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errata corrige 

p. 6 Legend Fig. 1.3: replace 'A' by '•' 

p. 70 Fifth paragraph: delete ', which 
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crop production' 
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Teeltkundige maatregelen uitsluitend gericht op het verhogen van de 
opname-efficientie van kunstmest leiden tot een afname van de 
bodemvruchtbaarheid. 

Dit proefschrifl 

2. Extra stikstoftoediening aan rijst met als doel de gevolgen van een te 
geringe plantdichtheid te compenseren door uitstoeling, is goed voor de 
boer zijn gemoedsrust, maar niet voor zijn portemonnee. 

Dit proefschrifl 

3. Voor eenzelfde variëteit is de optimale bladoppervlak dynamiek ter 
verkrijging van een zo hoog mogelijke rijstopbrengst, per seizoen 
verschillend. 

Dit proefschrifl 

In de Camargue is - per ha - 100 kg stikstof doorgaans voldoende om 7 
ton rijst te produceren. 

Dit proefschrift 

5. De basis van een gezond landbouwbedrijf is de organische stof. 

Dit proefschrift 

16. Het aanbrengen van windsingels op de agrarische bedrijven in de 
Camargue zal de boeren geen windeieren opleveren. 

|7. Met het huidige kennisniveau omtrent het functioneren van de 
basisprocessen in een gewas, is het gebruik van een of meerdere 
correctiefaktoren in gewasgroei-modeUen onvermijdelijk. 

Het blinderen van achterruiten van bedrijfsauto's op grijs kenteken, 
verhoogt het risico op ongelukken. Het verplichten hiertoe, maakt het 
verkeersveiligheidsbeleid van de overheid ongeloofwaardig. 



Het heeft geen zin het Nederlands als officiële Europese taal te 
handhaven. 

10. Een dr. titel mag een voordeel zijn bij het opbouwen van een 
wetenschappelijke carrière, maar gezien de ontwikkelingen op de 
arbeidsmarkt is het eerder een nadeel. 

11. De zorg voor het personeel in een bedrijf is af te meten aan de kwaliteit 
beeldschermen die er gebruikt worden. 

12. 'La patience est la mère de vertu' zei mijn moeder altijd, en gezien dit 
proefschrift heeft zij gelijk. 

Nicolaas C. Stutterheim 
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Wageningen, 1 maart 1995 



Abstract 

Towards higher nitrogen efficiency in European rice cultivation; a case study for the 

Camargue, South of France (Naar efficiënter gebruik van stikstof in de Europese rijstbouw; 

een case-studie voor de Camargue, Zuid-Frankrijk) - Stutterheim, N.C., 1994. 

This study focuses on an increase in the efficiency of fertilizer nitrogen in irrigated, direct 

seeded rice. Three indicators for efficiency were used: agronomic efficiency, utilization 

efficiency and recovery. Experiments were conducted in the Camargue in the South of France, 

to quantify these indicators for standard non-coated prilled urea under conventional 

management of irrigated rice. The results were compared to those derived from data 

originating from other surveys within the Mediterranean rice growing countries. Additionally, 

the indicator values were experimentally assessed for a resin coated nitrogen fertilizer, known 

to be highly efficient. Those values were considered to represent the maximum attainable 

nitrogen efficiencies under given circumstances in the Camargue. A model was developed 

with which the effect of different nitrogen application strategies on crop production and 

fertilizer nitrogen recovery can be evaluated. With this model, 70 combinations of quantity 

and timing of prilled urea nitrogen were screened for 20 sets of weather data, to derive an 

alternative to the use of the efficient but expensive coated fertilizer. As a result of this 

simulation, a tailor-made application strategy for a representative medium-growth duration rice 

variety of the Camargue was defined. 

additional key words: environment, fertilizer efficiency, management, modelling, nutrients. 
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Chapter 1 

General introduction 

With a world production of 520 Megaton (Mt) rough rice in 1991, an average annual 

production increase of 1.1% is needed to cover the projected rough rice food demand of 758 

Mt in 2025 (ERRI, 1994). Much of that increase is expected to come from irrigated rice 

because more than 70% of the world rice supply is produced in irrigated ricelands (IRRI, 

1989). 

Germplasm improvement and intensification1 seem the most appropriate ways to realize 

the required growth in rice production because on a world scale the availability of arable land 

is stabilizing (FAO, 1993). However, intensification may put an undesirable burden on the 

environment if inputs2 are lost from agricultural fields. Rice production research, therefore, 

has to address the question how production can be increased with minimum negative side 

effects on the environment. 

The degree of intensification in rice production varies enormously throughout the world 

due to the different ways in which rice is cultivated. Main cropping differences exist between 

upland rice and lowland rice. Lowland rice may be irrigated or rainfed. Under fully irrigated 

conditions, rice may be transplanted or direct seeded. Direct seeding under irrigation is the 

most capital-intensive form of cultivation. This makes this type of rice farming most 

appropriate to consider in studies concerned with input-use efficiency, because of the high 

losses often associated with high input levels (Van Keulen, 1982). 

This thesis is on the improvement of fertilizer nitrogen (N) efficiency in irrigated, direct 

seeded rice in Europe. Three indicators for N efficiency3 are used: i) agronomic efficiency, 

or the amount of N applied per unit grain dry mass, ii) utilization efficiency, i.e. the N uptake 

per unit grain dry mass, and iii) recovery of applied fertilizer N, which is the fraction of 

fertilizer N that is taken-up by the crop (kg kg"1). The methodology applied in the study is 

illustrated for the Camargue, a region comprising the delta of the Rhone river in the South 

of France. The Camargue represents a typical European rice production area; high radiation 

In this text, intensification is defined as the increasing use of capital-input (equipment, water, 
chemicals) per unit area. 

By input capital-input is meant, unless otherwise stated. 

When the term N efficiency is mentioned in the text, all three efficiency indicators are meant. 

1 



levels, abundant water availability, hardly any diseases and pests, and a high degree of 

mechanisation. In Europe, 404,000 ha rice land is found (FAO, 1993), representing 0.3% of 

the world's area cropped to rice. European rice production mainly takes place near river deltas 

of international ecological importance (Directory, 1984), which makes research aiming to 

improve fertilizer N efficiency, and thus to reduce actual N emissions to these sites, especially 

relevant. 

The context of the study 

In 1984, a four year agronomic survey was started by the Laboratory of Agrarian Systems 

Research (LECSA) of the Institute National de la Recherche Agronomique (INRA) in France. 

The aim of the survey was to analyze the primary production constraints for rice in the 

Camargue. An inventory was made of the cultural conditions in the Camargue, i.e. 

information was acquired on soils, crop rotations, crop characteristics, technical know-how 

and socio-economical conditions. 

A number of 100 fields cropped to rice were monitored in 1984. In the following years, 

till 1988, 25 fields were selected and followed more intensively. Fields were selected in such 

a way that a reliable sample of the farms in the region was obtained (Mendez del Villar, 

1987). Observations on crop and soil were made on small plots within each of those fields. 

The acquired information was analyzed using multivariate techniques. For more detailed 

information on this survey reference is made to Barbier et al. (1986) and Mouret (1988). 

As the data analysis indicated that the N efficiency in rice cultivation of the Camargue was 

low, controlled experiments on N management were carried out in 1989 and 1990 

(Stutterheim and Barbier, 1994, Stutterheim et al, 1994b). The aim of the experiments was 

to demonstrate that under the prevailing local circumstances it was technically feasible to 

increase the fertilizer N efficiency without yield reduction. The data from these experiments 

were used for the development of a dynamic model on N limited growth of rice. Those 

activities were carried out for the present study. 

Throughout the period 1989 - 1992, demonstration fields were laid out for extension 

services and farmers. 



CROP 
STAGES 

WATER 

NUTRIENTS 
& 

HERBICIDES 

i | stowiNa | 

r 

1 Apri l ' M a y 

r ' ' ' ' 

! 1 ! 
' ! 1 

\ | BASAL \H P, K\ 

: ; c 

1 1 
1 1 
i nuemNO | 

i | i « | 
1 ' r 
i i I 
i i 
1 June ' July 

i i 

1 
1 
1 
1 
1 

H^ADMO \ 

1 

\ A u g . 

i 

| PERMANENT KfUOA pOM 

bRANAQE ' 1 

1 1 1 

1 1 
1 1 
1 1 

SUPPLEMENTARY N j 

1 | 1 HERBICDES 1 | 
1 1 1 1 

i r 
i L 

1 
1 
1 
1 
1 1 

\ | HARVEST | | 

1 

1 Sept. 

1 

1 

1 

O c t . ' 
t 

1 1 '| 

1 DRAINAGE 1 ' 

/NtENSFJED FlXjODHQ 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

Fig. 1.1 Rice cropping calendar for irrigated rice in the Camargue. 

Rice cropping practices in the Camargue 

Before sowing of the new rice crop in April or May (Fig. 1.1), the field is ploughed in the 

autumn and levelled in the spring. After one or more field operations to break-down most of 

the largest soil clumps, N, P and K fertilizer is applied on top of the dry soil surface and 

incorporated with a rotary harrow. On average 100 to 120 kg N ha"1, 30 to 90 kg P ha"1 and 

80 to 120 kg K ha"1 is applied as basal dressing. The fertilizer can be in a combined form or 

in the form of prilled salts. The time between fertilizer incorporation and sowing cq. flooding 

may vary for several reasons: i) to minimize equipment change on the limited number of 

tractors, fertilizer incorporation and seedbed preparation are carried out on all the fields of 

the farm before sowing, cq. flooding, is started; ii) constraints in the irrigation system requires 

that all pre-flood operations on the whole farm are finished, iii) weather (temperature, wind) 

may cause a delay in sowing and/or flooding (sometimes farmers decide to sow into the 

floodwater because of the water-temperature being higher than the air-temperature at night). 

Hence, sowing and flooding may start several weeks after fertilizer application depending on 

of farm size. 



In the Camargue, germination takes place under water, an environment particularly 

unfavourable for seedling survival. Turbulence in the irrigation water provokes the seeds to 

be covered by soil. This may, to some extent, be prevented by adapted land preparation and/or 

measures to increase the stability of the seedbed structure (Barbier et al, 1991). However, 

with wind velocities up to 100 to 120 km h"1 ('Mistral') some seed covering seems 

unavoidable. In the soil, seeds rapidly experience oxygen shortage which hampers the 

development of the radicle and nodal roots. Furthermore, the dark surrounding of the 

emerging plantlets induces extra-ordinary elongation of the mesocotyl, the coleoptile, the first 

and second leaves, and the first and second internodes (Yoshida, 1981). These young plantlets 

are poorly embedded in the soil and are easily uprooted by the water movement under windy 

conditions. As a result, 50 to 70% of the applied seed is normally lost in rice fields of the 

Camargue. 

In the period up to tillering, farmers repeatedly drain their fields (Fig. 1.1) mainly to 

increase the effects of contact herbicides. This practice has the advantage of increasing the 

oxygen supply to the soil and thus to promote plant establishment. Crop growth may profit 

from re-oxygenation of the soil. Following flooding, the soil rapidly decreases in redox-

potential (Fig. 1.2), which affects root quality (Matsushima, 1979). In the Camargue, a large 

proportion of roots may have degenerated around the beginning of July, corresponding to the 

end of tillering cq. panicle initiation (Fig. 1.1). Soil re-oxygenation is most effective on heavy 

soils high in organic matter content, because reduction processes are intense in such soils 

(Fig. 1.2). 

At tillering and around panicle initiation additional N may be applied (Fig. 1.1) in 

quantities ranging from 30 to 50 kg N ha"1 per application. Contrary to the basal application 

this fertilizer is spread into the standing floodwater. Herbicides are frequently applied during 

the vegetative growth phase. 

From the start of panicle initiation till harvest, farmers merely have to control the water 

level of their fields. The level is increased from 10-15 cm to 25-30 cm just before flowering 

(Fig. 1.1), to protect the plants against the negative effects of strong fluctuations in 

temperature. A few weeks before harvest, drainage takes place to facilitate harvest operations. 

The efficiency of N fertilizers applied to rice in the Camargue 

Application and incorporation of N fertilizer to the dry soil just before irrigation seems 

theoretically an appropriate technique to reduce losses of N by processes like ammonia-

volatilization, nitrification-denitrification and horizontal run-off. However, as noticed already, 

the farmer may have practical difficulties to irrigate soon after the incorporation of the 



500 

400 

300 

200 

100 

0 

-100 

Eh (mV) 

** -• 

\ \ 
' \ 
' \ 

- * \ 
\ \ 
\ \ 
•L \ 

~ "~ • ^ s » ^ ^ v 

, , , , i , , , . i , 

~" - -S^—. -a - - S - - • 

-10 10 20 30 40 50 60 70 

time after flooding (d) 

Fig. 1.2 Redox-potential of a soil surface layer (0.05 m) through time. A soil volume of 0.03 m3 was 
continuously covered with irrigation water of 0.15 m depth in containers cropped to rice cv. Cigalon. 
A = silt loam soil. • = silty clay loam soil. 

fertilizer. In this lag-period, strictly aerobic nitrifying bacteria convert the fertilizer ammonium 

into nitrates (nitrification). The rate of nitrification mainly depends on the amount of organic 

carbon, soil aeration and temperature (Watanabe et al, 1981; Schmidt, 1982). As soon as 

irrigation starts, nitrates rapidly disappear from the soil (Fig. 1.3) by lateral flushing, leaching, 

or denitrification in the increasingly anaerobic soil. This process of nitrification-denitrification 

may be repeated with re-oxygenation of the soil. Hence, although drainage practices may be 

good for crop establishment and further plant growth, it highly increases the risk of N loss. 

With fertilizer application into the floodwater, the granules of the fertilizer will end up in 

the mud layer that forms the transition between the irrigation water and the soil. This N may 

be taken up by the fine, highly branched roots growing in this transition zone (Yoshida, 

1981), but it also may be lost by the chemical and physical processes already mentioned. As 

the rate of uptake and loss are related to the N concentration, N uptake needs to proceed as 

fast as possible to limit N loss. 



Without any application of N, rice yields of 4 to 6 t ha"1 are obtained in the Camargue. 

This is due to the high natural fertility of the soils of fluvial origin. In the 100 fields that 

were followed in 1984, 53 fields had a soil organic matter content between 1.6 and 2.5%. 

Yield is positively related to organic matter content of the soil (Barbier and Mouret, 1992), 

probably because of an increasing supply of N by immobilization-remineralization at higher 

soil organic matter levels. 

From the survey data, only a very weak relationship could be established between grain 

yield and fertilizer N management; yields hardly seemed to depend either on the quantity of 

N input, or on the methods of application. This is reflected in the low value (11 - 13 kg kg"1) 

of the agronomic efficiency (Barbier et al., 1989). For irrigated rice, these figures can be 

considered as very low. 

It is concluded that the efficiency of N fertilizer may be determined by several processes, 

which need to be quantified to optimize the use of N fertilizer for crop production. 

Subsequently, an optimal fertilizer N strategy may be derived. 

time after flooding (d) 

Fig. 1.3 Dynamics of nitrate concentration in soil solution after the onset of flooding of fields in the 
Camargue that were cropped to rice cv. Lido in 1989. ° = loam soil, A = silt loam soil. Bars indicate 
the standard deviation of the mean. 



Research objectives and approach 

The main objectives of the present study were: i) to assess the actual and attainable N 

efficiency of irrigated, direct seeded rice in the Camargue and comparable production areas 

in Europe, ii) to develop a methodology to derive the optimum application strategy for N 

fertilizer under various environmental circumstances, and iii) to provide a tailor made N 

application strategy for a representative medium growth duration rice variety of the Camargue. 

Data from the French research program were used to assess the N efficiencies for the 

Camargue region, while data from European experiments on rice served to do the same for 

the main rice growing areas on the continent. The results of on-farm experimental research 

during two years permitted analysis of the N efficiency under contrasting N management. 

These analyses are presented in Chapter 2. 

Measurements on crop and plant level made in both experiments were used to obtain more 

insight into the growth and yield formation of direct seeded rice in the Camargue. Special 

attention was given to the role of N in the formation of sink and source capacity of the crops 

(Chapter 3) to deduce how N may affect yield. 

Use was made of dynamic crop growth modelling to derive the optimum N application 

strategy. By using a model, the effect of different N management practices on growth or N 

efficiency can be analyzed without numerous field experiments. The management practices 

found to be promising, can subsequently be tested under field conditions. Several explanatory 

models on N limited growth of rice exist with a high degree of complexity (cf. Kropff et al., 

1993; Godwin et al., 1990). This makes such models suitable for research, but for use by 

extension services more simple summary models are required. As extension of research results 

was one of the primary objectives in the French research program, such a simple model was 

developed (Chapter 4 and 5). 

In Chapter 4, the model NGROW-RICE is presented. It can be used to interpret treatment 

effects in fertilizer N trials. Main inputs are daily global radiation and the course of crop N 

through time. 

With NGROW-RICE, N management can be evaluated, but only when the N status of a 

crop is provided. N uptake in dependence of the N level in the soil needs to be mimicked to 

analyze N management without previous knowledge on crop N status. This was realized by 

combining NGROW-RICE and the model ORYZAJ) (Ten Berge et al, 1994) into a model 

called NGROW-ORYZA (Chapter 5). With this model, the optimal application of N was 

calculated for two cases: the potential case where it is assumed that N can be applied 

continuously, and the actual case where application of N is at distinct moments during the 

growth of the crop. Finally, a tailor-made N management advice is formulated on the basis 

of the results of the study. 



Chapter 2 

The efficiency of fertilizer nitrogen in irrigated, direct seeded rice 
(O. sativa L.) in Europe. 

Abstract Data from 35 experiments with direct seeded rice, performed between 1981 and 

1991 by national research institutes in five major rice growing countries of Europe were 

analyzed to estimate the average efficiency of fertilizer nitrogen (N). Pooled data from a 

four year regional survey (1984-1988) on rice-based farming systems in the Camargue-

region (43°30'-43°40' N) in the south of France, were used to perform a similar analysis. 

Experimentation during two years (1989-1990) was carried out to assess the value of the 

N utilization efficiency within the range of N limited growth and to obtain information on 

the N efficiency under controlled conditions. At reduced basal dressing of N on soils with 

high soil organic matter content the maximum apparent N recovery was estimated at 0.21 

to 0.32 kg N uptake per kg N applied. Maximum agronomic efficiency ranged from 12 to 

17 kg grain dry mass per kg N applied. High basal N application on these soils resulted in 

yield loss. No consistent yield response to fertilizer N input was found on soils with less 

than two percent organic matter, irrespective of fertilizer timing. These results confirm the 

important role of soil organic matter in rice cultivation. An average apparent N recovery 

of 0.18 was obtained with split application of N under controlled experimental conditions 

in the Camargue. Using a controlled release fertilizer values of 0.58 and 32 kg kg'1 were 

obtained for the apparent N recovery and agronomic efficiency, respectively. Hence, 

disregarding the economic feasibility, considerable scope exists for improving N efficiency 

in European rice cultivation. 

Introduction 

The apparent nitrogen (N) recovery (ANR in kg kg"1) is defined as the ratio of additional N 

uptake (kg ha"1) in response to fertilizer N application to the amount of fertilizer N applied 

(kg ha"1). In irrigated rice, ANR normally ranges from 0.2 to 0.4 (De Datta, 1981; De Datta 

et al., 1983; Vlek and Byrnes, 1986). To increase ANR, extensive research has been carried 

out during the last decades on alternative application methods and different fertilizer forms 

(Tejeda et al., 1980; Kolhe and Mittra, 1987; Rao, 1987) resulting in several methods to 

improve fertilizer N recovery in irrigated rice. 



Placement of N in reduced soil layers (deep placement) is very effective in increasing the 

N recovery (Craswell et al, 1981; Cao et al, 1984). Under anaerobic conditions nitrification 

strongly decreases with soil depth (Schmidt, 1982), thus reducing N loss by denitrification and 

leaching (Bilal et al, 1979; Singh and Singh, 1988). Furthermore, deep placement is an 

effective way to prevent the movement of ammonium (NH4
+) to the floodwater. Hence, also 

N losses by ammonia (NH3) volatilization, run-off and nitrification-denitrification processes 

are reduced (Craswell and Vlek, 1979; Savant and De Datta, 1982). 

Split application is another method that can increase N recovery. Synchronization of 

nitrogen supply and crop N demand reduces the residence time of the nutrient in the soil 

environment and hence the fraction of fertilizer N subject to loss. 

N recovery can also be improved by using alternative fertilizer forms. Many results (Wells 

and Shockley, 1975; Rao, 1987; Singh and Katyal, 1987; Chauhan and Mishra, 1989) have 

shown that the use of coated fertilizers and/or chemical additives can reduce N losses and 

therefore improve N recovery. Coating creates a barrier between the fertilizer granule and the 

soil, thus reducing the contact time and contact area between soil environment and the 

nutrient. Additionally, specific chemical compounds can be added to slow down or inhibit 

nitrification and as a consequence the loss of N by denitrification. 

One group of coated fertilizers are the plastic resin or polymer coated controlled release 

fertilizers (CRF's) with brand names as Osmocote, Ceracoat, Nutricote and LP-Cote (Fujii and 

Yazawa, 1989; Fujita et al, 1989). Their coatings are very regular and of constant and 

controlled thickness (Oertli, 1980). Release of the internal nutrient is by diffusion and its 

temperature dependence can be altered by adaptation of coating properties (Fujii and Yazawa, 

1989; Fujita et al, 1989). Theoretically, the use of CRF's could reduce the need for fertilizer 

application to a single basal dressing without increasing the risk of fertilizer loss. This already 

has been illustrated for sulphur coated urea (Flinn et al, 1984; Rana et al, 1984), but field 

data confirming this for CRF's in rice are lacking. 

Literature offers little information on N recovery in European rice cultivation despite the 

well documented fact that recovery is poor in tropical rice systems. The aim of this 

contribution is to quantify N recovery for rice in the European situation. Subsequent research 

can be focused on the quantification of N turnover, and N loss processes in irrigated soils. 

The latter may be especially important since most rice production areas in Europe are situated 

near wetland of international importance such as the Tejo Estuaria and Ria Sado in Portugal, 

the Ebro Delta, La Albufera de Valencia and the Marismas del Guadalquivir in Spain, the 

Camargue in France, and the area around Ferrara and Ravenna and the Po Delta in Italy 

(Directory, 1984). 

In this paper the average N efficiency is quantified in terms of ANR, the nitrogen 

utilization efficiency (NUE, in kg grain dry mass per kg N uptake) and the agronomic 
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efficiency (AEFF, in kg grain dry mass per kg N applied). Data from two surveys are used, 

one covering several European countries and the other focusing on the Camargue region in 

the south of France. The scope for improvement of N efficiency in rice cultivation is 

discussed and the importance of soil organic matter (SOM) content and timing of N is 

demonstrated. To obtain key parameters required for analysing the Europe and Camargue 

survey data, two detailed experiments were conducted which are discussed first. 

Materials and methods 

Camargue experiment 1989 

Four N treatments were laid out in triplicate using a randomized complete block design (Table 

2.1). The control treatment (NO) received no fertilizer N. In Nl, 160 kg N ha"1 as coated CRF 

'Osmocote 40-0-0', a so-called 'three-month-type', was applied as a basal dressing only. 

Under controlled laboratory conditions, this type of CRF releases N during three months at 

soil temperatures of 25°C (Sierra Chemical Europe factory specifications). In the other two 

treatments (N2 and N3) a total amount of 160 kg N ha"1 per treatment was applied as prilled 

urea in different fractions. N2 received two split application in equal fractions of 80 kg ha"1 

at the three leaf stage (34 days after sowing (DAS)) and near neck-node initiation (56 DAS), 

respectively. In N3, a basal application of 80 kg ha"1 was followed by two splits of 40 kg ha"1 

at 34 and 56 DAS, respectively. All basally applied N was broadcast and incorporated into 

the dry upper five cm of the soil together with a combined fertilizer containing P205 (34.9 kg 

P ha"1) and K20 (124.5 kg K ha'1). The medium duration rice variety 'Lido' (medium grain 

type, spp. japonica) was broadcast seeded on the 28th of April, two days after fertilizer 

application. The next day the field was flooded. It remained flooded throughout the 

experiment until 142 DAS. 

At maturity (142 DAS), four randomly selected areas of 0.25 x 0.25 m were sampled 

within each plot. After threshing and weighing grain and straw in each sample, subsamples 

were dried at 80°C during 24 h. Dried material was analyzed for total N according to the 

improved Kjeldahl-method (Method, 1984). 

Camargue experiment 1990 

In 1990, a four-level single factor randomized complete block design with three replicates was 

used to establish the NUE and the optimal dose of Osmocote with respect to AEFF and ANR. 

Broadcasting and incorporation of Osmocote 40-0-0 at N levels of 0 (NO), 50 (N50), 100 
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(NIOO) and 150 kg ha"1 (N150) and 34.9 kg P ha ' and 124.5 kg K ha ' as combined fertilizer 

containing P205 and K20, took place two days before broadcast sowing (11th of Mai) and 

subsequent flooding (1 DAS). Soil characteristics of the experimental field are presented in 

Table 2.1. The crop was harvested at maturity, 131 DAS. Management practices, variety, 

sampling techniques and analyses were identical to those in 1989. 

The Camargue survey 

Data from a four-year regional survey (1984-1988) on rice-based farming systems in the 

'Camargue'-region (43o30'-43°40' N) in the South of France (Barbier et al., 1990) were 

pooled to analyze the N efficiency in rice on a regional scale. A total of 169 sites, each 

subjected to different N management (form, quantity and timing), crop and soil management, 

and weather, were analyzed. Data on yields and N management were obtained from farmer 

interviews resulting in a data-set of high variability. In view of the likely inaccuracy of the 

farmer-supplied data, N application was subdivided in classes of width 25 kg N ha"1. 

Table 2.1 Characteristics of the experiments carried out in the south of France in 1989 and 1990. The 
numbers following each N treatment give the amount of N applied in kg ha"1 before sowing, at the three-
leaf stage and around neck node differentiation, respectively. 

EXPERIMENT SOIL TYPE 

AND 

TEXTURE 

SOIL 

ANALYSES 

TREATMENTS 

EXP89 
sowing : 

harvest : 

EXP90 
sowing : 

harvest: 

28/4 
17/9 

11/5 

19/9 

Silt Loam 

(SL) 
(27,70, 3 ) * 

Loamy Sand 
(LS) 

( 7, 8,85)* 

Org. 

Tot. 
OM 

CEC 
pHw 

Org. 

Tot. 
OM 

CEC 
pHw 

C 
N 

C 

N 

2.5 % 
0.24% 
4.1 % 

10 meq/100g 
7.9 

0.8 % 
0.07% 

1.4 % 

3.3 meq/100g 
8.1 

NO 

Nl 
N2 

N3 

NO 
N50 

N100 

N150 

0-0-0 
160-0-0 as CRF 
0-80-80 as PU 

80-40-40 as PU 

0-0-0 
50-0-0 as CRF 

100-0-0 as CRF 

150-0-0 as CRF 

()* is percentage clay, silt and sand, respectively. Org. C. = soil organic carbon, Tot. N = total soil nitrogen, OM = 
organic matter, CEC = cation exchange capacity of the soil, pHw = pH-water. PU = prilled urea, CRF = controlled 
release fertilizer. 
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Data were also grouped according to soil type (SOM) and N application strategy (timing). 

Organic matter classes were: SOM less than 2%, 2-3%, and SOM exceeding 3%. This 

classification was derived from a logarithmic relation between yield and SOM-content 

reported for the Camargue (Barbier and Mouret, 1992). Timing of N application was 

accounted for by distinguishing three subgroups according to the ratio between amounts of 

basally to total applied N. This ratio represents the relative importance of the basal dressing. 

The subgroups were: a ratio less than 50% (N mostly applied in sprits (NSPL)), a ratio of 50 

to 65% (an approximately balanced N application with respect to timing (NBL)), or finally, 

a ratio above 65% (mainly basal dressing of N (NBAS)). 

Yield and N application were related for each combination of SOM and N timing by 

plotting average yields against average amounts of applied N per application class (e.g. Fig. 

2.3a). Standard errors were calculated, both for the yield-average per class and for the average 

amount of applied N per class. 

The Europe survey 

The Europe survey consisted of an evaluation of data coming from 35 experiments on direct 

seeded rice performed between 1981 and 1991 by national research institutes in five major 

rice growing countries of Europe (Cereal Institute in Thermi-Thessaloniki (Greece); Instituta 

Agricultura in Milano (Italy); Istituto Sperimentale Cerealicoltura in Vercelli (Italy); Institut 

National Investigacion Agrarias in Figueira da Foz (Portugal); Instituto Valenciano de 

Investigaciones Agrarias in Valencia (Spain); Institut de Recerca i Tecnologia 

Agroalimentàries in Tarragona (Spain); Centro de Investigacion y Desarrollo Agrario in 

Sevilla (Spain) and Thrace Agricultural Research Institute in Edirne (Turkey)). In the 

experiments, different levels of N application existed and all N was applied basally. 

Furthermore, between the experiments crop and soil management, site, and year of cultivation 

differed. The data of all experiments were pooled and sorted according to grain yield and N 

application level. For all experiments where an identical amount of N was applied the average 

yield was calculated. 

Analysis 

Results are presented in a so-called three quadrant format (De Wit, 1953) which combines 

three curves in one figure. One curve represents grain yield against N application (yield-

application curve). Another curve represents yield against N uptake (yield-uptake curve). The 

third curve relates N application with N uptake (application-uptake curve). Only two out of 

these three relations are mutually independent; the third relation can always be derived from 
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any two of the three relations. The slopes of the curves represent AEFF, NUE and ANR, 

respectively. 

NUE could not be estimated directly from the survey data because no N uptake was 

measured within the surveys. Therefore, the results of both 1989 and 1990 Camargue 

experiments were used to assess NUE. The resulting average value of NUE was subsequently 

used in analysing the Camargue and Europe survey data sets, thus assuming that NUE is 

constant across the locations covered by the surveys. According to Van Keulen (1977, 1982) 

NUE is approximately constant if N is the only limiting factor for growth. For this reason, 

yield decline at increasing N application, where factors other than N shortage (e.g. pests and 

diseases, lodging) are obviously limiting production, are not considered in our analysis of N 

efficiencies. 

Yield-application curves were constructed using measured data from each experiment or 

survey. Subsequently, each yield-application curve was combined with the generalized NUE 

value obtained from EXP89 and EXP90 to assess the application-uptake curve (according 

dotted lines in Fig. 2.1 to 2.5). The range in which the linear part of the yield-uptake curve 

can be used for analysis is determined by the form of the measured yield-application curve. 

As explained before, only the part of the curve with a positive yield reaction on N input is 

taken into account in the analysis. Therefore, application-uptake curves in Fig. 2.3, 2.4 and 

2.5 can not be extended to the maximum application level of N. The intercept of the 

application-uptake curve with the uptake axis represents the natural N fertility of the soil, the 

slope with respect to the application axis represents ANR. 

Results 

The Camargue experiments 1989 and 1990 

The yield-application curve 

In every treatment (except NO) of EXP89 the total quantity of applied N was 160 kg ha"1, 

which resulted in hardly any yield difference (Fig. 2.1). For this reason, no AEFF was 

calculated for this experiment. 

Yields in EXP90 increased up to N applications of 100 kg ha"1. Application in excess of 

100 kg N ha"1 hardly raised yields above the level of 7285 kg ha"1 obtained with N100. On 

the basis of latter results AEFF was estimated at 32 kg kg"1. 
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The yield-uptake curve 

NUE was determined as the slope of the yield-uptake relations of EXP89 and EXP90 (Fig. 

2.1b and 2.2b). Because all other growth conditions were kept optimal as possible while only 

N availability varied, the slope of the linear part of the curves can be considered as the 

constant NUE valid under N limited growth conditions. 

In EXP89, average N uptake in N2 and N3, both treatments in which N was split-applied, 

was alike (125 kg ha"1) but clearly lower than that obtained with Nl (158 kg ha"1). This 

additional N uptake of 33 kg N ha"1 under Nl did not result in significantly higher yields. By 

considering the average yield of 5305 kg ha"1 obtained at NO, a yield-uptake curve was 

constructed with a slope, or NUE, of 55 kg kg"1 (Fig. 2.1b). 

Maximum grain yields in EXP90 were higher than those in EXP89. This may be attributed 

to the relatively low temperatures in the first 20 days of grain filling in 1990 (data not 

presented). Despite this, the yield obtained with NO in EXP90 was lower than that measured 

in EXP89 at the same treatment. This indicates that the N supply from natural sources was 

lower in EXP90. The NUE estimated at 56 kg kg"1 was valid up to a N uptake of 120 to 130 

kg ha"1 (Fig. 2.2b). 

Both values of NUE were within the range of 53 to 63 kg kg"1 referred to in literature (Van 

Keulen, 1977; Wada et al., 1986). Hence, in analysing the survey data, the yield-uptake 

relation was represented by a straight line with an average slope of 56 kg kg"1. The validity 

of this relation is restricted to a range of N uptake from 0 to near 120 kg N ha"1 (Fig. 2.1b 

and 2.2b). 

The application-uptake curve 

Two separate application-uptake curves were constructed from the data of EXP89 (Fig. 2.1c), 

demonstrating a change in recovery fraction of fertilizer N due to the different N treatments. 

One curve related a N uptake of 125 kg N ha"1 in N2 and N3 with the application of 160 kg 

N ha"1; the other curve related a N uptake of 158 kg N ha_1 in Nl with 160 kg N ha"1 applied. 

In this way ANR values of 0.18 and 0.38 were established for N2/N3 and Nl, respectively. 

The application-uptake relation for EXP90 is given in Fig. 2.2c. Average ANR of fertilizer 

decreased significantly at application rates exceeding 100 kg N ha"1 or an uptake of 133 kg 

N ha"1. At application rates below 100 kg N ha"1 the average ANR was 0.58 kg kg"1 while any 

applied N above that level, up to 150 kg ha"1, was only for 12% recovered. 
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Fig. 2.1 The yield-application curve (a), the yield-uptake curve (b) and the application-uptake curve (c) 

for the Camargue-experiment in 1989. Vertical and horizontal bars indicate standard errors of yield and 

N-uptake estimates, respectively. The numbers beneath the application-uptake curves represent the mean 

apparent nitrogen recovery fraction for prilled urea (left) and for controlled release urea as Osmocote 

(right). Tabulated values of measurements used in quadrant a) are given, together with the number of 

observations used for statistical analysis. Yields with different letters vary significantly at the 5% level. 
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Fig. 2.2 As Fig. 2.1 but this time for the Camargue-experiment with controlled release fertilizer in 1990. 
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increment in applied fertilizer-N. 
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estimates. Numbers aside of the application-uptake curve represent mean apparent nitrogen recoveries 
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The Camargue survey 

The yield-application curve 

The data-set for soils under NBAS with more than 3% SOM contained 15 observations at five 

N application classes. Maximum yields were obtained with N applications between 100 and 

125 kg ha', after which yields declined strongly (Fig. 2.3a). Up to that level of application, 

AEFF was 15 to 16 kg kg'1. N timing regimes other than NBAS on these soils did not result 

in consistent yield-application curves (data not presented). 

The data-set for soils containing between 2 and 3% SOM receiving NBAS contained 38 

observations in five N application classes (Fig. 2.4). In the yield-application relation only a 

slight trend could be detected when it was assumed that the yield reaction to the natural N 

supply was comparable to that observed in the Europe survey. Maximum grain yield was 

attained at a N application around 150 kg ha"1, resulting in an AEFF of 12 to 13 kg kg'1. No 
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consistent yield-application curves could be established with other timing of N at these soils. 

The analysis of data from soils with less than 2% SOM failed to give a satisfying yield-

application relation at all. 

The lack of any relation between yield and N input when N was split applied or when soils 

contained less than 2% SOM (regardless application method), suggests that this application 

method is not always effective in preventing N loss from paddy fields. Even with NBAS, a 

decrease in SOM resulted in a shift of the N level at which maximum yield was obtained 

towards higher N applications (Fig. 2.3a and 2.4a). Hence, lower SOM means a lower 

availability of N for crop production. 

The yield-uptake curve 

The linear relation between yield and N uptake was derived from EXP89 and EXP90. 

Maximum yields were obtained at a N uptake near 114 kg ha"1 for soils with SOM greater 

than 3% combined with NBAS (Fig. 2.3b) and around 91 kg N ha"1 for soils having between 

2 and 3% SOM and receiving NBAS (Fig. 2.4b). 

The application-uptake curve 

The application-uptake curve for soils with SOM greater than 3% and receiving NBAS 

showed that an increase of applied N up to around 109 kg ha"1 corresponded to an increase 

in N uptake of 0.25 kg kg"1 (Fig. 2.3c). 

For the combination SOM 2-3% and NBAS, average ANR was estimated at 0.21 kg kg"1 

up to a N application of 141 kg ha'1 and 0.05 kg kg"1 for doses applied between 140 and 160 

kg ha"1 (Fig. 2.4c). 

For the groups receiving NBL or NSPL and for all soils with SOM less than 2%, no 

consistent relations between N application and yield could be established. Hence, application-

uptake curves were not constructed for those soils. 

The Europe survey 

The yield-application curve 

The eye-fitted curve relating average yield and N application in the experiments of the Europe 

survey showed an increase of yield up to an amount of about 150 kg ha"1 of applied N, after 

which the curve levelled off and subsequently decreased (Fig. 2.5a). The average AEFF till 
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the maximum yield was 15 to 17 kg kg"1. The large variation in grain yield at each N 

application is due to variations in management and growth conditions between the 

experiments within the survey. 

The yield-uptake curve 

The linear relation between yield and N uptake was derived from EXP89 and EXP90 (Fig. 

2.5b). Maximum yield, as determined with the yield-application curve, was obtained with a 

N uptake of about 108 kg N ha"1. 

The application-uptake curve 

From the application-uptake curve derived from the yield-application and yield-uptake curves, 

it was estimated that without N fertilization about 62 kg N ha"1 was taken up (Fig. 2.5c). This 

amount is considered as the natural N supply to the crop. Application of 60 kg ha"1 increased 

N uptake by 19 kg, which corresponds to an average ANR of 0.32. About the same ANR 

fraction (0.31) was found for applied fertilizer N at levels between 60 and 150 kg ha'1. 

Discussion 

Yield-application and experimentally determined yield-uptake relations permitted to establish 

average values of ANR for the Europe and the Camargue surveys. The Camargue survey 

illustrates the complexity of broad field surveys due to variation in environment and 

management. Sorting of data was therefore carried out on the basis of SOM and N timing, 

considering existing evidence in literature on the role of these variables in flooded rice soils 

(Stojanovic and Broadbent, 1956; Patnaik, 1965; Racho and De Datta, 1968). 

The assessment of yield-application curves in the Camargue survey appeared only possible 

when most N was applied basally at soils with reasonably high SOM-levels (2-3% and greater 

than 3%). Because it was possible to establish relations between yield and N application in 

the Europe study, it was assumed that soil organic matter was moderate to high at these 

experimental sites (no farmer fields were included). 

The importance of N timing in relation to SOM can be deduced from reported results 

showing that soils rich in organic matter manifest a large N supplying capacity due to 

immobilization-remineralization (Patnaik, 1965; Racho and De Datta, 1968). Part of the N 

mineralized soon after flooding or applied as basal dressing may be temporarily immobilized 

by the soil microbial biomass and remineralizes later in the growing season (Stojanovic and 
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Broadbent, 1956; Patnaik, 1965). This remineralized N is, contrary to split applied N, mainly 

situated in anaerobic soil layers where the risks for losses are relatively small (Craswell and 

Vlek, 1979; Savant and De Datta, 1982). Hence, more N will be available for crop uptake, 

resulting in higher grain yields provided N is the main limiting factor. This explains better 

relationships between yield and N application. The high natural N supply of soils with high 

SOM (Fig. 2.3) implies that the amount of fertilizer N to be applied for a certain target yield 

can be reduced compared to that needed on low SOM soils. The risk of over-dosing of N 

leading to yield reduction is higher on soils high in SOM because N saturation (Stutterheim 

and Barbier, 1994) or even lodging may already be obtained at moderate N application levels 

(Fig. 2.3a). 

An average value for AEFF between 12 and 17 kg kg"1 is obtained in European rice 

cultivation on soils with SOM greater than 2%. These figures are low compared to reported 

values of 56 kg kg"1 for direct seeded rice in Australia (Humphreys et al, 1987), but in 

accordance with published data for the Camargue (Barbier and Mouret, 1992). This may 

indicate that N losses from irrigated rice fields in Europe are substantial. This view is 

supported by the low values for ANR found in the Camargue survey and with the split 

applications in EXP89. 

The improvement in ANR values obtained with the CRF in EXP89, and especially EXP90, 

indicate that controlled N release is effective in reducing N loss. Immobilization of fertilizer-

N mimics in a certain way a process of slow release, but microbial activity is far from 

'controlled', which may cause excessive N uptake. This explains why basal N applications 

above 100 to 125 kg ha"1 at soils in the Camargue survey with more than 3% SOM, decreased 

average yields, while up to 150 kg N ha"1 could be applied without yield reduction within the 

experiments of the Europe survey and the Camargue farmer soils with SOM 2-3% and NBAS. 

Hence, one way to improve N efficiency in European rice cultivation is to control N release 

in the soil. However, this requires additional research to increase the quantitative 

understanding of N turnover in irrigated soils. 

Considerable scope exists for improving N management under European conditions. The 

AEFF of 32 kg kg"1 and the ANR of 0.58 obtained with a CRF application of 100 kg N ha"1 

in EXP90, compares favourably with the AEFF of 15-17 kg kg • and the ANR of 0.31-0.32 

kg kg"' obtained in the survey of the European experimental fields. The values obtained with 

the CRF are comparable to those reported for deep point placement of urea in tropical rice 

(De Datta et al, 1968; Murayama, 1979), still considered one of the most efficient N 

application methods (Reddy and Patrick Jr., 1976; Craswell et al, 1981; Cao et al, 1984). 

21 



Conclusions 

- In European rice cultivation the average agronomic efficiency and apparent nitrogen 

recovery on soils with more than 2% organic matter, range from 12 to 17 kg kg"1 and 0.21 

to 0.32 kg kg"1, respectively, under condition that fertilizer nitrogen is mainly applied as 

basal dressing, in quantities adapted to soil organic matter content. 

- To prevent yield decline, the amount of N applied as basal dressing on soils with more 

than 2% soil organic matter must not exceed 110 kg ha"1. 

- The relation between N application and yield could not be established for soils with less 

than 2% soil organic matter because of highly variable yields at different N application 

levels. Hence, on the basis of this study, basal application of N in European rice 

cultivation can only be recommended on soils with more than 2% soil organic matter. 

- The efficiency of nitrogen in irrigated rice is positively affected by soil organic matter 

content provided that no over-dosing of N takes place. The risk of yield loss due to 

excessive N availability is high on these soils. 

- In the Camargue survey no consistent yield-application relation could be established when 

nitrogen was split applied. In the Camargue experiment of 1989 the apparent nitrogen 

recovery of 0.18 was relatively low. It is concluded that split application of N is not 

always efficient for yield production. 

- Fertilizer N efficiency in irrigated rice systems of Europe can be improved considerably 

as is demonstrated by the results obtained with controlled release fertilizer. 
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Chapter 3 

Growth and yield formation of irrigated, direct seeded rice as affected by 
nitrogen. 

Abstract To obtain more insight in the growth and yield formation of direct seeded rice, 

the formation of sink and source capacity for carbohydrates was studied. Additionally, the 

effects of N management on crop growth and yield formation were analyzed. Data were 

obtained from two experiments in the South of France in 1989 and 1990. Initial plant 

density had a large influence on the time course of N uptake rate, apparently via its effect 

on the competition for available soil N. Low shoot N content during the tillering and 

reproductive growth phases resulted in a decrease of the length of the active tillering period 

and in low grain numbers per panicle. Leaf appearance rate and tiller appearance rate were 

not clearly affected by N. During the reproductive phase, the relative mortality rate of 

stems was linearly related to the decrease in shoot N content. Leaf area was shown to be 

affected by several growth processes, but simple linear relationships existed between the 

biomass and area of leaves and cumulative shoot N until flowering. The N use efficiency 

for leaf production and the specific leaf weight were assessed at, respectively, 19.8 kg kg"1 

and 418.7 kg ha'1. Although crop N status affected the formation of crop components, N 

uptake rate per se was not a reliable variable to relate to production. Despite this, it was 

concluded that the risk of a sink limited yield could be minimized by adapted N 

management. To reduce the risk of a source limited grain production a moderate leaf area 

with high N content during the post-flowering period was recommended. 

Introduction 

Yield formation in rice may be considered a process in which available carbohydrates are 

accumulated in grain during the grain filling period. Yield formation is called sink-limited 

when carbohydrate production exceeds the rate of accumulation, while the reverse situation 

represents source-limited production. To obtain insight in the sink and source capacity of a 

crop, it is necessary to quantify the production of those crop components that determine these 

capacities. This implies that growth and production needs to be studied at system level, i.e. 

by considering environment, management and crop characteristics. 

Although many studies on rice have been carried out to increase insight in the formation 

of main stems, tillers, leaves, panicles, spikelets and grains (Murata, 1969; Matsushima, 1979; 
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Akita, 1989), it remains virtually impossible to adequately calculate rice yield in a given 

environment. Therefore, in the study presented here, an effort is made to obtain additional 

information on growth and yield formation of direct seeded rice. 

Direct seeded, compared to transplanted rice, is characterised by early canopy closure, a 

high leaf area production and thus, a high vegetative growth rate. Excessive vegetative 

growth, however, often leads to tissue nitrogen (N) dilution, and subsequently to carbohydrate 

shortage and growth reduction in later growth phases (LeMaire and Salette, 1984; Dingkuhn 

et al., 1990; Schnier et al, 1990a). Hence, interactions between growth and N content of rice 

are relevant for yield formation and consequently they were taken into account in our study. 

In this paper, the production of various crop components that determine post-flowering sink 

and source capacity for carbohydrates were examined and related to crop N status and time 

series of shoot growth rate and N uptake rate. Furthermore, the effects of N management on 

crop growth and yield formation of direct seeded rice were assessed. 

Material and methods 

Experimental layout and sampling 

Two experiments on irrigated direct seeded rice were laid out in a randomized complete block 

design with four treatments and three replicates in the Camargue region in the South of 

France (43°18' - 43°24' N), in 1989 (EXP89) and 1990 (EXP90). Experimental plot size was 

50 x 12 m. In both years a combined fertilizer at a rate of 34.9 kg P ha'1 and 124.5 kg K ha"1 

was broadcast two days before sowing either with or without a basal N dressing, depending 

on treatment. A disc harrow was used to incorporate the fertilizer and prepare the seedbed. 

Seed of the japonica-culüvax 'Lido' with an average growth duration of 140 days was 

broadcast at a rate of 230 kg ha"1. Flooding took place one day after sowing (DAS). 

Treatments in 1989 were: a control without fertilizer N application (NO); basal application 

of 160 kg N ha'1 as coated controlled release urea (Nl); application of uncoated prilled urea 

(PU) in two splits of 80 kg N ha"1, at tillering and neck-node differentiation (NND), 

respectively (N2); and application of uncoated PU in three splits, a basal dressing of 80 kg 

N ha"1 and two splits of 40 kg N ha"1 at tillering and NND, respectively (N3). The textural 

class of the soil was silt loam. 

In 1990, a four level single factor design was used with coated controlled release urea at 

rates of 0 (NO), 50 (N50), 100 (N100) and 150 kg N ha"1 (N150), all applied as basal dressing 

on a loamy sand soil (Stutterheim et al, 1994b). 
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In EXP89 plants were sampled per block (four treatments per block) at 20, 26, 31, 33, 34, 

49, 53, 64, 90, 96, 102, 138, 143 and 144 DAS. In EXP90, complete blocks were sampled 

at 26, 31, 34, 59, 62, 68, 82, 87, 90, 129, 130 and 132 DAS. In both years, sampling was 

carried out by harvesting all plants from 0.25 m2 quadrats. In each experimental plot, four 

such quadrats were harvested (16 per block) and analyzed for the biomass of shoot, root, stem 

and leaf, tiller and plant number and shoot N according to Kjeldahl (Method, 1984). Tillers 

were distinguished from main stems. Leaf area was measured of 10 randomly selected plants 

per quadrat. The green leaf laminae of each plant were separated from the leaf sheaths and 

measured with a Delta-T leaf area meter. Leaf area index (LAI), calculated from the four 

samples per plot, was used for data analysis. At maturity, all leaf material was senescent. In 

EXP89, leaf appearance on main stems was monitored weekly by marking eight stems per 

plot and labelling emerged leaves with a small dot of dye. Labelling was postponed until the 

onset of tillering to avoid possible negative effects of the dye on young plants. Phenological 

development in both experiments was monitored by registering the onset of tillering, NND 

and flowering. 

Grain dry mass at harvest was determined from each quadrat. Information on panicle 

morphology was obtained by analysing 20 panicles, randomly selected from each plot. In 

EXP90, panicles were sampled weekly after flowering to follow the growth of individual 

grains. Grains were weighed fresh and oven-dry. 

Daily weather data were obtained from a nearby weather station. 

Data treatment 

To analyze treatment effects on shoot growth rate and N uptake rate, logistic curves (Table 

3.1) were fitted through plot means of shoot dry mass (NLj,) and cumulative shoot N uptake 

(N^), both in kg ha"1, using: 

Y = a y / ( l + b y - c aqK-Vt) ) ( 2 U ) 

with: 

ay = curve parameter related to the asymptote of the curve (kg ha"1) 

by = curve parameter related to the symmetry of the curve (-) 

cy = curve parameter related to the steepness of the curve (d1) 

Y = shoot dry mass or shoot N content (kg ha"1) 

t = time after sowing (d) 
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Table 3.1 Statistics of logistic functions fitted to time series 
of plot means per treatment (see text). Data were collected in 
the Camargue experiments of 1989 and 1990. 

Experiment 1989 

Function: M = a„ 

TRT 

NO 

Nl 

N2 

N3 

Experiment 

n 

15 

15 

15 

15 

1989 

Function: N = ak 

TRT 

NO 

Nl 

N2 

N3 

n 

13 

13 

13 

13 

shoot 

/(l <-t>M-

shoot 

/(l tb„. 

dry mass 

exp ( -cM 

r 

0.92 

0.98 

0.95 

0.93 

.DAS)) 

nitrogen 

exp(-cN 

r 

0.83 

0.91 

0.89 

0.87 

Prob > F 

0.0001 

0.0001 

0.0001 

0.0001 

content 

DAS) ) 

Prob > F 

0.0005 

0.0001 

0.0001 

0.0001 

The rates of shoot growth and N uptake were determined as the derivative to time of 

Equation 3.1 and subsequently plotted (e.g. Fig. 3.1) according: 

dY/dt = a, • by- c, • exp(-cy • t) / (1 + by • exp(-cy • t))
2 (3.2) 

For statistical analyses, an average sampling date was assigned to three successively 

sampled blocks, resulting in three replicate means per treatment. Average sampling dates 

were, 33, 55, 96 and 142 DAS in EXP89, and 30, 63, 86 and 130 in EXP90. To correct for 

variance heterogeneity, data were transformed to their natural logarithm (Hunt, 1982; Gomez 

and Gomez, 1984). Subsequently, the standard analysis of variance and the method of Duncan 

(SAS, 1989) were applied. No curves were fitted to these data. 
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Table 3.1 (continued) 

Experiment 1990, shoot dry mass 

Function: M = aH/ (l+DM.expt-Cn.DAS) ) 

TRT n r Prob > F 

NO 

N50 

N100 

N150 

13 

13 

13 

13 

0.92 

0.86 

0.92 

0.91 

0.0001 

0.0002 

0.0001 

0.0001 

Experiment 1990, shoot nitrogen content 

Function: N = a„/ (l+b„.exp(-cN.DAS) ) 

TRT n r Prob > F 

NO 

N50 

N100 

N150 

13 

13 

13 

13 

0.90 

0.84 

0.87 

0.88 

0.0001 

0.0003 

0.0001 

0.0001 

a,,, by, cy, dy are function parameters, DAS = days after sowing, TRT = 

treatment, n = number of replicate means used to fit the function, r = 

correlation coefficient, Prob > F = level of significance. 

The data on yield components per panicle were obtained and analyzed differently for both 

experiments. In EXP89, the number and locations of differentiated and degenerated branches 

and spikelets per panicle were estimated on the 20 panicles collected per plot. Primary 

branches per panicle were numbered in acropetal direction starting from the neck-node. 

Because abortion of branches and spikelets was restricted to the lower part of the panicle, 

only the basal five differentiated primary branches with their secondary branches and spikelets 

were analyzed. Abortion of primary branches, secondary branches or spikelets was recorded 

by counting the vestiges of these organs on the panicle at harvest (Matsushima, 1979). 

In EXP90, plot averages of individual grain dry mass (Mg) and total grain number per 

panicle were calculated weekly from the 20 panicles per plot. Growth curves of individual 

grains were derived by fitting logistic functions to the data per plot (cf. Eqn. 3.1). The mean 
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curve per treatment was calculated by averaging the curve-parameters. Statistical analysis of 

the parameters was performed by an analysis of variance. Subsequently, individual grain 

growth rate in each treatment was calculated by using the derivative of each average logistic 

function (cf. Eqn. 3.2). By definition, maximum growth rate is attained at the point of 

inflection (tj), calculated as ln(bg)/cg. A maximum 10-day mean growth rate (Mg') was 

calculated as the mean of the growth rate at t, - 5 and tj + 5 days. 

Results 

Rates of growth and N uptake 

In EXP89, growth rate through time was lowest at NO (Fig. 3.1), corresponding to relatively 

low N uptake rates (Fig. 3.2). At the other treatments both rates were not distinctively related. 

Initial average plant densities in that experiment were 338, 377, 389 and 427 m"2 at NO, Nl, 

N2 and N3, respectively. Maximum individual plant N uptake rate per treatment was 

calculated by dividing maximum shoot uptake rate by plant density. This resulted in: 

6.87xl0\ 9.19xl0"3, 9.67xl0"3 and 9.29xl0"3 g plant"1 d"1 for NO, Nl, N2 and N3, respectively. 

In EXP90, growth and N uptake rates at NO were relatively low. From the curves at the 

other treatments again no conclusions could be drawn on a possible relationship between both 

rates (Fig. 3.1 and 3.2). Average plant density per treatment was 702, 687, 646 and 664 m"2 

for NO, N50, N100 and N150, respectively. N uptake rate through time in EXP90 (Fig. 3.2) 

was relatively low from the onset of tillering (25 DAS) till the later part of the reproductive 

phase (50-84 DAS). Some N uptake took place during the late reproductive and grain filling 

phases (84-131 DAS), probably caused by a high crop N demand (Nielsen, 1983; De Willigen 

and van Noordwijk, 1987). Maximum individual plant N uptake rates were estimated at 

1.21xl0"3, 2.18xl0"3, 2.29xl0"3 and 3.11xlO"3 g plant1 d1 for NO, N50, N100 and N150, 

respectively. 

Hence, large differences in plant density between both experiments existed. The low 

densities in EXP89 corresponded to relatively high maximum plant N uptake rates, while the 

reverse held in EXP90. 

Shoot N percentage (NPsh) was calculated using the ratio of cumulative shoot N content 

to shoot dry mass (Nsh / M^). In all treatments of EXP89 the N concentration of the crop 

increased till about mid-tillering, while in EXP90 it monotonously decreased (Fig. 3.3). 

During the grain filling phase, NPsh in both experiments was comparable. This is confirmed 

by measured shoot N contents at flowering: in EXP89 1.2% ±0 .1% averaged over all 

treatments, and in EXP90 0.9% ± 0.1%. 
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Fig. 3.1 Calculated shoot growth rate through time for treatments in the 1989 (solid Unes) and 1990 

(broken lines) experiments. 0, 1, 2 and 3 are treatments NO, Nl, N2 and N3 in '89, respectively (see 

text). 

N-uptake rate (kg ha~1d~1) 

90 105 120 135 150 

time after sowing (d) 

Fig. 3.2 Calculated shoot nitrogen uptake rate through time in the 1989 (solid lines) and 1990 (broken 

lines) experiments. Symbols as in Fig. 3.1. 
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Fig. 3.3 Calculated shoot nitrogen content through time in the experiments of 1989 (solid lines) and 
1990 (broken lines). Symbols as in Fig. 3.1. 

Leaf appearance, tillering and tiller mortality 

In EXP89, maximum tillering was observed at 56 DAS, with the lowest and highest average 

number of tillers per plant at 2.6 in NO, and 3.2 in Nl. Leaf appearance rate did not vary 

significantly among treatments in EXP89 (Fig. 3.4). This suggests that also tiller formation 

rate was independent of N treatment, considering existing evidence that appearance of leaves 

and tillers proceeds at similar rates (Masle-Meynard, 1980; Yoshida, 1981; Hanada, 1982; 

Durr, 1984). 

In EXP90, maximum tillering was observed at 30 DAS and the lowest and highest average 

number of tillers per plant was 1.1 at NO and 1.4 at N150. 

Hence, in both experiments, maximum tiller number per plant did not vary to a large 

extent among treatments. Between the two experimental years, however, differences were 

important. The period of active tillering was much longer in EXP89 than in EXP90. 

In both years a considerable loss in the number of stems was observed, especially during 

the reproductive phase. By expressing the number of steins at each moment relative to that 

at NND stage, the relative stem mortality (RSTM) was obtained. RSTM was linearly related 
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Fig. 3.4 Leaf number at main stems against time in the experiment of 1989. Leaves were numbered in 
order of appearance. Bars indicate the least significant difference at the 5% level (Duncan) between 
treatment means, o = NO, • = Nl, v = N2 and * = N3 (see text). 

to the decline in shoot N content (ANPsh) during the reproductive phase: 

RSTM = 0.32 • NPsh - 0.05 (r = 0.89 [0.01%]; n = 24) (3.3) 

Leaf area expansion and phenological development 

Between treatments in EXP89, significant differences in maximum leaf size existed between 

leaves at identical positions on the main stem. At NO, leaves were smaller at the 10th and 11th 

position, while in Nl leaves were larger at the 9th position. At other positions, differences 

were not significant (data not presented). Total leaf number per main stem was lowest at NO 

(Fig. 3.4). 

The dates of the onset of tillering, NND and flowering were comparable among treatments 

in each experiment (data not presented). This indicates absence of a significant N effect on 

phenological development rate. This may also be concluded from the leaf appearance rate in 

EXP89 (Fig. 3.4), considering that in rice and wheat leaf appearance rate is related to 

phenological development rate (e.g. Matsushima, 1979; Kirby, 1990; Miglietta, 1992). 
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Up to flowering, the following relations between pooled plot means of leaf dry mass (M, 

in kg ha"1), Nsh and LAI over both experimental years existed: 

M, = 19.8 • Nsh - 9.1 (r = 0.94 [0.01%]; n = 72) (3.4) 

M, = 418.7 • LAI - 46.8 (r = 0.98 [0.01%]; n = 63) (3.5) 

LAI = 0.05 • Nsh - 0.1 (r = 0.95 [0.01%]; n = 72) (3.6) 

Hence, N-use efficiency for leaf production, and specific leaf weight, was about constant 

until flowering (respectively 19.8 kg leaf dry mass per kg N absorbed and 418.7 kg leaf dry 

mass per ha leaf). A comparable linear relation between LAI and N^ has been previously 

found for wheat (Groot, 1987). 

Leaf dynamics are thus strongly related to cumulative shoot N, while no apparent 

relationship existed between the rates of growth and N uptake. Maximum growth rate at each 

treatment, plotted against the total shoot N content at the moment of maximum growth (Fig. 

3.5), demonstrates that the N-use efficiency for growth rate (kg dry mass ha"1 d"1 per kg N) 
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Fig. 3.5 Maximum growth rate per treatment against cumulative shoot nitrogen uptake at maximum 
growth. + = treatment means experiment 1990, A = treatment means experiment 1989. 
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was higher in EXP90 than in EXP89, at least at the moment of maximum growth. This 

implies that in both years comparable growth rates could have been realized at different levels 

of cumulative shoot N. 

Yield formation and yield components 

Yield at NO EXP89 was limited by low panicle density, despite some compensation through 

higher grain weights (Table 3.2). Final grain yields at Nl, N2 and N3 were not significantly 

different, which indicates that total carbohydrate supply to grains must have been comparable 

under these three treatments, despite differences in LAI-values at flowering (Table 3.2). 

Grain numbers at NO and N2 were mainly reduced because less primary branches were 

differentiated (Table 3.3). The relatively limited abortion of secondary branches and the better 

grain filling in NO compensated somewhat for the lower grain number. In N2, significantly 

more secondary branches were aborted than in the other treatments. 

Contrary to EXP89, grain number per panicle mainly limited grain yields in EXP90 (Table 

3.2). These numbers increased with higher N application levels. The high growth rate during 

the reproductive phase at N100 seems at first side contradictory with reduced grain numbers, 

1.25 
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h 

irain 

Or 

0 

growth rate foi. 7 d 

Ni 5( 

) 

N- 0 J 

1 41 5( i 

0.50 
25 30 35 40 45 50 55 

number of grains 

Fig. 3.6 Maximum growth rate of individual grains as function of the number of filled grains per 

panicle in the experiment of 1990. Symbols represent treatment means. 
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Table 3.2. Yield components and production obtained in the Camargue experiments of 1989 and 1990. 

Treatment averages of each variable that are followed by the same letter are not significantly different 

at the 5% level. LAI = leaf area index. 

Experiment 1989 

Panicles per m2 

Tot. no. of grains per panicle 

- completely filled 
- partly filled or empty 

Individual grain dry matter (mg) 

Final grain dry mass (g m"2) 

LAI at flowering 

NO 

542» 

69.1*" 
62.4» 
6.7* 

21.9» 

530.8* 

3.98* 

Nl 

709" 

72.0" 
58.9* 
13.0" 

20.3C 

649.5" 

6.97c 

N2 

684" 

63.9* 
56.3* 
7.6* 

21.2" 

648.6" 

5. So1* 

N3 

678" 

70.2" 

61.2* 

9.0* 

20.8"° 

654.5" 

5.19»" 

NO = no N-application, Nl = 160 kg urea-N basally applied as controlled release fertilizer, N2 = two split applications 

of 80 kg urea-N each as prilled urea, N3 = three split application in fractions of 80, 40 and 40 kg urea-N as prilled 

urea. 

Experiment 1990 

Panicles per m2 

Tot. no. of grains per panicle 
- completely filled 
- partly filled or empty 

Individual grain dry matter (mg) 

Final grain dry mass (g m"2) 

LAI at flowering 

NO 

620» 

32.4' 
30.6* 
1.8* 

24.7' 

411.3* 

1.74* 

N50 

615" 

46.2" 
43.4" 
2.8* 

24.5*" 

580.4" 

3.27" 

N100 

676» 

47.8" 
43.8" 
4.0ab 

23.9" 

728.5C 

4.71c 

N150 

691» 

57.5" 
51.7" 
5.8" 

24.5»" 

732. 7C 

5.34c 

N50, N100 and N150 indicate the basal application of, respectively, 50, 100 and 150 kg urea-N as controlled release 

fertilizer. 

but when growth rate is expressed on a plant basis, a reduced number of spikelets per panicle 

is consistent with a carbohydrate shortage on the individual plant level (cf. Matsushima, 

1979). 

Individual grain growth was less affected by N management (Table 3.4). Parameters ag, 

bg and cg (cf. Eqn. 3.1) were not significantly different among N application levels. Mg' was 
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5.12" 

1.39" 

0.06" 

6.13"* 

1.59» 

0.00" 

7.40" 

2.13" 

0.10" 

5.90* 

1.65" 

0.11* 

33.6 

92.3 

254.6 

Table 3.3 Panicle morphology at different nitrogen treatments in the 1989 Camargue experiment. Num­

bering of branches started at the base of a panicle. Different letters between values in a row indicate a 

significant difference at the 5% level. 

Experiment 1989 NO Nl N2 N3 CV (%) 

no. of differentiated PB 7.9" 8.5" 8* 8.5b 8.3 

no. of spikelets on first 5 PB 39.8" 36.4"° 35.8e 37.8b 14.3 

% aborted of PB 1 

% aborted of PB 2 

% aborted of PB 3 

% aborted SB 14.34* 18.77b 18.89° 18.09° 20.9 

NO = no N application, Nl = 160 kg urea N basally applied as controlled release fertilizer, N2 = two split applications 
80 kg urea N each as prilled urea, N3 = three split application in fractions of 80,40 and 40 kg urea N as prilled urea. 
PB = primary rachis branches of a panicle, SB = secondary rachis branches. CV = Coefficient of variation. 

lowest at N150. Although differences in Mg' were not significant, a tendency existed for this 

maximum growth rate to decrease with increasing grain number per panicle (Fig. 3.6). Only 

tj was significantly different among treatments. At N150, tj was 3.6 to 4.6 days longer than 

at other treatments (Table 3.4). As a consequence, physiological maturity was delayed in 

N150. 

Hence, in EXP90 yield was mainly sink limited, except at N150. In EXP89, the relatively 

high leaf area at flowering did not contribute to higher yields, which wrongly could be 

interpreted as a sink limited yield. The relatively high number of grains and panicles per unit 

surface (Table 3.2) indicate that other factors than leaf area limited the source capacity of the 

crop. 

Overall, the highest yields per unit surface were obtained at N100 and N150 in EXP90. 

This corresponded to the high growth rates in these treatments during the panicle formation 

stage (Fig. 3.1) resulting in higher grain numbers per panicle. Lower temperatures during the 

grain filling period in EXP90 may also have played a decisive role in creating yield 

differences between both years (Spiertz, 1977; Vos, 1981). Cumulative average 24 h 

temperature during the first 20 days after flowering was 497.5 °C in EXP89 and 459.8 °C in 

EXP90. 
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Table 3.4 a) Treatment averages of individual grain dry mass (mg) through time as obtained in the 1990 

Camargue experiment, b) Characteristics of average logistic curves obtained for each N-application level 

in that experiment. Grain dry mass data per treatment and curve parameters per N application level, are 

not significantly different at the 5% level if they have identical letters. 

a) 

TIME AFTER 

HEADING 

2 

9 

16 

23 

27 

3 8 

4 8 

( d ) 

NO 

3 . 6 » 

4 . 3 "» 

9 . 2 " 

1 7 . 2 " 

2 0 . 5 " 

2 3 . 5 * 

2 3 . 2 " 

N50 

3 . 5 " 

5 . 4 " 

9 . 0 " 

1 7 . 3 " 

1 9 . 8 " 

2 2 . 7 " " 

2 2 . 7 « 

N100 

3 . 4 " 

3 . 4 b 

8 . 6 " 

1 5 . 5 " 

1 8 . 2"" 

2 2 . 1 " " 

2 2 . 3 " » 

N150 

3 . 3 b 

3 . 7 b 

7 . 2 * 

1 1 . 0 b 

1 5 . 3 b 

2 1 . 2 b 

2 1 . 2 b 

NO, N50, N100 and N150 indicate the basal application of, respectively 0, 50, 100 and 150 kg urea N as controlled 
release fertilizer. 

b) 

N-APPLICATION 

( k g h a " 1 ) 

0 

50 

1 00 

150 

C . V . (%) 

\ 
(-) 

2 0 . 3 * 

1 6 . 7 " 

2 1 . 1 * 

1 7 . 8 * 

3 8 . 7 

C9 

(d"1) 

0 . 1 6 7 * 

0 . 1 6 0 * 

0 . 1 6 3 " 

0 . 1 2 7 * 

1 8 . 1 

a o 
(mg) 

2 4 . 0 * 

2 3 . 5 * 

2 2 . 9 * 

2 3 . 4 " 

2 . 7 

t i 
( d ) 

1 7 . 8 * 

1 7 . 3 " 

1 8 . 8 * 

2 2 . 4 b 

5 . 6 

V 
(mg d"1) 

0 . 9 6 * 

0 . 8 8 " 

0 . 8 8 * 

0 . 7 1 * 

1 3 . 9 

bg = curve parameter related to the symmetry of the growth curve. cg = curve parameter related to the steepness of 
the growth curve, a^ = curve parameter related to the saturation asymptote of the growth curve, tj = day after heading 
at which the point of inflection of growth curve is reached. Mg' = average maximum growth rate of individual grains, 
C.V. = coefficient of variation of parameter estimates. 
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Discussion 

The formation of yield determining crop components in direct seeded rice is greatly affected 

by N. However, the existence of feed-back between N-dependent processes makes 

quantification of N effects difficult, e.g. tiller production can be stimulated by N application, 

while at a later growth stage high tiller density may result in N shortage. Hence, a direct 

quantitative advice in terms of N management can not be given on the basis of this study, but 

enough evidence was obtained to discuss the issue of N management in relation to increased 

post-flowering sink and source capacity in qualitative terms. 

Initial plant density had a large influence on the dynamics of shoot N uptake rates. It was 

shown that on a soil low in fertility (EXP90), high plant densities lead to early competition 

for soil N as indicated by the low maximum plant uptake rates and the early shoot N dilution. 

A simple equation previously defined by Nielsen (1983) can be used to illustrate these 

findings: 

dNc / dt = D IN L (3.7) 

where: 

dN/dt = N uptake rate of the crop (kg ha"1 d"1) 

D = Plant density (ha') 

IN = Net inflow rate of N into roots (kg m'1 d"1) 

L = Effective root length per plant (m) 

Hence, N uptake rate can increase with D, IN or L . However, these parameters are not 

independent. Average individual plant N uptake rate (IN • L) depends on plant properties and 

on soil N availability. In the exponential growth phase, plants growing at moderate densities 

(thus without severe competition for N), will increase their N uptake rate (IN • L) . As a 

result, total shoot N uptake also increases. However, if D is too high and/or soil N availability 

is relatively low, early competition for N may negatively affect IN • L resulting in lower 

shoot N uptake rates. 

An early decrease in individual plant N uptake rate, and thus in tissue N concentration, 

negatively affects tillering activity of such a plant (Durr, 1984; Wada et al, 1986). Practically, 

this means that at a given level of soil fertility, plant populations at high density will produce 

fewer tillers than low density populations. Application of fertilizer N may then help to 

increase the number of tillers by extension of the active tillering period. 
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During the reproductive growth phase, shoot N percentage decreased in both experimental 

years and relative stem mortality was linearly related to that decrease. Also, low grain 

numbers per panicle existed in most of the treatments in EXP90 due to a combination of high 

density and low shoot N status. 

Stem mortality and reduced spikelet production, both, point to a shortage in carbohydrate 

availability on the individual plant level during the reproductive growth phase. As it has been 

shown that the N content of leaves and their photosynthetic capacity are closely related (cf. 

Kisthitani et al., 1972; Shieh and Liao, 1987; Sinclair and Horie, 1989), the low carbohydrate 

production during the reproductive growth phase may be attributed to the low shoot N status. 

The high growth rates that were realized in EXP90 due to high plant densities, and the 

high N-use efficiency for growth rate, resulted in high yields in N100 and N150. Also an 

effect of low temperatures which could have favoured grain filling was not excluded. The 

relatively high N-use efficiency for growth rate may be related to the late N uptake in EXP90, 

which could have led to N enrichment of active leaf material. 

Fertilizer N application in the first half of the reproductive growth phase may thus serve 

for maintaining main stems and tillers and for increasing the spikelet production. 

In our experiments leaf area was affected in several ways: 1) the lamina area of individual 

leaves decreased when no N was applied (cf. Biscoe and Willington, 1985), 2) the duration 

of tiller formation varied, presumably in dependence of shoot N content (cf. Ishizuka and 

Tanaka, 1969; Schnier et al, 1990b), 3) the relative loss rate of stems varied in dependence 

of shoot N dynamics (cf. Dingkuhn et al, 1990), and 4) the total number of leaves that 

emerged on the main axis was lower when no N was applied (cf. Durr, 1984). Despite these 

different mechanisms, we arrived at a linear relation between leaf biomass, or leaf area, and 

cumulative N uptake until flowering. Using N uptake as input, these relations permit 

calculation of the increase in LAI on a daily basis, which can be used for estimation of daily 

crop production. This, however, was beyond the scope of this paper. 

Grain yield will mainly be determined by weather and source capacity during the grain 

filling phase, provided the grain sink capacity is assured by N application at the reproductive 

growth phase and pest and diseases are well controlled. However, it was shown that only a 

high leaf area around flowering is not a guarantee for sufficient source capacity. Moreover, 

a high leaf area may be counter-productive when respiration increases through high 

temperatures. Hence, to reduce the risk of source limitation through weather, a moderate leaf 

area seems advisable. An other aspect that affects source capacity is the remobilization of 

amino-acids and ageing of leaves (e.g Sinclair and de Wit, 1975). These processes decrease 

the photosynthetic capacity. Additional N supply at the onset of grain filling may partly 

reduce these self-destructing processes. In accordance with other findings (cf. Evans and 

Wardlaw, 1976; Yoshida and Parao, 1976), we advise to maintain a moderate leaf area with 
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high N content at the onset of the grain filling phase to reduce the risk of source-limited grain 

production. 

The lack of relationship between the rates of growth and N uptake may be explained by 

a different impact of environment on both rates, e.g. an increase in temperature may decrease 

growth rate through higher respiration, but it may increase N uptake rate through higher root 

or mineralization activity. Furthermore, the reaction time of N uptake rate to limiting 

conditions is relatively short compared to that of growth rate. Hence, N uptake rate per se is 

not a reliable variable to relate to crop production. 

The results stress the importance to take the state of crop and soil into account when 

formulating fertilizer recommendations. In the Camargue region, these factors are only taken 

into account on an intuitive basis when applying fertilizer N, as to our knowledge is not 

exceptional in rice cultivation. 
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Chapter 4 

Simulation of nitrogen limited growth of irrigated rice with a simple crop 

growth model 

Abstract To simulate N limited production of irrigated rice, a simple mechanistic model 

was developed, called NGROW-RICE. As basis for the model three mechanistic equations 

were used, expressing, respectively, interception of daily global radiation by the crop as 

function of total leaf nitrogen (N) per unit ground area, crop C02-exchange as function of 

intercepted radiation, and daily crop growth rate derived from C02-exchange rate. The 

effect of diffuse radiation on energy conversion efficiency (g C02 MJ"1) was explicitly 

accounted for in the model, but environmental effects other than radiation and crop specific 

characteristics were implicitly expressed in a site specific scaling factor. Data from six 

experiments on N management in irrigated rice, carried out in China and the Philippines, 

suggested a linear relationship between energy conversion efficiency and the fraction 

diffuse light in the incident radiation. Simulation of crop growth in those experiments and 

four additional experiments in India and France, resulted in good agreement between 

simulated and observed crop production at various N treatments. NGROW-RICE can be 

used as a tool to evaluate crop growth under N limiting conditions. Combined with a 

routine that mimics N uptake of a crop, it may be used in optimizing N management 

practices in rice. 

Introduction 

The transformation of light energy into chemical energy by photosynthesis is the primary 

driving force behind crop growth. De Wit (1965) and Monteith (1972) expressed the 

efficiency with which crops or natural communities produce dry matter (DM) as the product 

of seven factors: 1) the position of the earth with respect to the sun, 2) the transmissivity of 

the earth's atmosphere, 3) the spectral composition of solar radiation and the optical properties 

of the foliage, 4) the number of light quanta per unit C0 2 reduced, 5) the fraction of radiation 

intercepted by a canopy, 6) the finite rate at which C0 2 molecules can diffuse from the 

atmosphere to the chloroplasts, and 7) the fraction of assimilate not used for respiration. 

In explanatory crop growth models some or all of these factors are comprehensively treated 

(De Wit, 1965; De Wit et al, 1978; Goudriaan, 1982; Ritchie and Otter, 1985). The 
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development and application of such models provide insight in the relations among 

fundamental processes operating at different hierarchical levels, and contribute to the 

understanding of agricultural production systems. However, complex explanatory models are 

less suitable for use in applied research and extension work because their primary objective 

is conceptualization and/or explanation. For the purpose of management and instruction, 

condensed summary models are better suited (Rabbinge and De Wit, 1989). 

In irrigated rice, limited crop production due to high N losses (Craswell and Vlek, 1979; 

Vlek and Byrnes, 1986) resulting in low N recoveries (Patrick and Reddy, 1976; Stutterheim 

et ai, 1994b) are commonly observed. Hence, to determine optimum nitrogen (N) fertilizer 

strategy in terms of total dry matter production or N loss in irrigated rice, a simple model 

called ORYZA_0 was developed (Ten Berge et al, 1994). In ORYZA_0, N uptake and the 

utilization of crop N for dry mass production are calculated as function of crop N status and 

N management. However, light interception and its conversion into dry matter cannot be 

separated in this model, which makes insight and understanding difficult. Therefore, a new 

module on N limited growth of irrigated rice, called NGROW-RICE, was developed in which 

these processes are separated. 

In this paper, the principles of NGROW-RICE, and the results of calibration and testing 

on field data from China, India, the Philippines, and France are presented. 

Material and methods 

Model description 

A limited number of relations are incorporated in NGROW-RICE: (i) interception of daily 

global radiation as function of total leaf N per unit soil surface (Eqn. 4.1); (ii) energy 

conversion efficiency as function of the fraction diffuse in the incident radiation (Eqn. 4.2); 

(iii) daily C02-exchange rate of the crop as function of daily intercepted radiation and the 

energy conversion efficiency (Eqn. 4.3), and; iv) daily crop growth rate as function of the 

crop C02-exchange rate (Eqn. 4.4), i.e. 

R, = Rg • (1 - EXP(-k • N,) (4.1) 

a = c, + c2 • F(Rg) (4.2) 

CER = a • Rj • 106 (4.3) 
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CGR = cs • 10 • 0.752 • 30/44 • CER (4.4) 

with: 

a = Energy conversion efficiency (g C0 2 MJ"1) 

c, = Intercept of the curve relating a and F(Rg) (g C0 2 MJ'1) 

Cj = Slope of the curve relating a and F(Rg) (g C0 2 MJ ' ) 

CER = Crop assimilation rate (g C0 2 m"2 d"1 ) 

CGR = Crop growth rate (kg DM ha"1 d"1) 

cs = Scaling factor dependent on experimental conditions (-) 

F(Rg) = Fraction diffuse in the incident radiation (-) 

k = Light extinction factor dependent on total leaf N (ha kg"1) 

N, = Total leaf N per unit soil surface (kg ha"1) 

Rg = Incident global radiation (J m'2 d"1) 

Rj = Intercepted radiation (J m"2 d"1) 

Rg = Incident global radiation (J m"2 d"1) 

Equation 4.1 was derived from the widely used relationship between incoming and 

intercepted radiation (e.g. De Wit, 1965; Goudriaan, 1977) as expressed by: 

Rj = Rg • (1 - EXP(-0.7 • LAI)) (4.5) 

By plotting observed values of pre-flowering LAI against values of total leaf N as measured 

in one of the considered experiments (Ph93D, Table 4.1), LAI was expressed as linear 

function of N,. The slope of this curve multiplied with 0.7 from Equation 4.5 resulted in a 

value of k as used in Equation 4.1. Hence, in the model the light extinction factor is explicitly 

related to leaf N per unit soil surface instead of leaf area index (LAI). 

Assimilation rate CER is derived from intercepted radiation and an energy conversion 

efficiency a (Eqn. 4.2), i.e. the efficiency with which Ri is used in the photosynthetic process 

(Evans and Farquhar, 1991; Goudriaan, 1982). The efficiency of carbon assimilation increases 

with the fraction diffuse radiation (F(Rg), because diffuse light is more uniformly and 

efficiently distributed over a canopy of leaves that may become light saturated at high 

intensities. 

CGR is derived from CER using a relationship (Eqn. 4.4) comparable to that of Sinclair 

and Horie (1989). The Equation describes hexose production per unit assimilated C0 2 (30/44), 

accounts for the cost of maintenance respiration, set at 25% of CER, and uses the biochemical 

conversion coefficient describing the production of crop biomass from hexose (0.75). The 
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parameter value representing the biochemical conversion efficiency may vary with crop status 

and variety. This also holds for maintenance, which in addition is strongly influenced by 

temperature. To account for these variations and for variations in a, the scaling factor cs was 

introduced whose value is derived by calibration per experiment. Total cumulative dry mass 

production over the growing season results from integration of daily growth rates. 

To obtain grain yields, final calculated biomass is multiplied with a predefined harvest 

index (HI). HI depends on varietal characteristics (Singh and Stoskopf, 1971; Akita, 1989; 

Dingkuhn et al., 1991), so information on that varietal trait is necessary to simulate yield 

adequately. Because this information was only partly available, yields were not assessed in 

this study. 

The time step of calculation in the model is one day. Apart from latitude and incoming 

global radiation, dates of sowing cq. transplanting, flowering and harvest, and data on 

cumulative leaf N, are required as input. 

Data from six experiments, carried out in China and the Philippines, were used to establish 

the relationship between F(Rg) and a (Eqn. 4.2). Using Equation 4.4, values for cs • CER 

were derived from observed growth between the sampling dates of the experiments. By 

dividing these average C02-exchange rates by average R; during the relevant sampling 

intervals, 214 values of a were obtained. Subsequently, the relationship expressed by Equation 

4.2 was established by plotting a against average values of the fraction diffuse in the radiation 

received during the respective time intervals. The best fit, expressed by the values of cl and 

c2 was used for all further simulation work. Post-flowering growth was not considered for 

establishment of a because mortality could have been important at that stage. F(Rg) was 

calculated with the subroutine SUASTC (Penning de Vries et al, 1989) using Julian 

daynumber, latitude and measured daily total global radiation as input. 

Model calibration 

Calibration was carried out to determine an appropriate value for cs per experiment. This was 

done by randomly choosing one of the N treatments in the experiment, and fitting simulated 

crop production to the observations. A best fit was obtained by varying the value of cs. The 

optimum value for cs was subsequently used to simulate crop production in the remaining 

treatments of that experiment. 

The differences between observations and simulations per treatment were averaged to 

express the absolute simulation-observation difference (SOD) per treatment. An average SOD 

per experiment was calculated (SODJ to provide a measure for model performance. 

Additionally, predicted means of crop dry mass were plotted against observed ones. 
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For eight experiments from the network of Simulation and System Analysis for Rice 

Production (Ten Berge etat., 1994), and for two experiments from the Laboratory of Agrarian 

System Research (LECS A) of the National Institute of Agronomic Research (INRA) in France 

(Stutterheim and Barbier, 1994; Stutterheim et al, 1994b), values for the scaling factor were 

assessed. 

Three experiments were performed in 1988 and 1989 (Ch88a, Ch88b and Ch89) in Jiangxi 

province in China (28° 36' N) by the Agricultural University of Jiangxi. Treatments involved 

rate and timing of fertilizer N to hybrid rice. 

Three experiments were done at IRRI, Los Banos in the Philippines (14° 06' N), one in 

the 1991 wet-season (Ph91W), and two in the dry season of 1992 (Ph92D) and 1993 (Ph93D), 

respectively. In 1991, treatments consisted of application of various amounts of N in several 

split dressings, using different varieties (Table 4.1). In 1992, different N application levels, 

but the same varieties were used (Kropff et al, 1993). In the experiment of 1993 only one 

variety was used (Table 4.1). A wide range of N-levels were applied ranging from 0 to 400 

kg ha"1. Application was in various split dressings, totalling 17 treatments (Wopereis et al, 

1994). From all experiments leaf N data were available. 

In India (Thanjavur, Tamil Nadu (11° 00' N)) two experiments were conducted on the 

timing and rate of N application. The first experiment (IndW) was in the 1991-1992 wet 

season, the second one (IndD) in the 1992 dry season. The varieties were CR1009 and IR64 

in IndW and IndD, respectively. In IndW, urea was used as N source in nine split N 

treatments, while in IndD various types of organic amendments were tested. Leaf N was 

measured in both experiments (Sivasamy et al, 1994). 

Two experiments were conducted in the Camargue region (43° 18' N) in the South of 

France. The experiment of 1989 (Fr89) consisted of a control and the application of 160 kg 

N ha'1 in various split dressings. Two types of N fertilizer were used: prilled urea and 

controlled release urea (CRU). In the experiment of 1990 (Fr90) N rates of 0, 50, 100 and 

150 kg N ha"1 were applied before flooding using a CRU-fertilizer. In both experiments only 

total shoot N content was measured. Therefore, leaf N was derived from shoot N by 

multiplication with a constant leaf-crop N ratio of 0.55 derived from our experimental data 

(data not published). Because N is translocated from leaves to grains after flowering (Norman 

et al, 1992; Penning de Vries et al, 1988), a daily translocation rate of N was calculated by 

multiplying the daily growth rate of the crop after flowering with the final average N fraction 

in storage organs, i.e. 0.012. Actual leaf N content followed from substraction of total leaf 

N with the amount of exported leaf N. 

In all experiments periodic harvests were carried out to determine dry weight and N 

content. The 10 experiments represent a wide range in radiation patterns (Fig. 4.1), crop, soil 

46 



ça 

11 

V 5 
. S <u 

cd O 

11 
p -ç 

3 
w u 

O vi 

g g. 
s« 

1 -g 

1 
* M 
O 
6 0 
S 

CA 

S 
• o 

§ 
§ 

• a 
a 

^ 
o 
c 

• o 
4> 
CO 
3 

t/1 

C 
V 

e •c 

1 K 1> 

•a 
C M 
O 

U 

•g 
0) 

> 
o 
•* 
u 

•a H 

S 
§• 
•-» T 3 

s 
« 
Cj 

1 
U 

CS 

u 
•3 
c 

B-
a 
~̂  •a 
e CD 

1 *5 

• c 

• a 
• c 
.o 

> 1 

J 3 
CM 
O 

CA 

s 

BU 

oi 
1 

en 
cA 1 

§ 
0 0 

B S 
CO 

• a 

•g 
> 

u 
c \S 

8 
•c 

O 2 
V 
0) 
c m 
a 

Si 
4J 

S 
0 

u 
O 

• H 
lO 
4J 
0 
4J 

C 
o 

• H 
4J 
10 
H 

3 
•0 

-D 

3 
a 
c 

- H 

id 

xl 

0) 
.* 

• — « 

• 0 

•—* 

LD 
O ) 
C N 

i 

o 

m 
œ 

i n 
CN 
CN 

1 
O 

m 
co 

o 
i n 
T H 

m 
co 

o 
i n 
CN 

i 

o 

oo 
CN 
<-l 

i n 
CN 
<H 

1 
O 

r o 
CT» 

O 
i H 
<H 

l 
O 

0 0 
O 
r-i 

m 
CN 

es 
I 

O 

CN 
<H 
r H 

O 
O 

•̂  1 
o 

vo 
o 
r-i 

>1 
4J 
0 

•H 
n 
id > 

i j 

m 
m 
:* ^ x: 
•u 
e 0 

m 
C 

- H 
4J 

C 
m 

i H 
O i 

CH 

s o 

r - o \ r - Q V D W 3 v o r * ^ j i ' d i 

en 

^ > 
71 
• H 
h 

.0 
> 1 

X 

f 

vr> 
> 
•a 
• H 
h 

XI 
>1 
X 

m 
** > 
11 
• H 

^ X) 
> 1 

Ä 

TJ 
R 

• H 

~~ 
e n 
O 
o 
«H 
Pd 
U 

•a t j 

- ~ Ci CN CN 

« « — — — 

T) 
q 

• H 

~-* 
( N 
r̂  
vu 
H 

Q. 
Itl 
r-l 

~~ 
O 

T l 
• H 
i-l 

0, 
m 
i~i 
v 
o 

T i 
• H 
i J 

oo en T-\ en o 
o o o o c o e n e N t H c N m o o c n 
e n o o e n e n e n e n c n c n c n c n 
H O l H H O l O l l J i e n H H 

•H >i -H 4J > i > , • • -ri -ri 
^ r H M Û r H r H f i f i ^ t H 

û ^ a a i a s m t d f t o , 

(0 ,Q 3 P Q 
c o c o e n S Q H c N m e n o 
o o o o o o T j T J e n c n c n o o c n 
X l X l X l C C X l X I X I H ^ l 
U U O H M & j C C i C C i f c f c 

m 
c • H 

X i 
O 

- H 

X 
Ol 

fi 10 
- H 

h) 

m 
c 

• H 

XI 
U 

- H 

X 
0) 
c: 
10 

- H 
t o 

10 

fi - H 
X ! 
O 

- H 

X 
0) 
c 
10 

• H 

h) 

IO a) 
•ri -H 
•0 TJ 
fi C 
H H 

U U 

% î 
10 10 

• n •(-> 
C fi 
10 10 

si si 
E* EH 

m 
* i H 
- H 
Si 
CM 

m 
0 

fi 10 

m 
[0 

0 
j 

01 

* M 
• H 

XI 
Cd 

m 
0 

c id 

m 
10 

0 
J 

u 
-r H 
- H 

J3 
CM 

CD 

o 
c m 
m 
ai 
0 

J 

a) 
u 
C 
m 
V4 
h 

* 0) 
3 
0 1 
M 
10 
P 
(0 

U 

0) 

u 
c 10 

u 
b , 

* Cl 
3 
Ol 
M 
rd 

g 
lu 
U 



and N management (Table 4.1). In all situations, pest control and water and nutrient (other 

than N) management were optimal. 

Results 

Total leaf N in the experiment with the most diverse N treatments (Ph93), was linearly related 

with LAI according: LAI = 0.078 • N, + 0.174 (n = 113; r = 0.93; y = 0.01%). A value of 

0.055 for k (Eqn. 4.1) was obtained by substituting this relation in Equation 4.5. 

A linear relation with a value of 0.198 and 4.589 g C02 MJ"1 for c{ and c2, respectively, 

described best the relationship between a and F(Rg), although the data showed large scatter 

(Fig. 4.2). A comparable relationship was previously found for corn and soybean (Norman 

and Arkebauer, 1991). 

Simulated total crop dry matter for the three Chinese data sets (124 observations) 

compared favourably with the observations (Fig. 4.3a). Total crop production in the three 

experiments was simulated with an SODe of 0.46 Mg ha"1 for Ch88a, 0.42 for Ch88b, and 

0.33 for Ch89. The scaling factor cs was 1.40, 1.25 and 1.25 for Ch88a, Ch88b and Ch89, 

respectively. 

conversion efficiency (g CO 2 M J " 1 ) 
10 

8 

6 

4 

2 

Y - 4.59 X + 0.20 
r = 0.53 
n = 214 

0.00 0.20 0.40 0.60 0.80 1.00 

fraction difuse radiation (-) 

Fig. 4.2 Relationship between the fraction diffuse in the daily incident radiation and the efficiency of 
light energy conversion into C02. Symbols represent data derived from six experiments in China and 
the Philippines (see text). 
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The simulated values of total crop dry mass for the two experiments in India showed 

reasonable agreement with the 138 observations (Fig. 4.3b). Variation was largest for the wet 

season experiment. The value of cs was 1.30 for both experiments. SODe was assessed at 0.76 

Mg ha1 for IndW and 0.57 for IndD. 

For the Philippines, 220 data points were available from the three experiments. Values for 

cs were assessed at 1.05, 1.32 and 1.35 for Ph91W, Ph92D and Ph93D, respectively. The 

difference in the values for cs between the wet and dry seasons is remarkable. Total crop 

production in the three experiments was adequately simulated (Fig. 4.3c) with SODe values 

of 0.26 Mg ha1 for Ph91W, and 0.89 and 0.57 for Ph92D and Ph93D, respectively. 

For Fr89 and Fr90, cs was set at 1.00 and 1.30, respectively. Simulated production values 

agreed reasonably well with the observations (n = 40) in both experiments (Fig. 4.3d). SODe 

was 0.48 Mg ha"1 for Fr89 and 0.85 for Fr90. 

Simulated maximum crop growth rates ranged from 157 to 349 kg DM ha"1 d'1, while total 

biomass production was estimated between 8.28 and 21.45 Mg ha"1 (Table 4.2). These ranges 

cover the production figures normally encountered in irrigated rice. 

Table 4.2 Overview of some output for all experiments used in calibration and testing of the model 
NGROW-RICE. Acronyms as used in the text. 

Acronym Range of simulated 
maximum growth rates 

per experiment 
(kg ha"1 d"1) 

Range of simulated Absolute Simulation 
final biomass yield Observation Difference 

per experiment per experiment 
(Mg ha"1) (Mg ha"1) 

Ch88a 

Ch88b 
Ch89 

IndW 
IndD 

Ph91W 

Ph92D 

Ph93D 

Fr89 

Fr90 

286 
194 
280 

219 

210 
157 

258 

234 

233 

201 

- 338 
- 274 
- 288 

- 275 
- 328 

- 221 
- 347 

- 349 
- 272 

- 306 

11.73 
8.83 

11.47 

13.41 

9.75 

8.28 
10.77 

9.77 

12.31 

8.65 

- 15.16 
- 13.88 
- 11.92 

- 19.82 
- 17.61 

- 13.39 

- 21.45 

- 17.59 
- 16.90 

- 16.40 

0.52 

0.43 
0.31 
0.66 
0.68 

0.31 
0.64 

0.66 
0.49 

0.90 
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Discussion 

The current model has a number of salient features. The input requirement is low and all 

inputs are generally measured in agronomic experiments. The model is simple to calibrate, 

because of the limited number of relationships used, and after calibration, it adequately 

describes N limited growth of irrigated rice. NGROW-RICE has also its 

limitations.Temperature and daylength effects are not treated, which implies that crop 

production can only be adequately simulated for photo-insensitive varieties in environments 

with non-limiting temperature conditions for production. Furthermore, the scaling factor cs has 

to be identified by calibration. 

Growth rate in the model is affected by: i) the incident radiation determining the light 

interception at identical levels of N, (Eqn. 4.1); ii) total leaf N content, leading to variation 

in light interception (Eqn. 4.1); iii) the fraction diffuse light in the incident radiation, resulting 

in variation in CER at identical levels of intercepted radiation (Eqn. 4.3), and; iv) crop 

specific and/or environmental conditions affecting the value of cs. 

No systematic trend between crop or environmental parameters and the value of cs was 

found. The values varied substantially between the wet and dry seasons in the Philippines, but 

were similar for both seasons in India. For France, cs differed substantially between both 

seasons, despite the use of the same variety. Among treatments, N effects on leaf 

photosynthesis (e.g. Kisthitani et al, 1972; Shieh and Liao, 1987) and on assimilate or N 

partitioning within crops could have existed, but because an identical value for cs could be 

used throughout all treatments of an experiment, its value seems mainly determined by 

environmental conditions particular to each experiment. 

The maximum value of the energy conversion factor a is obtained by measuring the 

efficiency with which red light can be converted to chemical energy. This quantum yield is 

normally measured with green leaf tissue at low irradiance (Ehleringer and Björkman, 1977). 

Evans (1987) cited an average quantum yield of 24.42 g C02 MJ"1 red light for leaves of C3 

species. McCree (1972) reported an average of 24.86 g C02 MJ'1 red light. For sunlight, these 

figures need to be corrected with 0.85 because the fraction photosynthetic active radiation 

(PAR) absorbed by leaves is obtained by integrating over the whole spectrum from 0.4 to 0.7 

urn (Monteith, 1972; Evans, 1987). Additionally, it has to be taken into account that sunlight 

contains 50% PAR on average. With these corrections an average quantum yield of 10.48 g 

C02 MJ"1 absorbed global radiation is obtained for C3 species. 

Temperature may significantly influence quantum yield; Ehleringer and Pearcy (1983) 

found for leaves of Avena sativa at 15°C a quantum yield of 16.28 g C02 MJ'1 red light, 

while it was 9.24 g C02 MJ'1 red light at 35°C. Another source of variation in quantum yield 

is introduced when converting from red light to sunlight, because the fraction PAR may vary 
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between 0.42 and 0.60 (Goudriaan, personal communication). Hence, estimates of quantum 

yield may importantly deviate under non-controlled circumstances, which explains why in the 

model the scaling factor had to be adapted to each environment. 

At the crop level, quantum yields are normally lower than those cited for individual leaves 

at optimal N supply because of the influence of leaves of sub-optimal age and N content. 

Both factors affect the photosynthetic capacity of leaves. Evans and Farquhar (1991) estimated 

the average quantum yield for a wheat crop at 2.36 g C02 MJ"1 red light, equivalent to 1.00 

g C02 MJ"1 absorbed global radiation. A value of 1.96 g C02 MJ"1 absorbed global radiation 

was derived from Goudriaan (1982) who related gross C02 assimilation to PAR on clear days. 

This value is almost constant over latitudes ranging from the equator to 60° N. For overcast 

days an average quantum yield of 4.6 g C02 MJ"1 absorbed global radiation was derived from 

Goudriaan (1982). 

These data suggest that a roughly ranges between 1 and 5 g C02 MJ"1 absorbed global 

radiation, the largest part of the variation originating from differences in diffuse radiation (cf. 

Goudriaan, 1982; Norman and Arkebauer, 1991). The values for a used in NGROW-RICE 

correspond to these values. The remaining part of the variation in a was accounted for by 

using the scaling factor. 

An indication of the expected simulation error associated with application of the model 

was provided by the SOD. Also, the graphical presentation of simulation results against 

observations gives information on model performance. The relatively low values for SODe 

warrant the conclusion that after calibration of cs, simulation was satisfactory for all 

experiments. It is noticed that observations were not corrected for sampling errors. 

The results from NGROW-RICE demonstrate that relatively simple mechanistic equations 

may be used to describe N limited crop production. Undoubtedly, simplification generates 

additional questions, but this need not be a priory a negative aspect. Some questions that, on 

the basis of this study, may deserve additional attention are: i) is it possible to replace the 

scaling factor cs by a crop temperature effect on the energy conversion efficiency?; ii) to what 

extent would model outcome improve when leaf N concentrations are considered in addition 

to total leaf N?; iii) how sensitive is the model to changes in input and model-parameter 

values; iv) what is the cost, in terms of output accuracy, of replacing time series of leaf N as 

input, with calculated N uptake? 

Some of these points will be worked out in an companion paper in which NGROW-RICE 

is combined with the model ORYZA_0 (Ten Berge et al, 1994) to optimize fertilizer N 

strategy for direct seeded rice. 
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Chapter 5 

Sensitivity analysis with NGROW-ORYZA, a model to assess optimum 
nitrogen application to irrigated rice. 

Abstract As a tool for optimizing nitrogen (N) management in rice, a simple model was 

developed that simulates crop growth as function of timing and amount of applied fertilizer 

N. With this model two methods of fertilizer application were studied: a continuous supply 

of N through time, and application of N at discrete moments in time. First, standard values 

for the model variables were derived from an experiment on direct seeded rice in the 

Camargue in the South of France. Using these values, logistic cumulative N application 

curves that resulted in maximum crop production were assessed for different levels of total 

N input. Subsequently, crop production was simulated over 20 years. At each of the N 

levels a parameter sensitivity test was carried out to determine for which parameter changes 

the model was most sensitive. Simulated crop production under continuous N application 

was mostly affected by a factor representing local environmental effects on crop growth. 

The influence of cumulative seasonal radiation level on production as assessed for 20 years 

was small. Light interception was positively related to radiation level, but negatively to 

radiation-use efficiency (g MJ"1). At identical N input levels optimization of continuous N 

application did not have a great impact on total dry matter production. Assuming 

application of N at discrete moments in time, simulation was carried out for 70 

combinations of N doses and timing over 20 years, using total crop production and the 

apparent N recovery (kg N uptake per kg N applied) as criteria. Maximum production was 

obtained with application of 200 kg N ha"1 in three splits; 50% around the onset of tillering, 

and 25% at panicle initiation and heading, respectively. At lower levels of total N input, 

highest production was realized when most of the N was applied at tillering and the 

remaining fraction at panicle initiation. Simulated N recoveries ranged from 0.02 to 0.51. 

Introduction 

A widely accepted technique in the process of model evaluation is sensitivity analysis. This 

technique permits to systematically analyze the effect of changes in parameter values on 

model output, which on the one hand provides indications on the robustness of a model, and 

on the other hand may be used for guiding future research. A model is called robust, if model 

output is insensitive to small (± 10%) changes in model parameter values, while sensitivity 
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to the values of certain parameters suggests that greater accuracy in parameter estimation 

would most improve model performance (Swartzman and Kaluzny, 1987). 

In this paper, a sensitivity analysis is presented for all variables used in a model on 

nitrogen (N) limited growth of irrigated rice. The model is a combination of two previously 

published models, NGROW-RICE and ORYZA_0 (Stutterheim et al, 1994a; Ten Berge et 

al, 1994). 

NGROW-RICE is a simple mechanistic model that calculates growth of irrigated rice 

on a daily basis. In this model, the effect of N on crop production is accounted for by relating 

light interception to total leaf N. The model has been calibrated using data sets from various 

experiments widely varying in weather, soil conditions, crop management and varieties, and 

the results demonstrated that the model can adequately be used to simulate N-limited rice 

production (Stutterheim et al, 1994a). 

Also ORYZA_0 can be used to simulate biomass production of irrigated rice under N-

limited conditions (Ten Berge et al, 1994). A distinct difference with the previous model is 

that in ORYZA_0 the soil N supply and crop N demand are treated explicitly. N supply is 

defined as the sum of natural soil supply and a hypothetical daily fertilizer N application. In 

the optimal case, the supply just meets the crop N demand. Crop N demand is not a well 

defined concept, but it can be treated as the final result of various processes limiting N uptake 

arising from the current state and growth rate of a crop, i.e. those limitations not directly 

resulting from low N availability in the bulk root zone (Ten Berge et al, 1994). Also 

ORYZA_0 satisfactorily simulated crop production for various environments. 

In the present study, the option from ORYZA_0 to simulate N uptake as function of N 

management, soil characteristics and state of the crop was combined with the clear description 

of light-use and N-limited crop growth from NGROW-RICE. The combination of both models 

is referred to as NGROW-ORYZA. 

Performance of NGROW-ORYZA is evaluated for two distinctly different methods of 

fertilizer N application: continuous application, comparable to fertigation in protected cultures 

(although hypothetical), and discrete application in time. Assuming continuous N application 

first, the model sensitivity for changes in parameter values and for changes in the curve 

representing the continuous N application was assessed. Assuming discrete N application -

at present the common way of fertilizer application - a new approach is proposed to develop 

a fertilizer N management recommendation. All analyses were carried out for direct seeded 

irrigated rice in the South of France. 
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Material and methods 

General model description 

The description of N limited dry matter (DM) production in NGROW-ORYZA is identically 

treated as in NGROW-RICE (Stutterheim et al, 1994a), based on three principal relations: 

1) that between total leaf N (kg ha"1 soil) and daily intercepted radiation (Rj in Jm'2d' '), 2) 

that between Rj and daily canopy assimilation rate (CER in g C02 m"2 d"1) and, 3) that 

between CER and daily crop growth rate. 

The basic growth variables used in the model (Table 5.1) are: a scaling factor (cs) to adapt 

the level of energy conversion to the specific environmental conditions; a light extinction 

factor (k); and two variables related to the partitioning of N in the crop, i.e. the final fraction 

of N in grains (FNg) and the amount of leaf N relative to total crop N during the vegetative 

phase (CINI,.). For more information reference is made to Stutterheim et al. (1994a). 

Crop N demand is treated as in ORYZA_0 (Ten Berge et al, 1994). Daily demand can be 

limited by (Table 5.1): maximum crop N concentration (FNcmax(t)), maximum N concentration 

in newly formed biomass (FNcnew), maximum amount of N that can accumulate in leaves 

(N,max), a relative uptake coefficient that is used to calculate the exponential N uptake at the 

onset of growth (rNi), and, maximum daily N uptake rate (uN). Furthermore, N demand is set 

to zero for the 10 days before maturity . 

The supply of N is determined by the supply of 'native' soil N and N derived from 

fertilizers. Daily uptake rate of 'native' soil N is defined as total N uptake from non-fertilized 

plots (N^) divided by the number of field days up to 10 days before harvest. Daily fertilizer 

N uptake equals the difference between crop N demand and daily uptake of 'native' soil N, 

but may be limited by fertilizer N availability. 

Application of fertilizer N can take place either continuously, or in discrete steps. Further 

input to the model are: the dates of sowing, heading and harvest, latitude, and daily global 

radiation (J m"2 d"1). The time step of simulation is one day. 

Standard values for all crop- and site-specific variables used in the model (Table 5.1) were 

derived from an experiment on direct seeded rice in 1989 (Fr89) in the Camargue region (43° 

18') in the South of France (Stutterheim and Barbier, 1994; Stutterheim et al, 1994b), 

comprising four N application treatments, a control (NO), two treatments where urea N was 

respectively applied in two (N2) and in three (N3) splits, and a treatment in which a slow 

release N fertilizer was used (NS). In each treatment 160 kg N ha"' was applied. 

55 



Table 5.1 Standard values of the variables used in the model NGROW-ORYZA. The values were 

derived from experiments in the Camargue (South of France) in 1989. 

GROWTH VARIABLE UNIT STANDARD VALUE 

k{Ni) 

kg kg" 

1.0 

0.012 

0.055 

0.55 

N DEMAND VARIABLES UNIT STANDARD VALUE 

kg kg"1 

kg kg"1 

kg ha"1 

d"1 

kg ha"1 d"1 

0.01 to 0.05 

0.045 

120 

0.10 

5 

N SUPPLY VARIABLES UNIT STANDARD VALUE 

kg ha": 

kg ha": 

90 

u s e r d e f i n e d 

= Scaling factor to adapt the level of energy conversion to the specific environment 

„(t) = Maximum N concentration of the crop as function of time 

„ = Maximum N fraction of newly formed biomass 

= Final fraction of N in grains 

= Light extinction factor 

= Total amount of fertilizer N input 

= Maximum amount of N that can accumulate in leaves 

= Total uptake of N originating from native soil N 

= Amount of leaf N relative to total crop N during the vegetative growth phase 

= Relative N uptake coefficient to set the exponential N uptake at the onset of crop growth 

= Maximum daily N uptake rate 

k 

N 

N, 

N !0 

INK 

«NI 

U N 

Appl 

l,max 

Continuous N-application 

To represent continuous application, a logistic cumulative N application curve as function of 

time (AN(t)) is defined, its slope representing daily N supply (Ten Berge et al, 1994). The 

user-defined total amount of fertilizer N input determines at which point the AN(t) curve is 

truncated. 
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To assess the optimal N application curve through time at several levels of total fertilizer-

N input, an optimization was carried out using an optimization procedure (Stol et al, 1992) 

that for each relevant level of N application (0, 100, 160, 200 and 300 kg ha"1) identified the 

AN(t) curve that resulted in maximum crop production. 

To check whether the model adequately simulated crop production, model outcome was 

compared to the observed production for treatments NO and NS of Fr89. At NO, the 

continuous N supply was from natural sources only. A continuous supply from mainly 

fertilizer N (slow release) is taken into account when simulating the production in NS. The 

other treatments in the experiment received fertilizer in fractions and were thus not considered 

in this check. 

Three types of sensitivity analyses were carried out assuming continuous N application: 

1) To examine the effect of changes in model parameter values on total crop dry mass 

production, a parameter sensitivity analysis (changing the standard values by 10 and 20% in 

either direction) was carried out at N input levels of 0, 100, 200 and 300 kg ha"1. Prior to 

each analysis, a fixed application regime was set by optimizing AN(t) with the standard 

parameter set (Table 5.1). Where variables consisted of a set of tabulated values, all values 

were changed. The results of each of the 160 parameter changes (four N input levels, 10 

variables and four values per variable) on dry matter production were expressed relative to 

the simulated production values in the standard run (e.g. Table 5.2). 

2) For the standard data set and the optimal AN(t) curve at each of the N input levels, a 

sensitivity analysis for seasonal radiation level was performed using 20 years of weather data 

(1972-1993), collected at local weather stations in the Camargue. The data set of 1988 was 

incomplete and therefore not used in the analysis. For each growing season and at each N 

input level, cumulative values for Rj and CER were established and radiation-use efficiency 

(RUE in g DM MJ'1) and total biomass were assessed, resulting in 320 output values (four 

N levels, four variables and 20 years). Each output value was expressed as a fraction of the 

average value of that particular variable over 20 years and plotted against the ratio of seasonal 

and average cumulative radiation over 20 years. This provides a measure of the change in 

production caused by the prevailing weather in the year of simulation. 

3) As a change in one of the model parameters may imply a modification in optimum N 

application pattern, the effects of parameter perturbation on crop production were evaluated 

again with optimization of the AN(t) curve at each change. This sensitivity analysis with N 

optimization was restricted to: the variables for which the model was most sensitive (as 

derived from the parameter sensitivity analysis), the -20% and +20% deviations from the 

standard values, and, levels of total N input (100 and 300 kg ha"1). At each single parameter 

change, simulated production at optimized and non-optimized N application were compared 

(e.g. Table 5.3). 
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N application at discrete moments 

The AN(t) curve is not used any more when discrete N applications are mimicked. Fertilizer 

application is then defined by variables representing application dates and the amounts 

applied. Timing and quantity are then model input. 

With discrete N application, two application methods are possible: basal dressing and top-

dressing. The former represents incorporation of N in the dry soil a few days before sowing, 

the latter allows for application of N to the floodwater at different moments during the season. 

When applied properly, the basal dressing of N is less prone to loss than top-dressed N 

(Heenan and Bacon, 1989), but the N enters the system at a time when crop demand is very 

low. The long residence time of this basally applied N makes that total N losses can be 

relatively high. 

After application, fertilizer N is rapidly removed from the soil through losses and uptake, 

each process competing for available N. Complete quantitative description of all these 

processes would require very detailed information on the state of the soil system in the course 

of the growing season, information that is normally not available. Therefore, a more pragmatic 

approach was adopted: assuming that competition among the various N consuming processes 

will result in a relatively stable average residence time (1/c.) of fertilizer N in a given soil 

environment, the daily rate of change in fertilizer N (dN/dt) can be expressed as a positive 

constant fraction of the amount present (Nt). The daily change includes crop uptake of N. 

Hence, 

dN/dt = c. • N, (5.1) 

It is assumed that daily fertilizer N uptake can not exceed dN/dt. When crop demand is 

lower than dN/dt, part of the fertilizer is lost from the system. 

The value for c, can be derived from the time lapse between each fertilizer application 

and the moment that the mineral N concentration in the soil reaches a predefined low value 

(e.g. < 0.5 kg ha"1). As this will depend on environment and management, c. needs to be 

calibrated. In this study, values for c, have been assessed for the basal and top-dressing, 

separately. 

With discrete N application, the model was used to assess optimal N management at 

various levels of total fertilizer N input. On the basis of experience, average residence times 

for mineral fertilizer in the soil were set at 6 and 3 days for the basal and top-dressings, 

respectively. These best guesses were checked by fitting crop biomass results from the 

standard run to observations in the treatments N2 and N3 of Fr89. This resulted in an average 

residence time of 6.7 days for the basal dressing and 2.9 days for all top-dressings of N. 

58 



In direct seeded rice cultivated in Europe, fertilizer N is often applied in a number of splits 

However, the sometimes large areas under cultivation and the required time, labour and 

material for field operations, restrict the number of interventions. In the Camargue, N is 

normally applied three times during the growing season, one basal dressing and two top-

dressings, one near the onset of tillering and the other near panicle initiation. 

In the optimization, five N input levels are distinguished (0, 50, 100, 150 and 200 kg ha"1) 

and four possible application moments, corresponding to sowing at 0 days after sowing 

(DAS), the onset of tillering (30 DAS), panicle initiation (60 DAS) and heading (90 DAS). 

At each application, 50 kg N ha"1, or a multiple of that amount, could be applied. Simulation 

of crop production was performed for all possible combinations of N doses and timing at each 

level of N input. Hence, at a level of 50 kg N ha"1, four different fertilization schedules were 

formulated, and 35 at 200 kg N ha"1. In total, 70 N application combinations were evaluated 

(Table 5.4). 

For each of the 70 combinations, total crop production and apparent N-recovery (ANR in 

kg N uptake per kg N applied) were simulated over 20 years. To identify the fertilizer 

schedule that performed best in terms of crop production and ANR, statistical analysis was 

carried out per N input level, using the procedure ANOVA with the Duncan multiple range 

test for the comparison of means (SAS, 1989). The use of the analysis of variance was 

justified by the independency between predicted means and residuals (data not shown). 

Results and Discussion 

Continuous N application 

Calibration of model parts has been carried out previously (Stutterheim et al, 1994a; Ten 

Berge et al., 1994) and therefore was omitted in this study. Standard values for the model 

variables were acquired from the experiment in 1989. These standard values, or their range 

for tabulated variables, are summarized in Table 5.1. 

Subsequently, the optimal continuous AN(t) curve per input level was established (Fig. 5.1). 

To obtain maximum production at N input levels up to 160 kg ha"1, most of the fertilizer had 

to be applied before 60 DAS. This pattern changed at higher input levels; at a total input of 

200 kg N ha"1, maximum production was obtained when cumulative application at 60 DAS 

was only 50% of total input. Hence, at higher N input levels a more even distribution of 

fertilizer N throughout the growing season leads to higher biomass production. 

Simulated crop production with optimized N application compared favourably with 

observed values at NO and NS of Fr89, despite some overestimation for NS during the grain 
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Fig. 5.1 Continuous nitrogen (N) application curves leading to simulated maximum total dry mass 

production of a standard rice crop grown in the Camargue. The different levels of total N input are: ° 

= 100 kg N ha1; A = 160 kg N ha1; » = 200 kg N ha1; • = 300 kg N ha1. 

total crop dry mass (Mg ha ~1 ) 

0 25 50 75 100 125 150 

time after sowing (d) 
Fig. 5.2 Simulated (lines) and observed (symbols) crop production in an experiment in the Camargue. 

Solid lines represent acquired results with an assumed continuous N application through time. Broken 

lines are simulation results that were obtained assuming N application at discrete moments during the 

growing season. Experimental treatments were: o = NO; v = N2; A = N3; • = NS (see text). 
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filling phase (Fig. 5.2). The latter suggests that in reality N supply was not optimal during 

this phase, which may be related to the type of slow release fertilizer used. According to 

factory specifications, the duration of slow release was three months at 25°C, which 

corresponds to the time between sowing and heading in Fr89. As pre-heading simulation was 

reasonably accurate, N limitation during the grain filling stage may have existed. 

The results of the parameter sensitivity analysis for the four N input levels (Table 5.2) 

indicate that effects of changes in values of individual variables may vary among N-levels. 

This is most obvious for N ^ , the total amount of 'native' soil N taken up by the crop, due 

to the increasing dependency of production on fertilizer N with higher input levels. Possible 

other effects of soil organic matter on production were not considered in the model. 

Model results appeared most sensitive to changes in the values of the scaling factor cs and 

the N distribution ratio q^. (Table 5.2), while sensitivity was small or not existent for changes 

in all other variable values. The changes in the values for the scaling factor, which is mainly 

needed to account for local variation in energy conversion efficiency (Stutterheim et al, 

1994a), had the largest influence on crop production. A more detailed mechanistic treatment 

of the processes underlying these two variables is required to make the model universally 

applicable. 

The sensitivity analysis for seasonal radiation level revealed a weak response of production 

at all N input levels to changes in total radiation (Fig. 5.3a), as a result of the fact that the 

conversion from intercepted light to photosynthetic energy depends on the fraction diffuse 

radiation (cf. Stutterheim et a/., 1994a). Diffuse radiation is negatively related to daily 

incident radiation (Goudriaan, 1982). The values for RUE that were calculated in this analysis 

(Fig. 5.3d) agree with those reported for rice (cf. Sinclair and Horie, 1989). 

The simulated relation between application rate and maximum production represents the 

fertilizer response curve. An average curve was established for 20 years (Fig. 5.4). The upper 

curve indicates that with continuous N application production increased importantly in the 

application range from 0 to 100 kg N ha"1. Average maximum production, represented by the 

asymptotic value, was around 20 Mg ha"1. Assuming a harvest index of 0.42 (a value 

measured in Fr89), an average grain yield of 8.4 Mg ha"1 would be a maximum for the 

considered variety. 

Agronomic efficiency, i.e. grain yield increase per kg of N applied, is estimated at 25, 15 

and 10 kg kg"1 at 100, 200 and 300 kg applied N ha"1, respectively. These findings agree 

reasonably well with experimental data from the Camargue region (Barbier, personal 

communication). 

In the sensitivity analysis with N optimization. AN(t) curves at two N input levels were 

optimized at each change of the values of the variables to which model performance was most 

sensitive (i.e. cs, q^, rNi, FNg, k and FNcmax(t)). Simulated production differences between 
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Table 5.2 Simulated total crop production at different values of single variables, expressed relative to 

the standard production. Standard production was assessed with all variables at their standard value as 

obtained from calibration. Single variables were set at -20, -10, +10 and +20% of their standard value. 

N application level: 0 kg ha'1; Standard production 11.853 Mg ha" 

-20% 
-10% 
+10% 
+20% 

0.85 
0.93 
1.07 
1.14 

FN0 

2.07 

1.03 

0.97 

0.95 

k(Ni) 

0.92 
0.96 
1.03 
1.06 

ÇINIC 

0.86 
0.93 
1.06 
1.12 

At) 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 

0.90 
0.96 

1.03 

1.06 

1.00 

1.00 

1.00 

1.00 

-20% 

-10% 

+10% 

+20% 

0.80 
0.90 
1.07 

1.13 

1.07 
1.03 
0.97 

0.94 

0 
0 
1 

1 

93 
97 

02 

03 

0.87 
0.94 
1.05 
1.09 

0 
0 
1 

1 

93 
97 

00 
00 

Cs FN0 k(N!> q,,lc 

-20% 0-79 

-10% 0.89 
+10% 1.10 
+20% 1.20 

1.04 
1.02 
0.97 
0.94 

0.93 0.86 
0.97 0.94 
1.03 1.05 

1.05 1.08 

0.91 1.00 1.00 0.92 1.00 

0.96 1.00 1.00 0.96 1.00 
1.02 1.00 1.00 1.03 1.00 

1.04 1.00 1.00 1.05 1.00 

-20% 

-10% 
+10% 

+20% 

0.7« 

0.89 
1.10 
1.20 

1.04 

1.03 
0.98 
0.94 

0.94 
0.97 

1.03 
1.05 

0.86 
0.94 
1.05 

1.08 

0.91 
0.96 
1.03 

1.04 

0.90 
0.95 
1.04 
1.08 

N application level: 100 kg ha"1; Standard production 17.717 Mg ha"1 

c s FN3 k(Ni) q„lc FN c l m x(t) FHcnel) N1#11„ rNi U„ 

1.00 1.00 0.90 0 .97 0 .98 
1.00 1.00 0 . 95 0 .98 0 . 99 
1.00 1.00 1 .04 1 .01 1 .01 
1.00 1.00 1 .05 1 .01 1 .02 

N application level: 200 kg ha"1; Standard production 18.972 Mg ha"1 

N 

0.99 
1.00 
1.00 
1.00 

N application level: 300 kg ha"1; Standard production 19.264 Mg ha"1 

c s FNg k(Ni) q ^ FHOilMX(t) F^,™. JS^^ rNi U„ 

1.00 1.00 0.93 1 .00 1.00 
1.00 1.00 0 .97 1 .00 1.00 
1.00 1.00 1 .04 1 .00 1.00 
1.00 1.00 1.06 1 .00 1.00 

Figures printed in bold and italic represent a relative change of more than 10%. Figures in italic represent changes 

between 5 and 10%. Other printed figures represent changes of less than 5%. 
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total crop production (Mg ha " 1 ) 

50 100 150 200 250 300 350 

applied AI(kg ha ) 

Fig. 5.4 Simulated maximum total crop production of a standard rice crop grown in the Camargue at 
different levels of total fertilizer N input. Results are 20 years averages, o = assuming N application at 
discrete moments during the growing season; • = assuming continuous N application through time. 

optimized and non-optimized conditions were within an interval of 50 to 100 kg DM ha"1 at 

all input levels (Table 5.3), indicating that total crop production hardly improved with further 

refinement of continuous fertilizer N application. 

Optimization of N application for the standard run demonstrated that fertilizer N 

management has to be a function of the total amount of N applied. Optimal fertilizer strategy 

distinctly changed at N input levels higher than 160 kg ha"1. This N level may reflect the 

maximum quantity of N that can be taken up by the crop during the exponential and linear 

growth phases. When the supply exceeds this quantity, total crop production is apparently 

more promoted by distributing the fertilizer N evenly throughout the growing season. 

N application at discrete moments 

Simulation for 20 years, for each of the 70 different fertilization strategies (Table 5.4), 

resulted in a maximum crop production of 17.2 Mg ha"1 at a N input level of 200 kg ha' 

applied in three splits: 100 at 30 DAS and 50 kg N ha"1 at 60 and 90 DAS, respectively 

(Table 5.4). The finding that fertilizer N has to be applied around heading, if total N input 
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Table 5.3 Simulated total crop production (kg ha"1) at two N application 
levels, without (n.o.) and with (opt.) optimization the logistic cumulative 
N application curve AN(t). Simulation was with individual variable values 
set at -20% or +20% of their standard value. 

100 kg m 

Cs 

k 

^ Ne,max V t J 

FN3 

°*NIC 

rNi 

ha"1 

-20% n.o. 

14111 

16539 
16456 

18896 
15402 

15904 

-20% opt. 

14092 
16562 

16462 
19042 

15475 

15972 

+20% n.o. 

19993 

18240 
17717 

16663 
19329 

18633 

+20% opt. 

20758 

18510 
18378 
16618 

19638 

19256 

300 kg N h a 1 

cs 

k 

^Nciiaxlt) 

FNg 

°ajlc 

rNi 

-20% n.o. 

15052 
18020 
17467 

20067 

16637 

17933 

-20% opt. 

15063 
17988 

17510 
20077 

16674 

17952 

+20% n.o. 

23267 

20176 

20113 
18164 

20746 

20508 

+20% opt. 

23508 
20221 

20225 
18182 

20782 

20504 

For variable abbreviations see Table 1 

is high, is a rather new aspect for the Camargue and needs experimental confirmation. 

Highest crop production at the other N levels was generally realized when the main part 

of the total amount of fertilizer N input was applied at 30 DAS, and the remainder at 60 

DAS. At all input levels, production was lowest when the total amount of fertilizer was 

applied as a basal dressing. This confirms the conclusion of regional research in the Camargue 

that in case of basal N dressing, only small amounts (maximally 50 kg ha"1) should be 

applied. 

The increase in crop production with increasing levels of split applied N was clearly less 

than under continuous application of N (Fig. 5.4). With a harvest index of 0.42, average 
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Table 5.4 Simulated total crop dry mass (TDM in Mg ha"1) and apparent N recovery (NREC in kg kg"1) 

at different levels of total N input. Timing of fertilizer N application (kg ha"1) before sowing (tO) and/or 

at 30 (tl), 60 (t2) and 90 (t3) days after sowing. Identical letters at each N level indicate no significant 

differences (y = 0.05). 

N a p p l i c a t i o n : 
to t l 

0 0 
£2 

0 
t 3 

0 

H a p p l i c a t i o n : 
t o t l 

0 0 
0 0 
0 50 

50 0 

£2 
0 

50 
0 
0 

t 3 
50 

0 
0 
0 

0 kg ha" 
TDM 

l 

NREC 
21 . 053 

50 kg ha" 
TDM 

13 .008" 
1 3 . 495" 
14.204' 
12.101* 

N a p p l i c a t i o n : 100 kg ha" 
t o t l 

0 0 
0 0 
0 0 
0 50 
0 50 
0 100 

50 0 
50 0 
50 50 

100 0 

t i 
0 

50 
100 

0 
50 

0 
0 

50 
0 
0 

t l 
100 

50 
0 

50 
0 
0 

50 
0 
0 
0 

TDM 
1 3 . 3 1 1 " 
14 .627" 
13 . 862 e 

15.344°" 
15.62V 
14 .800 £ 

13.255« 
1 3 . 7 2 1 " 
1 4 . 438 1 

12.25T 

N a p p l i c a t i o n : 150 kg ha" 
t o t l 

0 0 
0 0 
0 0 
0 0 
0 50 
0 50 
0 50 
0 100 
0 100 
0 150 

50 0 
50 0 
50 0 
50 50 
50 50 
50 100 

100 0 
100 0 
100 50 
150 0 

t 2 
0 

50 
100 
150 

0 
50 

100 
0 

50 
0 
0 

50 
100 

0 
50 

0 
0 

50 
0 
0 

t 3 
100 
100 

50 
0 

100 
50 

0 
50 

0 
0 

100 
50 

0 
50 

0 
0 

50 
0 
0 
0 

TDM 
13 .482" 
14 .919" 
14 .982° 
1 4 . 0 6 1 d 

15 .640 e 

16 .714 e 

15 .954 £ 

1 5 . 9 3 1 f 

16.16CP 
15 .119" 
1 3 . 557 1 

14.850= 
14 .084 d 

15 .575* 
15 . 836 1 

15.022™ 
13 .429" 
13 .880° 
14 .587° 
12.416* 

l 

NREC 
0.5 V 
0.5 V 
0 .39" 
0.03e 

l 

NREC 
0 . 33" 
0.5V 
0 .33" 
0 . 45 e 

0 . 45 e 

0 .26 d 

0 .27 e 

0 .27 e 

0 . 2 1 f 

0.03{ 

i 

NREC 
0 .24" 
0 .39" 
0 .39" 
0 .24" 
0 . 35 e 

0 . 47 s 

0 .35 e e 

0 .34 e 

0 .34 e 

0.20* 
0.23» 
0 . 35" 
0 .23° 
0 . 3 1 1 

0 . 3 1 1 

0 . 1 9 j 

0 .19 k 

0 .19 k 

0 . 1 5 1 

0.02" 

N 

to 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

50 
50 
50 
50 
50 
50 
50 
50 
50 
50 

100 
100 
100 
100 
100 
100 
150 
150 
150 
200 

a p p l i c a t i o n : 
t l 

0 
0 
0 
0 
0 

50 
50 
50 
50 

100 
100 
100 
150 
150 
200 

0 
0 
0 
0 

50 
50 
50 

100 
100 
150 

0 
0 
0 

50 
50 

100 
0 
0 

50 
0 

t 2 
0 

50 
100 
150 
200 

0 
50 

100 
150 

0 
50 

100 
0 

50 
0 
0 

50 
100 
150 

0 
50 

100 
0 

50 
0 
0 

50 
100 

0 
50 

0 
0 

50 
0 
0 

t l 
200 
150 
100 

50 
0 

150 
100 

50 
0 

100 
50 

0 
50 

0 
0 

50 
100 

50 
0 

100 
50 

0 
50 

0 
0 

100 
50 

0 
50 

0 
0 

50 
0 
0 
0 

200 kg ha"1 

TDM 
13.599» 
15 . 083" 
15 .270 e 

1 5 . 1 7 5 * 
14 . 196 e 

15 .806 £ 

16.991» 
17 . 028" 
1 6 . 137 1 

1 6 . 2 2 4 ' 
17.235* 
16 . 484 1 

16 . 244 j 

16.449™ 
15 .328" 
13 .728° 
15 .142" 
15 .202° 
1 4 . 283 " 
1 5 . 870 r 

16 . 925 s 

16 .167 1 

16 .150 1 

16 . 365 e 

15 .330" 
13 .731° 
15 .007" 
1 4 . 2 4 1 " 
1 5 . 7 2 3 -
15 .974* 
15.160» 
13 .569" 
1 4 . 008 y 

14 .701* 
12.540* 

NREC 
0 .20" 
0 . 3 1 " 
0 . 3 3 e 

0 . 3 1 " 
0 .20" 
0 . 28 d 

0.39s 

0.39s 

0 . 28 d 

0 .29 £ 

0.39' 
0 .29 £ 

0 . 2 8 a 

0 . 28 d 

0.16» 
0 . 19" 
0 . 30 1 

0 . 3 0 ' 
0 . 19" 
0 . 2 7 j 

0 .36 k 

0 . 2 7 j 

0 . 2 7 ' 
0 . 2 7 ' 
0 . 16 1 

0,18™ 
Q.lli 
0.18™ 
0 .24" 
0 . 24" 
0 .15° 
0 .15° 
0 .15° 
0 . 12 " 
0.02' 

Figures printed in bold italics represent maximum values per N application level, those printed in italics are minima. 
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agronomie efficiencies of 20, 16, 12 and 11 kg kg"1 were established at N input levels of 50, 

100, 150 and 200 kg ha"1, respectively. The 20 years average maximum yield was estimated 

at 7.4 Mg DM ha'. 

The 20 years average N recoveries for each of the 70 possible N treatments revealed that 

maximum values for ANR not automatically lead to maximum crop production (Table 5.4). 

This may be due to other growth limiting factors than N, resulting in limited production at 

identical N uptake. 

Conclusions 

- NGROW-ORYZA can be used to test N application strategies for total crop production and 

for fertilizer nitrogen efficiency. Application can either be continuous through time, or it 

may take place in discrete steps. 

- Calibration per site remains necessary with use of NGROW-ORYZA. 

- Variation in the energy conversion efficiency mostly affected total crop production. 

Quantification of the sources of this variation should significantly improve the predictive 

value of NGROW-ORYZA. 

- The results indicate that: i) higher biomass production takes place when fertilizer nitrogen 

is evenly distributed throughout the growing season; this was demonstrated for continuous 

applied nitrogen as well as for discrete fertilizer application, ii) the basal application of 

fertilizer nitrogen should be limited because of its low recovery and, iii) the maximum 

attainable yield in the Camargue is 8.4 Mg ha'1 for the representative medium growth 

duration variety 'Lido'. 

67 



Chapter 6 

General discussion 

Despite the price support policy of the European Union, European rice production does not 

meet the European demand for rice. This is illustrated by the fact that for several decades, 

Europe has imported more than 40% of the USA rice export on an annual basis (FAO, 1994). 

The USA was able to be the second rice exporting country of the world in 1992, after 

Thailand. Together, these two countries had a share of 46% of the total world rice market, 

only representing 2.8% of total world production. The recently endorsed General Agreement 

on Tariffs and Trade (GATT) may have serious consequences for European rice production, 

because of the increasing competition on the European rice market. Hence, the European rice 

industry has to strengthen its economic position to be viable. 

The weak position of the European rice industry on the world market can be improved by 

decreasing the high costs of production caused by sub-optimal use of capital-inputs. In 

European rice cultivation, fertilizers and crop protection agents are abundantly used, of which 

a substantial part is emitted into the environment. Such losses represent financial costs for 

farmers and they may contribute to deterioration of the environment. Hence, an optimal use 

of capital-inputs is required, both from an economic and environmental point of view. 

An additional incentive to optimize the use of capital-input may come from policy. The 

reform of the Common Agricultural Policy (CAP), accepted in June 1992 by the European 

Community, aims at supporting farming practices that reduce pollution (Bandarra and 

Baldock, 1992). One possible measure to attain this objective is to penalise a high use of 

capital-input per hectare, which would stimulate use-optimization (De Wit, 1994). 

Hence, one of the main challenges for European rice research is to develop alternative 

production techniques that increase the production per unit input in rice farming, to meet the 

new environmental and economic requirements imposed by CAP and GATT. The present 

study contributes to this objective by formulating alternatives for current nitrogen (N) 

management in European rice farming. The methodology applied to analyze the effects of 

these alternative techniques on the recovery of fertilizer N and crop production is illustrated 

for a typical European rice producing area, i.e. the Camargue in the South of France. 
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Methodological aspects 

The methodology developed in this study permits comparison of actual N efficiencies in rice 

with attainable efficiencies (Chapter 2), it provides information on the main constraints to 

further yield improvement (Chapter 3), and uses a model to assess an efficient fertilizer N 

application strategy, based on split application of non-coated urea (Chapter 4 and 5). 

The most widely used nutrient in rice cultivation is N. Recovery of applied fertilizer N (De 

Wit, 1953) in irrigated rice normally ranges from 20 to 40% (De Datta, 1981; Vlek and 

Byrnes, 1986), but may be as high as 89% (Humphreys et al., 1987). This variation in N 

recovery, combined with the observation that the utilization efficiency, i.e. the N uptake per 

unit grain dry mass, is rather constant under N-limited growth conditions (Van Keulen, 1977; 

1982), leads to the conclusion that the agronomic efficiency, or the amount of N applied per 

unit grain dry mass, may also vary considerably. 

As recent communications on these three indicators of fertilizer N efficiency in European 

rice cultivation systems were nonexistent, the present study firstly addressed the question of 

actual N efficiencies in those systems. Reference values for all three indicators were provided 

at the field, regional and continental scale (Chapter 2). Subsequently, the attainable N 

efficiency was assessed experimentally by using a special coated N fertilizer. The difference 

between attainable and actual N efficiency provides insight into the possible efficiency 

improvements in the near future. However, as coated fertilizer will not be widely adopted by 

farmers, because of its relatively high price, fertilizer strategies have to be developed that can 

approach the attainable N efficiency while using standard fertilizer forms like non-coated, 

prilled urea. An important part of this study was dedicated to this objective. 

A study on growth and yield formation, as affected by N management, was carried out to 

increase understanding of the formation of source and sink capacity for carbohydrates of rice 

crops (Chapter 3). The results of that study are used to discuss the attainable yield level in 

the Camargue, as determined by local weather, soil conditions, and crop properties. This yield 

level dictates the maximum amount of fertilizer N for that should be provided to a crop. 

A summary simulation model, which combine high N recovery with high crop production 

(Chapter 4 and 5), was used to formulate alternative N management strategies at several levels 

of total N input. The input requirements of the model are modest, which facilitates its use. 

Finally, a tailor-made efficient N application strategy for a representative rice variety from 

the Camargue was provided for different levels of total N input, as a demonstration that the 

model can be used to formulate alternative N application strategies, and as a first assessment 

of more efficient fertilizer management methods for rice cultivated in Europe (Chapter 5). 

70 



Nitrogen loss 

Currently, the efficiency of fertilizer N in European rice cultivation is very low. It was shown 

that in farmer's fields in the Camargue at most 21% of the applied N is taken up by the crop. 

In experiments throughout Europe this maximum recovery was only 32%. The principal 

question here is, how much of the applied fertilizer N is lost from the soil-plant environment? 

This is worked out below for the Camargue, but the approach may be applied to other rice 

production areas. 

The fertilizer N not directly taken up by the crop partly contributes to maintenance of soil 

fertility, and part of it is lost from the soil-plant environment. If it is assumed that N loss is 

limited as long as the soil immobilizes applied N, then a critical N input level can be assessed 

at which the soil system is not capable any more to retain this N. The critical level depends 

on the capacity of the soil to immobilize applied fertilizer, and on fertilizer N recovery. 

The apparent amount of fertilizer N minimally needed to replenish the natural soil N 

supply to crops, is deduced from crop N uptake in the absence of fertilizer application. For 

yields ranging from 4 to 6 Mg ha"1 on Camargue soils not receiving fertilizer N (Barbier, 

personal communication), this amount is estimated at 70 to 110 kg ha"1 per season, using a 

N utilization efficiency of 56 kg grain dry mass per kg N uptake (Chapter 2). However, part 

of the N supplied by the soil is derived from other sources than fertilizer, like atmospheric 

deposition, decomposition of crop stubbles and roots, and biological N2 fixation. Hence, the 

natural N supply has to be corrected for these inputs to obtain the real contribution of 

fertilizer N to the maintenance of soil fertility, i.e. the amount N released by the microbial 

biomass in the year of production, and any N originating from the soil cation exchange 

complex (CEC). 

The contribution of atmospheric deposition to the fertility of European rice fields may be 

assumed low, since, apart from the Po valley in Italy, no important sources of N emission 

exist near these production zones. As no data could be found on the deposition of N in the 

South of Europe, maximum deposition of N is set equal to quantified emissions of ammonia 

(NH3) nitrogen. For the European rice production areas, these emissions were found to be less 

than 7 kg ha"1 per year, while in the Po valley 21 kg NH3-N ha"1 per year is emitted 

(Buijsman et al, 1987). The contribution of N deposition is here assumed to be 14 kg N ha"1 

per year. Biological N2 fixation takes place during the entire growing season, but as this N 

is incorporated into living non-rice biomass, it mainly becomes available through 

decomposition after the fields are drained. The contribution of this N to maintenance of soil 

fertility is negligible because of post-harvesting burning practices, by which most of plant 

tissue N is lost (Anderson and Poth, 1989; Kuhlbusch et al, 1991). Root decay in the year 

of production may supply some N to the soil, but this amount does not exceed 10 kg ha ! at 
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actual production levels of rice in Europe. Identically to the non-rice biomass, the stubble is 

normally burned and thus hardly contributes to maintenance of soil N fertility. After 

correction for the resulting average contribution of 24 kg N ha"1 from atmospheric deposition 

and root decomposition, the fertilizer N supply that is minimally needed to maintain soil N 

fertility, is assessed at 46 to 86 kg ha"1 season'. It is noticed that the physico-chemical 

fixation capacity of European rice soils is insignificant due to their very low CEC. In the 

Camargue, CEC is generally lower than 10 meq per 100 g. 

The amount of N that either is taken up from the soil system, or is lost, is presented as 

function of total fertilizer N input (Figure 6.1). The reaction on N input level is calculated for 

the two types of fertilizer tested in the Camargue: the coated fertilizer with a maximum 

recovery of 0.58, and the non-coated urea fertilizer with a maximum recovery of 0.21 

(Chapter 2). For illustrative purposes it is assumed that these recoveries remain constant up 

to N application levels of 150 kg ha"1, although recovery may strongly decrease at high 

application levels (Chapter 2). 

1 0 0 

5 0 

amount of nitrogen (kg ha ~1) 

- 5 0 I 
.5 

! 
* - 1 0 0 

5 0 1 0 0 1 5 0 

fertilizer nitrogen input (kg ha' ) 

Fig. 6.1 Total fertilizer nitrogen input against the amount of soil nitrogen in excess of the sum of crop 
N uptake and immobilized soil N (positive ordinate), or short of this sum (negative ordinate). Hatched 
areas indicate the range of reaction on input of uncoated urea (vertically hatched) or resin coated urea 
(horizontally hatched) to Camargue soils. The upper boundary of each area represents high fertile soils, 
the lower boundary low fertile soils. 
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Figure 6.1 clearly demonstrates that a poorly recovered fertilizer (urea) may lead to N loss 

at relatively low levels of total fertilizer N input. For the Camargue, these levels are 58 and 

108 kg N ha"1 for low and high fertile soils, respectively. If less fertilizer N is applied than 

above levels, soil fertility decreases. With coated fertilizer, 110 kg N ha"1 may be applied to 

low fertile soils without a serious risk of N loss. On the other hand, less fertilizer N remains 

for maintenance of the soil N fertility because of the high N recovery of this fertilizer. The 

risk of exploitation of soil N is thus increased. This risk is even more evident when using 

resin coated fertilizer on high fertile soils. 

N loss is thus dependent on the rate of fertilizer N, its recovery, and the actual N fertility 

level of the soil. For all soil types, an increase in fertilizer N recovery is associated with a 

reduced risk of N loss, but an increased risk of soil fertility exploitation. 

The attainable yield level and related N requirement 

From the farmer's point of view, the relevant question is at which N input level a maximum 

yield is attained. The results presented in Chapters 3 and 5 can be used to derive this 

maximum attainable yield level. 

The attainable capacity for carbohydrate storage during the grain filling stage is determined 

by the number of spikelets. Spikelets can thus be considered as sinks for carbohydrates. The 

plant organ(s) supplying carbohydrates for grain filling can be called source(s). N 

management during the pre-flowering phase of the crop can be used to establish a desired 

sink capacity (Matsushima, 1979). Subsequently, N supply should be sufficient to maintain 

the source capacity at a level equal to or higher than the sink capacity, to realize the 

maximum attainable yield. Hence, maximum attainable yield may be derived from the 

maximum attainable source capacity during the grain filling period provided sink capacity is 

not yield-limiting. 

A combination of adequate N supply, abundant radiation and moderate temperatures is 

conducive to maintain the source capacity during the grain filling phase. According to the 

results presented in Chapter 3, an average growth rate of 150 kg ha'1 d"1 can then be expected 

during the grain filling phase for the medium duration variety 'Lido'. In the present study, 

the duration of grain filling for this variety was assessed at 45 days with ample N supply. 

Hence, without sink limitations a yield of 6.8 Mg ha"1 could be realized when carbohydrates 

are only provided by photosynthesis during the grain filling period. Additionally, pre-

flowering photosynthesis products, stored temporarily in culms, leaves and roots, can provide 

up to 40% of the assimilates accumulated in grains (Yoshida, 1981). However, at high N 

application levels, the contribution of reserve assimilates to grain growth may be as low as 
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10% (Kropff et al, 1993). Hence, for 'Lido' the extreme values for attainable yield would 

be 7.4 and 9.5 Mg ha"1. 

The above mentioned trade-off between the contribution of post-heading photosynthesis 

and translocation to grain filling may be an important constraint to further yield increase. To 

realize yield levels beyond the estimated attainable values, two main options exist for given 

genotypes: i) increasing the average crop growth rate during grain filling, and ii) extension 

of the grain filling period. Future rice research aiming at higher rice yields should put more 

emphasis on these options. 

Assuming optimal N supply to the crop, the attainable yield derived from the simulation 

results of this study was 8.4 Mg ha"1 (Chapter 5), i.e. a value between the both extremes 

mentioned above. To realize a yield of 8.4 Mg ha"1 using common prilled urea with a 

maximum N recovery of 0.21, at least 380 kg fertilizer N has to be applied to Camargue soils 

with low fertility levels for N, and at least 190 kg fertilizer N to those soils having relatively 

high equilibrium levels. The N losses associated with such high application levels are 

unacceptable. 

In conclusion, it can be stated that the gap between the actual rice yield levels of the 

Camargue (Chapter 2) and the attainable ones, has to be bridged by increasing current N 

recoveries. The financial saving associated with a more efficient N use is certainly an 

incentive for farmers to adapt their N management. 

Â simple model approach for N management advice 

The simulation model NGROW-ORYZA was used to derive an optimal N management 

strategy for a crop by testing a large number of strategies. Interception and use of light are 

treated in a module called NGROW-RICE. 

NGROW-RICE, and therefore NGROW-ORYZA, are based on the concept of maximum 

quantum yield, i.e. the efficiency with which red light can be converted into chemical energy 

by photosynthesis. Quantum yield is normally determined on individual leaves under 

controlled conditions. Some of the factors that affect quantum yield are: plant species, photo-

respiration, atmospheric C02 concentration, and temperature (Ehleringer and Björkman, 1977; 

Ehleringer and Pearcy, 1983; Evans, 1987). 

To obtain the energy conversion efficiency of a crop, correction of the quantum yield is 

required for the ratio of photosynthetically active radiation (PAR) to total incoming radiation, 

and the spectral distribution within the range of 0.4 - 0.7 um. The ratio is a function of solar 

elevation and atmospheric conditions, while the spectral distribution is determined by canopy 

structure and leaf chlorophyll content (Monteith, 1972). 
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Variation in energy conversion efficiency as a function of solar elevation and atmospheric 

conditions can be taken into account by explicitly incorporating those physical factors in a 

model. The effects on energy conversion originating from biological factors such as canopy 

structure and leaf chlorophyll content are more complicated to assess representatively, because 

of their large temporal and spatial variability. Identical problems exist when the variation in 

energy conversion efficiency is expressed as a function of photo-respiration and temperature. 

Instead of explicitly quantifying all these sources of variation in quantum yield and energy 

conversion in the model, the use of a scaling factor was proposed (Chapter 4). For a given 

site, cultivar and growing period, calibration of the scaling factor is only necessary for one 

of the treatments in an experiment on N management, by fitting simulated to observed values 

of total crop biomass production. Subsequently, crop production in the other N treatments can 

be simulated without recalibration. Various N management strategies may then be evaluated 

to assess an optimal strategy. Additional research is required to assess the robustness of the 

scaling factor with changes in cultivar, growth conditions and growing period. 

Recommended N management 

On the basis of the results presented in this thesis, an optimal N management recommendation 

for a representative medium duration rice variety in the Camargue was formulated. Fertilizer 

N application is most effectively applied at the onset of tillering and panicle initiation. If total 

N input exceeds 150 kg ha"1, additional N has to be applied around heading to maintain post-

heading growth rate. N recoveries may increase from the current 0.2 to 0.5, by improved 

fertilizer application timing. This higher N efficiency can lead to increased crop production. 

Two aspects are worth mentioning. Firstly, application of N before flooding results in low 

N recoveries. However, in current farmer's practice, the main dose of total N input to a field 

is applied at that moment, because of the reasons mentioned in Chapter 1. This may be one 

of the reasons for the low N recoveries assessed for the Camargue. Secondly, an additional 

N application around heading is not common in the Camargue, although it was locally 

demonstrated that yields were seriously limited because of source limitations (Barbier, 

personal communication). 

With relatively simple measures, using current fertilizer forms and techniques, rice 

cultivation in the Camargue and in comparable production areas can be made more 

environment-friendly. Furthermore, yields may be increased, applying lower amounts of 

fertilizer N than customary in current N management. This is a first step towards a sound and 

more competitive European rice industry. 
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Summary 

Worldwide, the use of capital-input for the production of food crops increases strongly. This 

is the result of an increasing demand for food, and the necessity to realize higher production 

volumes per unit land surface because of the limited availability of arable land. The increasing 

use of input may have negative consequences for man and the environment if it is associated 

with an increasing emission of input into the environment. Moreover, losses represent 

financial costs. Research aiming to optimize input use is thus relevant, as well in the 

economical, as in the agronomical context. 

The research in this thesis is on the improvement of nitrogen efficiency in irrigated rice 

in Europe. Three expressions were used for this efficiency: i) agronomic efficiency, 

representing the amount of N applied per unit harvested grain dry mass (kg kg"1), ii) 

utilization efficiency, i.e. the N uptake per unit grain dry mass (kg kg"1), and iii) recovery, or 

the fraction of applied nitrogen taken up by the crop (kg kg1). The study proposes alternatives 

for the currently inefficient management of fertilizer nitrogen in rice. A case study was carried 

out for the Camargue in the South of France. In this region, the use of capital-input per unit 

land surface is high, as is the case in most of the European rice growing areas. The research 

was on nitrogen. This element is the main applied nutrient in agriculture, and therefore, it's 

potential contribution to the degradation of the environment is significant. 

Because recent data on nitrogen efficiency in European rice cultivation were lacking, 

previously defined expressions for nitrogen efficiency were quantified for main European 

production areas (Chapter 2). Firstly, a constant value of 56 kg kg"1 for the utilization 

efficiency was derived from the results of experiments conducted in the Camargue in 1989 

and 1990. Values for the agronomic efficiency and the recovery were assessed for normal 

prilled urea and coated fertilizer (Osmocote urea). Subsequently, these experimentally 

determined nitrogen efficiencies for prilled urea were compared to those of the whole 

Camargue region, and with those derived for other Mediterranean rice production areas in 

Europe. Maximum agronomic efficiencies were found between 12 and 17 kg kg"1. Maximum 

recoveries ranged from 0.21 to 0.32 kg kg"1, indicating that only 21 to 32% of applied 

fertilizer nitrogen is found back in the crop. With the coated fertilizer agronomic efficiency 

was improved to 32 kg kg"1, while recovery increased to 0.58 kg kg"1. These improved figures 

can be considered as target nitrogen efficiency values for the near future. Unfortunately, 

current prices of coated fertilizers are high, which does not favour its general use. Therefore, 

the remaining part of this study treated the question of whether or not the target efficiencies 

could be obtained with common fertilizer forms and application techniques. 

77 



The data from the Camargue experiments were further analyzed to increase understanding 

on the effects of nitrogen management on growth and rice production (Chapter 3). The 

formation of vegetative plant parts, constituting the potential source of grain filling 

substances, and the capacity of grains to fill ('sink'), received special attention. Nitrogen 

uptake rate and crop growth rate were related to variables expressing the state of the crops 

during the growing season. It appeared that dynamics of nitrogen uptake rate are strongly 

determined by initial plant density. In a dense plant stand, available nitrogen is taken up 

rapidly, after which this element becomes limiting for growth if no further application of 

nitrogen takes place. In an open plant stand and at identical nitrogen availability, such a 

limitation of growth takes place later in the growing season. Hence, when developing nitrogen 

fertilizer strategies, the actual state of crop and soil has to be taken into account. This aspect 

receives additional attention. Furthermore, it was demonstrated that different fertilizer-nitrogen 

strategies affected the production of individual plant organs. It was concluded that the 

potential source capacity can be controlled with nitrogen management. However, the 

relationship between potential source capacity and grain yield was not always positive. One 

of the reasons could be that at given temperatures the relative contribution of respiration to 

the total carbohydrate balance of a crop increases with the amount of standing biomass. 

Hence, a source limited yield is possible, even when the potential source capacity is high. To 

reduce the risk of yield limitation, the advice given was to strive for a crop with a moderate 

leaf area containing a high nitrogen content. System-analytical research can be used to further 

quantify this advic for various production areas, seasons, and varieties. 

A simple crop growth model was developed to simulate nitrogen limited growth of rice 

(Chapter 4), and to quantify the effect of alternative nitrogen application strategies on crop 

production and fertilizer nitrogen recovery (Chapter 5). Finally, a tailor-made application 

strategy was provided for the variety 'Lido'. It was found that fertilizer N is most effective 

for crop production when applied during the exponential and linear growth phases of the crop. 

At higher N application levels, additional N applied at heading appears most effective. This 

strategy combines a maximum attainable nitrogen recovery with a high crop production. 

Model simulation showed that a grain yield of 8.4 Mg ha"1 is the maximum attainable for 

Lido, under the production circumstances of the Camargue. In reality, this yield level is 

difficult to obtain because it was assumed that nitrogen was continuously applied to the crop. 

In practice, nitrogen is applied at discrete moments during the growing season. Hence, 

optimization of application strategy is only possible by varying the dose of fertilizer and the 

timing of application. 

To formulate an appropriate recommendation for nitrogen application, 70 fertilizer 

management strategies were simulated for 20 growing seasons. Per level of total applied 

nitrogen, total dry mass production and nitrogen recovery were quantified for each strategy. 
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High recoveries combined with high crop production were obtained with the application of 

nitrogen at the onset of tillering and at panicle initiation. It was demonstrated that the 

recovery could increase from 0.21 to 0.51, signifying more than a doubling of the nitrogen 

uptake from fertilizer. Average crop production over 20 years was not inferior to that obtained 

in the Camargue experiments. Production increased with the amount of applied nitrogen, but 

this was associated with a strong decrease in nitrogen recovery. It was calculated that with 

nitrogen applications exceeding 150 kg ha"1, the total amount of fertilizer N is most efficiently 

applied in three fractions: at the onset of tillering, at panicle initiation, and at heading, 

respectively. It was recommended that further experimental research should evaluate the 

advantages of a third application at heading, firstly, because in the Camargue total nitrogen 

applications generally exceed 150 kg ha"1, and secondly, because the third application at 

heading is not common in this region. Simulation further shows that the recovery of nitrogen 

applied before sowing is very low. However, most of the nitrogen used in European rice 

cultivation is applied at that moment. This may partly explain the low nitrogen efficiencies 

found in European rice. 

The economical optimum application level of nitrogen was not established, because the 

required economical analysis of the variable costs of fertilizer and the variable prices of rice 

was outside the scope of this study. 

In the last chapter, the results of the whole study were related to each other. The presented 

conclusions may be used in the development of a modern, environment-friendly and 

competitive rice industry. The minimum losses that may be expected with a relatively low 

level of fertilizer nitrogen input were estimated. It is shown that relatively high yields can not 

be realized in Europe, unless current nitrogen recoveries are increased drastically. This 

awareness should be an incentive for rice-producers to revise their current fertilizer nitrogen 

strategies. 
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Samenvatting 

Het gebruik van kapitaal-input voor de produktie van voedselgewassen neemt wereldwijd sterk 

toe. Dit hangt samen met de toenemende vraag naar voedsel en de noodzaak om hogere 

produkties per landoppervlak te realiseren vanwege de beperkte beschikbaarheid van 

bouwland. Het stijgend gebruik aan input kan nadelige consequenties hebben voor het milieu 

en de mens, als daardoor ook de uitstoot van input naar het milieu toeneemt. Verliezen 

vormen bovendien financiële kosten. Het is dus van belang dat er onderzoek verricht wordt 

naar een optimaal gebruik van input, zowel in landbouwkundige - als economische zin. 

Het beschreven onderzoek heeft zich gericht op de toename van de efficiëntie van stikstof 

in geïrrigeerde rijst in Europa. Drie indicatoren zijn gebruikt om de stikstof-efficiëntie uit te 

drukken: i) de toedienings-efficiëntie, die aangeeft welke korrelopbrengst gerealiseerd wordt 

per eenheid toegediende stikstof (kg kg"1), ii) de gebruiksefficiëntie, ofwel de korrelopbrengst 

per eenheid opgenomen stikstof (kg kg"1), en iii) de opname-efficiëntie, i.e. de fractie van de 

toegediende stikstof die door het gewas is opgenomen (kg kg"1). Het onderzoek draagt 

alternatieven aan om de huidige verspillende bemestingstechnieken in rijst te verbeteren. Een 

case-studie werd uitgevoerd voor de Camargue in het Zuiden van Frankrijk. Zoals in de 

meeste Europese rijstbouwgebieden, is daar het gebruik van kapitaal-input per eenheid 

landoppervlak hoog. Het onderzoek heeft zich gericht op stikstof, omdat dit het meest 

toegediende voedingselement in de landbouw is en daarom een belangrijke bijdrage kan 

leveren aan de degradatie van de leefomgeving. 

Omdat recente gegevens over de stikstof-efficiëntie in Europese rijstbouw niet voorhanden 

waren, werden voor de belangrijkste produktiegebieden alle gedefinieerde uitdrukkingen voor 

efficiëntie gekwantificeerd (Hoofdstuk 2). Allereerst werd een constante waarde van 56 kg 

kg"1 voor de gebruiks-efficiëntie afgeleid, met behulp van uitgevoerde experimenten in 1989 

en 1990 in de Camargue. Ook werden waarden voor de toedienings-efficiëntie en de opname-

efficiëntie vastgesteld, enerzijds voor een traditionele ureum kunstmest, anderzijds voor 

gecoate kunstmest (Osmocote-ureum). Deze experimenteel bepaalde stikstof-efficiënties voor 

normale ureum werden vervolgens vergeleken met die voor de gehele Camargue-regio en met 

die voor andere Mediterrane produktiegebieden in Europa. Maximale toedienings-efficiënties 

varieerden tussen de 12 en 17 kg kg'. Maximale opname-efficiënties bevonden zich tussen 

de 0.21 en 0.32 kg kg"1. De laatstgenoemde cijfers geven aan dat slechts 21 tot 32% van de 

toegediende kunstmest-stikstof terug te vinden is in het gewas. Via gebruik van de gecoate 

kunstmest werd aangetoond dat de toedienings-efficiëntie verbeterd kan worden tot 32 kg kg"1 

en de opname-efficiëntie tot 0.58 kg kg"1. Deze verbeterde efficiënties kunnen beschouwd 

worden als streefwaarden voor de nabije toekomst. Helaas is de prijs van gecoate kunstmest 
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relatief hoog, wat een algemeen gebruik niet waarschijnlijk maakt. Daarom werd het 

vervolgonderzoek gericht op de vraag of de streefwaarden ook behaald konden worden door 

verbetering van gangbare bemestingstechnieken. 

De gegevens van beide Camargue experimenten werden verder geanalyseerd om meer 

inzicht te verkrijgen op welke wijze stikstofbemestings-strategieën de groei en produktie van 

rijst beïnvloeden (Hoofdstuk 3). Er werd speciaal aandacht geschonken aan de produktie van 

het vegetatieve gedeelte van het gewas dat tijdens de korrelvulling de bron vormt van de 

vulstoffen voor de korrels (de 'source'), en aan de capaciteit van de korrels zich te vullen (de 

'sink'). De opnamesnelheid van stikstof en de groeisnelheid van het gewas werden gerelateerd 

aan verschillende toestandsgrootheden van het gewas door het groeiseizoen. Hieruit bleek dat 

de dynamiek van de stikstof-opnamesnelheid sterk bepaald wordt door de initiële dichtheid 

van het gewas. In een dicht gewas wordt de beschikbare bodemstikstof in een relatief korte 

tijd opgenomen, waarna, bij uitblijven van bemesting, stikstof limiterend voor de groei wordt. 

Bij een relatief open gewas zal deze limitering later optreden, bij een vergelijkbare initiële 

hoeveelheid beschikbare bodem-stikstof. Dit houdt in dat bij het ontwikkelen van bemestings­

strategieën rekening gehouden moet worden met de actuele toestand van het gewas in 

combinatie met die van de bodem. Hier wordt in de praktijk te weinig aandacht aan 

geschonken. Er werd verder aangetoond dat verschillende bemestings-strategieën invloed 

hadden op de produktie van individuele plantorganen. Er werd geconcludeerd dat met behulp 

van stikstofbemesting in de vegetatieve groeifase de potentie voor korrelvulling te beïnvloeden 

is. Een hoge potentiële sourcecapaciteit bleek niet altijd gerelateerd aan hoge 

korrelopbrengsten. Een van de redenen kan zijn dat bij een gegeven temperatuur het relatieve 

aandeel van ademhalingsverliezen in de totale carbohydraten-balans van het gewas toeneemt 

met de hoeveelheid aanwezige biomassa. Ondanks een hoge sourcecapaciteit kan er dan toch 

sprake zijn van source-gelimiteerde korrelopbrengsten. Om de risico's van oogstderving te 

beperken, werd geadviseerd om te streven naar een gewas dat rond de bloei een gematigd 

bladoppervlak heeft met een hoog stikstofgehalte. Verder systeemanalytisch onderzoek is 

nodig om voor verschillende produktiegebieden, produktiejaren, en variëteiten, deze richtlijnen 

kwantitatief te maken. 

Een simpel gewas-groeimodel werd ontwikkeld om de stikstofgelimiteerde produktie van 

rijst te simuleren (Hoofdstuk 4), en vervolgens het effect van alternatieve 

bemestingsstrategieën op de gewasproduktie en de stikstofopname-efficiëntie te kunnen 

kwantificeren (Hoofdstuk 5). Tot slot werd een stikstofbemestingsadvies gegeven dat 

toegesneden was op de veel gebruikte variëteit 'Lido' in de Camargue. Er werd gevonden dat 

kunstmest N toegediend gedurende de exponentiële- en lineair groeifasen van het gewas, het 

meest effectief voor de produktie was. Bij hoger niveaus van N toediening, bleek een extra 

bemesting rond de bloei het meest effectief. Dit advies combineert een maximaal haalbare 
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opname-efficiëntie met hoge gewasproduktie. Simulatie toonde aan dat onder de actuele 

produktieomstandigheden in de Camargue een korrelopbrengst van 8.4 Mg ha"1 maximaal 

haalbaar is voor Lido. In werkelijkheid zal deze opbrengst moeilijk realiseerbaar zijn, omdat 

in deze berekening werd aangenomen dat stikstof continue aan het gewas werd aangeboden. 

In de praktijk wordt stikstof op discrete momenten in het groeiseizoen toegediend. 

Optimalisatie van de bemestingsstrategie is dan alleen mogelijk door aanpassing van dosering 

en tijdstip van toediening. 

Om tot een gefundeerd bemestingsadvies te komen, werden 70 bemestings-strategieën 

doorgerekend voor 20 seizoenen. Per niveau aan totaal toegediende stikstof werden totale 

produktie en opname-efficiëntie per strategie gekwantificeerd. Hoge opname-efficiënties en 

hoge gewasopbrengsten werden verkregen bij toediening van stikstof bij het begin van de 

uitstoelingsfase en bij pluiminitiatie. De opname-efficiëntie bleek te kunnen stijgen van 0.21 

tot 0.51; meer dan een verdubbeling van de stikstofopname uit kunstmest. De gemiddelde 

gewasprodukties over 20 jaar bleven niet achter op die uit de Camargue experimenten. De 

gewasproduktie nam toe met de hoeveelheid toegediende stikstof, maar de opname-efficiëntie 

nam dan sterk af. Bij totale doseringen van meer dan 150 kg ha"1 aan stikstof werd berekend 

dat deze hoeveelheid het meest efficiënt in drie fracties kon worden toegediend: aan het begin 

van uitstoeling, bij pluim-initiatie, en aan het begin van de bloei. Omdat de actuele 

stikstofgiften aan Europese rijst ruim boven de 150 kg ha"1 uitkomen, en omdat een toediening 

rond bloei niet gangbaar is in de Camargue, is het gewenst om via experimenten de merites 

van de derde stikstofgift rond bloei te onderzoeken. Simulatie geeft verder aan dat opname-

efficiëntie van stikstof toegediend vôôr de inzaai van het gewas zeer laag is, terwijl in de 

Europese rijstbouw de meeste stikstof juist op dat moment wordt toegediend. Dit kan ten dele 

de lage stikstof-efficiënties in de Europese rijstbouw verklaren. 

Het economisch optimale stikstof-bemestingsniveau werd niet vastgesteld, omdat de 

hiervoor benodigde analyse van de variabele kosten van stikstofmeststof en de variabele prijs 

van rijst buiten het kader van de studie valt. 

In het laatste hoofdstuk (Hoofdstuk 6) werden de resultaten van het gehele onderzoek met 

elkaar in verband gebracht. De gepresenteerde conclusies kunnen gebruikt worden om een 

moderne, milieu-ontziende en concurrerende rijstbouw in Europa te ontwikkelen. Schattingen 

zijn gegeven over de minimale stikstofverliezen die verwacht mogen worden bij een lage 

input aan stikstof. Er wordt aangetoond dat het behalen van relatief hoge rijstopbrengsten in 

Europa uitgesloten moet worden, tenzij de huidige lage stikstof opname-efficiënties drastisch 

worden verbeterd. Deze wetenschap zou voor rijstproducenten een reden moeten zijn om hun 

huidige bemestingsstrategieën te herzien. 
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