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Chapter 1 

 

 

“Scientists, through a growing realization of the 
existence of pressing social and environmental 
problems and of the need to adapt their own 
roles, are becoming more entangled and more 
involved with the wider society. (...) If theory is 
to develop, and if we wish to influence policy 
decisions, the study of spatial behavioural 
patterns becomes a research priority, because the 
investigation of these patterns demonstrates the 
ways in people behave, as constrained by their 
access to resources, and also, therefore, points to 
some of the social and spatial inequalities in 
society.” (Eyles, 1971 p242) 

1.1 Background 
Occasionally in science, ideas and concepts are formed years before they are fully 
comprehended and can be applied. The quote at the beginning of this chapter 
raises the core idea behind a research topic that only started to attract increasing 
attention thirty or more years later. It also happens to come from the first 
document to contain a reference to a work that is now inspiring a new generation 
of geographers, economists, urban planners and computer scientists: 
Hägerstrand’s “What about people in regional science?” (Hägerstrand, 1970). A 
historical analysis of citations of Hägerstrand's paper shows that it was hardly 
known outside the academic circle of human geography before 1995 (it had 56 
citations in the period 1971–1995). It is only since 1996 that time geography, the 
main theoretical contribution of the work, has gained renewed momentum, 
inspiring a wide range of researchers and practitioners in different areas. In fact, 
the number of citations per year has been steadily increasing for the last fifteen 
years (Figure 1–1). 

 
Figure 1–1. Number of citations of Hägestrand (1970) in five-year periods (Data from 
Google Scholar, retrieved 19 December 2011) 
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What has caused this renewed interest in human spatial behaviour? Why has it 
taken thirty years for the research priority pointed out by Eyles in 1971 to be taken 
up? The answer might be connected with recent technological advances and the 
development of more multidisciplinary approaches in science. 

On the one hand, the combination of location-aware technologies and the 
increasing popularity of wireless technologies is producing a continuous flow of 
data about the location in space and time of users, with a spatial and temporal 
resolution hardly imaginable four decades ago (Miller, 2005; Yu and Shaw, 2007; 
Lee-Gosselin, Doherty and Shalaby, 2010; Wachowicz, 2010). On the other hand, 
the advances in databases, data models, algorithms and methods allow 
researchers to store, manage and analyse vast amounts of data on moving objects 
(Wolfson et al., 1998; Pfoser, Jensen and Theodoridis, 2000; Pelekis and 
Theodoridis, 2007; Andrienko and Andrienko, 2008; Spaccapietra et al., 2008). 
In fact, although movement data is relatively simple at the individual level (e.g., 
the movement of a person can be represented by a series of spatiotemporal 
locations), it may involve a substantial level of complexity at the collective level, 
where structures and patterns emerge as the result of interactions between 
individuals, collectives and their environment. Hence, the combination of the 
increasing flow of movement data and the availability of methodological and 
technological tools to deal with that flow is fuelling a promising research topic. 
Several areas, such as location-based services, transportation management, urban 
planning and recreation management, are already taking advantage of the 
renewed interest and advances in movement analysis. 

The exploration and analysis of large movement datasets to detect movement 
patterns is a fertile research area. Despite the increasing interest in this topic, 
however, several issues still remain to be investigated. In this thesis, I identify 
some of these issues and consider them from a geographical point of view. In the 
following sections, I briefly describe the main elements of this thesis and the 
related gaps in knowledge in order to define the scope of my research. 

1.2 Pedestrian movement in natural recreational areas 

In 1970, the year that time geography was born, the influence of the environment 
on human behaviour was attracting the interest of an increasing number of 
psychologists who assumed that space is directly linked to behaviour (Ittelson, 
Rivlin, and Prohansky, 1970). Nowadays, almost no one would disagree with the 
idea that the surrounding space plays a critical role in the way people behave. 
Indeed, the U.S. National Library of Medicine (2010) defines “spatial behaviour” 
as the reactions of an individual or group to the surrounding area, including 
animate or inanimate objects. 

In tourism studies, monitoring and assessing the movement of visitors in natural 
recreational areas (intra-site flow) is a key issue in understanding visitor 
behaviour, which in turn is directly applicable to the effective management of 
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both conservational and recreational requirements (Muhar, Arnberger, and 
Brandenburg, 2002; McKercher & Lau, 2008). In order to understand these 
requirements and to design, implement and monitor sustainable management 
practices, detailed information about area usage and the preferences of different 
target groups is needed (Chiesura, 2004). Since different uses and activities can 
be related to different places and landscape configurations, the analysis of the 
spatial behaviour of visitors can provide insights into their preferences and 
purposes (Golicnik & Ward Thompson, 2010). For example, monitoring the 
movement of people during their visits to a recreational area can help to identify 
which are the most or the least visited places, how much time visitors spend in 
each place and which kind of attractions are preferred by different target groups. 
If managers know those preferences, they can segment the market and offer more 
diverse and focused options adapted to the wishes of specific groups of visitors 
(Holyoak & Carson, 2009). Moreover, monitoring and analysing the area usage 
and movement of visitors can provide information about potential crowding and 
conflicts between different groups (Manning & Valliere, 2001; Ostermann, 2009). 

Walking is probably the most obvious aspect of spatial behaviour. One fact that is 
evident and yet frequently forgotten is that people walk not for its own sake, but 
rather with the intention of stopping. They move for a purpose, usually involving 
a social or economic transaction. “Spaces encourage stopping, stopping 
encourages moving” (Stonor, 2001 p3). The assumption here is that spaces should 
not be seen as areas of transition to be crossed as quickly as possible, but have to 
be understood as venues, and that the attractiveness and utility of places can be 
related to the number of people stopping there (Stonor, 2004). In 1984, Hiller 
had recognized the importance of “static people” as a crucial element of spatial 
culture. He argued that if people are stationary, it is because something has 
occurred to make them stop: they have seen something to look at, or have found a 
place to sit and rest, or have simply taken up a vantage point (Hillier, 1984). Just 
as silence is the keystone in the structure of music, stops are the building blocks 
of pedestrian movement. 

Therefore, a central assumption in this thesis is that pedestrian movement is the 
result of the interactions between people and their environment. Consequently, 
we can explore and analyse pedestrian movement data to detect patterns that are 
evidence of such interactions. 

Despite the recognized importance of the close relationship between pedestrian 
movement and space, how it should be represented and formalized is still an open 
issue. A conceptual framework that takes into account the main elements of 
pedestrian movement behaviour (patterns, interactions and environment) has not 
been developed yet. Such a framework would allow us to represent those elements 
and, more importantly, conceptualize the relationships between those elements to 
ultimately understand pedestrian movement from a geographical point of view. 
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1.3 Exploratory spatial data analysis 
Besides the development of a conceptual framework, the study of pedestrian 
movement presents additional challenges. In fact, exploring and analysing large 
amounts of movement datasets constitute the core of the ongoing research. 
Exploratory Spatial Data Analysis (ESDA) (Anselin, 1993) focuses on the spatial 
aspects of the data, such as spatial association and spatial heterogeneity and aims 
to “describe spatial distributions, discover patterns of spatial association (spatial 
clusters), suggest different spatial regimes or other forms of spatial instability 
(non-stationarity) and identify atypical observations (outliers)” (Anselin, 1993, p. 
114). Haining (2003, p. 183) stated that the primary goals of ESDA are “to 
summarize spatial properties, to detect patterns, and to formulate hypotheses 
from geographic data using methods that make minimal data assumptions and 
which are numerically and graphically resistant to the impact of isolated outliers”. 

Whereas traditional statistics are not suitable for spatial analysis due to the 
intrinsic spatial association of georeferenced data (spatial data is hardly 
independent), ESDA can take advantage of this property to explain the extent to 
which the data is autocorrelated in space (spatial autocorrelation). A number of 
indexes are available in the literature for exploring spatial autocorrelation in 
geographical data. Some examples include the Geary Ratio c (Cliff and Ord, 1972; 
1981), Getis’s G or O Index (Getis and Ord, 1992), Kulldorff’s scan statistic 
(Kulldorff, 1997) and the most widely used, Moran’s coefficient (I) (Moran, 1948). 
All of these indexes summarize the global properties of spatial autocorrelation in 
a dataset. In other words, they indicate the presence or absence of a spatial pattern 
for the entire dataset (i.e., global statistics). Anselin (1995) developed the Local 
Index of Spatial Association (LISA), which is based on the decomposition of 
Moran’s I into its local version (i.e., local statistics). Because Moran’s I is a global 
summation of individual statistics, LISA uses this property to evaluate the spatial 
association by calculating the Local Moran's i and evaluating the statistical 
significance of each unit. Therefore, LISA plays a critical role in ESDA since it 
allows for the exploration of data properties in a global context of a dataset. 

Although ESDA, and specifically LISA, has been applied to different research 
areas, its feasibility for pedestrian movement analysis remains unexplored. 
Specifically, it is still not known whether or not spatial structures (i.e., spatial 
association) exist in pedestrian movement data. If they exist, we can use ESDA 
methods to detect them and formulate geographical hypotheses about movement. 
The detected structures in the data are movement patterns and the geographical 
hypothesis should aim to explain the origin of the patterns by examining the 
interaction between pedestrians and the geographical environment. 

1.4 Movement patterns 
Recent advances in human movement analysis suggest that despite the wide 
variety of potential movement behaviour, people usually follow simple and 
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predictable movement patterns (Gonzalez, Hidalgo, and Barabasi, 2008; Song et 
al., 2010). Whereas it is accepted that these patterns may help in understanding 
the interactions between people and their environment (Batty, DeSyllas, and 
Duxbury, 2003; Bierlaire, Antonini, and Weber, 2007; Gudmundsson, Laube, and 
Wolle, 2009; Hoogendoorn and Bovy, 2005), there is no real consensus on what 
exactly movement patterns are and how they should be defined (Laube, 2009). 
Some examples of movement patterns reported in the literature are “flocking” 
(Gudmundsson, van Kreveld, and Speckmann, 2004), “encounter” (Laube, 
Kreveld, and Imfeld, 2005), “trend-setter” (Laube, Imfeld, and Weibel, 2005), and 
“leading and following” (Andersson et al., 2008). Looking at the large diversity of 
movement patterns reported in the literature, some authors have proposed 
formalization and classification systems (Dodge, Weibel, and Lautenschütz, 2008; 
Wood and Galton, 2009). Although these efforts have not been broadly adopted 
yet, they constitute an attempt to provide a systematic framework for the ongoing 
research.  

A large proportion of the research in movement patterns comes from the field of 
computer sciences, where researchers are developing algorithms, models and 
tools to store and provide access to large movement datasets (Pfoser and Jensen, 
2001; Güting and Schneider, 2005; Manco et al., 2008; Ortale et al., 2008; Renso 
et al., 2008), and to extract and visualize movement patterns (Andersson et al., 
2008; G. Andrienko et al., 2008). Despite the increasing number of researchers 
working on movement pattern analysis, most of the current approaches are based 
on the geometric properties of trajectories, and little attention is paid to the fact 
that movement is essentially a spatial phenomenon and could be studied from a 
geographical point of view. Spatial properties of movement data, such as spatial 
association, remain unexplored. What is needed is a geographical approach to 
detecting and exploring movement patterns that aims to identify spatial structures 
in movement data (movement patterns) and to explore and explain the properties 
of these patterns, taking into account their geographical environment. 

A geographical approach to movement patterns therefore implies that movement 
patterns can be detected and analysed as a geographical phenomenon. 
Consequently, I adopted the definition of movement patterns provided by Laube 
(2009) and adapted it to follow a geographical approach in the context of this 
research: 

A movement pattern is a detectable structure in the data that 
constitutes a high-level description of the movement of an individual 
or a group of individuals resulting from their interactions with their 
environment. 

This definition entails some assumptions. The first assumption is that movement 
patterns are observable; this means that they can be detected or extracted from 
(raw) movement data through ESDA techniques. The second assumption is that 
movement patterns are describable, that their structure and properties can be 
described and represented. The third assumption is that patterns are explainable, 
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in the sense that they can be explained and interpreted as the result of some 
interactions between the pedestrians and their environment. Using this 
definition, the scope of this thesis is defined as the study of movement patterns of 
pedestrians from a geographical point of view. 

1.5 Objectives 
The main objective of this thesis is to develop an approach for exploring, 
analysing and interpreting movement patterns of pedestrians interacting with the 
environment. This objective is broken down in sub-objectives related to four 
research questions. A case study of the movement of visitors in a natural area is 
used to develop and demonstrate the approach. 

To achieve the objectives, four research questions were formulated: 

• How can movement patterns evidencing the stopping behaviour of 
pedestrians be detected? 

• What is the validity of the detected movement patterns for describing 
stopping behaviour of pedestrians? 

• How can movement patterns be applied to study the movement 
behaviour of visitors in natural areas? 

• How can movement patterns be formalized to represent the 
interactions between pedestrians and between pedestrians and their 
environment? 

1.6 Structure 
This thesis consists of six chapters, including this introductory chapter. The 
structure of the chapters is depicted in Figure 1-2. 

Chapter 2 presents an exploratory spatial analysis approach to detect patterns of 
movement suspension using a Local Indicator of Spatial Association (LISA). 
These patterns are used to find places where pedestrians stop as a consequence of 
their interactions with geographical features. 

Chapter 3 presents the results of a controlled experiment to investigate the validity 
of using Movement Suspension Patterns (MSPs) to represent the stopping 
behaviour of visitors in the Dwingelderveld National Park (the Netherlands). The 
detected MSPs are compared in space and time with a set of reference stops to 
assess the accuracy of the method. 

Chapter 4 demonstrates how movement patterns can improve our understanding 
of the aggregated movement of visitors in natural recreational areas. The 
approach is demonstrated by detecting Suspension Patterns and Generalized 
Sequential Patterns in a dataset representing the movement of visitors in the 
Dwingelderveld National Park. Both patterns were analysed in their geographical 
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context to characterize the aggregated flow of people to provide insights into 
visitors’ movement behaviour. 

Chapter 5 presents a framework to represent and formalize the main concepts of 
pedestrian movement (i.e., patterns, interactions and spatial behaviour). This 
framework constitutes an approach to formally representing those concepts and 
the relationships between them. 

Chapter 6 discusses the results of this thesis in relation to the research questions. 
It also presents reflections on the implications of these results in the context of 
movement pattern analysis research. 

 
Figure 1–2. Outline of the thesis 
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Chapter 2 

 

Abstract: One of the main tasks in analysing pedestrian movement is to 
detect places where pedestrians stop, since those places usually are 
associated with specific human activities, and they can allow us to 
understand pedestrian movement behaviour. Very few approaches have 
been proposed to detect the locations of stops in positioning datasets, 
and they often are based on selecting the location of candidate stops as 
well as potential spatial and temporal thresholds according to different 
application requirements. However, these approaches are not suitable 
for analysing the slow movement of pedestrians where the inaccuracy 
of non-differential GPS commonly used for movement tracking is so 
significant that it can hinder the selection of adequate thresholds. In 
this paper, we propose an exploratory statistical approach in order to 
detect patterns of movement suspension using a local index of spatial 
association (LISA) in a vector space representation. Two different 
positioning data sets are used to evaluate our approach in terms of 
exploring movement suspension patterns that can be related to 
different landscapes: players of an urban outdoor mobile game, and 
visitors of a natural park. The results of both experiments show that 
patterns of movement suspension were located at places such as 
checkpoints in the game, and different attractions and facilities in the 
park. Based on these results, we conclude that using LISA is a reliable 
approach for exploring movement suspension patterns that represent 
the places where the movement of pedestrians is temporally suspended 
by physical restrictions (e.g., checkpoints of a mobile game, and the 
route choosing points of a park).  

2.1 Introduction 
The pervasive nature of GPS technology embedded in mobile phones, watches, 
PDAs, pedometers, and other wearable devices is producing personal mobility 
information such as routes taken, distances travelled, as well as the timing, 
duration and speed of movement. Usually this information is stored as a sequence 
of points over a time interval representing the trajectory followed by a particular 
moving entity. Traditionally, the trajectory of a moving entity has been modelled 
as a polyline in three-dimensional space. Trajectories have been used to represent 
geospatial lifelines (Hornsby and Egenhofer, 2002), space-time prisms 



 

21 

Exploring patterns of movement suspension in pedestrian mobility 

(Hägerstrand 1970; Miller, 2005) and paths (Pfoser et al., 2000, Andersson et al., 
2008). A complementary approach also has been proposed to encompass a 
relative space view of movement, centred to the relative locations and relative 
velocities of neighbouring moving entities based on the characterization of 
elementary trajectories and trajectory transitions (Noyon et al., 2007). 

The analysis of pedestrian mobility always attracted scientists to address a variety 
of issues, such as human behaviour in panic and evacuation situations (Galea, 
2003; Helbing et al., 2005; Zheng et al., 2009), urban planning and architecture 
design (Fruin, 1971; Pauls, 1984; Horner and O'Kelly, 2001;van der Spek, 2006), 
transportation management (Hoogendoorn and Bovy, 2005; Daamen, 2004), 
diseases dispersion and epidemic studies (Bian, 2004; Colizza et al., 2007), and, 
more recently, location-based services (Mountain and Raper, 2001; Li and 
Hodgson, 2004; Millonig and Gartner, 2007). One of the main tasks in these 
analyses is to detect the locations where the movement of pedestrians come to a 
halt, because they usually represent the places where pedestrian motion is 
temporally suspended by physical, psychological, or social restrictions (e.g., traffic 
lights, cross roads, and decision making points). 

In this paper, we propose a new approach to detect "movement suspension" in 
pedestrian positioning datasets. We use the term "movement suspension" in 
contrast to "stop" to point out the reduction of speed associated with stopping 
behaviour even when pedestrians are not completely still, or when their slow 
movement is indistinguishable from GPS inaccuracies. Our research premise is 
that the reduction of speed can be analysed based on a vector space 
representation. Most of the current approaches are based on the segmentation of 
the trajectories of a moving entity into "stops" and "moves,” where stops are 
segments of the trajectory in which the movement ceases to occur. Spaccapietra et 
al. (2008) propose a semantic formalization for stops as a part of a trajectory 
where a moving entity does not move. The spatial range of a trajectory for a time 
interval is a single point, and an analyst needs to explicitly define this part of the 
trajectory. Three methods have been proposed to detect stops based on this 
semantic assumption. First, Alvares et al. (2007) propose a method called SMoT 
(Stops and Moves of Trajectories) for detecting stops based on the analysis of the 
intersection of trajectory segments with previous known geographical features 
that are candidates of stops within a particular application. In this case, if the 
duration of an intersection exceeds a pre-defined threshold, the trajectory segment 
is considered a stop (Figure 2–1a). Second, Rinzivillo et al. (2008) propose a 
similar approach where the stops are those segments of trajectories in which a 
moving entity keeps its position within a distance threshold for a minimum 
period of time (Figure 2–1b). Finally, Palma et al. (2008) propose a method called 
CB-SMoT (Clustering-Based Stops and Moves of Trajectories) that analyses each 
trajectory and generates stops when the speed value is lower than a given 
threshold for a minimal amount of time (Figure 2–1c). 
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In any of these conceptualizations of stops, some kind of spatial and/or temporal 
threshold is necessary depending on the application requirements. Moreover, 
some a priori knowledge about the collection of positioning data, the nature of 
human activities and landscape also is required to determine the candidate places 
where stops might occur. For example, when analysing commuter trips, stops 
could be considered as "Madrid" and "Toledo", "home" and "work place," or even 
"gas station" and "grocery store." In all of these cases, the thresholds must 
correspond with the minimum time that moving entities are expected to spend in 
these particular places. For moving in a car from Madrid to Toledo, or cycling 
from home to a work place, the meaning of stops and their respective space and 
time thresholds is significantly different. 

 
Figure 2–1. Three different conceptualizations of stops previously proposed in the 
literature: (a) intersection, (b) displacement, and (c) speed. 

Additionally, because most positioning data are provided by GPS systems, a 
critical implementation issue for defining stops is related to movement 
parameters (i.e., speed, displacement and spatial position), which are highly 
sensitive to intrinsic measurement errors. Intensive pre-processing is required to 
eliminate such errors in positioning datasets, and, unfortunately, some errors for 
pedestrian movement are practically indistinguishable from actual slow 
movement. Despite some studies demonstrating that GPS receivers are 
sufficiently accurate for the computation of walking speed on relatively straight 
courses and controlled situations (Witte and Wilson, 2004; Terrier et al., 2000), 
these devices are less adequate for assessing walking speed on slow movements. 
For example, with a GPS recording of every 10 seconds and an average speed of 1 
meters per second (m/s), the inaccuracy of a spatial position is higher than the 
actual travelled distance, leading to huge uncertainties. 

Finally, consecutive GPS recordings of the position of a pedestrian standing still 
are quite unlikely to be in the same location, but rather will lie within an area 
defined by the GPS error circle (the circle inside of which the true horizontal 
coordinates of a position have a 50% percent probability of being located). 
Therefore, based on the tracking technology commonly used today, no real gaps of 
zero movement (speed = 0 or near to zero) exist in GPS recordings. In addition, 
some errors cause unusually high speeds that are hardly reachable for a 
pedestrian. Thus, any approach using spatial and or temporal thresholds will 
bring up the risk of an under- or over-estimation of stops (Figure 2–2).  
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Therefore, this paper focuses on two main conceptualizations: movement vectors, 
and their spatial association. The theory about vectors is well developed in physics, 
and using vectors to analyse the divergence, gradient and curl of vector field 
constructs in the context of pedestrian movement would be helpful (McQuistan, 
1965; Maidment, 1993). The limited use of vector-based representations should be 
attributed to the scarcity of methods rather than the movement-awareness related 
applications that could benefit from their use (Li and Hodgson, 2004). One 
example is Wolfson et al. (1998), in which the authors have proposed a vector-
based representation to deal with efficiency issues in moving object databases. 

 
Figure 2–2. GPS recordings of one pedestrian walking for 2 hours hardly allow 
differentiating real stops from actual slow movement. Background data from 
www.OpenStreetMap.org. 

Our new approach proposes the use of a univariate spatial association index for 
exploring "movement suspension" in pedestrians positioning datasets. A number 
of indexes are available in the literature for exploring univariate spatial 
autocorrelation in geographical data. The most popular ones include the Moran 
Coefficient (I) (Moran, 1948), the Geary Ratio (c) (Cliff and Ord, 1972; Cliff and 
Ord, 1981), the Getis’s G or O Index (Getis and Ord, 1992), and the Kulldorff’s 
scan statistic (Kulldorff, 1997). The purposes of these three indexes are very 
similar, and the most often used is the Moran’s I because it tends to have the best 
statistical properties and has been applied for simultaneous measurements from 
many locations (i.e., global statistics). Anselin (1995) develops the Local Index of 
Spatial Association (LISA), which is based on the decomposition of Moran’s I into 
its local version (i.e., local statistics). 
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This paper describes our results in using LISA as a local index of spatial 
association to compute the spatial association of speed values among movement 
vectors. The research challenge is to explore the spatial statistics of a vector 
representation in order to detect the locations of movement suspension patterns. 
Because our approach follows an exploratory analysis, no a priori knowledge about 
pedestrian movement is needed; neither spatial nor temporal thresholds are 
required to be defined based on an application’s requirements. 

2.2 Movement vectors 
A formal definition of a movement vector is a directed line segment from an 
origin point in the Euclidean space specified by n-dimensions. Although 
movement vectors do not form a part of any trajectory (Figure 2–3a), they 
represent the collective movement that can be measured or sensed at one place at 
one time. They are the “grains” of the collective movement of pedestrians 
obtained by defining a magnitude that can be measured by a certain number of 
dimensions, such as spatial and temporal position, speed and orientation, and 
may be represented graphically by an arrow (Figure 2–3b). Movement vectors 
imply the conceptualization of movement as a property of space rather than a 
property of the trajectory of a particular movement entity. Although in this work 
we only use movement vectors that were observed at a particular location in time, 
the concept could be expanded using the field-based theory of Time Geography 
recently proposed by Miller and Bridwell (2009). In this case, vector fields could 
be generated for representing a continuous space of movement vectors for both 
observed and unobserved locations. 

 
Figure 2–3. Two possible representations of movement: (a) trajectories, and (b) 
movement vectors. 

Positioning datasets usually are recorded as a sequence of triplets of space-time 
coordinates (x, y, t) organized in subsets (i.e., tracks). Movement vectors comprise 
a recorded space-time location and computed movement parameters, which are 
displacement (absolute distance from previous point), time step (absolute time 
from previous point), speed (displacement over time), and bearing (angle between 
two consecutive points with respect to true North). Additional movement 
derivatives, such as acceleration or turn angle, also can be computed. Usually the 
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logging frequency can be configured in three different ways: fixed time rate (a 
location each x seconds), fixed distance (a location each x meters), or automatic 
(depending on the speed and turn angle, fewer locations in straight and slow 
movements and more in sinuous and fast movements).  

We implemented a simple computer procedure to read positioning data in diverse 
standard formats (e.g., gpx, csv, dbf, shp.), and compute movement vectors and 
store them in a database. The input parameters comprise paths to source files and 
declaration of four input fields: latitude, longitude, time, and track identification 
in the case that the data came from different devices. Additionally, the algorithm 
allows an optional splitting of tracks based on space and/or time. This option is 
particularly useful because the data usually have large time gaps due to loss of 
signal or simply because a device was switched off. The algorithm also includes 
functions to convert geographic data to different projections, and convert temporal 
data to the correct Time Zone. The implementation code is available at Orellana 
(2010). 

2.3 Spatial association of movement vectors 
“…the behaviour in a crowd strongly 
depends on the behaviour of other persons 
in the crowd.” (Bierlaire et al., 2007, p84) 

Spatial heterogeneity and spatial dependence are two well-known properties that 
are observed in most geographical phenomena. Spatial heterogeneity relates to the 
global variation of a condition over the Earth's surface, and refers to an observed 
attribute being expected to vary across locations. In contrast, spatial dependence 
refers to the persistence of an observed attribute at the local level despite the 
global variation (de Smith et al., 2009), and it is related to the fact that an 
observation in one location is also similar to other observations in near locations, 
and this similarity will decay with increasing the distance. 

In pedestrian movement, these two properties can be used to explain the inherent 
spatial association that takes place when a pedestrian slows down due to a 
geographical feature in a landscape, or the proximity to other pedestrians. In order 
to determine spatial association, a local index is needed. In particular, Anselin 
(1995) developed the LISA. Applied to a set of movement vectors, this local 
statistic implies that each movement vector gives an indication of the extent of a 
significant spatial clustering of similar values around that movement vector. 
Moreover, the sum of local statistics for all movement vectors is proportional (or 
equal) to a corresponding global statistic (Anselin, 1993). Because Moran’s I is a 
global summation of individual statistics, the LISA uses this property to evaluate 
the spatial association by calculating Local Moran's I and evaluating the statistical 
significance of each unit. The spatial relationship between vectors is represented 
using a matrix that stores the spatial structure of the weighted influence of a 
neighbourhood (de Smith et al., 2009). Under the assumption that this influence 
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is only dependent on the distance, it can be conceptualized as an inverse distance 
weighted function. 

However, a cut-off distance is necessary in order to include only the neighbours 
that can actually exert some influence, with the additional advantage of improving 
the computational performance and storage size of the spatial relationship matrix. 
Because movement vectors are hardly equally distributed in space, a minimum 
number of neighbours is established to overcome possible isolated observations 
and avoid the consequent invalidation of the statistical approach when no 
observations are present in the neighbourhood (Figure 2–4). Additionally, a row 
standardization of the spatial relationships matrix is also necessary in order to 
address this variability (de Smith et al., 2009). The resulting matrix represents the 
weighted standardized influence of every neighbour inside the cut-off distance for 
each movement vector.  

 
Figure 2–4. Spatial association is conceptualized as a standardized weighted inverse 
distance function: (a) A cut-off distance d limits the neighbour to a defined distance 
around a movement vector; (b) The neighbourhood can be expanded to d1 to reach a 
minimum number k of neighbours. 

Three values are computed for each movement vector in order to assess the local 
spatial association of speed values: the LISA, and both its probability p (ranging 
from 0 to 1) and Z values for a two-tailed test under a null hypothesis assumption 
(i.e., compared with a standard normal distribution). The value of a LISA indicates 
local association of speed values. For example, high positive values imply that a 
movement vector is surrounded by vectors with similar values; meanwhile high 
negative values indicate that a movement vector is surrounded by very different 
values. Both p and Z values are used to either reject or fail to reject the null 
hypothesis of no spatial association of nearby vectors using a certain statistical 
significance level. 

The graphical version of the set of LISAs is a scatterplot of a data space 
constructed by plotting Z scores versus the movement speed values. It provides an 
exploratory visual tool for analysing the results that allows us to understand the 
relationship between the computed values of spatial association based on speed 
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values of movement vectors. The scatterplot represent a common relation between 
movement speed and the LISA Z scores. This relation resembles a "saddle-point" 
shape in the scatterplot, and plays an important role in the classification of 
movement vectors into five different classes using a given significance level. Table 
2–1 and Figure 2–5 show the classification of movement vectors using a 5% 
significance level. 

Table 2–1. Classification of movement vectors according to movement speed, LISA sign, and LISA Z 
score using a 5% significance level. 

Speed	
   LMi	
   LMi	
  Z	
  Score	
   Class	
  
>Avg	
   +	
   >	
  1.96	
   High	
  speed	
  vector	
  surrounded	
  by	
  other	
  high	
  speed	
  

vectors	
  (high	
  speed	
  cluster).	
  See	
  zone	
  1	
  in	
  Figure	
  2–5.	
  
>Avg	
   -­‐	
   <	
  -­‐1.96	
   High	
  speed	
  vector	
  surrounded	
  by	
  low	
  speed	
  vectors	
  

(high	
  speed	
  outlier).	
  See	
  zone	
  2	
  in	
  Figure	
  2–5.	
  
<Avg	
   -­‐	
   <	
  -­‐1.96	
   Low	
  speed	
  vector	
  surrounded	
  by	
  high	
  speed	
  vectors	
  

(low	
  speed	
  outlier).	
  See	
  zone	
  3	
  in	
  Figure	
  2–5.	
  
<Avg	
   +	
   >	
  1.96	
   Low	
  speed	
  vector	
  surrounded	
  by	
  other	
  low	
  speed	
  

vectors	
  (low	
  speed	
  cluster).	
  See	
  zone	
  4	
  in	
  Figure	
  2–5.	
  
>Avg	
  or	
  <Avg	
   -­‐/+	
   >-­‐1.96	
  and	
  <	
  1.96	
   All	
  vectors	
  with	
  non-­‐significant	
  spatial	
  association.	
  

See	
  zone	
  5	
  in	
  Figure	
  2–5.	
  

 
Figure 2–5. The saddle-point shape of an example of the LISA – movement speed 
scatterplot showing the five zones used for the classification. The movement vectors in 
zone 4 are classified as movement suspension. 

We are especially interested in movement vectors located in zone 4, because these 
movement vectors have low speed values and high statistical significance of 
spatial association. They represent the spatial clusters of slow speed, and therefore 
they are the patterns of movement suspension. 
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2.4 The experiments 
We performed two experiments to evaluate our proposed approach. These 
experiments consisted on analysing large pedestrian-positioning datasets for 
detecting the location of movement suspension patterns. We selected two datasets 
with substantial differences in order to test the suitability of our approach. The 
first dataset was collected during an educational urban mobile game with GPS-
enabled mobile phones. The players walked around a city centre to find relevant 
historical places, and when they found one, they had to complete an assignment 
before proceeding to the next place. The second dataset was collected during a 
recreational study of visitors of a natural park area. Each visitor was asked to 
participate in a survey and provided with a GPS receiver to carry during his/her 
visit. 

In both experiments, pedestrians walked and stopped at different places. 
Nevertheless, the conceptualization and meaning of stops were significantly 
different. In the urban mobile game, players mainly stopped to complete game 
assignments at historical places that were unknown to them. However, they also 
could stop at other places that were related with the urban configuration (e.g., 
pedestrian crossings, crossroads and traffic lights). In the park experiment, 
pedestrians usually stopped at points of special interest, depending on their 
visiting goals and activities, as well as at places where the park facilities are 
located, such as information boards and eating areas. Besides the different 
landscapes, the positioning datasets also varied in size, spatial extension, average 
travelled distance, and logging rate (See Table 2–2 for an overview). 

Table 2–2. Main characteristics of the positioning datasets used in the experiments 

2.4.1 Experiment 1: Urban outdoor mobile game 

This experiment aimed at transforming 12-14 year-old students into Pilgrims of 
the medieval Amsterdam of 1550. The mobile game consists of using mobile 
phones and GPS technology for tracking the players through the city and 
performing location-based media-assignments about the city's history. As players 
move through the streets of Amsterdam, they interact with a historical map and 
virtual characters that provide information about historical locations and the 
riddles they must solve at specific checkpoints of the game. Meanwhile, they also 
compete against each other by placing traps on the medieval streets, and 
temporarily killing communication facilities with the headquarters. When players 
from different teams (i.e., medieval Orders) run into each other, a confrontation 

Experiment	
   Pedestrians	
  
Logging	
  
rate	
   Days	
  

Covered	
  
Area	
  (km2)	
  

Avg.	
  Travelled	
  
Distance	
  (m)	
  

Tracking	
  
Points	
  

Urban	
  Outdoor	
  
Mobile	
  Game	
   419	
   Fixed:	
  

10s	
   10	
   1.2	
   1,248	
   61,782	
  

Dwingelderveld	
  
National	
  Park	
   372	
   Variable	
   7	
   45	
   5,576	
   141,826	
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takes place. A set of rules determines who wins the confrontation and earns 
points (Waag Society, 2008). 

Each player had a GPS-enabled mobile phone, and spatial coordinates were 
recorded in a fixed time rate (i.e., each 10 seconds during the actual game time of 
each player). Narrow streets sided by tall buildings, with some open spaces at 
squares characterizes the landscape (i.e., the city centre of Amsterdam). Most of 
the streets are shared by pedestrians and bikes, and some streets are allowed 
motorized public and private vehicles. This configuration is reflected in a 
relatively low quality of GPS signal that exhibits frequent unnatural jumps and 
fixes over buildings and channels (Figure 2–6). Moreover, frequent 
communication problems disturb communication between the players and the 
headquarters during the game, with the consequent partial loss of positioning 
data. 

 
Figure 2–6. Overview of the GPS recordings of the urban mobile game experiment. The 
inset shows a detailed view of the observed movement vectors. The background map 
was obtained from www.OpenStreetMap.org. 

The players were expected to explore the downtown in order to find the 
checkpoints for each assignment. Once they arrived at a checkpoint, they had to 
solve a riddle before continuing to the next checkpoint. Therefore, movement 
suspension patterns are expected to occur near the checkpoints of the 
assignments. During the game, the players of different teams meet each other at 
random locations in the city. Some of these events also are expected to cause the 
suspension of movement of the players. Therefore, in order to evaluate our 
approach, we compare the location of detected suspension patterns with the 
locations of those events. 
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2.4.2 Experiment 2: Dwingelderveld National Park  

The Dwingelderveld National Park is a facility of about 3,700 ha in the North 
Eastern part of the Netherlands. It is a typical Dutch recreational area with an 
extensive network of short strolls (60 km of marked trails, each of less than 7 km 
in length) and long walks for cycling and horse riding. The landscape mainly 
consists of dry and wet heath lands, pine and deciduous forest, and an important 
complex of juniper shrubs (van Marwijk, 2009). Dwingelderveld is a very popular 
area that receives between 1.5 and 2 million visitors per year. Besides the 
wetlands, sheep farms, and some bird-watching lookouts that constitute the main 
tourist attractions, the park contains additional amenities for visitors, such as 
staffed and unstaffed information centres, a tea house, and some cultural spots 
such as a historical house and a radio-telescope (van Marwijk, 2009). Visitors 
enter and leave the park trough one of the five access points (where the car parks 
are located), and walk on the path network visiting one or more points of interest 
or performing different leisure activities. 

In this experiment, information comes from three different sources. The first is a 
set of point coordinates captured by GPS receivers given to the visitors at the 
entrances where a visit starts (the beginning of the GPS track). This data 
collection was carried out during seven days (weekend and weekdays) in the 
spring and summer of 2006 (van Marwijk, 2009). The positioning dataset 
consists of about 142,000 GPS recordings with a variable time rate for 372 visitors 
(Figure 2–7). The second source is a map containing the path network and the 
locations of the park entrances. The third source is a collection of points of 
interest gathered from several specialized web pages containing 
recommendations and tips for visiting the Dwingelderveld National Park (Pol-
Recreatie.nl, 2003; Natuurmonumenten, 2009). 

The analysis task consists of computing movement suspension patterns and 
comparing them with the location of the points of interest. The assumption here 
is that the common visitor behaviour is walking around the park, and when 
visitors arrive at some attraction, their movement speed is reduced to reaching a 
halt. Obviously, the set of points of interest is not complete; and additional 
suspension patterns could be related to other events that are not related to visiting 
attractions. 

2.5 Results and discussion 
Results are shown using two main visual representations: data space and 
geographical space. Data space is represented as a scatterplot with LISA Z scores 
on the Y axis, and movement speed on the X axis. Geographical space is visualized 
as a dynamic choroplet map. The analysis task is to explore the relevant 
characteristics of spatial association values in both spaces, and identify the 
geographical places where the movement suspension patterns occurred. The 
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computation of the LISAs was performed using ArcGIS, and resulting values 
were stored in a database as three new variables for each movement vector. 

 
Figure 2–7. Map of Dwingelderveld National Park showing the path network, the 
positioning data, and several points of interest. The inset shows a detailed view of the 
observed movement vectors. The background map was obtained from 
www.OpenStreetMap.org. 

The scatterplot diagrams for both experiments show a common relation between 
movement speed and the LISA Z scores, resembling the saddle-point depicted in 
Figure 2–5. Using a 5% significance level, the movement vectors in zone 4 of the 
scatterplot are classified as suspension patterns, as explained above. When these 
vectors are plotted in the map, they form clusters indicating the locations of 
patterns of suspension of movement. A visual exploration of these locations 
shows that they are mainly located at points of interest in both experiments, 
where pedestrians are expected to stop. These results are discussed in more detail 
in the next sections. 

2.5.1 The urban outdoor mobile game 

In this experiment, 17.84% (N=10,861) of the sample movement vectors are inside 
zone 4 of the LISA-movement speed scatterplot, and consequently they are 
classified into 55 clusters of movement suspension (Figure 2–8). From these 
vectors, 84.4% (N=9,162) belong to 18 clusters that are located at the 
corresponding 18 checkpoints of the game (Figure 2–8a, c). During the game, 
players should stop at the checkpoints to receive multimedia information and 
instructions that are necessary to solve a riddle and accomplish an assignment 
associated to that place. Moreover, 27 clusters are located at geographical places 
related to other events during the game, such as traps, confrontations, and the 
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delivery of media to a player's mobile phone (Figure 2–8b). These clusters 
contained the 14.4% (N=1,568) of movement vectors classified as suspended. 

Besides the clusters associated with the game activities, two clusters containing 
0.5% (N=50) of the classified vectors are located at pedestrian crossings, and can 
be considered as evidence that other movement suspension occurs such as 
waiting for a traffic light (Figure 2–8e). The remaining eight clusters cannot be 
associated with any particular place or do not furnish evidence about some event 
of the game (Figure 2–8d). These clusters include 0.8% (N=81) of the classified 
vectors, and can be considered as false positives. Table 2–3 summarizes these 
results.  

2.5.2 Dwingelderveld National Park 

In the Dwingelderveld National Park experiment, 6.3% (N= 8,988) of the 
movement vectors are classified into 152 clusters of movement suspension (Figure 
2–9). A visual exploration shows that five of the largest clusters are located at the 
car parks where visitors started and finished their visits (Figure 2–9b, e). These 
clusters include 45.9% (N=4,127) of all the movement vectors classified as 
movement suspension. Another 18 clusters, containing 26.3% (N=2,366) of the 
classified vectors, are associated with the locations of different attractions in the 
park, such as wetlands (Figure 2–9a), a sheep farm, and a radio-telescope (Figure 
2–9c). These statistics clearly indicate a preference by visitors for these attractions. 
Moreover, seven additional clusters are associated with some facilities in the park, 
such as a teahouse, visitor centres (Figure 2–9 b, e), and information boards 
(Figure 2–9b). These clusters include 3.7% (N=303) of the classified vectors.  

In addition to these clusters associated with typical attractions in the park, we 
found that 54 clusters are located at the cross-paths of the path network. These 
clusters contain 15.3% (N=1,376) of the vectors classified as suspension. We 
interpret these clusters as evidence of a route-choosing interaction during the 
movement of the visitors (Figure 2–9e). Overall, we are able to associate 90.2% 
(N=8,172) of the classified vectors with some relevant location in the park, 
allowing us to give a feasible interpretation to the detected suspension patterns. 
The remaining 9.1% (N=816) of the classified vectors grouped into 68 clusters, 
and cannot be associated with any known location of attractions or facilities in the 
park. Table 2–4 summarizes the results. 

Table 2–3. Number of vectors classified as movement suspension and their association with the places 
of the urban mobile game experiment 

Vectors	
  classified	
  
as	
  suspended	
  

	
   Associated	
  with	
   	
  

True	
  positives	
   False	
  positives	
  
	
  

Checkpoints	
  
Event	
  

Locations	
   Crossings	
  
	
  

10,861	
   	
   9,162	
   1,568	
   50	
   	
   10,780	
   81	
  

	
   	
   84.4%	
   14.4%	
   0.5%	
   	
   99.2%	
   0.8%	
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Figure 2–8. The clusters representing movement suspension patterns in the urban 
mobile game experiment are mainly associated with the locations of checkpoints (a, c) 
and events in the game (a, b, c). Two clusters are associated with pedestrian crossings; 
one is shown on (e). Eight clusters are not associated with any known game activity or 
player interactions during the game (d). 

 

Table 2–4. Number of vectors classified as movement suspension and their associations with relevant 
places in the Dwingelderveld National Park. 

Vectors	
  classified	
  
as	
  suspension	
  

	
   Associated	
  with:	
   	
  
True	
  

positives	
  
False	
  

positives	
  	
   Car	
  parks	
   Attractions	
   Facilities	
   Cross	
  paths	
   	
  

8,988	
   	
   4,127	
   2,366	
   303	
   1,376	
   	
   8,172	
   816	
  

	
   	
   45.9%	
   26.3%	
   3.3%	
   15.3%	
   	
   90.9%	
   9.1%	
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Figure 2–9. Overview of the clusters representing patterns of movement suspension 
found in the Dwingelderveld National Park experiment. Eighteen clusters are associated 
with several attractions, such as wetlands (a) and a radio-telescope (c). Another seven 
clusters are associated with park facilities, such as car parks and visitor centres (b, e). 
Small clusters also are detected at the cross paths (e). Reasons for some clusters remain 
elusive (d). 

2.6 Conclusions 
Collective pedestrian movement is a complex process influenced by a great variety 
of factors. In order to understand this process, one of the most interesting 
challenges is to explore pedestrian positioning datasets and detect the places 
where a suspension of movement to a complete halt occurs. However, available 
GPS tracking technologies are not accurate enough to capture the characteristics 
of movement at very low speeds; as a result, establishing reliable thresholds to 
distinguish stops from moves is not possible. 

We propose a new approach to explore patterns of movement suspension. These 
patterns are represented as spatial clusters of slow speed movement vectors. We 
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assume the existence of a spatial structure in the positioning datasets and 
compute the local spatial autocorrelation of movement vectors with LISAs. These 
indicators allow us to classify the movement vectors and identify the location of 
movement suspension patterns. We applied the proposed approach to two 
different datasets in order to compare suspension patterns with geographical 
places where pedestrians are most likely to stop.  

The results show that most of the detected movement suspension patterns form 
spatial clusters located around places that represent some attraction in the context 
in which the pedestrians move. For players in the urban mobile game, suspension 
patterns are located at the checkpoints and a priori known locations of gaming 
events. For visitors to the Dwingelderveld National Park, suspension patterns are 
located around car parks and attractions, such as wetlands and a radio-telescope. 
Other patterns are associated with places where pedestrians wait for a traffic light 
in the city, or choose a route in a cross path in the park. In both experiments, over 
90% of the vectors classified as movement suspension can be associated with 
relevant locations. 

All places where pedestrians were expected to stop during the game (i.e., checking 
points) and during visits to the park (i.e., car parks), clearly are associated with the 
spatial clusters of movement suspension (see Table 2–5). However, the 
association of other places with the spatial clusters is not straightforward. Smaller 
association rates are found in places such as event locations (in the game) as well 
as attractions and facilities (in the park) (Table 2–5). This result suggests the 
suitability of the proposed approach to detect places that are independent of the 
context of an application. 

Table 2–5. Number of places considered in each experiment, and the percentage of 
them associated with patterns of movement suspension 

Experiment	
   Places	
   Number	
   %	
  of	
  places	
  associated	
  
with	
  suspension	
  patterns	
  

Urban	
  outdoor	
  
mobile	
  game	
  

Checkpoints	
   18	
   100	
  
Event	
  locations	
   579	
   53	
  

	
   	
   	
   	
  
Dwingelderveld	
  
National	
  Park	
  

Car	
  parks	
   5	
   100	
  
Facilities	
   16	
   69	
  

Attractions	
   38	
   39	
  
 

Implications of these results are twofold:  

• Despite that very different values of movement vectors can be located 
at the same place, a spatial dependence exists among them, 
evidencing the influence of the environment on pedestrian 
movement. Some places attract or restrict human movement causing 
lower speeds, and, therefore, we can use local spatial association to 
discover such places in pedestrian positioning datasets. 

• LISA is a reliable indicator for exploring movement suspension in 
pedestrian mobility. 
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Therefore, we propose the following consistent definition of suspension of 
movement based on the local spatial association of speed values: 

Given a pedestrian positioning dataset, movement suspension 
patterns are spatial clusters of movement vectors that simultaneously 
fulfil the following three conditions: (a) having speed values below the 
average for a given dataset; (b) having a positive local spatial 
association of these speed values; and, (c) having a minimum 
statistical significance score of this association corresponding to an 
established significance level. 

This definition allows us to explore and interpret the patterns of movement 
suspension in positioning datasets having no a priori knowledge about the 
conditions in which the datasets were collected. An analyst can choose a level of 
significance based on the statistical properties of the datasets as well.  

The main advantage of our approach is that very little knowledge is required about 
the context and characteristics of the data collection process, and, therefore, no 
need exists to establish ad hoc thresholds based on space, time, or speed. 
Consequently, the proposed approach can be considered as scale-independent. 
The only spatial parameter needed (i.e., the cut-off distance of the spatial 
relationships matrix) can be easily established as an additional step in the 
exploratory analysis, similar to a multi-band Ripley’s K function. A further 
validation is still needed in order to assess the accuracy of the proposed approach 
in computing movement suspension patterns for a mixture of different moving 
objects, like vehicles and pedestrians. 

Because our approach focuses on the analysis of collective movement using a 
vector-based representation, a comparison with existing methods is cumbersome; 
these other methods are designed to analyse individual trajectories. However, we 
found one example given by Palma et al. (2008) that uses the intersection-based 
(SMoT) and speed-based (CB-SMoT) approaches to analyse the same positioning 
dataset of our urban mobile game experiment. Their results show the sensitivity 
of the approaches to the selected space-time thresholds, having a large range of 
the number of detected stops, varying from 6 to 357 with SMoT, and from 37 to 
182 with CB-SMoT. 

Our approach can be applied to very noisy GPS tracking datasets, without 
necessity of cleaning positioning errors that could change the global distribution 
of speed values in a dataset and consequently have an effect on the local statistics. 
However, we are envisaging new controlled experiments to test the sensitivity of 
our approach to this kind of errors.  

Finally, the results of our experiments show patterns of movement suspension 
that are the main evidence of a strong interaction between the environment and 
collective movement. These interactions can be used to understand pedestrian 
movement from a behavioural perspective. We are interested in further 
investigating the relation between movement suspension patterns and human 
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activities in order to build a spatial knowledge representation for pedestrian 
movement. We also are interested in detecting suspension in real-time movement 
datasets. The main challenge arises from the computation of the spatial 
relationship matrix, a process that may require considerable computing time and 
distributed implementations to include the movement of many pedestrians. 
Despite these technical complications, the application possibilities are wide 
ranging, including ones for environmental management, urban planning, 
surveillance, and mobility aware services. 
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Abstract: Researchers in various fields are interested in studying 
movement patterns by analysing large GPS tracking datasets. One of 
the objectives of current research in movement analysis is to detect 
places where people stop. Movement Suspension Patterns (MSPs) have 
been proposed to identify places where movement is suspended. In this 
contribution, we validated the MSP approach using GPS data from a 
controlled experiment in which participants walked and stopped at 
designated locations in a natural area. We compared in time the 
occurrence of detected MSPs with a set of reference stops and found 
that the MSP approach detected 92 percent of the reference stops, with 
a false positive rate of α = 0.16. We also compared the location and 
extent of places of movement suspension computed as a Percent 
Volume Contours (PVCs) in a Kernel Density Surface with a set of 
predefined stopping places and found that 96 percent of them lay 
within inside the areas delineated by the PVCs. These results show that 
MSP is a feasible approach for detecting the occurrence and location of 
stops in pedestrian movement data. 

3.1 Introduction 
The proliferation of mobile Global Positioning System (GPS) devices and wireless 
communication systems is generating a massive flow of data about the movement 
of people. These data represent both an opportunity and a challenge for 
researchers and specialists in various fields, such as transportation management, 
urban design, location-based services, tourism administration, and emergency 
management, who want to detect emergent movement patterns and extract useful 
information for studying the spatial behaviour of people (Nielsen and Hovgesen, 
2004; Shoval and Isaacson, 2006; Laube, 2009). Experiments have been carried 
out to investigate the spatial behaviour of pedestrians in which volunteers were 
given GPS receivers to track their movement in different settings, such as 
shopping streets (van der Spek, 2006), touristic places (Modsching et al., 2006; 
Shoval, 2010), and natural areas (van Marwijk, 2009). Several projects are 
attempting to take advantage of data voluntarily collected by citizens to provide 
information about the geographical environment. Open Street Map, for example, 
contains nearly 2.2 billion GPS track points recorded by volunteers during their 
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daily journeys and other trips made by various transportation modes to build an 
open, detailed map of the world (OpenStreetMap, 2011b). 

One of the main tasks of movement analysis is to discover the locations where 
people stop, since these locations often represent important places in the 
geographical space and can be related to specific activities (Spaccapietra et al., 
2008). For example, in tourism management applications the locations of stops 
can be used to analyse visitors’ preferences for different features, and in urban 
planning applications the location of stops can provide indications of the value 
and function of public spaces (Stonor, 2004). 

Several methods have been proposed for detecting stops in movement data. Most 
of these methods focus on separating individual trajectories into “stops” and 
“moves” using thresholds defined for a specific application. In (Alvares et al., 
2007), for example, the authors proposed a method called SMoT for detecting 
stops in individual trajectories by analysing the intersection of trajectory segments 
with a set of previously known geographical features. If the duration of an 
intersection exceeds a predefined threshold, the trajectory segment is considered a 
stop. In the approach proposed by Wolf, Guensler, and Bachman (2001), the 
authors assumed that a stop is a part of a trajectory where the speed remains zero, 
or near to zero, for minimum amount of time (e.g., 1 minute). Similarly, Palma et 
al. (2008) presented a method called CB-SMoT that analyses individual 
trajectories and generates stops when the speed of the object remains below a 
threshold for a minimum amount of time. In Kang et al. (2004), the authors 
introduced a spatiotemporal clustering algorithm to detect significant places. The 
idea is that a significant place is created when a moving object does not move 
more than a specified distance for a minimum amount of time. Rinzivillo et al. 
(2008) also proposed that distance and time thresholds can be used to detect 
stops. Other authors (Marmasse and Schmandt, 2000; Ashbrook and Starner, 
2003) assumed that stop places (e.g., home, work, shop) are usually located inside 
buildings and proposed exploiting the variability of GPS signals inside buildings 
to detect those places. In the approach proposed by Marmasse and Schmandt 
(2000), for example, a place is a position where the GPS signal is lost three or 
more times within a given radius. Ashbrook and Starner (2003) presented an 
improved approach that segments the trajectories by marking positions where the 
GPS receiver loses the satellite signal or indicates a speed continually below 1 mile 
per hour. These candidate positions are then merged using a variant of k-means 
clustering. 

All these methods require a parameterization of space, time and/or speed 
thresholds defined in an ad-hoc way for each specific application. The problem of 
defining the maximum distance, the maximum speed and the minimum amount 
of time required for an object to be considered to have stopped is not trivial. This 
parameterization requires previous knowledge of the characteristics of the moving 
entities, the data collection techniques, and the characteristics of the environment, 
and it is highly dependent on the transportation mode, the granularity of the data, 
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and the application objectives. Moreover, the results are highly sensitive to these 
thresholds. For example, in the method proposed by Palma et al. (2008), the 
number of stops detected in a dataset varied from 37 to 182 for different input 
thresholds, but no information was provided about the evaluation of the results. 
The problem with using thresholds for the determination of stops has also been 
recognized by Ashbrook and Starner (2003), Hightower et al. (2005), and G. 
Andrienko and N. Andrienko (2007). 

An alternative approach is to use a local indicator of spatial association (LISA) to 
detect spatial patterns of stops, or Movement Suspension Patterns (MSPs) 
(Orellana and Wachowicz, 2011). In this approach, the places where people 
suspend their movement were detected by computing the local Moran’s index 
(LMi) (Anselin, 1995) to evaluate the spatial association of speed values in a 
movement vector dataset. A movement vector consists of the spatiotemporal 
location of one observation together with the direction and speed of the 
movement. The local spatial association is computed for each movement vector 
and the result comprises two new variables: the LMi and a Z score representing 
the statistical significance of the spatial association (Anselin, 1995). If a vector has 
a low speed (below the mean speed of the dataset) and a high positive Z score 
(above a selected statistical significance level), the vector is classified as 
“suspension”. When these suspension vectors are plotted on a map, they form 
spatial clusters (MSPs). These clusters are assumed to identify places associated 
with collective stopping behaviour. Since the approach relies on the spatial-
statistical properties of the dataset, no application-dependent thresholds are 
required. Also, the MSP approach captures the suspension of movement even 
when moving objects do not come to a complete halt, which is common in many 
applications that record pedestrian movement because people are rarely 
completely motionless. 

Although MSP is a promising approach for identifying stopping places in large 
movement datasets, its validity is still unknown. This is a common issue in the 
field of movement pattern analysis, in which the results of the studies are often 
not properly validated, for example by comparing them with reference data 
(Alvares et al., 2007; Palma et al., 2008; Rinzivillo et al., 2008). Although 
Orellana and Wachowicz (2011) compared the location of MSPs with a 
background map containing potential points of interest, they did not compare 
them with reference data (e.g., stops reported by the walkers). Moreover, since 
MSPs are clusters of points, the spatial location and extent of the places of 
movement suspension are not explicitly defined. This approach therefore needs to 
be properly assessed, for two main reasons. First, potential users will want to 
know how accurate the approach is. Second, the analytical methods, such as 
comparing the detected MSP with contextual geographic information, depend on 
the availability of explicit representations of the places of movement suspension. 

In this article we evaluate the MSP approach for detecting stops in movement 
data. We analysed the data from a controlled experiment in which a group of 
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participants walked in a natural area. MSPs were computed and evaluated by 
comparing them to a reference dataset in space and time. The evaluation sought 
to answer two questions: a) How accurately can MSPs be used to detect the 
occurrence of stops in pedestrian movement? and b) Do the MSP spatial clusters 
represent the places where people stop? 

In the next section we explain the data and methods used for the evaluation. 
Section 3 presents the main results and related discussion. In Section 4 we draw 
general conclusions about the assessment and its implications for movement 
research. 

3.2 Data and methods 
To validate the Movement Suspension Patterns approach, it is necessary to 
compare its outcomes (i.e., MSPs computed in a movement dataset) with data on 
reference stops. This must be done for both the spatial and temporal dimensions 
of MSPs. The co-occurrence of MSPs with reference stops is evaluated in the 
temporal dimension, and the location and spatial extent of MSPs are compared 
with the location of the reference stops. The results of both comparisons are used 
to evaluate the accuracy of the approach. 

Figure 3–1 shows the steps in the data collection and validation procedure. To 
obtain sound datasets, we designed a controlled experiment consisting of three 
phases. In the data collection phase, we tracked the movement a group of 
participants walking a route and stopping to take photographs at predefined 
places marked on a map. In the data processing phase, we detected MSPs in the 
GPS data and created a reference dataset containing the participants’ stops. The 
time and duration of the reference stops were computed using the timestamp of 
the photographs, and their location was defined using the places marked on the 
maps. Finally, in the evaluation phase, we compared the spatial and temporal co-
occurrence of the computed MSPs with the reference stops. 

The experiment was designed to meet the following criteria: a) each stop made by 
the participants has to be recorded; b) to assess the approach for both individual 
and collective movement, the route must include places with different proportions 
of people stopping and walking; c) to obtain comparable results the landscape 
conditions and data collection must be similar to those in the original MSP 
research (Orellana and Wachowicz, 2011). 

The evaluation makes use of the following quantitative concepts: 

• Movement Suspension Pattern is a cluster of movement vectors of one 
participant. The state of suspension is defined by a speed value below 
the mean of the dataset and a Z score of the local Moran’s index above 
1.96 (corresponding to a significance level of 5 percent). 

• Reference stops are stops with a temporal duration and spatial location 
computed from data independent of the MSPs. 
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• Stopping ratio is the number of participants stopping at each place 
divided by the total number of participants (stopping or walking) at 
that place. 

 
Figure 3–1. Steps in the method for the spatial and temporal evaluation of movement 
suspension patterns 

3.2.1 Data collection 

The data were collected during an experiment in the north-eastern part of the 
Dwingelderveld National Park (Figure 3–2) in December 2010. The movements of 
twenty-eight participants carrying GPS receivers were monitored. Participants 
were divided into twelve teams of two people, one team of three people, and one 
team with a single person. These fourteen teams each travelled a different route. 
The routes contained a total of sixty-two predefined places. The participants were 
provided with GPS receivers, cameras, report forms and route maps. The GPS 
receivers were configured to log the position of users every ten seconds. The 
routes and teams were designed to have different numbers of people stopping at 
each place, ranging from one to twenty-eight. 

The following instructions were given to all the participants: 1) Follow the 
assigned route on your map and stop only at the indicated places on the map. 2) 
When you arrive at an indicated place, stop for at least one minute at the location. 
3) After the minute is over, record a mark (waypoint) in the GPS receiver and take 
a photograph of the GPS screen showing the GPS clock. 4) Take three 
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photographs of the place. 5) Walk towards the next designated place following the 
route. 6) If something unexpected happens, report it using the provided forms. 
All the instructions were explained before the experiment started and provided on 
paper to the participants.  

After the experiment, the GPS logs and the data extracted from the photographs 
and forms were stored in a geodatabase. 

 
Figure 3–2. Study area in the Dwingelderveld National Park with an example of a route 
and stops. 

3.2.2 Data processing 

MSP dataset 

The GPS logs were used to compute movement. Outliers were removed using 
spatial criteria (vectors outside the study area) and data criteria (vectors with speed 
> 5 metres/second). The LMi and Z scores of the movement vectors were then 
computed. The vectors with a speed below the mean and a Z score above 1.96 
were classified as suspension. 

Figure 3–3A illustrates how the vectors classified as suspension were aggregated 
into Movement Suspension Patterns. Each MSP consisted of a sequence of 
consecutive movement vectors of one participant that were classified as 
suspension. A tolerance of one observation was established to avoid unintended 
splitting of MSPs (e.g., a weak GPS signal may produce errors in the location 
and/or speed of the vector). Therefore, the duration of each MSP was determined 
by the first and last vector in the MSP. The resulting MSPs were stored in a new 
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table in the geodatabase and related to the original vectors. The resulting MSP 
data consisted of a set of MSPs together with their location and duration. 

Reference stops dataset 

We computed the time and duration of reference stops using the timestamp of 
the photographs taken by the participants each time they stopped. Figure 3–3B 
illustrates how the times of the reference stops were computed. Each step begins 
70 seconds before the first photograph (the photograph of the GPS screen) and 
ends 10 seconds after the last photograph. Since the internal clocks of the cameras 
are not accurate, they were synchronized with the GPS time using the 
photographs of the GPS screen. The JOSM software (OpenStreetMap, 2011a) was 
used for a semi-automatic synchronization. 

 
Figure 3–3. (A) Part of a timeline of movement vectors for one person showing two 
movement suspension patterns. A tolerance of one observation was used to aggregate 
the individual vectors into MSPs. (B) A validation stop starts 70 seconds before the 
photograph of the GPS screen was taken and ends 10 seconds after the third landscape 
photograph was taken. 

The spatial locations of the reference stops were determined using the predefined 
places marked on the maps. Most of the predefined places (except those assigned 
to the single-person team) were located where paths crossed or joined to make 
them identifiable in the terrain. For the single person team, the places were 
located at identifiable features such as picnic benches and signposts. The 
photographs and report forms were used to select the places for the assessment. 
For example, if a team stopped at a different location than the predefined place, 
this information was used to exclude the place and the corresponding stops from 
the spatial analysis. 
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3.2.3 Evaluation 

Temporal evaluation 

The start and end times of the MSPs of each participant were compared with the 
reference stops. Figure 3–4 shows the temporal evaluation. If an MSP overlapped 
in time (completely or partially) with a reference stop, the MSP approach in that 
instance correctly detected the stop of the participant and the result was labelled 
as a True Positive. If an MSP did not overlap with a reference stop, it was marked 
as a False Positive. Each reference stops that was not overlapped by an MSP was 
marked as a False Negative. The intermediate, empty periods were marked as 
True Negative. Finally, the total numbers in each category were counted and used 
to compute the sensitivity and specificity of the evaluation. 

 
Figure 3–4. Temporal evaluation. Lines connecting movement suspension patterns 
represent detected negatives. Similarly, lines between reference stops are reference 
negatives. 

Spatial evaluation 

In the original approach, the spatial location and extent of MSPs were not 
explicitly defined, (i.e., MSPs were represented by the locations of vectors 
classified as suspension). To determine the location and extension of MSPs, we 
propose using a Kernel Density Estimator (KDE) to compute a density surface 
using the movement vectors classified as suspension. We used a quadratic 
function (3.1) (Silverman, 1986) 

! =

!
!
1 − !! , ! = !

!
≤ 1

0                    , ! = !
!
> 1

 (3.1) 



 

48 

Chapter 3 

to calculate the density surface, since its critical parameter, the bandwidth 
distance h, can be established from the estimation of the accuracy of the 
observations (10 m for a single frequency GPS receiver without any signal 
correction), and because it is computationally more efficient than a Gaussian 
function (de Smith, Goodchild, and Longley, 2009). The KDE function produces a 
continuous raster surface representing the probability density values for each cell. 
On this surface, Percent Volume Contours (PVCs) represent the boundaries of the 
areas containing X percent of the volume of the probability density function. For 
example, using a PVC = 90 the delineated area contains on average 90 percent of 
the vectors that were used to generate the kernel density estimate (Beyer, 2010). 

This approach implies a fuzzy representation of the location and extent of places 
where movement suspension occurred. The assumption is that the KDE function 
will produce a surface in which the inner PVCs represent the kernel of the place 
of movement suspension and the outer PVCs represent its boundary. Figure 3–5 
shows an example of a kernel density estimate surface. The spatial evaluation was 
performed by counting the number of reference stops that fall within the PVCs 
for 10 percent intervals. 

 
Figure 3–5. Example of a kernel density estimate surface computed from a Movement 
Suspension Pattern (red arrows). Contours correspond to percentiles of the density 
function. 

3.3 Results 
The movements of the twenty-eight participants were tracked and recorded in a 
geodatabase. The data on the beginning and the end of their walks were excluded 
from the analysis because they were not part of the experiment. The resulting 
dataset consisted of 20,225 GPS track points. The average walking time of the 
participants was 162 minutes and they covered on average a distance of 7.5 km. 
The mean speed was 0.7 metres/second. The LMi and Z score values were 
computed and 6,830 vectors (33.8 percent) were classified as suspension. These 
vectors were aggregated into 428 MSPs to create the MSP dataset. The 
participants took 1,611 photographs at 84 different places, and 387 reference stops 
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were recorded. Figure 3–6 is a map of the results, which shows that most of the 
MSPs were located at the reference places. It is also evident that some participants 
lost their way and stopped at locations other than the predefined ones. This was 
confirmed by the participants in the report forms. 

 
Figure 3–6. Map showing the spatial distribution of the MSPs and reference places. The 
star in the upper middle of the map shows the location of the visitor centre where all the 
routes started and ended. 

3.3.1 Evaluation of results 

The temporal analysis revealed that 355 of the stops were detected (True Positives), 
and 32 of them were not (False Negatives). Also, 73 MSPs did not correspond to 
any reference stops (False Positives). The assessment gave a sensitivity value of 
0.92 (8 percent of the reference stops were not detected), and a specificity of 0.84 
(16 percent of the detected MSP were False Positives). 

Figure 3–7 presents the evaluation results in the form of timelines. The timelines 
reveal that some people stopped longer than the minimum time required. This 
finding was confirmed by the participants. The timelines also make it easier to 
identify the errors because all but one of the teams consisted of two or more 
people whose timelines are therefore similar. This is most evident in the results 
for the team that consisted of three participants (participant IDs 9, 10, and 11). 
The figure also reveals gaps in the GPS data in several timelines when the signal 
was lost. 
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Figure 3–7. Timelines of the evaluation results. 92 percent of the reference stops were 
detected by the MSP approach (True Positives, in green); 16 percent of the MSPs did 
not correspond to any reference stop (False Positives, in blue); 8 percent of the 
reference stops were not detected (False Negatives, in red). The small black and grey 
rectangles represent the timestamps of the photographs to facilitate interpretation 
(black: photographs of the GPS screen; grey: landscape photographs). 

The spatial evaluation was performed on a set of 143 reference stops in 47 
different places. These reference stops were selected using information from the 
route maps, report forms, and photographs. We found that 137 stops (96 percent) 
were inside the areas delineated by the PVCs. Furthermore, over half of them 
were located inside areas corresponding to PVC = 30 percent, i.e., the core of the 
KDE function (see Figure 3–8D). These results are consistent with the design of 
the experiment, in which the participants were not motionless at one precise 
location, but stopped walking to take photographs of the place. These results also 
suggest that the KDE surface is a good approximation of the places of movement 
suspension. Moreover, the outer PVCs of each place can be used to represent the 
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full extent of the place of movement suspension, whereas the inner boundaries 
represent the kernel of the place (Figure 3–8A, B, C). 

 
Figure 3–8. (A, B, C) Part of the study area with kernel density plots representing places 
of movement suspension. (D) 96 percent of the stops at the reference places were 
inside the PVCs. Half of those stops were inside the PVC=30 percent boundary. 

 

3.3.2 Analysis of errors 

An analysis of the 73 False Positives (MSPs that did not correspond to any 
reference stop) showed that the frequency distribution of their duration was 
different from the True Positives. This is illustrated in Figure 3–9. MSPs derived 
from a single vector with a duration corresponding to the granularity of the GPS 
recording (i.e., 10 seconds) accounted for 40 percent of the False Positives; 
moreover, 82 percent of the False Positives had duration of less than one minute. 
We may conclude, therefore, that most of these False Positives correspond to 
short stops not reported by the participants, since they lasted for less than one 
minute. Using the information from the report forms, twelve False Positives were 
associated with places and times where the corresponding participants reported 
losing their way. An example of this is shown in Figure 3–10B, where a cluster of 
False Positives is found at a junction of paths close to the visitor centre where 
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many participants reported having problems finding the route. Other False 
Positives occurred when participants were waiting to cross the road that runs 
through the area (e.g., the False Positives of participants 16 and 17 around 13:00 
hours in Figure 3–7). 

Besides the information extracted from the report forms, the interpretation of the 
False Positives is also supported by the paired times and duration for each team. 
For example, in Figure 3–7 there is a False Positive at 13:30 hours for participant 
number 11 one minute before a True Positive, whereas the other two people in the 
team (participants 9 and 10) had a True Positive at the same time. After exploring 
the data in detail, it was determined that the GPS signal of participant 11 was lost 
for one minute, splitting the detected MSP into two parts. In general, nearly 85 
percent of the False Positives could be explained by an actual suspension of the 
movement of the pedestrians. These results imply that the MSP approach also 
detected short stops that were not recorded by the participants. 

 
Figure 3–9. Frequency distribution of durations of positives. More than 80 percent of 
false positives had a duration of less than one minute. 

When False Positives were plotted on the map, some were found at places where 
True Positives were also recorded. These can be seen in Figure 3–10. These False 
Positives occurred because the spatial association of low-speed vectors is high 
enough to classify them as suspension, even if participants slowed down but did 
not come to a complete halt. Although these False Positives may correspond to 
artefacts produced by the method, they are consistent with the original 
formulation of the MSP approach, which does not necessarily require pedestrians 
to be motionless. 

The analysis of the 32 False Negatives (reference stops that were not detected) 
revealed that they were located at eighteen different places, eight of which had 
more than one False Negative. Our first assumption was that False Negatives 
would be located at places where the stopping ratio (the ratio between the number 
of stops and the total number of people at the place) was low, since the statistical 
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significance of the spatial association of low-speed vectors at those places was also 
expected to be low. An example of this kind of error is shown in Figure 3–10C. On 
the left there is a place where the stopping ratio was 1 and the reference stops 
were correctly identified (True Positives); on the right there is a place where the 
stopping ratio was 0.1 and a cluster of four False Negatives were found. In total, 
46 percent of the False Negatives were in places with a low stopping ratio. 
However, at least seven places with a low stopping ratio (< 0.025) were correctly 
detected by MSPs, which indicates that the stopping ratio is not strongly 
associated with False Negatives. 

Other False Negatives were probably related to a degradation of the GPS signal. 
The effect of this degradation in the positional accuracy of movement vectors is 
illustrated in Figure 3–10D by standard deviational ellipses. The ellipse of the 
True Positive (green) is smaller than the ellipse of the False Negative due to the 
spatial dispersion of the corresponding movement vectors. This scattering was 
found in practically all False Negatives. Among the several causes that can be 
associated with the bad quality of the GPS signal, the most relevant in this dataset 
is the canopy coverage in some areas of the park. However, we found no 
conclusive evidence for this. The occurrence of False Negatives can therefore be 
associated with the MSP approach and the lack of accuracy of the tracking 
technology. 

3.4 Conclusions 
This article presents the results of a validation of the Movement Suspension 
Patterns approach to detect stops using data from a controlled experiment that 
tracked the movement of people in a natural area. 

The results of the experiment suggest that the MSP approach is a feasible method 
for detecting stops in pedestrian movement. The temporal evaluation 
demonstrated that the approach correctly detected the occurrence of stops up to 
92 percent of the time. However, 16 percent of the MSPs did not correspond to a 
reference stop. As most of these False Positives could be related to actual 
suspension of movement of the pedestrians, we can assume that the specificity 
can be higher. Therefore, it is reasonable to expect that most of the detected MSPs 
in the proposed approach will represent actual stops made by pedestrians. 

Although the method failed to detect a small proportion of the stops (8 percent), 
this may be caused by degradation of the GPS signal. The scattering of the 
positions produced by a weak signal may strongly affect the computed speed and 
the local Moran’s index and Z score values, which means that the corresponding 
movement vectors should not be classified as suspension. The GPS receivers used 
in the experiment work with a single frequency and do not use any signal 
correction. The use of more precise receivers and technical advances that enhance 
the accuracy of GPS and other positioning systems will have a positive impact on 
the MSP approach. 



 

54 

Chapter 3 

 
Figure 3–10. Map showing spatial distribution of results: (A) overview; (B) cluster of 
false positives (blue dots) located at crossing of paths near visitor centre where 
participants reported difficulties following the route; (C) false negatives located at 
location with stopping ratio 0.1 and true positives at place with stopping ratio 1; (D) 
scattered GPS locations from static position producing a false negative. 

We can also confirm that the places where stops occur can be accurately 
represented using a density function surface computed for the MSP vectors, and 
that Percent Volume Contours (PVCs) can aid identification of the core and 
boundaries of these places. We found that 96 percent of the stops at reference 
places were inside the PVC boundaries. This representation can be useful for 
analytical purposes. For example, when analysing the movement data of visitors 
in the park, the detected places can be associated with a set of points of interest. 
The kernels of the places (inner PVCs) can be used to identify the corresponding 
points of interest and the outer PVCs can be used to identify the extent of the 
spatial influence of specific points on the behaviour of the visitors. In view of our 
results, we consider that the MSP approach accurately represents the occurrence 
and location of stops in pedestrian movement data. 

Although the original formulation of MSPs was designed to detect collective 
stopping behaviour (i.e., places where many pedestrians stopped), the analysis in 
this article shows that the approach is also valid, at least partially, for individual 
stops. In fact, even at places where only a small proportion of pedestrians stopped 
(stopping ratio < 0.25), the MSP approach correctly detected stops 77 percent of 
the time. 
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Besides evaluating the MSP approach, this article presents a method and data 
(Orellana, 2010) that can be used by other researchers to evaluate their own 
algorithms or to compare them with existing ones, for example those presented in 
(Alvares et al., 2007; Palma et al., 2008; Rinzivillo et al., 2008). 

This controlled experiment was specifically designed to evaluate the stops in 
pedestrian movement data. We can assume, however, that the method is also valid 
for other kinds of moving objects, such as vehicles or animals (Orellana et al., 
2010). This means that the MSP approach can be used for a wide range of 
applications. In transportation management, for example, it is crucial to detect the 
location of traffic jams in historical data (Yoon, Noble, and Liu, 2007). In spatial 
ecology it is very important to detect the stopping behaviour of animals to 
understand their relation with the environment (Ganskopp and Johnson, 2007). 
Moreover, since the parameterization of MSPs does not depend on the 
application, but just the data itself, it offers a generic approach for the analysis of 
large datasets collected in crowdsourcing projects and location-based services. The 
discovery of places of interest in such datasets can be of great interest for those 
projects and services. 
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Abstract: GPS technology is widely used to produce detailed data on the 
movement of people. Analysing massive amounts of GPS data, 
however, can be cumbersome. We present a novel approach to 
processing such data to aid interpretation and understanding of the 
aggregated movement of visitors in natural recreational areas. It 
involves the combined analysis of two kinds of movement patterns: 
‘Movement Suspension Patterns’ (MSPs) and ‘Generalised Sequential 
Patterns’ (GSPs). MSPs denote the suspension of movement when 
walkers stop at a place, and are used to discover places of interest to 
visitors. GSPs represent the generalised sequence in which the places 
are visited, regardless of the trajectory followed, and are used to uncover 
commonalities in the way that people visit the area. Both patterns were 
analysed in a geographical context to characterise the aggregated flow of 
people and provide insights into visitors’ preferences and their 
interactions with the environment. We demonstrate the application of 
the approach in the Dwingelderveld National Park (The Netherlands). 

4.1 Introduction 
Monitoring and analysing the flow of visitors in natural recreational areas is key to 
understanding visitor behaviour, which in turn is needed for effective 
management that meets both conservation and recreational requirements 
(Muhar, Arnberger and Brandenburg, 2002; McKercher and Lau, 2008). To 
understand these requirements we need detailed information about area usage 
and the preferences of different target groups (Chiesura, 2004). Analysing the 
spatial behaviour of visitors by relating different uses and activities to different 
places and landscape configurations can provide insights into their preferences 
and purposes (Golicnik and Ward Thompson, 2010). One of the most important 
aspects of the spatial behaviour of visitors in recreational areas is their movement 
inside the area (intra-site flow). Monitoring the movement of people during their 
visits to a recreational area can help to identify which places they visit most or 
least, how much time they spend in each place and which kind of attractions 
different target groups prefer. Knowing those preferences, managers can segment 
the market and offer more diverse and focused options, adapted to the wishes of 
specific groups of visitors (Holyoak and Carson, 2009). Monitoring and analysing 
the movement of visitors and area usage can also provide information about 
potential crowding and conflicts between different groups (Manning and Valliere, 
2001; Ostermann, 2009). The movement behaviour of visitors looking for 
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solitude and relaxation may differ from visitors looking for social activities, such 
as playing and picnicking, and studying this can help us understand how different 
groups experience crowding. The study of intra-site flow of visitors can also 
provide information for conservation management. To assess the carrying 
capacity in sensitive areas, for example, we must know about the spatial and 
temporal distribution of visitors. 

Traditionally, studies on visitors’ use of space in recreational areas have been 
based on data and information collected from interviews, surveys and direct 
observation. Researchers have used geographic information systems (GIS) to 
analyse the spatial properties of these data to understand how the spatial 
behaviour of visitors is related to different places and landscape configurations 
(Golicnik and Ward Thompson, 2010). GIS has also been used to study how 
recreational areas are used by different groups to detect and understand processes 
of appropriation and exclusion (Ostermann, 2009). 

To complement these techniques, location sensing technologies (e.g., GPS, 
mobile phones, PDA) are providing an inexpensive and unobtrusive way to collect 
massive datasets on the location in space and time of people in recreational areas 
(Nielsen and Hovgesen, 2004; Shoval and Isaacson, 2009; Taczanowska, Muhar 
and Brandenburg, 2008; van Schaick and van der Spek 2008; Xia, Arrowsmith, 
Jackson and Cartwright, 2008). To make sense of this new source of data, 
researchers are envisaging new methods and techniques for exploring and 
analysing vast amounts of positioning data to extract patterns that represent the 
movement of individuals and groups (Laube, 2009). Recent advances in the field 
suggest that despite the potential diversity of movement behaviour, people usually 
follow simple and predictable movement patterns (Gonzalez, Hidalgo and 
Barabasi, 2008; Song, Qu, Blumm and Barabasi, 2010). It is accepted that these 
patterns may provide information that will help to explain the interactions 
between moving entities and between those entities and the environment (Batty, 
DeSyllas and Duxbury, 2003; Hoogendoorn and Bovy, 2005; Bierlaire, Antonini 
and Weber, 2007; Gudmundsson, Laube and Wolle, 2009). Taking into account 
the diversity of movement patterns reported in the literature, some authors have 
proposed formalisation and classification systems to provide a systematic 
framework for ongoing research (Dodge, Weibel and Lautenschütz, 2008; Wood 
and Galton, 2009). 

Spaccapietra et al. (2008) stated that in order to analyse movement data and detect 
useful patterns, the representation of the movement of an object must go beyond 
its raw spatiotemporal positions. In their work, the authors proposed a 
representation called ‘semantic trajectories’, in which the trajectory of the object is 
divided into semantic units called ‘stops’ and ‘moves’. Stops are those segments of 
the trajectories where the object does not move. Among various methods 
proposed to implement this representation, Alvares et al. (2007) devised a method 
for detecting stops called IB-SMoT (Intersection-Based Stops and Moves of 
Trajectories), which is based on an analysis of the intersections of trajectories with 
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user-defined geographical features for a minimal duration. Rinzivillo et al. (2008) 
proposed a similar approach, in which the stops are those segments of trajectories 
where a moving entity remains within a distance threshold for a minimum period 
of time. Palma et al., (2008) proposed a method called CB-SMoT (Clustering-
Based Stops and Moves of Trajectories), which analyses each trajectory and 
generates stops when the speed value is lower than a given threshold for a 
minimal amount of time. 

More recently, Bogorny, Heuserand Alvares (2010) suggested a general 
framework for modelling trajectory patterns during the conceptual design of a 
database. The authors provided a conceptual description of the framework, an 
implementation of IB-SMoT and SB-SMoT, and data-mining algorithms to extract 
three movement patterns (frequent patterns, sequential patterns and association 
rules) for semantic trajectories. They also provided examples of how to instantiate 
the model for different applications by parameterising the spatial and temporal 
dimensions. Other researchers have proposed methods for analysing aggregated 
movement data to learn more about the spatial behaviour of visitors. For example, 
Shoval (2010) proposed using a raster-based representation that divides the area 
of study into a regular grid of cells, and counting the number of GPS observations 
in each cell of the grid. Finally, some approaches focus on the aggregation of 
trajectories to improve the visual exploratory analysis of movement data (G. 
Andrienko and N. Andrienko, 2008; Demšar and Virrantaus, 2010; Scheepens et 
al., 2011). 

A common feature of these approaches is that the conceptualisation of movement 
patterns requires a parameterisation of spatial and temporal dimensions, which 
makes the results highly dependent on the values assigned to those parameters. 
For example, in order to define a stop, the user must provide values for the 
minimum time, the minimum speed or the minimum distance to be used to 
determine whether an individual object has stopped, with the risk of 
overestimating or underestimating the number of stops. Similarly, to detect 
sequential patterns, the user must set the intervals for aggregating the temporal 
data in predefined periods (e.g., morning, afternoon, weekend). In the case of 
spatially aggregated data in raster-based representations, the size of the cell has a 
considerable effect on the summary statistics. The parameterisation of these 
values is not trivial and may be highly sensitive to the inherent GPS inaccuracy 
and to the spatial and temporal resolution of the observations (Palma et al., 2008). 
Moreover, the selection of parameters need is based on a priori knowledge of the 
dataset, and therefore may be not suitable for an exploratory approach. 

In the present work, we propose a novel approach to explore the properties of the 
collective movement of visitors in recreational natural areas based on GPS 
tracking data. We define collective movement to be the aggregated properties of 
the movement of many people in a defined space and time, not the movement of 
specific groups of people moving together (i.e., collective movement rather than 
movement of collectives). Our approach relies on different methods of detecting 
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movement patterns that represent the properties of collective movement. In this 
contribution, we focus on two kinds of movement patterns – Movement 
Suspension Patterns (MSPs) and Generalised Sequential Patterns (GSPs) – and 
demonstrate how they can be used to explore the collective movement of visitors 
in natural recreational areas.  

The next section introduces the proposed approach and details the techniques 
used for the analysis. Section 3 details how the approach was implemented to 
analyse the flow of visitors in a national park in the Netherlands. Section 4 
presents the results of the analysis and Section 5 discusses the most important 
findings. In the concluding section we briefly review the proposed approach and 
identify its current limitations and possible solutions. 

4.2 The proposed approach 

We want to represent the flow of visitors in a recreational area, defined as the 
aggregated movement of people visiting different places in a generalised 
sequence, regardless of the route followed by each individual (i.e., visitors may 
follow different routes, but a flow exist if the places are visited in a similar order). 
To represent this flow, we need to uncover spatial and temporal structures 
describing the visited places and how they are related in space and time. In other 
words, this flow is a quantitative and qualitative description of the aggregated 
spatial behaviour of the visitors. It can be graphically represented on a map by 
arrows between places (Tobler, 2003) and expanded using a space-time cube 
representation (Hägerstrand, 1970; Kwan, 2004), which we adapted to represent 
the sequential order in the Z-axis. This visual representation shows the general 
structure of the flow at the global level, as well as the local level of movement, the 
single elements of the flow representing the relations between the places. It aids 
the analysis of the way in which people use the area and interact with different 
geographical features.  

We propose an exploratory approach to analysing the flow of visitors in natural 
areas using GPS data. The proposed approach has three aims: a) to determine the 
main places visited by the people in a recreational area by detecting Movement 
Suspension Patterns (MSPs); b) to establish the sequence in which each 
individual visited those places; and c) to detect commonalities in those sequences 
by extracting Generalised Sequential Patterns (GSPs). 

Movement Suspension Patterns (Orellana and Wachowicz, 2011) denote the 
suspension of movement associated with places where people stop. MSPs are 
therefore spatial structures and are used to discover the places of interest to 
visitors. As MSPs are determined by the spatial-statistical properties of the whole 
dataset, no spatial or temporal thresholds are required. Generalised Sequential 
Patterns (Agrawal and Srikant, 1995) describe the sequence in which the places 
are visited, regardless of the trajectory followed. The term ‘generalised’ implies a 
relative order and not an absolute order: GSPs are temporal structures used to 
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find commonalities in the order that places are visited. We believe that these two 
kinds of patterns aid understanding of the spatial behaviour of visitors. The 
patterns are used to analyse the overall flow of visitors and provide insights into 
how they interact with relevant places.  

The movement of visitors is analysed in consecutive steps, using different 
techniques (e.g., spatial statistics, data mining and visual exploratory analysis). 
Each step results in a new dataset representing some specific characteristics of 
movement. The original data consist of a set of tuples representing the 
spatiotemporal coordinates of the people, which are recorded using positioning 
devices (e.g., GPS loggers). First, we compute movement parameters, such as 
speed and bearing, which generates a dataset of movement vectors representing 
the properties of movement observed in space and time. Second, we apply a 
spatial-statistical method to detect MSPs in the movement vectors dataset, which 
generates a set of spatial clusters representing the locations and times when 
visitors stopped. These data are used to find the points of interest to the visitors. 
Finally, we use a data-mining algorithm to extract GSPs that indicate the relative 
temporal sequence in which the places are visited. The result is a directed graph 
representing the frequent generalised sequences for those places. These patterns 
thus represent the aggregated flow of visitors in the study area. Figure 4–1 
presents a graphical schema of the different steps of the process. 

 
Figure 4–1. Schematic description of the proposed approach: First, movement data is 
captured using GPS devices and imported into a geodatabase. Movement vectors are 
then computed from observational data using a dedicated database procedure. Next, 
movement suspension patterns are obtained from spatial statistics and spatial analysis. 
Finally, generalised sequential patterns are extracted from the temporal sequences of 
suspension patterns using a data-mining algorithm. 
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4.2.1 Acquiring positioning data 

The movement of visitors can be recorded using Global Navigation Satellite 
Technology (GNSS), such as GPS receivers and GPS-enabled smartphones. These 
devices are capable of capturing the location of users in space and time with a 
certain periodicity. The spatiotemporal positions of a large number of devices 
tracked in an area during a period of time provide a good basis for analysing 
collective movement in that area. Preconfigured GPS devices can be handed to the 
visitors at the entrances of the area. The captured data is stored in one of the 
standard formats, such as NMEA sentences (National Marine Electronics 
Association, 2010) or GPX (Topografix, 2010), and can be transmitted in real time 
to a server via a GPRS or 3G signal (for GPS-enabled smartphones) or imported 
later (for GPS receivers). 

4.2.2 Computing movement vectors 

Movement vectors represent individual observations of movement that can be 
measured or sensed at a particular place at a particular time. They are defined by 
the spatiotemporal coordinates of the observation coupled with a magnitude (e.g., 
speed, acceleration) and an angle (e.g., direction of movement), and can be 
represented graphically by an arrow. A vector space representation is a set of 
movement vectors of one or more entities moving in a defined spatiotemporal 
area. Movement is thus conceived as a spatial property (i.e., how movement is 
observed in space) rather than as a property of the trajectory of a particular entity 
(i.e., how does a specific person move). 

The speed and bearing values of movement vectors can be derived in real time, 
depending on the capabilities of the device used to capture the space-time 
positions. Since not all the devices have those capabilities, a simple computer 
procedure can be used after the data is collected. The procedure takes two 
consecutive GPS observations and derives movement parameters (speed, distance, 
bearing and time step). If two consecutive observations are too separated in space 
or time (e.g., because the GPS signal is lost or because the GPS is turned off), this 
separation can be parameterised in the procedure to avoid errors in the 
computation of movement vectors. The procedure is publicly available online at 
http://ideasonmovement.wordpress.com. Movement vectors can be used to 
explore aggregated properties of movement, such as distribution and density and 
the global and local statistics of speed, direction and other movement parameters. 

4.2.3 Detecting Movement Suspension Patterns 

The local statistics of the set of movement vectors can be used to identify spatial 
clusters of low speed values. In Orellana and Wachowicz (2011) the authors 
demonstrated the use of a Local Indicator of Spatial Association (LISA) (Anselin, 
1995) to find these clusters and detect Movement Suspension Patterns (MSPs). 
These patterns may indicate the location of geographical features associated with 
the reduction in speed that characterises the stopping behaviour of pedestrians. 
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Although MSPs are similar to the concept of ‘stops’ used in other approaches, 
they are essentially different. Whereas ‘stops’ are the parts of an object’s trajectory 
where the object does not move, MSPs are spatial clusters of low speed vectors 
with a strong spatial association. This difference means that if only one individual 
stopped for a short time at a place where other individuals continued walking, this 
may not considered to be a MSP, because the spatial association of the speed 
values of movement vectors is not strong. This is an advantage for the analysis of 
collective spatial behaviour. The LISA method was selected because it tends to 
have the best statistical properties and requires few assumptions about the data. 
The time and duration of each MSP was obtained from the timestamps of the first 
and the last movement vectors of each visitor in each spatial cluster. 

Figure 4–2 a shows an example of a vector-based representation of the movement 
of four visitors and contains four spatial clusters of movement suspension 
(numbered 1 to 4). Each cluster consists of the movement vectors of different 
visitors (numbered from A to D). Figure 4–2b depicts the temporal dimension of 
the MSPs. The vectors classified as suspension are plotted on the timeline of the 
corresponding spatial cluster, with different markers representing different 
visitors. The lines above each group of movement vectors represent the duration 
of each individual MSP. 

4.2.4 Extracting Generalized Sequential Patterns 

Generalised Sequential Patterns (GSPs) (Agrawal and Srikant, 1995) are the 
frequent generalised sequences that can be found in a timely-ordered set of events 
(in this case, the events are MSPs). They are ‘generalised’ because the MSPs 
occurred in a relative order rather than an absolute order. The assumption here is 
that, given a set of MSPs for a group of people, with their corresponding locations 
and times, there are structures in the relative order that characterise the collective 
spatial behaviour of the group. 

Using data-mining techniques, GSPs are extracted from the original sequences of 
MSPs. Each GSP is an ordered list of MSPs (represented by the ID of the 
corresponding spatial cluster) together with a support value. The support value is 
the ratio between the number of sequences corresponding to the pattern and the 
total number of sequences in the dataset (Agrawal and Srikant, 1995). The 
example provided in Figure 2c shows the sequences of MSPs for each visitor (i.e., 
the order in which each visitor visited the different places). Figure 2d enumerates 
three GSPs with the corresponding support values. An interpretation of this 
example in terms of spatial behaviour is that there are four main places where 
people stop. In addition, the flow of visitors goes from the signpost (3) to the 
cafeteria (4) and then to the car park (1), with some visitors deviating via the 
monument. Moreover, all the people visited the monument (2) before stopping at 
the car park (1). 

Since the potential number of extracted GSPs can be high, the most salient cases 
are selected during the exploratory analysis, which requires objective and 
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subjective criteria of interestingness. Although support is the most frequently 
used objective measure of interestingness, there is some criticism that it does not 
provide the flexibility an exploratory approach needs, because it selects the most 
common cases and dismisses the uncommon, and probably interesting, cases 
(Laube, 2009). Depending on the application, potentially useful measures are 
complementary subjective criteria such as novelty and actionability (Han and 
Kamber, 2006). These subjective criteria rely not only on the input data, but also 
on the user examination of the pattern. In general, a pattern can be interesting if 
it is ‘surprising’ to users (novelty) or if they can ‘do something’ with the pattern 
(actionability) (Silberschatz and Tuzhilin, 1995). For example, a pattern can be 
considered interesting even when it has a low support value if it reveals a new, 
unexpected flow of visitors between places that were not initially considered. 
Similarly, a pattern may be interesting to a park manager if its discovery can be 
used to improve management practices. In our approach, we combined both 
objective (i.e., support) and subjective (i.e., novelty) criteria during the exploratory 
analysis of the flow of visitors. 

 
Figure 4–2. Examples of different representations of the movement of four visitors. a) 
Vector-based representation with spatial clusters of movement suspension located at 
four points of interest. b) Temporal duration of movement suspension patterns for each 
cluster. c) Sequence of suspension patterns for each visitor. d) Three examples of 
generalised sequential patterns and their corresponding support values. 

4.3 Implementation 
The proposed approach was used to explore the spatial behaviour of visitors in the 
Dwingelderveld National Park in the Netherlands. We analysed the positioning 
data recorded by GPS devices carried by 372 visitors during their visit to the park. 
We selected three research questions to illustrate the use of the approach: a) What 
are the main visited places in the park? b) What are the visitor flows from the entrances 
to the main places? and c) What are the visitor flows between the main places? The 
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answers to these questions will provide a quantitative and qualitative description 
of the aggregated flow of visitors in the park. 

Starting with a movement vector representation, the LISA approach was used to 
detect Movement Suspension Patterns (MSPs). The MSPs were then compared 
with a geographical dataset, allowing us to answer question a). In the next step, 
Generalised Sequential Patterns (GSPs) were computed using the BIDE+ data-
mining algorithm (Wang, Han and Li, 2007) and compared for each of the five 
entrances in the park to answer question b). Finally, the GSPs between the main 
places were analysed to answer question c). 

4.3.1 Study area 

The Dwingelderveld National Park (DNP) is an area of about 3,700 ha in the 
north-east of the Netherlands. It is a typical Dutch recreational area with an 
extensive network of short strolls (60 km of marked trails, each less than 7 km in 
length) and long walks, as well as routes for cycling and horse riding. The 
landscape consists mainly of dry and wet heath lands, pine and deciduous forest, 
and an important complex of juniper shrubs. Dwingelderveld is a very popular 
area and receives between 1.5 and 2 million visitors each year. Besides the 
wetlands, sheep farms and some bird-watching hides, which are the main tourist 
attractions, the park contains additional amenities for visitors, such as staffed and 
unstaffed information centres, a tea house and some cultural attractions, 
including a historic house and a radio telescope (van Marwijk, 2009). Visitors 
enter and leave the park through one of the five access points (where car parks are 
located) and follow the paths to one or more points of interest or pursue various 
leisure activities. 

Three different datasets were used. The first was a positioning dataset recorded by 
GPS receivers given to visitors at the entrances of the park (the beginning of the 
GPS track). Of the 461 visitors asked to participate, 400 agreed to carry a GPS 
device during their visit. An evaluation of the quality and completeness of the data 
led to the inclusion of 372 GPS tracks in the final dataset, which contained about 
142,000 time-stamped geographical coordinates. This data was collected over a 
seven day period (weekend and weekdays) in the spring and summer of 2006 
(details of the data collection can be found in van Marwijk, 2009). The second 
dataset was a map showing the path network and the locations of the park 
entrances. The third dataset was a collection of 271 points representing the 
locations of the attractions and facilities in the park, gathered from specialised 
web pages (Natuurmonumenten, 2009; Pol-Recreatie, 2003) and a field survey. 
Figure 4–3 is a map of the study area. 

4.3.2 Finding the main visited places 

The first task was to identify the places of interest in the park. We define ‘main 
place’ as a site where a movement suspension pattern is detected which can be 
associated with a relevant geographical feature that can explain the suspension of 
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movement. The assumption here is that visitors are attracted to these places and 
temporally suspend their movement to perform some activity associated with the 
place. Some examples are visiting an interesting spot, reading an information 
board, eating or resting at a picnic bench, etc. These attractions affect the 
collective movement by shaping the flow of visitors. 

We computed a set of movement vectors representing the movement of visitors 
using data from the positioning GPS dataset and stored them in a geodatabase. 
The Local Moran’s index was computed for the movement vectors using an 
adaptive neighbourhood defined by a radius of 50 metres and a minimum of 15 
observations. These parameters were defined in an exploratory analysis of the 
spatial distribution of the dataset. The movement vectors with speeds less than the 
mean and Z-scores above 1.96 (5% significance level) were classified as 
movement suspension and they showed spatial clusters when plotted on a map. 
To define the boundaries of the spatial clusters, we used a kernel-density function 
on the set of vectors classified as movement suspension to obtain a continuous 
surface representing a density estimate. Percent Volume Contours (PVCs) traced 
on this surface represent the boundaries of the areas that contains x% of the 
volume of the probability density distribution. For example, using a value of 99, 
the PVCs delineate the areas containing on average 99% of the vectors that were 
used to generate the kernel density estimate (Beyer, 2010). The bandwidth for the 
kernel-density function was determined by the estimated accuracy of the 
observation (e.g., 10 m for a GPS receiver under ideal conditions). These lines 
represent the boundaries of compact spatial clusters of suspension of movement. 
Moreover, the kernel-density function allowed us to find hotspots of movement 
suspension and differentiate outliers (e.g., clusters with only one movement 
vector). 

GIS overlaying was used to compare the spatial clusters with a point dataset 
containing the attractions and facilities in the park. An attraction or facility was 
associated with a spatial cluster if its location lies inside the 99% PVC. However, 
some attractions were landscape elements outside a cluster but visible from 
within the cluster (e.g., a water body). In these cases, maps, aerial imagery 
interpretation and field verification were used to associate the cluster with the 
corresponding attraction. The relative importance of each place was evaluated 
using aggregated statistics for the cluster, such as the number of visitors and the 
number of MSPs. These results were used to answer the first question, What are 
the main visited places in the park? 



 

68 

Chapter 4 

 
Figure 4–3. Map of the Dwingelderveld National Park showing the five entrances and 
the locations of the main attractions and facilities. 

4.3.3 Exploring the aggregated flow of visitors 

The second and third questions concern the aggregated flow of visitors. This flow 
is understood to be the aggregated collective movement of visitors between the 
places and is represented by Generalised Sequential Patterns (GSPs). 

We implemented a database procedure in which the MSP dataset obtained in the 
previous step was analysed to determine the temporal sequences for each spatial 
cluster and visitor. The database was updated by adding to each MSP an integer 
indicating the position in the sequence and an identifier for the individual 
sequence. The result was a dataset of individual sequences of ordered MSPs. This 
dataset was analysed using the BIDE+ algorithm implemented in the Sequential 
Pattern Mining Framework, a publicly available JAVA code for analysing 
sequential patterns (Fournier-Viger et al., 2008). We selected this algorithm 
because it avoids redundancy in the results by extracting only ‘closed’ sequential 
patterns. ‘Closed patterns’ are sequences that are not contained in another 
sequence having the same support. A closed pattern induces an equivalence class 
of patterns sharing the same closure, and those patterns are partially ordered, e.g., 
according to the inclusion relation. The smallest elements in the equivalence class 
are called minimal generators, and the unique maximal element is called the 
closed pattern (Fournier-Viger et al., 2008). We modified the original code of the 
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algorithm to produce a formatted output consisting of two tables that can be 
imported back into the geodatabase. The first table contained the structure of the 
GSP, in the form of an ordered list of spatial clusters where the MSPs occurred. 
The second table contained the properties of each GSP, consisting of the ID of the 
GSP and the values for support, frequency and size. 

The results were represented in a dynamic map linked to the geodatabase to 
indicate the flow of visitors between the main places. This linkage enabled a 
dynamic visualisation by querying and filtering the datasets. 

The second question, What are the visitor flows from the entrances to the main places? 
is answered by exploring the GSPs starting from each entrance in the park. We 
analysed the GSPs with the largest support values, representing the aggregated 
flow of visitors from the entrance to the main places. The results were shown on a 
map using arrows to indicate the direction of the aggregated flow of visitors to 
each place. 

We took a similar approach to answer the last question, What are the visitor flows 
between the main places? The exploratory analysis was performed in a 3D 
sequential space-time cube, the base of the cube being a two-dimensional map of 
the park and the Z-axis representing the sequential time. The GSPs were rendered 
in the cube as three-dimensional polylines connecting the different places, 
ordered in time in the vertical axis, the first MSP at the bottom. The thickness and 
colour of the lines represent the support values of the GSPs and provided a visual 
cue for the analysis. To aid visual interpretation, vertical lines connect the places 
on the map to the MSPs. Moreover, each GSP was linked to a data-space 
representation, such as multi-dimensional scatter plots. This is a powerful 
exploratory tool and allowed us to interact with the data by querying, filtering and 
highlighting the GSP dataset in a multi-dimensional space. The resulting 
visualisations allowed a quick and effective interpretation of the GSPs and helped 
to uncover the structures in the flow of the visitors. For example, GSPs with 
relatively high support values implied that many people visited the places in that 
order, shaping a visible flow of visitors in the space-time cube. 

4.4 Results 

4.4.1 Most visited places in the park 

Using the LISA index to classify the movement vectors, we found that 6.3% (n = 
8,988) corresponded to movement suspension. We identified 184 spatial clusters 
defined by the 99% PVCs drawn on the kernel-density surface. These clusters 
contained in total 1,581 MSPs. By applying a spatial overlay function, we found 
that 158 spatial clusters (85.9%) could be associated to at least one relevant 
geographical feature in the park. These clusters contained 1,546 MSPs, or 97.8% 
of all the MSPs. This result allowed us to discover the places visited by the people 
participating in the data collection (Figure 4–4). 
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Assuming the degree of interest of a place can be related to the number of times it 
was visited (represented by the number of MSPs in the corresponding cluster), we 
analysed a subset containing the 10% (n = 18) largest clusters to provide an 
indication of the most interesting places for the visitors. Details of these clusters 
are reported in Table 4–1 and Figure 4–4. 

The car parks at the five entrances were among the most visited places. In fact, all 
the visitors started and finished their visits there (e.g., Figure 4–4b, f). The 
remaining main visited places included attractions and amenities in the park. The 
most visited attraction in the park was the visitor centre close to Entrance 1 (70 
visitors, Figure 4–4f), where the duration of the visits were typically long (more 
than 15 min.). Other main visited attractions were the radio telescope (41 visitors, 
Figure 4–4a), the sheep farm (32 visitors, Figure 4–4e), and some of the wetlands 
that characterise the landscape of the park and where picnic benches are located. 
Two of the wetlands that received a large number of visitors are Davidsplassen (31 
visitors) and Smitsveen, also the site of an ancient burial mound (17 visitors, 
Figure 4–4c). The average duration of the visits was longer at the radio telescope 
and the sheep farm (about 7 min.) than at the wetlands and other attractions (less 
than 5 min.). 

Table 4–1. The 10% largest clusters and their related geographical features. The figures 
indicate the number of different visitors stopping at the place, the number of 
Movement Suspension Patterns, the number of vectors classified as suspension and the 
average duration of each MSP. 

Cluster	
  
(Id)	
  

Associated	
  Feature	
   Visitors	
  
(n)	
  

MSP	
  
(n)	
  

Vectors	
  
(n)	
  

Avg.	
  Duration	
  
(min:sec)	
  

2	
   Car	
  park	
   107	
   207	
   1212	
   03:01	
  
1	
   Visitor	
  centre	
   70	
   82	
   2011	
   16:25	
  

19	
   Car	
  park	
   60	
   92	
   201	
   07:19	
  
4	
   Picnic/ANWB	
  Mushroom	
   59	
   74	
   210	
   02:01	
  

12	
   Radio	
  Telescope	
   	
   41	
   47	
   465	
   07:27	
  
16	
   Car	
  park	
   37	
   70	
   257	
   03:58	
  
18	
   Snack	
  Bar/Info	
  Spier	
   37	
   46	
   84	
   01:32	
  
15	
   Car	
  park	
   	
   33	
   57	
   198	
   05:35	
  
3	
   Sheep	
  farm	
  	
   32	
   32	
   771	
   07:34	
  

42	
   Information	
  at	
  Sheep	
  Farm	
   31	
   47	
   321	
   04:37	
  
10	
   Davidsplassen	
  /	
  Picnic	
   	
   31	
   31	
   188	
   02:13	
  
33	
   Cross	
  path	
   27	
   28	
   60	
   00:19	
  
21	
   Car	
  park	
   25	
   45	
   152	
   07:38	
  
5	
   Wetland	
  /	
  Picnic	
   25	
   25	
   132	
   04:09	
  
7	
   Tea-­‐house	
   24	
   24	
   126	
   27:50	
  
6	
   ANWB	
  Mushroom	
  	
   20	
   20	
   35	
   00:37	
  

69	
   ANWB	
  Mushroom	
   19	
   19	
   102	
   01:05	
  
110	
   Smitsveen	
  /	
  Burial	
  mound	
   17	
   20	
   96	
   03:08	
  

 

The most visited amenities were those providing information and orientation, 
including the information point nears the entrance at Spier (37 visitors, Figure 4–
4b) and the one close to the sheep farm (31 visitors, Figure 4–4e). The other main 
visited places providing information were some of the mushroom-shaped ANWB 
signposts (e.g., Figure 4–4d), where the MSPs were of a short duration. Another 
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frequently visited facility was the teahouse in the forest (Figure 4–4h), with the 
longest average duration of visits (27 min. 50 sec.). 

It is interesting that, besides the attractions and amenities, one spatial cluster of 
MSPs is located at a path crossing (Figure 4–4g), where 27 visitors stopped. This 
pattern may indicate a specific spatial behaviour of visitors arriving at a crossing 
and choosing which direction to take. The short average duration of the MSP at 
this cluster (19 seconds) supports this interpretation. 

 
Figure 4–4. Map showing the spatial clusters of Movement Suspension Patterns and 
associated geographical features. The numbers are the IDs of the spatial clusters. 
Detailed examples are depicted in the insets. 

4.4.2 Flow from the entrances to main places 

The temporal analysis of the set of MSPs resulted in 282 sequences of MSPs, 
representing the relative order in which people visited each place. Since a 
sequence is an ordered set of MSPs, the number of sequences equals the number 
of people who visited at least two different places (i.e., at least two MSPs detected 
at different spatial clusters). The BIDE+ algorithm extracted 218 GSPs with a 
minimum support of 0.02. This value was low enough to capture uncommon 
GSPs to allow further filtering to select cases with higher support values. We used 
a query to extract GSPs in which the first element corresponded to an MSP 
located at an entrance and found 16 GSPs representing the flow of visitors from 
the entrances to the main places. This result is reported in Table 4–2 and Figure 
4–5. 
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The shape of the flow of visitors from the entrances to the main attractions 
reflects the relative importance of Entrance 1 (Figure 4–5), where most of the 
people in the study started their visit to the park. Many of the main attractions are 
easily reachable from this entrance, which may also explain the large proportion 
of GSPs starting there. This interpretation is supported by the fact that the largest 
support values corresponded to the GSPs with the shortest lengths (measured as 
the Euclidean distance between the origin and destination of the flow). This 
implies that people usually choose an entrance near to their preferred places as 
the starting point of their visit to the park. For example, the flow to the teahouse, 
the sheep farm and the visitor centre came from Entrance 1. Likewise, the GSP 
representing the flow of visitors from Entrance 5 to the wetlands in Davidsplassen 
had larger support than the one from the more distant Entrance 1. We found two 
exceptions: the radio telescope and the wetlands at Davidsplassen and Smitsveen 
received visitors from two entrances. Another interesting finding is the flow from 
Entrance 1 to cluster 4 (Figure 4–5, lower inset). This cluster is located at a path 
crossing, which also has a signpost and a picnic bench. Visitors seemed to stop 
there before deciding which route to follow to continue the visit. 

Table 4–2. Generalized Sequential Patterns from the entrances to the main places. 
From	
  

(Entrance	
  ID)	
  
To	
  

(Cluster	
  ID)	
  
Geographical	
  feature	
   Support	
   Frequency	
   Distance	
  

(m)	
  
1	
   110	
   Wetland	
  /	
  Burial	
  Mound	
   0.02	
   7	
   4099	
  
1	
   10	
   Davidsplassen	
   0.03	
   9	
   3025	
  
1	
   69	
   ANWB	
  Mushroom	
  	
   0.03	
   10	
   2283	
  
1	
   12	
   Radio	
  Telescope	
   0.04	
   15	
   3683	
  
1	
   6	
   ANWB	
  Mushroom	
  	
   0.04	
   13	
   1057	
  
1	
   7	
   Tea	
  House	
   0.04	
   14	
   1483	
  
1	
   33	
   Path	
  Crossing	
   0.06	
   21	
   188	
  
1	
   5	
   Wetland	
  /	
  Picnic	
   0.06	
   19	
   940	
  
1	
   42	
   Information	
  at	
  Sheep	
  Farm	
   0.07	
   25	
   576	
  
1	
   3	
   Sheep	
  Farm	
   0.08	
   27	
   741	
  
1	
   4	
   Picnic	
  /	
  ANWB	
  Mushroom	
  	
   0.13	
   46	
   521	
  
1	
   1	
   Visitor	
  Centre	
   0.16	
   55	
   102	
  
3	
   110	
   Smitsveen	
  /	
  Burial	
  mound	
   0.02	
   6	
   1184	
  
3	
   12	
   Radio	
  Telescope	
  	
   0.05	
   16	
   777	
  
5	
   10	
   Davidsplassen	
  	
   0.04	
   13	
   1483	
  
4	
   18	
   Snack	
  Bar	
  /	
  Info	
  centre	
   0.06	
   20	
   75	
  

 

4.4.3 Flow between the main places  

The first visualisation created to explore the flow in the space-time cube was a 
display of all GSPs (Figure 4–6). This visualisation revealed that GSPs with high 
support values (support ≥ 0.1) usually consisted of only two or three MSPs. They 
all started at a car park, went to a nearby place and then came back to the starting 
point. The more MSPs the GSP had, the lower the support value was. This is an 
expected result because shorter GSPs represent relatively simple flows that many 
visitors may follow (e.g., Entrance 1 →Visitor Centre → Entrance 1). But GSPs are 
nested structures, and so shorter GSPs are parts of longer GSPs, which also 
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explains the differences in support values. At this point, it is important to 
remember that GSPs imply a generalised order, and the example given captures 
the flow of all the visitors visiting the places in that order, regardless of whether 
they visited other places in between or not. 

 
Figure 4–5. Flow from each entrance to the main visited places. The numbers in circles 
are the identifiers of the entrances and the plain numbers are the identifiers of the 
spatial clusters associated with each place. The thickness of the lines representing the 
flow is proportional to the corresponding support value. 

The capabilities for dynamic interaction with the data allowed us to explore 
interesting structures and perform comparisons. For example, we found an 
interesting example of a GSP with many MSPs and relative high support values 
(highlighted in Figure 4–6). This example represents the flow of people who 
visited the places in the following sequence: Entrance 1 → Path crossing → Info 
Centre → Sheep farm → Info Centre → Entrance 1 (s = 0.05). 

When we filtered the GSPs for specific places, some properties of the flow at those 
places were revealed. For example, from the GSPs associated with the radio 
telescope shown in Figure 4–7, it is possible to see that the tea house and 
Davidsplassen were typically visited after the radio telescope (flow lines go 
upwards from the radio telescope to those places), whereas the historic house and 
some of the wetlands were visited before the radio telescope (flow lines go 
upwards from those places to the radio telescope). An example of a GSP with 
more MSPs is Entrance 1 → Burial mound → Radio Telescope → Entrance 1. The 
support for this GSP was 0.02 (highlighted in Figure 4–7). 
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Figure 4–6. Sequential space-time cube representing Generalised Sequential Patterns 
with support � 0.03. The vertical axis indicates the sequence in which the places in each 
GSP were visited. Dark thick lines indicate high support values; light thin lines indicate 
small support values. An interesting pattern is highlighted in black. 

 
 

 
Figure 4–7. An example of the sequential space-time cube for the flow of visitors to the 
radio telescope. The vertical axis represents the temporal sequence, the thin diagonal 
lines represent the flow of visitors between the places, and the vertical lines link the 
clusters to the places on the base map. The highlighted Generalised Sequential Pattern 
represents the flow of visitors starting at Entrance 1, visiting the burial mound and then 
the radio telescope, before going back to the initial point (support = 0.02). 

Using the filtering and linking functions, we found other interesting properties of 
the spatial behaviour of visitors. For example, the visitor centre was always visited 
before the sheep farm, but the nearest information centre was visited both after 
and before it. Also, of all the visitors going from Entrance 5 to Davidsplassen, 78% 
had first visited one of the wetlands near the entrance. Finally, of all the visitors 
that went from Entrance 1 to the teahouse, half went first to the visitor centre. 
There was no flow of visitors from the teahouse to the visitor centre. 
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In general, we found that GSPs with low support values were more common than 
those with high values. For example, almost 80% of the GSPs had a support value 
equal to or less than 0.04% (Figure 4–8a). This means that there were many 
different sequences followed by few visitors and only few sequences followed by 
many visitors (Figure 4–8a). The visitor flow is therefore made up of many 
different patterns. We also found that short GSPs (with three or four MSPs) were 
more common than GSPs with more MSPs (Figure 4–8b), indicating that the 
flow of visitors consists mainly of common, simple sequences. 

 
Figure 4–8. a) The large percentage of Generalised Sequential Patterns with low 
support values may indicate a large diversity in the flow of visitors (many sequences 
followed by few visitors and few sequences followed by many visitors). b) 77% of the 
GSPs had four Movement Suspension Patterns or less. 

4.5 Discussion 
The results obtained to answer the first question, What are the main visited places 
in the park? indicate that despite the large number of points of interest in 
Dwingelderveld National Park, only a limited number of them attracted 
significant numbers of visitors and many were hardly visited at all. The commonly 
visited places can be classified according to their functions as attractions and 
amenities. Attractions are places mainly associated with natural and cultural 
leisure activities, where people go to experience and enjoy the landscape and 
features in the park. Examples of these places are the radio telescope, the sheep 
farm and the wetlands in Davidsplassen and Smitsveen. Amenities are places 
with information facilities and services for visitors. Examples are the tea house, 
the information centres, the information boards and poles, and the picnic 
benches. Interestingly, besides these two kinds of places, we found that visitors 
also stopped at some path crossings. Our interpretation is that these are places 
where visitors temporary suspended their movement to decide which path to take. 

The results obtained to answer the second question, What are the visitor flows 
from the entrances to the main places? show that the flow of visitors to the main 
places came mainly from the nearest entrance. Few places received a flow of 
visitors from two entrances. This indicates that the entrance selected as the 
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starting point largely determines the places that are visited, suggesting that the 
flow of visitors may follow a gravity model. 

The results obtained to answer the third question, What are the visitor flows 
between the main places? indicate a great diversity in the flow of visitors in the 
park. Although few places were visited often, they were hardly ever visited in the 
same order. This result is interesting since Dwingelderveld National Park, like 
many natural parks in the Netherlands, has predefined routes that are well 
marked on maps available to the visitors, as well as on the information boards and 
signposts. This result seems to contradict the findings of van Marwijk (2009) who 
reported that 66% of the visitors follow a predefined route in his experiment. Two 
facts should be borne in mind, though. First, visitors can follow the routes in both 
directions, changing the order of visited places. Second, the figures reported in 
van Marwijk’s study are based on visitors’ answers to a survey after they finished 
their visit, and not on GPS positioning data. 

The answers to the three questions we posed at the beginning illustrate the 
suitability of our approach to analysing the flow of visitors. The proposed 
approach has some advantages over previous methods mentioned in the 
introduction. One advantage is that MSPs, which constitute the building blocks of 
the analysis, do not need spatial or temporal thresholds. In addition, using the 
BIDE+ algorithm to detect GSPs helps to avoid redundancy in the results, making 
it easier to explore and interpret them. Moreover, the combination of different 
methods provides the flexibility required for an exploratory approach. Our 
approach is also strongly related to the geographical context in which movement 
occurs, which helps with interpreting the meaning of the movement patterns. An 
additional advantage is that all the steps can be performed using publicly available 
GIS software and open source code – an important advantage for applying the 
approach in other areas. 

The proposed approach can provide useful information for the design, 
implementation and monitoring of management practices in natural recreational 
areas. Park managers, for example, can use the proposed approach to assess the 
popularity of different places in their area and understand the flow of people from 
the park entrances to those places. This in turn can be used to evaluate the 
location of signs, design visitor routes and manage the flow of visitors to avoid 
crowding. 

Although this analysis was restricted to the spatial behaviour of the visitors, their 
socio-economic backgrounds, purposes and motivations, can also be included to 
differentiate and compare different target groups. Moreover, the flows of different 
groups and their changes over time can be used as indicators of coping 
mechanisms in crowded areas (Manning and Valliere, 2001) and for studying 
possible processes of exclusion and domination (Ostermann, 2009). 

The implications of these results are also of potential interest to tourism 
businesses. Holyoak and Carson (2009) identify several areas that can benefit 
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from the study of the movement of visitors in a broader, regional context. 
Managers can segment the market and offer more diverse and focused options for 
specific groups of visitors. Information and marketing strategies can take into 
account the order in which the places are visited to provide relevant and 
appropriate information about the destinations. Moreover, researchers in 
recreational areas can study the flow of visitors to support the design of other data 
collection methods, such as deciding where and when conduct interviews, surveys 
and locate direct observers. 

Although these results describe the flow of visitors in a relative small area, the 
approach can be used in larger areas and for longer periods of time. In fact, one of 
the advantages of Movement Suspension Patterns is that they are derived from 
the spatial-statistical properties of the dataset, and can therefore work at very 
different scales. Theoretically, the lower limit corresponds to the spatial accuracy 
of the data (i.e., it would be not possible to differentiate flows in an area of 10 
metres radius for data collected with single-frequency GPS receivers without any 
signal correction) and the upper limit is set by the study design (the area in which 
the participants will be monitored). In this study, preconfigured GPS receivers 
were given to the visitors at the entrances of the park. Other portable devices, such 
as the visitors’ own smartphones or tablets could be used to complement data 
collection. For example, visitors willing to participate in the research could install 
tracking applications in their devices, in return for receiving location-aware 
information during their visit to the area. 

4.6 Conclusions 
Understanding the spatial behaviour of visitors in recreational natural areas is a 
key issue for effective management. Using GPS tracking technology, managers 
and researchers can collect data on the routes followed by individuals to analyse 
how they interact with the geographical features in the area. When the movement 
of several people is analysed, some patterns may emerge indicating the existence 
of common structures in the spatial behaviour. In line with this idea, we 
suggested that movement patterns representing the flow of visitors could further 
our understanding of the collective spatial behaviour of the visitors. 

In this article, we present a novel approach to exploring the flow of visitors in 
natural areas through the combined analysis of two kinds of movement patterns 
extracted from GPS positioning data. Movement Suspension Patterns were useful 
for uncovering the main attractions, while Generalised Suspension Patterns were 
helpful in understand common structures in the order that those places were 
visited. We demonstrated the application of the approach by analysing the 
movement of visitors in the Dwingelderveld National Park. The results suggest 
that the proposed approach helps us to understand the aggregated spatial 
behaviour of the visitors in the park. 
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In future research, we are envisaging new ways to build the sequential space-time 
cube to allow a better dynamic exploration of the detected GSPs. We are also 
developing a better method to establish the duration of the individual MSPs using 
hierarchical clustering. 
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Abstract: Since the introduction of Time Geography, the literature has 
witness a growing interest in representing and understanding human 
movement and its relationship with the environment. Although recent 
technology in personal tracking devices brought new potentialities in 
collecting and representing individual movements, methods to deal 
with the complexity and dynamism of collective movements are still 
lacking. This chapter introduces a spatial knowledge representation for 
the conceptualization of pedestrian movement as a complex system 
based on the interactions. Movement interactions are defined and 
classified to represented global characteristics of the movement as 
emergent properties other than as a set of individual properties. The 
devised approach is exemplified through a case study on characterizing 
visitor behaviour in the Dwingelderveld National Park in The 
Netherlands. 

5.1 Introduction 
The interest in representing the movement of people in order to understand their 
relationship with the environment dates back to the ‘70s, when Hägerstrand 
posed the basis of Time Geography. He studied the space-time path of individuals 
to identify the spatial and temporal constraints that characterize human 
movement (Hägerstrand, 1970). This idea has proved very suitable to represent 
the individual movement as an essential relationship between an individual and 
the environment, as well as between individuals. Moreover, analysis of pedestrian 
movement has been widely recognized to be essential in understanding human 
behaviour (Blythe, Miller and Todd, 1996). The space-time paths used by 
Hägerstrand (i.e., trajectories) have become the most common representation for 
human movement, due in part to its intuitive visualization and interpretation, but 
also to its feasibility to directly represent data from tracking technologies. As a 
result, several technologies and tools have been developed for the collection, 
storage and recovery of large trajectory data sets (Güting and Schneider, 2005; 
Manco et al., 2008; Ortale et al., 2008; Pfoser and Jensen, 2001; Renso et al., 
2008), analysis (Andersson, et al., 2008) and visualization (G. Andrienko et al., 
2008). Although trajectories have proved to be useful in representing the 
movement of individuals, they seem to be an inadequate representation to deal 
with the complexity and dynamism of collective movement and the interactions 
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that are the cause and the consequence of it. For example, the spatio-temporal 
path of an individual would have different meanings depending on the presence 
or absence of other individuals as well as the relationship of the individual with 
the environment; the trajectory-based representation is not enough sophisticated 
to represent these different meanings. This idea will be further developed in the 
next sections. 

Our research assumption is that this limitation arises from an underestimation of 
the representation’s roles and implications. Davis stated in (Davis et al., 1993) that 
a "knowledge representation" has five roles that should be taken into account: a 
surrogate for the real world, a set of ontological commitments, a fragmentary 
theory of reasoning, a medium for efficient computation and a medium for 
human expression. We believe that the broad use of the trajectory-based 
representation has led to an underestimation of some of these roles. Mainly, the 
ontological commitments of this representation (i.e., what is represented and 
what is not) have been undervalued. For example, there is a commitment that the 
movement of an individual starts at the first point of the trajectory and ends at the 
last point, and that the whole movement can be represented as an interpolation of 
the intermediate points, which is not necessarily true. Another commitment is 
that intermediate points would represent either stops or moves, but this 
distinction, although intuitive, is not always precise, since individuals are hardly 
ever still and therefore the conceptualization of stops depends on the scale. 
Consider for example, a commuter’s trajectory: It would have long stops (i.e., 
home, office) and short stops (i.e., kiosk, traffic lights), but the people are not 
completely static in these places and it would even be interesting to represent the 
movement inside those “stops”. As we can see, these commitments limit the 
possibilities of the representation. 

The main contribution of this chapter is the description of a Spatial Knowledge 
Representation for conceptualization of pedestrian movement. Indeed, pedestrian 
movement can be conceptualized as a dynamic complex system based on the 
interactions that happen between individuals as well as between individuals and 
the environment in which they move. This conceptualization becomes useful 
since it allows for the representation of some global characteristics of the 
movement as emergent properties rather than as a set of individual properties. 
Moreover, it emphasizes the feedback effects of the movement of a pedestrian on 
other pedestrians and the environment. These characteristics and effects are the 
basis of the interactions based representation. 

This representation is formalized according to the five previously mentioned 
roles. However, special emphasis will be placed on the first three roles, which 
allows us to answer the following questions: 

• What are the movement interactions? 

• What elements and relations are important to consider? 
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• How can we interpret them? 

On the one hand, we propose a simple taxonomy of pedestrian interactions and 
we show how this taxonomy can be part of an ontology of interactions, where 
concepts like Context, Behaviour and Patterns are combined to offer a more 
general understanding of the essence of pedestrian movement behaviour. On the 
other hand, we have developed an ontology of pedestrian behaviour based on the 
proposed interactions. This last aspect benefits from the reasoning capabilities 
provided by formal ontologies in defining behaviour in terms of combination of 
interactions, movement patterns and contextual information. The viability of our 
approach to analyse the collective pedestrian movement will be demonstrated 
through the case study of visitors to the Dwingelderveld National Park in 
Netherlands. 

The remaining parts of this chapter are organized as follows. Next section 
presents previous related research on pedestrian movement representation, 
patterns and behaviour. After, the focus is on interactions for pedestrian 
movements, where definitions of pedestrian interactions are given. We also 
propose an ontology for interactions where movement patterns, context, and 
interactions are combined to express pedestrian behaviour. Then, a case study 
about inferring the behaviour of visitors in a park is depicted, whereas 
conclusions are reported in the last section. 

5.2 Related work 
The tasks of detection, representation and interpretation of movement patterns 
have attracted the attention of several scientific communities. Important 
contributions have been made from such diverse areas as artificial intelligence, 
video surveillance, emergency management, environmental planning, human 
geography, transportation management, animal and human behaviour, and 
computational geometry, among others. Exhaustive review of research related to 
the representation of pedestrian movement exceeds the purpose of this chapter; 
nevertheless, we would like to mention some of the works that inspired us in the 
development of our approach. 

The proposal of analysing people movement for the interpretation of their 
behaviour was first glimpsed in Time-Geography carried out by Hägerstrand, who 
showed how human activity can be determined not only by decisions made by 
individuals, but mainly by the spatial and temporal constraints they are subject to 
(Hägerstrand, 1970). Hägesrtrand’s proposal of representing movement as spatio-
temporal paths (the sequence of spatio-temporal positions of a moving object) still 
remains the foundation of most current approaches. Other authors are using 
different terms as “trajectories” (e.g., N. Andrienko et al., 2008) or “geospatial 
lifeline” (Hornsby and Egenhofer, 2002) for the same concept. Miller (2005) 
confronted the potential lack of rigour of Hägesrtrand’s approach by extending the 
moving object database techniques to develop more rigorous definitions of basic 
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concepts such as space-time path, prisms, bundles and intersections in the 
context of a measurement theory for Time Geography. 

The most recent revision of Time-Geography was proposed by Yu and Shaw 
(2007), in which the authors propose integrating the representation of human 
activity together in both the physical and virtual worlds in order to study diverse 
types of interaction. Later, the authors recognized that trajectories themselves 
were not sufficient for the representation of patterns when using large movement 
data sets, and suggested the use of a generalized representation called 
Generalized Space-Time Paths (GSTP) (Shaw, Yu, and Bombom, 2008). More 
recently, they presented the implementation of this approach in a Space-Time 
GIS, where they demonstrated how the activities and interactions of individuals in 
the physical and virtual worlds could be suitably represented with Linear 
Reference Systems (LRS) in space-time paths (Shaw and Yu, 2009). 

A different approach was proposed by Alvares et al. (2007) where authors 
addressed the complexity of analysing large trajectory data sets by enriching 
trajectories with semantic geographical information. In their work, the authors 
proposed the transformation of traditional raw trajectories into semantic 
trajectories, through a pre-processing of stops and moves (Spaccapietra et al., 
2008). This promising approach is conceptually similar to that presented in this 
chapter; however we have expanded the formalization of movement patterns 
beyond stops and moves. 

Daamen and Hoogendoorn (2003a, 2003b) described controlled experiments with 
a view to studying pedestrian behaviour in various situations. The authors 
represent movement at two levels: microscopic level (trajectories) and 
macroscopic level (flows). They also show how the former can be used to 
understand individual behaviour, while the latter are more useful for 
characterizing collective behaviour. 

Moreover, a significant research project has been carried out on context-aware 
representation and reasoning of spatial knowledge. Location-Based Systems (LBS) 
use context to retrieve information that is relevant to the user, depending on their 
location. In an interesting study by Schlieder and Werner (2003), authors 
suggested that the location itself is not enough to determine the user’s intentional 
behaviour, and proposed a location model that takes into consideration both the 
user’s movement patterns and their context in order to infer behaviour. The main 
approach is based on the translation of movement patterns into sequences of 
intentions, assuming that these intentions are specific for each type of space and 
are characterized by the user’s movement pattern. 

Helbing et al. (1993) proposed a representation of pedestrian collective movement 
based on fluid dynamics models. The main assumption of this approach is that 
some of the fluids’ properties could be also found in pedestrian collective 
movement. Therefore, the authors adapted the classic equations of fluid dynamics 
(particularly gas-kinetic) to integrate the effects of interactions between 
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individuals and to represent movement as macroscopic flows. In a later work, the 
authors explored how non-linear interactions between individuals can result in 
surprisingly predictable emerging properties in collective movement, and this 
brought a new pedestrian behaviour model based on social forces where attraction 
and repulsion forces between pedestrians are represented (Helbing, et al., 2001). 
They have also explored interactions in which pedestrian movement both 
influences and is influenced by the environment, as happens, for example, in the 
formation of trails on deformable terrain. 

The study of movement as the interaction between people and the environment is 
hardly new. Hillier et al. (1993) studied the effect of so-called “attractors”, defined 
as points with a particular interest, or capable of generating flows of people 
movement between them. The authors determined that these attractors are only 
the multipliers of a more important effect caused by the configuration of 
travelable space, thus stressing the importance of representing the environment 
in order to understand people’s movement. Following the same viewpoint Turner 
et al. (2001) approached the interactions between individuals and built-up 
environments through the study of visibility graphs, suggesting that some 
movement patterns, such as way-finding or route-choosing, are closely related to 
the visual perception of space. 

In the field of computational geometry, several researchers have focused on 
studying techniques for pattern matching and recognition for movement data, 
proposing formalizations of patterns and developing algorithms for their 
detection (Gudmundsson et al., 2004; Andersson et al., 2008; Benkert et al., 
2008). In particular, Laube, Imfeld, and Weibel (2005) proposed a complete 
approach in which the movement of individuals is represented as an analysis 
matrix having movement parameters of various individuals that are compared 
over the course of time. The authors also proposed a framework called REMO 
(RElative MOtion) for the formalization of possible movement patterns, as well as 
data mining algorithms for the detection of such patterns. Although these 
implementations were mainly carried out in data sets of animals’ movement, this 
approach is perfectly valid for the analysis of human behaviour. 

Data mining over trajectories is a new and promising research field aimed at 
investigating techniques to extract patterns from large datasets (Nanni et al., 
2008). Clustering has been exploited to uncover a variety of global behavioural 
patterns, such as density-based clustering (Rinzivillo et al., 2008), moving 
clusters, and identifying groups of objects that move similarly and close to each 
other for a long time (Kalnis, Mamoulis and Bakiras, 2005). The identification of 
local patterns in movement data, i.e., of concise representations of interesting 
local behavioural patterns of moving objects, has been also a fertile area of 
research. Among them, trajectory pattern mining in (Giannotti et al., 2007) 
pursued to unveil sequences of temporally annotated spatial regions. 

Despite the amount of research carried out on movement patterns, there appears 
to be no agreement on how they must be organized or represented. Recently 
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Dodge, Weibel, and Lautenschütz (2008) recognized this lack of organization and 
suggested a systemic representation of movement patterns. They proposed two 
main classes, namely Generic Patterns and Behavioural Patterns, and arranged 
subclasses of the first according to main movement parameters, whereas 
subclasses of the second were defined using the complex patterns in a specific 
domain. Dodge classification constitutes a first attempt to organize the existing 
definitions of movement patterns, but a more formal and comprehensive 
classification is still needed. Actually, Wood and Galton (2008) investigated the 
relationship between collective paths from Dodge classification and some 
examples of collective phenomena and detected some gaps in their approach; they 
have also concluded that the classification system could be formalized in First-
Order Logic. 

Finally, an important contribution for the representation of the dynamics of 
pedestrian movement has been provided by research on simulation and AI. This 
type of research seeks to create models that reproduce pedestrian behaviour and 
use them as the basis for the design and planning of transportation 
infrastructures, evacuation facilities and leisure areas. Various approaches have 
been suggested for these models; among them, the most noteworthy ones are 
based on Agent Based Modelling (Penn and Turner, 2001; Batty, 2003; Batty, De 
Syllas, and Duxbury, 2003; Bierlaire, Antonini, and Weber, 2007; Antonini, 
Bierlaire, and Weber, 2006), and Cellular Automata (Blue and Adler, 2001; 
Burstedde et al., 2001). 

5.3 A representation of pedestrian movement based on 
interactions 

Let us consider a recreation area with a large number of visitors freely walking 
around. If the movement of each person is represented using a trajectory, it will 
be possible to detect certain movement patterns such as the most widely used 
routes, the places where several people meet or the most frequently visited areas. 
However, it is worth noting that the higher the number of visitors, the less 
adequate those trajectories will be for movement representation. Indeed, 
consequently the whole space will be covered by them, thus making patterns more 
difficult to understand and the causes of these patterns more variable. Moreover, 
these patterns do not explain per se the behaviour of people, because the 
interpretation can vary. For example, if people meet by stopping in front of some 
attractive element or if, on the contrary, they all stop at some uninteresting area. 
As a result, the movement pattern may have been characterized by an interaction 
with the environment (e.g., to stop and look at some interesting element) or by an 
interaction between the pedestrians themselves (e.g., to stop for a chat). 
Therefore, it is obvious that these movement patterns can be interpreted by 
looking at the possible interactions that caused them and making them explicit 
through the representation of the context in which movement takes place. 
Pedestrian behaviour can be ultimately inferred from the analysis of interactions. 
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For example, the “socializing” behaviour in a pedestrian can be inferred from the 
interaction type they show when encountering other people in certain places. 

Our approach suggests a new spatial knowledge representation for pedestrian 
movement through the exploitation of ontologies for the formalization of 
movement interactions and related concepts: patterns, context and behaviour. 
This interactions-based representation enables us to semantically represent 
movement patterns computed by different tools and to incorporate the knowledge 
of domain experts on pedestrian behaviour. Interactions operate therefore as a 
conceptual bridge between movement patterns and pedestrian behaviour. 

As we mentioned in the introduction, the analysis approach in current research is 
based on the assumption of a univocal relationship between movement patterns 
and behaviour, or, as some authors have stated, Movement is behaviour (Blythe et 
al., 1996, p. 13; Dodge et al., 2008, p. 245). However, given that interpretation 
relies on context, we require a conceptual bridge in order to explicitly integrate 
that context. Our view is that Movement is behaviour, but patterns are not. Patterns 
are the evidence of the interactions that take place during pedestrian movement. 
For example, the pattern shown in Figure 5–1 can be interpreted as a group of 
individuals flocking at time t3 and moving together (Gudmundsson et al., 2004). 

Figure 5–2 shows different behaviours that can be inferred from the same 
movement pattern depending on the information we have about the context. 
Consider the first pattern on the left; as we saw, this could be interpreted as a 
flocking behaviour in which the individuals meet and move together intentionally. 
The second picture shows the context from which we can interpret the pattern as 
people following fixed pathways. Analogously, the third pattern discloses a typical 
type of behaviour of people seeking a goal (e.g., going to take the bus). Finally, the 
last pattern can be interpreted as a leadership behaviour in which the central 
individual guides the other ones. This contextual information allows us to 
understand the primary elements that influence the movement and produce the 
pattern. Therefore, the existence of a movement pattern is of course a necessary, 
but not sufficient condition for the interpretation of pedestrian behaviour. 

 
Figure 5–1. Flocking pattern. 
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Figure 5–2. Different behaviours interpreted from the same movement pattern. 

Our approach introduces the notion of interactions as the primary element of 
analysis and movement representation. Movement interactions can be defined as 
the result of active and reciprocal relationships between pedestrians themselves, 
and between pedestrians and their environment, interpreted in a given context. 
This definition is of considerable usefulness, as it allows us to integrate concepts 
from previous research and expands the possibilities of analysis and 
representation. Therefore, interactions act as a conceptual bridge between 
patterns and behaviour. 

Thus, the traditional approach of direct mapping from patterns to behaviour is 
enriched with a formal context representation employed for the reasoning and 
interpretation of observed patterns (Figure 5–3). The behaviour can be ultimately 
disclosed by the analysis of a set of interactions and the relationships between 
them. In our opinion, this representation allows more formal differentiation 
between the various levels of movement interpretation, which in addition provides 
a higher expressivity and more independence from the application domain. 
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Figure 5–3. Interactions based representation. 

5.3.1 Elements of representation 

Next we will study the elements that form our proposal and the way they are 
represented.  

Patterns 

The most elementary unit of representation in our approach is the pedestrian 
movement pattern. As we have previously mentioned, a pattern is the evidence of 
the interaction between pedestrians and their environment. Patterns would be 
conceptualized as the building blocks of movement, each one with specific and 
observable characteristics in the spatial, temporal or spatio-temporal dimensions. 
These observable characteristics are used to detect the patterns in movement data 
sets. Besides the diversity of patterns, there is an increasingly wide range of tools 
and methods to detect these patterns in movement datasets. In our approach, we 
deal with this variability by establishing a set of properties for each pattern that 
defines its characteristics and computing methods. Once computed (using a 
specific tool or method), the pattern can be formalized with its properties and 
values as an instance of the ontology. 

Context 

The context is formed by a partial set of parameters and values that is never 
complete, precise nor objective, but it is useful for movement representation and 
for reasoning on it. Employing the metaphor suggested by Giunchiglia and 
Bouquet (1997), this can be illustrated as a box, inside which we find the 
expressions that establish or explain the domain or the phenomena to be studied, 
whereas outside the box we find a set of parameters and their values, which 
determine, at least partially, the interpretation of the expressions inside the box. 
Although it is obvious that any type of representation (and reasoning) will depend 
on the context, we have seen that most approaches either assume that the context 
is implicit, or rather exclude it. Thus, the interpretation of patterns is carried out 
only on the movement’s own features. 

By contrast, our approach seeks to explicitly and formally represent a context in 
order to sustain the reasoning and the interpretation of movement patterns, and 
to expand the possibilities of such interpretation. Moreover, representation of the 
context is enriched with the results of this interpretation, and can be used again 
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for subsequent interpretations in an iterative process. This approach paves the 
way for a more dynamic form of representation and contextual reasoning about 
pedestrian interactions. 

Considering again the example of a recreation area with a considerable amount of 
visitors: collective movement can show patterns of high pedestrian concentration 
in certain places, which will be interpreted as attraction areas. The location and 
extension of these attraction areas are used to enrich the representation of the 
context, allowing us to establish new interpretations of movement patterns: for 
example, visitors who stop by in these attraction areas can be interpreted as a 
visitor type dissimilar from those who do not. 

Although context is usually linked to a geographic environment, there may be 
other parameters that can describe it, such as the purposes and intentions of 
visitors, temporal context, the degree of constriction in a given space, and 
relationships with other patterns. Interactions can become a part of the context 
themselves, thus interpreting new interactions.  

 
Figure 5–4. Contexts for movement representation. Each context is described by a set of 
parameters [P] and values [V]. 

Behaviour 

Hoogendoorn, Bovy and Daamen (2002) suggested that pedestrian behaviour is 
determined by a hierarchic structure of decision-making at three levels. (i) A 
strategic level in which the pedestrian decides about his/her destination, the 
activities to be carried out or his/her aims (ii) a tactical level in which the 
pedestrian decides about the route to follow, the response to unexpected events or 
the avoidance of “unwanted” areas or spots; and finally, (iii) an operational level in 
which the pedestrian decides in which direction the next step will be taken, which 
means that they intuitively choose a direction and speed, depending on the 
immediate environment. 

We must point out that each level carries an implicit conceptualization of the 
corresponding space: at the strategic level, space is conceptualized in terms of 
aims, needs and desires; at the tactical level, space is conceptualized in terms of 
assigned symbolic values of utility, opportunity, benefit, etc.; whereas at the 
operational level, conceptualization is only observational and based on perceived 
features. In our approach, operational and tactical behaviours can be represented 
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by the simplest interactions, while representation of the strategic behaviour 
requires more complex sets of interactions. Consider for example a visitor who 
takes a detour (operational level) in order to avoid an overcrowded area (tactical 
level), and then discovers a new interesting spot that leads him/her to reprogram 
his/her activities (strategic level).  

Analysts or domain experts can define diverse behaviour categories depending on 
the movement interactions expected in different levels. These definitions can be 
represented in an ontological formalization, with reasoning tasks being assigned 
in order to find examples of pedestrians performing every type of behaviour from 
a set of movement patterns. 

Interactions 

Although the notion of movement interactions is not new, in our approach we 
develop the idea of interaction as the key element for the representation of 
pedestrian movement. This idea is based on the assumption that there are 
different elements that play an active role, and which influence and are influenced 
by movement. These elements can be conceptualized as “agents” because of the 
active effect they have on movement interactions, and they would be “individual”, 
“collective” and “environmental” agents.  

Movement interactions create specific dynamics of action and reaction between 
the agents in any given context. Consequently, pedestrian interactions must be 
represented bearing in mind the kind of agent participating, the context in which 
they occur, and the specific movement patterns that demonstrate them. The wide 
variety of possible interactions requires for a type of classification that allows us to 
organize them in an ontological representation. In our approach, we suggest a 
natural type of classification based on the kinds of agents involved. 

• Pair-wise Interactions: They occur when the movement is determined 
by interactions between individuals. Examples include encounters, 
guiding-following and joint walking. Although pair-wise interactions 
would involve more than two individuals, the conceptualization 
remains as a relationship between pairs of pedestrians: the elements 
that determine the movement are individuals.  

• Environmental interactions: They occur as a consequence of the 
relationship between pedestrians and features of the environment. 
These features have physical, social or psychological functions that 
have an influence on the movement attracting, repelling or restricting 
pedestrians when they are walking. Examples of environmental 
interactions include attraction, route following or trail formation. 
These interactions imply the conceptualization of environment as an 
active agent that influences and is influenced by pedestrian 
movement. 
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• Collective Interactions: They appear as a consequence of interactions 
between several individuals. Collective interactions differ from pair-
wise interactions not (only) in number but in the appearance of 
observable systemic properties of the collective as a whole. These 
properties usually include a progressive synchronization of one or 
more movement parameters, resembling a moving herd. Although 
collectives would normally be defined by their member’s 
characteristics, in our approach they are defined by the global 
properties of their movement, that is, collectives are conceptualized as 
the cause and consequence of movement. Examples of collective 
interactions include lane formation, incremental concentration and 
flocking, or circulating flows at intersections (Helbing et al., 2001). 

  

This simple but intuitive classification offers several advantages: firstly, it focuses 
on the active role played by the environment, which influences and is influenced 
by pedestrian movement; secondly, it allows us to formally represent the systemic 
properties of collective movement reported by various authors (Helbing et al., 
2005; Wood and Galton, 2008); thirdly, it allows for the representation of more 
than one type of interaction operating at the same time, and finally, there is the 
practical advantage in defining interaction types according to combinations of 
patterns and contexts for a wide variety of applications. 

Moreover, this conceptualization represents pedestrian movement as an 
expressive collection of relationships between the different agents involved, 
relationships that are demonstrated by movement patterns in defined contexts. 
Finally, it is worth noting that movement actually involves more than one type of 
interaction at the same time. For example, an encounter at a point of interest 
would be represented as the combination of pair-wise and environmental 
interactions. 

5.3.2 Examples of interactions 

Since the potential number of possible interactions depends on the context, and 
therefore on the application, next we will describe some of the most common 
interactions that can be defined from a relatively small number of patterns, which 
in turn can be easily extracted with the available tools and methods. Therefore, it 
is not our intention to describe all the possible interactions, but to use some 
significant examples to how the interactions are used to represent pedestrian 
movement. 

For the representation of the context we have used the “constriction level” as an 
example of a contextualizing parameter. The possible values to be assigned to that 
parameter could be: constrained space, semi-constrained space, and open space. Other 
contextual parameters are employed in order to evaluate the concepts of spatial 
and temporal proximity and threshold. Here, a number of spatial and temporal 



 

92 

Chapter 5 

values are represented as threshold to indicate a short, medium or long value. 
These values make it possible to formalize the concepts related to distance and 
time. For example, when two people stop close to each other for a long period, the 
concepts “close to” and “long” are formalized as semantic concepts more than 
quantitative measurements of distance and time. An additional parameter is used 
to evaluate the concept of attractiveness of geographical features. The level of 
attractiveness indicates how much specific points or elements of environment 
tend to attract pedestrians. This attractiveness is represented as low, medium or 
high levels and an additional “neglected” level to indicate a negative attraction 
(i.e., repulsion).  

Encounter 

Main interaction type: Pair-wise interaction. 
Associated movement pattern: Spatio-temporal coincidence. 
Contextual parameters: Constriction level, spatio-temporal threshold. 
Definition: The coincidence in space and time of two or more individuals who 

remain together for a long time-span. During the encounter, pedestrians may 
stop moving or may keep on walking together. Spatial context is used in order 
to evaluate the influence of spatial constriction or attraction elements as well 
as the spatio-temporal threshold conceptualization: If the duration of the 
pattern is long, then the restriction level does not have any influence. 
However, if the coincidence happens in an open space, a medium duration 
and spatial threshold are enough, since there is no influence from the 
environment that encourages the individuals to approach each other. If the 
interaction takes place in a location with high attractiveness, it cannot be 
inferred as an encounter since the pattern would be due the environment. 

Approaching 

Main interaction type: Pair-wise interaction. 
Associated movement pattern: Spatio-temporal coincidence with relaxed temporal 

threshold. 
Contextual parameters: Constriction level, spatio-temporal threshold. 
Definition: The space-time coincidence of two or more individuals who do not 

remain together. Spatial context is used in order to evaluate the influence of 
spatial constriction or attraction elements. Contextual parameters also define 
the relaxation value of temporal proximity in order to differentiate crossings 
from encounters. 

Guiding - following 

Main interaction type: Pair-wise interaction. 
Associated movement pattern: Spatial coincidence with temporal delay. 
Contextual parameters: Constriction level, spatio-temporal threshold. 
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Definition: A similar sequence of positions with a certain delay between one 
individual and the other. Spatial context is used in order to evaluate the 
influence of spatial constriction or attraction elements, the spatio-temporal 
threshold conceptualization and the temporal delay. This delay must be 
shorter and the duration longer in constrained spaces than in open spaces to 
be inferred as a guiding-following interaction. 

Visiting 

Main interaction type: Environmental interaction. 
Associated movement pattern: Stopping. 
Contextual parameters: Attractiveness level, spatial proximity. 
Definition: A medium or long stop of an individual or a group of individuals in a 

geographic location with medium or high attractiveness level. 

Route Choosing 

Main interaction type: Environmental interaction. 
Associated movement pattern: Short stops. 
Contextual parameters: Constriction level, temporal duration. 
Definition: A sequence of motion-stop-motion located in semi-constrained points 

in which pedestrians must choose a route from a limited number of options. 
Contextual parameters define the constriction level and the duration of stops.  

Attraction 

Main interaction type: Environmental interaction. 
Associated movement pattern: High density / Movement suspension. 
Contextual parameters: Attractiveness level. 
Definition: The suspension of movement in locations containing interesting 

features. Contextual parameters define the attractiveness level. 

Flocking 

Main interaction type: Collective interaction. 
Associated movement pattern: Collective coordination of relative motion parameters. 
Contextual parameters: Constriction level, temporal threshold. 
Definition: The formation of groups that move together in a similar way for a 

given time-span in an open space. Contextual parameters define the 
constriction level and the duration of the interaction. 

Aggregation 

Main interaction type: Collective interaction. 
Associated movement pattern: Concentration (High-density pattern). 
Contextual parameters: Constriction level. 
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Definition: The grouping effect produced by the concentration of pedestrians in 
defined locations, causing an increase in the density in a given time-span. 
Contextual parameters determine the constriction and attractiveness level. 
This interaction is equivalent to the environmental interaction “Attraction” but 
here, the attractive element is the collective interaction itself. 

Trail formation 

Main interaction type: Environmental interaction. 
Associated movement pattern: Linear movement clusters. 
Contextual parameters: Constriction level. 
Definition: The formation of linear clusters in open spaces. The repeated passing 

of pedestrians leaves trails that, depending on the features of the area, may 
modify the space forming a trail that consequently acts as a linear attractor. 
Contextual parameters define the spatial constriction level and the time-span 
that has been calculated for the trail formation.  

In the following section, we introduce the formalization of the concepts 
mentioned above in a taxonomy of interactions, namely the Interactions ontology. 
We give the conceptual view of the ontology in the next section, followed by a 
simple case study to disclose pedestrian behaviour in a park. 

5.4 The Interactions Ontology 
Following the Davis roles for a knowledge representation as mentioned in the 
introduction (Davis et al., 1993), this section introduces a formal representation of 
the classes defined above by means of a formal ontology. The definition given by 
Gruber (2008) is used to define formal ontology as “a technical term denoting an 
artefact that is designed for a purpose, which is to enable the modelling of 
knowledge about some domain, real or imagined.” Such ontologies determine 
what can be represented and what can be inferred about a given domain, using a 
specific formalism of concepts. An ontology language is a formalism used to 
express such knowledge. 

Web Ontology Language (OWL) is a well-known standard that came from the 
Semantic Web and it is now a W3C recommendation (W3C Consortium, 2004). 
OWL is based on a family of languages known as Description Logics (DL) that 
provide a deductive inference system based on formal well founded semantics 
(Baader et al., 2003). The basic components of DL are concepts (classes), properties 
(roles), and instances (individuals). Concepts describe the common properties of a 
collection of instances and properties are binary relations between concepts. The 
special relation is_a represents the specialization property between two concepts 
and describes a taxonomy in the ontology, based on subsumption relation. 
Furthermore, a number of language constructs, such as intersection, union and 
role quantification, can be used to define new concepts by means of axioms. In 
other words, concepts may be intentionally defined by axioms, which express the 
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properties that characterize such defined class. The Description Logic formalism 
comes with a number of primitive reasoning tasks, such as classification and 
satisfiability, subsumption and instance checking. Classification is the computation 
of a concept hierarchy based on subsumption, satisfiability checks if the ontology 
defined concepts are consistent, whereas instance checking verifies that an 
individual is an instance of a concept. In this chapter, we use OWL DL, the OWL 
sub-language that allows for the maximum expressiveness while retaining 
computational completeness, corresponding to Description Logics. Other OWL 
languages are OWL Lite and OWL Full. OWL Lite is a subset of OWL DL which 
restricts the logical operators allowed, thus resulting in an efficient inference 
checking system. On the contrary, OWL Full allows for the maximum 
expressiveness, however, it loses completeness. 

The developed interactions ontology defines the four main concepts depicted in 
Figure 5–3, namely Movements Patterns, Interactions, Context and Behaviour. 
Figure 5–5 shows the top level classes and properties of the interactions ontology. 
The Interaction concept may be associated to a (pre-computed) movement pattern 
and may be located in a specific context (spatial and/or temporal). Furthermore, 
each Pedestrian may participate in an Interaction. 

In the following we specify the taxonomy levels of the main concepts: Interaction, 
Movement Pattern and Context. The three kinds of interactions are specified by 
the following taxonomy (Figure 5–6). 

 

 
Figure 5–5. Main classes for the Interactions ontology. 
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Figure 5–6. The interactions taxonomy. 

Interaction concepts are defined in terms of movement patterns and context 
parameters. In other words, each interaction concept is a defined class, where a 
new concept is defined in terms of a logical combination of other concepts and/or 
properties. Consequently, the reasoning engine can automatically infer pedestrian 
movement interactions based on pre-computed movement patterns. As an 
example, consider the Encounter interaction. Encounter can be specified by the 
following OWL DL axiom: 

Encounter	
  ≡	
  
	
  is_located_at	
  some	
  (Park_Feature	
  and	
  ((has_Attractiveness	
  has	
  
Low_Attractiveness)	
  or	
  (has_Attractiveness	
  has	
  
Medium_Attractiveness)))	
  

	
   and	
  	
  
	
  (has_Duration_Class	
  has	
  DC_Long	
  and	
  inter_has_pattern	
  some	
  
(SpatioTemporal_Coincidence	
  and(has_Spatial_Threshold	
  has	
  
Spatial_Threshold_Small)	
  and	
  (has_Temporal_Threshold	
  has	
  
Temporal_Threshold_Short))	
  

	
   or	
  
((has_Duration_Class	
  has	
  DC_Medium)	
  or	
  (has_Duration_Class	
  has	
  
DC_Long)and	
  is_located_at	
  some	
  (Park_Feature	
  and	
  
has_Constriction_Level	
  has	
  CL_Open))	
  and	
  (has_Duration_Class	
  has	
  
DC_Medium)	
  or	
  (has_Duration_Class	
  has	
  DC_Long)))	
  

Intuitively, this axiom defines the Encounter class as a kind of Interaction that has 
been demonstrated by a spatial-temporal coincidence pattern if the duration is 
medium to long and it is not due to environmental features. The 
conceptualization of the necessary duration depends on the constriction level of 
the space. In contrast, the Approaching interaction is characterized by a spatio-
temporal coincidence with short or medium temporal threshold and a small 
spatial threshold. Furthermore it is located within a constrained or semi-
constrained space (e.g., a pathway or a square).  
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Approaching	
  	
  ≡	
  
	
  has_Duration_Class	
  has	
  Short	
  	
  

	
   And	
  
inter_has_pattern	
  some	
  (SpatioTemporal_Coincidence	
  and	
  ((or	
  
(has_Temporal_Threshold	
  has	
  Temporal_Threshold_Medium))	
  and	
  
(has_Spatial_Threshold	
  has	
  Spatial_Threshold_Small))	
  and	
  is_located_at	
  
some	
  (Geographical_Feature	
  and	
  ((has_Constriction_Level	
  has	
  
Constrained)	
  or	
  (has_Constriction_Level	
  has	
  Semiconstrained)))	
  

As we can notice in such definitions, each interaction is inferred from movement 
patterns, characterizing them in relation to the context features. In this sense, 
patterns capture the spatio-temporal essence of the interaction. We have identified 
a set of possible spatial and spatio-temporal patterns based on their role on 
interaction inference. An example of a movement pattern (here used on the 
encounter and approaching interaction) is the Spatio-Temporal Coincidence. This 
pattern describes a pair of trajectories that have some coincidence of time-space 
(they are in the same place at the same time). The thresholds that define the 
spatio-temporal coincidence have to be set by the analyst depending on the other 
contextual parameters (how close is “the same place”? how many meters? how 
long is a coincidence? Some seconds or some minutes?) The movement pattern 
taxonomy is depicted in Figure 5–7.  

 

 
Figure 5–7. Movement patterns taxonomy. 

Movement patterns can be computed using several techniques, ranging from 
spatial analysis tools (Orellana et al., 2009) and exploratory visual analytics 
(Thomas and Cook, 2005), to spatial and spatio-temporal data mining (Nanni et 
al., 2008). An example of pattern detection technique is REMO (RElative MOtion) 
that compares relative patterns among individuals in a pattern-matching process, 
focusing on identifying the similarity of one or more movement parameters that 
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are depicted in a movement matrix (Laube, Kreveld and Imfeld, 2005; Weaver, 
2008). Visual Analytics discovers movement patterns typically found by visual 
techniques, such as spatio-temporal coincidence (N. Andrienko et al., 2008), stops 
and moves (N. Andrienko and G. Andrienko, 2008). Data-Mining techniques 
extract common movements by analysing with a statistical technique a large 
number of trajectories. Examples of trajectory patterns are T-cluster (Rinzivillo et 
al., 2008), identified groups of similar trajectories give a similarity measure, and 
T-patterns (Giannotti et al., 2007) representing the frequently followed sequences 
of places. Other movement patterns can be discovered by spatial-statistical 
approaches thus finding linear patterns and dense areas for movement 
suspension (Orellana et al., 2009). 

The other main concept of the interactions ontology is Context. In this work we 
have defined two different kinds of context: the temporal context, where we 
defined the time units of interest for the application, and the spatial context, 
defining the most interesting characteristics that describe the geographical 
locations where the movement takes place. Therefore, this representation strategy 
follows the approach known as “Compose-and-Conquer” (Bouquet et al., 2003) 
since it does not use global theories for context, but local theories that represent 
specific points of view (Figure 5–8). 

 

 
Figure 5–8. Context class and subclasses. 

It is worth noting that the spatial context deals with geographical features of the 
environment, such as the constriction level (pedestrian moving in open space, 
constrained space such as a pathway, or a semi-constrained space like a square), 
the attraction areas, the accessibility levels, etc. Temporal context relates to the 
specification of duration and thresholds of interactions. Figure 5–9 shows the 
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complete taxonomy of interactions ontology implemented in Protégé Ontology 
Editor v 3.4 (Stanford Centre for Biomedical Informatics Research, 2008). 

5.5 Application Scenario 
The viability of our approach to analysing collective pedestrian movement is 
experimented through an application scenario about visitor’s behaviour in the 
Dwingelderveld National Park (DNP) in Netherlands. DNP is a natural park of 
about 3,700 ha in the North Eastern part of the Netherlands and receives 2million 
visitors a year. It is a typical Dutch recreational area with an extensive network of 
short strolls (60 km of marked trails, each of less than 7 km in length) and long 
walks for cycling and horse riding. To have a better understanding of how the 
park is used, park managers assign a specific behaviour to each visitor, depending 
on their movement behaviour. For example, a visitor who follows only marked 
trails is named as “follower” whereas a visitor that explicitly does not follow the 
marked trail is called a “browser” or “explorer” (van Marwijk and Pitt, 2008). 

 
Figure 5–9. The taxonomy of interactions ontology in Protégé. Screenshot by the 
author. 

The available dataset comes from three different information sources. A 
questionnaire that records visitor characteristics; a set of point coordinates 
captured by GPS receivers given to the visitors; and a GIS data-set containing the 
path network of DNP and the locations of access point. The questionnaire gives 
detailed information about the visitor, such as sex and age, and the reason for the 
visit (to have a walk, to take pictures, etc.) The park has five main entrances, from 
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which the visit starts (the beginning of the GPS trajectories). This survey was 
carried out during 7 days (weekend and weekdays) in spring and summer 2006 
for 461 hikers (van Marwijk and Pitt, 2008). 

The objective of the current analysis is to characterize visitor behaviour in terms 
of the specific interactions that can be inferred from their movement patterns. In 
particular, we exploited the previously defined Interactions ontology, specialized 
in this particular case study, to represent and infer new knowledge about visitor 
behaviour. 

The overall vision of the proposed approach is depicted in Figure 5–10. The 
problem we want to deal with can be stated as: find visitors of the park whose 
behaviour can be classified as “explorer” (or follower, or other). This classification task 
is actually performed by the ontology-reasoning engine, where movement data 
and patterns are collected and an implicit class defined by OWL axioms specifies 
each kind of behaviour. 

 
Figure 5–10. The proposed overall approach. 

In this experiment, we used Protégé 3.4 (Stanford Center for Biomedical 
Informatics Research, 2008) with Pellet Reasoner (Sirin et al., 2007). As a very 
first step, the instances were introduced manually in Protégé. However, the 
feasibility of automatic systems was envisaged, in fact some previous work used 
ontologies for reasoning with trajectory data exploiting Oracle11g as an efficient 
reasoning engine over large datasets (Baglioni et al., 2008; 2009). 

As an example, querying the ontology of the “explorer” behaviour expressed by 
visitors will give the identifier (ID) of the visitors whose movement has been 
classified by the ontology-reasoning engine (based on the previously defined 
axioms), as “explorer”. In other words, the instances of the ontology class Visitor 
represent the individual visitor’s movement. These visitors are classified by the 
reasoner into the appropriate classes based on the satisfiability of the axioms. 
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It is worth noting that pattern finding can be seen as a top-down and bottom-up 
process. Indeed, extracted patterns can be used in finding interactions, but also 
interaction definition can drive the analyst to find some new movement patterns. 
For example, the attraction areas can be some predefined points or regions (the 
campsite, the café, the radio-telescope, etc.) or can be detected by data mining 
patterns as the most frequently visited areas, or as the T-Patterns computed dense 
areas. 

To acquire a better understanding of the approach, let us consider the exploring 
behaviour. As specified above, an explorer is a visitor who tends not to follow the 
marked trails. Therefore, which kind of interactions can be expected by 
“explorers”? For example, it is expected that an explorer will tend to stop at the 
cross-roads to decide which route to take and to consult information points such 
as the visitor centre or information boards (Figure 5–11). This definition can be 
rephrased as “visitor who has interactions of the kind route-choosing and visiting 
information points”. This means that an exploring behaviour is a kind of visitor 
who can be disclosed by the following axiom: 

Exploring	
  ≡	
  
visitor_has_interaction	
  some	
  Route_Choosing	
  visitor_has_interaction	
  
some	
  (Visiting	
  and	
  (is_located_at	
  some	
  (Information_Point))	
  

Analogously, a socializing behaviour can be identified by having encounters in 
places where people usually do not interact, such as the park trails and cross-
roads. 

Socializing	
  	
  ≡	
  
visitor_has_interaction	
  some	
  (Encounter	
  and	
  (is_located_at	
  some	
  	
  
(Cross_Road	
  or	
  Path)))	
  

Another example is the axiom below that defines a disturbing behaviour in terms 
of visiting forbidden park areas.  

Disturbing	
  	
  ≡	
  
visitor_has_interaction	
  some	
  (Visiting	
  and	
  (is_located_at	
  some	
  
Park_Feature	
  and	
  (has_Accesibility_level	
  has	
  Forbidden)))	
  	
  

Another interesting feature of the ontology is that we can link visitors involved in 
a pair-wise interaction through a symmetric property called interacts_with. This 
makes it possible to define a “suspicious” behaviour as a visitor who interacts with 
someone who is inferred to be a “disturbing” visitor. 

Suspicious	
  	
  ≡	
  
Interacts_with	
  some	
  (Disturbing)	
  	
  

These examples can be redefined according to different domain experts, but 
interactions remain the building blocks used to represent visitor behaviour. 
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Figure 5–11. Part of the spatio-temporal path of a visitor on 06/08/2006. The time is 
represented by the height of the path; yellow bars represent route choosing interactions 
and red bars represent visiting interactions; green pins represent points of interest and 
(i) stands for an information point. The reasoning engine will classify the visitor as 
“explorer”. Screenshot of Google Earth © by the author reproduced under the terms of 
“Fair Use”. 

The process outlined in this application scenario can be summarized by the 
following main steps: 

• Visitor information is stored as ontology as instances of the Visitor’s 
class. 

• The basic spatio-temporal patterns are detected by means of a number 
of tools: GIS software such as ArcGIS (ESRI, 2008), or visual 
analytics tools such as Visual Analytics Toolkit (Andrienko, G. and 
Andrienko, N., 2008; IAIS, 2008), and data mining algorithms 
(Rinzivillo et al., 2008; Giannotti et al., 2007). In particular, here VA 
Toolkit has been used to find patterns for spatio-temporal coincidence 
and stops. 

• Detected patterns are imported as instances into the ontology. This 
means that the main features of the patterns are represented as 
instances of the ontology along with the context information (spatial 
and temporal threshold, constrained levels in space and so on). 

• Once patterns and contextual information are stored in the ontology 
as instances, the reasoning engine performs an instance-checking 
task to infer both interactions and movement behaviour.  

In the specific case illustrated here, we have focused on socializing behaviour. We 
first detected the spatio-temporal coincidence patterns by means of the VA Toolkit 
(see, for example, Figure 5–11). We set the spatial threshold values as 5 meters for 
small, 10 meters for medium and 20 meters for long. The constrained space is 
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represented by the set of paths, seen easily on the park map, whereas the cross 
roads and small areas represent the semi-constrained space; the remaining area is 
considered as open space. We populated the ontology with data referred to a part 
of the day 06/08/2006 and we ran the reasoning engine. We inferred four 
instances of visitors to be 'socializing’ since they interacted with other visitors 
(Encounters) when they walked on the paths in the park. One visitor was 
interpreted as “Explorer” since they stopped and chose a route at several 
crossroads and stopped in two points that we marked as “Information Points”. 
One visitor was interpreted as “Disturbing” since they were visiting an area that 
we marked as forbidden. In addition, we inferred one visitor to be “Suspicious” 
due to the fact that he or she encountered the Disturbing visitor. Figure 5–12 
shows the relevant classes and instances that the reasoner engine used to perform 
the instance checking for some instances of Interaction and Visitor Classes. The 
reasoner engine inferred that I3 is an instance of Encounter and I6 is an instance of 
Visiting. Furthermore, visitor V9 was inferred as Disturbing since he or she 
visited a forbidden area and visitor V11 was inferred as Suspicious since he or she 
interacted with the disturbing V9. 

 
Figure 5–12. Two visitors were inferred as Disturbing and Suspicious since they meet 
the necessary and sufficient conditions stated in the ontology. 
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5.6 Conclusions 
In this chapter we proposed a knowledge representation and reasoning approach 
to characterize pedestrian movement interactions and behaviour. The 
contribution of this work, in respect to previous literature proposals, is twofold. 
On the one hand, we have developed a taxonomy of interactions where a number 
of basic interactions, concepts and their relationships with movement patterns 
and pedestrian behaviour are defined within a context. On the other hand, we 
have enriched the introduced taxonomy with reasoning, where, exploiting the 
ontology formalism OWL, interactions are combined with context to define 
pedestrian movement behaviour. Furthermore, we have sketched a case study 
where we experiment the methodology with a real dataset recording visitors’ 
movements in the Dwingelderveld National Park (DNP) in the Netherlands. 

A crucial point in the implementation of this experiment is how to populate the 
ontology with data, such as movement patterns and visitor information. How to 
link each tool output (namely, an extracted pattern) to a specific ontology class? 
Common approaches to ontology population map database tables to ontology 
concepts. This means that at the first stage we have to store both data and 
extracted movement patterns in a database. The problem then becomes how to 
map each table to an ontology concept. Several approaches have been proposed in 
the literature following two main directions: to import each database record into 
the ontology or dynamically map the ontology to a database. These two approaches 
offer complementary benefits and drawbacks. Indeed, importing data into the 
ontology may become impractical when the dataset is very large, since current 
ontology systems are not scalable to large datasets. On the other hand, dynamic 
mapping from ontology to database cuts down the degree of expressiveness of the 
ontology language (Calvanese et al., 2007). 

As a future task, we plan to design and implement an architecture where the 
patterns detected from the various tools are automatically or semi-automatically, 
inserted into the ontology. For this step we would benefit from approaches like 
Athena (Baglioni et al., 2009), a system built on top of Oracle 11g that allows for 
easily import of database tables storing trajectories and contextual information 
inside ontology concepts. 

Although we consider that our approach can potentially achieve a high level of 
expressivity to represent pedestrian behaviour, we are aware of the shortcomings 
that it has at this stage. We are planning to further develop the concepts related to 
pedestrian behaviour applied to new and more interesting scenarios (e.g., 
including actual collective movement patterns and behaviour). 
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A road is a tribute to space. Every stretch of road has 
meaning in itself and invites us to stop. A highway is 
the triumphant devaluation of space, which thanks to 
it has been reduced to a mere obstacle to human 
movement and a waste of time. Before roads and 
paths disappeared from the landscape, they had 
disappeared from the human soul: man stopped 
wanting to walk, to walk on his own feet and to enjoy 
it. What’s more, he no longer saw his own life as a 
road, but as a highway: a line that led from one point 
to another. (...) Time became a mere obstacle to life, 
an obstacle that had to be overcome by ever greater 
speed. Road and highway; these are also two different 
conceptions of beauty. In the world of highways, a 
beautiful landscape means: an island of beauty 
connected by a long line with other islands of beauty. 
In the world of roads and paths, beauty is continuous 
and constantly changing; it tells us at every step: 
"Stop!" (Kundera, 1991 p223). 

6.1 Introduction 

The main goal of this thesis is to develop an approach to detecting, analysing and 
interpreting movement patterns of pedestrians interacting with the environment. 
In the previous chapters, individual components of the approach were explained 
in detail. Here, the research objectives answering the research questions proposed 
in Chapter 1 are revisited and connected to provide a complete overview of the 
proposed approach. 

The research work relied on the assumption that large observational datasets of 
the movement of many pedestrians contain information that can help us to 
understand their spatial behaviour. This information may not be obvious at first 
glance and several iterative steps may be required to extract it.  

Figure 6-1illustrates the proposed approach to analysing pedestrian movement, 
which can be summarized in the following steps. First, GPS technology is used to 
track the movement of pedestrians and the data are stored in files containing sets 
of space-time coordinates. This raw data is preprocessed and the results are stored 
in a geodatabase containing movement datasets. These datasets are transformed 
to create different representations, such as movement vectors and trajectories. 
Spatial analysis methods and data-mining techniques are then used to detect 
movement patterns (i.e., Suspension Patterns and Generalized Sequential 
Patterns). These patterns are interpreted using contextual information about the 
environment and about the pedestrians to infer movement interactions that 
explain the movement behaviour giving rise to those patterns. Finally, the 
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relations between patterns and movement behaviour are organized into an 
ontology. 

 

 
Figure 6-1. Overview of the approach to pedestrian movement analysis 

Although these steps are presented as a linear process, it is important to point out 
that iterations are part of the overall approach (represented as dashed lines in 
Figure 6-1). For example, a movement pattern detected using spatial statistics has 
to be transformed into a new representation in order to apply further analysis. 
Therefore, instead of a straightforward workflow, the proposed approach implies 
an iterative process of exploration and experimentation in which the results of 
each step leads to a new loop of exploration and discovery to ultimately gain new 
knowledge about the movement behaviour of pedestrians. My approach is 
therefore an extension of the “knowledge discovery process” (Fayyad, 1996), 
which I adapted for the purpose of analysing pedestrian movement. Moreover, my 
approach allows the use of different representations of movement and the 
creation of synergy between spatial analysis and data-mining techniques. 

The main motivation for developing the proposed approach was to gain 
knowledge about the spatial behaviour of pedestrians by analysing movement 
data. Some researchers have argued that “movement is behaviour” (Blythe, Miller 
and Todd, 1996; Dodge, Weibel, and Lautenschütz, 2008). However, an extensive 
review of the literature on movement pattern analysis revealed that in most of the 
studies the relation between movement patterns and behaviour tends to be 
implicit. In other words, it is not always clear how movement patterns should be 
interpreted (Galton 2005; Laube, 2009). The core idea of the proposed approach 
is that movement patterns are the result of individuals with similar goals showing 
some kind of collective response (interaction) to the geographical space. 
Therefore, in this research I make the relationship between movement patterns 
and spatial behaviour explicit. I propose that movement patterns are the evidence 
of pedestrians interacting with the environment. 

This thesis makes two contributions to the field of movement pattern analysis: it 
introduces an approach to linking movement data, patterns, interactions and 
movement behaviour, and it presents a set of methods and techniques for 
analysing pedestrian movement. 
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The approach presented here is developed for use in studying the movement of 
pedestrians in natural recreational areas. These areas constitute an ideal setting 
for studying pedestrian movement since they allow us to frame the research in 
clearly defined geographical spaces and to focus on a set of possible movement 
interactions. Moreover, the study of visitors’ movements in these areas is critical 
for effective area management. We are especially interested in the stopping 
behaviour of visitors, since this behaviour represents a strong interaction between 
visitors and places in natural recreational areas. 

6.2 Main research findings 
The process of developing the proposed approach was driven by four specific 
research objectives, presented in the introduction. Each objective has been 
addressed in the core chapters of this thesis. In this section, the research 
objectives are revisited and discussed. 

6.2.1 Develop an approach to detect movement patterns evidencing the 
stopping behaviour of pedestrians 

A novel approach to detecting patterns evidencing the stopping behaviour of 
pedestrians using GPS tracking data was introduced in Chapter 2. Using a Local 
Indicator of Spatial Association (LISA), pedestrian movement data was analysed 
to detect spatial clusters of low-speed vectors. Those clusters, called Movement 
Suspension Patterns (MSPs), were used to identify the places where people 
stopped. 

The procedure for detecting MSPs consists of the following sub-steps: 1) create a 
movement vector representation from GPS data; 2) compute the LISA and Z score 
of the speed values for each movement vector; 3) classify the movement vectors 
with a speed below the mean and with a Z score above a defined significance level 
as movement suspension; 4) plot on a map the vectors classified as suspension to 
find the location of MSPs; 5) interpret the locations that might indicate places 
where people stop. 

The MSP approach is conceptually and methodologically different from other 
methods, such as Intersection-Based Stops and Moves (IB-SMoT, Alvares et al., 
2007), Clustering-Based Stops and Moves (CB-SMoT, Palma et al., 2008) and 
other parameter-based methods. The main conceptual difference is that previous 
methods are based on the properties of individual movement represented as 
trajectories (the conceptualization of a stop depends on the movement of each 
individual), whereas MSPs are based on the collective properties of movement 
represented as a set of movement vectors (the conceptualization of an MSP 
depends on the movement of each individual and other individuals). These 
collective properties are defined by global characteristics (e.g., mean speed) and 
local characteristics (e.g., local spatial association) and are the result of the 
stopping behaviour of people interacting with the environment. 
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The main methodological difference is that previous approaches require the 
definition of parameters that are highly application-dependent. For example, an 
analyst has to decide the minimum time or maximum speed for detecting a stop. 
To do so, he or she has to consider the activities of the pedestrians, their 
environment, the spatial scale and the quality and resolution of collected data. A 
variation of these parameters may produce an over- or under-estimation of the 
detected stops. In contrast, the detection of MSPs does not require application-
dependent thresholds or detailed knowledge about the pedestrians and the 
characteristics of the data collection. The only required parameters (i.e., mean 
speed, cut-off distance for the spatial relationship matrix) can be derived directly 
from the dataset. This constitutes an important advantage over previous methods 
since the proposed approach can be directly implemented on any movement 
dataset without previous knowledge about the application. 

6.2.2 Evaluate the detected movement patterns using a controlled 
experiment 

Although several methods have been proposed for detecting stops in movement 
data, their validity for describing stopping behaviour of people remains unclear. 
Similarly, the MSP approach proposed in Chapter 2 required an experimental 
validation to assess the extent to which the detected patterns are the results of 
actual spatial behaviour of pedestrians. Such a validation is essential to both 
researchers and practitioners interested in movement analysis since they need to 
evaluate different methods, both to compare their performance for specific cases 
and to choose a method that is both accurate and easy to apply. 

The results in Chapter 2 suggested that MSPs were located at places where it was 
likely that pedestrians stopped, and a statistical significance level was used to 
select MSPs with low probability to be originated by some random process. 
However, as a thorough validation was still missing, a controlled experiment was 
designed to evaluate MSPs both in space and time. In this experiment, described 
in Chapter 3, a group of volunteers carrying GPS receivers were asked to follow 
predefined routes and stop to take pictures at predefined places indicated on a 
map. Participants had to record the times they stopped. The GPS data were later 
analysed to detect MSPs and the results were compared with the location and time 
of the stops reported by the participants. 

The results showed that the method detected up to 92% of predefined stops. It 
was also found that 16% of the detected MSPs were false positives, although 
further analysis indicated that these could be related to actual suspension of 
movement by the participants. The evaluation also showed that the location of the 
detected MSPs largely corresponded with the location of the predefined reference 
stop places. Taking into account these results, it was confirmed that MSPs are a 
feasible approach for detecting the stopping behaviour of pedestrians. 

The MSPs depend not only on the movement of each pedestrian (individual 
properties of movement), but also on the movement of other pedestrians and the 
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places where they stop (collective properties of movement). For example, if a 
pedestrian stopped at a place where everybody else was walking, the spatial 
association of the speed values of the movement vectors could be not statistically 
significant, and therefore would not be detected as an MSP. However, if other 
pedestrians also stopped there (or the same pedestrian stopped at other times), the 
spatial association would be high enough and an MSP would be detected. 

To investigate this property, the experiment was designed to include places with 
different proportions of participants stopping and walking (i.e., stopping ratio, 
Chapter 3, section 3.2). It was expected that places with a low stopping ratio would 
not be detected. The results, however, were not conclusive since some places with 
a stopping ratio of <0.025 were correctly detected. Looking closely at the spatial 
association values of movement vectors at these places, it is possible to see that 
their Z score is near the significance level. This implies that the differentiation 
between individual and collective properties of movement in terms of spatial 
association is not a crisp line, but rather a fuzzy region. Further controlled 
experiments must be conducted to investigate this assumption. 

6.2.3 Demonstrate the applicability of the approach to studying the 
movement of visitors interacting with places in natural areas 

A case study was presented in Chapter 4 to demonstrate the usefulness and 
applicability of the proposed approach. In this study, two kinds of movement 
patterns were analysed to study the aggregated flow of visitors in a natural park in 
the Netherlands. These patterns were Movement Suspension Patterns (MSPs) and 
Generalized Sequential Patterns (GSPs).  

MSPs were used to discover places of interest for the visitors, under the 
assumption that those places are associated with the stopping behaviour of the 
visitors. GSPs denote the generalized order in which people visit the places 
regardless of the route followed and were used to discover commonalities in that 
order. Together, both patterns were used to explore and understand several 
aspects of the movement behaviour of the visitors. For example, they helped to 
determine which of the attractions in the park where the most visited, which 
facilities were used, which places were visited from each park entrance, and the 
orders in which those places were visited.  

This case study demonstrated how tourism researchers and park managers could 
use the proposed framework to analyse the movement of visitors in natural areas 
and to evaluate and improve management practices. For example, park managers 
can analyse movement data collected with GPS devices to determine the location 
of facilities and services, to improve the information elements such as boards and 
signposts, and to design specific routes for different kinds of visitors. A long-term 
analysis of movement patterns can also help to evaluate the implementation of 
these practices. Besides, movement analysis methods can be used with surveys, 
interviews and other traditional methods to better understand the goals and 
motivations of visitors. This understanding becomes critical in natural areas, 
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where the spatial behaviour of visitors is directly related to environmental 
impacts. 

6.2.4 Develop an ontology to represent relations between movement 
patterns and behaviour 

Chapter 5 introduced an ontological formalization to represent relations between 
movement patterns, interactions and movement behaviour. In this formalization, 
pedestrian movement was conceptualized as a set of interactions between 
pedestrians and between pedestrians and their environment. These interactions 
were defined in terms of movement patterns and context and formalized using 
the Web Ontology Language (OWL). Concepts and relations between concepts 
were both represented. The viability of the approach was demonstrated in a 
recreational application where some examples of concepts about movement 
behaviour of visitors, such as “exploring” or “disturbing” were formalized. Then 
the interactions related to these kinds of behaviour were defined using movement 
patterns and including semantics about the context in which patterns occur. It 
was also demonstrated how the interpretation of patterns and interactions 
depends on the contextual information. 

Although it is in an early stage, the field of ontological representation is changing 
fast. In the last two years, other approaches to formal representations of 
movement behaviour have been introduced. For example, Van Hage, Wielemaker 
and Schreiber (2010) demonstrated how SWI-Prolog, a declarative semantic 
language, could be extended to support spatial reasoning using the Simple Event 
Model (Van Hage et al., 2009). In their work, the authors demonstrated the 
application of their approach by inferring movement behaviour of ships using 
predefined movement patterns. Similarly, Baglioni et al. (2009) presented a 
model for the conceptual representation and deductive reasoning of trajectory 
patterns obtained from mining raw trajectories. Here, the authors used a process 
called “semantic-enrichment” to annotate movement data with contextual 
geographic information using a sub-language of OWL called OWLPRIME (Oracle, 
2010) for the implementation. More recently, Andrienko et al. (2011) presented a 
conceptual framework to describe the types of information that can be extracted 
from movement data as well as a taxonomy of analytical techniques for movement 
analysis. All these examples have similarities and differences to the approach 
presented in Chapter 5. All of them aim to bridge the gap between raw movement 
data and concepts about movement behaviour by interpreting movement patterns, 
but these new approaches are not specifically focused on pedestrian movement. 

6.3 Moving beyond the patterns 
Whereas a significant amount of research on movement analysis has been 
focused on pattern detection, the research described in this thesis attempted to 
look beyond the patterns. I approached the topic from a geographical point of view 
by explicitly linking the pedestrians and their environment. The geographical 



 

112 

Chapter 6 

perspective also brings the possibility (and necessity) of different representations 
of movement. In the proposed approach, data are transformed to represent 
movement as a set of movement vectors to detect MSPs. Then the results are 
transformed again to represent movement as trajectories linking the places where 
MSPs occur. Finally, GSPs are used to represent movement as flows. 

The geographical perspective on movement analysis therefore had two important 
implications. On the one hand, it enabled the production of multiple 
representations of movement to explore new ways to analyse movement data, or, 
more precisely, to create synergy between longstanding geographical techniques 
such as LISA or density functions and data-mining methods to analyse a new kind 
of data (i.e., GPS movement data). On the other hand, the geographical 
perspective raised an important conceptual implication: the close relationship 
between movement and place. In fact, an underlying assumption in this approach 
is that people move from one place to another, suspending their movement at 
those places. Places therefore “emerge” from movement, whose location and 
extent are indicated by the MSPs. The places where people suspend their 
movement play a central role in understanding pedestrian movement. They are 
more than locations where a person stops; they indicate the existence of an 
interaction between people and the environment (Stonor, 2004). This has its 
literary counterpart in the opening passage of this chapter. 

6.4 Further research 
Based on the results presented in this thesis, I suggest a number of directions for 
future research. 

First, the current LISA method uses a matrix to represent the spatial relationship 
between observations. This spatial relationship was conceptualized as a simple 
distance-decay function in the Cartesian plane. However, more complex 
relationships can be explored and more dimensions can be included. For example, 
instead of Euclidean distance, cost-distance or network distance can be used to 
build the spatial relationship matrix to take into account the influence of other 
environmental factors. Moreover, it is possible to include the temporal dimension 
along with the spatial dimensions to build a matrix in which the spatiotemporal 
relationship between observations is represented. In turn, this matrix allows the 
spatiotemporal clusters of movement suspension to be identified. 

Second, although the controlled experiment detailed in Chapter 3 was successful 
in demonstrating the validity of MSPs, further experiments will help to evaluate 
the temporal accuracy of the patterns. The moments when movement suspension 
begins and ends still have to be determined, taking into account the temporal 
granularity of the observations. 

A third research line is related to the formal representation. Whereas the 
approach presented in Chapter 5 constitutes a first step towards the formal 
representation of movement patterns, several challenges still remain. The current 
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ontology does not go beyond a proof of concept and is limited to some examples 
of interactions. More complex ontologies should be considered to extend the 
approach. For example, the taxonomy of collective phenomena proposed by Wood 
and Galton (2009) can be used as a starting point for a comprehensive 
representation of pedestrian movement behaviour. 

Finally, although the research presented in this thesis was focused on pedestrian 
movement in recreational areas, the approach can be also useful in different 
applications in which pedestrian movement is involved. For example, urban 
planners can evaluate the attractiveness of public space by taking into account the 
places where movement of people is suspended (Stonor, 2004). Also, movement 
patterns can be used to improve indicators of social sustainability in public areas 
(Ostermann, 2009). In mobility management, exploring and understanding 
movement patterns is essential to the design and implementation of better 
mobility and transportation systems. Moreover, the suitability of the approach to 
other domains such as transportation management or movement ecology is still 
to be investigated. 
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Summary 
 

Walking is one of the main activities in natural recreational areas. Its importance 
goes far beyond the simple goal of travelling from one point to another; it provides 
pleasure and wellbeing to visitors looking for a closer connection with nature. 
People walking in these areas are in direct relationship with their environment, 
interacting with geographic features that in turn affect and modulate people’s 
movements. Therefore, the movement of visitors in natural areas can be studied 
from a geographical point of view to understand the interactions between people 
and the environment in which they move. The understanding of such movement 
interactions can help park managers to meet the challenges caused by increasing 
use of recreational areas and to implement and evaluate management practices to 
reduce the impact of a growing number of visitors. It also provides new insights 
into human spatial behaviour, allowing researchers to increase their knowledge 
about the relationship between people and the environment. 

The exploratory analysis of these “movement interactions” of visitors walking in 
recreational areas is the central theme of this thesis. I approach the topic by 
creating a synergy between spatial analysis and data-mining techniques to analyse 
massive movement datasets collected using GPS technology. Under the 
assumption that these data enclose evidence of spatial interactions between 
people and environment, I develop an approach for pedestrian movement analysis 
to uncover these interactions and gain knowledge about the spatial behaviour of 
pedestrians in natural areas. The proposed approach, based on a “knowledge 
discovery process”, goes through successive steps of analysis from raw 
observational data towards concepts about movement interactions by detecting 
and analysing movement patterns. 

The main goal of this thesis, therefore, is to develop an approach to exploring, 
analysing and interpreting movement patterns of pedestrians interacting with the 
environment. To accomplish the main objective, four specific goals were 
formulated: a) develop an approach to detecting movement patterns evidencing 
the stopping behaviour of pedestrians; b) evaluate the detected movement 
patterns using a controlled experiment; c) demonstrate the applicability of the 
approach to studying the movement of visitors interacting with places in natural 
areas; and d) develop an ontology to represent relations between movement 
patterns and behaviour. 

Chapter 2 presents an exploratory spatial analysis approach to detecting patterns 
of movement suspension using a Local Indicator of Spatial Association (LISA). 
Patterns of movement suspension are used to find places where pedestrians stop 
as a consequence of their interactions with geographical features of the 
environment usually associated with specific human activities. These allow us to 
understand pedestrian movement behaviour. The proposed approach consists of 
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the following steps: a) collect data about pedestrian movement from GPS 
receivers; b) compute movement vectors to create a vector-based representation of 
movement; c) compute the LISA value for the speed values of movement vectors; 
d) classify the results using the average speed and the Z score of the LISA values; 
and finally e) plot the classified vectors on a map to find places where Suspension 
Patterns occur. Two different positioning datasets are used to demonstrate the 
approach: players of an urban outdoor mobile game and visitors to a natural park. 
The results of both experiments show that patterns of movement suspension were 
located at places such as checkpoints in the game and different attractions and 
facilities in the park. The results suggest that LISA is an appropriate indicator for 
exploring Movement Suspension Patterns (MSPs) representing the places where 
the movement of pedestrians is suspended by geographical features such as 
attractions or obstacles. 

Chapter 3 presents the results of a controlled experiment to investigate the validity 
of using MSPs to represent the stopping behaviour of visitors in a natural 
recreational area. In the experiment, participants walked and stopped at 
designated locations in the Dwingelderveld National Park (the Netherlands), 
carrying GPS receivers to collect data. The collected data were analysed to detect 
MSPs using the method described in Chapter 2. The accuracy of the detected 
MSPs was evaluated in space and time. The occurrence of detected MSPs was 
compared in time with a set of reference stops and the MSP approach was found 
to detect 92% of them, with a false positive rate of α = 0.16. When the location 
and extent of places of movement suspension computed as Percent Volume 
Contours (PVCs) in a Kernel Density Surface were compared with a set of 
predefined stopping places, 96% of them lay inside the areas delineated by the 
PVCs. These results confirmed that MSPs are feasible representations of the 
occurrence and location of stops in pedestrian movement data. 

Chapter 4 is of interest to park managers and other tourism researchers and 
practitioners and demonstrates how movement pattern analysis can be used to 
improve understanding of the aggregated movement of visitors in natural 
recreational areas. The chapter presents a case study in which the movement of 
visitors in the Dwingelderveld National Park (the Netherlands) was studied 
through the combined analysis of two kinds of movement patterns: Movement 
Suspension Patterns (MSPs) and Generalized Sequential Patterns (GSPs). MSPs 
representing the movement suspension occurring when walkers stop at a location 
are used to discover places of interest to visitors. GSPs representing the 
generalized sequence in which the places are visited (regardless of the route 
followed), are used to uncover commonalities in the way that people visit the area. 
Both patterns were analysed in a geographical context to characterize the 
aggregated flow of people and provide insights into visitors’ preferences and their 
interactions with the environment.  

Chapter 5 introduces a spatial knowledge representation for the main concepts 
about pedestrian movement (i.e., patterns, interactions and spatial behaviour). 
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This constitutes a proof of concept for a formal representation about those 
concepts and the relationships between them. The representation consists of an 
ontology in which both concepts and relationships between concepts are formally 
represented. The ontology is implemented in the Web Ontology Language (OWL) 
using the Protégé framework. Finally, a set of instances of movement patterns is 
imported into the ontology to test some basic reasoning tasks, such as instance 
checking and classification. 

Chapter 6 argues, on the basis of the findings of the preceding chapters, that the 
process for knowledge discovery in movement data is a feasible geographical 
approach to pedestrian movement analysis. The geographical perspective to 
movement analysis had two important implications. First, it enabled the synergy 
of multiple representations of movement to explore new ways of analysing 
movement data, and second, the geographical perspective stressed the importance 
of analysing movement to study the relationship between people and places. In 
fact, in the proposed approach the places “emerge” from movement and their 
location and extent are indicated by the MSPs. The places where people suspend 
their movement play a central role in understanding pedestrian movement. They 
are more than locations where people stop; they indicate the existence of an 
interaction between people and the environment. 
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Samenvatting 
Wandelen is een van de belangrijkste activiteiten in natuurlijke recreatiegebieden. 
Dit gaat verder dan het jezelf simpel verplaatsen van A naar B. Het geeft plezier 
en zorgt voor een gevoel van welbevinden bij bezoekers die op zoek zijn naar een 
hechtere band met de natuur. Mensen die door natuurgebieden wandelen hebben 
een directe band met hun omgeving en interacteren met ruimtelijke 
verschijnselen. Dit beïnvloed de verplaatsing van mensen door het gebied. 
Daarom kan verplaatsing van mensen in natuur gebieden bestudeerd worden 
vanuit een geografische oogpunt, om zo interacties tussen mens en de omgeving 
waardoor hij zich beweegt, beter te begrijpen. Het begrijpen van deze interacties 
kan beheerders van natuurgebieden helpen om de uitdagingen, die samengaan 
met een intensiever gebruik door recreanten van natuurgebieden, aan te gaan. 
Daarnaast levert het nieuwe inzichten op over het ruimtelijke gedrag van mensen 
waardoor onderzoekers hun kennis over relaties tussen mens en omgeving 
vergroten. 

Het centrale thema van deze thesis is een exploratieve analyse van deze 
verplaatsingen van bezoekers van natuurgebieden. Ik benader dit thema door een 
combinatie van ruimtelijke analyse en “data-mining” technieken te gebruiken, om 
zo de enorme datasets met verplaatsingsdata, ingewonnen via GPS technologie, te 
kunnen analyseren. Er van uitgaande dat deze data aanwijzingen bevat voor 
interacties tussen mens en omgeving, heb ik een werkwijze ontwikkeld om 
verplaatsingsgedrag van wandelaars zodanig te analyseren dat deze interacties 
duidelijk worden. Deze werkwijze is gebaseerd op een 
“knowledgediscoveryprocess” en loopt via een aantal opeenvolgende stappen; van 
de analyse van de ruwe data tot aan het detecteren en analyseren van 
verplaatsingspatronen.  

De belangrijkste doelstelling van deze thesis is daarom het ontwikkelen van een 
werkwijze om verplaatsingspatronen van wandelaars in interactie met hun 
omgeving te kunnen verkennen, analyseren en interpreteren. Om deze 
doelstelling te kunnen bereiken zijn vier specifieke doelstellingen geformuleerd: 
a) ontwikkel een werkwijze voor het detecteren van stopgedrag van wandelaars in 
verplaatsingspatronen, b) evalueer de gedetecteerde verplaatsingspatronen via een 
gecontroleerd experiment, c) demonstreer de toepasbaarheid van deze werkwijze 
voor het bestuderen van interacties tussen verplaatsingen van wandelaars en 
plaatsen in natuurlijke gebieden, en d) ontwikkel een ontologie om relaties tussen 
patronen van verplaatsingen en gedrag te kunnen representeren. 

Hoofdstuk 2 presenteert een benadering voor exploratieve ruimtelijke analyse om 
“Movement Suspension Patterns”(vertragingspatronen) te kunnen detecteren 
door gebruik te maken van een lokale index voor ruimtelijke associaties (LISA). 
Patronen die vertraging van verplaatsing weergeven zijn gebruikt om plaatsen te 
ontdekken waar wandelaars stoppen als gevolg van interactie met ruimtelijke 
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verschijnselen die gewoonlijk geassocieerd worden met specifieke activiteiten. Dit 
type patronen laat ons het verplaatsingsgedrag van wandelaars beter begrijpen. De 
voorgestelde benadering bestaat uit de volgende stappen: a) verzameldata over 
verplaatsingen van wandelaars via GPS ontvangers, b) bereken de vectoren van 
verplaatsingen om zo een vector gebaseerd representatie van verplaatsing te 
verkrijgen, c) bereken de waarden voor de LISA op basis van de snelheid, d) 
classificeer de resultaten door gebruik te maken van de gemiddelde waarde, en de 
waarden voor de Z-scores van de LISA en uiteindelijk e) verwaardig een kaart met 
de geclassificeerde vectoren om zo plaatsen waar vertragingen in verplaatsing 
optreden te ontdekken. Twee verschillende datasets zijn gebruikt om deze 
werkwijze te demonstreren: een dataset van spelers van een spel via mobile 
telefoons en een dataset van bezoekers van een natuurgebied. Het resultaat van 
beide experimenten toont aan dat vertragingspatronen optreden op herkenbare 
plaatsen zoals de controleposten in het spel en de verschillende activiteiten en 
voorzieningen in het natuurgebied. Het resultaat laat zien dat de LISA een 
geschikte index is voor het exploreren van vertragingspatronen die plaatsen 
representeren waar de verplaatsing van wandelaars wordt vertraagt door 
ruimtelijke verschijnselen zoals attracties of obstakels.  

Hoofdstuk 3 presenteert de resultaten van een gecontroleerd experiment met als 
doel het onderzoeken van de validiteit van de vertragingspatronen voor het 
representeren van stopgedrag van bezoekers van natuurlijke recreatie gebieden. 
Gedurende het experiment wandelden en stopten de deelnemers, voorzien van 
GPS apparatuur, op vooraf bepaalde locaties in het nationale park 
Dwingelderveld. De verzamelde data werd geanalyseerd volgens de methode 
beschreven in hoofdstuk 2. De nauwkeurigheid van de gedetecteerde 
vertragingspatronen werd zowel ruimtelijk als temporeel beoordeeld. De 
gedetecteerde vertragingspatronen werden vergeleken met een set met referentie 
stops. Het bleek dat 92% van de referentiestops correct gedetecteerd konden 
worden via de vertragingpatronen, met een vals-positief waarde van � = 0.16. De 
locatie en omvang van plaatsen waar vertragingen optreden zijn berekend 
als“Percent Volume Contours” (PVC) in een “KernelDensitySurface” en 
vergeleken met de set van referentiestops. Het bleek dat 96% van de 
referentiestops binnen de door PVCs gedefinieerde gebieden liggen. Deze 
resultaten bevestigden dat vertragingspatronen bruikbaar zijn voor representeren 
van het optreden en de locatie van “stops” in data met verplaatsingsgevens van 
wandelaars.  

Hoofdstuk 4 richt zich op beheerders van nationale parken en onderzoekers en 
uitvoerders van toeristische activiteiten. Er wordt gedemonstreerd hoe de analyses 
van verplaatsingspatronen toegepast kunnen worden om geaggregeerde 
verplaatsingen van bezoekers van natuurlijke gebieden te begrijpen. Dit hoofdstuk 
presenteert een case studie waarbij het verplaatsingsgedrag van bezoekers in het 
nationaal park Dwingelderveld werd bestudeerd via een gecombineerde analyse 
van twee soorten verplaatsingspatronen: “Movement Suspension Patterns 
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(MSPs)” en “GeneralisedSequentialPatterns (GSPs)”. MSPs, als representatie van 
vertraging in de verplaatsing die optreedt wanneer wandelaars stoppen, zijn 
gebruikt om plaatsen te ontdekken die interessant zijn voor bezoekers. GSPs 
representeren de gegeneraliseerde volgorde waarin plaatsen zijn bezocht 
(onafhankelijk van de gevolgde trajecten) en worden gebruikt om overeenkomsten 
aan het licht te brengen in de wijze waarop mensen het gebied verkennen. Beide 
type patronen werden geanalyseerd in een geografische context om de 
geaggregeerde beweging van bezoekers te typeren en inzicht te geven in 
voorkeuren van bezoekers en hun interacties met de omgeving.  

Hoofdstuk 5 introduceert een kennis representatie voor de belangrijkste 
concepten van verplaatsingen van wandelaars (i.c. patronen, interacties en 
ruimtelijk gedrag). Dit is bedoelt als een aanzet voor een formele representatie 
van deze concepten en de relaties ertussen. De representatie bestaat uit een 
ontologie waarin zowel concepten als relaties tussen deze concepten formeel 
worden beschreven. De ontologie is geïmplementeerd in “Ontological Web 
Language (OWL)” gebruikmakend van het Protégé“framework”. Uiteindelijk is er 
een set met verplaatsingspatronen geïmporteerd in de ontologie om een aantal 
basis redeneer taken, zoals “instancechecking” en classificatie te testen.  

Hoofdstuk 6 bepleit, op basis van de resultaten van voorgaande hoofdstukken, dat 
het “knowledgediscoveryprocess” toegepast op data van verplaatsingen, een 
uitvoerbare geografische benadering isom verplaatsing van wandelaars te 
analyseren. De analyse van verplaatsingen vanuit het geografische perspectief had 
twee belangrijke implicaties. Ten eerste, maakt de synergie tussen meerdere 
representaties van verplaatsingen nieuwe manieren voor analyse van data van 
verplaatsingen mogelijk en ten tweede het geografische perspectief benadrukte 
het belang van het analyseren van verplaatsingsgedrag om inzicht te krijgen in de 
relatie tussen mensen en plaatsen. De plaatsen waar mensen vertragen spelen een 
centrale rol in het begrijpen van verplaatsing van wandelaars. Plaatsen zijn meer 
dan de locaties waar mensen stoppen; ze duiden op het bestaan van interacties 
tussen mensen en hun omgeving. 
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Resumen 
 

Caminar es una de las principales actividades en áreas naturales y recreacionales. 
Su importancia se extiende más allá del simple objetivo de trasladarse de un 
punto a otro, pues provee bienestar y placer a los visitantes que buscan una 
conexión con la naturaleza. Las personas que caminan en éstas áreas se 
relacionan directamente con su entorno e interactúan con elementos del paisaje 
que afectan y modulan su movimiento. Por lo tanto, el movimiento de visitantes 
en las áreas naturales puede ser estudiado desde un punto de vista geográfico para 
entender las interacciones entre las personas y el entorno en el que se mueven. 
Entender estas interacciones puede ayudar a los gestores de parques y áreas 
naturales tanto a enfrentar los retos de un creciente uso de los espacios 
recreacionales, como a implementar y evaluar medidas de manejo para reducir el 
impacto de un número de visitantes cada vez mayor. Además, puede proveer 
nuevos elementos para comprender el comportamiento espacial de las personas, 
permitiendo así a los investigadores ampliar su conocimiento sobre las relaciones 
entre las personas y el medio ambiente. 

El análisis exploratorio de estas “interacciones de movimiento” de los visitantes de 
áreas recreacionales es el tema central de esta tesis. El enfoque que propongo 
consiste en crear una sinergia entre análisis espacial y técnicas de minería de 
datos para analizar cantidades masivas de datos recolectados con tecnología GPS, 
asumiendo que estos datos guardan evidencia de las interacciones espaciales entre 
las personas y el ambiente. Además, presento una metodología para el análisis del 
movimiento de caminantes para descubrir tales interacciones y mejorar el 
conocimiento acerca del comportamiento espacial de las personas en áreas 
naturales. La metodología se basa en un proceso de “descubrimiento de 
conocimiento” que implica diferentes pasos de análisis desde la observación de 
datos, la detección de patrones de movimiento, y hasta la representación de 
conceptos sobre interacciones de movimiento. 

El objetivo principal de esta tesis es por lo tanto, desarrollar un enfoque para la 
exploración, análisis e interpretación de patrones de movimiento de caminantes 
interactuando con el entorno geográfico. Para lograr este objetivo general, se han 
propuesto cuatro objetivos específicos: a) desarrollar un método para detectar 
patrones de movimiento que identifiquen las paradas durante el movimiento de 
los caminantes; b) evaluar el método a través de un experimento controlado, c) 
demostrar la aplicabilidad del método para el estudio del movimiento de visitantes 
en áreas naturales; y d) desarrollar una representación basada en ontologías para 
los conceptos de relacionados con patrones de movimiento y comportamiento 
espacial. 

Esta tesis está estructurada en seis capítulos. El Capítulo 1 presenta la motivación, 
los principales conceptos y los objetivos de mi investigación. 
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El Capítulo 2 presenta un enfoque metodológico para detectar Patrones de 
Suspensión de Movimiento (MSPs) utilizando un Indicador Local de Asociación 
Espacial (LISA). Los MSPs detectados se utilizan para encontrar lugares donde los 
caminantes se detienen como consecuencia de su interacción con elementos 
geográficos del ambiente, usualmente asociados con actividades humanas 
específicas, permitiéndonos entender el comportamiento espacial de los 
caminantes. La metodología propuesta consiste en los siguientes pasos: a) 
recolectar datos de caminantes utilizando receptores GPS; b) calcular vectores de 
movimiento para crear una representación del movimiento basada en vectores; c) 
calcular los valores LISA para la variable de velocidad de los vectores de 
movimiento; d) clasificar los resultados utilizando la velocidad promedio y el 
puntaje Z de LISA; y finalmente e) representar los vectores clasificados en un 
mapa para encontrar los lugares donde ocurren los MSPs. Dos conjuntos de datos 
de movimiento fueron utilizados para demostrar la metodología: el movimiento 
de jugadores de un juego de rol urbano en la zona central de una ciudad y el 
movimiento de visitantes en un parque nacional. Los resultados de los dos 
experimentos mostraron que los MSPs estuvieron localizados en lugares 
significativos, como los puntos de control del juego y las diferentes atracciones y 
servicios en el parque. Los resultados sugieren que LISA es un indicador 
apropiado para explorar y descubrir los lugares donde el movimiento de los 
caminantes se suspende debido a elementos geográficos como atracciones u 
obstáculos. 

El Capítulo 3 presenta los resultados de un experimento controlado para investigar 
la validez de utilizar MSPs para representar el comportamiento espacial de los 
caminantes cuando se detienen. En este experimento, varios participantes 
caminaron por diversas rutas y se detuvieron en puntos previamente designados 
en el Parque Nacional Dwingelderveld (Países Bajos). Los participantes llevaron 
receptores GPS que automáticamente registraban sus sucesivas localizaciones. 
Los datos recolectados fueron analizados para detectar MSPs utilizando el método 
descrito en el Capítulo 2. La exactitud de los MSPs detectados fue evaluada en el 
espacio y en el tiempo. La ocurrencia de los MSPs detectados fue comparada en el 
tiempo con un conjunto de paradas de referencia y se estableció que el método fue 
capaz de detectar el 92% de estas paradas con una tasa de falsos positivos de α = 
0.16. Cuando la localización y extensión de los MSPs, calculada utilizando los 
contornos de porcentaje de volumen sobre una superficie de función de densidad 
Kernel, fue comparada con un conjunto predeterminado de lugares de referencia 
se encontró que el 96% de los MSPs estaban dentro de las áreas delineadas por 
los contornos de porcentaje de volumen. Estos resultados confirmaron que los 
MSPs son una representación adecuada de la ocurrencia y localización de las 
paradas de caminantes en datos de movimiento capturados con GPS. 

El Capítulo 4 demuestra cómo el análisis de patrones de movimiento puede ser 
utilizado para mejorar el conocimiento de los flujos de visitantes en áreas 
naturales recreacionales. Este capítulo presenta un caso de estudio en el cual el 
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movimiento de visitantes en el Parque Nacional Dwingelderveld fue estudiado 
utilizando el análisis combinado de dos tipos de patrones: Patrones de Suspensión 
de Movimiento (MSPs) y Patrones Secuenciales Generalizados (GSPs). Los MSPs 
representan la suspensión del movimiento que ocurre cuando los caminantes se 
detienen en un lugar y son utilizados para descubrir los sitios de interés para los 
visitantes. Los GSPs representan la secuencia generalizada en la cual se visitan los 
lugares (sin importar la ruta que siguen) y son utilizados para descubrir aspectos 
comunes en la manera en la que los visitantes visitan el área. Los dos tipos de 
patrones fueron analizados en el contexto geográfico para caracterizar el flujo 
agregado de visitantes y dilucidar aspectos de las preferencias de los visitantes y 
sus interacciones con el ambiente. Por lo tanto, este capítulo es de especial interés 
para gestores de parques e investigadores en turismo en áreas naturales 
interesados en ampliar o extender los sistemas de monitoreo y manejo de 
visitantes.  

El Capítulo 5 presenta una representación del conocimiento espacial de los 
principales conceptos sobre movimiento de caminantes, como por ejemplo 
patrones, interacciones y comportamiento espacial. Esto constituye una prueba de 
concepto de una representación formal de estos conceptos y las relaciones entre 
ellos. La representación consiste en una ontología en la cual tanto los conceptos 
como las relaciones entre ellos son representados formalmente. La ontología es 
implementada en el Lenguaje de Ontologías para la Web (OWL) utilizando la 
plataforma Protégé. Finalmente, un conjunto de instancias de patrones de 
movimiento son importadas en la ontología para experimentar el funcionamiento 
de algunas tareas básicas de razonamiento automatizado, tales como 
comprobación de instancias y clasificación. 

Finalmente en el Capítulo 6 se argumenta, en base a los hallazgos presentados en 
los capítulos precedentes, que el proceso de “descubrimiento de conocimiento” en 
datos de movimiento es un enfoque geográfico adecuado para el análisis del 
movimiento de caminantes. La perspectiva geográfica del análisis del movimiento 
tiene dos implicaciones importantes. La primera, es que crea una sinergia de 
múltiples representaciones del movimiento para explorar nuevas formas de 
análisis. La segunda, es que la perspectiva geográfica resalta la importancia del 
análisis del movimiento para estudiar las interacciones entre las personas y los 
lugares. De hecho, en el enfoque propuesto, los lugares “emergen” como 
consecuencia del movimiento (o más precisamente de su suspensión), y cuya 
localización y extensión son detectadas y representadas por los MSPs. Los lugares 
donde la gente suspende su movimiento juegan un papel central en la 
comprensión del movimiento de los caminantes. Esos lugares son algo más que 
meras localizaciones en el espacio, ellos indican la existencia de la interacción 
entre las personas y el ambiente. 
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