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Stellingen 

1. Een genetische bron van ziekteresistentie, ook indien transgeen, verdient altijd de voorkeur 

boven chemische bronnen van gewasbescherming. 

Lowe et al. veronderstellen ten onrechte dat de directe transformatie van kiemlijncellen in het 

mais meristeem de basis vormt van hun transformatieprocedure. 
Lowe, K., B. Bowen, G. Hoerster, M. Ross, D. Bond, D. Pierce & B. Gordon-Kamm, 1995. Germline 
transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13: 677-682. 

3. De resultaten van Presting et ai, waarbij ook de 'vector' controle significante niveaus van 

resistentie vertonen, bewijzen dat eerder werk aangaande de ontwikkeling van transgene 

resistentie tegen het aardappelbladrolvirus nader onderzoek behoeft teneinde de 

mogelijkheid van somaclonale variatie te kunnen uitsluiten. 
Presting, G.G., O.P. Smith & CR. Brown, 1995. Resistance to potato leafroll virus in potato plants 
transformed with the coat protein gene or with vector control constructs. Phytopathology 85: 436-442. 

4. Alvorens een uitspraak te doen omtrent het mechanisme van transgene virusresistenties, 

dient allereerst te worden vastgesteld of het vermeende eiwitprodukt, dan wel het gen

transcript aan de resistentie ten grondslag ligt. 

Wanneer statistiek moet worden aangewend om het effect van een monogeen transgene 

eigenschap aan te tonen, dient het praktische belang daarvan in twijfel getrokken te worden. 

Het feit dat een 'Maniatis' met transformatieprotocollen voor planten nog niet bestaat, 

illustreert het empirisch karakter van cel- en weefselkweektechnieken. 

Stellingen behorend bij het proefschrift getiteld: 
Molecular Breeding for Virus Resistance, an applied approach in vegetable crops. 

Jan Gielen - Wageningen, 15 december 1995. 



De toepassing van het groene fluorescentie-eiwit afkomstig van de kwal Aequorea victoria 

in transgene planten maakt hun verspreiding eenvoudig traceerbaar door middel van 'remote 

sensing'. 
Niedz, R.P., M.R. Sussman & J.S. Satterlee, 1995. Green fluorescent protein: an in vivo reporter of plant 
gene expression. Plant Cell Reports 14: 403-406. 

De produktie van antigenen in tabak maakt pruimtabak tot een oraal vaccin. 
Haq, T.A., H.S. Mason, J.D. Clements & C.J. Arntzen, 1995. Oral immunization with a recombinant 
bacterial antigen produced in transgenic plants. Science 268:714-716. 

9. Uit het oogpunt van milieubescherming dient iedere vorm van financiële vergoeding voor 

woon-werkverkeer verboden te worden. 

10. Het papierverbruik per werknemer is omgekeerd evenredig met het communicatieniveau van 

de organisatie waarvan de werknemer deel uitmaakt. 

Stellingen behorend bij het proefschrift getiteld: 
Molecular Breeding for Virus Resistance, an applied approach in vegetable crops. 

Jan Gielen - Wageningen, 15 december 1995. 



Contents 

Chapter 1 General introduction 7 
Outline of this thesis 9 

Chapter 2 Genetic modification of crop plants 11 
Introduction 11 
Direct DNA transformation: electroporation and microprojectile bombardment 12 
Agrobacterium tumefaciens-mediated transformation 14 
Agrobacterium-mediated transformation in practice 15 
Selectable markers 16 
Transgene expression 19 
Concluding remarks 20 

Chapter 3 Pathogen-derived resistance to viral infections in transgenic crops 27 
Introduction 27 
Plant virus infection cycles 28 
Coat protein gene-derived resistance 29 
Replicase gene-derived resistance 32 
Antisense Transcript-mediated resistance strategies 33 
Satellite and defective interfering RNA-mediated protection 34 
Other strategies of pathogen-derived resistance 36 
Concluding remarks 37 

Chapter 4 Transgenic expression of the coat protein gene from 
beet western yellows virus in lettuce 43 

Chapter 5 Coat protein-mediated protection to cucumber mosaic virus 
infections in cultivated tomato 59 

Chapter 6 Transgenic resistance to zucchini yellow mosaic virus 
infections in melon (Cumumis melo L.) 79 

Chapter 7 Engineered resistance to tomato spotted wilt virus, 
a negative-strand RNA virus 93 

Chapter 8 Resistance to tomato spotted wilt virus in transgenic 

tomato hybrids 111 

Chapter 9 Summary and concluding remarks 129 

Samenvatting 135 

Curriculum vitae 139 

Nawoord 141 



General introduction 

Virus infections cause considerable losses of yield and quality in many crops grown in 

modern agriculture, and can even be limiting to the production of certain crops in 

specific areas. The impact of viral infections is exacerbated by the intensive agriculture 

of monocultures of genetically identical plants in close proximity and under optimal 

conditions, thereby creating a conducive environment for severe disease outbreaks. 

Strategies for control of virus diseases are therefore widely applied, focusing on methods 

to prevent the occurrence of infection, or on natural sources of virus resistance within 

crop plants (Tomlinson, 1987; Fraser, 1989). The use of virus-free seeds and planting 

material can be guaranteed by appropriate indexing and certification methods. Timing of 

sowing or planting so as not to coincide with an influx of virus vectors, eradication of 

host weeds and other virus sources, and the use of pesticides to control virus vectors 

represent additional culture practices to limit the incidence of virus diseases. Such culture 

measures, however, can fail if there are changes which affect virus epidemiology, like 

climatic fluctuations, the emergence of novel virus strains, or changes in cropping 

practices. Moreover, the application of pesticides can lead to the excessive use of 

ecologically unacceptable chemicals. 

Breeding for virus resistance is generally regarded as being the best strategy in the long 

term. The term resistance is used to describe the general response of the plant in which 

the effect of infection is reduced or eliminated, but is imprecise when the interactions 

between the plant and the challenging virus are considered. These interactions range 

from tolerance, whereby the plant develops mild symptoms on systemic infection with 

the virus, through hypersensitivity, whereby the spread of the virus is restricted to a few 

cells at the site of infection, to true immunity or non-host resistance, whereby the plant 

does not support replication of the invading virus (Zaitlin & Hull, 1987; Hull & Davies, 

1992). In spite of the indiscriminate use of terms like resistance, tolerance and immunity, 

the precise nature of the interaction between plant, vector and virus underlying the 

resistant phenotype is of prime importance in breeding for virus resistance. In this 

perspective, the term protection seems to be more appropriate to refer to the general 

response of the plant in which the effect of virus infection is reduced or eliminated, 

regardless of the plant-virus interaction underlying the reduced susceptibility. Resistance 
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then could be defined in a more restricted sense as the specific plant property preventing 

the virus from spread and systemic symptom development, generally associated with the 

hypersensitive response. 

Virus resistance can operate directly, by preventing virus multiplication or its deleterious 

effects within the plant, or indirectly, affecting the virus vector. Host factors influencing 

plant attractiveness to vectors, and thus the efficiency of virus transmission include 

physical barriers such as leaf hairs or robust surfaces, non-preferred foliage colour, 

secretion of alarm pheromones and the presence of anti-feeding compounds in the plant 

sap (reviewed by Jones, 1990). The genetic basis of these factors is mostly polygenic and 

not well understood, which renders them to a limited extent accessible to the plant 

breeder. In contrast, the genetics of resistance genes operating against the virus within 

the host have been studied extensively, since Holmes (1938) first demonstrated the 

Mendelian inheritance of resistance to tobacco mosaic virus (TMV) in tobacco. To date, 

this type of resistance which is usually conferred by single loci, is deployed widely 

against many viruses in many different crops with varying degrees of success (Fraser, 

1990). 

The heritable resistance of cultivars to a particular virus to which the species as a whole 

is normally susceptible, implies an interaction between the virus and the product of the 

host resistance gene, with consequent inhibition of virus multiplication or spread (Fraser, 

1992; Keen, 1992). The underlying mechanism can either be constitutive if the product 

of the host resistance gene is itself the inhibitor, or induced if an initial recognition event 

triggers a host resistance response involving activation of several host genes. This initial 

recognition involves the interaction between the product of the host resistance gene and 

that of a matching viral avirulence gene (Dawson & Hilf, 1992; Fraser, 1992), as is 

explained by the concept of gene-for-gene incompatibility, stating that the success or 

failure of resistance is determined by the presence or absence of complementary genes 

that are present within the pathogen and the host plant, the avirulence and resistance 

genes respectively (Flor, 1956; Keen, 1990; de Wit, 1992). 

For both modes of resistance, constitutive or induced, virus virulence is restored by 

modification of the avirulence factor, such that it retains its function in pathogenesis, but 

that inhibition or induction of the resistance mechanism is less effective or totally 

ineffective. It may take only a few nucleotide substitutions to change a virus from an 

avirulent to a virulent isolate which overcomes a cultivar resistance gene (Meshi et al., 

1988; Meshi et al, 1989; Culver & Dawson, 1989; Calder & Palukaitis, 1992). In 

practice, comparatively low numbers of dominant resistant alleles proved highly durable 

as their long term application in resistant cultivars did not yet result in the selection of 

virus isolates with matching virulence. Examples of sofar durable genes include Ry 
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against potato virus Y in potato (Barker & Harrison, 1984) and Tm-22 against tobacco 

mosaic virus in tomato (Pelham, 1972). But still, the co-evolution of plant resistance and 

viral virulence obviously poses a serious problem for the plant breeder, as the emergence 

of virulent virus isolates overwhelming resistance genes restricts their continued 

incorporation into new crop cultivars. 

Outline of this thesis 

As mentioned herein above, breeding for virus resistance provides the best long-term 

prospects of virus control, but is hampered by the paucity of useful sources of resistance. 

For most crops, there are only few, if any, sources of resistance in sexually compatible 

species available, while polygenic sources of resistance are yet less amenable in plant 

breeding. In contrast to the scarcity of resistance genes available to the plant breeder, the 

high frequency of virulent virus isolates overwhelming natural resistance genes urges the 

need for 'pyramiding' of resistance genes within crop cultivars, for oligogenic resistances 

are reasoned to be more difficult for the virus to overcome than monogenic types of 

resistance. Whenever the virus overcomes one resistance gene, it will be faced by yet 

other genes that prevent the virus from systemic infection and subsequent disease 

development 

Major scientific advances in stable gene transfer techniques and the molecular 

characterisation of viral genomes permitted the onset of molecular breeding for virus 

resistance employing plant genetic engineering. Over the past few years, the transgenic 

expression of virus-derived nucleotide sequences proved a versatile and broadly 

applicable strategy for achieving virus resistance, illustrated by the numerous reports of 

genetically engineered virus resistance for an ever-growing number of viruses and crops 

(reviewed by Fitchen & Beachy, 1993; Wilson, 1993; Scholthof et al, 1993; Hull, 1994). 

Once such transgenic plants carrying novel resistance genes have been evaluated for their 

performance, they can be carried forward into crop breeding programs in order to extend 

the battery of resistance genes available to the plant breeder. 

With this applied aim in mind, this thesis describes the development of transgenic 

progenitors of pathogen-derived resistance to a number of different viruses representing 

different virus genera, and for a number of different vegetable crops. Major aspects 

related to this research involve the construction of pathogen-derived resistance genes for 

beet western yellows luteovirus, zucchini yellow mosaic potyvirus, cucumber mosaic 

cucumovirus and tomato spotted wilt tospovirus, the development of Agrobacterium-

mediated transformation protocols for elite genotypes of lettuce, melon and tomato, and 
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the subsequent characterisation of the observed resistance. The performance of the 

transgenic plants and their potential to function as progenitors of virus resistance in crop 

breeding programs is critically assessed for the various virus-crop combinations. 
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Genetic modification of crop plants 

Introduction 

Molecular breeding is based on the introduction and expression of foreign genes in crop 

plants. The development of procedures to regenerate plants from single cells or organised 

tissues, and the discovery of novel techniques to deliver DNA into plant cells enabled the 

practical use of molecular breeding in crop improvement. From the large number of 

strategies for plant transformation that have been developed in the past, only a few are 

routinely in use. These strategies include electroporation, microprojectile bombardment 

and Agrobacterium-meAidAeA transformation, which differ in the way the genes are 

transferred to the plant cell. A basic prerequisite for these transformation methods is the 

selection and regeneration of the initially transformed plant cells, which implies the need 

of a tissue culture approach. The regeneration of normal and fertile transgenic plants 

from the rare transformed plant cells, however, proved to be rather difficult for the 

majority of crop species. The main difficulty in this appears to be directing the gene 

transfer towards totipotent cells that are amenable to regeneration, and the subsequent 

selection and proliferation of the initially transformed cells. This constraint leads to the 

development of a variety of selectable markers that encode resistance to antibiotics or 

herbicides. On the contrary, the direct transformation of germ line cells in organised 

tissue expiants circumvents the need for the selective regeneration from single 

transformed cells, and thus presents an attractive approach towards the genotype 

independent transformation of crop species. The basic principles and characteristics of 

different transformation techniques and selectable marker genes with practical 

application are outlined hereinafter. Additionally, the influence of the state of the plant 

genome on the expression of the transgene and the phenotype resulting therefrom is 

discussed, in relation to phenomena such as position effects, gene silencing and 

chromatin compaction. 
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Direct DNA transformation: electroporation and particle bombardment 

In the search for species and genotype independent transformation methods, several 

techniques based upon the direct delivery of naked DNA into plant cells have been 

developed (reviewed by Potrykus, 1991; Songstad et al, 1995), ranging from the use of 

laser technology (Guo et al., 1995) to the direct injection of DNA into reproductive 

tissues (de la Pena et al, 1987; Luo & Wu, 1988). Today only two strategies of naked 

DNA transformation are of practical importance: electroporation and microprojectile 

bombardment. The physical nature of these delivery techniques can potentially overcome 

biological barriers associated with other transformation procedures such as host range 

specificity or the regeneration of transgenic plants from protoplasts. Polyethylene glycol 

(PEG) has successfully been used as a chemical agent mediating direct DNA uptake in 

the transformation of a number of plants species including monocots (Horn et al., 1988; 

Zhang & Wu, 1988; Wang etal, 1992; Omirulleh et al., 1993). However, due to the fact 

that PEG-mediated transformation requires an efficient protoplast system, its application 

range remained rather limited compared to both physical strategies of DNA delivery. 

Electroporation involves short electrical discharges to cause reversible permeabilisation 

of the plasmalemma membrane which enable the passage of nucleic acids through the 

otherwise impermeable plasmalemma membrane (reviewed by Lindsey & Jones, 1990). 

The rigid plant cell wall, however, does not allow the efficient diffusion of macro-

molecules such as nucleic acids. As such, the plants cell wall constitutes a physical 

barrier in electroporation, which implies the preparation of protoplasts and their 

subsequent regeneration into fertile transformants. In order to eliminate the need for 

totipotent protoplasts and to avoid long periods of time in tissue culture associated with 

protoplast regeneration procedures, a new method of electroporation was developed to 

deliver DNA into morphogenic plant tissues such as immature embryos or embryonic 

callus tissue. This simple and inexpensive technique has been successfully applied to 

obtain transgenic plants starting from enzymatically or mechanically wounded immature 

embryos of maize (D'Halluin ef ai, 1992a) or rice (Xu & Li, 1994). 

Microprojectile bombardment employs metal particles coated with DNA that are 

accelerated to high velocities into plant tissues (reviewed by Christou, 1992; Sanford et 

al., 1993; Klein & Fitzpatrick-McElligott, 1993). The particles penetrate the plant cell 

wall and enter the plant cell where the DNA is released and occasionally incorporated 

into the plant genome. This biolistic method has permitted the genetic transformation of 

several important but hitherto recalcitrant crop species, including maize (Fromm et al, 

1990; Gordon-Kamm etal, 1990), rice (Christou etal, 1991) and soybean (McCabe et 

al, 1988). One of the advantages of the biolistic approach is that organised structures 
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such as meristems or embryos can be used as expiant material, aiming at the 

transformation of the germ line cells that give rise to the future reproductive organs 

(Christou & McCabe, 1992; McCabe & Martinell, 1993). Due to the nature of this 

particular procedure, which does not involve the selective regeneration of single 

transgenic cells, the recovered transformants will be chimaeric. Only transformants that 

carry stably transformed germ line cells will yield homogeneously transformed offspring 

plants, that can easily be identified by means of a selectable marker such as resistance to 

a herbicide. The deviation from the need for the regeneration of transgenic plants from 

single transformed cells reduces tissue culture demands to the minimum, and thus makes 

this approach a promising alternative for the genotype-independent transformation of 

recalcitrant crop species. Its reduction to practice, however, still requires further 

improvement and refinement of the bombardment technology, so that germ line cells can 

be transformed more efficiently by modulating particle size, particle velocity and the 

depth of particle penetration (Sautter & Potrykus, 1991; Iglesias et ai, 1994; Leduc et 

al, 1994). 

In contrast to the technically demanding methods of electroporation and microprojectile 

bombardment, the silicon carbide fiber- or whisker-mediated transformation as recently 

described for the production of fertile transgenic maize plants (Frame et al., 1994), is 

astonishing in its simplicity. The method involves the vortexing of cells from 

embryogénie suspension cultures in liquid medium with silicon carbide whiskers and 

plasmid DNA. The collisions between cells and whiskers apparently lead to cell 

penetration and subsequent DNA delivery (Kaeppler et ai, 1990). As such, whisker-

mediated transformation represents a simple and inexpensive system that does not 

require any sophisticated and expensive equipment. However, it appears that routinely 

achieving high frequency DNA delivery in tissue cultures that retain their regeneration 

capacity will remain challenging. 

Direct DNA transformation methods in general make use of plasmid DNA carrying the 

genes of interest, that is physically introduced into the plant cells. Since integration of the 

delivered DNA is not a controlled and precise event, transformed plants not only contain 

the genes of interest, but also fragments of redundant vector sequences. Additionally, 

multiple integration events, linked at only a few loci, are rather common upon direct 

DNA transformation. Transgene loci containing repetitive transgene copies arranged in 

inverted or direct repeats, however, are considered to be more prone to homology-

dependent gene silencing (Flavell, 1994; Matzke etal., 1994; Matzke & Matzke, 1995). 

Support for this concern also comes from a study in Arabidopsis, in which an allelic 

series comprising different copy numbers of the transgene was generated by 

recombination at a single locus, derived from one and the same primary transformant. 
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Alleles containing repeats were silenced and methylated, whereas alleles lacking repeats 

remained active and unmethylated (Assaad et al, 1993). Consequently, transgenic loci 

containing repetitive elements are less favourable when considering their stability of 

gene expression over successive generations (Finnegan & McElroy, 1994). 

Agrobacterium tumefaciens -mediated transformation 

The first ever transgenic plants were obtained exploiting the natural gene transfer system 

of Agrobacterium tumefaciens (Fraley et al, 1983), which is now widely applied for the 

routine transformation of dicotyledonous plants (reviewed by Hooykaas & Schilperoort, 

1992; Lindsey, 1992). Despite of its simplicity in practice, the underlying processes 

mediating DNA transfer and stable integration comprise several complex events that are 

only partially understood (reviewed by Zambryski, 1992; Hooykaas & Beijersbergen, 

1994; Zupan & Zambryski, 1995). 

Agrobacterium tumefaciens is a plant pathogenic soil bacterium that infects wounded 

tissues, resulting in the formation of a crown gall at the site of infection. A large plasmid 

contained within the Agrobacterium cells and referred to as the tumour inducing or Ti 

plasmid, carries most of the functions for crown gall formation. The shift to tumorous 

cell growth is effectuated by the transfer of a piece of DNA, the T-DNA, from the Ti-

plasmid into the plant cell genome. The T-DNA itself is delimited by two direct repeats 

of approximately 25 bp, the T-DNA borders. Any DNA between these borders is 

transferred to the plant cell, without any effect on the efficiency of T-DNA transfer. In 

wild type Agrobacterium strains the T-DNA contains oncogenic genes which when 

expressed in plant cells, direct the formation of the crown gall. The machinery for T-

DNA transfer is encoded by the vir region, that is also located on the Ti-plasmid. The vir 

region consists of several loci that contain all information needed to duplicate and to 

transfer the T-DNA as a single-stranded DNA molecule from the bacterium into the plant 

cell (Zambryski, 1992) and into the plant nucleus (Citovsky et al, 1992). 

The functional separation of the Ti-plasmid into the T-DNA and the vir region led to the 

development of the binary vector system (de Framond et al, 1983; Hoekema et al, 

1983), in which both entities are physically separated on two different plasmids. One is a 

deleted Ti plasmid, lacking the T-DNA region, but providing the virulence functions of 

the vir region. The binary vector itself is a much smaller plasmid that carries a 'disarmed' 

T-DNA from which the oncogenic sequences have been deleted, but leaving both border 

regions. Binary vectors can be propagated both in Agrobacterium and in Escherichia coli 

to permit the cloning of foreign genes onto the T-DNA. Upon introduction of the binary 
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vector into Agrobacterium both plasmids replicate independently, resulting in the 

reconstitution of the T-DNA transfer system through fra/w-complementation. 

Agrobacterium-mediated transformation in practice 

The successful recovery of transgenic plants by means of AgrofcacferiMm-mediated 

transformation is dependent on the susceptibility of the expiant material to the 

Agrobacterium strain, the ability to select for newly grown transgenic tissues derived 

from initially transformed cells, and the potential to regenerate fertile plants from the 

selected tissue. A well-known procedure is that of leaf disk transformation, in which 

transformed shoots regenerate directly from the wounded edges of leaf expiants upon 

Agrobacterium-medmted transformation (Horsch et al., 1985). The main difficulty in this 

approach is to direct T-DNA transfer towards totipotent cells that are amenable to 

regeneration, but that do not necessarily correspond with those amenable to DNA uptake 

and subsequent stable integration (Colby et al, 1991; Sangwan et al, 1992). This 

discrepancy can partially be overcome by the use of immature plant tissues such as 

seedling or embryo expiants, that harbour actively dividing cells or cells that can easily 

be dedifferentiated. Actively dividing, dedifferentiated plants cells generally are 

increased amenable to transformation and subsequent regeneration (van Wordragen & 

Dons, 1992). 

The susceptibility of the expiant material to Agrobacterium is determined by several 

factors of which plant genotype and virulence of the Agrobacterium strain are of key 

importance. Among Agrobacterium strains that are commonly used in dicot 

transformation protocols, including the octopine type strain LBA4404 (Ooms et al., 

1981) and the nopaline type strain C58Cl(pMP90) (Koncz & Schell, 1986), exist large 

differences in virulence that are primarily related to the nature of the vir region. The vir 

region of Ti plasmid pTiBo542 as present in supervirulent strain A281 is known to be 

more virulent than other strains to many plant species. Strain A281 carrying pTiBo542 

incites large, fast-growing tumours on several solanaceous species as well as on a 

number of important legumes, including alfalfa, soybean and pea (Hood et al., 1987; 

Chabaud et al., 1988; Hobbs et ai, 1989; Puonti-Kaerlas et ai, 1989). This hyper-

virulence and broad host range property were shown to be encoded outside of the T-DNA 

(Hood et al, 1986; Jin et al, 1987), and thus are of particular interest to be exploited for 

Irani-complementation of binary vectors in Agrobacterium-mediated transformation. 

The expiants must release phenolic compounds that are recognised by Agrobacterium as 

signal molecules, resulting in the specific induction of the vir genes (Stachel et al, 1985 
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and 1986). In this way, the combination of plant genotype and bacterial strain is known 

to affect the efficacy of transformation for many crop species. Methods for enhancing 

transformation efficiency are often based on the addition of phenolic compounds, such as 

acetosyringone (Stachel et al., 1985), or on the use of feeder layers, aiming at the 

activation of vir genes during co-cultivation. Feeder layers generally consist of cell 

suspensions from readily transformable plants species, such as tobacco or Petunia, that 

are separated from the expiants by a filter paper. The beneficial effect of feeder layers 

probably is not only due to the secretion of phenolic compounds, but also to other 

secreted compounds influencing dedifferentiation and subsequent regeneration of the 

expiant cells. 

In the perspective of obviating the need for the selective regeneration of single transgenic 

cells, two novel methods were described for the in planta transformation of Arabidopsis. 

Both non-tissue culture approaches are based on the inoculation of adult plants with a 

concentrated suspension of Agrobacterium cells, aiming at the direct transformation of 

germ line cells (Bechtold et al., 1993; Chang et al., 1994). The in planta transformation 

of Arabidopsis was first achieved by inoculating germinating seeds at the stage of 

imbibition. Inoculated plants were grown to maturity to produce seeds that were 

subsequently sown on selective medium to recover transformed plants (Feldmann & 

Marks, 1987). However, despite numerous attempts, this method proved poorly 

reproducible and thus remained rather inefficient. The vacuum infiltration of flowering 

plants, on the other hand, was shown to yield high frequencies of transformation 

(Bechtold et al., 1993). On average, up to five independent transformants could be 

recovered from the progeny of each plant infiltrated. Likewise, the severing of apical 

shoots, the subsequent inoculation and the in planta generation of newly formed shoots 

from the severed sites, also yielded high frequencies of transformation (Chang et al., 

1994). Evidently, such simple and efficient non-tissue culture approaches present a 

tempting alternative for the transformation of crop species recalcitrant to regeneration 

and to in vitro tissue culture techniques. However, the successful in planta 

transformation of any other plant species than Arabidopsis has not yet been disclosed. 

Selectable markers 

As outlined herein above, one of the most difficult aspects in plant transformation is the 

preferential selection and regeneration of the rare cells that have been transformed. Most 

of the strategies for selection are based on the selective inhibition of non-transformed 

plant cells without significantly affecting the transformed cells, which is generally 
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Table I. Summary of selectable marker genes that are routinely used in the transformation of crop species, 
their mode of action and the corresponding selective agents. 

Selective Agent Marker Gene1 Mode of Action 

detoxification Kanamycin 
neomycin 
paromomycin 
butirosin 
G418 (geneticin) 

Hygromycin 

Glyphosate (Roundup™) 

Phosphinothricin (Basta™) 

Sulfonylurea 

NPTH 

HPT 

EPSPS 
GOX 

PAT 

ALS 
chlorsulfuron 

detoxification 

complementation 
detoxification 

detoxification 

complementation 

iNPTII: neomycin phosphotransferase II; HPT: hygromycin phosphotransferase; EPSPS: 5-
enolpyruvylshikimate 3-phosphate synthase; GOX: glyphosate oxidoreductase; PAT: phosphinothricin-N-
acetyltransferase; ALS: acetolactate synthase. 

achieved by making use of a selectable marker that confers resistance to a herbicide or to 

an antibiotic (Wilmink & Dons, 1993) (Table I). 

Kanamycin, belonging to the aminoglycoside type antibiotics, proved to be very efficient 

as selective agent in the transformation of dicotyledonous crop species. Resistance to 

kanamycin is obtained by the transgenic expression of the aphA2 gene from the Tn5 

transposon of Escherichia coli (Bevan et al., 1983; Fraley et al., 1983), encoding the 

enzyme aminoglycoside 3'-phosphotransferase (APH(3')II), better known as neomycin 

phosphotransferase II (NPTII). Upon phosphorylation of a specific hydroxyl group, the 

antibiotic is detoxified and its binding to the ribosome prohibited. Hygromycin is another 

aminoglycoside type antibiotic, for which plant tissues generally show a higher 

sensitivity compared to kanamycin. The aphlV gene from Escherichia coli confers 

resistance to this antibiotic and proved suitable to function as selectable marker in plant 

transformation (van den Elzen et al, 1985; Waldron et al., 1985). 

In addition to antibiotics, herbicides are widely applied as selective agents in plant 

transformation, of which phosphinothricin and glyphosate are the most important. Both 

herbicides have been successfully employed for a large number of crop species, 

including recalcitrant monocots such as maize (Gordon-Kamm et al, 1990), wheat (Vasil 

et al., 1992) and rice (Christou et al., 1991). Moreover, the transformation of crop 
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species with selectable marker genes conferring herbicide resistance may be a goal on its 

own as herbicide resistance constitutes a trait of commercial interest in field crops. 

Glyphosate inhibits the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), 

which is involved in the synthesis of aromatic amino acids through the shikimate 

pathway (Cornai et al, 1985). Because of its mobility in vascular tissues, glyphosate 

tends to accumulate in the apices and meristematic tissues, which renders it a very 

powerful herbicide, commercially known under the brand name Roundup™. Resistance 

to glyphosate is achieved by the expression of mutant EPSPS enzymes with reduced 

affinity to the herbicide (Cornai et al., 1985; Shah et ai, 1986), but leaving the herbicide 

itself unaffected. Its accumulation in meristematic tissues, however, forced the 

development of a detoxifying mechanism in order to fully protect crop plants upon 

treatment with a commercial application of Roundup™. For this purpose, the transgenic 

expression of a glyphosate oxidoreductase supplementing the mutant EPSPS enzyme, 

resulted in sufficiently high protection levels for crop plants to resist the commercial 

application of Roundup™ at levels several fold the routine dose (Barry et ai, 1992). 

Phosphinothricin, also known as glufosinate, is an analogue of glutamate and acts as a 

competitive inhibitor of glutamine synthase, a key enzyme in the metabolism of nitrogen 

(de Block et ai, 1987). Inhibition of glutamine synthase leads to the accumulation of 

ammonia, which rather than the glutamine deficiency causes subsequent cell death. 

Resistance to the herbicide is conferred by phosphinothricin-N-acetyltransferase, that 

inactivates phosphinothricin through acetylation and that is encoded by two similar genes 

isolated from Streptomyces species (Thompson et al., 1987; Wohlleben et ai, 1988). 

A third herbicide that has occasionally been used as selective agent in plant 

transformation is chlorsulfuron, belonging to the group of the sulfonylureas. This type of 

herbicides inhibits the enzyme acetolactate synthase, which is involved in the synthesis 

of branched-chain amino acids. Mutant acetolactate synthases with reduced sensitivity to 

chlorsulfuron have been isolated from a number of sources including plant species 

(Haughn et ai, 1988; Lee et ai, 1988), that have been applied as selectable markers in 

the transformation of field crops like sugarbeet (D'Halluin et al, 1992b), maize (Fromm 

et al, 1990) and rice (Li et al, 1992). 

The success of a selectable marker in plant transformation is partly based on the 

mechanism by which resistance is conferred to the plant cells. In general, the 

detoxification of the selective agent will tend to decrease the concentration of the 

selective agent in the vicinity of transformed plant tissue, which may lead to the 

regeneration of escapes (Christou et al, 1991; Escandón & Hahne, 1991). If the selection 

is based on the expression of a modified target enzyme tolerant to the selective agent 

involved, the regeneration of escapes is less likely to occur as the concentration of the 
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selective agent remains unaffected. But still, the effective concentration of any selective 

agent needs to be determined empirically for each crop, for each type of expiant and for 

each phase of the transformation protocol, regardless of the mode of selection. In this 

respect, a concentration which prevents the growth of non-transformed plant cells 

without causing too much cell death is favourable in selecting for the proliferation and 

regeneration of transformed cells. 

Transgene expression 

Although the transformation technology in general has reached a high level of 

refinement, the integration of the foreign DNA into the plant genome remains a random 

process. The random insertion of the delivered DNA into chromosomal regions that are 

differentially regulated during plant development gives rise to variation in quantitative 

and qualitative expression of the transgene, referred to 'position effects' (Dean et al, 

1988; Peach & Veiten, 1991). Depending on the chromosomal environment surrounding 

the insertion site, the expression of the transgene may be enhanced, suppressed or 

deregulated. In general, however, the majority of transformants express the introduced 

transgenes at relatively low levels. Moreover, when integration occurs during cell 

dedifferentiation, the potential danger exists that transformation events result in silenced 

transgenes upon regeneration of the differentiated plant that is accompanied by de novo 

methylation or de novo chromatin condensation of the surrounding plant genome. Data 

that endorse this concern come from a study on Arabidopsis, which describes the 

reactivation of a transgene in callus induced on expiant material derived from the 

differentiated plant in which the transgene was suppressed (Mittelsten Scheid et al., 

1991). Similar observations have been made with transgenes in other crops as well, 

describing their progressive but reversible silencing (Linn et al, 1990; Kilby et al., 1992; 

Meyer et al, 1992; Cherdshewasart et al, 1993; personal observations in transgenic 

lettuce and tomato). Such observations emphasise the importance of extensive analysis 

on the regulation and expression of transgenes, including field trials closely reproducing 

the environmental conditions which the transgenic plants will be exposed to upon their 

commercial release. 

Chromosomes of higher eukaryotes are functionally organised in constraint domains that 

define units of co-ordinately regulated genes by means of chromatin compaction or 

relaxation (reviewed by Eissenberg & Elgin, 1991; Jackson, 1991; Dillon & Grosveld, 

1993). Such functional domains are delimited by nucleoprotein complexes known as 

boundary elements, at which the chromatin is attached to the proteinaceous nuclear 
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matrix. By virtue of their binding to the nuclear matrix, boundary elements control the 

limits of chromatin condensation and serve as a topological means of constraining 

interactions between regulatory elements in different domains. In this way boundary 

elements separate regions that are differentially regulated. Putative boundary elements or 

'matrix associated regions' have been isolated from animals (Grosveld et al, 1987; Phi-

Van & Strätling, 1988; Kellum & Schedl, 1992) as well as plants (Hall et al, 1991; 

Slatter et al, 1991;Breyneef a/., 1992; van der Geest étal, 1994). 

Research on animal systems has demonstrated that flanking transgenes with boundary 

elements can insulate the transgene from the influence exerted by the chromosomal 

environment, thereby reducing position effects (Stief et al, 1989; Bonifer et al, 1990; 

Phi-Van et al, 1990; Klehr et al, 1991; McKnight et al, 1992). Recently, the bracketing 

of a plant reporter gene with a boundary element from the chicken lysozyme gene 

(Mlynârovâ et al, 1994) or from the ß-phaseolin gene (van der Geest et al, 1994) was 

also shown to reduce position effects in transgenic tobacco. Although maximum 

expression levels of the transgenes remained largely unchanged, the average expression 

level was increased as the presence of the boundary element seemed to prevent the 

occurrence of lower levels of transgene expression. However, other boundary elements 

only enhanced gene expression leaving inter-transformant variability unaffected (Allen et 

al, 1993; Schöffl et al, 1993), or normalised transgene expression at sub-maximal levels 

(Breyne et al, 1992). These data illustrate that different boundary elements behave 

differently in their effect on transgene expression and that much remains to be learned 

about the organisation of the chromosome in higher order structures, and its effects on 

gene expression. The normalisation of transgenes, however, aiming at their reliable 

expression independent of environmental fluctuations and the physiological state of the 

plant, definitely will contribute to the successful introgression of transgenic traits into 

crop breeding programs. 

Concluding remarks 

The recent progress in the tissue culture and transformation technology of plant species 

allows the stable integration and expression of foreign genes in a still growing number of 

crop species. The practical application of plant genetic engineering relates to the 

development and introduction of novel traits, so as to enrich the crop gene pool and to 

expand the genetic variability that is available to the breeder. In general, the final result 

consists of a population of transgenic lines that carry the genes of interest at different 

positions in their genome, and that differ in the quantitative and qualitative expression of 



Genetic modification of crop plants 21 

the transgenes. Once the initial selection based on molecular and biochemical analyses of 

expression of the transgene has been made, it is the breeder who has to evaluate the 

behaviour and performance of the novel trait in different genomic backgrounds and under 

different culture conditions. Ultimately, only the breeder can decide which transgenic 

lines can be considered as elite lines that meet the demands for incorporation into the 

crop breeding program. 

References 

Allen, G.C., G.E. Hall, Jr., L.C. Childs, A.K. Weissinger, S. Spiker & W.F. Thompson, 1993. Scaffold 
attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 
603-613. 

Assaad, F., K.L. Tucker & E.R. Signer, 1993. Epigenetic repeat-induced gene silencing (RIGS) in 
Arabidopsis. Plant Mol. Biol. 22: 1067-1085. 

Barry, G., G. Kishore, S. Padgette, M. Taylor, K. Kolacz, M. Weldon, D. Re, D. Eichholtz, K. Fincher & 
L. Halla, 1992. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to 
crop plants. In: B.K. Singh, H.E. Flores & J.C. Shannon (Eds.), Biosynthesis and molecular regulation 
of amino acids in plants, pp 139-145. Amer. Soc. Plant Physiol., Rockville, MD. 

Bevan, M.W., R.B. Flavell & M.-D. Chilton, 1983. A chimaeric antibiotic resistance marker gene as a 
selectable marker for plant cell transformation. Nature 304: 184-187. 

Bonifer, C, M. Vidal, F. Grosveld & A.E. Sippel, 1990. Tissue-specific and position-independent 
expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 9: 2843-
2848. 

Bechtold, N., J. Ellis & G. Pelletier, 1993. In planta Agrobacterium mediated gene transfer by infiltration 
of adult Arabidopsis thaliana plants. CR. Adac. Sei. Paris, Life Sciences 316: 1194-1199. 

Breyne, P., M. van Montagu, A. Depicker & G. Gheysen, 1992. Characterization of a plant scaffold 
attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4: 
463-471. 

Chabaud, M., J.E. Passiatore, F. Cannon & V. Buchanan-Wollaston, 1988. Parameters affecting the 
frequency of kanamcyin resistant alfalfa obtained by Agrobacterium tumefaciens mediated 
transformation. Plant Cell Rep. 7: 512-516. 

Chang, S.S., S.K. Park, B.C. Kim, B J. Kang, D.U. Kim & H.G. Nam, 1994. Stable genetic transformation 
of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5: 551-558. 

Cherdshewasart, W., G.B. Gharti-Chhetri, M.W. Saul, M. Jacobs & I. Negrutiu, 1993. Expression 
instability and genetic disorders in transgenic Nicotiana plumbaginifolia L. plants. Transgenic Res. 2: 
307-320. 

Christou, P., T.L. Ford & M. Kofron, 1991. Production of transgenic rice (Oryza sativa L.) plants from 
agronomically important indica, and japonica varieties via electric discharge particle acceleration of 
exogenous DNA into immature zygotic embryos. Bio/Technology 9: 957-962. 

Christou, P., 1992. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2: 
275-281. 

Christou, P. & D.E. McCabe, 1992. Prediction of germ-line transformation events in chimeric Rn 
transgenic soybean planlkts using tissue-specific expression patterns. Plant J. 2: 283-290. 

Citovsky, V., J. Zupan, D. Wamick & P. Zambryski, 1992. Nuclear localization of Agrobacterium VirE2 
protein in plant cells. Science 256: 1802-1805. 

Colby, S.M., A.M. Juncosa & C.P. Meredith, 1991. Cellular differences in Agrobacterium susceptibility 
and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sei. 
116: 256-361. 



22 Chapter 2 

Comai, L., D. Faciotti, W.R. Hiatt, G. Thompson, R.E. Rose & D.M. Stalker, 1985. Expression in plants of 
a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741-
744. 

Dean, C , J. Jones, M. Favreau, P. Dunsmuir & J. Bedbrook, 1988. Influence of flanking sequences on 
variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl. Acids Res. 16: 
9267-9283. 

de Block, M., J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gossele, N. Rao Movva, C. 
Thompson, M. van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by 
expression of a detoxifying enzyme. EMBO J. 6: 2513-2518. 

de Framond, A., K. Barton & M.-D. Chilton, 1983. Mini-Ti: a vector strategy for plant genetic engineering. 
Bio/Technology 1: 262-272. 

de la Pena, A., H. Lorz & J. Schell, 1987. Transgenic rye plants obtained by injecting DNA into young 
floral tillers. Nature 325: 274-276. 

D'Halluin, K., E. Bonne, M. Bossut, M. de Beuckeleer & J. Leemans, 1992a. Transgenic maize plants by 
tissue electroporation. Plant Cell 4:1495-1505. 

D'Halluin, K., M. Bossut, E. Bonne, B. Mazur, J. Leemans & J. Botterman, 1992b. Transformation of 
sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 
10: 309-314. 

Dillon, N. & F. Grosveld, 1993. Transcriptional regulation of multigene loci: multilevel control. Trends 
Genet. 9:134-137. 

Eissenberg, J.C. & S.C.R. Elgin, 1991. Boundary functions in the control of gene expression. Trends 
Genet. 7: 335-340. 

Escandón, A.S. & G. Hahne, 1991. Genotype and composition of culture medium are factors important in 
the selection of transformed sunflower (Helianthus annuus) callus. Physiologia Plantarum 81: 367-376. 

Feldmann, K.A. & M.D. Marks, 1987. Agobacterium-meàiMed transformation of germinating seeds of 
Arabidopsis thaliana: a non-tissue culture approach. 

Finnegan, J. & D. McElroy, 1994. Transgene inactivation: plants fight back! Biotechnology 12: 883-888. 
Flavell, R.B., 1994. Inactivation of gene expression in plants as a consequence of novel sequence 

duplications. Proc. Nad. Acad. Sei. USA 91: 3490-3496. 
Fraley, R.T., S.G. Rogers, R.B. Horsch, P.R. Sanders, J.S. Rick, S.P. Adams, M.L. Bittner, L.A. Brand, 

C.L. Fink, Y.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffmann & S.C. Woo, 1983. Expression of 
bacterial genes in plant cells. Proc. Natl. Acad. Sei. USA 80: 4803-4807. 

Fromm, M.E., F. Morrish, C. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and 
expression of chimeric genes in the progeny of trangenic maize plants. Bio/Technology 8: 883-839. 

Gordon-Kamm, W., T. Spencer, M l . Mangano, T.R. Adams, RJ. Daines, W.G. Tart, J.V. O'Brien, S.A. 
Chambers, W.R. Adams, N.G. Willets, T.B. Rice, CJ . Mackey, R.W. Krueger, A.P. Kausch & P.G. 
Lemaux, 1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 
603-618. 

Grosveld, F., G.B. van Assendelft, D.R. Greaves & G. Kolias, 1987. Position-independent, high-level 
expression of the human ß-globin gene in transgenic mice. Cell 51: 975-985. 

Guo, Y., H. Liang & M.W. Berns, 1995. Laser-mediated gene transfer in rice. Physiologia Plantarum 93: 
19-24. 

Hall, G., G.C. Allen, D.S. Loer, W.F. Thompson & S. Spiker, 1991. Nuclear scaffolds and scaffold-
attachment regions in higher plants. Proc. Natl. Acad. Sei. USA 88: 9320-9324. 

Haughn, G.W., J. Smith, B. Mazur, & C. Somerville, 1988. Transformation of a mutant Arabidopsis 
acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211: 
266-271. 

Hobbs, S.L.A., J.A. Jackson & J.D. Mahon, 1989. Specificity of strain and genotype in the susceptibility of 
pea to Agrobacterium tumefaciens. Plant Cell Rep. 8: 274-277. 

Hoekema, A., P.R. Hirsch, P.J.J. Hooykaas & R.A. Schilperoort, 1983. A binary plant vector strategy 
based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179-
180. 

Hood, E.E., G.L. Helmer, R.T. Fraley & M.-D. Chilton, 1986. The hypervirulence region of Agrobacterium 
tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168: 1291-1301. 

Hood, E.E., R.T. Fraley & M.-D. Chilton, 1987. Virulence of Agrobacterium tumefaciens strain A281 on 
legumes. Plant Physiol. 83: 529-534. 



Genetic modification of crop plants 23 

Hooykaas, P.J.J. & R.A. Schilperoort, 1992. Agrobacterium and plant genetic engineering. Plant Mol. Biol. 
19:15-38. 

Hooykaas, P.J J . & A.G.M. Beijersbergen, 1994. The virulence system of Agrobacterium tumefaciens. 
Annu. Rev. Phytopathol. 32:157-179. 

Horn, M.E., R.D. Shillito, B.V. Conger & C.T. Harms, 1988. Transgenic plants of orchardgrass (Dactylis 
glomerata L.) from protoplasts. Plant Cell Rep. 7:469-472. 

Horsen, R.B., J.E. Fry, NX. Hoffmann, D. Eichholtz, S.G. Rogers & R.T. Fraley, 1985. A simple and 
general method for transferring genes into plants. Science 227:1229-1231. 

Iglesias, V.A., A. Gisel, R. Bilang, N. Leduc, I Potrykus & C. Sautter, 1994. Transient expression of 
visible marker genes in meristem cells of wheat embryos after ballistic microtargetting. Planta 192: 84-
91. 

Jackson, D.A., 1991. Structure-function relationships in eukaryotic nuclei. Bioessays 13: 1-10. 
Jin, S., T. Komari, M.P. Gordon & E.W. Nester, 1987. Genes responsible for the supervirulence phenotype 

of Agrobacterium tumefaciens A281. J. Bacterid. 169:4417-4425. 
Kaeppler, HP., W. Gu, D.A. Somers, H.W. Rines & A.F. Cockburn, 1990. Silicon carbide fiber-mediated 

DNA delivery into plant cells. Plant Cell Rep. 8:415418. 
Kellum, R. & P. Schedl, 1992. A group of ses elements function as domain boundaries in an enhancer-

blocking assay. Mol. Cell. Biol. 12: 2424-2431. 
Kilby, N.J., H.M.O. Leyser & I.J. Furner, 1992. Promoter methylation and progressive transgene 

inactivation in Arabidopsis. Plant Mol. Biol. 20: 103-112. 
Klehr, D., K. Maass & J. Bode, 1991. Scaffold-attachment regions from the human interferon ß domain 

can be used to enhance the stable expression of genes under the control of various promoters. Biochem. 
30: 1264-1270. 

Klein, T.M. & S. Fitzpatrick-McElligott, 1993. Particle bombardment, a universal approach for gene 
transfer to cells and tissues. Curr. Opin. Biotechnol. 4: 583-590. 

Koncz, C. & J. Schell, 1986. The promoter of T L - D N A gene 5 controls the tissue-specific expression of 
chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383-
396. 

Leduc, N., V.A. Iglesias, R. Bilang, A. Gisel, I. Potrykus & C. Sautter, 1994. Gene transfer to 
inflorescence and flower meristems using ballistic micro-targeting. Sex. Plant Reprod. 7: 135-143. 

Lee, K.Y., J. Townsend, J. Tepperman, M. Black, CF. Chi, B. Mazur, P. Dunsmuir & J. Bedbrook, 1988. 
The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7: 1241-1248. 

Li, Z., A. Hayashimoto & N. Murai, 1992. A sulfonylurea herbicide resistance gene from Arabidopsis 
thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100: 
662-668. 

Lindsey, K & M.G.K. Jones, 1990. Electroporation of plant cells. Physiologia Plantarum 79: 168-172. 
Lindsey, K., 1992. Genetic manipulation of crop plants. J. Biotechnol. 26: 1-28. 
Linn, F., I. Heidmann, H. Saedler & P. Meyer, 1990. Epigenetic changes in the expression of the maize Al 

gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol. Gen. 
Genet. 222: 329-336. 

Luo, Z.-X. & R.Wu, 1988. A simple method for the transformation of rice via the pollen-tube pathway. 
Plant Mol. Biol. Rep. 6: 165-174. 

Matzke, M.A., AJ.M. Matzke & O. Mittelsten Scheid, 1994. Inactivation of repeated genes — DNA-DNA 
interactions? In: J. Paszkowski (Ed.), Homologous recombination and gene silencing in plants, pp 271-
307. Kluwer Academic Publishers, Dordrecht, the Netherlands. 

Matzke, M.A. & A.J.M. Matzke, 1995. How and why do plants inactivate homologous (trans)genes? Plant 
Physiol. 107: 679-685. 

McCabe, D.E., W.F. Swain, B.J. Martinell & P. Christou, 1988. Stable transformation of soybean (Glycine 
max) by particle acceleration. Bio/Technology 6: 923-926. 

McCabe, D.E. & B.J. Martinell, 1993. Transformation of elite cotton cultivars via particle bombardment of 
meristems. Biotechnology 11: 596-598. 

McKnight, R.A., A. Shamay, L. Sankaran, R.J. Wall & L. Henninghausen, 1992. Matrix-attachment 
regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc. 
Natl. Acad. Sei. USA 89: 6943- 6947. 



24 Chapter 2 

Meyer, P., F. Linn, I. Heidmann, H. Meyer, I. Niedenhoff & H. Saedler, 1992. Endogenous and 
environmental factors influence 35S promoter methylation of a maize Al gene construct in transgenic 
petunia and its colour phenotype. Mol. Gen. Genet. 231: 345-352. 

Mittelsten Scheid, O., J. Paszkowski & I. Potrykus, 1991. Reversible inactivation of a transgene in 
Arabidopsis thaliana. Mol. Gen. Genet. 228: 104-112. 

Mlynâmovâ, L., A., Leonen, J. Heidens, R.C. Jansen, P. Keizer, W.J. Stiekema & J.P. Nap, 1994. Reduced 
position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. 
Plant Cell 6:417^26. 

Omirulleh, S., M. Abraham, M. Golovkin, I. Stefanov, M.K. Karabaev, L. Mustardy, S. Morocz & D. 
Dudits, 1993. Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in 
protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol. 21:415-428. 

Ooms, G., P.JJ. Hooykaas, G. Molenaar & R.A. Schilperoort, 1981. Crown gall tumors of different 
morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis 
of T-DNA functions. Gene 14: 33-50. 

Peach, C. & I. Veiten, 1991. Transgene expression variability (position effect) of CAT and GUS reporter 
genes deriven by linked divergent T-DNA promoters. Plant Mol. Biol. 17: 49-60. 

Phi-Van, L. & W.H. S trailing, 1988. The matrix attachment regions of the chicken lysozyme gene co-map 
with the boundries of the chromatin domain. EMBO J. 7: 655-664. 

Phi-Van, L., J.P. von Kries, W. Ostertag & W.H. Sträfling, 1990. The chicken lysozyme 5' matrix 
attachment region increases transcription from a heterologous promoter in heterologous cells and 
dampens position effects on the expression of transfected genes. Mol. Cell. Biol. 10: 2302-2307. 

Potrykus, I., 1991. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. 
Plant Physiol. Plant Mol. Biol. 42: 205-225. 

Puonti-Kaerlas, J., P. Stabel & T. Eriksson, 1989. Transformation of pea Pisum sativum L. by 
Agrobacterium tumefaciens. Plant Cell Rep. 8: 321-324. 

Sanford, J.C., F.D. Smith & J.A. Rüssel, 1993. Optimizing the biolistic process. Methods Enzymol. 217: 
483-509. 

Sangwan, R.S., Y. Bourgeois, S. Brown, G. Vasseur & B. Sangwan-Norreel, 1992. Characterization of 
competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis 
thaliana. Planta 188:439-456. 

Sautter, C. & I. Potrykus, 1991. Micro-targetting: high efficiency gene transfer using a novel approach for 
the acceleration of micro-projectiles. Bio/Technology 9:1080-1085. 

Schöffl, F., G. Schröder, M. Kliem & M. Rieping, 1993. An SAR sequence containing 395 bp DNA 
fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in 
transgenic tobacco plants. Transgenic Res. 2: 93-100. 

Shah, D.M., R.B. Horsch, HJ. Klee, G.M. Kishore, J.A. Winter, N.E. Turner, CM. Hironaka, P.R. 
Sanders, CS. Gasser, S. Aykent, N.R. Siegel, S.G. Rogers & R.T. Fraley, 1986. Engineering herbicide 
tolerance in transgenic plants. Science 233: 478-481. 

Slatter, R.E., P. Dupree & J.C Gray, 1991. A scaffold-associated region DNA region is located 
downstream of the pea plastocyanin gene. Plant Cell 3: 1239-1250. 

Songstad, D.D., D.A. Somers & R.J. Griesbach, 1995. Advances in alternative DNA delivery techniques. 
Plant Cell Tissue Organ Cult. 40: 1-15. 

Stachel, S.E., E. Messens, M. van Montagu & P. Zambryski, 1985. Identification of the signal molecules 
produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 
318:624-629. 

Stachel, S.E., E.W. Nester & P. Zambryski, 1986. A plant cell factor induces Agrobacterium tumefaciens 
vir gene expression. Proc. Natl. Acad. Sei. USA 83: 379-383. 

Stief, A., D.M. Winter, W.H. Strätling & A.E. Sippel, 1989. A nuclear DNA attachment element mediates 
elevated and position-independent gene activity. Nature 341: 343-345. 

Thompson, C J., N. Rao Movva, R. Tizard, R. Crameri, J.E. Davies, M. Lauwereys & J. Botterman, 1987. 
Characterization of the herbicide-resistant bar gene from Streptomyces hygroscopicus. EMBO J. 6: 
2519-2523. 

van den Elzen, P.J.M., J. Townsend, K.Y. Lee, & J.R.A. Bedbrook, 1985. Chimaeric hygromycin 
resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299-305. 

van der Geest, A.H.M., G.E. Hall, Jr., S. Spiker & T.C. Hall, 1994. The ß-phaseolin gene is flanked by 
matrix attachment regions. Plant J. 6: 413-423. 



Genetic modification of crop plants 25 

van Wordragen, M.F. & H J.M. Dons, 1992. Agrobacterium-mediated transformation of recalcitrant crops. 
Plant Mol. Biol. Rep. 10:12-36. 

Vasil, V., A.M. Castillo, M.E. Fromm & I.K. Vasil, 1992. Herbicide-resistant fertile transgenic wheat 
plants obtained by microprojectile bombardment of regenerable embryogénie callus. Bio/Technology 
10: 667-674. 

Waldron, C, E.B. Murphy, J.L. Roberts, G.D. Gustafson, S.L. Armour & S.K. Malcolm, 1985. Resistance 
to hygromycin B, a new marker for plant transformation studies. Plant Mol. Biol. 5: 103-108. 

Wang, Z.-Y., T. Takamizo, V.A. Iglesias, M. Osusky, J. Nagel, I. Potrykus & G. Spangenberg, 1992. 
Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to 
protoplasts. Bio/Technology 10: 691-696. 

Wilmink, A. & J.J.M. Dons, 1993. Selective agents and marker genes for use in transformation of 
monocotyledonous plants. Plant Mol. Biol. Rep. 11:165-185. 

Wohlleben, W., W. Arnold, I. Broer, D. Hillemann, E. Strauch & A. Piihler, 1988. Nucleotide sequence of 
the phosphinothricin-N-acetyl-transferase gene from Streptomyces viridochromogenes Tii494 and its 
expression in Nicotiana tabacum. Gene 70: 25-37. 

Xu, X. & B. Li, 1994. Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo 
cells. Plant Cell Rep. 13: 237-242. 

Zambryski, P.C., 1992. Chronicles from the Agrobacterium-çXsat cell DNA transfer story. Annu. Rev. 
Physiol. Plant Mol. Biol. 43:465-490. 

Zhang, W. & R. Wu, 1988. Efficient regeneration of transgenic plants from rice protoplasts and correctly 
regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76: 835-840. 

Zupan, J.R. & P. Zambryski, 1995. Transfer of T-DNA from Agrobacterium to the plant cell. Plant 
Physiol. 107: 1041-1047. 



Pathogen-derived resistance to viral infections 
in transgenic crops 

Introduction 

The transgenic expression of nucleotide sequences derived from plant viral genomes can 

render crops resistant to infection by the homologous virus. The concept that host 

resistance to a particular pathogen could be achieved by transformation of the host with 

nucleotide sequences derived from the pathogen was already hypothesised in the early 

eighties, and was theoretically formulated in a publication by Sanford & Johnston 

(1985). This type of genetically engineered resistance is based upon the existence of 

pathogen-encoded functions which are essential to the pathogen, but not to the host. 

Transgenic expression of such a key gene product in pathogenesis in a dysfunctional 

form, in excess, or at an inappropriate developmental stage could disrupt the normal 

equilibrium of viral components and thereby the process of infection. In the most 

successful instances, such disruptions would prevent the replication or subsequent 

movement of the virus beyond the initially infected cell, while having minimal effects on 

the host itself. 

With the advent of stable gene transfer techniques and the molecular characterisation of 

viral genomes, the concept of pathogen-derived resistance has been put to practice for a 

still growing number of plant-virus combinations. Successful strategies include the 

expression of viral sequences encoding coat proteins, subunits of the viral replicase, 

movement proteins, but also sequences not involved in encoding proteins, including 

satellite sequences. Current strategies of pathogen-derived virus resistance will 

consecutively be described herein after, and their underlying mechanism discussed. 

Additionally, the various strategies will be critically assessed in the perspective of their 

future application in practical agriculture. 
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Plant virus infection cycles 

Plant viruses differ considerably in their particle morphology and in their genomic 

organisation, comprising single-stranded as well as double-stranded DNA or RNA 

genomes (Matthews, 1991; Zaccomer et ai, 1995). Despite substantial differences in 

replication strategies, plant viral life cycles are characterised by broadly similar steps 

(Hull, 1990). Viruses generally enter a host plant cell following mechanical damage, or 

via insects, fungi or nematodes that penetrate the cell wall during infection or feeding. 

The virus particle is then thought to disassemble, which exposes the viral genome to the 

plant cellular environment (Verduin, 1992). Strategies underlying the expression of viral 

genomes are diverse, but ultimately mRNAs are translated to produce structural and non

structural viral proteins that are required to fulfil the virus life cycle. All viruses encode 

proteins that, in concert with host factors are involved in replication of the parental 

genome to produce progeny. Upon replication, most viruses spread from cell to cell via 

plasmodesmata as single-stranded nucleic acids that are protected from degradation and 

assisted in movement through the association with a movement protein. These movement 

proteins interact specifically with plasmodesmata, gating them to enable the 

nucleoprotein complex to pass to the adjacent cell (Lucas & Gilbertson, 1994). Yet other 

viruses employ tubuli that penetrate the plasmodesmata allowing intact virus particles to 

traverse the plant cell wall (Perbal et ai, 1993; Kasteel et al, 1993). The long distance 

spread of viruses through the phloem in most cases requires the presence of viral coat 

protein, as is the case when the virus is transmitted from plant to plant. While for some 

viruses it is the coat protein that interacts directly with the vector and that determines 

specificity, others encode one of more non-capsid proteins that facilitate vector 

transmission (Hull, 1994a). Any other viral gene product generally adapts the viral 

replicon for its expression and replication within the plant host. 

Conclusively, plant virus replication requires a subtle blend of host- and virus-encoded 

proteins, and each stage of the infection cycle, i.e. disassembly, translation, replication, 

movement and transmission, carries the potential of being perturbed. The approach of 

molecular breeding for virus resistance is to transform crop plants with a portion of the 

viral genome, superimposing interfering proteins or nucleic acids in order to obtain 

resistance. The recent advances in the understanding of the genome organisation and 

gene functions for many of the diverse groups of plant viruses (Goldbach et al, 1990) 

enabled the development of such novel resistance genes that proved to be highly 

effective for a still growing number of plant viruses (reviewed by Wilson, 1993; 

Scholthof etal, 1993; Hull, 1994b). 
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Coat protein gene-derived resistance 

The concept of creating virus resistance by engineering crop plants to express part of a 

viral genome evolved from empirical observations on the use of mild or symptomless 

strains of viruses to protect crops against closely related, but severely pathogenic virus 

strains (Fulton, 1986; Urban et al, 1990). In fact, this phenomenon referred to as cross-

protection represents an example of naturally occurring pathogen-derived protection 

(Hamilton, 1980). Among the hypotheses put forward to explain the mechanism of cross-

protection was the suggestion that the coat protein of the protecting virus inhibited the 

uncoating and subsequent replication of the incoming strain (Sherwood & Fulton, 1982; 

Sequeira, 1984). In 1986, Beachy and co-workers demonstrated that the expression of 

tobacco mosaic virus (TMV) coat protein in transgenic tobacco could provide a 

considerable level of protection against the TMV disease (Powell Abel et al, 1986). 

Since then, coat protein gene-derived protection has been reported for a still growing 

number of over 20 viruses in at least 10 distinct taxonomie groups, and in a wide variety 

of plant species (reviewed by Beachy et al, 1990; Fitchen & Beachy, 1993). Although 

the mechanism of coat protein-mediated protection is not fully understood, it was argued 

that the accumulation of coat protein in transgenic plants interferes directly with the 

replication and transport of the invading virus (Beachy et al, 1990; Reimann-Philipp & 

Beachy, 1993). In cases like TMV, potato virus X (PVX) and alfalfa mosaic virus 

(A1MV) the degree of protection indeed correlated directly with the expression level of 

the coat protein gene when protection was scored across several transformant lines 

accumulating different levels of transgene-derived coat protein. Moreover, transgenic 

plants expressing translationally defective coat protein genes of TMV (Powell et al, 

1990) or A1MV (van Dun et al, 1988a) were not protected against the corresponding 

virus, which proves that it is the coat protein rather than the mRNA transcript that 

confers protection to these viruses. However, the protection was never absolute. Within 

homogeneous populations only a proportion of the transgenic plants resisted infection, 

while others exhibited merely reduced numbers of infection sites on inoculated leaves, a 

delay in systemic symptom development, and a reduction in virus accumulation. The 

proportion of plants that remained without symptoms and the duration of the delay in 

symptom development in those plants that did become infected were reduced when the 

concentration of virus in the challenge inoculum was increased. 

In addition to the expression level of the coat protein gene, the strength of the protection 

depends on the relationship between the transgenically expressed coat protein and that of 

the challenging virus. In most instances, coat protein-mediated protection extends only to 

the homologous virus and related strains with a substantially similar coat protein, but 
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there are a few instances where the expression of the viral coat protein from one virus 

provides at least some limited protection against heterologous viruses (Nejidat & 

Beachy, 1990). 

In contrast to TMV, PVX and A1MV, a positive correlation between levels of protection 

and levels of accumulation of the transgene-derived coat protein does not exist for potato 

leafroll luteovirus (Kawchuk et al, 1991; van der Wilk et al, 1991) and for potyviruses 

in general (Lindbo et al, 1993a). The absence of this correlation was further 

demonstrated by the analysis of transgenic plants expressing potyviral coat protein genes 

lacking an initiating methionine codon. Transgenic plants carrying such translationally 

defective coat protein genes were as resistant to infection as were plants carrying intact 

reading frames derived from the coat protein genes of potato virus Y (PVY) (van der 

Vlugt et al, 1992), tobacco etch virus (TEV) (Lindbo & Dougherty, 1992a and 1992b) or 

zucchini yellow mosaic virus (Fang & Grumet, 1993; Chapter 6 of this thesis). Despite 

the origin of the sequence encoding the viral coat protein, the mechanism of resistance to 

potyviruses appears to be mediated at the transcript level and is independent of the 

accumulation of the coat protein per se. As such, the general term 'coat protein-mediated 

protection' (CPMP) is heavily misleading in these instances, and should better be 

replaced by 'coat protein gene-derived protection'. Many individual plants accumulating 

the coat protein transcript, remained entirely asymptomatic and plants actually showed 

virtual immunity as accumulation of virus did not occur. Moreover, levels of resistance 

were independent of the inoculum concentration over the range used, but were confined 

to the homologous potyvirus only. Similar results were obtained for tomato spotted wilt 

virus (TSWV), an enveloped plant virus with a negative-strand RNA genome (German et 

al, 1992). Transformation of tobacco with a translationally defective gene cassette of the 

TSWV nucleoprotein, which like coat proteins is involved in wrapping of the viral 

genome, equally generated virtual immunity to TSWV infection (de Haan et al, 1992; 

Chapter 7 of this thesis). Such extreme levels of resistance illustrate the potential of RNA 

interference in pathogen-derived resistance to plant viruses, but also suggest a 

mechanism other than antisense or RNA-RNA interactions. 

From their observations on transcript-mediated resistance to TEV infection, Dougherty 

and co-workers (Lindbo et al, 1993b) postulated the induction of a highly specific 

'antiviral state', triggered by the accumulation of the transgene transcript and the 

replicating viral genome. In plant tissues immune to TEV infection, the level of 

accumulation of the transgenic mRNA was shown to be markedly reduced, when 

compared to mRNA levels in unchallenged plant tissues. Transcription rates, however, as 

determined by nuclear run-off assays appeared to be unchanged. Collectively, these 

observations suggest that the decrease in steady state transcript levels results from a post-
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transcriptional activity that targets specific RNA sequences for accelerated degradation. 

This down-regulation of the steady state level of the transgenic transcript then coincides 

with the elimination of viral sequences from which the transgenic transcript was derived, 

thereby yielding the TEV resistant phenotype. In support of this novel concept that plants 

can somehow sense intolerably high levels of an RNA transcript and target that RNA for 

accelerated degradation is another study on transcript-mediated resistance resulting from 

the transgenic expression of a translationally deficient gene cassette for the coat protein 

of PVY (Smith et al, 1994). Plants that transcribed the transgene at high levels, yet 

accumulating only low levels of the translationally deficient coat protein transcript were 

resistant to PVY infection, again implying the action of a cytoplasmic and sequence 

specific RNA turnover mechanism induced by elevated transcript levels. 

The examples of coat protein gene-derived protection described herein above, illustrate 

the existence of multiple mechanisms for different virus genera. Moreover, the resistance 

derived from a single coat protein gene in a single crop species may act by more than one 

mechanism and may inhibit several different stages in the infection process such as 

initiation of infection, replication, spread of the infection throughout the plant, and 

symptom development (Reimann-Philipp & Beachy, 1993). The difference in both basic 

mechanism of protection, protein- versus transcript-mediated, is generally reflected by 

the frequency of resistant lines within a series of transgenic lines carrying the same coat 

protein gene construct. When protein-mediated, any transformed line accumulating coat 

protein to a substantial level will exhibit some degree of protection. When transcript-

mediated, the degree of protection does not correlate with steady state levels of gene 

expression and as such, the accumulation of transcripts presents no guarantee for 

protection. Only a proportion of the recovered transgenic lines will exhibit the resistant 

phenotype, but generally at higher levels compared to protein-mediated protection. 

Although the spectrum of transcript-mediated resistance against related viruses may be 

rather limited, the virtual immunity as associated with the 'antiviral state' illustrates the 

potential of RNA interference in coat protein gene-derived resistance to plant viruses. As 

more control experiments are completed to unravel mechanisms underlying genetically 

engineered resistance to viral infections, more examples of transcript-mediated resistance 

are likely to be discovered. However, in order to be ever sure on the mechanism of 

resistance, the transformation of the acceptor host with a translationally defective coat 

protein gene and the analysis of a sufficiently large number of independent transformants 

for virus resistance is inevitable. 
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Replicase gene-derived resistance 

A key event in virus infection cycles is the replication of the parental genome to produce 

new generations of the virus. Thus, the various virus- and host-derived components that 

constitute the replication complex present attractive targets to inhibit the multiplication 

and spread of the invading virus (reviewed by Carr & Zaitlin, 1993). The first instance of 

engineered virus resistance conferred by the transgenic expression of a replicase-related 

protein was demonstrated by Zaitlin and co-workers (Golemboski et al., 1990). The 

TMV replicase is expressed from a large open reading frame at the 5' end of the viral 

genome, which encodes two proteins: a 126 kD protein and a second read-through 

protein of 183 kD, harbouring the glycine-aspartic acid-aspartic acid (GDD) motif 

characteristic of RNA-dependent RNA polymerases (Goldbach, 1987; Koonin & Dolja, 

1993). The read-through portion of the replicase gene potentially encodes a third protein 

of 54 kD that also includes the GDD motif, but that has never been observed in vivo. 

Transgenic expression of the 54 kD read-through portion of the replicase gene from 

TMV rendered tobacco plants highly resistant to TMV infection, out competing coat 

protein-mediated levels of TMV resistance. Although not halted completely, TMV 

replication at the site of infection appeared so severely inhibited that subsequent systemic 

spread was strongly impeded (Carr & Zaitlin, 1991). In fact, transgenic tobacco plants 

showed virtual immunity as they remained free of systemic symptoms through maturity 

and did not accumulate virus, even when challenged with very high inoculum 

concentrations. Although accumulation of the 54 kD polypeptide could not be detected, 

mutagenesis rendering the 54 kD open reading frame translationally defective strongly 

suggested that it is the protein rather than the transcript that presents the active entity 

(Carr et al., 1992). In contrast to the 54 kD protein which confers high levels of 

resistance to the homologous virus only, the transgenic expression of the full-length 

TMV replicase gene carrying engineered stop codons to yield truncated proteins, 

appeared to confer broad spectrum resistance to a range viruses related to TMV (Donson 

et ai, 1993). 

Similar experiments with transgenic plants expressing full length or truncated replicase 

proteins have been performed with pea early browning virus (MacFarlane & Davies, 

1992), cucumber mosaic virus (CMV) (Anderson et al., 1992) and PVX (Braun & 

Hemenway, 1992, Longstaff et ai, 1993). As was the case with TMV, plants expressing 

replicase-derived transgenes were generally more effectively protected to virus challenge 

than plants expressing the coat protein genes from these viruses. A correlation between 

expression levels of the replicase-derived transgene and resistance levels, however, was 

never established, which does not exclude a resistance mechanism mediated at the RNA 
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level. Indeed, translationally defective deletion mutants of brome mosaic viras (BMV) 

RNA2 effectively interfered with viral replication of BMV in barley protoplasts, thereby 

demonstrating that a defective replicase protein was not responsible for the decreased 

replication (Marsh et al., 1991a). Likewise, translationally defective replicase genes 

derived from PVX and from CMV RNA2 yielded high levels of resistance to the 

homologous virus, but not to related virus strains (Mueller et ai, 1995; de Haan, personal 

communication). For the PVX-derived replicase gene, the strain-specific virus resistance 

was shown to be correlated with low-level accumulation of the transgene transcript, but 

yet high transcription rates, characteristic for the 'antiviral state' postulated by Dougherty 

and co-workers (Lindbo et al., 1993b; Smith et al, 1994). Additionally, resistance 

conferring transgenes were shown to be able to frans-inactivate homologous transgenes, 

a phenomenon referred to as homology-dependent gene silencing (Kooter & Mol, 1993; 

Matzke & Matzke, 1993 and 1995). Based on these observations it was proposed that the 

'antiviral state' underlying transcript-mediated virus resistance, and homology-dependent 

gene silencing may be due to the same cytoplasmic mechanism that degrades RNA with 

sequence homology to the silencing transgene (Mueller et al., 1995). 

Simply transforming plants with viral replicase sequences, however, does not necessarily 

confer virus resistance. On the contrary, the transformation of tobacco with native 

replicase genes from A1MV (van Dun et al., 1988b; Taschner et al., 1991) or from brome 

mosaic virus (Mori et al., 1992) resulted in the successful complementation of deficient 

virus inocula. The design of defective or mutant replicase proteins, however, still 

presents a plausible approach to achieve replicase-mediated resistance to these viruses, 

which recently proved successful for A1MV. Transformation of tobacco with a number of 

replicase genes carrying various mutations in the GDD motif was shown to afford 

protection to A1MV infection, due to the accumulation of mutant replicase proteins rather 

than to a transcript-mediated gene silencing mechanism (Brederode et ai, 1995). 

Antisense-mediated protection 

The antisense expression of RNA sequences derived from the viral genome is another 

potential strategy to obtain virus resistance. Most examples of antisense resistance to 

virus infection resulted from studies on coat protein-mediated resistance. Transgenic 

plants expressing antisense transcripts to the coat protein genes from CMV (Cuozzo et 

al, 1988), PVX (Hemenway et al, 1988) or TMV (Powell et al, 1989) showed only 

limited protection at levels lower than those observed for protein-mediated protection. 

Similarly, transgenic plants expressing antisense RNA to other regions of the CMV 
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genome than the coat protein gene were generally not resistant to CMV infection 

(Rezaian et al, 1988). However, the high copy number of viral genomes and their 

association with proteins at all stages of replication suggest that a simple antisense 

strategy is unlikely to be successful. Having sufficient blocker molecules to control a 

replicating virus and knowing which are the best regions to target are important questions 

related to this strategy. In this perspective it is early replication or transcription signals 

that represent tempting targets (Morch et al, 1987). Antisense transcripts to the 

intercistronic control sequence from brome mosaic virus RNA3 for instance, were shown 

to interfere with replication of the virus in barley protoplasts (Huntley & Hall, 1993a), as 

did small transcripts targeted to the minus strand RNA promoter (Huntley & Hall, 

1993b). Transgenic expression of an RNA transcript complementary to a replication-

associated region from the genome of tomato golden mosaic geminivirus, a single-

stranded DNA virus that replicates in the nucleus, likewise resulted in a positive 

correlation between the accumulation of antisense mRNA and the reduction in symptom 

development upon virus challenge (Day et al, 1991; Bejarano & Lichtenstein, 1994). 

Satellite and defective interfering RNA-mediated protection 

Virus satellites are small RNAs that rely on a helper virus for their replication and 

encapsidation, but that are not related to the helper virus by sequence homology 

(reviewed by Collmer & Howell, 1992). Satellite RNAs usually attenuate symptom 

expression associated with helper virus infection, but in some cases disease symptoms 

may aggravate. The ability of satellite RNAs to act as molecular parasites of their helper 

virus, thereby attenuating symptom expression, led to their use in the vaccination of 

commercial crops (Tien & Wu, 1991). In analogy to this approach, the transgenic 

expression of cloned copies of symptom-ameliorating satellites from CMV and tobacco 

ringspot virus was also shown to provide protection from the severe effects of their 

helper viruses, but without satisfactory explanation (Harrison et al, 1987; Gerlach et al, 

1987; Saito et al, 1992). A clear correlation between the suppression in symptom 

development and a reduction in virus replication could not be established (reviewed by 

Yie & Tien, 1993). 

Several concerns exist which limit the widespread application of the satellite-mediated 

approach. As satellite-mediated protection is to be classified as tolerance rather than 

resistance, the transgenic crop acts as a virus reservoir that might endanger the culture of 

adjacent crops. Moreover, one satellite that alleviates symptoms in the target crop may 

aggravate symptoms in another, depending on the helper strain and the crop cultivar 
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involved. Additionally, the mutation of the transgenically expressed satellite RNA from a 

benign form into a virulent form during its amplification in conjunction with virus 

infection, constitutes a constant risk inherent to satellite-mediated protection, for the 

difference between attenuating and virulent satellites may be as little as a few nucleotides 

(Palukaitis, 1988; Masuta & Takanami, 1989). Finally, superinfection of crop plants 

immunised with a satellite-attenuated virus strain by a second non-related virus may lead 

to synergistic effects causing severe losses. 

Defective interfering (DI) RNAs differ from satellites in that they do share extensive 

sequence homology with their helper virus, as they arise from rearrangements of the viral 

genome (Hillman et al., 1987). Generally, DI RNAs result from internal deletions of 

essential sequences from the viral genome, which render them smaller in length and 

helper-dependent on the replication of the parent virus. Although rather common for 

animal viruses, native DI RNAs have been described for only a limited number of plant 

viruses, including cymbidium ringspot virus, tomato bushy stunt virus and tomato 

spotted wilt virus (Burgyàn et ai, 1991; Knorr et al, 1991; Resende et ai, 1991). Like 

satellite RNAs, they can intensify (Li et al, 1989), or attenuate symptom expression 

through interference with the replication of the parent virus (Jones et al., 1990). 

Expression of cloned forms of DI RNAs similarly conferred tolerance to the cognate 

virus. Transformation of Nicotiana benthamiana with a native DI RNA from cymbidium 

ringspot tombusvirus prevented the occurrence of apical necrosis and plant death 

normally caused by infection with the parent virus (Kollàr et al, 1993). This 

amelioration of symptoms was associated with the replication of the parasitic DI RNA, 

inhibiting the replication of the parent virus. Likewise, transgenic expression of a 

defective, subgenomic DNA fragment from African cassava mosaic virus conferred 

protection to this DNA virus (Stanley et al, 1990). Inoculation of transgenic plants 

resulted in the episomal replication of the artificial parasitic molecule interfering with the 

replication of the parent virus. Systemic infection took longer to become established and 

symptoms were less severe. 

An alternative to seeking natural occurring Dis is the construction of artificial Dis from 

replicase binding sites. For most plant viruses, these are likely, at least in part, to be 

located at the 5' and 3' ends of the viral genome. Internal deletions of brome mosaic virus 

RNA2 were shown to yield artificial Dis, reducing or even eliminating the replication of 

the parent virus RNAs in barley protoplasts (Marsh et al, 1991b). Mutations that 

prevented translation of the DI RNA did not affect interference, but those involving 

sequences controlling replication reduced interference, thus demonstrating the need for 

active replication of the parasitic DI RNA. This example of an artificial DI RNA 

illustrates the principle of the DI approach and confirms its feasibility. When furnished 
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with latent suicide genes encoding phytotoxic proteins that are controlled from 

subgenomic RNA promoters, the DI-mediated tolerance can even be converted into a 

resistance type of protection. Upon replication of the artificial DI, the latent suicide gene 

will be expressed from the subgenomic RNA promoter, causing localised cell death and 

prohibiting the cognate virus from systemic infection. As such, this particular strategy of 

pathogen-derived resistance would mimic the hypersensitive response of host resistance 

genes. One type of phytotoxic proteins that can be envisioned to function as lethal 

determinant are non-specific ribonucleases, that have likewise been employed to 

engineer male sterility in plants (Mariani et al., 1990). The plant cell suicide concept, 

however, requires the extreme and strict transcriptional control of the phytotoxic genes, 

in order to prevent their uncontrolled or leaky expression jeopardising crop yield and 

product quality. 

Other strategies of engineered virus resistance 

Another target for engineering virus resistance is the process of spread of viruses, 

involving movement proteins (Hull, 1991; Deom et al, 1992; McLean et al., 1993). The 

understanding how movement proteins function enables the design of decoy or crippled 

derivatives that block the spread of the virus. Transgenic tobacco plants accumulating 

dysfunctional movement proteins from TMV mutants were delayed in the development 

of systemic symptoms, presumably through interference with cell-to-cell movement of 

the challenging TMV particles (Lapidot et al, 1993; Malyshenko et al., 1993; Cooper et 

al., 1995). Transgenic expression of a mutated movement protein derived from the white 

clover mosaic potexvirus, was likewise shown to act as a dominant negative mutation, 

generating general potexvirus protection (Beck et al, 1994). Expression of wild type 

TMV movement protein genes did not yield protection, but complemented movement 

deficient mutants of TMV (Holt & Beachy, 1991), and even increased susceptibility to 

virus infection (Cooper et al, 1995). On the contrary, transgenic expression of the native 

movement protein gene from tomato golden mosaic geminivirus was shown to reduce the 

systemic infectivity of the related African cassava mosaic geminivirus in Nicotiana 

benthamiana (von Arnim & Stanley, 1992). The implication of movement proteins in 

systemic symptom development, however, makes the use of movement protein genes to 

engineer virus resistance a rather ambiguous approach. 

Since the first demonstration that functional mouse monoclonal antibodies can 

successfully be expressed and assembled in plant cells (Hiatt et ai, 1989), the 

transformation of crop plants with engineered 'plantibodies' directed to essential viral 
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proteins is thought to provide an alternative to pathogen-derived resistance strategies 

(Conrad & Fiedler, 1994). Only recently, the constitutive expression of a single chain 

monoclonal antibody engineered against the coat protein of artichoke mottled crinkle 

tombusvirus, was shown to confer protection to virus infection in Nicotiana benthamiana 

(Tavladoraki et al, 1993). Transgenic plants showed reduced incidence of infection, a 

delay in symptom development and lower virus accumulation levels. Likewise, the 

expression of a TMV-specific antibody imparted reduced levels of susceptibility to TMV 

infection in tobacco (Voss et al., 1995). Although the precise mechanism of protection 

remains obscure, the approach of engineered immunisation seems to be of great potential 

to protect crops from viral infections, because of the virtually unlimited repertoire of 

'plantibody' specificity. 

Within the area of plant immunisation mimicking the mammalian immune system, the 

transformation of potato with the 2',5'-oligoadenylate synthase gene from rat was claimed 

to yield protection against PVX infection (Truve et al, 1993). In mammals, this enzyme 

takes part in the antiviral response induced by interferon (Samuel, 1991). Once activated 

by the presence of double-stranded RNA, the typical replication intermediate of RNA 

viruses, the enzyme polymerises ATP to a series of 2'-5' oligoadenylates, which on their 

turn activate a latent endoribonuclease thought to degrade viral as well as cellular RNAs. 

Upon inoculation with PVX, virus concentrations in transgenic potato plants carrying the 

2',5'-oligoadenylate synthase gene were reduced and in some lines were lower than in 

transgenic potato expressing the PVX coat protein gene. In theory, the realisation of a 

functional 2'-5' oligoadenylate synthesis pathway in plants should lead to a generalised 

protection against RNA viruses and thus potentially allows the creation of plants with a 

broad spectrum of protection to viral infections. However, this speculation has never 

been sustained by scientific data. 

Concluding remarks 

The number of examples of pathogen-derived resistance exploiting a variety of viral 

sequences is still growing rapidly. The implementation of such non-conventional 

resistance genes in crop breeding programs will increase the genetic sources that plant 

breeders can use to combat plant virus diseases. Thus far, coat protein gene-derived 

protection is more widely applied than any other approach, because it was the first one 

described. The transgenic expression of other viral sequences, however, especially those 

involving resistance mechanisms mediated at the transcript level, can provide higher 

levels of protection, albeit against a more narrow range of viruses. With the increasing 
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knowledge on virus function and pathogenesis, other strategies are likely to become 

apparent. The development of such alternative strategies and the combination of multiple 

strategies within one crop species may provide broad protection at sufficiently high 

levels to protect crops from virus infections in the field, thereby opening a new era in 

controlling plant viral diseases. 
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Abstract 

The commercial culture of lettuce suffers appreciable losses from beet western yellows 

virus (BWYV) infections. As reliable sources of natural resistance are lacking, the 

transformation of lettuce with the BWYV coat protein gene presents a potential 

alternative to obtain genetic resistance. In that perspective, this chapter describes the 

construction of plant gene cassettes of the BWYV coat protein gene, their subsequent 

transformation to an elite lettuce cultivar, and the evaluation of their potential to yield 

engineered resistance to BWYV infections in transgenic lettuce. In spite of the numerous 

number of individual lettuce transformants analysed, substantial levels of protection 

against BWYV infection were not obtained. At best, a delay in symptom development of 

only a few days could be observed, but eventually all plants turned diseased. Apparently, 

the coat protein-mediated approach is inadequate to protect transgenic lettuce from 

BWYV infections. 
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Introduction 

Lettuce (Lactuca sativa L.) is an almost world-wide grown vegetable crop, that is 

predominantly used in salads. The prevalent virus disease in field lettuce crops arises 

from beet western yellows virus (BWYV) infections. Lettuce plants infected with this 

luteovirus show a typical interveinal chlorosis of the older leaves, especially under high 

light intensities, thereby reducing their marketability. Due to its broad host range and its 

world-wide distribution, BWYV represents the most important member of the luteovirus 

group (Casper, 1988). Over 100 plant species from 21 dicotyledonous plant families, 

including vegetable crops such as lettuce, spinach, radish and several Brassica species, 

are readily infected (Duffus, 1972). Field infections of crop plants commonly originate 

from weed species like Senecio vulgaris and Capsella bursa-pastoris, which function as 

natural overwintering hosts of the virus. The occurrence of the virus within the plant is 

confined to the phloem and neighbouring cells, and the virus is obligatory transmitted by 

aphids in a persistent, circulative manner. Myzus persicae (Sulz.) probably is the most 

efficient and most important aphid vector for BWYV under natural conditions. 

The genome of luteoviruses comprises one molecule of single-stranded RNA of positive 

polarity that is devoid of a substantial polyadenylate sequence (Martin et ai, 1990). At 

its 5' end the viral RNA is covalently bound to a genome-linked protein. The complete 

nucleotide sequence of the BWYV genome has been determined, revealing its genomic 

organisation (Veidt et al., 1988). The open reading frame encoding the coat protein of 23 

kD was positively identified by in vitro translation and immunoprecipitation 

experiments. The coat protein (CP) gene is located near the middle of the genome and is 

expressed from a subgenomic mRNA. A striking feature of the CP gene is the presence 

of a second open reading frame (ORF5) embedded within the CP gene, encoding a 

protein of 20 kD that is presumed to correspond to the viral movement protein. 

Thus far, growers have relied on chemical control of the aphid vector to limit the 

incidence of the yellowing disease as natural sources for tolerance to BWYV infections 

have been inadequate (Watts, 1975). The current opinion, however, to reduce the use of 

pesticides in vegetable crops urges the need for genetic sources of protection. Newly 

identified sources of natural resistance that are currently being backcrossed from wild 

relatives (Pink et al, 1991; Maisonneuve et al, 1991), need further evaluation in order to 

assess their potential in protecting lettuce cultivars. Therefore, the transformation of 

lettuce with the viral CP gene in order to obtain engineered resistance to BWYV 

infections presents an attractive alternative. 

In the past decade, virus resistance conferred by the expression of viral CP genes in 

transgenic plants, referred to as coat protein-mediated protection, has been described for 
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a considerable number of plant viruses from several different virus groups (reviewed by 

Beachy et al, 1990; Gonsalves & Slightom, 1993). To date, the rapidly growing number 

of open field trials illustrates the success of coat protein-mediated protection to protect 

transgenic crops like squash, tomato, cucumber and potato from viral infections (Nelson 

et al, 1988; Kaniewski et al, 1990; Gonsalves et ai, 1992; Jongedijk et al., 1993; 

Sanders et al., 1992; Kaniewski & Thomas, 1993). Here, we describe the transformation 

of lettuce with the BWYV CP gene and its potential to engineer resistance to BWYV 

infections in transgenic lettuce. 

Materials and methods 

Virus and plant material. BWYV strain FL1 was originally isolated from lettuce in 1982 

in southern France and has since been maintained and propagated in Physalis floridana 

by means of serial passages using Myzus persicae (Sulz.) as transmitting vector. Physalis 

host plants and apterous aphids were grown at 22 °C in a small phytotron with a 16 hr 

photoperiod. A collection of overlapping cDNA clones covering the complete genome of 

BWYV strain FL1 was purchased from the CNRS, 'Institut de Biologie Moléculaire des 

Plantes', Strasbourg, France (Veidt et al, 1988). 

Lettuce genotype L4607 was used as recipient in transformation experiments. This elite 

inbred line typifies the South-European market of butterhead lettuce types. Transgenic 

lettuce plants were grown under certified greenhouse conditions according to the 

legislation imposed by the Dutch and French authorities, the 'Voorlopige Commissie 

Genetische Modificatie' (VCOGEM) and the 'Commission du Génie Biomoléculaire' 

(CGB), respectively. 

Construction of plant transformation vectors. All manipulations involving DNA were 

essentially performed according to standard procedures (Ausubel et al, 1987). The 

BWYV CP gene was cloned either directly from cDNA clone pBW17 (Veidt et al, 

1988) or upon amplification by means of the polymerase chain reaction (PCR) using an 

appropriate pair of oligonucleotide primers. The latter approach was employed to create 

modified versions of the BWYV CP gene by means of site-directed mutagenesis. Upon 

assembly of the BWYV CP genes into plant gene cassettes controlled by the cauliflower 

mosaic virus (CaMV) 35S promoter and the nopaline synthase (nos) terminator, the 

chimaeric BWYV CP gene cassettes were cloned into binary plant transformation vector 

pBIN19 (Bevan, 1984). The resulting transformation vectors were subsequently 

mobilised into the non-oncogenic Agrobacterium tumefaciens strain LBA4404 (Ooms et 
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al, 1981) by means of triparental mating using pRK2013 as helper plasmid (Ditta et al, 

1980). Before plant transformation, recombinant A. tumefaciens strains were checked for 

the integrity of their binary transformation vectors through Southern blot analysis. 

In vitro transcription-translation of the BWYV CP gene. In order to target the BWYV CP 

gene for in vitro transcription-translation, the BWYV CP gene was positioned 

downstream of the RNA polymerase promoters as present at the pBluescript cloning 

vectors (Stratagene). To this purpose, redundant CaMV 35S promoter sequences were 

deleted from the various gene cassettes using appropriate restriction enzymes. Upon 

digestion with Bgl II at the 3' end of the nos terminator, linearised plasmid templates 

were transcribed using T3 or T7 RNA polymerase to produce capped in vitro run-off 

transcripts according to the supplier's instruction (TransProbe T Kit, Pharmacia). Capped 

transcripts were subsequently translated in a rabbit reticulocyte lysate system {In vitro 

Express™ Translation Kit, Stratagene), following the supplier's prescription. Upon 

denaturation, 35S-labelled protein samples were fractionated by SDS-polyacrylamide gel 

electrophoresis (Laemmli, 1970) and visualised through fluorography of dried gels 

impregnated with En3hance (New England Nuclear). 

Agrobacterium-mediated transformation of lettuce. Lettuce seeds were surface-sterilised 

for 20 minutes in a commercial bleach solution diluted to a final concentration of lg/1 

NaOCl. Following several washes with sterile water, seeds were placed onto MS 10 

medium: Murashige and Skoog (MS) plant salt mixture (Murashige & Skoog, 1962) 

(Flow Laboratories Inc.) supplemented with 10 g/1 sucrose and solidified with 7.5 g/1 

plant agar (Duchefa, Haarlem, the Netherlands). Seeds were incubated at 22 °C with a 16 

hr photoperiod. After four days of germination, fully expanded cotyledons were excised 

from the seedlings. While immersed into the Agrobacterium suspension, cotyledons were 

cut transversally to provide two expiants with two cut edges. Agrobacterium suspensions 

were prepared from overnight cultures that were washed and diluted 25 times in MMS30 

medium: MS plant salt mixture, 1 g/1 2-[N-morpholino]ethanesulfonic acid (MES), 30 g/1 

sucrose, Gamborg B5 vitamins (Gamborg et al, 1968) and 2.0 \\M folic acid. Cotyledon 

expiants were floated for 15 to 30 minutes onto the Agrobacterium suspension and 

subsequently transferred to co-cultivation plates consisting of MMS30 medium 

supplemented with 0.5 mg/12,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mg/16-(g,g-

dimethylallylamino)-purine (2-IP) with their abaxial side up. At 2-days-intervals, the 

expiants were transferred to regeneration medium: MMS30 medium, 2.0 mg/1 2-IP and 

0.5 g/1 carbenicillin, and subsequently to selective regeneration medium containing 100 

mg/1 kanamycin, now with their axial side up. Expiants were incubated at 22 °C and 
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subcultured every two weeks. The light regime with a 16 hr photoperiod and an intensity 

of 6 to 8 103 Lux was supplied by Sylvania GRO-LUX/36W and Philips 33/58W 

fluorescent tubes. Plant tissue culture media were solidified with 7.5 g/1 plant agar 

(Duchefa, Haarlem, the Netherlands). Between 4 to 8 weeks after infection, shoot 

primordia were cut from the expiants and rooted on MS 10 medium supplemented with 

0.5 g/1 carbenicillin and 50 mg/1 kanamycin. Rooted shoots were potted in soil, 

transferred to the greenhouse and were allowed to self-pollinate to produce offspring. 

Northern blot analysis. Total RNA was extracted from transgenic lettuce plantlets 

according to Logemann et al. (1987). RNA samples of approximately 10 ng were 

fractionated on 1.2% agarose gels under formaldehyde denatured conditions and 

transferred to Hybond-N membranes (Amersham) by capillary blotting (Ausubel et al., 

1987). The resulting blots were subsequently hybridised with a 32P-labelled DNA 

fragment, containing the BWYV CP gene in a SSC based hybridisation buffer. 

Analysis of protection to BWYV infection upon aphid-mediated inoculation. When lettuce 

seedlings reached their two- to three-leaves stage, approximately 3 to 4 weeks after 

sowing, progeny populations were exposed to viruliferous aphids that had been feeding 

on Physalis floridana plants infected with BWYV. To this purpose, a small piece of an 

infested Physalis leaf with approximately ten to thirty viruliferous aphids (larvae and 

adults) was placed on each lettuce seedling. For each transformant line twelve SI 

progeny plants, segregating for the BWYV CP, were analysed. After two to three days of 

feeding, aphids were killed by spraying with 0.75 g/1 pyrimicarb. This inoculation 

procedure was repeated a few days later, and lettuce plants were subsequently monitored 

for the development of yellowing symptoms at the older, most exterior leaves. 

Results 

Construction of plant gene cassettes for the BWYV CP gene. 

Originating from cDNA clone pBW17 (Veidt et al., 1988), the BWYV CP gene was 

assembled into a series of plant gene cassettes differing in the length and type of their 5'-

untranslated leader, and in the gene arrangement of the BWYV CP gene itself (Table I). 

Promoter sequences were derived from the cauliflower mosaic virus (CaMV) 35S 

promoter, that in case of pZU030 and pZU046 was fused to the 5'-untranslated leader 

sequence from tobacco mosaic virus with the objective to enhance translation (Gallie et 

al., 1987). The terminator sequence was derived from the nopaline synthase (nos) gene. 
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Table I. Schematic representation of the plant gene cassettes for the BWYV CP gene and their number of 
independent lettuce transformants analysed for protection to BWYV infection. Chimaeric gene cassettes 
comprised the CaMV 35S promoter, the BWYV CP gene, and the nos terminator. In case of pZU030 and 
pZU046, the CaMV 35S promoter was enhanced with the 5'-untranslated leader from tobacco mosaic 
virus. Full and open arrows refer to functional open reading frames encoding the BWYV coat protein and 
the ORF5 gene product respectively. B: BamH I; Be: Bel I; H: HM HI; N: Nco I; R: Rsa I; S: Sac I. 

Schematic Representation 
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The rationale behind this series of gene cassettes was not only to engineer resistance to 

BWYV infections ir lettuce, but also to unravel the mechanism underlying the 

anticipated resistance. To this purpose the BWYV CP gene encompassing the ORF5 

gene was mutated at either or both ATG translation initiation codons to yield plant gene 

cassettes in which the translation of the CP gene itself (pZU81), the ORF5 gene 

(pZU080), or both genes (pZU087) was prevented. Both mutations were embedded 

within the recognition sequences of appropriate restriction sequences that enabled to 

check their presence. 

The success of the site-directed mutagenesis of the BWYV CP gene was confirmed by in 

vitro transcription and subsequent translation in a rabbit reticulocyte lysate system. 

Modified CP genes were shown to be expressed as anticipated, resulting in the 

accumulation of both or only one of both proteins (Fig. 1). In spite of its downstream 

position, the ORF5 protein appeared to accumulate in about equal quantities compared to 
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Fig. 1. In vitro transcription-translation of modified BWYV CP genes. Upon removal of spurious CaMV 
35S promoter sequences, the BWYV CP genes were transcribed in vitro to produce capped transcripts that 
were subsequently used to program a cell-free rabbit reticulocyte lysate system. Denatured 35S-labelled 
protein samples were fractionated by SDS-polyacrylamide gel electrophoresis and subsequently visualised 
through fluorography. The full and open arrow at the left point at the protein products translated from the 
open reading frames encoding the coat protein and the ORF5 protein respectively. 

the coat protein. This result confirms earlier results obtained for potato leafroll luteovirus 

(Tacke et al., 1990) and barley yellow dwarf luteovirus (Dinesh-Kumar & Miller, 1993), 

demonstrating the efficient translation of the nested ORF5 gene in transient expression 

assays. Apparently, the suboptimal AUG context of the CP gene causes a significant 

portion of the ribosomes to bypass the most proximal AUG and to initiate translation at 

the second AUG of the downstream ORF5 gene, which is situated in a more preferred 

context (Liitcke et al, 1987; Kozak, 1992). 

Using appropriate restriction enzymes the various gene cassettes of the BWYV CP gene 

were cloned onto the T-DNA of pBIN19, adjacent to the neomycin phosphotransferase II 

(NPTII) selectable marker gene already present (Bevan, 1984). The resulting 

transformation vectors were subsequently mobilised into Agrobacterium tumefaciens 

strain LBA4404 (Ooms et al, 1981). 
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Fig. 2. In vitro germination of progeny lettuce seeds in presence of kanamycin. Lettuce seeds were surface-
sterilised and subsequently germinated on MS10 medium supplemented with 100 mg/1 kanamycin. On top, 
segregant seedlings susceptible to kanamycin; below, transgenic seedlings resistant to kanamycin. 
Seedlings were photographed at approximately 1 week after germination. 

hgxobacx&nwm-mediated transformation of lettuce. 

Plant gene cassettes of the BWYV CP gene were transformed to lettuce by means of 

Agrobacterium-mediated transformation. Cotyledon expiants were prepared from in 

vi'rro-grown seedlings of lettuce genotype L4607, which typifies the South-European 

market of butterhead lettuce types. After two days of co-cultivation, the cotyledon 

expiants were transferred to regeneration medium containing the plant cytokinin 6-(g,g-

dimethylallylamino)-purine (2-IP) to induce shoot regeneration. As from four days after 

infection, the regeneration medium was supplemented with kanamycin at a concentration 

of 100 mg/1 to select for the regeneration of transformed cells. Regenerated shoots 

generally emerged between four to six weeks after infection. Putative transformants were 

rooted at half-strength kanamycin selection (50 mg/1) to eliminate non-transformed 

shoots that tended to bleach and more importantly, that failed to develop roots. The 

success of the protocol was confirmed by the transformation of lettuce with the ß-

glucuronidase (GUS) reporter gene (Jefferson, 1987) that was shown to be highly 

expressed (data not shown). 

Upon rooting, transformants were potted in soil, transferred to the greenhouse and self-

pollinated to produce offspring. The number of independent transformant lines generated 

for each gene cassette of the BWYV CP gene is shown in Table I. In vitro germination of 



Engineered resistance to BWYV in lettuce 51_ 

r*. pZU016 pZU030 pZU046 
Q i i i i i to • • • • • 
3 3 5 7 10 11 16 17 18 21 1 5 6 7 11 

• Ü t» 

Fig. 3. Northern blot analysis of transgenic lettuce lines carrying the BWYV CP gene. Total RNA was 
fractionated on formaldehyde denatured agarose gels, blotted and hybridised with a 32P-labelled DNA 
fragment derived from the BWYV CP gene. Numbers refer to the primary lettuce transformants. L4607: 
non-transformed lettuce used as recipient genotype in transformation experiments. 

the SI progeny lines on medium supplemented with kanamycin (100 mg/1) confirmed 

their transgenic nature. Upon germination, kanamycin-resistant seedlings could easily be 

discriminated from non-resistant segregants by virtue of the colour and shape of their 

first true leaf. While resistant seedlings did not differ from control seedlings germinated 

in the absence of kanamycin, segregant seedlings exhibited a bleached appearance and 

remained retarded in development (Fig. 2). Although the expression of the CP gene 

cassettes at the RNA level could readily be demonstrated by Northern blot analysis (Fig. 

3), the accumulation of transgenically expressed coat protein could never be detected, 

neither by ELISA nor by Western blot analysis. 

Analysis of protection to BWYV infection upon aphid-mediated inoculation. 

As luteoviruses are not sap-transmissible but obligatory transmitted by aphids, 

segregating SI progeny populations were challenged with BWYV by means of 

viruliferous aphids that were propagated on Physalis floridana plants infected with the 

virus. Aphids were allowed to feed for a few days on the lettuce seedlings before being 

killed by the application of an insecticide. After inoculation, lettuce plants were 

monitored individually for the appearance of characteristic yellowing symptoms 

associated with BWYV infections. The development of chlorosis, however, is strongly 
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Fig. 4. Protection of segregating SI progeny populations to aphid-mediated BWYV infection. Lettuce 
seedlings were challenged with viruliferous aphids that were nourished on Physalis floridana plants 
systemically infected with BWYV. Upon inoculation, lettuce plants were monitored individually for the 
development of chlorosis on the outermost leaves. Diagram A and B shows the results obtained from two 
separate experiments. Control plants (open circles) consisted of non-transformed L4607 acceptor plants. 

dependent on the light intensity during the monitoring period. At high light intensities 

lettuce plants develop chlorosis within three weeks after infection, at lower intensities the 

appearance of chlorosis may be delayed to more than five weeks, and thus is highly 

variable between separate experiments. Results obtained for two series of transformants 

evaluated in two consecutive experiments are shown in Fig. 4. In spite of the large 

number of independent transformants analysed (Table I), any transformant line truly 

resisting BWYV infection was not identified. A number of lines, however, showed a 

clear delay in symptom development, but finally all plants turned diseased and 

accumulated high levels of virus as determined by ELISA. The variation in disease 
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development between separate experiments excludes the precise quantification and the 

comparison of the delay in symptom development between transformant lines from 

different series. Nevertheless, delayed disease development was not only observed for 

gene cassettes pZU046 and pZU080 that potentially express the CP at the protein level, 

but also for gene cassettes pZU081 and pZU087 (Fig. 4) that express the CP gene only at 

the mRNA level. These results suggest the underlying mechanism to be mediated at the 

transcript level rather than at the protein level by the accumulation of the BWYV coat 

protein itself. 

Discussion 

In an attempt to obtain engineered resistance to BWYV infections in transgenic lettuce, 

nucleotide sequences encoding the BWYV CP gene were transformed to an elite 

butterhead lettuce genotype. However, in spite of the numerous independent lettuce 

transformants analysed, a prominent level of resistance to BWYV infections was never 

observed. At best, a delay in symptom development of only a few days was observed, a 

level of protection too poor to be of commercial interest. This minor protection could not 

be assigned to a specific gene construct, and was also observed for gene constructs like 

pZU081 and pZU087, in which the coat protein gene was translationally inactivated 

through site-directed mutagenesis of the ATG initiation codon. As such, this observation 

suggests the observed protection, albeit minimal, to be transcript-mediated rather than 

protein-mediated. 

Over the past few years, a number of reports on engineered resistance to luteoviruses 

appeared in literature, all of them dealing with resistance to potato leafroll virus (PLRV) 

in potato (Kawchuk et al, 1991; van der Wilk et al, 1991; Barker et al, 1992). Although 

engineered resistance to PLRV infections through the expression of the PLRV CP gene 

was claimed, the significance of the observed protection is questionable. Potato plants 

never resisted infection, but merely showed reduced levels of virus accumulation, and the 

virus was readily transmitted to progeny plants emerging from transgenic tubers (van der 

Wilk et al, 1991). In tobacco, the transgenic expression of the PLRV CP gene likewise 

afforded only marginal levels of protection (Barker et al, 1993). Finally, the protection 

observed in potato might not even arise from the transgenic expression of the PLRV CP 

gene, but from somaclonal variation induced by the tissue culture process (Evans et al, 

1986; Potter et al, 1991). In support of this explanation are data demonstrating the 

occurrence of reduced susceptibility to PLRV infections in control transformant lines 

carrying vector sequences only (Presting et al, 1995). 
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The limited success in engineering resistance to luteovirus infections may possibly be 

explained by their restricted occurrence to the phloem tissue. In phloem sieve tube 

elements plant gene expression is drastically reduced as nuclei are degenerated. 

Consequently, the transgenic expression of CP gene-derived sequences at the primary 

site of infection may just be too limited to combat luteovirus infections. 

In summary, it may be concluded that the transgenic expression of the BWYV CP gene 

in lettuce did not yield levels of protection of commercial value and is not expected to do 

so upon minor modifications such as the use of other promoters. Only by developing 

alternative strategies for engineered resistance, protection levels of commercial interest 

may be obtained for luteoviruses in general, and for BWYV in particular. In this respect, 

the transformation of replicase-derived sequences seems to be a promising option as 

replicase-mediated resistance generally outcompetes coat protein-mediated protection 

(Carr & Zaitlin, 1993, Baulcombe, 1994). 

There is accumulating evidence that engineered resistance to plant viral infections 

through the transgenic expression of viral sequences is mediated at the transcript-level, 

rather than at the protein-level, although the precise mechanism remains unknown for the 

time being (Dougherty et al., 1994; Smith, 1994; Chapter 6 and 7 of this thesis). In this 

light, the transgenic expression of viral sequences involved in early functions such as 

replication and transcription of the viral genome might confer higher levels of protection 

than viral sequences encoding structural proteins. In case of BWYV these sequences are 

located at both ends of the viral RNA and at the intergenic region upstream of the coat 

protein gene. The subgenomic promoter, located in this intergenic region, directs the 

transcription of a subgenomic mRNA from which the coat protein and ORF5 are 

translated (Veidt et al., 1988). The transgenic expression of such early replication 

signals, in both the sense as well as the antisense orientation, presents an attractive 

alternative to the transgenic expression of sequences encoding viral proteins in order to 

obtain high levels of resistance to BWYV infection. The potential of RNA-interference 

targeted to regulatory control sequences has already been demonstrated for bromo 

mosaic virus (Huntley & Hall, 1993a and 1993b). Antisense transcripts to the minus 

strand promoter or to the intercistronic control sequence harbouring the subgenomic 

promoter from bromo mosaic virus RNA3 were shown to interfere with in vitro 

replication of the virus in barley protoplasts. 

The transgenic expression of an artificial defective interfering (DI) RNA consisting of all 

regulatory sequences involved in replication and transcription of the viral genome 

presents yet another approach to obtain engineered resistance to BWYV infections. 

Internal deletion mutants of bromo mosaic virus RNA2 have already been shown to act 

as parasitic Dis, reducing or even eliminating genomic RNA replication of the parent 
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virus RNAs in barley protoplasts (Marsh et al., 1991). Likewise, Veidt and co-workers 

reported on the successful assembly of a full-length cDNA clone of the BWYV genome 

(Veidt et al, 1992). Agroinoculation of host plants with a plant gene cassette of this full-

length cDNA clone controlled by the CaMV 35S promoter, resulted in a systemic 

infection with BWYV (Leiser et al., 1992), thereby demonstrating the successful 

replication of the virus from a transiently expressed mRNA transcript and the feasibility 

of the DI approach. When equipped with a latent suicide gene encoding a phytotoxic 

protein that is controlled from the subgenomic or the minus strand RNA promoter, the 

engineered tolerance mechanism might even be converted into an active resistance 

mechanism. Upon BWYV infection and subsequent replication of the artificial DI, the 

accumulation of the phytotoxic protein will evoke localised cell death, that might 

prohibit the invading virus particles from systemic infection. In this way the engineered 

resistance mechanism would mimic the hypersensitive response associated with cultivar 

resistance genes. 
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Abstract 

Cucumber mosaic virus (CMV) infections rank among the most devastating diseases in 

the commercial culture of tomato (Lycopersicon esculentum Mill.), for which suitable 

sources of natural resistance are not available. The concept of pathogen-derived 

resistance, however, offers an alternate approach to combat plant viral diseases by 

transformation of crops with nucleotide sequences derived from the viral genome. This 

report demonstrates the successful application of such a pathogen-derived resistance gene 

comprising the CMV coat protein (CP) gene, to generate protection to CMV infections in 

cultivated tomato. Transformation of an inbred tomato line with the CMV CP gene 

isolated from a subgroup I strain, engendered high levels of protection to various CMV 

strains, including a virulent strain causing lethal necrosis and a typical subgroup II strain. 

Moreover, when challenged by natural infection through aphid vectors in open field, 

levels of protection were largely maintained in hemizygous hybrids. In all, these results 

demonstrate that synthetic resistance genes based on the CMV CP gene make excellent 

sources of broad spectrum resistance to CMV infections for introgression into tomato 

breeding programs. 

This chapter will be published in a condensed form as: Gielen, J., T. Ultzen, S. Bontems, W. Loots, A. van 
Schepen, A. Westerbroek, P. de Haan & M. van Grinsven, 1995. Coat-protein-mediated protection to 
cucumber mosaic virus infections in cultivated tomato. Euphytica, in press. 



60 Chapter 5 

Introduction 

Cucumber mosaic virus (CMV) is known as one of the economically most important 

plant viruses, because of its wide host range and the large number of different strains 

identified (Douine et al, 1979; Kaper & Waterworth, 1981). Outbreaks of diseases 

incited by CMV infections have caused significant yield losses in many important 

vegetable crops, including tomato (Tomlinson, 1987). Breeding for CMV resistant 

tomato cultivars is severely hampered by the lack of suitable resistance sources in 

Lycopersicon species, which is illustrated by the fact that sofar CMV resistant tomato 

cultivars did not reach the market. The absence of resistant cultivars only leaves culture 

practices, such as control of the aphid vector population by the application of 

insecticides, to limit the incidence of the CMV disease. Proposed reductions in the 

application of pesticides for reasons of environment protection, however, urge the need 

for the development of novel sources of genetic resistance to CMV infections for 

introgression into the breeding programs of tomato. 

The CMV genome consists of three positive-sense RNA species and a subgenomic 

mRNA encoding the viral coat protein (CP) gene. Some naturally occurring CMV strains 

include a fifth RNA species, which depends on the CMV helper virus for its replication 

and its encapsidation. This satellite, designated CARNA5 for CMV-associated RNA5, 

modulates disease symptoms induced by its helper virus. Most satellites associated with 

CMV attenuate symptom expression, but in exceptional cases specific satellite RNAs 

may intensify symptom expression (Waterworth et al, 1979). 

According to their nucleotide sequence homologies and serological properties, CMV 

strains are divided into subgroups I and II (Devergne & Cardin, 1973; Piazolla et al., 

1979; Owen et al, 1990). Within subgroups, isolates share more than 95% homology in 

the amino acid sequence of their coat proteins. Between subgroups, the degree of 

homology is only approximately 80%. Nevertheless, genomic RNAs of subgroup I and II 

are fully compatible in pseudo-recombinants formed between both subgroups (Palukaitis 

et al, 1992), and the emergence of novel CMV strains through (pseudo)recombination 

constitutes a continuous threat to the culture of vegetable crops. 

The pathology of CMV infections in tomato is quite divers, ranging from asymptomatic 

to severe stunting with leaf curl, referred to as the fern leaf syndrome. Moreover, when 

associated with certain satellite RNAs, CMV infections can induce lethal necrosis in 

tomato (Kaper & Waterworth, 1977; Kaper et al, 1990). Because of the lack of CMV 

resistant cultivars, CMV strains carrying attenuating satellite RNAs have been exploited 

to control the CMV disease in commercial tomato crops in the field. Pre-inoculation or 

vaccination with such attenuated CMV strains resulted in the effective cross-protection 
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of tomato plants against more virulent strains of the virus (Tien et al, 1987; Gallitelli et 

al, 1991; Sayama et al, 1993). However, such high risk and laborious culture practices 

are generally regarded inferior to stable sources of genetic resistance to CMV. 

Since the first report that transgenic plants expressing a plant viral CP gene showed 

reduced susceptibility to the homologous virus (Powell Abel et al, 1986), this strategy, 

referred to as CP-mediated protection, has been widely adopted for protecting plants to 

viruses (reviewed by Beachy et al, 1990). CMV is one of the still growing number of 

viruses for which CP-mediated protection has been demonstrated, not only in tobacco 

(Cuozzo et al, 1988; Quemada et al, 1991; Namba et al, 1991; Nakajima et al, 1993), 

but also in vegetable crops like cucumber (Gonsalves et al, 1992) and melon (Yoshioka 

et al, 1993; Gonsalves et al, 1994). To study the applicability of this technology in 

tomato, we transformed an inbred tomato genotype with a chimaeric gene cassette 

comprising the CMV CP gene. Transgenic progeny plants that resisted mechanical 

inoculation with CMV were used as parents in the production of experimental hybrids. 

When exposed to natural inoculation by viruliferous aphids in open field, hemizygous 

hybrids showed high levels of protection, thereby demonstrating the potential of this 

transgenic source of resistance for protecting commercial tomato crops against CMV 

infections. 

Materials and methods 

Virus and plant material. CMV strain ZU represents a laboratory strain that was 

maintained in squash by repeated mechanical inoculation over many years. The strain 

was originally isolated from Stellaria media in 1972 in southern France. Necrogenic 

CMV strain ARN5 causing lethal necrosis in tomato, was recently isolated from tomato 

in southern France. Filimorphic strain I17F, which incites the typical fern leaf syndrome 

(Jacquemond & Lauquin, 1988), was obtained from the 'Instituut voor Planteziekten-

kundig Onderzoek' (IPO-DLO) in Wageningen, the Netherlands. Subgroup II strain A 

was recently isolated from infected tomato plants in Australia. Virus strains were stored 

as desiccated leaf material at 4 °C in presence of CaCl2, or as fresh leaf material in liquid 

nitrogen. Before their use in inoculation experiments all strains were multiplied in 

Nicotiana tabacum. 

In transformation experiments parental tomato line ATV847 was used as recipient. This 

inbred line is used as male parent in the production of a number of hybrids for the South 

European market, that represent fresh market tomatoes of the indeterminant type. 

Transgenic hybrids were obtained by cross-pollination of ATV847 transformants with 
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parental line ATX011. The resulting fresh market hybrid was tentatively named Astrid. 

Transgenic tomato plants were grown under certified greenhouse conditions according to 

the legislation imposed by the Dutch and French authorities, the 'Voorlopige Commissie 

Genetische Modificatie' (VCOGEM) and the 'Commission du Génie Biomoléculaire' 

(CGB), respectively. 

Construction of the plant transformation vector. All manipulations involving DNA were 

essentially performed according to standard procedures (Ausubel et ai, 1987). The CMV 

CP gene was amplified by means of the polymerase chain reaction (PCR), following 

reverse transcription of total RNA samples prepared from squash systemically infected 

with CMV strain ZU. Deproteinised RNA samples were isolated essentially as described 

by Logemann et al. (1987) by grinding 1 g of leaf material in 5 ml extraction buffer (8 M 

guanidine-HCl, 20 mM 2-[N-morpholino]ethanesulfonic acid (MES) pH 7.0, 20 mM 

EDTA, 50 mM beta-mercaptoethanol), followed by phenol extraction and ethanol 

precipitation. Reverse transcription and subsequent PCR-amplification was performed 

using the GeneAmp Thermostable rTth Reverse Transcriptase RNA PCR Kit (Perkin-

Elmer Cetus), according to the supplier's instruction and applying 40 cycles of 1 min. 

denaturation at 95 °C, 1.5 min annealing at 55 °C and 2 min extension at 72 °C, each 

cycle prolonged with 3 sec. Oligomer primers that were used for reverse transcription 

and amplification were Jan049 (5' CGAGCCATGGACAAATCTGAATC 3') and Jan050 

(5' GAACCTGCAGTCAGACTGGGAGCACTCCAGATGT 3'). Primer Jan049 hybridises to the 

ATG region of the CP gene and introduces the recognition sequence of Nco I comprising 

the ATG initiation codon. Primer Jan050 is complementary to the 3' end of the CP gene 

and introduces a Pst I site immediately downstream of the TGA stop codon. The PCR-

amplified fragment of 0.8 kb was digested with Nco I and Pst I and ligated into 

expression vector pZU119. The resulting gene cassette pZU120 contains the cauliflower 

mosaic virus (CaMV) 35S promoter fused to the 5'-untranslated leader sequence from 

tobacco mosaic virus, the CMV CP gene and the nopaline synthase (nos) polyadenylation 

signal. The complete gene cassette was released as an Xba I fragment and cloned into the 

binary plant transformation vector pBIN19 (Bevan, 1984), yielding transformation vector 

pZU123A, that was subsequently transferred to the non-oncogenic Agrobacterium 

tumefaciens strain LBA4404 (Ooms et al, 1981) by triparental mating using pRK2013 as 

a helper plasmid (Ditta et al, 1980). Before plant transformation the recombinant A. 

tumefaciens strain was checked for the integrity of the binary transformation vector by 

Southern blot analysis. 
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Preparation of a polyclonal antiserum to the CMV coat protein. To facilitate the 

preparative purification of CMV coat protein, the CP gene was cloned into bacterial 

expression vector pETllt, yielding expression vector pZU137. Bacterial expression 

vector pETl It is derived from pETl ld (Novagen, Inc.) by the introduction of additional 

unique cloning sites immediately downstream of the Nco I recognition sequence. When 

cell cultures of strain BL21(DE3, pLysE) transformed with expression vector pZU137 

reached an ODÔOO of 0.6, expression was induced by the addition of IPTG to a final 

concentration of 0.4 mM, and growth continued for an additional 5 hrs (Studier et al., 

1990). Bacterial cells were pelleted and subsequently resuspended in sample buffer (50 

mM Tris-HCl, pH 6.8, 2% (w/v) SDS, 5% (v/v) beta-mercaptoethanol, 10% (v/v) 

glycerol, 0.001% bromophenol blue). After boiling, denatured protein samples were 

analysed by electrophoresis in 12.5% SDS-polyacrylamide gels (Laemmli, 1970). For 

large scale preparations of the CMV coat protein, total proteins from 50 ml IPTG-

induced cultures of strain BL21 (DE3, pLysE, pZU137) were resolved on 1.5 mm thick 

12.5 % preparative SDS-polyacrylamide gels (Protean™ II, Bio-Rad). Gels were stained 

in an ice cold solution of 0.1 M KCl and the coat protein band was excised from the gel. 

Purified CMV coat protein was recovered from the gel slices through electro-elution in 

20 mM Tris, 150 mM glycine, 0.01% SDS for 5 hours at 100 V and 4 °C, applying an 

ISCO electrophoretic concentrator (ISCO, Inc.). Eluted proteins were dialysed against 

phosphate buffered saline (PBS), analysed on a SDS-polyacrylamide gel and quantified 

using the Bio-Rad Protein Assay according to the manufacturer's procedure. Portions of 

100 to 200 \ig of purified coat protein were emulsified with Freund's incomplete adjuvant 

and injected twice into the hind legs of rabbits at an interval of two weeks. Starting two 

weeks after the second injection, rabbits were bled several times and the gamma-globulin 

fractions were isolated according to Clark & Adams (1977). The titer and specificity of 

antisera were tested by Western blotting and ELISA using serial dilutions of the E. coli 

expressed coat protein. 

Transformation of parental tomato line ATV847. The CMV CP gene cassette was 

introduced into the genome of inbred tomato line ATV847 by means of Agrobacterium-

mediated leaf disc transformation as described by Ultzen et al. (1995; Chapter 8 of this 

thesis). Transformants were analysed for their ploidy level by flow cytometry, and 

diploid transformants were subsequently analysed for accumulation of CMV coat protein 

by Western blotting. Selected transformants were maintained by self-pollination to 

produce offspring. 



64 Chapter 5 

Western blot analysis for the accumulation of CMV coat protein. Bacterial pellets from 

IPTG-induced cell cultures or leaf samples from tomato transformants were homogenised 

in phosphate buffered saline supplemented with 0.1% Tween-20 (PBS-T). Portions of 25 

Hg of soluble protein were subsequently fractionated by electrophoresis in 12.5% SDS-

polyacrylamide gels (Laemmli, 1970). Proteins were blotted to Immobilon-P membranes 

(Millipore) by semi-dry blotting in semi-dry transfer buffer (29 mM glycine, 48 mM 

Tris, 0.0375% SDS and 20% methanol) for 1 hour at 0.8 mA/cm2. Membranes were 

blocked for 3 hours at 37 °C in PBS-T containing 3% BSA, and subsequently incubated 

with polyclonal antiserum raised against purified CMV coat protein, diluted to 1 Hg/ml in 

PBS-T supplemented with 0.3% BSA. After incubation with goat anti-rabbit IgG 

conjugated with alkaline phosphatase (Sigma Chemical Company), antigen-antibody 

complexes were visualised using nitroblue tetrazolium chloride (NBT) and 5-bromo-4-

chloro-3-indolylphosphate p-toluidine salt (BCIP) as substrate according to the supplier's 

instruction (ImmunoSelect™, Life Technologies, Inc.). Between subsequent treatments 

membranes were washed with PBS-T containing 0.3% BSA. 

Analysis of protection to CMV infection upon mechanical inoculation. After emergence 

of the first true leaf, approximately 3 to 4 weeks after sowing, seedlings were dusted with 

carborundum powder and wiped with cotton-wool dipped in virus inoculum. Inocula 

were freshly prepared by grinding 1 gram leaf material from systemically infected 

Nicotiana tabacum in 10 ml of 0.1 M sodium phosphate buffer (pH 7.0) supplemented 

with 1% Na2SC>3 and kept on ice. After inoculation plants were rinsed with water. All 

accessions were organised in a randomised block design with at least two replications. 

The extent of the CMV infection was monitored by visual observation for the 

development of systemic symptoms. Susceptible tomato plants developed systemic 

symptoms within 2 to 4 weeks after mechanical inoculation with CMV. Plants were 

scored susceptible when any leaf younger than the inoculated leaves showed typical 

systemic symptoms such as wrinkling and curling (fern leaf syndrome) or necrosis. In 

addition, plants became stunted at later stages of infection. The absence of virus in 

symptomless transgenic plants was checked by ELISA using the polyclonal antiserum 

raised against E. coli expressed CMV coat protein. 

Analysis of protection in transgenic hybrids upon natural inoculation in open field. In the 

summer of 1994, an open field trial was executed on the premises of S&G Seeds in 

Agadir, Morocco, according to the legislation and regulations imposed by the 

'Commission du Génie Biomoléculaire' (CGB) in France. At the end of May, when plants 

were 10 cm in height, transgenic Astrid hybrids were planted in soil in open field, 
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organised in two replications of 14 or 15 plants each. Non-transgenic hybrids were 

included as susceptible control and plants were exposed to aphid-mediated inoculation 

throughout their complete crop cycle. The trial was managed like a normal tomato crop 

including the routine application of pesticides. At the end of the trial (end of August 

1994), when bearing several clusters of mature fruits, plants were scored visually for the 

presence of disease symptoms incited by CMV infections. Only plants that were 

completely free of any symptoms were scored healthy. Usually potato virus Y (PVY) 

infections are also quite common for the Agadir region, but in summer 1994 the 

incidence of the PVY disease was low and in the plot of the field trial any PVY 
symptoms were never observed. As a consequence plants scored healthy were devoid of 

any symptoms incited by viral pathogens. 

Results 

Cloning and sequence analysis of the CMV coat protein gene. 

The CMV coat protein (CP) gene was amplified by means of the polymerase chain 

reaction following reverse transcription (RT-PCR) of a deproteinised RNA sample 

prepared from squash systemically infected with CMV strain ZU. The primers used in 

the amplification reaction carried appropriate restriction sites to facilitate cloning and 

subsequent sequence analysis. The deduced amino acid sequence of the coat protein from 

CMV strain ZU as shown in Fig. 1A is derived from the nucleotide sequence of two PCR 
fragments cloned from separate RT-PCR reactions to exclude the possibility of point 

mutations generated by the reverse transcriptase or the Taq polymerase. In comparison to 

the amino acid sequence of other subgroup I strains the coat protein of strain ZU shows 

over 95% of homology. Thus, even though CMV strain ZU was maintained by repeated 

mechanical inoculation over many years, the amino acid sequence of the coat protein 

remained highly conserved. The presence of a proline residue at position 129 classifies 

strain ZU as non-chlorotic (Shintaku et al, 1992), which is confirmed by the typical 

green mosaic induced in tobacco. 

Prokaryotic expression and production of antiserum to CMV coat protein. 

To facilitate the purification of CMV coat protein in sufficient quantities to raise a 

polyclonal antiserum, the CP gene was expressed in vitro by means of a prokaryotic 

expression system (Studier et al., 1990). Upon IPTG-induction, the 24 kD coat protein 

accumulated to large quantities and could easily by recognised on coomassie brilliant 

blue strained gels (Fig. 2A). The coat protein was purified from Polyacrylamide gels and 
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Fig. 1. A: Deduced amino acid sequence of the coat protein gene from CMV strain ZU, aligned to those of 
some other CMV strains. The sequences shown in boxes represent subgroup II strains. Amino acids 
identical to the amino acid sequence of the coat protein from strain ZU are indicated by dots, while dashes 
represent gaps that are introduced for optimal alignment. B: Schematic representation of the chimaeric 
CMV CP gene cassette comprising the CaMV 35S promoter, the tobacco mosaic virus 5'-untranslated 
leader, the CMV CP gene and the nos terminator. The complete CMV CP gene cassette was cloned into 
binary transformation vector pBIN19 as an Xba I fragment. 
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CMVCP-> <-CMVCP 

Fig. 2. Prokaryotic expression of the CMV CP gene and specificity of the polyclonal antiserum raised 
against purified CMV coat protein. A: The accumulation of CMV coat protein in E. coli cells transformed 
with pZU137 was induced with IPTG and total proteins analysed on a SDS-polyacrylamide gel stained 
with coomassie brilliant blue. Total proteins from bacterial cells transformed with the empty expression 
vector pETllt were included as control. B: Western blot analysis of total protein samples from IPTG-
ïnduced E. coli cells harbouring pETllt or pZU137. Proteins were resolved on a SDS-polyacrylamide gel 
blotted to Immobilon-P membranes and the CMV coat protein detected using the polyclonal antiserum 
raised against purified coat protein. The protein sample in lane pZU137 was 1000-fold diluted in 
comparison to lane pETl It. 

used to immunize rabbits. Titer and specificity of the obtained antisera were tested by 
immunoblot analysis (Fig. 2B). Although the antisera appeared to be slightly 
contaminated with immunoglobulins against bacterial proteins that were co-purified with 
the CMV coat protein, such contaminations are not likely to interfere with 
immunological analyses of plants. The detection limit on immunoblots was estimated at 
approximately 0.5 ng and in ELISA at approximately 2 ng of denatured E. coli expressed 
coat protein (data not shown). 

Construction of the CMV CP gene cassette and transformation of tomato. 

In order to assemble a plant gene cassette, the CP gene was cloned between the 

cauliflower mosaic virus (CaMV) 35S promoter and the polyadenylation signal derived 

from the 3' flanking region of the nopaline synthase (nos) gene, yielding plant gene 

cassette pZU120 (Fig. IB). The CaMV promoter was modified by fusing the 5'-
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Fig. 5. Western blot analysis of putative tomato transformants carrying the CMV CP gene. Leaf protein 
samples were subjected to SDS-polyacrylamide gel electrophoresis, blotted to Immobilon-P membranes 
and CMV coat protein was detected using the polyclonal antiserum raised against purified CMV coat 
protein. Molecular weight markers are indicated on the right and numbers refer to independent tomato 
transformants; ATV: non-transformed tomato line ATV847 used as acceptor. 

untranslated leader sequence from tobacco mosaic virus (TMV) immediately 

downstream of the transcription initiation site. The TMV leader is known to function as a 

translational enhancer (Gallie et al, 1987). Upon cloning into binary transformation 

vector pBIN19, the CMV CP gene cassette was introduced into the genome of inbred 

tomato line ATV847 by means of Agrofcacten't/m-mediated leaf disc transformation, 

using kanamycin resistance as selectable marker (Ultzen et al, 1995; Chapter 8 of this 

thesis). Tomato genotype ATV847 represents an inbred line used as male parent in the 

production of a number of fresh market hybrids of the indeterminant type. Transformants 

were analysed for their ploidy level by flow cytometry and diploid transformants were 

subsequently subjected to Western blot analysis to identify transformants accumulating 

CMV coat protein (Fig. 3). Diploid transformants accumulating the CMV coat protein 

were maintained and self-pollinated to produce SI offspring. None of the transformants 

nor their progeny populations showed any phenotypic aberrations that could be assigned 

to the accumulation of viral coat protein or to the insertion of the CP gene cassette into 

the plant genome. 
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Fig. 4. Protection of segregating SI progenies against CMV infection upon mechanical inoculation. Plants 
were challenged with a ten times diluted inoculum prepared from young tobacco leaves systemically 
infected with CMV strain I17F. Control plants (white bars) consisted of non-transformed ATV847 acceptor 
plants or Astrid hybrids derived therefrom. Figures on top of the bars refer to the number of tomato plants 
that have been scored for systemic symptoms in the final observation about three weeks after inoculation, 
including plants that did not inherit the CMV CP gene cassette through segregation. 

Protection of transgenic tomato against CMV infections. 

The extent of CP-mediated protection is known to be affected by the virulence and 

concentration of the challenge inoculum. Therefore, in order to prevent the exclusion of 

transformant lines with low levels of protection, tomato seedlings from SI progeny 

populations were challenged by mechanical inoculation using a ten times diluted 

inoculum. The diluted inoculum was prepared from tobacco systemically infected with 

the non-necrogenic CMV strain I17F. In tomato, this strain provokes the typical fern leaf 

syndrome due to the wrinkling and curling of leaves (Jacquemond & Lauquin, 1988), and 

at later stages of infection diseased plants become stunted and reduced in height. After 

inoculation, plants were visually monitored for the development of systemic disease 

symptoms on non-inoculated leaves. The final observation was made three weeks after 

inoculation when susceptible controls reached infection percentages of 80% or higher 

(Fig. 4). From a selection of 13 SI progeny populations, descending from primary 

transformants which accumulated the CMV coat protein, all transformant lines showed 

reduced susceptibility to CMV infection. Considering the fact that the CMV CP gene still 
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Fig. 5. Protection to CMV infection of homozygous S2 progenies upon mechanical inoculation. Plants 
were challenged with an inoculum prepared from young tobacco leaves systemically infected with 
necrogenic CMV strain ARN5. Control plants (white bars and open circles) consisted of non-transformed 
ATV847 acceptor plants. A: Percentage of plants showing systemic disease symptoms in the final 
observation about five weeks after inoculation. Figures on top of the bars refer to the number of tomato 
plants tested. B: Development of systemic disease symptoms in partially protected transformant lines in 
comparison to the susceptible control. 

segregates within these SI populations, levels of protection become even more 

pronounced. Protected tomato plants were free of virus as demonstrated by ELISA using 

the polyclonal antiserum raised against purified CMV coat protein. ELISA values of 

protected transformants never exceeded the mean ELISA value of non-inoculated 

transformants plus three times the standard deviation (threshold value = 0.13), whereas 

ELISA readings of infected controls were out of range. The absence of detectable 

amounts of virus suggests that protected plants are resistant rather than tolerant to CMV 

infection. 

From each transformant line five individual SI progeny plants that resisted CMV 

infection were selected for Southern blot analysis to determine the copy number of the 

CMV CP gene cassette (data not shown). The majority appeared to carry single copies of 

the transgene, except for transformant lines 1142, 1152 and 1192 which carry two copies. 

In case of transformant lines 1142 and 1152 both copies probably reside on the same 

chromosome as can be deduced from the fact that both copies did not segregate in five 
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individual SI progeny plants tested. Selected plants were maintained and self-pollinated 

to produce S2 offspring. In addition, plants were cross-pollinated with parental line 

ATX011 to produce experimental hybrids, tentatively renamed Astrid. A subset of S2 

progeny populations were again analysed for resistance to CMV infection, now using a 

concentrated inoculum of the highly virulent CMV strain ARN5 causing lethal necrosis 

in tomato. Only results obtained for S2 lines carrying homozygous transgenes as 

determined by Southern blot analysis or PCR, are presented in Fig. 5A. Although S2 

progeny populations all showed reduced susceptibility to the necrogenic CMV strain, 

complete protection was only observed for transformant lines 1151 and 1152. Other 

transformant lines exhibited partial protection levels as exemplified by the S2 progeny 

derived from transformant line 1142. Within a population of 28 plants, all carrying one 

homozygous copy of the CMV CP gene, 14 plants resisted infection while the other 14 

developed systemic symptoms, resulting in an intermediate protection level of 50%. 

Apparently, the intrinsic level of protection of such transformant lines is insufficient to 

fully withstand the relatively high infection pressure imposed by mechanical inoculation 

with the concentrated and highly virulent inoculum of the necrogenic CMV strain. 

However, when compared to the susceptible control, the development of systemic 

disease symptoms in such partially protected transformant lines is significantly delayed 

(Fig. 5B). Whereas the susceptible control reached 100% of diseased plants as soon as 12 

days after inoculation, partially protected transformant lines remained completely free of 

systemic symptoms for at least 16 days, except for transformant line 1169 which 

comprised already a few infected plants at 12 days after infection. 

Plants that resisted infection in their juvenile stages were maintained to produce fruits 

and monitored for disease development in later stages of their life cycle. Although some 

selected plants developed necrotic spots on their stems, typical for the necrogenic CMV 

strain, the vast majority of plants remained completely free of systemic disease 

symptoms and on the fruits symptoms were never observed. One example of resistant 

plants descending from transformant line 1152 is shown in Fig. 6. 

Protection to CMV infection upon natural inoculation under field conditions. 

In nature, CMV is transmitted by aphid vectors. To determine the level of protection 

upon natural infection, transgenic hybrids were planted in open field in Agadir, Morocco, 

and exposed to continuous inoculation by aphid vectors throughout their crop cycle. The 

Agadir region was chosen as a suitable location to conduct an open field trial, because of 

the high incidence of the CMV disease in the local culture of tomato over the past few 

years. The field trial comprised two replications of 14 or 15 hybrid plants that were 

planted in soil at their juvenile plant stage. At the end of the crop, when plants bore 
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Fig. 6. Protection of the homozygous S2 progeny descending from transformant line 1151 to CMV 
infection upon mechanical inoculation with CMV strain I17F. Plants were photographed approximately 
four weeks after inoculation. At the left, transgenic tomato plants homozygous for the CMV CP gene, at 
the right non-transformed ATV847 acceptor plants. 

several clusters of mature fruits, individual hybrid plants were carefully inspected for 

visual disease symptoms, not only on the vegetative plant parts, but also on the fruits. At 

that time, susceptible control plants consisting of non-transgenic Astrid hybrids, reached 

an average infection percentage of 73%, which illustrates the high incidence of the CMV 

disease in the Agadir region. Disease symptoms included the typical fern leaf syndrome, 

but also general leaf malformations such as wrinkling and curling, and occasional 

necrosis of top leaves. Affected fruits showed irregular surfaces with chlorotic and 

necrotic blotches that developed into soft rots at later stages of ripening. Typical 

symptoms incited by potato virus Y (PVY) infections, which are quite common for the 

Agadir region, were not observed in the transgenic field trial plot. Only plants devoid of 

any symptoms were scored healthy and results obtained for fixed hybrids are presented in 

Fig. 7. Transgenic hybrids, hemizygous for one or two linked copies of the CMV CP 

gene, all showed reduced susceptibility to CMV infections, while the hybrid descending 

from transformant line 1151 was even fully protected. This result thus demonstrates the 

successful protection of hemizygous tomato hybrids against natural infection by CMV. 
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Fig. 7. Protection of hemizygous hybrids against CMV infection 
upon natural inoculation by aphid vectors under field conditions. 
Control plants (white bars) consisted of non-transformed Astrid 
hybrids. Plants were scored for systemic disease symptoms at the 
end of the crop cycle when plants bore several clusters of mature 
fruits. Only plants devoid of any disease symptoms on vegetative 
plants parts or on fruits were scored healthy. 

Transformant line 1151 already showed full protection upon mechanical inoculation of 

its homozygous S2 progeny, as did transformant line 1152 (Fig. 5A). The hybrid derived 

from the latter transformant line, however, was not fully protected upon natural infection 

in open field, but was reduced in protection to an intermediate level of only 46%. The 

intrinsic level of protection of this transformant line appears to be too low for 

hemizygous hybrids to resist the challenge of continuous inoculation by the aphid vector 

in open field. 

Protection of transformant lines to mechanical inoculation with CMV subgroup II. 

The spectrum of protection conferred by expression of the CMV CP gene in transgenic 

tomato was further characterised by challenging transformant lines with a typical CMV 

subgroup II strain A. The amino acid sequence of the coat protein of this subgroup II 

strain shares 82% of identity with that of subgroup I strain ZU, from which the 

transgenically expressed CP gene was derived (Fig. 1A). Infection of tomato plants with 

subgroup II strain A incites rather mild disease symptoms. Top leaves of diseased plants 

exhibit a typical dark green mosaic and are distorted, but never as pronounced as the fern 

leaf syndrome typically observed for infections by subgroup I strain I17F. Upon 

mechanical inoculation of a subset of homozygous S2 populations, plants were 

monitored visually for disease symptoms. Although susceptible controls never reached 

infection percentages higher than 76%, the selected transformant lines showed a clear 
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reduction in the incidence of disease development ranging from high levels of protection 

for transformant lines 1137, 1142 and 1152, to an intermediate level of protection for 

transformant line 1169 (Fig. 8). Whether these levels of protection will hold upon more 

stringent inoculation conditions remains to be determined, but this result illustrates the 

rather broad spectrum of the engineered CMV protection conferred by expression of a 

subgroup ICP gene in tomato. 

Discussion 

In view of the common opinion to reduce the application of chemicals in modern 

agriculture, the identification and exploitation of genetic sources of resistance to viral 

pathogens is the ideal approach for controlling plant virus diseases in the long term. To 

this end, the introgression of naturally available resistance genes into crops by breeding, 

contributed largely to the development of virus resistant cultivars. Since the first report 

on the successful protection of transgenic plants expressing a viral CP gene against the 

homologous virus (Powell Abel et ai, 1986), the concept of CP-mediated protection has 

been widely adopted for protecting plants against viral infections (Beachy et al, 1992). 

This transgenic approach thus offers a promising alternative in vegetable crops where 

suitable sources of natural resistance genes are lacking, as is the case for CMV resistance 

in Lycopersicon species. For cucumber and melon it was previously described that 

expression of the CMV CP gene confers protection to CMV infections (Yoshioka et ai, 

1993; Gonsalves et al, 1992; Gonsalves et al, 1994). In this report we successfully 

demonstrate the use of a similar CP gene cassette to create tomato hybrids that are 

protected to CMV infections not only upon mechanical inoculation, but also upon natural 

inoculation by aphid vectors in open field. 

The CMV CP gene was cloned from a typical subgroup I strain, assembled into a plant 

gene cassette, and subsequently introduced into the genome of a parental tomato line. 

When challenged by mechanical inoculation applying mild screening conditions, 

transformant lines accumulating CMV coat protein all showed reduced susceptibility to 

CMV infection. Out of six transformant lines that were pursued for further analysis, two 

transformant lines were identified that showed complete protection when their 

homozygous S2 progenies were challenged by mechanical inoculation with a virulent 

necrogenic CMV strain. Other transformant lines showed merely partial levels of 

protection, characterised by the fact that the inheritance and expression of the CMV CP 

does not necessarily confer resistance. However, partially protected lines still comprised 
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Fig. 8. Protection of homozygous S2 progenies to mechanical 
inoculation with subgroup II CMV strain A. Control plants (white 
bars) consisted of non-transformed ATV847 acceptor plants and 
Astrid hybrids derived therefrom. Figures on top of the bars refer to 
the number of tomato plants that have been scored for systemic 
symptoms in the final observation about four weeks after 
inoculation. 

individual plants that completely resisted CMV infection and plants that did become 

infected were significantly delayed in disease development. 

In the field, where disease pressure is exerted throughout the crop cycle by repeated 

inoculation from aphid vectors, levels of protection declined in hybrids carrying 

hemizygous copies of the CMV CP gene. The hybrid descending from transformant line 

1151, however, remained fully protected, resisting infection throughout its complete crop 

cycle. Other hybrids showed merely partial protection levels, which is not unusual when 

plants heterozygous for dominant resistance genes are confronted with high disease 

pressures (Fraser, 1990). Apparently, the intrinsic levels of resistance in such partially 

protected transformant line are too low for hemizygous hybrids to fully resist the high 

disease pressure of repeated inoculation under field conditions. The occurrence of partial 

protection levels and gene dosage effects stresses the importance of screening a 

sufficiently large number of independent transformant lines in their hemizygous state, in 

order to identify suitable progenitors with high levels of CP-mediated protection to 

CMV. The aspect of resistance at the population level has not been taken into account in 

the current evaluation of the transgenic CMV protection. When resistant cultivars are 

planted in large numbers as commercial crops, the reduced number of infected plants will 

tend to lessen the disease pressure. Therefore, it is expected that levels of protection at 

the population level will increase, when transgenic tomato cultivars carrying the CMV 

CP gene are grown as commercial crops. 
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Recently, Anderson et al. (1992) reported that transformation of tobacco with a defective 

replicase gene derived from RNA 2 engendered resistance to CMV infection. Although 

this replicase-mediated resistance was claimed to be absolute and independent of the 

concentration of the challenge inoculum, resistance was overcome when plants were 

challenged with subgroup I strains that were more diverse in sequence than the strain 

from which the replicase gene was sequestered. Against subgroup II strains the replicase-

derived transgene was totally ineffective (Zaitlin et al, 1994; Hellwald & Palukaitis, 

1994). Here, we demonstrate that the protection mediated by the transgenic expression of 

the CMV CP gene derived from a subgroup I CMV strain, does hold not only against 

subgroup I strains including virulent necrogenic strains, but also against a typical 

subgroup II strain. Consequently, it may reasonably be assumed that this synthetic CMV 

resistance gene will not easily be overcome by mutant CMV strains that carry point 

mutations in their CP gene, and thus represents a durable and reliable source of genetic 

resistance to CMV infections in tomato. 

Other viruses that cause significant yield losses in the commercial culture of tomato are 

PVY and tomato spotted wilt virus (TSWV). Like in the case of CMV, suitable sources 

of natural resistance to limit the incidence of these viral diseases are lacking in 

Lycopersicon germplasms. However, pathogen-derived resistance genes have been 

described for both viruses (Gielen et al, 1991; MacKenzie & Ellis, 1992; van der Vlugt 

et al, 1992; Chapter 7 of this thesis), and in case of TSWV have already been applied in 

tomato (Ultzen et al, 1995; Chapter 8 of this thesis). Since breeding for disease 

resistance is generally regarded as the best approach for sustainable crop protection, the 

combination of multiple pathogen-derived resistance genes within single tomato cultivars 

to combat plant viral diseases, represents a promising strategy towards the insecticide 

free culture of tomato. 
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Abstract 

The cultivation of melon is seriously affected by infection with a number of potyviruses, 

including zucchini yellow mosaic virus (ZYMV), causing significant yield losses. Since 

natural sources of resistance to ZYMV infections are only limitedly available, the 

development of engineered resistance, based on the transgenic expression of sequences 

derived from the viral coat protein (CP) gene, was explored. The transformation of melon 

with the ZYMV CP gene yielded a number of independent transformant lines that 

exhibited high levels of resistance when challenged with the virus. The observed 

resistance was shown to be largely mediated at the transcript level, as transformant lines 

carrying a translationally defective CP gene cassette displayed equal levels of resistance. 

Upon mechanical inoculation, protected melon transformants resisted viral infection and 

remained free of systemic symptoms. As such, transgenic melon lines carrying the 

ZYMV CP-derived resistance gene make excellent progenitors in breeding for ZYMV 

resistance. 
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Introduction 

The Potiviridae constitutes the largest family of plant viruses and comprises a significant 

number of agronomically important members, including potato virus Y (PVY) and 

zucchini yellow mosaic virus (ZYMV). Potyviruses have flexuous rod-shaped particles 

that are transmitted by aphids in a non-persistent, non-circulative manner. The short 

acquisition and transmission period explains the limited success in controlling potyvirus 

infections through the application of insecticides. 

The virion is composed of a single-stranded RNA of approximately 10 kb in length, 

encapsidated by the viral coat protein. The plus sense RNA genome possesses a 3' 

polyadenylate sequence and contains a single open reading frame that is expressed into 

one large polyprotein. The mature viral proteins are released from this initially expressed 

polyprotein by proteolytic processing. Any subgenomic RNAs are not produced during 

the replication cycle (Dougherty & Carrington, 1988; Riechmann et al, 1992). 

As potyviruses can have devastating effects on marketable crop yield, significant efforts 

have been devoted to limit the incidence of diseases incited by potyvirus infections. The 

use of virus resistant cultivars is the most effective way in this and traditional breeding 

has been successful in incorporating resistances to potyvirus infections into a number of 

commercially important crops (Provvidenti & Hampton, 1992). However, suitable 

sources of resistant germplasm are not always available and the continuous mutation of 

virus populations often renders resistance genes ineffective in time. The concept of 

pathogen-derived resistance offers the potential to expand the repertoire of resistance 

genes that can be deployed through breeding methods (Sanford & Johnston, 1985). To 

date, the still growing number of examples of pathogen-derived resistance to potyvirus 

infections illustrates the potential of this approach to create transgenic progenitors for 

potyvirus resistance (reviewed by Lindbo et al, 1993a). 

Cucurbit yields are often severely limited because of infection by three distinct 

potyviruses, i.e. the watermelon strain of papaya ringspot virus (PRSV-W), watermelon 

mosaic virus II (WMV-II) and ZYMV. Among these, ZYMV is a relatively new threat, 

but it has spread rapidly throughout the world since its first description in the late 1970s 

(Lisa et al, 1981). The 3' terminal region of the ZYMV genome encoding the viral coat 

protein (CP) has been cloned and its nucleotide sequence determined for a number of 

different strains (Gal-On et al, 1990; Grumet & Fang, 1990; Quemada et al, 1990). 

Transgenic expression of the CP gene from ZYMV in muskmelon {Cucumis melo) 

conferred high levels of resistance to infection by the homologous virus (Fang & 

Grumet, 1993), while expression in transgenic tobacco (Nicotiana tabacum and N. 

benthamiana) conferred varying levels of protection against heterologous potyviruses 
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(Namba et ai, 1992). In this chapter we demonstrate the successful application of the 

ZYMV CP gene to generate resistance against ZYMV infection in transgenic melon. 

Transformation of melon with a translationally defective ZYMV CP gene, which is only 

expressed at the transcript level, generated equal levels of resistance, thereby indicating 

that the transgenic resistance is primarily RNA-mediated. 

Materials and methods 

Virus and plant material. ZYMV strain KB5, originating from Israel, was obtained from 

the 'Instituut voor Planteziektenkundig Onderzoek' (IPO-DLO) in Wageningen, the 

Netherlands. ZYMV strains E9 and El5 were isolated from infected melon plants in 

southern France. Strains were stored as desiccated leaf material kept at 4 °C in the 

presence of CaCl2, or as fresh leaf material in liquid nitrogen. For preparation of virus 

inocula ZYMV strains were propagated in squash. 

Melon genotype VIM3 was used as recipient in transformation experiments. This inbred 

melon line represents the market segment of the smooth 'Charentais' type melons, which 

have spherically shaped fruits with a slightly ribbed, but smooth surface. During 

maturation the colour of the fruits turns from greyish-green to yellow, while the fruit 

flesh turns orange. Transgenic melon plants were grown under certified greenhouse 

conditions according to the legislation imposed by the Dutch and French authorities, the 

'Voorlopige Commissie Genetische Modificatie' (VCOGEM) and the 'Commission du 

Génie Biomoléculaire' (CGB), respectively. 

Construction of plant transformation vectors. All manipulations involving DNA were 

essentially performed according to standard procedures (Ausubel et al., 1987). The 

ZYMV coat protein (CP) gene including its 3' non-translated region was amplified by 

means of the polymerase chain reaction (PCR), following reverse transcription of total 

RNA samples prepared from squash leaves systemically infected with ZYMV strain 

KB5. Deproteinised RNA samples were isolated essentially as described by Logemann et 

al. (1987) by grinding 1 g of leaf material in 5 ml extraction buffer (8 M guanidine-HCl, 

20 mM 2-[N-morpholino]ethanesulfonic acid (MES) pH 7.0, 20 mM EDTA, 50 mM 

beta-mercaptoethanol), followed by phenol extraction and ethanol precipitation. Reverse 

transcription and subsequent PCR amplification were performed using the GeneAmp 

RNA PCR Kit, according to the supplier's prescription (Perkin-Elmer Cetus). Oligomer 

primers that were used for reverse transcription and amplification were deduced from the 

nucleotide sequence from the Connecticut strain of ZYMV: EMBL accession number 
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D00692 (Grumet & Fang, 1990). Primer ZUP048 (5' ATGCTCCCCATGGGCACTCAG-

CCAACTG 3') hybridised to the 5' end of the CP gene and introduced an ATG initiation 

codon immediately upstream of the CP gene, embedded in the recognition sequence of 

Nco I. Primer ZUP091 (5' CAGGTCGACATGGIGCACTXAGCQEAACT 3") also hybridised 

to the 5' end of the CP gene introducing an ATG initiation codon, but the open reading 

frame of the CP gene was distorted by the introduction of frame shift mutations 

(underlined nucleotides) causing abortive translation. Primer ZUP058 (5' TTTT-

CTGCAGTTAGGCTTGCAAACGGAGTCT 3') is complementary to the ultimate 3' end of the 

ZYMV genome and introduces a Pst I site immediately downstream of the 3' 

untranslated region. Both PCR-amplified fragments of 1.1 kb were polished with T4 

DNA polymerase and subsequently cloned into EcoR V linearised pBluescript. Upon 

their release by digestion with Pst I, both ZYMV CP genes were assembled into plant 

gene cassettes controlled by the cauliflower mosaic virus (CaMV) 35S promoter and the 

nopaline synthase (nos) polyadenylation signal. The resulting gene cassettes were 

released as BamH VKpn I fragments and cloned into the binary plant transformation 

vector pBIN19 (Bevan, 1984), yielding transformation vectors pZU193 to pZU195 (the 

antisense orientation of the translationally defective CP gene cassette was omitted from 

further analysis). Upon their mobilisation into the non-oncogenic Agrobacterium 

tumefaciens strain GV3101(pMP90) (van Larebeke et al., 1974; Koncz & Schell, 1986) 

by means of triparental mating using pRK2013 as a helper plasmid (Ditta et al., 1980), 

recombinant A. tumefaciens strains were checked for the integrity of the transformation 

vectors by Southern blot analysis. 

Transformation of inbred melon genotype VIM3. The Agrobacterium-msdiated 

transformation of melon genotype VIM3 was essentially performed as described by Ben 

Tahar et ah, (1989), using cotyledons as expiant material and kanamycin resistance as 

selectable marker, but using Agrobacterium strain GV3101(pMP90) in stead of strain 

LBA4404. Putative transgenic shoots were analysed for their ploidy level by means of 

flow cytometry. Intact nuclei were stained with 4',6-diamidino-2-phenylindol (DAPI) by 

chopping leaf tissue with a sharp razor blade in a commercial staining solution (Partec 

GmbH). Nuclei samples were filtered through nylon cloth (30 \ira), kept on ice for at 

least 15 minutes and subsequently run through the flow cytometer (PAS-II, Partec 

GmbH) to determine their relative DNA-content (de Laat et al., 1987). Diploid shoots 

were subjected to Southern blot analysis in order to identify true transformants, that were 

subsequently potted in rockwool and transferred to the greenhouse. 
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Southern blot analysis. Total DNA was extracted from melon plants essentially as 

described by Doyle & Doyle (1990), using an isolation buffer containing 2% 

hexadecyltrimethylammoniumbromide (CTAB). Portions of 10 (lg DNA were digested 

with EcoR V, fractionated by electrophoresis in 0.8% agarose gels and transferred to 

Hybond-N membranes (Amersham) in alkaline transfer buffer employing a vacuum 

blotter apparatus, according to the supplier's instruction (Pharmacia). The blot 

membranes were subsequently hybridised to a 32P-labelled DNA fragment containing the 

ZYMV CP gene in a SSC based hybridisation buffer containing 10% dextran sulphate 

(Wählet al., 1979). 

Analysis of protection to ZYMV infection upon mechanical inoculation. Upon their 

emergence, approximately one week after sowing, seedling cotyledons were dusted with 

carborundum powder and wiped with cotton-wool dipped in virus inoculum. Inocula 

were freshly prepared by grinding 1 gram leaf material from systemically infected squash 

in 10 ml of 0.1 M sodium phosphate buffer (pH 7.0) supplemented with 1% Na2SC«3 and 

kept on ice. After inoculation plants were rinsed with water. This inoculation procedure 

was repeated between one to two weeks later, now inoculating the first true leaf. The 

extent of the ZYMV infection was monitored by visual observation for the development 

of systemic symptoms. Susceptible melon plants developed systemic symptoms within 2 

to 3 weeks after inoculation. Plants were scored susceptible when any leaf younger than 

the inoculated leaves showed typical systemic symptoms such as a yellow mosaic, leaf 

malformations or necrosis. At later stages of infection infected plants became stunted and 

reduced in height. 

Results 

Construction of plant gene cassettes for the ZYMV coat protein gene. 

The ZYMV coat protein (CP) gene was amplified by means of the polymerase chain 

reaction following reverse transcription (RT-PCR) of deproteinised RNA samples 

prepared from squash plants systemically infected with ZYMV. The primer set used in 

the RT-PCR reaction hybridised to the protease cleavage site of the CP gene and to the 

extreme 3' end of the ZYMV genome, encompassing the entire CP gene plus the 3' non-

translated region. Since potyvirus coat proteins are normally released from an initially 

expressed polyprotein by proteolytic processing, the primer hybridising to the 5' end of 

the ZYMV CP gene was designed to introduce an artificial ATG translation initiation 

codon immediately upstream of the open reading frame of the ZYMV CP gene (Fig. IB). 
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Fig. 1. Schematic representation of the plant gene cassettes for the ZYMV CP gene. A: Chimaeric gene 
cassettes consist of the CaMV 35S promoter, the ZYMV CP gene along with its 3' untranslated region, and 
the nos terminator. Arrows indicate the orientation of the ZYMV CP gene, asterisks refer to the position of 
point mutations. The complete ZYMV CP gene cassettes were cloned into binary transformation vector 
pBIN19 as BarnH l-Kpn I fragments. B: BaniW I; E: EcoR V; K: Kpn I; N: Nco I; P: Pst I; S: Sal I. B: 
Nucleotide sequences of the ATG region of ZYMV CP gene cassettes pZU193 and pZU195, aligned to the 
native nucleotide sequence derived from the Connecticut strain of ZYMV (Grumet & Fang, 1990). 
Deduced amino acid sequences are shown underneath the nucleotide sequences and numbered starting 
from the first amino acid of the mature ZYMV coat protein. The open reading frame of CP gene cassette 
pZU195 is distorted through the introduction of three point mutations causing the abortive translation of 
the pZU195 transcript. Substitutions and additions of single nucleotides are indicated with an asterisk. 

The ZYMV CP gene was subsequently cloned as a 1.1 kb Pst I fragment between the 

cauliflower mosaic virus (CaMV) 35S promoter and the polyadenylation signal derived 

from the 3' flanking region of the nopaline synthase (nos) gene. The sense and antisense 

orientation of the ZYMV CP gene yielded plant gene cassettes pZU193 and pZU194 

respectively (Fig. 1A). A third gene cassette (pZU195) consisted of a derivative of the 

sense orientation of the CP gene, in which the open reading frame was distorted by the 

introduction of a frame shift mutation immediately downstream of the ATG initiation 

file:///mtmaA
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codon (Fig. IB). Consequently, gene cassette pZU195 is translationally defective and 

thus is only expressed at the mRNA-level. Upon introduction of the chimaeric gene 

cassettes into binary vector pBIN19, the resulting transformation vectors were transferred 

to Agrobacterium tumefaciens strain GV3101(pMP90) (Koncz &Schell, 1986). 

Transformation of inbred melon genotype VIM3. 

Transgenic melon plants were obtained by means of Agrobacterium-mediated 

transformation of cotyledon expiants using genotype VIM3 as acceptor. This inbred 

melon line represents the market segment of the 'Charentais' type melons, and are 

characterised by their orange flesh and their smooth, slightly ribbed surface of their 

fruits. The transformation protocol was optimised to obtain workable frequencies of 

transformation for this melon genotype, using kanamycin resistance as selectable marker. 

About six weeks after co-cultivation, approximately 7% of the cotyledon expiants gave 

rise to shoot primordia, that were cut from the expiants for elongation and subsequent 

rooting. Rooted shoots were analysed for their ploidy level by means of flow cytometry. 

Approximately 70% of the shoots appeared to have retained the diploid ploidy level. 

Diploid shoots were subsequently analysed by Southern blot analysis to identify true 

transformants carrying the ZYMV CP gene cassettes (results not shown). In spite of the 

selection for kanamycin resistance during shoot regeneration, the majority of the shoots 

appeared to be escapes. On average, only 10% of the shoots was actually shown to be 

transformed. Because of this high escape rate, the effective transformation frequency, 

expressed as the percentage of expiants yielding independent diploid transformants, 

dropped to 0.5%. Diploid transformants were potted in rockwool, transferred to the 

greenhouse and maintained to produce offspring by self-pollination. None of the 

transformants nor their progeny populations exhibited phenotypic aberrations that could 

be assigned to the insertion or the expression of the ZYMV CP gene cassette. 

Protection of transgenic melon against ZYMV infections. 

In order to identify protected transformant lines, melon seedlings from SI progeny 

populations were challenged twice by mechanical inoculation using an inoculum 

prepared from squash systemically infected with ZYMV strain E15. This strain was 

isolated from a commercial melon crop in southern France and incites a typical yellow 

mosaic. At later stages of infection infected plants show general leaf malformations, 

become stunted and are reduced in height compared to mock inoculated plants. The final 

observation was made 3 weeks after inoculation when the susceptible control reached 

maximum infection levels (Fig. 2A). In spite of their segregating nature, four 

transformant lines were identified that showed reduced susceptibility to ZYMV infection, 
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Fig. 2. Protection of segregating SI progenies upon mechanical inoculation with ZYMV. Melon seedlings 
were challenged twice with an interval of approximately two weeks by mechanical inoculation with 
inocula prepared from young squash leaves systemically infected with ZYMV strain E15 (A) or strain E9 
(B). Control plants (white bars) consisted of non-transformed VM3 acceptor plants. Figures on top of the 
bars refer to the number of melon plants that have been scored for systemic symptoms in the final 
observation approximately 3 weeks after inoculation, including plants that did not inherit the ZYMV CP 
gene cassette through segregation. 

amongst a total number of 13 SI progeny populations analysed. While susceptible 

control plants normally developed a yellow mosaic, protected transformant lines (208, 

243, 312 and 343) contained a significant percentage of plants that resisted infection and 

that remained free of systemic symptoms. Engineered resistance was not only observed 

for ZYMV CP gene cassette pZU193 (transformant lines 208 and 243), but also for gene 

cassettes pZU194 and pZU195 that are only expressed at the transcript level (Fig. 1). 

This result proves the involvement of the mRNA transcript in the mechanism underlying 

the engineered resistance. Protected melon plants were free of virus as demonstrated by 

ELISA using a commercial antiserum raised against purified ZYMV virions (data not 

shown). The absence of detectable amounts of virus suggests that protected plants are 

resistant rather than tolerant to ZYMV infection. 

From each transformant line that resisted ZYMV infection, individual SI progeny plants 

were subjected to Southern blot analysis to determine the copy number of the ZYMV CP 

gene cassettes. Total genomic DNA was digested with EcoR V to release border 
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Fig. 3. Southern blot analysis of SI progeny plants descending from transformant line 343 that resisted 
ZYMV infection upon mechanical inoculation with ZYMV strain E15. Total DNA was extracted from leaf 
tissue, digested with EcoR V, fractionated by agarose gel electrophoresis and blotted to Hybond-N 
membranes. Genome fragments comprising the ZYMV CP gene cassette were detected by hybridisation 
with a 32P-labelled DNA fragment containing the ZYMV CP gene. The EcoR V digest releases a number 
of border fragments correlated with the copy number of the ZYMV CP gene cassette. 

fragments comprising the ZYMV CP gene. The number of border fragments hybridising 

then correlates directly to the copy number of the transgene. In this way transformant 

lines 312 was shown to carry one single copy of the transgene, in contrast to 

transformant lines 208 that carried at least five copies distributed over at least three 

independent loci, as could be deduced from their segregation pattern (data not shown). 

Transformant line 243 appeared to carry two copies, probably linked at one chromosome. 

Southern blot analysis of transformant line 343 revealed the presence of at least three 

transgene copies, two of which residing on the same chromosome, as can be inferred 

from the fact that both copies did not segregate in 13 individual SI progeny plants tested 

(Fig. 3). The third copy segregated independently and thus constitutes a second non-

linked locus. 

Except for transformant line 312, protected transformant lines were subsequently 

challenged with ZYMV strain E9. This highly virulent strain differs from E15 in that it 

generally provokes necrotic symptoms in melon cultivars carrying the Fn gene that 
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Fig. 4. Resistance to ZYMV infection of homozygous S2 progenies. Plants were challenged by mechanical 
inoculation with an inoculum prepared from young squash leaves systemically infected with ZYMV strain 
E9 or E15. After inoculation plants were inspected visually for the development of systemic disease 
symptoms. Control plants (white bars) consisted of non-transformed VIM3 acceptor plants. Figures on top 
of the bars refer to the number of melon plants that have been scored for systemic disease symptoms in the 
final observation about 3 weeks after inoculation. 

renders melon resistant to Fusarium infections (Bruno Foncelle, personal observation). 

Acceptor genotype VIM3 also carries the Fn gene. Upon inoculation, plants were 

monitored for the development of necrosis of non-inoculated leaves (Fig. 2B). 

Transformant lines 208 and 343 both exhibited high levels of protection in that the 

majority of plants resisted infection. Transformant line 243, carrying a single copy and 

thus segregating 3 to 1, similarly featured a high level of protection. Out of 33 SI plants 

challenged, 21 plants (i.e. 64%) withstood the highly virulent E9 isolate from systemic 

infection and subsequent necrosis development, which is in accordance with the 

segregation ratio expected for a single dominant gene. 

Progeny plants that resisted infection with ZYMV strain El 5 were maintained and self-

pollinated to produce S2 offspring. Transformant line 208 was omitted from further 

analysis, because of its high copy number and its complex inheritance. For the same 

reason, only plants carrying one of either loci as present within transformant line 343 

were selected to be proceeded to the next generation (Fig. 3: plant numbers R4, R5, R7, 

and R9). A subset of S2 progeny populations was again analysed for resistance to both 
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ZYMV strains. As shown in Fig. 4, fixed homozygous lines showing high levels of 

resistance to ZYMV resistance were readily identified amongst the S2 populations 

descending from transformant 243 and 312. Upon mechanical inoculation with strain E9, 

homozygous S2 populations fully resisted infection under the conditions employed. 

When challenged with strain E15, homozygous populations displayed an incomplete 

level of resistance as some transgenic plants developed systemic symptoms. In case of 

transformant line 343, only progeny populations carrying both linked copies (343-R4 and 

343-R5) displayed significant levels of protection. The S2 progeny descending from 343-

R7 carrying the single copy locus showed only marginal levels of protection. Apparently, 

the protection to ZYMV infection observed for the S1 progeny of transformant 343 

largely relies on the expression of one or both of the linked transgene copies, the 

contribution from the single copy locus being minor. 

Discussion 

The cultivation of melon suffers appreciable losses from viral infections. The most 

prevalent virus comprise a number of potyviruses including ZYMV, for which suitable 

sources of natural resistance are lacking. In such cases the concept of pathogen-derived 

resistance employing the use of synthetic resistance genes offers a powerful alternative 

(Sanford & Johnston, 1985). In this respect, the transgenic expression of viral coat 

protein genes is well-known to confer protection against the homologous virus (Beachy 

et al., 1992), and nowadays is widely exploited to protect crops from viral infection. 

Likewise, this chapter describes the successful exploitation of the ZYMV CP gene to 

engineer high levels of resistance to ZYMV infections in cultivated melon. The 

transformation of melon with the ZYMV CP gene was shown to yield transgenic lines 

with high levels of resistance to ZYMV infection when challenged by mechanical 

inoculation. Resistance was not only observed for gene cassette pZU193, which carries a 

functional derivative of the ZYMV CP gene that is potentially expressed at the protein 

level, but also for pZU194 and pZU195 that only express the ZYMV CP gene at the 

transcript level, in either sense or antisense orientation. Evidently, it is the transcript 

rather than the coat protein itself that constitutes the active entity underlying the observed 

resistance. This result confirms earlier reports illustrating the dominant role of the 

transgene transcript in establishing engineered potyvirus resistance (reviewed by Lindbo 

et al., 1993a). Since any recognition events based on protein-protein interactions are not 

involved, the transgenic resistance will not easily be overcome by mutant ZYMV strains 

that carry point mutations in their CP gene. Hence, transgenic resistance genes based 
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upon the RNA expression of the ZYMV CP gene may reasonably be expected to provide 

durable and reliable sources of genetic resistance to ZYMV infections. 

When challenged with the virus, transgenic lines carrying homozygous loci of the 

ZYMV CP gene displayed high levels of resistance, the majority of plants remaining free 

of systemic symptoms. Such extreme resistance levels suggest a mechanism other than 

antisense effects, as the latter generally generate merely moderate levels of protection. A 

more likely explanation for the observed resistance would be the induction of a virus-

specific antiviral state as postulated by Dougherty and co-workers (Lindbo et ai, 1993b). 

This model proposes the existence of a cytoplasmic activity that targets transcripts that 

have accumulated to a critical threshold level for degradation (Smith et ai, 1994). Once 

activated, the sequence specific degradation of the overexpressed transcript would also 

cause the elimination of homologous viral sequences from which the transgenic 

transcript is derived. Consistent with this assumption, virus resistance was shown to be 

correlated with high transcription rates, but low steady state levels of the mRNA (Lindbo 

et ai, 1993b; Smith et al., 1994). Whether this is the case for the ZYMV resistant melon 

lines needs further experimentation, which is beyond the scope of this study. 

In addition to ZYMV, the commercial culture of melon is frequently affected by 

watermelon virus II (WMV-II) and papaya ringspot virus (PRSV), two other potyviruses 

that both cause significant yield losses. Since engineered resistance based on the 

transgenic expression of CP gene-derived sequences has now been described for a 

substantial number of potyviruses, including ZYMV (Fang & Grumet, 1993), PVY (van 

der Vlugt et al, 1992) and tobacco etch virus (Lindbo & Dougherty, 1992a and 1992b), 

it is expected that the same strategy will confer resistance to these two potyviruses as 

well. The subsequent combination of such synthetic resistance genes through classical 

breeding then presents the next challenge on the way to the development of melon 

cultivars carrying multiple resistances to viral infections. Considering the current intent 

to reduce the utilisation of pesticides in modern agriculture, the subsequent integration 

and stacking of pathogen-derived resistance genes within vegetable breeding programs 

constitutes a highly attractive approach towards a more sustainable agriculture. 
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Abstract 

For a still growing number of positive-strand RNA viruses, it has been demonstrated that 

transformation of host plants with viral sequences confers resistance to the corresponding 

virus. In this chapter it is demonstrated that high levels of genetically engineered 

resistance can be obtained to tomato spotted wilt virus, an enveloped virus with a 

negative-strand RNA genome, by transforming tobacco with the viral nucleoprotein (N) 

gene. Since a translationally deficient N gene cassette was shown to generate similar 

levels of resistance, the observed resistance appears to be primarily RNA-mediated, due 

to the expression of the N gene at the RNA level. Transgenic tobacco plants are only 

protected to isolates or strains of TSWV and not to other tospovirus species that share 

considerable nucleotide homology in their N genes to TSWV. In addition to being 

protected upon mechanical inoculation, transgenic tobacco plants are also resistant to 

inoculation using viruliferous thrips, i.e. Frankliniella occidentalis (Perg.), the most 

important natural vector species. As such, this approach based on the transgenic 

expression of the viral nucleoprotein might be applicable for creating plants resistant to 

infection by other negative-strand RNA viruses. 

This chapter summarises two earlier publications: Gielen, J.J.L., P. de Haan, A.J. Kool, D. Peters, 
M.Q.J.M. van Grinsven & R.W. Goldbach, 1991. Engineered resistance to tomato spotted wilt virus, a 
negative-strand RNA virus. Biotechnology 9: 1363-1367; de Haan, P., J.J.L. Gielen, M. Prins, I.G. 
Wijkamp, A. van Schepen, D. Peters, M.Q.J.M. van Grinsven & R. Goldbach, 1992. Characterization of 
RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 
10:1133-1137. 
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Introduction 

Tomato spotted wilt virus (TSWV) represents the type species of the genus Tospovirus, 

which is classified within the arthropod-borne Bunyaviridae, a large family of negative-

strand RNA viruses (Elliot, 1990). Other species that have hitherto been recognised as 

members of this genus are impatiens necrotic spot virus (Law et al., 1991), groundnut 

ringspot virus and tomato chlorotic spot virus (de Ävila et al, 1993b), while recent 

studies indicated the existence of even more tospovirus species (Reddy et al., 1992; 

Heinze et al., 1995; Yeh & Chang, 1995). Among plant viruses tospoviruses are unique 

in their particle morphology and genome structure, and moreover, they represent the only 

plant viruses biologically transmitted by thrips (reviewed by German et ai, 1992). Virus 

particles are enveloped, spherically shaped (80-110 nm in diameter) and are studded with 

surface projections. The genome consists of three species of linear single stranded RNA, 

denoted S, M and L, that are individually wrapped with nucleoproteins (N) to form 

pseudo-circular nucleocapsids. 

The TSWV S RNA segment is 2.9 kb long and encodes two proteins in an ambisense 

gene arrangement (de Haan et al, 1990). The nucleoprotein (29 kD) is encoded by the N 

gene in viral complementary sense, whereas the non-structural (NSs) protein (52 kD) is 

encoded in viral sense (Fig. 1A). The M RNA comprises 4.8 kb and also exhibits an 

ambisense character encoding the putative viral movement (NSm) protein (33 kD) and 

two membrane glycoproteins, Gl (78 kD) and G2 (58 kD), which constitute the envelope 

spikes (Kormelink et al., 1992). The L RNA is 8.9 kb in length and is completely of 

negative polarity. It encodes one primary translation product of 332 kD corresponding to 

the viral polymerase present in the virus particles (de Haan et ai, 1991; van Poelwijk et 

al, 1993). 

The world-wide distribution of TSWV, together with the current dramatic expansion of 

one of its major vectors, the Western Flower thrips {Frankliniella occidentalis Perg.), 

makes this virus one of the most harmful plant viruses (Goldbach & Peters, 1994). To 

date more than 400 plant species, both mono- and dicotyledons, have been reported to be 

susceptible to TSWV infection, and considerable yield losses have been reported in the 

cultivation of many important crops, including tomato, tobacco, lettuce, groundnut, 

pepper and ornamentals such as Impatiens, Cyclamen and Chrysanthemum (Cho et al, 

1986; Peters et al, 1991). Mainly due to resistance of thrips species to insecticides, 

routine sanitary measures are no longer adequate for controlling the incidence of TSWV 

infections. 

The cloning and characterisation of the TSWV genome allowed us to address the 

question whether engineered resistance to TSWV infections could be achieved by the 
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transgenic expression of viral sequences, the viral N gene in particular. The rationale 

behind this approach is the dual function of the nucleoprotein. As demonstrated for 

various negative-strand viruses (Ihara et al., 1985; Beaton & Krug, 1986; 

Franze-Fernandez et al, 1987; Vidal & Kolakofski, 1989), the nucleoprotein is not only 

involved in wrapping the viral RNAs to yield nucleocapsids, but also in regulating 

transcription and replication during the infection cycle. At early stages of infection, when 

the titer of free, unassembled nucleoprotein is low, the viral polymerase is active as a 

transcriptase, while at later stages of infection when the titer of the nucleoprotein 

increases, the viral polymerase is switched into the replication mode. Therefore, it is 

reasoned that the constitutive accumulation of the TSWV nucleoprotein in a susceptible 

host plant like tobacco might cause premature switching of the viral polymerase resulting 

in the abortive replication of incoming viral RNAs. 

Materials and methods 

Virus and plant material. TSWV isolate BR-01 was originally isolated from tomato in 

Brazil. The viral N gene used in transformation experiments was derived from this virus 

isolate (de Haan et al., 1990). Two other tospoviruses, groundnut ringspot virus (GRSV) 

isolated from groundnut in South Africa, and tomato chlorotic spot virus (TCSV) isolated 

from tomato in Brazil, have been described previously (Âvila et ai, 1990; Âvila et al., 

1993a). Virus isolates were maintained in tomato by grafting, or in Nicotiana rustica var. 

America. Nicotiana tabacum var. SRI was used as recipient in transformation 

experiments. Transgenic tobacco plants were grown under certified greenhouse 

conditions (PKII), according to the legislation imposed by the Dutch authorities 

(Voorlopige Commissie Genetische Modificatie: VCOGEM). 

Construction of plant gene cassettes for the TSWV N gene. All manipulations involving 

DNA were essentially performed according to standard procedures (Ausubel et al, 

1987). A cDNA fragment containing the TSWV N gene, 124 nucleotides of its 

5'-untranslated leader sequence and 6 nucleotides of its 3'-trailer sequence (de Haan et 

al, 1990) was provided with Pst I linkers and subsequently cloned into the expression 

vector pZU139, yielding pTSWVN-A. Expression vector pZU139 contained the 

cauliflower mosaic virus (CaMV) 35S promoter sequences and the terminator sequences 

from the nopaline synthase (nos) gene, separated by the recognition sequence of Pst I. 

Chimaeric gene cassette pTSWVN-B essentially differs from pTSWVN-A in that the 5'-

untranslated leader of the TSWV N gene was replaced by that from tobacco mosaic 
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virus. To this purpose the TSWV N gene was amplified by means of the polymerase 

chain reaction (PCR) from a cDNA clone containing the full-length N gene (de Haan et 

ai, 1990), using oligomer primers 1823B (5' GGGCTGCAGCTGCTTTCAAGCAAGTTC 3') 

and 1824 (5' TTACGATATCATQTCTAAGG 3'). Primer 1824 hybridised to the ATG region 

of the N gene and introduced the recognition sequence of EcoR V immediately upstream 

of the ATG initiation codon; primer 1823B was complementary to the carboxy terminus 

of the N gene and introduced a Pst I site at 6 nucleotides downstream of the TGA stop 

codon. The PCR-amplified fragment of 0.8 kb was digested with EcoR V and Pst I and 

ligated into expression vector pZU029, yielding gene cassette pTSWVN-B. Expression 

vector pZU029 contained the CaMV 35 S promoter fused to the 5'-untranslated leader 

sequence from tobacco mosaic virus, and the nos polyadenylation signal separated from 

the promoter fragment by the recognition sequence of Sma I and Pst I. The 

translationally defective gene cassette pTSWVN-C was obtained in analogy to 

pTSWVN-B, applying PCR-mediated mutagenesis using oligonucleotide primer 1823B 

in combination with oligonucleotide primer Jan030 (5' TACGATATCCTGTCTAGA-

GGTT 3'). Within this latter primer the ATG translation initiation codon was mutated into 

CTG and the translation^ reading frame of the N gene disrupted through the introduction 

of a frame shift mutation (insertion of an additional G residue at position +5). Upon their 

assembly, chimaeric gene cassettes were cloned as Xba I fragments into binary 

transformation vector pBIN19 (Bevan, 1984). 

Transformation of tobacco. The pBIN19 derived transformation vectors were mated into 

the non-oncogenic A. tumefaciens strain LBA4404 (Ooms et al, 1981) by triparental 

mating using pRK2013 as a helper plasmid (Ditta et al., 1980). The resulting 

recombinant A. tumefaciens strains were checked for the integrity of the transformation 

vectors by Southern blot analysis. Transformation and regeneration of in v/fra-grown 

Nicotiana tabacum var. SRI was performed by the leaf disk method, essentially 

according to Horsch et al. (1985). Transgenic tobacco shoots, selected for resistance to 

kanamycin (100 |ig/ml), were rooted, potted in soil and subsequently transferred to the 

greenhouse. 

Serological analysis of transgenic tobacco plants. The amounts of the TSWV 

nucleoprotein accumulating in transgenic tobacco plants were quantified by double-

antibody-sandwich (DAS) ELISA, using a rabbit polyclonal antiserum raised against 

purified TSWV nucleocapsids (Resende et ai, 1991). Protein samples were prepared by 

grinding leaf material in phosphate-buffered saline supplemented with 0.1% Tween-20 

(PBS-T) and 2% insoluble polyvinylpolypyrrolidone, and incubated overnight at 4 °C in 
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microtiter plate wells (Nunc-Immuno Plate MaxiSorp™). The wells had previously been 

coated overnight at 4 °C with antiserum diluted to 1 ng/ml in coating buffer (50 mM 

sodium carbonate buffer pH9.6) and blocked with 1% BSA in PBS-T for 1 hour at room 

temperature. Bound antigen was detected by incubation with alkaline phosphate-

conjugated antiserum (lp.g/ml in PBS-T) for 3 hours at 37 °C, followed by para-

nitrophenyl phosphate substrate development (1 mg/ml in 50 mM diethanolamine buffer 

pH9.8). The absorbance of each well was measured at 405 nm. Between all incubation 

steps the wells were thoroughly rinsed with PBS-T. Purified nucleoprotein was included 

as standard, while the total soluble protein content of leaf extracts was determined using 

the Bio-Rad protein assay. 

The integrity of the TSWV nucleoprotein accumulating in transgenic tobacco plants was 

verified by Western blot analysis. Leaf tissue was homogenised in PBS-T and 25 ng of 

soluble protein was fractionated by electrophoresis in 12.5% SDS-polyacrylamide gels 

(Laemmli, 1970). Proteins were blotted to Immobilon-P membranes (Millipore) by semi-

dry blotting in semi-dry transfer buffer (29 mM glycine, 48 mM Tris, 0.0375% SDS and 

20% methanol) for 1 hour at 0.8 mA/cm2. Membranes were blocked for 3 hours at 37 °C 

in PBS-T containing 3% BSA, and subsequently incubated with polyclonal antiserum 

conjugated with alkaline phosphatase (Resende et ai, 1991), diluted to 1 ng/ml in PBS-T 

supplemented with 0.3% BSA. The immunoblot was further processed using nitroblue 

tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-indolylphosphate p-toluidine salt 

(BCIP) as substrate according to the supplier's instruction (ImmunoSelect™, Life 

Technologies Inc.). Between subsequent treatments the membrane was washed with 

PBS-T containing 0.3% BSA. 

Analysis of protection to TSWV and related tospoviruses. Prior to inoculation, progeny 

populations of self-pollinated tobacco transformants were analysed for the accumulation 

of TSWV nucleoprotein by DAS-ELISA, at least when carrying N gene cassettes 

pTSWVN-A or -B. Non-transgenic progeny plants which did not inherit the N gene 

cassette because of segregation, were used as controls. When in their two leaves stage, 

approximately 6 weeks after sowing, plants were dusted with carborundum and the 

largest leaf was inoculated with 25 jxl inoculum, containing approximately 5-10 \yg virus. 

Inocula were prepared by grinding 1 gram of systemically infected Nicotiana rustica 

leaves in 5 ml 0.1 M sodium phosphate buffer (pH7.0) supplemented with 0.01 M 

Na2SÛ3. Since TSWV and tospoviruses in general belong to the most unstable plant 

viruses known (Ie, 1970; Francki et al., 1985), all inocula were prepared freshly and kept 

on ice. Transgenic plants were inoculated first, followed by the control plants. After 

inoculation, leaves were rinsed with water and plants were monitored regularly for the 
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development of systemic symptoms. Systemically infected leaves typically exhibited a 

yellow mosaic that later on developed into a severe necrosis that caused infected plants to 

die. Plants were scored susceptible when any leaf younger than the inoculated leaf 

showed systemic symptoms. Visually healthy plants were analysed for the presence of 

virus by ELISA using virus specific polyclonal antisera raised against purified 

nucleocapsids, or using monoclonal antibodies directed to the membrane glycoproteins 

(deÄvilaefa/., 1990). 

Inoculation using viruliferous thrips. Thrips cultures of Frankliniella occidentalis (Perg.) 

were maintained on bean pods (Phaseolus vulgaris L.) in modified Tashiro cages 

(Tashiro, 1967) at 27 °C and a photoperiod of 16 hours. Prior to each experiment, first-

instar larvae (LI, 0-12 hours old) were allowed to feed on Datura stramonium (L.) plants 

infected with TSWV BR-01 for three days. The larvae were subsequently fed on healthy 

Datura plants that were changed regularly. Upon their emergence, adult thrips were 

individually tested for their infectivity on Petunia hybrida (L.) (Allen et al., 1991). 

Viruliferous adults were transferred to 20 transgenic and 10 non-transgenic 4-weeks old 

tobacco seedlings (three thrips per plant). After an inoculation access period (IAP) of 

three days, the thrips were killed by spraying with a 10% solution of dichloorvos 

(Schering/Aagrunol), and tobacco plants were monitored daily for the development of 

local and systemic symptoms. 

Results 

Transformation of tobacco with the TSWV nucleoprotein gene. 

Starting from a full-length cDNA clone of the TSWV nucleoprotein (N) gene, chimaeric 

gene cassette pTSWVN-A was constructed consisting of the cauliflower mosaic virus 

(CaMV) 35S promoter, the viral N gene with 124 nucleotides of its 5'-untranslated leader 

sequence, and the polyadenylation signal derived from the 3' flanking region of the 

nopaline synthase (nos) gene (Fig. IB). In order to further enhance expression levels of 

the N gene, the 5'-leader region of the N gene was replaced by the 5'-untranslated leader 

from tobacco mosaic virus (TMV), which is known to function as a translational 

enhancer (Gallie et al., 1987). To this purpose, the N gene was amplified from the cDNA 

clone harbouring the complete viral gene by means of PCR. The primers used in the 

amplification reaction carried appropriate restriction sites to facilitate the assembly of 

plant gene cassette pTSWVN-B, which comprises the 5'-untranslated leader sequence 

from tobacco mosaic virus (TMV) immediately downstream of the transcription 
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Fig. 1. Schematic representation of the structure of the ambisense TSWV S RNA (panel A), and of the 
chimaeric TSWV N gene cassettes (panel B). vRNA: viral RNA; vcRNA: viral complementary RNA. 
Sense and complementary sense regions of the vRNA and vcRNA strand of the ambisense S RNA are 
indicated with (+) and (-) respectively. The positions of the translation initiation and termination codon of 
the N gene are numbered from the 5' end of the vRNA (de Haan et al, 1990). The point mutations within 
the nucleotide sequence surrounding the ATG initiation codon of the translationally defective gene cassette 
pTSWVN-C are shown below (panel C). 

initiation site of the CaMV 35S promoter (Fig. IB). A third chimaeric gene cassette, 

pTSWVN-C, was derived from pTSWVN-B by disrupting the translational reading 

frame of the N gene through site-directed mutagenesis, rendering this gene cassette 

translationally defective (Fig. 1C). Upon assembly, chimaeric gene cassettes were cloned 

into the binary transformation vector pBIN19 and subsequently transformed to Nicotiana 

tabacum var. SRI by means of A. fwrne/acims-mediated leaf disc transformation. 
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Fig. 2. Accumulation of the TSWV nucleoprotein in transgenic tobacco plants. Accumulation levels were 
quantified by DAS-ELISA using an antiserum raised against purified nucleocapsids, and presented as the 
percentage of the total soluble leaf protein content. Numbers refer to primary tobacco transformants. 

Expression of the TSWVN gene in transgenic tobacco. 

The expression of the TSWV N gene cassette in transgenic tobacco plants carrying 

functional gene cassette pTSWVN-A or pTSWVN-B was analysed and quantified by 

ELISA (Fig. 2). Between individual transformants, the accumulation levels of the 

nucleoprotein ranged from below detection level to 1.5% of the soluble leaf protein 

fraction. Such differences in the amount of nucleoprotein accumulating in independent 

transformants are probably due to position effects, originating from the modulation that 

the local genomic environment exerts on the expression of the transgene (Peach & 

Veiten, 1991). Despite the inter-transformant variability, the average amount of 

nucleoprotein accumulating in pTSWVN-B transformants was approximately twice as 

high as in TSWVN-A transformants. The integrity of the nucleoprotein accumulating in 

transgenic plants was verified by Western blot analysis, showing that the transgenically 

expressed protein co-migrated with that extracted from tobacco plants systemically 

infected with TSWV (Fig. 3). 

ELISA analysis of SI progenies obtained by self-pollination of the primary 

transformants, revealed the segregation ratios of the active N gene cassettes from which 

the nucleoprotein is expressed. In most cases a segregation ration of 3 to 1 (expressor 

versus non-expressor) was obtained, indicating that the N gene cassette behaved as a 

single dominant gene. Within progeny populations, a strict correlation between the level 
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Fig. 3. Western blot analysis of tobacco transformants accumulating the TSWV nucleoprotein. Leaf protein 
samples were separated on 12.5% SDS-polyacrylamide gels, blotted to Immobilon-P membranes and the 
TSWV nucleoprotein detected using a polyclonal antiserum. Molecular weight markers are indicated on 
the right and numbers refer to primary tobacco transformants; T: tobacco systemically infected with 
TSWV; P: pepper systemically infected with TSWV; SRI: non-transgenic cceptor genotype. 

of expression and the zygosity of the N gene cassette (homozygous or hemizygous) could 

not be observed. As anticipated, tobacco transformants carrying the translationally 

defective N gene cassette pTSWVN-C did not accumulate any nucleoprotein, at least not 

to detectable levels in DAS-ELISA. The expression of the defective N gene cassette at 

the transcript level, however, was confirmed by Northern blot analysis (data not shown). 

Protection of transgenic tobacco against TSWV infections. 

To evaluate the protection of transformant tobacco lines to TSWV infections, SI progeny 

plants descending from 15 independent transformants accumulating the TSWV 

nucleoprotein were challenged by mechanical inoculation with the virus. Prior to 

inoculation, SI progeny plants were analysed for the accumulation of the nucleoprotein 

to identify those individuals that inherited the N gene cassette. Segregant progeny plants 

that did not inherit the N gene cassette were used as susceptible controls. Over three 

separate experiments, 80 progeny plants of each selected line were inoculated with 5 to 

10 n.g virus and subsequently monitored for the appearance of systemic symptoms. 

Inocula were prepared from Nicotiana rustica leaves systemically infected with TSWV 

isolate BR-01. Observed levels of protection were arbitrarily classified into three 

categories of resistance: category A, over 60% of the progeny plants accumulating the 
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Table I. Resistance to TSWV infection upon mechanical inoculation of transgenic tobacco lines 
accumulating the TSWV nucleoprotein. Prior to mechanical inoculation, progeny plants were analysed for 
the accumulation of the transgenically expressed nucleoprotein. Non-transgenic progeny plants that did not 
inherit a copy of the TSWV N gene cassette functioned as susceptible controls and were omitted from the 
final scores of the transgenic progeny populations. 

Gene construct 

pTSWVN-A 

pTSWVN-B 

Transformant 
line 

12 
29 
61 
63 
58 

107 
108 
117 
109 
121 
115 
148 
141 
139 
129 

Accumulation level 
of the nucleoprotein2 

0.3 
0.3 
0.3 
0.4 
0.6 

0.1 
0.1 
0.1 
0.3 
0.4 
0.7 
0.7 
1.0 
1.1 
1.2 

Resistance 
category1 

A 
C 
C 
B 
C 

C 
C 
C 
C 
C 
C 
A 
C 
A 
B 

'The accumulation levels of the transgenically expressed nucleoprotein are presented as percentages of 
total soluble leaf protein. 2Category A, more than 60% of the plants accumulating the nucleoprotein 
resistant; category B, 20-60% of the transgenic plants resistant; category C, less than 20% of the plants 
resistant to TSWV infection. 

TSWV nucleoprotein resistant to TSWV infection; category B, 20-60% resistant; 

category C, less than 20% resistant (Table I). Out of 15 transformant lines tested, 6 lines 

showed significant levels of protection to TSWV infection, in that they belonged to 

category A or B. A typical inoculation experiment is shown in Fig. 4, for transformant 

lines 129,139 and 141. The initial transformants of these transformant lines accumulated 

equal amounts of the transgenically expressed nucleoprotein to roughly 1.0% of total 

soluble protein (Fig. 2). Their progeny populations, however, display different levels of 

resistance. Approximately 90% of the progeny plants descending from transformant line 

139 (category A) resisted infection, while transformant line 141 (category C) merely 

showed a delay in systemic symptom development. Transformant line 129 (category B) 

displayed an intermediate level of resistance as only about 25% of the progeny plants 

accumulating nucleoprotein remained free of systemic symptoms. Evidently, a 

correlation between the observed levels of protection and the amount of nucleoprotein 

accumulating in transgenic tobacco plants could not be observed. When analysed by 

ELISA using monoclonal antibodies to the membrane glycoproteins of the virus (de 
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139 
141 

days after inoculation 

Fig. 4. Development of systemic disease symptoms in transgenic SI progeny plants upon mechanical 
inoculation with TSWV. Non-transgenic progeny plants that did not inherit the TSWV N gene cassette 
because of segregation functioned as susceptible controls. Plants were inoculated with approximately 5-10 
|ig of virus and subsequently monitored for the appearance of systemic symptoms. 

Âvila et al., 1990), protected plants were shown to be completely free of virus, except for 

the few primary infection spots that appeared on the inoculated leaves. 

Mechanical inoculation of SI progeny populations descending from 23 independent 

pTSWVN-C transformants surprisingly revealed 4 lines that showed resistance to TSWV 

(Fig. 5). Within these SI progeny populations segregating for the transgene, 30 to 80% of 

the plants resisted infection with TSWV and were shown to be free of virus when tested 

by DAS-ELISA. Other transformant lines were as susceptible as non-transformed control 

plants, reaching 100% infection within 10 days. In all, these results demonstrate the 

transgenic expression of the TSWV N gene to confer high levels of resistance to TSWV 

infection in tobacco. Yet, the engineered resistance is primarily mediated by the 

accumulation of the N gene transcript, rather than by the accumulation of the 

nucleoprotein itself. 

Characterisation of resistance to TSWV infection. 

Progeny plants that resisted TSWV infection were maintained and self-pollinated to 

produce S2 offspring. Fixed S2 progenies descending from primary transformations 12 

and 129 carrying single homozygous copies of the N gene cassette were identified by 

ELISA. Challenging fixed homozygous progeny populations by mechanical inoculation 

revealed levels of resistance significantly increased compared to segregating populations, 

comprising hemizygous as well as homozygous individuals (Fig. 6). Levels of resistance 

in homozygous S2 progenies reached 100%, while non-fixed populations merely showed 
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control 
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1011 
1019 
1023 
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Fig. 5. Resistance to TSWV infection of SI progeny populations segregating for the translationally 
defective gene cassette pTSWVN-C. For each transformant line twenty progeny plants were challenged by 
mechanical inoculation with approximately 5-10 (ig of virus and subsequently monitored for the 
development of systemic symptoms. Control plants consisted of non-transformed SRI tobacco plants. 

intermediate levels of resistance (70% and 40% for transformant lines 12 and 129 

respectively). 

Recently, several laboratories described the occurrence of novel distinct tospoviruses 

(Law et al., 1991; Reddy et ai, 1992; de Âvila et ai, 1993b; Heinze et ai, 1995; Yeh & 

Chang, 1995). Amongst these, tomato chlorotic spot virus (TCSV) and groundnut 

ringspot virus (GRSV) have a host range similar to TSWV and share approximately 80% 

nucleotide sequence homology with the TSWV N gene (de Âvila et al., 1993b). In order 

to evaluate the spectrum of resistance generated by the TSWV N gene cassette, 

homozygous S2 progenies descending from transformant lines 12 and 129 were 

challenged by mechanical inoculation with TCSV and GRSV (Fig. 7). Both viruses 

however, escaped from the protection engendered by the transgenic expression of the 

TSWV N gene, and transgenic tobacco plants normally developed systemic symptoms 

characteristic for both viruses. 

Protection to TSWV infection upon inoculation by viruliferous thrips. 

In nature, TSWV is obligatory transmitted by thrips species, of which Frankliniella 

occidentalis (Perg.) is the most important. To assess the engineered resistance upon 

thrips-mediated inoculation, transgenic tobacco plants were challenged by inoculation 

using viruliferous thrips. When three adult thrips were fed for three days on four-weeks 

old tobacco plants, typical feeding scars caused by mechanical damage of the leaf tissue 

were observed on all plants. Non-transgenic control plants became systemically infected 
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Fig. 6. Resistance to TSWV infection of fixed S2 progeny populations carrying single homozygous copies 
of the N gene cassette compared to segregating progeny populations comprising hemizygous as well as 
homozygous individuals. Plants were first analysed for the accumulation of the transgenically expressed 
nucleoprotein, and subsequently challenged by mechanical inoculation. Control plants consisted of non-
transformed tobacco plants including progeny plants that did not inherit the N gene cassette through 
segregation. 

within four to five days after inoculation. In contrast, homozygous transformant lines 12-

R2 and 129-R7, both accumulating the transgenically expressed nucleoprotein, as well as 

line 1004-R2 accumulating the translationally defective mRNA transcript, all remained 

completely free of symptoms, except for the thrips feeding scars (Fig. 8). Evidently, the 

transgenic expression of the N gene not only confers resistance upon mechanical 

inoculation with virus, but also when challenged by inoculation with the thrips vector. 
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Fig. 7. Development of systemic symptoms in homozygous transformant lines upon mechanical 
inoculation with TSWV and related tospoviruses TCSV and GRSV. Transformant plants were challenged 
by mechanical inoculation with an inoculum of approximately 5-10 |i.g virus prepared from Nicotiana 
rustica plants systemically infected with TSWV, TCSV or GRSV. Control plants consisted of non-
transformed SRI tobacco plants. 
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Discussion 

The transformation of tobacco with the TSWV N gene provides the first example of 

genetically engineered resistance to a negative-strand RNA virus. Upon mechanical 

inoculation, protected plants resisted infection and remained free of systemic symptoms, 

while those plants that did become infected showed a delay in systemic symptom 

development. When the transgene was fixed in homozygous progeny populations, levels 

of engineered resistance further increased, reaching virtual immunity as diseased plants 

could no longer be observed (100% resistance). As importantly, the engineered resistance 

was shown to be maintained when transgenic tobacco plants were challenged by 

inoculation using viruliferous thrips. In transgenic tobacco plants that resisted infection 

the presence of virus could not be demonstrated, except for the primary infection spots 

on the inoculated leaves. 

The transgenically expressed nucleoprotein was shown to accumulate up to exceptionally 

high levels of approximately 1.5% of the total soluble leaf protein, without having any 

deleterious effects on phenotype or fertility of the tobacco transformants. In spite of such 

high accumulation levels, the engineered resistance is considered to be primarily 

mediated at the RNA level, since the transgenic expression of a translationally defective 

gene cassette of the TSWV N gene generated similar levels of resistance. Evidently, it is 

the N gene transcript rather than its translation product that represents the active entity 

underlying the engineered resistance. 

control 

12-R2 

129-R7 

1004-R2 

days after Inoculation 

Fig. 8. Resistance of homozygous S2 progeny populations to TSWV infection upon inoculation using 
viruliferous thrips. First-instar larvae were fed on Datura stramonium (L.) plants infected with TSWV and 
subsequently maintained on several changes of healthy Datura plants until they reached the adult stage. 
Individual tobacco plants were challenged with the virus by inoculation with three adult thrips, that were 
allowed to feed on the tobacco plants for three days. Control plants consisted of non-transformed SRI 
tobacco plants. 
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The N gene transcript as expressed in transgenic tobacco plants is of antigenomic 

polarity and might therefore exhibit antisense activity, blocking virus replication and 

multiplication. Alternatively, or additionally, N gene transcripts may compete for viral 

and/or host-encoded replication factors. Engineered resistance mediated by the 

accumulation of mRNA transcripts encoding structural viral proteins has been reported 

for potyviruses as well, including tobacco etch viruses (Lindbo & Dougherty, 1992), 

potato virus Y (van der Vlugt et al., 1992) and zucchini yellow mosaic virus (Fang & 

Grumet, 1993; Chapter 6 of this thesis). The high levels of protection as generally 

observed for engineered resistances mediated at the transcript level, however, suggest a 

mechanism other than RNA-RNA interactions or competition effects. In this light, the 

existence of an virus-specific antiviral state as postulated by Dougherty and co-workers 

seems to provide a more plausible explanation (Lindbo et al, 1993). As this model 

implies the accelerated break down of RNA sequences that surpass a critical threshold 

value for maximum accumulation, the overexpression of the N gene transcript then 

coincides with the immediate degradation of incoming viral sequences, yielding the virus 

resistant phenotype (Smith et al, 1994). 

Since the engineered resistance to TSWV infection is RNA-mediated, a certain minimum 

level of nucleotide sequence homology between the transgenically expressed N gene and 

that of the invading virus is required in order to obtain resistance. Accordingly, the 

TSWV N gene, which shares approximately 80% nucleotide sequence homology with 

the N gene from TCSV and GRSV (de Ävila et al, 1993b), was unable to confer 

protection to these related tospoviruses. However, the N gene of TSWV was effective in 

protecting against different strains or isolates of TSWV with much less heterogeneity in 

their N gene sequences. The requirement for a minimal level of sequence homology 

higher than 80% has of course practical consequences if one aims at N gene-mediated 

resistance to multiple tospoviruses. In analogy to TSWV, however, it may reasonably be 

expected that the transgenic expression of N-gene derived sequences from other 

tospoviruses will likewise generate high levels of engineered resistance. 
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Abstract 

Tomato spotted wilt virus (TSWV) infections cause significant economic losses in the 

commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and 

introgression of natural sources of resistance to TSWV have only been marginally 

effective in controlling the TSWV disease. Recently however, high levels of protection 

against TSWV have been obtained by transforming tobacco with a chimaeric gene 

cassette comprising the TSWV nucleoprotein gene (Chapter 7 of this thesis). This 

chapter demonstrates the successful application of this newly created TSWV resistance 

gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV 

nucleoprotein gene cassette resulted in high levels of resistance to TSWV infections that 

were maintained in transgenic hybrids challenged with the virus by natural infection in 

open field. Therefore, transformant lines carrying the synthetic TSWV resistance gene 

make suitable progenitors for TSWV resistance to be incorporated into the breeding 

programs of tomato. 

This chapter will be published in a condensed form as: Ultzen, T., J. Gielen, F. Venema, A. Westerbroek, 
P. de Haan, M.-L. Tan, A. Schram, M. van Grinsven & R. Goldbach, 1995. Resistance to tomato spotted 
wilt virus in transgenic tomato hybrids. Euphytica, in press. 
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Introduction 

The commercial culture of tomato (Lycopersicon esculentum Mill.) is seriously affected 

by tomato spotted wilt virus (TSWV) infections causing significant yield losses. 

Characteristic symptoms associated with TSWV infections include plant stunting, 

bronzing or chlorosis of leaves, and the development of chlorotic or necrotic ringspots on 

the fruits. The virus is naturally transmitted by a number of thrips species, of which the 

Western flower thrips (Frankliniella occidentalis Perg.) is the most important. The 

dramatic expansion of F. occidentalis from North-America over the western hemisphere 

and its rapid acquisition of resistance to pesticides are the major reasons for recent 

outbreaks of the TSWV disease, not only in tomato but also in other crops such as pepper 

and lettuce (Goldbach & Peters, 1994). 

Among plant viruses TSWV is unique in its genomic organisation and its particle 

morphology. The virus particle is bounded by a spherical shaped lipoprotein envelope 

enclosing a core of nucleocapsids, consisting of three genomic RNA segments that are 

individually associated with nucleoprotein, and that exhibit either negative or ambisense 

gene arrangements (Fig. 1) (de Haan et al, 1990; de Haan et al., 1991; Kormelink et al., 

1992). On the basis of these properties, TSWV has been classified as the type member of 

the genus Tospovirus, the only genus within the Bunyaviridae family that infects plants 

(for an overview on tospoviruses, see German et al., 1992). Over the past few years, a 

number of distinct virus species has been identified and classified as novel tospoviruses 

(Law et al., 1991; Reddy et ai, 1992; de Âvila et ai, 1993; Heinze et al., 1995; Yeh & 

Chang, 1995) and it is expected that the number of tospoviruses will further increase in 

the near future. 

Culture practices such as rotation, control of the thrips vector and removal of alternate 

weed hosts have only been marginally effective in the management of the TSWV disease 

(Cho et al., 1989). Consequently, host plant resistance to the virus is the most promising 

means of controlling the disease in the long term. Several accessions of Lycopersicon 

germplasm and tomato cultivars descending from such accessions have been reported to 

be resistant to TSWV (Smith, 1944; Finlay et al., 1952; Finlay et al, 1953; Paterson et 

al., 1989; Kumar et al, 1993). The inheritance of a source of resistance to TSWV 

derived from L. peruvianum Mill, was found to behave as a single dominant gene (Sw-5) 

(Stevens et al, 1992; Boiteux & Giordano, 1993). However, in the field, plants carrying 

the Sw-5 gene frequently still accumulate virus resulting in the development of disease 

symptoms on the fruits (personal observation), which renders the utilisation of this 

source questionable. The fact that tomato cultivars carrying a reliable source of genetic 

resistance to TSWV have still not reached the market illustrates the limited applicability 
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or the complex inheritance of resistance sources identified thus far. Moreover, the 

emergence of new tospoviruses that infect tomato constitutes a serious threat and urges 

the need for identification or development of new sources of resistance to be 

incorporated into tomato breeding programs, especially when considering proposed 

reductions in the application of insecticides for reasons of environment protection. 

Over the past decade numerous publications have demonstrated the successful generation 

of virus resistance through transgenic expression of viral sequences in plants (reviewed 

by Hull & Davies, 1992; Scholthof et al., 1993; Wilson, 1993). Transformation of 

tobacco with the TSWV nucleoprotein gene (N gene) has likewise been shown to result 

in resistance against TSWV infections (Gielen et al, 1991; MacKenzie & Ellis, 1992; 

Pang et ai, 1992; Chapter 7 of this thesis). Expression of a translationally defective N 

gene cassette generated similar levels of resistance, which indicates that the accumulation 

of nucleoprotein is not required to obtain TSWV resistance and that the observed 

resistance is primarily RNA-mediated (de Haan et ai, 1992; Chapter 7 of this thesis). To 

study the application of this technology in crops of agronomic importance, the TSWV N 

gene cassette was transformed to an inbred tomato line used in the production of fresh 

market hybrids. Upon mechanical inoculation resistant transformant lines were identified 

which were then cross-pollinated to produce experimental hybrids. The transgenic 

TSWV resistance is successfully maintained in the hybrid when challenged by thrips-

mediated infection under field conditions, thereby indicating that transgenic parental 

lines can serve as progenitors for TSWV resistance in tomato breeding programs. 

Materials and methods 

Virus and plant material. TSWV isolate BR-01, originally isolated from tomato in 

Brazil, was maintained in tomato by grafting to prevent the generation of defective 

mutants by repeated mechanical passages (Resende et al, 1991a). The tobacco 

(Nicotiana tabacum cv. Xanthi) cell suspension used in the transformation procedure of 

tomato was grown in the dark at 26 °C on a shaking platform and maintained through 

weekly subculturing in Xanthi medium: MS medium (Murashige & Skoog, 1962), 

supplemented with 30 g/1 sucrose, 100 mg/1 inositol, 200 mg/1 KH2P04, 1.3 mg/1 

thiamine, 0.2 mg/1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/1 kinetin. Parental 

tomato line ATV847 was used as recipient in transformation experiments. This inbred 

line is used as male parent in the production of a number of hybrids for the South 

European market, that represent fresh market tomatoes of the indeterminant type. 

Transgenic tomato plants were grown under certified greenhouse conditions according to 
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the legislation imposed by the Dutch authorities (Voorlopige Commissie Genetische 

Modificatie: VCOGEM). 

Construction of the plant transformation vector. All manipulations involving DNA were 

essentially performed according to standard procedures (Ausubel et ai, 1987). The 

construction of plant gene cassette pTSWVN-B carrying the TSWV N gene has already 

been described in Chapter 7. Upon its assembly the complete gene cassette was released 

as a Xba I fragment and cloned into the binary plant transformation vector pBIN19 

(Bevan, 1984). The resulting transformation vector was subsequently introduced into the 

non-oncogenic Agrobacterium tumefaciens strain LBA4404 (Ooms et al., 1981) by 

triparental mating using pRK2013 as a helper plasmid (Ditta et al., 1980). The 

recombinant A. tumefaciens strain was checked for the integrity of the transformation 

vector by Southern blot analysis. 

Transformation of parental tomato line ATV847. The transformation method described 

hereinafter is based on the application of tobacco feeder layer cells during preculture and 

cocultivation of the cotyledon expiants (Shahin et al, 1986; Fillatti et ai, 1987; Yoder et 

al, 1988). Thin layers of a tobacco Xanthi cell suspension were poured onto petri dishes 

containing Xanthi medium solidified with 10 g/1 micro agar (Duchefa, Haarlem). The 

feeder plates were incubated at 26 °C in the dark for 24 hrs. Directly before use, a sterile 

Whatman filter was placed on top of the feeder cells. Cotyledon expiants were prepared 

from 8 to 10 days old in vitro grown seedlings of parental tomato line ATV847. The 

cotyledons were cut across the base and top to provide two cut surfaces for infection. The 

resulting expiants were subsequently placed on the feeder plates with the abaxial side up 

and precultured at 24 °C in the dark for 24 hours. An overnight culture of the 

recombinant Agrobacterium strain carrying transformation vector pTSWVN-B was 

diluted in liquid MS medium containing 30 g/1 sucrose to a density of 5xl07 cells/ml. 

The expiants were incubated for 5 to 15 minutes in the Agrobacterium suspension, dried 

on a sterile Whatman filter and placed back onto the feeder plates. After 48 hours of 

cocultivation in the dark at 26 °C, the expiants were transferred to selection medium (MS 

medium, 10 g/1 sucrose, 10 g/1 glucose, 2.0 mg/1 zeatin, 0.02 mg/1 IAA, 250 mg/1 

carbenicillin, 100 mg/1 kanamycin, 10 g/1 micro-agar) with the axial side up. After 5 days 

in the dark, plates were transferred to the light (1500-2000 Lux) and expiants were 

subcultured every 2 weeks. From 4 to 8 weeks after cocultivation, shoot primordia were 

cut from the expiants and elongated on MS 10 medium (MS medium, 10 g/1 sucrose, 250 

mg/1 carbenicillin, 10 g/1 micro-agar). Shoots were rooted on MS 10 medium 

supplemented with 25 mg/1 kanamycin, potted in soil and transferred to the greenhouse. 
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Serological analysis of transgenic tomato plants. The accumulation of transgene-derived 

TSWV nucleoprotein in transgenic tomato was detected by means of double-antibody-

sandwich (DAS) ELISA or Western blot analysis essentially as described in Chapter 7, 

using a rabbit polyclonal antiserum raised against purified TSWV nucleocapsids 

(Resendeefa/., 1991b). 

Flow cytometric analysis of ploidy levels. Tomato transformants accumulating TSWV 

nucleoprotein were analysed for their ploidy level by flow cytometry. Intact nuclei were 

stained with 4',6-diamidino-2-phenylindol (DAPI) by chopping leaf tissue with a sharp 

razor blade in a commercial staining solution (Partec GmbH). Nuclei samples were 

filtered through nylon cloth (30 ̂ m), kept on ice for at least 15 minutes and subsequently 

run through the flow cytometer (PAS-II, Partec GmbH) to determine their relative DNA-

content (de Laat et al., 1987). Nuclei prepared from leaf tissue of diploid broccoli were 

used as internal standard. 

Southern blot analysis. Total DNA was extracted from transgenic tomato plants 

essentially as described by Doyle & Doyle (1990), using an isolation buffer containing 

2% hexadecyltrimethylammoniumbromide (CTAB). Portions of 10 |ig DNA were 

digested with EcoR V, Hind III or Xba I, fractionated by electrophoresis in 0.8% agarose 

gels and transferred to Hybond-N membranes (Amersham) by capillary blotting in 

alkaline transfer buffer (Ausubel et al., 1987). The blot membranes were subsequently 

hybridised to a 32P-labelled DNA fragment containing the TSWV N gene in a SSC based 

hybridisation buffer containing 10% dextran sulphate (Wahl et al., 1979). 

Analysis of protection to TSWV infection after mechanical inoculation. Prior to 

inoculation offspring populations were analysed for the accumulation of nucleoprotein 

by DAS-ELISA to identify those progeny plants expressing the N gene cassette. After 

emergence of the first leaf, about 3 to 4 weeks after sowing, seedlings were dusted with 

carborundum powder and wiped with cotton-wool dipped in the virus inoculum. Since 

TSWV is highly unstable upon homogenisation, the inocula were freshly prepared by 

grinding 1 gram of systemically infected tomato leaves in 10 ml of 0.1 M sodium 

phosphate buffer (pH7.0) supplemented with 1% Na2SÛ3 and kept on ice. Transgenic 

plants were inoculated first, followed by non-transformed control plants to check the 

inocula for their infectivity at the end of inoculation. All accessions were organised in a 

randomised block design with five or six replications. One week after the first 

inoculation the tomato plants were inoculated for a second time to achieve maximum 

disease incidence. After inoculation plants were rinsed with water. The extent of the 
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TSWV infection was monitored by visual observation for the development of systemic 

symptoms. Plants with aberrant phenotypes were omitted from the notations. Normally, 

susceptible tomato plants develop systemic symptoms within 2 to 4 weeks after 

mechanical inoculation with TSWV. Plants were scored as being susceptible when any 

leaf younger than the inoculated leaves showed typical systemic symptoms such as 

chlorosis or bronzing of the leaves. In addition plant stunting and wrinkling or curling of 

the top leaves could be observed on systemically infected plants. The absence of virus in 

symptomless transgenic plants was checked by direct ELISA using a polyclonal 

antiserum raised against purified NSs protein, a nonstructural viral protein that 

accumulates to high levels in TSWV infected plant cells (Kormelink et ai, 1991). 

Analysis of protection in transgenic hybrids upon natural inoculation in open field. In the 

summer of 1994, an open field trial was executed on the premises of S&G Semillas in El 

Ejido, Spain, conformable to the legislation and regulations imposed by the Spanish 

authorities. Early April, when plants were approximately 20 cm in height, transgenic 

Astrid hybrids were planted in soil in netted greenhouses, organised in four replications 

of 10 to 12 plants each. Non-transgenic hybrids were included as susceptible control and 

plants were exposed to thrips-mediated inoculation throughout their crop cycle. The trial 

was managed like a normal tomato crop, except that the chemical control of thrips and 

white flies was delayed until susceptible controls reached a TSWV infection percentage 

of 85%. At the end of the trial (end of June 1994), when bearing several clusters of fruits, 

plants were scored visually for the presence of disease symptoms incited by TSWV 

infections. Only plants that were completely free of any symptoms were scored healthy. 

Results 

Construction of the TSWV nucleoprotein gene cassette. 

The TSWV nucleoprotein (N) gene was amplified using PCR from a cDNA clone 

harbouring the complete viral gene. The primers used in the amplification reaction 

carried appropriate restriction sites to facilitate the cloning of the N gene into expression 

vector pZU029 (Fig. 1). Since the N gene was obtained by PCR-amplification the cloned 

fragment was sequenced to exclude the possibility of mutations generated by the Taq 

polymerase. The resulting gene cassette, pTSWVN-B, comprises the CaMV 35S 

promoter, the viral N gene and the polyadenylation signal derived from the 3' flanking 

region of the nopaline synthase (nos) gene. The CaMV promoter was modified by fusing 

the 5'-untranslated leader sequence from tobacco mosaic virus (TMV) immediately 
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Fig. 1. Schematic representation of the small genomic RNA (S RNA) of TSWV and of the construction of 
the chimaeric TSWV N gene cassette. vRNA: viral RNA; vcRNA: viral complementary RNA. Sense and 
complementary sense regions of the vRNA and vcRNA strand of the ambisense S RNA are indicated with 
(+) and (-) respectively. The complete N gene cassette was cloned into binary transformation vector 
pBIN19 as a Xba I fragment. E: EcoR V; P: Pst I; S: Sma I; X: Xba I. 

downstream of the transcription initiation site. The TMV leader is known to function as a 

translational enhancer (Gallie et al, 1987). The chimaeric gene cassette was 

subsequently cloned into the binary transformation vector pBIN19 as a Xba I fragment 

and transferred to Agrobacterium tumefaciens strain LBA4404. In tobacco, the N gene 

cassette pTSWVN-B already proved to confer TSWV resistance, not only upon 

mechanical inoculation but also upon inoculation using viruliferous thrips (Gielen et al, 

1991; de Haan et al, 1992; Chapter 7 of this thesis). 

Transformation of parental tomato line ATV847. 

Transgenic tomato plants were obtained by means of Agrobacterium-medmtëd leaf disc 

transformation (Shahin et al, 1986; Fillatti et al, 1987; Yoder et al, 1988), using 

genotype ATV847 as acceptor. This inbred tomato line is used as male parent in the 

production of a number of fresh market hybrids of the indeterminant type. The 

transformation protocol was optimised to obtain maximum frequencies of transformation 

for the parental tomato line, using kanamycin resistance as selectable marker. After eight 

weeks about 20% of the cotyledon expiants gave rise to shoot primordia, which were cut 

from the expiants and rooted in the presence of 25 mg/1 kanamycin. Rooted shoots were 

transferred to the greenhouse and about 45% of the transformants accumulated the 

TSWV nucleoprotein at detectable levels in an ELISA assay. Western blot analysis 

showed that this transgenically expressed protein comigrated with that extracted from 

tomato plants systemically infected with TSWV, thereby demonstrating the integrity of 
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Fig. 2. Western blot analysis of tomato transformants accumulating TSWV nucleoprotein. Leaf protein 
samples were subjected to SDS-polyacrylamide gel electrophoresis, blotted to Immobilon-P membranes 
and TSWV nucleoprotein was detected using an antiserum raised against purified TSWV nucleocapsids. 
Molecular weight markers are indicated on the right and numbers refer to the tomato transformant lines; 
TT: tomato systemically infected with TSWV; ATV: non-transformed tomato line ATV847 used as 
recipient in transformation experiments. 

the nucleoprotein produced in transgenic plants (Fig. 2). In order to identify 

transformants with aberrant ploidy levels, transgenic tomato plants accumulating varying 

levels of nucleoprotein were analysed for their ploidy level by means of flow cytometry. 

Only 60% of the expressors retained the diploid ploidy level and were subsequently 

maintained to produce offspring by self-pollination. The effective transformation 

frequency, expressed as the percentage of expiants that gives rise to independent diploid 

transformants accumulating nucleoprotein, was calculated at 5%. None of the 

transformants or their progeny populations exhibited phenotypic aberrations that could 

be assigned to the accumulation of the nucleoprotein or to the insertion of the N gene 

cassette into the genome. 

Protection of transgenic tomato against TSWV infections. 

Prior to inoculation with TSWV, SI progeny plants were analysed for the accumulation 

of viral nucleoprotein to identify those individuals that inherited the N gene cassette. 

Non-expressing segregants were used as susceptible controls in the inoculation 

experiments, in addition to non-transformed ATV847 plants. Upon emergence of the first 
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Fig. 3. Resistance to TSWV infection of SI progeny populations upon mechanical inoculation. Plants were 
challenged twice with an inoculum prepared from systemically infected tomato plants. Control plants 
consisted of non-transformed ATV847 acceptor plants. Figures on top of the bars refer to the number of 
tomato plants accumulating nucleoprotein that have been scored for systemic symptoms in the final 
observation about eight weeks after the first inoculation. Progeny plants that did not inherit the 
nucleoprotein gene cassette through segregation were omitted from the analyses. 

true leaf tomato seedlings were mechanically inoculated using an inoculum prepared 

from systemically infected tomato plants. The inoculation was repeated one week later 

and plants were subsequently monitored for the development of systemic disease 

symptoms, such as chlorosis and bronzing of the non-inoculated leaves and wrinkling of 

the youngest leaves. In later stages of infection diseased plants became stunted and 

reduced in height compared to mock inoculated plants. Control plants reached infection 

percentages of 90% or higher within two to four weeks. The final observation was made 

six weeks after the first inoculation and is shown in Fig. 3. Out of 24 progeny 

populations challenged with the virus, 11 transformant lines could be identified which 

showed reduced susceptibility to TSWV infection, ranging from complete resistance in 

transformant lines 780 and 815 to moderate levels of resistance in lines 531 and 698. All 

other transformant lines were as susceptible as the controls. Protected tomato plants were 

free of virus when tested by ELISA using an antiserum raised against a non-structural 

viral protein (NSs) that accumulates to high levels in TSWV infected plant cells 

(Kormelink et ai, 1991). ELISA values of protected transformants never exceeded the 

mean ELISA value of negative controls plus three times the standard deviation (0.101 
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Hg. 4. Southern blot analysis of SI progeny plants that resisted TSWV infection. Total DNA was extracted 
from leaf tissue, digested with EcoR V (E), HM III (H) or Xba I (X), fractionated by agarose gel 
electrophoresis and blotted to Hybond-N membranes. Genome fragments that comprised the TSWV N 
gene were detected by hybridisation with a 32P-labelled DNA fragment derived from the structural N gene. 
Numbers refer to the primary tomato transformants from which the SI progeny plants descend. The Xba I 
digest releases the TSWV N gene cassette as a fragment of 1.6 kb; the EcoR V and Hind III digests release 
a number of border fragments correlated with the copy number of the N gene cassette. 

plus 3 times 0.010), while ELISA readings of infected controls were out of range. The 

absence of detectable amounts of virus indicates that protected plants are probably 

immune rather than tolerant to infection. From each SI transformant line which showed 

reduced susceptibility against TSWV infections a number of individual plants was 

maintained and self-pollinated to produce S2 offspring. The copy number of the N gene 

in selected SI plants was determined by Southern blot analysis (Fig. 4). The majority 

appeared to carry multiple copies of the transgene, except for transformant line 698 

which carried a single copy. Transformant line 815 carried two copies of the transgene, 

probably residing on the same chromosome, as could be deduced from the 3:1 

segregation ratio observed for the expression of the N gene cassette in the S1 progeny 

(data not shown). 

The complex inheritance of multiple independent transgene copies hampers their fixation 

within homozygous lines. Therefore, only transformants carrying minimal copy numbers 

were proceeded to produce S2 progenies. Non-segregating S2 populations, as determined 

by ELISA for the accumulation of the TSWV nucleoprotein, were subsequently 



Engineered resistance to TSWV in tomato 121 

w 
E 
o 

Il 
Q . CD 

H M 
s » 
c ^* 
0 V» 
P o> 
«.£ 
Q- S 

o 

40 

JU I 30 56 29 29 29 29 

< TS 
s a g a < 

F/g. 5. Resistance to TSWV infection of homozygous S3 populations (double-hatched bars) and their 
corresponding hybrids (hatched bars). Control plants (white bars) consisted of non-transformed ATV847 
acceptor plants and Astrid hybrids. Plants were challenged twice by mechanical inoculation with an 
inoculum prepared from systemically infected tomato plants. Figures on top of the bars refer to the number 
of tomato plants that have been scored for systemic symptoms in the final observation about eight weeks 
after the first inoculation. 

subjected to Southern blot analysis to determine their copy number and to verify their 

non-segregating nature at the DNA level (data not shown). These analyses resulted in the 

identification of five progeny populations carrying homozygous copies for one or two 

linked integration events (Table I). Transformant lines 888-R2 and 888-R5 both descend 

from the same initial transformant, but represent different transformation events in view 

of the fact that both pairs of linked transgene copies segregate independently. To produce 

experimental hybrids, homozygous S2 lines were cross-pollinated with parental line 

ATX011. The novel hybrids, tentatively named Astrid, and their corresponding S3 lines 

were challenged with TSWV by mechanical inoculation (Fig. 5). The homozygous S3 

lines and the experimental hybrids descending from transformant lines 815, 888-R2 and 

888-R5 were all completely resistant to TSWV infection. Evidently, the transgenic 

expression of the TSWV N gene within these transformant lines suffices to generate 

complete resistance, even in the hemizygous hybrids derived from these lines. An 

example of protected hybrids descending from transformant line 815 is shown in Fig. 6. 

The homozygous S3 population and the experimental hybrid derived from transformant 
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Fig. 6. Resistance to TSWV infection upon mechanical inoculation in tomato hybrids derived from 
transformant line 815. Plants were photographed six weeks after the first inoculation. From left to right, 
transgenic Astrid hybrid expressing the TSWV N gene and non-transformed Astrid hybrid. 

line 698, however, showed incomplete levels of resistance, as already observed for the S1 

population. Within a population of 29 S3 plants that all carried one homozygous copy of 

the transgene, 12 plants developed systemic symptoms, resulting in an intermediate 

resistance level of 59%. The corresponding hemizygous hybrid featured a marginal 

resistance level of only 17%. Likewise, the hemizygous hybrid derived from 

transformant line 645-R6 did not equal the complete resistance observed for the 

homozygous S3 population. Apparently, the level of resistance within partially protected 

transformant lines is highly influenced by the zygotic state of the transgene, in that 

homozygous plants feature higher levels of resistance when compared to their hybrid 

counterparts. 
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Fig. 7. Protection of hemizygous hybrids against TSWV infection 
upon natural inoculation by thrips and under field conditions. 
Control plants (white bars) consisted of non-transformed Astrid 
hybrids. The final notation for systemic disease symptoms was made 
when plants bore several clusters of fruits. Only plants devoid of any 
disease symptoms neither on vegetative plants parts nor on fruits 
were scored healthy. 
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Protection to TSWV infection upon natural inoculation under field conditions. 

In nature, TSWV is transmitted by thrips species. To determine the level of protection 

upon natural infection, transgenic hybrids were planted in netted greenhouses in El Ejido, 

Spain, and exposed to continuous inoculation by the thrips vector. The El Ejido location 

is known for the high incidence of the TSWV disease in the local culture of tomato. The 

field trial comprised four replications of 10 to 12 hybrid plants that were planted in soil 

at their juvenile plant stage. At the end of the crop, when plants bore several clusters of 

fruits, individual hybrid plants were carefully inspected for visual disease symptoms, not 

only on the vegetative plant parts, but also on the fruits. At that time, susceptible control 

plants consisting of non-transgenic Astrid hybrids, reached an infection percentage of 

100%, which illustrates the high incidence of the TSWV disease in the El Ejido region. 

Disease symptoms included the bronzing and necrosis of leaves, but also more general 

leaf malformations such as wrinkling and chlorosis, and early infected plants were 

severely stunted. Affected fruits showed chlorotic or necrotic ringspots, typical for 

TSWV infections. Only hybrid plants free of any symptoms were scored healthy (Fig. 7). 

Except for the hybrid descending from transformant line 698, hemizygous hybrids all 

exhibited high levels of resistance to TSWV infection. In case of hybrids 815, 888-R2 

and 888-R5, any plants showing TSWV disease symptoms were not found, and hence 

appear virtual immune. This result unequivocally demonstrates the successful protection 

of hemizygous tomato hybrids against natural infection by TSWV. If both transgene 
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copies as present within these transformant lines are closely linked, preferably at the 

same locus, these transformant lines would carry a source for TSWV resistance that 

inherits as a single dominant trait, and thus would make excellent progenitors for TSWV 

resistance. 

Contrary to the highly resistant transformant lines 645-R6, 815, 888-R2 and 888-R5, the 

intrinsic level of protection of transformant line 698 as observed in greenhouse assays 

employing mechanical inoculation (Fig. 5), appears to be too low for hemizygous 

hybrids to resist continuous inoculation with the virus by the thrips vector in open field. 

At the end of the trial most hybrid plants descending from transformant line 698 

displayed systemic disease symptoms resulting from TSWV infection (Fig. 7). 

Discussion 

Breeding for disease resistance by introgression of genetic sources for resistance is 

generally regarded as the best strategy for sustainable crop protection. The exploitation 

of sources for host plant resistance that are naturally present within the gene pool of the 

crop involved, has contributed a great deal in breeding for disease resistance in crops that 

are cultivated in modern agriculture. In the past decade the concept of pathogen-derived 

resistance (Sanford & Johnston, 1985) has been put into practice to combat plant viral 

diseases, resulting in the development of synthetic resistance genes. Upon the 

introduction of chimaeric genes comprising plant viral sequences, transgenic plants show 

reduced susceptibility towards the corresponding virus, as has been described by many 

reports for a large number of host-virus combinations (Hull & Davies, 1992; Scholthof et 

al., 1993; Wilson, 1993). Provided that the crop involved is amenable to genetic 

modification, pathogen-derived resistance genes represent novel sources of genetic 

resistance that are available to the breeder in addition to natural sources. In the case 

where natural resistance genes are lacking, transformation of crop plants with pathogen-

derived resistance genes may even be the only way whereby genetic resistance can be 

achieved. 

In tobacco it has previously been described that expression of the TSWV N gene confers 

resistance to TSWV infections (Gielen et al., 1991; MacKenzie & Ellis, 1992; Pang et 

al., 1992; Chapter 7 of this thesis). This chapter describes the successful use of the same 

TSWV N gene cassette to create tomato hybrids which are completely resistant to 

TSWV, thereby illustrating the broad applicability of the synthetic TSWV resistance 

gene. Accordingly, it may reasonably be assumed that the same gene will be useful in 

any other crop that suffers from TSWV infections, including pepper, lettuce and 
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ornamentals like Chrysanthemum, Cyclamen and Impatiens (Peters et al, 1991). Since 

the transgenic TSWV resistance is primarily RNA-mediated (de Haan et al., 1992; 

Chapter 7 of this thesis), the resistance will not easily be overcome by mutant TSWV 

strains that carry point mutations in their nucleoprotein gene. Hence, the synthetic 

TSWV resistance gene is expected to be a durable and reliable source of genetic 

resistance to TSWV. 

Upon mechanical inoculation, 11 out of 24 tested transformant lines, expressing the 

TSWV N gene, showed protection to TSWV infection, ranging from virtual immunity to 

intermediate levels of resistance. Intermediate resistance levels are to some extent due to 

incomplete dominance of the transgene. Incomplete dominance is characterised by the 

fact that the expression of the transgene does not necessarily confer resistance, as 

illustrated by the discrepancy between the physical inheritance of a single transgene and 

the inheritance of the resistance trait observed for the homozygous population 

descending from transformant line 698. Gene dosage effects that result from the partial 

contribution of multiple transgene copies to the level of resistance may underlie the 

modulation of resistance levels in transformant lines carrying multiple transgene copies, 

as well as the difference in resistance levels observed between homozygous lines and 

hemizygous hybrids descending from the same primary transformant (Fig. 5). The 

occurrence of incomplete dominance and gene dosage effects urges the screening of large 

numbers of transformant lines in order to identify suitable progenitors for the TSWV 

resistance trait. 

The observation that the transgene zygosity state affects the level of resistance is in line 

with the model of a virus-specific antiviral state as postulated by Dougherty and co

workers (Lindbo et al, 1993). This model proposes the existence of a cytoplasmic 

activity that targets transcripts that have accumulated to a critical threshold level for 

accelerated degradation (Smith et al., 1994). This down-regulation of the steady-state 

level of the transgenic transcript would then coincide with the elimination of viral 

sequences from which the transgenic transcript is derived, thereby yielding the virus 

resistant phenotype. Consistent with this assumption, virus resistance was shown to be 

correlated with high transcription rates, but low steady-state levels of the mRNA 

transcript. Since the transgene transcript is expected to accumulate to higher levels in 

homozygous transformant lines than in hemizygous hybrids, the decreased level of 

resistance observed for hybrids 645-R6 and 698 may be explained according to 

'threshold' model (Smith et al, 1994), in that the accumulation level of the transgene 

transcript in the hybrids drops below the threshold level. Within transformant lines 815, 

888-R2 and 888-R5 that exhibit virtual immunity, the transcription rates of the transgene 
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probably are sufficiently high to compensate for such zygosity effects in the hemizygous 

hybrid, that equally exhibit complete resistance. 

The introgression of pathogen-derived resistance genes in breeding programs is 

facilitated by the possibility of tracing the transgene by means of simple molecular 

techniques such as Southern blot or PCR analysis. Application of these techniques in 

backcross programs eliminates the need for repeated and laborious resistance screenings 

of progeny populations. In case of the TSWV resistance gene, the transgene can also be 

traced by ELISA for the accumulation of nucleoprotein. 

Transgenic tobacco plants expressing the TSWV N gene are protected against TSWV 

infection, but remain susceptible to other tospoviruses (de Haan et al, 1992; Chapter 7 of 

this thesis). The emergence of new tospovirus species, some of which infect tomato (de 

Ävila et al, 1993), emphasises the need for identification or development of additional 

sources of genetic resistance against such viruses. From our experience with TSWV, it is 

anticipated that expression of the N gene from other tospoviruses in transgenic plants 

will also generate resistance. Therefore, synthetic resistance genes based on tospovirus N 

genes represent sources of genetic resistance that are available to the breeder as soon as 

novel tospoviruses emerge. Summarising, it is assumed that the technology developed to 

obtain TSWV resistance can be applied to generate resistance to any tospovirus in any 

crop susceptible to the corresponding tospovirus. 
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Summary and concluding remarks 

Viral diseases cause significant economic losses in most, if not all, crop species 

throughout the world. Total cost is not only restricted to reduction in crop yield and 

quality, but also include the development and application of a wide array of disease 

control measures. Routinely employed culture practices include quarantine measures, 

eradication of infected plants and weed hosts, crop rotation and the use of certified virus-

free seed or planting stock. Additionally, the use of pesticides to control insect vector 

populations implicated in transmission of the virus, represents an important tool to limit 

the incidence of viral disease outbreaks. However, none of these non-genetic control 

measures is likely to provide the long-term answer to combat viral diseases, because of 

their expense and their sometimes questionable effectiveness and reliability. Moreover, 

current concern about pollution and food safety is forcing hazardous pesticides of the 

market. 

As key control pesticides are progressively abandoned, there is a growing urgency for the 

development of alternative methods to control viral diseases. Breeding for virus 

resistance generally provides the best prospects for virus control in the long term. In the 

past, the introgression of genetic sources for host plant resistance that are naturally 

present within the gene pool of the crop involved, has been successfully applied to 

develop virus resistant crop cultivars for a considerable number of agronomically 

important crops. Although plant breeding for virus resistance still is of great potential, 

there are limitations to this conventional approach. An appropriate source of resistance 

may not be available in interfertile relatives, the source may be tightly linked to 

undesirable traits, or may be multigenic and as such difficult to advance in breeding 

programs. Consequently, the major barrier inherent to plant breeding for virus resistance 

is the scarcity of suitable sources of host resistance. 

The limitations of conventional breeding and routine culture practices urge the need for 

the development of alternative forms of virus control that can be fully integrated within 

traditional methods. In this perspective, the concept of pathogen-derived resistance as 

elaborated by Sanford & Johnston (1985), provides an attractive strategy to produce 

novel, but genetic forms of virus control, by transforming crop plants with nucleotide 

sequences derived from the viral genome. Major progress in the molecular 
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characterisation of plant virus genomes and the stable transformation of plant species 

(Fisk & Dandekar, 1993) opened the avenue for molecular breeding to produce 

transgenic progenitors carrying novel and 'green' sources of virus resistance, that can be 

incorporated in routine crop breeding programs. 

Molecular breeding for virus resistance relies on two basic disciplines. Firstly, the design 

and construction of pathogen-derived resistance genes (Chapter 3), and secondly, the 

introduction and expression of such synthetic resistance genes in transgenic plants 

(Chapter 2). For dicotyledonous plant species, Agrobacterium-m&AiaXzû transformation 

generally is the method of choice (Zambryski, 1992; Zupan & Zambryski, 1995), as is 

illustrated by the successful transformation of elite lines of lettuce, melon and tomato 

(Chapters 4, 6 and 8 respectively). In spite of the highly similar approaches employed, 

starting from seedling cotyledons for expiant material and using kanamycin resistance as 

selectable marker, the efficacy of transformation appeared highly variable for the various 

crops. For tomato, the effective transformation frequency, defined as the percentage of 

expiants yielding independent diploid transformants that express the transgene at 

measurable levels, was calculated at approximately five percent. The transformation of 

melon, on the other hand, was severely hampered by the emergence of false positives that 

escaped from kanamycin selection during regeneration. On average, merely ten percent 

of the shoots was truly transgenic, thereby decreasing the effective transformation 

frequency to values below 0.5%, but heavily increasing the resultant effort devoted to the 

selection of true transformants. General tissue culture conditions, however, comprising 

parameters such as the concentration and kind of plant hormones and plant vitamins, and 

the use of feeder layers, are known to have a significant influence on transformation 

efficiencies and do differ considerably for the transformation protocols of tomato, melon 

and lettuce. Additionally, there exist large differences in responsiveness of different crop 

genotypes to transformation and to in vitro tissue culture in general. Consequently, plant 

transformation remains a highly empirical science for which elaborated protocols do not 

exist (van Wordragen & Dons, 1992). Only trial and error, based on the knowledge and 

experience from existing protocols can contribute to the development and optimisation of 

transformation procedures. 

For the design and construction of pathogen-derived resistance genes a plethora of 

strategies can be employed, only limited by the size and content of the viral genome 

concerned (Chapter 3). The viral coat protein (CP) gene, however, has thus far been more 

widely applied than any other viral sequence, because coat protein-mediated protection 

was the first described (Powell Abel et al., 1986; Beachy et al, 1990). Accordingly, the 

transformation of tomato with the CP gene from cucumber mosaic cucumovirus (CMV) 

was shown to generate high levels of protection to CMV infection in tomato hybrids, not 
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only when challenged by mechanical inoculation, but also when exposed to repeated 

inoculation by viruliferous aphids in open field (Chapter 5). On the contrary, the 

transgenic expression of the CP gene from beet western yellows luteovirus (BWYV) in 
lettuce only yielded marginal levels of protection (Chapter 4). Transgenic lettuce plants 

never resisted infection with BWYV, but merely showed a delay in systemic symptom 

development. Apparently, the transgenic expression of viral CP genes to engineer 

resistance against the homologous virus does not apply with equal success to all virus 

genera, or to all virus-crop combinations. 

For potyviruses the protection engendered by the transgenic expression of the potyviral 

CP gene is known to be mediated at the transcript level, rather than by the accumulation 

of transgenically expressed coat protein (Lindbo et al., 1993). Likewise, the 

transformation of melon with the CP gene from zucchini yellow mosaic potyvirus 

(ZYMV) proved to be established by some mechanism of RNA interference, since a 

translationally deficient gene cassette of the ZYMV CP gene equally generated high 

levels of protection (Chapter 6). As such, the general term coat protein-mediated 

protection (CPMP) suggesting a mechanism mediated by the accumulation of the coat 

protein, is heavily misleading, and should rather be replaced by coat protein gene-

derived protection, or shorter capsid gene-derived protection (CGDP). A second example 

of engineered resistance mediated at the transcript level results from the transformation 

of tobacco with the nucleoprotein (N) gene from tomato spotted wilt tospovirus (TSWV), 

a negative strand RNA virus. The transgenic expression of a translationally defective N 

gene cassette similarly afforded high levels of resistance, reaching virtual immunity in 

transformant lines carrying homozygous copies of the N gene cassette (Chapter 7). 

Transformation of tomato with the same TSWV N gene likewise engendered high levels 

of resistance, culminating in the development of experimental hybrids that resisted 

TSWV infection upon continuous inoculation with the virus by the thrips vector in open 

field (Chapter 8). Hence, tomato transformant lines carrying the TSWV N gene make 

suitable progenitors for TSWV resistance that can be incorporated into classical breeding 

programs, as do tomato transformant lines carrying the CMV CP gene, or melon 

transformants carrying the ZYMV CP gene for resistance against their cognate viruses. 

The use of engineered resistance genes has advantages over the use of host genes for 

virus resistance. A unique feature of genetically engineered virus resistance is their 

source, being the viral genome. In fact, it is the viral pathogen itself that supplies the 

basic constituents for engineering virus resistance, which can be cloned and identified 

fairly easily. This is an essential difference from conventional breeding which, of 

necessity, is limited to host genes that can be introgressed from interfertile relatives. 

Moreover, one and the same gene construct can be applied in multiple crops to confer 
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genetically engineered resistance against the virus from which the gene construct was 

derived. Once engineered resistance genes are incorporated into the crop species of 

interest, they can be forwarded into breeding programs and manipulated like any other 

Mendelian trait conferred by a single dominant gene. Their inheritance can easily be 

traced by means of simple molecular techniques such as Southern blot analysis or PCR 

analysis. Application of these techniques in backcross programs eliminates the need for 

repeated and laborious resistance screenings of progeny populations, and can even be 

adapted to discriminate between homozygous and hemizygous progeny plants. In this 

manner, the transgene functions as a molecular marker that is one hundred percent 

correlated to the resistance trait 

In contrast to cultivar resistance genes, any recognition events based on highly specific 

interactions between the protein products from host resistance genes and viral avirulence 

genes (Keen, 1990; Dawson & Hilf, 1992), are not involved in transgenic virus resistance 

mechanisms. Consequently, engineered resistance genes are not likely to be easily 

overcome by mutant virus strains carrying point mutations, and as such may reasonably 

be expected to provide reliable sources of genetic resistance to viral infections. This 

reasoning especially applies to engineered resistance mechanisms mediated at the 

transcript level that do not imply the transgenic expression of any protein product at all. 

Nevertheless, one consideration that must be taken into account in the deployment of any 

monogenic resistance source, is the general experience that viral pathogens do vary and 

may overcome single genes in resistance breeding. The development of resistance by the 

virus would quickly negate the significant environmental benefits, including the reduced 

use of pesticides, inherent to the employment of genetic sources of virus resistance and 

irrespective of their nature. As such, it is important to stack multiple resistance genes 

operating at different levels, so that if the virus overcomes one level, it will be faced by 

other levels of protection. The combination of multiple sources of resistance might 

additionally yield higher levels of protection through complementation. In this 

perspective, one feasible combination would be the viral coat protein gene and a 

replicase-derived gene, thereby creating an oligogenic type of 'green' resistance based on 

different underlying mechanisms preventing the homologous virus from systemic 

infection and concomitant disease development. Alternatively, the combination of host 

and engineered resistance genes provides a tempting approach in developing oligogenic, 

highly durable sources of virus resistance. 

Although criteria for effective field resistance to viral infections can vary significantly 

between the crop and the virus concerned, it is of crucial importance to ascertain whether 

transgene expression effecting protection upon infection under controlled conditions 

commonly achieved by mechanical inoculation, also holds upon transmission by the 
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natural vector and under field conditions. The practical value of genetically modified 

progenitors for virus resistance in fact can only be evaluated by extensive field testing, 

thereby merging the efforts of plant molecular biology and plant breeding. Ultimately, it 

is the breeder who should decide whether transgenic progenitors can be considered elite 

material that meets the demands for its incorporation into the crop breeding program. In 

this respect the genetic stability of the novel resistance trait and the overall field 

performance are critical factors inherent to the development of transgenic elite lines or a 

final transgenic cultivar. Unfortunately, relatively few studies of field performance of 

genetically engineered plants have been published to date, at least when considering the 

tremendous number of field trials conducted over the past few years (Ahl Goy & 

Duesing, 1995). Successful field testing of genetically modified crop cultivars not only 

provides proof of their superiority over existing cultivars, but will also contribute to 

demonstrate their environmental safety in order to diminish public concern and 

scepticism (Rogers & Parkes, 1995). 

In all, the ultimate commercialisation and profit of transgenic sources of virus resistance 

will depend on an array of factors including field performance, genetic stability, public 

acceptance and the resolution of environmental concerns and patent related issues. 

Comprehensive studies on the environmental impact, toxicity and other safety issues 

must first properly be addressed before releasing engineered virus resistant cultivars. As 

such, extensive field trials and associated studies are now required to adapt genetically 

engineered sources of virus resistance for their implementation into practical agriculture. 
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Samenvatting 

De moderne land- en tuinbouw wordt gekenmerkt door monocultures van genetisch 

identieke planten, die op korte onderlinge afstand en onder zo ideaal mogelijke cultuur 

omstandigheden worden geteelt. Dergelijke intensieve teelten bevorderen echter de 

uitbraak van ziekten en plagen, welke kunnen leiden tot grote verliezen in opbrengst en 

kwaliteit. Tot de cultuurmaatregelen ter bestrijding, of beter ter preventie van 

planteziekten behoren het gebruik van ziektevrij uitgangsmateriaal, de rotatie en 

diversificatie van opeenvolgende teelten, de verwijdering van besmette planten, maar ook 

de toepassing van gewasbeschermingsmiddelen. Het gebruik van gewasbeschermings

middelen komt echter meer en meer onder druk te staan vanwege hun milieubelasting en 

hun mogelijke toxiciteit. 

De veredeling voor ziekteresistentie wordt algemeen beschouwd als de beste strategie 

voor de bestrijding van ziekten en plagen in cultuurgewassen. De introgressie van 

natuurlijke bronnen van resistentie in cultuurgewassen heeft geleid tot de ontwikkeling 

van een groot aantal ziekteresistente rassen en variëteiten, die het nut van de resistentie-

veredeling in de praktijk bewezen hebben. Helaas kent ook de resistentieveredeling haar 

beperkingen. Zo kan een geschikte bron van resistentie niet voorhanden zijn, of zijn 

geassocieerd met negatieve eigenschappen die zijn toepassing in cultuurvariëteiten 

uitsluiten. Bovendien leidt het voortdurend gebruik van een monogene bron van 

resistentie vaak tot de selectie van nieuwe pathotypen die de resistentiebron weten te 

omzeilen en waartegen de cultuurvariëteit dus niet langer beschermd is. Met andere 

woorden, de voornaamste beperking inherent aan de resistentieveredeling betreft het 

gelimiteerde aantal bronnen van resistentie dat de veredelaar ter beschikking staat. 

De vooruitgang in plant weefselkweek technieken en in de plant moleculaire biologie 

hebben geleid tot de ontwikkeling van de moleculaire veredeling, ter aanvulling op de 

meer klassieke vorm van veredeling. Met name voor wat betreft de resistentieveredeling 

wordt de potentie van de moleculaire veredeling hoog ingeschat. In dat verband 

beschrijft dit proefschrift de ontwikkeling van virusresistentie voor een drietal 

groentegewassen en een viertal plantevirusen. 

Aan de basis van de moleculaire planteveredeling staat de genetische modificatie van 

planten, welke de mogelijkheid biedt tot de introductie van nieuwe genen en 

eigenschappen, kortweg transformatie genoemd (Hoofdstuk 2). Voor de transformatie 

van tweezaadlobbigen wordt doorgaans gebruik gemaakt van Agrobacterium, een 

bodembacterie die van nature in staat is tot de overdracht van genetisch materiaal naar de 

plant. Daarnaast is er de ontwikkeling en constructie van virusresistentiegenen, welke het 

vermogen herbergen transgene planten te beschermen tegen virusinfecties (Hoofdstuk 3). 
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In de afgelopen tien jaar is reeds voor groot aantal plantevirusen aangetoond dat de 

transformatie van planten met diverse delen van het virale genoom kan leiden tot de 

ontwikkeling van resistentie tegen het betreffende virus. Deze techniek die bekend staat 

bekend als 'pathogeen-afgeleide resistentie' is als eerste beschreven voor het manteleiwit 

gen van het tabaksmozaïekvirus en is sindsdien succesvol toegepast voor een groot aantal 

andere virale genen in een groot aantal plantesoorten. Het mechanisme dat aan de 

verschillende vormen van pathogeen-afgeleide resistentie ten grondslag ligt kan zeer 

verschillend zijn voor verschillende virusen en voor verschillende virale genen, maar het 

resultaat is min of meer identiek: de transgene planten zijn verminderd vatbaar voor het 

virus waarvan het resistentie gen is afgeleid. 

Zoals zovele cultuurgewassen wordt ook de commerciële teelt van sla, tomaat en meloen 

bedreigd door een aantal virusziekten, waarvoor afdoende bronnen van natuurlijke 

resistentie ontbreken. In dergelijke gevallen kan de moleculaire veredeling voor virus

resistentie uitkomst bieden. Zo resulteerde de transformatie van tomaat met het mantel

eiwit gen van het komkommermozaïekvirus in de ontwikkeling van een transgene 

tomatehybride met een verhoogd niveau van resistentie tegen dit virus, niet alleen na 

mechanische inoculatie, maar ook na natuurlijke infectie in het veld (Hoofdstuk 5). De 

transformatie van sla met het manteleiwit gen van het bietevergelingsvirus in 

tegenstelling, leverde slechts een marginale bescherming, van onvoldoende niveau voor 

verdere toepassing in de resistentieveredeling van sla (Hoofdstuk 4). Dit resultaat 

illustreert echter de verschillen in efficiëntie van manteleiwit gen-afgeleide bescherming 

voor verschillende virussoorten in verschillende gewassen. 

Van potyvirusen, waartoe ook het courgettevergelingsvirus behoort, is bekend dat de 

expressie van het manteleiwit gen een vorm van resistentie genereert die wordt 

bewerkstelligd door het transcript, en niet zozeer door de accumulatie van het mantel

eiwit zelf. Zo ook resulteerde de transformatie van meloen met het manteleiwit gen van 

het courgettevergelingsvirus in hoge niveaus van resistentie, onafhankelijk van de 

accumulatie van het manteleiwit zelf, daar een translationeel deficiënt manteleiwit gen

construct evenzeer actief bleek (Hoofdstuk 6). 

De transformatie van tabak met het nucleoproteïne gen afkomstig van het tomate-

bronsvlekkenvirus (tomato spotted wilt virus: TSWV) leverde een tweede voorbeeld van 

transgene virusresistentie gemedieerd op RNA niveau (Hoofdstuk 7). Expressie van een 

translationeel inactief genconstruct resulteerde ook hier in hoge niveaus van resistentie. 

Indien homozygoot voor het transgen, vertoonden resistente lijnen virtuele immuniteit, 

hetgeen zich openbaart in een volledige bescherming van dergelijke lijnen tegen virus

infectie en de totale afwezigheid van systemische symptomen. De aanwezigheid van het 

virus kan in dergelijke planten niet worden aangetoond. Toepassing van hetzelfde 
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genconstruct in tomaat leidde tot de ontwikkeling van een transgene, TSWV resistente 

hybride, die zowel in de kas als onder normale cultuur omstandigheden in het veld 

virtuele immuniteit vertoonde (Hoofdstuk 8). Als zodanig kan geconcludeerd worden dat 

dergelijk plantmateriaal van groot nut kan zijn in toekomstige veredelingsprogramma's, 

hetgeen evenzeer geldt voor de tomate- en meloenlijnen getransformeerd met het mantel

eiwit gen van het komkommermozaïekvirus, respectievelijk het courgettevergelingsvirus. 

Het gebruik van transgene resistentiegenen kent een aantal voordelen boven het gebruik 

van natuurlijke bronnen van resistentie. Het feit dat transgene virusresistentie doorgaans 

is afgeleid van het virale genoom zelf, maakt dat zodra het virale genoom is gekloneerd 

en in kaart gebracht, het virus zelf een bron van resistentie vormt. Dit gegeven is een 

belangrijk verschil met de klassieke resistentie veredeling, waarin de veredelaar 

afhankelijk is van bronnen van resistentie die van nature aanwezig in de genenbank van 

het betreffende gewas. Bovendien kan eenzelfde transgen in meerdere gewassen die van 

hetzelfde virus te lijden hebben worden toegepast. De introgressie van transgenen wordt 

bovendien nog eens vereenvoudigd door de gelijktijdige implementatie van moleculaire 

technieken, zoals Southern blot analyse of de polymerase kettingreactie, waarbij het 

transgen zelf functioneert als moleculaire merker voor de resistentie eigenschap. 

De praktijkwaarde van een transgene bron van virusresistentie kan slechts worden 

bepaald door veldproeven, waarbij het virus door de natuurlijke vector en onder normale 

cultuuromstandigheden wordt overgedragen. De resistentie eigenschap dient daarbij niet 

alleen stabiel tot expressie te komen, maar ook te zijn gecombineerd met een 

onveranderde of een verbeterde veldprestatie van de transgene cultivar. De selectie van 

die transgene elite lijnen, die uiteindelijk als progeniteur voor de virusresistentie in 

toekomstige verdelingsprogramma's gebruikt zullen gaan worden, vereist dan ook de 

inspanning van zowel de veredelaar als de moleculair bioloog. De laatste jaren is het 

aantal veldproeven met genetisch gemodificeerde planten exponentieel toegenomen, met 

als voornaamste doelstelling de evaluatie van transgeen plantmateriaal onder 

praktijkomstandigheden. Behalve dat dergelijke veldproeven de superioriteit van 

transgene cultivars in de praktijk bewijzen, dragen zij tevens bij aan de evaluatie van 

vermeende risico's verbonden met de marktintroductie van transgene planten, hetgeen de 

publieke acceptatie van transgene planten alleen maar kan ondersteunen. 

Monogene resistenties staan bekend om hun beperkte duurzaamheid. De grootschalige 

teelt van cultuurgewassen met monogene resistentiebronnen leidt doorgaans tot de 

selectie en ontwikkeling van nieuwe pathogeenstammen met een verandere specificiteit, 

waartegen het resistentie gen niet langer actief is. Met name virusen zijn zeer variabel en 

kunnen als zodanig zeer snel evolueren, resulterend in het ontstaan van nieuwe stammen. 

Teneinde de duurzaamheid van monogene resistentiegenen, waartoe ook transgene 
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bronnen van virusresistentie behoren, te waarborgen, dient de combinatie van meerdere 

bronnen van resistenties in een en dezelfde cultivar te worden overwogen. Wanneer 

beide bronnen zijn gebaseerd op verschillende mechanismen van resistentie zal 

complementatie plaatsvinden, wat enerzijds kan leiden tot hogere niveaus van 

bescherming, anderzijds de duurzaamheid van beide bronnen kan verlengen. De 

ontwikkeling van een virulente virusstam vereist nu immers de gelijktijdige doorbraak 

van twee resistentiegenen. Zo zouden twee verschillende transgenen voor virusresistentie 

met elkaar gecombineerd kunnen worden, maar evenzo een natuurlijke met een transgene 

bron van resistentie, beiden resulterend in de ontwikkeling van 'groene', oligogene en dus 

duurzame bronnen van virusresistentie. 

De daadwerkelijke marktintroductie van transgene virus resistente cultuurgewassen is 

vooralsnog afhankelijk van een groot aantal vraagstukken van zeer uiteenlopende aard. 

Zo resteren er technische vragen omtrent de stabiliteit, de veldprestatie en de 

voedselveiligheid van transgene cultivars, ecologische vragen omtrent de invloed van 

transgenen op hun omgeving, alsook ethische vragen omtrent de eigendomsrechten en de 

publieke acceptatie van genetisch gemodificeerde planten. Deze vraagstukken vereisen 

gegronde studies en aandacht alvorens tot de marktintroductie van virus resistente 

gewassen besloten kan worden, zonder dat daarbij de enorme voordelen van transgene 

planten voor de hedendaagse land- en tuinbouw uit het oog verloren mogen worden. 
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