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Statements 

1. The sudden transition of gene expression and cell morphology from 
one cell layer to another is a key step in the formation of a 
symbiotic nitrogen fixing root nodule. 

This Thesis 

2. Characterisation of the function of ENOD40 will be of great 
importance for understanding root nodule development as well as 
plant development in general. 

This Thesis 

3. The activation of phenylpropanoid biosynthesis pathway by 
Rhizobium is more related to plant development than to a plant 
defense response. 

This Thesis 

4. The role of flavonoids in plant development is still underestimated. 

5. The observations of De Billy et al. do not prove that leghemoglobin 
gene transcription is triggered in a single cell layer of the interzone 
in the indeterminate nitrogen-fixing root nodule of alfalfa. 

De Billy, F., et al., 1991, Plant J. 1,27-35 

6. The studies of Savouré et al. do not prove that the cell cycle is 
activated in a suspension culture of Medicago sativa by Nod 
factors. 

Savouré, A., etal., 1994. EMBO J. 13,1093-1102 

7. In their suggestion that a bacterial protein binds to the 
leghemoglobin promoter, Welters et al. overlooked that this 
protein has to pass three membranes. 

Welters, P., et ai, 1993. Plant Physiol. 102,1095-1107 

8. China should adopt the concept of democracy, irrespective of its 
cultural and traditional background. 

9. It is hard to walk to the correct direction in the dark. 

10. The admiration in the western world for recent Chinese films does 
not arise so much from the cinematographic quality of the films as 
from frustration with the lost "good old world". 

11. When a Chinese says "yes", it does not mean that he or she agrees 
with you; it only means that he or she has listened to you. 

Statements from the thesis entitled "Root Nodule Organogenesis: Molecular 
Characterisation of the Zonation of the Central Tissue". Wei-Cai Yang, 
Wageningen, 24 March 1994. 
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Chapter 1 

Scope 



Legume plants form root nodules by interacting with the soil bacterium, Rhizobium. 

In these nodules bacteria are able to convert atmospheric nitrogen into ammonia which is 

used by the host plants as nitrogen source. Therefore symbiotic nitrogen fixation in root 

nodules is of great importance for agriculture. 

Root nodule formation involves several developmental stages, namely are: induction 

of cell divisions in the root cortex, formation of nodule primordium and meristem, and 

finally differentiation of the meristem into nodule tissues. A mature nodule is composed 

of a central tissue where bacteria are hosted and several peripheral tissues. The induction 

of nodule specific genes of the host plants as well as the bacteria in a temporally and 

spatially controlled manner regulates the development of root nodules. The aim of the 

research described in this thesis was to investigate mechanisms that control nodule 

development. For this purpose genes of interest have been isolated and their expression 

was studied by means of the in situ hybridization technique. 

In chapter 2 a general introduction summarizing what we know about nodule 

development at present is given with an emphasis on gene expression and exchange of 

signals between the host plant and the rhizobia. 

Early studies of Allen et al. (1953) and more recently Hirsch et al. (1989) on polar 

auxin transport inhibitors (ATIs) provided evidences that exogenously applied ATIs 

cause the formation of nodule-like structures on several legume plants. These studies 

showed that auxin plays a major role in nodule development. Since certain flavonoids, 

e.g. quercetin, are endogenous ATIs, we studied the expression of chalcone synthase 

(CHS) genes, which encode a key enzyme in flavonoid biosynthesis, in situ during 

nodule development. The results are presented in chapter 3. 

To study gene expression during nodule development, two nodulin genes, ENOD40 

and NOD6, were isolated and their expression during nodule development was studied 

by in situ hybridization. In chapter 4, a cDNA clone of the early nodulin gene ENOD40 

was characterized. The pattern of expression of ENOD40 during soybean and pea nodule 

development suggested that it may play an important role in nodule formation. In chapter 

5, the isolation of the late nodulin gene NOD6 was described and its expression pattern 

was compared with that of other nodulin genes. 

In chapters 6 and 7, the expression patterns in pea nodules of several bacterial genes 

were studied. These genes are nifA and nifH, and ropA The expression pattern of nifA 

and nifH in nodules is described in chapter 6. The expression of the ropA gene, which 

encodes a bacterial outer membrane protein, is described in chapter 7. The expression 

pattern of rap A in nodules is compared with that of nifH. The ropA protein was localized 

at a ultrastructural level by immunocytochemistry. 

In chapter 8, the results reported in this thesis are discussed with respect to the 

mechanisms that controls the induction of cortical cell divisions, meristem formation and 

formation of zones in the nodule central tissue. 



Chapter 2 

General introduction 



INTRODUCTION 

Soil bacteria of the genera Rhizobium, Bradyrhizobium, and Azorhizobium (here 

collectively called Rhizobium) have the ability to induce the formation of nodules on the 

roots of leguminous plants. In these nodules the bacteria are able to convert atmospheric 

nitrogen into ammonia, a process named symbiotic nitrogen fixation. This plant-microbe 

interaction has a symbiotic nature since the plant provides photosynthetic compounds to 

the bacteria and in return the bacteria supply fixed nitrogen for plant growth. 

The formation of root nodules involves several consecutive steps. In short, bacteria 

multiply in the rhizosphere, chemotactically move to the root surface and colonize the 

root. Root hairs deform and curl, and subsequently the bacteria invade these hairs 

through tubular structures, called infection threads. These infection threads grow towards 

the base of the root hairs and then penetrate root cortical cells. Concommitantly with the 

infection process, cell divisions are induced in the root cortex, by which nodule 

primordia are formed. The infection threads grow towards these primordia and after 

penetrating the plant cells, bacteria are released from the threads by endocytosis. Then 

these nodule primordia differentiate into nitrogen fixing nodules (for reviews see 

Libbenga and Bogers, 1974; Vincent, 1980; Newcomb, 1981; Brewin, 1991). 

A typical characteristic of the \egume-Rhizobium symbiosis is its host specific nature. 

For example, Rhizobium leguminosarum bv. viciae can nodulate pea and vetch, but is 

unable to nodulate alfalfa. While R. meliloti can nodulate alfalfa but not pea and vetch 

(Table 1). This host specificity is determined by the two symbionts. 

In this review we will discuss the successive developmental stages of nodule 

formation. Of each stage, we will discuss the cytological characteristics, the signal 

exchange between the two symbionts and the changes in gene expression with an 

emphasis on plant genes. We will start with a short description of the bacterial genes 

involved in nodule formation. 

BACTERIAL GENES INVOLVED IN NODULE DEVELOPMENT 

The genes in Rhizobium involved in infection and in nodule formation and functioning 

have been studied extensively (for reviews see Long, 1989; 1992; Martinez, et al., 1990; 

Dénarié, et al., 1992; Fischer and Long, 1992; Kondorosi 1992; Leigh and Coplin, 

1992). In the following two groups of bacterial genes will be discussed in some detail; 1) 

the nodulation genes, nod and nol (the nodulation genes which represents nod genes after 

letter Z) and, 2) Rhizobium genes encoding surface polysaccharides. The latter group 

includes genes involved in the synthesis of extracellular polysaccharides (exo), 

lipopolysaccharides (Ips) and ß-glucans (ndv). The rhizobial genes involved in nitrogen 

fixation (nif and fix) will not be discussed in this review. 

file:///egume-Rhizobium


Table 1. Rhizobium Host Specificity 

Rhizobium 

Rhizobium leguminosarum 
biovar viciae 

biovar phaseoli 
biovar trifolii 

Rhizobium fredii 

Rhizobium loti 
Rhizobium meliloti 
Rhizobium tropicii 
Rhizobium sp. NGR234 

Bradyrhizobium japonicum 

Azorhizobium caulinodans 

Host plant 

Viciae, Pisum, Lathyrus, Lens 
Phaseolus 
Trifolium 

Glycine, Vigna 

Lotus, Anthyllis 
Melilotus, Medicago 
Phaseolus, Leucaena, Macroptilium 
Various tropical legumes, 
non-legume Parasponia 

Glycine, Vigna 

Sesbania rostrata 

The nodulation genes 

The nod genes have been classified into three groups; the regulatory nodD genes, the 

common nod genes (»odABCIJ) and the host-specific nod genes (also called hsn). The 

organization of the nod genes of R. leguminosarum bv. viciae and R. meliloti is 

presented in Figure 1. 

The regulatory nodD genes are found in all Rhizobium species (Long, 1989; 1992). In 

general, the nodD genes are constitutively expressed, whereas the transcription of the 

other nod genes requires the NodD protein and specific host plant-secreted flavonoids or 

related phenolic compounds (for review see Peters and Verma, 1990). It has been 

postulated that NodD is a transcriptional activator since the NodD protein in the presence 

of flavonoids binds to a 50- to 60-bp long highly conserved nucleotide sequence, the so-

called nod box, present in nod gene promoters (for review see Long, 1989; 1992; 

Dénarié, et al, 1992). 

nodD exists as a single gene in R. leguminosarum bv. viciae and bv. trifolii, but as a 

multi-gene family in other Rhizobium species such as/?, meliloti and/?, leguminosarum 

bv. phaseoli (for review see Dénarié, et al., 1992; Fischer and Long, 1992; Kondorosi, 

1992). The nodD genes are different activated by specific flavonoids. Therefore the 



presence of several nodD genes in certain bacterial species implies the potentiality of 

interaction with a variety of host plants. 

R. leguminosarum bu uiciae 

0 T N M L E F D R B C I J K 

R. meliloti 
nol 

MF GH IN DI fl B CI J Q P G E F H syrM D3 L D2 

Figure 1. The nod and nol genes of R. leguminosarum bv. viciae and R. meliloti. Arrows 
indicate the position of the open reading frames. Solid circles represent the position of the 
nod boxes. The nod X gene is only present in R. leguminosarum bv. viciae strain TOM. For 
more information see Dénarié et al (1992), Kondorosi (1992) and Spaink (1992). 

The common nodABCIJ genes are conserved and functional interchangeable between 

Rhizobium species. Mutations in nodABC completely abolish the ability oî Rhizobium to 

induce root hair deformation, cortical cell division and infection thread formation (for 

review see Long, 1989; Hirsch, 1992), while mutations in nodU cause delayed or less 

effective nodulation (Dénarié, et ai, 1992; Long, 1992). Also mutaions in the host 

specific nod genes Qisn) result in delayed or less efficient nodulation, but moreover, 

mutations in the host-specific nod genes can change the host range of the mutated 

rhizobia (for reviews see Dénarié, et al., 1992; Kondorosi, 1992). For example, R. 

meliloti having a mutation in nodH has lost the ability to induce root hair curling (Hac), 

infection thread formation (Inf") and nodulation (Nod") on the homologous host alfalfa, 

but has acquired the ability to form nodules on the heterologous host, common vetch 

(Table 2). 

Nod factors 

Upon induction of the nod genes, Rhizobium produces and secretes signal molecules, 

called Nod factors. All Nod factors have a similar basic structure, a sugar backbone of N-

acetylglucosamine residues and a lipid moiety linked to the C2 positon of the non-

reducing terminal sugar (Fig.2) (Lerouge, etal., 1990; Spaink, et ai, 1991; Price, et al., 

1992; Sanjuan, et ai, 1992; Mergaert, et ai, 1993). Nod factors of different rhizobia can 

vary in the structure of the lipid moiety and the nature of the substitutions at the reducing 

and non-reducing terminal sugar residues (Fig. 2). The following rules apply to the 

nomenclature of Nod factors (Roche, etal., 1991; Spaink, etal., 1991): The bacterial 



Gene 

nod R 
nod B 
nod C 
nod B 

nod E 

nod F 

nod G 

nod H 

nod 1 

nod J 
nod L 

nod M 

nod 0 

nod PQ 
nol R 

nod X 

Species 
biouar 

common 
common 
common 
common 

Rl, Rt, Rm 

Rl, Rt, Rm 

Rm 

Rm 

Rl, Rt, Bj 

Rl, Rt, Bj 
Rl, Rt.Rm 

Rl, Rt.Rm 
Rl 

Rm 
Rm 

Rl (Tom) 

Mutant 
phenotype 

Hac-Nod-

Predicted 
function 

unknown 
Hac-Nod- Chitooligosaccharide deacetylase 
Hac-Nod- N-a 
Nod-(when all 
copies are 
mutated) 

Nodde; change 

in host range 
Nodd e

; affects 
infection thread 
formation 

Nodde 

Nod-; change in 
host range to 
uetch 

Noddein Rl, Rm 
increase in Hac, 
Inf in Rm; no 
effect in Bj 

see nod 1 
Nod- or Nodde 

in Rl, Rt 

Nodde 

Nod+ but reduced 

Nodde 

extend host range 
to Afghanistan pea 

cetylglucosaminyltransf erase 

transcriptional actiuator 

R-ketoacyl synthase 

acyl carrier protein 

dehydrogenase, 
O-ketoacylreductase 

sulphotransferase 

RTP-binding protein 

unknown 

acetyltransferase 

D-glucosamine synthase 

Na+/K+ ion channel 

RTP-sulphurylase 
repressor of nodD 

acetyltransferase 

Table 2. The predicted function of nod and nol gene products and their mutant phenotype. 
Bj=Bradyrhizobium japonicunr, Nod* =delayed nodulation; RUR.Ieguminosarum bv. viciae; 
Rm=R.meliloti; Rt=R.leguminosarum bv. trifolil. Data are from Dénarié et al (1992), 
Kondorosi (1992) and Spaink (1992). The nodX. gene is only present in R. leguminosarum 
bv. viciae strain TOM and encoding for a acetyltransferase (see Firmin, et al., 1993) 



source is given with a two or three letter abbreviation, for example, NodRm is a Nod 

factor from R. meliloti, while NodRlv is produced by R. leguminosarum bv. viciae. The 

number of N-acetylglucosamine residues is indicated by a roman number and the 

substitutions are given between brackets starting from the non-reducing terminal sugar. 

For example, NodRm-IV(16:2, S) is a Nod factor produced by R. meliloti with four N-

acetylglucosamine residues having a C16:2 acyl group at the non-reducing terminal sugar 

and a sulphate group at the reducing end. 

The possible functions of nod genes in the synthesis of Nod factors are presented in 

Table 2 (for reviews see Dénarié, et al., 1992; Fischer and Long, 1992; Spaink, 1992). 

NodC protein, based on sequence homology, most likely is a chitin synthase (Bulawa 

and Wasco, 1991), whereas NodB has chitooligosaccharide deacetylase activity, which 

only deacetylates the non-reducing N-acetylglucosamine residue (John, et al., 1993). The 

function of NodA is not yet solved, but since nodABC genes are sufficient to synthesize 

the core lipo-chitooligosaccharide (Spaink, et al., 1991), it is likely that NodA is involved 

in the coupling of the acyl moiety to the non-reducing terminal sugar. Nodi is 

homologous to a ATP-binding protein, whereas the function of NodJ is not yet known. 

nodM, encoding a glucosamine synthase, is not essential for the synthesis of Nod 

factors, but it allows a higher production of these compounds (Baev, et al., 1991). 

Modification of Nod factors is carried out by the products of the host-specific nod 

genes and may vary among different rhizobia. For example, NodE and F determine the 

structure of the acyl moiety; C16:2 in NodRm factors and C18:4 in NodRlv factors 

(Spaink, et al., 1991; 1992). In R. meliloti, NodG most likely plays a role in the 

synthesis of the acyl moiety as well (see Dénarié, et al., 1992). NodH and NodPQ 

determine the sulphation of NodRm factors. NodH is most likely a sulphotransferase 

(Roche, et al., 1991), whereas NodP and NodQ form an ATP sulphury läse (Schwedock 

and Long, 1990). NodL has acetyltransferase activity in vitro and catalyses 6-0-

acetylation of the non-reducing sugar residue (Spaink, et al., 1991). NodX is a 

acetyltransferase which is involved in the 6-O-acetylation of the reducing end sugar 

(Firmin, et ai, 1993). 

Bacterial genes encoding surface compounds 

Rhizobium cell surface polysaccharides are also important in establishing the 

symbiosis. Genetic studies on these cell surface components, namely extracellular 

polysaccharides (EPS), lipopolysaccharides (LPS) and neutral ß-glucans, indicated that 

they are involved in the infection process and nodule development ( for reviews see 

Bauer, 1981; Carlson, 1981; Leigh and Coplin, 1992; Gonzalez, et ai, 1993). In 

contrast with the diffusible Nod factors, EPS, LPS and ß-glucans remain attached to the 

cell surface. 



The role of EPS has been extensively studied in R. meliloti. This bacterium produces 

two EPS's, EPS I and EPS II. EPS I, a succinoglycan composed of polymerized 

octasaccharide subunits, is required for the infection process. EPS II is structurally and 

chemically different from EPS I, but it can substitute for EPS I in nodulation of alfalfa 

plants, but not of other hosts of R. meliloti (Reuber, et ai, 1991). EPS mutants (exo-) of 

R. meliloti are able to deform root hairs and to induce cortical cell divisions, but are 

unable to carry out infection. Consequently they form empty nodules which are devoid of 

bacteria (for review see Leigh and Coplin, 1992; Gonzalez, et al., 1993). 

Rhizobium LPS is a component of the outer membrane and consists of a lipid moiety 

(lipid A) and a polysaccharide O-antigen. The latter is highly variable among Rhizobium 

species. R. leguminosarum bv. phaseoli mutants lacking the O-antigen are defective in 

infection thread development (Carlson, et ai, 1987), while similar R. leguminosarum bv. 

viciae Ips mutants are defective in bacterial release from infection threads into the plant 

cell (De Maagd, et ai, 1988). 

The involvment of ß(l-2) glucans in nodule formation was first demonstrated by R. 

meliloti mutants (ndv) that fail to produce ß(l-2) glucan. Such mutants can still induce 

nodules but infection does not occur (Dylan, et al., 1986). R. leguminosarum bv. viciae 

mutants which do not secrete ß(l-2) glucan and fail to produce the O-antigen containing 

LPS form nodules that are unable to fix nitrogen. In these nodules only a few infected 

cells are present (Yang, et al., 1992; Chapter 3). 

PLANT GENES INVOLVED IN NODULATION 

In the following paragraphs we will discuss the different steps of nodulation and we 

will especially pay attention to the plant genes involved in passing through this process. 

Genetic studies revealed the requirement of plant genes (Sym genes) in all stages of 

nodulation (for reviews see Weeden, et al., 1990; Caetano-Anollés and Gresshoff, 1991; 

Gresshoff, 1993). Up to now none of the Sym genes has been cloned, but in some cases 

significant progress has been made in mapping RFLP markers in the vicinity of 

interesting Sym genes (Landau-Ellis, et al., 1991; 1992; Lu, et al., 1993). Therefore it is 

to be expected that in the coming years some of these Sym genes will be isolated by 

positional cloning which will provide more information on their role in nodule 

development. Since none of the Sym genes has been isolated so far, we shall not discuss 

these genes in this introduction. 

During the successive steps of nodulation specific plant genes, the so-called nodulin 

genes (Van Kammen, 1984), are expressed (for reviews see Verma and Delauney, 1988; 

Nap and Bisseling, 1989; Sanchez, etal., 1991; Franssen, et al., 1992a). Many nodulin 

genes have been isolated from different legumes by differential screening 

10 
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of cDNA libraries. Nodulin genes expressed before nitrogen fixation starts are named 

early nodulin genes (ENOD), while nodulin genes expression of which starts at the onset 

of nitrogen fixation are called late nodulin genes (NOD) (Nap and Bisseling, 1990). In 

the nomenclature the plant species is indicated in italics in front of nodulin genes. Some 

of these nodulin genes will be discussed in the following paragraphs, which deal with the 

successive steps in nodule formation. 

ROOT COLONIZATION 

Colonization of legume roots by Rhizobium is achieved by the bacteria moving 

chemotactically to the roots and the potential of the root exudate to stimulate bacterial 

growth. The involvement of Chemotaxis is indicated by the fact that non-motile mutants 

of Rhizobium are less competent in colonizing and infecting roots (Hunter and Fahring, 

1980; Ames and Bergman, 1981; Caetano-Anollés et al., 1988a; 1988b; for review see 

Bauer and Caetano-Anollés, 1990). 

The signaling of Chemotaxis is not well understood. Studies on the R. meliloti-alfalfa. 

interaction have shown that certain nod gene inducers like luteolin as well as the 

nodDABC genes are involved (Caetano-Anollés, et al., 1988a). Although this suggests 

that Nod factors might play a role it is hard to imagine which role that could be. In other 

systems, like the R. leguminosarum bv. viciae—pea interaction, nod genes are not 

essential for Chemotaxis since bacteria lacking these genes show significantly though 

decreased Chemotaxis (Armitage, et al., 1988). 

The growth of Rhizobium in the rhizosphere is stimulated by specific compounds 

secreted by legume roots. The pea compounds that stimulate growth of R. 

leguminosarum bv. viciae are homoserine and glutamic acid (Van Egeraat, 1975a; 

1975b). The growth of other Rhizobium species is not stimulated by these compounds. 

On the other hand, it has been shown that by flavonoids secreted the plant stimulate 

growth of R. meliloti (Hartwig, et al., 1991; for review see Phillips, et al., 1993), but 

these compounds have not been tested for a possible effect on growth of other Rhizobium 

species. 

So plant secreted flavonoids may have different functions in the Rhizobium-legume 

interaction. In many systems they are inducers of nod genes and in addition, they may 

have a role in stimulating bacterial growth and Chemotaxis. 

ROOT HAIR DEFORMATION AND CURLING 

The first microscopically visible response of the host plant in the Rhizobium-plant 

interaction is deformation and curling of root hairs. Upon attachment of Rhizobium, root 

hairs change their typical cylindrical shape: the root hair tips deform and curl, and form 
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the so-called Shepherd's crooks (Fahraeus, 1957) by which bacteria become entrapped 

and infection can start (Dart, 1974). 

Root hair deformation and curling are probably the most often described responses of 

legume roots upon inoculation with Rhizobium, but surprisingly root hair deformation 

has not been studied in any significant detail at a cytological level (Nutman, 1959). 

Gene induction 

Changes in plant gene expression in deformed root hairs have been studied by 

comparing both the protein patterns obtained by 2-D gel electrophoresis of isolated 

proteins and of in vitro translated proteins of RNAs isolated from root hairs of inoculated 

and uninoculated plants. It was found that in pea root hairs several mRNAs are present at 

markedly elevated levels after inoculation with R. leguminosarum bv. viciae. However, 

the majority of these mRNAs are found at similar high levels in root hairs at an early 

stage of development. This probably reflects that Rhizobium stimulates root hair 

development. Two mRNAs producing the proteins RH-42 and RH-44 respectively, are 

exclusively present at elevated levels in root hairs of inoculated plants and these proteins 

may be involved in root hair deformation (Gloudemans, et al., 1989). The induction of 

the RH-42 gene and the enhanced expression of the RH-44 gene requires active nod 

genes. 

In Vigna unguiculata, 9 new proteins are formed in root hairs 1 to 4 days after 

inoculation. Six of these proteins are also present in nodules (Krause and Broughton, 

1992), and therefore are probably not involved in deformation but in the infection 

process. None of these proteins was found in root hairs inoculated with Had" mutants of 

Rhizobium which are defective in root hair deformation. These proteins supposedly 

involved in root hair deformation have been named hadulins (Krause and Broughton, 

1992). However, a direct relation with root hair deformation has not been demonstrated 

and it was not checked for instance whether the level of these proteins was elevated in 

root hairs at early stages of development. It is possible as well that several of these 

proteins are involved in infection. At present none of the putative root hair deformation 

related genes has been cloned, nor have antibodies been raised against the encoded 

proteins. Clones and antibodies will be very useful to study the exact role, if any, of 

these genes in root hair deformation. 

Nod factors induce root hair deformation 

Purified Nod factors have the ability to induce root hair deformation at their respective 

host plants if applied at concentrations higher that 10"12M (Lerouge, et al., 1990; Spaink, 

et al., 1991; Schultze, et al., 1992). Studies on vetch and alfalfa root hair deformation 
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have made clear that distinct parts of Nod factors are important in the induction of root 

hair deformation. NodRlv factors containing 4 or 5 N-acetylglucosamine residues have 

the same ability to induce root hair deformation on vetch, while a trimer is unable to elicit 

this response. Alfalfa has more stringent requirements as to the length of the N-

acetylglucosamine backbone, since NodRm-IV(C16:2, S) is 100 fold more active than 

NodRm-V(C16:2, S) in deforming root hairs (Schultze, et ai, 1992). The tetramer of N-

acetylglucosamine, N,N',N",N'"-tetraacetylchitotetraose which is identical to the sugar 

backbone of NodRlv-IV without the N-acyl and O-acetyl substitutions, does not elicit 

vetch root hair deformation (Spaink, et al., 1991). Therefore the presence of a fatty acid 

chain is essential. The structure of the acyl moiety, at the other hand, appears to be less 

important. NodRlv factors containing a C18:4, a C18:l or a C18:0 group as well as 

desulphated NodRm factors containing a C16:2 acyl moiety are equally able to deform 

vetch root hairs (Heidstra, personal communication). The presence of the sulphate group 

at the reducing N-acetylglucosamine unit is of major importance in determining host 

specificity. NodRm-IV(C16:2, S) can induce alfalfa root hair deformation, but not those 

of the non-host plant vetch (Lerouge, et al., 1990). In the contrary, NodRm-IV(C16:2), 

which lacks the sulphate group, is unable to induce alfalfa root hair deformation, but 

instead is able to deform vetch root hairs (Roche, et ai, 1991). In NodNGR factors a 2-

O-methylfucosyl group is present at the reducing sugar. This O-methylfucosyl group can 

be either acetylated or sulphated. The NodNGR factors containing a sulphate group 

deform alfalfa root hairs, while the ones lacking the sulphate group have the ability to 

deform vetch root hairs (Price, et ai, 1992). Clearly, the presence of a sulphate group 

appears essential for alfalfa root hair deformation, while the exact position at the reducing 

sugar seems less important. 

EPS I from R. meliloti also has the ability to induce root hair deformation in the 

absence of bacteria (Reuber, et ai, 1991). Therefore it is possible that both Nod factors, 

and EPS, or EPS derived molecules, are involved in root hair deformation. 

INFECTION AND INFECTION THREAD FORMATION 

Infection thread formation 

Infection thread formation may take place if bacteria are entrapped in root hair curls. In 

the curl local hydrolysis of the plant cell wall occurs (Callaham and Torrey, 1981; 

Bakhuizen, 1988), and at the site of hydrolysis the plasma membrane grows inward and 

new wall material is deposited along the invaginating plasma membrane (Callaham and 

Torry, 1981; Turgeon and Bauer, 1985; Bakhuizen, 1988; for reviews see Bauer, 1981; 

Newcomb, 1981; Brewin, 1991; Kijne, 1992). In this way, a tubular structure—the so-

called infection thread (Dart, 1974)—is formed by which the bacteria enter the plant. 
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Bacteria inside the infection thread are surrounded by a matrix. The composition of this 

matrix is unclear, but it appears likely that extracellular proteins of the plant as well as 

compounds secreted by the bacteria are part of this matrix. The infection thread wall is 

most likely of plant origin and has a similar ultrastructure as the plant cell wall. The 

similarity between cell wall and the infection thread wall is further witnessed by the 

occurrence of common polysaccharides like cellulose, xyloglucan and pectins 

(VandenBoschera/., 1989; Rae,ef al., 1992). 

The infection thread grows towards the base of the root hair, and at the sites of 

infection cortical cells are activated and form radial tracks. The cytoplasm of these 

activated cortical cells rearranges to form radial transvacuolar cytoplasmic brigdes and the 

nuclei move to the center of the cell (Bakhuizen, 1988). Such cortical cytoplasmic brigdes 

are considered to be "prepared for infection thread passage', and have been named "pre-

infection threads" (Van Brussel, et ai, 1992). The infection thread penetrates root cortical 

cells by the same mechanism of local hydrolysis of the cell wall used for initiation of the 

infection thread in root hairs, and it grows through the "pre-infection threads" to the 

nodule primordium (see below) where bacteria are endocytotically released into the plant 

cells (Newcomb, 1976; 1981). 

Plant genes involved in infection. 

The wall of the infection thread is very similar to the plant cell wall (VandenBosch, et 

al., 1989; Rae, et ai, 1992), but possibly the occurrence of nodulins in the infection 

thread wall contributes to its specific properties. Suitable candidates for such nodulins are 

the early nodulins />,sENC)D5 and />.?ENOD12. These nodulins have first been studied in 

pea (Scheres, et al., 1990a; 1990b). In situ hybridization studies demonstrated that 

fiENOD12 gene expression is induced by Rhizobium in root hairs and root cortical cells 

harbouring an infection thread. In addition this gene is induced in cortical cells that are in 

front of the infection thread tip and in nodule primordia as well. Expression of f\sENOD5 

genes is only induced in cells containing an infection thread tip. Recently, it was shown 

that the alfalfa MsENODH gene is induced as early as 3 hr after inoculation, specifically 

in a zone of root epidermal cells starting just behind the root tip and ending where root 

hairs reach their mature size (Pichon et al., 1992). From this study it was concluded that 

ENOD12 is most likely involved in preparing plant cells for Rhizobium infection. 

The amino acid sequences of PsENODS and f.sENOD12 show that both are proline-

rich proteins. The larger part of the />sENOD12 polypeptide is composed of two 

repeating pentapeptide units, namely Pro-Pro-Gln-Lys-Glu and Pro-Pro-His-Lys-Lys, 

and the polypeptide has a putative signal peptide at its N-terminal part. These features 

suggest that the F.sENOD12 is a (hydroxy)proline-rich cell wall protein and could be a 

component of the infection thread wall as well as of the wall of epidermal and cortical 
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cells preparing for infection (Scheres, et al., 1990a; Nap and Bisseling, 1990). The 

f^ENOD5 polypeptide has a putative signal peptide at its N-terminal part, and it is rich in 

proline, alanine, glycine and serine, indicating that it might be an arabinogalactan-like 

protein (Scheres, et al., 1990b). Accordingly it is possible that the />.sENOD5 protein is a 

component of the infection thread wall or membrane (Scheres, et al., 1990b; Nap and 

Bisseling, 1990). 

In the infection thread matrix a 95 kDa plant glycoprotein was found (VandenBosch, 

et al., 1989; Rae, et al., 1992). This glycoprotein also accumulates in the intercellular 

spaces of uninfected root cortex (Rae, et al., 1992). The gene encoding this protein has 

not yet been characterized and the role of this protein in infection thread formation 

remains unclear. 

Bacterial signal molecules involved in infection 

I. Nod factors 

Purified Nod factors induce expression of the infection related early nodulin genes, 

fsENOD5 and PsENOD12, but do not achieve infection thread formation. Both R. 

leguminosarum bv. viciae NodRlv factors, containing either aC18:4orC18:l acyl group 

induce the expression of these early nodulin genes in pea root hairs, but the kinetics of 

induction is slightly different. NodRlv-V(Ac, CI8:4) induces maximal f^ENOD 12 gene 

expression within 12 hours, while after application of NodRlv-V(Ac, C18:l), 

expression of this gene only reaches the highest level at about 24 hours (Horvath, et ai, 

1993). 

Recently Van Brussel et al. (1992) showed that purified NodRlv factors containing a 

C18:4 acyl group induce the formation of "pre-infection thread" structures in vetch roots, 

while NodRlv factors having a CI8:1 acyl group are unable to induce these structures. 

Therefore the lipid moiety seems very important for the induction of "pre-infection 

thread" formation. Studies on nodulin gene induction as well as "pre-infection thread" 

formation strongly suggest that Nod factors play a role in the infection process but for the 

formation of a genuine infection thread something else is apparently required in addition. 

II. Bacterial surface compounds 

It has been shown by mutagenesis that bacterial surface compounds play a role in the 

infection process. Mutants disturbed in EPS, LPS and ß(l-2) glucan biosynthesis do 

often not effectively infect the host plant. The role of these surface compounds in 

infection is not yet clear. It has been proposed that these compounds 1) are signal 

molecules inducing infection thread formation, 2) are involved in host-microbe 
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recognition determining release of bacteria from infection threads and the avoidance of a 

plant defense response, or 3) are essential to create the proper environment in the 

infection thread to allow bacterial growth. Here only some arguments will be given that 

support these different putative roles of the surface compounds. For a more detailed 

discussion see Brewin (1991) and Kijne (1992) and Pühler et al. (1993). 

Djordjevic et al. (1987) showed that an EPS mutant of/?, leguminosarum bv. trifolii 

can be complemented by purified EPS for the formation of nitrogen fixing nodules. 

Similarly the low molecular weight fraction of EPS I from R. meliloti is able to rescue 

invasion defects of exo mutants (Battisti, et al., 1992). These observations suggest that 

EPS molecules function as signal molecules. 

LPS mutants of R. leguminosarum bv. viciae lacking the O-antigen induce small 

ineffective nodules on vetch and bacteria are not released from infection threads (De 

Maagd, et ai, 1988). Therefore it was concluded that the O-antigen containing LPS of/?. 

leguminosarum bv. viciae is important for the endocytotic release of bacteria from the 

infection threads into plant cells. 

/?. leguminosarum bv. viciae mutants unable to secrete the cyclic ß(l-2) glucan form 

small nodules with a few infected cells. In these nodules a defense-related gene, chalcone 

synthase (CHS), is induced in cells surrounding the infected cell (Yang, et ai, 1992; 

Chapter 3). Similarly, EPS I mutants of R. meliloti induce empty nodules in which 

callose and phenolics accumulate at the infection sites and a defense-related gene, 

phenylalanine ammonia lyase (PAL), was induced (Niehaus, et al., 1993; for review see 

Pühler, et al. 1993). It was concluded that the cyclic ß(l-2) glucan and EPS may be 

involved in avoiding a plant defense response. The cyclic ß(l-2) glucan is also involved 

in osmotic adaptation (Dylan, et ai, 1990), suggesting a role in creating a proper 

environment for bacteria. 

Mechanisms of infection thread formation 

It is remarkable that the bacteria induce a very localized hydrolysis of the cell wall in 

the root hair curls during initiation of infection thread formation (Turgeon and Bauer, 

1985; Callaham and Torrey, 1981). Although it has been shown that bacteria secrete 

hydrolytic enzymes (Hubbell, et al., 1978; Martinez-Molina, et ai, 1979), it is hard to 

imagine that those hydrolytic enzymes can have such local effects (Turgeon and Bauer, 

1985). Furthermore, none of the Rhizobium genes that play a role in nodulation, encodes 

a hydrolytic enzyme. Therefore it seems quite possible that the bacteria induce the local 

secretion of hydrolytic enzymes by the plant (Ljunggren and Fahraeus, 1961; for review 

see Kijne, 1992). Such a local hydrolysis of the epidermal cell wall happens in root hair 

formation. Therefore it has been proposed that the mechanism of infection thread 

formation might be derived from root hair initiation (Van Brussel, et ai, 1992; for review 
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see Kijne, 1992). In this connection it is noteworthy that Nod factors can stimulate root 

hair formation (Lerouge, et ai, 1990; Van Brussel, et ai, 1992). 

NODULE PRIMORDIUM AND MERISTEM FORMATION 

Concommitant with infection, root cortical cells are activated and start to divide 

(Figure 3). Which of the root cortical cells divide and what type of nodule is formed is 

determined by the plant, and not by Rhizobium (Gresshoff and Delves, 1986; Rolfe and 

Gresshoff, 1988). In temperate legumes, such as pea, vetch, alfalfa and clover, inner 

cortical cells of the root divide. In pea and vetch especially the inner cortical cells in the 

vicinity of a protoxylem pole are mitotically activated (Bond, 1948; Libbenga and 

Harkes, 1973; Libbenga and Bogers, 1974; Vijn, et ai, 1993). Before these cortical cells 

divide they are easily distinguished from the adjacent cortical cells by their prominent 

central nucleus and cytoplasmic strands across the central vacuole. First the innermost 

cortical cells divide and subsequently inner cortical cells more distant from the stele are 

mitotically activated. The primary division of the cortical cells is predominantly anticlinal, 

while the following divisions are periclinal and oblique (Libbenga and Bogers, 1974; 

Newcomb, et ai, 1979; Calvert, et ai, 1984). The dividing inner cortical cells form the 

nodule primordium (Libbenga and Harkes, 1973; Newcomb, 1981). In temperate 

legumes the outer cortical cells are also activated and form the "pre-infection thread" 

structures (see above). Infection threads grow through the "pre-infection thread" structure 

towards these primordia, and by this time ramify, and cells at the base of the primordium 

are infected. At the same time, cells at the distal part of the primordium become small and 

rich in cytoplasm (Libbenga and Harkes, 1973). These cells constitute the apical nodule 

meristem, which differentiates basipetally, during the complete nodule life time, into 

infected and uninfected cells of the central tissue, as well as into cells of the peripheral 

tissues (see below). In consequence, these nodules have an indeterminate development 

and represent the indeterminate nodule type. 

In tropical legumes, such as soybean, outer cortical cells of the root divide to form the 

nodule primordium. While the inner cortical cells between the primordium and the nearby 

protoxylem pole are activated to divide and will then form the connecting vascular 

bundle. After passing the root hair the infection thread penetrates the central part of the 

nodule primordium (Bieberdorf, 1938; Dart, 1975; Newcomb, et ai, 1979; Turgeon and 

Bauer, 1982; Calvert, et al, 1984; for review see Rolfe and Gresshoff, 1988). Since the 

infection threads directly invade meristematic cells after they have penetrated the root 

hairs, "the pre-infection thread" cell type is not required. As cells at the periphery of the 

primordium remain mitotically active and become infected later, a spherical meristem is 

formed in this way (Newcomb, et al., 1979; Calvert, et ai, 1984). Such a meristem 

ceases to divide about 10 days after inoculation (Newcomb, et ai, 1979). Since the 
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meristem loses its meristematic activity at an early stage of root nodule development, 

nodules have a determinate growth pattern and are called determinate nodules. 

Cortex 
Nod Factors 

f Nod proteins 

Rhizobium 

Sym plasmid 

nod genes 

Flavonoids 

'Ä!Ü°E9> 

1. Root hair deformation 
2. Infection thread formation 
3. "Preinfection thread structure" 
4. Induction of cell division 

Figure 3. A schematic drawing summarizing the events during early stages of 
legume-/?/j/zob/£/m interaction 
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Plant genes induced in nodule primordia 

Several plant genes are induced in nodule primordium. Examples are the early nodulin 

genes ENOD12 (Scheres, et ai, 1990a; Pichon, et ai, 1992), ENOD40 (Yang, et ai, 

1993; Chapter 4; Yang, unpublished data) which is homologous to GwN#36 (Kouchi 

and Hata, 1993), and GmN#93 (Kouchi and Hata, 1993). The ^ENOD12 gene is 

expressed in pea root cortical cells containing an infection thread (see above), but is also 

expressed in nodule primordial cells. The pattern of fiENOD40 gene expression is 

similar to that of P.rENOD12 (Yang, et al., 1993; Chapter 4). Both genes are not 

expressed in nodule meristem cells (Scheres, et al., 1990a; Yang, et al., 1993; Chapter 

4). So both the PsENODH and the /'sENOD40 genes can be used as molecular marker 

to distinguish nodule primordium and meristem (Vijn, et al. 1993). Beyond being 

induced in nodule primordia, the soybean and pea ENOD40 genes, but not ENOD12 

gene, are also switched on in the pericycle of the root facing the primordium (Yang, et 

al., 1993; Kouchi and Hata, 1993). Therefore the ENOD40 gene may control transport of 

compounds between the root central stele and the cortex. The nucleotide sequence of this 

gene does not show any homology to known genes. 

The GmN#93 gene is expressed in the soybean nodule primordium as well as in 

nodule meristem cells and in the infected cells of the mature nodule (Kouchi and Hata, 

1993). Like ENOD40 G/nN#93 has no homology to any known proteins. 

Ngm-26 is a soybean nodulin which is located in the peribacteroid membrane. 

Northern blot analysis has shown that this gene is expressed in mature nodules (Fortin, et 

al., 1987). However, the Ngm-26 promoter fused to a reporter GUS gene was induced 

in incipient lateral roots as well as in nodule primordia in transgenic Lotus corniculatus 

plants. This suggests that a Ngm-26 (like) gene may be induced in nodule primordia in 

heterologous genetic background (Miao and Verma, 1993). 

Chalcone synthase gene (CHS) is not a typical nodulin gene, but an example of a plant 

gene induced in nodule primordial cells as well as in the apical part of the nodule 

meristem (Yang, et ai, 1992; Chapter 3). At the other hand, CHS is expressed in lateral 

root primordia and root meristems. The expression pattern of the CHS gene (in 

primordial cells and in front of meristems) during the formation of roots and nodules is 

strikingly similar, suggesting that the two developmental programmes are related. 

Bacterial signals 

Purified Nod factors are able to induce the formation of nodule primordia in the inner 

cortex at exactly the same position as Rhizobium does, preferentially opposite a 

protoxylem pole (Spaink, et al., 1991; Truchet, et al., 1991; Vijn, et al., 1993). In the 

induction of nodule primordia the lipid moiety of the Nod factors is of major importance. 
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NodRlv factors with a C18:4 acyl group are capable to induce primordium formation, 

whereas NodRlv factors containing a C18:l group are unable to do so (Spaink, et al., 

1991). The early nodulin genes ^ENOD40 and PsENOD12 are expressed in the Nod 

factor induced primordia in a spatial pattern identical to that after Rhizobium infection 

(Vijn, et al., 1993). Therefore the Nod factors appear to be the only bacterial compounds 

required for the formation of nodule primordia and for early nodulin gene expression in a 

spatially controlled manner. 

Mechanisms of nodule primordium formation 

Several hypothesis have been proposed to explain nodule primordium formation. One 

of the most attractive ones is the so-called gradient hypothesis (Libbenga and Bogers, 

1974). This hypothesis implies that two oppositely oriented gradients of morphogens, 

one originating from the growing infection thread, being most likely the Nod factors 

(Vijn, et al., 1993), and another from the protoxylem pole, determine the formation and 

position of the nodule primordium. The morphogen from the protoxylem pole has been 

named stele factor. Stele factor has been purified from pea root stele and is capable of 

inducing cell divisions in root cortex expiants in the presence of basal phytohormones 

(Libbenga, et ai, 1973; Smit, et al., 1993). The chemical nature of stele factor has not 

yet been determined. 

Several studies indicate that phytohormones play a role in nodule primordium 

formation. Allen and Allen (1958) showed that compounds like N-l-

(naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) that block polar 

auxin transport induce the formation of nodule-like structures especially on legume roots 

(Allen and Allen, 1958; Libbenga et al., 1973). Recently it has been shown that early 

nodulin genes, like />.sENOD12 and PsENOD2, are expressed in such nodule-like 

structures (Hirsch, et ai, 1989; Van de Wiel, et al., 1990b; Scheres, et al., 1992), 

indicating that structures induced by auxin transport inhibitors are closely related to 

Rhizobium induced nodules. Since the roots are bathed in auxin transport inhibitors these 

studies did not distinguish whether the primordia are caused by a relative increase or 

decrease of auxin. Long and Cooper (1988) showed that nodABC' mutants of/?, meliloti 

can be rescued for the formation of primordia by the introduction of the tzs {trans-zcaun 

secretion) gene by which rhizobia secrete cytokinin. This indicates that an increased 

cytokinin/auxin ratio in the root cortex leads to cell division. Therefores it can be 

postulated that auxin transport inhibitors cause cortical cell division by decreasing the 

relative auxin concentration, and this may form part of the signal transduction in Nod 

factor induced cortical cell division. 
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NODULE DEVELOPMENT 

Organization of nodule tissues 

Determinate and indeterminate nodules have a similar tissue organization, a central 

tissue where bacteria are hosted, surrounded by several peripheral tissues (for review see 

Rolfe and Gresshoff, 1988; Brewin, 1991; Franssen, et ai, 1992b). The peripheral 

tissues include the nodule cortex, the endodermis and the nodule parenchyma (Van de 

Wiel, et al., 1990a). The latter tissue harbours the nodule vascular bundles. 

The central tissue is composed of two cell types, namely infected and uninfected cells. 

The infected cell type is fully packed with bacteria and here nitrogen fixation takes place. 

A few cell layers of uninfected cells—named boundary layers-separate the central tissue 

from the nodule parenchyma (Gresshoff and Delves, 1986; Franssen, et ai, 1992b). Part 

of the assimilation of the NÜ4+ produced by the bacteria in the infected cells and 

transport of the fixed nitrogen take place in the uninfectd cell type of the determinate 

nodules (Newcomb and Tandon, 1981; Nguyen, et al., 1985). The role of uninfected 

cells in the indeterminate nodule type is not clear. 

Meristems of indeterminate nodules continuously differentiate into the different nodule 

tissues. The effect is that nodule tissues consist of cells at successive stages of 

development. For example the central tissue can be divided into several zones 

representing successive stages of development. Different nomenclatures have been used 

to describe this zonation. Newcomb (1976) divided the central tissue of pea nodules into 

the following consecutive zones. At the apex of the nodule the meristem is present. The 

cell layers immediately behind that, where infection occurs, form the infection zone. This 

zone is followed by the early symbiotic zone in which bacteria proliferate, plant cells 

elongate and the number of organelles is increased. The late symbiotic zone is marked by 

changes in the morphology of the bacteria in the infected cells; Rhizobium bacteria 

particularly increase in size and become Y-shaped bacteroids. In addition, plant cells 

accumulate starch in the amyloplasts. In the senescent zone plant cytoplasm degenerates. 

Vasse et al. (1990) proposed to use other criteria in characterizing the different zones 

of an alfalfa nodule. They used ultrastructural changes in plant cell and in bacteroid 

morphology, starch accumulation and the onset of nitrogen fixation as criteria to classify 

different zones. The meristem at the apex is designated as zone I. The meristem is 

composed of small cytoplasmic dense cells that are not infected by rhizobia. This zone is 

immediately followed by the prefixation zone II. In the distal part of this zone II infection 

threads penetrate meristematic cells and bacteria are released into plant cytoplasm and 

differentiation of both symbionts starts. During the release bacteria become surrounded 

by a plant membrane, the peribacteroid membrane. Bacteria together with the 

peribacteroid space and membrane form a functional structure called symbiosome (Roth 
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and Stacey, 1989). In the proximal part of the prefixation zone II plant cells elongate and 

symbiosomes proliferate. In the nitrogen fixation zone III the plant cells have reached 

their maximal size and bacteroids begin to fix nitrogen. The interzone II-HI is located in 

between the nitrogen fixation zone III and the prefixation zone II. This zone is 

characterized by the start of starch accumulation in infected cells and the presence of 

rhizobia with a specific morphology (Vasse, et al., 1990). In older nodules a senescent 

zone IV is present. The zonation proposed by Vasse et al (1990) is applicable to pea 

nodules (Franssen, et ai, 1992b). We will follow the nomenclature of Vasse in the 

following part where we summarize what is known about expression of plant and 

bacterial genes in different nodule tissues. 

Gene expression in the central tissue 

Expression of plant and bacterial genes has been studied in both determinate and 

indeterminate nodules. However, the timing of gene expression has been much better 

studied in the indeterminate nodule type. Therefore we will focus on the expression of 

plant and bacterial gene expression during development of the different tissues of 

indeterminate nodules. 

I. Nodule meristem 

None of the nodulin genes identified so far is expressed in the apical meristem of 

indeterminate nodules. The nodulin genes, f\jENOD12 and fsENOD40 are expressed at 

a maximal level in the first cell layer of the prefixation zone II (Scheres, et al., 1990; 

Yang, unpublished data), showing that a very clear distinction can be made between the 

meristem and the prefixation zone II. 

CHS genes are expressed in the distal cell layers of the apical meristem of 

indeterminate nodules and in a few cell layers of the nodule cortex adjacent to the 

meristem (Yang, et al., 1992; Chapter 3). Therefore the expression of CHS gene marks 

the distal boundary of nodule meristem. The pattern of CHS gene expression has not 

been studied during determinate nodule development, but Estabrook and Sengupta-

Gopalan (1991) demonstrated by using gene-specific probes that only certain members of 

the CHS gene family are induced during soybean nodule development. 

II. The prefixation zone II 

The early nodulin gene P.sENOD12 is only expressed in the distal part of the 

prefixation zone II. In this region plant cells are penetrated by infection threads and start 

to differentiate. Therefore this part of the prefixation zone II was previously named 
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infection zone by Newcomb (1976). In alfalfa MsENODlO shows the same pattern of 

expression as ENOD12 (Löbler and Hirsch, 1993). The PsENOD5 and />sENOD40 

genes are expressed in infected cells of the whole prefixation zone II. The highest level of 

expression of the /'sENODS is found at the proximal part of the prefixation zone II, 

whereas the PsENOD40 transcript is present at an equal level throughout this zone. At the 

transition of the prefixation zone II into interzone II-III there is a sudden drop in the 

levels of fjENOD5 and />.sENOD40 mRNA (Franssen, et ai, 1992b; Yang, unpublished 

data). The high level of the PsENODS mRNA at the proximal part of zone II, where the 

symbiosomes proliferate, suggests that the PsENODS encoded arabinogalactan-like 

protein may be part of the peribacteroid membrane (Scheres, et al., 1990b; Nap and 

Bisseling, 1990). 

In soybean two early nodulin genes, G/nENOD55 (Franssen, et ai, 1988; De Blanck, 

et al., 1993) and G»ÎN#315 (Kouchi and Hâta, 1993) encode proteins containing Pro/Ser 

alternating repeat sequences. These early nodulin genes are homologous to PiENOD5 

and are first induced in young soybean nodules in which infection and bacterial release 

occur. Both G/nENOD55 and G>nN#315 gene are expressed only in infected cells (De 

Blank, et al., 1993; Kouchi and Hata, 1993). 

In the distal part of the prefixation zone II, the bacterial nod genes are expressed while 

no expression is detectable in the proximal part of this zone (Schlamman, et al., 1991). 

This suggests that nod genes are transcribed inside the infection threads and/or in bacteria 

shortly after release from the infection threads and implies that Nod factors can be 

synthesized in this part of the nodule. Sharma and Signer (1990) demonstrated that nod 

genes are expressed in the distal part of the nodule, but their studies did not allow a 

precise localization of nod gene expression. 

The R. leguminosarum bv. viciae gene ropA, encoding a 36kDa outer membrane 

protein antigen group III, has an expression pattern similar to that of the PiENOD5 gene. 

ropA gene is transcribed in the prefixation zone II and reaches its highest expression level 

at the proximal part which subsequently drops dramatically at the transition of the 

prefixation zone II to interzone II-III (De Maagd, et al., 1993: Chapter 7). 

Expression of several nodulin genes is induced in the proximal part of the prefixiation 

zone II. Examples are the early nodulin genes /'sENODS and P^ENODM and the late 

nodulin gene leghemoglobin (Lb). The expression of the PsENOD3/\4 genes starts at the 

proximal part of the prefixation zone II and reaches its maximal level in the interzone II-

III, then decreases around the transition of the interzone II-III into the nitrogen fixation 

zone III (Franssen, et al., 1992b; Yang, unpublished data). The PsENOD3/14 early 

nodulins are 6kDa proteins that are 55% homologous. They have a putative signal peptide 

at the amino terminal end and contain 4 cysteine residues with a spatial distribution 

resembling that of metal binding proteins (Scheres, et al., 1990b). The expression of Lb 

genes starts in the proximal part of the prefixation zone II, it reaches a maximal level at 
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the beginning of interzone II-III and remains at a constant level throughout the nitrogen 

fixation zone III (Yang, et al., 1991: Chapter 6; Franssen, et al., 1992b). In older 

nodules the Lb mRNA predominantly occurs in a few cell layers of the interzone 

(Kardailsky, et al., 1993; Chapter 5; Yang, unpublished data). Lb is the most abundant 

nodulin in legume root nodules and functions as oxygen carrier and controls the free 

oxygen concentration in the nodule central tissue. 

III. Interzone II-III 

The transition of the prefixation zone II into interzone II-III is marked by a beginning 

of starch accumulation and a sudden drop in expression of the bacterial ropA and several 

nodulin genes (see above). Furthermore this transition is characterized by the induction of 

several other genes like late nodulin gene PsNOD6 and the rhizobial nif genes. Both the 

PsNOD6 and nif genes are immediately expressed at a very high level in the first cell 

layer of the interzone II-III which does not increase in further cell layers (Kardailsky, et 

al., 1993; Chapter 5). 

fsNODó is homologous to the pea early nodulin genes />.sENOD3 and fsENOD14. 

This homology includes the position of the signal peptide cleavage site , the sequence of 

the signal peptide, the spatial distribution of the 4 Cys residues and amino acids 

surrounding them (Kardailsky, et al., 1993: Chapter 5). Therefore it is likely that 

PsNOD6 has a function analogue to PsENOD3 and f\sENOD14. 

IV. The nitrogen fixation zone III 

None of the studied genes is induced at the transition of interzone II-III into the 

nitrogen fixation zone II. But the concentration of FÄENOD3 and fiENOD14 transcripts 

decreases around this transition (Franssen, et al., 1992b). Late nodulin genes, like 

PsNOD6 and Lb, and bacterial nif genes are expressed in the nitrogen fixation zone III. 

V. The senescence zone IV 

Senescence of nodule tissues has hardly been studied at the molecular level. On the 

analogy of other senescent organs, it is likely that the expression of genes encoding 

hydrolytic enzymes like proteases and RNases will be active in this zone. Indeed 

proteases, e.g. thiol proteases, has been found to be active in senescent nodules (Vance, 

1986; Peoples and Dalling, 1988). A nodulin gene specifically expressed in senescent 

nodules has been isolated from winged bean (Manen, et al., 1991). Surprisingly, this 

gene encodes a 21 kDa protease inhibitor. This protein is exclusively present in senescent 

infected cells in degenerating bacteroids. Similar protease inhibiting activity is found in 
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the peribacteroid space in soybean nodules (Garbers, et al., 1988). It suggests that the 

plant has established a system to control senescence. 

Gene expression in the peripheral tissues 

The majority of the nodulin genes is expressed in the central tissue, and only two early 

nodulin genes have been shown to be expressed in the peripheral nodule tissues, namely 

ENOD2 and ENOD40. 

The ENOD2 gene has been identified in several legumes (Franssen, et ai, 1987; 

Allen, et al., 1991; Perlick and Pühler, 1993) and in all cases this gene is specifically 

expressed in the nodule parenchyma (Van de Wiel, et ai, 1990b; Allen, et ai, 1991). 

It was found by physiological studies that the nodule parenchyma regulates the free 

O2 concentration in the nodule (Tjekema and Yocum, 1974; Witty, et ai, 1986). The low 

O2 concentration in the central tissue of the nodule is achieved by the high O2 

consumption rate of Rhizobium at one hand and the O2 diffusion barrier in the nodule 

parenchyma at the other hand (Witty, et al., 1986). This O2 diffusion barrier is 

established by cell layers which lack intercellular spaces. The ENOD2 protein is 

composed of two repeating pentapeptides containing two proline residues each: Pro-Pro-

His-Glu-Lys and Pro-Pro-Tyr/His-Gln (Franssen, et ai, 1987; Van de Wiel, et ai, 

1990a). And it has been suggested that the ENOD2 protein is located in the cell wall. 

Since the cell wall is a major determinant of cell morphology, it has further been 

postulated that ENOD2 contributes to the formation of the O2 diffusion barrier in nodules 

(Van de Wiel, étal., 1990a). 

Recently, the 5rENOD2 gene from Sesbania rostrata has been shown to be induced in 

roots by exogenously supplied cytokinins (Dehio and De Bruijn, 1992). Other 

phytohormones, such as indole-acetic acid (IAA), gibberellic acid (GA), abscisic acid 

(ABA) and ethylene, or the auxin transport inhibitor TIBA, do not induce the SrENOD2 

gene. This indicates that during nodule development cytokinin might regulate the 

expression of the ENOD2 gene. 

The early nodulin gene ENOD40, which is expressed in the prefixation zone II of the 

central tissue, also belongs to the nodulin genes active in the periphery tissues as it is 

expressed in pericycle cells of the nodule vascular bundle and the boundary cell layer. 

The expression in the pericycle of the nodule vascular bundles indicated that this gene 

might have a transport function (Yang, et ai, 1993; Chapter 4; Kouchi and Hata, 1993). 

In conclusion, studies on Rhizobium genetics and nodulin gene expression as 

reviewed above have certainly advanced our understanding of root nodule development. 

In the following part of this thesis the characterization and pattern of expression of CHS, 

ENOD40, NOD6 and bacterial gene ntfH and ropA are presented. 
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Abstract 

In this paper we report studies on the role of flavonoids in pea root nodule 

development. We followed flavonoid synthesis by localizing chalcone synthase (CHS) 

mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA 

is present in all cells of the primordium. Therefore we hypothesize that the Rhizobium 

Nod factor induces cell division in the root cortex by stimulating the production of 

flavonoids, that function as auxin transport inhibitors. In nodules CHS mRNA is 

predominantly present in a region at the apex of the nodule consisting of meristematic and 

cortical cells. These cells are not infected by Rhizobium. Therefore we postulate that 

CHS plays a role in nodule development rather than in a defense response. In roots CHS 

mRNA is located at a similar position as in nodules, suggesting that CHS has the same 

function in both root and nodule development 

When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that 

are unable to secrete ß (1-2) glucan and to synthesize the O-antigen containing LPS I. 

CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. 

We postulate that the impaired development of nodules formed by these mutants is due to 

an induction of a plant defense response. 
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Introduction 

In initial stages of the Rhizobium-pea interaction the bacterium induces three 

processes: root hair curling and deformation, infection thread formation, and cortical cell 

divisions (Nap and Bisseling, 1990a). These processes are the beginning of the 

development of a root nodule. The induction of mitotic activity leads to the formation of 

globular nodule primordia in the root cortex. At the apex of these primordia meristems are 

formed, that remain active during further development of the nodules. From the apical 

meristem the different nodule tissues develop, and in these differentiation processes the 

expression of specific sets of nodulin genes are induced (Nap and Bisseling, 1990a, 

1990b). Depending on the timing of their synthesis during nodule development, nodulins 

have been divided into early and late nodulins (Nap and Bisseling, 1990b). The majority 

of pea nodulin genes are expressed in the infected cells of the central tissue of the nodule, 

and the development of this cell type involves consecutive expression of specific nodulin 

genes (Nap and Bisseling 1990a; Scheres et ai, 1990a,b). The PsENODH gene is 

expressed in the invasion zone immediately adjacent to the apical meristem, where 

infection thread growth and bacterial release occur. PsENODS gene expression occurs in 

the infected cells of the invasion zone and of the early symbiotic zone. In the latter zone 

the infected cells elongate and bacteria multiply. The fsENOD3 and PsENODM genes 

are first transcribed in the infected cells of the early symbiotic zone and the expression 

level of these genes decreases when the infected cells have reached their maximum size in 

the late symbiotic zone. The late nodulin genes, like leghemoglobin (Lb) genes, reach 

their highest level of expression when the concentration of Z'sENODS mRNA has already 

decreased. 

Recently, it has been shown that substituted oligosaccharides (Lerouge et al., 1990; 

Spaink et al., 1991) that are secreted by Rhizobium upon induction of the nod genes, 

play a pivotal role in the induction of early steps of nodule formation. These Nod factors 

are capable of inducing root hair deformation (Lerouge et al., 1990; Spaink et al., 1991) 

and nodule formation (Roche, et al., 1991) and probably they are also involved in the 

infection process (Nap and Bisseling, 1990a). Although it is clear that the Nod factors 

play an important role in the induction of early stages of nodule development, the 

mechanism by which these factors induce these processes is unknown. Clues about these 

mechanisms have been obtained from studies in which the induction of nodule 

development is (partly) mimicked by other compounds. 

Hirsch et al. (1989) showed that auxin transport inhibitors (ATI's) like N-(l-

naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) induce the 

formation of nodule-like structures on alfalfa roots. These structures have a morphology 

similar to Rhizobium induced nodules and moreover some early nodulin genes are 

expressed at sites comparable to those in regular nodules ( Van De Wiel et ai, 1990b). 
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So ATI's can at least partly mimic the activity of the Nod factor, and thus it is possible 

that a step in the signal transduction pathway induced by the Nod factor is the 

accumulation of ATI's. Jacobs and Rubery (1988) have reported that flavonoids might be 

endogenous ATI's in plants. If so Nod factors might induce in roots a local increase in 

flavonoid concentration, which contributes to the formation of nodule primordia. To test 

whether flavonoid synthesis is affected by Rhizobium, we studied CHS gene expression 

during root nodule formation with the in situ hybridization technique. 

Chalcone synthase (CHS) is a key enzyme of flavonoid biosynthesis (Hahlbrock and 

Scheel, 1989). We selected CHS mRNA not only because of the pivotal role of CHS in 

flavonoid biosynthesis, but also because the CHS gene is expressed at the highest level 

among the genes involved in flavonoid biosynthesis (Hahlbrock and Scheel, 1989). 

Apart from the hypothetical role of flavonoids in inducing mitotic activity, it has been 

demonstrated that these molecules are inducers of the nod genes of Rhizobium (for 

review see Long, 1989) as well as chemoattractants (Caetano-Anolles et al., 1988). 

Furthermore it is possible that despite the symbiotic nature of the Rhizobium-legume 

interaction, a defense response is induced at certain stages of the interaction between plant 

and bacterium (Djordjevic et al. 1987a). Such a defense response in pea may include the 

induction of CHS gene expression (Lamb et ai, 1989; Hahlbrock and Scheel, 1989). 

Thus, hypothetically CHS can be involved in at least three different events during the 

Rhizobium-legume interaction: (1) induction of mitotic activity, (2) production of 

Rhizobium nod gene inducers and chemoattractants, and (3) a defense response. 

To determine the role of CHS in the formation of pea root nodules formed by wild type 

Rhizobium leguminosarum bv. viciae, we also studied pea nodules formed by Rhizobium 

mutants with different surface properties and defective in symbiotic N2 fixation. These 

mutants do not produce the O-antigen containing LPS I (lipopolysaccharide) and fail to 

secrete ß (1-2) glucan. The cytology and nodulin gene expression pattern of the nodules 

formed by these mutants are described. 

Results 

Pattern of CHS Gene Expression During Pea Nodule Development 

A pea CHS cDNA clone was isolated from a nodule cDNA library by using a petunia 

CHS cDNA clone (CHS-A) (Koes et al., 1989) as probe. This pea CHS cDNA clone has 

an insert of 1.6kb and was shown by sequence analysis to be identical to the pea CHS2 

gene described by Harker et al. (1990) (results not shown). To study CHS gene 

expression during nodule formation we localized by in situ hybridization CHS mRNA in 

nodules at different stages of development. 
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Figure 1. Localization of CHS mRNA. Longitudinal sections were hybridized with -"S-labeled antisense 
CHS RNA. DS: dark staining structure, E: epidermis, ES: early symbiotic zone, IC: infected cell, IT: 
infection thread, IZ: invasion zone, K: columela, M: meristem, NP: nodule primordium, P: protoderm 
initial, Ph: phloem, RC: root cap, UC: uninfected cell, X: xylem. a. c. f. g. i and k: bright field 
micrographs, b. d. e. j . 1 and m: dark field micrographs in which white dots are the signal, h: 
epipolarization micrograph. Bar=50um. The nomenclature of root tissues is according to Popham (1955). 
a. Nodule primordium with infection thread (arrow) (8 days after inoculation). 
b. CHS mRNA localization in section shown in a. 
c. Details of a wild type nodule (16 day) apex. 
d. CHS mRNA location in the section shiwn in c. 
e and f. ENOD12 mRNA localization of a 16 day old nodule 
g and h. Details of CHS mRNA localization in VG2 formed nodule. CHS transcripts are present at 

higher level in uninfected cells, 
i.and j . Detail of a median longitudinal section of a pea root tip (5 day old) showing that CHS mRNA 

is present in young root cap cells (arrows). Arrowhead indicates starch grains. 
k and 1 CHS mRNA localization in a emerging lateral root. Arrowheads indicate the cell layers with 

signal. 
m CHS mRNA localization in a longitudinal section of the part of the pea root containing emerging root 

hairs. 

In Fig. la a section of an infected pea root containing a nodule primordium which is 

not yet penetrated by an infection thread is shown. This section was hybridized with 35S 

labeled antisense CHS RNA. As is shown in Fig. lb. low levels of CHS mRNA are 

present in all cells of the nodule primordium. Hybridization with sense CHS RNA gave 

no signal (results not shown). At a slightly later stage of development when an apical 

meristem is formed in the primordium (Fig. 2a), CHS mRNA is predominantly present in 

the distal cell layers of this meristem (Fig. 2b). In a mature nitrogen fixing nodule CHS 

mRNA is also present at the highest level at the apical part of the nodule (Fig. 2c,d); the 

distal cell layers of the nodule meristem and a few cell layers of the nodule cortex adjacent 

to the meristem (Fig. 2c,d; Fig. lc,d). Often a low level of CHS mRNA is also present in 

the proximal part of the meristem and in the invasion zone directly adjacent to the 

meristem (result not shown). Fig. lc,d and le,f show magnifications of two adjacent 

sections hybridized with antisense CHS and FsENOD12 probes respectively. The 

PsENOD12 mRNA is found in the invasion zone of the nodule (Scheres et al., 1990b). 

Comparison of Fig. Id and Fig. le clearly shows that the highest level of CHS mRNA is 

present in the distal part of the meristem and the adjacent cortical cell layers. 

Thus the in situ hybridization studies showed that throughout nodule development the 

highest expression of CHS genes especially occurs in parts of the nodule where no 

Rhizobium bacteria are present. Therefore it is very unlikely that the expression of CHS 

genes in nodules reflects a defense response. On the contrary, the location of the CHS 

mRNA in root nodules suggests that CHS plays a role in the development of this organ. 

This was further studied by analyzing whether CHS mRNA is found at a similar position 

in the root,the organ very closely related to root nodules. 
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(b) (d) 

Figure 2. Localization of CHS mRNA in wild type pea nodules. Longitudinal sections were hybridized 
with 3^S-labeled antisense CHS RNA probe. IC: infected cell, M: meristem, NC: nodule cortex, a and c: 
bright field micrographs, b and d: epipolarization micrographs in which hybridization signals are visible 
as white dots. In the invasion zone a low level of CHS mRNA is present but the singal is too low to be 
visible in d. Bar=100um. 
a. A longitudinal section of a 9 day old nodule. 
b. Localization of CHS mRNA in the section shown in a. 
c. A longitudinal section of a 15 day old nodule. 
d. Localization of CHS mRNA in the section shown in c. 

Localization of CHS mRNA in Pea Roots 

Fig. 3a and b show a median longitudinal section of the tip of a pea main root 

hybridized with antisense CHS RNA. CHS mRNA is present at a relatively high level in 

young root cap cells which are located at the periphery of the root cap, but the cells of 

columella (K) (Popham, 1955) do not contain CHS mRNA at a detectable level (Fig. 

3j,k). A lower level of CHS mRNA is detectable in the ground meristem. No CHS 
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transcripts are found in the procambium cells (PC) and protoderm cells (P), (Fig. l i j ; 

Fig. 3a,b). In older parts of the root CHS mRNA is only detectable in the zone where 

root hairs emerge. In this zone the expression of the CHS gene is restricted to the 

epidermal cell layer (Fig. lm). In tips of lateral roots the CHS gene is expessed in a 

similar manner as in the main root.However, at a young stage of lateral root 

development, before vascular differentiation starts, CHS mRNA is present in a 

continuous region at the tip (Fig. lk,l). 

Figure 3 Localization of CHS 
mRNA in a pea root tip. a. 
Bright field micrograph; b. 
Epipolarization micrograph. 
Bar=100um. 
a. Median longitudinal section of 
a pea root apex. GM: ground 
meristem, P: protoderm, PC: 
procambium, RC: root cap. 
b. CHS mRNA localization in 
the section shown in a. 

Pattern of CHS Gene Expression in VG2/VG5 Induced Nodules 

Mutants VG2 and VG5 are Tn5 mutants of R. leguminosarum bv. viciae strain 248. 

Both mutants fail to produce O-antigen containing LPS I. Furthermore these mutants do 

not secrete ß (1-2) glucan. A more detailed description of these mutants is given in 

Materials and Methods. 

The mutants VG2 and VG5 form small white nodules on pea roots that are unable to 

reduce acetylene. The morphology of these nodules differs markedly from nodules 

formed by wild type R. leguminosarum bv. viciae (Figs. 4a,lg). The most striking 

differences are the occurrence of dark staining thick branched infection threads (Figs. 

lg,4a), and the presence of only very few infected cells or even complete absence of 

infected cells, in the mutant nodules (Figs. 4a). Moreover, dark staining structures are 

present in these mutant formed nodules (Fig. 4a), which were not observed in wild type 

nodules. These dark staining structures are packed with small rods (not shown), which 

48 



Figure 4. Localization of 
CHS mRNA in mutant 
VG2 formed nodules, 
sections hybridized with 
35S-labeled antisense CHS 
mRNA probe, a. Bright 
field micrograph; b . 
Epipolarization 
micrograph. Bar=100|im. 
a. Longitudinal section of a 
25 day old nodule formed 
by VG2. Dark staining 
structure (DS), infected 
cells (IC), infection thread 
(arrowhead) and nodule 
meristem (M) are indicated. 
b . CHS mRNA 
localization in the section 
shown in a. 

•*•. 4 . M * v - •< . . > t Ä ? > 

could be rhizobia. In 14 day old mutant nodules no infected cells are observed, whereas 

in 25 day old nodules only a few infected cells are found (Fig. 4a). In contrast in wild 

type nodules infected cells are already formed in 10 day old nodules. 

To determine whether the impaired development of infected cells in the nodules formed 

by mutant strains VG2 and VG5 might be caused by a defense response, we studied 

CHS gene expression in these nodules. Longitudinal sections of the mutant formed 

nodules containing a few (25 days), or no infected cells (14 days) were hybridized with 

antisense CHS RNA. In both 14 and 25 day old VG2/VG5 nodules the expression of the 

CHS gene occurs in a zone at the distal part of the nodules. This zone includes a few 

cortical cell layers, the apical meristem as well as the invasion zone (Fig.4a.d). This is 

contrast to wild type nodules in which the CHS gene is only expressed at a very low level 

in the invasion zone. Twenty-five day old VG2/VG5 nodules containing a few infected 

cells also express the CHS gene in a proximal zone of the nodule (Fig. 4a,b). In the latter 

zone CHS mRNA is present at a relatively high level in the uninfected cells, whereas a 

lower level is present in the fully infected cells (Fig. 1 g,h). In 25 day old wild type 

nodules CHS mRNA is not detectable in infected or uninfected cells (results not shown). 

Nodulin Gene Expression in Mutant Nodules 

The ability of the VG2 and VG5 mutants to induce pea nodulin gene expression was 

studied by hybridizing sections of mutant nodules with 35S-labeled antisense probes of 

nodulin genes. These analysis showed that early nodulin gene transcripts PsENOD12, 

PsENOD5 and PsENOD3 are present in these mutant nodules (result not shown). In 

VG2/VG5 nodules containing a few infected cells also the late nodulin gene Lb is 

expressed in the fully infected cells (Fig. 5). 
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Figure 5. Localization of leghaemoglobin (Lb) 
mRNA in VG2 formed pea nodule. Bar=50|im. 
a. Bright field micrograph indicating infected 
(IC) and uninfected cells (UC). 
b. Epipolarization micrograph of a showing Lb 
mRNA localization (white dots). 

Discussion 

CHS Is Involved In Nodule Development 

In this paper we studied flavonoid synthesis during pea nodule development by 

analyzing CHS gene expression in situ. Since CHS is the key enzyme in biosynthesis of 

flavonoids (Hahlbrock and Scheel, 1989), we assume that CHS gene expression can be 

used as an indirect method to show where flavonoids are synthesized. 

We showed that during initial stages of nodule development CHS mRNA is present in 

all cells of the nodule primordium. Therefore it is very likely that flavonoids accumulate 

in these dividing cells. Since flavonoids can function as ATI's (Jacobs and Rubery, 

1988), we postulate that the Rhizobium Nod factor induces cell division in the root cortex 

by triggering a local accumulation of flavonoids. This accumulation of flavonoids could 

cause a decreased import of auxin into the primordium cells by which the auxin/cytokinin 

balance would change in such a way that mitotic activity is induced. At later stages of 

nodule development, the CHS genes are expressed in a highly spatially controlled 

manner. In nodules CHS mRNA is predominantly present at the apex, the distal part of 

the meristem and in a few layers of the nodule cortex. These cells are not infected by 

Rhizobium, which allows the conclusion that also at later stages CHS is involved in 

nodule development, rather than in a defense response. 

Recently, Estabrook and Sengupta-Gopalan (1991) showed by northern blot analysis 

that during soybean nodule development only certain members of the CHS gene family 

are induced. Our studies do not provide this type of information since we did not use 

gene specific probes. 

CHS genes are also expressed during root development. In lateral root primordia the 

CHS transcript is restricted to a few cell layers at the apex. So there is a striking similarity 

in the spatial distribution of CHS mRNA in a nodule and a lateral root primordiium. 

Therefore CHS might have a similar role in nodule and root development. 
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In root tips CHS mRNA is present in two zones, the ground meristem and in young 

root cap cells. Previously it was shown that a chimaeric gene composed of the bean CHS 

promotor and the coding region of the GUS gene is expressed in root tips of transgenic 

tobacco plants (Schmid et ai, 1990). These studies did not allow an accurate localization 

of the GUS activity and so it is unclear whether this chimaeric gene is expressed in the 

same regions of the root tip as the pea CHS gene. 

CHS and nod Gene Inducers 

Flavonoids play a complex role in nodule development. On one hand they can 

function as ATI's, whereas they also induce the nod genes of Rhizobium. Therefore the 

spatial distribution of flavonoid synthesis determines where Rhizobium can produce Nod 

factors. Consequently, regulation of flavonoid synthesis can be an important tool of the 

plant to regulate the production of the Nod factors. 

In pea roots the CHS gene is expressed in the zone of the epidermis containing 

developing root hairs. It has been shown that especially this zone of the root secretes nod 

gene inducers (Djordjevic, 1987b; Peters and Long,1988) and so our CHS in situ 

hybridization studies are in agreement with these observations. Van Brussel et al. (1990) 

showed that flavonoid secretion by Vicia roots is stimulated upon inoculation with 

Rhizobium, and Recourt (1991) demonstrated that the CHS mRNA level is 1.5 to 2.0 

fold increased in these roots. The in situ hybridization method is not a very accurate 

quantitative method and since the increase in CHS mRNA level is rather low we did not 

compare the amount of CHS mRNA in the epidermis of inoculated and uninoculated 

roots. 

In pea root nodules the highest level of CHS gene expression occurs in a distal zone 

containing a few cell layers of the nodule cortex and the nodule meristem. In the invasion 

zone of the wild type nodule very low levels of CHS mRNA are present. Since the nod 

genes are only expressed in this zone where bacteria are released from the infection 

threads (Sharma and Signer, 1990; Schlaman, et al. 1991), we assume that the low level 

of CHS gene expression is sufficent to produce the flavonoids required for nod gene 

induction. 

A Defense Response Is Induced by Rhizobium VG2 and VG5 Mutants 

The mutants VG2 and VG5 have markedly altered surface properties since they do not 

form detectable levels of O-antigen containing LPS I and also fail to secrete ß (1-2) 

glucan. Both mutants form nodules with branched thick infection threads and only a few 

infected cells are formed. Similar nodule phenotypes have been observed for other R. 

leguminosarum bv. viciae LPS mutants (De Maagd et ai, 1988, Noel et al., 1986). 
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Rhizobium ß (1-2) glucan mutants have only been studied in the R.meliloti-alt&lia. 

symbiosis. In this system these mutants form nodules but neither infection threads nor 

intracellular bacteria are present. So the R.leguminosarum bv. viciae mutants disturb 

nodule formation at a different stage of development. 

Previously we discussed that different classes of Rhizobium genes will be involved in 

the interaction between Rhizobium and the legume plant; some genes will contribute to 

the synthesis of a signal that induces developmental processes in the plant, like the nod 

genes, whereas others are involved in the disguise of Rhizobium in order to avoid a 

defense response of the plant (Nap and Bisseling, 1990b). Plants are able to defend 

themself against pathogens, but these defense responses are not observed during normal 

nodule development (Nap and Bisseling, 1990b; Estabrook and Sengupta-Gopalan, 

1991; this study). 

The aberrant development of VG2/VG5 formed nodules can be due to the inability to 

produce a signal molecule or to the induction of a defense response. Here we showed that 

in nodules formed by VG2 and VG5 the CHS gene is expressed at a relatively high level 

in the invasion zone, the zone where bacteria are released from the infection thread. In 

wild type nodules only very low levels of CHS mRNA are detectable in this zone. 

Therefore we postulate that upon release of VG2/VG5 bacteria from the infection threads 

a plant defense response is induced and this defense response will cause the aberrant 

development of the infected cells. 

In VG2/VG5 nodules containing a few infected cells, the CHS gene is also active in 

the uninfected cells surrounding these infected cells. Whereas in wild type nodules of the 

same age CHS mRNA is not dectable in the uninfected cells. In pathogenic plant-microbe 

interactions CHS gene expression is induced in cells surrounding the cells penetrated by 

the pathogen. Therefore we assume that CHS gene expression in these uninfected cells 

also reflects a defense response induced by the Rhizobium mutants VG2 and VG5. 

25 day old VG2/VG5 formed nodules, containing a few infected cells, express early 

nodulin genes as well as the late nodulin gene Lb are induced. Consequently these 

mutants produce all signal molecules that are essential for the induction of expression of 

nodulin genes, and therefore it is unlikely that putative signal molecules required for the 

induction of nodulin genes are derived from LPS or ß (1-2) glucans. 

Materials and Methods 

Characterization of Rhizobium leguminosarum bv. viciae Mutants VG2 and VG5 

All bacteria were grown and maintained on standard laboratory media. R. 

leguminosarum bv. viciae strain 248 (Josey, et al. 1979) harbors the pRLUI Sym 
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plasmid described by Johnston et al. (1978). Bacterial matings and Tn5 mutagenesis 

were performed according to Beringer et a/.(1978). 

R. leguminosarum bv. viciae strain 248 was randomly mutagenised with transposon 

Tn5 and about 6000 mutants were thus obtained. Two of these mutants were used in this 

study. Here we will give only a short description of the characteristics of these mutants 

and a more detailed description of these mutants will be published elsewhere. 

Lipopolysaccharides (LPS) were isolated as described by De Maagd et al. (1988), 

seperated on a SDS-PAGE system (Lugtenberg, et al. 1975) and visualized by a silver 

staining procedure described by Tsai and Frasch (1982). VG2 and VG5 failed to produce 

the O-antigen containing LPS I. Furthermore, the VG2 and VG5 mutants do not secrete ß 

(1-2) glucan molecules, whereas the wild type strain does (Canter Cremers, et ai, 1991). 

However, the cells of the two mutant strains, contain a neutral polysaccharide (Batley et 

al., 1987; Canter Cremers et al., 1991). The 13C NMR spectrum of this polysaccharide 

isolated from strains VG2 and VG5, was identical to that of neutral ß (1-2) glucan 

isolated from the culture supernatant of wild type strain 248. We therefore concluded that 

mutant strains VG2 and VG5 still synthesize ß (1-2) glucan, but fail to secrete it. 

Plant Material 

Pisum sativum cv. Rondo seeds were germinated and inoculated with Rhizobium 

leguminosarum bv. viciae 248 or mutant VG2 or VG5 as described by Bisseling et al 

.(1978). 

Preparation of Antisense/sense RNA Probes 

A 1.6kb CHS cDNA clone which is identical to the pea CHS2 gene described by 

Harker et al. (1990) was cloned into Bluescript. For antisense RNA probe production, 

the plasmid was cut with Sail and transcribed with T7 RNA polymerase. For sense RNA 

preparation the plasmid was cut with BamHl and transcribed with T3 RNA polymerase. 

The nodulin antisense/sense RNA probes were prepared according to Scheres et al. 

(1990a,b). All probes were radioactively labelled with [35S]-UTP (1000-1500Ci/mmole, 

Amersham) and degraded to about 150bp fragments before hybridization (Van De Wiel et 

al, 1990a). 

In Situ Hybridization 

Pea roots were fixed with 4% paraformaldehyde and 0.25% glutaraldehyde in 50mM 

sodium phosphate buffer (pH7.2) for 4 hours at room temperature. The preparation of 
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sections and hybridization conditions are according to procedures described by Cox and 

Goldberg (1988) (Van de Wiel et ai, 1990a). 

Microscopy 

Sections were stained with 0.025% toluidine blue after one to four weeks exposure at 

4°C, and dehydrated and mounted with DPX (BDH). Sections were viewed and 

photographed with a Nikon microscope equiped with dark field and epipolarization 

optics. 
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Abstract 

In this paper the soybean "early nodulin" clone pG»îENOD40 is characterized. The 

GmENODAO encoded protein does not contain methionine and does not show homology 

to proteins identified so far. In situ hybridizations showed that this gene has a complex 

expression pattern, during development of determinate soybean nodules. At early stages 

of development transcription is induced in dividing root cortical cells, the nodule 

primordium and the pericycle of the root vascular bundle. In mature soybean nodules, the 

gene is expressed in the uninfected cells of the central tissue and in the pericycle of the 

nodule vascular bundles. Studies on nodules devoid of intracellular bacteria and infection 

threads, showed that the expression of the gene in the nodule primordium is induced in 

these empty nodules, while the induction of the GwENOD40 gene in the nodule vascular 

bundle requires the presence of intracellular bacteria or infection threads. A pea cDNA 

clone homologous to GfnENOD40 was isolated to enable in situ hybridization studies on 

indeterminate nodules. The expression patterns in both determinate and indeterminate 

nodules suggests that the ENOD40 protein might have a transport function. 
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INTRODUCTION 

On roots of leguminous plants the formation of highly organized nodules can be 

induced by soil bacteria of the genera (Brady)rhizobium. Two types of nodules can be 

distinguished based on the presence or absence of a persistent meristem: indeterminate or 

determinate nodules, respectively. Nodules of pea (Pisum sativum) and clover 

(Trifolium) species are examples of the indeterminate type whereas the nodules of 

soybean (Glycine max) and bean (Phaseolus vulgarus) are of the determinate type. A 

detailed description of legume root nodule ontogeny and organization is presented in 

several communications (e.g. Newcomb, 1981; Bergersen, 1982; Calvert, et al., 1984) 

and an extensive comparison of determinate and indeterminate nodule development is 

described by Brewin (1992). Here we will confine ourselves to a short description of the 

formation of the two nodule types. The development of both nodule types begins with the 

(Brady)rhizobium induced deformation and curling of root hairs, followed by the 

formation of infection threads in the curled hairs. The bacteria enter the root through these 

threads. Concomitantly with the infection process, the bacteria induce cell divisions in the 

root cortex. In plants on which determinate nodules are formed, cell divisions start in the 

outer cortical cell layers, whereas in indeterminate nodule formation cell divisions are 

induced in the root inner cortex. These root cortical cell divisions lead to the formation of 

nodule primordia and the infection threads grow towards these centers of mitotic activity. 

After release of bacteria into the plant cells, the primordium differentiates into a root 

nodule. Both nodule types are composed of a central tissue surrounded by uninfected 

peripheral tissues. The central tissue contains both infected and uninfected cells and the 

peripheral tissues (Newcomb, 1981) include the nodule cortex and the nodule 

parenchyma (Van De Wiel, et al., 1990), separated by the nodule endodermis. The 

nodule vascular bundles are located in the nodule parenchyma (Van De Wiel, et al., 

1990). In determinate nodules the central tissue is separated from the nodule parenchyma 

by a layer of uninfected cells, the boundery layer (Gresshoff and Delves, 1986). 

Legume nodule formation is accompanied by the expression of nodulin (nodule 

specific) genes (Verma, et al., 1986; Nap and Bisseling, 1990b; Sanchez, et ai, 1991). 

Based on the time point of expression during nodule development, nodulin genes have 

been divided into early and late nodulin genes. The early genes are already expressed 

before the actual nitrogen fixation starts, while the expression of the late genes is first 

detectable around the onset of nitrogen fixation (Govers et al., 1987). Numerous late 

nodulin genes have been identified. Among them are several genes encoding proteins that 

are present in the peribacteriod membrane (Fortin, et al., 1987, Jacobs, et al., 1987, 

Sandal, et al., 1987) and several which encode proteins involved in the carbon, nitrogen, 

and oxygen metabolism (for review see e.g. Franssen et al., 1992). Only a few early 

genes have been identified and examples are the pea genes ENOD5 and ENOD12 
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(Scheres, et al., 1990a and b). The expression of these genes is correlated with the 

bacterial infection process (Scheres, et al., 1990a and b) . The expression of the early 

nodulin gene ENOD2 occurs in the nodule parenchyma (Van De Wiel, et ai, 1990). 

None of the early nodulin genes identified so far is expressed in the cortical cells that 

start to divide as a result of the plant-bacterium interaction. 

In this paper we will describe the characterization of a soybean cDNA clone 

representing a gene specifically induced in dividing root cortical cells. Furthermore we 

compare the in situ expression of this gene in developing soybean (determinate) and pea 

(indeterminate) nodules. 

RESULTS 

Isolation and Characterization of pG/nENOD40 Clones 

In quest of early processes in nodule development, we searched for nodulin genes 

markedly expressed before N2-fixation starts. Therefore a soybean (cv Williams) nodule 

cDNA library was differentially screened with 32p_iabeled cDNA from RNA of nodules 

from 10-day-old soybean plants and from root RNA. This resulted in 10 cDNA clones 

hybridizing only to nodule cDNA. Among these clones are the previously described 

pGmENOD2, pGmENOD13 and pGmENOD55 (Franssen, et al., 1987, 1988). 

One of the other nodule specific cDNA clones, pGmENOD40-l, had an insert of about 

300bp. On Southern blots containing Hindlll digested soybean DNA, the insert DNA 

hybridized to 3 fragments (Fig.la), indicating that there is a small family of ENOD40 

genes. On Northern blots GmENOD40-l hybridized to an RNA of 700b present at a high 

level in nodules from 10-day-old plants (7 days after inoculation). GWJENOD40 RNA 

was found at a similar level in nodules from 14- and 21-day-old plants (Fig.lb). The 

transcript was not detectable in roots, shoots or leaves but a low level of G/wENOD40 

mRNA was observed in stems (Fig.lb). This shows that the GmENOD40 gene is not a 

true nodulin gene (Van Kammen, 1984), notwithstanding that it is strongly induced in 

root nodule tissues formed due to the plant-microbe interaction. Although the 

GwENOD40 gene is not a true nodulin gene we will use the term "nodulin" for the sake 

of convenience. The gene is expressed during nodule development prior to the start of 

N2-fixation, which begins at about 14 days, and thus most likely it is not involved in the 

N2-fixation process, but probably in the infection process or nodule organogenesis. 

To determine in which of these processes the GwENOD40 gene is involved, we 

examined GwENOD40 gene expression in nodules induced by Bradyrhizobium 

japonicum mutant 3160 and Rhizobium fredii USDA257, respectively. The nodules 

produced by both these bacteria are devoid of infection threads and intracellular bacteria 

(Rossbach, et al., 1989; Franssen, et al., 1987). Expression of the GwENOD40 gene 
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was detectable in these nodules (Fig.lc), and this favours a role of the gene in nodule 

development rather than in the infection process. 

Figure 1. Southern and Northern analysis with pGmENOD40. 
Panel a. Autoradiograph of a Southern blot containing 10 micrograms of soybean genomic DNA digested 
with Hindlll. 
Panel b. Autoradiograph of an RNA transfer blot containing 20 micrograms of total RNA isolated from 
3-day-old uninoculated roots (R), nodules (N) harvested at 10, 14, and 21 days after sowing, stems (S), 
shoots (SH) and leaves (L). 
Panel c. Autoradiograph of an RNA transfer blot containing 20 micrograms of total RNA isolated from 
nodules formed by B. japonicum mutant 3160 (lane 1) and from nodule-like structures harvested four 
weeks after inoculation with R.fredii USDA257 (lane 2). 
All blots were hybridized with "p.iabeled insert DNA from pGmENOD40-l. 

While the pG/nENOD40-l insert has a length of 300bp, the GmENOD40 transcript is 

700b, and therefore we turned to the isolation of a full-size cDNA clone. Two nodule 

cDNA libraries, one from RNA isolated from soybean cv Williams and the other from 

RNA of soybean cv Evans, were screened with 32p.iabeled pGwENOD40-l. This 

resulted in two cDNA clones with inserts of approximately 700bp , one, designated 

pGwENOD40-2, from the cv Williams cDNA library, and the other, pGwENOD40-3 

from the cv Evans cDNA library. Since the length of the inserts of the isolated cDNA 
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clones was about similar to that of the GmENOD40 transcript found in nodules, these 

clones were considered to be usable for further analyses. 

Nucleotide Sequences of the GwENOD40 cDNA Clones 

To determine the similarity between the isolated cDNA clones, the nucleotide 

sequences of the three clones were determined (Fig.2). The PstI insert of pGwENOD40-

2 contained 620 basepairs including a short oligo dA/dT stretch at one end (Fig.2, line b). 

The sequence of the 300bp insert of pGraENOD40-l is identical to the sequence of 

pGwENOD40-2 from base 320 to base 620. The EcoRI insert of pGwENOD40-3 

consisted of 670bp also with a short dA/dT stretch at one end. From base 101 to base 

653, the nucleotide sequence of this insert is exactly identical to the region of 

pGwENOD40-2 from base 1 to base 553 (Fig.2, line a), Further comparison made it 

clear that the insert of pGmENOD40-2 is 47bp longer at its 3' end and lOObp shorter at 

its 5' end than that of pGwENOD40-3. 

We determined the exact size of the GwENOD40 transcript by primer extension on 

RNA isolated from nodules of 14-day-old plants (cv Williams) using an oligonucleotide 

complementary to the sequence between base 40 and 60 of pG/nENOD40-2. This 

sequence occurs in both cDNA clones. Only one extension product with the size of 160b 

was detected (data not shown). The single extension product indicated that G/wENOD40-

3 is a full size clone, while G/nENOD40-2 is missing lOObp at its 5' end. Subsequently, 

we showed by reverse transcriptase-PCR experiments (data not shown), that the 

difference between the 3' ends of G/nENOD40-2 and GmENOD40-3 is cultivar related 

and is not due to the excistence of two different ENOD40 transcripts. 

Analysis of open reading frames of pGmENOD40-2/3 . 

The longest open reading frame (ORF) that can be derived from the nucleotide 

sequences of the inserts of both pGwENOD40-2 and pGwENOD40-3 encodes a 

polypeptide of 93 amino acids, containing no methionine. We investigated whether this 

ORF, positioned between base 106 and 385, could be translated despite the absence of a 

methionine as a translational start. For that puipose we made a translational fusion 

between the CaMV PI gene and pGwENOD40 .This CaMV PI gene has been used for 

Figure 2. Nucleotide sequences of the EcoRI insert of pGmENOD40-3 (line A) and PstI insert of 
pGmENOD40-2 (line B). In the DNA sequences, nucleotides are numbered to the right of the sequence. 
Dots indicate identical nucleotides in both DNAs. The predicted amino acid sequence of the longest ORF 
is shown in standard single-letter code above the nucleotide sequence. The amino acids are positioned 
above the second nucleotide of the triplet. The termination code is indicated with (*). 
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A CGCTAAACCAATCTATCAAGTCCTGATTAATCTGGTGAGCATGGAGCTTT 50 

A GTTGGCTCACAACCATCCATGGTTCTTGAAGAAGCTTGGAGAGAAAGGGG 100 
B 

E E R V L T P H T P S L K T V 15 

A TGTGAGAGGAGAGGGTGCTCACTCCTCACACTCCCTCACTTAAAACAGTT 150 

B 50 

C F G L A L A S L I N K G C V L T 3 2 

A TGTTTTGGCTTAGCTTTGGCTTCTCTGATCAACAAGGGATGTGTTCTAAC 200 
B 100 

F F L E W R K Q I H I L R R R R 48 

A ATTCTTTCTTGAGTGGCGGAAGCAGATACACATTCTCCGACGGAGGAGAG 250 
B 150 

G L A T A W Q T G K S Q K R Q W T 65 

A GCTTGGCTACAGCCTGGCAAACCGGCAAGTCACAAAAAAGGCAATGGACT 30 0 
B 200 

P L G S L W L C S A H V V L L A V 8 2 

A CCATTGGGGTCTCTATGGCTATGTAGTGCTCATGTAGTTCTTCTTGCTGT 350 

B 250 

E C N N K Q S W S S F * 93 

A AGAATGTAATAATAAACAAAGTTGGTCTTCCTTTTGAGAAGTTACCAGCT 4 00 

B 300 

A TTTGCTGTCCAAAATTACTCAATTTGCAGCTGACTAGAATTCCTTTCTCT 450 

B 350 

A CTTCAGTTTCTGCAGATGAGTAGGTAGGCAATTTGTGATCACTCCCTTCC 500 

B 400 

A CTTTTCATGTCTTCTGTGTTCCCTTTTCCATGCTTGTTTGTGTTGTTAGT 550 

B 450 

A TATGACCTTATGAGGAAATAAAAGAATAGTACAATTCTAGTCCCTCAGTT 600 

B 5.00 

A TAGGATTGTATTCTATTGAACTTTATTAGAAAAGTTTCCAGAGTCCTTTC 650 
B 550 

A TAAAAAAAAAAAAAAAAAAA 670 
B . . .GGTTGGAGTGAATAATGTTCATGATCCCTCACCCTTTCCCTTTAAAA 600 

B AAAAAAAAAAAAAAAAAAAA 62 0 
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comparable purposes (Verver et al., 1991) and the availability of antibodies directed 

against the PI protein allows detection of PI peptide sequences in fusion proteins. The 

163bp EcoRI-Ddel fragment of pGwENOD40-3 was cloned in-frame to a 420bp Smal-

SacI fragment of the CaMV PI gene in pBluescript (construct 3, Fig.3a). The out-of-

frame construct (construct 4) was generated from construct 3 by cutting the DNA with 

BamHl and subsequent filling in of the BamHl site and religation of the plasmid. 

Translation of RNA from CaMV PI DNA (construct 2) resulted in the synthesis of a 

polypeptide of 14 kDa (marked a; Fig. 2, lane 2) corresponding to the expected size of 

CaMV PI protein fragment. Indeed the 14 kDa protein was precipitable with PI 

antibodies. Translation of construct 3 derived RNA yielded two polypeptides with 

apparent molecular weights of approximately 20 and 30 kDa (marked b and c; Fig.3, lane 

3), respectively . The size of the smallest polypeptide is slightly bigger than the predicted 

size of the chimaeric polypeptide of PI and G/nENOD40-3. Why a second polypeptide is 

synthesized is unclear. Both the 20 and 30 kDa polypeptides contain PI sequences since 

both proteins can be precipitated with Pi-antibodies (Fig.3, lane 5). In contrast, RNA 

from the out-of-frame construct 4 (Fig. 3, lane 4) resulted in the 14 kDa protein, 

precipitable with the Pi-antibody. Moreover, RNA transcribed from the pG/nENOD40-3-

(construct 1) was not translated into a radiolabeled polypeptide (Fig. 3, lane 1). The 

protein band present in the upper part of the gel is also present in the absence of 

exogenously applied RNA (Fig. 3, lane -). Therefore we conclude that the ORF identified 

in pGmENOD40-2/3 can be translated in vitro although the exact position of this start 

codon within pGwENOD40-3 remains unclear. The identification of a cDNA clone 

homologous to GwENOD40-3 that contains an ORF homologous to the ORF in 

pGwENOD40-3, but starting with an AUG codon (Kouchi, pers. comm.) supports that 

the identified ORF of pGwENOD40-3 codes for the GmENOD40 protein. 

The putative GmENOD40 protein (Fig. 2) has a hydrophilic nature and lacks an N-

terminal signal peptide. Therefore, it is most likely a soluble protein. Data base searches 

with the GmENOD40 protein did not reveal any significant homology to known proteins 

but within the amino-terminal part occur several consensus sequences identified as 

potential phosphorylation sites for various protein kinases, like TPSLK for cdc2 (Sun, et 

al., 1991), TPHT for the cdc2 related ERK1/2 (Gonzalez, et ai, 1991) and SLK for 

protein kinase C (Sun, et ai, 1991). The presence of these sequences indicates that the 

GwENOD40 protein might be post-translationally phosphorylated. 

In Situ Localization of GmENOD40 mRNA in Developing Soybean Nodules 

GwENOD40 mRNA was localized in soybean roots at different time points after 

inoculation with B. japonicum USDA110 to determine where and when the gene is 
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Figure 3. Open reading frames analysis on RNA derived from pGmENOD40-2/3. 
Panel a. Schematic presentation of pG»iENOD40 (construct 1), CaMV PI DNA (construct 2) and the in-
frame and out-frame constructs between GmENOD40 and CaMV PI. The positions of the restriction 
sites for enzymes used in the cloning are indicated.(R= EcoRI; D= Ddel; Sm= Smal; B= BamHI; S= 
Sad). The bold arrows indicate the ORFs in the different clones. 
Panel b. In vitro translation products of RNA transcribed from pGmENOD40-3 (lane 1), CaMV PI gene 
(lane 2), the in-frame construct (lane 3) and the out-frame (lane 4) construct of pGmENOD40-3 and the 
CaMV PI gene. Translation products obtained in the absence of exogenously applied RNA is indicated in 
lane -.Immunoprecipitations with antibodies against the CaMV PI gene encoded protein of in vitro 
translation products of RNA from constuct 3 or 4 are shown in lanes 5 and 6, respectively. The RNAs 
were translated in a rabbit reticulocyte lysate in the presence of "S-methionine. Proteins were separated 
on a 15% SDS-polyacrylamide gel. At the right, a refers to the position of the 14kDa PI protein and b 
and c to the extension products generated after translation of RNA transcribed from constuct 3 DNA. 
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expressed during nodule formation. One day after inoculation the first cell divisions are 

induced in the subepidermal cell layer (Fig.4, a and b). Hybridizations with 35s-labeled 

antisense GmENOD40 RNA showed that GmENOD40 expression is induced in the 

dividing root cortical cells. Three days after inoculation a small nodule primordium, 

composed of small cells with a high cytoplasmic density, is formed. The infection thread 

has passed the root hair and has reached the primordium cells, where bacteria are released 

(Fig.4c, d and 4e, which is a magnification of c). At this stage of development, cell 

divisions also occur in the inner layers of the root cortex (Fig.4c). In cross sections of 

soybean roots three days after inoculation hybridized to antisense GmENOD40 RNA, 

G/nENOD40 mRNA was detected in all cells of the primordium. However, the number 

of silver grains in the cells containing released bacteria was significantly lower than in the 

primordium cells containing no bacteria (Fig.4e). Strikingly, GwENOD40 RNA is 

present at a markedly lower level in the root hair containing the infection thread than in 

the adjacent uninfected root hair (Fig.4e; hairs are indicated by arrows). This observation 

indicates that the GmENOD40 gene is switched off after infection by bacteria. The 

G/MENOD40 gene was also expressed in the dividing inner cortical cells but 

Figure 4. In situ localization of GmENOD40 mRNA during soybean nodule development. 
In situ localization of GwENOD40 mRNA during soybean nodule development. DC=dividing root 
cortical cells; CT=central tissue; IT=infection threads; NP=nodule primordium; Pe=pericycle; RC=root 
cortex; Rh=root hairs and XP=xylem pole, a, c, e, f, g and h are bright field micrographs where signals 
are visible as black dots, d, i, j and k are dark field micrographs where signals are represented by white 
dots, b is an epipolarization micrograph in which white shining dots are signal. 
a and b. Two dividing subepidermal cells of a 4-day-old root (one day after inoculation) hybridized with 
35s-labeled antisense GmENOD40 RNA are shown (arrowheads), and part of a root hair is visible (Rh). 
c and d. Section of 6-day-old soybean root (3 days after inoculation) showing a nodule primordium (NP) 
formed in the outer root cortex, and the dividing root inner cortical cells (DC) connecting the nodule 
primordium and root stele. An infection thread (small arrowhead) is visible in the infected root hair cell 
(big arrowhead), d is hybridized with the antisense G»iENOD40 RNA probe showing the expression of 
this gene in uninfected root hair cell (arrow), nodule primordium (NP), dividing root cortical cells and at a 
high level in root pericycle (Pe) near one of the xylem poles (XP). 
e. Magnification of a nodule primordium (NP) shown in c showing low expression of GwENOD40 in 
root hair (Rh2) and primordial cells penetrated by infection thread (IT, arrow)), and higher expression in 
uninfected root hair (Rhi) and primordial cells. 
f and i. Section of a 10-day-old nodule hybridized with 35s-labeled antisense GmENOD40 RNA shows 
the localization of this gene transcript (black dots in f and white dots in i) in the nodule central tissue 
(CT) and pericycle of the connecting vascular bundle. 
g and j . Section of a 16-day-old nodule shows the organization of a nitrogen-fixing nodule and the 
localization of this gene transcript in boundary layer (j, arrowhead), pericycle of vascular bundle (j, arrow) 
and uninfected cells in central tissue (CT) ( for details see Figure 5, i and j). 
h and k. The section of an empty nodule formed by Bradyrhizobium japonicum mutant 3160 shows a 
vascular tissue surrounded sclerified cell layer (Sc) and small cells with big nucleus at the tip (arrowhead). 
This section was hybridized with the same probe as in c and d showing the expression of GmENOD40 in 
the small cells at the tip (arrowhead) 
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the highest level of expression was detected in the root pericycle opposite the nodule 

primordium. In general nodule primordia are induced opposite one of the xylem poles. 

Indeed in most cases, the expression of the GmENOD40 genes was restricted to the part 

of the pericycle opposite the xylem pole (result not shown). In the exceptional case that a 

primordium was induced opposite one of the phloem poles the expression of the 

GmENOD40 gene extended from the pericycle region opposite the phloem pole to a 

region opposite a xylem pole. Such an asymmetric pattern of expression in the pericycle 

is shown in Figure 4c and d. 

Expression of the G/nENOD40 gene could not be detected in meristems of lateral 

roots or shoots (data not shown). In stems the expression is restricted to the cells in the 

phloem (data not shown). 

Seven days after inoculation, the nodule primordium has differentiated into a central 

region in which the first infected cells can just be recognized, surrounded by the 

peripheral tissues. The dividing inner cortical cells are now differentiated into a vascular 

bundle connecting the central tissue and the root stele. In situ hybridization showed that 

the GraENOD40 gene is expressed in the central tissue especially in the uninfected cells 

forming the boundary layer and in the cell layer surrounding the connecting vascular 

bundle (Fig.4f and i). At this stage of development the GmENOD40 gene is no longer 

expressed in the root pericycle. In nitrogen-fixing nodules from day 14 onward the 

expression pattern does not change compared to seven-day-old nodules (Fig.4g and j). A 

magnificaton of a hybridized section of a nodule of a 16-day-old plant shows that 

GraENOD40 mRNA is present in the boundary layer and at a lower level in the 

uninfected cells of the central tissue (Fig.5i and j). No G/nENOD40 transcript is 

detectable in the infected cells (Fig.5i, j and d). GmENOD40 mRNA is present in the 

connecting vascular bundle (Fig.4f and i) and in vascular bundles surrounding the central 

tissue (Fig.4g and j ; Fig.5a and b). Soybean nodule vascular bundles have an 

amphicribal organization since the phloem completely surrounds the xylem (Fig.5a and 

b). The endodermis is the cell layer, that surrounds the vascular bundle and is 

characterized by the presence of Casparian strips (arrow heads). The pericycle is located 

between the endodermis and xylem. As is shown in Fig.5a and b, GwENOD40 gene 

expression is restricted to the pericycle. A longitudinal section through a developing 

nodule vascular bundle (Fig.5c) showed that the G/nENOD40 gene is first expressed 

when the procambial cells differentiate into vascular tissue. Therefore, the induction of 

this gene is a relatively late step in the formation of these vascular bundles. In summary: 

The expression of the G/wENOD40 gene starts in the dividing cortical cells and when 

nodule primordium cells become infected, the level of GmENOD40 RNA decreases, 

reflecting that the gene is most likely switched off. Finally, in the central tissue of a 

mature nodule the expression of this gene is restricted to the uninfected cell type. In root 
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Figure 5. Localization of GmENOD40 and /'5ENOD40 mRNA during soybean and pea nodule 
development, respectively. B=boundary layer; CT=central tissue; E=endodermis; IN=infected cell; 
NC=nodule cortex; NP=nodule primordium; Pe=pericycle; Ph= phloem and N= nodule parenchyma, a, c, 
d, e, f, and i are bright field micrographs where signals are visible as black dots, b is an epipolarization 
micrograph where signals are white shining grains, g, h and j are dark field micrographs in which signals 
are represented by white dots. 
a and b. Detail of a longitudinal section of soybean nodule vascular bundle hybridized with 35s-labeled 
antisense GmENOD40 RNA shows the expression of this gene in pericycle (Pe). No expression was 
detected in endodermis (E) characterized by Casparian strips (arrowheads), phloem (Ph) and xylem (X). 
c. Longitudinal section of a nodule vascular bundle showing the localization of GmENOD40 mRNA in 
differentiated pericycle cells but not in procambial cells (arrow). Expression of the GmENOD40 is also 
seen in boundary layer (BL) and central tissue (CT). 
d. Detail of a nitrogen-fixing nodule (16-day-old) shows the localization of GmENOD40 mRNA 
represented by black silver grains (arrowhead) in uninfected cells (UC). No signal is detectable above 
background in infected cells (IC). 
e and h. Cross section of a pea root 5 days after inoculation shows the presence of two nodule primordia 
(NP), and the expression of the /'.SENOD40 in these primordia (NP) and root pericycle (arrowheads). 
f and g. Cross section of a pea root 2 days after inoculation shows a nodule primordium (NP) and an 
infection thread, and the localization of 7>.sENOD40 mRNA in the primordia (NP) and the low level of 
expression in cells in front of the infection thread (arrowhead). Root pericycle is indicated by arrow. 
i and j . Detail of Figure 4g showing the different tissues of a soybean nodule, and the localization of 
GmENOD40 mRNA in boundary layer (BL) and uninfected cells (UC). No expression of this gene was 
detectable in nodule cortex (NC), endodermis (E), nodule parenchyma (N) and infected cells (IC). 

nodules the GmENOD40 gene is also induced in the pericycle of the nodule vascular 

bundles. 

GwENOD40 Gene Expression in Empty Soybean Nodule 

Since the induction of G/nENOD40 gene expression in dividing root cortical cells is 

separated in both time and space from that in the pericycle of nodule vascular bundles, we 

postulate that different mechanisms control the expression of the GwENOD40 gene in 

these tissues. To test this hypothesis we analysed the in situ expression of the 

GwENOD40 gene in so-called empty soybean nodules formed by B. japonium mutant 

3160. These nodules contain neither intracellular bacteria nor infection threads 

(Rossbach, et al., 1989). These empty nodules contain at the distal part relatively 

undifferentiated cells resembling nodule primordium cells and in the proximal part a 

central vascular bundle (Fig.4h and k). Sections of these empty nodules were hybridized 

with antisense GwENOD40 RNA (Fig.4h and k). GwENOD40 mRNA was found in the 

cells at the distal part of the nodule, but not in the pericycle of the fully differentiated 

vascular bundle. Apparently, the induction in the distal region resembling the nodule 

primordium does not require intracellular bacteria, while the induction of GmENOD40 in 

the pericycle requires the presence of intracellular bacteria. 
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In Situ />sENOD40 Gene Expression During Pea Nodule Development 

Since the ontogeny of determinate and indeterminate legume nodules is different, we 

have examined whether a gene homologous to the soybean GwENOD40 gene is 

expressed in indeterminate pea nodules. Northern blot analysis of RNA from pea nodules 

showed that in pea nodules a ENOD40 transcript of the same size as the GwENOD40 

RNA was present (data not shown). 

Screening of the pea nodule cDNA library resulted in the isolation of 4 clones 

homologous to GTOENOD40-3. Comparison of the nucleotide sequence of one of these 

pea clones and pGmENOD40-3 revealed 78% homology over 300bp that were 

sequenced, indicating that the isolated pea cDNA clone represents /'sENOD40. 

To determine the localization of /'.SENOD40 gene expression, sections of developing 

pea root nodules were hybridized to antisense fxENOD40 RNA (Fig.5e,f,g and h). Two 

days after inoculation, a nodule primordium is formed in the root inner cortex. In Fig.5f 

and g a section of such a root is shown and parts of infection threads migrating through 

the root cortex towards the nodule primordium are visible (Fig.5f and g). The position of 

the infection thread tip, indicated by an arrowhead, shows that the infection thread has 

not yet reached the primordium. At this developmental stage the />sENOD40 gene is 

expressed in all nodule primordium cells and a low level of expression is detectable in the 

root pericycle. Five days after inoculation, expression of PsENOD40 in the root pericycle 

is stronger while expression in the nodule primordium remains the same (Fig.5e and h). 

In mature pea nodules the PsENOD40 gene is expressed in the pericycle of the nodule 

vascular bundle (data not shown). Therefore, the expression pattern of the ENOD40 gene 

during pea and soybean nodule development is similar. 

DISCUSSION 

In this paper we have described the characterization of the soybean "early nodulin" 

cDNA clone pGwENOD40. The GmENOD40 gene has a complex pattern of expression 

during nodule development. At early stages of development the G/wENOD40 gene is 

induced in root cortical cells which divide into a root nodule primordium. Furthermore, 

the GmENODAQ mRNA is also found in parts of the root pericycle opposite the nodule 

primordia. At later stages of development the G/nENOD40 gene is expressed in the 

pericycle of the nodule vascular bundle as well as in the uninfected cells of the boundary 

layer and the central tissue. In non-inoculated roots expression of the gene was not 

observed neither by Northern blot analysis, and reverse transcription-PCR experiments 

nor by in situ hybridization studies, showing that the expression in the root pericycle is 

induced by Rhizobium. 
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The expression pattern of the G/nENOD40 gene in B. japonicum mutant 3160 induced 

nodules showed that the induction of this gene in nodule primordia does not require an 

infection process, whereas G/nENOD40 gene expression in the nodule vascular bundle 

needs infection. The induction of expression of the GwENOD40 gene in nodule 

primordia resembles the induction of early nodulin genes such as ENOD2 and N-40' 

(Franssen, et al, 1987; Moerman, et ai, 1987; Dunn, étal, 1988; Govers, et al, 1990; 

Van de Wiel, et al, 1990), in that the G/nENOD40 gene is induced early in the 

interaction and does not require the presence of intracellular bacteria or infection threads. 

In contrast, the transcription of the GmENOD40 gene in the pericycle of the nodule 

vascular bundle requires infection and is induced at a relatively late stage of nodule 

development and as to that resembles expression of late nodulin genes. Thus, the 

induction of expression of the GmENOD40 gene in nodule primordium and vascular 

bundle is separated in time and space, and the induction of expression at these two sites 

has different requirements with respect to the presence of intracellular bacteria. At present 

little is known about the mechanisms by which Rhizobium regulates nodulin gene 

expression, but recent studies show that the expression of early nodulin genes />sENOD5 

and PsENODH can be induced with purified Nod factors (Bisseling et al, 1992). Since 

Nod factors can provoke the formation of nodule primordia (Truchet et ai, 1991; Spaink 

et al., 1991), it seems likely that the expression of the ENOD40 gene can also be elicited 

with these compound. Therefore, the ENOD40 clones might be usefull tools to study the 

molecular mechanisms by which Nod factors elicit plant responses. However, since the 

bacterial nod genes are not expressed in mature nodules (Schlamann et ai, 1991), it is 

unlikely that the Nod factors are part of the mechanism controling the ENOD40 gene 

expression in the mature nodule. Presumably other B. japonicum derived signal 

compounds or physiological conditions, created by the presence of intracellular bacteria, 

will induce the expression of the GmENOD40 gene in mature nodules. Together with the 

n-uricase gene (Bergmann et al., 1983; Newcomb étal., 1990), the ENOD40 genes are 

so far the only examples of plant genes expressed in uninfected nodule cell types and for 

both genes the presence of intracellular bacteria is required to become activated. A further 

similarity with the n-uricase gene expression is that the GmENOD40 gene expression is 

also not controled by a metabolite resulting from the nitrogen fixation process, since the 

GwENOD40 gene is expressed in nodules formed by a B.japonicum nifA mutant 

(Fischer, et ai, 1986; result not shown). 

A striking feature of the GwENOD40 protein is the absence of a methionine residue. 

In two cDNA clones, isolated from two different cDNA libraries made from RNA from 

two different soybean cultivars, the longest ORF did not contain a codon for methionine, 

while AUG codons that might serve as start codons are rapidly followed by stop codons. 

Therefore, we think that the longest identified ORF represents the amino acid sequence 

for the G/nENOD40 protein. This conclusion is supported by the identification of a 
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soybean cDNA clone homologous to GmENOD40 containing a putative start AUG in an 

ORF otherwise very similar to the long ORF in pG/nENOD40-2/3 (Kouchi, pers. 

comm.). In eucaryotes (e.g. Hahn et al., 1987; Yanofsky et al., 1990) and procaryotes 

(e.g. Kozak ,1983) several genes have been identified in which AUG does not serve as a 

translation start. In eucaryotes, no specific alternative start codon is used instead of 

AUG. However, GUG (valine) is preferentially used as a start codon for translation in 

procaryotic genes when an AUG is lacking. Within the putative Gm ENOD40 ORF, 

GUG is the fourth codon. Therefore it is tempting to speculate that this GUG encodes 

the N-terminal amino acid of the GmENOD40 protein. Downstream of this valine several 

potential phosphorylation sites are present. The potential phosphorylation site for the cell 

cycle regulating protein p34cc*c2 j s especially of interest, since the GmENOD40 gene is 

expressed in dividing cortical cells. The G/nENOD40 protein might be phosphorylated at 

this site in dividing cells (the nodule primordium), but not in non-dividing cells 

(uninfected cells). That would provide a mechanism to regulate the activity of the protein 

in the different tissues. 

Since the GwENOD40 protein is not homologous to any previously described 

protein, the sequence does not provide a clue to its function. Hence, speculations as to 

the possible function of G/nENOD40 can only be based on the in situ expression pattern. 

In determinate nodules the uninfected cells form a network and it has been proposed that 

this network is involved in the transport of metabolites (Pate, et ai, 1969). Moreover, it 

has been postulated that the pericycle of a vascular bundle has a function in transport 

since it can have a role in loading and unloading of the vascular tissue (Pate, et al., 

1969). The in situ expression pattern of the G/nENOD40 gene might suggest a role of 

this "nodulin" in a transport process. Whether the G/nENOD40 protein might also have a 

similar transport function in the nodule primordium is unclear. Such a role is not 

suggested by the expression of GWJENOD40 in the developing nodule primordium, but is 

not necessarily contradicted by that. 

The GwENOD40 gene is not a true nodulin gene since it is also expressed in the stem 

at a low level. In this respect the G/nENOD40 gene resembles the pea early "nodulin" 

gene f\sENOD12 (Scheres, et al., 1990b) and the bean "nodule specific" glutamine 

synthetase gene (Cock, et al., 1991). Neither gene is expressed in uninfected root tissue 

but a low level of expression of/>sENOD12 is found in stem and flower whereas, the 

"nodule specific" glutamine synthetase gene is expressed in stem and hypocotyls. Sprent 

has proposed "that the ancestral nodule may have been formed on stems of legumes 

growing in marshy areas" (Sprent, 1990), suggesting a stem origin of root nodules. The 

observation that some "nodule specific" genes are not expressed in roots but are 

transcribed in stems is consistent with such hypothesis. Furthermore, this observation 

supports the idea that nodulins are derived from plant genes, which normally encode 

proteins involved in non-symbiotic processes in plants (Nap and Bisseling, 1990b). The 
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results on />.sENC)D12, n-GS, and G/wENOD40 gene expression show that the original 

nodulin definition has partly lost its value to classify plant genes induced by Rhizobium 

in legume roots and it becomes clear that the definition to describe these genes might even 

have to be reassessed. 

EXPERIMENTAL PROCEDURES 

Growth Condition for Plants and Bacteria 

Soybean plants {Glycine max (L) Merr. cv. Williams) were cultured at 28°C as 

described by Gloudeman et al. (1987). Soybean seeds were inoculated at the day of 

sowing (day 0) with B. japonicum USDA110, B. japonicum mutant 3160 (a generous 

gift of Hennicke and Rossbach; Rossbach, et al. 1989) or R.fredii USDA 257 (Franssen 

et al., 1987). Plants used for in situ hybridization were inoculated 3 days after sowing. 

The bacteria were cultured as described by Bhuvareswari et al. (1980). Pea seeds (Pisum 

sativum (L) cv. Rondo) were sown in gravel and grown as described by Bisseling et al. 

(1978). The seeds were inoculated at day 3 with R. leguminosarum bv viciae strain 248, 

Plants were grown as described by Josey et al. (1979). 

Isolation of Nucleic Acids 

Total RNAs from plant tissues were extracted as described by Govers et al. (1985) 

and polyA+ RNA was obtained by oligo(dT) cellulose chromatography (Sambrook, et 

al., 1989). Plasmid DNA was isolated by the alkaline lysis method (Sambrook, et al., 

1989) and phage DNA by the plate lysis method (Sambrook, et al., 1989). 

Construction and Screening of cDNA Libraries 

A cDNA library was constructed in pBR322 from polyA+ RNA isolated from 10-day-

old soybean plants (cv. Williams) as described by Franssen et al. (1987). A nodule 

cDNA library of soybean cv Evans in lgtlO was a kind gift of Dr. K. Marcker 

(University of Aarhus, Denmark) and a Igt 11 pea nodule cDNA library was a kind gift of 

Dr. G. Coruzzi (Rockefeller University, New York, USA). Probes for the differential 

screening of the cv Williams library were prepared from poly A+ RNA from 5-day-old 

soybean root segments and from nodules on 10-day-old plants, using 10 ixCi a 32p. 

dATP (specific activity 3200 Ci/mmol, New England Nuclear) as radioactive tracer, as 

described by Franssen et al. (1987). Both lgtlO and lgtl 1 nodule libraries, were screened 

with 32p-iabeled GwENOD40 DNA. 
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DNA Sequencing 

The inserts of the isolated cDNA clones were subcloned into pBluescript vector 

(Stratagene Inc.) using standard techniques (Sambrook, et ai, 1989). The nucleotide 

sequences were determined using the chemical degradation method of Maxam and Gilbert 

(1980) and the dideoxy chain termination method (Sanger, et ai, 1977). Data were stored 

and analysed by programs written by Staden (1984) on a micro VAX/VMS computer. 

RNA and DNA Transfer Blot Analysis 

Total RNA was denatured in DMSO/glyoxal and electrophoresed on 1% agarose gels 

(Sambrook, et ai, 1982). The RNA was transfered to GeneScreen (New England 

Nuclear) filters and was bound to the filters by 1 minute illumination with UV light of 

254 nm (Church and Gilbert, 1984). DNA was electrophoresed on 1% agarose gels 

(Sambrook, et al., 1989) and transferred to GeneScreen plus (New England Nuclear) 

filters in 0.4M NaOH/0.6M NaCl. Hybridization and washing steps were performed 

according to the GeneScreen and GeneScreen plus manuals. 32p.iai)eie(} DNA probes 

were obtained by random priming. 

Construction of Translation Fusions of pG/nENOD40-3 and CaMV PI Gene 

The plasmid containing a BamHI-Clal fragment of the CaMV PI gene in pBluescript ( 

pBSgl, Verver et al., 1991) was a kind gift of D. Zuidema (Department of Virology, 

Agricultural University of Wageningen). A translational fusion (construct 3, fig.3A) of 

pGwENOD40-3 and CaMV PI gene was constructed by ligating a 163bp EcoRI-Ddel 

fragment of pGmENOD40-3 and a 420bp Smal-SacI fragment of the CaMV PI gene into 

pBluescript, cut with EcoRI and Sad (Sambrook, et ai, 1989). The Ddel site was filled 

in by Klenow DNA polymerase (Promega). The obtained linearized DNA molecules were 

circularized by blunt ligation (Sambrook, et al., 1989). The out-frame construct 

(construct 4, fig.3A) was obtained by cutting the in-frame construct with BamHI and 

filling in the BamHI site with Klenow DNA polymerase (Promega) followed by blunt 

ligation (Sambrook, et al., 1989). 

In Vitro RNA Transcription and Translation 

For sense RNA preparation plasmids were cut with NotI and transcribed with T3 

RNA polymerase (Scheres, et ai, 1990a,b). The resulting RNA molecules was incubated 

for 1 hour at 30°C in a rabbit reticulocyte lysate in the presence of 2-5|0.Ci of 35s-

methionine (1 lOOCi/mmol, New England Nuclear). The reaction was stopped by adding 
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sample buffer and the reaction mix was analyzed on a 15% polyacrylamide-SDS gel. 

Immunoprecipitation with antibodies against the CaMV PI protein (Zuidema, et al., 1990) 

was performed as described (Franssen, et al., 1982). Formed proteins were visualised by 

autoradiography on a Kodak X-omat film. 

Reverse Transcription-Polymerase Chain Reaction Analysis 

All oligonucleotides were synthesized on a Biosearch Cyclone DNA synthesizer. The 

oligo(dT) is a 20-mer. The sequence of oligo 1, is 5'-CTGGTGAGCATGGAG, 

corresponding to the region between base 32 and 46 in pG/nENOD40-3. The sequence of 

olig 2 is 5'-TCACTCCAACCTTAG and represents the antisense sequence from base 550 

to base 564 (Fig. 2) of pGmENOD40-2. The sequence of oligo 3 is 5'-

GGCAATGGACTCCAT and corresponds to the sequence of the region from base 190 

to base 205 present in pGmENOD40-2 and from base 290 to base 305 of pG/wENOD40-

3. cDNA was synthesized on 1 (ig RNA using 2U of AMV reverse transcriptase (Life 

Science) (1 hour at 42°C) and either oligo(dT) or oligo 2 as primer. Subsequently the 

reaction mixture was split and a polymerase chain reaction was performed in a LEP-

PREM PCR machine using 2 units of Taq polymerase (Cetus) and oligo 3 as sense 

primer. After denaturation at 93°C for 2 minutes the DNA and primers were allowed to 

anneal at 42°C for 2 minutes. DNA synthesis occurred at 73°C in 2 minutes. After 20 

cycles the DNA was electrophoresed on 1% agarose gels, transferred to GeneScreen plus 

(New England Nuclear) filters. To visualize DNA, the filter was autoradiographed after 

hybridization to a 32P-labeled insert DNA of pG/nENOD40-l. 

In Situ Hybridization 

Nodules harvested at different time points after inoculation with {Brady)rhizobium 

were fixed in 4% paraformaldehyde supplemented with 0.25% glutaraldehyde in lOmM 

sodium phosphate buffer for 4 hours (Van De Wiel, et ai, 1990). Fixed nodules were 

dehydrated, embedded into paraffin by routine methods. 7|im thick sections were 

hybridized with 35s_TjTP (1000-1500Ci/mmol, Amersham) labeled antisense or sense 

RNA probes (Scheres, et al., 1990a) according to a procedure derived from Cox and 

Goldberg (1988, Van De Wiel et al., 1990). Sections exposed for 2 to 4 weeks were 

stained with toluidine blue and photographed with a Nikon microscope equipted with 

epipolarization. 
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Abstract 

The pea late nodulin gene PsNOD6 has been cloned and sequenced. PsNOD6 is 

homologous to the pea early nodulin genes fsNODS and PsENODM. In situ hybridization 

experiments showed that like the ̂ ENOD3 and />.îENOD14 genes, the PsNODó gene is only 

expressed in the infected cell type. The fsNOD6 gene is first expressed at the transition of the 

pre-fixation zone II into the interzone II-III (the amyloplast rich zone preceding the fixation 

zone III), whereas the early nodulin genes /'sENODS and f\sENOD14 are already induced in 

the pre-fixation zone II. Thus these nodulin genes encoding homologous proteins are induced 

at consecutive stages of nodule development. 

The expression of the late nodulin genes encoding leghemoglobin precedes the expression 

of the late nodulin gene fxNOD6. Therefore these late nodulin genes have to be regulated by 

different mechanisms despite the fact that they are expressed in the same cell type. This 

conclusion is consistent with the fact that PsNOD6 lacks one of the conserved regions 

occurring in the promoters of all other late nodulin genes studied. 
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Introduction 

Pea (Pisum sativum) nodules have an indeterminate growth pattern. Consequently nodule 

tissues are of graded age and can be divided into specific zones; the meristematic zone I at the 

apex, the pre-fixation zone II where plant cells become infected by Rhizobium and 

subsequently elongate, the fixation zone III where nitrogen fixation occurs and in between 

zone II and III a few cell layers are present that are marked by the presence of prominent 

amyloplasts. The latter zone is the so-called interzone II-HI [10,22]. 

The formation of the infected cell type, present in the central tissue of the nodule, involves 

consecutive expression of nodulin genes (nodule-specific plant genes) [10, 20, 21]. We 

previously showed that the / 'sENOD^ gene is expressed in the distal part of the pre-fixation 

zone II of the pea nodules. The PsENODS gene is also transcribed in the pre-fixation zone II, 

but a maximal level of expression is found in the proximal part of this zone II. The early 

nodulin genes / 'ÄENOD3 and />sENOD14 are first expressed in the distal part of the pre-

fixation zone II and the level of the corresponding transcripts decreases at the transition of the 

pre-fixation zone II into the interzone II-III. Finally, the late nodulin gene leghemoglobin 

(PsLb) is first expressed in the distal part of the pre-fixation zone II and maximal expression of 

this gene occurs in the fixation zone III [10, 20]. 

In this paper we present the characterization of the pea late nodulin gene PsNOD6. 

Furthermore we studied the in situ expression of this gene in pea nodules, showing that this 

gene is expressed after the PsLb genes. 

Materials and Methods 

Plant material 

Growth conditions of pea plants (Pisum sativum cv Rondo or Feltham First) and 

inoculation with R. leguminosarum bv. viciae strain PRE were as described by Bisseling et al. 

[2]. 

Cloning, DNA and RNA manipulations, sequence analysis 

The isolation of the pPsNODó cDNA clone was previously described [11]. The Pstl-inseii 

of this cDNA clone was subcloned into pBluescript KS(+) and sequenced by the chain-

degradation method [15]. 

The Pisum sativum cv. Feltham First genomic library was generously provided by Dr. Anil 

Shirsat (Durham Univ., UK), it was constructed by partial digestion of leaf DNA with Sau3A 

and subsequent cloning of fractionated fragments into EMBL3 1 vector. Screening of the 

library with the labelled pPsNODó insert, phage purification, restriction mapping, subcloning, 
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generation of nested deletions with ExoIII/Mung bean nuclease and chain termination 

sequencing were done according to standard protocols [19]. Plant RNA was isolated according 

to the protocol described by De Vries et al. [9]. To determine the transcription start of the 

/>sNOD6 gene a kinase-labelled oligonucleotide TTCTGCAATAAGCAAGAG complementary 

to the 5'-end of the cDNA clone was annealed to nodule RNA and extended with reverse 

transcriptase. The size of the extension product was resolved on a sequencing gel as described 

byScheres«a/. [21]. 

The presence of PsNOD6 RNA in different plant organs was studied with the RNase 

protection assay, using a subclone of the />sNOD6 gene (position -1201 to +490) in 

pBluescript KS(+). 32p_iabeled antisense RNA was in vitro transcribed with T7 RNA 

polymerase from this subclone and used in RNase protection experiments [19]. 

For sequence assembly, analysis and homology searches the University of Wisconsin 

Genetic Computer Group package on VAX/VMS was used [8]. Nucleotide sequences of the 

PsNODó gene and cDNA were submitted to the EMBL/GenBank database with accessions 

X63700 and X63699. 

In situ hybridization 

The pPsNOD6 insert was subcloned into pBluescript KS(+) and transcribed from the T7 or 

T3 promoter in the presence of 35s-UTP. Labelling of P^Lbl, PsENOD3 and nifli antisense 

RNA probes was carried out as described by Yang et al. [25]. Pea nodules were fixed with 4% 

paraformaldehyde and 0.25% glutaraldehyde in PBS buffer (pH 7.2) supplemented with 

lOOmM NaCl. Sections were prepared as described before [25]. Hybridization and 

autoradiography were performed according to a protocol [23] derived from a method described 

by Cox and Goldberg [4]. 

Results 

Characterization of pPsNODó and a PsNOD6 gene 

The pea nodulin cDNA clone p/"sNOD6 [11] was used to isolate the pea genomic clone 

1NOD6-2. This clone contains Bam HI (6.2 kb), EcoRI (7.1 kb), and Hindlll (2.8 kb) 

restriction fragments hybridizing strongly to the insert of pPsNODó. Fragments of the same 

size are present in pea genomic DNA (data not shown). The 4.3 kb Sall-EcoRI fragment 

hybridizing with the cDNA was subcloned in pBluescript KS(+), and the nucleotide sequence 

of the PsNODó gene was determined (Fig. 1). The two regions that are 100% homologous to 

the insert of the cDNA clone pPsNODó are underlined in Fig.l, and are separated by a small 

intron of 103 bp (position (+104)-(+206)). The sequences of the boundaries of this intron are 

in agreement with the consensus intron junction sites in genes of dicotyledonous plants [12]. 
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The 3'-end of the PsNOD6 sequence contains two putative poIy(A)-addition signals [13], 

which are outlined in Fig. 1. 

The transcription start site (Fig. 1) was determined by primer extension experiments (results 

not shown). An open reading frame (ORF) starting with the first ATG in the transcribed region 

(position 

-1201 AATTCTCCTA ATAGTAAGAT GCAGATTTAC AATTAGAGAA TACCGTCCAA 
-1151 TATACATAAA TGTTAAACTT TAATAGTTTT GACATCATAC AAAACAATTC 

-1101 TAATAGGAAG TTGCACTCAC ATAAACTACC ATACTTTTCG AAATTTCCGA 

-1051 TAAACTAAAA TATTTTTCGA AATTTCCGAT AAACTAAAGC ACTTAAAAAA 
-1001 ATTCTTATAG AATATGAACT ACCGAAAATT TTAAAAATCC AGAAAAATAA 

-951 GGCAGGTATT GGATTTATCA AAGAACATGG TAGGTTAATT TTATAAAAAA 
-901 AAACGATAAA AAATTATATC GACAATTCAA AATGAACTAT TAAAATTTGG 
-851 CCTGTTGTCG AATATTTGAA TAAACTACCT GAAATTTCAT TCACATTTTA 
-801 ACTCAAATTT GTCTATGAAA AATTTAAGAA TTATAAAAAT ATATGGAGTG 
-751 TTAGGTTCAA TTGAGAATGA CAAGTTAAAT CCTCATTTTC TTATTATTTA 
-701 TATAGTTACA AGGGTGATAG GTATGATTTT GTTGGTTTAA TATTGTACCA 
-651 ATATAATTGA GATGTTAGTC AACTATAATG ATAATTATGT CTTTTCACTT 
-601 CTAATTTTTG GCTTTTAATT AAAATAAATC ACTTTAAAAA AACAATTTTT 
-551 GCAAACAATT AATGTACACT TTTTTTTATC TATCAATATA CTTTTTTTAG 
-501 GGATGAATCA ATAGCAAAAT TTCAACGAGA AGACTACAAA AATTCTAATC 
-4 51 TATTTGTATA TCAATGTGAA TCAAATAATT GATGTGAATG GGAATACAAG 
-4 01 AGAAATCATA AAACTACATT GATGTTTAGT CATAATCATC AAATAATTAT 
-351 ATTAAAAAAA AATCCTATGA TAATTTTAGC TTGTGCATAA CTCTGTTGTT 
-301 ACACCAATTG TAAAGTATCC GCAAAGAAAA CTTTTTCATG GCCCAAACCT 

-251 TTCTAAAAAG AATCCCTTTT CTATTGTGAA AGGGTGAAAA GTTATTAAAA 
-201 ACTATAATAA GTTTTjSAMgjalTAGCAAGTT GTTTTAGTCC TTATTTAGTG 
-151 TAATAAAGGC AAACCAACAT AATAATTTAT CAGAGACGTT TGTTAAGTGT 
-101 GCTAAAGGGA CAAACATAfcc AAAATfcGTCT ATTTAATTGC TAAAATATAT 

-51 TTTTTTTTAA TTTATTATCT TTATGCACJTA TAAApTGAAC AAATATATTC 

+ 1 M A K I L K C 
-11 TTTTTGTTAC ATAAAAAAAG AAAATAAATA TGGCTAAAAT TCTCAAATGT 

V F V Y A l l L V F F L L L I A E 
+ 4 0 GTTTTTGTTT ATGCAATAAT TTTAGTTTTT TTTCTCTTOC TTATTGCAGA 

N V H G A 
+ 90 AAATGTTCAT flOQGar.naac tattccttta Cctttccaaa ttatcttgta 

+140 tacctcacac cacttacaca ctacucgacc ccaccccaao aacacccccc 

K V K C K K N G D C P 
+190 CCaCCCCCCg aCCacagCAA AAGTAAAATG TAAAAAGAAT GGTGATTGTC 

K L P H M F P I I Y R C Y Q Q E 

+24 0 CAAAATTACC CCACATGTTT CCTATTATTT ATAGGTGCTA CCAGCAAGAG 

C T L V R V L D S * 
+ 290 TGTACCCTGG TTAGAGTATT AGACTCTAG ATCACACAAA CAAACGCTAT 
+340 TTTGGGAAGA AAGAGTTCTC GTATTAGAAA ATAAAGTATA TGGATAATTT 

+ 390 CATAC-TAGCA TATTAAAGAA CTTAT3CTPTT TOTATTTTAA OATGTCGTS& 

+ 440 SEfi&TXla&& SgSa&ftT̂ TTA AACAATST^A ̂ AATTAAATT ATGTTCTCTT 

+490 TCAATTTAG ACACATAATGT AGATAAATAT TTTCATTAGC ATAGCAAAAT 

+540 GGTCTAG 

Fig. 1. />.sNOD6 gene sequence. 

The 5' uPstieam region and coding part of the PsNOV6 gene are shown along with the deduced amino 

acid sequence (in single-letter code above the first base of each codon). The sequence of the cDNA clone 

upto the poly(A)-addition site is underlined. Putative poly(A)-addition signals are outlined. The putative 

intron is shown in small letters. The transcription start is marked with "+1". In the promoter putative 

TATA- and CAAT-elements are boxed, the nodule-specific element AATGAT is indicated in a shaded box 
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(+19)) and ending at position (+316) was identified, it encodes a polypeptide of 65 

amino acids of which the first 28 amino acids display the characteristics of a signal 

peptide [24]. Apart from the putative signal peptide, the PsNOD6 polypeptide is rather 

hydrophilic and has a high positive charge (calculated pl=8.9). The fsNOD6 protein 

sequence is homologous to two related pea early nodulins, PsENOD3 and />,sENOD14, 

described previously [20] (Fig. 2). The most striking feature of these three polypeptide is 

the conservation of the spatial distribution of the 4 Cys residues and amino acids 

surrounding them (Fig. 2). The cleavage sites according to Von Heijne [24] are predicted 

to be between Gly28 -Ala29 for PsNODó, between Ala24-Glu25 for />,sENOD3 and 

between Gly2^-Asn2l for PsENODH. We could not detect any significant homology 

between these three nodulins and protein sequences in the databases. 

The 5' uPstream region of the PsNODó gene has the typical characteristics of a plant 

promoter [16] with "TATA" (position -33 to -28) and "CAAT" (position -83 to -77) 

elements at proper positions. In all late nodulin genes studied so far an organ specific 

element (OSE) is found that contains two highly conserved DNA sequences, AAGAT 

and CTCTT [6]. The CTCTT motif is not present in the PsNODó gene promoter region, 

whereas a sequence close to AAGAT, namely AATGAT, is found at approximately the 

same relative position as in other late nodulin genes [6]. This sequence also occurs in the 

OSE of one of the Sesbania leghemoglobin (SrLb) genes [6]. Other less conserved 

sequences of nodulin gene promoters, shown to be binding sites for trans-acting factors 

[6], are not found in the 1.2 kb 5' uPstream region of the />sNOD6 gene. 

ENOD14 • • • SlWg. I A I A W M » » M J » « 5 1 S r g ™ IJiatJJJJ.JJJ.MJM 35 
ENOD3 ßrjgrtja. . iAmJtaiiJA-iuwsBiBf;"? MJMJJJJ .M.IJ3 L 38 
NOD6 R l ^CTUac v iA 'A ' J JUHylJ I J I M i ACTTTOW n AUcWKWrticCTSCTaa 40 

_* * ENOD14 EM SflpgijP^NjKHI - ̂ ^ ^ { ^ « i t U i l j B g g l RH W 61 
ENOD3 KP I B B I I B M I S .H H P^Mi |» f ! l a î rTa ' r t i l E H J l * l r1 p 6 9 

NOD6 KnfaHMrap tmRiA 'Aio i j aTWyH. B i » a a . 65 

Fig. 2. Homology oiPsEtiOm, />.sENOD14 and PsNOD6. 
Alignment of fsNODó with pea early nodulins /"sENODS and /'sENODM using the pileup program and 
displayed using prettybox of the software package by the University of Wisconsin Genetics Computer 
Group [8]. Shadowed amino acids indicate conservative substitutions. Vertical arrows indicate the 
predicted positions of the putative signal peptide cleavage sites (24). Cys residues are indicated with *. 
pPsENODM is not a full-size cDNA clone and lacks Met at the N-terminus of the reading frame [20]. 
The pairwise similarities, excluding signal peptide, calculated with 'Gap' program [8] are 67% for 
ENOD3-NOD6 and ENOD14-ENOD3, and 71% for NOD6-ENOD14. The identities are 46% for 
ENOD3-NOD6, 50% for ENOD14-ENOD3, and 31% for NOD6-ENOD14. 
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PsN0D6 gene expression is restricted to nodules. 

Previously it has been shown that the expression of some nodulin genes is not 

restricted to nodules, but is also found in other parts of the plant like stem and flower 

tissues [3, 21]. Therefore we tested by RNase protection whether the P5NOD6 gene is 

expressed in stem, leaf or flower tissue. 3 2P labelled antisense RNA (+490 to -1203) 

was hybridized to total RNA from the various organs. It was subsequently digested with 

RNase A and RNase Tl and the protected fragments were separated on a sequencing gel 

(Fig. 3). The most prominent protected fragment after hybridization with nodule RNA 

(arrowhead, lane 2,3,4 and 7 on Fig. 3) corresponds to the second exon of PsNOD6. 

Fig. 3 clearly shows that PsNOD6 is expressed exclusively in the nodule. 

Fig. 3. RNase protection experiment 
showing nodule-specific expression of 
PsNOD6 gene 
lane 1- no plant RNA added, complete 
digestion of a probe; lane 2- 0.1u.g of 
total nodule RNA; lane 3- 0.2mg of total 
nodule RNA; lane 4- 0.5u.g of total 
nodule RNA; lane 5- 2u.g of total root 
RNA; lane 6- 2ug of total flower RNA; 
lane 7- 2ug of total nodule RNA; lane 
8- 2ug of total stem RNA. Size markers 
are in bp. Arrowhead indicates major 
proteced fragment in nodule RNA which 
corresponds to the second exon of the 
PsNOD6 gene. 

1 2 3 4 5 6 7 8 
J I I I I I I 

- 2 8 0 

240 

- 2 0 0 

91 



In situ localization of PsNOD6, PsNOD3, PsLb and nifH mRNA 

Longitudinal sections of ea nodules of 14 and 20 day old plants were hybridized with 

antisense and sense 35S-labeled PsNODö RNA. The antisense PÎNOD6 RNA 

hybridized to RNA in cells of the central tissue of the nodule (Fig. 4, a, b), whereas the 

sense RNA probe gave no signal above background level (not shown). Within the central 

tissue P.sNOD6 mRNA is found in the infected cells, whereas this transcript is not 

detectable in the uninfected cell type of the central tissue (Fig. 5, a, b). 

Figure 5 a-c shows that the infected cells containing P.sNOD6 mRNA have 

amyloplasts, while the adjacent cells not expressing the PsNODó gene have none. This 

demonstrates that the induction of the PsNODó gene coincides with the beginning of 

amyloplasts accumulation, which marks the transition of the pre-fixation zone II into 

interzone Il-in [22]. Since rhizobial nifgene induction also occurs at this transition [10, 

25], we checked whether the PsNODó and nif genes are induced in exactly the same cell 

layer. Adjacent nodule sections were hybridized with nifH and PsNODóantisense RNA 

probes and it was shown that indeed the nifH and fiNOD6 messengers first appear in 

exactly the same cell layer of the central tissue (Fig. 4, a,b and g,h). 

The early nodulin genes fsENOD3 and f\sENOD14 are first induced in the proximal 

part of the pre-fixation zone II and the level of their transcripts decreases at the transition 

of zone II into the interzone II-III in 14-day-nodules (Fig. 4 e and f) [10, 20]. So the 

P.SENOD3/14 and PsNOD6 gene are induced at different stages of development. To 

compare the pattern of expression of the PsNOD6 gene with that of the late nodulin genes 

encoding Lb, adjacent sections were hybridized with PsNOD6 (Fig.4, a, b) and PsLb 

antisense RNA probes (Fig.4 c,d). PsLb gene expression starts in the pre-fixation zone 

II and reaches a maximal level in the interzone II-III that remains constant in the nitrogen 

fixation zone III (Fig. 4, c, d), whereas the PsNODó mRNA first appears in the 

interzone II-III (Fig.4, a, b). It is noteworthy that the PsNODó (Fig. 4, a,b; Fig. 5, a,b) 

and nifH mRNAs (Fig. 4, g, h) are present at their maximal level in the first cell layer in 

which they are detectable. In contrast the PsLb (Fig. 4, c,d; Fig. 5, d,e) and ENOD3 

mRNA (Fig.4, e,f) gradually increase in successive cell layers during development [20, 

25]. 

Fig. 4. In situ localization of />,sNOD6, PsLb, Z'.sENODS and Rhizobium nifH mRNA in adjacent nodule 
(14 day old) sections. 
a, c, e and g are bright field photographs where signals are visible as black dots, b , d, f and h are 
corresponding dark field photographs where hybridization signals are visible as white dots. Arrowheads 
indicate a corresponding position. The zonation is indicated at the bottom. Adjacent longitudinal sections 
were hybridized with 35S-labeled antisense RNA of PsNODó (a,b), PsLb (c,d), />sENOD3 (e.f) and 
nifH (g,h), respectively. Note that the decrease of fsENODS mRNA (e,f) at the transition of the pre-
fixation zone II and the interzone II-III is best visible in the bright field picture shown in e. Due to the 
very high density of silver grains in the infected cells of the nifH hybridized section (g), the light 
scattering by dark field illumination (h) is impaired. Arrowheads indicating same cells in a, b, g and h. 
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In nodules of 20 day old pea plants the spatial pattern of the PsNOD6 gene expression 

pattern is not significantly changed. The PsNODó mRNA is first detectable at the 

beginning of the interzone II-III and this transcript is present at a constant level in the 

older cell layers of the central tissue. In contrast, the distribution of Lb mRNA in a 

nodule of a 20 day old plant is markedly altered. At this stage of development, this late 

nodulin mRNA is only present at high levels in the interzone II-III, and its concentration 

in the pre-fixation zone II and the nitrogen fixation zone III is markedly reduced (results 

not shown). It is also noted that in nodules older that 20 days the decrease of the 

7>.sENOD3 and /"sENODM mRNA starts at the proximal part of the interzone II-III and 

disappears at the beginning of the nitrogen-fixation zone III (results not shown) [10]. 

a. â' V-rfi 

5pH 

ue, 
Fig.5. Localization of PsNOD6 and PsLb mRNA. 
Adjacent longitudinal sections were hybridized with -"S-labeled antisense RNA of fiNODó (a, b, c) 
and PsLb (d, e). The orientation of the sections is indicated. D=distal, IC = infected cell, P=proximal, 
UC = uninfected cell. 
a. A magnification of part of the central tissue of a nodule (16 day old) at the transition of the pre-
fixation zone II into interzone II-III. Amyloplasts are indicated by arrowheads. Bar = 100 um. 
b . Epipolarization micrograph of a showing the localization of PsNOD6 mRNA (white grains) in 
amyloplast-containing infected cells.Arrowheads indicate amyloplasts. 
c. Bright field micrograph of a detail of a showing two infected cells. The upper cell (*) has no 
amyloplasts and does not contain PsNOD6 mRNA, whereas the cell containing amyloplasts (arrowheads) 
has a high level of this messenger RNA. So the PsNOD6 gene is first induced at the transition of the 
pre-fixation zone II into interzone II-III. The signal is visible as black grains. Bar =10 um. 
d. A magnification of Fig. 4b at the transition of the pre-fixation zone II into interzone II-III showing 
PsLb mRNA localization (black dots) and amyloplast accumulation (arrowheads). Bar=100um. 
e. Epipolarization micrograph of d. White dots represent signals. 

Discussion 

In this paper we showed that the pea late nodulin gene PsNODó is homologous to the 

early nodulin genes f^ENOD3 and / 'ÄENOD14. In situ hybridization experiments 

showed that the fsENOD3/14 and FsNODó gene are expressed in successive stages of 
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nodule development. These three nodulins are small peptides of about 6 kDa, all of them 

containing 4 cysteine residues with a spatial distribution that is found in several metal 

binding proteins [1]. However, whether or not these nodulins are able to bind a specific 

metal ion remains to be proven. 

The PsNOD6 gene is first expressed at the transition of the pre-fixation zone II into 

the interzone II-III. At this transition a marked developmental switch in both bacterium 

and plant occurs. Vasse et al. [22] demonstrated cell to cell changes in the ultrastructure 

oîR.meliloti bacteroids at this transition. Furthermore/?, leguminosamm bv. viciae nif 

genes are first expressed at this transition point (Fig. 5, g, h) [10, 25], the expression of 

an outer membrane protein gene (ropA) of R.leguminosarum bv. viciae is switched off 

[7], and the lipopolysaccharide of the bacteroids is altered [18]. The switch in plant 

development is reflected by the marked drop of PsENOD5 mRNA concentration [10, 

22], the start of expression of the PsNODó gene as described in this paper and the 

formation of amyloplasts. The cause of the developmental switch at the transition of the 

pre-fixation zone II into the interzone II-III is unknown. However, since this change 

occurs from cell to cell it seems unlikely that physiological changes, like a decrease of the 

O2 concentration [14], are sufficient to trigger this switch and we favour the idea that 

signal molecules from plant and/or bacterium are involved. 

De Billy et al.[5] showed that Lb mRNA first appears in alfalfa nodules in the first cell 

layer of the interzone II-III. Our studies showed that in young nitrogen-fixing nodules 

the PsLb mRNA is present in the pre-fixation zone II and the mRNA remains present in 

all older cell layers of the central tissue. In older pea nodules (20-day-old) the PsLb 

mRNA is only present at high level in a few cell layers of the interzone II-III, a spatial 

distribution is similar to the pattern described for alfalfa nodules [5]. 

The changes in the spatial distribution of PsLb mRNA during pea nodule development 

show that pea nodules of 20-day-old plants can no longer be considered to be composed 

of successive zones with the characteristics of the different stePs of development. 

Therefore the timing of PsNOD6 and PsLb gene expression can best be compared in a 

relatively young nodules (e.g. 14 day old). 

In situ hybridization experiments showed that the expression of the PsLb genes 

precedes the transcription of the PsNOD6 genes. Hence these two late nodulin genes 

have to be regulated by different mechanisms. An organ specific element (OSE) 

containing two highly conserved DNA sequences AAGAT and CTCTT is found in the 

promoters of all late nodulin genes that have been studied [6], including a pea Lb gene 

[17]. In the PsNOD6, only one of the conserved regions (AATGAT) of the OSE is found 

in the promoter of the PsNOD6 gene. Therefore both the in situ expression studies and 

sequence analysis suggest that PsNOD6 and PsLb genes are regulated by different 

mechanisms. 
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Abstract 

Here we demonstrate that Rhizobium mRNAs can efficiently be detected in 

developing root nodules with the in situ hybridization technique. We have been able to 

localize the Rhizobium nifti mRNA as well as the transcript of the regulatory nifA gene. 

Therefore we expect that the in situ hybridization technique can generally be applied to 

locate Rhizobium mRNAs in root nodules. 

In pea nodules the nifA and nifli mRNAs are first detectable in the third to fourth 

cell layer of the late symbiotic zone. In these cell layers these mRNAs are detectable 

immediately at maximal levels. In older parts of the late symbiotic zone the level of nifli 

mRNA remains constant, whereas the level of nifA mRNA decreases. 

Finally the pattern of nif mRNA accumulation was compared with that of nodulin 

mRNAs. 

Additional Keywords: nif, nitrogen fixation, nodulin, Pisum sativum, Rhizobium 

leguminosarum 
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Introduction 

The formation of nodules on roots of Leguminosae by Rhizobium bacteria 

involves a series of successive steps which require the expression of plant as well as 

bacterial genes (Long, 1989). The plant genes specifically expressed during nodule 

formation are the nodulin genes (Van Kammen, 1984). A comprehensive list of nodulins 

has been published by Delauny and Verma (1988) and these genes have been reviewed 

extensively by Nap and Bisseling (1989). 

In indeterminate nodules, like pea root nodules, a persistent meristem is present at 

the apex, which continuously generates cells that develop into different nodule tissues. 

As a consequence the different tissues of a nodule are of graded age and so the central 

tissue of indeterminate nodules has been divided in the following zones: the apical 

meristem, the invasion zone, in which the growing infection threads penetrate the 

meristem cells, the early symbiotic zone, where the bacteria proliferate and the plant cells 

elongate, and the late symbiotic zone, which harbours infected cells filled by nitrogen 

fixing bacteroids. In old nodules also a senescent zone is present containing degenerated 

rhizobia and plant cells (Newcomb, 1976). 

Recently, a new set of pea early nodulin cDNA clones was characterized and the 

location of the corresponding transcripts in specific cells and tissues of infected roots and 

pea root nodules was determined by in situ hybridization (Van De Wiel et al., 1990, 

Scheres et al., 1990a and b). The ENOD2 mRNA was localised in the nodule 

parenchyma ("inner cortex") (Van De Wiel et al., 1990), while all other pea early nodulin 

mRNAs are present in the central tissue. Scheres et al. (1990a) showed that ENOD12 

gene expression is restricted to the invasion zone. Expression of the ENOD5 gene starts 

in the invasion zone, but reaches its maximal level in the early symbiotic zone. The 

ENOD3 and the homologous ENOD14 mRNAs are present at maximal levels in the early 

symbiotic zone and the first cell layers of the late symbiotic zone (Scheres et al., 1990b), 

whereas in older parts of the late symbiotic zone the level of these transcripts decreases. 

The mRNA of the late nodulin leghemoglobin (Lb) is first detectable in the early 

symbiotic zone, but its maximal level is first reached in the late symbiotic zone. These 

observations clearly showed that at different stages of root nodule development specific 

nodulin genes are induced. 

Rhizobial genes involved in different steps of the plant-bacterium interaction are 

the nodulation (nod), nitrogen fixation (nif and fix) genes and genes encoding for surface 

compounds of the bacteria. Examples of the latter group are genes involved in 

exopolysaccharide (exo), lipopolysaccharide (Ips) and ß-l,2-glucan (ndv) synthesis. 
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In alfalfa nodules the expression of several R. meliloti nifand nod genes has been 

studied in planta by using the gusA gene (Sharma and Signer 1990) as a reporter gene. 

Since thick sections (100-250 urn) were used in this study only an inaccurate picture of 

the spatial distribution of Rhizobium gene expression could be obtained. Furthermore, 

localization data obtained by using a reporter enzyme are obfuscated by the stability of 

this enzyme. To allow a more accurate localization of Rhizobium gene expression, we 

have used the in situ hybridization technique to examine whether bacterial mRNAs can be 

detected in planta. In this paper we report how, using this technique, transcripts of R. 

leguminosarum bv. viciae nif A and nifH genes can be localized in root nodules. The nifH 

gene encodes a subunit of the nitrogenase enzyme and it is abundantly expressed in 

nodules, while the nif A gene is probably expressed at a relatively low level, as it is a 

regulatory gene required for the induction of expression of other nif and fix genes 

(Hennecke, 1990). 

Results and Discussion 

Rhizobium mRNAs can efficiently be dectected in situ. 

To localize nifH mRNA by in situ hybridization, nodules from 16 day old pea plants 

were used. Longitudinal sections of nodules were hybridized to ^^S-labeled antisense 

nifH RNA. As shown in Fig. 1 .C and H the nifH mRNA was clearly detectable in the 

infected cells of the late symbiotic zone. No hybridization was obtained when a 35s-

labeled sense nifH RNA was used as a probe (data not shown), showing that the signal 

obtained after hybridization with antisense nifH RNA was due to the presence of nifH 

mRNA and not to that of nifH DNA of the Sym-plasmid This was further supported by 

the absence of a hybridization signal in the cells of the youngest cell layers of the late 

symbiotic zone, though these cells are already fully packed with bacteria (Fig. l.H. I. J ). 

The signals obtained after hybridization with antisense nifH RNA were just as 

intense as the signals obtained if antisense leghemoglobin (Lb) RNA was used (Fig. l.C, 

E). Since Lb accounts for about 10 % of total soluble nodule protein of the plant and 

nitrogenase for 10 % the total bacterial protein (Bisseling et al., 1978), we assume that 

similar amounts of Lb and nitrogenase mRNA are present in the nodule. This indicates 

that the prokaryotic nifH mRNA and the eukaryotic Lb mRNA are detected with the same 

efficiency. 

In situ hybridization using 35s-iabeled antisense nif A RNA as a probe was 

similarly carried out to sections of 16 day old nodules. Like the nifH mRNA, the nif A 

transcript was detectable in the infected cells of the late symbiotic zone (Fig.l.B.G, I, J) 

but the intensity of the signal obtained after hybridization with the nif A probe was 

considerably lower than with the nifH probe. In most experiments an exposure time of 2-
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4 weeks was required for showing nifA mRNA localization, while a 2-4 days exposure 

was sufficient to visualize the nifii mRNA hybridization (see legend Fig. 1). 

Since even the transcript of the regulatory nifA gene, which will be present in low 

concentrations, can be detected with in situ hybridization, it seems plausible that other 

Rhizobium mRNAs can similarly be localized with this method. 

nifii and nifA mRNA accumulation during nodule development 

By definition the late symbiotic zone consists of the cells of the central tissue that 

are fully packed with rhizobia and have already reached their maximal size (Newcomb, 

1976). Analysis of serial sections of pea nodules, hybridized with the two nif probes, 

showed that the nifii and nifA mRNAs (Fig. l.C and B respectively) are detectable in 

almost all infected cells of the late symbiotic zone. However, in the first 2-3 cell layers of 

this zone(LSa) (Fig.l A) only a small number of silver grains are detectable (Fig. l.G, 

H, I,J). To determine whether the «//"genes are expressed at a low level in these cell 

layers we determined the number of silver grains in infected cells of the different zones of 

the nodule central tissue. The silver grains were counted in 5 areas of 400|im2 in each 

zone of the central tissue as well as in nodule cortex, root cortex and parts of the slide 

containing no section.The average values and standard deviations are given in Table 1. 

The data presented in this table show that on nodule sections hybridized with a nifA or 

nifH probe the number of silver grains in nodule meristem, invasion zone, early 

symbiotic zone and in the first 2-3 cell layers of the late symbiotic zone is not higher than 

the background level present in nodule cortex, root cortex or areas of the slides 

containing no section. In the third/fourth cell layer of the late symbiotic 

zone(LSb)(Fig.l.A) both nifA and nifH mRNA are present at a maximal level 

(Fig.l.G.H. I.J, Table 1). In the proximal part of the late symbiotic zone(LSc) (Fig.l. A) 

the level of nifii mRNA remains at a similar level, whereas the number of silver grains 

above this zone in a nifA hybridized section decreases to about 35% of the maximal 

value. Hybridization with sense nifA or nifii probe gives a signal that is similar to the 

background level obtained with antisense probes (result not shown). These observation 

show that both the nifA and nifii genes are first expressed in the third or fourth cell layer 

of the late symbiotic zone. Analyses of l|im thick sections of technovit imbedded pea 

nodules showed that the infected cells of the first two cell layers already contained 

bacteroids with the characteristic Y shaped form (data not shown, see Van De Wiel et al., 

1988). This implies that the development into pleomorphic bacteroids precedes the stage 

where the nif genes are expressed and actual nitrogen fixation can occur. 

Recently Vasse et al. (1990) proposed a new nomenclature for the zones of the 

central issue of alfalfa nodules. They name the meristem, zone I, the invasion zone and 

early symbiotic zone, zone II, the youngest part of the late symbiotic zone interzone II-III 
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Fig. 1. Localization of nif and nodulin transcripts in longitudinal sections of a 16 day old pea nodule. 
A,F, I: bright field micrographs; B,C,D,E,G,H : dark field micrographs in which silver grains are 
visible as white dots. J : epipolarization micrograph. A,B,C,D, and E are adjacent sections. In all cases 
antisense RNA probes were labeled with ^^S-UTP. 
A . Nodule meristem (M), invasion zone (arrows), early symbiotic zone (ES) and late symbiotic 

zone (LS) are indicated.The late symbiotic zone is divided into region a, b and c. Bar=100um. 
B . Section hybridized with antisense nifK RNA. Arrowheads indicate the same cells as in C. 

Arrow indicates where the nif A mRNA level decreases. Exposure time 4 weeks. 
C . Section hybridized with antisense nifH RNA. The same cells as in B are indicated by 

arrowheads. Exposure 4 days. 
D . Localization of pea ENOD3 mRNA. Exposure time 2 weeks. 
E . Localization of pea leghemoglobin mRNA. Exposure time 4 days. 
F . Arrows and arrowheads in F. G. H indicate the same cells. IC = infected cell; UC = uninfected 

cell. Bar=100um. 
G . Detail of B. Arrowhead indicates the cell without signal, arrow indicates the cells with signal. 
H . Detail of C. 
I . Detail of box region in G. Dark dots represent silver grains. Bar=10nm. 
J . Epipolarization micrograph of I. Bright dots are silver grains. 

and the rest of the late symbiotic zone, zone III. The interzone II-III is characterized by 

the presence of prominent amyloplasts and the bacteroids in this interzone have a typical 

morphology, but most likely do not yet fix nitrogen. In zone III the number of 

amyloplasts is strongly reduced. In pea nodules the amyloplasts are not restricted to a 

specific zone of the late symbiotic zone, and bacteroid morphology has not extensively 

been studied. Therefore these criteria can not be used to indicate the interzone II-III in pea 

nodules. However, the absence of nif A and nifH mRNA in bacteroids of the youngest 

cell layers of the late symbiotic zone suggests that these cell layers correspond to the 

interzone II-III of alfalfa nodules. In Fig. l.A the part of the late symbiotic zone that 

could be the equivalent of the alfalfa interzone II-III is marked with LSa. 

Both nif A and nifH mRNA have a striking accumulation pattern during nodule 

development. Both mRNAs are first found in the third or fourth cell layers of the late 

symbiotic zone. In these cell layers these «(/"genes are immediately expressed at maximal 

levels (Table 1). Such a gene expression pattern of nif A suggests that a major change 

occurs in the third/fourth cell layer of the late symbiotic zone, causing nif A gene 

induction. In free-living R.meliloti bacteria, expression of the nif A gene is induced at 

microaerobic 02 concentrations (Ditta et al., 1987). Since microaerobic O2 

concentrations prevail in root nodules it has been postulated that nif A gene expression in 

nodules is also mediated by the 02 concentration (Hennecke, 1990). The microaerobic 

O2 concentration in the nodule is thought to arise by respiratory activity of the bacteria 

and the presence of an O2 diffusion barrier in the nodule parenchyma ("inner cortex") 

(Witty et al., 1986; Van De Wiel et al., 1990). So if the O2 concentration is the only 

factor controling nif A gene expression in the nodule, a rapid drop in O2 concentration 

must occur in the 3rd/4th cell layer of the late symbiotic zone. Although we can not 

exclude the possibility of this sharp change of O2 concentration, at this moment there are 

no cytological or physiological studies that indicate that such a rapid drop occurs. 
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Therefore it will be essential to demonstrate that the nifA gene is regulated by a similar 

mechanism in free living bacteria and in nodules. The level of the nifA mRNA decreases 

from about the 8th cell layer of the late symbiotic zone (Fig. IB, arrow). Since the nifA 

gene is autoregulated (Hennecke, 1990) we suppose that this decrease is caused by the 

accumulation of the nifA protein, but this needs to be checked by following the 

accumulation of the nifA protein with immunocytochemical localization methods. 

Since nifA is a regulatory protein involved in the induction of other nif and fix 

genes, we expected that nifA gene expression would precede the expression of the 

nifliDK operon. We tried to test this assumption by determining the location of nifli and 

nifA mRNA in adjacent sections. To facilitate the comparison of the corresponding cell 

patterns in these sections we have indicated a few cells with arrowheads (Fig. 1. B,C) 

and arrows (Fig.l. G,H). These studies showed that cells containing nifA mRNA also 

harbour nifli transcripts. Apparently the induction of the nifA gene results in a prompt 

switching on of the niJHDK operon. 

Our nifli mRNA localization studies might be consistent with the studies on nif 

gene expression in alfalfa nodules by Sharma and Signer (1990). They showed by using 

a gusA reporter gene that nif H gene expression "occured throughout the nodule, except 

in the meristematic zone". It is well possible that the "meristematic zone" in their studies 

includes the meristem, invasion zone, early symbiotic zone and a few cell layers of the 

late symbiotic zone. However, since thick sections were used to detect gusA activity the 

different zones could not be identified. Recently Boivin et al. (1990) used thinner 

sections to follow R. meliloti gene expression using LacZ as a reporter gene. In these 

studies a more accurate localization was achieved. Sharma and Signer (1990) did not 

observe any difference in nifli and nifA gene expression in older parts of the late 

symbiotic zone. In their studies this difference might have been masked by the stability of 

the gusA protein. 

Comparison of accumulation patterns of nodulin and nif mRNAs 

Clues on possible functions of nodulins and bacterial gene products can be 

obtained by determining at which stage of development specific gene products are made. 

For that purpose we compared the spatial distribution of the ENOD3 early nodulin 

mRNA with that of nif mRNAs. Previously we have shown that the amino acid sequence 

of the ENOD3 polypeptide contains 4 cysteine residues in relative positions characteristic 

for metal binding proteins (Scheres et ai, 1990b). We then proposed that this early 

nodulin might be involved in transport of molybdenum and/or iron ions into the 

bacteroids, since the bacteroids require high amounts of these metal ions for the synthesis 

of the nitrogenase enzyme (Shah and Brill, 1977). As shown in Fig. l.B.C.and D the 

maximal level of ENOD3 gene expression coincides with the region of the late symbiotic 
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zone where the expression of nif A and nifH genes starts. Therefore we conclude that the 

mRNA localization studies are consistent with the postulated function of ENOD3 in 

transport of molybdenum and iron ions towards bacteroids. 

Leghemoglobin (Lb) is a nodulin whose appearance during nodule development 

has been frequently compared with that of nif proteins (Bisseling et al., 1986). Since a 

more accurate comparison of the order of induction of genes can be made by in situ 

hybridization we compared the pattern of Lb and nifH mRNA accumulation in 

longitudinal sections. As shown in Fig. l.E the Lb mRNA is first detectable in the early 

symbiotic zone (ES) and gradually reaches a maximal level in the late symbiotic zone 

(LS). Therefore Lb gene expression markedly precedes nif gene expression in pea 

nodules. This is consistent with most of the previously published biochemical studies 

(Bisseling et al., 1986). 

In this paper we have demonstrated that rhizobial mRNAs can efficiently be 

detected in root nodules with the in situ hybridization technique. Therefore in situ 

hybridization is a very powerful tool to study the sequential order of both plant and 

bacterial gene expression in plant microbe interactions. 

Materials and Methods 

Plant materials 

Pea (Pisum sativum cv. Rondo) plants were cultured and inoculated with 

Rhizobium leguminosarum bv. viciae (PRE) as described by Bisseling et al. (1978). 

In situ hybridization 

Pea nodules were harvested 16 days after inoculation and fixed immediately with 

4 % paraformaldehyde and 0.25 % glutaraldehyde in 50 mM sodium phosphate buffer 

(pH 7.2) for 4 hours. The nodules were dehydrated by passing through a routine ethanol 

series and embedded in paraffin. Seven |j.m thick sections were cut using a Leitz 

microtome. They were adhered on poly-L-lysine coated slides, and thereafter 

deparaffinized with graded xylene. The sections were hybridized by a method derived 

from the procedure described by Cox and Goldberg (1988) (Van De Wiel et al., 1990). 

In short, sections were hydrated and dried under vacuum. The sections were hybridized 

with RNA probes as described by Van De Wiel et al. (1990). Slides were coated with 

Kodak NTB2 nuclear emulsion and exposed at 4 °C. Afterwards the slides were 

developed in Kodak D19 developer and fixed in Kodak fixer. Sections were stained with 

0.25 % toluidine blue and mounted with DPX (BDH). The sections were photographed 

with a Nikon microscope with dark field and epipolarization optics. 
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Labelling of antisense/sense RNAs 

The 1.8 kb EcoRI-BamHI fragment of pT7.BB containing the coding region of 

the nifA gene (Roelvink et al., 1989) was subcloned in pT7-5 vector (kindly provided by 

S. Tabor). The pTl-5/nifA plasmid was cut with Xbal before antisense nifA RNA (from 

position 893-469 bp) was made with T7 polymerase. 

The nifH antisense RNA (from position 89 to 433 bp) was transcribed by T7 

polymerase from a pTZ19 derivative containing a 518 bp Accl-Hpal fragment of pGBI 

(Schetgens et al., 1984). For sense nifH RNA production, a pTZ18 derivative carrying 

the same insert was used. The production of antisense fiENOD3 and Lb RNAs was 

carried out according to Scheres et al. (1990b). The antisense RNA probes were 

radioactively labeled with föS] UTP (1000-1500 Ci/mmole, Amersham) as described 

previously (Van De Wiel et ai, 1990), and degraded to about 150 nucleotides long 

fragments according to Van De Wiel et al. (1990) before hybridization. 
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Chapter 7 

Down-regulation of expression of the Rhizobium 
leguminosarum outer membrane protein gene ropA occurs 

abruptly in interzone II-1II of pea nodules and can be 
uncoupled from nif gene activation 

Ruud A. de Maagd, Wei-Cai Yang, Leentje Goosen-de Roo, Ine H.M. Mulders, Henk 

P. Roest, Herman P. Spaink, Ton Bisseling and Ben J.J. Lugtenberg. Molecular Plant-

Microbe Interaction, in press 
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Abstract 

The expression of the Rhizobium leguminosarum biovar viciae outer membrane 

protein gene ropA during nodule development was studied using immuno-electron 

microscopy and in situ hybridization. Using immunochemical detection in isolated cell 

envelopes it had been shown earlier that the RopA outer membrane antigen disappears 

during bacteroid development (de Maagd et al., 1990). In the present study we used 

immuno-electron microscopy on vetch nodule sections to show that the decrease in RopA 

protein expression occurs in the nodule after release of the bacteria from the infection 

thread. Detection of ropA mRNA in sections of pea nodules by in situ hybridization 

revealed a sudden decrease in messenger level at the transition from pre-fixation zone II 

to interzone II-III. This decrease coincided with a sudden increase in nifli mRNA levels. 

Although the decrease in ropA messenger and appearance of nif messenger are spatially 

correlated we could show that ropA down-regulation can be uncoupled from nif gene 

activation by using a strain that induces non-nitrogen fixing nodules on pea but does 

develop into bacteroids. The identification of the transition of prefixation zone II to 

interzone II-III as a developmental switch for bacteroid development is discussed. 
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INTRODUCTION 

The development of an effective symbiosis between plants of the Leguminosae family 

and rhizobia involves a series of steps, in which plant genes as well as bacterial genes 

play a role. For the bacterium this results in differentiation into a specialized nitrogen-

fixing form, the bacteroid, which shows extensive morphological and molecular 

differences with free-living bacteria. Most notably, the mature bacteroid expresses the nif 

genes which are responsible for the fixation of atmospheric nitrogen. On the plant side, 

nodulin genes are expressed exclusively in the nodule. According to the timing of their 

appearance the nodulins can be divided into an early and a late subgroup (Nap and 

Bisseling, 1989; Franssen et al., 1992). 

Pea nodules are of the indeterminate type and therefore in mature nodules all 

developmental stages of the plant tissues as well as of the infecting bacterium can be 

observed, progressing from the distal meristematic zone to the proximal senescent zone. 

Vasse et al. (1990) proposed a nomenclature of zonation for alfalfa nodules, that is also 

applicable to pea nodules (Franssen et ai, 1992). 

Recently we have described the cloning and characterization of roph, a surface 

protein gene of Rhizobium legwninosarum biovar viciae, encoding part of the surface 

antigen group III (de Maagd et al., 1992). RopA encodes one of the two proteins 
(OMPIIIa, Mr=36kDa) that together with their peptidoglycan residue-containing 

derivatives make up outer membrane protein antigen group III of free-living bacteria (de 

Maagd et al., 1992). Using Western blotting with monoclonal antibodies, it was shown 

that antigen group III is severely depleted in cell envelopes of pea nodule bacteroids, 

when compared to cell envelopes of free-living bacteria (de Maagd et al., 1989). This 

depletion, as well as that of the antigen group n is a phenomenon that has been shown to 

occur in bacteroids of different host plant/Afazoöuwn-combinations, suggesting that this 

change is an essential part of the development of an effective symbiosis (Roest et al., 

manuscript submitted). 

In this manuscript we describe, by using immuno-electron microscopy that the 

expression of antigen group III deminishes during bacteroid development after release 

from the infection thread. Furthermore, applying in situ hybridization we have shown 

that down-regulation of expression of ropA occurs at the messenger RNA level and very 

abruptly at the same developmental stage where nif gene expression is first detectable. 

Using a Rhizobium mutant which does not fix nitrogen while bacteroid development does 

occur, we have shown that the down-regulation of ropA messenger level is not dependent 

on nif gene expression. 
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RESULTS 

Immuno-electron microscopic Detection of Group III Antigens in Nodules 

Initially, the decrease in antigen group III contents during symbiosis was found by 

immunochemical comparisons of free-living bacteria with bacteroids from pea nodules 

(de Maagd et al., 1989). To determine whether decrease of antigen group III expression 

takes place inside the nodule, immuno-electron microscopy with monoclonal antibody 

MAb38 (de Maagd et al., 1989) was used to detect this antigen group in thin sections of 

vetch (Vicia sativa) nodules. MAb 38 had been shown earlier to preferentially recognize 

the non-denatured antigen group III oligomers on Western blots as well as on intact cells 

of R. leguminosarum biovar viciae strain 248. The level of labelling of bacteria or 

bacteroids was quantified for three categories, broadly representing subsequent 

developmental stages. We compared bacteria from infection threads and infection droplets 

in the invasion zone, newly released bacteria or "young" bacteroids and mature, nitrogen-

fixing bacteroids. A decrease in labelling in mature bacteroids (Fig. 1C) as compared to 

newly released bacteria (Fig. IB) and infection thread bacteria (Fig. 1 A) was observed. 
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Fig. 1. Indirect immuno-gold labelling with MAb 38 of infection thread-localized bacteria and bacteroids 
in vetch nodules. A, B, and C show the same magnification. Bar = 1 \im. A. Bacteria in infection thread 
(IT). B. "Young" bacteroids in plant cytoplasm. C. Mature bacteroids (arrowheads indicate the rare gold 
particles). See text for further details. 
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To quantify these data, the amount of gold particles per \irrr section of each category was 

averaged from a large number of photographs (for details, see Methods section). The 

results of this quantification are shown in Fig. 2. Statistical comparison of each pair of 

two categories using the Student's t test showed that while the difference between 

categories 1 and 2 is not significant, the difference between categories 1 and 3, as well as 

that between categories 2 and 3, are indeed significant (p..0.01). It can be concluded 

from these results that decrease in antigen group III expression indeed occurs inside the 

nodule, between release from the infection thread and occurrence of mature, nitrogen-

fixing bacteroids. 
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Fig. 2. Mean gold partiele density (particles per (J.m ) in sections of immuno-gold labelled infection 
thread and infection droplet bacteria, "young" bacteroids and mature bacteroids. See Methods section for 
details. 

In Situ Localization of RopA Transcripts 

To determine whether the decreased detectability of antigen group III in developing 

bacteroids is the result of an actual decrease in expression rather than of degradation, for 

example by lytic enzymes in the peribacteroid space, we examined the level of ropA 

mRNA in pea nodules by in situ hybridization with a ropA probe. This technique would 

also allow us to determine in what particular developmental stage, if any, down-

regulation takes place. Longitudinal sections of 16 day-old pea nodules induced by R. 

leguminosarum biovar viciae strain 248 were hybridized with a radioactive antisense-

RNA-probe derived from the cloned ropA gene. Fig. 3A shows a phase contrast 

micrograph of a pea nodule section in which the different developmental zones can be 

identified. The 3 to 4 cell layers of interzone II-ILT can be easily identified here by their 

bright white appearance caused by amyloplast accumulation. Fig. 3B shows an overview 

of a longitudinal section of a whole nodule hybridized with a radioactively labelled wpA-

probe and with the different developmental zones indicated according to Franssen et al. 
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(1992). Labelling at a low level is detectable in the youngest cells of the pre-fixation zone 

II. The density of silver particles increases towards the older, proximal part of zone II, 

probably as a result of bacterial proliferation. However, at the transition of the pre-

fixation zone II to interzone II-III the intensity of the signal decreases abruptly. The same 

section viewed by dark field-microscopy (Fig. 3C) shows the same pattern. It can also be 

seen here that in the interzone II-III the hybridization signal decreased to a low, though 

still detectable level that remains constant throughout the rest of the proximal part of the 

infected tissue of the nodule. A higher magnification of the transition region (Fig. 3E) 

shows that this decrease occurs abruptly from one cell layer to the next layer, with almost 

no intermediairy levels. This decrease in ropA mRNA level coincides with the appearence 

of amyloplasts in the infected cells, and so it exactly matches the transition from the pre-

fixation II into the interzone II-III. Control sections hybridized with sense-ropA RNA 

probe showed no signal above background levels. 

The pattern of hybridization of the ropA-probe showed a striking complementarity 

with the patterns of hybridization observed earlier with nifk- and «//H-probes (Yang et 

al, 1991; Franssen et al., 1992). We therefore hybridized adjacent sections of the same 

nodule with a m/H-probe. The overview of this section shows the abrupt start of 

expression of nifli at the beginning of the interzone II-III and the expression level 

remaining constant throughout zone III (Fig. 3D). A higher magnification, of the same 

region as was shown in Fig. 3E (Fig. 3F), shows that expression of nifli starts abruptly 

and that the first cell layer in which nifli is expressed is the first cell layer in which ropA 

expression abruptly decreases (compare arrows in Figs. 3E and 3F). In conclusion, the 

switching off of ropA expression and the turning on of nifli gene expression both occur 

exactly at the transition from zone II into the interzone II-III, indicating that these 

processes may be regulated through a similar mechanism. 

Down-Regulation of the RopA mRNA Level Can Be Uncoupled from the 
Activation of Nif Gene expression 

The exact coincidence of ropA down-regulation and the start of nif gene transcription 

prompted us to address the question whether nif gene transcription and ropA down-

regulation might be regulated by the same mechanism. For this purpose we looked at pea 

nodules induced by strain Kll.pMP258. This is a nodE::Tr\5 mutant of R. 

leguminosarum biovar trifolii strain ANU843 (Djordjevic et ai, 1985) containing a 

cloned nodE gene of the R. leguminosarum biovar viciae strain 248 Sym plasmid 

pRLUI, under control of the nodA promoter of the same plasmid (Spaink et al., 1989). 

This strain nodulates various host plants of biovar viciae strains such as vetch and pea, 

but forms ineffective nodules on these plants (Spaink et al, 1989; H.P. Spaink, 

unpublished results). Light microscopy of 7 \xm sections of a pea nodule induced by this 
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Fig. 3. In situ localization of ropA and nifH mRNA in adjacent longitudinal sections of 16-day-old pea 
nodules. Nodules were induced by R. leguminosarum biovar viciae strain 248 (A-F). A. Phase contrast 
micrograph showing amyloplast accumulation. Bar=50(im. B. Bright field micrograph of a nodule 
section hybridized with S-labeled antisense ropA probe. Cells containing high concentrations of silver 
grains are black. The organization of pea nodule tissue is presented in the box. I. Meristem, II. 
Prefixation zone, II-III. Interzone, III. Nitrogen fixation zone. C. Dark field micrograph of B White dots 

are the signal. D. Dark field micrograph of an adjacent section of A hybridized with J JS-labeled antisense 
nifH RNA probe. E. Higher magnification of B. White arrowheads indicate cells having the highest level 
of silver grains, black arrowheads indicate cells with signifcantly less silver grains. Bar=5p.m. F. Higher 
magnification of a bright field micrograph of D. Arrowheads indicate the same cells as in E. G. Bright 
field micrograph of a longitudinal section of a pea nodule induced by R. leguminosarum strain 
Kl l.pMP258, hybridized with an antisense ropk RNA probe. Bar=50|xm. H. Bright field micrograph of 
an adjacent section of G hybridized with an antisense nifH RNA probe. 
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strain showed infected cells with bacteroids (Fig. 3G). This shows that, although the 

bacteroids are not able to fix nitrogen, release from the infection threads, subsequent 

proliferation, and to some degree normal bacteroid development do occur. The bacterial 

strain from which mutant Kl 1 is derived, biovar trifolii strain ANU843, has a group of 

outer membrane proteins related to the group III antigens of strain 248. This relationship 

consists of immunological cross-reactivity (de Maagd, 1989) as well as of the occurence 

of two strongly cross-hybridizing DNA fragments in Southern blots of ANU843 DNA 

probed with rop A (Roest et al., unpublished results). Moreover, immunochemical 

comparison of free-living bacteria and bacteroids from pea nodules of strain ANU843 

containing biovar viciae Sym plasmid pRLUI showed that, as in strain 248, this antigen 

group is severely reduced in bacteroids (Roest et ai, manuscript submitted). In situ 

hybridization of 7 |j.m sections of 

Kll.pMP258-induced pea nodules with a ropA-antisense probe (Fig. 3G) revealed a 

pattern of mRNA distribution that is similar to that in pea nodules formed by strain 248 

(Fig. 3B). However, in adjacent sections of the same nodule we were unable to detect 

nifli mRNA accumulation by in situ hybridization (Fig. 3H). These results show that the 

down-regulation of ropA mRNA level during bacteroid development can be uncoupled 

from the activation of «//"gene transcription. 

DISCUSSION 

In this study we have followed the expression of the ropA outer membrane protein of 

R. leguminosarum during symbiosis. RopA expression appears to be regulated at the 

mRNA level, showing a sudden, sharp decrease from one cell layer to the next layer at 

the transition from zone II to interzone II-III. Although this decrease occurs at exactly the 

same stage as where nif gene transcription is activated, these processes could be 

uncoupled. 

We first addressed the question where the decrease of expression takes place by 

looking at occurence of the MAb38-epitope of antigen group III. This showed that 

expression of the epitope decreases inside the nodule, between release from the infection 

thread and development into mature bacteroids. Subsequently we in situ localized the 

rop A messenger in sections of pea nodules. Down-regulation of the rop A messenger 

level occured at the transition of zone II to interzone II-III, clearly showing that this 

transition is an important region in the nodule for bacteroid differentiation. The interzone 

II - III can be identified microscopically by the presence of amyloplasts (Vasse et al., 

1990; Franssen et al., 1992). During nodule development it is initially a major region of 

the central tissue, but it decreases to only a few cell layers in mature nodules (Franssen et 

al., 1992). Whereas in zone II proliferation of the bacteria inside the infected plant cells 
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appears to be the main feature, in interzone II-III the morphological and - as we propose 

here - molecular changes start to take place that will eventually give rise to the mature, 

nitrogen-fixing bacteroid. Interzone II-III represents not only a crucial stage in bacteroid 

development: expression of plant-derived nodulins also seems to alter in this zone. The 

early nodulin gene F^ENOD5 is highly expressed in zone II but its expression suddenly 

drops at the transition to interzone II-III (Franssen et al., 1992). Furthermore the 

expression of the late nodulin gene F JNOD6 is induced at this transition (Kardailsky et 

al., pers. commun.). Also, in alfalfa in interzone II-III expression of the late nodulin 

leghaemoglobin first occurs (De Billy et ai, 1991). 

Some of the changes in surface structure occuring in bacteroid development can be 

mimicked in vitro by applying growth conditions reminiscent of conditions that are 

thought to occur in nodules, such as low oxygen pressure and availability of succinate as 

major carbon source (Sindhu et al., 1990). We have investigated the influence of a large 

number of in vitro growth conditions on the activity of the ropA-promoter, in order to 

identify possible factors that may cause down-regulation of transcription in the nodule. 

Only high calcium concentrations were found to repress ropA expression as measured 

with promoter//acZ-fusions (H.P. Roest, LH.M Mulders and R.A. de Maagd; 

unpublished results). Although a sharp increase in calcium concentration in the 

peribacteroid environment might be responsible for the drop in ropA-expression occuring 

in the interzone II-III, we find it unlikely that such a sharp change in calium concentration 

could occur from one cell layer to the next. Clearly, at present not enough is known about 

the composition of the peribacteroid environment to answer these questions. 

Although the down-regulation of ropA expression and the activation of nif gene 

transcription are occuring in exactly the same stage of bacteroid development, we were 

able to uncouple these processes using a fix" bacterial strain. This result complements 

those of Roest et al. (manuscript submitted), where it was shown that in cell envelopes of 

bacteroids of nif A and nifli bacterial mutants that do not form mature, nitrogen fixing 

bacteroids, group III antigen levels have nevertheless decreased. In contrast to these nif 

mutants, we used a strain which contains a full complement of nif and fix genes, that 

allow it to fix nitrogen in clover nodules. Nevertheless, in pea nodules nifli was not 

expressed in this strain, revealing another level of complexity of nif gene regulation. Our 

results show that activation of nif gene transcription is also not a prerequisite for ropA 

down-regulation. As for ropA regulation, the signal(s) responsible for nif gene 

transcription activation in nodules has not been identified. Although low oxygen pressure 

is necessary and in in vitro studies of R. meliloti it was sufficient for nif A transcription 

(Ditta et al., 1987). However, it may not be the solely responsible signal in vivo since 

there is no evidence for a sudden drop in oxygen pressure occuring from one cell layer to 

the next at the transition of zone II into interzone II-III (Yang et ai, 1991). 
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Taken together our results and those of others indicate that in indeterminate nodules 

the transition of zone II into interzone II-III is a region where major molecular changes 

during bacteroid and plant tissue development occur as a result of a possibly novel and 

probably complex exchange of signals between the bacterium and its host. 

METHODS 

Plant Materials, Bacterial Strains, Plasmids, and Growth Conditions 

Pea (Pisum sativum L. 'Finale') was grown on gravel and vetch (Vicia sativa ssp. 

nigra) was grown on agar slants (Van Brussel et ai, 1982). In all experiments, 

Rhizobium leguminosarum bv. viciae strain 248 (Josey et al., 1979) was used, unless 

mentioned otherwise. Rhizobium leguminosarum strain Kll.pMP258 is described 

elsewhere (Spaink et al., 1989). 

Electron Microscopy. 

Vetch nodules were harvested 21 days after inoculation and fixed overnight at 4°C in 

1% glutaraldehyde - 2% paraformaldehyde - 0.1 M sodium cacodylate, pH7.2. Fixed 

nodules were dehydrated in an ethanol series (30, 50, and 70% at -20°C, 96% and 100% 

at -35°C) and infiltrated with LR White acrylic resin (Agar Scientific Ltd., Stansted, 

U.K.) at -35°C. The resin was polymerized using 0.5% benzoinmethylether as a catalyst 

for 24 hours at -20°C and for 24 hours at room temperature under UV light. Ultrathin 

sections were collected on collodion-coated nickel grids and immunolabelled as described 

previously (Goossen-de Roo et al., 1991). Quantification of labelling based on gold 

particle density was done as described before (Goossen-de Roo et al., 1991). Number of 

cells for which gold particles were counted: 127, 50 and 70 for infection thread/droplet 

bacteria, "young" bacteroids, and mature bacteroids, respectively. Number of section 

areas counted: 19, 14 and 14, respectively. For the two-by-two comparison of different 

developmental stages a Student's t test was used to determine the statistical significance 

of observed differences. 

In Situ Hybridization 

Pea nodules were harvested 16 days after inoculation and fixed immediately with 4% 

paraformaldehyde and 0.25% glutaraldehyde in 10 mM sodium phosphate buffer 

(pH7.2) supplemented with 100 mM sodium chloride for 4 hr. The nodules were 

dehydrated by passing through a routine ethanol series and were embedded in paraffin. 
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Sections (7 |im thick) were hybridized according to a method derived from Cox and 

Goldberg (1988) as described before (Van de Wiel et al., 1990; Yang et al., 1991). 

Labelling of Antisense/Sense RNAs. 

For ropA, a 1.3 kilobase CM-ßa/nHI-fragment of pMP2202 (de Maagd et al., 1992) 

containing the full open reading frame as well as most of the untranslated leader, was 

cloned in the vector pBluescript KS (Stratagene), resulting in plasmid pMP2242. For 

antisense RNA production, pMP2242 was cut with Xhol and in vitro transcribed by T7 

polymerase. For sense RNA production, the plasmid was cut with BamHI and 

transcribed by T3 polymerase. Radioactive labelling was performed as described by Van 

de Wiel et al. (1990). Preparation and labelling of the nifii probe was described before 

(Yang et al., 1991). 
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Chapter 8 

Concluding remarks 
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Root nodule formation provides a good system to study general plant developmental 

processes such as, induction of cell division in terminally differentiated tissues, meristem 

formation and differentiation of meristems into tissues. Based on the results described in 

this thesis we will discuss the following aspects in more detail; (1) zonation of 

indeterminate nodules; (2) a possible mechanism by which cell division is induced in the 

root cortex (nodule primordium formation), and (3) defense response in nodule 

development. 

Zonation of indeterminate nodules induced in a nodule primordium 

When the nodule primordia are penetrated by an infection thread and bacteria are 

released into the plant cell the nodule primordia form a meristem at their distal part, while 

simultaneously differentiation into nodule tissues starts at the proximal region. This step 

in nodule development establishes the first zonation and divides the young indeterminate 

nodule into a meristem and a prefixation zone II. In alfalfa a meristem is formed in Nod 

factor induced primordia (Truchet, et al., 1991), while this is not the case in such vetch 

nodule primordia (Vijn, et al., 1993). This might mean that in some Rhizobium—-legume 

interactions additional signals are required to establish a nodule meristem. 

Nodule meristematic cells can be distinguished from the prefixation zone II cells by 

cytological characteristics since they are smaller and more cytoplasmic rich, but it is hard 

to indicate the exact transition of meristem into the prefixation zone II. Genes which are 

specifically expressed in dividing cells like B-type cyclins and histone 4 (H4) can be used 

to distinguish meristematic cells and the cells of the prefixation zone. These genes are 

expressed predominantly in the nodule meristem, but they are also expressed in some 

cells of the prefixation zone II (Yang and De Blank, unpublished results). Therefore these 

genes are not very useful to identify precisely the meristem—prefixation zone transition. 

In pea (Scheres, et al., 1990a), alfalfa (Pichon, et ai, 1992) and vetch nodules (Vijn, 

personal communication) the ENOD12 gene is expressed in the distal part of the 

prefixation zone II, but it is not expressed in the meristem. Moreover the ENOD12 

mRNA is immediately present at a maximal level in the first cell layer of the prefixation 

zone II. The ENOD40 gene has a similar expression pattern in nodules. In nodules the 

ENOD40 gene is expressed in the complete prefixation zone II, whereas this gene is not 

expressed in the meristem (Yang, et ai, 1993; Chapter 4; Yang, unpublished results). 

Thus ENOD40 and ENOD12 gene expression form good markers to distinguish 

meristem cells from cells of the prefixation zone II. 

We showed that the CHS gene is induced in all nodule primordial cells and at the stage 

a meristem is established the expression becomes restricted to a few cell layers at the apex 

(Chapter 3). Therefore the CHS expression pattern is an additional marker to determine 

whether a meristem has been formed. 
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When the meristem is formed in the nodule primordium it will differentiate, in a 

spatially controlled manner, into the different nodule tissues. Since this process will 

continue throughout the life time of the nodule an organ with a typical indeterminate 

growth pattern is formed. It is unclear which molecular mechanisms regulate the spatially 

controlled differentiation of a nodule meristem, but it is striking that the establishment of 

a nodule meristem and the differentiation into nodule tissues occur concommitantly in a 

nodule primodium. Similarly, the formation of a root meristem in Arabidopsis and pea 

embryo's is preceded by the formation of root tissues (Scheres, personal communication; 

Yang, unpublished data). Therefore it is tempting to speculate that the already established 

spatial distribution of nodule/root tissues determines which part of the meristem 

differentiates into a specific cell type (Scheres, personal communication). 

Zonation in a mature indeterminate nodule 

Since the nodule meristem continuously differentiates into nodule tissues in a proximal 

direction, the indeterminate nodule is composed of zones at consecutive stages of 

development. In Fig.l the plant and bacterial genes that mark different stages of 

development have been indicated. 

The CHS gene is expressed in the distal part of the meristem zone I, and this gene is 

also expressed in the part of the nodule cortex adjacent to the meristem. So this gene is 

not expressed in a tissue or cell specific manner. 

None of the identified plant genes is specifically expressed in the meristem. Therefore 

this zone is best characterized by the absence of ENOD40 and ENOD12 transcripts, 

which both are present at a maximal level in the first cell layer of the prefixation zone II. 

The expression of the rhizobial nod genes and the nodulin gene ENOD12 occurs in the 

distal part of zone II, and this region is named infection zone by Newcomb (1976). The 

region of expression of the early nodulin genes ENOD40 and ENOD5 as well as the 

rhizobial roph gene exactly coincides with the prefixation zone II. Expression of Lb and 

f^ENOD3/14 genes starts in the distal part of the prefixation zone n. Lb gene expression 

extends to the proximal part of the nitrogen fixation zone III, whereas the concentration 

of PsENODS/H mRNA decreases dramatically at the beginning of zone HI. The late 

nodulin gene P5NOD6 and the rhizobial gene nifH. are switched on at a maximal level in 

the first cell layer of the interzone II-III and the corresponding transcripts are immediately 

present at a maximal level in this cell layer. These two genes maintain their expression 

level all over the interzone and zone III. At the moment only one gene has been identified 

that is expressed in the uninfected cell type of the indeterminate nodule (Van de Wiel, 

1991). However this gene has not been cloned and therefore the expression has not been 

studied. 
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The studies on the in situ expression of Rhizobium and plant genes showed that at two 

positions sudden developmental transitions occur: 1) the transition from meristem zone I 

to the prefixation zone II, and 2) the transition of the prefixation zone II into interzone II-

III. These transitions are marked by changes in gene expression from one cell layer to 

another. The transition of the prefixation zone II into interzone II-III is furthermore 

marked by the accumulation of starch granules and a change in bacteroid morphology 

(Vasse, et al., 1990). 

The transition of the prefixation zone II into interzone II-III is an intriguing step in the 

development of the cells of the central tissue since the developmental change occurs 

within a single cell layer, and it involves changes in both bacteroid and plant 

development. These observations can provide some clues on the mechanisms that control 

the development of the nodule central tissue: 

1. At the transition of the prefixation zone into interzone, changes in both bacteroid 

development and plant gene expression take place within the same cells. This suggests 

that the same developmental cue controls the development of both bacterium and host 

plant. Alternatively, a signal molecule can trigger a fast developmental change in one 

symbiont which then immediately controls the development of the other symbiont. 

2. The formation of an infected cell in an indeterminate nodule is probably initiated 

when a meristematic cell is infected by Rhizobium. It is possible that this event initiates a 

cell autonomous developmental programme, leading to a mature infected cell. We have 

studied the in situ expression of e.g. nifli in about 50 pea nodules and we have never 

observed that an individual cell of the prefixation zone II, so distant to the plane of 

prefixation zone—interzone transition, expressed nifli. Thus in case the development into 

an infected cell is a cell autonomous response it has to be highly synchronized, which 

seems unlikely to us. Furthermore it would imply that all the cells of a single cell layer are 

infected simultaneously, which is also not very probable. Therefore we think it is likely 

that additional mechanisms control the differentiation of the infected cell; for example 

mechanisms in which cell-cell communication and/or positional information provided by 

a gradient of a signal molecule. 

When cell-cell communication plays a role in synchronizing the development of the 

infected cells it must mean that this communication (e.g. by plasmodesmata) 

predominantly occurs in a direction perpendicular to the distal-proximal axis of the 

nodule. Since plasmodesmata have not been mapped in a nodule it is unclear whether this 

is the case. 

Since the central tissue has a distal-proximal polarity it is likely that a gradient of a 

putative regulatory compound is created along this axis. Studies on Drosophila 

development have shown that such gradients of morphogens can be interpreted in zones 

with very sharp boundaries (Strahl, et al., 1992; Lawrence, 1992). So it is possible that a 
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distal-proximal gradient of a morphogen controls the development of infected cells and 
can cause sudden changes in development. 

•£*'• '" '•-

• . . > . » • 

t 
ENOD12 

C | ZI | ZONE II | ZONE IHIlf ZONE III 

Figure 1. A schematic drawing showing the zonation of the central tissue of a pea nodule and 
the pattern of plant and bacterial gene expression. The expression level of the different gene is 
not known therefore the maximal expression level of each gene is indicated by the same height. 
Arrows indicate two sudden transitions in gene expression. C=nodule cortex, ZI=meristem, 
ZONE II=prefixation zone, ZONE II-III=interzone, ZONE III=nitrogen fixation zone. 

Several molecules can form a gradient in the central tissue: a). Nod factors can only be 

produced in the distal part of the prefixation zone II since nod genes are only expressed in 

this zone (Schlaman, et al., 1991). Therefore a Nod factor gradient along the distal-

proximal axis can be established, b) Meristems are in general sites of phytohormone 

synthesis and it is likely that this is also the case in a nodule meristem. Therefore it is 

probably that also the nodule meristem is a source of phytohormones and a 

phytohormone gradient might be formed, c) Rhizobia proliferate in the infected cells of 
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the prefixation zone II and therefore 02 consumption gradually increases in this zone and 

it can establish an O2 gradient. 

Whether these morphogen gradients are present and can specify patterns of gene 

expression in nodules is not clear, but the genes that mark the zones of the central tissue 

might provide tools to study such questions. 

Nodule primordium formation 

Studies with purified Nod factors have shown that these Rhizobium secreted 

compounds are sufficient to induce the formation of nodule primordia in a spatially 

controlled manner. For example, in vetch roots primordia induced by either purified Nod 

factors or Rhizobium are formed in the inner cortex, preferentially opposite a protoxylem 

pole (Spaink, et ai, 1991; Van Brussel, et ai, 1992; Vijn, et ai, 1993). About 20 years 

ago Libbenga and Torrey have shown that a plant compound, named stele factor, released 

from the protoxylem poles is involved in the induction of cortical cell division. It is 

assumed that a gradient formed by the stele factor determines where cell division can be 

induced (Libbenga and Bogers, 1974). Recently progress has been made in the 

purification of this compound (Smit, et ai, 1993). The availability of purified Nod 

factors as well as stele factor will make it possible to study how these two morphogens 

induce cell division in a spatially controlled manner. 

Although it is clear that Nod factors are the only bacterial compounds essential for the 

induction of a nodule primordium, it is unknown by which mechanism these 

lipooligosaccharides trigger mitotic activity. Studies with compounds that mimic the 

effects of Nod factors indicate that local changes in phytohormone concentrations are 

involved in the induction of cortical cell divisions. For example, ATIs (auxin polar 

transport inhibitors) can induce nodule like-structures on several legume roots (Allen and 

Allen, 1958) and flavonoids—which probably are endogenous ATIs (Jacobs and Rubery, 

1988)-can also trigger the formation of these structures (Hirsch, et ai, 1991). 

However, whether these structures are formed opposite a xylem pole has not been 

checked. Furthermore, bacteria lacking all nod genes but containing the tzs gene 

(encoding an isopentenyl transferase) by which they secrete the cytokinin, zeatin induce 

nodule-like structures on alfalfa (Long and Cooper, 1988; Cooper and Long, 1994). The 

latter experiment shows that an increased cytokinin/auxin ratio leads to cortical cell 

division and suggests that Nod factors induce a similar change to elicit cell division. This 

hypothesis raises the question how Nod factors establish such a change in the 

cytokinin/auxin ratio. 

According to Morris and Thomas (1978) and Jacobs and Gilbert (1983) auxin is 

transported from the shoot to the root by the cambium and parenchymatic cells of the 

stele. Furthermore it is likely that cytokinin is transported from root tip to shoot through 
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the xylem (Letham, et al., 1978). So it can be questioned whether Nod factors influence 

the transport of phytohormones from the stele to the cortex or whether phytohormone 

concentrations are affected by an autonomous response of the cortical cells? 

Studies of Pawlowski (personal communication) showed that the expression of a 

chimaeric gene composed of the CaMV 35S promoter and a soybean ENOD40 cDNA 

clone (Yang, et al., 1993; Chapter 4), caused a decrease of apical dominance in 

transgenic tobacco plants. This observation suggests that ENOD40 influences the polar 

transport of auxin. Interestingly the soybean ENOD40 genes are expressed at a low level 

in the cambium of the shoots (Yang, unpublished data; Kouchi and Hata, 1993). This 

location is consistent with a putative role of ENOD40 in auxin transport. Nodule 

primordium formation induced by Rhizobium is preceded by expression of the ENOD40 

gene in a region of the root pericycle opposite a protoxylem pole and the adjacent 

cambium cells (Yang, unpublished data). In Nod factor induced primordia the ENOD40 

gene is expressed in the same spatial manner as in Rhizobium formed primordia (Vijn, et 

al., 1993). Based on these observations we postulate the following working hypothesis: 

The induction of ENOD40 gene expression in the root pericycle, causes a decreased flow 

of auxin from the cambium to the cortex by which the cytokinin/auxin ratio in the latter 

tissue increases and this change induces (or sustains) cortical cell division (Fig.2). We 

showed that the ENOD40 gene is also induced in the primordial cells and furthermore in 

these primordia the CHS gene is induced. The expression of CHS genes in the dividing 

primordial cells might result in the production of flavonoids that act as ATIs. Together 

with ENOD40, these flavonoids might reduce the influx of auxin from the surrounding 

cortical cells into the primordia, which contributes to the proper cytokinin/auxin balance 

to maintain mitotic activity in the primordia. 

So we propose that instead of a cell autonomous response of the cortical cells, Nod 

factors influence the communication between stele and cortex as well as between nodule 

primordium and surrounding cortical cells. The involvement of cell-cell communication in 

nodule primordium formation would provide the host plant good possibilities to control 

when and where nodules can develop. 

Defense response in nodule development 

Genetic analysis of Rhizobium mutants have identified several bacterial genes that in 

addition to nod genes are required for normal nodule development (Nap and Bisseling, 

1990; Appel bäum, 1989). These genes are involved in the biosynthesis of bacterial outer 

surface polysaccharides such as exopolysaccharides (exo genes), lipopolysaccharides 

(Ips genes), and ß-glucans (ndv genes). Rhizobium mutated in these genes can induce 

plants to form nodule-like structures, but these form infection threads that abort 

prematurely, or are defective in bacterial release from the infection threads. The products 
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of exo, Ips and ndv genes most likely act as so-called avoidance determinants to prevent a 

defense response. Any mutation that unmasks an avoidance determinant will trigger the 

plant's defense responses and result in abortion of nodule development, even if all 

signals for proper development are present. For example, R. leguminosarum bv. viciae 

mutants which fail to produce the O-antigen containing LPS and do not secrete ß(l-2) 

glucan form nodules with a few infected cells and the pathogen-related gene, CHS, is 

induced in uninfected cells surrounding the infected cells which resembles a typical 

defense response (Yang, et al., 1992; Chapter 3). Recently Vasse et al (1993) showed 

that alfalfa plant can react to infection by its symbiont resulting in either nodule 

development or a defense response. In this case the plant controls the nodule number by 

eliciting a hypersensitive defense response to excess infections. 

Perspective 

The peculiar pattern of expression of plant and bacterial genes in root nodule, as 

presented in this thesis, is of great interesting in undersanding nodule development and 

functions. Questions raised from these studies are: How is such a pattern of gene 

expression established? Is the proceeding gene expression required for the induction of 

the next genes? What are the key signals involved? To answer these questions several 

lines of researches in future may be carried out. 1) Identification of transcriptional 

activators and/or transcription factors which activate these genes; 2) Disruption of 

expression pattern of these genes by either blocking of a specific gene, e.g. ENOD40, 

using antisense RNA technique and mutagenesis, or expressing a specific gene at wrong 

place, for example ENOD40 under the control of Lb promoter; 3) Characterization of 

functions of genes involved in nodule formation such as ENOD5, ENOD12 and 

ENOD40; 4) Identification of signal molecules (morphogens?) in nodules. Hopefully, 

results from these researches will contribute to our undersanding of the mechanisms of 

root nodule development and of general plant development as well. 
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SAMENVATTING 

Vlinderbloemige planten hebben het vermogen om in symbiose met Rhizobium 

bacteriën stikstofbindende wortelknollen te vormen. Om meer inzicht in de vorming van 

dit orgaan te krijgen zijn verschillende plante- en bacterie-genen geïsoleerd die een rol 

spelen bij de knolvorming. De expressie van deze genen gedurende de knolvorming werd 

met behulp van in situ hybridisatie bestudeerd. 

Een cDNA kloon van het chalcon synthase [CHS] gen van de erwt werd 

geïsoleerd en de in situ expressie van dit gen werd gedurende de knolontwikkeling 

bestudeerd. CHS komt tot expressie in knol primordium cellen en wanneer zich in een 

iets later ontwikkelingsstadium een meristeem heeft gevormd, is de expressie beperkt tot 

een paar cellagen van de knol cortex die aan het meristeem grensen als ook in de meest 

apicale cellagen van dit meristeem. In de volgroeide knol blijft dit expressie patroon 

gehandhaafd. Het is zeer waarschijnlijk dat flavonoïden gesynthetiseerd worden in de 

cellen waarin CHS tot expressie komt. Aangezien flavonoïden het vermogen hebben het 

polaire transport van auxine te blokkeren, wordt gepostuleerd dat Rhizobium 

knolvorming initieert door lokaal de biosynthese van flavonoïden te stimuleren, die 

vervolgens het auxine transport remmen, waardoor de cytokinine/auxine balans 

verandert. 

Rhizobium mutanten die gestoord zijn in de secretie van ß[l-2]glucaan of de 

synthese van LPS I vormen wortelknollen waarin slechts zeer weing geïnfecteerde cellen 

voorkomen. In deze knollen komt CHS behalve in de hierboven genoemde cellagen, ook 

tot expressie in cellen die de paar aanwezige geïnfecteerde cellen omringen. Er wordt 

gepostuleerd dat de inductie van CHS in deze cellen het gevolg is van de inductie van een 

afweerreaktie die niet voorkomt tijdens wild type knolontwikkeling. 

Er werd een kloon van het erwt vroege noduline GwENOD40 geïsoleerd en 

gekarakteriseerd. Het potentiële ENOD40 polypeptide bevat geen enkel methionine en 

heeft geen homologie met een eerder gekarakteriseerd eiwit. Gedurende vroege stadia van 

de knolontwikkeling komt ENOD40 tot expressie in de delende cortex cellen en in het 

deel van de pericykel van de vaatbundel gelegen tegenover de delende cortex cellen die 

een knolprimordium vormen. In soya wortelknollen komt ENOD40 tot expressie in de 

niet-geïnfecteerde cellen als mede in de pericykel van de knol vaatbundels. In soya 

knollen, die noch infectiedraden noch bacteriën bevatten, komt ENOD40 niet tot 

expressie in de pericykel van de knolvaatbundel, hetgeen suggereert dat de expressie van 

dit gen de aanwezigheid van bacteriën in de knol vereist. De aanwezigheid van ENOD40 

in de wortel pericykel suggereert dat dit noduline de communicatie tussen vaatbundel en 

cortex beïnvloedt en als zodanig een belangrijke rol bij de initiatie van knolvorming kan 

spelen. 
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De zonering van het centrale weefsel van de erwte wortelknol werd bestudeerd en 

daarom werd een nieuw laat noduline gen, PsNODó, gekloneerd. PsNODó is homoloog 

met de vroege noduline genen FiENOD3 and P.ÎENOD14 van de erwt. PsNODó komt 

alleen tot expressie in de geïnfecteerde cellen van de interzone II-III en de fixatie zone lu 

van het centrale knolweefsel, terwijl de expressie van fsENOD3 en PsENODM reeds in 

het distale deel van de pre-fixatie zone II begint. Een vergelijking van de expressie 

patronen van PsNODó en de leghemoglobine genen laat zien dat de laatst genoemde 

genen eerder in de ontwikkeling geïnduceerd worden en dus zeer waarschijnlijk door een 

ander mechanisme worden gecontroleerd. 

Gedurende de knolontwikkeling ondergaat de bacterie belangrijke veranderingen 

zowel in vorm en gedaante en in expressie van genen. De expressie patronen van de 

nifli, nifA, en ropA, de laatste koderend voor een buiten membraan eiwit, werden 

bestudeerd. ropA komt tot expressie in vrij-levende rhizobia en komt ook in de 

wortelknol tot expressie. Bij de overgang van pre-fixatie zone II in interzone II-III neemt 

de expressie van dit gen plotseling zeer sterk af. nifli en nifA beginnen tot expressie te 

komen precies in de cellaag waar ropA expressie ophoudt, nifli komt tot expressie in de 

interzone en de fixatie zone terwijl nifA alleen in de interzone tot expressie komt. Aldus 

markeren het uit- en aanschakelen van ropA en nifA en nifli de overgang van pre-fixatie 

zone in interzone. 

De bestudering van gen expressie in het centrale knolweefsel heeft twee 

belangrijke controle punten in de knolontwikkeling zichtbaar gemaakt: 1) De overgang 

van meristeem in pre-fixatie zone die gekarakteriseerd wordt door de inductie van 

ENOD12 en ENOD40. 2) De overgang van pre-fixatie zone in interzone, die gemarkeerd 

wordt door het uitschakelen van de expressie van ENOD40 en ropA en het aanschakelen 

van PsNODó, nifA, en nifli. Bestudering van de regulatie van de expressie van deze 

genen tijdens de vorming van het centrale weefsel zal een uitstekend hulpmiddel zijn om 

de mechanismen die knolvorming controleren te leren begrijpen. 
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Summary 

Formation of symbiotic nitrogen-fixing root nodules is the result of complex 

interactions between the soil bacterium Rhizobium and legume plants. To understand 

mechanisms by which root nodules are formed several plant genes and bacterial genes 

were isolated and characterized. The expression pattern of these genes during nodule 

development was studied by the in situ hybridization technique. 

A cDNA clone of the pea chalcone synthase gene (CHS), encoding a key enzyme 

in the biosynthesis of flavonoids, was isolated. CHS is expressed in infected roots and 

in root nodules. During nodule development this gene was first expressed in nodule 

primordial cells and at a slightly later stage the expression is restricted to a few cell layers 

of the nodule cortex adjacent to the nodule meristem as well as in the most apical layers of 

the meristem.In a mature nodule this latter expression pattern is maintained. During root 

development a similar pattern of CHS expression was observed. Thus it was concluded 

that flavonoids are synthesized in the apical part of the nodule. Since flavonoids might 

function as polar auxin transport inhibitors it has been proposed that Rhizobium induces 

nodule formation by stimulating local biosynthesis of flavonoids that subsequently 

regulate auxin distribution in the root cortex and then influence the auxin/ cytokinin 

balance. In ineffective nodules formed by a Rhizobium leguminosarum bv. viciae mutant 

which is unable to secrete ß(l-2) glucan and to synthesize the O-antigen containing LPS 

I, CHS is induced in cells surrounding a few infected cells. It was postulated that the 

induction of CHS in nodules formed by the Rhizobium mutant is due to an induction of 

a plant defense response which does not occur in normal nodule development. 

The early nodulin gene ENOD40 was isolated and characterized. The ENOD40 

polypeptide does not start with methionine and does not show homology to known 

proteins. During early stage of nodule development ENOD40 is expressed in dividing 

root cortical cells, the nodule primordial cells and the pericycle of the root vascular 

bundles. In mature soybean nodules GmENOD40 is expressed in uninfected cells, the 

boundary cell layers and the pericycle cells of the nodule vascular bundles. In soybean 

nodules formed by Bradyrhizobium japonicum mutant 3160, which lack infection threads 

as well as intra cellular bacteria the induction of GwENOD40 expression in the pericycle 

of the nodule vascular bundles requires the presence of the bacteria inside the nodule The 

expression of ENOD40 in the pericycle suggests that ENOD40 might play a role in 

transport of metabolites or regulating communication between the root stele and cortex. 

Therefore ENOD40 might play an important role in the induction of cortical cell divsions. 

To study development of the nodule central tissue, a pea late nodulin gene 

PsNOD6 was isolated and characterized. fsNODó is homologous to the pea early 

nodulin genes PsENODS and PsENOD14. PsNODó is expressed in infected cells of the 

interzone II-III and the nitrogen fixation zone III of the nodule central tissue. While the 
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expression of P^ENOD3 and P . ÎENOD14 starts at the distal part of the pre-fixation zone 

II and reaches the maximal level of expression at the interzone II-III. The homolgy 

between these genes suggests that they belong to the same gene family, but the 

expression patterns show that they are activated at different times of development. 

Comparison of the expression pattern of FsNOD6 and the late nodulin gene 

leghemoglobin (Lb) suggests that the PsNOD6 and Lb genes are regulated by different 

mechanisms. 

The rhizobia also undergo developmental changes during nodule formation. These 

include changes in gene expression as well as in morphology. The expression pattern of 

bacterial genes, nifli encoding for a nitrogenase subunit, the regulatory gene nifA and 

ropA, which encodes for an outer membrane protein, was studied. ropA expression starts 

in the distal part of the pre-fixation zone II and reaches its maximal level at the end of this 

zone. The expression of this gene drops dramatically at the begining of the interzone II-

III. nifli expression starts and immediately reaches its maximal level of expression at the 

begining of the interzone and maintains the same expression level in the nitrogen fixation 

zone III. The expression of nifA starts exactly at the same cell layer as nifli but this gene 

is switched off after the interzone. Comparison of adjacent sections hybridized with nifA, 

nifli and ropA, respectively .indicates that the drop in ropA expression matches exactly 

with the induction of nifA and nifl\ expression and the transition of the pre-fixation zone 

II into the interzone II-III. 

The specific regulation of both plant and bacterial genes during the development 

of the nodule central tissue revealed two major developmental switches. 1) The transition 

of the meristem into the pre-fixation zone II which is marked by the switching on of the 

ENOD12 and ENOD40 genes; 2) The transition of the pre-fixation zone II into the 

interzone. This transition is marked by the switching off of the ENOD40 and ropA genes 

and the induction of PsNODó, nifA and nifli. The fact that the described genes can be 

used to mark specific zones of the central tissueot yet clear, provides good tools to study 

certain aspects of nodule development. 
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af*ttft(tfciD»HipJAH)fP±»«ffiU«*S(RhizobiuiB)ffli:ffffl^JÄ-#a#OÜÄ4 
BÄffiiMß*(Root nodule). fêfcl&fêjAiSâara'MSfrg: l)3f#të£JUM6#S, 

& (Central tissue)ifWföffiÄ(Peripheral tissue)£jÄ, ^ÄäÄXÄEÄftaift 
(Infected oei DW^ßJfeUBÄ (Uninfected œll)W#3ISfêfô»l!B«A, MM*&$U8UIÈ 
ÄJgfflÄ (Cortex), ft&Jg(ßxxxieriis) JfnfRÄ8Sffl&(Nodule parenchyma)âjft. JfiÄfö 

(Nodulin gene). £fêfé@M£4£tm&fó£fëf?ï0N$#$^f?SmENOD) (tfcjn 
EN0D40), a£3^±gê&m«St££+iËflUB; ffi£mfé@A££ff$Bt?r&3laÔtlï 
B*Mftftfflg**£H(NOD), tb»D6£S. ^iS*SSHJ8iÈg5ft*ô!l#tËW£. 

Al len^«EE+^«:ÖllIffetÄHirsch*iEfflfl«F«#^|li^ÄW (Flavonoid) öflEÄtBÄÄ 
Waëfe«1ïffffl. HÄff#fflaWtt*Ü(In situ hybridization)fê^if^^ï^iféffi 

im. Aitb^pim^STgEâcHsïs. s*^i8CHSÄSft«iM«*im«f « P*ÄT . tm 

««Sfê-S*)"? (Nod factor) fflim#«£Jf«I^JÄ££S. M&S^ÄWffÄfifti-K: 
it (Auxin) «£ê»fô#«HRffiiÊrt«&jii&»*m » ^ Ä & M I W « ^ ^ « * . s 

LPS) ̂ gfefrffiSfffflBtCHSÏB^^^riËftttftfiiWSJS (Defense response) tiBflMB 

¥»!£**SH, EN0D40, ISIiÔSlâfft^fi^WÇIëflAffiftMfi^BaaagÈfiWffM 

mm. femmw-M, wmmmjEmmmmM, mmmmmmtm 
(Pericycle)lBSMt^jÈ. £ Ä » * H f t * * , ENOD40ÏH£*fllfelfflifë, Rï̂ JI(Boundary 
layer)^m^âltfglBIlt^à*. £*Mfê«®3radyrhizobiun japonicua) £5#fêJAÔ5 
^«f^ffl^Km* (Empty nodule) *, ENOD4OÏ@ft1S0̂ f «SMBtSW*^, i&fcH! 
ENOD40a@£mtfii«*fó3iiÈMgWm^gÓ^£. EN0D40*S l̂fflüg##'Ë^3È^Bj 
EN0D40£HffiRriËÏE^S(Stele)ifPlSÊJi±|Siai»*«1!ïiimtóffffl. 

140 



N0D6.N0D6|flgES^Ailê^ ï̂SEN0D3WEN0D14Wll̂ 'Ë. NQD6£HHÄS*+ÄfflÄ«lW 
H^(Interzone II-III)ifllHÄE(Nitrogen fixation zone III) (&&&&&$&£. ffi 
ENOD3fflENOD14ï03liÊ&&7@MtE(Pre-fixation zone II)8jW«âMh ft|5|HI*ftÈï!l 
I S . NOD6|nEN0D3AEN0Dl4±|l]ÔU ï̂g1Î̂ ÏŜ f̂ôJêw'ËmnrtËm âA-tSHêM7 
If—tï@S£(Gene famüyMS£*lf W î f » £ « S . NOD6#M*ëféf?ï0, MMI 
SE (Lb) ï@^àÈ^ït±fâ]étlfct^^H^N0D6|nLbïSêÈ^|nlfô*La^T5âtl. 

it, itimmmmmmmmmmnmwm), mfmrophmm-wmmmw&.ropm® 
38*ff^HAirEfôW*âMh ÄÄEWÄaEEiOÄ*. ASH^ÉSRBCTiêBtSR«. 
^t^^ff^ÄmÜ^^W^ffiBJropASO^Ä^ftTft^^(Infection thread) tfôiHE 

mm&^mMmxMtemm&mmmmm^. nifA*nnifH£&fôE«ë-#ft. H 
J&Ë|i|»EiêSlUg;&È*3FTft. ffläftS£#3'J*nnifA, nifHfBropA&£lftiËSti$IWfô 

l̂ lHÄWEäat, 2mH«ltrEl«lfô»EaîA. &1̂ &êÖEN0D40fnropA£@lft£fg*fl 
N0D6, nifAiffnifH£Sfó*£*is;£W. §*iaeSH»SOä«IÄ^^flWI, *i63t^Ä-
^T*^»A*ea«a!fiA7«Bteâù«ijg. 
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