designated Kl-5 and K2-1 were obtained after amplification of genomic DNA 

of a European carp. Sequence analyses of these fragments showed that the corresponding exons 

are indeed well conserved as indicated by the similarity to the Cyca-Z and Cyca-YB sequences 

obtained from a Japanese carp. The inferred aa sequence of the Kl-5 probe shows a similar 

level of substitutions as observed in comparisons of mammalian class I sequences (Sood et 

al. 1985). In contrast, the numbers of non-synonymous substitutions in the K2-1 sequence 

resulting in clustered and mainly non-conservative substitutions seems remarkable. Whether 

this reflects interallelic or interlocus variability remains to be investigated. 

The availability of probes identifying the most conserved exons of the class I and class II B 
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Cyca genes makes it feasible to study a number of characteristics of the Cyca, such as the 

number of genes and the level of polymorphism. Thus, the number of genes may be estimated 

from the number of hybridizing fragments in Southern hybridizations using 6 bp-restriction-

endonuclease digestion of genomic DNA (Cami et al. 1981). Since a most accurate estimate 

can be obtained from homozygous carp, where the complexity of the hybridization pattern 

should be reduced, carp families have been included which were reproduced by gynogenesis, 

either by inhibition of the second meiosis or by inhibition of the first mitosis (Komen et al. 

1988; Komen et al. 1991). Both techniques will lead to fast inbreeding and inferred 

homozygosity of the Cyca genes. 

The gynogenetic carp families were shown to possess 6-10 fragments hybridizing with 

class I probes. The number of hybridizing fragments in the partly inbred strains R3 and R8 

is comparable to the number observed in the gynogenetic families. However, some residual 

heterozygosity of the Cyca genes is expected to be present in these strains, because in the 

R3 x R8 Fl hybrids segregation was observed of some class I-hybridizing Pstl fragments. 

Moreover, the hybridization patterns of Ta^I-digested DNA of R3 and R8 obtained with the 

K1 -5 probe, the sequence of which incorperates a Taql restriction site, also revealed differences 

between individuals of each of these inbred strains. This phenomenon was not observed in 

the gynogenetic strains (A4, Wll , and E20 x E6). 

The number of class I genes seems to fall outside the range of 17-36 class I genes given 

for mammalian species such as man and mice (Srivastava et al. 1985; Steinmetz et al. 1982). 

However, the number of carp class I genes is comparable to that of other mammals such as 

rabbit (Rebière et al. 1987) and swine (Satz et al. 1985). Of the non-mammalian vertebrates, 

only the number of class I genes of the chicken (6 B-F genes in the B12 haplotype) is known 

(Guillemot et al. 1988). In Xenopus only recently a class I cDNA clone has been described, 

and therefore no data are as yet available on the number of class I genes (Flajnik et al. 1991), 

although biochemical data suggest that only one classical class I gene is expressed (Flajnik 

etal. 1984). 

The number of class II B genes, as estimated from the number of hybridizing Pstl 

fragments with the class IIB exon 2-specific probes, is about half of that of the class I genes, 

namely three to five, if only the strongly hybridizing fragments are taken into account. Apart 

from these fragments, an additional three to five weakly hybridizing fragments were observed. 

The significance of these faint bands is hard to evaluate due to the low stringency conditions 

under which the hybridization had to be performed. No apparent explanation can be given 

for the anomalous hybrid stability of these homologous probes. However, these low stringency 

hybridizations were not only a peculiarity of the Kl-5 and K2-1 probes, but also of the KI 

and KII probes. Therefore, it is difficult to assess whether these weakly hybridizing fragments 
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are indeed class II genes, or represent irrelevant signals due to cross-hybridizations with other 

genes as a result of sequence similarity (Santos et al. 1983). Thus, the number of class II B 

genes as estimated from the strongly hybridizing fragments is comparable to the estimates 

for mice (Steinmetz et al. 1982), humans (Bodmer and Bodmer, 1984), and chicken (Guillemot 

et al. 1988). Also, in Xenopus five different class II ß chains have been identified by two-

dimensional gelelectrophoresis of immunoprecipitated membrane glycoproteins (Kaufman et 

al. 1985). 

The analyses of the Mhc in mammals have revealed that duplication is a main event in 

the evolution of this complex, leading to its contemporary genetic organization (Klein and 

Figueroa 1986; Figueroa and Klein 1986). It appears that duplication of Mhc genes is also 

seen in fish, be it, to a lesser degree, at least for class I genes. Whether this reflects a more 

primordial state of the Cyca, or is the result of a more recent contraction remains unclear. 

Hashimoto and co-workers (1990) have raised the suggestion, based on aa sequence comparisons 

deduced from Cyca-YB exon 1, that this exon encodes a domain resembling a V-set domain, 

unlike that of higher vertebrates. This might suggest that the Cyca is preserved in a more 

primordial state compared to the Mhc of higher vertebrates. 

Although the number of carp strains used in this study has been limited, the level of 

polymorphism of the Cyca genes is remarkable. Almost all strains exhibit different hybridization 

patterns with both class I and class II B probes. In Europe, pond culture of carp dates back 

to the 16th century (Berka 1985). Especially in Germany and Bohemia, several carp races 

were developed for use in intensive pond culture, whereas in China no specific carp races 

were developed. Four main races could be distinquished namely, Aischgrunder, Lausitzer, 

Bohemian and Galician, but between the two world wars most carp races became extinct, while 

the remaining were extensively mixed. Nowadays, most German carp were reconstructed from 

Galician x Lausitzer. Because pre- and post-war exports were mainly carp with a Galician 

stem, in many carp populations in other countries this race can be found. 

The W strain originates from the only carp farm in the Netherlands. This farm started 

in 1899, breeding with a mixture of German races. In 1956 mirror carp were selected for 

breeding under stringent mass selection, which resulted in the establishment of the W strain. 

The Hungarian R8 and the Polish R3 have undergone similar selections. Also, Israeli carp 

farming started by the introduction of a number of European races. Between 1965 and 1970 

a large selection experiment starting with five different lines from different carp farms resulted 

in the A (DOR70) strain. Although the carp strains A, W, E, R3 and R8 all had a different 

geographical origin, it is by no means clear from this study what the level of polymorphism 

of the Cyca is in the local populations in terms of gene frequencies. However, the observed 

polymorphism might reflect variability between populations consisting of different races present 
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in these geographical regions. This is substantiated by the observation that all phenotypically 

different carp (WK group) showed different hybridization patterns (data not shown). 

The level of polymorphism can be expressed as the proportion of polymorphic fragments 

among the total number of fragments detected (Nei and Li 1979), thus enabling an interspecies 

comparison. RFLP analyses of class I genes in a number of mammalian species has revealed 

that their polymorphism ranges from 30-80% (Orr 1983; Palmer et al. 1983; Nizetic et al. 

1985). The level of Cyca class I polymorphism of 70% for both Pstl and Taql, as detected 

in this study with a limited number of different carp strains, falls well within the range given 

for mammalian species. Moreover, extending the analysis to more strains can only lead to 

an increase of the level of restriction fragment length polymorphism. The polymorphism of 

40%-60% as calculated for class IIB genes is slightly lower compared to that of class I. Still, 

this observation indicates that the Cyca class II B genes are also highly polymorphic. No 

information is as yet available on the genetic organization of the class I and class II regions 

of the Cyca in terms of the presence of different loci. Future studies revealing this organization 

will be needed to enable us to study the polymorphism of the class II region A and B genes 

using locus-specific probes (Bakura et al. 1985; Andersson and Rask 1988). 

In a number of species it has been possible to establish a correlation between molecular 

genotyping using RFLP analyses, and serological, cellular or biochemical typing of the Mhc 

(Rilnetal. 1988; Joostenefa/. 1990). The latter three define expressed polymorphism, which 

will allow functional studies to be performed, and the results to be interrogated properly. 

It is therefore important to establish whether a similar correlation exists between different Cyca-

typing methods in carp. 

In a previous study on the presence of an Mhc in carp, we have described two co-

dominantly expressed allelic specificities Kl and K2 of a single histocompatibility locus K, 

which were identified with alloantisera produced within a first-generation gynogenetic offspring 

from the female carp A4 (Kaastrup et al. 1989). Although this locus AT was shown to incorporate 

class I-like characteristics, it was not clear whether it is part of a major histocompatibility 

complex. 

In order to substantiate the observation that the K locus may represent a Cyca class I 

locus, the hybridization patterns obtained with the KI and Kl-5 probes of £coRI- and Pstl-

digested DNA from two families, which had been serologically typed Kl/1 and K2/2, 

respectively, were analyzed. Hybridizations with the class I probes revealed in both digestions 

an additional fragment in the K2 homozygous individuals (A4.3), as compared to the Kl 

homozygous family (A4.19). As the A4.3 and A4.19 families were produced by gynogenesis 

and therefore theoretically should only have maternal genes, the difference observed in the 

hybridization patterns may indeed reflect a difference in K haplotypes, as this had been the 
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basis for the selection of the female carp A4-3 and A4-19. Such a difference was absent in 

hybridization patterns of the two other second generation gynogenetic families W 11.49 and 

Wl 1.52, which were produced from two serologically unselected first-generation gynogenetic 

female carp (Wll-49 and W11-52) sharing the same mother Wl l . Thus, a correlation is 

observed between molecular genogyping for Cyca class I genes, and expression of serologically 

defined alleles of a single histocompatibility locus K. No data are available on the co-segregation 

of these traits, since the A4 female carp is not available anymore. However, a gynogenetic 

progeny from a Kl/K2-heterozygous first-generation gynogenetic A4 carp is currently being 

produced. Unfortunately, such data are as yet not available for class II typing due to the low 

reproducibility of MLR analyses (Stet and Egberts 1991). 

Future functional studies of polymorphic Cyca gene products would be greatly facilitated 

by the availability of antibodies recognizing monomorphic determinants, similar to W6/32 

used in mammalian studies (Neefjes et al. 1986). Concurrently, elucidation of the genetic 

organization of the Cyca, providing locus-specific probes, might refine such functional studies. 
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Summary 
Using degenerate primers based on published ßj-microglobulin sequences we were able 
to obtain an expected 111-base-pairs (bp) polymerase chain reaction (PCR) fragment 
from tilapia genomic DNA. The sequence of this fragment showed a high degree of 
similarity to mouse ß2-microglobulin at the protein level. We used these primers in an 
"anchored PCR" to obtain a 213 bp PCR fragment from a carp cDNA library. This was 
then used to clone a full-length ß2-microglobulin cDNA from carp. The carp sequence 
showed the highest similarity to rabbit ß2-microglobulin. Both sequences showed strong 
similarities to all previously published vertebrate ß2-microglobulin sequences. The 
predicted protein secondary structure of both the carp and tilapia clones was almost 
identical to the corresponding regions of previously known vertebrate ß^icroglobulin 
protein sequences. When either the carp or tilapia probes were used against corresponding 
Northern blots they hybridized to a message of approximately 800-1000 bases long, which 
corresponds to the previously published lengths of ß2-microglobulin mRNAs. Southern 
blotting indicated that ß2-microglobulin was encoded by a single copy gene inborn cases. 
Phylogenetic analysis indicated that the sequences were related to the ßj-microglobulins 
of higher vertebrates but grouped together in an ancestral position. 

The nucleotide sequences reported in this paper have been submitted to the 
EMBL/GenBank nucleotide sequence databases and have been assigned the accession 
numbers L05536 (carp) and L05537 (tilapia). 

Introduction 
The polymerase chain reaction (PCR) technique is one of the most recent techniques 

developed to isolate and clone DNA rapidly (Saiki et al. 1988). The major advantages of PCR 

over other techniques is the ability to amplify DNA from very minute DNA sources (Saiki 

et al. 1988). Since the PCR primers only have to hybridize to very short stretches of DNA, 

this technique has proved to be extremely valuable in cloning genes from different species 

across large evolutionary time differences (Sakanari et al. 1989). In these types of experiments, 

degenerate primers are often synthesized based on conserved regions of the homologous proteins 

from various species. Since the expected product size is often known, the PCR product may 

be purified from non-specific products by a separating gel. 

The major histocompatibility complex (Mhc) is a group of genes which encode extremely 

polymorphic proteins essential to the function of the immune system of all vertebrates. There 

are two major types or classes of Mhc proteins. Class I Mhc molecules are located on the surface 

of most cells and are involved in presenting foreign antigens to cytotoxic T cells. Class I Mhc 

molecules consist of two polypeptide chains: an Mr 45,000 alpha chain which associates with 

anMr 12,000 chain, referred to as ß2-microglobulin (reviewed in Klein 1986). Class II Mhc 

molecules are restricted to antigen-presenting cells, and they are also composed of two chains, 

a and ß, both of which are approximately Mr 30,000 in size (Klein 1986). 
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Recently Hashimoto and co-workers (1990) used the degenerate-primer strategy to clone 

both class I and II Mhc from carp. They synthesized primers based on similar sequences of 

the a3 and ß2 domain from chicken, mouse and human Mhc classes I and II. The isolated PCR 

products were sequenced and used as probes to screen a carp genomic library. The coding 

region from these clones had some sequence similarity to class I and II Mhc molecules from 

other species but, more importantly, contained several conserved amino acids (aa) in key 

positions and shared structural similarity with class I and II Mhc molecules from other species. 

The fish class II Mhc also showed characteristics similar to the immunoglobulin (Ig) superfamily 

V set, thus providing more indications that Igs, T-cell receptors, and Mhc evolved from a 

common protein. The cloning of carp Mhc using PCR has facilitated the rapid cloning of Mhc 

molecules from rainbow trout (Glamann et al. 1991 ; Juul-Madsen et al. 1992), Atlantic salmon 

(Fosse et al. 1991) and sharks (Kasahara et al. 1992; Hashimoto et al. 1992). 

The isolation of ß2-microglobulin protein from distantly related vertebrates and 

invertebrates has been the goal of several groups (Shalev et al. 1981,1983; Warr et al. 1984; 

Roch et al. 1983). The importance that ß2-microglobulin plays together with class I molecules 

in presenting endogenous peptides (Nüchtern et al. 1989; Townsend et al. 1989,1990) and 

preventing the presentation of exogenous peptides (Rock et al. 1990,1991 ) should theoretically 

be common to all organisms with an immune system capable of recognizing non-self antigens. 

Understanding the evolution of ß2-microglobulin from various taxa may provide insights into 

how the Mhc function arose. In most of these earlier studies ß2-microglobulin was detected 

serologically using xenogenic antibodies in goldfish (Warr et al. 1984), earthworms (Roch 

et al. 1983), Drosophila (Shalev et al. 1983), and cod, plus several invertebrates (Shalev et 

al. 1981). These experiments are not totally conclusive, as they only indicate the presence 

of a protein structurally similar to ß2-microglobulin. In addition, the co-precipitation of putative 

class I molecules using their putative ß2-microglobulin was never observed. Further proof, 

such as sequencing these proteins or their corresponding genes, is required to conclude that 

they are indeed ß2-microglobulin. We attempted to obtain cDNA clones of ß2-microglobulin 

from two fish species, tilapia (Oreochromis niloticus L.) and carp (Cyprinus carpio L.) in 

order to prove conclusively that this protein exists and is functional in lower vertebrates. 
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Materials and methods 
Fish stocks 

The tilapia used in this experiment were cultured in the Marine Gene Probe Laboratory 

(MGPL). The carp were A4.10, a second-generation gynogenetic carp line produced at the 

Department of Experimental Animal Morphology and Cell Biology (Wageningen, The 

Netherlands; Kaastrup et al. 1989). 

Tilapia PCR reactions and sequencing of products 

Tilapia genomic DNA was isolated from fresh red blood cells as described by Moreno 

and co-workers (1989). Oligodeoxyribonucleotide primers for PCR were synthesized by the 

MGPL on an Applied Biosystems PCR-Mate Model 391 DNA Synthesizer, and purified on 

Nensorb Prep columns (Du Pont de Nemours, Den Bosch, The Netherlands). The primer 

sequences are B2M-1: 5'-d[CA(A,G)GT(A,T,C,G)TA(T,C)(T,A)(C,G)(A,T,C,G) 

(C,A)G(A,T,C,G)CA]-3'; and B2MB: 5'-d[CTC(C,G,T)CCGTTCTTCAGCAG]-3', with 

sequence degeneracies indicated in parentheses. PCR was performed in a DNA Thermocycler 

(Perkin Elmer, Norwalk,CT) with 45 cycles consisting of denaturation at 94 °C (first cycle 

5 min; 30 s thereafter), annealing at 55CC (30 s), and polymerization at 72°C (1 min; 5 min, 

final cycle). All reaction volumes were 100 (A overlaid with 50 fi\ light mineral oil, and 

contained the following final concentrations: 10 mM tris-HCl pH 8.3 at 25 °C; 50 mM KCl; 

1.5 mM MgCl2; 200 pM each of dATP, dCTP, dGTP, dTTP; 1 /iM each of the primers; 50 

ng genomic DNA; and 2.5 units Tag DNA polymerase (Perkin Elmer). PCR products were 

fractionated on a vertical 7% Polyacrylamide gel run in 1 x Tris-borate (TBE). The DNA was 

visualized by staining the gel in 0.5 /*g/ml ethidium bromide. DNA products were isolated 

by excising the bands, crushing the gel, and extracting the DNA overnight in sterile dH20. 

The DNA was subcloned into the Hindi site of M13mpl8; single-stranded phage DNA was 

sequenced by the dideoxy chain termination method (Sanger et al. 1977), using the modified 

T7 DNA polymerase version 2.0 Sequenase kit (US Biochemicals, Cleveland, OH). 

Sequence analysis 

The DNA sequences (and derived protein sequences) were analyzed against the GenBank, 

the National Biomedical Research Foundation, and the Protein Identification Resource and 

Swiss Protein databases, using the computer search program Blast (Altschul et al. 1990) and 

local similarity alignment program FastA (Pearson and Lipman 1988). Matched protein 

sequences were globally aligned using Align (Myers and Miller 1988). The sequences were 

analyzed using several programs from the GCG package (Genetics Computer Group, Madison, 
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WI). The phylogram was constructed from the predicted fish aa sequences plus previously 

published vertebrate sequences, using the program Clustal V (Higgins et al. 1992) which uses 

the neighbor-joining method of Saitou and Nei (1987). 

Southern blotting 

For the Southern analysis (Sambrook et al. 1989) of tilapia, 15 ßg of the indicated DNAs 

were digested to completion with EcóBl or Hindlll, and electrophoresed at 1.2 V/cm for 

13 hours (h) in a 0.8 % agarose gel run in 1 x TBE pH 8.3. The gel was stained with 0.5 jug/ml 

ethidium bromide and photographed. The gel was transferred to nylon (Amersham, Oakville, 

Canada; Sambrook et al. 1989) and crosslinked with ultraviolet light for 5 min. The radiolabeled 

DNA probe was prepared by PCR from the tilapia 111 bp PCR product in M13mpl8, using 

the M13 forward and reverse sequencing primers (Perfect Match Cloning Systems: Stratagene, 

La Jolla, CA), and substituting 33.3 pinoles of [alpha-32P]dCTP (approximately 3000 Ci/mmol; 

Amersham) for dCTP in the deoxyribonucleotide mixture (Bellamy et al. 1990). PCR conditions 

were 45 cycles at 94°C (first cycle 3 min; 15 s thereafter), 50°C (15 s), and 72°C (30 s). 

The blot was probed (approximately 2 x 106 cpm per 10 ml) at 42°C for 18 h in hybridization 

solution (5 x saline sodium phosphate-EDTA (SSPE), 0.1% sodium dodecyl sulfate (SDS), 

1 % w/v bovine serum albumin, 150 /tg/ml tRNA, 10% sodium dextran sulfate, 50% formamide, 

and 1 x Denhardt's solution). The blot was washed four times with 0.2 x SSPE pH 7.4, 

0.1% w/v SDS at 55°C for 30 min, and exposed to XAR5 film (Kodak, Rochester, NY) for 

18 h at -80°C with an intensifying screen. The blot was then further washed with 0.1 x SSPE 

pH 7.4, 0.1% w/v SDS at 55°C, and exposed as above (see figures 3 A, B). High molecular 

weight carp DNA was obtained from liver. Small samples were homogenized in TEN (100 mM 

Tris/HCl pH 8.0, 10 mM EDTA, 250 mM NaCl, 1% SDS) buffer, and incubated overnight 

at 50°C in the presence of proteinase-K (1 mg/ml). DNA was isolated by subsequent phenol 

extractions and ethanol precipitations. Southern analysis of carp DNA was performed similarly, 

except that the filter was probed with WAG2B2, a 213 bp carp PCR fragment, in hybridization 

solution containing 50% formamide, 5 x SSC, 0.1% SDS, 5 mM EDTA, 5 x Denhardt's, 

and 100 /ig denatured Escherichia coli (E. Coli) DNA, and the filter was washed for 15 min 

in 4 x SSC, 0.1% SDS at 50°C. 

Tilapia RNA preparation 

10 ml of blood were obtained from the caudal vein of tilapia. The blood was centrifuged 

over 3 ml Histopaque 1119 ficoll (Sigma, St. Louis, MO) for 30 min at 300 x g. Lymphocytes 

were collected and stimulated with 10 /ig/ml poly I:C in RPMI 1640 plus glutamine, 20 mM 

Hepes, pH 7.5 and 2 g/1 sodium bicarbonate (Flow Laboratories, McClean, WV) containing 
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10% heat-inactivated fetal calf serum (Flow Laboratories) for 30 min at 30°C. Total cellular 

RNA was obtained from the white blood cells by the method of Chirgwin and co-workers 

(1979). The integrity and quantity of the RNA was analyzed by electrophoretic fractionation 

on a denaturing 0.8% agarose gel at 90 V for 2 h. Carp RNA isolation is outlined below in 

the cDNA library construction section. 

Northern Analysis 

Approximately 15 /xg of total RNA were denatured and loaded on a denaturing 0.8% 

agarose gel and electrophoresed at 90 V for 2 h. RNA was transferred to a nylon membrane 

(Amersham). The blot was probed with 32P-dCTP-labeled random-primed (Feinberg and 

Vogelstein 1983) tilapia 111 bp PCR product. The probe was hybridized in hybridization 

solution (see Southern blotting of tilapia) overnight and the blot was washed at 55 °C in 

0.1 x SSPE, 0.1% SDS for 30 min. Blots were autoradiographed with XAR5 film (Kodak) 

overnight at -80°C with an intensifying screen. Northern analysis of carp RNA was performed 

similarly, except that 3-6 /xg of poly(A)+-RNA (see RNA isolation in next section) were run 

per lane and the filter was probed with a 213 bp carp PCR fragment (WAG2B2, see Results 

and discussion) in hybridization solution containing 50% formamide, 5 x SSC, 0.1% SDS, 

5 mM EDTA, 5 x Denhardt's, and 100 /xg denatured E. coli DNA, and the filter was washed 

for 15 min in 4 x SSC, 0.1% SDS at 50°C. 

Preparation of carp mRNA and cDNA library 

Total RNA was isolated from pronephros (head kidney) and spleen by homogenizing 

and selective precipitations in the presence of high molar concentrations of lithium chloride 

and urea. After proteinase-K treatment and phenol/chloroform extractions, total RNA was 

precipitated in ethanol, washed, and dissolved in water. cDNA, containing £coRI adaptors, 

was prepared from poly(A)+-RNA using an mRNA purification kit (Promega, Madison, WI) 

and a cDNA synthesis kit (Pharmacia, Uppsala, Sweden) according to the manufacturer's 

specifications. The obtained cDNA was ligated into iscoRI-digested Xgtll vector, and packaged. 

The resulting primary library contained 8 x 106 recombinant PFU. The library was amplified 

and Xgtl 1 phage particles were isolated using a plate lysate method, followed by a standard 

lambda DNA extraction. 

PCR screening of carp library. 

Aliquots (300 ng) of Xgtll-cDNA-library DNA were used in an anchored PCR by 

combining Xgtll sequence primers (X forward: 5'-d[GGTGGCGACGACTCCTGGAGCCCG]-3' 

or X reverse: 5'-d[TTGACACCAGACCAACTGGTAATG]-3' (Promega)) with tilapia 
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ß2-microglobulin degenerate oligonucleotides (B2M-1 orB2M-B). The reaction was performed 

in Taq buffer, using 1 unit of Taq polymerase (Promega), supplemented with 1.5 mM MgCl2 

and 200 pM of each dNTP in a final volume of 100 pi. The mixtures were subjected to a 

thermal cycle profile (1 min 94°C, 2 min 55°C, 1 min 72°C) for 30 cycles, with an additional 

extension step at 72°C for 10 min. 

Cloning and sequencing. 

The appropriate PCR products were excised from agarose gels and recovered by 

centrifugation and precipitation (Heery et al. 1990). Possible non-template extensions present 

in the PCR fragments were filled in using T4 polymerase (Pharmacia) in the presence of dNTPs. 

Fragments thus obtained were cloned in the EcoKV site of pBluescript SK (Stratagene). The 

nucleotide sequence was determined with automatic sequencing (Applied Biosy tems, Maarssen, 

The Netherlands) using DyePrimers (M13RP1). Sequence data were analyzed using the GCG 

package. 

Screening of the carp cDNA library. 

Hybond-N+ filters (Amersham) containing a total of 8 x 105 PFU from a carp \g t l l 

cDNA library were hybridized with the 213 bp WAG2B2 probe labeled to a specific activity 

of 2 x 108 cpm//xg using the random priming method (Feinberg and Vogelstein 1983). Filters 

were prehybridized in a solution containing 40% formamide, 5 x SSC, 0.1% SDS, 5 mM 

EDTA, 5 x Denhardt's, and 100 pg denatured E. coli DNA at 42°C for 6 h. Hybridization 

was performed at 42°C for 16 h in the presence of a labeled probe (1 x 107 cpm per filter). 

Filters were washed for 30 min in 4 x SSC, 0.1 % SDS at 45 °C, followed by a high-stringency 

wash in 1 x SSC, 0.1 % SDS at 65°C for 15 min. Filters were exposed to XAR5 film (Kodak) 

and positive plaques were identified. These plaques were again hybridized to the WAG2B2 

probe, and single positive plaques were isolated. cDNA inserts from positive plaques were 

obtained by PCR using X forward and reverse sequence primers (Promega). Appropriate DNA 

fragments were isolated and cloned into pTZ18R and pTZ19R. ssDNA was obtained and 

sequenced using M13 reverse sequence primer, Sequenase version 2.0 (US Biochemicals) and 

35S-dATP. Positive clones were verified using an internal PCR primer 

(OL85: 5'-d[CTGCCATGTCAGTGGCTTCCA]-3', based on the sequence of the 213 bp 

WAGB2B PCR fragment) and the X forward and reverse sequence primers. 

file:///gtll
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Results and discussion 
Cloning and Sequencing. 

We synthesized degenerate primers to regions of the ßj-microglobulin genes based on 

conserved protein regions in several mammalian species (Klein 1986; Gussow et al. 1987; 

Gold et al. 1987). The primer B2M-1 was designed to correspond to aa positions 8-14 of 

ß2-microglobulin which are conserved between all mammalian species (Klein 1986). B2M-B 

was designed to match one of the conserved regions described by Gold and co-workers (1987), 

which are conserved among all members of the Ig superfamily including human ßj-microglobulin 

aa positions 39-44 (Gussow et al. 1987). In both cases we reduced degeneracy at the 3' end 

of the primer by designing them so that there were aa's with fewer degenerate codons there. 

These primers were used in PCR reactions with tilapia DNA and resulted in an expected 111 bp 

fragment. This fragment was sequenced (Fig. 1) and these primers were used in conjunction 

with the X forward and reverse primers to obtain a 213 bp PCR fragment (WAG2B2) from 

a carp cDNA library (78.4% identity, six out of eight substitutions conservative in a 37 aa 

residue overlap with the tilapia sequence: 79% identity and five out of five substitutions 

conservative in the 24 aa region between the primers). The 213 bp fragment was obtained 

with the combination of B2M-B and X forward primers. Reactions using B2M-1 were 

unsuccessful as there is a region of poor similarity between the tilapia and carp sequences 

at the 3' end of the primer. This would result in poor primer annealing and thus no 

amplification. 

The 213 bp carp PCR fragment was used to screen a carp cDNA library. The first 

screening produced four positive plaques. DNA from these four clones was amplified in a 

PCR using X forward and reverse sequence primers. The clones were tested by performing 

a PCR reaction with the primer OL-85, a primer derived from the carp 213 bp PCR product 

sequence, and X forward or reverse sequence primer. Three clones produced fragments of 

the predicted size; WAGB2M-1, WAGB2M-2, and WAGB2M-3. Sequencing of these clones 

revealed that the size of the cDNA insert of WAGB2M-1 was 1095 bp, and WAGB2M-2 and 

WAGB2M-3 both contained inserts of 879 bp. WAGB2M-1 and WAGB2M-2 were sequenced 

completely, while WAGB2M-3 was partially sequenced to confirm that it was similar to 

WAGB2M-2. The sequence of WAGB2M-1 is presented in figure 1. The sequences of 

W AGB2M-1 and W AGB2M-2 were identical with the exceptions that in W AGB2M-2 position 

165 is a T and position 406 is a G. The T at position 165 alters the predicted aa to serine, 

which is the predicted aa from the tilapia sequence (Fig. 1) and the mammalian sequences 

at this position (Fig. 2). WAGB2M-2 and WAGB2M-3 end at position 879, but unlike 

WAGB2M-1, positions 877 to 879 are all A's. The presence of multiple polyadenylation sites 
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1 AAACTCTGGACTAAATCACCAAAA 

2 5 ATG AGA GCA ATC ATC ACT TTT GCC CTG TTC TGT GTG CTG TAC GTC 
-20 m r a i i t f a l f c v l y v 

Q V Y W 
CAG GTG TAT TGG 

70 ACT GTA CAA GGG AAA ACA TCC AGT CCC AAG GTT CAG GTG TAC AGC 
-5 t v q g K T S S P K V Q V Y S 

R H P G E Y G K E D V L I C H 
AGG CAT CCA GGA GAG TAT GGG AAG GAA GAT GTC TTG ATC TGC CAC 

115 CAT TTT CCC GGA GAG TAC GGA AAG GAG AAC ACC CTG ATC TGC CAT 
12 H F P G E Y G K E N T L I C H 

V S N F H P P D I T I T L L K 
GTG AGT AAT TTC CAC CCC CCT GAC ATC ACC ATC ACA CTG CTG AAG 

160 GTC AGG GGC TTC CAC CCT CCT GAT ATC ACC ATT GAA CTG CTG AAG 
27 V A G F H P P D I T I E L L K 

N G E 
AAC GGC GAG 

205 GAT GGC GAG ATT CTC CCA AAT ACC CAG CAG ACG GAC CTG GCC TTC 
42 D G E I L P N T Q Q T D L A F 

250 GAA AAG GGC TGG CAG TTT CAC CTC ACC AAG AGC GTC ACC TTC AAA 
57 E K G W Q F H L T K S V T F K 

295 CCA GAG AGA GGA CAG AAC TAC GCT TGC AGT GTT CGA CAC ATG AAC 
72 P E R G Q N Y A C S V R H M N 

340 AAT AAA AAC ATC TAT TCT TGG GAG CCC AAC ATG TAA 
87 N K N I Y S W E P N M 

3 76 AACTAAAACAGTCAAAGGCGGAGGAAAGGCGGATAATTTCACATGTTTTGGACATTTTC 
435 CATCATCTGCAGAAACAATAATATCCTGCTGTTCGATATTACAAACCTGATGTTGCTCA 
4 94 AGAAGCACTATTCATACAGATGACTTTTGTAACTTCTGCAATTCATCGATTTTAGCTTT 
5 53 TTCTTTAGTTACCTTTTTTTTTTCTTTTTCATAAGTGTAAGGATAATTTTACCAAAATA 
612 GCTGCTACGTGTTTTTGAATAAGTTTTGATCAGTTTCCGATTCTTACCCTGTTTCATTC 
671 CTCTCTGTGTAGTATGCAATACTGGGCCATATTTCTGCTTACTTTTGGCCTTTATTTTG 
730 TAATTAAATACCAATTTCACAATCAATTTTCTTTTTAAAACAAATAAGACTACTGCAAA 
78 9 CTGGGTATTTAATGATATCAATAATTCAATTTGACACTTTTCAGAGAAATGTCATTCTA 
848 AGTGGGGAAAATAAAGTTTAGAAAACCTAATGGAACAGTTGTGTTTATTTGCTTCAAAT 
907 TTTCTGTACTAATGCCTGTACTTTTAAGTTAAATCAACGTGATAGTGAGTTTCAGTTAT 
966 TTGTCTAACCTAAAACATAAACGTCTGCCTAGCAACTGAGCAACTAAGGTGGTGATTGG 

102 5 ATTAAAAAAAACAAGTAGAGACAAGTAGACTTTCGTTTTTCTGTGAGGCTATTAAAAAG 
1084 GTAAAGTCCTCG 

Figure 1. Complete sequence of WAGB2M-1, the longest carp ß2-microglobulin cDNA, aligned with 
the tilapia 111 bp PCR product. Predicted protein sequence of tilapia sequence displayed above DNA 
sequence; predicted protein sequence of carp DNA shown below DNA sequence. Underlined regions 
of tilapia sequences indicate location of degenerate PCR primers used to obtain fragment. Putative 
carp 19 aa residue hydrophobic leader sequence shown in lower case letters. Nucleotide number and 
aa number shown on left-hand side beside corresponding sequence. Polyadenylationsequence underlined 
(positions 857-862), as is adenine at position 877 after which poly(A)-tail is added. 
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in the 3' untranslated region (UT) of mouse ß2-microglobulin produces several species of 

mRNAs which differ in size (Parnes et al. 1983). However, the carp cDNA sequence, like 

human ß2-microglobulin (Gussow et al. 1987), contains only one polyadenylation signal sequence 

(positions 856 to 861, underlined in figure 1) which is 15 bases upstream from the end of 

clones WAGB2M-2 and WAGB2M-3. We deduced that the the poly A tail is added after position 

876 (underlined) and that WAGB2M-2 and WAGB2M-3 are polyadenylated, while WAGB2M-1 

represents a transcript which has not yet been polyadenylated. This clone was probably isolated 

along with the poly(A)+-RNA due to the long adenine stretches in its 3' end. 

All the carp sequences contained a 348 bp open reading frame encoding a predicted 116 aa 

precursor protein and a 97 aa mature protein which would have a relative mass of 13,300. 

This is consistent with previously published ß2-microglobulin sequences (Gates et al. 1979; 

Wolfe and Cebra 1980; Parnes and Seldman 1982; Gussow etal. 1987). The tilapia and carp 

sequences are shown with their predicted aa sequences in figure 1. The predicted aa sequences 

of both DNA sequences show features characteristic of ß2-microglobulins of vertebrate species. 

ß2-microglobulin is a member of the Ig superfamily. Proteins from this family of genes always 

contain a pair of cysteine residues which form a disulfide bridge producing a 65 aa residue 

loop (Williams 1987). There are two cysteine residues 65 residues apart in the predicted carp 

sequence (residues 25 and 80). Residue 25 is conserved in the corresponding position in the 

tilapia sequence (Figs .1,2), indicating that these sequences encode proteins which are members 

of the Ig superfamily. Further evidence that the carp sequence encoded a member of the Ig 

superfamily of genes was obtained using the program Profilescan (Gribskov et al. 1988) from 

the GCG program package. This program indicated that aa residues around the cysteine residue 

at position 80 (YACSVRH) matched those found in the consensus sequence found in all 

members of the Ig superfamily ([F,Y]xCx[V,A]xH). 

Similarity searches. 

Both sequences show a high degree of similarity to the corresponding sequences of 

previously published ß2-microglobulin sequences. The tilapia sequence was most similar to 

mouse ß2-microglobulin both with (62% identity, 5 out of 14 substitutions conservative in a 

37 aa residue overlap) and without the primer sequences included (54% identity, 4 out of 10 

substitutions conservative in a 22 aa overlap; Fig. 2). The primers may be included in this 

comparison as they are degenerate and thus do not absolutely determine the sequences at the 

end of the DNA fragment. 

The carp sequence showed the highest similarity to rabbit ß2-microglobulin (50 % identity, 

17 out of 43 substitutions conservative in an 86 aa residue overlap; Fig. 2). The cysteine 

residues at positions 25 and 80 of the carp sequence align with cysteine residues in 
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-20 -10 1 10 20 30 40 

I I I I I I I 
TI LAP IA QVYWRHPGE YGKEDVLICHVSNFHP PDITITLL 

CARP MRAIITFALFCVLYVT-VQGKTSSPKVQVYSHFPGEYGKENTLICHVAGFHPPDITIELL 

RABBIT VQRAPNVQVYSRHPAENGKPNFLNCYVTSGHPPQIDIELM 

MOUSE MARSVTLVFLVLVSLTGLYAIQKTPQIQVYSRHPPENGKPNILNCYVTQFHPPHIEIQLM 

HUMAN MSRSVALAVLALLSLSGLEAIQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLL 
Consensus * * * * * * * * * * * * * * * * * * * * * * * 

50 60 70 80 90 

I I I I I 
TI LAP IA KNGE 
CARP KDGEILPNTQQTDLAFEKGWQFHLTKSVTFKPERGQNYACSVRH- -MNNKNIYSWEPNM 
RABBIT KNGVKIENVEQSDLSFNKDWSFYLLVHTEFTPNNKNEYSCRVKHVTLKEPMTVKWDRDY 
MOUSE KNGKKIPKVEMSDMSFSKDWSFYILAHTEFTPTETDTYACRVKHASMAEPKTVYWDRDM 
HUMAN KNGERIEKVEHSDLSFSKDWSFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM 
Consensus *** * * * * * * * * * * * * 

Figure 2. Alignment of fishß2-microglobulin with known vertebrate ßrmicroglobulinprotein sequences. 
Rabbit and mouse ßj-microglobulin sequences were obtained from Klein (1986). Human ̂ -microglobulin 
sequence from Gussow and co-workers (1987). Consensus sequence indicates aa residues conserved 
in at least four out of five sequences (*). 

ß2-microglobulins of higher vertebrate species (Fig. 2). In addition, the conserved proline residues 

at positions 14, 32 and 72 which are important for the secondary structure of ßj-microglobulin 

are all highly conserved in the fish sequences (Fig. 2). A Chou and Fasman (1978) analysis 

of the secondary structure using the GCG package program Peptide Structure (Jameson and 

Wolf 1988) of the predicted carp aa sequence indicated that ß-sheet regions extend from aa 

residues 7-13, 21-27, 35-40, 60-70 and 78-83. These align with ß-sheet regions in mammalian 

ß2-microglobulin sequences which are thought to be important for secondary structure (Wolfe 

and Cebra 1980). Previous reports of the detection of a ßj-microglobulin-like protein in goldfish 

using xenogeneic antibodies (Warr et al. 1984) suggested the potential presence of 

ßj-microglobulin in teleosts, but the high degree of similarity between our clones and vertebrate 

sequences confirms that fish indeed produce ß2-microglobulin. 

The rabbit sequence was obtained by protein sequencing and thus lacks the hydrophobic 

leader sequence (Gates et al. 1979). The human and mouse hydrophobic leaders are both cleaved 

after aa residue -1 (Fig. 2; Parnes and Seldman 1982; Gussow et al. 1987). Based on this 

alignment the carp sequence should have a potential 19 aa hydrophobic signal sequence. The 

program Signal Sequence, which uses the signal cleavage site prediction method of VonHeijne 
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(1986), predicted that the carp sequence would be cleaved between the 19th and 20th aa 

(S value = 1.0000). The alignment of the predicted f ish ß2-microglobulin sequence with three 

mammalian ß2-microglobulins is shown in figure 2. Aa which are conserved in at least four 

out of the five sequences are denoted with an asterisk (*). Most mammalian ßj-microglobulins 

have a mature protein length of 99 aa residues with a 20 aa residue leader sequence. The carp 

sequence is 116 aa's long. The alignment obtained with the program Clustal V 

(Higgins et al. 1992) shown in figure 2 indicates that the difference in length is due to the 

presence of two additional aa residues near the carboxy terminus (positions 85 and 86) and 

one additional aa residue in the hydrophobic leader sequence (position -4) in mammalian 

ß2-microglobulin sequences. Either fish ßj-microglobulin has deleted aa's which were found 

in the ß2-microglobulin precursor of the common ancestor of all vertebrates, or these residues 

represent the insertion of extra sequences into the ß2-microglobulin of the ancestral terrestrial 

vertebrates following their divergence from fish. 

Northern Analysis. 

While this is the first report of a ß2-microglobulin from a fish, Mhc class I and II genes 

from carp have already been reported (Hashimoto et al. 1990). The report of the carp class I 

and II Mhc genes, however, details only genomic clones and provides no evidence that the 

reported DNA sequences are expressed. Obtaining a cDNA clone of ß2-microglobulin from 

fish is strong evidence for expression, but to further validate these results and characterize 

our clones we performed northern analysis (Fig. 3). The tilapia PCR fragment hybridized to 

an mRNA between 800 and 1000 bases long (Fig. 3A) and the WAG2B2 PCR fragment detected 

a message of similar size (Fig. 3B). This is consistent with the previously reported sizes of 

ß2-microglobulin mRNAs (Suggs et al. 1981; Parnes et al. 1983; Gussow et al. 1987). In 

addition, the WAG2B2 fragment detected a smaller band which may represent a breakdown 

product of ß2-microglobulin mRNA (Fig. 3B). 

The detection of an mRNA consistent in size with other ß2-microglobulin mRNAs supports 

the conclusion that our sequences do indeed encode ß2-microglobulin. The fact that the RNA 

used in these two blots was obtained from different tissues is consistent with these mRNAs 

encoding ß2-microglobulin, since its close association with class I Mhc requires it to be expressed 

in all tissues (Klein 1986). The function of ß2-microglobulin is to ensure that endogenous 

peptides are held in the cleft of the Mhc class I molecule, then to dissociate following the loss 

of the endogenous peptide to prevent the class I molecule from obtaining and presenting 

exogenous peptides (Rock et al. 1990, 1991). The association of class I Mhc and 

ß2-microglobulin indicates that the previously reported carp Mhc genes are probably expressed. 

This is in agreement with the reports of the isolation of cDNA clones of class I Mhc genes 
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Figure 3. Northern blot of carp and tilapia RNA probed with corresponding ß2-microglobulin clones. 
A. Tilapia total RNA probed with 111 bp PCR product. Arrows indicate the position of human 28s 
and 18s rRNA bands used as size standards. B. Carp total RNA probed with 213 bp WAG2B2 PCR 
product. Arrows indicate position of DNA size standards. 

from carp (Van Erp et al. 1996), Atlantic salmon (Fosse et al. 1991), and class II Mhc genes 

from several other fish species (Glamann et al. 1991; Juul-Madsen et al. 1992; Kasahara et 

al. 1992). The presence of expressed Mhc genes in fish indicates that the immune system of 

fishes functions in a manner consistent with that of higher vertebrates. 

Southern analysis. 

Unlike the other Mhc proteins, ß2-microglobulin is usually encoded by a single-copy 

gene in higher vertebrates (Parnes et al. 1983; Klein 1986). Southern analysis using the tilapia 

and carp PCR fragments indicated that the tilapia sequence is encoded by a single-copy gene 

(Fig. 4A), but that two copies of the gene are present in carp (Fig. 4C). The two bands in 

figure 4C, lane 4, are not consistent with the internal Pstl restriction site observed within the 

carp cDNA sequence, as this is outside the 213 bp probe region, and the Hindlll restriction 
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Figure 4. Southern blots probed with fish ß2-microglobulin clones. A. Southern blot of rainbow trout 
brook trout and tilapia DNA probed with tilapia 111 bp PCR product and washed under stringent 
conditions (see methods). Arrows indicate size of DNA size standards. Lane 1; rainbow trout DNA 
digested with ffindlll. Lane 2; tilapia DNA digested with fflndlll. Lane 3; brook trout DNA digested 
with£coRI. Lane4; rainbow trout digested DNA with EcoRI. Lane 5; tilapia DNA digested with EcoW. 
B. The same Southern blot from A washed under less stringent conditions (see methods). C. Southern 
blot of carp DNA probed with 213 bp WAG2B2 PCR product. Arrows indicate size of DNA size 
standards. Lane 1; carp DNA digested with £coRI. Lane 2; carp DNA digested with Haelll. 
Lane 3; carp DNA digested with flmdIII. Lane 4; carp DNA digested with Pstl. 

enzyme digest produces two bands in both tilapia (Fig. 4A, lane 2) and carp (Fig. 4C, lane 2). 

The multiple bands produced in the carp DNA cannot be alleles as the fish used in the 

experiment were inbred stock produced gynogenetically (Kaastrup et al. 1989), and thus must 

represent the presence of two copies of the gene. The presence of two copies of this gene in 

carp is not unusual, since they are regarded as tetraploid species (Ohno et al 1967). This 

is also consistent with the observation that the two Pstl sites do not segregate when tested on 

Southern blots containing full sibs and outgroup representatives (data not shown). Since tilapia 

are not tetraploid and our fish were outbred, we suggest that the multiple bands produced by 

Hindlll digestion probably represent allelic variation between the maternal and paternal copies 
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of this gene. These polymorphisms may be useful in genetic studies of fish and brood-stock 

analysis in tilapia aquaculture. 

The Southern blot presented in figure 4A was washed under stringent conditions, but 

a less stringent wash produced the results presented in figure 4B. The tilapia PCR product 

cross hybridizes with rainbow trout (Onchorynchus mykiss) and with brook trout (Salvelinus 

fontanalis) under these less stringent conditions. This indicates the presence of ß2-microglobulin 

genes in these species, with a high degree of sequence similarity to tilapia ^-microglobulin. 

This is not surprising as the ß2-microglobulin sequence is highly conserved over evolutionary 

time periods (Klein 1986). This observation is consistent with the reports detailing the cloning 

of Mhc class I genes from Atlantic salmon (Fosse et al. 1991). 

Phylogenetic analysis. 

An alignment of the 37 aa residue region defined by the tilapia PCR fragment with carp 

and seven other species was used to produce a phylogram (Fig. 5A). A second phylogram 

was produced using the full predicted protein sequence of the carp cDNA clone and 

ß2-microglobulin sequences from seven other species (Fig. 5B). In figure 5A the tilapia and 

carp sequences group together and the other species appear to branch in an order consistent 

with accepted evolutionary pathways. The turkey and chicken sequences are identical over 

this 37 aa residue stretch and thus group as one branch (Skjodt et al. 1986). The phylogram 

produced with the full sequence (Fig. 5B) was different only in the branching order of some 

mammalian species. Fish ß2-microglobulin appears to be related to other ß2-microglobulins, 

but groups apart from them in a phylogenetic analysis. 

The data presented here provide evidence that fish contain genes for ß2-microglobulin 

and actively express them, indicating that the fish immune system works in a fashion similar 

to that of higher vertebrates. These data also provide a further understanding of how the immune 

system evolved. So far, the fish immune system appears to be quite similar in its complexity 

to those of higher vertebrates. Fish do possess an IgM-like immunoglobulin and Mhc genes, 

but an equivalent to the T-cell receptor has not been identified to date. Also, there is no 

definitive marker for fish T cells available. The identification of fish T-cell markers, or a T-cell 

receptor would immensely advance our understanding of fish immune systems. In order to 

determine the origins of this complex system, important vertebrate immunoproteins should 

be sought in lower chordates and invertebrates. 
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Figure 5. Phylogenetic trees for vertebrate ß2-microglobulin sequences. A. Based on the 37 aa region 
encoded by the tilapia 111 bp sequence; B. based on full-length sequences. Scales at the bottom represent 
genetic distance. Rabbit, mouse and human sequences were obtained from references noted in the legend 
to figure 2. Chicken and turkey sequences are from Skjodt and co-workers (1988) and Welinder and 
co-workers (1991). Bovine sequence is from Groves and Greenberg (1982). Guinea pig sequence is 
from Wolfe and Cebra (1980). 
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Summary 
In this study we report the finding of three representatives of a new group of major 
histocompatibility complex class I sequences in carp: Cyca-Yl (Cyca-UA1*01), a full-
length cDNA; Çyca-SPl (Cyca-UAWl), a PCR fragment from cDNA; and Cyca-GU 
(Cyca-UA1*02), a partial genomic clone. Comparison of the amino acid sequences of 
Cyca-12, Cyca-SPl and Cyca-G 11 with classical and non-classical class I sequences from 
other species shows considerable conservation in regions that have been shown to be 
involved in maintaining the structure and function of class I molecules. The genomic 
organization of Cyca-12 has been elucidated by analysis of a partial genomic clone 
Cyca-G 11, in combination with PCR amplifications on genomic DNA of a homozygous 
individual. Although the genomic organization is similar to that found in class I genes 
from other species, the 3' untranslated region contains an intron which is unprecedented 
in class I genes, and intron 2 is exceptionally large ( + 1 4 kilobases). Southern blot 
analysis indicates the presence of multiple related sequences. In phylogenetic analyses, 
the Cyca-UA sequences cluster with class I genes from zebrafish and Atlantic salmon, 
indicating that the ancestral gene arose before the salmonid/cyprinid split, approximately 
120-150 million years ago. The previously reported class I Cyca-Z genes from carp, 
and Caau-Z genes from goldfish, cluster as a completely separate lineage. A polyclonal 
antiserum (anti-Cycal2) was raised against a recombinant fusion protein containing most 
of the extracellular domains of Cyca-12. The antibodies showed substantial reactivity 
with the recombinant protein and an Mr 45,000 protein in membrane lysates of spleen 
and muscle, as well as to determinants present on leukocytes in fluorescence-activated 
cell sorter analyses. Erythrocytes and thrombocytes were found to be negative. 

The nucleotide sequences reported in this paper have been submitted to the 
EMBL/GenBank nucleotide sequence databases and have been assigned the accession 
numbers X9105-X91028. 

Introduction 
Products encoded by the genes of the major histocompatibility complex (Mhc) play a 

major role in antigen presentation. For a long time the presence of Mhc molecules in fish was 

inferred from indirect evidence, such as the presence of an integrated immune system, mixed 

leukocyte reactivity (Stet and Egberts 1991), and the detection of a co-dominantly expressed 

histocompatibility alloantigen that correlated with skin transplant rejection in carp (Kaastrup 

et al. 1989). However, it was not until 1990 that sequences of Mhc genes from fish were 

reported (Hashimoto et al. 1990). The Cyca-Z (class I) and Cyca- YB (class IIB) partial genomic 

sequences from common carp that were described in this first publication have over the years 

been followed by class I and class II genes in a growing number of fish species (Dixon et al. 

1995). New Mhc genes have also been identified in carp, including class IIB genes (Cyca-DAB) 

(Ono et al. 1993a), ß2-microglobulin encoding sequences (Dixon et al. 1993), and recently 
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class II .4 genes (Cyca-DXA) (Van Erp et al. 1996a). Thus, representatives of all the sequences 

encoding both heterodimeric Mhc molecules have been identified in the carp. 

However, data on the carp class I Cyca-Z genes are limited, as no sequences other than 

cDNA fragments encoding the extracellular a1( a2 and a3 domains have been reported to date, 

and expression has thus far only been detected in kidney (Okamura et al. 1993). Moreover, 

many of the characteristics present in classical, and to a lesser extent in non-classical class 

I amino acid sequences from other species are not shared by the Cyca-Z sequences, and this 

has raised doubts as to their function. In contrast, a full-length cDNA sequence from Atlantic 

salmon (Sasa-p30) does possess many of the conserved class I features that are absent in Cyca-Z 

(Grimholt et al. 1993). Recently, a full-length class I transcript was isolated from zebrafish 

(Brre-Ul), which was more closely related to the sequence from salmon than to the Cyca-Z 

sequences (Takeuchi et al. 1995). The higher degree of similarity is in contrast with the close 

phylogenetic relationship between zebrafish and carp. This led to the hypothesis that a gene 

equivalent to Sasa-p30 and .Brre-Ul could be present in the carp as well. 

Despite the wealth of accumulating sequence data on fish Mhc genes, studies of expression 

and function of the encoded products are so far absent. It is generally assumed that Mhc 

molecules in fish perform the same function as their mammalian classical counterparts, but 

this still needs to be proven experimentally. For such studies it is essential that antibodies 

directed against fish Mhc molecules become available. 

The objective of this study, therefore, was to isolate new class I sequences from carp, 

and to raise polyclonal antibodies against the encoded protein. 

Materials and methods 
Fish 

The fish used in these experiments were laboratory strains of common carp (Cyprinus 

carpio L.). R3, R8, Wl 1-49 and WK were described by Stet and co-workers (1993). A4.10me2 

is a second-generation meiotic gynogenetic family, generated from a first-generation meiotic 

female, A4-10mel (Kaastrup et al. 1989). Homozygous gynogenetic carp were produced by 

mitotic gynogenetic reproduction from pooled eggs from three A4.10me2 females, according 

to previously described methods (Komen et al. 1990), and subsequent meiotic reproduction 

of one individual of the mitotic offspring led to the generation of clone A410. 

Carp cDNA libraries 
A Xgtll cDNA library was prepared from pronephros and spleen of 6 individuals of 
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2nd generation gynogenetic carp A4.10me2 as previously described (Dixon et al. 1993). A 

thymus cDNA library in XgtlO was constructed from thymi from ten 5-month old individuals 

of the clone A410. Poly(A)+-RNA was isolated, and cDNA was synthesized using a kit from 

Pharmacia (Uppsala, Sweden). The initial complexity of the library was 2.6 x 106 plaque-

forming units (PFU). The library was amplified once in E. Co/Z-strain NM514. 

Screening of thymus cDNA library 

A total of 1 x 106 PFU were transferred to 20 nitrocellulose filters (Schleicher & Schuell, 

Dassel, Germany), and screened with an Mhc class I cDNA clone (Ul) from zebrafish 

(Brachydanio rerio) (Takeuchi et al. 1995). The probe was labeled by the random primer method 

(Feinberg and Vogelstein 1983) to a specific activity of 4 x 107 cpm//xg. The filters were 

prehybridized and hybridized as previously described (Stet et al. 1993), in a solution containing 

40% formamide and 4 x 105 cpm of probe per filter. The filters were washed to a final 

stringency of 0.5 x SSC; 0.1% SDS at 60°C, and after exposure for 16 hours at room 

temperature, positive plaques were identified. Single positive plaques were isolated after a 

second screening, using the same procedure. 

Screening of carp genomic library 

Nitrocellulose filters (n=20) (Schleicher & Schuell) containing approximately 5 x 105 

PFU/filter of a commercially obtained genomic carp library in XfixII (Stratagene, La Jolla, CA) 

were screened with the carp cDNA probe. Screening protocols were essentially the same as 

used for the screening of the cDNA library, with the exception of using a hybridization solution 

containing 45% formamide. Single positive clones were isolated after a second screening. 

DNA sequencing 

Selected fragments were subcloned in pTZ18R and pTZ19R (Stratagene), or in pUC18 

using the Sureclone ligation kit (Pharmacia). The subclones were sequenced using the Cycle 

Sequencing Kit (Pharmacia), or the Sequenase DNA sequencing kit (USB, Cleveland, OH). 

Sequence data were analyzed with several programs from the GCG-package (Genetics Computer 

Group, Madison WI, USA), ClustalV (Higgins et al. 1992) and MEGA (Kumar et al. 1993). 

Polymerase chain reaction (PCR) 

Amplification by PCR was performed as described (Dixon et al. 1993), using a thermal 

cycle profile (1 min 94°C, 1 min 55°C, 2.5 min 72°C) for 30 cycles, with an additional 

extension step of 10 min at 72°C. Amplification of large fragments from genomic DNA was 

performed using the Expand Long Template PCR System (Boehringer, Mannheim, Germany), 
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according to the manufacturer's specifications. XgtlO- and Xgtll-specific primers (Promega, 

Madison, WI) were used to amplify cDNA inserts from the libraries. 

Southern blot analysis 

Genomic DNA was extracted from tissues, and Southern blots, containing 5 \x.g of Pstl-

digested DNA per lane, were prepared as described (Stet et al. 1993). The filter was hybridized 

as performed in the screening procedures (vide supra), in 40%-45% formamide (depending 

on the probe used) using 1 x 107 cpm of radiolabeled probe, prepared by the random primer 

method to a specific activity of 1.5 x 108 cpm//*g. The filter was washed to a final stringency 

of 0.5 x SSC at 45°C for 15 minutes, and used to expose X-omat S films (Kodak, 

Rochester, NY) for 3-5 days at -80°C with intensifying screens. 

Expression of recombinant Cyca-12, production of a polyclonal antiserum 

A 770 basepair (bp) fragment spanning most of exons 2, 3 and 4 was amplified by PCR 

and cloned in frame into expression vector pRSET (Invitrogen, Leek, The Netherlands). The 

polyhistidine containing fusion protein was expressed in E. coli BL21 (DE3) plysS (Novagen, 

Madison, WI) in a culture induced with 0.8 mM IPTG, and subsequently isolated under 

denaturing conditions, according to the Xpress System protein purification procedure, using 

Ni2+-affinity chromatography (Invitrogen). Pre-immune serum was collected from a female 

rabbit (New Zealand white), which was subsequently primed by s.c. injection of 200 ptg of 

the recombinant protein, diluted 1:1 in complete Freund's adjuvant. 

A new batch of recombinant protein was isolated using the same method, but with a 

subsequent additional purification using the Prep cell preparative gel electrophoresis system 

(Biorad, Hercules, CA). The rabbit was boosted 4 weeks after the first immunization by s.c. 

injection of 90 ng of the highly purified protein, diluted 1:1 in incomplete Freund's adjuvant. 

Serum (denoted anti-Cycal2) was collected 2 weeks after the second immunization. To eliminate 

aspecific reactivities, the serum was absorbed with carp erythrocytes. To this end, the serum 

was mixed 1:1 with packed erythrocytes for 2 hours, and the absorbed serum was collected 

after centrifugation. 

Preparation of membrane lysates 
Single-cell suspensions were resuspended in cRPMI (RPMI adjusted to 270 mOsmol) 

with ImM protease inhibitors to approximately lxlO8 cells/ml. Cells were homogenized on 

ice, nuclei and other debris were removed, and the membrane fraction was collected by 

centrifugation at 100,000xg for 1 hour at 4°C. The membrane pellet was washed in cTBS 

(18 mM Tris/HCl pH 7.6, 0.7 mM MgCl2, 0.18 mM CaCl2), and solubilized in cTBS with 
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1% CHAPS. After centrifugation, the supernatant was stored at -20°C. 

Western blotting 

Western blotting of protein samples and immunostaining was performed as described 

(Rombout et al. 1993), using the rabbit sera (1:200) and Goat-anti-Rabbit (GAR) second 

antibody (Ab) conjugated to alkaline phosphatase (AP) (1:3000; Biorad). 

Isolation of carp cells and flow cytometry 

Peripheral blood leukocytes (PBL) were isolated according to Komen and 

co-workers (1990), and lymphocyte-enriched cell suspensions of various organs were isolated 

as previously described (Koumans-Van Diepen et al. 1994), using, however, a discontinuous 

Percoll gradient of densities 1.06 and 1.07 g/cm3. 106 cells were single and double labeled 

using the polyclonal antiserum anti-Cycal2 (1:200) in combination with either monoclonal 

antibody (mAb) WCI12, recognizing carp surface immunoglobulin (slg) (Secombes et al. 1983), 

or mAb WCL6, which specifically reacts with carp thrombocytes (Rombout et al. 1994). 

Labeling procedures were essentially as previously described (Rombout et al. 1993), using 

Goat-anti-Mouse (GAM) conjugated to fluorescein isothiocyanate (FITC) (1:200) and GAR 

conjugated to phycoerythrin (PE, 1:200) (DAKO, Glostrup, Denmark), as second Ab. 

Flowcytometry was carried out as described by Koumans-Van Diepen and co-workers (1995). 

Results 
Isolation of class I cDNA sequences from carp 

In order to isolate class I sequences from carp we used a full-length class I cDNA 

probe Ul from zebrafish (Brachydanio rerio; Takeuchi et al. 1995). A thymus cDNA-library 

prepared from ten individuals of a homozygous clonal carp line A410 was screened with Ul, 

which yielded a large number of positive plaques (0.01 % of the PFU). Positive plaques (n=20) 

were re-screened, upon which 15 remained positive. Restriction mapping of the inserts of these 

positive clones indicated the presence of identical sequences. This was also confirmed by partial 

sequencing of nine of these positive clones, and consequently, only one of the cDNA clones, 

Cyca-12, was completely sequenced (Fig. 1). 

The sequence encompasses 2026 basepairs (bp), consisting of 1050 bp of coding sequence, 

flanked by 51 bp and 925 bp of 5' and 3' untranslated sequence (5'UT, 3'UT), respectively. 

The start site of translation, however, is ambiguous because of the presence of two adjacent 
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ATG codons. Based on the signal cleavage site prediction method of Von Heijne (1986), the 

coding region can be divided into 51 bp encoding 17 amino acid residues of the leader peptide 

(under the assumption that the first ATG is used as the start codon), and 999 bp specifying 

332 amino acids of the mature protein. The derived amino acid sequence of the mature protein 

can be divided into protein domains inferred from alignments with other class I sequences 

(Fig. 2). These alignments may demonstrate conservation in Cyca-12 of structural and functional 

features of class I molecules. 

Binding of antigenic peptides by class I molecules has been found to be dependent, among 

other things, on the presence of eight extremely conserved residues in pockets A and F of 

the peptide-binding groove, which bind the amino- and carboxyl-termini of the peptide (Kaufman 

et al. 1994). In Cyca-12 these residues (Y7, Y57, Y156, Y168, R82, T139, K142, W143) 

are conserved, except that tyrosine at position 82 is replaced by arginine. Three known contact 

pairs between ß2m and class I axla2 domains (HLA positions H„31-Q96, W„60-D122, 

Wß60-Q96), and one contact pair between ß2m and a3 (SB11-Q242) are found to be conserved 

in Cyca-B2m (Dixon era/. 1993)and Cyca-12 (Cycapos. Hß31-Q93, W„60-D118, W„60-Q93 

and SJ1-Q236), by comparison with the class I and ß2m sequences from humans and mice 

(Fremont et al. 1992). In antigen presentation to CD8+ T cells, CD8 acts as a co-receptor 

by binding to the a3 domain of class I. An exposed loop with a high content of acidic residues 

in the a3 domain of HLA-B27 (HLA residues 223-229) was found to be a major CD8-binding 

site (Salter et al. 1990; Kaufman et al. 1994). The acidic nature of this functionally important 

region is well conserved in classical class I molecules, and the homologous stretch in Cyca-12 

(positions 217-223, Fig. 2) also contains many acidic residues (D217, D219, E220, D221, 

D223). 

In addition many other residues are found that are conserved, with only a few exceptions, 

in the sequences of mammals, amphibia, reptiles and fish. In the c^ and a2 domain these include 

C98 and C161, presumably forming a disulfide bridge, pairs of residues involved in the 

formation of salt-bridges (D28/H3, H90/D115) (Saper et al. 1991), and the potential N-linked 

glycosylation site N84. The a3 domain contains many residues characteristic of the Ig-fold 

(Williams and Barclay 1988). The cytoplasmic region of Cyca-12 contains a highly conserved 

serine at position 325, the homologous site of which is phosphorylated in vivo in HLA molecules 

Figure 1 (previous pages). Mhc class I nucleotide sequences of Cyprinus carpio L. Cyca-12 and 
Cyca-SPl are derived from cDNA, Cyca-Gll from a genomic clone. Numbers above the sequence 
indicate nucleotide positions within the mature protein. The stop codon and poly-adenylation signal 
are singly and doubly underlined, respectively. Dashes denote identity to Cyca-12. 
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(Guild and Strominger 1984). This serine is invariant in the class I sequences compared, with 

the exception of the sequence from Atlantic salmon. Overall, the sequence of Cyca-12 contains 

many conserved characteristics that are found to be functionally or structurally important for 

class I molecules. 

Genomic organization 

A commercially obtained genomic carp library was screened with a probe encompassing 

basepairs 60 -1923 of the Cyca-12 cDNA sequence. First screening yielded 45 positive plaques, 

25 of which were re-screened, upon which 17 were shown to be weakly positive, whereas 

three remained strongly positive. The inserts of the three strongly hybridizing clones were 

mapped by restriction analysis, which indicated overlapping inserts. However, from 

hybridization experiments it was concluded that none of the three genomic clones contained 

the 5' region of the gene, and only one, designated Cyca-Gll, contained both the a2 domain 

and the 3' end of the gene, whereas the other two did not contain the former. Therefore, only 

Cyca-Gll was chosen for partial sequence analysis (Fig. 3-1). 

The insert of Cyca-G 11 had a length of approximately 15 kilobasepair (kb), and restriction 

mapping and hybridization experiments showed that it contained a Cyca-12-like gene, covering 

2.7 kb of intron 2 to the end of the gene. The sequence of Cyca-Gll proved to be identical 

to Cyca-12 in all identified exons, except for 14 nucleotide substitutions in exon 3. 

Alignment with the cDNA clone Cyca-12 revealed that the a2 and a3 domains and the 

connecting peptide/transmembrane region were encoded in separate exons, provisionally 

designated exons 3,4 and 5. Exon 6 encoded the first six amino acids of the cytoplasmic region, 

while exon 7 encoded the rest of this region, the stop codon and 4 bp of the 3' UT. Finally, 

exon 8 encoded the remainder of the 3'UT. The introns (3-7) were shown to start with GT 

and end with AG, and they were all phase 1 (/. e., the codon is split between the first and second 

base). 

None of the three obtained genomic clones, however, contained the 5' end of the gene, 

encompassing the exons encoding the 5'UT, leader peptide and c^ domain, and further screening 

failed to produce clones containing the 5' end of the gene. Therefore we decided to unravel 

the genomic organization of Cyca-12 by using PCR on genomic DNA from carp clone A410. 

Because in this carp clone only a single cDNA sequence was found in the thymus library of 

ten individuals, this clone can be considered to be homozygous for this gene. Hence, 

amplification of allelic variants was expected to be unlikely. To make sure, however, that 

the amplified products could be properly identified as fragments of the gene encoding Cyca-12, 

pairs of specific primers were designed, based on the sequence of Cyca-12, each spanning 

an intron with a substantial part of the two flanking exons (Fig. 3-II). In addition, of each 
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amplified fragment multiple recombinant clones were sequenced, to identify any co-amplified 

sequence variants of Cyca-12. 

Each of the amplifications designated A-B, C-D, E-F, G-H, I-J and K-L (see fig. 3-II), 

yielded a single band. Fragment C-D was amplified using a long-template PCR system, and 

because of its size, this fragment was not cloned in one piece. Each of the bands was shown 

to contain only a single sequence by sequencing multiple recombinant clones. In all cases the 

exon sequences were identical to the Cyca-12 cDNA sequence. In addition, the partial sequences 

of introns 3 to 7 (fragments E-F to I-J) were found to be identical to those found in Cyca-Gl 1, 

and the intron sizes, inferred from electrophoretic separation, corresponded perfectly to those 

identified in Cyca-Gl 1. The size of PCR product K-L confirmed the absence of further introns 

in the 3'UT region, as found earlier in Cyca-Gl 1. As previously found for introns 3 to 7 in 

genomic clone Cyca-Gl 1, introns 1 and 2 (contained by fragments A-B and C-D) were now 

found to be phase 1 as well, starting with GT and ending with AG. 

Gene multiplicity and polymorphism 

To determine the number of related genes present in the genome, we hybridized Pstl-

digested genomic DNA from several carp strains with a cDNA probe containing exons 3 and 4. 

In all cases multiple bands were observed (Fig. 4A). In the DNA from clone A410 (Fig. 4A, 

lane 4) the major band of approximately 4.5 kb corresponds to the Psfl-fragment found in 

the genomic clone Cyca-Gl 1, spanning part of intron 2, exon 3, intron 3, exon 4 and part 

of intron 4 (Fig. 3-1). The six less strongly hybridizing bands probably derive from related 

loci, as strain A410 is presumably homozygous for Cyca-12. Comparison with DNA obtained 

from carp strains with expected lower levels of inbreeding (Fig. 4A, lanes 1-3) showed that 

the major 4.5 kb band is invariably present in all of these strains. Of the minor bands detected 

only two (approximately 1.1 kb and 4.7 kb) are shared by all strains, whereas the remaining 

bands are polymorphic. 

To analyze polymorphism of the exon 2 sequences among the strains used, we hybridized 

the same southern blot to a probe encompassing only exon 1 and the first 129 nucleotides of 

exon 2. Only in the individuals from strains R3xR8 and A410 (Fig. 4B, lanes 2 and 4) a 

hybridizing Pstl fragment of approximately 15 kb was observed. In contrast, no hybridization 

could be detected in the other strains, not even when lower stringency conditions were applied. 

To obtain more insight in the diversity of this gene, we analyzed the presence of Cyca-12-

related sequences in a Xgtll cDNA library from spleen/pronephros prepared from six individuals 

of a 2nd generation meiotic gynogenetic family (A4.10me2). To this end, a fragment spanning 

exons 1 to 4 was amplified using anchored PCR with antisense primer sve9404 located at 

positions 808-824 in exon 4 in combination with Xgtll primers. A single band with the expected 
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Figure 4. Southern blot analysis of PM-digested genomic carp DNA, (A) hybridized with a cDNA 
probe spanning exon 3 and 4 of cDNA clone Cyca-Yl, and (B) hybridized with a probe spanning exon 1 
and 129 bp of exon 2 from cDNA clone Cyca-12. Lane 1 : WK; lane 2: Fl individual R3 x R8; lane 3: 
W11.49; lane 4: clone A410. Size markers are indicated between panels A and B. 

size of 900 bp was cloned and sequenced. Analysis of 13 recombinant clones resulted in only 

a single sequence, Cyca-SPl (Figs. 1 and 2). Sequence comparison with the sequence of Cyca-Yl 

showed a high similarity in exon 4 (95% nucleotide (nt), and 96% amino acids (aa) identity), 

with markedly decreased degrees of similarity in exons 3, 2 and 1 of 84% nt (75 % aa), 56% nt 

(43% aa) and 63% nt (38% aa) identity, respectively. 
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Detection of cell surface expression of Cyca-12 

To study cell surface expression of the molecules encoded by the Cyca-12 gene, a 

polyclonal antiserum was raised against the extracellular domains of Cyca-12. To this end, 

the region of the Cyca-12 cDNA encoding these domains was cloned in frame into expression 

vector pRSET. The poly-histidine-containing recombinant fusion protein was isolated and used 

to immunize a rabbit. The collected immune serum (designated anti-Cycal2) was tested in 

western blot experiments, and was found to possess strong reactivity with the recombinant 

protein, as compared with the pre-immune serum (Fig. 5A). In addition, the immune serum 

detected a molecule of approximately Mr 45,000 on western blots of membrane lysates of spleen 

and muscle, which was not detected by the pre-immune serum (Fig. 5B). An additional protein 

of approximately Mr 84,000 was aspecifically detected by the immune and pre-immune serum 

in muscle, but only by the immune serum in spleen. Nevertheless we believe that also in spleen 

this protein is aspecifically detected, and that the reason for it not being detected by the pre-

immune serum in spleen is the generally lower reactivity of the serum towards the membrane 

lysate of spleen. 

The polyclonal serum anti-Cycal2 was then used to label erythrocytes, PBL, and 

lymphocyte fractions from spleen, pronephros and thymus, all derived from an A410 individual, 

followed by fluorescence-activated cell sorter (FACS)-analysis. Negative controls were reactions 

using either pre-immune serum, or the second antibody only. Labeling of erythrocytes with 

either immune- or pre-immune serum showed no difference in reactivity between the two sera, 

and only weak binding was observed. This justified absorption of the immune serum with red 

blood cells to remove the background staining. After absorption no reactivity of the serum 

with erythrocytes could be detected. In contrast, when the absorbed serum was used to label 

PBL and density-separated lymphocyte fractions from spleen, pronephros and thymus, substantial 

reactivity was still observed, identifying two populations, positive and negative. The density-

separated fractions from spleen and pronephros showed essentially the same pattern of reaction 

as did PBL, although in both organs a higher fraction of the cells was anti-Cycal2 positive, 

as compared with PBL (Fig. 6A). 

To gain further insight into the identity of the anti-Cycal2-positive cell population, double 

labelings were performed using the monoclonal antibody WCI12, recognizing carp surface 

immunoglobulin (slg), and WCL6, reactive with thrombocytes. F ACS analysis of PBL revealed 

that 69% of the cells were anti-Cycal2 brightly positive, and 31% were negative (all data 

given as percentages of the total number of cells). All WCI12+ (slg+) cells were bright, 
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Figure 5. Western blot analysis of (A) SDS-PAGE-separated purified recombinant Cyca-Vl-aJa^a^ 
protein, and (B, right page) SDS-PAGE-separated membrane lysates of spleen and muscle. Lanes I 
stained with absorbed immune polyclonal rabbit serum anti-Cycal2, and lanes P stained with rabbit 
pre-immune serum. Arrows indicate molecular weight markers (kD). 

while the slg" cells were present in two populations, anti-Cycal2 bright (21%) and negative 

(29%) (Fig 6B). In contrast, WCL6+ cells in PBL were found almost entirely within the anti-

Cycal2-negative population (Fig. 6C). 

In spleen, 88% of the cells were recognized by anti-Cycal2, and all of the slg+ cells 

were found within this anti-Cycal2-bright population. The slg" cells consisted of anti-Cycal2-

positive cells (64%) and anti-Cycal2-negative cells (11%). All WCL6+ cells (thrombocytes) 

were present within the anti-Cycal2-negative population (data not shown). In pronephros, also 
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88% of the cells were anti-Cycal2 positive. Again all WCI12+ cells were found within this 
anti-Cycal2-positive population. The remainder, WCI12" cells, consisted of two populations, 
anti-Cycal2 positive (77%) and negative (11 %). In this organ, however, no WCL6+ cells were 
detected (data not shown). 

Double staining of thymocytes using anti-Cycal2 and WCI12 showed that the large slg" 
thymocyte population was recognized by anti-Cycal2 as a single positive population, whereas 
only a limited number of cells were slg+. Of the latter, almost all cells were also brightly 
positive for the anti-Cycal2 serum (Fig. 6D). 
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Figure 6. Flowcytometric analyses of anti-Cycal2-stained cells from various tissues. (A) Histogram 
of anti-Çycal2-stained erythrocytes, PBL, lymphocyte-enriched spleen cells, and lymphocyte-enriched 
thymocytes. (B) Contour graph of PBL, double stained with anti-Cycal2 and mAb WCI12. (C) Contour 
graph of PBL, double stained with anti-Cycal2 and mAb WCL6. (D) Contour graph of lymphocyte-
enriched thymocytes, double stained with anti-Cycal2 and WCI12. 
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Discussion 
Before the present study, two distinct types of class I-like sequences were reported to 

be present in the carp, the Cyca-Z genes (Okamura et al. 1993), and C4, a cDNA-derived 

PCR fragment (Grossberger and Parham 1992). Both types of sequences exhibit a low degree 

of conservation of functional features of class I molecules. Full-length cDNA sequences of 

neither Cyca-Z nor C4 have been reported, and data on expression are still lacking. In the 

present study a third type of class I sequences was identified in carp. Cyca-Yl, a full-length 

cDNA was obtained by screening a thymus cDNA library from carp with a heterologous class I 

cDNA probe, Brre-UBAl, from zebrafish. Cyca-SPl, a PCR fragment comprising exons 1 

through 4, was amplified from a spleen/pronephros cDNA library. Finally, Cyca-Gll, a 

genomic clone containing part of intron 2 to the end of a Cyca-12-like gene, was obtained 

by screening a commercial library with Cyca-12. The amino acid sequences of Cyca-Yl, 

Cyca-SPl and Cyca-Gl 1 show considerable conservation in regions that are involved in main

taining the function and structure of class I molecules (Fig. 2). The conserved peptide-binding 

residues (PBR) in the at and a2 domains are all present but one. The only substitution, arginine 

at position 82, where tyrosine is found in mammalian sequences, is, however, consistently 

present in classical class I sequences of cold-blooded vertebrates and chicken. It is noteworthy 

that, in contrast to the new sequences presented in this study, in the Cyca-Z sequences only 

Y7 in pocket A, and T143 and K146 in pocket F (HLA-A2 numbering) are conserved. The 

region homologous to the CD8-binding loop in the a3 domain has a conserved acidic nature, 

which suggests the presence of a carp homologue of CD8 with positively charged surface regions 

binding to the negatively charged loop of the class I a chain. Nevertheless, CD8 in fish has, 

as yet, not been reported. The four potential ß2m-class I a contact pairs that are identical in 

the human, mouse and carp heterodimers are among the mere seven contact pairs that are 

identical between humans and mice (Fremont et al. 1992). 

In conclusion, the molecules encoded by Cyca-12/SPl/Gll may well be capable of binding 

peptides, CD8 and ß2m, and in addition they show many other characteristics described for 

class I molecules, as discussed by Kaufman and co-workers (1994). However, an additional 

remark should be made concerning the conservation of kinase site S325 in the cytoplasmic 

region. This serine is conserved in all sequences compared, except in the sequences from 

chicken and salmon (Fig. 2). The divergence of the salmon sequence (Sasa-p30) in the 

cytoplasmic region is surprising, when compared with the high degree of similarity to the carp 

and zebrafish sequences in the other regions of the transcript. However, a frameshift in the 

salmon sequence around amino acid position 302 (carp numbering, Fig. 2) results in a 

cytoplasmic amino acid sequence which now also contains the conserved S325, and which 



82 Chapter 4 
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Brre-UBA*01 Brre-UCA*01 Amam-hCl 

Cyca-SPl 
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Figure 7. Phylogenetic tree constructed by the neighbor-joining method (Saitou and Nei 1987), based 
on uncorrected p-distances (proportion of differences) of exon 4 nucleotide sequences of Mhc class I 
genes from various vertebrates. Sources of sequences not described in the legend to Figure 2 are as 
follows: Brre-UCA*01, zebrafish (Takeuchi etal. 1995); Caau-ZAl, Caau-ZDl, Ginbuna crucian carp, 
and Cyca-ZBl, and Cyca-ZCl, common carp (Okamura et al. 1993). Numbers on nodes represent 
percentages of 1000 bootstraps supporting each partitioning. 
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A striking observation is that the 14 substitutions (of which 4.33 are synonymous) in 

exon 3 are not accompanied by any substitutions in 2335 bp of coding and non-coding sequence 

downstream of exon 3. A similar situation was observed in the comparison of Cyca-DAB*01 

and Cyca-DAB*02 (Ono et al. 1993a), class II B cDNA clones from nurse shark (Bartl and 

Weissman 1994), and new class I alleles in Xenopus (M. Flajnik personal communication). 

This could be explained by a type of recombination, bringing together parts of sequences from 

different origins, which seems more likely than effective purifying selection at all sites in coding 

and non-coding regions. 

To study the phylogenetic relationship of Çyca-12/SPl/Gll to class I sequences from 

other fish and lower vertebrates, a neighbor-joining tree was constructed from an alignment 

of exon 4 sequences (Fig. 7). Cyca-12/SPl/Gll cluster together with the class I sequences 

from zebraf ish (Brre- UB/UC), and Atlantic salmon (Sasa-p30). Within this cluster, the salmon 

sequence branches separately from the carp and zebrafish sequences, which in turn are grouped 

in separate clusters. However, this species-specific clustering is not observed in a phylogenetic 

tree constructed from an alignment of exons 3 of the same sequences, where Cyca-Yl and 

Cyca-Gl 1 cluster with Brre-UA, while Cyca-SPl is located on a separate branch, not grouping 

with any of the other zebrafish or salmon class I sequences (data not shown). Therefore, we 

propose the designation Cyca-UA1*01 for Cyca-Yl, and Cyca-UA1*02 for Cyca-Gll, while 

Cyca-SPl is denoted Cyca-UAWl, since it can not yet be assigned to a particular locus. 

Phylogenetic analysis using only exons 2 of these sequences illustrates the divergence between 

these sequences of Cyca-Yl and Cyca-SPl; in this analysis exon 2 of Cyca-Yl is found to be 

more closely related to that of Sasa-p30, than to exon 2 of Cyca-SP 1 (data not shown). Although 

this grouping is supported by only 44% of the bootstrap replications, it may indicate that exons 2 

of Cyca-Yl and Sasa-p30 share a more recent common ancestor than the rest of these genes. 

This may support the suggestion that a recombination has brought exons 2 and 3 of Cyca-Yl 

together, as the closer relationship of Cyca-Yl with Sasa-p30 is not found when comparing 

exons 3 (data not shown). 

The clustering of class I genes from carp with those of zebrafish and Atlantic salmon 

confirms the finding by Takeuchi and co-workers (1995), that the ancestral gene arose before 

the salmonid/cyprinid split, probably as long as 120-150 million years (my) ago. Also, the 

tree illustrates clearly that the Cyca-Z and Caau-Z genes are members of a completely separate 

lineage, at a large genetic distance. Although these genes do not contain obvious defects, the 

lower conservation of functionally important features, and the difficulties in establishing 

expression of full-length cDNA clones may indicate that they do not exert a classical class I 

function. The fact that they are still expressed in the common and crucian carp may, however, 

indicate that they have another function. The expansion of class I like sequences in carp appears 
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to extend even further, since additional class I-like partial sequences, including C4, distinct 

from Cyca-Z and UA, have been isolated from carp cDNA (Grossberger and Parham 1992; 

Van Erp et al. 1996b). 

To clarify the complex picture emerging from these distinct class I gene lineages in carp, 

studies on expression and function are becoming of great importance. Judging from the sequence 

data and the genomic organization alone, the Cyca-UA genes may well represent a group of 

classical class I sequences. However, routinely used criteria to discern non-classical from 

classical class I sequences are polymorphism and expression pattern (Shawar et al. 1994). 

Expression of Cyca-UA genes at the transcript level was detected in thymus and spleen/head 

kidney by the isolation of cDNA clones derived from these organs. Also, PCR amplifications 

on cDNA of adherent cells from spleen and head kidney confirmed the presence of transcripts 

in both organs (data not shown). However, functional studies can be performed using antibodies, 

and for this reason we proceeded to raise a polyclonal antiserum (anti-Cycal2) against a 

recombinant fusion protein containing most of the extracellular domains of Cyca-12. 

The resulting antibodies showed substantial reactivity with the recombinant protein, and 

an Mr 45,000 molecule in membrane lysates of spleen and muscle, as well as to cell surface 

determinants present on cells in F ACS analyses. Lymphocytes, both slg+ and slg", were anti-

CycaYl positive. Erythrocytes and thrombocytes, although nucleated, were anti-Cycal2 negative. 

Class I expression on erythrocytes has been found to vary with species, whereas platelets, 

the mammalian counterparts of thrombocytes, were reported to express class I molecules 

(Klein 1986). The possibility remains, however, that carp erythrocytes and thrombocytes express 

other class I molecules, different from the Cyca- UA group. Cyca-12-like sequences thus appear 

to be expressed in a variety of tissues, consistent with the expression pattern of classical class I 

molecules. 
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Summary 
In the context of studies on expression of MhcCyca-Z sequences of the common carp, 
PCR amplifications of exon 4 were performed on cDNA obtained from pooled thymi 
of 20 carp Fl individuals. Five recombinant clones {Cyca-ld, -TC13, -TC15, -TC17 
and -TCI8) were found to be 96% similar to exon 4 region of Cyca-ZAl. Each of the 
five sequences was unique, and differed in a few positions in both the nucleotide and 
derived amino acid sequence from any of the Cyca-Z sequences known to date. These 
data suggest that multiple Z genes per locus are present in the carp, which are transcribed 
in the thymus. In the course of analyzing the amplified Cyca-Z sequences, serendipity 
yielded a clone, Cyca-TC16, containing a class I-like sequence substantially different 
from any other carp class I sequence. The predicted amino acid sequence of Cyca-TC16 
was most similar to the class I genes (Lach-U) from the coelacanth (42-46% amino acid 
identity). Cyca-TC16 contains three conserved ß2-microglobulin contact residues, and 
the secondary structure was predicted by computer algorithms to be similar to that of 
the a3 domain of HLA-A2. Phylogenetic analysis shows that carp class I sequences reside 
in four distinct clusters: (i) Cyca-Z, Cyca-TCi, -TC13, -TC15, -TC17, and -TC18 
together with Caau-Z from ginbuna crucian carp; (ii) Cyca-U with Brre-U (zebrafish) 
and Sasa-p30 (Atlantic salmon); (iii) Cyca-TC16 v/iûiLach-U (coelacanth); and (iv) Cyca-
C4. 

The nucleotide sequences reported in this paper have been submitted to the 
EMBL/GenBank nucleotide sequence databases and have been assigned the accession 
numbers X95182-87. 

Introduction 
The major histocompatibility complex is a volatile part of the genome, and this 

characteristic is one of the features of this complex that emerged from extensive studies on 

the Mhc of mammals, especially of humans and mice (Klein et al. 1993). The genes within 

the Mhc apparently duplicate, are deleted, mutate, recombine, and as a consequence lose or 

acquire sometimes extremely diversified functions. The result is a large number of genes with 

apparently related origins, but which encode molecules with a variety of functions, including 

antigen presentation in the classical or in the more restricted non-classical sense (Shawar et 

al. 1994). Sometimes these molecules have completely unrelated functions, such as the rat 

neonatal Fc receptor (Burmeister et al. 1994). Now that Mhc genes have been identified in 

a rapidly growing number of cold-blooded vertebrates (Betz et al. 1994; Dixon et al. 1995; 

Takeuchi et al. 1995; Grossberger and Parham 1992; Van Erp et al. 1996a; Flajnik et al. 

1991 ; Shum et al. 1993) it is to be expected that in these species a similar abundance of related 

genes will be found. Indeed, in the common carp, Cyprinus carpio L., three distinct MhcCyca 

class I genes and gene-fragments were previously reported, namely (1) the Cyca-Z partial 

sequences from genomic DNA and cDNA (Hashimoto et al. 1990; Okamura et al. 1993); 



92 Chapter 5 

(2) Cyca-CA, a PCR fragment from cDNA spanning part of exon 3 and 4 (Grossberger and 

Parham 1992); and (3) the recently identified Cyca-UA cDNA and genomic sequences (Van 

Erp etal. 1996a). The nomenclature of the carp Mhc genes is in accordance with the proposal 

made by Klein and others (1990), such that the name Cyca is derived from the first two letters 

from the genus and species names for the common carp, Qyprinus çarpio. 

Cyca-Z, Cyca-CA and Cyca- U sequences are substantially different from each other (15-

20% identity at the amino acid level). Whereas Cyca-CA so far is a unique sequence of unclear 

status with only limited similarity to class I sequences, Cyca-Z and Cyca-U are represented 

by multiple sequence variants in carp and other teleosts, thereby constituting Z and U sequence 

lineages. Of the carp class I sequences, Cyca-U genes are the most likely candidates for 

encoding class I molecules with a classical function, based on the presence of characteristic 

classical key residues, and expression patterns (Van Erp et al. 1996a). Cyca-Z on the other 

hand lacks several features of classical class I molecules, and expression has so far only been 

detected in the kidney. 

In the context of studies on expression of Cyca-Z sequences in other organs, the present 

study was aimed at identification of these sequences in thymus by performing PCR on cDNA. 

Materials and methods 
Fish 

The fish used in this study were laboratory strains of common carp (Cyprinus carpio L.). 

R3xR8 are the offspring of a hybrid cross between a female of Hungarian origin (R8 strain), 

and a male of Polish origin (R3 strain). Fish were held at 25°C in recirculation systems, fed 

on pelleted food (Provimi, Rotterdam, The Netherlands). 

Preparation of thymus cDNA 

Total cellular RNA from thymi of 20 individuals of R3xR8 carp was isolated using the 

lithium precipitation method of Palmiter (1974), incorporating a DNAse I treatment. RNA 

was converted into cDNA with a poly-dT primer, using a cDNA synthesis kit according to 

the manufacturer's specification (Boehringer, Mannheim, Germany), 

Polymerase Chain Reaction (PCR) 

PCR was carried out in 100 jtl of a solution containing 100 ng of DNA template in 1 x Tag 

buffer, 0.2 mM of each dNTP, 0.2 pM of each primer, and 1 unit of Taq polymerase (Perkin-

Elmer, Norwalk, CT). Amplification was performed using 30 cycles of a thermal cycle profile 
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(1 min 94°C, 1 min 55°C, 2 min 72°C), with a final extension step of 10 min at 72°C. 

Oligonucleotides used in the amplifications were degenerate primers I and II: 

I: 5'-TG(C/T)CT(A/G/C/T)GT(C/G)AC(A/G/C/T)GGTTTCTACCC-3'; and 

II: 5'-AG(G/A)CT(T/G)(G/C)(T/G)(G/A)TG(C/A)ATCACATGACA-3' 

in part based on the Cyca-ZAl sequence, modified from Hashimoto and co-workers (1990). 

Cloning and sequence analysis 

PCR fragments were blunt-end ligated into pTZ 19R, and plasmids were used to transform 

E. coli strain JM101. Single-stranded phagemid DNA was obtained and sequenced by the dideoxy 

chain termination method (Sanger et al. 1977), using the T7 DNA polymerase sequenase kit 

(US Biochemicals, Cleveland, OH). Sequence data were analyzed using several programs from 

the GCG package (Genetics Computer Group, Madison, WI). Multiple sequence alignment 

and phylogenetic trees were constructed using the program ClustalV (Higgins et al. 1992), 

and MEGA (Kumar et al. 1993). 

Southern transfer and hybridization 

PCR amplified fragments were separated by agarose gel electrophoresis, and subsequently 

transferred to Hybond-N+ nylon membranes, according to the manufacturer's protocols 

(Amersham, Amersham, UK). Probes were labeled to a specific activity of 1.5 x 108 cpm//ig, 

and hybridization was carried out for 16 hours at 42°C, in a solution of 40% formamide, 5 

x SSC, 5 mM EDTA, 0.1% SDS, 5 x Denhardt's and 100 /xg denatured E.coli-DNA, using 

2 x 106 cpm of the labeled probe. Membranes were washed to a final stringency of 1 x SSC, 

0.05 % SDS at 60°C for 15 min., and used to expose X-omat S films (Kodak, Rochester, NY), 

for 24 hours at -80°C with intensifying screens. 
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A. 
Cyca - ZA1 TGTCTGGTI^CTGGTTTCTACCCCÄGAGATATTGAGATGAACÄTCÄGACTGAACAGAATTAAC 
Cyca-ZA2 
Cyca-ZBl G T 
Cyca-ZCl T- -G -C-GCA 
Kl - 5 A_ 
Cyca-TC3 A--G--G G T 
Cyca-TC13 Ç.-G--G G T -
Cyca-TC15 A- G-G T - - -
Cyca-TC17 A--G--C ---
Cyca-TC18 --C C- G T- -

Cyca - ZA1 ATTGAGAGCCAGATATCATCTGGAATI^GACaUiATGATGATGAAAGCTTTCAGATGAGATCC 
Cyca-ZA2 A-C A 
Cyca-ZBl C A -
Cyca-ZCl C- - -G- -A- - -A TT A C C G-TC C-C -
Kl-5 T A C-C 
Cyca-TC3 C A C 
Cyca-TC13 C A T -
Cyca-TC15 - - -C- - -A 
Cyca-TCn -G C A C-C 
Cyca-TC18 -C-C A 

Cyca-ZAl AGTGTGAAGATCGACAGAAACCACAGAGGATCTTATGACTGTCATGTGATTCACAGCAGCCT 
Cyca-ZA2 
Cyca-ZBl --
Cyca-ZCl T-A T TT C-A 
Kl-5 A 

Cyca-TC3 TC --
Cyca-TC13 CC -
Cyca-TC15 C 
Cyca-TC17 C 
Cyca-TC18 G CC 

B. 
10 20 30 40 50 60 

Cyca-ZAl CLVTGFYPRDIEMNIRLNRINIESQISSGIRPNDDESFQMRSSVKIDRNHRGSYDCHVIHSS 
Cyca-ZA2 T N -
Cyca-ZBl V QN 
Cyca-ZCl --A D-TALGN--F-E A-G---L K--F--F-N---
Kl-5 N L 
Cyca-TC3 --V-
Cyca-TC13 --V-
Cyca-TC15 -GV-
Cyca-TC17 
Cyca-TC18 --V-

QN 
---QN 

QN 
G 

---TQN 

H 

Figure 1. (A) Nucleotide and (B) amino acid alignments of Cyca-Z partial exon 4 sequences. Cyca-ZAl, 
-ZA2, -TBI and -ZC1 from (Okamura et al. 1993), Kl-5 (Stet et al. 1993), Cyca-TC3 to -TC18 this 
study. Dashes denote identity to Cyca-ZAl, primer-encoded sequences are underlined. Dots denote 
absence of sequence information. 
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10 20 30 40 50 
TGC CTA GTG ACA GGT TTC TAC CCC AAG GAC ATC TCT GTT AAA TGG GAG CTG 
cys leu val thr gly phe tyr pro lys asp ile ser val lys trp glu leu 

61 91 
GAT GGG AAG CCA ACC TCT CTA CAT GTG ACA ACA GAC ATC TTA CCT AAT CAT 
asp gly lys pro thr ser leu his val thr thr asp ile leu pro asn his 

121 151 
GAT TCG ACT TAC CAG GTG CAT AAA ACC ATC TTC ATC TCT GGT TCT AAA CAC 
asp ser thr tyr gin val his lys thr ile phe ile ser gly ser lys his 

181 
AAC TAC TCA TGT CAT GTG ATG CAC CGC AGC CT 
asn tyr ser cys his val met his arg ser 

Figure 2. Nucleotide and derived amino acid sequence of Çyca-TC16. Primers used in the 
isolation are underlined. 

Results 
To study the expression of MhcCyca-Z-l\ke sequences especially in the carp thymus, 

degenerate PCR primers were designed, complementary to the conserved regions flanking 

the cysteine codons in exon 4 of Cyca-ZAl. cDNA was obtained from pooled thymi of 20 

R3xR8 carp individuals. Pooling of thymi was required to obtain sufficient RNA for cDNA 

synthesis, because of the small size of this organ in carp. PCR amplifications performed with 

the degenerate primers on this cDNA yielded a single band with a size of approximately 200 bp. 

Five of the resultant recombinant clones (denoted Cyca-7C3, -13, - 15, -17, and -18) were 

found to contain sequences that were 96% similar to the region between the cysteine codons 

in exon 4 of Cyca-ZAl. Each of these five sequences was unique, and differed in only a few 

positions in both the nucleotide and derived amino acid sequence from any of the Cyca-Z 

sequences known to date (Fig. 1). 

In addition a recombinant clone was isolated, designated Cyca-TC16, containing an insert 

of 189 bp (Fig. 2), of which the predicted amino acid sequence showed the highest similarity 

to the recently described class I genes (Lach-UA and -UB) from the coelacanth, Latimeria 

chalumnae. Identities ranged from 42% to 46% depending on the coelacanth gene used in 

the comparison. Alignment of the predicted amino acid sequence of Cyca-TC16 with class I 

sequences from other fish and cold-blooded vertebrates shows that overall similarity is low 

(Fig. 3). The lowest similarities were found in the comparisons with Cyca-Z and Cyca-UA 

sequences from carp (both 20% identity). Nevertheless, Cyca-TC 16 possesses several residues 

and motifs that are conserved between most of the Mhc class I sequences from cold-blooded 

vertebrates in the comparison. Three potential ß2-microglobulin (ß2m) contact residues (P32, 

D35 and Q39) are conserved between Cyca-TC16, HLA-A2 and H-2Ä* (Saper et al. 1991; 
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10 20 30 40 50 60 
ooooooo A A A 

Cyca-TC16 CLVTGFYPKDISVKWELDGKPTSLHVTTD*ILPNHDSTYOVHKTIFI*SGS**KHNYSCHVMHRS 
Cyca-UA1*01 -HT SGVTIT-QKN-QDHDED-DLGELII-E-G-F-RAS-LNVKPEEWKNNKF--V-E-QG 
Brre-UBA*01 -H SGLKIS-QRN-QDHDED-ELGELM—E-G RTS-LNVKPEEWK-DKF--V-E-QG 
Sasa-p30 -HA SGVM-S-QK—QDHHED-EYGET-Q-D-G-F-KSSHLTVTPEEWKNNK-Q-V-QVTG 
Cyca-ZAl R--EMN*IRLNRINIESQISSG-R--D-ESF-MRSSVK-DRNH**RGS-D I-S-
Caau-ZAl R—EMN*IRLNRINIQNQISSGVR--D-E-F-MRSSVK-DRNH**RGS-D I-S-
Lach-UA*01 -M H-RA-D-T-IR--ETRMDNAH--G E-G IK E-G-DD**-RS-A-E-D-G-
Lach-UB*01 YMA RAVDMT-VR--ETQMDNAH--G E-E IR E-DLED** — S-T-W-D-S-
Trsc-XDS-1 -H-N SG-NAT-LHN-GTIQQE-LSSR T-G-F-TTLQ-SVTPQ-**RDT-T-Q-E-S-
Xela-UAAlf -QAY RE-D VKN-GDDVHSEAAKE P-GS--LRV-AE-TPNE**GDS-A E-S-
Xela-XNCl.l -W-YR R-VE IKN-TDEIYSEESAE P-G IRVSVEVTPEE**GAT D-S-
Amam-LCl -RAD HPV-IR--EVWEQETMRGLMA—V-G-FHTWIG-K-DPKD**RGRFQ-R-D-AG 

Figure 3. Comparison of carp Cyca-TC16 derived amino acid sequence with MAc class I partial exon 4 
sequences from cold blooded vertebrates. Sources of sequences not mentioned in legend to Figure 1: 
Cyca-UA1*01, common carp (Van Erp et al. 1996a), Brre-UBA*01, zebrafish (Takeuchi etal. 1995); 
Sasa-p30, Atlantic salmon (Grimholt et al. 1993); Caau-ZAl, ginbuna crucian carp (Okamura et al. 
1993); Lach-UA*01, Lach-UB*01, coelacanth (Betz et al. 1994); Trsc-XDS-l, nurse shark (Hashimoto 
etal. 1992); Xela-UAAlf, clawed frog, classical gene (Shum et al. 1993);XWa-XNCl.l, clawed frog, 
non-classical (Flajnik et al. 1991); Amam-LCl, lizard (Grossberger and Parham 1992); Residues encoded 
by primers are underlined; Dashes indicate identity to Cyca-TC16; Triangles denote putative ß2m-
contacting residues; Circles denote position of region homologous to CD8-binding loop in HLA-A2; 

Fremont et al. 1992). Also, the secondary structure of the Cyca-TC16 encoded protein, as 

predicted by the program Peptidestructure, using the Chou-Fasman-Prevelige and Garnier-

Osguthorpe-Robson algorithms, contains ß strands in overlapping positions with those shaping 

the ß pleated sheets in the Ig-fold of the a3 domain of HLA-A2 (data not shown). In contrast, 

CD8-binding residues (Salter et al. 1990) are not conserved in Cyca-TC16. 

To study the evolutionary relationships to other class I exon 4 sequences from fish, a 

neighbor-joining tree was constructed (Fig. 4A). Cyca-lC 16 clusters with the class I sequences 

from coelacanth (Lach-UAI-UB). In a separate cluster, Cyca-TC3, -TC13, -TCI5 and -TCI8 

branch with the carp class I Cyca-Z sequences and the Caau-Z genes from ginbuna crucian 

carp, whereas the carp class I Cyca-UA sequences group together with the Brre-U genes from 

zebrafish and Sasa-p30 from Atlantic salmon. The sequence from nurse shark (Trsc-XDS-1) 

branches away from the three Osteichthyan class I clusters. In order to be able to include the 

fourth carp sequence, Cyca-CA, in the phylogenetic analyses, a neighbor-joining tree was 

constructed using an alignment of class I nucleotide sequences spanning the region between 

the C-terminal cysteine codon of exon 3 and the N-terminal cysteine codon of exon 4 (Fig. 4B). 

Although Cyca-TC16 and the sequence from nurse shark could not be included in this tree, 
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because they do not span this region of the class I sequence, the topology of this second tree 

basically follows that of the other. As observed in the exon 4 tree, Cyca-Z and Cyca-UA 

sequences are found in separate clusters, and now also Cyca-CA is found on a distinct branch, 

at a large genetic distance from the other lineages. 

In order to obtain the remainder of the transcript of Cyca-TCl6, three cDNA libraries 

and a commercially obtained genomic library (Stratagene, La Jolla, CA) were screened. The 

cDNA libraries were prepared from (1) spleen/head kidney (Ono et al. 1993), (2) thymus (Van 

Erp et al. 1996a), and (3) activated macrophages. However, neither screening using Cyca-lC 16 

as a probe, nor screening of the cDNA libraries using anchored PCR with Cyca-TC16-specific 

primers, resulted in the isolation of Cyca-TC16-encoding clones. 

Nevertheless, the presence of Cyca-TC16 in 14 individuals of the R3xR8 family was 

confirmed by PCR amplification using both a set of Cyca-TC16-specific primers, and in six 

of these individuals, using degenerate primers I and II, designed to amplify Cyca-Z sequences 

(Fig. 5). Although amplification efficiency was low, hybridization of the PCR products to 

Cyca-TCl6 revealed that Cyca-TC16-like sequences were successfully amplified from each 

of the individuals tested.The PCR product obtained from one of the individuals using Cyca-

TC16-specific primers was cloned and sequenced, which proved it to be identical to Cyca-TCl6. 

In addition, also the PCR products amplified with primers I and II hybridized to Cyca-TCl6, 

showing that similar sequences could reliably be amplified with these primers. 

Figure 4 (next pages). Phylogenetic tree created by the neighbor-joining method (Saitou and Nei 1987) 
using uncorrected p-distances, of Mhc class I nucleotide sequences from various vertebrates, using 
A. sequences spanning the region between the two cysteine codons in exon 4, and 
B. sequences spanning the region between the C-terminal cysteine codon of exon 3 and the N-terminal 
cysteine codon of exon 4. Gaps were eliminated from the comparisons. Sources of sequences not 
mentioned in legend to Figures 1 or 3 are as follows: Cyca-UAWl (Van Erp et al. 1996a); Cyca-CA 
(Grossberger and Parham 1992); Brre-UAA*01, Brre-UCA*01 zebrafish (Takeuchi et al. 1995); 
Caau-ZDl, ginbuna crucian carp (Okamura et al. 1993). Numbers on nodes indicate the percentage 
of 1000 bootstraps supporting each partitioning. 
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1 2 3 4 5 6 7 8 9 10 11 12 

13 14 15 16 17 18 19 20 

Figure 5. PCR fragments amplified from genomic DNA of R3xR8 Fl individuals, detected by 
hybridization with Cyca-TCl6. 
Lanes 1-14: using Cyca-TCl6 specific primers on DNA of individuals no. 6-12, 14-20; 
Lanes 15-20: using degenerate primers I and II on DNA of individuals no. 6, 8, 10, 12, 14, 16. 
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Discussion 
In the context of a study on the expression of Cyca-Z sequences in various organs, we 

performed PCR amplifications on cDNA derived from thymus using degenerate primers, 

complementary to the regions surrounding the cysteine codons in exon 4 of Cyca-Z sequences 

(Hashimoto et al. 1990). Among the sequences amplified, five unique Cyca-Z sequences were 

identified. Although only one clone for each of the sequences was analyzed, it however seems 

unlikely that PCR artefacts could create five different variants. Cyca-TC3, -TC13, -TCI5 and 

-TC18 all share residue VI1, and the motif Q23N24, found in the previously reported Cyca-ZBl 

locus, whereas Cyca-TCll shares 111 and E23 with the Cyca-ZA sequences and Kl-5. The 

finding of five different sequences in five recombinant clones sequenced, suggests the presence 

of a large number of Cyca-Z sequences in the R3xR8 Fl individuals from which the thymus 

cDNA was prepared. This would be consistent with the suggestion by Okamura and co-workers 

(1993) that at least three, if not more, Cyca-Z genes per locus are present in the carp genome. 

Calculation of the genetic distances between the Cyca-Z sequences gives an indication of the 

divergence times between the various loci. We applied a synonymous substitution rate of 

2.9 x 10"' substitutions per synonymous site per year, which is based on an approximate 

divergence time of 50 my (Stroband et al. 1995) between the two most closely related carp 

and zebrafish class IIB sequences, Cyca-DAB4*01 (Van Erp et al. 1996b) and Brre-DAB3*01 

(Ono et al. 1992). Using this rate, the carp Cyca-ZAl and Cyca-ZBl are estimated to have 

diverged during approximately 6 my, whereas the Cyca-ZCl locus diverged from the ZA1IZB1 

ancestral locus approximately 30 my ago. 

The successful amplification of Cyca-Z variants in the present study indicates that, besides 

the previously reported expression in kidney (Okamura et al. 1993), these sequences are also 

transcribed in the thymus. This was further confirmed by the finding of partial transcripts 

in the thymus cDNA library using anchored PCR (Van Erp and co-workers, unpublished data). 

In the course of analyzing the amplified Cyca-Z sequences, serendipity yielded a clone, 

Cyca-TC 16, containing a class Hike sequence substantially different from any other carp class I 

sequence reported to date. Cyca-TCl6 was identified as class I-like based on its amino acid 

sequence similarity to the class I sequences of the coelacanth. In retrospect, the level of 

serendipity of this finding can be rationalized by the high similarity between the degenerate 

primers used in the amplification of the coelacanth sequences (Betz et al. 1994) and Cyca-TC16. 

The conservation of three potential ß2-microglobulin contacting residues (P32, D35, Q39) 

suggests that the product of Cyca-TCl6 may bind ßjin. The congruity of the positions of the 

ß strands in Cyca-TC16, as predicted by computer algorithms, with those found in the crystal 

structure of HLA-A2 supports the conclusion that the Cyca-TC16 encoded protein could be 
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folded in an Ig-like manner. The region in Cyca-TC16 corresponding to the CD8-binding loop 

in mammalian class I molecules is, however, not conserved, as was also found for the Lach-U 

sequences from the coelacanth. In contrast, in the Cyca-UA sequences this region does seem 

to be functionally conserved by a high content of acidic residues (Van Erp et al. 1996a). The 

lack of conservation of this region in Cyca-TC16 may therefore indicate that this molecule 

is not involved in binding CD8. One should bear in mind, however, that CD8 of fish still 

remains unidentified. 

All attempts to obtain the remainder of the Cyca-TC16 sequence failed. Failure to isolate 

the sequence from cDNA libraries could be due to the possiblity that Cyca-TCl6 is not 

expressed in the tissues used to construct the libraries, or at extremely low levels. Although 

Cyca-TC16 was initially amplified from thymus cDNA, both primers were positioned within 

exon 4 around the cysteine codons, and as a consequence amplification from traces of genomic 

DNA can not be excluded. Failure to isolate positive clones from a genomic library may have 

been caused by haplotypic differences between the R3xR8 carp and the carp individual used 

in preparation of the genomic library, as allelic differences are rare in a3 domains. In addition, 

technical difficulties in using Cyca-TC16 as a probe may have generally hampered screenings. 

This explanation seems to be supported by difficulties experienced in performing Southern 

analyses on R3xR8 genomic DNA using Cyca-JCl6 as a probe (data not shown). A similar 

case of aberrant hybridization properties of homologous probes was observed in a study using 

Cyca-Z- and Cyca-H?-derived exon 4 probes in RFLP analyses of common carp, in which 

only extremely low stringency could be applied (Stet et al. 1993). 

Phylogenetic analyses of Af Ac class I exon 4 sequences of fish, including Cyca-TC16 

and members of two of the other class I lineages identified in carp, Cyca-Z, and Cyca-UA, 

illustrate the large genetic distance between each of the lineages (Fig. 4A). Cyca-C4, the fourth 

carp class I sequence, appears to be a member of yet another lineage, distinct from the Cyca-Z 

and -U lineages, and most likely also distinct from the Cyca-TCl6 lineage, considering the 

clustering of Cyca-1C\6 with the Lach-U sequences, which in turn branch separately from 

Cyca-C4 (Fig. 4B). Thus, four distinct lineages of Mhc class I sequences appear to be present 

in the carp. 

The apparent relationship between Cy«z-TC16 and the Lach genes clustering together 

in the tree may have been caused by convergent evolution, or alternatively it indicates that 

Cyca-TC16 is encoded by an old gene, the origin of which dates back to the last common 

ancestor of carp and coelacanth, approximately 400 million years (my) ago (Norman and 

Greenwood 1975). The considerable amino acid identity (46%) between Cyca-TC16 and 

Lach-UA*01 would then have to be the result of purifying selection aimed at maintaining the 
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protein sequence. In contrast, under the assumption that Cyca-TC16 could be an old pseudogene, 

400 my of neutral evolution would have eliminated any similarity between these sequences. 

The Lach-U sequences are present in high numbers in the genome of the coelacanth (at least 

34 sequences in one individual), and these sequences possess the conserved residues involved 

in binding antigenic peptides and ß2-microglobulin. Nevertheless, absence of the CD8-binding 

loop, and Cys203 in some Lach-UB sequences and Cyca-CA, were in the former case taken 

as indications for a non-classical function (Betz et al. 1994). Whether functional similarities 

between the proteins encoded by the Lach-U sequences and Cyca-TC 16 were also retained 

through 400 my of evolution, awaits the isolation of the remainder of Cyca-TC 16. 

Genes of the Cyca-U lineage have so far been found in three cyprinids (carp (Van Erp 

et al. 1996a), zebrafish (Takeuchi et al. 1995) and large African barbel (Dixon et al. 

unpublished data), and two salmonids (Atlantic and pink salmon (Grimholt et al. 1993 ; Katagiri 

et al. unpublished data)), indicating that the U genes were present before the cyprinid-salmonid 

split, probably as long as 120-150 my ago. Genes of the Z lineage have so far been found 

only in the common carp and the closely related ginbuna crucian carp. However, under the 

assumption that lineages arise through repeated duplications from an ancestral gene, the sequence 

dissimilarity of Cyca-Z with the U and Cyca-TC 16 sequences seems to point at an old age 

of the Z lineage as well. In this scenario the age of each of these lineages implies that 

representatives of U and perhaps Z were possibly present in the early representatives of all 

cyprinids and salmonids. However, genes of the Z lineage may have been lost from all other 

but the common and ginbuna crucian carp. The status of Cyca-TC 16 in comparison to the 

Lach-U sequences from the coelacanth implies that orthologous genes could potentially be 

present in all actinopterygians. In many cases the descendants of the ancestral gene will 

undoubtedly have been lost or diverged beyond recognition, but finding of sequences of this 

lineage in other fish species will further elucidate the nature and function of these old sequences. 
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Summary 
A prerequisite for performing functional studies on major histocompatibility complex 
molecules of fish is the availability of genetically well-defined homozygous strains. 
Previously we have applied gynogenetic reproduction to generate isogenic carp, denoted 
clone A410. This clone has recently been demonstrated to express a single class I gene, 
Cyca- UAI *01, and in the present study two class IIB and two class IIA transcripts were 
obtained. The two class II B transcripts, Cyca-D(CB3)B and Cyca-D(CB4)B, as well 
as the class IIA transcripts, Cyca-D(10A)A and Cyca-D(15A)A appear to be bonafide 
class II transcripts based on the presence of conserved protein characteristics of the 
inferred class II molecules. With the isolation of class I IA sequences representatives 
of all major classes of Mhc genes have been identified in the carp. To assess the 
relationship between the different class II genes, segregation studies, comparison of cDNA 
and intron 1 sequence data, and phylogenetic analyses were performed. These studies 
show that the class IIB transcripts, Cyca-D(CB3)B and Cyca-D(CB4)B, are derived from 
related, closely linked loci. In addition, these studies indicate that the previously described 
Cyca-DAB*01 and Cyca-DAB*02 are also closely linked, but that this linked pair 
segregates independently from the Cyca-D(CB3)B and Cyca-D(CB4)B loci. The class IIA 
transcripts most likely are derived from separate loci and do not represent alleles, as 
they were found not to segregate in the individuals of the clone which was generated 
by meiogenetic gynogenesis. 

The nucleotide sequences reported in this paper have been submitted to the 
EMBL/GenBank nucleotide sequence databases and have been assigned the accession 
numbers X95431-X95435, Z47730-Z47733, and Z47757. 

Introduction 
Major histocompatibility complex (Mhc) sequences have been isolated from numerous 

species of fish, mostly from modern bony fishes (Teleostei) (Dixon et al. 1995; Takeuchi et 

al. 1995; Van Erp et al. 1996a), but also from cartilaginous fish (Elasmobranchii) (Dixon et 

al. 1995), and a representative of the lobe-finned fishes (sarcopterygii), the coelacanth (Betz 

et al. 1994). In the common carp (Cyprinus carpio L.) Mhc sequences found to date include 

two lineages of class IIB genes (Cyca-YB (Hashimoto et al. 1990) and Cyca-DAB (Ono et al. 

1993)), sequences encoding ß2-microglobulin (Cyca-B2m) (Dixon et al. 1993), and sequences 

from multiple lineages of class I genes (Cyca-Z (Hashimoto et al. 1990; Okamura et al. 1993), 

Cyca-UA (VanErpera/. 1996a), Cyca-TC16(VanErpefa/. 1996b) and Cyca-CA (Grossberger 

and Parham 1992)), some of which are probably non-classical or perhaps even pseudogenes. 

Transcription has so far only been firmly established for the class II B Cyca-DAB genes and 

class I Cyca-UA genes, which therefore potentially are the most likely candidates to encode 

functional Mhc molecules. 

As far as can be judged at this stage, not only do Mhc sequences of both class I and II 
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appear to be present in all jawed fishes, but comparison of the deduced protein sequences with 

those of Mhc molecules of mouse and man also has suggested major similarities in the 

functioning of MAC molecules of fish and mammals (Stet and Egberts 1991; Dixon et al. 1995). 

Nevertheless, functional studies on fish Mhc molecules have so far not been reported. For 

such studies the availability of genetically well-defined homozygous strains is a crucial 

prerequisite. Production of such strains by conventional inbreeding would require 20 generations 

of brother-sister matings to reach acceptable levels of homozygosity. In contrast, inbreeding 

by gynogenetic or androgenetic reproduction reduces the number of generations to a minimum 

of two. In our laboratory, gynogenesis in the common carp has been studied and used for many 

years (Kaastrup et al. 1989; Komen et al. 1991; Wiegertjes et al. 1994), and we have applied 

this technique to generate a strain of homozygous identical fish, denoted clone A410. This 

strain was generated by four successive gynogenetic reproductions, starting with a single female 

A4 from the Israelian DOR70-strain (Van Erp et al. 1996a). We have now undertaken to type 

this carp strain for the expression of Mhc genes, in particular of Cyca-UA and Cyca-DAB, 

which most likely encode functional classical Mhc molecules. In a previous study we have 

already described the Cyca-UA sequence present in this strain (Van Erp et al. 1996a), and 

the aim of the present study is to characterize the class II A and B sequences expressed in 

this strain. In addition, class I IA sequences have not yet been identified in carp, and their 

isolation and characterization would thus complete the set of Mhc genes in carp. 

Materials and methods 
Fish 

The fish used in these experiments were all laboratory strains of the common carp 

(Cyprinus carpio L.). Clone A410 is an isogenic carp line obtained through gynogenesis 

(Van Erp et al. 1996a). A4.10me2 is a second-generation meiotic gynogenetic carp family, 

generated from a first-generation meiotic female, A4-10mel (Kaastrup et al. 1989). R3xR8 

are the Fl-hybrid offspring of a cross between a male of Polish origin (R3 strain) and a female 

of Hungarian origin (R8 strain)(Wiegertjes et al. 1994). 

Screening of the A410 thymus cDNA library 

A cDNA library in XgtlO was constructed from pooled thymi from ten 5-months old 

individuals ofthe clone A410, as previously described (Van Erp et al. 1996a). A total of 1 x 106 

PFU from the A410 thymus cDNA library were screened with the Cyca-D(RdBl)A fragment 

essentially as described by Van Erp and co-workers (1996a), now using hybridization solutions 

containing 50% formamide. Positive plaques were identified after exposure for 24 hours at 
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-80°C using intensifying screens, and single positive plaques were isolated after a second 

screening using the same procedure. 

Polymerase chain reaction 

Genomic DNA was extracted from tissues as described (Stet et al. 1993). Amplification 

by PCR was performed in 100 pi of a solution containing 200 ng of DNA template in 

1 x Goldstar reaction buffer, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.2 juM of each primer 

and 1 unit of Goldstar thermostable DNA polymerase (Eurogentec, Seraing, Belgium). 

Amplification was carried out using a thermal cycle profile (1 min 94°C, 1 min 55°C, 2 min 

72°C) for 30 cycles, with an additional extension step of 10 min at 72°C. 

Primers used in the amplifications were: 

OL93-139: 5 ' -CTGATGCTGTCTGCTTTC ACTGGAGC A-3 ' 

OL93-140: 5'-CTGTTTTATCACGGATCGCTGACTG-3' 

OL94-23 : 5'-GATTTGAGCATTATGTTTGCA-3' 

exIDAB4 : 5'-ATGCTGTCTGCATTTACTGGAACAG-3' 

DAB04s : 5'-CTCTGCTGCAGTTCTGCC-3' 

DAB06S : 5'-TGTCCACTGAAGTTTTCAGA-3' 

DXA-fw : 5'-GCTCAAGCTGAGCACAGGG-3' 

DXA-rev : 5'-CTCTTCTGGAGAGTTGTATGC-3' 

In addition, XgtlO and Xgtll specific primers (Promega, Madison WI, USA) were used in 

anchored PCR in combination with specific primers, and in amplifications of cDNA inserts 

from positive cDNA clones. 

Sequence analysis 

Selected fragments were cloned inpTZ18R and pTZ19R (Stratagene, La Jolla CA, USA), 

in pUC18 using the Sureclone ligation kit (Pharmacia, Uppsala, Sweden), or in pGEM 

(Promega) according to the manufacturers' protocols. Recombinant clones were sequenced 

using the Mn2+ Sequenase DNA sequencing kit (USB, Amersham, UK). Sequence data were 

analyzed with several programs from the GCG-package (Genetics Computer Group, Madison 

WI, USA), ClustalV (Higgins et al. 1992) and MEGA (Kumar et al. 1993). 

Mhc haplotyping 

CycaD(CB3)B and Cyca-D(CB4)B were identified by PCR using forward primer exIDAB4 

(complementary to the end of exon 1 of CycaD(CB3)B and Cyca-D(CB4)B) in combination 

with reverse primer OL94-23 (complementary to the end of exon 2 of both CycaD(CB3)B 

and Cyca-D(CB4)B). Fragments obtained were sequenced. Subsequently, typing was performed 
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by PCR using sequence-specific reverse primers (primer DAB04s to CycaD(CB3)B, and primer 

DAB06s to Cyca-D(CB4)B), in combination with forward primer exIDAB4. Identification 

was further confirmed by size analysis of the products. 

Cyca-DAB*01- and Cyca-DAB*02-tike sequences were identified using PCR amplification 

with primers specific to the end of exon 1 (OL93-139) and the end of exon 2 (OL93-140), 

followed by sequence analysis. Subsequently, fish were typed by PCR-RFLP using restriction 

endonuclease Rsal. 

Results 
Identification of class II B transcripts 

In order to isolate MhcCyca class IIB transcripts from clone A410, anchored PCR was 

performed on a thymus cDNA library derived from this strain. Amplification using anti-sense 

primer OL94-23, complementary to codons 80-86 of Cyca-DAB*02 (Ono et al. 1993), in 

conjunction with XgtlO-specificprimers, yielded a fragment of approximately 300 bp. Sequence 

analysis of this fragment showed that it contained a single Cyca-DAB-like sequence (denoted 

Cyca-D(CB3)B), which was different from both the previously reported Cyca-DAB*01 and 

Cyca-DAB*02 (Ono et al. 1993). To obtain the 3' end of Cyca-Z>(CB3)ß, anchored PCR was 

subsequently performed using a sense primer, denoted EXIDAB4, complementary to codons 

-5 to 3 of Cyca-D(CB3)5. The resulting fragment, approximately 1400 bp in size, contained 

two different sequences (Fig. 1). One was identical to Cyca-D(CB3)ß in the overlapping region, 

whereas the other (denoted Cyca-D(CB4)ß) was different from Cyca-Z)(CB3)B, and also different 

from Cyca-DAB*01 and Cyca-DAB*02. Finally, the 5' end of Cyca-Z>(CB4)fi was obtained 

by anchored PCR using a specific anti-sense primer, denoted DAB06s, complementary to codons 

72-77 of Cyca-£>(CB4)B. The sequences of Cyca-D(CB3)ß and Cyca-D(CB4)J3, obtained in 

this manner, are 1457 and 1467 bp in size, respectively, of which 720 and 747 bp constitute 

the coding regions, flanked by 3 ' untranslated regions (Fig. 1 ). Neither of the two clones appear 

to contain the complete leader-encoding sequence and the startcodon. Cyca-Z)(CB3)5 and 

Cyca-£>(CB4)fi are 92% identical in their coding regions, whereas in the 3'UT regions they 

are 99% identical. Similarity of Cyca-D(CB3)B and Cyca-D(CB4)J3 to Cyca-DAB*01 and 

Cyca-DAB*02 is considerable when comparing the coding sequences (79% identity), however, 

the 3'UT regions of Cyca-D(CB3)B/Cyca-D(CB4)B are not easily alignable to those of 

Cyca-DAB*01/Cyca-DAB*02, which are identical. 

Comparison of the derived amino acid sequence of Cyca-D(CB3)5 and Cyca-D(CB4)B 

with other fish class IIB sequences, shows that Cyca-D(CB3)ß and Cyca-D(CB4)B share many 

of the protein features found in fish class II ß chains (Fig. 2): (i) a putative N-linked 
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glycosylation site is present at amino acid (aa) positions 42-44, as found in all teleosts except 

striped bass and cichlid, which contain a glycosylation site at aa positions 18-20; (ii) cysteine 

residues are present in both the ßj and ß2 domain (C15, C80, CI 18, CI74), as commonly found 

in class II ß chains, but Cyca-Z)(CB4)Ä possesses two additional cysteine residues (aa positions 

41 and 48) in the ßj domain, which were also observed in Brre-DAB2*01 from zebrafish; 

(iii) conserved residues found to be involved in peptide binding in mammalian class II molecules 

(W61, H81, N82, HLA-DR1 numbering) are well conserved in Cyca-D(CB3)B and 

Cyca-DAB*02 (W62, H82, N83, carp numbering), however in Cyca-D(CB4)B only one of 

these residues (N83) is present, and in Cyca-DAB*01 only two (H82 and N83); (iv) a highly 

conserved stretch is found at aa positions 142-146, which corresponds to part of the region 

found in mammals to be involved in CD4 binding; and (v) in the transmembrane region, 

regularly spaced glycines are present, hypothesized to be involved in pairing with the 

transmembrane region of the class II a chain (Fig. 2). 

In analyzing the relationships between Cyca-£>(CB3)5, Cyca-D(CB4)5, Cyca-DAB*01 

and Cyca-DAB*02 in terms of being alleles or loci, comparison of intron sequences can be 

highly informative. Therefore, genomic fragments spanning intron 1 and exon 2 were amplified 

from each of the four class IIB sequences. Amplification of Cyca-D(CB3)B and Cyca-D(CB4)B 

was performed on genomic DNA from the parental female of clone A410, whereas 

Cyca-DAB*01 and Cyca-DAB*02 genomic fragments were amplified from DNA from an 

individual from the A4.10me2 family. 

The introns 1 of Cyca-D(CB3)B and Cyca-D(CB4)B were found to be 669 bp and 561 bp 

in size, respectively (Fig. 3A). A remarkable feature shared by these introns is the presence 

of a non-consensus 5'-splice site GCAAGT instead of the consensus GTAAGT. In spite of 

Figure 1 (next two pages). Nucleotide alignment of Cyca-DAB sequences. Dashes denote identity to 
Cyca-DAB*01, asterisks denote gaps included for optimal alignment. Dots indicate absence of sequence 
information. Putative exon boundaries are based on personal observation, and on the genomic organisation 
of zebrafish Brre-DAB (Sültmann et al. 1994). Stop codons and poly-adenylation signals are singly 
and doubly underlined .respectively. Numbering denotes codon numbers within putative mature protein. 
Sources of sequences as in figure 6. 

Figure 2 (page 116). Alignment of teleost class II B-derived amino acid sequences. Dashes denote 
identity to Cyca-DAB*01, asterisks denote gaps included for optimal alignment. Dots indicate absence 
of sequence information. Triangles indicate conserved cysteine residues, squares indicate an N-linked 
glycosylation site, spades indicate positions of conserved peptide-binding residues in mammalian class n B 
sequences, circles denote the region involved in CD4 binding in mammals, and diamonds denote 
conserved residues of the transmembrane region. Numbering is as in figure 1. Sources of sequences 
as in figure 6. 
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the difference in size, the intron 1 sequences of Cyca-D(CB3)5 and Cyca-Z)(CB4)5 are well 

alignable (89% identity). In contrast, the introns 1 of Cyca-DAB*01 and Cyca-DAB*02 were 

both found to be 204 bp in size, and they were 96.6% identical. Besides Cyca-DAB*01 and 

Cyca-DAB*02 a third genomic sequence was amplified from the A4.10me2 individual. This 

sequence, denoted Cyca-D(me2)B, showed high similarity to Cyca-DAB*01 and Cyca-DAB*02, 

both in coding and intron 1 sequence, which was, however 207 bp in size (Fig. 2 and 3B). 

In contrast, none of these introns could be aligned with the intron 1 sequences of 

Cyca-DAB(CB3)B and Cyca-DAB(CBA)B (Fig. 3). 

Preliminary segregation studies were subsequently performed using the information 

obtained from the genomic sequences. To this end, two gynogenetic carp families, clone A410 

and family A4.10me2, and their respective female parent were typed. In addition, segregation 

analyses were performed in a hybrid carp family R3xR8 (described by Wiegertjes and co

workers, 1995). In clone A410, all individuals tested (n=8), as well as their parental female 

carp were typed to contain Cyca-ö(CB3)ß and Cyca-£>(CB4)B. Within the A4.10me2 family, 

12 individuals as well as their parent were typed. The parental female was shown to contain 

Cyca-DAB*01, Cyca-DAB*02 and Cyca-D(ms2)B. Of the 12 meiotic gynogenetic daughters 

typed, three individuals were found to contain Cyca-DAB*01 and Cyca-DAB*02, four individuals 

contained only Cyca-D(me2)B, whereas five individuals contained Cyca-DAB*01, Cyca-DAB*02 

and Cyca-D(me2)B. Thus, Cyca-DAB*01 and Cyca-DAB*02 were consistently found to co-

segregate, separately from Cyca-D(m€2)B. Within the R3xR8 family 70 individuals as well 

as the R3 and R8 parental individuals were typed. Individual R3 was found to contain 

Cyca-DAB*01 and Cyca-DAB*02, whereas individual R8 contained Cyca-DAB*01, 

Cyca-DAB*02, Cyca-D(CB3)B and Cyca-D(CB4)B. In the offspring three genotypes were 

observed: 34 out of 70 individuals contained Cyca-DAB*01 and Cyca-DAB*02, 11 out of 70 

individuals contained Cyca-D(CB3)B and Cyca-D(CB4)B, and 25 out of 70 individuals contained 

Cyca-DAB*01, Cyca-DAB*02, Cyca-D(CB3)B and Cyca-D(CB4)B. Thus, a consistent co-

segregation was observed of Cyca-DAB*01 with Cyca-DAB*02, and of Cyca-D(CB3)B with 

Cyca-D(CB4)B. 

Isolation and identification of class II A transcripts. 

For the isolation of class I IA transcripts, anchored PCR was performed on the A410 

thymus cDNA library, using anti-sense primer £>X4-rev, complementary to codons 76-82 in 

exon 2 of zebrafish class I IA cDNA clone 2.1.4 (Sültmann et al. 1993). The PCR product 

contained several bands, of which a fragment of 430 bp was isolated. This fragment was 

subsequently used as template in a nested PCR, again using anti-sense primer DXA-re\, but 
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now in conjunction with sense primer DXA-fw, complementary to codons 1-6 of zebrafish 

class I IA clone 2.1.4. The product of this nested PCR consisted of a single fragment, with 

a size of approximately the expected 246 bp. This fragment was cloned and sequenced, and 

one out of the three recombinant clones analyzed (denoted Cyca-D(RdBl)A contained a sequence 

that was 84% identical to exon 2 of zebrafish class HA (Fig. 4). In order to obtain full-length 

carp class II /4 transcripts, Cyca-D(RdB 1 )A was then used as a probe to screen the A410 thymus 

cDNA library. In the first screening a large number of positive plaques were identified 

(approximately 0.1 % of the PFU). Sixteen of these were chosen for second screening, upon 

which 14 remained positive. However, from only three of these X-clones a hybridizing insert 

could be amplified using XgtlO-specific primers. Two of these positive clones, denoted 

Cyca-D(10A)A and Cyca-D(15A)A, were completely sequenced (Fig. 4), whereas the third 

clone was only partially sequenced and was found to be identical to Cyca-D(10A)A. The 

transcripts were 1004 bp and 1360 bp in size, and they proved to be different from each other 

(94% nucleotide (nt) identity). The sequence of Cyca-D(15A)A was identical with the 

Cyca-D(RdBl)A fragment in the entire overlapping region. Both sequences could be identified 

as class IIA transcripts based on high similarity to class IIA sequences from zebrafish (76% 

nt identity) and striped bass (63% nt identity). 

The predicted amino acid sequences of Cyca-D(10A)A and Cyca-D(15A)A could be divided 

into protein domains based on alignments with class IIA sequences from the above mentioned 

species including nurse shark (Fig. 5). Similarity among the teleostean class IIA sequences 

is high, with substantial stretches of identical sequence. The alignment further illustrates that 

many protein features of teleostean class II .4 protein sequences are also found in Cyca-D( 10A)A 

and Cyca-D(15A)A; in the ax domains of Cyca-D(10A)A and Cyca-D(15A)A two cysteine 

residues are present that have also been found in the other teleostean sequences, but not in 

the class IIA sequence from nurse shark. A potential glycosylation site is found in the a2 domain 

at residues 118-120 only in carp and zebrafish, whereas in striped bass and nurse shark 

glycosylation sites are found at aa positions 127-129 and 75-77, respectively. Residues that 

bind the conserved termini of antigenic peptides are less well conserved in teleostean class I IA 

sequences. Out of the five such residues found in mammalian class II a chains, only one residue, 

Na69, is conserved in both Cyca-D(10A)A and Cyca-D(15A)A, whereas another, Na62, is 

present only in Cyca-D(15A)A. Cyca-D(10A)A and Cyca-D(15A)A contain the typical regularly 

spaced glycine residues in the transmembrane region, that play a role in the interaction with 

the class II ß chain. Also, the residue directly preceding this transmembrane section is proline 

(PI90) instead of the glutamic acid commonly found in mammalian sequences. 
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Phylogenetic analysis 

To further analyze the relationship of Cyca-D(CB3)B, Cyca-D(CB4)B, Cyca-D(10A)A 

and Cyca-D(15A)A with other class II sequences from teleostean fishes, a neighbor-joining 

tree was constructed using complete coding sequences of class II genes (Fig. 6). As expected, 

class I IA and class II B sequences form separate groups. The class II B sequences in turn 

split into three main clusters; the Cyca-YB and Brre-DBB and -DCB form one cluster, as do 

the class II B sequences from Atlantic salmon, rainbow trout, striped bass and the African 

great lake cichlid Aulonocara hansbaenshi. The third cluster consists of the remainder of the 

carp and zebrafish class I IB sequences. Cyca-D(CB3)B and Cyca-D(CB4)B group together, 

in a cluster that also contains all Brre-DAB sequences. Cyca-DAB*01 and Cyca-DAB*02 cluster 

with Brre-DEB, as previously observed. The MhcCyca class IIA sequences, Cyca-D(10A)A 

and Cyca-D(15A)A group together, in a cluster with zebrafish class IIA transcripts Brre-l .4.3 

and Brre-2.1.4. The third zebrafish class IIA sequence, Brre-11.2, branches at a considerable 

distance from this cluster, and no carp orthologue has as yet been found. 

Figure 6 (previous page). Phylogenetic tree constructed by the neighbor-joining method (Saitou and 
Nei 1987) using percentages of nucleotide differences, based on coding sequences of fish class II A 
and class II B genes. Numbers on nodes represent percentages of 1000 bootstraps supporting each 
partitioning. Sources of sequences: Cyca-DAB*01, Cyca-DAB*02, common carp (Ono et al. 1993); 
Cyca-YB, common carp (Hashimoto et al. 1990); Brre-DAB sequences, zebrafish (Ono et al. 1992); 
Brre-DBB, -DCB, -DDB, -DEB, -DFB, zebrafish (Sültmann et al. 1994); 5asa-cl44, Atlantic salmon 
(Hordvik et al. 1993), Onmy-DAB*01, rainbow trout (Glamann 1995), Mosa-S-l, striped bass (Walker 
and McConnell 1994); Auha-M231a, cichlid Aulonocara hansbaenshi (Klein et al. 1993); Brre-l.3.4, 
-2.1.4, -11.2, zebrafish (Sültmann et al. 1993); Mosa-A-S5, striped bass (Hardee et al. 1995); 
Gi'd-pSA5-l, nurse shark (Kasahara et al. 1992). 
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Discussion 
Experimental studies on function and structure of the Mhc in carp require the availability 

of well-defined clonal carp lines. The gynogenetic carp clone A410 produced in our laboratory 

has previously been characterized to express a single class I A gene, Cyca-UA1*01, and in 

the present study two class II B and two class IIA transcripts were obtained from this carp 

line. The two class II B transcripts, Cyca-D(CB3)B and Cyca-D(CB4)B, appear to be bona 

fide class II ß chain-encoding transcripts based on the presence of conserved protein 

characteristics of class II ß molecules (Dixon et al. 1995; Stet et al. in press; Kaufman et al. 

1994). In order to obtain more insight into the relationship between Cyca-D(CB3)B and 

Cyca-D (CB4)B, as well as their relationship to the previously isolated carp class IIB transcripts 

Cyca-DAB*01 and Cyca-DAB*02 (Ono etal. 1993), the intron 1 sequences of these transcripts 

were studied. The intron 1 sequences of Cyca-D (CB3)B and Cyca-D(CB4)5 are different in 

size, 669 and 561 bp respectively, but besides this the sequences are well alignable. In addition, 

these introns share the presence of a non-consensus 5' splice-site. Splice-sites which have GC 

at the 5' intron border have been observed in only 0.2% of 7500 splice-sites examined 

(Senepathy et al. 1990). In only one other Mhc sequence, namely in intron 2 of HLA-DPA2 

(SXa), has a similar non-consensus 5' splice-site been found, however, HLA-DPA2 probably 

is a pseudogene (Boss et al. 1985). In contrast, Cyca-D(CB3)B and Cyca-D(CB4)B have initially 

been isolated as correctly spliced cDNA transcripts, and these showed no obvious defects that 

would suggest them to be pseudogenes. It was, however, hypothesized that the presence of 

a non-consensus splice-site could cause slower upregulation of expression of the encoded protein 

(Haviland et al. 1991). Notably, transcribed class II B sequences which were closely related 

to Cyca-D (CB3)5 and Cyca-D (CB4)5 and which also contained a similar non-consensus splice-

site have been isolated from two closely related cyprinids Barbus intermedius intermedius and 

Barbus bocagei (Dixon et al. unpublished data). In contrast, the intron 1 sequences of the 

previously reported carp class II B transcripts Cyca-DAB*01 and Cyca-DAB*02 contain 

consensus 5' splice-sites, and the size of these introns is much smaller than those of 

Cyca-D (CB3)B and Cyca-D (CB4)B. 

Taken together the intron sequence data seem to suggest that Cyca-D (CB3)B and 

Cyca-D (CB4)B are derived from different loci, as their introns 1 are different in size, and 

that Cyca-DAB*01 and Cyca-DAB*02 may be derived from a single locus, based on only minor 

differences in intron and untranslated regions. 

However, to be more conclusive about this identification, we performed initial segregation 

studies. Within the clone, A410, all individuals as well as their mother carried both 

Cyca-D(CB3)B and Cyca-D(CB4)B. As the mother of the clone was produced by mitotic 
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gynogenesis, genetically she is the mere duplication of a haploid egg, and therefore homozygous. 

The finding that she contains both Cyca-D (CB3)fi and Cyca-D (CB4)B indicates that these genes 

are either linked on the same chromosome, or, alternatively, that they are located on two 

different, non-homologous, homozygous chromosomes. Her offspring, clone A410 was produced 

by meiotic gynogenesis, and therefore either of both genetic configurations proposed above 

could account for the presence of both Cyca-D (CB3)B and Cyca-D (CB4)B in each of the 

offspring. 

The Jukes-Cantor corrected genetic distance (d^ calculated from synonymous substitutions 

between Cyca-D(CB3)B and Cyca-D(CB4)B is 0.0665, which implies an approximate divergence 

time of 12 my, using a 50 my divergence time (Stroband et al. 1995) between the two closest 

carp and zebrafish class II B sequences, Cyca-D(CB4)B and Brre-DAB3*01, as a reference 

(resulting in a rate of 2,9xl0"9 substitutions/synonymous site per year). 

Within the A4.10me2 family, Cyca-DAB*01 and Cyca-DAB*02 were found to co-

segregate. This is surprising, as these sequences were previously identified as alleles of a single 

locus, based on a high sequence similarity between the two transcripts, a finding which in 

the present study is extended to their intron 1 sequences. However, because of the observed 

co-segregation in the A4.10me2 family, this identification has to be considered erroneous, 

and more likely, these transcripts are derived from two genes which arose very recently by 

a duplication event. The genetic distance (ds) between the coding regions of Cyca-DAB*01 

and Cyca-DAB*02 is 0.0119, which implies a divergence time of approximately 1 my. In family 

A4.10me2 a third sequence, Cyca-D(m&2)B, was found to segregate separately from 

Cyca-DAB*01 and Cyca-DAB*02. Transcripts of Cyca-D(me2)B gene have however as yet 

not been observed, although a cDNA library was screened which was prepared from six 

individuals from this family. 

Further elucidation of the relationships of Cyca-D(CB3)B, Cyca-D (CBA)B, Cyca-DAB*01 

and Cyca-DAB*02 was possible by the fortunate presence of these sequences in a hybrid family 

R3xR8 as described by Wiegertjes and co-workers (1995). Although this extensive sharing 

of sequences between fish from Poland (R3), Hungary (R8) and Israel (A4, DOR70) is 

remarkable, it can be explained by a recent common origin of these carp in eastern Europe 

(Wohlfarth et al. 1980). The segregation patterns in the R3xR8 family also showed the consistent 

co-segregation of Cyca-DAB*01 with Cyca-DAB*02, and of Cyca-D(CB3)B with Cyca-D(CB4)B. 

This is consistent with the hypothesis that the former pair of sequences are derived from two 

linked loci, and the same holds true for Cyca-D(CB3)B with Cyca-D(CB4)B. Interestingly, 

it was observed that Cyca-D(CB3)B and Cyca-D(CB4)B were not linked to Cyca-DAB*01ICyca-

DAB*02, the two sets of linked genes segregated independently. The frequencies of the observed 

genotypes in the offspring indicate that the R3 parental individual carried Cyca-DAB*01 and 
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Cyca-DAB*02 on a single chromosome of a homologous pair, whereas possible class II B 

sequences on the other chromosome were not detected. The R8 parental individual probably 

also carried Cyca-DAB*01 and Cyca-DAB*02 on a single chromosome, whereas the homologous 

chromosome contained Cyca-D (CB3)B and Cyca-D (CB4)S. The confound differences between 

the coding sequences and introns from, on the one hand, Cyca-D(CB3)B and Cyca-D(CB4)B, 

and on the other hand, Cyca-DAB*01 and Cyca-DAB*02, seem to indicate that these sequences 

are derived from two non-orthologous sets of loci, rather than being alleles of two linked loci. 

This is also supported by the position of the two sets in the phylogenetic tree: whereas 

Cyca-D(CB3)B and Cyca-D(CB4)B cluster with the Brre-DAB sequences, Cyca-DAB*01 and 

Cyca-DAB*02 cluster with Brre-DEB. Based on these findings we propose to denote 

Cyca-D(CB3)B and Cyca-D(CB4)B as Cyca-DAB3*01 and Cyca-DAB4*01, respectively. Further, 

we propose to change the allelic designations of Cyca-DAB*01 and Cyca-DAB*02 to 

Cyca-DAB1*01 and Cyca-DAB2*01. Although these sequences cluster with Brre-DEB in the 

phylogenetic tree, we have chosen not to change the designation DAB to DEB, as proposed 

by Sültmann and co-workers (1994), because of the possibility that a more closely related, 

but as yet unidentified, locus may exist in another fish species, which would then unduly 

necessitate us to rename the sequences again. 

The apparent segregation of the two pairs of loci (Cyca-DABl*01/Cyca-DAB2*01 vs. 

Cyca-DAB3*01/Cyca-DAB4*01) seems to point at haplotype polymorphisms. Nevertheless, 

we can not exclude that we have simply failed to amplify and detect the apparently lacking 

alleles when we performed PCR using primers complementary to conserved regions of the 

transcripts. The suggestion of haplotypic differences is in a sense reminiscent of the situation 

found in zebrafish where a genomic library that contained Brre-DEB sequences, apparently 

did not contain Brre-DAB genes, whereas zebrafish individuals that expressed Brre-DAB 

sequences could not be shown to express Brre-DEB. Haplotype polymorphisms may well add 

to the possible explanations presented by the authors, i.e., non-expression of Brre-DEB and 

incomplete genomic libraries. 

An alternative explanation for segregation of loci would be the presence of more than 

one complex of Mhc genes. Although the carp is a tetraploid species as suggested by the number 

of chromosomes, all of these are visible as bivalents in the metaphase of cell-divisions, except 

the 4 micro-chromosomes which are observed as quadrivalents (Ohno et al. 1967). Mhc genes 

of carp could therefore in theory be present as a tetrasomically inherited Mhc (present on the 

micro-chromosomes), two Mhc complexes which segregate independently, as the result of 

functional diploidization, or perhaps as a normal disomically inherited Mhc. 

Nevertheless, the segregation studies presented here do not conclusively support any 
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of these Mhc configurations. The independent segregation of Cyca-DAB*01/Cyca-DAB*02 

and Cyca-D(me2)B observed in the gynogenetic family A4.10me2 appears to refute the 

possibility of a normal disomically inherited Mhc, as, in that case, it is expected that the 

gynogenetic offspring would be homozygous. In contrast, the segregation pattern in the R3xR8 

hybrid family is fully consistent with a disomically inherited Mhc. Further segregation studies 

are clearly needed, and one should perhaps even take into account that inheritance of Cyca 

genes in the carp may not follow basic Mendelean rules. 

With the isolation of class II A transcripts from strain A410 in the present study, 

representatives of all 4 classes of Mhc genes have been identified in the carp (Ono et al. 1993; 

Van Erp et al. 1996a; Dixon et al. 1993). Cyca-D(10A)A and Cyca-D( 15A)A appear to be 

bonafide class IM transcripts. Also, the protein characteristics commonly found in class I IA 

proteins are all present, and the encoded proteins may well combine with the Cyca-DAS-encoded 

ß chains to form a class II a-ß heterodimer. Cyca-D(10A)A and Cyca-D(15A)A did not segregate 

in the individuals of the carp clone, and because this strain was generated by meiotic gynogenetic 

reproduction of a maternal fish which also contained the two class IIA genes, these are most 

likely to be derived from separate loci. Hence we propose to designate Cyca-D(IQA)A as 

Cyca-DXA1*01 and Cyca-D(15A)A as Cyca-DXA2*01. The Jukes-Cantor corrected genetic 

distance between the coding regions of these two sequences is 0.0248, which implies an 

approximate divergence time of 4my. Indicative in this respect is that Brre-ll.2 was found 

on a genomic clone which also contained Brre-DEB. To find the carp equivalent of Brre-11.2 

we may therefore have to look in a strain that contains the carp equivalent of Brre-DEB, namely 

those carrying the Cyca-DAB1*01 and Cyca-DAB2*01 genes. 

Summarizing, carp clone A410 has so far been typed to express two class II B genes 

(Cyca-DAB3*01 and Cyca-DAB4*01) and two class II A genes (Cyca-DXA1*01 and 

Cyca-DXA2*01), in addition to a single class I gene (Cyca-UA1*01) (Van Erp et al. 1996a). 

It remains to be established whether these Cyca genes actually are present as a complex of 

genes. Preliminary linkage studies seem to indicate that Cyca-DAB3*01 and Cyca-DAB4*01 

are indeed linked to Cyca-UA1*01, however, future studies will be needed for further elucidation 

of the configuration and, thereupon, the evolution of Mhc genes in carp. 

Acknowledgements 

We thank Robert de Boer and Bart Keijser for their assistance in the isolation and sequence 

analysis of the Cyca-DXA clones. 



Cyca-DAB and Cyca-DXA 129 

References 

Betz, U.A.K., Mayer, W.E. and Klein, J. 1994. Major histocompatibility complex class I genes 
of the coelacanth Latimeria chalumnae. Proc. Natl. Acad. Sei. USA 91: 11065-11069 

Boss, J.M., Mengler, R., Okada, K., Auffray, C. and Strominger, J.L. 1985. Sequence analysis 
of the human major histocompatibility gene SX-alpha. Mol. Cell. Biol. 5: 2677-2683 

Dixon, B., Stet, R.J.M., Van Erp, S.H.M. and Pohajdak, B. 1993. Characterization of ft,-
microglobulin transcripts from two teleost species, lmmunogeneti.es 38: 27-34 

Dixon, B., Van Erp, S.H.M., Rodrigues, P.N., Egberts, E. and Stet, R.J.M. Fish major 
histocompatibility complex genes: an expansion. Dev. Comp. Immunol. 19: 109-133, 1995 

Grossberger, D. and Parham, P. 1992. Reptilian class I major histocompatibility complex genes reveal 
conserved elements in class I structure. Immunogenetics 36: 166-174 

Glamann, J. 1995. Complete coding sequence of rainbow trout Mhc IIB chain. Scand. J. Immunol. 
41: 365-372 

Hashimoto, K., Nakanishi, T. and Kurosawa, Y. 1990. Isolation of carp genes encoding major 
histocompatibility complex antigens. Proc. Natl. Acad. Sei. USA 87: 6863-6867 

Hordvik, I., Grimholt, U., Fosse, V.M., Lie, 0 . and Endresen, C. 1993. Cloning and sequence 
analysis of cDNAs encoding the MHC class II ß chain in Atlantic salmon (Salmo salar). 
Immunogenetics 37: 437-441 

Hardee, J.J., Godwin, U., Benedetto, R. and McConnell, T.J. 1995. Major histocompatibility 
complex class I IA gene polymorphism in the striped bass. Immunogenetics 41: 229-238 

Higgins, D.G., Bleasby, A.J. and Fuchs, R. 1992. CLUSTAL V: improved software for multiple 
sequence alignment. Comput. Appl. Biosci. 8: 189-191 

Haviland, D.L., Haviland, J.C., Fleisher, D.T. and Wetsel, R.A. 1991. Structure of the murine 
fifth complement component (C5) gene. A large, highly interrupted gene with a variant donor 
splice site and organizational homology with the third and fourth complement component genes. 
J. Biol. Chem. 18: 11818-11825 

Kaufman, J., Salomonsen, J. and Flajnik, M. 1994. Evolutionary conservation of MHC class I 
and class II molecules-different yet the same. Seminars in Immunol. 6: 411-424 

Klein, D., Ono, H., O'hUigin, C , Vincek, V., Goldschmidt, T. and Klein, J. 1993. Extensive 
MHC variability in cichlid fishes of Lake Malawi. Nature 364: 330-334 

Kasahara, M., Vazquez, M., Sato, K., McKinney, E.C. and Flajnik, M. 1992. Evolution of the 
major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous 
fish. Proc. Natl. Acad. Sei. USA 89: 6688-6692 

Kaastrup, P., Stet, R.J.M., Tigchelaar, A.J., Egberts, E. and Van Muiswinkel, W.B. 1989. A 
major histocompatibility locus in fish: serological identification and segregation of transplantation 
antigens in the common carp (Cyprinus carpio L.). Immunogenetics 30: 284-290 

Kumar, S., Tamura, K. andNei, M. 1993. MEGA: MolecularEvolutionary Genetics Analysis, version 
1.01. The Pennsylvania State University, University Park 

Komen, J., Bongers, A.B.J., Richter, C.J.J., Van Muiswinkel, W.B. and Huisman, E.A. 1991. 
Gy nogenesis in common carp (Cyprinus carpio L. ) II. The production of homozygous gynogenetic 
clones and Fl hybrids. Aquaculture 92: 127-142 

Okamura, K., Nakanishi, T., Kurosawa, Y. and Hashimoto, K. 1993. Expansion of genes that 
encode MHC class I molecules in cyprinid fishes. J. Immunol. 151: 188-200 

Ono, H., O'hUigin, C , Vincek, V., Stet, R.J.M., Figueroa, F. and Klein, J. 1993. New ß chain-
encoding Mhc class II genes in the carp. Immunogenetics 38: 146-149 

Ono, H., Klein, D., Vincek, V., Figueroa, F., O'hUigin, C , Tichy, H. and Klein, J. 1992. Major 
histocompatibility complex class II genes of zebrafish. Proc. Natl. Acad. Sei. USA 89: 11886-
11890 

http://lmmunogeneti.es


130 Chapter 6 

Ohno, S., Muramoto, J. and Christian, L. 1967. Diploid-tetraploid relationship among old-world 
members of the fish family Cyprinidae. Chromosoma 23: 1-9 

Sültmann, H., Mayer, W.E., Figueroa, F., O'hUigin, C. and Klein, J. 1993. ZebrafishMhc class 
II a chain-encoding genes : polymorphism, expression, and function. Immunogenetics 38:408-420 

Sültmann, H., Mayer, W.E., Figueroa, F., O'hUigin, C. and Klein, J. 1994. Organization of Mhc 
class II B genes in the zebrafish (Brachydanio rerio). Genomics 23: 1-14 

Stet, R.J.M., Van Erp, S.H.M., Hermsen, T., Sültmann, H.A. and Egberts, E. 1993. Polymorphism 
and estimation of the number of MhcCyca class I genes in laboratory strains of the common 
carp (Cyprinus carpio L.). Dev. Comp. Immunol. 17: 141-156 

Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing 
phylogenetic trees. Mol. Biol. Evol. 4: 406-425 

Stet, R.J.M., Dixon, B., Van Erp, S.H.M., Van Lierop, M.C., Rodrigues, P.N.S. and Egberts, 
E. Inference of structure and function of fish Major Histocompatibility Complex (MHC) molecules 
from expressed genes. Fish Shellfish Immunol, in press 

Stet, R.J.M, and Egberts, E. 1991. The histocompatibility system in teleostean fishes: from multiple 
histocompatiblity loci to a major histocompatibility complex. Fish Shellfish Immunol. 1: 1-16 

Senapathy, P., Shapiro, M.B. and Harris, N.L. 1990. Splice junctions, branch point sites, and 
exons: sequence statistics, identification, and applications to genome project. Meth. Enzymol. 
183: 252-278 

Stroband, H.W.J., Stevens, C , Te Kronnie, G., Samailo, J., Schipper, H., Kramer, B. and 
Timmermans, L.P.M. 1995. Expression of carp-cdxl, a caudal homolog, in embryos of the 
carp, Cyprinus carpio. Roux's Arch. Dev. Biol. 204: 369-377 

Takeuchi, H., Figueroa, F., O'hUigin, C. and Klein, J. 1995. Cloning and characterization of class 
I Mhc genes of the zebrafish, Brachydanio rerio. Immunogenetics 42: 77-84 

Van Erp, S.H.M., Dixon, B., Figueroa, F., Egberts, E. and Stet, R.J.M. 1996a. Identification 
and characterization of a new major histocompatibility complex class I gene in carp (Cyprinus 
carpio L.). Immunogenetics in press 

Van Erp, S.H.M., Egberts, E. and Stet, R.J.M. 1996b. Evidence for multiple distinct major 
histocompatibility complex class I lineages in teleostean fish. Eur. J. Immunogenetics in press 

Walker, R.A. and McConnell, T.J. 1994. Variability in an MHCMaya class II ß chain encoding 
gene in striped bass (Morone saxatilis). Dev. Comp. Immunol. 18: 325-342 

Wiegertjes, G.F., Stet, R.J.M., Bongers, A.B.J., Voorthuis, P., Zandieh Doulabi, B., 
Groeneveld, A. and Van Muiswinkel, W.B. 1995. Investigation into the immune responsiveness 
of Fl hybrids of homozygous carp (Cyprinus carpio L.) selected for high or low antibody 
production: indication for immune gene control. In: G.F. Wiegertjes, Immunogenetics of disease 
resistance in fish. PhD-thesis, Wageningen Agricultural University, Wageningen 

Wiegertjes, G.F., Stet, R.J.M, and Van Muiswinkel, W.B. 1994. Divergent selection for antibody 
production in common carp (Cyprinus carpio L.) using gynogenesis. Anim. Genet. 25:251-257 

Wohlfarth, G., Lahman, M., Hulata, G. and Moav, R. 1980. The story of Dor-70: a selected strain 
of the Israeli common carp. Bamidgeh. 32: 3-5 



Chapter 7 

General discussion. 



133 

The five years of work described in this thesis coincide with the five years of reports 

on Mhc genes from fish. In 1990 the first fish Mhc sequences were found in carp, and since 

then the number of fish species in which Mhc sequences have been identified has risen steeply 

to 37 at the end of 1995. In these five years many aspects of the fish Mhc genes have surfaced, 

and the progress has made some unexpected turns along the way. In this general discussion, 

we will try to combine the pieces found in each separate chapter, assess them in retrospect, 

and add future directions. 

Class I genes in carp 

The area of class I genes in carp has turned out to be much more complex than initially 

expected. At this moment, four distinct types of class I a-chain encoding genes have been 

found in the carp, in chronological order of appearance in literature, Cyca-Z, Cyca-C4, Cyca-U 

and Cyca-TC16. In spite of the very large genetic distance between the different lineages (p-

distances between exons 4 are in the order of 0.5 - 0.6, Cyca-CA excluded, becauses this 

sequence does not comprise exon 4), all of these class I sequences cluster together in a 

phylogenetic tree containing also class II and B2m genes (Fig. 1). This may indicate that all 

carp class I lineages are derived from a single class I ancestral gene. However, the level of 

genetic distance between these lineages, and the sharing of some of these lineages by fish species 

from different superorders, suggest that the duplications leading to the four types of genes 

have happened early in the evolution of teleostean fish. 

Of the four types, the U lineage appears to be the common class I lineage of teleost fish, 

as to date U sequences have been found in representatives of four euteleost superorders: (i) 

the Protacanthopterygii, represented by the salmonids Atlantic salmon and pink salmon; (ii) 

the Ostariophysi, represented by the cyprinids common carp, the zebrafish, and large African 

barbel; (iii) the Paracanthopterygii, represented by the cod; and (iv) the Acanthopterygii, as 

represented by the guppy (Figs. 1 and 2). This omnipresence in euteleosts combined with the 

observed sequence characteristics which indicate that the encoded proteins may bind antigenic 

peptides, CD8 and ß2-microglobulin, and the strong, easily detectable expression in a variety 

of tissues, strongly argues that these genes encode classical class I molecules. This conclusion 

is further strengthened by the outcome of flowcytometric experiments performed with two 

polyclonal antisera, one raised to recombinant Cyca-UA1*01, and the other to recombinant 

Cyca-B2m. These two antisera produced very similar staining patterns on lymphocytes from 

various lymphoid organs, suggesting that Cyca-UA1*01 and Cyca-B2m are present on the same 

cells. Also, the detection of two distinct subpopulations of class I-positive lymphocytes, namely 

B cells (slg positive) and putative T cells (slg negative), adds to the conclusion that Cyca-U 

sequences encode classical class I molecules. 
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So what could representatives of the other three lineages encode? The presence of these 

lineages in species other than the carp appears to be far more restricted than that of the U 

genes. So far, Z genes have only been found in the carp and the closely related Ginbuna crucian 

carp (Carassius auratus langsdorfii) (Hashimoto et al. 1990; Okamura et al. 1993), the lineage 

represented by Cyca-TC16 may also contain the Lach-Uclass I genes from the crossopterygian 

coelacanth (Betz et al. 1994), and Cyca-CA has been observed exclusively in a San Francisco 

China-town market fish, held to be a common carp (Grossberger and Parham 1992). The 

divergence between the U sequences and the other three lineages is reminiscent of the divergence 

between mammalian classical Mhc molecules and distantly related molecules like the FcRn, 

Zn-a2-glycoprotein and CD 1. However, none of these non-classical molecules shows significant 

similarity to Cyca-Z, Cyca-TC16 or Cyca-CA. 

In the absence of experimental studies on the function of these carp molecules, one has 

to rely on circumstantial evidence, such as data on expression, or the presence of certain 

residues in the amino acid sequence. Expression of Cyca-Z, Cyca-TC16, and Cyca-CA is not 

firmly established, neither by northern hybridizations, nor after extensive attempts in our 

laboratory to obtain Cyca-Z and Cyca-TCl6 full-length cDNA clones from libraries prepared 

from carp lymphoid organs. Nevertheless Cyca-Z fragments have been successfully amplified 

from carp kidney cDNA by Okamura and co-workers ( 1993), Cyca-CA was originally amplified 

from cDNA (Grossberger and Parham 1992), and so was Cyca-TC16 in our laboratory. Also, 

the absence of conserved peptide-binding residues and a CD8-binding site may indicate that 

Cyca-Z and Cyca-TCl6 molecules do not function as classical antigen-presenting molecules. 

On the other hand, Cyca-Z genes are present in multiple copies in the genome, which appear 

to be linked (see also section: "Do fish have an Mhc?"), and which exhibit RFLP. In addition, 

Figure 1. Phylogenese tree created by the neighbor-joining method (Saitou and Nei 1987), based on 
uncorrected p-distances between Mhc sequences from bony fish, using exon 4 for class I, exon 3 for 
class II and exon 2 for Bjn. The sequences of the TCR Cß region of rainbow trout (Onmy TCR Cß; 
Partula et al. 1995), was used as an outgroup. Numbers on nodes indicate the percentages of 1000 
bootstraps supporting each partitioning. Sources of sequences not described in this thesis: Brre-DAB 
sequences, zebrafish (Ono etal. 1992); Brre-DBB, -DCB, -DDB, -DEB (Sültmann et al. 1994); Cyca-YB 
(TLAIIß-1) (Hashimoto etal. 1990); Cyca-DABl, Cyca-DAB2, common carp (Ono etal. 1993b); Pore-
DB-4-2S, Pore-UA-A30, guppy (Sato et al. 1995); Sasa-cl44, Atlantic salmon (Hordvik et al. 1993) 
Onmy-DAB*01, rainbow trout (Glamann 1995); Auha-M231a, cichlid (Klein et al. 1993); Mosa-S-l, 
striped bass (Walker and McConnell 1994); Brre-B2m (Ono et al. 1993a); Onmy-B2m (P. Parham, 
pers. comm.); Mosa-A-S5 (Hardee etal. 1995); Brre-1.3.4 (Sültmann et al. 1993); Cyca-Z, common 
carp, and Caau-Z, Ginbuna crucian carp (Okamura et al. 1993); Lach-U, coelacanth (Betz et al. 1994); 
Gamr, cod (A.C. Persson, pers. comm.); Sasa-p3Q, (Grimholt etal. 1993); Bain-UA1*01, large African 
barbel (Accession no. X94107); Brre-U, (Takeuchi et al. 1995). 
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Figure 2. Classification of teleostean fish, modified after Nelson(1994). Boxed family names indicate 
that Mhc sequences were identified in species representing that family. 
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RFLP patterns, using a Cyca-Zprobe in two gynogenetic families A4.3 and A4.19, were found 

to correlate with histo-incompatibility. For this, either the Cyca-Z genes themselves, or perhaps 

a closely linked histocompatibility gene could account. As for the function of Cyca-TC16, 

under the assumption that this sequence shares a common origin with the Lach-U sequences 

from the coelacanth, one can only speculate that during a long time of its existence Cyca-TC16 

must have had a conserved function within the Ig superfamily, for certainly a non-functional 

gene would have diverged beyond recognition during 400 million years (my) of evolution. 

Class II genes in carp 

In contrast to the class I story, teleostean class II genes form a much more homogeneous 

group. At this moment, class IIB genes are by far the best represented among reported fish 

Mhc sequences, with representatives from species from three euteleostean superorders: the 

Protacanthopterygii, represented by the salmonids Atlantic salmon, 6 species of Pacific salmon 

(accession no. U34716-20, U34692-713), and rainbow trout; the Ostariophysii, represented 

by the cyprinids common carp, Ginbuna crucian carp, zebrafish, large African barbel, and 

Portuguese barbel (accession no. X93896-7); and finally the Acanthopterygii as represented 

by the striped bass, guppy, pufferfish (accession no. X87413), and multiple species of African 

cichlids, but also in perch, silver side, and three-spined stickle back (Figueroa et al. 1995). 

Yet, all of the class II B sequences are clearly related, giving rise to a homogeneous cluster 

in phylogenetic trees and, in contrast to the class I situation, the genetic distances between 

the sequences are much smaller (the largest genetic p-distance between two carp class II B 

exon 3 sequences is 0.2) (Fig. 1). 

In carp, evidence is so far obtained for the existence of at least 5 class IIB loci: Cyca-YB 

by Hashimoto and co-workers (1990), Cyca-DABl, Cyca-DAB2 (Ono et al. 1993b) and 

Cyca-DAB3 and Cyca-DAB4 from our laboratory. This set of genes could account for the three 

to five hybridizing fragments observed in the Southern blot hybridizations using a Cyca-YB 

exon 4 probe, K2-1, because the level of sequence similarity of the Cyca-YB probe to the 

Cyca-DAB loci (80% nt. identity) is enough to ensure hybridization under the low stringency 

conditions applied. 

Phylogenetic analysis indicates that the Cyca-DABl and Cyca-DAB2 loci are the result 

of a recent duplication (approximately 1 my ago, calculated from the Jukes-Cantor corrected 

proportion of synonymous differences (d,,) in exons 3, and a rate of 2.9 x 10"9 

substitutions/synonymous site per year). Also Cyca-DAB3 and Cyca-DAB4 loci are the result 

of a relatively recent duplication of an ancestral gene, about 10-12 my ago, and this gene was 

already present in the ancestor of carp and zebrafish, judging from the clustering of Cyca-DAB3 

and Cyca-DAB4 with Brre-DAB. The genetic distance between the Cyca-DABl I Cyca-DAB2 
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group of genes and the Cyca-DAB3/Cyca-DAB4/Brre-DAB group of genes indicates that the 

duplication leading to the ancestral genes of these two groups happened 80-120 my ago. The 

Cyca-YB gene is still incomplete, as to date only exons 2 and 3 have been identified. In the 

phylogenetic tree, this gene clusters with the putatively non-functionalZ?Are-D55 and Brre-DCB 

genes from zebrafish. 

Reports of class IIA genes are somewhat lagging behind. Such genes have to date been 

identified in only three species, namely the cyprinids common carp and zebrafish, and a 

representative of the perciformes, the striped bass. In the carp two class I IA loci appear to 

be present, showing a high level of sequence identity (95%, exons 3 ds=0.02), which, using 

the same synonymous substitution rate as above, implies a divergence time of approximately 

3.5 my. The presence of multiple class IIA loci is expected because of the presence of multiple 

class I IB loci, and also in the zebrafish evidence was obtained for the presence of multiple 

loci (Sültmann et al. 1993). Further conclusions regarding the evolution and relationship of 

the teleost class II A genes, however, awaits the identification of these sequences in more 

species. 

The class II a and ß chains encoded by the Cyca-DAB and Cyca-DXA genes, respectively, 

may well combine to form a functional class II a-ß heterodimer. Yet, experimental proof for 

this has so far not been obtained, and this assumption is only based on indirect indications, 

concerning expression and characteristics of the protein sequence (Stet et al. in press). In carp, 

expression of class IIB genes was detected by the isolation of full-length cDNA clones from 

lymphoid tissues and, for Cyca-DABl and Cyca-DAB2 by northern hybridizations and semi

quantitative PCR on cDNA in various lymphoid organs and lymphoid cells (Rodrigues et al. 

1995). A possible exception is the Cyca-YB sequence, which most likely is not expressed. 

To date, expression of class IIA genes in carp is only indicated by the isolation of full-length 

cDNA clones. 

Features of the protein sequences of the carp class IIB and class IIA genes suggest 

that the encoded protein chains may function as a classical class II heterodimer. Significant 

indications that products encoded by Cyca-DAB encode functional antigen presenting molecules 

can be found in analyses of the amino acid variability in the derived protein sequences of the 

ß! domains. Highly variable residues in Cyca-DAB protein sequences correspond with those 

positions of human Mhc proteins that interact with peptides (data not shown). The same 

observation was made in a much more extensive study on the variability of class II B genes 

in the species flock of large African barbels {Barbus intermedins) of Lake Tana (Dixon et 

al. submitted). The Bain-DAB sequences identified in these barbels are all very much related 

to either the Cyca-DABl/2 or the Cyca-DAB3/4 genes, and in these Bain-DAB sequences 
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variability was found to be the highest at sites corresponding to mammalian peptide-binding 

residues. In addition, sometimes very high d„/ds ratios were observed between sequences. This 

strongly suggests that the peptide-binding regions of these genes experience positive selection, 

and that the molecules encoded by these genes are involved in binding various peptides. 

Suggestive in this respect are also the results obtained by Wiegertjes and co-workers in our 

laboratory (1995), who found a correlation between the Cyca-DAB haplotype of Fl hybrid 

carp, and the level of their humoral immune response to the hapten-carrier DNP-KLH. 

Origin of Mhc genes. 

The obvious analogies in the structure and functioning of Mhc class I and class II 

molecules has raised interest in the evolutionary interrelationships between the different classes 

of Mhc genes. Two main hypotheses regarding the origin of class I and class II genes have 

been proposed. They differ mainly in their explanation regarding the origin of the membrane 

distal domains of Mhc molecules, and as a consequence, in their conclusion with regard to 

which class of Mhc molecules arose first. The first hypothesis speculates that class I was 

produced by an exon-shuffling event that combined an immunoglobulin constant domain and 

the peptide-binding region of HSP70 (Flajnik et al 1991). The class II genes subsequently 

arose by recombining the class I c^ domain with a separate immunoglobulin C-domain. 

The second hypothesis suggests that class II arose first, each chain consisting of an 

immunoglobulin C-domain combined with an immunoglobulin V-domain. The Ig V-domains 

of the class II a and class II ß molecules then refolded together to shape the antigen binding 

groove. Class I and ß2m subsequently arose by a chromosomal inversion event combined with 

a splice acceptor site mutation, which eliminated the transmembrane and cytoplasmic domains 

of the resultant B2m gene (Kaufman et al. 1984). 

The clustering of the fish Mhc sequences in the phylogenetic tree presented in figure 1 

indeed suggests a relationship between the class II ß2 domains and class I a3 domains, and 

also between class II a2 and ß2m. This phylogeny has been suggested before by Hood and 

co-workers ( 1985) and it was also observed in phylogenetic analyses by Hughes and Nei ( 1993), 

who mainly included sequences from mammals, fowl, and Xenopus. One should bear in mind, 

however, that the bootstrap values in these trees are generally low. In any case, the observed 

clustering renders equal support for either hypothesis. 

Yet, the finding that in teleostean fish all class II ß! and, in contrast to the mammalian 

molecules, also class II c^ domains contain the two cysteine residues spaced approximately 

53 amino acids apart, does exclusively support the second hypothesis. It is much more likely 

that these residues are the legacy of an Ig-fold in which they once took part, than that these 

residues evolved independently in both HSP70 domains. If so, then the cysteine residues in 



140 Chapter 7 

class II a2 domain were lost at least twice in evolution, namely in the lineage leading to 

mammals, and in the shark (Kasahara et al. 1992). 

Also Hughes and Nei (1993) have presented arguments that support the second hypothesis. 

They showed that: (i) class II ß! domains are statistically more similar to immunoglobulin 

V domains than to HSP70 domains; (ii) class II ax domains are significantly more similar to 

class II ß, domains, than to HSP70 c^; and (iii) the genetic distance between class II a, and 

class II ß] domains is much smaller than would be expected if these originated from HSP70. 

In addition, Dixon and co-workers (1995) have demonstrated that the intron/exon structure 

of HSP70 genes cannot offer support to the theory that an HSP70 peptide-binding region was 

donated to the first Mhc genes. 

Taken all this together, we think the evidence is overwhelmingly in favor of the hypothesis 

that the ancestral Mhc molecule had a class II-like structure. 

Do fish have an Mhc? 

This question has eluded the minds of several researchers before 1990, and it seemed 

to be answered by the finding of Mhc sequences from both class I and class II, in a multitude 

of teleost species. Nevertheless, it is still appropriate to pose the same question, for it is still 

unclear whether fish really have histocompatibility genes that are organized in a genetic 

complex. The data on this subject are so far extremely scarce. 

Only for class II genes some firm linkage data are available: Cyca-DAB1*01 is linked 

to Cyca-DAB2*01, and Cyca-DAB3*01 is linked to Cyca-DAB4*01, but these two pairs of 

linked genes segregate. In addition, preliminary data suggest that Cyca-UA1*01 and Cyca-DXAl 

are linked to Cyca-DAB3 and Cyca-DAB4, which would already complete a set of linked class I, 

class IIB and class UA genes. This, however, requires further confirmation through segregation 

studies. 

Some evidence also exists for linkage of the multiple Cyca-Z genes. Hashimoto and co

workers (1990) obtained evidence for the presence of two Cyca-Z genes on the genomic clone 

XTLAI-1. In addition, linkage of at least some of the Cyca-Z genes was indicated by the results 

of RFLP studies, in which the number of hybridizing Z fragments were found to vary depending 

on the restriction endonuclease used to digest the DNA {cf. Figures 2 and 3, chapter 2). 

For a large part, however, we are still probing in the dark. It is for example not clear 

whether the expressed Cyca-U locus is linked to the related, but apparently non-expressed, 

sequences that are detected on Southern blots probed with Cyca- UA1 *01. Nor is it clear whether 

these classical Cyca-U genes are linked to the non-classical class I-like sequences Cyca-Z, 

Cyca-TC16 and Cyca-C4, or whether the latter are perhaps located on separate chromosomes, 

like some of the mammalian non-classical genes, including FcRn, Zn-a2-glycoprotein, and 
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CD1. To answer these questions, future studies including RFLP analyses, other genomic typing 

studies (PCR combined with RFLP or sequence analysis) or perhaps genomic mapping using 

cosmid or YAC libraries, will be required. 

Conjectural is also the suggestion that in teleost fish the B2m gene is perhaps located 

in the Mhc. It is generally assumed that the B2m gene moved out of the Mhc to a different 

chromosome at some time point in evolution during the emergence of mammals, and the 

possibility remains that this happened after the evolutionary branch leading to teleostean fish 

split off from the branch leading to the tetrapods. But, so far, no evidence has been obtained 

that indicate a shared chromosomal localization of B2m and Mhc genes in fish. Recent findings 

in rainbow trout, however, indicate the presence of multiple B2m genes in the genome of this 

species. These genes all have an identical coding sequence, but the flanking sequences are 

different between genes and, more importantly, between trout individuals. This could therefore 

provide an important tool in studying linkage of B2m genes to the other Mhc genes of trout 

(Shum et al. in press). 

A problem that announced itself during the linkage studies performed so far in carp, 

is the unresolved ploidy status of this species. Based on the number of chromosomes (100 

or 104), carp is considered to be tetraploid, presumably as the result of auto-tetraploidization 

(genome doubling) or, more likely, allo-tetraploidization (species hybridization), which probably 

occurred less than 16 my ago (Larhammar and Risinger 1994). Allo-tetraploidization appears 

to be the more likely scenario because all except four of the carp chromosomes form bivalents 

in the metaphase of cell divisions, whereas only the four micro-chromosomes have been 

observed to form a quadrivalent (Ohno et al. 1967). Also, on estimation 52% of the genes 

are present as two active, but diverged copies (/. e., as two sets of two homologues), whereas 

the remainder of the genes is present as a single copy, i.e., in a 'normal' diploid state 

(Larhammar and Risinger 1994). Furthermore, a recent study on microsatellite markers suggests 

that most of the loci detected are diploid, i. e., having at most two alleles, while only a minority 

of the loci as seen by the markers showed more than two alleles (Crooijmans et al. in 

preparation). The Cyca-B2m gene appears to be present in two copies in the carp genome: 

in RFLP studies two hybridizing bands were consistently observed, which did not show variation 

between several outbred individuals or Fl hybrids. The carp, therefore, seems to have retained 

two copies of the B2m gene after the tetraploidization event, although the finding of only a 

single cDNA sequence suggests that it may have silenced one of these copies, which would 

result in a functional diploidization. 

Taken together, it seems that the carp is in an intermediate stage of diploidization. 

Consequently, if there is an Mhc region in carp, it could be present in different configurations: 

(i) in four allelic copies (tetrasomically inherited); (ii) in two times two allelic copies (i.e., 
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two Mhc's, each on a pair of disomically inherited chromosomes); or perhaps (iii) as a single 

disomically inherited Mhc (a 'normal' diploid Mhc), while the other copy of the Mhc was lost 

by silencing or deletion, as observed in polyploid Xenopus species (Shum et al. 1993). As 

yet we did not detect more than two alleles at any Cyca locus. On the contrary, for most loci 

we could not identify more than a single, yet segregating, gene, which suggests the presence 

of null-alleles or haplotype polymorphisms. This, in combination with the level of inbreeding 

encountered in the carp, highly complicates the elucidation of the chromosomal configuration 

of the Mhc. 

So where to go from here? 

The Mhc genes of carp have turned out to constitute an extended genetic family, with 

classical and non-classical class I genes, B2m genes, class I IA and B genes (Table 1). The 

initial expectations that fish Mhc genes, if existing at all, would perhaps be primitive and as 

a consequence dissimilar from the mammalian ones, has clearly been refuted. Moreover, the 

fish immune system is proving to be strikingly similar to that of mammals, with Mhc genes, 

and, as recently shown, rearranging T-cell receptor genes as well as B-cell receptor genes. 

The presence of both class I and class II genes suggests that a strategic differentiation in the 

responses to intracellularly and extracellularly derived antigens is already present in fish. In 

line with this, it seems plausible to expect that, also in fish, these differential responses are 

guided by co-receptors like CD4 and CD8, which, however, still await discovery. Taking 

all this into account, it may be time to abolish the term lower-vertebrate when referring to 

fish and their immune system. Nevertheless, the knowledge about the functioning of the immune 

system of fish, and especially the mechanisms of antigen presentation, is based for a large 

part on indirect evidence. With the set of carp Mhc genes now available, a valuable basis is 

provided for future research on the immune response of carp, and the first experiments using 

antibodies directed against carp Mhc molecules are already being performed. 

At the same time, undoubtedly new fish Mhc sequences will keep flowing in. To ensure 

some future clarity in the relationships between the multitude of genes from the multitude of 

fish species, the need to pay more attention to nomenclature is increasing. We believe that 

the nomenclature first adopted by Shum and co-workers (1993) and subsequently by others, 

is probably efficient. In this nomenclature each class I locus is designated by U (for Una), 

followed by a letter denominating the family of loci, and a number indicating the exact locus, 

with an asterisk and number to specify the allele at that locus. Nonetheless, confusion is already 

rising, and it seems important that the second letter designating the family of loci is chosen 

with care. This is illustrated by the similar names given to the coelacanth class I sequences 

(Lach-UA), and the zebrafish and carp class I sequences (Brre-UA and Cyca-UA), although 
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Table 1. Mhc sequences i 

Class I 

Cyca-KÎ 1 
Cyca-Kl-5 1 
Cyca-ICi 4 
Çyca-TC13 4 
Cyca-TCl5 4 
Cyca-TCn 4 
Cyca-TClS 4 
Cyca-ZAl 5 
Çyca-Z42 4 
Cyca-ZBl 4 
Cyca-ZCl 4 
Cyca-TC16 4 
Çyra-C4 4 
Cyca-UA1*01 2,3 
Cyca-LUi*02 5 
Cyca-LMwi 4 

)f the common carp 

B2m 

Cyca-B2m 3 

Class I IA 

Cyca-DXA1*01 3 
Çyca-DX42*0i 3 

Class II B 

Cyca-DAB1*01 
Cyca-DAB2*01 
Cyca-D(me2)B 
Cyca-D(c\c)B 
Cyca-DAB3*01 
Cyca-DAB4*01 
Cyca-YB 
Cyca-KE 
Cyca-K2-l 

1,3 
1,3 
1 
1 
1,3 
1,3 
5 
1 
1 

1. : Genomic, PCR fragment 
2.: Genomic, full-length sequence 
3.: cDNA, full-length clone 

4.: cDNA, PCR fragment 
5.: Genomic, partial clone 

these sequences apparently belong to completely different lineages. In line with these thoughts 

it would perhaps be prudent to rename the Cyca-Z sequences to Cyca-UZ, although a 

consequence of this would be that Cyca-ZA would have to be renamed to Cyca-UZl, Cyca-ZB 

to Cyca-UZ2 and so on. Similar ponderings can be spent on the class II nomenclature, using 

a D (Duo) as the first letter to designate class II gene names. In line with this, Cyca-YB would 

have to be renamed to Cyca-DYB, which would make its kind immediately clear by name. 

Hopefully, joint efforts will soon create commonly accepted rules. 

Another important issue to be addressed in the future is the question whether or not these 

genes are in fact localized in a complex. Linkage studies, haplotyping, and mapping of genes 

will undoubtedly yield valuable information. The complex genetics of carp will, however, 

complicate straightforward interpretation of the results, and for this reason it may prove 

necessary to resort to a technique like fluorescence activated in situ hybridization, which, most 

attractively, is abbreviated as FISH. 
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In chapter 1 an overview is given of the structure and function of Mhc molecules and 

Mhc genes in several vertebrate species. Molecules encoded by genes of the major 

histocompatibility complex play an essential role in the specific immune response by presenting 

antigen fragments to T lymphocytes. Two classes of polymorphic Mhc molecules can be 

distinguished, the class I molecules that present endogenous peptides to CD8-positive cytotoxic 

T cells, and the class II molecules that present exogenous antigens to CD4-positive T-helper 

cells. The Mhc molecules appear to have very similar functions in several species studied. 

In mammals, the genes encoding the Mhc molecules are clustered together in a single genetic 

region, the major histocompatibility complex. This region consists of classical and non-classical 

class I genes, class II genes, and a number of unrelated genes, some of which encode proteins 

that are involved in the functioning of the immune system. 

In non-mammalian vertebrates, the Mhc has been most extensively studied in the chicken 

and the clawed toad, Xenopus laevis. In chicken, Mhc genes are organized differently from 

the way they are in mammals. Chicken Mhc genes reside in two major clusters, first, in the 

B complex, containing polymorphic class I and class II genes which segregate in accordance 

with serological typing, and second, the Rfp-Y complex. The latter also contains class I and 

class II genes, but these appear to be less polymorphic and show a lower level of transcription. 

In the clawed toad, Xenopus, classical Mhc genes are found in a complex together with unrelated 

genes, which are homologous to those that are also present in the Mhc in mammals. In naturally 

occurring polyploid species of Xenopus a functional diploidization of the Mhc is observed, 

probably due to deletion of all Mhc but a single diploid set, most likely as the result of selection 

pressure against an increase in the number of Mhc genes. In addition, Xenopus contains a large 

family of linked non-classical class I genes, which reside on a different chromosome than the 

classical genes. 

In fish, for a long time, the presence of Mhc genes has been deduced from indirect 

evidence, such as acute graft rejection and mixed leukocyte reactivity. The first formal proof 

for the presence of Mhc genes was presented in 1990 by Hashimoto and co-workers who cloned 

partial class I and class II genes from carp. These TLAla-1 (Cyca-Z) and TLAIIß-1 (Cyca-YB) 

genes, however, lacked the exons encoding the leader, transmembrane and cytoplasmic domains, 

and expression of these genes was not reported. In a later study, Okamura and co-workers 

reported kidney cDNA-derived PCR fragments spanning the exons encoding the extracellular 

domains of Cyca-Z. Attempts in our laboratory to isolate full-length cDNA clones of Cyca-Z 

and Cyca-YB from cDNA libraries of carp lymphoid organs, have also failed so far. 

Chapter 2 describes a study on the number and restriction fragment length polymorphism 

(RFLP) of Cyca-Z and Cyca-YB genes in laboratory strains of the common carp, using probes 
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encoding the a3 domain of Cyca-Z or the Ĵ  domain of Cyca-YB. Six carp strains of different 

geographical origins were studied. In homozygous gynogenetic carp strains the Cyca-Z probe 

hybridized to 9 -12 fragments, whereas the Cyca-YB probe hybridized to 3-5 fragments. Thus, 

multiple Cyca-Z and Cyca-YB genes are present in the genome of carp. The levels of RFLP 

of the Cyca-Z and Cyca-YB genes in the strains studied were calculated as the percentage of 

polymorphic fragments among the total number of fragments, and are shown to be 70% for 

Cyca-Z and 40-66% for Cyca-YB genes. In addition, RFLP patterns, using the Cyca-Z probe 

in two gynogenetic families A4.3 and A4.19, were found to correlate with histo-incompatibility. 

For this, either the Cyca-Z genes themselves, or perhaps a closely linked histocompatibility 

gene could account. 

In all species in which Mhc molecules were thus far identified, class I molecules are 

found to consist of a class I a heavy chain, complexed with a light chain, the ß2-microglobulin. 

The association of the a chain with ß2-microglobulin has been shown to be a prerequisite for 

the presentation of endogenous peptides. It was, therefore, to be expected that also the carp 

would possess ß2-microglobulin. The presence of this molecule was previously inferred from 

immunoprecipitations, but to obtain more definitive proof, we isolated and characterized a 

genomic fragment from tilapia and the full-length cDNA sequence encoding the ßj-microglobulin 

of carp (chapter 3). Both sequences show strong similarities to all previously published 

vertebrate ß2-microglobulin sequences. The predicted protein secondary structure of the carp 

amino acid sequence is almost identical to the corresponding regions of previously known 

vertebrate ß2-microglobulin protein sequences. In northern hybridizations a message of 800 -

1000 bases was detected. Southern blotting revealed two hybridizing fragments in the carp, 

while a single hybridizing fragment was detected in DNA of tilapia. Phylogenetic analyses 

indicate that the fish sequences are related to the ßj-microglobulins of higher vertebrates but 

group together in an ancestral position. 

Since the initial identification of the first class I gene from carp, Cyca-Z, doubts have 

been raised about the functionality of these genes. Even now, 5 years later, still no sequences 

other than kidney cDNA fragments encoding the extracellular au a2 and a3 domains, have 

been reported. Also, Cyca-Z sequences do not share many of the characteristics present in 

classical and, to a lesser extent, in non-classical class I amino acid sequences from other species. 

Following the first report on the Cyca-Z sequences, however, full-length class I cDNA clones 

were then obtained from Atlantic salmon and later zebrafish. These class I genes proved to 

be highly dissimilar from the Cyca-Z genes, and in addition, they contain much more of the 

conserved class I features which are absent in Cyca-Z. This prompted us to study whether 

such a class I gene, more similar to the Atlantic salmon and zebrafish gene, would be present 

in carp too (chapter 4). We succeeded in isolating three representatives of a new group of 



Summary 151 

carp class I genes, designated Cyca-UA1*01 (Cyca-12), Cyca-UAWl (Cyca-SPl), and 

Cyca-UA1*02 (Cyca-Gll). These sequences show considerable conservation in known 

structurally and functionally important regions of class I molecules. The genomic organization 

of Cyca-UA1*01 was elucidated, and it was found to be similar to class I gene structures in 

mammals. Nevertheless, the 3' untranslated region was found to contain an intron, which is 

unprecedented in class I genes, and intron 2 was found to be exceptionally large (approximately 

14 kilobasepairs). Southern blot analyses indicate the presence of multiple related sequences, 

of which presumably only a single gene is expressed. Phylogenetic analyses indicate that the 

U class I-lineage of genes evolved before the salmonid/cyprinid split, approximately 120-150 

my ago, and that this lineage clusters away from the Cyca-Z genes. A polyclonal antiserum 

was raised against a recombinant fusion protein containing the extracellular domains of 

Cyca- UA1 *01. The antibodies detected a protein of Mr 45,000 in membrane lysates of spleen 

and muscle. In F ACS analyses, antibody-specific determinants could be identified on leukocytes, 

but not erythrocytes and thrombocytes. Taken together, the characteristics of the Cyca-U 

sequences and the molecules they encode, strongly indicate that these genes encode classical 

Mhc class I molecules. 

In addition to the three class I lineages identified in carp (Cyca-Z, Cyca-U, and Cyca-CA), 

another completely distinct class I sequence, Cyca-TC16, was serendipitously obtained by 

PCR on thymus cDNA (chapter 5). This sequence appeared to be most similar to exon 4 of 

the class I genes (Lach-U) from the coelacanth (42-46% amino acid identity), and the predicted 

secondary structure was similar to the a3 domain of HLA-A2. In addition, three ̂ -microglobulin 

contact residues were found to be conserved in Cyca-JCl6. Phylogenetic analyses offish class 

I sequences reveals the presence of four distinct clusters: (i) Z genes from carp and Ginbuna 

crucian carp, (ii) U genes from carp, zebrafish and Atlantic salmon, (iii) Cyca-TC16 with 

Lach-U, and (iv) Cyca-CA. 

To complete the set of Mhc genes from carp, we set out to isolate cDNA sequences 

encoding the class II a chain, from a gynogenetic carp clone A410, which had already been 

typed to be Cyca-UA1*01 homozygous. In addition, we isolated the class II B sequences 

expressed in this strain to complete its typing (chapter 6). Two class I IA cDNA sequences 

(Cyca-DXAl and Cyca-DXAZ), and two class II B cDNA sequences (Cyca-DAB3*01 and 

Cyca-DAB4*01) were isolated from this strain. Preliminary segregation studies have been 

performed to analyse the interrelations of the four carp class II B cDNA sequences thus far 

isolated. The four genes were found to be linked in pairs: Cyca-DAB1*01 linked to 

Cyca-DAB2*01 (refuting the previous assumption that these two sequences were alleles of 

a single locus), and Cyca-DAB3*01 to Cyca-DAB4*01. These two linked pairs, however, 
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segregate independently, although they most likely do not represent alleles of each other. This 

indicates the presence of haplotype polymorphisms. The two class IIA sequences also most 

likely represent two different loci, as these were found not to segregate among members of 

the clone, produced by meiogynogenesis. 

In chapter 7, the results obtained in the previous chapters are combined and discussed. 

The carp contains several old, distinct lineages of class I genes, but this species most likely 

expresses only a single classical class I gene, the Cyca-U gene. The function of the other 

lineages remains yet to be established. In contrast to the large genetic distances between the 

class I lineages, the class II genes offish are a much more homogeneous group, and orthologous 

loci appear to be present in carp and zebrafish. The presence of two cysteine residues in the 

a! domain of class II a chains of fish supports the hypothesis that, in the evolution of Mhc 

genes, the class II genes arose first, giving rise to class I genes later. In future studies, it will 

be interesting to study the ploidy status of the carp Mhc. The carp is considered to be a 

tetraploid fish, of which a large number of loci have been functionally diploidized. The 

expression of most likely only a single Cyca-U locus, therefore, raises the question whether 

the carp has perhaps silenced or deleted one of its diploid sets, or that it has retained a tetraploid 

Mhc. The set of class I, B2m, class IIA and class IIB genes now identified in carp, provides 

a solid basis for future studies on the function of the encoded molecules in the immune response 

of carp. 
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In hoofdstuk 1 wordt een overzicht gegeven van de structuur en functie van het major 

histocompatibility complex (Mhc) van verschillende diersoorten, en van de moleculen die door 

de genen van het Mhc gecodeerd worden. Mhc moleculen spelen een essentiële rol in de 

specifieke immuunrespons, doordat ze antigenen in fragmentvorm presenteren aan T lymfocyten. 

Er bestaan twee klassen polymorfe Mhc moleculen, nl. klasse I moleculen die endogene peptiden 

aan CD8-positieve cytotoxische T cellen presenteren, en klasse II moleculen die exogene 

peptiden aan CD4-positieve T-helper cellen presenteren. Uit onderzoek in verschillende 

diersoorten is niet of nauwelijks verschil gebleken in de functie van klasse I en klasse II Mhc 

moleculen. De genen die voor Mhc moleculen coderen liggen bij zoogdieren bij elkaar op 

het chromosoom in een gencomplex, het major histocompatibility complex. Het zoogdier Mhc 

bevat klassieke en niet-klassieke klasse I genen, klasse II genen, en een aantal daaraan niet 

verwante genen. Een aantal genen van deze laatste groep coderen wel voor eiwitten die een 

rol spelen in het immuun systeem. 

Van de overige vertebraten is het Mhc het best bestudeerd bij de kip en de klauwpad, 

Xenopus laevis. Anders dan bij zoogdieren, zijn de Mhc genen van de kip gelegen in twee 

clusters. De eerste, het B complex, bevat polymorfe klasse I en klasse II genen, waarvan de 

segregatie overeenkomt met serologische typeringen. De tweede cluster, het RJp- Y complex, 

bevat ook klasse I en klasse II genen, maar deze genen zijn minder polymorf, en ze komen 

ook minder sterk tot expressie. Bij de klauwpad, Xenopus, komen naast de Mhc genen een 

aantal niet verwante genen in hetzelfde gencomplex voor. Deze laatstgenoemde genen zijn 

homoloog aan vergelijkbare genen zoals die ook bij zoogdieren in het Mhc worden aangetroffen. 

Bij natuurlijk voorkomende polyploide Xenopus soorten blijkt het Mhc functioneel diploied 

te zijn geworden, waarschijnlijk als gevolg van deletie van alle overige copieën van het Mhc. 

Deze deletie heeft in de loop van de evolutie plaatsgevonden, vermoedelijk als gevolg van 

negatieve selectiedruk op een toename van het aantal Mhc genen dat tot expressie komt. Naast 

de klassieke Mhc genen, bezit Xenopus verder een grote familie van niet-klassieke genen. Deze 

liggen ook in een cluster, maar op een ander chromosoom dan waarop de klassieke genen 

voorkomen. 

Het bestaan van een Mhc bij vissen kon gedurende lange tijd slechts worden afgeleid 

uit indirekte aanwijzingen, zoals het verschijnsel van acute afstoting van allo-transplantaten, 

en het optreden van celproliferatie in gemengde leukocytenkweken. Pas in 1990 werd door 

de groep van Hashimoto het eerste harde bewijs geleverd voor de aanwezigheid van Mhc genen 

in vis. Zij isoleerden een partieel klasse I gen en een partieel klasse II gen uit de karper. Deze 

genen, TLAIa-1 (Cyca-Z) en TLAIIß-1 (Cyca-YB), bevatten slechts delen van hetgeen bij de 

Mhc genen van hogere gewervelden werd aangetroffen, en ook werd er geen expressie van 

aangetoond. In het vervolg hierop beschreef de groep van Okamura enkele jaren later PCR 
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fragmenten van cDNA uit de nier, maar ook hier was sprake van een partiële sequentie, nl. 

bestaande uit exonen 2, 3 en 4 van Cyca-Z. Pogingen die werden ondernomen in onze groep 

om complete cDNA sequenties van Cyca-Z of Cyca-YB uit banken van lymphoide organen 

te isoleren, waren eveneens niet succesvol. 

In hoofdstuk 2 wordt een studie beschreven naar het aantal Cyca-Z and Cyca-YB genen 

bij de karper, en naar het restrictiefragment lengte polymorfisme (RFLP) dat deze genen 

vertonen in een aantal in ons laboratorium voor immunologisch onderzoek ontwikkelde 

karperlijnen. Hiertoe zijn hybridisaties uitgevoerd met probes die coderen voor het a3 domein 

van Cyca-Z of het ß2 domein van Cyca-YB. Zes karperlijnen van verschillende geografische 

herkomst werden bestudeerd. In homozygote gynogenetische karperlijnen hybridiseerde de 

Cyca-Z probe met 9-12 DNA fragmenten, terwijl de Cyca-YB probe 3-5 fragmenten detecteerde. 

In het genoom van de karper zijn dus meerdere Cyca-Z en Cyca-YB genen aanwezig. De graad 

van RFLP van deze genen is uitgedrukt als het percentage polymorfe fragmenten ten opzichte 

van het totaal aantal fragmenten. Voor Cyca-Z bleek 70 % van de fragmenten polymorf, terwijl 

dit voor Cyca-YB 40-66% was. De RFLP patronen van Cyca-Z in twee gynogenetische karper 

families, A4.3 en A4.19, correleerden met histo-incompatibiliteit. Deze histo-incompatibiliteit 

kan dus een direkt gevolg zijn van de variabiliteit van een Cyca-Z gen, of van een ander gen 

dat vlakbij dit Cyca-Z gen gelegen is. 

Bij alle diersoorten waar Mhc moleculen zijn geïdentificeerd, is gevonden dat klasse I a 

ketens op de membraan van de cel geassocieerd zijn met een lichte keten, het ß2-microglobuline. 

Deze associatie is essentieel gebleken voor de presentatie van endogene peptiden door klasse I 

moleculen. Bij de karper was het bestaan van een ß2-microglobuline molecuul aannemelijk 

gemaakt op grond van de resultaten van immunoprecipitatie experimenten, maar om dit bestaan 

met meer zekerheid vast te stellen hebben we zowel een genomisch DNA fragment uit tilapia 

als een complete cDNA sequentie uit karper geïsoleerd, die beide coderen voor het ß2-

microglobuline (hoofdstuk 3). Op eiwitniveau vertonen beide sequenties grote gelijkenis met 

de ß2-microglobuline sequenties van andere gewervelde dieren. In northern hybridisaties 

detecteerde de ß2-microglobuline probe een transcript van circa 800-1000 bp. Bij Southern 

hybridisaties op karper DNA werden twee hybridiserende fragmenten gevonden, terwijl slechts 

één enkel fragment hybridiseerde inhetDNA van tilapia. Fylogenetische analyse op eiwitniveau 

maakte duidelijk dat de ß2-microglobuline sequenties van karper en tilapia weliswaar verwant 

zijn aan ß2-microglobuline sequenties van hogere gewervelde dieren, maar dat ze wel een aparte 

tak vormen. 

Na de eerste identificatie van een karper klasse I gen (Cyca-Z), rezen er twijfels over 

de functionaliteit van dit gen. Zelfs nu, 5 jaar later, zijn er nog geen andere cDNA sequenties 

van dit type beschreven dan die geïsoleerd uit nier, en coderend voor extracellulaire au a2 
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en a3 domeinen. Daarbij komt dat veel van de karakteristieke eigenschappen van klassieke 

en in mindere mate de niet-klassieke klasse I genen van andere diersoorten, afwezig zijn in 

Cyca-Z. Na de eerste publicatie van de Cyca-Z genen, werden echter spoedig complete klasse I 

cDNA sequenties geïsoleerd, eerst uit zalm en later uit de zebravis. Deze sequenties verschillen 

sterk van die van de Cyca-Z genen, en bovendien bezitten ze ten opzichte van Cyca-Z veel 

meer bij alle klasse I genen geconserveerde eigenschappen. Dit bracht ons er toe aan na te 

gaan of de karper behalve Cyca-Z misschien nog een klasse I gen bezat, waarvan de sequentie 

meer op die van zalm en zebravis leek (hoofdstuk 4). We hebben drie vertegenwoordigers 

van een nieuwe groep karper klasse I genen gevonden, aangeduid met Cyca- UA1 *01 (Cyca-12), 

Cyca-UAWl (Cyca-SPl) en Cyca-UA1*02 (Cyca-Gll). De aminozuur residuen die belangrijk 

zijn voor de structuur en functie van klasse I moleculen, zijn in deze sequenties sterk 

geconserveerd. Vervolgens is de genomische organisatie van Cyca-UA1*01 opgehelderd, en 

het blijkt dat deze sterk vergelijkbaar is met die van klasse I genen bij zoogdieren. Uitzonderlijk 

is echter de aanwezigheid van een intron in het onvertaalde deel aan de 3' kant, en bovendien 

blijkt intron 2 bijzonder groot (ongeveer 14 kilobaseparen). Uit Southern blot analyses kon 

opgemaakt worden dat er meerdere verwante Cyca-U sequenties in het genoom van de karper 

voorkomen, waarvan er waarschijnlijk maar één tot expressie komt. Uit fylogenetische analyses 

wordt de conclusie getrokken dat de groep van klasse I [/-genen waarschijnlijk al is ontstaan 

voor de scheiding tussen cypriniden en de Salmoniden tijdens de evolutie van de Teleostei, 

ongeveer 120-150 miljoen jaar geleden. Bovendien blijkt dat de U-genen fylogenetisch 

beschouwd ver af staan van de Z-genen. Een polyclonaal antiserum werd opgewekt tegen een 

recombinant fusie eiwit, dat de extracellulaire domeinen van Cyca-UA1*01 omvat. De 

antilichamen detecteerden een eiwit van Mr 45,000 in membraanlysaten van milt en spier, 

en bovendien reageerden ze in FACS analyses met een antigene determinant aanwezig op 

leukocyten, maar niet op erythrocyten en thrombocyten. Dit alles samen leidt tot de conclusie 

dat Cyca-U genen coderen voor klassieke Mhc klasse I moleculen. 

Naast de drie al geïdentificeerde types van klasse I genen in de karper (Cyca-Z, Cyca-U, 

en de afzonderlijk beschreven Cyca-CA), is ten gevolge van serendipiteit een vierde compleet 

verschillende klasse I sequentie gevonden, aangeduid met Cyca-TC16 (hoofdstuk 5). Deze 

sequentie vertoont de grootste gelijkenis met exon 4 van de klasse I genen (Lach-U) van de 

coelacanth (42-46% identiek in aminozuursequenties), en de voorspelde secundaire eiwitstructuur 

van Cyca-TC16 lijkt op die van het a3 domein van HLA-A2. Ook bevat de sequentie van 

Cyca-TC\6 drie geconserveerde aminozuur residuen die bij zoogdieren belangrijk zijn voor 

het contact van de klasse I a keten met ß2-microglobuline. Uit een fylogenetische analyse van 

klasse I sequenties van vissen blijken er vier zeer verschillende clusters te bestaan: (i) de Z 

genen van de karper en de Ginbuna kroeskarper, (ii) U genen van de karper, zebravis en zalm, 
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(iii) Cyca-TC16 samen met Lach-U, en (iv) Cyca-CA. 

Om de set van karper Mhc genen compleet te maken, zijn vervolgens uit een 

gynogenetische karperkloon cDNA sequenties coderend voor de klasse II a keten geïsoleerd. 

Deze kloon was al eerder getypeerd voor klasse I, en bleek daarbij homozygoot voor 

Cyca-UA1*01. Om de typering van deze kloon compleet te maken, werden naast klasse I IA 

ook de klasse IIB cDNA sequenties geïdentificeerd (hoofdstuk 6). De karperkloon bleek twee 

klasse II A (Cyca-DXA1*01 en Cyca-DXA2*01) en twee klasse II B cDNA sequenties 

(Cyca-DAB3*01 en Cyca-DAB4*01) tot expressie te brengen. Om de relatie tussen de vier 

tot nu toe geïdentificeerde klasse IIB genen van de karper vast te stellen, werd een beperkte 

segregatiestudie uitgevoerd. De vier genen bleken in twee gekoppelde paren voor te komen: 

Cyca-DAB1*01 aan Cyca-DAB2*01 (hetgeen niet in overeenstemming is met de aanname dat 

deze sequenties allelen van één locus zouden zijn), en Cyca-DAB3*01 aan Cyca-DAB4*01. 

De twee paren segregeerden echter onafhankelijk van elkaar, hetgeen geïnterpreteerd werd 

als haplotype polymorfismen. Ook de twee klasse IIA sequenties zijn waarschijnlijk afkomstig 

van twee verschillende loei, omdat geen segregatie optrad in een d.m.v. meiogynogenese 

gegenereerde karperkloon nakomelingenschap. 

In hoofdstuk 7 worden de resultaten uit de vorige hoofdstukken gecombineerd en 

bediscussieerd. In de karper bestaan meerdere, zeer verschillende en oude types klasse I 

sequenties, maar hoogstwaarschijnlijk komt maar één enkel klassiek klasse I gen tot expressie, 

het Cyca-Ugen. Het is nog onduidelijk wat voor functie de andere types hebben. In tegenstelling 

tot de grote genetische afstanden die de klasse I types van elkaar scheiden, vormen de klasse II 

genen van vissen een meer homogene groep, en sommige genen van karper en zebravis lijken 

zelfs ortholoog te zijn. In het a^ domein van klasse II a ketens van vissen zijn twee cysteine 

residuen aanwezig. Dit ondersteunt de hypothese dat klasse II genen in de evolutie van het 

Mhc het eerst zijn ontstaan, en dat klasse I genen vervolgens uit de klasse II genen zijn 

voortgekomen. Het is van belang om in vervolgstudies meer duidelijkheid te verkrijgen omtrent 

de ploidie-status van de karper. De karper is een tetraploiede vis, waarin een groot aantal loei 

naar een diploiede status zijn geëvolueerd. De expressie van slechts één enkel Cyca-U locus 

roept vragen op over het aantal aanwezige copieën van het Mhc in de karper. Het zou kunnen 

zijn dat deze soort een diploiede set van het Mhc heeft uitgeschakeld of zelfs heeft verwijderd 

uit zijn genetisch materiaal. 

De complete set van Mhc klasse I, B2m, klasse II A en klasse II B genen die nu 

geïdentificeerd zijn bij de karper vormen een goede basis voor verder onderzoek naar de functie 

van Mhc moleculen in de immuunrespons van de karper. 
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