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Chapter 1 

Preview 

This thesis describes the results of a research project entitled: "P, transport in 

Acinetobacter in relation to the polyphosphate and energy metabolism". This study 

started in 1989 and was financed for four and a half years by the Netherlands 

Organization for Scientific Research (NWO) and the Dutch Technology Foundation 

(STW). The aim of the project was to examine the mechanism and energetics of P| 

uptake and efflux in the polyphosphate-accumulating Acinetobacter johnsonii strain 

210A. The project arose from previous studies on the nature, localization and 

metabolism of polyphosphates in A. johnsonii 210A. Insight into Pj transport 

processes in Acinetobacter is important for two reasons. Firstly, polyphosphate-

accumulating acinetobacters may play a major role in the biological removal of ?, 

from waste water. Fundamental knowledge about the parameters which influence 

the uptake and release of P, in these organisms may help to improve the design and 

development of phosphorus-removal systems. Secondly, insight into P( transport 

processes in polyphosphate-accumulating acinetobacters may further unravel the 

metabolic functions of polyphosphate, and may contribute to our knowledge of the 

mechanisms and bioenergetics of solute translocation across biomembranes. In the 

following, two topics will be discussed: (i) the application and physiology of poly­

phosphate-accumulating acinetobacters, and (ii) our current knowledge of Pf 

transport processes in prokaryotes. This introduction will be concluded by an 

outline of the thesis. 

1. Application and physiology of polyphosphate-accumulating Acinetobacter 

spp. 

1.1 Biological phosphorus removal 

The removal of phosphorus from waste water is an essential feature of sewage 

treatment facilities because of the threat of eutrophication. Although the addition of 

various agents, such as salts of calcium, iron or aluminium, to activated sludge can 

be used to remove Pj from the waste water by settling, the treatment causes the 
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accumulation of large quantities of chemical sludge. In addition, the initial costs of 

the materials required for chemical treatment have stimulated a search for alternati­

ve biological methods for phosphate removal (11, 12, 39, 52, 53, 75, 119, 171, 186, 

193, 194). Any practical application of biological removal of dissolved phosphate 

compounds from sewage effluent depends on the ability of sludge organisms to take 

up these substances in quantities exceeding those required for normal metabolic 

activities (81, 106). Polyphosphate, the biopolymer in which excess Pi is frequently 

stored, has been detected in a wide variety of pro- and eukaryotic microorganisms 

(50, 84, 112, 113). Effective removal of phosphates from sewage due to enrichment 

of activated sludge with polyphosphate-accumulating bacteria requires alternating 

aerobic and anaerobic cycles (11, 53, 75, 150, 187). Analysis of the population 

structure of activated sludge have focussed attention on Acinetobacter as being one 

of the important genera in the process of enhanced biological phosphorus removal 

(15, 20, 43, 52, 75, 121, 145, 186), with A. johnsonii as the major and A, Iwoffi, A. 

calcoaceticus and A. junii as the minor constituents of the Acinetobacter population 

(21, 31, 60, 104, 123). Similar to the behaviour of activated sludge, these Acineto­

bacter species accumulate Pj as polyphosphate under aerobic conditions. Polyphos­

phate is subsequently broken down and released as Ps in response to the anaerobic 

treatment. 

1.2 The genus Acinetobacter 

Members of the genus Acinetobacter are strictly aerobic, non-motile, non-fastidious 

gram-negative bacteria which are ubiquitously present in soil, water and sewage. 

Studies on its biochemistry and physiology have indicated that Acinetobacter is 

typical of other gram-negative bacteria with distinctive metabolic features which are 

well-adapted to its lifestyle and support its nutritional versatility (197). 

General physiology 

Metabolism in Acinetobacter spp. centres on a Krebs tricarboxylic acid cycle which 

is fed by catabolic pathways for the degradation of a wide variety of carbon sources 
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including sugars, fatty acids, aliphatic alcohols, dicarboxylic acids, amino acids, 

unbranched hydrocarbons and many aromatic and alicyclic compounds (100, 197). 

The ability of Acinetobacter to form acid from D-glucose (and other sugars) has 

been used as a taxonomie criterion within the genus (34) and depends on the 

presence of a functional, cytoplasmic membrane-bound quinoprotein aldose 

dehydrogenase that catalyzes the oxidation of glucose to gluconate (56, 79, 204, 

205). Acinetobacter species able to grow on gluconate, use the Entner-Doudoroff 

pathway for its degradation. However, most Acinetobacter strains are unable to use 

gluconate as a carbon and energy source and release this compound into the growth 

medium during the oxidation of glucose. 

The composition of the electron transfer chain in acinetobacters has not been 

completely elucidated. NADH dehydrogenase can catalyse the input of electrons 

from NADH into the quinone pool, which consists of ubiquinones, but not of 

menaquinones (13, 14, 32, 66). The electrons can be transferred from the level of 

ubiquinone into two branches. In general, under conditions of high aeration a 

cytochrome o-containing oxidase and a cytochrome b554 are the predominant species, 

whereas under oxygen-limitation a cytochrome ^-containing oxidase is predominant 

(57, 66, 67, 68, 83). Acinetobacter does not contain a cytochrome c oxidase, and is 

therefore classified as oxidase-negative. Cytochrome b562 is involved in linking 

glucose dehydrogenase to the electron transport chain (58, 76). 

Many Acinetobacter strains accumulate polyphosphate (30, 31, 70, 168, 169), 

poly-ß-hydroxybutyrate (30, 31, 70, 168, 169, 207) or wax esters (69, 70) as 

reserve polymers. Poly-ß-hydroxybutyrate and wax esters can fulfill a role as energy 

reserves in these organisms. Poly-ß-hydroxybutyrate has been postulated to play an 

important role in the polyphosphate metabolism of acinetobacters isolated from 

sewage (52, 75, 94, 122, 124). However, the exact nature of the linkage between 

poly-ß-hydroxubutyrate and polyphosphate metabolism is presently unclear. 

Polyphosphate metabolism 

Pure cultures of Acinetobacter spp. isolated from activated sludge have been used to 

investigate the metabolism and metabolic functions of polyphosphate. A. johnsonii 
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210A, one of the most extensively studied strains (for review, see 110 and 223), 

grows well within the pH range of 6 to 9. In the presence of excess energy and 

substrates, it is able to accumulate phosphate up to 300 mg Pf per gram (dry 

weight) at all pH values. Although this accumulation is independent of the growth 

phase in batch cultures, it is stimulated at decreasing growth rates in carbon or 

sulphur-limited chemostat cultures (203). Concomitantly with Pi5 Mg2* and K+ are 

taken up by A. johnsonii 210A. Mg2* can be replaced by Ca2+. Both divalent 

cations can act as counterion of polyphosphate in polyphosphate granules in the 

cytoplasm of the organism (27, 200, 202). K+ is essential for Pj uptake. In its 

absence P( uptake is strongly reduced (202). 

When incubated under anaerobic conditions, A. johnsonii 210A degrades the 

polyphosphate which has been accumulated under aerobic conditions. Other mani­

pulations which interfere with oxidative phosphorylation in this organism induce the 

release of P( as well. Thus, besides by anaerobiosis (lack of electron acceptor), 

polyphosphate degradation is also triggered by (i) the absence of a carbon and 

energy source (lack of electron donor), or the presence of (ii) the respiratory chain 

inhibitor CN", (iii) the H+-ATPase inhibitor A^A '̂-dicyclohexylcarbodiimide, or (iv) 

the uncoupler a-dinitrophenol (198). Pj release is stoichiometrically paralleled by 

the excretion of Mg2* (202). 

A. johnsonii 210A contains two polyphosphate degrading enzymes: polyphos­

phatase and polyphosphate:AMP phosphotransferase (199-201). Polyphosphatase 

hydrolyzes polyphosphate to P( (Eqn. 1). Polyphosphate:AMP phosphotransferase 

phosphorylates AMP to ADP with polyphosphate as phosphoryl donor (Eqn. 2). 

PPn (polyphosphate) + H20 -» PPn„, + P> (Eqn. 1) 
PPn + AMP -» PP„_, + ADP (Eqn. 2) 

The enzymes have been partially purified and characterized (26, 28, 29). They both 

show high affinity for highly polymeric polyphosphates, as encountered in the 

cytoplasm of the organism, with an apparent Km of 5.9 /iM polyphosphate (average 

chain length of 64 residues) for polyphosphatase and an apparent Km of 0.8 pM 

polyphosphate (average chain length of 35 residues) for polyphosphate:AMP 
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phosphotransferase. The enzymes degrade polyphosphate via a processive mecha­

nism and are stimulated by Mg2*, but inhibited by small polyphosphates such as 

pyro- or triphosphate (28, 29). Pyro- and triphosphate (in complex with divalent 

cations) are further hydrolysed to P; by a pyrophosphatase (26). 

Polyphosphate:AMP phosphotransferase allows A. johnsonii 210A to conserve 

metabolic energy released during the degradation of polyphosphate. The combined 

action of this enzyme with adenylate kinase can produce ATP in cell-free extracts 

from the degradation of polyphosphate (201). This energy conserving mechanism 

may also be relevant for other strains of Acinetobacter spp. in which significant 

levels of polyphosphate:AMP phosphotransferase and adenylate kinase are detected 

(15, 104, 199). In A. johnsonii 210A polyphosphate meets the three criteria which 

are used to define energy reserves (215): (i) it accumulates under conditions of 

carbon and energy source excess when growth is limited by another nutrient, (ii) it 

is degraded during carbon and energy source starvation, and (iii) its degradation via 

polyphosphate:AMP phosphotransferase yields metabolic energy. In addition to its 

role as an energy reserve, polyphosphate can also act as a P( and/or Mg2"1" reserve 

when these nutrients are limiting in the growth medium. These compounds can be 

released from polyphosphate by the action of polyphosphatase (200, 202). 

The observations on P; uptake and release in A. johnsonii 210A raised 

questions about the Pj transport mechanism(s) in this organism. In the following 

sections, the current knowledge of P( transport processes in prokaryotes will be 

summarized. 

2. Pj transport in prokaryotes 

Phosphorus is an integral part of the cellular metabolism of bacteria since it is 

indispensible for energy supply and for DNA, RNA and phospholipid biosynthesis. 

In order to grow, microorganisms must therefore take up Pj and/or phosphorus-

containing nutrients from the environment. These compounds have to pass the cell 

envelope which encloses the cytoplasm. 

In gram-negative bacteria, this envelope consists of two membranes, the 

cytoplasmic (or inner) membrane and the outer membrane, which are separated by 
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the peptidoglycan containing periplasm (Fig. 1) (24, 33, 151). Together with the 

underlying peptidoglycan, the outer membrane gives the cell its rigidity and shape. 

It contains proteinaceous pores that allow the diffusion of most small molecules 

such as Pj, amino acids, and sugars. The cytoplasmic membrane is quite different 

from the outer membrane in that it allows nutrients to be concentrated within the 

cytoplasm. All cell membranes allow the free diffusion of water but have proteins 

that form permeases for active transport of other hydrophilic solutes. In contrast to 

gram-negative bacteria, gram-positive bacteria are not enclosed by an outer 

membrane or periplasm. Instead, their cytoplasmic membrane is directly surrounded 

by a thick and rigid cell wall (Fig. 1) (24, 151). 

cell wall 

X ) O O O O Q . O Q O C —surface layer 
outer membrane 

—tele hole acid 

peptidoglycan 

cytoplaemlc 
membrane 

GRAM-POSITIVE GRAM-NEGATIVE 

Figure 1. Schematic presentation of the cell envelope of gram-positive and gram-
negative bacteria. PP, protein porine; C, cytoplasmic membrane embedded protein 
{e.g., carrier); BP, binding protein; PPS, periplasmic space; A, outer membrane 
protein; LP, lipoprotein; LPS, lipopolysaccharide. 

P, transport has been documented in a number of microorganisms, including 

Escherichia coli (173), Pseudomonas aeruginosa (114, 157), Micrococcus lysodeik-

ticus (1, 71, 72), Enterococcus faecalis (87-90), Lactococcus lactis (132, 159, 161), 
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Staphylococcus aureus (161), and several other bacterial species (10, 40, 92, 170, 

176, 177, 224). The assimilation of P, and phosphate-containing nutrients has been 

most intensively studied in E. coli. One of its Pj transport systems is part of a 

regulatory complex concerning phosphorus supply, and has been studied since the 

early 1960s. In addition, its molecular mechanisms for the extraction of ?, from the 

environment seem to represent the most common solutions to the problem of Pj 

transport in bacteria. The Pf transport systems of E. coli will therefore form the 

main portion of the second part of this introduction, but relevant information on 

other organisms has also been included. 

2.1 Pj uptake through the outer membrane and the periplasm 

While Pj is the preferred P source, E. coli also uses organo-phosphates that occur in 

nature. Pf esters like sK-glycerol-3-P, glucose-6-P or mannose-6-P can enter the cell 

intact. However, a wide range of organic phosphate compounds cannot be metaboli­

zed unless they are degraded to Pj. Such Pj esters cross first the outer membrane, 

and are then hydrolysed to release P( in the periplasm. This P( is then transported 

across the cytoplasmic membrane into the cytoplasm. 

The outer membrane functions as a molecular sieve. It contains water-filled 

protein channels through which hydrophilic solutes with a molecular mass of less 

than 600 to 1000 Da can pass in a diffusion-like process. When grown at excess Pi; 

E. coli produces two general pore forming proteins, OmpF and OmpC (126). The 

synthesis of a third pore forming protein, PhoE, is induced when cells are grown 

under Pj limitation (153). The OmpF and OmpC pores have a preference for 

cations, whereas PhoE pores are more efficient for anions, e.g. P( and phosphate-

containing nutrients (17, 18, 23, 108, 109). Site-specific mutation analysis and 

determination of the three-dimensional structure of the PhoE pore at 3 Â resolution 

have indicated that the anion selectivity is provided by a positively charged lysyl 

group which protrudes into the channel (18, 44). PhoE-like pores have also been 

found in Pseudomonas aeruginosa (82, 158), Enterobacter cloacae (206), Klebsiella 

aerogenes (184), Klebsiella pneumoniae (158) and Salmonella typhimurium (16). 

Thus, diffusion through these anion-selective pores seems to provide gram-negative 
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bacteria with an unspecific mechanism for the transport of P; and Prcontaining 

nutrients through the outer membrane. 

The periplasm of E. coli contains a number of proteins, including phosphatases 

and solute-binding proteins (167). Among the phosphatases, the phoA-encoded 

nonspecific Phosphomonoesterase with alkaline pH optimum has attracted much 

attention since its discovery (195, 196). Its increased synthesis during Pj limitation 

allows E. coli to use many non-transportable Presters as sole P sources. Other phos­

phatases in the periplasm of E. coli include acid phosphatase (optimum pH 2.5), 

which is able to degrade short-chain polyphosphates (47), 2',3'-cyclic phospho­

diesterase (19), and glycero-phosphoryl-diesterase (115). PhoA-like periplasmic 

phosphatases have also been found in other gram-negative bacteria, such as Salmo­

nella typhimurium (212), Pseudomonas fluorescens (73), Pseudomonas aeruginosa 

(42, 192), and Acinetobacter Iwoffi (222). 

Solute-binding proteins are part of permeases which transport solutes with 

high-affinity across the cytoplasmic membrane. These permeases are inactivated 

when the binding protein is released into the medium as a result of disruption of the 

periplasmic space, e.g. by osmotic shock or during the formation of spheroplasts 

(147). Several functions have been assigned to solute-binding proteins. Two of the 

most common suggestions are that the binding proteins increase the effective con­

centration of the solute in the periplasm or that they enhance the affinity of other­

wise binding protein-independent transport systems (9, 49, 162). Both suggestions 

can be persuasively excluded (93). Binding proteins may facilitate the movement of 

the solute through the periplasm by restricting diffusion to two rather than three 

dimensions (36, 95). Thus, the lateral diffusion of periplasmic binding proteins may 

resemble that of the binding proteins in gram-positive bacteria which, in the 

absence of a periplasm, are anchored to the cytoplasmic membrane by a lipid group 

(59, 80, 155). Finally, binding proteins may impose directionality on transport via 

the uptake system with which it is associated (95). One of the P, permeases of E. 

coli, the phosphate specific transport system (Pst), acts in conjunction with a 

periplasmic Prbinding protein (see below). 
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2.2 Pj transport across the cytoplasmic membrane 

The cytoplasmic membrane of bacteria forms a permeability barrier for hydrophilic 

solutes (41). The translocation of these compounds is mediated by specific transport 

proteins which are embedded in the membrane. The mechanisms of solute transport 

can be divided into two classes: (i) primary transport, and (ii) secondary transport 

(86). By definition, primary transport systems mediate the vectorial movement of 

the solute across the cytoplasmic membrane coupled to a chemical reaction. These 

transport systems comprise, amongst others, ion translocating ATPases (e.g. FQF, 

H+-ATPase) and ATP-driven, binding protein-dependent permeases for solutes. 

Secondary transport systems (carriers) catalyze the translocation of a solute across 

the membrane in uniport, or in symport or antiport with other solutes without being 

associated with a chemical reaction. The driving force for transport is supplied by 

electrochemical solute gradients. Carriers mediate facilitated diffusion, but may 

perform osmotic work by coupling the flux of one solute to that of another, such as 

protons or sodium ions. In these latter cases, the transport systems are indicated as 

proton and sodium motive force-driven, respectively. Thus, while primary transport 

systems are intrinsically unidirectional, secondary transport systems mediate solute 

fluxes in uptake or efflux direction in accordance with the prevailing electrochemi­

cal gradients (86, 160). 

E. coli possesses four Pj transport systems which can be classified on the basis 

of substrate specificity, and bioenergetic and structural criteria (Fig. 2). The 

phosphate specific transport system (Pst) and phosphate inorganic transport (Pit) 

system are specific for P( and designed for net Pj movement. The remaining two Pi 

transporters mediate an anion exchange reaction in which Pj is accepted as an 

analog of an organo-phosphate, such as sn-glycerol-3-P (GlpT) or glucose-6-P 

(UhpT) (116, 132, 173). Pit, GlpT and UhpT are secondary transport systems. Pit is 

probably a «H7Pj symport system (173). GlpT and UhpT are antiport systems that 

couple the accumulation of sugar phosphates to the downhill release of Ps under 

physiological conditions (2, 3, 181, 182). Pit, GlpT and UhpT do not use a 

periplasmic binding protein and apparently consist of a single transmembrane 

protein (61, 64, 74, 98, 103, 120). The Pst system operates as a primary transport 

10 
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mechanism. Its structure is far more complex, involving several membrane proteins 

in addition to the periplasmic Prbinding protein (188). In the following sections, 

the mechanism and regulation of the P( transport systems of E. coli are described in 

more detail. 

Gly-3P 
Pst (ft Q Q » .tm=^ y GIpT 

GIC-6P 

UhpT 

Figure 2. P; transport systems in Escherichia coli. Pst, phosphate specific transport 
system; Pit, phosphate inorganic transport system; UhpT and GlpT, PrIinked antiport 
systems for the transport of glucose-6-P and sw-glycerol-3-P, respectively. 

Pst system 

The Pst system of E. coli is typical of a class of periplasmic permeases which are 

composed of one periplasmic substrate-binding protein and three membrane-bound 

components (96). This class of bacterial uptake systems belongs to an expanding 

family that includes several important eukaryotic proteins, e.g. the multidrug 

resistance glycoprotein of tumor cells (65) and the cystic fibrosis transmembrane 

conductance regulator (172), and has been given the name "Traffic ATPases" (7, 9, 

55) or "ABC transporters" (95, 96). The latter designation refers to the highly 

11 
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conserved ATP-binding cassette which is the most characteristic feature of this 

superfamily. 

There are four genes (pstS, pstA (formerly phoT), pstC (phoW), and pstB), 

encoding proteins required for P; transport through the Pst system (190). The pstS-

encoded Prbinding protein binds Pj in the periplasm and then apparently shepherds 

this solute to the transporter in the cytoplasmic membrane (78, 137, 138, 189, 217). 

The Prbinding protein has been purified to homogeneity from crude shock fluid. 

Like other periplasmic binding proteins, the Prbinding protein consists of a single 

polypeptide with one tight solute-binding site with a dissociation constant (KD) of 

0.8 /xM P; (77, 111, 138, 191). This KD value is comparable to the K, of the Pst 

system for P( transport (K, between 0.3 and 0.7 /*M Pj) (139, 174, 218). DNA 

sequence determinations of the pstS gene indicate a molecular weight of 34,400 for 

321 amino acid residues (127, 189). A high-resolution (1.7 Â) X-ray crystal 

structure is available for the Pj-binding protein (111, 125), from which information 

about the selectivity at the atomic level is deduced. The Prbinding protein is 

ellipsoidal with an axial ratio of 2 : 1, consisting of two similar, globular domains 

with a cleft in between which forms the solute binding site. Anhydrous monovalent 

and divalent Pj (H2P04" and HP04
2) are bound with coordination via 12 hydrogen 

bonds to amino acid residues, while sulfate is excluded (125). A conformational 

change in the binding protein, induced by binding of the solute, facilitates the 

interaction with the transmembrane transport proteins (135, 148, 149, 152, 163). 

The transmembrane portion of the Pst system is formed by the hydrophobic 

PstA and PstC proteins. The pstA and pstC genes encode integral membrane 

proteins with six membrane spanning helices (45, 46, 211). The pstB gene encodes 

a hydrophilic protein containing an ATP-binding sequence motif. It interacts with 

PstA and/or PstC on the cytoplasmic side of the membrane (45). PstB shares 

extensive homology around the nucleotide-binding with HisP, OppD and MalK 

proteins of the similarly organized, binding protein-dependent histidine, oligopeptide 

and maltose permeases, respectively (96). Recently, the direct involvement of ATP 

hydrolysis was demonstrated in the histidine and maltose transport systems reconsti­

tuted in membrane vesicles and proteoliposomes (8, 25, 48, 49, 51, 99, 162). By 

analogy with other Traffic ATPases the PstB protein probably functions as a dimer 
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(209). Mutational analysis of PstA and PstC suggest that Pj is translocated through 

PstA and PstC via a "Pj relay" of three arginine/glutamate (or aspartate) salt 

bridges. The necessary movement of the participating PstA and PstC helices, to 

open or close the "phosphate channel", may be achieved by cis-trans isomerisation 

of two pairs of proline residues, energized by ATP hydrolysis via PstB (35, 211). 

Together with the phoU gene, encoding a regulator protein (144, 146, 183, 

185), the pst genes form a pstSCAB-phoU operon (190), the expression of which is 

highly regulated. The pstS promoter is expressed at a low, basal level when Pj is 

present in excess. It shows a 100-fold derepression during Prlimited growth (141). 

The pstSCAB-phoU operon is part of the phosphate (Pho) regulon which consists of 

several phosphate-starvation-induced (psi) genes, the products of which act 

primarily in the assimilation of environmental phosphorus (209). Besides the Pst 

system, these products comprize the outer membrane porin PhoE, the periplasmic 

alkaline phosphatase PhoA, a periplasmic binding protein-dependent uptake system 

for 5«-glycerol-3-P together with a periplasmic glycero-phosphoryl-diesterase (enco­

ded by the ugp operon) (37, 38, 105, 115, 154), and proteins involved in the trans­

port and metabolism of phosphite and phosphonates (encoded by the phn operon) 

(141). In addition, psi genes are involved in the regulation of the synthesis of high 

molecular-weight linear polyphosphates (165). 

Pj control over the synthesis of Pho regulon proteins uses a transmembrane 

signal transduction mechanism in which the extracellular P; level is sensed (166). A 

model for signal transduction is shown in Fig. 3. Signal transduction requires the 

Pst system, PhoU and the partner proteins PhoR and PhoB which make up a two-

component gene regulatory system for Ps control (185, 209). PhoR is an integral 

membrane sensor protein which autophosphorylates itself (from ATP) and acts as a 

histidine kinase that phosphorylates the response regulator PhoB when cells are 

under P; limitation (128, 131, 221). PhoB is a soluble DNA-binding effector protein 

that functions only when it is phosphorylated. Phospho-PhoB activates transcription 

by binding to the consensus "Pho box" sequences upstream the Pho regulon pro­

moters (129, 130). The regulation of (de)phosphorylation of PhoR and PhoB is a 

complex process, which is not fully understood. The model in Fig. 3 depicts three 

events important in Pj repression. The first step involves the saturation of PstS by 
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and Rosenberg (107) who studied the effect of ionophores on Pf transport in 

membrane vesicles from E. coli energized by the oxidation of D-lactate or ascor-

bate/phenazine methosulphate. Although in these experiments, P| transport was 

biased towards the transmembrane pH gradient (ApH) component of the proton 

motive force, the transport process appeared to be electrogenic. This latter property 

seems to be restricted to Pit since GlpT and UhpT mediate an electroneutral Pi 

transport mechanism (132). The absence of proton motive force-driven uptake of P( 

in membrane vesicles prepared from the Pit-deficient E. coli strain K-10 is consis­

tent with this notion (107). 

Like other secondary transport systems, e.g. LacY (101), Pit is probably 

composed of a single polypeptide. All known pit mutations map within the same 

locus (77 min) of the E. coli chromosome and are complemented by transformation 

with a plasmid carrying a 2.2 kb chromosomal SaK-Aval fragment. This fragment 

was sequenced and an open reading frame comprising 1287 bp was found. The 

deduced polypeptide contains 429 amino acids corresponding with a molecular mass 

of 46.2 kDa (62, 64). The actual sequence data have not yet been published. 

UhpT and GlpT system 

Although earlier classifications considered the P; transporters GlpT and UhpT of E. 

coli to be further examples of «HVanion symport (85, 117), we now know that 

these systems belong in the category of Prlinked antiport (2, 61, 63, 91, 116, 132, 

133, 156, 181, 220). Besides from studies on the E. coli systems, most of our 

current knowledge about Prlinked antiport also comes from the characterization of 

the sugar-phosphate transporters in Lactococcus lactis and Staphylococcus aureus 

(for review, see 132 and 159). 

The Prlinked anion exchangers in these three organisms appear to share the 

following properties. First, they mediate the homologous PjiPj and organo-phospha-

te:organo-phosphate exchange and the heterologous exchange of P; and organo-

phosphate (2, 4, 134, 143, 181, 182). Arsenate freely substitutes for P( during both 

homologous and heterologous exchange (134). Second, the antiporters strongly 

favor H2P04" above HP04
2", but select randomly among the available mono- and 
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divalent organo-phosphates. The affinity of the exchangers for the organo-phosphate 

species is at least 10-fold higher than for P( (or arsenate). Thus, the UhpT system 

has a K, of about 1.2 mM for Pi; but a K, of 20 /*M for glucose-6-P (3, 132-134, 

143). Third, the antiporters maintain electroneutrality during the homologous and 

heterologous exchange reactions by translocating P( and organo-phosphates with a 

pH-dependent variable exchange stoichiometry. A carrier protein can be envisaged 

in which a bifunctional active site accepts either two monovalent anions, or a single 

divalent species. During heterologous exchange at pH values at which the divalent 

organo-phosphate is prevailing in aqueous solution, the antiporters will predomi­

nantly mediate the exchange of two molecules of H2P04" against one molecule of 

divalent organo-phosphate. Concomitantly with decreasing pH (7 to 5), the hetero­

logous exchange ratio will fall from 2:1 down to 2:2 (= 1:1) as pairs of mono 

anions move against each other (3, 132, 133). Besides via heterologous exchange, 

the Prlinked antiporters can mediate the net accumulation of organo-phosphate via a 

pH gradient (interior alkaline)-promoted asymmetrical, homologous exchange of 

one molecule of divalent organo-phosphate (on the inner surface of the membrane) 

against two molecules of the monovalent species (on the outer surface of the mem­

brane) (3). 

Production of the UhpT and GlpT transporters is not P; regulated, but induced 

specifically by extracellular glucose-6-P and 2-deoxyglucose-6-P (54), or sn-

glycerol-3-P (116), respectively. The expression of the uhpT gene is dependent on 

the function of three regulatory genes, uphABC (213, 214). UhpA and UhpB are 

members of two-component regulatory proteins, such as PhoB/PhoR and others 

(185). Sequence homology suggests that the membrane protein UhpB may be a 

histidine-protein kinase and, in the presence of exogenous glucose-6-P and the 

membrane protein UhpC, may phosphorylate and activate UhpA, a transcriptional 

activator for the uhpT gene (98, 140, 214). In addition, the uhpT gene expression is 

subject to catabolite repression and is reduced 2- to 3-fold when cells are grown in 

the presence of both glucose-6-P and glucose. This decrease is reversed by cyclic 

AMP, and it has been found that the uhpT promoter contains a typical binding site 

for the cyclic AMP receptor protein (CAP) (140). This catabolite repressibility of 

Uhp synthesis may be necessary to prevent excessive flux of metabolites through 
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the glycolytic pathway, which can lead to growth inhibition or killing (102). 

3. Outline of this thesis 

Some acinetobacters have the ability to accumulate more P( than is required for 

growth. Together with metal ions, this Pj is stored as a metal polyphosphate chelate 

in granules in the cytoplasm of the cell. Though acinetobacters are strictly aerobic 

organisms, polyphosphate-accumulating strains are enriched in wastewater treatment 

plants running in anaerobic/aerobic cycles. There, they accumulate polyphosphate 

during the aerobic phase, and subsequently degrade this polymer during 

anaerobiosis. The polyphosphate metabolism of one of these strains, A. johnsonii 

210A, is relatively well studied (Fig. 4) and there is evidence that polyphosphate 

plays a role as an energy reserve. In contrast, virtually nothing is known about the 

transport processes which are involved in the uptake or release of Pj in Acine-

tobacter. Therefore, the aim of this thesis was to study the mechanisms of P( trans­

port in A. johnsonii 210A in relation to the synthesis and degradation of polyphos­

phate. Special attention was given to the possibility of recycling of metabolic 

energy during the excretion of Pj. This mechanism would enable the organism to 

regain the energy which was invested in the uptake of Pj in a similar way as was 

proposed by Michels et al. (142) in their "energy recycling model". 

The investigations on P, transport in A. johnsonii 210A started with the 

identification of the Pj transport systems in whole cells. Chapter 2 describes the 

presence of a primary, periplasmic binding protein-dependent Pf transport system 

and a secondary Pj transport system in A. johnsonii 210A. These permeases show 

analogy to the Pst and Pit system of E. coli. The energetics and mechanism of the 

secondary P; transport system of A. johnsonii 210A were studied in detail in 

membrane vesicles and in proteoliposomes in which the transport protein was 

functionally reconstituted. Strikingly, the secondary Pj transport system shows 

specificity for a soluble, neutral metal phosphate (MeHP04) complex rather than Pj. 

Several modes of carrier-mediated transport of MeHP04 have been analysed as a 

function of pH and proton motive force. The data have been incorporated into a 

kinetic model of the transport cycle of H+/MeHP04 cotransport which is presented 
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Figure 4. Polyphosphate (PolyP) metabolism in A. johnsonii 210A: 1, polyphosphate 
synthesis; polyphosphate degradation via 2, polyphosphatase and 3, polyphosphate: 
AMP phosphotransferase; 4, adenylate kinase; 5, ATP consumption by energy-
requiring processes; 6, P( and cation (Me) transport. 

in Chapter 3. The properties of the Pit system of E. coli were studied for compa­

rison. In Chapter 4, the Pit system is identified as a MeHP04 permease operating 

via a similar mechanism as the secondary MeHP04 transport system of A. johnsonii 

210A. Both MeHP04 transport systems may represent a new class of bacterial 

porters. Chapter 5 reports on the relation between the substrate specificity of the 
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two Pj transport systems of A. johnsonii 210A, the availability of Pj species in its 

aquatic environment, and the metabolism of metal polyphosphate granules. In view 

of the limited insight into the bioenergetics of the transport of amino acids in 

Acinetobacter, and the possible energetic role of a MeHP04 efflux-induced proton 

motive force in the accumulation of these solutes, several secondary amino acid 

transport systems were characterized in A. johnsonii 210A. A description of the 

energetics of three such systems is presented in Chapter 6. Evidence for energy 

recycling by MeHP04/H
+ excretion via the secondary MeHP04 transport system in 

A. johnsonii 210A is summarized in Chapter 7. In this chapter it is demonstrated 

that a MeHP04/H
+ efflux-induced proton motive force can drive various energy 

consuming processes, such as the synthesis of ATP and the retention of amino 

acids, when oxidative phosphorylation is impaired. Finally, important implications 

of the results presented in the preceding chapters are discussed in Chapter 8. 
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Summary 

The transport of V, was characterized in Acinetobacter johnsonii 210A, which is 

able to accumulate an excessive amount of phosphate as polyphosphate under aero­

bic conditions. P( is taken up against a concentration gradient by energy-dependent, 

carrier-mediated processes. A. johnsonii 210A, grown under P( limitation, contains 

two uptake systems with K, values of 0.7 ± 0.2 /*M and 9 ± 1 pM. P< uptake via the 

high-affinity component is drastically reduced by 7V,JV'-dicyclohexylcarbodiimide, an 

inhibitor of the H+-ATPase, and by osmotic shock. Together with the presence of 

Prbinding activity in concentrated periplasmic protein fractions, these results sug­

gest that the high-affinity transport system belongs to the group of ATP-driven, 

binding-protein-dependent transport systems. Induction of this transport system upon 

transfer of cells grown in the presence of excess P( to Pj-free medium results in a 6-

to 10-fold stimulation of the P; uptake rate. The constitutive low-affinity uptake 

system for P( is inhibited by uncouplers and can mediate counterflow of Pj, indica­

ting its reversible, secondary nature. The presence of an inducible high-affinity 

uptake system for P< and the ability to decrease the free internal P; pool by forming 

polyphosphate enable A. johnsonii 210A to reduce the Pj concentration in the 

aerobic environment to micromolar levels. Under anaerobic conditions, polyphos­

phate is degraded again and P, is released via the low-affinity secondary transport 

system. 

Introduction 

Enhanced biological phosphorus removal from domestic wastewaters in full-scale 

activated sludge plants is currently perceived to hinge on the provision of alternate 

stages in which the activated sludge is subjected to anaerobic and aerobic conditions 

(40). A characteristic feature of such plants is that P,, after being released from the 

biomass in an anaerobic stage, is reincorporated in the biomass during aeration, 

together with part or all of the influent P, (16). Significant numbers of polyphos-

phate-accumulating bacteria, especially from the gram-negative genus Acinetobacter, 

have been isolated from activated sludge in which biological phosphorus removal 
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has been observed (14, 29). Similar to activated sludge, polyphosphate-accumulating 

Acinetobacter spp. take up Pj under aerobic conditions and release it anaerobically 

(10). One of these strains, Acinetobacter johnsonii 210A, is able to accumulate up 

to 300 mg of Pj per g (dry weight). The extent of P( accumulation depends on 

growth rate, carbon and energy source, limiting nutrients and temperature (46). 

When oxidative phosphorylation is impaired (e.g., in the absence of oxygen or an 

electron donor), polyphosphate is degraded and P; is released into the medium (43). 

Two enzymes are involved in the degradation of polyphosphate: (i) polyphosphatase 

and (ii) polyphosphate:AMP phosphotransferase (44). The latter enzyme has been 

characterized recently (8). In combination with adenylate kinase, this enzyme 

enables the organism to conserve the energy from the phosphate bonds in 

polyphosphate and to use the accumulated polymer as a source of ATP when energy 

cannot be obtained otherwise (45). 

The possible role of Acinetobacter spp. in the enhanced biological phosphorus 

removal from domestic wastewaters raised questions about the involvement of P( 

transport systems in the uptake and release of P( in A. johnsonii 210A. The nature 

and properties of Pj transport systems have been investigated in other bacterial 

strains, including Escherichia coli (36, 37, 49), Pseudomonas aeruginosa (24, 30), 

Lactococcus lactis (31) and Micrococcus lysodeikticus (12). In E. coli and P. 

aeruginosa, two major Pj transport systems with low and high affinity for Pj are 

present (36). In the work reported here, the presence of two P; transport systems in 

A. johnsonii 210A is demonstrated. One system is an inducible, ATP-dependent, 

binding protein-dependent permease enabling the organism to reduce the Pj concen­

tration in the aerobic environment to micromolar concentrations. The other system 

is a constitutive, reversible secondary transport system which mediates the efflux of 

Pj under anaerobic conditions. 

Materials and methods 

Organism and culture conditions 

A. johnsonii 210A was grown aerobically at 30 °C in a buffered medium (pH 7.2) 

43 



Chapter 2 — 

containing 20 mM Na-butyrate, 20 mM NH4C1, 5 mM MgS04-7H20, 0.4 mM 

CaCl2-2H20, 10 mM KCl, 2 ml trace element solution per liter, and 50 mM Tris-

HC1. The composition of the trace element solution has been described by Van 

Groenestijn et al. (45). Sterile sodium phosphate, pH 7.2, was added to a final 

concentration of 5 mM (high-P; medium) or 20 pM (low-Pj medium) for cultivation 

of high-Pj-grown and low-Prgrown cells, respectively. E. coli K-12 was grown 

under P( limitation in a minimal medium with glucose and 0.1 % (wt/vol) yeast 

extract as phosphorus source (17). For growth in medium with excess Pi; 5 mM 

sodium phosphate buffer was added. Cells at the logarithmic phase were harvested 

by centrifugation (7,000 x g, 10 min). The pellet was washed and resuspended as 

indicated below. 

Transport assays 

Cells, washed and resuspended in 20 mM potassium Pipes (pH 7.0), containing 10 

mM MgS04 and 50 pg chloramphenicol per ml, were stored on ice and used within 

2 h. Transport assays were performed at 30 °C. Cells were diluted in 100 /il of air-

saturated buffer to about 0.5 mg of protein per ml. The suspension was kept aerobic 

by flushing with water-saturated air. Cells were preincubated for 3 min with 2 /xM 

PQQ, after which 20 mM glucose was added. Two minutes later uptake was started 

by the addition of 32P-labeled potassium phosphate (0.33 to 1.47 TBq/mol) or Re­

labeled L-lysine at concentrations as specified in the figure legends. At given time 

intervals, 2 ml of ice-cold 0.1 M LiCl was added and the samples were filtered 

immediately through cellulose-nitrate filters. Filters were washed once with 2 ml of 

0.1 M LiCl. The radioactivity on the filters was measured with a liquid scintillation 

counter. To remove contaminating Pi; the glassware used for 32P; transport assays 

was kept in chromic acid and rinsed 15 times with distilled water before use. 32Pj-

labeled potassium phosphate was filtered through a 0.45-/im-pore-size cellulose 

nitrate filter prior to use, in order to remove 32P; adsorbed to particles (27). 
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EDTA treatment of intact cells 

To permeabilize the outer membrane, cells were washed three times with 20 mM 

potassium Pipes (pH 7.0), containing 50 /*g chloramphenicol per ml and suspended 

in this buffer at an A ^ of about 30. After 3 min of preincubation of the cell 

suspension at 30 °C, 1 mM sodium EDTA (pH 7.0) was added. MgS04 was added 

10 min later to a final concentration of 10 mM. Cells were washed once with 20 

mM potassium Pipes (pH 7.0), containing 10 mM MgS04 and 50 fig chlorampeni-

col per ml, stored on ice and used within 2 h. 

Determination ofApH+ 

The A\(/ (interior negative) was determined from the distribution of TPP+, using a 

TPP+-selective electrode (39). The standard assay was done at 30 °C with EDTA-

treated cells in 1 ml of oxygen-saturated buffer [50 mM potassium Pipes, 10 mM 

MgS04, 50 jiig chloramphenicol per ml, pH 7.0] in the presence of 4 juM TPP+. 

Cells were supplied with metabolic energy by glucose oxidation as described in 

"Transport assays". Measurements were corrected for nonspecific probe binding to 

the cells (25). The pH-gradient across the membrane was calculated from the in­

crease in A^ upon the addition of nigericin, assuming a complete interconversion of 

the ApH into the A^ (11). 

Osmotic shock, preparation of periplasmic protein fractions and Prbinding experi­

ments 

Cells were exposed to an osmotic shock procedure, essentially as described by Neu 

and Heppel (28). Cells were washed three times with 20 mM potassium Pipes (pH 

7.5), containing 50 /*g chloramphenicol per ml and suspended to an A660 of about 

5.0 in 20 mM potassium Pipes (pH 7.5), containing 0.75 M sucrose, and 1 mM 

EDTA. This cell suspension was incubated for 10 min at 20 °C to induce plasmo-

lysis. Cells were collected by centrifugation (7,000 x g, 20 min). Periplasmic 

proteins were released upon resuspension of the cell pellet in 50 volumes of 0.1 
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mM MgS04 at 20 °C. The osmotic shock treated cells were collected by 

centrifugation and used for transport assays. The supernatant (shock fluid) was 

concentrated 20-fold via ultrafiltration under N2 pressure as described by Abee et al. 

(1) and dialyzed extensively at 4 °C against 20 mM potassium Pipes (pH 7.5). 

Binding of 32P( to concentrated shock fluid was measured according to Richarme 

and Kepes (35), by the addition of 10 piM 32P( (2.81 TBq/mol) to 0.5 ml of shock-

fluid (0.3 mg of protein per ml). After incubation for 10 min at 20 °C, proteins 

were precipitated by the addition of 4 ml of an ice-cold saturated ammonium 

sulphate solution. The mixture was immediately passed through a nitrocellulose 

filter, which was washed twice with 2 ml ice-cold saturated ammonium sulphate. 

The radioactivity retained on the filter was measured by scintillation counting. In 

control experiments, binding of 32Pj to the filter and to bovine serum albumin was 

determined. 

Counterflow of32Pi and '4C-lysine 

Intact cells, grown in high-Pj medium, were deenergized by incubation for 12 h at 

30 °C in 20 mM potassium Pipes (pH 7.0), containing 10 mM MgS04, 50 fig chlo­

ramphenicol per ml, and 2.5 mM DNP. Cells were washed twice with 20 mM 

potassium Pipes (pH 7.0) containing 30 mM sodium azide and 50 /xg chlorampheni­

col per ml and suspended in this buffer to an A ^ of about 30. After the addition 

of 1 mM sodium EDTA, the cell suspension was incubated at 30 °C for 10 min. 

Subsequently, the cells were washed and resuspended to a concentration of 0.5 mg 

of protein per ml in loading buffer (pH 7.5), containing 100 mM potassium Pipes, 

10 mM MgS04, 30 mM sodium azide, 50 pig of chloramphenicol per ml, and 20 

fjiM CCCP. Cells were loaded for 3 hours at 20 °C with 10 mM potassium 

phosphate or 3 mM L-lysine. Control cells were incubated in a buffer without 

potassium phosphate or L-lysine. Cells were concentrated to 20 mg protein per ml 

and diluted 200-fold in 400 y\ loading buffer, containing a final concentration of 10 

IxM 32P-labeled potassium phosphate (3.91 TBq/mol) or 16 i*M L-[U-14C]lysine 

(1.26 TBq/mol). The uptake of the radio-labeled substrates was monitored in time at 

30 °C as described in "Transport assays". 
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Intracellular ATP concentrations were determined by the luciferin-luciferase method 

of Jetten et al. (22). The assay of alkaline phosphatase activity in concentrated 

shock fluid with p-nitrophenylphosphate as the substrate was carried out according 

to Yashphe et al. (50). The respiration rate was measured with a Clark-type oxygen-

electrode. Protein was determined by the method of Lowry et al. (26) with bovine 

serum albumin as a standard. Soluble phosphates were extracted from cells by incu­

bation in cold 5 % (wt/vol) TCA for 20 min according to the method of Helling­

werf et al. (19). P| in the cells was assayed according to Avron (5) as a phospho-

molybdate complex extracted into an organic phase of isobutanol-benzene. 

Materials 

Cellulose-nitrate filters (0.45 ^m pore-size) were supplied by Millipore, Etten-Leur, 

the Netherlands, and Schleicher und Schuell, Dassel, Germany. 32Pi (carrier-free) 

and L-[U-14C]lysine (11.5 TBq/mol) were obtained from the Radiochemical Centre, 

Amersham, Buckinghamshire, UK. The ATP bioluminescence constant light signal 

kit was from Boehringer Mannheim. Other chemicals were reagent grade and 

obtained from commercial sources. 

Results 

Active Pt transport 

(i) Energy-dependent uptake of P,. Washed cells of A. johnsonii 210A, grown in 

high-P, medium with butyrate as the carbon and energy source, took up P; in the 

absence of an exogenous energy supply (Fig. 1). Initial experiments revealed the 

presence of a membrane-bound glucose dehydrogenase in A. johnsonii 210A, like in 

Acinotobacter Iwoffi (47), which requires PQQ for activity (48). Although A. john­

sonii 210A cannot grow on glucose with or without PQQ, or on gluconate, the 

addition to washed cells of 20 mM glucose plus 2 fjiM PQQ resulted in an increase 
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Time (min) 

Figure 1. Uptake of 100 pM P; by washed, high-Prgrown cells of A. johnsonii 210A 
in the absence (O) and presence of 20 mM butyrate (D) or 20 mM glucose-2 (M 
PQQ (A), or by cells treated with 1% chloroform (*)• 

of the respiration rate from 4t to 145 nmol 02 per min per mg protein and a 

stimulation of the ApH+ from -90 to -152 mV (inside negative and alkaline). In the 

presence of 20 mM butyrate, the oxidation rate was 83 nmol of 02 per min per mg 

of protein and the ApH+ -115 mV (inside negative and alkaline). The rate of Pi 

uptake was stimulated in proportion with the respiration rate and the ApH+ (Fig. 1). 

The uptake of Ps was severely impaired by preincubation of the cells with the 

respiratory chain inhibitor CN", the uncouplers DNP or CCCP, or the H+-ATPase 

inhibitor DCCD (Table 1). A total collapse of the ApH+ in EDTA-treated cells after 

the addition of a combination of the ionophores nigericin and valinomycin in the 

presence of glucose-PQQ resulted in a complete abolition of the uptake of ?, (Table 

1). The EDTA treatment itself had no effect on the uptake of Pj and was given to 

facilitate the incorporation of the ionophores into the cytoplasmic membrane of this 

bacterium. When the cell membranes were permeabilized by a treatment with chlo-
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Table 1. Effect of inhibitors on P; uptake in A. johnsonii 210A" 

Inhibitors" (mM) 

None (control) 

CN" 

DNP 

CCCP 

DCCD 

Valinomycin + nigericinc 

0.5 

1.0 

0.5 

1.0 

0.02 

0.005 

Uptake (%) 

100 

8 

5 

54 

24 

32 

30 

2 

" Cells grown in high-Pj medium were washed, treated with 1 mM EDTA, and diluted 
to a protein concentration of 0.3 mg/ml, as described in "Materials and methods". 
After addition of 20 mM glucose and 2 /*M PQQ, the initial rate of P( uptake over the 
first 60 s was determined at a P; concentration of 100 /JM. Cells incubated without 
inhibitors (control) took up P; at a rate of 18 nmol/min/mg of protein (100%). 
* Inhibitors were added 5 min prior to the uptake experiments, except for DCCD, 
which was added 45 min prior to the uptake experiment. 
c Valinomycin and nigericin were added to final concentrations of 1.5 and 0.15 /*M, 
respectively. 

roform, no Pi was taken up (Fig. 1). These results indicate that the uptake of P; in 

A. johnsonii 210A is an energy-dependent process. Because of the strong stimu­

lation of the Pj uptake rate in the presence of glucose-PQQ, this substrate was used 

for energization of cells in further experiments. 

(ii) Fate of intracellular Pt. Soluble phosphates were extracted from high-Pr 

grown cells of A. johnsonii 210A as described in "Materials and methods". The 

total amount of Pj entering energized cells increased approximately linearly in time 

for at least 10 min. Most of this ?l was incorporated rapidly into cold TCA-soluble 

organic phosphates and into TCA-insoluble phosphates. A minor fraction remained 

in the cells as ?{. Assuming an internal volume of these cells of 3 /*l/mg protein (7), 

an internal Pj concentration of 3 mM can be calculated, implying a 40-fold 
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accumulation of P: under these conditions. 

Effect of Pj deprivation on Pt uptake and accumulation 

The rate of uptake of P( in cells grown in high-Pj medium was 15 to 25 nmol of Pj 

per min per mg of protein. After transfer of these cells into a Pj-free medium, the 

rate of Pj uptake gradually increased to as much as 100 to 150 nmol of Pj per min 

per mg of protein during incubation for 4 h. This stimulation was inhibited in the 

presence of chloramphenicol. Since chloramphenicol had no effect on the Pj uptake 

rate itself, it is concluded that the stimulation reflects de novo protein synthesis. 

Washed cells grown in low-Pj medium took up ?{ at a rate of 100 to 150 nmol of Pj 

per min per mg of protein. This rate was hardly stimulated by the addition of an 

exogenous source of energy. The high endogenous respiration rate of these cells 

(358 nmol of 02 per min per mg of protein) indicates the presence of an internal 

energy reserve. Recently it has been reported that A. johnsonii 210A cells form 

poly-0-hydroxybutyrate when grown at a low Pj concentration (9). Most likely, the 

oxidation of this polymer supplies the energy for the uptake of Pj. An intensive 

accumulation of polyphosphate, known as the overplus phenomenon (18) or as 

polyphosphate supersynthesis (23), has been observed in several microorganisms 

after the addition of P, to phosphorus-starved cells. 

The fate of internalized Pj under these conditions has not yet been investigated. 

Low-Pj-grown cells of A. johnsonii, which took up Pj at a rate of 120 nmol/min/mg 

of protein, maintained an internal concentration of free Pi of 1.5 mM, comparable 

to internal concentrations found in high-Pj-grown cells. However, within 2 min of 

uptake a considerable amount of Pj (more than 85%, versus 15% in high-Pj-grown 

cells) was found in the TCA-insoluble fraction (data not shown). In M. lysodeikticus 

this fraction was shown to be composed mainly of polyphosphate (12, 13). 

Although most of the P; taken up by the low-Pj-grown cells was subsequently 

metabolized, a maximal concentration gradient of 150 was obtained at an external 

Pi concentration of 10 [xM, showing that Pj was taken up against a concentration 

gradient. 
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Table 2. Kinetic parameters of P; uptake in A. johnsonii 210A" 

Low-affinity uptake 

K, (pM) Vmax (nmol/min/mg 

of protein) 

High-affinity uptake 

K, (jM) VmXi (nmol/min/mg 

of protein) 

High-Prgrown cells 41 ± 7 15 ± 3 

Osmotic shock 31 ± 6 10 ± 3 

DCCD 34 ± 7 5 ± 2 

4 ± 1 12 ± 4 

Low-Prgrown cells 9 ± 1 15 ± 5 0.7 ± 0.2 80 - 120c 

" The kinetics of P; uptake was analysed in energized high-Prgrown control cells, 
shocked cells, cells treated with 15 nmol DCCD per mg of protein, and in low-Pr 

grown cells, using Lineweaver-Burk and Eadie-Hofstee plots. Initial velocities in high-
and low-Prgrown cells were determined over the first 20 and 8 s, respectively, at a Pj 
concentration between 0.025 and 500 ^M. Values are means from four separate 
experiments. 
4 -, high-affinity Pj uptake system could not be detected under these conditions. 
c ^max w a s dependent on growth conditions. 

Kinetic parameters ofPi uptake 

The uptake of P: in high- and low-P;-grown cells, energized by glucose-PQQ, was 

linear for at least 60 and 8 s, respectively, in the range of 0.025 to 500 fiM Pj. The 

kinetic parameters of this uptake, Kt and Fmax, were determined via linear regression 

analysis of Lineweaver-Burk and Eadie-Hofstee plots. The results show the presence 

of two transport systems in high- and low-Prgrown cells (Table 2). 

Presence of a binding protein-dependent Pt transport system 

(i) Effect of DCCD. In order to examine the presence of an ATP-driven Pi transport 

system, the effect of the H+-ATPase inhibitor DCCD on the internal ATP concentra-
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tion, the ApH+, and Pj uptake was studied in EDTA-treated, high-Prgrown cells. In 

a control experiment, the internal ATP concentration increased from 0.5 to 2.8 mM 

within 2 min after glucose-PQQ addition to washed cells. In a parallel experiment 

in which the cells were preincubated with 15 nmol of DCCD per mg protein, a 

decrease in the ATP concentration was observed from 2.8 to 0.4 mM. The -ZApH 

remained constant at -10 mV (inside alkaline) in DCCD-treated cells, whereas the 

A^ was stimulated from -139 to -180 mV (inside negative). Since the oxidation of 

glucose-PQQ results primarily in the generation of a ApH+, which is partly used for 

ATP synthesis by the H+-ATPase, the higher ApH+ and the lower internal ATP 

concentration in DCCD-treated cells are indications for the inhibition of the H+-

ATPase. Uptake of L-lysine, which is mediated by a secondary transport system in 

this organism (48), was not affected by DCCD up to 30 nmol per mg protein. Pj 

uptake was strongly inhibited by 15 nmol DCCD per mg of protein (Table 1). Only 

one component, resembling the low-affinity transport system kinetically, could be 

demonstrated in DCCD-treated cells (Table 2). This result indicates that phosphate 

bond energy is required for the energization of the high-affinity P, uptake system. 

(ii) Effect of osmotic shock and binding ofPi to concentrated shock fluid. ATP 

plays a role in the energization of periplasmic binding protein-dependent transport 

systems in gram-negative bacteria (2). These transport systems are called osmotic 

shock sensitive because of the loss of the periplasmic binding proteins into the 

medium by osmotic shock (15). Pi uptake in cells of A. johnsonii 210A grown in 

high-Pj (Fig. 2A) and in low-P, medium (Fig. 2B) was inhibited by an osmotic 

shock by approximately 45 and 80%, respectively.Shocked cells maintained an 

intact cytoplasmic membrane and a constant internal pH as was shown in high-Pr 

grown cells in which the respiration rate, the Ai/- or the -ZApH remained constant at 

108 nmol of 0 2 per min per mg of protein, -100 mV (inside negative) and -12 mV 

(inside alkaline), respectively, before and after osmotic shock. This conclusion is 

consistent with the observed insensitivity of the uptake of L-lysine to the shock 

procedure in high-Prgrown cells (Fig. 2C). Kinetic analysis of P{ uptake in shocked 

cells strongly suggests a specific inhibition of the high-affinity P; uptake system by 

osmotic shock (Table 2). 

To investigate whether a P; binding protein was released by osmotic shock, P: 
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Figure 2. Effect of an osmotic shock on the uptake of Pf and L-lysine in A. johnsonii 
210A. The uptake of P, and L-lysine was determined in control cells (D) and shocked 
cells (A) at concentrations of 100 /*M Pj and 1.6 pM L-lysine. (A) P; uptake in high-Pr 

grown cells; (B) P( uptake in low-Prgrown cells; (C) uptake of L-lysine in high-Pr 

grown cells. 

binding experiments were performed with concentrated periplasmic protein fractions 

of high-Prgrown and low-Prgrown cells. Alkaline phosphatase, which is known to 

be present in the periplasm of gram-negative organisms (30, 42), served as a control 

for the presence of periplasmic proteins in the concentrated shock fluids. As an 

additional control, concentrated shock fluid was prepared from E. coli in which the 

presence of a binding protein-dependent Pi transport system has been reported (36). 

The results are very similar for the two organisms (Fig. 3). Prbinding activity was 

detectable in concentrated shock fluids of high-Pj-grown cells of A. johnsonii 210A. 

However, along with the activity of alkaline phosphatase, the Poinding activity 

was appreciably higher in concentrated shock fluid of low-Prgrown cells. This 

result is consistent with the observation that Pj uptake in low-Pj-grown cells was 

more sensitive to osmotic shock than P( uptake in high-Prgrown cells (Fig. 2) and 

points to the presence of an inducible binding protein-dependent transport system 

for P| in A. johnsonii 210A. 
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Figure 3. Prbinding and alkaline phosphatase (AP) activity in concentrated shock fluid 
of E. coli and A. johnsonii 210A. (A) Binding of 10 fM P( to the filter (bar 1), to 
bovine serum albumin (bar 2), and to concentrated shock fluid of high- and low-P;-
grown cells of A. johnsonii 210A (bar 3 and 4) and high- and low-Prgrown cells of E. 
coli (bar 5 and 6); (B) alkaline phosphatase activity in concentrated shock fluid of 
high- and low-Prgrown cells of A. johnsonii 210A (bar 7 and 8) and of high- and low-
Prgrown cells of E. coli (bar 9 and 10). Each value is the mean of two separate 
determinations. 

Presence of a secondary Pt transport system 

ATP-dependent uptake systems for solutes are in general unidirectional and should 

not allow counterflow of substrates. On the other hand, secondary transport systems 

are reversible and should allow an easy exchange of P; inside and outside the cell in 

a deenergized state (1, 31, 32). In order to obtain more evidence for reversible 

secondary P( and L-lysine transport, counterflow of Pj and L-lysine was studied in 

high-Prgrown cells of A. johnsonii 210A which were depleted of endogenous ener­

gy reserves by an aerobic incubation in the presence of 2.5 mM DNP for 12 h at 30 

°C. Within 60 min of incubation with DNP, the internal ATP concentration was 

reduced from 1.5 mM to below 0.01 mM. Endogenous respiration and Pi uptake 
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Figure 4. Uptake of 10 fiM P{ (A) and 16 /iM L-lysine (B) via counterflow in deener-
gized cells of A. johnsonii 210A, which were unloaded ( • ) , or loaded with 10 mM P; 
or 3 mM L-lysine (D). 

decreased to very low rates after 12 h of incubation. Upon addition of glucose-PQQ 

to these starved and washed cells, the respiration rate and P( uptake rate were 

restored to levels comparable to those in energized cells, indicating that (i) DNP 

was removed effectively to allow an energization of the starved cells and (ii) the 

starved cells had retained the transport system in an active form. 

The amounts of V{ and L-lysine taken up via counterflow in deenergized cells 

of A. johnsonii 210A loaded with 10 mM Pj or 3 mM L-lysine and diluted into 

media containing a final concentration of 10 pM 32Pj and 16 ^M L-[U-14C]lysine, 

respectively, were significantly higher than in unloaded cells (Fig. 4). Counterflow 

activity of Pj and L-lysine clearly indicates the presence of reversible secondary 

transport systems for these substrates. 
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Discussion 

The uptake of P( by A. johnsonii 210A is an active process. Pj uptake occurs against 

a concentration gradient, depends on the presence of an oxidizable energy source, 

and is inhibited by respiratory chain inhibitors and uncouplers of the oxidative 

phosphorylation. Kinetic analysis reveales the presence of two Pj uptake systems 

with low and high affinity for Pj. The K, values observed in low-Prgrown cells (0.7 

± 0.2 jiiM and 9 ± 1 ̂ M) are very similar to those reported for E. coli (0.7 /*M and 

9.2 fiM) (27) and P. aeruginosa (1.1 /tM and 10 fiM) (24), but are sixfold lower 

than those observed in high-Pj-grown cells of A. johnsonii 210A (4 ± 1 pM and 41 

± 7 /*M). High-Pj-grown cells contain polyphosphate granules, which are absent in 

low-Prgrown cells. Whether polyphosphate granules and/or the slow degradation of 

polyphosphates in washed cell suspensions of high-Pj-grown cells (43) affects the 

kinetics of P; transport is unclear. However, since the high- and the low-affinity 

systems in both low- and high-Prgrown cells are similarly affected by several 

treatments of the cells, it is concluded that the uptake of Pj in cells grown in low P( 

as well as in high P( medium is mediated by the same two transport systems. Com­

parison of the maximal uptake rates of the transport systems in low- and high-Pj-

grown cells suggests the presence of a constitutive low-affinity system and an 

inducible high-affinity system. The maximal level of induction after transferring 

high-Pj-grown cells to Pj-free medium is obtained within 4 h or approximately two 

cell divisions. 

Strong evidence is obtained for the presence of a periplasmic binding-protein-

dependent high-affinity P; uptake system. The uptake of P( in cells is inhibited by 

an osmotic shock, as is observed for all binding-protein-dependent systems but not 

for secondary transport systems (15). Kinetic experiments show the inactivation of 

the high-affinity transport system by osmotic shock. Further evidence comes from 

the demonstration of Pj binding activity in concentrated periplasmic fractions of 

shocked cells. The observed induction of this activity under Pj limitation is consis­

tent with its involvement in the high-affinity P; uptake system. Binding-protein-

dependent transport systems are energized by a high-energy phosphate bond (2-4, 

20, 21). Pj transport in A. johnsonii 210A can be energized by the oxidation of 
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glucose via a membrane bound, PQQ-dependent glucose dehydrogenase. Since A. 

johnsonii 210A is unable to grow on glucose ± PQQ or on gluconate as the sole 

carbon source, glucose oxidation can result only in ATP synthesis coupled to the 

àpH+ by a membrane bound H+-ATPase. Inhibition of the H+-ATPase by DCCD 

results in a stimulation of the ApH+, a sevenfold decrease of the internal ATP 

concentration, and a drastic reduction in the uptake of Ps via the high-affinity 

transport system. These effects of DCCD point to the involvement of ATP, or a 

related compound, in the energization of Pj uptake via the binding-protein-depen­

dent transport system. 

The low-affinity uptake of Pj is hardly affected by osmotic shock or by DCCD, 

but dissipation of the ApH+ by valinomycin/nigericin decreases the activity strongly, 

suggesting that it is mediated by a Apff+-dependent secondary transport system. In 

contrast to ATP-dependent, binding-protein-dependent uptake systems which are 

usually unidirectional, secondary transport systems mediate reversible transport (1, 

31, 32). Counterflow of P( in deenergized cells loaded with 10 mM Pi confirmed the 

presence of a reversibel (secondary) transport system for Pj. 

The Pj uptake systems in A. johnsonii 210A resemble the two major transport 

systems of E. coli: the high-affinity Prspecific transport system and the constitutive 

low-affinity Pj transport system (37, 49). In both organisms, the two systems are 

present in cells grown in high Pj medium. In low Prmedium, the rate of P: uptake 

via the high-affinity system is increased by a factor of 6 to 10, just as the activity 

of alkaline phosphatase. This phenomenon is well documented for E. coli, where 

the phosphate regulon is an interlocking assembly of genes, transport systems, and 

enzymes dedicated to the singular purpose of ensuring that the cell obtains an 

adequate supply of Pj for growth under adverse conditions (33, 36, 41). The enhan­

ced activity of the binding-protein-dependent transport system and of alkaline phos­

phatase in cells of A. johnsonii 210A under P; limitation suggests the presence of a 

similar regulatory mechanism to scavenge the last traces of Pj and phosphorus-

containing nutrients from the surrounding medium. 

In A. johnsonii 210A regulation of expression of the high-affinity Pj uptake 

apparently takes place via a mechanism of (de)repression of protein synthesis as 

described in E. coli. The ability of A. johnsonii 210A to accumulate polyphosphate 
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during logarithmic growth may result in Pf uptake characteristics which differ from 

those of other microorganisms. In E. coli (27) and Bacillus cereus (38), the uptake 

of Pj in time is biphasic: an initial high rate is followed by a lower one. This 

biphasic kinetics was explained by the presence of two transport systems, of which 

the primary transport system is subjected to inhibition when the primary pool of Pj 

within the cells is filled up. Since phosphate bond-driven transport systems are 

essentially unidirectional and can catalyze the uptake of solutes to much higher 

accumulation levels than secondary transport systems, fr*a«s-inhibition acts as a 

regulatory device to prevent solute accumulation to unacceptably high internal 

levels. This type of regulation of transport activity, usually not found for secondary 

transport systems, has been described for the major potassium transport system of 

Enterococcus faecalis (6), the potassium transport systems TrkA and Kup of E. coli 

(34), and the Pj uptake system of L. lactis (31). In contrast to the biphasic uptake of 

Pj in E. coli and B. cereus, monophasic uptake of Pj is maintained in A. johnsonii 

210A. Pj uptake is linear in time until a maximal level is reached. However, the 

bulk of Pj that is taken up is rapidly metabolized and most likely incorporated into 

polyphosphate in low- and high-Pj-grown cells. As a result of this incorporation into 

a polymer, a low intracellular Pj concentration can be maintained. It is very likely 

that the free-Pj concentration is too low to result in frans-inhibition of the ATP-

dependent high-affinity uptake system, allowing the organism to efficiently take up 

large amounts of Pj. 

The results in this paper allow the following conclusions to be drawn: (i) A. 

johnsonii 210A is able to reduce the Pj concentration in its environment to 

micromolar levels (or lower) because of the presence of an inducible high-affinity 

Pj uptake system in combination with its ability to synthesize and accumulate 

polyphosphate, and (ii) P; efflux is mediated by a low-affinity secondary transport 

system. The secondary transport system could be involved in the anaerobic energy 

metabolism of A. johnsonii 210A. Besides a conservation of metabolic energy 

liberated from the cleavage of polyphosphate via a direct enzymatic synthesis of 

ATP, metabolic energy could additionally be conserved by the generation of an 

electrochemical ion gradient across the cytoplasmic membrane, when Pj is excreted 

together with ions. 
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Chapter 3 

Summary 

The mechanism and energetics of the secondary Pj transport system of A. johnsonii 

were studied in membrane vesicles and proteoliposomes in which the transport 

protein was functionally reconstituted. P( uptake is strictly dependent on the 

presence of divalent cations, like Mg2"1", Ca2+, Mn2+, or Co2+. These cations form a 

MeHP04 complex with up to 87% of the P( present in the incubation mixture, 

suggesting that divalent cations and Pj are co-transported via a metal phosphate 

chelate. Metal phosphate uptake is driven by the proton motive force (interior 

negative and alkaline). The metal phosphate/proton stoichiometry was close to 

unity. The transport system mediates efflux and homologous exchange of metal 

phosphate, but not heterologous exchange of metal phosphate and glycerol-3-P or 

glucose-6-P. Exchange and counterflow were essentially pH-independent while 

efflux and uptake increased with increasing pH. Efflux was inhibited by the proton 

motive force, whereas exchange was inhibited by the membrane potential only. 

These observations are consistent with an ordered mechanism for binding and 

dissociation of metal phosphate and proton to and from the carrier protein and point 

to the recycling of a positively charged, protonated carrier protein during exchange. 

Introduction 

Acinetobacter johnsonii 210A is able to accumulate an excessive amount of 

phosphate as polyphosphate under aerobic conditions. When proton motive force 

(ApH+>driven ATP synthesis is impaired {e.g., in the absence of oxygen or an elec­

tron donor), polyphosphate is degraded and P: is released into the medium. The 

organism possesses a high-affinity P( transport system which is ATP- and binding 

protein-dependent. Derepression of its activity in response to starvation for Pj 

enables the organism to reduce the P; concentration in the aerobic environment to 

nanomolar concentrations. A constitutive low-affinity secondary transport system 

mediates the efflux of P( under anaerobic conditions (38). Recently, the presence of 

two P, uptake systems was also demonstrated in Acinetobacter Iwoffi (41). The Pj 

transport systems in A. johnsonii and A. Iwoffi show analogy with the two major Pf 
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transport systems in Escherichia coli, designated Pst (for phosphate-specific 

transport) and Pit (for P; transport) (26, 40). 

E. coli contains a set of at least four transport systems, each of which carries 

P( into the cell. The Pst and Pit systems are highly specific for Pi; while the remai­

ning two accept Pj as a low-affinity analog of glycerol-3-P (GlpT) or glucose-6-P 

(UhpT). The Pst system is known to be an inducible solute ATPase that acts in 

conjunction with specific periplasmic binding proteins to accumulate Pj at the 

expense of ATP (5, 10, 27). The other three transport systems are chemiosmotic 

carriers. The GlpT and UhpT systems are induced upon addition of the phospho-

rylated substrate to the growth medium and mediate exchange of Pi; the phos-

phorylated substrate, or both. Prlinked exchange carriers of E. coli, Lactococcus 

lactis and Staphylococcus aureus have been well characterized in cells, membrane 

vesicles and in reconstituted systems (1, 3, 9, 21, 24, 31, 32). On the other hand, 

the Pit system of E. coli has not been studied extensively. P; uptake studies in Pst-

deficient strains and in membrane vesicles of wild-type cells revealed the absolute 

requirement of the ApH+ for the energization of this constitutive system (18, 27). 

In view of the current descriptions of secondary P; transport systems and the 

apparent similarities between P: uptake in E. coli and Acinetobacter, it was of inte­

rest to study the energetics and mechanism of the secondary Pj transport system of 

A. johnsonii 210A. Experiments in natural and artificial membranes indicate an 

electrogenic symport mechanism of a metal phosphate chelate and a proton. On the 

basis of effects of pH and membrane potential on the different modes of facilitated 

diffusion processes, a kinetic scheme of the translocation cycle of metal phospha­

te/metal phosphate exchange and metal phosphate/proton symport is proposed. 

Materials and methods 

Preparation of membrane vesicles 

The method for the preparation of membrane vesicles was obtained after modifica­

tion of protocols, originally developed for Pseudomonas aeruginosa (11, 33) and 

Acinetobacter calcoaceticus (37). A. johnsonii 210A was grown at 30 °C in a 
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synthetic Tris-buffered medium (pH 7.0) containing 5 mM sodium phosphate and 

20 mM sodium butyrate as sole carbon and energy source (38). Cells were harves­

ted in midexponential phase by centrirugation at 20 °C and immediately suspended 

at 20 °C to an A ^ of about 10 in 10 mM potassium Pipes (pH 7.0), 0.75 M su­

crose, 10 mM MgS04, 2.5% (wt/vol) lithium-chloride, and 50 /tig of chlorampheni-

col/ml. After addition of 1 mg of lysozyme/ml, the cell suspension was chilled for 

15 min to 2 °C in an ice-bath, then warmed up for 5 min to 30 °C in a water bath 

of 40 °C, and subsequently incubated at 30 °C for 30 min with gentle shaking. This 

treatment turned cells into spheroplasts, which were collected by centrirugation 

(3,500 x g for 15 min) at 20 °C and lysed at 30 °C by dilution of the cell pellet 

into a 50-fold volume of (prewarmed) 10 mM potassium Pipes (pH 7.0) containing 

1 mM MgS04, 1 mM dithiothreitol, 10 /jg of deoxyribonuclease/ml, and 10 /ig of 

ribonuclease/ml. The suspension was incubated at 30 °C for 30 min and then centri-

fuged (10,000 x g for 60 min) at 4 °C. The pellet was resuspended in ice-cold 50 

mM potassium Pipes (pH 7.0) containing 10 mM MgS04. Intact cells and cell 

debris were removed by centrirugation at 4,500 x g for 6 min. The supernatant was 

carefully decanted, after which this centrirugation step was repeated. The super­

natant fluid was centrifuged (30,000 x g for 40 min) at 4 °C. Membrane vesicles 

were suspended at a final concentration of about 10 mg of membrane protein/ml in 

50 mM potassium Pipes (pH 7.0) containing 10 mM MgS04, and rapidly frozen and 

stored under nitrogen. 

Solubilization and reconstitution 

Thawed membrane vesicles (10 mg of membrane protein) were suspended for solu­

bilization in 50 mM potassium Pipes (pH 7.0) to which subsequently was added 

20% (vol/vol) glycerol (2), 1 mM dithiothreitol, 100 mg of acetone-ether-washed 

phospholipids [a mixture of E. coli phosphatidylethanolamine and egg phosphati­

dylcholine (3:1, wt/wt) in 50 mM potassium Pipes (pH 7.0) containing 4% (wt/vol) 

rt-octyl-ß-glucopyranoside (12)], and additional octylglucoside (25) to 1.60% 

(wt/vol) in a final volume of 10 ml. After incubation for 30 min on ice, the sus­

pension was clarified by centrirugation (110,000 x g for 3 h) at 4 °C. The detergent 
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extract was rapidly frozen and stored under nitrogen. For reconstitution, a sample of 

the clarified extract containing 1 mg of protein was diluted to an octyl glucoside 

concentration of 1.25% (wt/vol) in 4.5 ml (final volume) of 50 mM potassium 

Pipes (pH 7.0) containing 20% (vol/vol) glycerol and 100 mg of phospholipids (in 

4% octyl glucoside). Proteoliposomes were formed by a 40-fold dilution into 20 

mM potassium Pipes (pH 7.0) containing 100 mM potassium acetate. Proteoliposo­

mes were pelleted by centrifugation (110,000 x g for 3 h) at 4 °C, resuspended to 

about 1.5 mg of protein/ml in 20 mM potassium Pipes (pH 7.0) containing 100 mM 

potassium acetate, and rapidly frozen and stored under nitrogen. 

Transport assays 

ApH+-driven uptake. P( uptake in membrane vesicles, driven by a Apff+ generated by 

the oxidation of glucose via the membrane-bound glucose dehydrogenase, was 

assayed at 30 °C. Membrane vesicles were diluted to a final protein concentration 

of about 0.1-0.5 mg protein/ml in air-saturated 50 mM potassium Pipes (pH 7.0) 

containing 10 mM MgS04 or in 20 mM potassium Mes, 20 mM potassium Pipes, 

20 mM potassium Hepes (pH 5.0-8.0) containing 10 mM MgS04 (MPH buffer). 

Membrane vesicles were preincubated for 3 min with 2 fiM PQQ after which 20 

mM glucose was added. The incubation mixture was kept under continuous 

aeration. Transport was initiated upon addition of 32P-labeled potassium phosphate 

(1.7 TBq/mol) at concentrations as indicated in the legends to the figures. At given 

time intervals, samples were withdrawn, diluted with 2 ml of ice-cold 0.1 M 

lithium-chloride, filtered immediately through cellulose nitrate filters (0.45 fim pore 

size), and washed once with 2 ml of 0.1 M lithium chloride. Radioactivity was 

measured by liquid scintillation spectrometry. To remove contaminating Pj, the 

glassware used for 32P; transport assays was kept in chromic acid and rinsed 15 

times with distilled water before use. 32P-labeled potassium phosphate was filtered 

through a cellulose nitrate filter prior to use in order to remove 32Pj adsorbed to 

particles (22). For calculations, a specific internal volume of 3 /il/mg of protein was 

used (13, 31). Transport data were corrected for binding of P, to the nitrocellulose 

filters. 
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Imposed ApH+-driven uptake. For Pj uptake driven by artificially imposed dif­

fusion gradients, proteoliposomes in 20 mM potassium Pipes (pH 7.0) containing 

100 mM potassium acetate were diluted 100-fold into the same buffer (no gradient), 

into 20 mM potassium Pipes (pH 7.0) containing 100 mM potassium Mes to 

generate a ApH (interior alkaline) or into 20 mM sodium Pipes (pH 7.0) containing 

100 mM sodium acetate to generate a transmembrane chemical Na+ gradient. To 

generate a Ai/' (interior negative), proteoliposomes were incubated in the presence 

of 1 nmol valinomycin/mg of protein, and diluted 100-fold into 20 mM JV-methyl-

o-glucamine-Pipes (pH 7.0) containing 100 mM JV-methyl-o-glucamine acetate. For 

generation of a ApH+ (interior negative and alkaline) in the absence or presence of a 

chemical Na+ gradient, the properly oriented potassium, sodium and acetate-

diffusion gradients were combined. In all cases, the dilution media were supple­

mented with 32P-labeled potassium phosphate (1.7 TBq/mol) and cations as specified 

in the text and in the legends to the figures. Uptake was assayed at 30 °C by 

filtration as described above. 

Counter/low. Membrane vesicles in MPH (pH 6.0, 6.8 and 7.7) containing 20 

(iM CCCP, were equilibrated for 3 h at 20 °C in the presence of 5 mM potassium 

phosphate. Control membrane vesicles were incubated in buffer without potassium 

phosphate. Samples of 4 y\ were diluted 100-fold to a final protein concentration of 

about 0.25 mg/ml in MPH buffer of the indicated pH containing 20 fiM CCCP and 
32P-labeled potassium phosphate at a final concentration of 50 juM (0.8 TBq/mol). 

The uptake of radiolabeled P( was followed in time at 30 °C and assayed by filtra­

tion as described under Ap#+-driven uptake. 

Efflux and exchange. Membrane vesicles in MPH (pH 6.0, 6.8 and 7.7) contai­

ning 20 juM CCCP were equilibrated for 3 h at 20 °C in the presence of 600 pM 
32P-labeled potassium phosphate (1.7 TBq/mol) and diluted 100-fold into buffer 

without (efflux) or with 600 /xM potassium phosphate (equilibrium exchange). For 

efflux and exchange in the presence of artificially imposed diffusion gradients, 

proteoliposomes in 20 mM potassium Pipes (pH 7.2) containing 100 mM potassium 

acetate were equilibrated for 3 h at 20 °C in the presence of 500 /iM 32P-labeled 

potassium phosphate (1.7 TBq/mol) and 10 mM MgS04. Subsequently, loaded 

proteoliposomes were diluted 100-fold into buffers (pH 7.2) containing 10 mM 
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MgS04 without or with 500 /*M sodium phosphate, as described under "Imposed 

Apff+-driven uptake". The release of radiolabeled P{ was followed in time at 30 °C 

and assayed by filtration as described under "Apw+-driven uptake". 

Determination of ApH+ 

The A)p (interior negative) in membrane vesicles and proteoliposomes was determi­

ned from the distribution of the lipophilic cation TPP+, using a TPP+-selective 

electrode (29). The A\// was calculated from the steady state level of TPP+ 

accumulation and was corrected for nonspecific probe binding to the membranes 

(19). Membrane vesicles were supplied with metabolic energy by glucose oxidation 

as described under "Apw+-driven uptake". The ApH in membrane vesicles was cal­

culated from the increase in A^ upon the addition of nigericin, assuming a complete 

interconversion of the ApH into the At/' (8). 

Miscellaneous 

The method of Lowry et al. (20) was used for the determination of the amount of 

protein in membrane vesicles. The protein concentration in detergent extracts and 

proteoliposomes was determined in a bicinchoninic acid protein assay (30) in the 

presence of 0.2% (wt/vol) SDS. Bovine serum albumin was used as the standard. E. 

coli phosphatidylethanolamine was aceton/ether-washed as described (16, 39). 

Chemicals 

Cellulose nitrate filters (0.45 ;um pore-size) were supplied by Schleicher und 

Schuell, Dassel, Germany. Radiolabeled phosphate (carrier-free) was obtained from 

the Radiochemical Centre, Amersham, Buckinghamshire, UK. Crude E. coli 

phosphatidylethanolamine and a Bicinchoninic Acid Protein Assay Kit were ob­

tained from Sigma Chemicals Co., St. Louis, MO, USA. Other chemicals were 

reagent grade and obtained from commercial sources. 
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Figure 1. Pj efflux and exchange in membrane vesicles. Uptake of 50 pM nP{ in 
membrane vesicles in the absence ( • ) and presence (O) of glucose/PQQ. A, Pj efflux, 
20 JKM CCCP was added at the arrow (B,D). B, Pj exchange: 10 mM unlabeled P; 

( • ,D) , glycerol-3-P (A,A), or glucose-6-P (•jV) was added at the arrow. 

Results 

Pj transport in membrane vesicles 

Membrane vesicles from A. johnsonii 210A were prepared by osmotic lysis of cells 

exposed to lithium chloride, a high concentration of lysozyme and a temperature 

shock. The membrane vesicles contain a PQQ-dependent glucose dehydrogenase 

which is functionally linked to the respiratory chain (38). In the presence of PQQ 

and 10 mM Mg2"1", the oxidation of glucose at pH 7.0 resulted in the generation of a 

Ai/', inside negative, of -98 mV and a -ZApH, inside alkaline, of -12 mV. This 

ApH+ can drive the uptake of P(. A steady-state level of P, accumulation 

([Pi]ir/[Pi]0ut) °f about 30 was reached in 40 min. Dissipation of the ApH+ by proto-

nophore CCCP resulted in a rapid efflux of previously accumulated P( (Fig. 1A). 
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Efflux of Pj was also observed upon addition of excess unlabeled Pj to membrane 

vesicles which had accumulated 32P; via Apff+-driven uptake (Fig. IB). This 

homologous PjiPj exchange was also detected in intact cells of A. johnsonii 210A in 

counterflow experiments (38). In contrast, addition of excess unlabeled glycerol-3-P 

or glucose-6-P did not result in efflux of previously accumulated 32Pj, indicating the 

lack of heterologous Pj:glycerol-3-P or P^glucose-ó-P exchange. 

Kinetic analysis ofPi transport 

The rate of A/?ff+-driven uptake of P( in membrane vesicles was linear for at least 

60 s in the range of 1 to 300 /*M Pi (not shown). At pH 7.0, the apparent K, of this 

uptake was 10.4 /*M and the Fmax reached 0.43 nmol/min/mg of membrane protein. 

The apparent K, corresponds well with that of the secondary Pj transport system in 

cells of A. johnsonii 210A (38). When the pH was lowered from 8.0 to 5.5 the K, 

increased almost 3-fold whereas Fmax fell at least 10-fold (Fig. 2). The ApH+ remai­

ned nearly constant which indicates the influence of other parameters on Pj uptake. 

Kinetic analysis of facilitated diffusion of P( in the absence of a ApH+ at pH 7.0, 

yielded a AT, of 8.1 juM, which is nearly identical to the Kt value found for ApH+-

driven transport. The Kmax was significantly lower under these conditions (0.08 

nmol/min/mg of membrane protein). 

Dependency on divalent cations 

Divalent cations have been shown to be required for the binding of PQQ to apo-

glucose dehydrogenase in A. Iwoffi and other bacteria (36) and may influence the 

magnitude or composition of the ApH+ generated by glucose oxidation in membrane 

vesicles. Therefore, the effect of metal ions on P( transport was studied in 

proteoliposomes in which the P, carrier of A. johnsonii 210A was functionally 

reconstituted. The magnitude and stability of an artificially imposed ApH+ of -240 

mV is not affected by the presence of 2 mM of Mg2*, Mn2+, Ca2+, Co2+, or 0.5 mM 

of EDTA as was concluded from direct measurements of the A\}/ (not shown). The 

addition of 0.5 mM EDTA reduced imposed Ap#+-driven uptake of P( in proteo-
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Figure 2. Effect of pH on the ApH+ and the kinetic parameters of ApH+-dmen uptake 
of Pj in membrane vesicles. Initial velocities were determined over the first 60 s, at a 
P, concentration between 1 and 300 pM. The kinetic parameters of P( uptake, K, (O) 
and Kmax (A), were determined via linear regression analysis of Lineweaver-Burk plots. 
The ApH+ (D) was measured under conditions similar to those in Pj uptake experi­
ments. 

liposomes to equilibration levels, whereas P( uptake was strongly stimulated in the 

presence of 2 raM of various divalent cations (Fig. 3). These divalent cations form 

a stable, soluble, electroneutral metal phosphate complex (MeHP04) with Pj. From 

the stability constants (28) it can be calculated that at pH 7.0, 31% (Ca2+) to 87% 

(Mn2+) of the P, in the uptake assay is in the metal phosphate form. The extensive 

complexation of Pj into metal phosphate chelates together with the strict metal 

dependency of Pj uptake suggest that a metal phosphate complex is transported via 

the secondary transport system rather than P^ Unless indicated otherwise, all further 

P{ transport measurements in proteoliposomes and membrane vesicles were done 

with 10 mM Mg2+ in the incubation mixture. 
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Time (min) 

Figure 3. Pj transport in proteoliposomes is dependent on the presence of divalent 
cations. Ap„+-driven uptake of 50 /*M 32P; was measured in proteoliposomes in the 
presence of 2 mM of Mg2+ (O), Ca2+

 (A), CO2+ (A), Mn2+ (D), 0.5 mM of EDTA ( • ) , 
or in the absence of added divalent cations ( • ) or a ApH+ (*). 

Mechanism of energy coupling 

The relation between the magnitude and composition of the ApH+, and the uptake of 

metal phosphate was studied. The selective dissipation of the A\j/ and ApH by vali-

nomycin and nigericin, respectively, resulted in a significant inhibition of the Pj 

uptake rate and P( accumulation level in membrane vesicles. In the presence of both 

ionophores, nonenergized P( uptake rates were observed (data not shown). To verify 

that both components of the ApH+ function as the driving force for metal phosphate 

uptake, proteoliposomes were subjected to artificial gradients of protons, potassium 

ions, sodium ions, or combinations thereof. 

75 



Chapter 3 

g 
o 
t_ 
CL 
Ol 

c 
2 

X) 
E 
O) 

E 
O) 
E 
"6 
E 
c 

o. 
3 

1 2 3 4 5 

Time (min) 

Figure 4. Effect of artificially imposed ion gradients on Pj transport in proteoli-
posomes. The uptake of 50 pM 32P; was measured in the absence ( • ) and in the 
presence of a A^ (interior negative) (#), ApH (interior alkaline) (O), chemical Na+ 

gradient ( • ) , Ap„+ (A), and a ApH+ and chemical Na+ gradient (D). 

Figure 4 shows the effects of these established gradients on P( uptake. Accu­

mulation of Pj could be detected upon imposition of a A^ of -120 mV or a -ZApH 

of -120 mV. In the presence of both gradients, the highest initial rates of Pf uptake 

and the highest P: accumulation levels were obtained. The effects of Ai^ and ApH 

were additive. The presence of a chemical Na+ gradient (ApNa of -120 mV) on top 

of a ApH+ (-240 mV) did not affect the uptake of Pj. In the absence of any gradient 

or in the presence of a ApNa, no Pj uptake was observed. 
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Figure 5. Metal phosphate/proton stoichiometry in membrane vesicles. Upon addition 
of 50 fiM 32P|, accumulation levels of A^-driven metal phosphate uptake were determi­
ned after 35 min of incubation (pH 7.8). The A^ was generated by glucose oxidation 
in the presence of 0.1 nmol of nigericin/mg of membrane protein and was varied by a 
titration with 0.01 to 0.08 nmol valinomycin/mg of membrane protein. Calculated 
values for n (number of protons symported with a metal phosphate) are presented in 
the inset. The dashed line represents n = 1. 

Metal phosphate/proton stoichiometry 

The metal phosphate/proton stoichiometry of the secondary transport system was 

determined in membrane vesicles at pH 7.8 from the steady state accumulation level 

of P; in the presence of a A\p only, by performing the studies in the presence of 0.1 

nmol nigericin/mg of membrane protein (ApH+ = A\j/). Under the experimental 

conditions, 85% of the Ps was present in a magnesium-phosphate complex. The Ayf/ 

was varied by titration with valinomycin and was measured simultaneously with Pj 

uptake. If the metal phosphate complex is translocated with «H+ at thermodynamic 

equilibrium, ZAüMeHP04 equals -nA\{/ + «ZApH, in which ZAüMeHP04 represents the 
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metal phosphate complex concentration gradient (in mV) and n the number of 

protons translocated in symport with metal phosphate. In the absence of a ApH, n 

equals -ZAüMeHP04/Ai/'. Figure 5 shows the existence of a linear relationship between 

the steady state accumulation level of metal phosphate and the A^. This relationship 

indicates that the metal phosphate/proton stoichiometry is 1 and that metal phos­

phate is symported with 1 H+ (inset to Fig. 5). 

pH Dependency of facilitated diffusion of metal phosphate 

The effects of pH on metal phosphate efflux, equilibrium exchange and counterflow 

were examined in membrane vesicles under conditions in which Ap was 0 (short-

circuited by 20 fxM concentration of the protonophore CCCP). Membrane vesicles 

were equilibrated with 600 yM 32P|, a concentration considerably higher than the K, 

for influx, and then diluted rapidly 100-fold into a medium free of Pi (efflux) or 

with 600 /nM 31P| (exchange). Pt efflux and exchange occurred with pseudo-first 

order kinetics (Fig. 6). At pH values below 7.7, exchange rates were faster than 

efflux rates. The P( efflux rates increased with increasing pH while the rate of Pj ex­

change exhibited virtually no pH dependence. These results were confirmed in 

counterflow experiments in which membrane vesicles were equilibrated with 5 mM 

unlabeled Ps and subsequently diluted 100-fold into a buffer containing a final con­

centration of 50 pM 32P|. By this means an outwardly directed P< gradient was 

imposed and rapid exchange and efflux occurred in which the initial phase caused a 

transient accumulation of 32P( (Fig. 7). The initial rate of 32P( uptake was essentially 

independent of pH, whereas the rate of decay after reaching the maximal uptake 

level displayed a pH dependency similar to that observed for P( efflux. The results 

imply that for efflux of P( the release of a H+ at the outer surface of the membrane 

is rate-determining whereas in the exchange process no release of FT is needed. 

Effect of the proton motive force on efflux and exchange of metal phosphate 

In order to impose a membrane potential and/or a ApH during Pi efflux and ex­

change, proteoliposomes loaded with 500 ^M 32P{ were diluted rapidly 100-fold into 
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Figure 6. Effect of pH on Pj efflux {panel A) and exchange (panel B) in membrane 
vesicles. Membrane vesicles were loaded at pH 6.0 (D), pH 6.8 (A), or pH 7.7 (O) 
with 600 fiM of 32Pj and subsequently diluted 100-fold into buffer without (efflux) or 
with 600 jiM Pj (exchange). 

the appropriate buffers without Pj (efflux) or with 500 fiM unlabeled Pf (exchange). 

P( efflux was retarded by a ApH and a membrane potential as would be expected 

for an electrogenic H+-symport mechanism (Fig. 8, panel A). Moreover, when both 

a Ai/' (interior negative) and a ApH (interior alkaline) are imposed concurrently, 

leading to the generation of a ApH+, the rate of Pj efflux was diminished even 

fürther indicating that the effects of A\p and ApH are additive. P, efflux was stimu­

lated by the addition of the protonophore CCCP. Pj exchange was not affected by 

the imposition of a ApH (interior alkaline) or by the addition of CCCP, but was 

retarded in the presence of a A\p (interior negative) (Fig. 8, panel B). These results 
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Figure 7. Effect of pH on P; counterflow in membrane vesicles. The uptake of 50 /iM 
32P( via counterflow was monitored in membrane vesicles equilibrated with 5 mM P{ at 
pH 6.0 (D), pH 6.8 (A), or pH 7.7 (O). Control uptake in unloaded membrane 
vesicles at pH 6.0 and 7.7 was similar to that at pH 7.0 (A). 

are consistent with a translocation cycle for metal phosphate efflux in which 

positive charge moves to the outside during reorientation of the ternary carrier/pro­

ton/metal phosphate complex. 

Discussion 

The kinetic mechanism of the secondary Pj transport system of A. johnsonii 210A 

was studied. In membrane vesicles the uptake of Pj at pH 7.0 in the presence or 

absence of a ApH+ exhibited an apparent K, of 10.4 pM and 8.1 /*M Pi5 respectively. 
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Figure 8. Effect of Ap„+ and CCCP on P; efflux (panel A) and exchange (panel B) in 
proteoliposomes. Proteoliposomes containing 500 /uM of 32P( were diluted 100-fold into 
buffers (pH 7.2) without (efflux) or with 500 pM Pj (exchange). Efflux and exchange 
were studied in the presence of a A^ (interior negative) (O), a ApH (interior alkaline) 
(D), a ApH+ (A) and in the absence of imposed diffusion gradients with ( • ) or 
without ( • ) 20 iM of CCCP. 

This Kt corresponds well with a K, of 9 /̂ M previously determined for the seconda­

ry P, transport system in low-Prgrown cells (38). These membrane vesicles contain 

a PQQ-dependent glucose dehydrogenase. In the presence of PQQ and Mg2+, the 

oxidation of glucose resulted in the generation of a Apff+ in the presence of which 

the apparent Vmm of P: uptake was increased more than 5-fold. 

The strict dependency of P; uptake on divalent cations and the extensive com-
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plexation of Pj to divalent metal ions point to the translocation of a metal phosphate 

complex rather than Pj via the secondary transport system of A. johnsonii 210A. 

The transport of citrate in membrane vesicles of B. subtilis is similarly affected by 

the addition of divalent cations or EDTA. These results were explained by the 

translocation of a metal citrate chelate which is formed upon addition of divalent 

cations to citrate (4). The substrate specificity of the secondary phosphate transport 

system of A. johnsonii 210A offers an explanation for the apparent pH dependency 

of the K, for Pj. Under the experimental conditions employed in the kinetic 

experiments, 30% of P; is present as a neutral MgHP04 complex at pH 6.0, 74% at 

pH 7.0, and 86% at pH 8.0 (28). A re-evaluation of the kinetic data reveals a 

corrected K, for MgHP04 of 7.9 fiM which is independent of pH. The higher Pj 

uptake rate in the presence of Mn2+ compared to that in the presence of Mg?+ at pH 

7.0 (Fig. 3) can be explained by the difference in the metal phosphate concentration 

during uptake. Co-transport of Pj and divalent metal ions in A. johnsonii is consis­

tent with (i) the accumulation of higher amounts of Mg2+ in cells when P; is present 

in the medium (35) and (ii) the variable metal composition of polyphosphate 

granules which is related to relative concentration of Mg2* and Ca2+ in the growth 

medium (6). 

Selective manipulation of the components of the proton motive force in mem­

brane vesicles and artificial imposition of diffusion gradients in proteoliposomes 

revealed that both a membrane potential and a pH gradient can drive the uptake of 

Pj. Determination of the metal phosphate/proton stoichiometry suggests the translo­

cation of a (neutral) metal phosphate together with one proton via an electrogenic 

mechanism. Together with the observations discussed above and the absence of 

heterologous exchange of (metal)phosphate and glycerol-3-P or glucose-6-P, these 

results exclude an electroneutral anion exchange mechanism similar to that mediated 

by the GlpT or UhpT system of E. coli. 

Dissipation of the ApH+ by CCCP resulted in the efflux of previously accumu­

lated Pj from membrane vesicles. The stimulation of Pj efflux by the addition of an 

uncoupler has also been observed in cells of A. johnsonii 210A (34). For efflux of 

metal phosphate down a concentration gradient, a proton and a metal phosphate 

have to be bound by the carrier protein on the inside, and both have to be released 
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on the outside. P; efflux was measured at a saturating metal phosphate concentration 

on the inside of the membrane. The retardation of Pj efflux by a ApH (interior 

alkaline) and/or a A\p (interior negative) is consistent with an electrogenic FF-

symport mechanism. Under conditions that the internal and external pH are equal 

(in the presence of CCCP), the rate of P; efflux increased with increasing pH. A 

similar pH effect has been observed on Ps efflux in cells of A. johnsonii 210A1. 

When saturating amounts of metal phosphate are present both on the inside and the 

outside (e.g. exchange and counterflow), rates of transport are essentially indepen­

dent of pH and faster than the rates of efflux. The results indicate that the P; efflux 

rate is limited by deprotonation of the carrier protein on the outer surface of the 

membrane and that the carrier recycles in a protonated form during exchange and 

the initial events of counterflow. The reactions involved in the translocation are 

schematically represented (Fig. 9). 

During efflux, the ternary carrier/proton/metal phosphate complex is formed 

through the sequential binding of a proton and a metal phosphate to the unloaded 

carrier on the inner surface of the membrane. The ternary complex reorients its 

binding sites to the outer surface after which metal phosphate is released first from 

the carrier, followed by the loss of a proton. The unloaded carrier reorients its 

binding sites to the inner surface of the membrane in order to bind another proton 

and metal phosphate. During metal phosphate exchange the carrier recycles via the 

ternary carrier/proton/metal phosphate complex without being deprotonated. The 

inhibition of metal phosphate exchange by the membrane potential (inside negative) 

is in accordance with the recycling of a protonated, positively charged carrier 

protein during exchange and counterflow. 

Deprotonation of the carrier protein on the outer surface of the membrane is 

one of the rate-limiting steps in the efflux of metal phosphate. Under conditions of 

uptake, the release of metal phosphate and a proton occurs at the inner surface of 

the membrane. Similar to effects of external pH on metal phosphate efflux, internal 

pH effects on metal phosphate uptake may be anticipated. The decrease of the Vmax 

of metal phosphate uptake at low pH can be explained by the drop in the internal 

'Van Veen HW and Kortstsee GJJ, unpublished observation. 
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Efflux Exchange 
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Figure 9. Schematic representation of reactions involved in metal phosphate efflux and 
exchange. The model consists of a single transport loop linking six discrete states of 
the MeHP04 carrier. The state transitions include one transmembrane charge-transport 
step, and one step each for binding of MeHP04 and proton at each side of the 
membrane. In the model an ordered mechanism for binding and dissociation of metal 
phosphate and proton to and from the carrier protein is suggested. The carrier protein 
is indicated by C, MeHP04 by P, and protons by IP. Solid and dashed arrows indicate 
the major and minor steps (in terms of rates), respectively, involved in the efflux and 
exchange reactions. The internal and external pH have influence upon the (de)protona-
tion of the carrier protein. The reorientation of the binding sites of the positively 
charged ternary carrier/H7P complex is affected by the A^. 

pH from 8.0 to 6.1 when the external pH was lowered from 8.0 to 5.5. 

The pH dependence of metal phosphate transport via the secondary Pj transport 

system of A. johnsonii 210A shows analogies with the pH dependence of transport 

of lactose via the LacY system of E. coli (14, 15) and of L-leucine in S. cremoris 

(7). Like the secondary Pi transport system, these carriers catalyse symport of 

substrate and a proton via an electrogenic mechanism. However, the exchange 

mediated by these carriers is unaffected by membrane potential (interior negative), 

whereas metal phosphate exchange is inhibited under these conditions. In the case 

of the lactose and L-leucine carriers a kinetic scheme was put forward in which the 

membrane potential (interior negative) drives the reorientation of a negatively 
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charged unloaded carrier from the inner to the outer membrane surface during A^-

driven uptake of substrate. In metal phosphate transport, the A0 most likely drives 

the inward movement of a positively charged carrier/proton/metal phosphate 

complex. 

The question arises whether the Pit system of E. coli operates in a similar way 

as the secondary transport system discussed in this work. Although conflicting 

results and conclusions have been reported in literature, Konings and Rosenberg 

(18) have observed a stimulation of A/7w+-driven uptake of Pj via Pit in the presence 

of Mg2"1". Our preliminary results suggest that metal phosphates are indeed transloca­

ted via the Pit system of E. coli (see Chapter 4 for detailed information). 

In conclusion, the secondary P; transport system of A. johnsonii 210A catalyzes 

the electrogenic uptake and efflux of a metal phosphate chelate and a proton. 

During uptake, internal metal phosphate is polymerized into metal polyphosphate 

which is stored in granules present in the cytoplasm. Under anaerobic conditions, 

these polyphosphates are degraded, resulting in the efflux of metal phosphate. Our 

results indicate that during this efflux the components of the proton motive force 

will be formed resulting in the conservation of metabolic energy from poly­

phosphate degradation, in a similar way as has been proposed in the energy 

recycling model (17, 23). 
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Chapter 4 

Summary 

Pj transport via the phosphate inorganic transport system (Pit) of Escherichia coli 

was studied in natural and artificial membranes. Pj uptake via Pit is dependent on 

the presence of divalent cations, like Mg2"1", Ca2+, Co2+, or Mn2+, which form a 

soluble, neutral metal phosphate (MeHPOJ complex. Prdependent uptake of Mg2* 

and Ca2+, equimolar cotransport of Pj and Ca2+, and inhibition by Mg2+ of Ca2+ 

uptake in the presence of Pi; but not of Pj uptake in the presence of Ca2+, indicate 

that a metal phosphate complex is the transported solute. Metal phosphate is 

transported in symport with H+ with a mechanistic stoichiometry of 1. Pit mediates 

efflux and homologous exchange of metal phosphate, but not heterologous metal 

phosphate exchange with Pi; glycerol-3-P or glucose-6-P. The metal phosphate 

efflux rate increased with pH, whereas the rate of metal phosphate exchange was 

essentially pH independent. Metal phosphate uptake was inhibited at low internal 

pH. Efflux was inhibited by a proton motive force (interior negative and alkaline), 

whereas exchange was inhibited by the membrane potential only. These results have 

been evaluated in terms of ordered binding and dissociation of metal phosphate and 

proton on the outer and inner surface of the cytoplasmic membrane. 

Introduction 

Escherichia coli possesses four systems via which Pj can enter the cell (27). The 

two major systems, the phosphate specific transport system (Pst) and the phosphate 

inorganic transport system (Pit) are highly specific for P: and were originally descri­

bed by Medveczky and Rosenberg (23) and by Willsky et al. (42). In addition, two 

transport systems, designated GlpT and UhpT, accept Pj as a low affinity analog of 

glycerol-3-P (11) and glucose-6-P (24, 44), respectively. The Pst system is an indu­

cible, periplasmic binding protein-dependent solute ATPase that accumulates H2P04' 

and HP04
2- at the expense of ATP (5, 10, 20, 29). Pit, GlpT and UhpT are chemi-

osmotic carriers. GlpT and UhpT belong to a family of Pj-linked antiporters which 

are induced in the presence of the phosphorylated solute and which mediate electro-

neutral exchange of H2P04", organic phosphate anions, or both. Pj-linked exchange 
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carriers of E. coli, Lactococcus lactis and Staphylococcus aureus have been well 

characterized in cells, membrane vesicles, and reconstituted systems (for review, see 

22). Pit has received much less attention over the past 20 years. Studies in the 

1970s and early 1980s with wild-type cells (23, 43), Pst-deficient mutants (28, 29) 

and membrane vesicles (18) of E. coli indicated that Pit is a constitutive system 

which probably catalyzes an electrogenic «HTTP; symport. Proton motive force 

(Ap//+)-driven uptake of Pj was not observed in membrane vesicles prepared from 

the Pit-deficient E. coli strain K-10 (18). 

Recent studies on P; transport in Acinetobacter johnsonii 210A revealed the 

presence of two transport systems which show a strong analogy with the Pst and Pit 

system of E. coli (39). Experiments aimed to clarify the mechanism of the secon­

dary Pj transport system of A. johnsonii 210A point to an electrogenic symport of a 

proton and a neutral metal phosphate (MeHP04) chelate which is formed by 

complexation of divalent metal ions and P( (40). In view of the apparent similarities 

between Pi transport in A. johnsonii 210A and E. coli, these results have led us to 

reevaluate and reexamine P( transport via Pit. The substrate specificity and mecha­

nism of Pit were characterized in membrane vesicles and proteoliposomes in which 

the transport protein was successfully reconstituted. In this paper, evidence will be 

presented for an electrogenic metal phosphate/proton symport mechanism. The 

effects of pH and ApH+ on the different modes of metal phosphate transport via Pit 

are consistent with the ordered binding model which was recently put forward for 

the secondary phosphate transport system of A. johnsonii 210A (40). 

Materials and methods 

Membrane vesicles and proteoliposomes. 

Cells of Escherichia coli K-12 strain PC 10121 (pit psf) were grown aerobically at 

37 °C to an A ^ of 0.6 in minimal glucose medium (9) supplemented with 5 mM 

'Phabagen Collection, Dept. of Molecular Cell Biology, University of Utrecht, The 

Netherlands. 
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sodium phosphate to repress the synthesis of the Pst system. Membrane vesicles 

were prepared as described (12) in 10 mM potassium Pipes (pH 7.0) containing 0.1 

mM MgS04 and finally suspended in 50 mM potassium Pipes (pH 7.0) supplemen­

ted with 10 mM MgS04. Solubilization of membrane vesicles with w-octyl-/3-gluco-

pyranoside and reconstitution of membrane proteins by detergent dilution were per­

formed by the procedures described (40, 41). 

Transport assays 

Apff+-driven uptake of 32Pj in membrane vesicles and the determination of the 

membrane potential (Ai/0 using a tetraphenylphosphonium ion-selective electrode 

(35) were performed as described (39, 40) in 50 mM potassium Pipes (pH 7.0) or 

20 mM potassium Mes-Pipes-Hepes (pH 6.0 - 8.0) (MPH buffer), supplemented 

with 10 mM MgS04. The procedure for uptake of 32Pj or 45Ca2+ in proteoliposomes 

driven by an artificial Ai£ and/or pH gradient (ApH) was essentially as described 

previously (40) using sodium Pipes-based buffers, pH 7.0, for dilution. For metal 

phosphate efflux and exchange, proteoliposomes in 20 mM potassium Pipes (pH 

7.0) containing 100 mM potassium acetate (PPA buffer) or MPH containing 100 

mM potassium acetate (MPHA buffer) were preloaded for 3 h at 20 °C with 32Pj 

and divalent cations as specified in the legends to figures. Loaded proteoliposomes 

were subsequently diluted 100-fold into buffer [PPA plus 20 pM carbonyl cyanide 

(3-chlorophenyl)hydrazone (CCCP), MPHA plus 20 jtM CCCP, or the appropriate 

buffers to impose artificial diffusion gradients] without Pi (efflux), with an equi-

molar concentration nonlabeled potassium phosphate (homologous exchange), or 

with organic phosphate anions (heterologous exchange). Dilution buffers were sup­

plemented with divalent cations as described in the legends to figures. Transport of 
32P; (1.7 TBq/mol) and 45Ca2+ (2.1 TBq/mol) was assayed at 30 °C by the filtration 

method (13). 32P( (carrier-free) and 45CaCl2 (14.8 TBq/mol) were purchased from 

Amersham, United Kingdom. Uptake of Mg2"1" was monitored at 30 °C in proteoli­

posomes loaded with 5 mM Mag-Quin-2 by freeze-thaw sonication (6). The fluore­

scence intensity at 490 nm was measured at an excitation of 335 nm with slit 

widths of 4 and 7.5 nm, respectively. Mag-Quin-2 was obtained from Molecular 
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Results 

Kinetic analysis ofPt uptake 

-Kinetic mechanism of the Pit system in E. coli 

Pj was accumulated about 30-fold in membrane vesicles from E. coli suspended in 

Pipes buffer when a ApH+ of -109 mV was established by oxidation of glucose via 

the membrane-bound, pyrrolo quinoline quinone (PQQ)-dependent glucose dehydro­

genase. Initial rates of Ap#+-driven uptake were determined from time points taken 

during the first 60 s of linear uptake of Pf between 1 /*M and 300 fiM. Kinetic 

analysis using Lineweaver-Burk plots revealed the presence of one P; transport 

system with an apparent AT, of 11.9 pM and a Fmax of 0.74 nmol/min/mg of protein 

(data not shown). This K, corresponds well with the reported K, of 9.2 /xM for the 

Pit system in cells (23). 

Substrate specificity 

Divalent cations are required for binding of apo-glucose dehydrogenase to its pros­

thetic group PQQ and may influence the magnitude or composition of the ApH+ 

generated by glucose oxidation (34). Such an influence of divalent cations on the 

stability and magnitude of an artificially imposed ApH+ in proteoliposomes was not 

observed (40). However, uptake of 50 pM Pj driven by an imposed Apff+ in proteo­

liposomes in which Pit protein was reconstituted, was inhibited to equilibration 

levels in the presence of 0.5 mM EDTA. Furthermore, the rate of P, uptake was 

stimulated from 1.4 nmol/min/mg of protein in the absence of added cations to 3.7, 

4.0, 6.9 and 7.5 nmol/min/mg of protein in the presence of 2 mM Mg2"1", Ca2+, Co2+, 

or Mn2+, respectively. These cations form a soluble, electroneutral metal phosphate 

complex (MeHP04) with 31% (Ca2+), 36% (Mg2*), 70% (Co2+), and 87% (Mn2+) of 

the Pj present in the incubation (36). This complexation could be detected with the 

Mg2* indicator Mag-Quin-2 which undergoes a fluorescence excitation intensity en­

hancement upon binding of Mg2+. Addition of 100 mM Pj to a solution of 520 ^M 
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Figure 1. Time course of the fluorescence emission of Mag-Quin-2-loaded proteolipo-
somes representing the uptake of 200 pM Mg2+ in the presence (A) and absence (B) of 
5.4 mM P(. At the arrow, 1 nmol valinomycin/mg of protein was added to impose a 
potassium diffusion potential (interior negative) of-138 mV. 

probe and 400 piM Mg2* at pH 7.0 resulted in a 4-fold decrease of the fluorescence 

intensity, corresponding to a decrease of the Mg27probe complex concentration 

from 130 to 18 jtM, due to the formation of about 350 pM MgHP04 (data not 

shown). In view of the extensive complexation of P, and Me2+, the strict metal 

dependency of P( uptake may be interpreted as the translocation of metal phosphate 

rather than P;. This was investigated by measuring the uptake of Mg2* and Ca2+ in 

the presence and absence of Pj. Mg2+ transport was monitored in proteoliposomes 

containing Mag-Quin-2. A significant increase in fluorescence intensity due to 

uptake of Mg2* was only observed in the presence of a A\j/ (inside negative) when 

Pi was present in the incubation mixture (Fig. 1). 
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Figure 2. Ap^-driven uptake of Ca2+, Pj and CaHP04 in proteoliposomes. Uptake of 
100 fxM 4SCa2+ (A) or 100 /M 32Pf (B) (O); uptake of 100 pM 45Ca2+ plus 100 jtM 
45CaHP04 (A) or 100 /tM 32P; plus 100 /iM CaH32P04 (B) in the absence ( • ) and 
presence of 10 mM Mg2+ (A) or 0.5 mM EDTA (A). The Ca/P( ratio for uptake of 
CaHP04 ( • , panel A and B) is presented in the inset. 

Similar results were obtained for Ca2+ uptake. The rate of ApH+-driven uptake 

of 45Ca2+ in proteoliposomes was low in Prfree buffer (Fig. 2). In the presence of Pj 

a considerably higher rate of Ca2+ uptake was observed. 32Pj uptake was measured 

under identical conditions. The same initial rate and steady-state level of accumula­

tion of Pj as Ca2+ was found, suggesting a Ca27Pj ratio of 1. Ca2+ uptake but not Pj 

uptake was strongly inhibited by excess Mg2"1". These uptake experiments provide 

strong evidence for the transport of Ca2+ or Mg2"1' via a metal phosphate complex. 

The substrate specificity of Pit was further studied in efflux and exchange experi­

ments under conditions in which no ApH+ was imposed. At pH 7.0, the efflux of 
32P-labeled magnesium-phosphate from proteoliposomes was stimulated by the 
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Figure 3. Efflux and exchange via Pit. Proteoliposomes in PPA buffer were loaded 
with 50 /xM 32Pj and 2 mM MgS04. Exit of 32Pj was monitored following 100-fold 
dilution of a suspension into PPA buffer containing 20 /*M CCCP and the following 
additions: (A) 2 mM Mg2+ in the absence ( • ) and presence of 50 juM P< (O), 10 mM 
glycerol-3-P (A) or glucose-6-P (D); (B) 0.5 mM EDTA in the absence ( • ) and 
presence of 50 ßM P; (D), or 50 pM Pi in the presence of 2 mM Mn2+ (A) or 2 mM 
Mg2+ (O). 

addition of an equimolar amount of nonlabeled magnesium or manganese phosphate 

to the external medium (Fig. 3). This stimulation was not observed in the presence 

of a 200-fold excess of glycerol-3-P, glucose-6-P (Fig. 3A) or an equimolar amount 

of P, plus 0.5 mM EDTA (Fig. 3B). Besides uptake of metal phosphate, Pit 

obviously mediates efflux and homologous exchange of metal phosphate, the latter 

reaction being faster at pH 7.0, but not heterologous exchange of metal phosphate 

and Pj, glycerol-3-P or glucose-6-P. 
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Energy coupling to metal phosphate uptake 

The driving force for uptake of metal phosphate was analyzed in proteoliposomes 

which were subjected to artificial gradients of protons and/or potassium ions. In the 

presence of a A^ of -120 mV or a -ZApH of -120 mV, metal phosphate (50 /*M P, 

plus 10 mM Mg24) was taken up at a rate of 1.6 and 3.5 nmol/min/mg of protein, 

respectively. The effects of A^ and ApH were additive. Imposition of a ApH+ of 

-240 mV resulted in metal phosphate uptake at a rate of 4.8 nmol/min/mg of pro­

tein. In the absence of a gradient, no metal phosphate uptake was observed. The 

metal phosphate/proton stoichiometry was determined in membrane vesicles at pH 

7.8, from the steady state accumulation level of metal phosphate (50 JUM Pj plus 10 

mM Mg2"1") in the presence of 0.1 nmol nigericin/mg of protein (ApH+ = A^). The 

A\p was varied by titration with 0.01 - 0.1 nmol valinomycin/mg of protein. At 

thermodynamic equilibrium in the absence of a ApH, n equals -ZAûMeWPOtIA\j/, in 

which n represents the number of protons translocated in symport with metal 

phosphate and ZAüMeHP04 represents the transmembrane metal phosphate concen­

tration gradient (in mV). A linear relationship was observed between -ZAüMeHP04 and 

the A\j/ in which n was 0.91 indicating a symport of a neutral MeHP04 complex 

and one proton (data not shown). 

Effect ofpH and ApH+ on metal phosphate efflux and exchange 

The effect of pH on metal phosphate efflux and exchange was measured in proteoli­

posomes equilibrated in the presence of 150 /xM P, and 10 mM MgS04. Metal 

phosphate efflux and exchange occurred with pseudo-first order kinetics (Fig. 4). 

The metal phosphate efflux rate increased as a function of pH (half-times (tY) of 

9.4, 4.3, and 1.9 min at pH 6.3, 7.0, and 7.7, respectively) whereas the metal 

phosphate exchange rate was essentially pH independent (t% = 1.8 min). At pH 

values below 7.7, metal phosphate efflux was slower than metal phosphate 

exchange. Apparently, the release of a proton at the outer surface of the membrane 

is rate-limiting for metal phosphate efflux whereas in the exchange process no 

release of a proton is needed. In an analogous series of experiments, the effects of 
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Figure 4. Effect of pH on metal phosphate efflux and exchange. Proteoliposomes were 
equilibrated in MPHA buffer [pH 6.3 (D), 7.0 (A), or 7.7 (O)] containing 150 /*M 32Pj 
and 10 mM Mg2+ and subsequently diluted 100-fold into MPHA buffer of the same pH 
containing 10 mM Mg2+ and 20 /iM CCCP without (A, efflux) or with 150 /*M P, (B, 
exchange). 

artificially imposed ion gradients on metal phosphate efflux and exchange were 

monitored. Imposition of a A^ of -120 mV retarded the efflux rate at pH 7.0 by a 

factor of 3 (t,A increased from 3.4 to 9.6 min) (Fig. 5A). Imposition of a -ZApH of 

-120 mV resulted in a 2-fold inhibition of the rate of metal phosphate release (tY2 = 

6.7 min). The effects of a Ai/' and ApH on metal phosphate efflux were additive. 

Imposition of a ApH+ of -240 mV retarded metal phosphate efflux more than 6-fold 

(tVi = 23.2 min). The inhibition of metal phosphate efflux by a à.pH+ is consistent 

with an electrogenic proton symport mechanism. Metal phosphate exchange was not 

affected by a ApH (Fig. 5B) but was retarded by the presence of a Â < (Fig. 5C) (tVi 

increased from 1.8 min in the absence of a A\p, to 3.0, 4.0, and 4.9 min in the 
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5 10 0 
Time (min) 

Figure 5. Effect of ApH+ on metal phosphate efflux and exchange. Proteoliposomes 
were equilibrated in PPA buffer containing 150 ßM 32P; and 10 mM Mg2+ and diluted 
100-fold into the appropriate buffers to study efflux (A) and exchange (B, C) in the 
presence of a A^ of -40 mV (A), -80 mV ( • ) , -120 mV ( • ) , a -ZApH of -120 mV 
(D), or a ApH+ of -240 mV (*), or in the absence of imposed diffusion gradients in 
the presence of 20 /tM CCCP (O). 

presence of a A^ of-40, -80, and -120 mV, respectively). 

Effect ofpH on ApH+-driven uptake of metal phosphate 

Deprotonation of the carrier on the outside of the membrane is affected by the 

external pH and was found to limit the rate of metal phosphate efflux (Fig. 4). 

Under uptake conditions, the release of metal phosphate and proton occurs on the 

inside of the membrane. Internal pH effects on metal phosphate uptake may be 

anticipated. Ap^-driven uptake of metal phosphate was studied as a function of the 

pH in membrane vesicles in which the ApH was dissipated by the addition of 
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deprotonated. 

The deprotonation of the carrier protein on the outer surface of the membrane 

is rate-limiting for metal phosphate efflux and is affected by the external pH. In 

analogy with efflux, metal phosphate uptake appears to be limited by the rate of 

deprotonation of the carrier on the inside of the membrane. As a result, metal 

phosphate uptake is strongly inhibited by a low internal pH. For optimal function of 

Pit in cells it is therefore essential to maintain a constant alkaline pH in the cytosol. 

In bacteria, electrogenic uptake of K+ accompanied by expulsion of H+ from the 

cytoplasm, is an important mechanism for alkalinization of the cell's interior (3). 

Evidence confirming the relevance of this process for phosphate transport via Pit 

came from the work of Russell and Rosenberg (32, 33) who demonstrated that 

although potassium ions greatly stimulate Pit function in E. coli cells, the transport 

of K+ and phosphate is linked indirectly via proton circulation. 

The ordered binding model proposed for Pit shows analogies to those sug­

gested for the LacY (14 - 16) and melibiose carriers of E. coli (4, 25). Unlike ex­

change via LacY, metal phosphate exchange is inhibited by the A^ (interior negati­

ve). This inhibition may result from a decrease of the translocation rate of a posi­

tively charged ternary complex across the membrane and/or an increase in the rate 

of dissociation of the cosubstrates from the carrier at the inner surface of the mem­

brane as was proposed for the melibiose carrier. 

The finding of metal phosphate/proton symport in E. coli (this work) and A. 

johnsonii 210A (40) suggests that the transport of metal phosphates may be a 

general mechanism for the transport of divalent metal ions and Pi in bacteria. In 

Micrococcus lysodeikticus (8), Acinetobacter Iwqffi (45), Pseudomonas aeruginosa 

(19) and Bacillus cereus (31), Pi transport in general or via a Pit-like system in 

particular was reported to be stimulated by Mg2*. In addition, in some studies a 

stimulation was observed of Me2+ transport by Pi, e.g. the uptake of Mn2+ in 

Lactobacillus plantarum (2), and of Mg2"1", Ca2+, Mn2+, and Co2+ via a general 

divalent cation transport system in Bacillus subtilis (17). Interestingly, a Pit mutant 

of this latter organism was strongly impaired in the transport of Ca2+ and Co2+. The 

mutant still elicited significant Mn2+ transport as a result of uptake via a second 

Mn2+-specific high-affinity uptake system (17). In many other studies on metal 
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transport, the use of phosphate buffers may have masked Pi-dependent uptake of 

divalent cations. The mechanisms for Ca2+ entry in bacteria are unclear (21, 27). 

The transport of metal phosphate, including calcium-phosphate, via Pit provides E. 

coli with such a mechanism. 
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Chapter 5 

Summary 

In natural waters and domestic waste waters in which divalent metal ions are 

present in excess of Pf, H2P04", HP04
2" and MeHP04 prevail at pH values physio­

logical for Acinetobacter johnsonii 210A (pH 5.5 - 8.0). In view of the ability of 

this organism to extensively accumulate Pj and divalent cations in cytoplasmic 

polyphosphate granules, the substrate specificity of its two Pj transport systems was 

studied. The constitutive, proton motive force-driven P| carrier, previously shown to 

be dependent on divalent cations, plays a major role in the divalent cation and Pf 

flux by translocating MeHP04 rather than Pr This notion is confirmed by the 

observation that divalent cations are cotransported with P; in a 1:1 stoichiometry in 

proteoliposomes containing reconstituted P; carrier protein. In contrast, the Pj 

repressible, periplasmic binding protein-dependent P( transport system mediates the 

uptake of H2P04" and HP04
2". Pj uptake, but not MeHP04 uptake, was stimulated in 

cells under P; limitation and the periplasmic Prbinding protein has affinity for 

H2P04" and HP04
2, but not for MeHP04. When operating in concert, both systems 

enable A. johnsonii 210A to efficiently acquire Pj from its habitat through uptake of 

the predominant Pj species. 

Introduction 

Enhanced biological phosphorus removal from domestic waste water is based on the 

enrichment of activated sludge with polyphosphate-accumulating bacteria by im­

position of alternating conditions of aerobiosis and anaerobiosis (11). Studies on the 

population structure of activated sludge have focused attention on Acinetobacter as 

being one of the important genera in this process (7, 8, 11, 22). In pure culture, 

Acinetobacter johnsonii 210A is able to accumulate Pj and Mg2* or Ca2+ in cytoplas­

mic metal polyphosphate granules in the presence of excess energy and substrates 

(5, 31). Under anaerobic conditions, the strictly aerobic organism degrades its poly­

phosphate resulting in the excretion of P( and metal ions into the medium (30). 

Conservation of metabolic energy during the enzymatic degradation of poly­

phosphate allows A. johnsonii 210A to use this phosphorus polymer as a source of 
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ATP (4, 28, 29). 

Pj translocation across the cytoplasmic membrane of A. johnsonii 210A is 

mediated by two P( transport systems. The high-affinity uptake system is a periplas­

m s binding protein-dependent permease which is a member of the "Traffic 

ATPase" family of transporters (1, 32). Its synthesis is repressed by Pj in the 

medium at concentrations above 10 fiM (6). The constitutive, low-affinity Pj 

transport system is a reversible chemiosmotic carrier (32). The carrier protein has 

been solubilized from membrane vesicles, functionally reconstituted in proteoliposo-

mes, and has been demonstrated to mediate Pj uptake and efflux via an electrogenic 

proton symport mechanism. Based on the dependence of Pj uptake on divalent 

cations, like Mg2+, Ca2+, Co2+ or Mn2+, it was suggested that a neutral, soluble metal 

phosphate chelate (MeHP04) rather than Pj is the translocated solute (33). 

In this study, the substrate specificity of the two P, transport system of A. 

johnsonii 210A was examined in greater detail. The results indicate that the secon­

dary MeHP04 transport system is a major route for the entrance and exit of divalent 

cations and P; in response to aquatic environmental pertubations. The substrate 

specificity of the secondary MeHP04 transport system is complementary to that of 

the primary Pj transport system. The presence of both transport systems in A. 

johnsonii 210A allows the organism to take up the predominant Pj species from its 

aquatic environment. 

Materials and methods 

Organism and growth conditions 

A. johnsonii 210A was cultured at 30 °C in a Tris-buffered medium (pH 7.0) 

supplemented with 20 mM sodium butyrate and 5 mM or 20 pM sodium phosphate 

according to the experimental needs (32). 

Preparation of membrane vesicles and proteoliposomes 

Membrane vesicles were prepared by osmotic lysis of high-Prgrown cells exposed 
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to lithium chloride, a high concentration of lysozyme and a temperature shock (33). 

Solubilization of membrane vesicles with w-octyl-ß-glucopyranoside and reconsti­

tution of membrane proteins in proteoliposomes by detergent dilution were perfor­

med as described (33). 

Transport assays 

Uptake of 32P( (1.7 TBq/mol) or 45Ca2+ (2.1 TBq/mol) in cells energized via the 

oxidation of butyrate was monitored as described (32) in 50 mM potassium Pipes 

(pH 7.0) containing 50 ng of chloramphenicol/ml. For uptake driven by an artifici­

ally imposed membrane potential (A^, interior negative) or proton motive force 

(Apff+, interior negative and alkaline), proteoliposomes in 20 mM potassium Pipes 

(pH 7.0) containing 100 mM potassium acetate (PPA buffer) were diluted as 

described previously (33) into sodium Pipes-based buffers, pH 7.0. For P, efflux, 

proteoliposomes in PPA buffer were loaded with 32P-labeled potassium phosphate in 

the presence of divalent cations or EDTA by freeze-thaw-sonication (9). Loaded 

proteoliposomes were subsequently diluted 100-fold into PPA buffer containing a 

20 fiM concentration of CCCP. Transport of P, and Ca2+ in cells and proteoliposo­

mes was assayed at 30 °C by the filtration method (33). Uptake of Mg2* was 

monitored at 30 °C by spectrofluorimetry. Proteoliposomes were loaded with 5 mM 

Mag-Quin-2 by freeze-thaw-sonication (9). The excitation and emission monochro-

mator wavelengths were 335 and 490 nm with slit widths of 4 and 7.5 nm, respecti­

vely. 

Periplasmic protein fractions and Prbinding experiments 

Cells were exposed to an osmotic and temperature shock procedure (in the absence 

of lysozyme) as described for the preparation of membrane vesicles (33). Subse­

quently, the cells were pelleted by centrifugation (7,000 x g) at 20 °C and 

suspended into 50 volumes of 0.1 mM MgS04 at 20 °C. After 15 min of incuba­

tion, the cells were removed by centrifugation at 4 °C. The supernatant (periplasmic 

protein fraction) was concentrated via ultrafiltration to about 3 mg of protein/ml 
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and dialyzed as described (32). For binding of Pj to the Prbinding protein, con­

centrated periplasmic protein fractions were diluted 10-fold into 100 mM potassium 

Mes, 100 mM potassium Pipes, 100 mM potassium Hepes (pH 5.5 - 8.0) (MPH 

buffer) in a final volume of 0.5 ml. The MPH buffer was supplemented with EDTA 

or divalent cations as indicated in the legend to Fig. 5. Binding of 32P( (88.7 

TBq/mol) was measured via a filtration method (32). The data were corrected for 

nonspecific binding of P; to the nitrocellulose filters and to bovine serum albumin. 

EDAX analysis of polyphosphate granules 

Cells were grown at 20 °C in the medium described under "Organism and growth 

conditions", without Ca2+, supplemented with 1 mM sodium phosphate, 1 mM 

potassium chloride and (i) 3 mM Mg2+ (high-MgHP04 medium), (ii) 0.3 mM Mg2+ 

and 3 mM Ca2+ (high-CaHP04 medium), or (iii) 0.3 mM Mg2+ and 1 mM Mn2+ 

(high-MnHP04 medium). The elemental composition of the polyphosphate granules 

in air-dried, unfixed, and unstained cells (5) was examined by in situ EDAX ana­

lysis with a Camebax MB1 scanning electron microscope and a Tracor Tn 2,000 

energy dispersive X-ray spectrometer. 

Calculations 

The Pj species distribution in aqueous solution was calculated according to the acid 

dissociation constants of P( (logATa' = -12.33, \ogKa" = -7.21 and l o g ^ ' " = -2.16 

(24)) and the complexation equilibrium constant of the various metal phosphate 

complexes (Table 1). From these constants, the concentrations of the Pj species 

were evaluated by a simple analytical procedure at different pH values with the 

assumptions that (i) [Me2+
total] > [Pj total] and (ii) [Me2+] = [Me2+

total], in which 

[Me2+
tota|] and [Pj tota|] represent the sum of the different Me2+ and Pj species, 

respectively. For the determination of the Pj-binding constant (KD) of the periplas­

mic Pj-binding protein the equilibrium expression: KD = ([PBP][H2P04] + 

[PBP][HP04
2 ])/[PBP-Pj], was linearized into: 1/[PBP-Pj] = (K^ t oJFBPtoJ) + 

l/[PBPtota|], with the assumptions that one ligand binding site with equal affinity for 
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Table 1. Complexation equilibrium constants for divalent metal ions (Me2+) with 
orthophosphate3 

Me2+ 

Ca2+ 

Mg2+ 

Co2+ 

Mn2+ 

Complex 

CaP04" 
CaHP04 

CaH2P04
+ 

MgPCy 
MgHP04 

MgH2P04
+ 

CoHP04 

MnHP04 

log* 

6.46 
2.74 
1.4 

4.8 
2.91 
1.2 

3.5 

3.94 

a Values are for the formation of the complex by the divalent cation and P04
3", HP04

2" 
or H2P04" at 25 °C and zero ionic strength. Adapted from Sillén and Martell (24), 
Martell and Smith (18) and Morel (21). 

monobasic and dibasic P( is present per molecule of phosphate binding protein [by 

analogy with the periplasmic Prbinding protein of Escherichia coli which contains 

one Prbinding site per molecule (17)], and that [H2P04] + [HP04
2 ] = [P; t o J in 

the pH range of 5.5 to 8.0 in the absence of divalent cations. [PBP], [PBP-Pj] and 

[PBPtotal] refer to the concentration of non-liganded and liganded Prbinding protein, 

and to the sum of these two species, respectively. The KD and [PBPtotal] were 

derived by plotting 1/[PBP-Pi] versus l/[Pj t o ta l]. 

Miscellaneous 

Cell protein was determined by the procedure of Lowry et al. (16). A bicinchoninic 

acid protein assay (25) containing 0.2% (wt/vol) SDS was used for estimation of 

protein concentrations in detergent extracts and proteoliposome suspensions. Bovine 

serum albumin was used as the standard. 
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Chemicals 

32Pj (carrier-free) and 45CaCl2 (14.8 TBq/mol) were purchased from Amersham, 

Buckinghamshire, UK. Cellulose nitrate filters (0.45 /tin pore-size) were obtained 

from Schleicher und Schuell, Dassel, Germany. A Bicinchoninic Acid Protein Assay 

Kit and Mag-Quin-2 were supplied by Sigma and Molecular Probes, respectively. 

Other chemicals were reagent grade and obtained from commercial sources. 

Results 

Effect ofpH and divalent cations on the distribution ofPt species 

The distribution of the several acid and base species of Pj in solution is governed by 

pH. Their concentrations can be calculated using the acid dissociation constants of 

multistage equilibria of H3P04. The predominant Pj species over the pH range 5.0 -

9.0 are H2P04" and HP04
2" (Fig. 1A). However, in the presence of excess Ca2+ or 

Mg2* (e.g. 2 mM of divalent metal ions versus 50 pM Pj) soluble metal phosphate 

chelates (CaH2P04
+, CaHP04, CaP04" and MgH2P04

+, MgHP04, MgP04) are 

formed of which the neutral complexes prevail at physiological pH between 5.5 and 

8.0 together with H2P04" and HP04
2" (Fig. IB and 1C)1. At pH 7.0, about 31 and 

36% of Pj is complexed into CaHP04 or MgHP04, respectively. Similar computati­

ons with Co2+ or Mn2+ at 2 mM as the divalent cation indicate that about 70 and 

87% of Pj is in the CoHP04 or MnHP04 form, respectively. 

Translocation of metal phosphate via the secondary phosphate transport system 

Control experiments shown in Fig. 2A have verified the metal dependence of the 

'Complexation of Pj into insoluble calcium-phosphate phases (Ca(H2P04)2, 
CaHP04-2H20, ß-Ca3(P04)2, Ca4H(P04)3, Ca5(P04)3OH, and Ca10(PO4)6(OH)2) or mag­
nesium-phosphate phases (MgHP043H20 and Mg3(P04)2-8H20) was calculated to be less 
than 4 % of total P; up to pH 8.0 (data not shown), using phosphate solubility equilibrium 
constants (21, 26, 27). 
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Figure 1. Distribution of phosphate species in aqueous solution as function of pH in 
the absence (panel A) and presence of Ca2+ (panel B) or Mg2+ (panel C). The total 
concentrations of P: and Me2+ in these calculation were 50 (iM and 2 mM, respectively. 
The lines represent the relative concentrations of the following P{ species: H2P04" (D), 
HP04

2- (O), MeHjPO/ ( • ) , MeHP04 (A) and MeP04' ( • ) . The relative concentra­
tions of H3P04 and P04

3" were less than 0.14% between pH 5 and 9 (not shown). 

Ap^+-driven uptake of Pj in proteoliposomes in which P; carrier protein of A. 

johnsonii 210A was reconstituted. In addition, P; efflux in proteoliposomes preloa­

ded with 50 /xM P| in which the àpH+ was zero (collapsed by protonophore CCCP), 

was enhanced by the presence of 2 mM of Mg2^ Ca2+, or Mn2+ in the internal 

milieu of the membranes (Fig. 2B). Ps efflux was retarded in proteoliposomes 

containing 0.5 mM EDTA (Fig. 2B). In view of the predominance of MeHP04 in 

the incubation mixture and the apparent affinity of the Pj carrier for this complex 

(33), the strict metal dependence of P( uptake and efflux is in accordance with the 

translocation of MeHP04. 

This notion prompted us to study the uptake of Mg2* and Ca2+ in the presence 

and absence of Pj. Mg2* transport was monitored in proteoliposomes loaded with the 

118 



Substrate specificity ofPi transport systems in A. johnsonii 210A 

c 
'5 
o 
Q. 

E 
'S 
E 
Ol 

S a. 
3 

B 

St'4 

^ \ ^ 

a o N 0 

- 100 

80 

X \ H. 
u \ 

\ a 
D 

\ 

60 S. 
ai 

40 | 
ai 
a. 

8 0 

Time (min) 

20 

Figure 2. Effect of divalent metal ions on Pf uptake {panel A) and efflux (panel E) in 
proteoliposomes. Ap#+-Driven uptake of 50 (xM P, was measured in proteoliposomes in 
the presence of 2 mM of Mg2+ (O), Ca2+ (A), Co2+ (A), Mn2+ (D) or 0.5 mM EDTA 
( • ) in the incubation mixture, or in the absence of an imposed ApH+ (*). For Pj 
efflux, proteoliposomes in PPA buffer were loaded with 50 /iM P: and divalent cations 
or EDTA at concentrations as described under Apw+-driven uptake, and subsequently 
diluted 100-fold in PPA buffer without P;, supplemented with 20 pM CCCP. 

Mg2* indicator Mag-Quin-2. This probe undergoes a fluorescence excitation enhan­

cement upon binding of Mg2+. The Ai/'-driven uptake (Ai/' of -138 mV, interior 

negative) of Mg2* at a 200 /*M concentration was stimulated almost 7-fold when 5.4 

mM P| was added to the incubation mixture (data not shown). The Ps dependence of 

divalent cation transport was further investigated by Ca2+ uptake studies in proteo­

liposomes (Fig. 3). The rate of imposed Apff+-driven uptake of 100 /*M 45Ca2+ was 

low in the absence of Pj. In contrast, the accumulation of calcium in proteoliposo­

mes was stimulated considerably when the incubation mixture was supplemented 

with 100 iM 45Ca2+ and 100 /M 45CaHP04 through the additions of 5.4 mM 

sodium phosphate and 200 ^M 45Ca2+. 32Pj uptake was measured under identical 

119 



Chapter 5 

5 10 
Time (min) 

15 

Figure 3. Cotransport of Ca2+ and P; in proteoliposomes. Uptake of 100 fiM 45Ca2+ 

(O), 100 fiM 45Ca2+ plus 100 pM 45CaHP04 (A,D), or 100 juM 32Pj plus 100 ^M 
CaH32P04 (A,B) in the presence (O, A, A) and absence ( • , • ) of an imposed Ap„+. 

conditions. The same initial rate and steady-state level of accumulation of Pj as Ca2+ 

was observed suggesting a Ca27Pj ratio of one (Fig. 3). When 10 mM Mg2* was 

added to the incubation mixtures, the uptake of Ca2+ was strongly inhibited without 

concomitant inhibition of Pi uptake (data not shown). These results provide evi­

dence for the cotransport of Me2+ and Pj as a MeHP04 complex via the secondary Pj 

transport system of A. johnsonii 210A. 

The relation between the uptake of MeHP04 and its storage in metal polyphos­

phate was studied in cells grown in medium containing 1 mM K+ and about 450 

(M MgHP04 (high-MgHP04 medium), 350 iM CaHP04 plus 50 (M MgHP04 

(high-CaHP04 medium), or 580 fiM MnHP04 plus 30 /M MgHP04 (high-

120 



Substrate specificity ofP{ transport systems in A. johnsonii 210Â 

3-

2-

1-

o-
3-

d 
3. 2 

C
ou

nt
s 

o-
3-

2-

1-

o-

F 

Mg 

— • ^ ^ 

Mg 

.JE - i 

i 

i 

K 

^ F * t — p — 
3 

K Ca 

11 ^ u» 
3 

M 

A 

B 

C 

H 

Mn 

" i i—i r 
0 1 2 3 4 5 6 

keV 

7 8 9 10 

Figure 4. EDAX analysis of a large polyphosphate granule in cells of A. johnsonii 
210A grown in high-MgHP04 (panel A), high-CaHP04 (panel B) or high-MnHP04 

medium (panel C). 

MnHP04) medium. The concentration of these complexed Pj species was conside­

rably greater than the K, for uptake of MeHP04 via the secondary Ps transport 

system (33). EDAX analysis of large granules in the three cell types revealed a 

strong correlation between the elemental composition of the accumulated polyphos­

phates and that of the transported MeHP04 species. Cells of A. johnsonii 210A 

grown in high-MgHP04 medium (Fig. 4A) contained polyphosphate granules in 
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Figure 5. Uptake of Pf and CaHP04 in cells of A. johnsonii 210A. The uptake of 100 
lM "Pi plus 100 /iM CaH32P04 (panel A), and of 100 /*M 45Ca2+ plus 100 /*M 
45CaHP04 (panel E) was measured in high-P; (O) and low-Prgrown (A) cells energi­
zed by the oxidation of 20 mM butyrate. 

which Mg2"1" and K+ were the counterions. Ca2+ was found as an additional counter-

ion in granules of cells grown in high-CaHP04 medium (Fig. 4B), whereas Mn2+ 

was strongly prevailing during growth in high-MnHP04 medium (Fig. 4C). 

Translocation of mono- and dibasic Pt via the primary phosphate transport system 

The uptake of 100 /xM 32P; plus 100 MM CaH32P04, and of 100 pM 45Ca2+ plus 100 

pM 45CaHP04 was measured in high- and low-Prgrown cells (Fig. 5). 32P( uptake 

was strongly stimulated in low-P,-grown cells. In contrast, the transport of 

radiolabeled calcium was identical in both cell types. These results are consistent 

with the translocation of CaHP04 via the constitutive secondary P, transport system 

and suggest that transport of Pi; but not of CaHP04 occurs via the repressible 

primary P; transport system in A. johnsonii 210A. 
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Binding of Pj to a periplasmic phosphate-binding protein is one of the initial 

steps in the translocation of Pj via the primary P; transport system (12). The 

substrate specificity of the phosphate-binding protein of A. johnsonii 210A was 

therefore examined in periplasmic protein fractions of low-Prgrown cells. Pi-

binding studies at substrate concentrations between 0.1 and 1.5 jitM yielded an 

apparent Prbinding constant (KD) of 0.59 ±0 .11 fiM at pH 7.0 and a Prbinding 

protein concentration of 8.4 x 1014 molecules/ml of concentrated periplasmic protein 

fraction, assuming one ligand-binding site per molecule of Pj-binding protein (see 

"Materials and methods"). The KD corresponds well with the K, value of 0.7 ± 0.2 

pM previously determined for the primary Pj transport system in cells of A. john­

sonii 210A (32). The KD was studied as a function of pH. Although the ratio of 

H2P04" over HP04
2" decreases about 250-fold when the pH is raised from 5.5 to 8.0, 

the KD for Pj was essentially pH independent (Table 2), suggesting that the phospha­

te-binding protein has affinity for both monobasic and dibasic phosphate. 

Its affinity for MeHP04 was investigated in Pj-binding assays (pH 7.0) contai­

ning 100 nM Pj in the absence and presence of 0.5 mM EDTA, 10 niM Mg2"1" or 2 

Table 2. Effect of pH on the H2P047HP04
2- ratio and the KD of the periplasmic Pj-

binding protein of A. johnsonii 210A 

pH 

5.5 

6.0 

6.5 

7.0 

7.5 

8.0 

H2P047HP04
2 

51.3 

16.2 

5.1 

2.2 

0.5 

0.2 

-ratio3 KD 0,M)b 

0.55 ± 0.08 

0.63 ±0.11 

0.48 ± 0.12 

0.59 ±0.11 

0.65 ±0.15 

0.58 ± 0.10 

a The ratio of monobasic over dibasic Pf was derived from Fig. 1 A. 
b The apparent KD of the Prbinding protein in periplasmic protein fractions of low-Pj-
grown cells was measured at Pj concentrations between 0.1 and 1.5 /*M. Values are 
means from two separate experiments. 
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1 2 3 4 5 

Bar number 

Figure 6. Effect of divalent cations on the binding of Pj to the periplasmic Prbinding 
protein of A. johnsonii 210A. Binding of 0.1 /nM Pj to concentrated periplasmic protein 
fractions of high-Prgrown cells (bar 1) and low-Prgrown cells in the absence (bar 2) 
and presence of 0.5 mM EDTA (bar 3), 10 mM Mg2+ (bar 4), or 2 mM Mn2+ (bar 5) 
was measured at pH 7.0. Each value is the mean of three separate determinations. 

mM Mn2+. Pj binding was not affected by EDTA, but was inhibited about 1.8 and 

2.7-fold by the addition of Mg2"*" or Mn2+, respectively (Fig. 6). On the basis of 

equal affinity for H2P04" and HP04
2" it can be calculated that at a P; concentration 

of 100 nM in the absence of Me2+, about 11% of the Prbinding molecules in the 

incubation mixture has bound P(. In the presence of 10 mM Mg2* or 2 mM Mn2+ 

the calculated number of liganded Prbinding molecules decreased by a factor of 2.3 

and 3.6, respectively, due to MeHP04 formation with a concomitant decrease in the 

concentration of free Pj. These calculations agree well with the observed inhibition 

of Pj binding by divalent metal ions. The Prbinding studies provide evidence for the 

binding of H2P04" and HP04
2", but not of MeHP04 by the phosphate-binding 

protein. Taken together, the results are in accordance with the translocation of both 
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mono- and dibasic phosphate via the primary P; transport system of A. johnsonii 

210A. 

Discussion 

The findings presented in this paper are consistent with the transport of a different 

set of Pj species by the two distinct P; transport systems operating in A. johnsonii 

210A. 

Two lines of evidence provide substantial support for the translocation of a 

neutral MeHP04 complex via the secondary Pf transport system of A. johnsonii 

210A. First, Pj uptake and efflux in proteoliposomes in which Pj carrier protein was 

reconstituted, was stimulated by various divalent cations in the following decreasing 

order: Mn2+ > Co2+ > Ca2+ > Mg2*. This order is consistent with the decreasing 

order of the complexation equilibrium constants for MeHP04 (Table 1). 

Calculations using the acid dissociation constants of P( and the complexation 

equilibrium constants of several metal phosphate chelates revealed the predominance 

of MeHP04 under the experimental conditions. During uptake, the Pj carrier 

exhibited a pH-independent K, for MeHP04 in a pH range of 6.0 to 8.0 (33). The 

second line of evidence came from the demonstration of Prdependent transport of 

Mg2+ and Ca2+ in proteoliposomes. Excess Mg2+ inhibited the uptake of Ca2+ in the 

presence of Pj5 but not the uptake of Pj in the presence of Ca2+. Ca2+ and Pj were 

accumulated in equimolar quantities. The results presented in this and previous 

work (33) exclude other possible explanations for the metal dependence of Pf 

transport in proteoliposomes, such as binding of metal phosphate to membranes, 

internal precipitation of metal phosphate due to solute accumulation, or secondary 

effects of divalent cations on the magnitude or stability of the Apw+. 

The binding protein-dependent, primary Pj transport system of A. johnsonii 

210A most likely mediates the transport of HP04
2" and H2P04". The uptake of 32P;, 

but not of radiolabeled calcium was derepressed in cells under P; limitation. The P; 

uptake rate was about twice the calcium uptake rate in high-Pj-grown cells at 

substrate concentrations which saturate both P: transport systems. These observa­

tions are consistent with the transport of Pf via the derepressible primary Pj 
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transport system and of CaHP04 via the constitutive secondary MeHP04 transport 

system, the maximal uptake rate of which is about equal to that of the primary Pj 

transport system in high-Prgrown cells (32). The substrate specificity of the 

periplasmic Prbinding protein of A. johnsonii 210A which is the initial receptor in 

the primary P; transport system, was analyzed in concentrated periplasmic protein 

fractions. The KD for P> (0.59 ±0.11 /*M) closely matches the KD (0.7 - 0.8 pM) of 

the periplasmic Prbinding protein of E. coli (19, 20). The pH independence of the 

KD and the significant inhibition of Pj binding by excess divalent cations indicate 

the binding of HP04
2" and H2P04", but not of metal phosphate by the Prbinding 

protein of A. johnsonii 210A. This conclusion is in agreement with X-ray 

diffraction studies of crystallized Prbinding protein of E. coli, the structure of 

which reveals the atomic features responsible for P( selectivity, either in monobasic 

or dibasic form (15, 17). 

The primary P( transport system of A. johnsonii 210A is a unidirectional 

uptake system for P( (32). In contrast, the secondary MeHP04 transport system is 

reversible (32, 33) and provides A. johnsonii 210A with a major route for the 

entrance and exit of divalent metal ions and Pj. The activity of the latter system is 

closely related to the metabolism of cytoplasmic polyphosphate granules in which P( 

and divalent metal ions are accumulated as was shown by EDAX analysis of these 

cellular inclusions. Their elemental composition reflected that of the predominant 

MeHP04 species in the uptake medium. These results are consistent with previous 

studies in A. johnsonii 210A (5) and other polyphosphate-accumulating microorga­

nisms, e.g., Propionibacterium acnes (14), Spirillum itersonii, Corynebacterium 

diphtheriae, Micrococcus luteus (34), Micococcus lysodeikticus (10), Lactobacillus 

plantarum (2), and Plectonema boryanum (3, 13), in which polyphosphate granules 

serve as the main sink for divalent metal ions such as Ba2+, Ca2+, Co2+, Mg2"1", Mn2+, 

Ni2+, or Zn2+. During polyphosphate degradation in A. johnsonii 210A, intracellular 

metal phosphate can be easily excreted via the secondary MeHP04 transport system. 

Polyphosphate-accumulating Acinetobacter spp. can be used to efficiently 

remove Pi from waste water. In essence, Pj at low concentrations is removed bio­

logically from a large volume of waste water under aerobic conditions and is con­

centrated through its release into a small volume of water during anaerobiosis (35). 
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Settled domestic waste water (pH 7.0) contains about 3 mM Ca2+, 0.3 mM Mg2* and 

0.1 to 0.3 mM P, (23). The presence of excess Ca2+ in these waters will affect Pj 

speciation due to extensive complexation. As a consequence, CaHP04 will prevail 

together with H2P04" and HP04
2". The results show that the Pj transport systems of 

A. johnsonii 210A are well adapted to the availability of CaHP04, H2P04" and 

HP04
2" in the aquatic environment, allowing the organism to efficiently use Pj as a 

source of phosphorus. 
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Summary 

Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 

210A was studied. L-Alanine, L-lysine and L-proline were actively transported 

when a proton motive force of -76 mV was generated by the oxidation of glucose 

via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid 

uptake at concentrations of up to 80 ^M revealed the presence of a single transport 

system for each of these amino acids with a K, of less than 4 fiM. The mode of 

energy coupling to solute uptake was analyzed by imposition of artificial ion 

diffusion gradients. The uptake of alanine and lysine was driven by a membrane 

potential and a transmembrane pH gradient. In contrast, the uptake of proline was 

driven by a membrane potential and a transmembrane chemical gradient of sodium 

ions. The mechanistic stoichiometry for the solute and the coupling ion was close to 

unity for all three amino acids. The Na+ dependence of the proline carrier was 

studied in greater detail. Membrane potential-driven uptake of proline was 

stimulated by Na+ with a half-maximal Na+ concentration of 26 /*M. At Na+ 

concentrations above 250 /*M, proline uptake was strongly inhibited. Generation of 

a sodium motive force and maintenance of a low internal Na+ concentration are 

most likely mediated by a sodium/proton antiporter, the presence of which was 

suggested by the Na+-dependent alkalinization of the intravesicular pH in inside-out 

membrane vesicles. The results show that both H+ and Na+ can function as coupling 

ions in amino acid transport in Acinetobacter spp. 

Introduction 

Acinetobacter species are non-fastidious, gram-negative, strict aerobes which are 

ubiquitous in the environment (33). A vast number of complex catabolic pathways 

for the degradation of aromatic and alicyclic compounds as well as alkanes, amino 

acids, and related compounds in this genus are known (17). In contrast, knowledge 

about the transport processes which are involved in the uptake and efflux of these 

substances is limited. The entry of aromatic compounds into the cell is often assu­

med to occur by passive diffusion, but there is evidence that Acinetobacter 
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calcoaceticus possesses specific transport systems for benzoate and mandelate (8, 

13, 14). The presence of a reversible L-lysine permease in Acinetobacter johnsonii 

210A was indicated by counterflow activity of L-lysine in de-energized cells (37). 

In addition, L-alanine, L-glycine, L-leucine, and L-glutamate are translocated via 

secondary transport mechanisms in A. calcoaceticus (36). 

A. johnsonii 210A is able to accumulate excessive amounts of phosphate as 

polyphosphate (35). When oxidative phosphorylation is impaired, polyphosphate is 

degraded and phosphate is excreted into the medium (34). Recently, membrane 

vesicles of A. johnsonii 210A were found to be an excellent model system for the 

study of the energetics of the secondary transport system involved in the phosphate 

efflux process (38). The results suggest a role for the phosphate carrier in the 

conservation of metabolic energy from polyphosphate degradation through the 

efflux of a metal phosphate complex in symport with one proton. In this way, a 

proton motive force can be generated in the absence of oxidative phosphorylation. 

This proton motive force may drive energy requiring processes, such as the uptake 

of amino acids. 

In view of the limited insight into the bioenergetics of the transport of amino 

acids in Acinetobacter spp. and the possible energetic role of a metal phosphate 

efflux-induced proton motive force in the accumulation of these solutes in A. 

johnsonii 210A, we examined the presence and energetic requirements of several 

secondary amino acid transport systems in membrane vesicles of this organism. 

From the mechanism of energy coupling to the transport of amino acids in enteric 

and lactic acid bacteria and other microorganisms (3, 9), two different types of 

secondary amino acid uptake systems can be discriminated: (i) cation-amino acid 

symport systems, which couple amino acid translocation to the proton or sodium 

motive force and (ii) antiporters which couple uptake of an amino acid to the efflux 

of a product. Here, it is demonstrated that the alanine and lysine carriers of A. 

johnsonii 210A both translocate their solute in symport with one H+. In contrast, the 

proline permease is absolutely dependent upon Na+ at micromolar concentrations 

and catalyzes Na+-proline symport. The low internal sodium concentration necessary 

for optimal proline uptake is achieved by the activity of an Na+/H+ antiporter. 
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Materials and methods 

Cell growth and preparation of membrane vesicles 

A. johnsonii 210A was grown at 30 °C with vigorous aeration in a Tris-buffered 

minimal salts medium (pH 7.0) supplemented with 20 mM sodium butyrate and 5 

mM sodium phosphate (37). Right-side-out membrane vesicles were prepared by 

osmotic lysis of cells exposed to LiCl, a high concentration of lysozyme, and a 

temperature shock (38). Membrane vesicles were suspended in 50 mM potassium 

Pipes (pH 7.0) supplemented with 10 mM MgS04 at a final concentration of about 

15 mg of protein per ml, rapidly frozen, and stored under nitrogen. For the prepara­

tion of inside-out membrane vesicles, the method of Ambudkar et al. (1) was 

modified. Cells were harvested in the mid exponential phase by centrifugation 

(8,000 x g, 10 min) and washed twice in lysis buffer [10 mM potassium Pipes, 10 

mM potassium Hepes, 10% (vol/vol) glycerol, 0.5 mM dithiothreitol (pH 8.0)]. The 

cells were suspended at 5 volumes per g of wet cells in lysis buffer to which 10 /ig 

of deoxyribonuclease I and 10 jug of ribonuclease per ml were added and lysed by 

one passage through a French pressure cell at 8,000 lb/in2. After 10 min of 

incubation at 20 °C, unbroken cells and cell debris were removed from the lysate 

by centrifugation (8,000 x g, 10 min). Inside-out membrane vesicles were pelleted 

by centrifugation (100,000 x g, 2 h), suspended in lysis buffer at a final concentra­

tion of about 8 mg of protein per ml, rapidly frozen and stored under nitrogen. All 

centrifugations were performed at 4 °C. 

Solute transport 

Solute uptake in right-side-out membrane vesicles driven by a proton motive force 

(ApH+, interior negative and alkaline) generated by glucose oxidation via the 

membrane-bound glucose dehydrogenase was measured essentially as described 

previously (38). Membrane vesicles were washed and suspended in 50 mM potas­

sium Pipes (pH 7.0) or 20 mM potassium Mes, 20 mM potassium Pipes, 20 mM 

potassium Hepes (pH 5.0 to 8.0) supplemented with 10 mM MgS04. To start 

134 



Amino acid transport in A. johnsonii 210A 

uptake, 14C-labeled proline, alanine, or lysine was added to the membrane vesicle 

suspensions at a concentration of 1.95, 3.23, or 1.62 jtM, respectively, unless 

indicated otherwise. Transport was terminated by dilution of 100 /xl of reaction 

mixture with 2 ml of ice-cold 0.1 M KCl and filtration on a 0.45 /*m cellulose 

nitrate filter. Filters were washed once with 2 ml of ice-cold 0.1 M KCl. The 

radioactivity retained on the filters was measured by liquid scintillation spectro­

metry. 

For uptake driven by an artificially imposed membrane potential (A^, interior 

negative), transmembrane pH gradient (ApH, interior alkaline), transmembrane 

chemical gradient of sodium ions (ApNa, interior low), or combinations thereof, 

right-side-out membrane vesicles were equilibrated overnight at 4 °C in 20 mM 

potassium Mes, 20 mM potassium Pipes (pH 6.5 or 7.0) supplemented with 100 

mM potassium acetate and 10 mM MgS04, concentrated to about 17 mg of protein 

per ml, and diluted as described previously (38) and in the text (see below). Potas­

sium- and sodium-free dilution buffers were titrated with choline hydroxide. All 

dilution media were supplemented with 10 mM MgS04 and radiolabeled substrates 

at the concentrations described above. Subsequent steps were as described for ApH+-

driven uptake. A specific internal volume of 3 /x\ per mg of membrane protein was 

used for calculation of the intravesicular concentration of the solute (18, 30). 

Determination ofApH+ 

The Ai/' (interior negative) in right-side-out membrane vesicles energized by glucose 

oxidation was determined as described before (38) from the distribution of the lipo­

philic cation TPP+, with a TPP+-selective electrode (29). The A\p was calculated 

from the steady-state level of TPP+ accumulation and corrected for concentration-

dependent, nonspecific binding of TPP+ to the membranes (20). The ApH (interior 

alkaline) in right-side-out membrane vesicles was calculated from the increase in 

A\j/ after addition of nigericin, assuming a complete interconversion of ApH into A^ 

(11). 
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Determination of internal pH 

The internal pH in inside-out membrane vesicles was estimated from the fluore­

scence of the pH indicator BCECF trapped in the intravesicular space (23). The 

membrane vesicles were loaded directly with BCECF by lysis of cells as described 

above under "Cell growth and preparation of membrane vesicles" in lysis buffer 

supplemented with 40 fiM BCECF. BCECF-loaded membrane vesicles were washed 

in a 1,000-fold volume of 10 mM potassium Pipes, 10 mM potassium Hepes (pH 

8.0) supplemented with 10 mM MgS04 and suspended in this buffer to about 0.2 

mg of protein per ml. A ApH+ (interior positive and acid) was generated in the 

membrane vesicles at 25 °C by the addition of 3 mM potassium ATP (pH 8.0). 

Changes in the intravesicular pH were monitored by continuous recording of 

BCECF fluorescence, with excitation and emission wavelengths of 502 and 526 nm, 

respectively, and slit widths of 5 nm. The fluorescence signal was averaged over 

time intervals of 0.3 s and calibrated in the pH range from 6 to 9 by measuring the 

fluorescence as a function of pH in the presence of 1 nmol of valinomycin and 

nigericin per mg of protein (internal pH equals external pH). 

Other methods 

Protein content was determined by the method of Lowry et al. (21) with bovine 

serum albumin as the standard. 

Chemicals 

Cellulose nitrate filters were supplied by Schleicher und Schuell, Dassel, Germany. 

L-[U-14C]alanine (6.9 TBq/mol), L-[U-14C]lysine monohydrochloride (11.8 

TBq/mol), and L-[U-14C]proline (9.5 TBq/mol) were purchased from the Radio­

chemical Centre, Amersham, Buckinghamshire, UK. BCECF was obtained from 

Sigma Chemicals Co., St. Louis, MO, USA. Other chemicals were reagent grade 

and obtained from commercial sources. 
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Figure 1. Transport of lysine, alanine and proline in right-side-out membrane vesicles. 
Uptake of lysine (0,9), alanine (D,B), and proline (A,A) was measured in the 
presence (open symbols) and absence (solid symbols) of glucose plus PQQ. 

Results 

Kinetics and specificity of amino acid uptake 

L-Alanine, L-lysine, and L-proline were accumulated about 20-, 200- and 40-fold, 

respectively, in right-side-out membrane vesicles of A. johnsonii 210A in 50 mM 

potassium Pipes (pH 7.0) supplemented with 10 mM MgS04, in which a ApH+ of 

-76 mV was generated by glucose oxidation via the membrane-bound glucose 

dehydrogenase (Fig. 1). 

The dependence of the transport activity on the amino acid concentration, as 

evaluated from the initial rates of linear uptake over the first 30 s at substrate 

concentrations of between 0.3 and 80 pM, followed monophasic Michaelis-Menten 

kinetics. The uptake of these amino acids showed apparent K, values of less than 4 
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Table 1. Kinetic parameters of alanine, lysine, and proline uptake in right-side-out 
membrane vesicles* 

amino acid 

L-alanine 

L-lysine 

L-proline 

K, fciM) 

3.0 ± 0.9 

1.3 ±0.2 

2.5 ± 0.8 

Vmxl (nmol of amino 
acid/min/mg of protein) 

0.09 ± 0.02 

0.32 ± 0.07 

0.21 ± 0.06 

* Kinetic data were determined by linear regression analysis of Lineweaver-Burk plots. 
Values are means from three separate experiments. 

/*M and maximal velocities of 0.1 to 0.3 nmol/min/mg of protein (Table 1). The 

Ap^+'driven accumulation of lysine was not affected when a 100-fold excess of un­

labeled L-ornithine or L-arginine was added to the incubation mixture at the start of 

the uptake experiment or after a steady state level of lysine accumulation had been 

reached (data not shown). 

Energetics of amino acid transport 

The Apw+-driven uptake of alanine, lysine, and proline was affected differently by 

the external pH. Alanine and lysine transport showed an optimum activity at 

medium pHs of between 6 and 7, whereas the proline uptake rate increased with 

increasing pH up to an optimum of above pH 8.0 (Fig. 2A). Comparison of the 

amino acid uptake rate and the ApH+ in the course of the pH dependence (Fig. 2B) 

showed a clear correlation between these parameters for alanine and lysine transport 

but suggested the influence of other parameters on proline uptake. 

The mode of energy coupling to the transport of alanine, proline, and lysine 

was studied in greater detail in right-side-out membrane vesicles in which artificial 

ion diffusion gradients were generated. A A\p (interior negative) of -120 mV was 

created by diluting potassium-loaded membrane vesicles 100-fold into a potassium-

free buffer in the presence of the potassium ionophore valinomycin. Dilution of 

potassium-loaded membrane vesicles into a sodium buffer resulted in the generation 
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Figure 2. Effect of pH on the rate of Apff+-driven uptake of amino acids (A) and the 
magnitude and composition of the ApH+ (B) in right-side-out membrane vesicles. 
Initial velocities of uptake of lysine (O), alanine (D), and proline (A) were determined 
over the first 30 s. The A^ ( • ) , -ZApH (A), and ApH+ (= A^ - ZApH) ( • ) were 
determined in parallel assays under the same conditions used to measure amino acid 
uptake. 

of an inwardly directed -ZApNa of -120 mV. A -ZApH (interior alkaline) of -120 

mV was imposed by diluting acetate-loaded membrane vesicles 100-fold into a 

solution containing Mes. Alanine and lysine were accumulated in response to an 

artificially imposed ApH or Axfr (Fig. 3A and B). When a combination of both 

gradients was applied, the highest alanine and lysine uptake was measured. A^- and 

ApH-driven uptake of these amino acids was additive. In contrast, an imposed 

ApNa could not drive the uptake of alanine and lysine, and the Apw+-driven uptake 

was not affected by the simultaneous imposition of a ApNa. Proline accumulated in 

response to an artificial A\j/ (Fig. 3C). Uptake was stimulated significantly when a 

ApNa was applied. The highest uptake of proline was measured after imposition of 

a sodium motive force (ApNa+). A ApH imposed alone or on top of a A^ or ApNa+ 

did not affect the uptake of proline. The results point to the translocation of alanine, 
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Figure 3. Effect of artificially imposed ion diffusion gradients on amino acid transport 
in right-side-out membrane vesicles. The uptake of alanine (A) and lysine (B) at pH 
6.5 and of proline (C) at pH 7.0 was measured in the absence (*) and presence of a 
Â - (interior negative) (D), ApH (interior alkaline) (O), ApNa (interior low) ( • ) , 
ApH+ (A), ApNa+ ( • ) , or ApH+ and ApNa (A). 

lysine, and proline via electrogenic processes with H+ as the symported ion for 

alanine and lysine, and Na+ as symported ion for proline. 

Na+ dependency of the proline transport system 

The effect of Na+ on the transport of lysine, alanine, and proline was investigated. 

Because of the low levels of Na+ contamination in the inorganic salts used for the 

preparation of buffers and leeching of Na+ from glassware, the "sodium-free" 

buffers used in the experiments described above contained up to 150 fiM Na+. Na+ 

contamination in buffers could be reduced to concentrations of less than 10 /xM by 

the use of polypropylene containers and tubes for buffer preparation and uptake 

measurements, respectively, and by titration of buffers with choline hydroxide 

instead of potassium hydroxide. Right-side-out membrane vesicles were equilibrated 

in 50 mM potassium Pipes (pH 7.0) containing 10 mM MgS04 and Na+ at 
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Figure 4. Effect of Na+ concentration on the A^-driven uptake of proline in right-side-
out membrane vesicles. The initial transport rates were determined over the first 20 s 
of uptake. The external Na+ concentration was measured by atomic absorption 
spectrometry. The data were corrected for the Na+ concentration. (Inset) Double reci­
procal plot of the data. 

concentrations ranging from about 40 /uM (no Na+ added) to 750 pM. A A^ of -162 

mV was imposed by a 500-fold dilution of the membrane vesicles in 50 mM 

choline Pipes (pH 7.0) containing 10 mM MgS04 and Na+ at concentrations ranging 

from about 6 pM (no Na+ added) to 750 pM. During Ai/'-driven uptake of the 

amino acids, the internal sodium concentration was about equal to the external one 

at Na+ concentrations of more than 40 fiM. All actual Na+ concentrations in the 

dilution buffer were measured by atomic absorption spectrometry. Imposed A\//-

driven uptake of proline was stimulated by considerably low concentrations of Na+ 

(Fig. 4). A double-reciprocal plot of Na+ concentration versus the initial velocity of 

amino acid transport over the first 20 s of uptake revealed a half-maximal Na+ 

concentration of about 26 JUM (Fig. 4, inset). At Na+ concentrations higher than 

about 250 /*M, inhibition of uptake was observed. In contrast, imposed A^-driven 
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uptake of alanine and lysine was not affected by Na+ (not shown). 

Mechanistic stoichiometry of energy coupling 

The cation/amino acid stoichiometry was determined from the steady state accumu­

lation levels of alanine, proline, and lysine in right-side-out membrane vesicles in 

50 mM potassium Pipes (pH 7.0) containing 10 mM MgS04, in which a A^ of -82 

mV was generated by glucose oxidation in the presence of 0.1 nmol each of 

monensin and nigericin per mg of protein. Steady state levels of amino acid 

accumulation were reached in 25 min for lysine and in 10 min for alanine and 

proline (Fig. 1). In the absence of a ApH or ApNa, solute/cation symport occurs 

according to the equation -ZApsoiute = (n + m) A\p, in which -ZApsolute represents the 

transmembrane concentration gradient of the solute (in millivolts) and n is the 

number of cations translocated in symport with one molecule of solute with charge 

m. Calculation o f« yielded a value of 0.92 for alanine, 0.94 for lysine, and 1.12 for 

proline. Together, these results strongly suggest that alanine and lysine are trans­

ported in symport with one proton, whereas proline is transported in symport with 

one sodium ion. 

Na+/H* exchange activity 

In membrane vesicles of A. johnsonii 210A, glucose oxidation via glucose dehydro­

genase is functionally linked to redox reaction-coupled primary H+ translocation by 

the respiratory chain and results primarily in the generation of a ApH+ (37). In order 

to evaluate the role of an Na7H+ antiporter in the conversion of the ApH+ into the 

ApNa+, evidence for the presence of such an antiporter was sought in inside-out 

membrane vesicles loaded with the fluorescent pH probe BCECF. After the addition 

of 3 mM potassium ATP to inside-out membrane vesicles, the fluorescence was 

quenched, reflecting the formation of a ApH (interior acid) through proton pumping 

via the H+-ATPase (Fig. 5). The fluorescence intensity recovered rapidly after the 

dissipation of the ApH+ by the addition of valinomycin plus nigericin (each at 1 

nmol/mg of protein). The fluorescence signal in membrane vesicles was not affected 
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Figure 5. Na+-dependent alkalinization of the internal pH in inside-out membrane 
vesicles. BCECF fluorescence quenching was initiated by the addition of 3 mM 
potassium ATP at the time indicated by the first arrow. A control measurement was 
performed in which ATP was replaced by an equal volume of buffer (dashed line 
labeled control). At the time indicated by the second arrow, 5 mM KCl, 1 nmol each 
of valinomycin and nigericin per mg of protein, or 5 mM NaCl was added to the 
membrane vesicles, or no addition was made (no add.). 

by the addition of 5 mM K+ to the external milieu. However, a rapid alkalinization 

of the intravesicular pH was observed after the addition of 5 mM Na+. This exchan­

ge of H+ for Na+ indicated the presence of a sodium/proton antiporter in 

cytoplasmic membranes of A. johnsonii 210A. 

Discussion 

In this study, the transport of alanine, lysine, and proline was analyzed in right-side-

out membrane vesicles of A. johnsonii 210A. Kinetic analysis of the uptake of these 

amino acids at substrate concentrations in the range from 0.3 to 80 fiM gave 
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evidence for the presence of single, high-affinity carriers for each of these solutes. 

Lysine and alanine were actively accumulated in right-side-out membrane 

vesicles in which a ApH+ was generated by glucose oxidation. Uptake was also 

observed in response to an artificially imposed ApH+. An imposed membrane 

potential and ApH, but not a ApNa, could act separately as a driving force for the 

uptake of these solutes. In contrast to alanine, which is more or less neutral at 

physiological pHs for A. johnsonii (pH 5 to 8), lysine is positively charged because 

of the high pKa of its e-amino group (pKa = 10.5). Consequently, the membrane 

potential is expected to be a main driving force for lysine accumulation. Compari­

son of (i) the rates of Apff+-driven uptake of alanine and lysine in membrane 

vesicles at a ApH+ of different magnitudes and compositions in the course of the pH 

dependence and (ii) the uptake of these solutes in response to an artificially imposed 

membrane potential or ApH confirm that lysine transport is biased towards the A^. 

Analysis of the steady-state accumulation levels of A^-driven uptake of alanine 

and lysine, and the magnitude of A\j/ suggest the transport of these amino acids with 

an H+/solute stoichiometry of one. The lack of inhibition of Ap#+-driven lysine 

uptake in membrane vesicles by excess arginine and ornithine in competition 

experiments and the lack of heterologous lysine:arginine and lysinerornithine 

exchange demonstrate (i) the high specificity of the lysine carrier of A. johnsonii 

210A for lysine and (ii) the absence of a lysine/ornithine/arginine antiporter (LAO 

system), as has been observed in Escherichia coli (28), Lactococcus lactis (12, 27), 

and Pseudomonas aeruginosa (39). In addition, osmotic shock-insensitive lysine 

uptake in cells of A. johnsonii 210A (37) indicates that a binding protein-dependent 

system is not involved in the uptake of lysine. Together, the results point to the 

presence of one lysine-specific permease in A. johnsonii 210A grown in synthetic 

minimal medium, which mediates the translocation of lysine in symport with one 

proton. This system is possibly related to the Apw+-driven lysine carrier of L. lactis 

(12) and to the lysP gene-encoded lysine-specific permease of E. coli (28, 31). 

Although rapid Ap^-driven uptake of proline was observed in right-side-out 

membrane vesicles energized by glucose oxidation, a detailed analysis of the ener­

getics of transport through imposition of artificial diffusion gradients suggested the 

involvement of the A\j/ and ApNa but not of the ApH as a driving force for uptake. 
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Determination of the proline/Na+ stoichiometry indicates the translocation of proline 

together with one Na+. The absolute dependence of proline transport on Na+ could 

be demonstrated only when special precautions were taken to reduce the sodium 

contamination in the uptake medium to 6 fiM. Under these conditions, the rate of 

proline uptake was very low and stimulated by an increase in the (external) sodium 

concentration, with a half-maximal Na+ concentration of 26 yM. Without these 

precautions, the amount of contaminating Na+ in the uptake medium greatly ex­

ceeded the low apparent K, value of the proline carrier for sodium ions, resulting in 

the observation of active uptake of proline in the absence of added sodium ions. On 

the other hand, Na+ concentrations above 250 fiM ([Na+]inside = [Na+]outside) w e r e 

inhibitory for proline transport. By analogy with internal catalytic pH effects on 

proton symport systems (10, 19, 38), this observation may reflect the inhibition by 

high internal sodium ion concentrations of Na+ dissociation from the proline carrier 

protein at the inner surface of the membrane. Strict regulation of the internal Na+ 

concentration during the uptake of proline via a sodium symport mechanism will be 

essential for retaining optimal proline transport via this carrier. 

The Na+-dependent alkalinization of the intravesicular pH of inside-out mem­

brane vesicles of A. johnsonii 210A at alkaline pH suggests the presence of a so­

dium/proton antiporter which may have functions similar to those of the nhaA gene-

encoded system of E. coli: (i) regulation of internal pH (4, 25), (ii) energy 

buffering (5), (iii) generation of a ApNa+ (7), and (iv) maintenance of a low internal 

sodium concentration (24). The activity of NhaA was found to increase at least 100-

fold when the pH was increased from 6.6 to 8.5 (26). A similar pH regulation of 

the NhaA-like system of A. johnsonii 210A could explain the increase in the rate of 

ApWQ+-driven uptake of proline with increasing pH in right-side-out membrane 

vesicles energized by glucose oxidation. 

The proline permease of A. johnsonii 210A resembles the major proline per­

mease (PPI) of E. coli (16, 32) and Salmonella typhimurium (6). E. coli and S. 

typhimurium contain a second secondary proline transport system, designated PPII. 

This system has a low affinity for proline and glycine-betaine (K, for proline 130 

fiM) (2), is activated by a hyperosmotic shift (22), and is involved in osmoregu­

lation (15). Since the experimental conditions used in this study hardly allow the 
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detection of a PPII-like system in membrane vesicles of A. johnsonii 210A, the 

presence of this system remains to be established. 

The results presented in this article demonstrate the presence of high-affinity 

secondary transport systems for L-alanine, L-lysine, and L-proline in A. johnsonii 

210A. The alanine and lysine carriers translocate their solute in symport with a 

proton, whereas the proline permease mediates Na7proline symport. Although the 

role of amino acid transport systems in amino acid-auxotrophic organisms, such as 

lactic acid bacteria, is obviously to supply amino acids for growth, Acinetobacter 

species are able to fulfill the amino acid demand of the cell by de novo synthesis. 

Unlike lactic acid or enteric bacteria, acinetobacters are found in environments that 

are normally subject to considerable variation in composition, temperature, and 

oxygen supply (33). High-affinity uptake systems, e.g., for amino acids, will enable 

Acinetobacter spp. to scavenge the environment for traces of metabolizable sub­

strates and to recapture endogenous compounds leaking out of the cell. Retention of 

metabolites will become particularly important when oxidative phosphorylation is 

impaired in these aerobic organisms. In the polyphosphate-accumulating A. john­

sonii strain 210A, generation of a ApH+ via efflux of a neutral metal phosphate 

(MeHP04) complex in symport with a proton may contribute to the survival of the 

cell under such conditions. 
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Summary 

The strictly aerobic, polyphosphate-accumulating A. johnsonii strain 210A degrades 

its polyphosphate when oxidative phosphorylation is impaired. The endproducts of 

this degradation, divalent metal ions and phosphate, are excreted as a neutral metal 

phosphate (MeHPOJ chelate via the electrogenic MeHP04/H
+ symport system of 

the organism. The coupled excretion of MeHP04 and H+ in A. johnsonii 210A can 

generate a proton motive force. In membrane vesicles and deenergized cells, a 

membrane potential of about -70 mV and transmembrane pH gradient of about -8 

mV were formed in response to an imposed outwardly directed MeHP04 concen­

tration gradient of 120 mV (initial value). The MeHP04 efflux-induced proton 

motive force could drive energy requiring processes, such as the accumulation of L-

proline and L-lysine, and the synthesis of ATP via the membrane-bound FQF, H4"-

ATPase. In vivo 31P-NMR studies of polyphosphate degradation in anaerobic cell 

suspensions revealed the presence of a considerable outwardly directed phosphate 

gradient across the cytoplasmic membrane, corresponding to a MgHP04 concentra­

tion gradient of at least 100 mV. This MgHP04 concentration gradient was 

maintained for several hours. Thus, energy recycling by MeHP04/H
+ efflux will 

contribute significantly to the overall production of metabolic energy from the 

degradation of polyphosphate in A. johnsonii 210A. 

Introduction 

Activated sludge in wastewater treatment plants is enriched with polyphosphate-

accumulating bacteria, e.g. from the strictly aerobic genus Acinetobacter, when 

alternating aerobic and anaerobic conditions are applied (12, 14). The polyphosphate 

metabolism of one of these strains, Acinetobacter johnsonii 210A, has been studied 

in detail (6, 9, 10, 44, 48, 52). In the presence of excess energy and substrates, A. 

johnsonii 210A accumulates large amounts of P( and metal ions as metal polyphos­

phate in granules in the cytosol. Under these conditions, the organism is able to 

take up the predominant Pj species from its aquatic environment by the concerted 

operation of two P; transport systems (49). An ATP-driven, periplasmic binding 
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protein-dependent system catalyzes the unidirectional uptake of H2P04" and HP04
2~ 

{K, for P; of 0.7 \xM) (49, 52). The synthesis of this system is repressed by P( at 

medium concentrations above 10 fiM (9, 49). In addition, the organism possesses a 

constitutive secondary transport system mediating the uptake of a neutral MeHP04 

chelate via an electrogenic proton symport mechanism (K, for MeHP04 of 7.7 pM) 

(49, 50, 52). This chelate is formed by complexation of HP04
2" and divalent cations 

like Mg2*, Ca2+, Co2+ or Mn2+ (52). 

Two enzymes are involved in the degradation of polyphosphate in A. johnsonii 

210A: (i) polyphosphatase, and (ii) polyphosphate:AMP phosphotransferase (44). 

Polyphosphatase catalyzes the hydrolysis of polyphosphate to Pj (8, 44). The 

activity of this enzyme enables the organism to use metal polyphosphate as a source 

of Pi and divalent cations when the environmental concentrations of these nutrients 

are limiting (45, 47). Polyphosphate:AMP phosphotransferase catalyzes the phos­

phorylation of AMP to ADP with polyphosphate as phosphoryl donor (7, 44). The 

subsequent conversion by adenylate kinase of two molecules of ADP into one 

molecule of AMP and ATP, enables A. johnsonii to regenerate AMP for the phos­

photransferase reaction and to use its polyphosphate as a source of ATP when 

oxidative phosphorylation is impaired, e.g. under anaerobic conditions (43, 46). 

During the degradation of metal polyphosphate in A. johnsonii 210A, Pj and metal 

divalent ions are excreted into the environment via the secondary MeHP04 transport 

system (47, 49, 52). 

Besides the direct synthesis of ATP via the polyphosphate:AMP phospho­

transferase/adenylate kinase pathway, A. johnsonii 210A may conserve metabolic 

energy from polyphosphate degradation by the reversed process of MeHP04 uptake 

via the secondary MeHP04 transport system (27, 49, 50). During MeHP04 uptake 

the energy of the electrochemical proton gradient is converted into the energy of a 

chemical MeHP04 gradient, whereas during MeHP04 efflux the energy of a 

chemical MeHP04 gradient may be converted back into the energy of an electroche­

mical proton gradient (50). In this paper, experimental support is given for this 

energy recycling mechanism. Energy transduction to electrogenic MeHP04/H
+ efflux 

was studied in deenergized cells and membrane vesicles of A. johnsonii 210A. In 

addition, in vivo 31P-NMR was used to examine polyphosphate degradation and 
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MeHP04 efflux in cells under physiological conditions. 

Materials and methods 

Cells growth and preparation of membrane vesicles 

A. johnsonii 210A was grown at 30 °C in a Tris-buffered medium (pH 7.0) supple­

mented with 20 mM sodium butyrate and 5 mM or 20 jiM sodium phosphate for 

cultivation of high-Pi an<^ low-Prgrown cells, respectively (49). Cells were harve­

sted in midexponential phase by centrifugation (7,000 x g, 10 min). Membrane 

vesicles were prepared by osmotic lysis of high-Pi grown cells exposed to lithium 

chloride, a high concentration of lysozyme and a temperature shock (50). 

Polyphosphate degradation in cells 

High Pj-grown cells containing polyphosphate granules and low Prgrown control 

cells in which polyphosphate granules were absent, were washed twice in ice-cold 

50 mM Tris-HCl (pH 7.8). To permeabilize the outer membrane, cells were given 

an EDTA treatment as described previously (49). Subsequently, cells were washed 

in ice-cold 50 mM Tris-HCl (pH 7.8) and resuspended in this buffer to about 5.5 

mg of protein per ml. The cell suspensions were transferred to Hungate tubes, 

flushed for 10 min with oxygen-free N2, and incubated anaerobically at 30 °C. 

MeHP04 efflux from preloaded cells and membrane vesicles 

High-Pj grown cells were deenergized by incubation for 12 h at 30 °C in 20 mM 

potassium Pipes (pH 7.0) supplemented with 10 mM MgS04, 2.5 mM a-dinitrophe-

nol and 50 /xg chloramphenicol per ml (49). Depletion of endogenous energy reser­

ves was followed in time by measuring the endogenous respiration rate of the cells. 

Cells were treated with EDTA (49), washed extensively and resuspended to a 

concentration of 0.5 mg protein per ml in 20 mM potassium Pipes (pH 7.5) contai­

ning 10 mM MgS04 and 50 fig chloramphenicol per ml (Buffer A). Cells were 
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equilibrated overnight at 4 °C in Buffer A supplemented with 5 mM potassium 

phosphate (pH 7.5) [about 3 mM MgHP04 (52)]. The cell suspensions were 

concentrated to about 14 mg protein per ml. An outwardly directed MeHP04 

concentration gradient of 120 mV was imposed by diluting preloaded cells 100-fold 

into 20 mM potassium Pipes (pH 7.5) containing 50 itg chloramphenicol per ml 

(Buffer B). Deenergized cells equilibrated in Buffer A without added Pj served as a 

control. Membrane vesicles in 10 mM potassium Pipes (pH 7.5) supplemented with 

10 mM MgS04 (Buffer C) were equilibrated in the presence and absence of 5 mM 

potassium phosphate (pH 7.5), and diluted in 10 mM potassium Pipes (pH 7.5) 

(Buffer D) as described for deenergized cells. 

Determination of membrane potential (A\j/) 

The A\p (interior negative) in cells was determined from the distribution of the 

lipophilic tetraphenylphosphonium ion (TPP+), using a TPP+-selective electrode 

(36). For the determination of the A\p in cells during polyphosphate degradation, 

800 id of 50 mM Tris-HCl (pH 7.8) supplemented with 5 mM potassium cyanide 

and 5 itM TPP+, was added to the TPP+ electrode vessel. The vessel was sealed 

with a rubber septum. The buffer inside the vessel was flushed for 10 min with 

oxygen-free N2. Anaerobic cell samples of 200 id were injected into the vessel after 

which TPP+ accumulation was monitored. The induction of a A^ by MeHP04 efflux 

in deenergized cells was monitored with a TPP+-electrode by diluting MeHP04-

loaded cells 100-fold in Buffer B supplemented with 4 itM TPP+. The ability of 

deenergized cell to generate a proton motive force (ApH+) by the oxidation of 

glucose under aerobic conditions was checked by measuring the A^ (interior 

negative) as described previously (49). For calculations, an internal cell volume of 3 

ill per mg of protein was used (4, 18, 41). Measurements were corrected for 

concentration-dependent, nonspecific probe binding according to the model of 

Lolkema et al. (21). For qualitative measurements of a MeHP04 efflux-induced A^ 

in membrane vesicles, MeHP04-loaded membrane vesicles were diluted 100-fold in 

Buffer D supplemented with 9 itM of the membrane potential indicator 3,3'-dipro-

pylthiocarbocyanine iodide [DiSC3(5)]. The Ai/'-dependent fluorescence quenching 
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was measured at excitation and emission wavelengths of 637 nm and 667 nm, 

respectively, with slit withs of 10 nm. The fluorescence signal was averaged over 

time intervals of 0.3 s and calibrated in a A^ range of -44 mV to -90 mV by 

measuring the fluorescence as a function of an artificially imposed potassium diffu­

sion potential (50). 

Determination of internal pH 

The internal pH in cells and membrane vesicles was estimated from the 

fluorescence of the pH indicator BCECF entrapped in the intracellular or 

intravesicular space. MeHP04-loaded and control cells were loaded with BCECF by 

an acid shock treatment as described by Molenaar et al. (28), washed five times 

with 1 ml Buffer A with or without 5 mM potassium phosphate, respectively, and 

resuspended in these buffers to about 5 mg protein per ml. The cells containing 

BCECF (as judged from the yellow colour of cell pellets) after treatment with the 

smallest amount of HCl, were used for further experiments. Membrane vesicles 

were loaded with BCECF and MeHP04 by freeze-thaw-sonication (13). An 

outwardly directed MeHP04 gradient was imposed in MeHP04 /BCECF-loaded 

cells and membrane vesicles as described under "MeHP04 efflux from preloaded 

cells and membrane vesicles". Changes in the internal pH during MeHP04 efflux 

were monitored by continuous recording of BCECF fluorescence as described (51). 

Amino acid transport assays 

The uptake of 1.62 fiM L-lysine and 1.95 pM L-proline in membrane vesicles was 

measured via the filtration method (17) as described (52). 

31P-NMR spectroscopy of intact cells 

Low-Prgrown cells were washed and suspended to about 7 mg protein per ml in 

150 mM potassium phosphate (pH 7.0) supplemented with 5 mM MgS04. To allow 

the synthesis of polyphosphate, cells were kept under continuous aeration with 

156 



Energy recycling by MeHP04 IfT efflux in A. johnsonii 210A 

oxygen at 21 °C. After 60 min of incubation, cells were washed twice in 50 mM 

Tris-Cl (pH 7.0) and resuspended to about 15 mg protein per ml in 50 mM Tris-Cl 

(pH 7.8) supplemented with 10 mM potassium chloride and 2 mM MgS04. 

Subsequently, the cell suspension was kept in a 10 mm NMR tube and gassed with 

argon using an air-lift system. 31P-NMR experiments were recorded using a 10 mm 

broadband probehead in a Bruker AMX500 spectrometer operating at 202.45 MHz 

for phosphorus. Spectra were acquired at 25 °C, without proton decoupling, using a 

45° flip angle and 5.8 s repetition delay in 16 K data points. Phosphorus resonances 

were referenced with respect to external 85% H3P04. 

Miscellaneous 

Pi and total phosphorus, degraded to P; by preliminary persulfate digestion (1), were 

determined colorimetrically by the ascorbic acid method (1). The presence of 

polyphosphate granules in cells was evaluated by light-microscopy after staining 

according to Neisser (15). For the determination of intracellular ATP concentra­

tions, cells were extracted with perchloric acid by the method of Otto et al. (29). 

ATP in neutralized extracts was determined with a firefly bioluminescence assay 

(LUMIT). The respiration rate of cells was measured with a Clark-type oxygen 

electrode. Protein was determined by the method of Lowry et al. (22) using bovine 

serum albumin as the standard. 

Chemicals 

DiSC3(5) and BCECF were obtained from Sigma Chemicals Co., St. Louis, MO, 

USA. The firefly bioluminescence NRB/LUMIT-PM kit was purchased from 

Lumac, Omnilabo, Breda, The Netherlands. L-[U-14C]lysine (6.9 TBq/mol) and L-

[U-14C]proline (9.5 TBq/mol) were supplied by the Radiochemical Centre, Amer-

sham, Buckinghamshire, UK. Other chemicals were reagent grade and obtained 

from commercial sources. 
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Figure 1. Conservation of metabolic energy from polyphosphate degradation in A. 
johnsonii 210A. The ?{ efflux rate {panel A), internal ATP concentration {panel B), 
and A^ {panel Q were monitored in cells with (O) and without ( • ) polyphosphate 
during an aerobic period of 2 h, followed by an anaerobic period of 8 h. 

Results 

Conservation of metabolic energy from polyphosphate degradation 

The experiments shown in Fig. 1 demonstrate the ability of A. johnsonii 210A to 

conserve metabolic energy from the degradation of polyphosphate. In this study, 

high-P, ^ d low-Pj-grown cells were used. High-Prgrown cells showed a relatively 

high phosphorus accumulation level of 4.1 ^mol P per mg of protein due to the 

presence of one or two large metal polyphosphate granules in the cytoplasm. In 

contrast, low-Prgrown control cells were devoid of these granules and contained 

only 0.8 fimol phosphorus per mg of protein. During aerobic incubation for 2 h in 

the absence of an exogenous carbon and energy source, high-Prgrown cells hardly 

excreted MeHP04. Their cellular ATP level and A\p were similar to those observed 

in low-Prgrown cells. The aerobic incubation period was followed by an anaerobic 

one. Under the latter condition, high-Prgrown cells rapidly degraded polyphosphate, 
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Figure 2. In vivo 31P-NMR analysis of the degradation of polyphosphate in an anaero­
bic cell suspension of A. johnsonii 210A. The concentrations of polyphosphate (panel 
A), and internal (O) and external (D) P, (panel B) were determined from the 
fractional integrated intensities in each resonance of interest and total phosphorus 
content. The outwardly directed Pj concentration gradient (ZAüK) (panel C) was 
calculated from the data presented in panel B. 

resulting in the excretion of MeHP04 at an initial rate of about 3 nmol per min per 

mg of protein (Fig. 1A). High-Prgrown cells were able to maintain a significant 

intracellular ATP concentration and A^ for at least eight hours under these condi­

tions, whereas in low-Prgrown cells the levels of these parameters strongly 

decreased within one hour (Fig. IB and 1C). 

Pt gradient during degradation of polyphosphate 

Polyphosphate degradation was studied in A. johnsonii 210A using in vivo 31P-NMR 

(Fig. 2). During the first 8 h of anaerobiosis, about 65% of soluble polyphosphates 

was degraded (Fig. 2A). Strikingly, intracellular Pj accumulated up to 150 mM in 

the course of polyphosphate degradation (Fig. 2B). Since the external P; concentra­

tion remained below 11 mM, an outwardly directed P: gradient (ZAüPi) of 100 to 

160 mV was maintained for 5 h (Fig. 2C). In view of (i) the important role of poly­

phosphate in the production of metabolic energy during anaerobiosis, (ii) the large 
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Figure 3. Effect of MeHP04/H
+ efflux on the accumulation of TPP+ (panel A) and the 

intracellular pH (panel B) in deenergized cells of A. johnsonii 210A. Measurements 
were performed in MeHP04-loaded cells in the presence of an outwardly directed 
MeHP04 gradient (initial value of 120 mV) (Trace I), and in unloaded cells (Trace II). 
At the arrow, 2 nmol each of valinomycin and nigericin per mg of cell protein was 
added. 

outwardly directed P; gradient which is maintained during polyphosphate degra­

dation, and (iii) the presence of a phosphate carrier which mediates the translocation 

of MeHP04 via an electrogenic H+ symport mechanism, it was of interest to study 

energy transduction coupled to MeHP04 efflux in A. johnsonii 210A. 

MeHP04 efflux in deenergized cells 

In order to study the recycling of metabolic energy by MeHP04/H
+ efflux in the 

absence of polyphosphate metabolism, cells of A. johnsonii 210A were depleted of 

polyphosphate and other endogenous energy reserves by aerobic incubation in the 

presence of the uncoupler a-dinitrophenol. As was shown previously (49), the cells 

retain the secondary MeHP04 transport system in an active form during the deener-

gization procedure, and remain readily energizable after removal of dinitrophenol. 

In deenergized cells, MeHP04/H
+ efflux was coupled to the generation of a 
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Figure 4. Effect of a MeHP04 efflux-induced ApH+ on the synthesis of ATP in 
deenergized cells of A. johnsonii 21OA. ATP concentrations were determined in 
MeHP04-loaded (D) and unloaded cells ( • ) in the absence of a MeHPO„ concen­
tration gradient, and in MeHP04-loaded cells in which an outwardly directed MeHP04 

gradient (initial value of 120 mV) was imposed artificially (O). 

àpH+. Thus, the lipophilic cation TPP+ was accumulated 16-fold when an outwardly 

directed MeHP04 gradient (initial value of -120 mV) was imposed artificially by 

dilution of deenergized, MeHP04-loaded cells into MeHP04-free buffer (Fig. 3A). 

The maximum TPP+ accumulation level suggested the generation of a A^ of about 

-73 mV. No significant accumulation of TPP+ was observed in unloaded cells or in 

loaded cells in which the ApH+ was dissipated by valinomycin plus nigericin (each 

2 nmol per mg of protein) (Fig. 3A). To monitor the changes in the intracellular pH 

by MeHP04/H
+ efflux, deenergized cells were loaded with the fluorescent pH 

indicator BCECF. A rapid alkalinization of the internal milieu was observed when 

an outwardly directed MeHP04 gradient (initial value of 120 mV) was imposed 

(Fig. 3B). Addition of valinomycin plus nigericin (each 2 nmol per mg of protein) 

resulted in the decrease of the internal pH to baseline levels observed in unloaded 
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cells. With a constant external pH during MeHP04 efflux, the degree of alkalini-

zation of the cytoplasmic pH equalled a transmembrane pH gradient (-ZApH) of 

about -8 mV under these conditions. 

The ApH+ induced by MeHP04/H
+ efflux in deenergized cells could drive the 

synthesis of ATP from endogenous ADP and P( via the membrane-bound H+-

ATPase (Fig. 4). ATP levels remained very low in control cells in which a 

MeHP04 gradient was absent, e.g. through dilution of MeHP04-loaded cells into 

buffers containing MeHP04 at a concentration equimolar to the internal one, or of 

unloaded cells into MeHP04-free buffer. A significant synthesis of ATP was 

observed when MeHP04-loaded cells were diluted 100-fold into MeHP04-free 

buffer. This synthesis is transient due to the rapid decrease of the MeHP04 gradient. 

MeHP04 efflux in membrane vesicles 

In membrane vesicles, the mechanism of energy coupling to secondary transport of 

solutes can be studied in the absence of their metabolism by cytoplasmic enzymes. 

Membrane vesicles therefore offer an excellent model system to study energy 

transduction coupled to MeHP04/H
+ efflux in A. johnsonii 210A. The generation of 

a MeHP04 efflux-induced Aî  was monitored in membrane vesicles using the 

fluorescent Ai/'-indicator DiSC3(5) (Fig. 5A). Upon imposition of an outwardly 

directed MeHP04 gradient (initial value of 120 mV) in membrane vesicles, a rapid 

fluorescence quenching of DiSC3(5) was observed corresponding to a A^ of about 

-63 mV (Fig. 5A). The quenched fluorescence signal was elevated to the baseline 

level observed in unloaded membrane vesicles after dissipation of the Apw+ by 

valinomycin plus nigericin (each 1 nmol per mg of protein). The formation of a 

ApH by MeHP04/H
+ efflux was demonstrated by continuous recording of the 

fluorescence intensity of BCECF trapped within the membrane vesicles (Fig. 5B). 

Imposition of an outwardly directed MeHP04 gradient (initial value of 120 mV) 

resulted in an alkalinization of the intravesicular pH and the generation of a -ZApH 

of -8 mV. A decrease of the BCECF fluorescence intensity down to the baseline 

level of unloaded membrane vesicles was observed upon addition of valinomycin 

plus nigericin (each 1 nmol per mg of protein). These results clearly demonstrate 
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Figure 5. Generation of a A^ (panel A) and ApH (panel B) by MeHP04/H
+ efflux in 

membrane vesicles of A. johnsonii 210A. Measurements were performed in MeHP04-
loaded membrane vesicles in the presence of an outwardly directed MeHP04 gradient 
(initial value of 120 mV) (Trace I), and in unloaded membrane vesicles (Trace II). At 
the arrow, 1 nmol each of valinomycin and nigericin per mg of protein was added to 
MeHP04-loaded membrane vesicles. 

the generation of both components of the ApH+ by the electrogenic excretion of 

MeHP04 and H+. 

Membrane vesicles of this organism contain several cation-amino acid transport 

systems which couple amino acid translocation to the ApH+ (51). Significant levels 

of L-lysine and L-proline accumulation were observed in MeHP04-loaded mem­

brane vesicles which were diluted 100-fold in MeHP04-free buffer (Fig. 6). 

Accumulation of the amino acids was not observed (i) upon dissipation of the 

MeHP04 efflux-induced ApH+ by valinomycin plus nigericin (each 1 nmol per mg 

of protein), and (ii) in the absence of an outwardly directed MeHP04 gradient, e.g., 

when MeHP04-loaded vesicles were diluted in buffers containing MeHP04 at a 

concentration equimolar to the internal one, or when unloaded membrane vesicles 

were diluted in MeHP04-free buffer. These experiments show that a MeHP04 

efflux-induced ApH+ can drive the uptake and accumulation of solutes in A. 

johnsonii 210A. 
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Figure 6. MeHP04 efflux-induced accumulation of amino acids in membrane vesicles 
of A. johnsonii 210A. Accumulation of L-proline ( 0 , # ) and L-lysine ( • , • ) was 
monitored in MeHP04-loaded membrane vesicles in the presence of an outwardly 
directed MeHP04 gradient (initial value of 120 mV) (open symbols), and in unloaded 
membrane vesicles (closed symbols). The accumulation of amino acids in other control 
experiments (see text) was comparable to that in unloaded membrane vesicles. 

Discussion 

A. johnsonii 210A is a strictly aerobic, non-fermentative bacterium. When oxidative 

phosphorylation is impaired, it degrades the metal polyphosphate which was accu­

mulated under aerobic conditions. The results of this investigation demonstrate that 

during this degradation, the organism is able to maintain its ApH+ and intracellular 

ATP at levels comparable to those observed under aerobic conditions. Two mecha­

nisms for the conservation of metabolic energy from polyphosphate degradation 

have been suggested in A. johnsonii 210A: (i) the direct synthesis of ATP from 

polyphosphate via the polyphosphate:AMP phosphotransferase/adenylate kinase 

pathway (43, 46), and (ii) the generation of a Apw+ by the excretion of MeHP04, a 

major endproduct of metal polyphosphate degradation, together with H+ (49, 50). 

Recently, the energetics and mechanism of the secondary MeHP04 transport 

system of A. johnsonii 210A were examined in detail. The MeHP04 carrier cataly-
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zes the coupled movement of a neutral MeHP04 chelate and a proton via an 

electrogenic symport mechanism (50, 52). Thus, the driving force for MeHP04 

translocation via this transport system is the sum of forces supplied by the ApH+ (= 

A\j/ - ZApH) and the MeHP04 concentration gradient (ZApMeHP04): ApH+ + 

ZApMeHP04. A steady state is reached when ApH+ = -ZApMeHP04. During 

MeHP04 uptake, the ApH+ will exceed the -ZApMeHP04, whereas MeHP04 efflux 

occurs when the -ZApMeHP04 exceeds the ApH+. In previous work, the generation 

of a ApH+ by electrogenic MeHP04/H
+ efflux was indirectly indicated by (i) the 

stimulation of MeHP04 efflux from cells by the uncoupler a-dinitrophenol and by 

A^W-dicyclohexylcarbodiimide, an inhibitor of the membrane-bound H+-ATPase 

(43), (ii) the enhancement by protonophore CCCP of MeHP04 efflux from proteoli-

posomes containing reconstituted MeHP04 carrier protein (50), (iii) the retardation 

of MeHP04 efflux from proteoliposomes by an artificially imposed ApH and/or A^ 

(50). 

The results presented in this study further corroborate the generation of a ApH+ 

by MeHP04/H
+ efflux. Thus, the generation of a A\p by the efflux of MeHP04 

efflux was demonstrated directly by the fluorescence quenching of the A^-probe 

DiSC3(5) in membrane vesicles, and by the accumulation of TPP+ in deenergized 

cells under these conditions. In both systems, imposition of an outwardly directed 

MeHP04 gradient of 120 mV (initial value) resulted in the generation of a A\f/ of 

about -60 to -70 mV. The generation of a transmembrane pH gradient by 

MeHP04/H
+ efflux was shown by the fluorescence enhancement of the pH-probe 

BCECF which was entrapped in the lumen of the membrane vesicles and 

deenergized cells. With the external pH remaining fairly constant during MeHP04 

efflux, a -ZApH of about -8 mV was built up upon imposition of a MeHP04 

gradient of 120 mV (initial value). 

The MeHP04 efflux-induced ApH+ could be coupled to different metabolic 

energy requiring processes as summarized in Fig. 7. In membrane vesicles of A. 

johnsonii 210A, MeHP04/H
+ efflux could drive the accumulation of L-proline and 

L-lysine. Recent transport studies in membrane vesicles of this organism revealed 

the presence of single, high-affinity lysine and proline carriers which mediate the 

electrogenic symport of lysine and a proton, and of proline and a sodium ion, 
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Figure 7. Schematic presentation of the coupling of MeHP04/H

+ efflux to different 
energy requiring processes in A. johnsonii 210A. Cytoplasmic membrane, L-lysine, L-
proline, protons and sodium ions are indicated by CM, LYS, PRO, /T and Na+, 
respectively. 1, H+-ATPase; 2, secondary MeHP04/H

+ carrier; 3, lysine/proton sympor-
ter; 4, sodium/proton antiporter; 5, proline/sodium symporter. 

respectively (51). The Na+ contamination in the uptake buffers (up to 150 /*M) 

greatly exceeds the low K, of the proline carrier for Na+ {K, = 26 yM Na+). Na+ is 

therefore present in sufficient amounts to allow NaVproline symport (51). In 

addition, A. johnsonii 210A possesses a Na+/H+ antiporter which converts the ApH+ 

into a ApNa+ (51). In view of the driving forces for lysine and proline uptake, 2A^ -

ZApH and A^ - ZApNa, respectively, the almost 2-fold higher accumulation level 

of lysine compared to that of proline points to an effective generation of a A^ by 

MeHPO/H+ efflux under the experimental conditions. This conclusion is consistent 

with the direct measurements of the composition and magnitude of the MeHP04 

efflux-induced ApH+ in membrane vesicles and deenergized cells. Besides solute 

accumulation, the MeHP04 efflux-induced ApH+ could drive the synthesis of ATP 

via the membrane-bound H+-ATPase in deenergized cells of A. johnsonii 210A. The 
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results from these in vitro studies demonstrate the potential of MeHP04/H
+ efflux as 

an energy recycling mechanism in A. johnsonii 210A (Fig. 7). 
31P-NMR was used for in vivo studies of P( gradients formed by the degrada­

tion of polyphosphate in anaerobic cell suspensions of A. johnsonii 210A. The 

concentration variations in internal Pj were much greater in magnitude and range 

than those in the external medium. The cells were able to maintain an outwardly 

directed Pj gradient of 100 to 160 mV for 5 h. Due to the high internal concen­

trations of Mg2+ (up to 40 mM (6)) and Pj (up to 150 mM) during the degradation 

of magnesium polyphosphate, the intracellular MgHP04 concentration will have 

reached saturating levels of about 20 to 30 mM (52). Thus, a substantial outwardly 

directed MgHP04 concentration gradient (of at least 100 mV) was present during 

the first 3 hours of polyphosphate degradation, allowing MeHP04/H
+ efflux to be an 

effective energy conserving mechanism. 

Under conditions of polyphosphate synthesis, the MeHP04 carrier and the ATP 

and binding protein-dependent Pj uptake system of A. johnsonii 210A enable the 

organism to efficiently acquire Pj from its habitat through uptake of the predomi­

nant Pj species (49, 52). However, the latter transport system has to be inactivated 

during the degradation of polyphosphate to prevent waste of ATP by re-accumula­

tion of Pj which was previously released as MeHP04 via the secondary MeHP04 

transporter. Inactivation of the primary P: uptake system may be exerted through 

?ra«s-inhibition by the high internal P( concentration which is established during the 

degradation of polyphosphate. 7>a«s-inhibition has been described for the major po­

tassium transport system of Enterococcus faecalis (3), the potassium transport 

systems TrkA and Kup of Escherichia coli (34), the Pj uptake system of Lactococ-

cus lactis (32), and the Ugp and phosphate specific transport (Pst) systems (11, 25) 

of E. coli. In E. coli, a second mechanism of control of the P; flux through the Pst 

system involves the regulation of protein synthesis by the Phosphate (Pho) regulon 

(37). This regulon probably uses a transmembrane signal transduction mechanism in 

which the complex between external Pj with its binding protein is sensed and 

further transduced by the two-component regulatory system PhoR/PhoB (33). The 

primary Pj uptake system of A. johnsonii 210A strongly resembles the Pst system of 

E. coli, and there is evidence for the existence of a Pho regulon in A. johnsonii 
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210A (49, 52). 7>aw.s-inhibition of the primary ?, uptake system in A. johnsonii 

210A by internal Pj may thus complement the repression of protein synthesis by 

external Pj. 

In their "energy recycling model", Michels et al. (27) proposed that excretion 

of metabolic endproducts via an ion symport system may lead to the generation of 

an electrochemical ion gradient across the cytoplasmic membrane, thus providing 

metabolic energy to the cell. In recent years evidence has been presented for H+-

linked carrier-mediated excretion of lactate in L. lactis (30, 31), E. coli (42) and E. 

faecalis (38, 39), and NaMinked excretion of succinate in Selenomonas 

ruminantium (26). Carrier-mediated excretion of acetate has been suggested in 

Syntrophomonas wolfei (24), Desulfovibrio desulfuricans (24), several other sulfate 

reducers (16, 35), Acetobacter woodii (5), and some methanogens (40). The results 

presented in this paper show that metabolic energy can be conserved as well by the 

excretion of inorganic endproducts. A ApH+ is generated by the electrogenic 

excretion of MeHP04 and H+ via the secondary MeHP04 transport system of A. 

johnsonii 210A. This carrier may be one example of a new class of bacterial porters 

whose operation involves the translocation of MeHP04 rather than Pj. In addition, 

recent studies on the phosphate inorganic transport (Pit) system in E. coli have 

identified this permease as an electrogenic MeHP04/H
+ symporter (53). The Pit 

system in Bacillus subtilis (19) and a transport system for divalent cations in the 

manganese-polyphosphate-accumulating Lactobacillus plantarum (2) may translo­

cate MeHP04 as well. Energy recycling by MeHP04/H
+ efflux may therefore be a 

more general energy conserving mechanism in polyphosphate-accumulating micro­

organisms. Recycling of metabolic energy by the excretion of inorganic endproducts 

may also have interesting implications for the efflux of NH4
+ by Ureoplasma 

species (23, 41), and the excretion of sulfate by Thiobacillus species and other 

sulfur oxidizing bacteria (20). 

In conclusion, A. johnsonii 210A is able to use metal polyphosphate as a 

source of metabolic energy during anaerobiosis by (i) the direct synthesis of ATP 

via the polyphosphate:AMP phosphotransferase/adenylate kinase pathway and (ii) 

the generation of a ApH+ via the coupled excretion of MeHP04 and H+. Polyphos­

phatase may enhance the latter energy recycling mechanism by providing the 
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MeHP04 efflux process with a continuous supply of P( and divalent metal ions. As 

a consequence of energy recycling by MeHP04 excretion, less ATP has to be 

hydrolysed via the H+-ATPase to generate a ApH+ when oxidative phosphorylation 

is impaired. Conservation of metabolic energy from metal polyphosphate degra­

dation may enable A. johnsonii 210A to survive alternating aerobic/anaerobic con­

ditions as encountered in certain natural habitats and wastewater treatment plants. 
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Chapter 8 

1. Phosphate inorganic transport (Pit) system 

The mechanism and energetics of the proton motive force-dependent phosphate 

inorganic transport (Pit) systems in Acinetobacter johnsonii 210A and Escherichia 

coli were investigated (Chapters 2 to 5). In E. coli, Pit is the major secondary 

uptake system for Pi; but its transport mechanism has been studied less extensively 

than that of the Prlinked antiporters for glycerol-3-P (GlpT) and glucose-6-P 

(UhpT) (for review, see 41) or the binding protein-dependent phosphate specific 

transport system (Pst) (for review, see 64). The transport of the phosphate anion via 

these four systems has generally been interpreted in terms of the translocation of 

mono- and/or dibasic phosphate. Thus, the periplasmic binding protein which is the 

initial receptor in the Pst system shows affinity for H2P04" and HP04
2" (36, 39). 

GlpT and UhpT belong to a family of Prlinked antiporters which mediate electro-

neutral homologous exchange of H2P04" or organic phosphate anions, or hetero­

logous exchange of both substrates (41). In addition, it is generally asssumed that 

HP04
2" is the phosphate ion species which is transported via Pit (58, 60). However, 

the work described in this thesis suggests that the Pit system in E. coli and A. john­

sonii may represent a new class of bacterial porters whose operation involves the 

transport of a neutral, soluble MeHP04 complex rather than Pf (Chapters 3 to 5). 

This surprising aspect of phosphate transport by Pit is not immediately evident. 

Instead it has been successfully masked since divalent metal ions and P( are usually 

simultaneously present under the experimental conditions. Cotransport across bio-

membranes of divalent metal ions and P( via metal phosphate chelates may thus be 

a more common phenomenon in prokaryotic and eukaryotic cells. 

1.1 Substrate specificity 

Since the idea of MeHP04/H
+ symport arose during studies of Pj transport by the 

metal polyphosphate-accumulating A. johnsonii strain 210A, it is useful to summari­

ze relevant information from that work. Transport studies in whole cells gave 

kinetic evidence for the presence of two phosphate transport systems which showed 

a strong analogy to the Pst and Pit system of E. coli (Chapter 2). Pit in A. johnsonii 
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210A was found to be a constitutive phosphate/arsenate transport system with an 

apparent K, for P( of about 9 jiiM and for arsenate of about 11 jtM at pH 7.0. The 

system is strongly inhibited by the uncoupler carbonyl cyanide 3-chlorophenyl-

hydrazone (CCCP) (Chapters 2 and 3). 

A. johnsonii Pit has been characterized in membrane vesicles and proteolipo-

somes in which the carrier protein was reconstituted (Chapter 3). During proton 

motive force-driven uptake, the apparent K, for Pj increased from about 5 piM at pH 

8.0 to 24 ßM at pH 6.0. Although this result would be consistent with a specificity 

for HP04
2", further studies pointed to the translocation of a neutral MeHP04 com­

plex. Thus, P, uptake via A. johnsonii Pit was strictly dependent on the presence of 

divalent cations, like Mg2*, Ca2+, Mn2+ or Co2+. Similar observations were reported 

for a citrate permease in Bacillus subtilis mediating the transport of a Me2+-citrate 

complex (9, 73). Calculation of the concentrations of several P; species under the 

experimental conditions indicated that at pH 7.0, 31% (Ca2+) to 87% (Mn2+) of Pj 

was present as a neutral MeHP04 complex (Chapters 3 to 5). The stimulation of Ps 

uptake by the divalent metal ions correlated well with the concentrations of 

MeHP04 in the incubation mixtures. Moreover, a re-evaluation of the kinetic data 

for A. johnsonii Pit revealed a pH-independent apparent Kt for MeHP04 of 7.9 /iM. 

Finally, control measurements excluded other possible explanations for the metal-

dependence of Pi transport via A. johnsonii Pit, such as binding of MeHP04 to 

membranes, internal precipitation of MeHP04 due to solute accumulation, or secon­

dary effects of divalent cations on the magnitude or stability of the artificially 

imposed proton motive force in proteoliposomes (Chapter 5). 

Additional experiments have been carried out to elucidate the substrate 

specificity and transport mechanism of the Pit system in A. johnsonii 210A 

(Chapters 3 and 5). A. johnsonii Pit appears to operate in a similar way as that of E. 

coli Pit (Chapter 4). Proton motive force-driven Pj transport in proteoliposomes in 

which Pit carrier protein from E. coli was reconstituted, was found to be strictly 

divalent cation-dependent. The apparent K, for MeHP04 of 8.8 juM, is very similar 

to the one obtained for Pit in A. johnsonii 210A. Specificity for MeHP04 was tested 

further by studying the proton motive force-driven transport of Mg2+ and Ca2+ in 

proteoliposomes in the presence and absence of P(. Besides a divalent cation-
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dependent uptake of P(, such studies demonstrated (i) Prdependent uptake of Mg2* 

and Ca2+, (ii) inhibition by Mg24" of Ca2+ uptake in the presence of Pi; but not of Pj 

uptake in the presence of Ca2+, and (iii) equimolar transport of Ca2+ and Pj. 

Verification that MeHP04 but not Pi5 was the authentic substrate of E. coli Pit came 

from transport experiments performed in the absence of a proton motive force. 

Measurements of solute transport via exchange and efflux reactions allowed an easy 

experimental control over cis and trans compartments. Under these conditions, Pit 

of E. coli could mediate efflux and homologous exchange of MeHP04, but not 

heterologous exchange of MeHP04 and the substrates for the GlpT and UhpT sys­

tem: Pj, glycerol-3-P or glucose-6-P. 

Presently, the evidence is most simply interpreted by the translocation of 

MeHP04, but not of P„ via the Pit systems of both E. coli and A. johnsonii 210A. 

The previously observed Mg2+-dependence of Pit function in E. coli cells (44, 56) 

and its membrane vesicles (34) most likely reflected the translocation of MgHP04 

via this system. Earlier conclusions with respect to HP04
2" being the physiological 

substrate of Pit of E. coli Pit (58, 60) can be related to the almost identical pH 

dependency of MeHP04 and HP04
2" in aqueous solutions. 

1.2 Transport mechanism 

Artificial imposition of ion diffusion gradients in proteoliposomes containing Pit 

proteins confirmed previous work in membrane vesicles of E. coli (34). Both a 

membrane potential and a pH gradient can drive MeHP04 transport through this 

system. A detailed analysis of the steady-state accumulation level of membrane 

potential-driven uptake of MeHP04 indicated the translocation of a (neutral) 

MeHP04 complex in symport with one proton (Chapters 3 and 4). 

The mechanism of MeHP04/H
+ symport via Pit has been deduced from the pH 

and proton motive force-dependency of MeHP04 uptake, efflux and exchange 

(Chapter 3, 4). In the present discussion, these facts will not be recited, but readily 

incorporated into two models. In the cellular model, the overall transport reactions 

are conveniently summarized (Fig. 1). MeHP04 uptake occurs in symport with a 

proton (Fig. 1A). During MeHP04 efflux the transport reaction is reversed, resulting 
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Figure 1. Cellular model showing overall transport reactions via Pit. (A) Proton 
motive force-driven uptake of MeHP04. (B) Homologous MeHP04 exchange. 

in the generation of a proton motive force. In homologous exchange of MeHP04 no 

net translocation of protons takes place (Fig. IB). In the kinetic model (Fig. 9, 

Chapter 3), the vectorial translocation of MeHP04 across the cytoplasmic membrane 

can be considered as a cyclic process in which binding and dissociation of MeHP04 

and proton on the outer and inner surface of the membrane occur via an ordered 

mechanism. Thus, the process of efflux involves protonation of the carrier protein 

on the inner surface of the membrane followed by binding of MeHP04. The loaded 

carrier protein reorients its binding sites to the outer surface of the membrane after 

which MeHP04 is released first from the carrier, followed by the loss of the 

catalytic proton. A conformational change of the empty carrier restores the initial 
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orientation of the binding sites. The carrier protein remains protonated during 

homologous MeHP04 exchange. 

Since the dissociation of the catalytic proton from the Pit protein appears to be 

rate-limiting for MeHP04 transport, changes in the internal and external pH lead to 

major alterations in catalytic activity (Chapter 2, 3). During MeHP04 efflux, the 

carrier protein is deprotonated on the outer surface of the membrane. Inhibition of 

this deprotonation step by low external pH, retards the MeHP04 efflux rate. For 

MeHP04 uptake, a similar catalytic internal pH effect was found which controls the 

rate of deprotonation of the carrier on the inner surface of the membrane (apparent 

pK of 7.2, Chapter 4). 

Pit catalyzes completely reversible transport reactions under deenergized con­

ditions. However, unlike the exchange reactions mediated via other proton sympor-

ters (22, 30) or the Prlinked antiporters UhpT and GlpT (41), the homologous 

exchange of MeHP04 via Pit is inhibited by the membrane potential. This 

difference in behaviour may play an important role in the intriguing paradox that 

the Pit system of E. coli, being a secondary "phosphate" transporter, mediates an 

apparent unidirectional uptake of phosphate in cells under physiological conditions 

(24, 58, 74). 

1.3 Implications 

The finding of MeHP04/H
+ symport in A. johnsonii 210A and E. coli suggests that 

this reaction may be a general mechanism for the transport of divalent metal ions 

and Pj (or arsenate) in bacteria. Pj transport is stimulated by Mg2+ in Micrococcus 

lysodeikticus (25), Acinetobacter Iwoffi (76), Pseudomonas aeruginosa (37) and 

Bacillus cereus (61). There is evidence for the presence of a Pit-like Pj permease in 

all these organisms (58). Furthermore, in some studies a stimulation was observed 

by P; of Me2+ transport, e.g. the uptake of Mn2+ in the manganese polyphosphate-

accumulating Lactobacillus plantarum (6), and of Mg2"1", Ca2+, Mn2+, and Co2+ via a 

general divalent cation transport system in Bacillus subtilis (31). Interestingly, a Pit 

mutant of this latter organism was strongly impaired in the transport of Ca2+ and 

Co2+. The mutant still elicited significant Mn2+ transport as a result of uptake via a 
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second Mn2+-specific high-affinity uptake system (31). 

Research on prokaryotic calcium transport systems lags behind that in 

eukaryotes. Although information is available on bacterial Ca2+ efflux systems, the 

mechanisms for Ca2+ entry are unclear (40). The transport of MeHP04, including 

the calcium phosphate complex, via Pit provides E. coli with such a mechanism. Pit 

may be functionally linked to the Ca2+/«H+ antiporter of this organism. Thus, a 

chemiosmotic circuit for divalent cations can be envisaged in which Pit mediates 

the entrance of Pj and divalent cations, whereas the antiporter catalyzes the proton 

motive force-driven extrusion of Ca2+ and other divalent cations like Mn2+, Sr2"1", or 

Ba2+ (17) in order to maintain low concentrations of these ions in the cytosol. The 

relationship between Pit and a presumed phosphate-dependent calcium/proton 

antiporter (4) in E. coli remains to be established. 

Transport of metal phosphates may also be encountered in eukaryotic cells. In 

many biological systems, Pj transport is linked to the cellular metabolism and trans­

port of divalent cations. Divalent cations stimulate the uptake of P, across the 

plasma and vacuolar membranes in Saccharomyces cerevisiae and other lower euka­

ryotes (33, 35, 48). Furthermore, Pi is known to have a large influence on Ca2+ 

transport by mitochondria isolated from a range of tissues and species (16, 19, 38, 

45, 55, 75). The influx of Mg2+ in rat hepatocytes has recently been suggested to 

occur by sodium motive force-driven MgL+/Pi cotransport (27). Clearly, the weight 

of the current evidence necessitates the continued consideration of the impact of 

divalent metal ions on Pj transport processes and vice versa. In addition, it provides 

an adequate base to encourage further experimentation on the topic. 

2. Phosphate specific transport (Pst) system 

Besides the Pit system, A. johnsonii 210A possesses a Pj permease showing analogy 

to the phosphate specific transport (Pst) system of E. coli. Like its E. coli counter­

part, A. johnsonii Pst is a Pj-repressible, shock-sensitive transporter which acts in 

conjunction with a periplasmic Pj-binding protein (Chapter 2, 5). The system has a 

relatively high affinity for the solute. The apparent Pj-binding constant (KD) of the 

binding protein of 0.6 piM P( corresponds well to the apparent K, of 0.7 /xM. Pj for 
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Pi transport via the Pst system. These values are in close agreement with those 

previously determined for the Pst of E. coli (42-44, 59, 74). 

2.1 Substrate specificity 

In this thesis, evidence has been presented for the translocation of H2P04" and 

HP04
2", but not of MeHP04 via the Pst system of A. johnsonii 210A. Firstly, the 

uptake of Pj, but not of MeHP04 was derepressed in cells under Pj limitation. 

Secondly, the relative P{ and Me2+ uptake rates (2:1) in high-Prgrown cells at solute 

concentrations that saturate Pit and Pst, were consistent with the translocation of Pj 

via Pst and of MeHP04 via Pit, the maximal uptake rate of which equals that of Pst 

under these conditions (Chapter 2). Thirdly, the specificity of Pst for P; was further 

corroborated by studies on the substrate specificity of the Prbinding protein, whose 

activity represents an initial step in solute translocation via Pst. Thus, the KD of the 

Prbinding protein was essentially pH independent in the pH range 5.5 to 8.0, a 

range in which the ratio of H2P04" over HP04
2" varied about 250-fold. Moreover, a 

decrease in the concentration of free Pj by the formation of a soluble MeHP04 

complex reduced P( binding. The reduction level could be predicted by calculations 

assuming the presence of one binding site on the Prbinding protein with equal 

affinity for H2P04" and HP04
2". The substrate specificity of the Prbinding protein of 

A. johnsonii 210A is in agreement with X-ray crystallographic studies of the P r 

binding protein of E. coli. These studies predict the binding of mono- and divalent 

P; by the binding protein (39). 

2.2 Energy coupling 

An in vivo study of energy coupling to the Pst system of A. johnsonii 210A has 

indicated that ATP or some form of phosphate bond energy derived thereof, is 

responsible for driving the permease (Chapter 2). This conclusion is consistent with 

(i) the presence of a conserved ATP-binding motif in the pstB gene encoding a 

putative hydrophilic, membrane-associated ATP-binding subunit of the Pst complex 

in E. coli (20, 29, 67), and (ii) recent in vitro studies on the similarly organized his-
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tidine and maltose permeases in E. coli which provide direct evidence for the role 

of ATP hydrolysis in the energization of solute uptake via periplasmic binding 

protein-dependent transport systems (5, 21, 28, 52). 

2.3 Regulation of transport 

Several mechanisms are involved in the regulation of the flux of P; through Pst. As 

was outlined in Chapter 1, the synthesis of Pst protein in E. coli is regulated by 

external Pj via a control of gene expression by the Pho regulon. Thus, the synthesis 

of Pst complex and other proteins involved in the assimilation of P; is induced in 

cells under P; limitation to ensure a sufficient supply of P,. The 10-fold increase in 

maximal uptake rate of A. johnsonii Pst under these conditions, together with the 

induction of periplasmic alkaline phosphatase activity (14, Chapter 2 and 5) and the 

synthesis of an outer membrane protein (35.5 kDa)1 which may be functionally 

related to the PhoE pore protein of E. coli (51), point to the existence of a Pho 

regulon in A. johnsonii 210A. 

A second mechanism of control of the Ps flux through Pst involves the regula­

tion of the activity of Pst transport systems via trans-'mhibition by internal P;. 

7ra«.s-inhibition is the equivalent of feedback inhibition of enzyme activity by 

endproducts in many biosynthetic pathways. ATP-driven permeases have the ability 

to accumulate solutes in the cell against large concentrations gradients (up to 105) 

which exceed the thermodynamic limits of secondary transporters set by the proton 

motive force (assuming a HVsolute stoichiometry of one). The presence of thou­

sands of polyelectrolytes and small metabolites in the cytoplasm poses serious pro­

blems of solubility, and the maintenance of low metabolite concentrations may be a 

compelling reason for citing control at solute accumulation via primary uptake 

systems. Thus, frans-inhibition functions as a "safety-brake" that prevents solute ac­

cumulation to unacceptably high levels (54). Already in 1971, Medveczky and 

Rosenberg (44) observed the negative effect of an increasing intracellular P( pool in 

E. coli cells on the rate of P: transport via the Pst system. Since its discovery, this 

'Van Veen HW, unpublished observation. 
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type of control of transport activity has been largely neglected in studies on P( 

regulation of Pst of E. coli due to a strong emphasis on the molecular mechanisms 

of the Pho regulon. Recent work of Poolman et al. (54) with Lactococcus lactis 

subsp. lactis ML3 and of Brzoska et al. (18) with E. coli confirmed the relevance of 

fraws-inhibition in the regulation of phosphate bond energy-driven Pj permeases. 

Besides regulation of Pst by internal Pj, also regulation occurs by the intracel­

lular H+ concentration (60, 62, 63). This property is shared with the primary Pj 

permease of L. lactis subsp. lactis ML3 (54) and many other phosphate bond 

energy-driven transport systems (3, 15, 53). Thus, the activities of these systems 

decrease with decreasing internal pH. In contrast to the catalytic pH effects obser­

ved on Pit activity, internal pH effects on Pst transport are likely to be allosteric, 

being brought about by putative regulatory domains that interact with protons from 

the cytosol (53). In view of the regulation of Pst and Pit by the internal pH, it is 

essential to maintain a constant alkaline pH in the cytoplasm for optimal function of 

both systems. K+ transport plays an important role in pH homeostasis in bacteria: 

inward electrogenic movement of K+ is used to decrease the membrane potential 

during redox reaction-coupled primary H+ expulsion by the respiratory chain (2, 7). 

These ion translocation processes lead to an increased transmembrane pH gradient 

and, consequently to a higher internal pH (2, 7, 15). Evidence confirming the rele­

vance of these processes for phosphate transport via Pst and Pit came from the 

work of Russell and Rosenberg (62, 63) who demonstrated that potassium ions 

greatly stimulate Pst and Pit function in E. coli cells, but that the transport of K+ 

and phosphate are linked indirectly via proton circulation. Similar underlying trans­

port processes may explain the observed stimulation by K+ of P; uptake in cells of 

A. johnsonii 210A (70) in which both Pit and Pst are functionally present. 

3. Pit, Pst and the metabolism of polyphosphate 

3.1 Polyphosphate synthesis 

Under aerobic conditions, A. johnsonii 210A and other Acinetobacter spp. accu­

mulate excess Pj and divalent metal ions as a metal polyphosphate chelate in 
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cytoplasmic granules. This property of Acinetobacter can be used to efficiently 

remove P: from waste water (Chapter 1). Calculations on the Pf speciation in settled 

domestic waste water, in which calcium ions are present in excess of Pi; indicate the 

predominance of CaHP04, HP04
2" and H2P04' (Chapter 5). In view of the substrate 

specificity of Pit and Pst, the concerted operation of these systems allows A. 

johnsonii 210A to take up the prevailing P; species from such habitats. The Pj 

regulation of Pst enables the organism to cope with constant fluctuations in environ­

mental Pj, thus ensuring a supply of P; for the synthesis of polyphosphate and other 

cell constituents. Pst is a unidirectional P; uptake system whereas Pit is a reversible 

MeHP04 transporter. The latter system provides the cell with a major route for the 

simultaneous entrance or exit of Ps and divalent cations. As a consequence, 

MeHP04 translocated via Pit strongly affects the elemental composition of metal 

polyphosphate granules (Chapter 5). Besides for Acinetobacter, this observation may 

be relevant for other polyphosphate-accumulating microorganisms among which 

Propionibacterium acnes (32), Spirillum itersonii, Corynebacterium diphtheriae, 

icrococcus luteus (72), M. lysodeikticus (26), L. plantarum (6), and Plectonema 

boryanum (8), in which polyphosphate granules serve as the main sink for divalent 

metal ions such as Ba2+, Ca2+, Co2+, Mg2*, Mn2+, Ni2+, or Zn2+. The cotransport of Pj 

and heavy metal ions via Pit, and their subsequent incorporation in metal 

polyphosphate granules may be used as a biological mechanism for the concen­

tration of heavy metal ions and the removal of these compounds from polluted 

waters. The important role of K+ and divalent cations in (i) the maintenance of 

optimal Pit and Pst function, and (ii) the metabolism of polyphosphates (10-13, 71) 

may provide a rationale for their requirement in the enhanced biological phosphorus 

removal process (57). 

3.2 Anaerobiosis and polyphosphate degradation 

Under aerobic conditions, energy conservation in A. johnsonii 210A and other 

strictly aerobic bacteria is based on (i) primary H+ translocation by the respiratory 

chain for the generation of a proton motive force and the maintenance of an 

alkaline cytoplasmic pH, and (ii) proton motive force-coupled synthesis of ATP via 
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the membrane-bound FQF, H+-ATPase. In view of the central role of the proton 

motive force in energy transducing processes, such as the preservation of solute 

gradients across the cytoplasmic membrane, this energy intermediate is essential for 

the vitality of the cell. In the absence of oxygen, aerobic bacteria may use the H+-

ATPase in the hydrolytic direction as an alternative H+ extrusion pump to generate 

a proton motive force. However, the lack of effective mechanism(s) for the syn­

thesis of ATP under these conditions seriously limits the ability of most strictly 

aerobic bacteria to survive anaerobic periods. 

An adaptation of microorganisms to short interruptions in the supply of 

metabolic energy is the regulation of solute transport by the internal pH. During 

impaired electron transfer in aerobic bacteria, the internal pH will decrease. The in­

hibition of Pit, Pst and other solute transport systems under these conditions will 

reduce the consumption of metabolic energy (proton and sodium motive force, and 

ATP), thus preserving it for maintenance purposes (1, 53). 

In addition, A. johnsonii 210A is well equipped to survive prolonged periods 

of anaerobiosis (up to 5 h) due to its ability to use polyphosphate as source of 

metabolic energy (Chapter 7). Two mechanisms are involved in this process: (i) the 

direct sythesis of ATP via the polyphosphate:AMP phosphotransferase/adenylate 

kinase pathway (69, 70), and (ii) the generation of a proton motive force via the 

coupled excretion of MeHP04 and H+ via Pit (Chapter 7). The MeHP04 efflux-

induced proton motive force could be coupled to different metabolic energy re­

quiring processes (Fig. 7, Chapter 7) such as the synthesis of ATP, the ac­

cumulation of L-lysine via an electrogenic FfVlysine symport system and the 

accumulation of L-proline via an electrogenic NaVproline symport system (Chapter 

6). Evidence was obtained for the presence of a sodium/proton antiporter in A. 

johnsonii 210A which will participate in sodium-coupled solute accumulation 

through conversion of the proton motive force into a sodium motive force (Chapter 

6). In vivo studies of polyphosphate degradation in A. johnsonii 210A by 31P-NMR 

suggested the presence of a substantial, outwardly directed MgHP04 gradient which 

allows MeHP04/H
+ efflux to be an effective metabolic energy conserving 

mechanism. Polyphosphatase may be involved in this energy recycling mechanism 

by providing Pit with a continuous supply of MeHP04. Re-accumulation of P( via 
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Pst with a concomitant hydrolysis of ATP may be prevented by fra/is-inhibition of 

this permease by the high internal P( concentration (up to 150 mM) resulting from 

the degradation of polyphosphate. 

Fermentative bacteria continuously excrete relatively large quantities of lactic 

acid and other organic acids into the environment. In their "energy recycling 

model", Michels and co-workers (47) proposed that electrogenic efflux of these 

organic endproducts in symport with protons could significantly contribute to the 

generation of a proton motive force. Evidence has been obtained for carrier-me­

diated H+-linked excretion of lactate in lactic (49, 50, 65, 66) and enteric bacteria 

(68), and NaMinked excretion of succinate in Selenomonas ruminantium (46). Other 

organic acids, like acetate, may be excreted via carrier-mediated processes as well 

(23). The observations in A. johnsonii 210A extend the "energy recycling model" to 

the excretion of inorganic endproducts (Chapter 7). In view of the evidence for 

cotransport of Pj and divalent cations in many other biological systems, energy 

recycling by the excretion of MeHP04 may be a general mechanism for the conser­

vation of metabolic energy in polyphosphate-accumulating microorganisms. In 

addition, the energy recycling model may have implications for the energy meta­

bolism of microorganisms excreting ammonia, sulfate or other inorganic end-

products. 
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Summary 

The biological removal of phosphorus from waste water is an attractive method to 

control eutrophication of surface waters. The process is currently perceived to 

depend on the provision of alternate stages in which the activated sludge is subjec­

ted to anaerobic and aerobic conditions. A characteristic feature of such plant is that 

Pi; after being released from biomass in the anaerobic stage, is reincorporated into 

biomass during aeration, together with part or all of the influent Pf. Analysis of the 

population structure of activated sludge has focussed attention on the strictly 

aerobic, gram-negative genus Acinetobacter as being one of the important genera in 

enhanced biological phosphorus removal. However, due to the lack of insight into 

the relevant physiological processes in these microorganisms our understanding of 

the mechanisms of enhanced biological phosphorus removal is only superficial. 

The project of this thesis was initiated to study the mechanisms and regulation 

of P| uptake and efflux in the polyphosphate-accumulating Acinetobacter johnsonii 

210A. The nature of polyphosphates and the enzymology of their metabolism have 

been a subject of previous studies with A. johnsonii 210A and other Acinetobacter 

spp. Chapter 1 presents a review of these investigations and those concerning the 

molecular mechanisms of P( transport in prokaryotes. The results described in this 

thesis show that A. johnsonii 210A is well adapted to the environmental conditions 

encountered in activated sludge plants through (i) the efficient acquisition of the 

predominant Pj species from its habitat, and (ii) the ability to survive prolonged 

periods of anaerobiosis, by using polyphosphate as a source of metabolic energy 
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when oxidative phosphorylation is impaired. 

Pj is taken up in A. johnsonii 210A against a concentration gradient by energy-

dependent, carrier-mediated processes (Chapter 2). Kinetic analysis of Pj uptake in 

cells grown under Pj limitation, revealed the presence of two P( transport systems 

with an apparent K, for Pf of 0.7 and 9 JUM. The high-affinity permease could be 

classified as an ATP- and periplasmic binding protein-dependent Pj uptake system. 

Induction of this system under Pj limitation, and the ability to maintain a low 

internal P( by the synthesis of polyphosphate enable the organism to reduce the P( 

concentration in the environment to micromolar levels. The low-affinity system is a 

constitutive secondary Pj transport system involved in Pj uptake and efflux. 

Pj transport via the secondary transport system was studied in membrane 

vesicles and proteoliposomes in which the carrier protein was successfully reconsti­

tuted (Chapter 3). These model systems allow detailed studies on the mechanism of 

Pj transport without the interference of polyphosphate metabolism or other cellular 

processes. Pj uptake is strongly dependent on the presence of divalent metal ions, 

such as Mg2"1", Ca2+, Mn2+, or Co2+. These cations form a MeHP04 complex with up 

to 87% of the Pj present in the incubation mixtures, suggesting that divalent cations 

and Pj are cotransported via a MeHP04 complex. MeHP04 uptake is driven by the 

proton motive force with an mechanistic MeHP04/H
+ stoichiometry of one. The pH 

dependence of various modes of facilitated diffusion processes, such as efflux, 

exchange, and counterflow catalyzed by the MeHP04 carrier suggests that H+ and 

MeHP04 binding and release to and from the carrier protein occur via an ordered 

mechanism. 

In view of the similarities between Pj transport in cells of A. johnsonii 210A 

and Escherichia coli, a more extensively studied organism (Chapter 2), the mecha­

nism and energetics of the phosphate inorganic transport (Pit) system of E. coli 

were investigated (Chapter 4). Pj and metal transport studies in proteoliposomes 

containing reconstituted Pit protein identified Pit as a MeHP04/H
+ symport system. 

The effects of pH and the proton motive force on the different modes of MeHP04 

transport are consistent with the ordered binding model proposed for the MeHP04 

transporter in A. johnsonii 210A. 

Chapter 5 describes the substrate specificity of the two Pj transport systems in 

196 



Summary 

A. johnsonii 210A in relation to P, speciation in the aquatic environment. In natural 

waters and domestic waste water in which divalent metal ions are present in excess 

of Pi; the species H2P04~, HP04
2" and MeHP04 prevail at physiological pH values 

for Acinetobacter (pH 5.5 to 8.0). The transport of MeHP04 by the secondary P; 

transport system is demonstrated in proteoliposomes by the (i) divalent cation-

dependent uptake and efflux of Pi; (ii) Prdependent uptake of Ca2+ and Mg2*, (iii) 

equimolar transport of P( and Ca2+, and (iv) inhibition by Mg2+ of Ca2+ uptake in the 

presence of Pi; but not of P; uptake in the presence of Ca2+. The transport of 

MeHP04 is closely related to the metabolism of cytoplasmic polyphosphate granules 

in which P; and divalent cations are accumulated. H2P04" and HP04
2" are trans­

located by the primary ?, uptake system. P( uptake, but not MeHP04 uptake, was 

stimulated in cells under P, limitation. The periplasmic Prbinding protein showed 

affinity for H2P04" and HP04
2\ but not for MeHP04. 

Chapter 6 demonstrates the presence of high-affinity secondary transport 

systems for L-lysine, L-alanine and L-proline in A. johnsonii 210A. The lysine and 

alanine carriers translocate their solute in symport with one proton. In contrast, the 

proline carrier is strictly dependent on the presence of Na+ ions and mediates 

Na7proline symport. The low internal Na+ concentration, necessary for optimal 

proline uptake, is achieved by a sodium/proton antiporter. High-affinity systems will 

enable the organism to scavenge the environment for traces of metabolizable 

substrates and to recapture endogenous compounds leaking out of the cell. 

Retention of metabolites will become particularly important for survival when 

oxidative phosphorylation is impaired in A. johnsonii 210A. In Chapter 7, evidence 

is presented for the ability of the organism (i) to use polyphosphate as a source of 

metabolic energy during anaerobiosis, (ii) to maintain a considerable, outwardly 

directed MeHP04 gradient across the cytoplasmic membrane during the degradation 

of polyphosphate, and (iii) to generate a proton motive force by the excretion of 

MeHP04 and H+ via the MeHP04 carrier. This MeHP04 efflux-induced proton 

motive force can drive energy-requiring processes such as the accumulation of 

lysine and proline, and the synthesis of ATP. Conservation of metabolic energy 

from polyphosphate degradation may enable A. johnsonii 210A to survive alter­

nating aerobic/anaerobic conditions as encountered in natural habitats and 
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wastewater treatment plants. 

The significance of the here described findings for the cotransport of P; and di­

valent metal ions across biomembranes and the recycling of metabolic energy in 

microorganisms by the excretion of inorganic endproducts is discussed in Chapter 8. 
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Samenvatting 

Waar gaat dit proefschrift over? 

Een proefschrift bevat vaak een groot aantal pagina's die gewoon onleesbaar zijn voor 

een buitenstaander. Zelfs met het grootste enthousiasme lukt het je dan nauwelijks om 

een ander te vertellen waar de promovendus eigelijk mee bezig is geweest. In dit geval 

zou dat kunnen uitmonden in: "iets met fosfaattransport of zo...". Daarom nu een 

samenvatting in normaal Nederlands. 

Fosfaat en het milieu 

Iedereen heeft ze gezien, die wasmiddelenreclames op de TV. De vrolijke huisman 

slaakt de kreet: "fosfaat-vrij, dus beter voor het milieu...". Zijn stralende glimlach 

overtuigt ons direct van het feit dat een goed milieu goed is voor onszelf. Tegelijkertijd 

vergeten we vaak de vraag te stellen wat fosfaat nu eigenlijk met het milieu te maken 

heeft. Om die vraag te kunnen beantwoorden moeten we eerst iets meer weten over de 

tussenliggende schakel: micro-organismen. 

Micro-organ ismen 

Micro-organismen zijn hele kleine wezentjes die je vaak met het blote oog niet kunt 

zien. Ze zitten overal, op en in onszelf, in de lucht, in huis, op straat, in sloten en 
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rivieren. Alhoewel micro-organismen vaak een negatieve bijklank hebben en menig 

persoon onpasselijk zal worden bij het idee zelf volgeplakt te zitten met deze beestjes, 

zijn zij essentieel voor het leven op aarde. Wij danken ons bestaan aan hen. Soms zijn 

ze onze vijand, bijvoorbeeld bij infectieziekten, maar meestal zijn ze een goede buur. 

Net als wij, hebben micro-organismen een grote hobby: eten. Voor een gezond lichaam 

zijn verschillende bouwstenen nodig, zoals koolstof, stikstof, zwavel en fosfor. Terwijl 

de mens het voordeel heeft naar de supermarkt te kunnen gaan om te kopen naar 

behoefte, is het voor een micro-organisme maar afwachten wat er aan zijn neus voorbij 

komt. Het bezit nauwelijks het vermogen zijn omgeving aan te passen aan zijn wensen. 

Zo kan het voorkomen dat niet alle bouwstenen in voldoende mate aanwezig zijn voor 

groei. Op zo'n moment zit een micro-organisme op een houtje te bijten en na te 

denken over de hamvraag hoe te overleven (Figuur 1). 

Figuur 1. In de afwezigheid van voedsel zit het micro-organisme op een houtje te bijten 
en na te denken over de hamvraag hoe te overleven. 
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Eutrofiëring 

Fosfor is een van de voedingsstoffen die van nature weinig aanwezig is in meren, 

sloten en rivieren. Wanneer fosfaat wordt toegevoegd door lozing van verontreinigd 

rioolwater zijn het in eerste instantie vooral algen die heel snel gaan groeien. Met een 

duur woord heet dit proces eutrofiëring. Door de algengroei wordt het water heel 

troebel, je kunt de bodem niet meer zien. Door afsterving van algen en waterplanten 

wordt het water zuurstofarm. Vissen verdwijnen en het water gaat stinken door 

rottingsprocessen waarin andere micro-organismen een rol spelen. Gezien het boven­

staande is het dus belangrijk om het rioolwater zo fosfaatarm mogelijk te maken 

voordat het weggegooid wordt in de natuur. 

Biologische fosfaatverwijdering 

Het gebruik van fosfaatvrije wasmiddelen draagt bij aan de vermindering van de 

hoeveelheid fosfaat in ons afvalwater. De normen die de overheid stelt zijn echter 

streng. We moeten daarom het fosfaatgehalte in ons afvalwater nog verder verlagen. 

Sommige micro-organismen kunnen ons daarbij helpen. Zo zijn er bijvoorbeeld 

bacteriën gevonden, behorende tot de soort Acinetobacter, die veel meer fosfaat naar 

binnen werken dan nodig is voor de groei. Dit extra fosfaat wordt in deze gulzigaards 

geaccumuleerd in de vorm van lange fosfaat ketens: het polyfosfaat. Dit polyfosfaat 

wordt samen met metaal-ionen opgeslagen in polyfosfaatkorrels die ronddrijven in de 

cel. Na een goede maaltijd in fosfaatbevattend afvalwater zitten de beestjes tot de nok 

toe vol met deze polyfosfaatkorrels, terwijl het fosfaatgehalte in hun omgeving sterk 

is verlaagd. De volle bacteriën kunnen nu worden verzameld zodat fosfaatarm 

afvalwater overblijft. Deze zuiveringsmethode waarin bacteriën nuttig werk voor ons 

verrichten, wordt biologische fosfaatverwijdering genoemd. 

Polyfosfaat-accumulerende acinetobacters 

De arbeid die acinetobacters verrichten kost energie. Net als wij, haalt de acinetobacter 

adem omdat zuurstof in zijn lichaam een belangrijke rol speelt bij het vrijmaken van 
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bruikbare energie uit voedsel. Onderzoekers hebben ontdekt dat er iets raars gebeurt 

als je polyfosfaat-bevattende acinetobacters in een omgeving brengt zonder zuurstof: 

zij breken polyfosfaat af tot fosfaat, en scheiden fosfaat uit in hun omgeving. Het werd 

zelfs nog eigenaardiger, toen men ontdekte dat zo'n zuurstofloze periode heel gunstig 

is voor het proces van biologische fosfaatverwijdering. Polyfosfaat-accumulerende 

acinetobacters worden talrijker in een waterzuiveringsinstallatie waarin een zuurstof­

rijke periode wordt afgewisseld met een zuurstofarme periode. Maar, hoe overleeft de 

bacterie zonder zuurstof? Dit proefschrift gaat over de vraag wat er gebeurt tijdens de 

afbraak van polyfosfaat in acinetobacters. Kan de bacterie polyfosfaat als bron van 

energie gebruiken? Hoe scheidt de bacterie fosfaat uit? Maar ook, hoe komt de bacterie 

aan het fosfaat dat nodig is voor de opbouw van polyfosfaat? 

De "mond" van acinetobacters 

Een bacterie heeft niet één mond, maar wel duizenden tegelijkertijd die over het hele 

lichaam zijn verspreid. Het is dan ook heel moeilijk voor een bacterie om zijn mond 

dicht te houden, vooral omdat zijn mondjes met verschillende taken bezig zijn. Terwijl 

de eerste mond zich bijvoorbeeld verslikt in de opname van boterzuur molekulen, een 

tweede een aminozuur molekuul het lekkerst vindt, is een derde mond weer gespe­

cialiseerd in de opname van een andere voedingstof, zoals bijvoorbeeld fosfaat. Heeft 

onze polyfosfaat-accumulerende modelbacterie Acinetobacter johnsonii 21OA een mond 

voor fosfaat? Ja, en niet één maar twee verschillende soorten (Figuur 2) ! De eerste 

soort (de "metaal-fosfaatmondjes") is met een vast aantal aanwezig. De soort krijgt het 

fosfaat relatief moeilijk te pakken, ook omdat feitelijk niet fosfaat zélf maar een 

metaal-fosfaat complex herkend wordt. Bij een grote hoeveelheid fosfaat en metaal 

ionen in het milieu is dat geen probleem. Als de fosfaatconcentratie echter erg laag 

wordt (minder dan 0.1 milligram per liter), komt er nauwelijks nog metaal-fosfaat via 

deze mondjes naar binnen. Daar heeft het beestje iets op gevonden. Bij lage 

fosfaatconcentraties vergroot de acinetobacter het aantal exemplaren van een tweede 

soort mond (de "fosfaatmondjes-met-arm") die met een arm, vrij fosfaat uit het milieu 

wegvangt en naar zich toebrengt. Dat gaat veel gemakkelijker maar het kost ook meer 

energie en daar wil de bacterie spaarzaam mee omgaan. 
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Figuur 2. Fosfaatopname in Acinetobacter johnsonii 210A. De bacterie bezit twee 
verschillende soorten monden voor fosfaat. Alhoewel er van elke soort nu maar één is 
getekend, komen de mondjes in werkelijkheid met duizenden tegelijkertijd voor over het 
hele lichaam. Het "metaal-fosfaatmondje" (links) kan metaal-fosfaat complexen maar 
moeilijk te pakken krijgen. Het "fosfaatmondje-met-arm" (rechts) vist met een soort arm, 
fosfaat weg uit het milieu. De bacterie moet zich inspannen om metaal-fosfaat en fosfaat 
te pakken te krijgen, en vast te leggen in polyfosfaat. De energie die daarvoor nodig is, 
haalt de bacterie uit voedsel en zuurstof. 

Fosfaatopname kost energie 

Een acinetobacter is een heel eenvoudig organisme. Het bestaat maar uit een enkele 

cel. De samenstelling van de vloeistof in zo'n cel is heel anders dan die van het 

omringende milieu. Zo is de fosfaatconcentratie in de cel vaak veel hoger en constanter 

dan die erbuiten. Het organisme moet energie investeren om dit verschil in stand te 

houden. Bij de opname van metaal-fosfaat complexen via de "metaal-fosfaatmondjes" 

wordt deze energie geleverd via een protonenpomp. Deze pomp zit net als de mondjes 

van de bacterie in een dun vliesje om de cel, dat het celmembraan wordt genoemd. De 

protonenpomp is continu bezig om protonen (H+) vanuit de binnenzijde van de cel naar 
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buiten te pompen ten koste van energie die verkregen wordt uit voedsel en zuurstof. 

Hierdoor wordt het aantal protonen aan de buitenzijde van de cel veel groter dan aan 

de binnenzijde. Die protonen willen graag weer naar binnen, maar het celmembraan 

verhindert de doorgang. Protonen kunnen echter wel worden opgenomen via de 

"metaal-fosfaatmondjes", mits een metaal-fosfaat complex meegevoerd wordt naar 

binnen. Zo'n complex voelt zich dan als op een topdag in de V&D. Als je eenmaal in 

de stroom winkelende mensen bent terecht gekomen kun je alleen nog maar meelopen 

en is er geen omkeren meer aan. Zo drijft de protonenstroom de opname van metaal­

fosfaat. De "fosfaatmondjes-met-arm" werken volgens een andere methode. Hier staat 

een portier bij de binnenkant van de deur, in de vorm van een energierijke verbinding 

die ATP wordt genoemd. Splitsing van ATP rukt de fosfaatklant dan naar binnen en 

zorgt ervoor dat de gast niet meer langs deze weg terug kan. Over een hartelijk 

welkom gesproken.... 

Fosfaatafgifie levert energie. 

We weten nu al het een en ander over acinetobacters. Ze kunnen polyfosfaat maken 

dat samen met metaal ionen wordt opgeslagen in korrels in de cel. Acinetobacters 

bezitten mondjes voor de opname van metaal-fosfaat complexen en vrij fosfaat. We 

kunnen zeggen dat de vorming van polyfosfaat niet goedkoop is voor de bacterie. Niet 

alleen de opname van (metaal-)fosfaat vraagt nogal wat energie. Ook voor de vorming 

van polyfosfaat uit fosfaat zal de cel diep in zijn energie-beurs moeten tasten. Tenslotte 

hebben we kunnen lezen dat acinetobacters bruikbare energie uit voedsel kunnen 

vrijmaken wanneer zuurstof aanwezig is. Wat gebeurt er met de bacterie bij 

afwezigheid van zuurstof? Gaat de acinetobacter dan direct dood? Nee, want onder 

deze omstandigheden wordt het polyfosfaat als energieleverancier gebruikt. Het 

polyfosfaat wordt gesplitst, waarbij metaal-fosfaat via de "metaal-fosfaatmondjes" 

uitgescheiden wordt in het milieu. Deze mondjes werken nu dus in de omgekeerde 

richting. De energie die nodig was voor de opname van metaal-fosfaat wordt daardoor 

deels weer teruggewonnen. Ook de energie die direct vrijkomt tijdens splitsing van 

polyfosfaatketens kan mogelijk door de bacterie worden benut. Door het gebruik van 

polyfosfaat als energiereserve behouden polyfosfaat-accumulerende acinetobacters hun 
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levensvatbaarheid onder omstandigheden waar andere bacteriën al snel het loodje 

leggen (Figuur 3). De wereld van de micro-organismen is hard en onverbiddelijk, maar 

wél bijzonder interessant. 

ÏVPc - t ief t /— 

Figuur 3. Polyfosfaat-afbraak en fosfaat-afgifte in A. johnsonii 210A. Het "metaal-
fosfaatmondje" kan metaal-fosfaat complexen naar binnen werken, maar ook naar buiten. 
Tijdens de afbraak van polyfosfaat spuugt het metaal-fosfaat complexen uit. Het 
"fosfaatmondje-met-arm" zorgt alleen voor de opname van fosfaat. Deze mond is stil 
tijdens de afbraak van polyfosfaat. Polyfosfaat-afbraak en fosfaat-afgifte leveren de 
bacterie energie. Hierdoor kan A. johnsonii 21OA een periode zonder zuurstof overleven, 
terwijl andere bacteriën dan al snel het loodje leggen. 
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Abbreviations 

Aip : transmembrane electrical potential difference 

ZApH : transmembrane proton gradient (in millivolt) 

ApH+ : proton motive force (ApH+ = A\p - ZApH) 

ZApNa : transmembrane chemical gradient of sodium ions (in millivolt) 

ApNa+ : sodium motive force {ApNa+ = A\f/ - ZApNa) 

ADP : adenosine 5'-diphosphate 

AMP : adenosine 5'-monophosphate 

ATP : adenosine 5'-triphosphate 

BCECF : 2',7'-bis-(2-carboxyethyl)-5[and -6]-carboxyfluorescein 

CCCP : carbonyl cyanide 3-chlorophenylhydrazone 

DCCD : N.W-dicyclohexylcarbodiimide 

DiSC3(5) : 3,3'-dipropylthiadicarbocyanine iodide 

DNP : a-dinitrophenol 

DTT : dithiothreitol 

EDAX : energy dispersive X-ray micro-analysis 

EDTA : ethylenediaminetetraacetate 

Hepes : 4-(2-hydroxyethyl)-l-piperazinethanesulfonic acid 

MeHP04 : metal phosphate complex 

Mes : 2-(Af-morpholino)ethanesulfonic acid 

Pi : inorganic phosphate 

Pipes : piperazine-MA^'-bis(2-ethanesulfonic acid) 
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PolyP : polyphosphate 

PQQ : 4,5-dihydro-4,5-dioxo-lH-pyrrolo[2,3-f]-quinoline-2,7,9-tricarboxylic 

acid 

SDS : sodium dodecyl sulphate 

TCA : trichloroacetic acid 

TPP+ : tetraphenylphosphonium ion 

Tris : 2-amino-2-(hydroxymethyl)-l,3-propandiol 
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