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INTRODUCTION 

Polymers and colloids 

A polymer is a molecule consisting of many (noXvc,) parts (ixépoç). The word 

polymer was introduced in 1833 by the Swedish chemist Berzelius [1]. At 

that time, the first analyses of the molecular formula of organic compounds 

were established and Berzelius was trying to make a classification of closely 

related molecules. Molecules having the same overall molecular formula but 

different physical properties were defined to be isomers (ïaoç = equal), 

metamers were molecules that reorganize into other isomers spontaneously 

(H£TÓ indicating a change), and polymers were molecules that have the 

same relative, but different absolute amount of atoms, and differ in physical 

properties. The material he used as an example for his polymer definition 

was "Weinöl", the oily substance obtained after steam destination of cognac 

preparation residues and used as a perfume additive. It was analyzed to be 

C4H8, a fourfold of a substance ("Ölbildendes Gas") that was thought to be 

CH2. Later, it turned out that "Weinöl" consists mainly of ethyl- and amyl 

esters of lower fatty acids, which is far from C4H8 [2]. Nevertheless, the idea 

of multiples of groups of atoms is still in use, although contrary to Berzelius' 

ideas the current definition states that the physical properties of polymers do 

not vary much with the number of parts [3]. 

In 1861, Thomas Graham [4] performed diffusion experiments on a large 

variety of systems: solutions of polymers like starch, gelatin and gum-arabic, 

natural dispersions like blood and milk, and dispersions of silica and metal 

oxide particles in water (so-called sols). He found that all of these systems 

contained particles which moved very slowly in solution, and were unable to 

pass a semi-permeable membrane like parchment paper or animal mucus. 

As all of his systems can be treated to form a more or less sticky and gelly-

like phase, e.g. by heating, by adding acid or by evaporating water, and as 

glue itself appeared to be of its type, he called those systems colloids, from 

the Greek KÓM.CX (glue) and -EIÔTIÇ (-like). Later, the word colloid was used in 

a broader sense: any system containing relatively large (more than 1 

nanometer) entities [5,6]. These "entities" need not be solid; they can also be 

liquid, as in an emulsion, or gaseous, as in a foam. Especially for these latter 

systems the term "glue-like" does not seem very appropriate, but the word 

colloid is still widely used. 
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Graham already wondered if the typical behaviour of a "colloid molecule" 
could be ascribed to a "grouping together of a number of smaller crystalloid 
molecules, and whether the basis of colloidality may not really be this 
composite character of the molecule." The question arising from this 
proposition was the nature of the association force. Colloid scientists 
rejected the idea of covalent chemical bonds, leading to giant molecules; 
their main interest was in inorganic sols and soap solutions where the low 
molecular weight of the constituent parts was established beyond doubt. The 
polymer scientists were divided into two groups: the people studying 
biopolymers like cellulose, starch and rubber, and the organic chemists who 
more or less inadvertently polymerized substances like ethylene glycol and 
styrene. They were not aware of one another's results, and although several 
people at the end of the 19tn century measured large molecular weights, the 
"macromolecular theory" was not accepted widely. Only around 1930, 
almost a century after Berzelius' definition, Staudinger established that 
polymers were molecules of high molecular weight containing multiples of 
repeating units [7], He coined the word "eucolloids" (proper colloids) for 
polymers as polymer solutions are most typically glue-like of all colloids. 
Since then, polymer science developed rapidly: determining the nature of 
the repeating units in biopolymers, synthesizing new polymers and, alas, 
turning its back to the colloid scientists who had impeded its progress for so 
long. 

Polymers in solution 
The simplest polymer that can be imagined is a linear polymer. It is basically 
a long chain of beads, where each bead is called the repeating unit or 
polymer segment. If all segments have the same chemical composition, the 
polymer is called a homopolymer (ónóc = equal). Most polymers are more or 
less flexible, and in solution they tend to coil up (Fig. 1). There are many 
ways in which the chain can fold, and this leads to the high conformational 
entropy that is typical for polymers. If there are only a few molecules in a 
large amount of solvent the coils will not overlap, not even when they are 
close together. This is because two individual coils have more ways of 
arranging themselves internally than one big coil consisting of two chains, 
as the chains cannot intersect. 

The gigantic number of ways in which a flexible polymer in dilute solution 
can be arranged is a major problem in any attempt to model it. A start can be 
made by the so-called random walk, in which a conformation of a polymer 
chain is approximated by a sequence of steps. The step length is fixed, but 
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introduction 

the direction in which the step is taken is completely random, and 
independent of all previous steps. This approach is analogous to the 
random-flight model used in describing the trajectory of a randomly diffusing 
particle (Brownian motion). As the average displacement of a particle in a 
given amount of time is zero, it is customary to use the root-mean-square 
displacement (basically the standard deviation) as a characteristic 
parameter. In a similar way, the average size of a polymer coil is generally 
denoted by its radius of gyration, Rg. 

Figure 1. A dilute solution of polymer molecules: non-overlapping polymer coils, each with a 

radius of gyration Rg. 

For a random walk the radius of gyration turns out to be proportional to the 
square root of the number N of steps taken, so that Rg °= N1/2. However, Flory 
[8] has shown that in a good solvent, where the interaction between polymer 
segments and solvent molecules is not too unfavourable, the radius of 
gyration scales with N (here identified as the number of polymer segments) 
as Rg « N3'5. The difference is due to the so-called excluded volume effect: 
the random-walk model permits the backfolding of a chain onto itself, 
whereas in reality two segments cannot hold the same position at the same 
time. This causes the coils to swell. Nevertheless, it turns out to be possible 
to find random walk statistics in a dilute polymer solution: if the interaction 
between polymer and solvent is sufficiently unfavourable, the polymers 
shrink. At a specific point, called the G-point, the contraction of the coil due to 
the attractive interactions exactly cancels the expansion due to the excluded 

-3-



volume effect. Beyond the ©-point, where the solvent is very poor, the 
polymers are in a collapsed state, and Rg •* N1/3. 

Upon increasing the concentration of polymer, the point is reached where 
the total volume of the coils equals the volume of the container. This is called 
the overlap concentration. If we take as the volume of one coil a sphere with 
radius Rg, then the overlap concentration c* can be found to scale as 
N/(Rg)3 or, using the Flory result, as N"4'5. Beyond this point, the coils 
cannot help but overlap. The solution then resembles a network, with 
average mesh size £ (Fig. 2). This mesh size can be viewed upon as a 
correlation length: on length scales larger than t, a polymer segment cannot 
distinguish any more to which polymer chain it is connected. The solution is 
semi-dilute. The overall shape of the network does not change if one of the 
polymer chains were to be cut in half, so that the chain length is not a 
predominant length scale in a semi-dilute solution. Therefore, in a semi-
dilute solution the chain length can conveniently be left out of the description 
of the system. 

Figure 2. A semi-dilute polymer solution with average mesh size \. 

In semi-dilute solutions, the correlation length does not depend on the chain 
length, but it does depend on the concentration: the more polymer, the more 
the network is squeezed. In other words, the correlation length in a semi-
dilute solution Çsd decreases with increasing concentration. In order to find 
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introduction 

the concentration dependence of the correlation length, we can write it as a 
power law [9] as: 

Ç S d ^ d f O " ( 1 ) 

where Çd is the correlation length in a dilute solution, c is the concentration 
and c* the overlap concentration. Next, we adjust the exponent x such that 
the outcome is independent of the chain length N, using for Çd the Flory 
radius of gyration. This leads to x = -3/4, or £sd « c"3/4. 
If we increase the polymer concentration even further to the point where 
hardly any solvent is present any more, we have a polymer melt. In a 
polymer melt all interactions are efficiently screened out, and the system 
behaves ideally, i.e., the polymers follow random-walk statistics. 

Polymer adsorption 
We have seen that long, flexible polymers in solution are colloids (or, in 
Staudinger's terms, eucolloids). More precisely, solid particles in a fluid 
substance are called sols. If the solid particles consist of polymers that do 
not dissolve readily, the sol is called a latex, after the milky fluid that comes 
out of a rubber tree (Hevea brasiliensis). The difference between the 
polymer molecules in the core of the latex particles and fully dissolved ones 
is the freedom of movement: the latter change conformations continuously 
whereas the latex molecules are in a glassy or even crystalline state. When 
we add a flexible, soluble polymer to a latex (or another kind of sol) there are 
two possibilities: adsorption or depletion. If the dissolved polymer has a 
more favourable energetic interaction with the particles than with the solvent, 
it may adjust its conformations and stick to the particle surface. This 
phenomenon is called adsorption. Adsorption limits the number of ways a 
polymer can arrange itself (and hence, its entropy) considerably, so the 
energetic interaction of the polymer with the surface (the adsorption energy) 
has to be large enough to compensate this entropy loss. The point where the 
adsorption energy is just large enough to yield adsorption is called the 
critical adsorption energy. For smaller adsorption energies, the polymer will 
stay away from the surface, leading to a zone where no polymer is present. 
This region is called the depletion zone, and the polymer is said to be 
depleted from the surface. Both adsorption and depletion can have a 
dramatic effect on the stability of a sol or emulsion [10]: depending on 
circumstances it can either lead to stabilisation (protecting the sol from 



creaming, settling or phase separating), or to flocculation (the formation of 
large floes). Control of the stability is vital in all applications where colloids 
are used: in cheese making, in water purification or in ore dressing the 
system is meant to flocculate, whereas in milk any phase separation is 
undesirable. In paint it is sometimes convenient to bring the system at the 
verge of flocculation, as the half-formed floes are easily broken when poured 
or stirred, but strong enough to prevent settling of the pigment particles. 
From the above examples it can be seen that with polymer adsorption and 
depletion, polymer science has found its place back into colloid science: 
colloid scientists need polymers that comply to all the specifications they 
need, and polymer scientist know what those polymers should look like. 

Theories, approximations and their problems 
A simple general strategy for the design of a polymer adsorption theory is 
the following: calculate all possible conformations of polymers at the surface 
and in solution, count all interactions, derive the free energy of the system, 
and minimize it. For stability, also the effect of bringing particles together has 
to be taken into account. This procedure would yield all the information 
needed to predict the behaviour of polymers near interfaces. Unfortunately, 
this method is in general unfeasible as the number of conformations is too 
large. Therefore, approximations and model assumptions have to be made. 
In the theories used in this thesis, several approximations are used: 

Markov chain 
We have already encountered one popular approximation in the random-
walk model. The basic assumption here is that all segments are only 
influenced by the position of the segment immediately preceding them. This 
ensures chain connectivity, but cannot prevent backfolding. A series of 
events where the next state only depends on the current state is called a 
Markov chain. 

lattice 
Another tool which facilitates the counting of conformations is the use of a 
lattice. Here, every polymer segment occupies a lattice site. Often, the size of 
a polymer segment is chosen to be the size of a solvent molecule (Fig. 3). 
This can be problematic if there are more than two components in the 
system, or if the dimension of a lattice site is used for the calculation of 
measurable quantities. 



introduction 

Basically, the use of a lattice only means the discretization of space, and for 
a fluid it is often not a severe approximation [11]. In some cases it is possible 
to prove that a lattice theory yields the same results as a continuous theory 
provided the lattice spacing is taken to approach zero. Problems can arise if 
the system contains rigid structures that do not fit in the lattice (e.g. tilted 
crystallites) or if a sharp interface (i.e., an interface with a thickness of the 
order of the lattice constant) is formed between different components. In the 
latter case, thermodynamic quantities like free energy or surface tension are 
extremely sensitive to the exact position of the interface and the kind of 
lattice used. Fortunately, it is sometimes possible to detect and correct for 
these so-called lattice artefacts [12]. 

oooo 
o#oo o 

O M O O O O 
[ HM ESTTTTJ o ooo 
ooooo oooo 

oooo 
Figure 3. A small polymer molecule in a lattice: the open circles denote the solvent molecules, 

the closed circles the polymer segments. 

random mixing (Bragg-Williams) and mean field 
A famous theory using a lattice as depicted in Fig. 3 is the Flory-Huggins 
theory [8]. It has proven to be very successful in describing the 
thermodynamics of polymer solutions, predicting qualitatively the phase 
separation between unlike polymers and the possibility of fractioning 
polymers with the same chemical composition, but with different molecular 
weight. However, the precise behaviour of a polymer solution near the point 
of incipient phase separation (for infinitely long chains a "critical point") is far 
from experimental findings. Mean-field theories (as the F-H theory) are 
infamous for their incorrect predictions of systems near a critical point. This 
discrepancy derives from the neglect of correlations. Some idea of 



correlations can be obtained if we look at the dilute solution in Fig. 1. We 
could try to calculate the probability of inserting another polymer molecule in 
such a way that none of the segments of the molecule to be inserted will 
overlap with any segment of the polymers already present. Such a 
procedure could, e.g., be used in the calculation of the chemical potential of 
the polymer. If the total volume fraction of polymer segments is denoted as <p, 
then the probability that any single segment can be inserted properly is 1 - cp. 
But we can immediately see that it will make a huge difference where exactly 
the first segment is placed: if it is located outside the dashed spheres 
indicating the radii of gyration, then the whole polymer molecule will 
probably fit in easily, but if the first segment is placed within the radius of 
gyration of another polymer molecule, the other segments stand a very good 
chance of hitting one of the segments already there. So, for all the other 
segments of the polymer to be inserted 1 - cp, the average value for the 
excluded volume, is a very bad approximation for the probability that they 
will fit in. The method would be correct if the polymer segments were not 
connected but distributed in the solution at random. Therefore, this 
approximation is called the random mixing approximation. It is also known 
under the name Bragg-Williams approximation. The idea to tag one 
molecule and let the role of all other molecules be to form an average 
external field that acts on this tagged molecule is the basis of a mean-field 
approximation. The use of a Bragg-Williams approximation implies the use 
of a mean-field approximation, but not the other way around: it is very well 
possible to improve on the Bragg-Williams approximation, e.g., by using a 
so-called quasi-chemical approach, where correlations between nearest 
neighbours are taken into account, but still using a mean-field approximation 
[11]. 

energetic interactions 
So far, we have mainly been concerned with entropie (excluded volume) 
interactions. As soon as we consider good or bad solvents, energetic 
aspects enter the discussion. Energetics are generally modelled by 
assuming a specific equation for the energy as a function of the interparticle 
distance and sometimes also of the orientation between particles (segments, 
molecules or even voids). Next, a cut-off has to be defined: it is impossible to 
calculate the influence of a particle upon the rest of the universe, but one 
can start with the energetic interaction of a particle with its immediate 
surroundings. In a lattice, this is especially convenient as the nearest 
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neighbours and the distance between them are well-defined. In this case, it 

is enough to simply define a contact energy. 

ground state dominance 
The random walk model for a polymer molecule is analogous to the random-
flight model for a single Brownian particle. This analogy can also be used in 
polymer adsorption theories as a popular chain connectivity equation 
resembles a diffusion equation or even the Schrödinger equation used in 
quantum mechanics [13]. This method is called the diffusion equation 
approach. However, a major difference between a diffusing particle and a 
polymer molecule is the fact that a polymer molecule has two chain ends 
whereas the diffusing particle does not have a specific "start" or "finish". A 
polymer segment located near one of the ends will in general behave 
differently from a middle segment, as the ends have more freedom of motion. 
In many diffusion equation theories, the importance of the chain ends is 
neglected. Basically, the polymers are taken to be infinitely long. A term 
often used in this respect is ground state dominance, jargon stolen from 
quantum mechanics. 

scaling 
Instead of starting out with all possible conformations of a polymer molecule 
and then simplifying the matter with approximations, it is also possible to 
coarsen the system by using "blobs" having a diameter equal to the 
correlation length [9]. In this way, no details on a scale smaller than the 
correlation length can be obtained, but important physical laws can be 
derived without intricate mathematical methods. 

equilibrium 
An important remark that has to be made here is that in deriving a minimum 
in the free energy, one assumes that the system is in equilibrium. As stated 
before, polymers move very slowly in solution, so that in dense polymer 
systems it is very well possible that equilibrium is never obtained. 

Outline of this thesis 
This thesis is based on the theory for polymer adsorption by Scheutjens and 
Fleer [14], which is an equilibrium lattice theory using Markov chain statistics 
and a Bragg-Williams approximation. In the first two chapters, some of the 
approximations are tested: chapter 1 concentrates on the problems of the 
mean-field approximation in the case of adsorption from a dilute solution by 



analyzing volume fraction profiles with scaling arguments. In chapter 2, 
adsorption from a semi-dilute solution is considered. The results are 
compared with an analytical, continuous {i.e., no lattice) model using a 
ground-state approximation. The Markov chain statistics are extended in 
chapter 3. This extension enables the modelling of polymers having parts 
that are not completely flexible. Partial stiffness yields entropical prejudice 
for adsorption, just as branching of the polymer chain does, a subject which 
is touched in chapter 4, which deals with the adsorption of comb-shaped 
polymers, also called graft polymers. Finally, in chapter 5 the effects of 
surface heterogeneity are calculated. 
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CHAPTER I 

On the self-similar structure of adsorbed polymer layers: 
the dependence of the density profile on molecular 

weight and solution concentration 

It is shown that the self-consistent-field theory to describe polymer adsorption on solid-liquid 

interfaces [J.M.H.M. Scheutjens, G.J. Fleer, J.Phys.Chem. 83 (1979)1619] behaves, for 

long chains and high adsorption affinities, qualitatively as predicted by scaling theory [P.G. de 

Gennes, Macromolecules 14 (1981) 1637]: a proximal regime of a single lattice layer is 

followed by a remarkable self-similar region in the semi-dilute (central) part of the profile which 

crosses over to an exponential decay in the distal regime. For finite bulk volume fraction <j>b we 

find the expected mean field dependence ip(z) ~ z~2 for infinite chain length N, but in general 

the power law is more complex and depends on both cpb and N: ip(z) - z _ a , where a = -2 + 

const (In 9b) / N0-5. The distal regime is exponential: cp(z) = ß exp(yz), where y has a similar 

dependence on In ipb and N, and ß is a function of a and y. From our mean field analysis we 

propose that the De Gennes scaling picture of the adsorbed polymer layer is only correct for 

infinitely long chains. When cpb is low and the chain length not extremely large, the exponent 

in the self-similar profile deviates strongly from the mean field value - 2 , and, analogously, is 

expected to deviate from the scaling prediction 4/3. 
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CHAPTER 1 

Introduction 
Over the last two decades many theories to describe the equilibrium 
behaviour of homopolymers adsorbed from solutions onto a solid interface 
have been developed. Among them two schools have emerged and lived 
more or less side by side. The first school, pioneered by de Gennes [1,2], 
applies the so-called scaling approach. It is characterised by a maximum of 
physics in as few computations as possible. The second one uses the Self-
Consistent-Field (SCF) theory proposed by Scheutjens and coworkers [3,4]. 
This computationally more laborious approach provides a large number of 
detailed predictions, which sometimes prevents one from grasping the main 
physics. The aim of this chapter is to show that under most conditions the 
SCF density profiles in the polymer layer next to a surface are characterised 
by three regimes, like in scaling. These three regimes were first defined by 
De Gennes: a proximal regime dominated by polymer-surface contacts, a 
central regime with a self-similar behaviour, and an exponential profile in the 
distal regime. The two approaches give different predictions for the relevant 
scaling powers in good solvents. In short, De Gennes predicts a power law 
regime independent of the bulk volume fraction (pb and of chain length N: 
(p(z) - z_4/3, whereas as we will prove, the SCF approach predicts in the limit 
of infinitely long chains a profile of the form cp(z) ~ z - 2 in the semi-dilute part 
of the profile. Up to now no scaling analysis of the SCF results has been 
published, but as we will show below some very interesting conclusions can 
be deduced from it. We hope that our observations will be useful for 
understanding the scaling behaviour of polymer layers in general. 

Theory 
scaling theory 
De Gennes recognises three regimes in the equilibrium adsorbed layer 
profile: 
1. Proximal regime. The density profile near the wall is dominated by 
segment-surface contacts, making the behaviour of the polymers near the 
wall very system specific. 
2. Central regime. The arguments leading to the correct scaling start from the 
correlation length in semi-dilute polymer solutions Ç(cp) ~ cp_3/4. Next, a 
generalized correlation length £(z) - ((p(z))_3/4 in the adsorption profile is 
defined which should be proportional to z (so Ç(z) ~ z) because there is no 
other length scale in the polymer layer. Combining these observations leads 
directly to the well known universal self-similar structure: cp(z) ~ (^(z))-4^ or 
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self-similarity 

cp(z)~Z-4/3 (1) 

In other words, the local correlation length in the profile is simply the 
distance to the wall; the "blobs" or mesh sizes near the wall grow linearly 
with z outwards. 
3. Distal regime. The outer part of the profile for cp(z) smaller than the overlap 
concentration <p* ~ N-475 falls off exponentially: 

(cp(z)-cpb)~cpbexp(-z/Çb) (2) 

where the superscript b refers to the bulk solution. 

self-consistent-field theory 
The SCF density profile follows from the (mean field) lattice partition function 
for the system. We will briefly review the main approximations included in 
the formalism. In lattice sites equally sized chain segments and solvent 
molecules are positioned. The lattice is composed of flat layers numbered 
z=1,..., M. On one side (z=0) an impenetrable wall limits the configurational 
space of the molecules, whereas on the other side of the system, at layer z = 
M, a reflecting boundary minimizes any effects of the finite size of the system. 
The parameter M should be large enough to ensure that the bulk values are 
reached. A local mean-field approximation in the lattice layer allows an easy 
evaluation of the local potentials 

U|(z)/kT= u'(z) + 5Cij(<cpj(z)> - cpjb) - 8(1 ,z) Xs (3) 

for both types of molecule i and j in the system (solvent or polymer). In 
equation (3) three contributions can be distinguished. The first term, u'(z), is 
a Lagrange parameter which ensures that each lattice layer is completely 
filled. The second term, which contains the familiar Flory-Huggins interaction 
parameter %, accounts for the polymer-solvent interaction and the third term, 
containing the Silberberg Xs parameter, reflects the energetic effect of 
displacing a polymer segment by a solvent molecule on the surface (thus, by 
definition, Xs = ° for the solvent). 
Next, the Boltzmann factor Gj(z) = exp(-Uj(z)/kT) (also called the free 
segment distribution function) is defined for both the polymer segments and 
the solvent molecules. The recurrence relations 
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Gi(z,sl1) = <Gj(z,s-1l1)> Gi(z) (4a) 

Gj(z,slN) = <Gj(z,s+1 IN)> Gi(z) (4b) 

ensure chain connectivity for segment s in layer z. In this way, both the chain 
end distribution functions Gj(z,sl1) (starting from the first segment) and 
Gi(z,slN) (starting from the other end) are related to the free segment 
distribution functions Gj(z) = Gj(z,1l1) = Gj(z,NIN). The angular brackets in 
equations (2) and (3) indicate an average over three layers z -1 , z and z+1 
according to a (lattice type dependent) a priori step probability to go from z 
to z -1 , to do a step within a layer, and to step from z to z+1, respectively. 
Equation (3) implies a first-order Markov approximation. The combination of 
the two chain end distribution functions gives the segment density profiles: 

cpi(z,s) = (cpjb/Nj ) Gi(z,sl1)Gi(z,slN)/Gi(z) (5) 

The division by the free segment distribution function Gj(z) is needed to 
correct for double counting of segment s and cpf'/Ni is the proper 
normalisation. A stationary point, also called self-consistent profile, is found 
by solving numerically the coupled implicit equations 3-5 with the boundary 
condition that in each layer the total volume fraction Xi cpi(z) = 1. The 
summation over all segments of the chain molecule leads to the overall 
polymer segment density profile: q>i(z) = Zs <Pi(z,s). 

Methods 
The results presented in this chapter are computed by the standard SCF 
approach first published in 1979 by Scheutjens and Fleer [3]. The computer 
programme optimized for long chain molecules was written by Scheutjens 
[5]. Unless stated otherwise we used a cubic lattice, a Flory-Huggins % 
parameter set equal to zero (good solvent), and a Silberberg %s parameter 
equal to 1. This value is above the critical value Xsc which represents the 
transition from depletion to adsorption. The self-consistency of the segment 
density profile with the segment potential profile was achieved numerically. 
In all cases the precision of the results is at least 7 significant digits. 

Results 
In this section we will present a scaling analysis of the SCF profiles. These 
are mainly calculated with %s = 1, where we find clear scaling behaviour. 
However, as the situation changes considerably on lowering the adsorption 
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affinity, a small paragraph is devoted to values of Xs nearer to the critical 

value. 
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Figure 1. Volume fraction profile for a system with N = 50000 and ipb = 10-12, % = 0, xs = 1. 
cubic lattice. Fig.1a: log-log plot, Fig 1b: log-lin plot. The transition point z' between 
central and distal regime is indicated by an arrow. 

Figure 1 is a typical illustration of the various regimes found in the SCF 
adsorption profile. The self-similar regime shows up as a straight line in the 
log-log representation (in this case extending from layer number 2 up to 
about layer number 50), whereas the exponential part of the profile gives a 
linear behaviour on a log-lin plot (layers 30 - 350). The transition between 
the self-similar and exponential regime takes place somewhere between 
layers 30 and 50 at z'. Detailed calculation, as given below, yields z'=39. 
This value is indicated in Fig. 1 by an arrow. The volume fraction in the first 
layer deviates from the straight line in the log-log plot (Fig 1a). Thus, the 
proximal regime can in this case be identified as being the very first layer 
adjacent to the interface. 

Contrary to the prediction of De Gennes' theory, however, the scaling 
powers found in plots like Figs 1a and b are dependent on bulk volume 
fraction cpb and chain length N. 
It has been well recognised that the SCF scheme given by Scheutjens et al 
is equivalent to the 'diffusion equation' approach pioneered by Edwards [6] 
and used in detail by, for instance, Jones and Richmond [7] and Ploehn et al 
[8,9] in the context of polymer adsorption. In the SCF approach Cohen Stuart 
already predicted that the following power law behaviour is expected for the 
semi-dilute part of the density profile [10]: 
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cp(z) ~ z-2 (6) 

The power -2 can be related to the correlation length first given by Edwards 
for mean field chains in the semi-dilute regime [11]: Ç(cp) ~ cp_1/2. Demanding 
Ç(z) to scale with z as in scaling theory yields the equation above. Eq. (6) 
should indeed be the natural limit for infinite chain length in a mean field 
theory. We will show in an appendix that the Ploehn approach, which uses 
the same field equation, also provides this power law for long chains. We 
now take a more general form for the central regime: 

cp(z )~z« ( 1 < z < z ' ) (7) 

where the "cross-over" distance z' will be defined more precisely below. The 
exponent a is taken to be of the general form 

a = -2 + f(N,cpb) (8) 

where f should vanish for infinite chain length. 

In the distal regime, the profile falls off exponentially: 

<p(z) - ß e 7z (z' < z < X Rg) (9) 

where X is of order unity and Rg is the radius of gyration of the chain. 
In order for the exponent to be dimensionless, we need y ~ (Çb)_1, where £b 

~ Rg is the length scale in the dilute regime. In a mean field theory Rg ~ N0-5 

(ideal chains). We rewrite eq. (2) so that In (pb enters the exponent: 

y~ lncpb /N°-5 (10) 

When cp(z) = cpb the distal regime ends and crosses over to the bulk. This 
discontinuity occurs at very low volume fractions and is not a serious 
problem. 

The requirement that at z' the profile should be continuous leads to 

Z' = OC/Y (11) 
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and to 

ß ~ (a/y)01 e • (12) 

For extremely low bulk volume fractions we expect the power law regime to 
vanish and thus z' to be of order unity for all N. This suggests f and y to have 
a similar chain length and bulk volume fraction dependence: 

f ~ In <pb / N°-5 (13) 

Note that both f and y are 0 for infinite chain length at finite cpb. 

Using the lattice calculations by varying chain lengths and bulk volume 
fractions, we found from plots like Fig. 1 the exponents a and y in the central 

and distal regime, respectively, as a function of the chain length. Results are 
plotted in Figs 2a and b, where the abscissa scale is N-0-5 as suggested by 

eqs(10)and(13). 
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-
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^ \ ^ ^ o 7 

10V. ^ 

0 0.01 4S 0.02 0.03 0.01 N ^ 5 0.02 0.03 

Figure 2. The power law exponent a in the central regime (a) and the slope y as found in plots 
like Fig. 1b in the distal regime (b) as a function of N - 0 -5 . The values of the bulk 
volume fraction are: squares 10 - 4 , triangles cpb = 10 - 7 , circles ipb = 10~10, stars 10 - 1 2 . 
Athermal solvent (x = 0), Xs = 1 • 

It can be seen that indeed these exponents are linear in N-0-5. The scatter in 
Fig. 2a is due to the small number of layers that form the central regime, 
especially for short chains. At given N, a and y are found to increase 
proportionally with In (pb, which is also in agreement with eqs (10) and (13). 
Hence, we can now specify the numerical coefficients in the parameters a 
and y. 
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a = -2 + 1.87(lncpb)/N°-5 (14) 

and 

Y=(-4 .45 + 0.3ln<pb)/N0.5 (15) 

Equations (14) and (15) are found for a cubic lattice. Changing the lattice will 
only alter the numerical coefficients. Together with eqs (7), (9) and (12) and 
replacing all the proportionality signs with equality signs, they present 
analytical expressions for the SCF profiles for %s = 1 and % = 0. 

10'3 

Figure 3. Cross-over volume fraction as a function of chain length, as calculated using Eqs 7, 
11, 14 and 15. Full curve: <pb = 10 - 1 0 , dashed curve: çb = 10 - 1 5 , dotted curve: <pb = 
10-20. 

Combining eqs. (7), (11), (14) and (15) we can calculate (p(z'), the volume 
fraction at which cross-over from semi-dilute to dilute behaviour takes place, 
as a function of chain length N. Using the analytical expressions it is 
possible to predict cp(z') for higher chain lengths than by using the original 
numerical procedure. The result is shown in Fig. 3. We see that the curves 
exhibit a maximum at a certain chain length referred to as N', which is higher 
for lower solution concentrations. For N < N' the power law regime is too 
narrow to be physically relevant. Working out the numerical values, we find 
that N' = 0.4 (In cpb)2. Scaling behaviour, of the type <p(z') ~ N_x is only found 
for N well above N'. Scaling theory [1] states that the cross-over from semi-
dilute to dilute regime will take place at the overlap concentration cp* ~ N_4/5. 
For mean-field chains the cross-over concentration q>* ~ N~1. De Gennes 
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identified the transition from the central to distal regime in the adsorption 
profile as the overlap concentration [2]. As can be seen from Fig. 3, we find 
the proper mean field scaling q>(z') ~ N_1 only for very high chain length (N 
>107). Note, that there is also a dependence of (p(z') on In (pb. 

Xs nearxsc 
The scaling theory for polymer adsorption by De Gennes is restricted to the 
so called weak coupling limit. In our lattice approach this would imply that %s 
< 1. All results given above are for %s = 1. In Figure 4 we collect some density 
profiles for long chains (N = 50000) and q>b = 10 -12 with varying adsorption 

affinities. 

1000 

Figure 4. Volume fraction profiles for systems with N = 50000 and ipb = 10 12, x = 0, cubic 

lattice. Full curve: Xs = 1 . dashed curve: Xs = 0.4, dotted curve: XB = 0.19. 

We first discuss the difference found between Xs = 1 (full curve) and %s = 0.4 
(dashed curve). In contrast to %s = 1, the central regime for %s = 0.4 does not 
show a clear power law behaviour. The proximal regime is larger than one 
layer, and the profile is less steep. This behaviour has been predicted by de 
Gennes and Pincus in an analysis of the proximal exponent [12]. The cross­
over to the central regime is smooth. In this case, for a full analysis 
computations for much larger chain lengths are needed to unravel the 
possible chain length and cpb dependence of the proximal part of the profile. 
The dotted curve in Fig. 4 is for Xs = 0.19, close to the critical value of 0.182 
for a cubic lattice. In this case the De Gennes and Pincus picture is not valid 
any longer. We even find a maximum in the segment density profile at layer 
z = 2. A similar maximum was found by Roe [13] in 1966 for an isolated 
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polymer chain near a weakly adsorbing wall. There is no power law region 
nor an exponential regime. It should be noted that near %sc and for low (pb, 
the surface densities are too low to justify a local mean field approximation. 
For %s > 1, the profile is almost equal to the profile with %s = 1 (not shown). 
The only differences are in the occupancies in the first two layers, which 
increases with increasing adsorption energy (although always q>(1) < 1). The 
slopes in the central and distal regimes are not affected at all. 
We summarize that scaling behaviour is only found for high values of the 
adsorption energy parameter %s. This is in contrast to De Gennes' conjecture 
that it should be valid for weak adsorption. 

theta solvent 

• (z) 

100 400 600 700 

Figure 5. Volume fraction profile for a system with N = 100,000 and ipb = 10~12, % = 0.5 (0 

solvent), Zs = 1 . cubic lattice. Figure 5a: log-log plot, Figure 5b: log-lin plot. 

In Figure 5 similar plots as in Figure 1 are constructed, but for a ©-solvent (% 
= 0.5). It can be seen that although the distal and the central regimes are 
definitely present, they do not adjoin: the central regime seems to end 
already at z = 20, whereas the distal regime does not start before z = 100. In 
other words: there seems to be an additional regime in this case in between 
the central and the distal regime. It starts before the overlap concentration cp* 
(= N-0-5 in a ©-solvent) is reached and extends well into the dilute regime. 
In analogy to the good solvent case, we expect the exponent in the power 
law regime to scale as (-1 + correction). Although the exponent is definitely 
higher than in the good solvent case (about -1.24 in Fig. 5) its chain length 
and bulk volume fraction dependence is difficult to obtain due to the small 
extent of the central regime. In a ©-solvent a mean-field approximation is 
thought to be exact: the excluded volume is compensated by the 
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unfavourable energetic interaction of the polymer with the solvent. On the 
other hand, if we increase the chain length of the polymer in a ©-solvent, we 
are approaching a critical point, where again a mean-field approximation is 
inappropriate. The longer the polymer, the more it will tend to phase 
separate. The surface can then act as a condensation nucleus for the 
incipient phase separation, leading to very thick and eventually to 
macroscopic adsorbed layers. 

Discussion 
From the results summarized in eqs 13 and 14 we can check that the density 
profiles fall off to the bulk values always at shorter distances than about 3 Rg, 
and for most practical cases shorter than 2 Rg, i.e., the chain diameter. In the 
SCF model, decreasing (pb has two opposite effects on the profile: the distal 
regime becomes wider because it takes longer to reach (pb, but both lal and 
l-yl are larger which strongly reduces the layer thickness. Only for infinite 
chain length the corrections vanish. In that case the distal regime is 
effectively not present and the De Gennes scaling cp(z) - zr4*3 is expected to 
be exact. 

The -4/3 power arises from the correlation length in the semi-dilute regime 
which has been shown to be correct [14]. The SCF approach shows, for 
good solvents, the wrong limiting behaviour because it neglects correlations. 
The SCF theory predicts a clear chain length and bulk concentration 
dependence on the segment density profile. For high %s a r |d N, eqs 13 and 
14 define the profiles for good solvents. It is tempting to suggest that the 
exact result <p(z) ~ z~4/3 should be generalized for finite chain length and 
concentration effects, in a similar way as given in eqs 13 and 14. 
Integrating the volume fraction profile in the power law regime {i.e. from z=1 
to z') yields a good estimate of the excess amount of polymer adsorbed r. 
For long chains r - 1 + In tpb / N0-5, so that, for infinite N, r reaches a limiting 
value. This limit is similar to the De Gennes result. 

Conclusions 
We have found analytical expressions for the volume fraction profiles of 
homopolymers adsorbing on a solid interface from a good solvent and for 
relatively high xs values. The results indicate that the scaling picture of De 
Gennes is qualitatively correct. However, our suggestion is that the 
"universal" density profile cp(z) = z_4/3 should be corrected for effects of a 
finite chain length and a finite bulk solution concentration. 
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Appendix: Ploehn theory 
Ploehn ef al [8,9] developed a continuous Self-Consistent Field model using 
a ground state approximation. Their expression for the volume fraction 
profile is 

cp(z) = 4y i exp( -V24^z ) ( A 1 } 

f Ci - 1 exp(-V24^z) ) - 1 X0w exp(-2A/24Â^z) 

where 

cp(0) 
2 ^ ^o+^(0) + ̂ cp2(0) 0'5 + |(p(0) + 2X0 l (A2) 

and v and w are excluded volume parameters. For long chains, XQ is a small 

number, as exp (XQ N) is of order 1. Neglecting terms in XQ, (A2) reduces to 

C i - 1 (A3) 

Substituting (A3) in (A1 ) and again neglecting terms of order Xo yields 

<p(z) = -, ,° r _ _ - (A4) 
v(-1 + cosh(A/24T0z)) 

By expanding the cosh term, the unity term in the denominator cancels, as 

well as XQ so that indeed for long chains (p(z) - zr2. 

Analogously, for a theta solvent v = 0 so that 

c ?= |w^o (A5) 

This leads to a sinh term in the denominator: 

<P(z)= . J , " » (A6) 

I 6ÀQ 

y_ 
sinh(^24A,0z) 

Expanding the sinh, keeping only the lowest order in z, we find <p(z) ~ z -1. 
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Adsorption from semi-dilute solution 

Polymer adsorption from semi-dilute solutions under good solvency conditions is studied by 

comparing the numerical mean-field theory for polymer adsorption by Scheutjens and Fleer 

with the analytical mean-field approach of Johner et al. It is found that the overall volume 

fraction profile is independent of polymer chain length and it can be described by a simple 

explicit equation containing only the bulk correlation length and the adsorption strength. For 

low adsorption energies and high bulk concentrations, the ground-state approximation 

neglecting segment number dependence can be successfully applied to extract the 

adsorbed profile and the distribution of the end segments within the adsorbed profile. 

However, for high adsorption energies and lower bulk concentrations the correspondence of 

the analytical theory with the numerical theory is less satisfactorily, which is attributed to the 

greater importance of tails in this case. The universality in the overall volume fraction profile 

implies that polydisperse samples can be used to measure the adsorption profile in the semi-

dilute case. Yet, in these polydisperse systems the individual profiles for the molecules of 

different chain lengths show that other length scales are still present in the adsorption 

problem, which is caused by preferential adsorption phenomena. 
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Introduction 
In 1893, Van der Waals [1] proposed that the volume fraction profile of an 
interfacial system can be obtained by writing the free energy as a functional 
of the local volume fraction and the square of its first derivative, and then 
minimising this free energy under variation of the volume fraction. The 
"square gradient term" turned out to be necessary for obtaining a finite 
interfacial tension. Only after Cahn and Hilliard [2] used this approach in the 
50's, the procedure has become popular. For polymer adsorption it has 
been applied by, e.g., Helfand [3,4], Jones and Richmond [5], De Gennes [6] 
and Johner et al. [7,8]. All these polymer theories use the assumption that in 
a long polymer chain all individual segments have the same distribution. 
This is the so-called ground-state approximation, which is correct for 
infinitely long polymers or for ring polymers. In the case of adsorption from a 
dilute solution it is known to be incorrect: the segments located near one of 
the chain ends are in general further away from the surface in long dangling 
tails [9]. The distribution of the segments depends strongly on the chain 
length. On the other hand, it is also well-known that in a semi-dilute solution, 
where the polymer concentration is so high that the chains overlap, the 
polymer chain length is irrelevant for the description of the system. This 
controversy makes the semi-dilute regime particularly interesting to re­
investigate the ground-state approximation. To this end, we rewrite the free 
energy expression in the polymer adsorption theory by Scheutjens and 
Fleer [10] as a free energy functional using the method outlined in ref. [11], 
and arrive at Johner's analytical equations. This enables us to appreciate 
not only the effects of the ground state approximation, but also to check the 
possible errors of a lattice model. 

Theory 
SF-theory - general equations 
The theory of Scheutjens and Fleer is a lattice theory: each polymer 
segment or solvent molecule is assumed to occupy exactly one lattice site. 
We use a simple cubic lattice, in which each lattice site has six neighbours. 
The lattice constant is chosen to be unity for simplicity. Upon adsorption, a 
volume fraction profile {q>(z)} develops perpendicular to the surface. All 
inhomogeneities parallel to the surface are neglected. The surface is located 
at z = 0, adsorption takes place at z = 1, the layer adjacent to the surface, 
and the bulk solution is far away from the surface at z = M, where M is a 
large number. Two kinds of molecules are distinguished: the solvent, 
indicated with subscript o, and the polymer, with subscript p. The 
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dimensionless potential energy Uj(z) that a segment of molecule type i 
(where i is either o or p) feels in layer z is written as: 

up(z) = xj(cp0(z))-cpb
0j-%sô(1,z) + u'(z)/kT (1a) 

Uo(z) = %((cpp(z))-qg + u'(z)/kT (1b) 

Here, u'(z) is the "space-filling potential", essentially a Lagrange parameter 
to ensure that the lattice is completely filled, % ' s t n e Flory-Huggins 
interaction parameter [12], and (q>j(z)) is a neighbour average of the volume 
fraction cpj(z), in a cubic lattice defined as 

(cp^z)) = ((p,(z -1) + 4cpi(z) + cp,(z +1)) / 6 (2) 

The quantity cpj' is the bulk volume fraction of i (polymer or solvent), %s is the 
Silberberg adsorption energy parameter for the polymer/solvent pair on the 
surface, the Kronecker delta 8(1,z) equals 1 if z = 1, and 0 otherwise and kT 
is the thermal energy. Free, unconnected segments, like the solvent 
molecules o, are distributed in the system according to Boltzmann's law: 

(p0(z) = ̂ e-u°<z> (3) 

The exponential factor in eq. (3) is called free segment weighting factor G^z) 

for a segment of molecule type i: 

Gi(z) = e"Ui(z) (4) 

In the remainder of this text, we drop the subscript p as we will focus on the 
distribution of the polymer. Thus, the polymer volume fraction in layer z is 
simply cp(z). In placing polymers in a lattice, we have to keep in mind that the 
segments are connected: if segment number s is in layer z, segment s+1 has 
to be either in layer z -1 , or in layer z, or in layer z+1. The statistical weight of 
a segment number s of the polymer to be in layer z, given that the first 
segment is free to distribute according to eq. (4), is called the end segment 
distribution function (e.d.f.) G(z,sl1). Analogously, we can define the e.d.f. 
starting from the other end N, G(z,s IN), where N denotes the polymer chain 
length. The e.d.f. of segment s can be obtained from the e.d.f. of the 
preceding one according to a recurrence relation: 
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G(z,sl1) = G(z)(G(z,s-1l1)) (5a) 
G(z, s I N) = G(z)(G(z, s +11N)) (5b) 

where the angular brackets denote a weighted average over the 
neighbouring lattice layers, similar as in eq. (2). The end points do not have 
a preceding segment, so their e.d.f.'s are simply equal to the corresponding 
free segment weighting factor: G(z,NIN) = G(z,111) = G(z). Combining the two 
ends and summing over all segments, we arrive at the volume fraction 
profile of the polymer: 

^ ( z . s M J G t z . s I N ) 
^ ' N ^ G(z) V ; 

The division by G(z) is necessary to correct for the double counting of 
segment s, and cpb/N is the proper normalisation. Equation (6) is known as 
the composition law: it relates the volume fraction profile {(p(z)} to the 
potential profile {u(z)}. Equation (1) relates the potential profile to the 
volume fraction profile. The set of coupled equations is solved numerically 
under the constraint that the whole lattice is filled, i.e. ^.(p,(z) = 1 for any z. 
The result is the self-consistent solution. 

a free energy functional for polymer adsorption 
In order to write the SF-theory for a homopolymer in monomeric solvent as a 
free energy functional, we need to split up the excess (Helmholtz) free 
energy AA = A - A* with respect to a homogeneous bulk solution in two 
terms: a "local" excess free energy AAl0C[(p(z)], depending only on the local 
concentration, and a "non-local" excess free energy AAnl0C[(pJ, depending 
on the concentration gradient cpz = 3cp/3z in z. The local excess free energy 
AAl0C[(p(z)] has two contributions: the adsorption free energy, which is only 
relevant at the surface, and the mixing free energy, corresponding to 
transferring a solution with concentration cpb to a homogeneous solution with 
concentration cp(z). The latter can be found by defining an "excess chemical 
potential" Au-̂ z) of component i, giving the difference in chemical potential 
between an imaginary homogeneous solution with concentration cp,(z) and 
the real chemical potential in the bulk solution: 

A u ^ u ^ z ) ] - ^ ] (7) 
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Note that this notation is only a matter of definition: in the gradient the 
chemical potential is obviously constant throughout the solution. Since 
transferring n polymer molecules would replace N*n solvent molecules, the 
excess free energy of transfer in the whole system volume V equals 

Xn lA l i , /V = (1-q>)Ali0+«p^p/N (8) 

In the simple case of a homopolymer in a monomeric solvent, we can use 

Flory's equation for the chemical potential [12], leading to: 

I n A ^ / V ^ I - c p ^ l n ^ ^ 

(9) 

Neglecting terms in 1/N (long chains), expanding the logarithms up to 
second order in the volume fraction, and substituting % = (1-v)/2, eq. (9) 
reduces to 

X n M ( z ) / V = |(cp(z)-cpb)2 (10) 

for v > 0 (good solvent). The parameter v is called the excluded volume 
parameter. Adsorption on a flat wall located at z = 0 leads to an energy gain 
%scp(1) but also to an entropy loss. For a long chain, the entropy loss per 
adsorbing segment in a cubic lattice equals ln(6/5), the critical adsorption 
energy. Defining y, which is a measure for the adsorption free energy per 
segment, as 

Y = - 6 ^ x , - l n | j (11) 

we arrive at 

^((p(z)-(pb)2-Jcp(z)5(z,1) (12) 
VkT 

The non-local term derives from the neighbour averages in eqs (1) and (5). It 
is shown in refs. [11,13] that in the ground-state approximation it can be 
written as: 
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AAn 

VkT 
X + 4cp 

(13) 

For a good solvent,, where % is small, the energetic term in eq. (13) can be 

neglected. 

Combining eqs (12) and (13) and summing over all lattice layers, we find for 

the excess free energy: 

A -
VkT 

*1 = V (_L(*PY + If<p(2)-cpM2 -1 cp(z)5(z,1)' (14) 

Replacing the summation for an integral and the Kronecker delta for a Dirac 
delta function at the surface, we end up with 

w-ife(fj+i(*-^-5*«<+ (15) 

This is the same equation as used by Johner et al. [7,8]. 

analytical solution for the ground-state approximation 
Above we have an expression for the free energy. The next task is to find a 
volume fraction profile that minimises it. It turns out to be useful to solve this 
problem using an order parameter \|/, which is related to the volume fraction 
cp by v|/2 = cp/(pb. The distance to the surface can be normalised with respect 
to the correlation length in the bulk solution Ç", using y = z/Çb. The 
correlation length in a good solvent for a mean field theory is given by 

1 

A / 3 V 
(16) 

Rewriting eq. (15) in these new parameters, we get: 

^•fi)^-<-^k (17) 

Minimising the free energy with respect to the order parameter profile \|/(y) 

gives for the Euler-Lagrange equation (see Appendix 1): 
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2 ¥ ( v | / 2 - l ) - " ^ b v | / 5 ( y ) - | ^ = 0 (18) 

A solution to eq. (18) is 

\|/(y) = coth(y + b) (19) 

where we have used the boundary condition that far from the surface the 

gradient is zero. Also, the solution y(y) = tanh(y+b) is discarded because in 

the case of adsorption the profile should be decreasing. The integration 

constant b is found from : 

rêb 
sinh(b)cosh(b) = - ^ - (20) 

which can be derived from substituting eq. (19) into eq. (18) and integrating 

over the surface, taking that the slope within the surface is zero. Returning to 

the original parameters, we arrive at the following equation for the 

equilibrium volume fraction profile: 

cp(z) = cpb coth2 ^ b 
(21) 

V ^ J 

Note that this is an explicit equation for the volume fraction profile, so it can 

be used to estimate a potential energy profile up(z), with an equation similar 

to eq. (1). With this approximate potential, segment distributions can again 

be calculated (which implies the loss of self-consistency) from the Edwards 

"diffusion" equation [14,15]: 

3 G ( z , s l 1 ) = l ^ G ( z s l 1 ) _ u ( z ) G ( z s | 1 ) 

öS 6 dz 

with G(z,sl1) the analytical analogue of the end segment distribution 

function. This famous equation is equivalent to the time-dependent 

Schrödinger equation ((ft212m)V2xP - EV = (h Ii)dy/ 3t) if we take for the 

e.d.f. the wave function y and for the segment number imaginary time. 

The equivalence of eq. (22) with the Scheutjens-Fleer recurrence relations 

(5) can be seen if we write eq. (5a) for segment s+1 instead of s: 
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G(z,s + 111) = ̂ e-ue(z){G(z-1,s 11) + 4G(z,s 11) + G(z + 1,s 11)} (23) 
6 

In order to find the continuous limit, we have to scale down the step size from 
1 to h (where h < 1). Using a potential energy per h segments uh(z) = h up(z) 
we get: 

G(z, s + h 11) = - e_Uh(z){G(z - h, s 11) + 4G(z, s 11) + G(z + h, s 11)} (24) 
6 

All elements in eq. (24) can be expanded in a Taylor series. The exponential 
function is the easiest: 

exp(-uh(z)) = 1-uh(z) + M - _ . . ( 2 5 ) 

This series converges quickly as Uh(z) is a small number. 
The segment-dependence can be expanded as: 

rv U H > rv MX k3G(z,sl1) h232G(z,sM) ,__. 
Gz,s + hl1 ) = G(z,sl1 + h — ^ '- +— ^ — ' - + ••• 26 

ds 2! 3s 

In the sum of G(z-h,sl1) and G(z+hl1) the odd orders of the derivatives 
cancel: 

G(z-h,s 11) + G(z + h,s 11) = 2 G(z,s 11) + h232G(z,sl1) h434G(z,sl1) 
v 2! 3z2 4! 3z4 , 

(27) 

Thus, when only the lowest orders of the derivatives are used and the term 
in Uh(z)32G/5z2 is neglected, it turns out that eq. (23) can be seen as the 
discrete (h=1) analogue of eq. (22). The neglect of higher order derivatives 
of G(z,sl1) is equivalent to stating that it has to be a slowly varying function of 
s, and to a lesser extent also of z. 

Johner et al. [7] solve equation (22) by Laplace transformation. Once the 
distribution of segments is known, the adsorbed profile q>a(z), defined as the 
part of the overall profile cp(z) containing polymers that touch the surface, 
can be calculated. If bRg /Ç

b> 1, where b is given by eq. (20) and Rg = VN/6 
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is the radius of gyration, we are in the so-called large loop dominance 
regime, and the adsorbed volume fraction profile is given by: 

<pa(z) - 8<p(z) i2erfc 
V2 R9V 

— i2erfc 
2 

C W 
z 

vR
9y 

(28) 

where i2erfc is the second repeated integral of the error function [16]. 
The end segments belonging to adsorbed chains form the profile: 

cpe(z,N) = | ^ coth ! + b erfc — 

l 2 R
3 y 

(29) 

On the other hand, if bRg/£b< 1, another regime, the surface excess regime, 

applies. In this case, the adsorbed profiles are [17]: 

(pa(z) °c (p(z)-p4erfc 
( \ 
_z 

v R g; 

coth(b) 

VNvcpb/2 
i3erfc 

z 

v2R
9y 

- i3erfc 
z 

vRsy; 
(30) 

and for the end segments 

(pe(z)°ccoth - + b -r=exp 
v4R

gy 
-erfc 

z 

2R„ 
(31) 

Calculations 
We have seen that the equivalence between the analytical theory of Johner 
et al and the numerical self-consistent-field theory of Scheutjens and Fleer 
(SF) can only be established by making a large number of assumptions and 
approximations. An easy way to check whether these are valid is to perform 
calculations using both theories. We discuss such results in the next 
sections. 

volume fraction profiles 
In Figure 1 volume fraction profiles for a semi-dilute solution according to 
both models are given. The numerical SF results for three different chain 
lengths (squares: 40000, triangles: 10000, crosses: 5000) are shown 
calculated using the SF theory. There is hardly any difference between the 
three chain lengths, so that we can conclude that indeed the volume fraction 
profile is universal. This implies also that all equilibrium thermodynamic 
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quantities, such as the free energy and the surface tension, are independent 
of the polymer chain length, in contrast to the situation in dilute solution. 
Numerical calculation of these quantities show that this is indeed the case. 
The drawn curve in Fig. 1 was calculated from the analytical equation (21). 

<P(z) 

0.1 

0.01 -

0.001 

\ 

v. 
analytical 

D SF - 40000 
* SF-10000 
x SF - 5000 

1 1 1 I 1 

10 15 20 25 30 

Figure 1. Volume fraction profile for a homopolymer adsorbing from a semi-dilute solution (<pb 

= 0.01). Solid curve: analytical profile, given by eq. (21). The points were calculated 

using the SF theory for three different chain lengths: N = 40000 (squares), N = 10000 

(triangles), N = 5000 (crosses). Athermal solvent (% = 0), adsorption energy parameter 

Xs=1-

Note that we have shifted the SF-profiles half a layer from z to z - 0.5: layer 1 
comprises the space between z = 0 and z = 1 and the centre of mass can be 
thought to be in the middle. The correspondence between the analytical and 
the numerical theory is excellent. A similar agreement is obtained using 
different values for the solvency, adsorption strength and bulk volume 
fraction, as long as the polymer is in a good solvent above the overlap 
concentration. At very small distances from the surface (z < 0.4), the 
analytical profile exceeds unity, which is physically unrealistic. We return to 
this point below. 
Next, we look at the deconvolution of the volume fraction profile into 
adsorbed chains and their end segments. In Figure 2 we show results for the 
long loop dominance regime (low adsorption energy, high bulk 
concentration), where the adsorbed amount (comprising all chains that 
touch the surface) differs greatly from the excess amount and long loops are 
formed. Again, predictions for the overall profile (circles for the SF-theory, full 

-34-



semi-dilute solution 

curve for the analytical theory) agree nicely, although this is hard to see as 
the profiles fall off quickly. The adsorbed end segment profile (analytical: 
dotted, SF: diamonds) is multiplied by N/2 so that all curves can be plotted 
on the same scale. In this way, the integral under both the curve for all 
adsorbed segments and the curve for only the adsorbed end segments is 
equal to the total adsorbed amount. It can be seen that although the 
correspondence is not as exact as for the overall profile, it is perfectly 
satisfactorily over a range of at least 2.5 times the radius of gyration. For 
these high concentrations, the difference between the end segments and the 
average of all segments is not very large, which explains the success of the 
ground-state approximation here. 

0.5 

<P(z) 

0.4 

0.3 

0.2 

0.1 

*S3 

Xs = 0.3,(p" = 0.2 

{long loop dominance) 

overall profile 

end ^ o - ^ adsorbed 
segments * - ^ 

* * * * '*««a. 
ï'toçû^^aô,; 

20 40 60 
z 

80 100 

Figure 2. Adsorbed volume fraction profile for a polymer with chain length N = 10000 in an 

athermal solvent, for the long loops dominance regime: xs = °-3. fb = °-2- The drawn 

curves are calculated using the analytical theory by Johner et al (eq. 21 and 28-31 ): f ull 

curve: overall volume fraction profile, dashed curve: adsorbed volume fraction profile, 

dotted curve: adsorbed end segment profile. Points are calculated using the SF-

theory. Circles: overall profile, triangles: adsorbed profile, diamonds: adsorbed end 

segments. 

This situation changes when we go to the surface excess dominance regime 
(Figure 3, note the semi-logarithmic scale) with higher adsorption energy 
and lower bulk concentration (though still within the semi-dilute regime). 
Here, the end segments have a much stronger preference to be away from 
the surface. The analytical profiles should be normalised by their total 
adsorbed amount. This turns out to be a problem in this case, as the volume 
fraction exceeds 1 close to the surface due to the high value of the 
adsorption energy parameter. The adsorbed amount is then dominated by 
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the unphysical region less than a segment radius away from the surface, 
leading to much too high values. Therefore, we have tried to chose another 
normalisation, such that the outer part of the profile coincides with the 
numerical values. For the adsorbed profile, it would have been more 
convenient to normalise using the overall profile, as close to the surface all 
segments are adsorbed. However, this procedure would yield around z = 20 
an adsorbed volume fraction that is higher than the overall volume fraction. 
The maximum in the analytical adsorbed profile is due to the tails, which are 
thus probably not described very well in the analytical approach in this case. 

0.01 

0.001 

Xs= 1,cp =0.01 

(surface excess dominance) 

't»,, 
overall profile 

S û „ *°"o.- end segments 

,Si . » fry . 

20 40 60 80 100 

Figure 3. Volume fraction profiles for the surface excess dominance regime %s = 1 -0. <Pb = 

0.01. Legends equal to those in Figure 2. 

excess amount 
In the SF theory, the excess amount is defined as £ ((p(z)-(pb). In the 
analytical case a similar quantity can be defined by replacing the summation 
with an integration. In Fig. 4 we plot the excess amount obtained by 
integrating the squared cotangent profile from the surface (z = 0) to the bulk 
(z -> °°) as a function of the adsorption energy parameter %s (dotted curve). 
The analytical curve increases linearly with the adsorption energy, whereas 
the SF-curve (solid) levels off at high adsorption strength. The difference is 
due to the high concentration very close to the surface. In the SF-theory, the 
volume fraction of the first layer cannot exceed unity, and once it is 
completely filled, no more polymer can adsorb. Thus, the discretisation using 
a lattice turns out to be advantageous in this respect. The erroneous 
behaviour of the analytical theory can be eliminated by starting the 
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0.5 1.5 
X, 

Figure 4. Excess amount as a function of the Silberberg adsorption parameter %s< ' o r a 

polymer chain length N = 10000, an athermal solvent (% = 0), and a bulk volume fraction 

(pb = 0.01. Solid curve: SF- theory, dotted curve: analytical theory with integration from z 

= 0, dashed curve: analytical theory with integration from z = 0.5. 

integration not at z = 0, but at a small distance away from the surface. We 
have taken z = 0.5, this choice is somewhat arbitrary but at any rate it should 
be of the order of the thickness of a polymer segment. This leads to the 
dashed curve in Fig. 4, which indeed shows the proper trend: adsorption 
increases with increasing adsorption energy and levels off for higher values. 

-

_ 

anal .-•' 
0 -> ~,.--" 

— — "" ' 
. i . . . . i . . . . 

1 , , , , j . , 

/ 
/ 

anal , 
0.5 ->«,/ 

\ ' i 

- " S F 
-

• i 

0 0.1 0.2 0.3 0.4 0.5 0.6 
1 

Figure 5. Excess amount as a function of the Flory-Huggins parameter x- Adsorption energy: 

Xs = 1 kT. Other symbols as in Figure 4. 
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The same trick can be used in varying the solvent quality (Fig. 5). Again, the 
dotted curve is the one obtained by integrating the overall profile from z = 0 
and the dashed curve by integrating from z = 0.5. 

The analytical theory was derived for the case of a good solvent: the 
energetic term in the square gradient (eq. 13) was neglected and only v was 
used as an excluded volume parameter in the free energy functional (eq. 
15). In a ©-solvent (v = 0 or % = 0.5) higher order terms in the virial 
expansion should be taken into account, so the behaviour around the 0 -
point is not correct. The neglect of the energetic term in the square gradient 
is only a problem at high values of % (more than, say 0.4) and at high 
concentration, which in this case is only relevant close to the surface. Upon 
increasing %, and thus decreasing the solvent quality, the adsorption 
increases gradually until the point is reached where phase separation takes 
place in the bulk solution. In the SF-theory, this occurs at the value predicted 
by the Flory-Huggins theory: x= 0.51 for N = 10000. The surface then 
behaves as a condensation nucleus and the excess amount diverges, 
starting from the surface. 

bidisperse polymers 

9(z) 

0.1 

0.01 

0.001 

- I — I — I — I — I — r 

bidisp-small 

10 20 30 40 50 

Figure 6. Volume fraction profile for a polymer of 10000 segments (full curve) and for a 

bidisperse mixture of two polymers having 1000 segments (dashed curve) and 10000 

segments (dotted curve). Dashed-dotted: total volume fraction in the bidisperse case. 

All polymers are in full equilibrium with an athermal solution having a volume fraction of 

0.01. Adsorption energy parameter xs = 1 °-
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Now that we have seen that the volume fraction profile in the semi-dilute 
regime is universal, the question arises what will happen to a system 
containing more than one chain length. The adsorption of polydisperse 
polymers has been calculated before [18,19] and it was shown that at low 
concentrations, long polymers adsorb preferentially over short ones, 
whereas the reverse takes place at very high concentrations (several tens of 
a percent). In these calculations, the bulk volume fractions of all components 
differ, so that it is hard to compare with the situation we have here, where full 
equilibrium with an infinite bulk solution is assumed. Therefore, we will take 
a bidisperse system containing only two chain lengths. Bidisperse polymers 
have been treated by Sommer and Daoud [20] using a scaling approach, 
but only at low adsorption energy so that the concentration of the larger 
polymer cannot exceed the concentration of the smaller one. In our 
calculations, we have taken a system containing polymers with 1000 and 
with 10000 segments, both having a solution concentration of 0.01. In Fig. 6 
the individual volume fraction profiles are compared with that of a system 
containing a monodisperse polymer of 10000 segments. The solid curve 
refers to the monodisperse case, the dashed curve gives the contribution of 
the small (1000 segments) polymer in the bidisperse case, and the dotted 
curve the contribution of the large (10000) polymer. As before, we find that 
the small polymer is depleted from the surface. The longer polymer in the 
bidisperse mixture adsorbs to a greater extent than the monodisperse 
polymer due to the increase in chemical potential in the solution: if the 
contributions of both polymers are added (dashed-dotted curve) the profile is 
indistinguishable from that of a monodisperse polymer adsorbing from a 
solution with bulk concentration 0.02. However, the interesting point in Fig. 6 
is the fact that in the mixture there is an inhomogeneity in the system over a 
longer length scale than the one determining the overall profile. In principle, 
this effect could be measured by specific labelling of either kind of polymer. 

Conclusions 
We have shown the correspondence between the numerical self-consistent 
field theory by Scheutjens and Fleer and the analytical theory by Johner et 
al. In the case of adsorption from semi-dilute solution the overall volume 
fraction profile turns out to be universal, i.e. independent of the polymer 
chain length. Also, the numerical profile is described well by the analytical 
theory. The analytical deconvolution of the overall profile into adsorbed 
segments and adsorbed end segments works well in the long loop 
dominance regime, where the segment number dependence is not very 
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large, but less well in the surface excess regime. If the solvent quality is poor 
or the adsorption energy high, the analytical volume fraction profile exceeds 
1 close to the surface on length scales smaller than the radius of a polymer 
segment. For integrated quantities like the excess amount or the adsorbed 
amount, this leads to values that are unrealistically high. In the case of 
adsorption of a bidisperse polymer mixture, more than one length scale is 
found to play a role. 
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Appendix: Calculus of variations. 

We have a quantity J, that is given as an integral: 

J = ff(y,y„,x)dx (A1) 
x1 

Under the integral sign is a known function f = f(y,yx,x), where yx = dy/dx. 
What we are looking for is the function y(x) that minimises J. Thus, we know 
how f depends on y, yx and x, and we want to determine how y depends on 
x. It is not obvious that a solution to this problem exists, but we will assume 
that it does. The mathematical treatment needed to solve this problem is 
called variational calculus. We will briefly outline the procedure here, 
following the line of reasoning of ref. [1]. A more detailed discussion can be 
found in [2,3,4]. 

Let y(x) be the admissible solution for which J is a minimum. It passes 
through the (given) end points (x^yfc,)) and (x2,y(x2)). Admissible functions 
should be differentiate on the interval x, <x<x 2 . Next, we arbitrarily take 
an admissible function r|(x) which satisfies the conditions 

TI(X,) = TI(X2) = 0 (A2) 

We can define a family of functions 

y(x, a) = y(x, 0) + ar|(x) (A3) 
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where y(x,0) is again the solution we are looking for, and all of the functions 
of the family pass through the end points. The value of the integral J along 
any member of the family now depends upon the value of a: 

J(a) = £<2f(y(x,a),yx(x,a),x))dx (A4) 

In differential calculus, an extreme of a function g(x) can be found by setting 
the first derivative (dg/dx) equal to zero. The same trick applies in variational 
calculus: to find the extreme in J(a), which should occur for a = 0, the 
necessary condition is 

3J(a) 
3a 

= 0 (A5) 

Differentiating: 

3J(g) _ rx»[ jtfdy j^ftyx. 
da «i ^3y 3a 3yx 3a 

dx (A6) 

Note that y and yx are treated as independent variables. 

From (A3): 

3y(x,g) 
3a 

T1(X) 

and 

(A7a) 

3yx(x,a) = dT|(x) 
3a dx 

(A7b) 

Substituting in (A6): 

3 J ( a ) _ r f 3 f 3f dTi(x)" 
3a ~ M a y W 3yx dx 

dx (A8) 

The second term can be integrated by parts, where the integrated part 
vanishes through (A2). This leads to 

3J(a) _ rx»fdf___d_Jin 
3a J"- [dy dx 3y„y 

ri(x)dx = 0 (A9) 
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Now a can be set to zero. As T|(X) is an arbitrary function, it can have the 

same sign as the expression in brackets. The only way (A9) is satisfied 

irrespective of the choice of r|(x) is to have the whole term in brackets to 

equal zero: 

3y dx dy,, 

Equation (A10) is known as the Euler-Lagrange equation. Several other 
forms of this equations are known, e.g., if f does not depend explicitly on x 
{i.e., df/dx = 0) it can be rewritten to 

d (f * Ï 
— f-y» — 

= 0 (A11) 

which is easily integrated to 

3f 
f - y x - — = constant (A12) 

The Euler equation is a necessary condition for any extremal for J: if there is 
a minimum, it will comply to (A10). The reverse is not necessarily true: a 
solution to (A10) may not be a minimum for J. For instance, it may be a 
maximum, or it may be physically unrealistic. 

Sometimes, the end points or one of the end points are not explicitly given. 
In this case, (A2) is not necessarily true. The solutions we had using (A2) are 
a subclass of the solutions with variable end points. If a curve y(x) gives a 
minimum for a problem with variable end points, then that curve necessarily 
also gives a minimum with respect to the more restricted class of curves 
having the specific end points of y(x). Therefore, the Euler equation, which is 
a fundamental necessary condition for the occurrence of a minimum, should 
hold for the problem with variable end points as well. For the variable end 
points problem, we need extra boundary conditions, which can be obtained 
by demanding the equality between (A8) and (A9), and thus, the vanishing 
of the integrated part: 
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df , . (A13) 
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Adsorption of semi-flexible polymers 

The self-consistent field model for polymer adsorption of Scheutjens and Fleer is extended to 

the case of semi-flexible chains in a cubic lattice. It is found that the scaling behaviour for 

adsorption from dilute solution of polymers with the same radius of gyration, but with a varying 

degree of stiffness, is markedly different. Adsorption from semi-dilute solution gives a 

universal (chain-length independent) profile, even when bond correlations are taken into 

account. Adsorbing block copolymers with blocks that differ only in the rigidity of the blocks 

adsorb with the stiffer block on the surface. This preference has an entropical origin. Such 

copolymers behave similar to "energetic" block copolymers, where the blocks differ in 

energetic interaction with the solvent or with the surface. The effects of chain stiffness are of 

the same order of magnitude as energetic effects. 
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Introduction 
The first theoretical model for polymers was probably the random-walk 
model by Kuhn [1]. In this model a polymer molecule is taken to consist of 
randomly jointed segments, i.e., the orientation of each segment is 
independent of all the others. In practice, the backbone of a polymer 
molecule is not completely flexible: the segments cannot fold back onto 
themselves, and usually bond angles are restricted to specific values 
determined by the hybridization of the constituent atoms. However, this is not 
necessarily a problem: the chain-length dependence of the radius of 
gyration of an ideal polymer chain does not change if the bond angles are 
restricted, provided a number of bonds are combined into one statistical unit, 
which in turn can rotate independently. Still, it can be necessary to model 
chain stiffness: the fact that the radius of gyration can be rescaled properly 
does not imply that other parameters in more complicated systems are not 
altered. Also, if the polymer is very stiff, the statistical units become so large 
that for a finite chain length there are too few units to get reliable statistics. 
This is the "worm-like chain" case [2,3], in which the persistence length P of 
the chain plays a key role. The persistence length is a measure for the 
distance over which the polymer chain is stiff. By comparing the adsorption 
characteristics for polymers differing in flexibility but having the same radius 
of gyration it is possible to check whether rescaling works also in the case of 
adsorption. 

Most of the research about semi-flexible polymers is devoted to isotropic-
nematic transitions, which is important for the field of polymer liquid crystals. 
An excellent review on these systems is written by Odijk [4]; we will not 
discuss them here. 
Yetiraj et al. [5] have recently found that in a polymer blend containing stiff 
and flexible molecules the stiff molecules segregate to the surface. This is a 
purely entropie effect: the stiffer polymers lose less entropy when adsorbing 
than the flexible ones. The theory to be presented below allows for 
molecules that have rigid and flexible blocks. In a sense these molecules 
can be considered to be block copolymers, although the blocks do not differ 
in mixing or adsorption energy. Thus, we can investigate the entropie effects 
of surface segregation of block copolymers. Usually in block copolymer 
systems one does not include the effect of the difference in local chain 
rigidity, although it is often present. One of the goals of this chapter is to 
investigate the problems encountered in this approach. 
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Theory 

The model is based on the self-consistent-field theory for homopolymer 
adsorption by Scheutjens and Fleer [6], using extensions for copolymers [7], 
chain stiffness in a cubic lattice [8], and bond correlations [9]. We use a 
simple cubic lattice. A polymer molecule consists of N segments, where the 
diameter of a segment equals the lattice spacing. Layers are chosen parallel 
to the (flat) surface and numbered z = 0 (the surface), 1 (the layer 
immediately adjoining the surface) to M (in the bulk solution, far from the 
surface). The volume fraction of segment number s of molecule i in layer z is 
(pj(z,s). If molecule i consists of more than one monomer type, we can define 
cpAi(z) as the contribution of segment type A to the volume fraction of 
component i in layer z. 

interactions 

The relative preference of a free monomer of type A to be in layer z with 
respect to the bulk solution is denoted as GA(z), the free segment 
distribution function. It can be related to the potential energy uA(z) of 
monomer type A in layer z using a Boltzmann equation: 

GA(z) = exp(-uA(z)/kT) (1) 

In this equation T is the absolute temperature and k Boltzmann's constant. 
The potential energy consists of two contibutions: hard-core and energetic 
interactions: uA(z) = u'(z) + ul

A
,(z). The hard-core contribution u'(z), is 

calculated numerically by demanding that the lattice is completely filled with 
solvent molecules and polymer segments i.e., ]£. (p|(z,s) = 1 for any z. For 
the energetic interactions, we use a Bragg-Williams or random-mixing 
approximation: 

< ( Z ) = XBXAB(<9B(Z))-(P&) (2) 

where (pg stands for the volume fraction of monomer type B in the bulk, xAB 

is the Flory-Huggins interaction parameter between A and B, and (cpB(z)) is 
the so-called neighbour-average of B around layer z: 

(<PB(Z))= XVpB(z + d) (3) 
d=-1,0,1 
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where d is one of the three directions in the lattice: from layer z to layer z-1 
("down") d = - 1 , within layer z ("sidewards") d = 0, or from layer z to layer z+1 
("up") d = 1. For a simple cubic lattice A,_-, = X: = 1/6 and X0 = 4 /6. 
The adsorption energy is included in eq. 2 by taking the surface S as a 
separate component, with volume fraction <Ps(z) = 1 for z < 1 and (ps(z) = 0 
for z > 1. The resulting %AS relates to the more common Silberberg 
adsorption energy parameter %s [10] as %AS = - l . r x s , where all adsorption 
energies are calculated with respect to the solvent o, i.e., %oS = 0. 

bond correlations 
In eq. 2, we have used a random-mixing approximation for the interaction 
energy. This approximation can also be used while placing the molecules in 
the system: the probability that a site on which a segment or molecule is to 
be placed is empty (the vacancy probability) is then equal to the volume 
fraction of empty sites. However, as we will be calculating the volume 
fraction per bond direction, it is possible to improve on the calculation of the 
vacancy probability as follows. Suppose we want to place a bond "up", i.e., 
from layer z to layer z+1. Then all segments in layer z+1 which are part of a 
bond between z and z+1 will not block this step. This means that the 
vacancy probability is greater than one would expect from a pure random 
mixing approximation, by a factor proportional to 1 - <p(z + 11 z). The last term 
is the volume fraction of segments having bonds between z and z+1. 
Introducing (p|(z,s,d) as the volume fraction of segment s of molecule i in 
layer z with its bond to segment s+1 in direction d, we can write for the 
weighting factor g(z + d I z) for a bond between z+d and z : 

g(z + d lz)= v ^ . , , (4) 
ï-2,<?i(z + à\z) 

where 

cpi(z + dlz) = Xs(cpi(z,s,d) + 5(ldl,1)cpi(z + d,s,-d)) <5) 

is the volume fraction of bonds that molecule i has in layer z. The Kronecker 
5 factor S(ldl,1) is inserted to ensure that bonds within layer z are not 
counted twice. The parameter cp^ is defined as 
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Jo ,JD H 

and denotes the relative number of bonds of i in direction d in the bulk 
solution. The factor 1/3 stems from the use of a cubic lattice: in general each 
direction contributes a factor 2/Z, where Z is the co-ordination number of the 
lattice. The use of eq. 4-6 leads to an anisotropy in the polymer statistics. 
Therefore, it has been called SCAF, for Self-Consistent Anisotropic Field [9]. 
The self-consistency arises from the fact that the volume fractions of bonds 
are needed for the calculation of the weighting factors, but also the other 
way around: the weighting factors are needed for the calculation of the 
volume fractions of bonds. The SCAF can be seen as a first order 
improvement on the random-mixing approximation, but it still implements a 
mean-field approach. 

chain stiffness in polymer statistics 
In a cubic lattice, two consecutive bonds can have three relative orientations: 
a straight conformation, where a bond makes an angle of 180° with the 
preceding one, a perpendicular conformation of 90°, and direct backfolding 
where the angle is 0°. We denote the energy difference between a straight 
conformation between the segments s -1 , s and s+1 and a perpendicular 
one as AUsp(s). Typically, AUsp(s) is negative. The weighting factor Xs(s) for 
a straight conformation is related to the weighting factor Xp(s) for a 
perpendicular conformation as 

Xs(s) = Xp(s)exp 
AUsp(s) 

kT (7) 

for 1 < s < N. We will exclude direct backfolding of two consecutive bonds, so 
that the weighting factor Xb(s) for backfolding is zero for 1 < s < N. 
Everywhere along the chain, we must have 

\b(s) + 4Xp(s) + X8(s) = 1 (8) 

The end points only have one bond, so that Xb(s) = Xp(s) = Xs(s) = 1/6 for s 
= 1 and s = N. 
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Wijmans et al. [11] have shown that for a homopolymer (where AUsp does 
not depend on the segment number) with infinite chain length there is a 
simple relation between the persistence length P, here defined as the 
number of bonds that are joined together in a Kuhn segment, and the 
bending energy AUsp, namely 

P = 1 + 0.5 exp(-AU sp/ (9) 

The statistical weight of a segment s of polymer i in layer z that will make a 
step in the direction d, given that the first segment is somewhere in the 
system, is called the end segment distribution function G|(z,s,dl1). As a 
starting condition we take 

Gi(z,1,dl1) = GA(z) (10) 

for any d, if s = 1 of molecule i is monomer type A. Connecting the segments 
in a second order Markov approximation yields: 

Gi(z,s,-1M) = Gi(z,s) 

Àb(s)g(z-1lz)Gi(z-1,s-1,1l1) 

^ysJ-gtz lzJ-Gi f rs-LOM) 

+Xs(s) • g(z +11 z) • Gj(z + 1,s -1,-111) 

(11a) 

Gi(z,s,OI1) = Gi(z,s> 

pys)-g(z-1lz)-Gi(z-1,s-1,1H) 

+ (2ys) + Xs(s) + kb(s)) • g(z I z) • Gi(z,s -1,011) 

+ y s ) g ( z + 11 z)Gi(z + 1,s-1,-111) 

(11b) 

Gi(z,s,1l1) = Gi(z,s) 

Ms)g(z-1lz)Gi(z-1,s-1,1l1) 

+4Àp(s)g(zlz)Gi(z,s-1,OI1) 

[+^b(s)-g(z + 1lz)-Gi(z + 1,s-1,-1l1) 

(11c) 

Starting from the other side of the chain, we have to keep in mind that the 
bonds are defined from segment s to segment s+1, and the conformations 
are now between the segments s, s+1, and s+2. This leads to an asymmetry 
in the end segment distribution functions: Gj(z,s,d IN) is the statistical weight 
of segment s of polymer i to have reached layer z coming from the direction 

-50-



semi-flexible polymers 

d, with the end segment N somewhere in the system. The starting condition 
is 

Gj(z,N,dlN) = GA(z) (12) 

as in (9). The other segments are connected using 

Gi(z>s,-1IN) = Gi(z,s)g(z + 1lz) 

\b(s + 1)-Gi(z + 1,s + 1>1IN) 

+ 4 y s + 1)-Gi(z + 1,s + 1,0IN) 

+Xs(s + 1)Gi(z + 1,s + 1,-1IN) 

(13a) 

Gi(z,s,OIN) = Gi(z,s)-g(zlz) 

Àp(s + 1)Gi(z,s + 1,1IN) 

+(2Àp(s +1) + Xs(s +1) + Xb(s +1)) • Gj(z, s +1,01N) 

+^p(s + 1)Gi(z,s + 1,-1IN) 

(13b) 

Gi(z,s,1IN) = Gi(z,s)-g(z-1lz) 

Às(s + 1)Gi(z-1,s + 1,1IN) 

+4Xp(s + 1)Gi(z-1,s + 1,0IN) 

+Àb(s + 1)Gi(z-1,s + 1,-1IN) 

(13c) 

Finally, two end segment distribution functions can be joined to find the 
segment density profile: 

(Pi(z,s,d) = Ci^d 
Gi(z,s,dlN)Gi(z,s,-dl1) 

Gi(z,s) 
(14) 

where C| is a normalisation constant. For a polymer in full equilibrium C| is 
equal to ( p ^ / N j . Equation (14) is called the composition law. It relates 
volume fractions via chain statistics to (potential) energies. However, the 
energies depend on the volume fractions (eq. 2 and the space-filling 
constraint), so that, as with the bond correlations, we have a self-consistent 
set of equations that has to be solved numerically. 
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Results 

In chapters 1 and 2, we have discussed several general aspects of polymer 

adsorption. In the case of adsorption from a dilute solution (chapter 1), we 

found that the volume fraction profile consists of three parts: a proximal 

regime which for high adsorption energies consists of only one lattice layer, 

a central regime showing a power law decay (p(z) « za with a depending on 

chain length and bulk volume fraction, and a distal regime far from the 

surface, where the volume fraction decays exponentially as q>(z) °c exp(-yz), 

with y inversely proportional to the radius of gyration. If the polymer adsorbs 

from a semi-dilute solution, the profile is independent of chain length. With 

the theory presented above, we can check whether these scaling results still 

apply for semi-flexible polymers. Also, as the rigidity is defined to be a local 

parameter (i.e., it depends on the segment ranking number), it is possible to 

model block copolymers with blocks having different rigidity. In doing such, 

we can distinguish between energetic and entropie driving forces for 

adsorption. Entropie factors are usually neglected, it remains to be seen 

whether this is justified or not. Unless stated otherwise, we have taken 

g(z+dlz) to equal 1, i.e., we did not use the SCAF extensions. 

critical adsorption energy 

We consider the case of a homopolymer adsorbing from a monomeric 

solvent. Such a polymer is restricted in the number of conformations that it 

can assume near an impenetrable interface and this entropy loss must be 

compensated for. If the adsorption energy is not sufficiently negative, the 

polymer molecules will avoid the interface. This leads to the concept of a 

critical adsorption energy which is, in contrast to the adsorption energy 

parameter %AS, independent of the kind of solvent used. In the limit of 

infinitely long freely jointed chains on a cubic lattice the critical adsorption 

energy is X A
r
s =6 ln | . 

Birshtein era/. [12] have derived that the critical adsorption energy in the 

limit of infinite chain length becomes a function of the persistence length P. 

Their result can be written as: 

f 

X A S = 6 l n 
P + VP 2+4 

2P + 2 
(15) 

which indicates that in the limit of rigid rods (P -> °°) the critical adsorption 

energy approaches zero as there is no entropy loss. Note that P = 1 in their 
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model does not exactly give the freely jointed chain result, since direct 

backfolding is prohibited. 

1 

.5 

U 

: ^ ~ ^ \ 

^SwAU/kT = -5 

AU/kT = 0 \ ^ V 

-12 

Figurel. Excess amount of a homopolymer with 1000 segments adsorbed from an athermal 
monomeric solvent, as a function of the adsorption energy XAS • The energy difference 
between a straight and a perpendicular bond AU s p was varied as 0, - 1 , -2 , -3 , - 4 , - 5 
kT. The polymer volume fraction in the bulk solution is 10 - 4 . 

In order to investigate how the critical adsorption energy of polymer chains 
of finite chain length, adsorbing from a monomeric solvent, depends on the 
flexibility of the chain, we have conducted a number of calculations the 
results of which are presented in Figure 1. In this figure the excess amount 
Qfxc, defined as efxc = ̂ z((p i(z)-(p-)ulk), is plotted as a function of the 
adsorption energy for a homopolymer consisting of 1000 segments. We find 
a shift in the critical adsorption energy to less negative values. This is easily 
explained by the fact that stiff molecules lose less entropy per segment than 
fully flexible ones. In Figure 2a we have plotted the critical adsorption energy 
as a function of the straight-perpendicular energy difference AUsp. The 
critical adsorption point is defined by the surface affinity for which 9exc = 0. In 
this figure we note that at high absolute values of AUsp, the critical 
adsorption energy becomes almost independent of AUsp. In Figure 2b we 
check the prediction of eq. 15. If the numerical results would be predicted 
perfectly by eq. 15 then all points should fall on the solid line. We see that 
the agreement with the analytical theory is excellent. Naturally the long 
chains follow the predictions of eq. 6 to higher degree of stiffness than the 
shorter ones. 
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Figure 2a. The critical adsorption energy for three polymers of different chain length, which 
adsorb from an athermal monomeric solvent as a function of the energy difference 
A Us p between straight and perpendicular bond orientations. Crosses: N = 100, 
spheres: N = 500 , squares: N = 1000. Athermal solvent, polymer bulk volume fraction 

» i n " 7 

<p = 1 0 . 

Diagram (b): the critical adsorptior 

persistence length and f(P) = 6ln 

energy plotted as a function of f(P), where P is the lergy plot 

> + VP2 + 
by the analytical theory of Birshteih etal. (eq. 15). Other parameters as in (a) 

4 /(2P + 2) The full line is the prediction 

reseating and the persistence length 
As already stated before, the radius of gyration of an ideal semi-flexible 
polymer can be rescaled to a polymer with less segments, but a larger Kuhn 
length. Fleer et al. [13] ventured that this procedure might also be used in the 
case of polymer adsorption. In practice, the value taken for the ratio between 
the Kuhn length and the bond length is the so-called characteristic ratio, 
which is tabulated for a large variety of polymers [14]. In a lattice theory, the 
Kuhn length is usually taken to equal the lattice spacing for convenience. 
Thus, in the first-order Markov statistics used in the standard Scheutjens and 
Fleer scheme we take the persistence length P to be 1, and for the second-
order statistics we use eq. (9). As an example, we take a homopolymer 
containing 5000 segments with AUsp /kT = -ln(2), so that P = 2. There are 
now two ways to rescale this polymer to a fully flexible one with P = 1: by 
halving the chain length, which should be accompanied by a doubling of the 
lattice spacing (case I), or by doubling the chain length without changing the 
lattice spacing (case II). The resulting volume fraction profiles are plotted in 
Fig. 3: the dashed curve is case number I, the dotted curve case number II. In 
Fig. 3b where the profiles are plotted on a log-lin scale, we can check that 
the radius of gyration is indeed scaled back properly as the curves run 
parallel in the distal regime: as shown in chapter 1 and ref. [15], the 
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exponent in the distal regime scales with the correlation length in the dilute 
solution, which equals the radius of gyration. However, the log-log scale in 
Fig. 3a shows clearly that the behaviour in the central regime differs 
considerably in both cases. The difference could be due to the fact that 
resizing the polymer or the lattice spacing changes the conformational 
entropy of the polymer and it is not obvious whether or not the difference in 
entropy is the same in the bulk as near the surface. A recent theory by 
Ploehn [16] allowing for a difference in molecular volume between polymer 
and solvent seems to indicate that indeed there is a problem here. 

4><z') 

Figure 3. Volume fraction profiles for a homopolymer with (i) chain length 5000 using second-
order Markov statistics, no backfolding ( Ä.b= °)> a r |d AU s p / kT = -In 2 (solid curve), (ii) 
chain length 10000 using first-order Markov statistics (dotted curve), and (iii) chain 
length 2500 using first-order statistics and plotted against 2z instead of z (dashed 
curve). Adsorption energy: XAS = ~6 ' o t n e r parameters as in Fig. 2. 

We conclude that rescaling does not work in the case of polymer adsorption. 
Another conclusion that can be drawn from this example is that one cannot 
expect experimental volume fraction profiles to coincide with calculated 
ones if the characteristic ratio is used as an input parameter. 

influence of bond correlations 

In chapter 2 of this thesis, it was shown that the volume fraction profile in the 
case of a polymer adsorbing from an athermal semi-dilute solution is 
independent of the chain length. This universality should also be 
independent of the details of the model used, as it derives from the general 
idea that in a semi-dilute solution the chain length is not a predominant 
parameter. With the use of the SCAF, equations for thermodynamic 
parameters like the partition function, (excess) free energy and chemical 
potential differ significantly from the ones without the SCAF, even though 
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both approaches use a mean-field approximation [9]. The SCAF was 
originally used for chains in a Rotational Isomeric State (RIS) scheme. RIS 
applies third order Markov statistics, and was devised by Volkenstein [17] to 
incorporate trans-gauche isomerism in polymer statistics. The cubic lattice 
scheme is computationally much faster than RIS, enabling the modelling of 
longer molecules. 

* (z ) 
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1 1 1 1 1 1 1 1 1 1 1 1 

• 
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D N =1000 
Ä N = 5000 

" 0 

a 

0 

10 20 30 40 

Figure 4. Volume fraction profiles in the semi-dilute regime (9 = 0.01) for homopolymers with 

500 (circles), 1000 (squares) and 5000 (triangles) segments using second order Markov 

statistics, no backfolding (Xb= 0), AU s p / kT = 0, and a SCAF approach. 

Figure 4 shows the volume fraction profile for polymers with different chain 
lengths. It can be seen that again the profile is universal: there is hardly any 
chain length dependence. It must be noted that these profiles do not 
coincide with the profiles using only first-order statistics or even only second-
order Markov statistics: each model has its own profile, which is universal 
within that model. Of course, other theoretical models, not using a mean-field 
approximation, should be applied to test the universality of the profile. 
Unfortunately, models like Monte Carlo or Molecular Dynamics are not 
easily used for the long chains needed to find universal behaviour. 

stiff-flexible copolymers 
In writing down the chain statistics, care was taken to have the bending 
energies depend on the segment ranking number. This enables us to model 
a copolymer where the constituent monomers differ in stiffness. In practice, 
this is often the case: e.g., for polystyrene the characteristic ratio is 2.6 times 
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Figure 5. Volume fraction profiles for a polymer with 1001 segments, using second-order 
Markov statistics. In diagram (a) all segments have the same bending energy difference: 
AUsp(s)/kT = - 1 , in (b) segments 1 to 100 and segments 900 -1001 have 
AUsp(s)/kT = - 1 , the other segments are flexible with AUsp(s)/kT = 0. Bulk volume 
fraction cpb = 10-4, adsorption energy: XAS = -&• athermal solvent. Diagram (c) gives the 
tail profile from (b) and the contributions to it due to both segment types: dashed curve: 
B segments, dotted curve: A segments. 

-57-



CHAPTER III 

as large as for poly(ethylene oxide). This difference in rigidity creates an 
entropie reason for the stiffer parts to adsorb preferentially over the flexible 
ones. In order to distinguish the entropie factors from the energetic factors, 
all Flory-Huggins parameters will be taken equal for all blocks. For a straight 
or perpendicular local conformation, two bonds are needed. If we have a 
block copolymer with two segment types A and B, then there are four 
sequences of segments playing a role: AAA, AAB, ABB and BBB, which all 
have a different energy. To simplify the calculations, we have taken AUsp to 
depend only on the segment type of the middle segment. Thus, for AAA and 
AAB the energy difference belonging to the A blocks, and for ABB and BBB 
the B blocks. This is only a minor simplification for block copolymers, since it 
affects only the segments next to the joint between two blocks. As an 
example, we take two polymers with 1001 segments. The first one is 
denoted A1001, and is a semi-flexible homopolymer: AUsp/kT = -1 for all 
segments. The second one, A-iooBsooA-ioi. is a copolymer with 200 stiff 
(AUsp/kT = -1) bonds, 100 on each end, whereas the middle 800 bonds are 
flexible: AUsp/kT = 0. Figure 5 shows the volume fraction profiles, with 
diagram (a) for the homopolymer and (b) for the copolymer. The volume 
fractions of the loops and tails of the polymers were calculated using the 
method outlined in ref. [18]. It turns out that the stiffness disparity in the 
copolymer leads to long loops, protruding far into the solution. This gives a 
hydrodynamic layer thickness [19] that is 1.9 times as large as the 
homopolymer case, whereas the excess amount is only 1.07 times as large. 
The tail profile shows two maxima. This can be explained using Fig. 5c, 
where the tail profile is split up into the different segment types. It can be 
seen that the first maximum is due to the end (A) segments and the second 
maximum to the middle (B) segments. Furthermore, the periphery of the 
profile consists again of A segments. This suggests that the polymer 
behaves like a telechelic polymer as calculated by Wijmans et al. [20]. In 
analogy to their results, we can expect bridge formation and thus flocculation 
if two surfaces covered with these polymers are brought together. 
The idea of telechelic behaviour is further corroborated by Fig. 6 where we 
plot the relative preference of a segment to be in layer z, defined as 
Ncp(z,s)/(p(z), for 5 different segments distributed over the molecule: s = 1 
corresponds to an end segment, for the copolymer s = 101 is at the joint of 
two blocks, and s = 201, 301 and 501 relate to various positions in the 
central B block. Diagram (a) shows the typical homopolymer segment 
distribution as already shown in ref. [19]: the ends are on average further 
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from the surface, because the tails protrude far into the solution. On the other 
hand, the middle segments prefer to be close to the surface. For the block 
copolymer in (b), this picture changes drastically: the first segment shows 
two maxima in the preference profile: one in the second layer, 
corresponding to tail adsorption, and one around layer 50, indicating a 
stretched conformation. The middle segments are now sticking out into the 
solution, showing again that large loops are formed. Thus, we have 
managed to create a system where the polymer tails adsorb preferentially for 
purely entropie reasons. 
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Figure 6. Relative preference profiles for several segments of different polymers. Diagrams (a) 
and (b) as in Fig. 5, diagrams (c) and (d) refer to flexible copolymers A100B8O0A100 with 
AUSn(s)/kT = 0 for all s. In diagram (c) there is a difference in solvency: XAO = n-1 • XBO 
= ° ' ZAS = ZBS= "6- 'n diagram (d) a difference in adsorption energy: XAS = ""*>• 
XBS=-6, XAO = ZBO= °- Segment numbers are indicated. 

For comparison, preference plots are also shown for a fully flexible 
copolymer where the solvent is slightly worse for the A-blocks (xAo = 0.1 
ar |d XBO = °> F'9- 6°) a r |d f ° r a flexible copolymer where the A-segments 
have slightly more adsorption energy than the B-segments (XAS = -6-6 a r |d 
XBS = _6- Fig. 6d). The shape of these plots is the same as Fig. 6b, again 
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indicating that a difference in rigidity has the same effect as a difference in 
interaction energy. Also, the effects are of the same order of magnitude. We 
may conclude that it is not justified to neglect rigidity differences between the 
blocks of a copolymer. 
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Figure 7. (a) Excess amount and (b) hydrodynamic layer thickness of block copolymers having 
200 rigid bonds, associated with the A segments, and 800 flexible bonds at the B 
segments. Full curve: asymmetric copolymers BxA2orjB(80l-x)> dashed curve: 
symmetric copolymers BxAiorjB(800-2x)AiooB(x+l)- For x = 400 both cases corres 
pond to the same molecule. Bulk volume fraction: <pb = 10~7, other parameters as in 
Fig. 5b. 

As a last example for stiff-flexible copolymers, we show in Fig. 7 the effect of 
the relative location of the stiff block. Again, we have 200 stiff bonds with 
AUsp/ kT = - 1 , and 800 flexible ones, with AUsp/ kT = 0. The full curve refers 
to the case where all the stiff segments are joined in one block, and moved 
along the molecule. It turns out that the excess amount (Fig. 7a) does not 
vary much, but the hydrodynamic layer thickness (Fig. 7b) does so 
considerably. If the adsorbing block is located at the end (x = 0) the 
adsorbed polymer layer can be regarded as a brush: one tail is sticking out 
into solution. If the adsorbing block is located in the middle (x = 400) there 
are two tails, which are necessarily shorter. This leads to the interesting 
effect that the hydrodynamic layer thickness decreases where the excess 
amount (which for these low bulk volume fraction equals the adsorbed 
amount) increases. The dashed curve shows the symmetrical case, in which 
the stiff segments are split up into two blocks of 100 stiff bonds each. For 
small x we have the situation of Fig. 6b: the polymer is forced to make long 
loops and hardly any tails. This leads to a small hydrodynamic layer 
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thickness, more than three times as low as in the symmetrical case whereas 
the difference in excess amount is only about 5%. Upon increasing x, tails 
are being formed. As this is entropically favourable, the adsorption goes up 
slightly. But initially this does not increase the layer thickness, as the tails 
grow at the cost of the loops dominating in the outer layers. Only when the 
tails are sufficiently large, the hydrodynamic layer thickness can go up. 

Conclusions 
Second-order Markov statistics in a cubic lattice are computationally the 
simplest way to model chain stiffness. It is possible to model copolymers 
where parts of the molecule are stiffer than other parts (stiff / flexible 
copolymers). Using this concept, it is shown that end blocks can adsorb 
preferentially on the surface for purely entropie reasons if their persistence 
length is larger than the middle blocks. This effect is of the same order of 
magnitude as energetic interactions, so that neglecting rigidity differences 
between blocks seems unjustified. For homopolymers, our model 
reproduces the predictions of Birshtein et al. regarding the dependence of 
the critical adsorption energy on the rigidity. Although the radius of gyration 
for a stiff polymer in a dilute solution can be rescaled to a flexible polymer by 
increasing the step length, this procedure does not work for the adsorption 
profile of a polymer adsorbing from a dilute solution. In the case of 
adsorption from a semi-dilute solution, we have shown that incorporating 
bond correlations does not alter the universality of the volume fraction 
profile. 
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CHAPTER IV 

Adsorption of comb polymers 

The adsorption of comb polymers is studied using a Self-Consistent Field theory. It is found 

that adsorbed comb polymers form thin layers as compared to linear polymers due to the 

absence of long dangling tails. The segments in the backbone of the comb adsorb 

preferentially over the tooth segments, as the end segments of the teeth can gain entropy 

protruding into the solution. This leads to a brush-like behaviour and a depletion zone 

adjacent to the adsorbed layer if the teeth are long compared to the backbone spacing. The 

brush-like behaviour is more pronounced in the case of a comb copolymer with an adsorbing 

backbone, but non-adsorbing teeth. 
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Introduction 
Scheutjens et al [1] have emphasised the role of end segments in polymer 
adsorption. In the semi-plateau of the isotherm many polymer segments of 
many molecules compete for adsorption sites. The polymer molecules then 
prefer to adsorb with their ends protruding in solution to form long tails, and 
the middle segments form alternating trains (sequences of segments in 
contact with the surface) and loops. This average conformation is a 
compromise between gaining as much adsorption energy as possible and at 
the same time limiting the loss in conformational entropy upon adsorption. 
The tails are of major importance for colloidal stability, which is one of the 
main applications of polymer adsorption. Linear polymers can have at most 
two tails per polymer. For other chain geometries, the number of chain ends 
is either smaller or larger. For example, ring polymers, which do not have 
any chain end whatsoever, have been studied by Van Lent et al [2]. They 
found not surprisingly that ring polymer form less extended layers. Chain 
branching is the other extreme, as it increases the number of chain ends. 
Often, chain branching can be described by a straightforward extension of 
existing theories and it can result in interesting new phenomena. Several 
ways of branching may be distinguished: star polymers, with one central 
segment and several "arms", star-burst and comb-burst polymers, which are 
more fractal in nature, randomly branched polymers and comb polymers. 
This chapter deals with regular comb polymers, consisting of a long 
backbone with side chains emanating from it in regularly spaced intervals 
(Figure 1). If the chemical composition of the side chain segments differ from 
the backbone segments (Fig. 1b) we have a comb copolymer. 

(AX; 
b1 

(A), 

(A) 

J X 

(A). 

(B). 

(A) 
Nb 

X 

Figure 1. A regular comb homopolymer (a) and a regular comb copolymer (b) with backbone 

tail length Nt>i, tooth length Nt, backbone spacing Nb, and polymerisation index X. 

The official name for these polymers is graft (co)polymers [3], but in 
textbooks they are mostly referred to as comb (co)polymers [4,5]. Most of the 
literature about comb homopolymers deals with the determination of their 
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extension in solution or in a melt, see e.g. ref. [6,7]. Comb copolymers 
reveal an interesting phase behaviour in the melt [8]. Recently, comb 
copolymers have attracted attention as possible compatibilisers in polymer 
blend interfaces [9,10] or in solution as specific solubilisers [11]. 
The difference in adsorption behaviour between comb and linear polymers 
was predicted using Monte Carlo techniques by Balazs and Siemasko [12]. 
They concluded that comb polymers adsorb in dense but thin layers. This 
has also been found experimentally by Kawaguchi and Takahashi [13]. 
Balazs and Siemasko found also that the teeth of comb copolymers adsorb 
preferentially. This is unexpected, as it will cost more entropy than 
conformations having the backbone on the surface. In this chapter, we will 
use the theory for polymer adsorption by Scheutjens and Fleer [14,15], as 
extended to the case of chain branching by Leermakers [16], to explore 
systematically the parameters governing the adsorption behaviour of comb 
polymers. It may be expected that if the length of the teeth is small as 
compared to the length of the backbone the polymer behaves like a linear 
polymer, whereas typical comb behaviour, if present, will show if the teeth 
are long and the distance between them (the backbone spacing) short. Our 
method is more suitable to find general trends than Monte Carlo studies, 
since long polymer molecules can easily be calculated in a feasible amount 
of computer time. 

Theory 
The available space is divided up into lattice layers, parallel to the 
homogeneous surface. The surface is chosen as the origin of the lattice. The 
layer number is denoted as z, so that the surface is at z = 0, the layer 
adjacent to the surface at z = 1, etc. We consider only inhomogeneities 
perpendicular to the surface. Upon adsorption, a potential energy profile 
ux(z) develops, which depends on the volume fraction profiles {(px(z)} of all 
the segment types x. For this potential energy we write: 

ux(z) = u'(z) + kT IZxy((<Py(z)>-q>;)-Z„8(2,1) 
V y 

(1) 

The first term in eq. (1), u'(z), is a "volume filling potential". It is found 
iteratively until the lattice is completely filled, i.e., it is calculated from the 
condition that for all z 

5>»(z) = 1 (2) 
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The second term corresponds to the energetic interactions of polymer 
segments with each other or with the solvent. As we will take all Flory-
Huggins energy parameters %^ to be zero, this term vanishes. The last term 
contains the Silberberg adsorption energy parameter xsx, which equals the 
adsorption energy gain in units kT (Boltzmann's constant times the absolute 
temperature) if a segment of type x replaces a solvent molecule on the 
surface. The Kronecker delta S(z,1) ensures that adsorption energy is 
counted only in the first layer. By definition, xsx = 0 for the solvent, and for 
the other segment types it is positive if the adsorption is energetically 
favourable, i.e., if the adsorption energy is negative. 

Next, the free segment weighting factor Gx(z) is defined as the Boltzmann 
weight connected to the potential energy ux(z): 

Gx(z) = exp(-ux(z)/kT) (3) 

Polymer chains are modelled as a series of connected segments, each 
having the size of one lattice site. In connecting the segments we have to 
take into account the molecular architecture around the branches. To 
illustrate the calculation scheme, we will take a simple molecule with only 
one branch, at s = s* (Fig. 2). 

N' 

Figure 2: Schematic picture of a polymer with one branch at segment s* 

In the SCF formalism of Scheutjens and Fleer a chain end distribution 
function (e.d.f.) G(z,sl1) is defined. It expresses the combined statistical 
weight of all possible allowed conformations that the chain fragment from 
segment 1 to s can assume, under the constraint that s is at a distance z from 
the surface. This means that the co-ordinate of segment 1 is left unspecified; 
the segment can assume all positions provided that it does not violate the 
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connectivity constraints. Thus, for the first segment we can simply use the 
free segment weighting factor 

G(z>1l1) = Gx(z) (4) 

taking that segment 1 is of type x. 

Moving along the chain towards the branch point s*, we can express the 
e.d.f. of a segment si in the e.d.f. of its preceding segment, s-i-1, by realising 
that if si is in layer z, s i -1 has to be either in layer z -1 , in z or in z+1, with in 
a cubic lattice an a priori probability of resp. 1/6, 4/6 and 1/6. This leads to 

G(z,Sl 11) = G(z,s1){±G(z-1,s1-11 1) + | G ( Z , S I - 1 11) + ̂ G(z + 1,Sl-111)| (5) 

where G(z,si) equals Gx(z) if segment si is of type x. Eq. (5) can be used up 
to and including the branch point s*. For the subsequent segments, the 
branch from N' to s* has to be incorporated. The e.d.f. from the end point N', 
G(z,slN'), is found analogously to eq. (5). The two branches are connected 
using 

G(ZiSM1,N') = ̂ ^Ä^ ( 6 ) 

G(z,s ) 

where G(z,s*l1,N') is the e.d.f. for segment s* in layer z, given that both 
segment 1 and segment N' are free to chose their position. For a segment s2 

on the branch from s* to N", the recurrence relation becomes 

G(z,s, 11,N') = G(z,s,)j-G(z-1,s2 -111,N') + -G(z,s2 -111,N') 

+ -G(z + 1,s2-1l1,N')[ 

The volume fraction of segment S2 in layer z can be found by combining eq. 
(7) with the walk coming from the other free end, N": 

rtz.s,)^^8'1^*8'1"'* (8) 
N G(z,s2) 
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where q>b is the volume fraction in the bulk and (pb/N serves as a normalisa­

tion constant. For the branch point s*, we have 

^ ' ' N (G(z,s*))2 V ' 

In this way the volume fraction of all segments in a branched molecule can 
be found, each time combining all the possible walks from all the end points 
to the particular segment. 

Note that the volume fraction profiles can only be calculated if the potential 
energy profile is known. However, the potential energy profile depends on 
the volume fraction profile through eq. (1) and the volume filling constraint 
(2). The set of coupled equations is solved numerically. Once a solution is 
found, the adsorption can, for instance, be characterised by the excess 
amount 0exc, defined as 

eeœ = X(cp(z)-cpb) (10) 
z 

or using the adsorbed amount 0ads, which is the amount of polymer chains 
having at least one segment in the first layer [17]. For dilute polymer 
solutions, the difference between 6exc and 0ads is negligible. 

Results and discussion 
The comb polymers that will be used can be characterised by four 
parameters: the tooth length Nt, the backbone spacing Nt>, the backbone tail 
Nbi and the number of repeating units X (Fig. 1). The total number of 
segments N equals Nbi + X (1 + Nf + Nb). In most cases, the combs are 
symmetric, i.e., Nbi = Nb. 
Firstly, we will investigate the difference in adsorption behaviour between a 
comb homopolymer and a linear homopolymer having the same number of 
segments. Also, the preference of tooth segments for the surface, found by 
Balazs and Siemasko is checked. The full advantage of the SCF method is 
exploited when we systematically vary the parameters mentioned above in 
order to analyse any "typical comb" behaviour if present. As we expect 
entropie factors to play a role in the adsorption of combs we will look at the 
situation near the desorption point, where the energetic contributions are of 
the same order as the entropie ones. Lastly, comb copolymers are 
considered. 
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homopolymers 
In Fig. 3 adsorption isotherms are shown, where the full curve corresponds 
to a comb polymer with Nbi = Nb = 5, Nt = 25, and X = 50. The dashed curve 
is for a linear homopolymer with the same number of segments, N = 1555. 

0.8 

0.78 

0.76 

0.74 

0.72 l^.-

0.7 

I 1 

_ 

-
co m b . — - — — " ^ ^ ^ ^ 

- " ~ T ^ " - ^-*** linear 

' ' 

I I I I 

/ . 

/— 
S' 

s' 
*̂  ..-** ^ _—**& ^ *"* __ •» • • " 

^ 

-

1 1 1 1 

10'° 10° 10° 10-" 

Figure 3. Adsorption isotherm for a comb polymer with Nt>i = Nb = 5, Nt = 25, and X = 50 (full 
curve: excess amount; dotted curve: adsorbed amount) and for a homopolymer with N 
= 1555 (dashed curve: excess amount; dashed-dotted: adsorbed amount). Athermal 
solvent, adsorption energy parameter %s = 1 • 

At low bulk volume fractions the comb polymer adsorbs to a greater extent 
than the linear polymer. This is due to the fact that a comb polymer loses 
less entropy upon adsorption than a linear chain: a comb polymer has more 
free ends that can stick out into the solution. At higher bulk concentration, the 
curves cross. If the driving force for adsorption is high enough, more linear 
polymer adsorbs because it can form longer tails. This can be seen more 
clearly if we compare the volume fraction profiles in Fig. 4, which are taken 
at (pD = 10 -4. The occupation in the first few layers is almost equal, but the 
linear polymer protrudes much further into the solution. This result agrees 
with the predictions of Balazs and Siemasko [12] and with the 
measurements of Kawaguchi and Takahashi [13]: comb polymer form thin 
layers. The excess amount in Fig. 3 has a maximum for all polymers: as the 
bulk volume fraction increases the second term in eq. (10) starts to 
dominate. In the limiting case of a polymer melt (ipD = 1), the excess amount 
is necessarily zero. The adsorbed amount, on the other hand, is a 
continuously increasing function of the bulk volume fraction. 
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<p(z) 

Figure 4. Volume fraction profile from the polymers in Fig. 3 at tpb = 10 - 4 . 

The distribution of segments within the adsorbed layer of a comb polymer 
can be illustrated by making a relative preference profile for the constituting 
segments of the comb (Fig. 5). The relative preference of a segment of type o 
in layer z is defined as ]T N(p(z,s)/Na(p(z), where N0 is the number of 
segments of type a, and a can be either a backbone segment, a tooth 
segment, or a branch point (node). Note that the curve for the backbone in 
Fig. 5 includes the nodes, as they are part of the backbone. If the relative 
preference for a particular group of segments in a certain layer exceeds 
unity, those segments are present more than average in that layer. 

Figure 5. Relative preference profiles for the segments of the comb polymer used in Fig. 3 at 
<pb = 1er4. Full curve: tooth segments, dashed curve: backbone segments (including 
nodes), dotted curve: node segments. 
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It can be seen that the tooth segments avoid the surface and stick out into 
the solution, whereas the reverse holds for the backbone segments. Balazs 
and Siemasko [12] have found the opposite: in their Monte Carlo simulations 
the tooth segments are closer to the surface than the backbone. This may be 
due to an underestimation of the time scale for rearrangement of the comb 
polymer. It can be expected that in the kinetics of the adsorption process the 
tooth segments will adsorb first and during the subsequent exchange 
between tooth and backbone segments the surface coverage will hardly 
change. The constancy of the surface coverage was the stop criterion in the 
simulations, so that it is very well possible that equilibrium was not reached 
yet. 

The branch points or node segments are even closer to the surface than the 
rest of the backbone. This is because the nodes have three adjacent 
adsorbing segments pulling them towards the surface. Note that we permit 
backfolding of the chain onto itself. If more than one side chain emanates 
from the node segments and direct backfolding is excluded, for instance 
using the method outlined in Chapter 3 or the Rotational Isomeric State 
scheme of ref. [16], the branch points cannot reach the surface anymore 
because of the excluded volume [18]. 

We now systematically vary the three parameters controlling the molecular 
architecture of the combs, starting from the molecule used in Fig. 3. The 
results are shown in Fig. 6. If the length of the teeth is increased (top 
diagram) the adsorbed amount increases, but only because the longer tails 
protrude further into the solution; the occupation in the first few layers 
(determining most of the adsorbed amount) is almost constant. If the tails get 
longer than about 40 segments, a depletion zone develops just before the 
polymer concentration reaches the bulk value. The profile then falls off so 
steeply that the free polymers in the bulk feel the adsorbed polymer layer as 
a non-adsorbing wall. The position of the depletion "dip" turns out to be 
linear in the tail length (Fig. 7). This indicates on a brush-like behaviour, with 
the backbone adsorbed on the surface and the teeth forming the brush. The 
lower concentration of polymer in the dip leads to a local decrease in 
viscosity. Hence, this system could be interesting for lubrication purposes: 
the adsorbed layer prevents aggregation, whereas the depletion dip 
facilitates the sliding of particles. 
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Figure 6. Volume fraction profiles for several comb polymers. Athermal solvent, bulk volume 

fraction 10 -4, adsorption energy = 1 kT. Top diagram: Nbi = Nb = 5, X = 50, Ntas 

indicated. Middle diagram: Nt = 25, X = 50, Nbi = Nb as indicated. Bottom: Nbi = Nb = 

50, Nt = 25, X as indicated. 
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If we increase the spacing between branches in the backbone (middle 
diagram of Fig. 6), we see that the polymer behaves more and more like a 
linear homopolymer: the characteristic steep decay and the depletion dip 
disappear. Indeed, the difference between the volume fraction profile of the 
polymer with Nb = 99 and the corresponding linear polymer with N = 6255 is 
negligible. 

The effect of increasing the polymerisation index X is shown in the bottom 
diagram of Fig. 7. For high values of X, an extra shoulder appears in the 
volume fraction profiles at high z. Here, the outer parts of the backbone 
behave as tails and are lifted from the surface. 
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Figure 7. Position of the minimum in the volume fraction profile of Fig. 6a as a function of the 

tooth length N\. 

critical adsorption energy 
A linear, flexible polymer adsorbing from solution onto a solid surface loses 
conformational entropy as it cannot use the half-space occupied by the 
adsorbent. Therefore, a polymer will avoid the surface if the adsorption 
energy is not large enough to compensate this entropy loss. The minimum 
adsorption energy needed to give net adsorption is called the critical 
adsorption energy. In a cubic lattice, a polymer loses one out of six 
possibilities to place a segment, so that the critical adsorption energy equals 
kT In (6/5), or 0.182 kT. This value is independent of the polymer chain 
length, as long as the polymer is not too short (say, a few hundred 
segments). The critical adsorption energy for a particular polymer is defined 
here as the adsorption energy where the excess amount vanishes. The 
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critical adsorption energy of a large variety of linear and comb molecules 
can be determined from Fig. 8. 

0.03 

0.02 

0.01 

-0.01 

Figure 8. Critical adsorption energy for polymers varying in molecular architecture and 
adsorption energy. Open circles: linear polymer, N = 1555; pluses: Nt>i = Nb = 5, Nt = 
25, X = 50; crosses: Nbi =0, Nb = 5, Nt = 6, X = 100. All segments have the same 
adsorption energy parameter Xs, on the abscissa. Open triangles Nbi = 0, Nb = 5, Nt = 
6, X = 100, tooth segments have the adsorption energy as indicated on the abscissa, 
backbone segments %s - 0- Open diamonds: same as open triangles, but backbone 
segments have an adsorption energy, for all tooth segments Xs = 0. Open squares: 
multiblock copolymer, (AßBehoo. A-block: xs = 1. B block: xs = 0. Filled triangles: Nbi = 
Nb = 5, N( = 25, X = 50, outer 6 segments of teeth have an adsorption energy, for all 
other segments Xs = °- Filled diamonds: Nbi = Nb = 5, Nt = 25, X = 50, backbone 
segments except b1 segments have an adsorption energy , for the tooth segments 
and b1 segments Xs = °- Filled squares: multiblock copolymer (A6B25)so, A-block: Xs 
= 1, B block: xs = 0. In all cases: athermal solvent, bulk volume fraction (pb = 10 - 4 . 

The open circles, pluses and crosses correspond to homopolymers: all 
segments have the same adsorption energy. The open circles represent the 
linear case, the crosses and pluses are for two different comb polymers. The 
molecular architecture turns out not to change the critical adsorption energy 
in the homopolymer case: for all molecules the critical value is 0.182 kT. This 
conclusion was also reached for the adsorption of ring polymers: the entropy 
difference per segment between rings and linear chains converges to zero 
in the limit of infinite chain length [2]. 

This situation changes drastically if copolymers are considered. Van Lent 
and Scheutjens [19] have shown that a random AB copolymer differing in 
adsorption energy adsorbing from an athermal solvent can be described by 
a homopolymer with effective adsorption energy: 
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Xs = Xs.B + ln(vB + vA exp(xsA -%sB)) (11) 

with %S,A a r )d XS,B the adsorption energy parameters of the A and B blocks, 

and vA or vB the fraction of A and B blocks, respectively. Using %sB = 0, vB = 

1 - vA and for %s the homopolymer critical adsorption energy In (6/5), we 

find for the critical adsorption energy for the A-blocks in a fully random 

copolymer: 

In 
5vA 

(12) 

For a (long) diblock copolymer, the critical adsorption energy is almost equal 

to that of a homopolymer: at the point of desorption (9 e x c = 0) the non-

adsorbing block simply forms a long dangling tail that does not hinder the 

few adsorbed chains connected to the surface. If we divide up the adsorbing 

blocks so that we get a multiblock copolymer, the non-adsorbing blocks are 

always close to the adsorbing blocks. Hence, for the multiblock copolymer 

(A6B6)ioo, shown in Fig. 8 in open squares, we find the value for the random 

copolymer with VA = 0.5, namely 0.336. If we now imagine the non-

adsorbing blocks of the multiblock as side chains on the adsorbing main 

chain we get the comb copolymer indicated with open diamonds, which 

turns out to have exactly the same threshold value. However, if the non-

adsorbing blocks form the main chain and the tooth segments are adsorbing 

(open triangles), the critical adsorption energy is shifted towards a smaller 

value: a conformation with only a few (outer) tooth segments adsorbed 

leaves more entropy for the rest of the chain. Such a conformation is thus 

more favourable, and less energy is needed to get adsorption. 

We can increase the length of the non-adsorbing block even further to 25 out 

of 31 segments in a repeating unit (VA = 0.19), leading to the multiblock 

copolymer (A6B26)so. the filled squares in Fig. 8. The non-adsorbing 

spacings are so large here, that they can more easily move away from the 

surface as compared to a random copolymer, which leads to a lower value 

of the critical adsorption energy: about 0.61 instead of the random value 

0.71. More interestingly, if we use the adsorbing blocks as the backbone for 

a comb copolymer and the long non-adsorbing block as the side chain (filled 

diamonds) the teeth can protrude into the solution, leading to an increase in 

entropy, and thus a lower critical adsorption energy. Lastly, it is even more 
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favourable to have only the last 6 segments of the long teeth able to adsorb 
(filled triangles). 

comb copolymers 

We have already discussed some aspects of comb copolymers in the last 
paragraph, around the desorption point. We concluded that it is more 
favourable to have adsorbing teeth, as this can lead to an extended 
conformation with only a few end segments on the surface and the rest of the 
molecule stretched out into the solution. In Fig. 9, we compare the volume 
fraction profiles of the same comb copolymers as in Fig. 8 at a higher 
adsorption energy of 1 kT for the adsorbing segments. 

Figure 9: Volume fraction profiles for four of the polymers used in Figure 8 at xs = 1 • Symbols 

as in Fig. 8. 

The triangles correspond to adsorbing teeth, the diamonds to an adsorbing 
backbone, the open symbols to long polymers (X = 100) with short teeth (Nt 
= 6) and 600 adsorbing segments, the filled symbols to shorter chains (X = 
50) with longer teeth (Nt = 25) and 300 adsorbing segments. It can be seen 
that more of the longer polymers is adsorbed: the ratio of adsorbing to non-
adsorbing segments is more favourable. Also, longer teeth lead to thicker 
adsorbed layers. More interesting is the difference between an adsorbing 
backbone and adsorbing teeth: an adsorbing backbone (diamonds) leads to 
higher adsorbed amounts but thinner layers than adsorbing teeth. Basically, 
the non-adsorbing teeth only increase the typical "comb-behaviour" of 
backbone segments near the surface and the entropically favourable effect 
of having the teeth sticking out. 
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Conclusions 
Upon increasing the number of end segments in polymer molecules by 
considering the series formed by ring polymers, linear polymers and comb 
polymers, we find that linear polymers are the most efficient in forming thick 
adsorbed layers. Ring polymers do not have any tails that can protrude into 
the solution, and comb polymers adsorb with the branch points preferentially 
on the surface. Comb polymers with long teeth and a small backbone 
spacing show a brush-like behaviour, with a depletion dip in the volume 
fraction profile immediately adjacent to the adsorbed layer. If the chemical 
species of the teeth and the backbone species differ, thicker layers are 
formed if the tooth segments have a higher adsorption energy than the 
backbone segments. However, the adsorbed amount is less in this case. 
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CHAPTER V 

Adsorption of polymers on heterogeneous surfaces 

An extension of a self-consistent-field lattice theory is developed to study the adsorption of 

polymers on energetically heterogeneous surfaces. Surface heterogeneity is modelled by 

introducing distinguishable surface sites which differ in their interaction energy with polymer 

segments and solvent molecules. The probability for the polymer segments to meet a given 

kind of site depends on the distribution of the surface sites. In this chapter, the adsorption 

behaviour of polymers on a surface with adsorbing and non-adsorbing surface sites is 

studied. For homopolymers, we find that for high chain length and adsorption energy the 

adsorbed amount is higher on a surface with a random distribution of adsorbing surface sites 

as compared to a surface with a patchwise distribution, i.e., where equal surface sites are 

grouped together. Block copolymers can segregate strongly on a patchwise distributed 

surface. 
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Introduction 
In polymer adsorption theory, the surface is usually considered to be 
chemically homogeneous and smooth. However, in practice surface 
heterogeneity can play an important role in the adsorption characteristics. 
Therefore, efforts have been made to incorporate the effects of surface 
heterogeneity into existing polymer adsorption models. Two cases can be 
distinguished: physically heterogeneous (i.e., rough) and chemically 
heterogeneous surfaces. Rough surfaces have been modelled as, e.g., 
sinusoidal surfaces [1], fractal surfaces [2,3], and corrugated surfaces [4]. 
Chemical surface heterogeneity means that some types of surface site are 
preferred over others by (parts of) the adsorbing polymer. Odijk [5] and 
Andelman and Joanny [6] have modelled a chemically heterogeneous surface 
by taking the interaction between polymer and surface as a random variable. 
Recently, Joanny and Andelman have also considered the adsorption of 
polymers on soluble and insoluble surfactant monolayers, and on a 
periodically heterogeneous surface [7,8]. Balazs era/. [9,10] have used Monte 
Carlo techniques to investigate the influence of different distributions of 
adsorbing patches over the surface. Huang and Balazs [11] have used two-
dimensional statistics to calculate volume fraction profiles of a block 
copolymer on a striped surface. 

In this chapter we present a model that is, like the Huang and Balazs 
treatment, based on the self-consistent-field theory for polymer adsorption by 
Scheutjens and Fleer [12,13]. But in contrast to their approach we vary the 
average size of adsorbing patches on the surface by using neighbour 
probabilities for adjacent surface sites. In this way, it is possible to study the 
effects of site distribution on the adsorption behaviour of the polymer. Most of 
the calculations have been performed for homopolymers on a surface where 
only one out of two kinds of surface site has an attractive energetic interaction 
with the polymer segments. The model can be used analogously for block 
copolymers. One example of this type is given. 

Theory 
lattice 
We introduce a simple cubic lattice with a characteristic length equal to the 
size of a solvent molecule. The surface is modelled as a flat wall divided into 
squares, the surface sites. This surface may contain different kinds of surface 
site, indicated by m, n, etc. The fraction of sites of type m is fm, where 2,mfm 

= 1. Over the surface sites we place layers of cubes parallel to the surface, 
numbered 1 (at the surface) to M (in the bulk solution) (Fig. 1). 
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Figure 1. Schematic view of the surface and adjacent lattice. Two kinds of surface site are 
indicated by white and grey squares. A small number of lattice sites is drawn in the 
first three layers. 

Each cube (lattice site) contains either a polymer segment or a solvent 
molecule. The volume fraction of a polymer i in layer z is denoted as cp^z). If 
the polymer is a copolymer, (p,(z) = ̂ A<pAi(z) where cpAi(z) is the contribution 
of segment type A to (p,(z). As surface heterogeneity can lead to an uneven 
distribution of polymer over the surface, we also need a separate volume 
fraction for every kind of site, cpA(z I m). The vertical bar is used because it is a 
conditional volume fraction: only the space above the m sites is considered. 
To fill the lattice, we need to have 

Xq>A(zlm) = 1 
A 

for all z and m. In this summation the solvent is included. 

(1) 

surface 

We define a neighbour probability Mmn as the probability that, coming from a 

site m, the next site on the surface is of type n. As this is a probability, we 
have 

0 < Mmn < 1 (2) 
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and 

5 > m n = 1 (3) 
n 

The probability of finding first a site m and then a site n equals fmMmn. 
Summing over all sites m should give the a priori probability of finding a site 
n: 

XfmMm n = fn (4) 
m 

Furthermore, the probability of finding a sequence mn should be equal to nm 
(inversion symmetry): 

fmMmn = fnMnm (5) 

In the remainder of this section, we consider only two kinds of surface site. In 
this case, eq. (5) is not a new constraint, but it can be derived from eqs. (3) 
and (4). 

To describe a surface with two kinds of surface site a cluster parameter C is 

defined: 

C = Mm m -Mn m (6) 

With eq. (3) C can also be written as 1 - Mmn - Mnm. With eq. 5 we find 
C = 1-(1 + fn/fJMnm = 1-(1 + fm/fn)Mmn. since Mnm and Mmn are in between 0 
and 1 we find for C the following constraints: 

- ^ • < C < 1 and - ^ - < C < 1 (7) 
'n \n 

The minimum value of C, which only occurs if fn = fm , equals - 1 . In this case 
Mmm = 0 and Mnm= Mmn= 1, so that with every step we change from one type 
of surface site to the other. In other words, we have a chequerboard 
distribution (Fig. 2a). If C is close to unity, Mmm is much larger than Mnm, so 
equal surface types are grouped together (patchwise surface, Fig. 2c). For C 
= 0, we have Mmm= Mnm = fm: there is no grouping nor avoiding of equal 
surface sites. We call this a random surface (Fig. 2b). 
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a b c 

Figure 2. Schematic view of a surface with two kinds of site: (a) alternating surface 

(chequerboard): C = - 1 , (b) random surface (C = 0), (c) patchy surface (C positive). 

polymer statistics 
We define a free segment distribution function GA(zlm) which gives the 
relative preference of a free segment of type A to be in layer z above a site m 
with respect to the homogeneous bulk solution. This is a Boltzmann factor: 

GA(zlm) = exp uA(zlm) 
kT (8) 

where uA(z I m) is the potential of A in layer z above a site m, k is Boltzmann's 
constant, and T is the absolute temperature. The potential uA(z I m) is given 
by 

uA(z I m) = u'(z I m) + kTXxAB((%(z I m))-9BUlk) (9) 

Here, u'(zlm) is the so-called "hard core potential", a Lagrange parameter 
ensuring that eq. (1) is satisfied. The second term on the right-hand-side 
accounts for all energetic interactions. It contains the Flory-Huggins 
interaction parameters XAB between segment types A and B. The expression 
between the angular brackets is the neighbour average of <pB(z I m), defined 
as: 

(<pB(z I m)}=-(pB(z-11 mJ + X^-M, '1. 
'6 

mn(pB(zln) + -(pB(z + 1lm) 
6 

(10) 

Note that the choice of a cubic lattice implies that contacts with segments on 
a different site can only occur within a layer z: segments in layers z-1 or z+1 
are automatically situated above the same site. This simplifies the equations 
considerably. In the two-site case, the summation in eq. (10) contains only 

two terms: -{Mmm(pB(zlm) + Mmn(pB(zln)}. For a homogeneous surface with 
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only sites of type m this middle term equals -cpB(z I m), and eq. (10) reduces 
to the standard Scheutjens and Fleer expression for the neighbour average. 
Adsorption energy is included in eq. (9) provided the surface sites m [with 
(pm(zlm) = 1 for z < 0 and (pm(zlm) = 0 for z > 0] are included in the 
summation over B. The adsorption energy contribution is only non-zero for 
z=1, and equals |kT%Am. 
Next, we define an end segment distribution function Gim(z,s 11). This is the 
statistical weight of all walks of molecule i that start with segment 1 
somewhere in the system and end after s-1 steps with segment s in layer z 
above a site m. For s =1 we get the monomer distribution function, which for 
monomers of type A reads: 

Gi,m(z,1M) = fmGA(zlm) (11) 

This expression just says that the probability for a monomer A to be in layer z 
above a site m is f„, times the probability to be in layer z for a homogeneous 
surface of only sites m (i.e., when fm=1). The distribution of all other segments 
in a chain molecule is obtained by taking into account the connectivity of the 
chain in a first order Markov approximation: 

Gim(z,sl1) = Gi(z,slm) 
^G i i m (z-1,s-1 l1) + ̂ G i im(z + 1,s-1lV 6 6 

+EÎMnmGi,n(z.S-1M) 
V n 

(12) 

where G;(z,s I m) = GA(z I m) if segment s in molecule i is of type A. Starting at 
the other end of the chain, we obtain Gim(z,s IN) in a similar way: 

^G i i m (z -1 ,s + 1IN) + ̂ G im(z + 1,s + 1IN)A 

Gim(z,slN) = Gi(z,slm) 
+I ï ïMnmG i,n(z,s + 1IN) 

V n 

(13) 

with the starting condition: Gim(z,NIN) = fmGA(zlm), analogous to eq. (11). 
Combining the two end segment distribution functions computed from eq. (12) 
and (13) and summing over all segments s, we find the volume fraction of 
polymer i in layer z that is above a site m: 
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9i,m(z) = C\L f r ,„ 0 i mx (14) 
s f m G i ( z - s l m ) 

Dividing by f^G^z.slm) is necessary to correct for double counting of 
segment s. The normalisation constant Cj can be found from the equilibrium 
volume fraction (pfulk of molecules i in the bulk solution: 

„bulk 
C-V (,5) 

The adsorbed amount 0a is calculated from the volume fraction profile by 

considering only the polymer chains that have at least one segment in the first 

layer. It is expressed in equivalent monolayers (= segments per site). 

The free segment distribution functions GA(zlm) can be found from the 
volume fraction profiles using eqs (8) and (9). On the other hand, the volume 
fraction profiles are found from the free segment distribution functions by eqs 
(11)-(14). Also, eq. (1) (volume constraint) has to be fulfilled. An iterative 
procedure is used to find a self-consistent solution, where the number of 
iteration variables equals the number of free segment distribution functions. 
This number is the product of the number of layers, the number of types of 
site and the number of monomer types. 

Results and discussion 
homopolymers 
In this section we show results of calculations for a homopolymer adsorbing 
on only one out of two or three kinds of surface site. The polymer segments 
are called A, the solvent is indicated by o. We use two solvency situations: an 
athermal solvent (Flory-Huggins parameter XA0= °) a n c l a "©-solvent" (%Ao= 
0.5). The parameter x0m (where o denotes the solvent) is taken to be zero as 
only the difference XAm~Xom 's important. To facilitate the comparison with 
standard homopolymer theories we use a Silberberg xs parameter for the 
adsorption energy. The xs parameter can be found from the Flory-Huggins 
parameter XAm by dividing by -6. Note that %s is positive if the adsorption 
energy is negative. The adsorption energies per site are then x s m and xs,n-

We start by taking only two kinds of surface site. The cluster parameter C 
represents the distribution of lattice sites over the surface. As can be seen 
from eq. (7), maximum variation of C is possible if we take fm= fn= 0.5. The 
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sites of type m are taken to be repelling, those of type n adsorbing, such that 

the average is 0 ( £mxA m = X m U * n = °)-
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Figure 3. Adsorbed amount of a homopolymer with 1000 segments on a surface with two 

kinds of site as a function of the clustering parameter C. The fraction of adsorbing sites 

is 0.5, and the bulk volume fraction of polymer is 0.0001. The values of %s on non-

adsorbing sites are indicated, and %s
 o n t n e adsorbing sites equals - x s on the non-

adsorbing sites. Diagram (a) is for an athermal solvent (%Ao = 0), diagram (b) for a 

theta solvent ( %Ao= 0.5). 

In Figure 3a the adsorbed amount is shown as a function of C in an athermal 
solvent. The polymer will try to adsorb on the adsorbing sites with as many 
segments as possible. On a chequered surface (C = -1) there is an 
unfavourable repelling site adjacent to each adsorbing site. For %s = +/- 1, 
the energetic interaction with the adsorbing sites is not high enough to 
compensate for the entropy loss that accompanies adsorption: the polymer is 
depleted from the wall. With increasing degree of clustering the polymer can 
adsorb on the favourable surface sites without having too many segments on 
the repelling sites, so that adsorption can occur. This effect leads to an 
increasing dependence of the adsorbed amount on C. For C close to unity the 
adsorbed amount is about half the value that is found for a homogeneous 
surface with an adsorption energy of 1 kT, because then the repelling sites 
hardly contribute to the adsorption behaviour. Thus, by only changing the 
distribution of sites we can change the surface from non-adsorbing to 
adsorbing. 

For higher absolute values of the adsorption energies, adsorption even occurs 
on an alternating surface. Here, enough energy is gained on adsorbing sites 
to compensate for the segments that are on the repelling sites. If the degree 
of clustering increases the polymer avoids the repelling sites, so that 
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eventually, for C close to 1, only half the surface is used. This effect leads to 

a decreasing dependence of the adsorbed amount on C. For intermediate 

values of the adsorption energy these two compensating effects cause a 

maximum. 

Figure 3b is similar as Fig. 3a but for theta-conditions {% = 0.5). The non-

adsorbing sites are now slightly less unfavourable than in the athermal case: 

in the first layer, the polymer has ^ less possible unfavourable contacts with 

the solvent compared to the bulk solution. This causes the maximum to shift 

towards lower values of C. Adsorption on a heterogeneous surface without a 

net interaction has also been found by Odijk [5] and Andelman and Joanny 

[7,8]. 

Figure 4. Volume fraction profiles taken from points in the curve in Fig. 3a where xs 

(adsorbing sites) = 4 for a patchy surface with C = 0.99 (a), and for a chequerboard 

surface with C = -0.99: (b). 

The difference between adsorption on an alternating and a patchy surface 
can be seen clearly in Fig. 4, where the volume fraction profiles per kind of 
site are plotted for circumstances as in Fig. 3a (athermal solvent), for the 
curve with %ajn = ~xs,m = 4 and two widely different values of C. Fig. 4a shows 
the volume fraction profiles on the adsorbing sites (full curve) and on the 
repelling sites (dotted curve) for a very "patchy" surface (C = 0.99). The 
adsorbing sites are almost completely filled with polymer (q>(1) = 1), whereas 
the repelling sites show a depletion in the first layer (<p(1)<(pbulk). Fig. 4b 
shows the other extreme: C = -0.99 or a chequerboard surface. The 
adsorbed amount is almost the same as in Fig. 4a, but the profiles are 
completely different (note the different vertical scales): on the adsorbing sites 
the first layer is only half filled, but the most striking difference is the 
significant amount of polymer that is adsorbed on the repelling sites despite 
the unfavourable energetic interaction. 
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Odijk [5] and Andelman and Joanny [6] have studied the interaction of 
homopolymers with a random surface, where the interaction energy between 
polymer segments and surface sites is a random variable with zero mean and 
varying standard deviation. They both find that adsorption can take place 
although the average interaction is too low to justify net adsorption. According 
to Odijk the adsorption should decrease with increasing variance of the 
interaction energy whereas Andelman and Joanny find the opposite. To 
model this system in our scheme, we would need a very large number of 
types of surface site, which is not feasible. However, some insight can be 
obtained with three kinds of surface site, where the first and third site have an 
equal probability (i.e. t, = f3) but an opposite sign of the adsorption energy 
(%s1 = -Xs,3 =-1). The remaining kind of site has a %s of 0, so that the 
average adsorption energy is exactly 0 kT. Using standard statistical theory, 
the variance is now defined as o2 = ^ (zsm)2ti> which in this simple case 
reduces to 2fr 

0.1 

0.01 -

0.001 

0.0001 

0.2 0.4 0.6 0.8 

Figure 5. Adsorbed amount as a function of the width of the distribution. The surface was 

considered to consist of three kinds of site, with %s = - 1 ,0 and 1, respectively, and an 

equal fraction of adsorbing and repelling sites. The width is plotted as the standard 

deviation a. The solvent is athermal (xAo= °)- Other parameters as in Fig. 3. 

By plotting the adsorbed amount as a function of a (Fig. 5) we see that the 
adsorption increases with increasing standard deviation. If a = 0 we have a 
homogeneous surface containing only sites with %s = 0> s o there can be no 
adsorption. By increasing 0, we create adsorbing sites. The higher a is, the 
higher the adsorption energy of the adsorbing sites. If the adsorption energy 
of the adsorbing sites is high enough, the polymer will stick. This result agrees 
with that of Joanny and Andelman. Although it is a rather crude approximation 

-88-



heterogeneous surfaces 

to model a Gaussian distribution using only three kinds of site, there is no 
reason to believe that the trends will change much if more kinds of site are 
taken into account. 

In the remainder of this chapter, we restrict ourselves to only two kinds of site. 
In this case we can describe the distribution of surface sites by the cluster 
parameter C. The more extreme the ratio between the sites is, the smaller the 
possible range for C. However, any value for 0 < C < 1 is always possible. We 
have taken two values for C: C = 0, a random surface and C = 0.95, a patchy 
surface. The results are compared with those for a homogeneous surface. A 
homogeneous surface is defined as a smooth surface with only one kind of 
surface site. The value of %s is taken as a weighted average of the adsorption 
energy on the surface sites in the heterogeneous case, i.e., %s = £ fm%srri. 
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Figure 6. Adsorbed amount as a function of the fraction adsorbing sites on a random surface 

(dotted curve, C = 0) and on a patchy surface (dashed, C = 0.95). On adsorbing sites 

Xs= 1, on non-adsorbing sites %s= 0. A curve for a homogeneous surface is also 

shown for comparison (full curve). In this curve, %s is taken as the independent 

variable and equals fmJCsm. Diagram (a) : athermal solvent (%Ao= 0), (b): theta 

solvent ( XAO = °-5)- The polymer has a chain length of 1000 and a bulk volume fraction 

of 10-4 . 

Figure 6 shows the adsorbed amount as a function of the fraction of 
adsorbing sites fm. We see that for a patchy surface the adsorption is almost 
proportional to the fraction of adsorbing sites (for C = 1 the plot would be 
linear). For a random surface there is no adsorption for small values of fm. In 
this case the polymer is depleted for fm < 0.12 because the entropy loss is 
greater than the energy gain upon adsorption. Note that, like in Figs. 3 and 5, 
adsorption can take place on a heterogeneous surface before the average 
adsorption energy exceeds the critical value, which is 0.182 kT for a cubic 
lattice [12]. For a ©-solvent (Fig. 6b) the adsorption on a patchy surface is in 
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most cases even less than on a corresponding homogeneous surface. All 
other trends are the same as in the athermal case. 

Figure 7. Adsorbed amount as a function of the adsorption energy of the adsorbing sites. The 

fraction of adsorbing sites is 0.5. The dotted curves are for a random surface (C = 0), 

the dashed curves for a patchy surface and the full curves apply to a homogeneous 

surface with %s = \„xs.m- Other parameters as in Fig. 6. 

Fig. 7 shows the dependence of the adsorbed amount on the adsorption 
energy %s for a good solvent (a) and a 0 solvent (b). It shows the same trend 
as in Fig. 6: adsorption occurs first on a patchy surface, because the polymer 
can use the adsorbing sites more effectively. With increasing adsorption 
energy, adsorption will also take place on a random surface as soon as the 
energy gained on the adsorbing sites is enough to compensate the entropy 
loss on the adsorbing as well as on the non-adsorbing sites. For high 
adsorption energies, there will be more polymer on a random surface 
because the non-adsorbing sites are occupied to a greater extent than on a 
patchy surface. For even higher values of xs, the curves for a random 
heterogeneous surface and a homogeneous surface intersect: less polymer is 
adsorbed on the heterogeneous surface because of the unfavourable 
interaction with non-adsorbing sites so that the first layer is less filled. 
For chains of increasing length one could expect surface heterogeneity to be 
averaged out so that the curves for a random surface and a homogeneous 
surface would coincide for a long enough chains. However, for a 
homogeneous surface it has been shown [12] that for a chain length more 
than, say, 100, the occupation of the first layer does not increase any more. 
Any increase in the adsorbed amount is then purely due to the formation of 
longer loops and tails. 
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Figure 8. Adsorbed amount as a function of the chain length N of the polymer. The fraction 

of adsorbing sites is 0.5, the other parameters are the same as in Figure 6. 

The chain length dependence is plotted in Fig. 8: for short chains we see that, 
like in the Figures 6 and 7, adsorption occurs first on a patchy surface, then 
on a random surface, and finally on a homogeneous surface. At high 
molecular weight the curve for a patchy and a random surface cross (both in 
Figs. 8a and 8b) because of the smaller useful surface area in the former 
case. Under the circumstances of Fig. 8a (good solvent) the curves for a 
random surface and for a homogeneous surface do not meet: the difference 
in adsorbed amount (about 0.06 monolayers for N > 1000) is situated in the 
layers closest to the wall, and this will not be altered with increasing chain 
length. However, for a e-solvent (Fig. 8b), where the occupation in the first 
layer is much higher, the influence of the surface is already smoothed out at 
relatively small chain length so that the curves coincide for longer chain 
lengths. 

As a last example for homopolymer adsorption we calculate a displacement 
isotherm, like the ones calculated by Van der Beek er al. [14,15]. In a 
displacement isotherm, the polymer is dissolved in a binary mixture of solvent 
and displacer (a component which adsorbs more strongly than the polymer). If 
the displacer concentration is high enough, the polymer is desorbed from the 
surface. The point where the polymer is fully desorbed is called the critical 
displacer concentration or critical solvent strength. This concentration can be 
used to determine the difference in adsorption energy of a polymer segment 
and a solvent molecule, i.e., xs- In the paper referred to above, the authors 
raise the question whether the method is justified in the case of surface 
heterogeneity. As can be seen from Fig. 9, the influence of surface 
heterogeneity is not very large: the shift in the critical displacer concentration 
is < 1 vol %, which is less than the experimental error. However, from this plot 
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we can conclude that the polymer is more weakly attached on a random 
surface than on a homogeneous surface (less displacer is needed to displace 
the polymer) but more strongly on a patchy surface. Hence, surface 
heterogeneity can give both a higher value than a homogeneous surface, as a 
lower one. 
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Figure 9. Displacement isotherm for a polymer on a random heterogeneous surface (C = 0, 

dotted curve), on a patchy surface (C = 0.95, dashed) and on a homogeneous surface 

full curve). The displacer d is monomeric (Nd = 1). The polymer has 100 segments, and 

the equilibrium volume fraction in the bulk cp^ = 0.001. The mixture is athermal 

(XAO = %M = Xdo = °)- The fraction of adsorbing sites is 0.5. The adsorption energies 

on adsorbing sites are 1.9 kT for the polymer and 1.88 kT for the displacer. On the non-

adsorbing sites all adsorption energies are zero. For the homogeneous surface xs = 

0.95 for the polymer and %s = ° - 9 4 ' o r t n e displacer. 

copolymers 
For copolymers, the number of parameters increases drastically, which 
makes the choice for a representative system difficult. As an example, we first 
reproduce the results for one of the systems Huang and Balazs used in their 
paper in ref. [11] and then compare it with our model. As stated before, the 
Huang and Balazs model is two-dimensional: the sites are grouped in stripes 
on the surface, so that the volume fraction is now a function of position x on 
the surface as well as of the distance from the surface z. For x=1 to 4 we 
have sites m , for x=5 to 8 sites n. By placing a reflecting boundary between 
x=0 and 1 and between x=8 and 9 we only need to calculate 8 x-values for 
every layer z. For periodic boundaries 16 x-values would have been 
necessary. In this way, we model a system with stripes of 8 consecutive 
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lattice sites of the same kind: sites m for x=-3 to +4, sites n for x=5 to 12. In 
the y-direction a mean-field approximation is used. 
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Figure 10. Volume fraction profiles calculated for a copolymer A25 B25, <p = 1 0 - 4 in solvent 

o with the Huang and Balazs method [11] using a two-dimensional striped surface. The 

left diagram gives the results for the A segments, the right one is for the B 

segments. The wall is located at z = 0. For x = 1-4 we have sites m, for x= 5-8 sites n. 

A reflecting boundary is placed between x=0 and x=1, and between x=8 and x=9. A 

mean field approximation is applied in the y-direction. Flory-Huggins parameters: 

XAB = 5CAO = 0-5. XBO = ° . w i t h t h e surface: X Am = XBn = - 1 ° . XAn = XBm = °-

In the system, we have an A25B25 copolymer in solvent o. The interaction 
parameters are %AB = 0.5,, XAO = 0-5 and XBO = 0- These values are too low 
to give micelles in solution. We took the bulk volume fraction of the polymer to 
be 10 - 4 . The A blocks adsorb on the sites m, the B's on the sites n : 

XAn XBn = - 1 0 , XAn = XBm = 0-

A view of the volume fraction profile distribution is shown in Fig. 10, where the 
A segments are plotted in Fig. 10a and the B segments in 10b. It can be seen 
that the volume fractions show a gradual transition at the boundary between 
the sites of type m or n (i.e. between x = 4 and x = 5). In Fig. 11 we compare 
the profiles in the middle of the stripes (i.e., in layer 1 for the sites of type m 
and in layer 8 for the sites n, triangles), with our model for a patchy surface (C 
= 0.95, squares). The profiles on the sites m are shown in open symbols, 
those on the sites n in filled symbols. The two profiles for A segments on sites 
m coincide, but on the sites n our model tends to show less depletion. The 
profiles for the B segments are in good agreement with the two-dimensional 
model (note the logarithmic scale). 
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Figure 11. Comparison of volume fraction profiles calculated using the Huang and Balazs 

model (triangles) and our model (squares). The open triangles are for x = 1 (middle of 

the stripes with sites m), the closed triangles for x = 8 (middle of the stripes with sites 

n). For our model, we used the same interaction parameters as in Fig. 10, fraction m-

sites 0.5, cluster parameter C = 0.95. Open squares: on sites m, closed squares: on 

sites n. 

The advantage of the two-dimensional model is that information can be 
gained on the interface between the two kinds of site, which is impossible in 
our model. However, the geometry is limited: only stripes can be modelled (or, 
in a cylindrical lattice, circles), which does not seem very realistic on this 
scale. A random surface cannot be dealt with in this way. Furthermore, only 
small systems can be modelled as the number of iteration variables increases 
as the number of layers in the x-direction times the number of layers in the z-
direction times the number of monomer types. Our model uses a separate 
mean-field potential for every kind of lattice site in every layer. This can be 
further reduced by taking only one mean field potential per layer for z > z', 
where z' is not too large. As the potentials above different kinds of sites 
converge for much smaller z than the end segment distribution functions, this 
is not a severe approximation. The use of proper chain statistics ensures that 
the information about the surface structure is passed on into the solution. This 
leads to a significant reduction of the number of iteration variables, facilitating 
the calculation on longer chains or a broader distribution of surface sites. 

Conclusions 
It is possible to model chemical surface heterogeneity even using a mean-
field approximation. Homopolymers can adsorb on a heterogeneous surface if 
the average energetic interaction with the surface is below the critical 
adsorption energy. This can happen more easily if the heterogeneity is 
distributed patchwise than when its distribution is more random. Long polymer 
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chains do not necessarily average out all surface heterogeneity. Adsorption is 
usually higher on a patchy surface than on a randomly distributed surface if 
the adsorption energy or chain length is low, but the opposite holds for high 
adsorption energy or chain length. For a patchy surface, adsorption is limited 
to the adsorbing patches. Displacement isotherms for homopolymers are not 
shifted dramatically by surface heterogeneity, regardless of distribution. The 
model can also be used for block copolymers on heterogeneous surfaces. 
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SUMMARY 

The work presented in this thesis is based on the theory for polymer 
adsorption by Scheutjens and Fleer (SF). Roughly, the thesis can be divided 
into two parts: the first two chapters consider the original theory from a new 
viewpoint, attempting to find universal laws and to establish connections 
with analytical theories. The last three chapters are devoted to extensions of 
the theory to more intricate systems. 

In chapter 1 polymer adsorption from dilute solution is studied. We try to find 
the universal behaviour in the volume fraction profile as predicted by De 
Gennes from scaling arguments. In this analysis, three regimes are 
distinguished: close to the surface a proximal regime, which is dominated by 
the numerous contacts between polymer and surface, next to that a central 
regime, where the volume fraction profile decays as a power law which is 
independent of solution concentration and polymer chain length, and finally 
a distal regime with an exponential decay towards the bulk volume fraction. 
With the SF theory these regimes can indeed be found provided the polymer 
chains are sufficiently long (more than, say, 5000 segments). However, the 
exponent in the power law regime does depend on solution concentration 
and polymer chain length. Extrapolation to infinite chain length yields the 
proper mean-field exponent. Although in general mean-field theories (like 
the SF theory) can yield incorrect exponents, they tend to predict the proper 
trends, so that it can be expected that a chain length dependence is actually 
present. In ©-solvents, where the mean-field treatment is thought to be exact 
because the second virial coefficient vanishes, an additional regime is found 
in between the central and distal regime. Its origin is, as yet, unclear. 
The volume fraction profile is also the main topic in chapter 2, which 
discusses polymers adsorbing from a semi-dilute solution in a good solvent. 
In a semi-dilute solution the correlation length is independent of chain 
length, and it is found that this correlation length and the adsorption energy 
are the only parameters determining the volume fraction profile. Thus, in 
contrast to the case of dilute solutions in chapter 1, the profile for adsorption 
from semi-dilute solutions is independent of the polymer chain length. The 
free energy equation derived by SF is shown to be equivalent to that 
obtained in analytical mean-field theories if it is assumed that all segments 
of a polymer chain are distributed within the system in a similar way. Such 
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an assumption is called a ground-state approximation. This ground-state 
approximation can also be used to extract the adsorbed volume fraction 
profile (comprising only the polymer chains touching the surface) from the 
overall profile. This has been done by Johner et al. Their results compare 
well with SF calculations when the bulk concentration is high and the 
adsorption energy low, but the agreement is much less when this is not the 
case, possibly due to the larger influence of tails under these conditions. 
When a bidisperse polymer mixture adsorbs from a semi-dilute solution the 
overall profile is not affected, even though the individual components may 
show a very different profile. 

In chapter 3 we leave the case of simple flexible homopolymers and 
consider the influence of partial rigidity within the chain. Rigid polymers 
possess less conformational entropy, and hence adsorb more easily than 
flexible polymers. Chain stiffness is modelled by excluding direct 
backfolding and defining an energy difference between a straight and a bent 
conformation of two consecutive bonds, where the straight conformation is 
more favourable. When all parts of the polymer are equally stiff, a 
persistence length can be defined, which increases with the energy 
difference. Using this persistence length, the radius of gyration of a stiff 
polymer in solution can be rescaled to a flexible one with a smaller number 
of segments. However, it turns out that this procedure does not work out well 
for adsorption from dilute solution: the scaling laws in the central regime as 
found in chapter 1 are altered. The critical adsorption energy decreases with 
increasing persistence length, in full agreement with an equation formulated 
by Birshtein, Zhulina and Skvortsov. The situation gets complicated when 
only part of the polymer is stiff. As the stiffer parîs lose less entropy upon 
adsorption, they adsorb preferentially. This effect leads to copolymer 
adsorption behaviour, even when there is no difference in interaction energy 
between the stiff and the flexible moieties. 

Entropie effects play a major role also in chapter 4, where the adsorption of 
comb polymers is considered. Comb polymers consist of a backbone and a 
(large) number of teeth, hence they have a large number of chain ends per 
molecule. These ends prefer to protrude into the solution to form dangling 
tails. As a result, combs tend to adsorb in a conformation where the 
backbone is preferentially on the surface and the teeth stick out. This leads 
to relatively thin adsorbed layers, and if the distance between the branch 
points of the comb is small compared to the tooth length a depletion zone 
develops adjacent to the adsorbed layer. For comb copolymers it is found 
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that if the teeth adsorb preferentially over the backbone segments the critical 
adsorption energy is lower than in the case where the backbone adsorbs, 
even though both types of molecules have the same number of adsorbing 
segments. At the point of desorption only a few segments are on the surface, 
and a polymer in which only the tooth segments adsorb loses less entropy 
than a polymer adsorbing with its backbone. 

Finally, in chapter 5 we consider chemical surface heterogeneity by 
incorporating in the chain statistics a probability that a surface site has a 
particular adsorption energy. The surface can be constructed such that, on 
average, no energetic interaction between the polymer and the surface is 
present. Nevertheless, adsorption can take place on such a surface, 
provided "adsorbing sites" (sites with a favourable adsorption energy) are 
grouped together. The distribution of adsorbing sites determines largely the 
adsorption behaviour. If the driving force for adsorption is high, more 
polymer adsorbs on a surface with an equal distribution of adsorbing sites, 
as more of the available surface can be used. On the other hand, at low 
adsorption energy, it is more favourable to have the adsorbing sites group 
together, so that little of the non-adsorbing sites are in contact with the 
polymer. 

In conclusion, universal behaviour is found only in the case of flexible, linear 
homopolymers adsorbing from a semi-dilute solution in a good solvent. In all 
other cases studied (dilute solutions, chain rigidity, chain branching and 
surface heterogeneity) the structure is more intricate. Although the mean-
field character of the Scheutjens-Fleer theory is definitely a serious 
approximation, it does enable the modelling of a large variety of equilibrium 
systems, even at high concentrations, providing an abundance of detailed 
information. It is worthwhile to continue to check its assumptions and 
predictions with other theories and obviously with experiment. The volume 
fraction profile determines the properties of the system and is also very 
sensitive to the approximations used in the model. Therefore, precise and 
unambiguous measurements of the density profile remain of the utmost 
importance. 
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Het woord "polymeer" is afgeleid uit het Grieks en betekent zoveel als: 
bestaande uit vele onderdelen. Polymeren worden gemaakt door hun 
onderdelen, de monomeren, onderling te laten reageren zodat grote, lange 
moleculen ontstaan. De chemische structuur van de monomeren bepaalt 
welk polymeer er gevormd wordt en dat is soms aan de naam te zien: 
polystyreen (PS, piepschuim) ontstaat uit styreen, polyetheen (PE, plastic 
tasjes) uit etheen. Bij andere polymeren is de naam wat minder duidelijk: 
polyetheentereftalaat (PET, frisdrankflessen) ontstaat uit ftaalzuur en glycol, 
rubber uit (bijvoorbeeld) isopreen, eiwitten uit aminozuren en zetmeel uit 
suikers. Als lange polymeermoleculen in een vloeistof opgelost worden, 
lijken ze nog het meest op gare spaghetti in kokend water: lange slierten die 
driftig bewegen. Voor de beschrijving van zo'n systeem blijkt het niet zoveel 
uit te maken welk polymeer we hebben, als het maar lang en flexibel is, 
geen zijtakken heeft en goed oplost. (Uitzonderingen hierop zijn biologisch 
aktieve eiwitten, die op een heel speciale manier opvouwen tot een 
compacte vorm. Die vorm is vaak belangrijk voor hun werking.) De 
specifieke eigenschappen van flexibele polymeren kunnen dan beschreven 
worden met slechts enkele parameters, zoals de kwaliteit van het 
oplosmiddel (hoe goed lost het polymeer op), de ketenlengte (hoe lang is 
het polymeer) en de concentratie (hoeveel polymeer per liter). Als de 
concentratie van het polymeer zo hoog wordt dat de slierten met elkaar 
verstrengeld raken spreken we van een semi-verdunde oplossing, en dan 
maakt het zelfs niet meer uit hoe lang de polymeerketens zijn. Dit noemen 
we universeel gedrag, en dat is waar we in de eerste twee hoofdstukken van 
dit proefschrift naar op zoek zijn. De laatste drie hoofdstukken zijn gewijd 
aan verschillende omstandigheden die voor speciale effecten zorgen. Al het 
werk is theoretisch van aard en gebaseerd op de theorie van Scheutjens en 
Fleer voor polymeeradsorptie, verder SF-theorie genoemd. 
Adsorptie is ophoping aan een grensvlak en in dit proefschrift is het 
grensvlak altijd een vast oppervlak. Experimentele systemen die men zich 
hierbij kan voorstellen zijn bijvoorbeeld solen: systemen waarin vaste 
deeltjes fijn verdeeld zijn in een vloeistof, zoals latexverf. Aan dit soort 
systemen wordt vaak polymeer toegevoegd dat op de deeltjes gaat zitten. 
Dit noemen we adsorptie. Als de omstandigheden goed gekozen worden, 
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kan het toevoegen van polymeer voorkomen dat de deeltjes gaan klonteren 
en daardoor hetzij naar de bodem zakken, hetzij opromen, al naar gelang 
het verschil in dichtheid tussen de deeltjes en de vloeistof. 
In het eerste hoofdstuk beschouwen we de adsorptie van polymeren uit een 
verdunde oplossing. In een verdunde oplossing is de concentratie polymeer 
zo laag, dat de individuele moleculen elkaar uit de weg gaan en 
geïsoleerde kluwens vormen. Als het polymeer een gunstige energetische 
wisselwerking met het oppervlak heeft, die groot genoeg is om het verlies 
aan vrijheid (entropie) in de oplossing te compenseren, dan ontstaat er een 
concentratiegradiënt van het polymeer loodrecht op het oppervlak: het 
volumefraktieprofiel. In het geval van adsorptie is het volumefractieprofiel 
een dalende functie van de afstand tot het oppervlak. (De energie die nodig 
is om nèt adsorptie te krijgen, heet de kritische adsorptie-energie. Dit begrip 
zullen we in latere hoofdstukken nog vaker tegenkomen.) Er is een theorie 
van De Gennes die zegt dat het volumefraktieprofiel te verdelen is in drie 
stukken. Vlak bij het oppervlak is de concentratie hoog. Het precieze verloop 
van de concentratie is daar sterk afhankelijk van het gebruikte polymeer, 
van het oppervlak, enzovoorts. Dit is het zogenaamde proximale gebied. 
Een stukje verderop verloopt de concentratie als een machtswet van de 
afstand tot het oppervlak. Dit is het centrale gebied, en hier voorspelt De 
Gennes universeel gedrag: de plaatselijke concentratie hangt niet af van de 
lengte van het polymeer of van de concentratie in de evenwichtsoplossing 
(de buikconcentratie). In het laatste stuk, het distale gebied, valt het profiel 
exponentieel af naar de evenwichtsconcentratie die ver van het oppervlak 
heerst. Als we met de SF-theorie het volumefraktieprofiel uitrekenen voor 
lange polymeren, dan kunnen we precies de drie gebieden van De Gennes 
terugvinden, maar helaas blijkt de concentratie in het centrale gebied wel 
degelijk van de ketenlengte en van de buikconcentratie af te hangen. Geen 
universeel gedrag dus. De SF-theorie gebruikt een zogenaamde 
gemiddeld-veld benadering, en het is bekend dat deze benadering nog wel 
eens leidt tot verkeerde exponenten in machtswetten. Aan de andere kant 
leveren gemiddeld-veld theorieën meestal wel de juiste trend op, en de 
afhankelijkheid van de ketenlengte is een duidelijke trend. De Gennes 
gebruikt in zijn afleidingen de limietwaarde voor oneindig lange polymeren. 
We kunnen de exponent in het centrale gebied op een slimme manier 
uitzetten tegen de ketenlengte, zodanig, dat we kunnen extrapoleren naar 
oneindige ketenlengte. Er komt dan precies de waarde uit die voor een 
gemiddeld-veld theorie verwacht mag worden, en die is wel onafhankelijk 
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van de buikconcentratie. Dit alles doet vermoeden dat de theorie van De 
Gennes alleen geldig is voor oneindig lange polymeren en dat er in de 
praktijk geen sprake zal zijn van universeel gedrag. 
In het tweede hoofdstuk bekijken we adsorptie vanuit een semi-verdunde 
oplossing. Zoals al eerder vermeld vertoont een semi-verdunde oplossing 
wèl universeel gedrag, en het blijkt dat dit ook opgaat voor het 
volumefraktieprofiel. We kunnen laten zien dat de vergelijking voor de vrije 
energie die in de (numerieke) SF-theorie gebruikt wordt veel 
overeenkomsten vertoont met een analytische vergelijking die o.a. door 
Johner en medewerkers gebruikt wordt. Hiervoor moeten we wèl aannemen 
dat alle segmenten (de onderdelen waaruit het polymeer is opgebouwd) op 
dezelfde manier verdeeld zijn. In het algemeen is dat niet zo, omdat de 
uiteinden van een polymeerketen de neiging hebben uit te steken in de 
oplossing. De segmenten in het midden van het polymeer zitten juist liever 
aan het oppervlak. Toch blijkt deze benadering goed te werken, want het 
SF-volumefraktieprofiel wordt uitstekend beschreven door een analytische 
vergelijking die met deze benadering afgeleid kan worden. Als de 
benadering nog eens gebruikt wordt om binnen het totale volumefraktie­
profiel de geadsorbeerde ketens (dit zijn de moleculen die contact maken 
met het oppervlak) te onderscheiden, dan blijkt dat alleen goed te zijn als de 
evenwichtsconcentratie hoog is en de adsorptie-energie laag. Als dat niet 
het geval is werkt de benadering slecht, waarschijnlijk doordat de invloed 
van de staarten (de vrije uiteinden van geadsorbeerde moleculen) hier groot 
is. Als we een mengsel van polymeren met verschillende ketenlengten laten 
adsorberen uit een semi-verdunde oplossing, dan verandert het totale 
volumefraktieprofiel niet, hoewel elke afzonderlijke component een heel 
verschillend profiel kan hebben. 

Vanaf hoofdstuk 3 worden de bestudeerde systemen ingewikkelder. Om te 
beginnen maken we de polymeerketen stijver. Een stijf molecuul heeft in 
oplossing minder bewegingsvrijheid, en die kan dan ook niet verloren gaan 
bij adsorptie. Tengevolge hiervan adsorbeert een stijf polymeer makkelijker 
dan een flexibel polymeer. Ketenstijfheid is eenvoudig te modelleren door 
een energetische "straf" op te leggen als twee opeenvolgende bindingen 
een hoek met elkaar maken. Daardoor wordt het gunstiger om bindingen in 
eikaars verlengde te leggen. We kunnen dan een persistentielengte 
definiëren, een maat voor het gemiddelde aantal bindingen dat een 
polymeer nodig heeft om weer op hetzelfde punt uit te komen. Hoe groter 
het energieverschil tussen rechte en haakse bindingsparen, des te groter de 
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persistentielengte. Met behulp van de persistentielengte kunnen we 
proberen een lange stijve keten te "herschalen" in een kortere keten 
waarvan de segmenten langer zijn. Voor de gemiddelde afmeting van een 
kluwen in een verdunde oplossing werkt dat goed, een resultaat dat al sinds 
de dertiger jaren bekend is. Helaas blijkt het voor een geadsorbeerde keten 
helemaal niet te werken. Hoe stijver het polymeer, hoe kleiner de kritische 
adsorptie-energie. De afhankelijkheid van de kritische adsorptie-energie 
van de persistentielengte is afgeleid door Birshtein, Zhulina en Skvortsov. 
Hun voorspelling blijkt precies te kloppen met de resultaten van de SF-
theorie mits het polymeer (veel) langer is dan de persistentielengte. De 
situatie wordt nog veel gecompliceerder als niet het hele polymeer stijf is, 
maar bijvoorbeeld alleen de uiteinden. Het kan dan gebeuren dat die 
uiteinden bij voorkeur op het oppervlak gaan zitten, precies het 
tegenovergestelde van de situatie bij een flexibel polymeer. Het gedrag van 
een stijf-flexibel polymeer is vergelijkbaar met dat van een polymeer waarin 
de energetische wisselwerking tussen polymeersegmenten en oppervlak of 
tussen segmenten en oplosmiddel in verschillende stukken van de keten 
verschillend is. 

In hoofdstuk 4 bekijken we polymeren die bestaan uit één hoofdketen met 
verschillende zijketens, de zogenaamde kampolymeren. Kampolymeren 
hebben veel uiteinden per molecuul, en zoals gezegd hebben uiteinden de 
neiging om uit te steken in de oplossing. De hoofdketen zit dus bij voorkeur 
op het oppervlak, en dat leidt tot relatief dunne polymeerlagen aan het 
oppervlak. Als de afstand tussen de tanden van de kam klein is in 
vergelijking met de lengte van de zijketens, dan ontstaat er net buiten die 
geadsorbeerde polymeerlaag zelfs een zone waarin de concentratie aan 
polymeer lager is dan die van de evenwichtsoplossing. De kritische 
adsorptie-energie van een polymeer waarvan de zijketen preferent 
adsorbeert boven de hoofdketen is lager dan andersom. 
In het laatste hoofdstuk bekijken we de situatie dat er op het oppervlak 
plekjes voorkomen die een verschillende energetische wisselwerking 
hebben met het polymeer. Dit heet chemische oppervlakteheterogeniteit. 
We kunnen het oppervlak zelfs zo modelleren, dat de energetische 
wisselwerking met het polymeer gemiddeld precies nul is. Toch vindt er dan 
adsorptie plaats, als we er maar voor zorgen dat de gunstige plekjes in 
groepjes bij elkaar voorkomen. De verdeling van gunstige plekjes over het 
oppervlak bepaalt het adsorptiegedrag van het polymeer. Als de 
aantrekking door het oppervlak groot genoeg is, dan is het voordeliger om 

-102-



samenvatting 

de gunstige plekjes gelijkmatig te verdelen, omdat dan het gehele oppervlak 
gebruikt kan worden. Bij zwakke wisselwerking levert clustering van de 
gunstige plekjes voordeel op, omdat daarmee de ongunstige plekjes 
vermeden kunnen worden. 

Samenvattend kunnen we stellen dat universeel gedrag alleen gevonden 
wordt bij flexibele, onvertakte polymeren die adsorberen vanuit een semi-
verdunde oplossing. In alle andere gevallen (verdunde oplossingen, stijve 
polymeren, vertakte polymeren, oppervlakteheterogeniteit) is de struktuur 
ingewikkelder. Hoewel de gemiddeld-veld benadering die de SF-theorie 
gebruikt zeker tot grove fouten kan leiden, maakt het de modellering van 
een grote verscheidenheid aan systemen mogelijk. Daarbij komt een schat 
aan gedetailleerde informatie beschikbaar. Het blijft echter noodzakelijk om 
de veronderstellingen en voorspellingen te verifiëren met andere theorieën, 
en natuurlijk ook met experimenten. Het volumefraktieprofiel bepaalt de 
eigenschappen van het systeem en is zeer gevoelig voor de 
veronderstellingen die gemaakt worden in de theorie. Nauwkeurige en 
vooral ondubbelzinnige metingen blijven daarom van cruciaal belang. 

-103-



LEVENSLOOP 

Catharina Clasina van der Linden werd geboren op 19 december 1965 te 
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NAWOORD 

Het is nu alweer vijf jaar geleden dat Jan Scheutjens me een OIO-positie in 
polymeerfilms aanbood. Ik wist niet precies wat ik me moest voorstellen bij 
een polymeerfilm, maar met Jan als begeleider zou het wel goed komen, 
dacht ik. 
Tijdens Jans afwezigheid (hij was op sabbatical in de VS), ontstond uit de 
dagelijkse, levendige diskussies met Frans Leermakers (algemene opzet: 
Frans kwam met een idee, en als ik echt geen argumenten meer kon 
verzinnen om het af te schieten, werd het voorlopig aangenomen. Alsnog 
mijn excuses aan alle kelderbewoners die ernstig onder de geluidsoverlast 
geleden moeten hebben) zowaar een artikel. Het vormt nu het grootste deel 
van hoofdstuk 1. Terwijl ik aan het schrijven was aan mijn geliefde "plekje" 
(hoofdstuk 5), in een poging het op Jans bureau te hebben liggen als hij van 
vakantie terugkwam, kwam het bericht dat Jan overleden was. Hij heeft dus 
helaas niets meer van dit proefschrift kunnen redden, en met die 
polymeerfilms is het al helemaal nooit meer goed gekomen. Dat er nu toch 
een proefschrift ligt, is te danken aan de theorie-groep, die op 
indrukwekkende wijze het verdriet verwerkte, en aan het feit dat Frans het op 
zich nam de promovendi, inclusief de fysisch niet relevante polymeer­
mensen, verder te begeleiden. Die begeleiding ging bij één hoofdstuk zelfs 
zo ver, dat hij de plotjes uitrekende en ik er een verhaal bij schreef. Waar 
vind je nog zo'n co-promotor? Ik ben blij dat het, gezien recente uitlatingen, 
in ieder geval gelukt is om Frans enthousiast aan de polymeren te krijgen. 
Lieve Frans: je mag de stiften houden. 

Gerard Fleer, mijn promotor, heeft altijd de indruk weten te wekken erg blij te 
zijn als ik hem weer werk kwam brengen. Zijn ongelofelijke snelheid en 
opmerkingsgave bij het nakijken van manuscripten (het record staat op 4 
uur, met een gemiddelde opmerkingendichtheid van 25 per pagina), heeft 
ervoor gezorgd dat de vaart erin bleef èn dat er wat leesbare tekst tussen de 
formules staat. 

Er zijn natuurlijk nog veel meer mensen die geholpen hebben met dit 
proefschrift. Om eens een paar wetenschappelijke bijdragen te noemen: dhr. 
Posthumus van de vakgroep Organische Chemie vond de Weinöl, Frans de 
Haas heeft gelukkig meer verstand van klassiek Grieks, Peter Barneveld 
heeft al mijn wis- & natuurkundeprobleempjes uit hoofdstuk 2 te verduren 
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gekregen, Heleen Hollenberg bracht een heel afstudeervak door met 

takketakken, waarna ik vrolijk de resultaten kon gebruiken voor hoofdstuk 4, 
en Boudewijn van Lent is ooit met de plekjes van hoofdstuk 5 aan komen 
zetten. 
I would also like to thank Albert Johner from the Institut Charles Sadron at 
Strasbourg for all the help and discussions. 
Verder heb ik vele ideeën opgedaan in discussies met mensen op de 

vakgroep, in het bijzonder met de theoriegroep (Klaas, Peter, Chris, Rafel), 
met het experimentele deel van de polymeergroep (Jaap, Nynke, Marcel, 
Henri, Martien), en buiten categorie met Martin T. en Marcel M.. 

Maar van alleen wetenschap draait het onderzoek niet. Gelukkig blijkt de 
vakgroep Fysische & Kolloïdchemie over prima randvoorwaarden te 
beschikken. Men heeft werkende computers, waarop je zelfs nog elegantere 
besturingssystemen mag installeren. En als de rekendoos onverhoopt 
weigert, lopen er Cassen of Peters rond die de zaak weer aan de praat 
krijgen. Er zijn experimentele, pluche, vierpotige en vijfvinnige kamer­
genoten, die ervoor zorgen dat je niet alle contact met de werkelijkheid 
verliest en die allerhande grote en minder grote crises opvangen. Er is een 
drukbezochte ruimte op de eerste verdieping die voorziet in enveloppen, 
papier, opbeurende woorden en wijze raad. Een grote verzameling mede­
aio's weet precies hoe je er aan toe bent: de mid-aio crisis, het terminale 
stadium.... En vrijdags om 6 uur vind je nog wel eens mensen die ook wel 
zin hebben in een potje bier. 

Ik ben vast nog mensen of dingen vergeten. In ieder geval allemaal hartelijk 

bedankt, en keep up the good work! 

-106-


