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STELLINGEN 

Het Impatiens necrotic spot virus isolaat beschreven door Law & Moyer (1990) is een morfologisch 

defectieve mutant zoals omschreven door Resende et ai (1991) en als zodanig niet representatief voor 

dit virus species. 

Law, MD. & Moyer, J.W. (1990). A tomato spotted wilt-like virus with a serologically distinct N protein. J. Gen. Virol. 71: 
933-938. 

Resende, R. de O., De Haan, P., Avila, A.C. de., Konnelink, R., Goldbach, R. & Peters, D. (1991). Generation of envelope 
and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72 (10) in press. 

De uitspraak van Pfannenstiel et al. (1987) en Muthukumar & Nickerson (1987) dat de Bacillus 

thuringiensis kristaleiwitten glycoproteinen zijn, gevormd via N-glycosylering, suggereert ten onrechte 

dat deze bacterie beschikt over een endoplasmatisch reticulum en een Golgi-apparaat. 

Pfannenstiel, MA, Muthutkumar, G., Couche, G.A. & Nickerson, K.W. (1987). Amino sugars in the glycoprotein toxin from 
Bacillus thuringiensis subsp. israelensis. J. Bacterid. 169: 796-801. 

Muthutkumar, G. & Nickerson, K.W. (1987). The glycoprotein toxin of Bacillus thuringiensis subsp. israelensis indicates a 
lectinlike receptor in the larval mosquito gut Appl. Envir. Microbiol. S3: 2650-2655. 

De experimenten beschreven door Kawchuk et al (1990,1991), tonen niet onomstotelijk aan dat de 

waargenomen resistentie tegen het aardappelbladrolvirus een direct gevolg is van de introductie van 

het virale manteleiwitgen in het genoom van de onderzochte planten. 

Kawchuk, L.M., Martin, R.R. & McPherson, J. (1990). Resistance in transgenic potato expressing the potato leafroll virus coat 
protein gene. Mol. Plant-Microbe Inter. 3:301-307. 

Kawchuk, L.M., Martin, R.R. & McPherson, J. (1991). Sense and antisense RNA-mediated resistance to potato leafroll virus 
in Russet burbank potato plants. Mol. Plant-Microbe Inter. 3:301-307. 

Bij het streven naar een taxonomie van RNA-virussen, gebaseerd op phylogenetische verwantschappen, 

verdient het aanbeveling geen taxa hoger dan familie te introduceren. 

Gibbs, A. (1987). Molecular evolution of viruses: Trees','clocks' and 'modules'. J. Cell. Sei. (suppl.) 7: 319-337. 

Goldbach, R. (1987). Genome similarities between plant and animal RNA viruses. Microbiol. Sei. 4: 197-202. 

Zimmern, D. (1987). Evolution of RNA viruses. In: RNA Genetics, pp. 211-240. Edited by J. Holland, E. Domingo & P. 
Ahlquist. Boca Raton: CRC Press 

Van der Wilk, F., Huisman, MJ., Comelissen, BJ.C, Huttinga, H. & Goldbach, R. (1989). Nucleotide sequence and 
organization of potato leafroll virus genomic RNA FEBS Lett 24S: 51-56. 



Het ligt voor de hand dat tenuivirussen, net als alle andere negatief-strengs RNA-virussen, van nature 

beschikken over een lipide membraan. 

Gingery, R. (1988). The rice stripe virus group, In: The plant viruses, vol. 4, pp. 297-329. Edited by R.G. Milne. New Yoifc 
Plenum Press. 

Ishikawa, K., Omura, T. & Hibino, H. (1990). Morphological characteristics of rice stripe virus. J. Gen. Virol. 70: 3465-3468. 

6. De suggestie van Turpen (1989) om sequentie homologje in de 3'-uiteinden van de genomische RNAs 

van potyvirussen te gebruiken als taxonomisch criterium, wordt door de auteur zelf niet overgenomen. 

Turpen, T. (1989). Molecular cloning of a potato virus Y genome: nucleotide sequence homology in non-coding regions of 
potyviruses. J. Gen. Virol. 70: 1951-1960. 

De oproep van De Zoeten (1991) aan wetenschappers die gebruik maken van genetisch 

gemodificeerde planten om vooral risico-analyses te maken, geeft blijk van zijn volslagen onbekendheid 

met het onderzoek op dit gebied. 

De Zoeten, GA (1991). Risk assessment- do we let history repeat itself? Phytopathology 81: 585-586. 

8. De vorming van cylindrische insluitsels in protoplasten geïnfecteerd met potyvirussen is niet in 

tegenspraak met de veronderstelling dat deze betrokken zijn bij het cel-naar-cel transport van deze 

virussen. 

Langenberg, W.G. (1986). Virus protein association with cylindrical inclusions of two viruses that infect wheat. J. Gen. Virol. 
67: 1161-1168. 

Murphy, J.F., Järlfors, U. & Shaw, J.G. (1991). Development of cylindrical inclusions in potyvirus-infected protoplasts. 
Phytopathology 81: 371-374. 

9. Het gebruik van de benaming 'onecht' kind voor een buiten het huwelijk geboren kind, getuigt van 
minachting voor mensen die kiezen voor alternatieve samenlevingsvormen. 

Stellingen behorend bij het proefschrift: 

EXPLORING AND EXPLOITING THE RNA GENOME OF TOMATO SPOTTED WILT VIRUS 

Randwijk, 27 september 1991 Peter de Haan 
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CHAPTER 1 INTRODUCTION 

1.1 Tomato spotted wilt virus: history and economical impact 

The disease in tomato described as 'spotted wilt' was first observed by Brittlebank 

in Australia in 1915 (Brittlebank, 1919). Later studies revealed that the causal agent was 

a virus, ever since denoted tomato spotted wilt virus (TSWV) (Samuel et al.. 1930). 

TSWV mainly occurs in (sub)tropical climate zones and is known under various different 

names (Table 1.1 and Best, 1968; Ie, 1970; Smith, 1972; Sakimura, 1962). 

Kat river disease virus Vira cabeça virus 
Kromnek virus Lycopersicon virus 3 
Pineapple side rot virus Lycopersicon virus 7 
Pineapple yellow spot virus Peanut bud necrosis virus 
Tomato bronze leaf virus Makhorka tip chlorosis virus 
Tomato bronzing virus Tip blight virus 
Carcova virus 

Table 1.1 : List of synonyms of'tomato spotted wilt vims'. 

The economical impact of TSWV is enormous, due to its wide geographical 

distribution, its extremely broad host range and its devastating effects on infected plants. 

Up to 400 species from 50 different families, both monocotyledons and dicotyledons, can 

be infected (Smith, 1972; Francki et al.. 1985; McRitchie, 1986; Peters, unpublished 

results). Infection with TSWV causes a wide variety of different symptoms such as 

necrosis, chlorosis, enation, stunting and local lesions, depending on the host plant 

species and virus isolate. Both genetical and environmental factors seem to affect the 

susceptibility of the host and the severity of the induced symptoms (Francki etal.. 1985). 

Since indications have been reported for the presence of different 'strains' of TSWV 

(Best & Gallus, 1955; Best, 1968), serological differentiation of isolates is currently a 



topic of intensive research (Cho et al., 1988; Kameyi-Iwaki et al., 1988; Wang & 

Gonsalves, 1990; Avila et al.. 1990). These studies have revealed that TSWV isolates can 

be separated into a number of serogroups and serotypes (Law & Moyer, 1990; Avila et 

al-, 1990). 

The most important plant species, for which considerable yield losses have been 

reported, include tomato, potato, tobacco, groundnut, (sweet) pepper, lettuce and 

papaya. Although TSWV mainly occurs in (sub)-tropical regions or in areas with relativ

ely warm summers, severe outbreaks have recently also been reported in many countries 

within the temperate climate zones. In the Netherlands, for example, TSWV has become 

an actual threat in the cultivation of tomato, sweet pepper, egg-plant and a growing 

number of ornamental plants, like chrysanthemum, Ageratum and Impatiens, grown in 

greenhouses. 

1.2 Transmission and disease management 

TSWV is transmitted by thrips (Thysanopteral. Sofar eight species have been 

reported as possible vectors, from which the first four listed in Table 1.2, seem to be the 

most important ones (Sakimura, 1962; Kobatake et al., 1984; Paliwal, 1974). The recently 

observed expansion of TSWV into Western Europe and North America is most likely 

due to the introduction of the Western Flower thrips, Frankliniella occidentalis into 

these areas. 

There is only little information on the virus transmission mechanism. As far as 

known, the mode of transmission seems analogous to that of the group of persistently 

transmitted aphid-borne plant viruses. Acquisition of virus by its vector takes only place 

during the first and second larval stages with an acquisition threshold of 5 to 45 min. 

The latency period is about 5 to 10 days and virus can be retained in the vector for a 

long period (probably for its whole lifespan) (Sakimura, 1962; Paliwal, 1974; Cho et a l , 

1988). Recently, virus particles have been detected in the vector. It is however not known 

whether TSWV multiplies in the vector (Ullman et al, 1989). 



Thrips tabaci Lindeman 
Frankliniella schultzei Trybom 
Frankliniella occidentalis Pergande 
Frankliniella fusca Hinds 
Frankliniella tenuicornis Uzel 
Thrips setosus Moulton 
Thrips palmi Karny 
Scirtothrips dorsalis Hood 

Table 1.2 : Thrips species reported as vectors of tomato spotted wilt virus. 

In the laboratory TSWV is easily transmittable from plant to plant by sap inocula

tion, but in the field mechanical transmission, as well as transmission by seed or pollen, 

does not play a significant role in the virus spread (Ie, 1970; Peters et al.. 1990). 

From studies in the USA and Japan it is known that a large number of naturally 

occurring weed plants can serve as virus reservoirs, thereby playing a crucial role in the 

survival and distribution of the virus (Cho et al.. 1986; Bond et al.. 1983; Kobatake et al.. 

1984). The epidemiology of vector and virus is poorly understood and it is clear that 

more detailed studies on this topic are urgently needed to develop feasible management 

procedures. 

To limit the incidence of TSWV infections, several sanitary measures can be taken, 

such as removal of weed host plants in the vicinity of threatened crops, early destruction 

of infected plants and biological or chemical control of thrips. In addition, plant breeders 

continuously try to obtain crops with increased TSWV resistance or tolerance levels. 

Plant resistance to TSWV has intensively been studied during the last decades. Studies 

on tomato, tobacco and lettuce have revealed however, that a simple 'Mendelian' 

inheritance of natural resistance against TSWV does almost never occur in these crops. 

It seems therefore likely that natural TSWV-resistance is predominantly polygenic, based 

on complex interactions between virus, vector and plant (Smith & Gardner, 1951; Finlay, 

1953; Borchers, 1956; Holmes, 1958; Best, 1968; Moldovan & Chokan, 1972; Stoyanova 

& Konotop, 1975; Vinogradov et al.. 1982; Gajos, 1983; Cupertino et al.. 1986; O'Malley 

& Hartmann, 1989; Paterson et al.. 1989). 



1.3 Virus structure 

In the past thirty years extensive electron microscopical studies have been performed 

on TSWV in infected plant cells. These analyses have shown that TSWV particles are 

spherically shaped (80-110 nm in diameter) and consist of a granular core of nucleocap-

sids, bounded by a lipid membrane, which is covered with surface projections (Best & 

Katekar, 1964; Best & Palk, 1964; le, 1964; Martin, 1964; Kitajima, 1965). Virus particles 

are found clustered within dilated cysternae of the rough endoplasmatic reticulum (Best 

& Palk, 1964; le, 1964; Kitajima, 1965; Martin, 1964; Francki & Grivell, 1970) and most 

likely mature by budding of nucleocapsids through the ER membrane (Milne, 1970; 

Kitajima et al.. 1991). Sofar, there is no evidence that the Golgi complex is involved in 

maturation or transport of the virus (Best & Palk, 1964; Ie, 1964; Milne, 1970). Besides 

enveloped virus particles, other structures, associated with TSWV-infection, are observed 

by electron microscopy. The cytoplasm of infected cells also contains clusters of 

electron-dense masses (also described as diffuse masses or viroplasm) and fibers, fibrous 

V « 

Fig. 1.1: Election mictograph of a TSWV infected Nicotiana rustica cell. Virus particles (V), diffuse election-
dense masses (DM) and fibrous structures (F) can be observed. 



structures or tubuli (Francki & Grivell, 1970; Milne, 1970; Law & Moyer, 1990; Kitajima 

et al.. 1991). The electron-dense masses represent aggregates of non-enveloped 

nucleocapsids (Ie, 1964; Kitajima et al.. 1991) (Fig.1.1). 

In vitro. TSWV particles are highly instable, as can be concluded from the short half-

life in plant sap (30-60 min) and the thermal inactivation point of 45 °C. (Ie, 

1970). A few methods have been developed to purify TSWV particles. They are based 

on differential centrifugation, followed by banding in sucrose gradients, in the presence 

of a mild reducing agent, such as sodiumsulfite or cystein. (Black et al.. 1963; Best & 

Palk, 1964; Martin, 1964; Van Kammen et al.. 1966; Best, 1968; Gumpf & Weathers, 

1972; Tsakiridis & Gooding, 1972; Joubert et al.. 1974; Paliwal, 1974;). The use of 

antisera against uninfected plant material, to remove host contaminants during 

purification, is a valuable tool to obtain highly purified virus preparations (Tas et al.. 

1977b). 

Purified virus particles contain four to five structural proteins, with molecular masses 

of respectively 29,000 (29K), 52K, 58K, 78K and approximately 200K (Mohamed et al.. 

1973; Tas et al.. 1977a). Treatment of virus particles with a non-ionic detergent like 

Nonidet-P40 and subsequent sucrose gradient centrifugation shows that the 29K protein 

is tightly associated with the genomic RNA and forms stable circular nucleocapsid struc

tures. This protein is therefore denominated the nucleocapsid (N) protein. Virus 

preparations contain three distinct nucleocapsids, each containing a copy of genomic 

RNA (Mohamed, 1981). The nucleocapsids, together with few copies of the 200K protein 

(denoted L protein) form the interior of the virus particle. The function of the L protein 

is thusfar unknown. The 78K and 58K proteins are glycosylated and are denominated 

glycoproteins, G l and G2, respectively. The 52K protein most likely is a partial degra

dation product of the 58K protein, since it is not present in all virus preparations 

(Mohamed et a l , 1973). 

Iodination experiments and protease treatment of virus particles have revealed that the 

G proteins are located at the surface. It can therefore be assumed that one or both 

glycoproteins form the observed surface projections (spikes). The structure of these 

spikes however has remained unknown (Mohamed et al.. 1973; Tas et al.. 1977a). The 



78 K 
58 K 

N 29 K 
L 200 K 

80-110 nm 
Fig. 1.2: Schematical representation of a TSWV partiele. The three linear, single strand RNA segments are 
tightly encapsidated with nucleocapsid (N) proteins and form circles, which may be coiled. The lipid envelop 
contains two types of glycoproteins denoted Gl and G2. A large (L) protein, present in minor amounts, is 
associated with the internal nucleocapsids. 

putative morphology of a TSWV particle is drawn schematically in Fig.1.2. 

TSWV has a genome consisting of three linear single stranded RNA molecules, 

denominated (small) S RNA, (middle) M RNA and (large) L RNA. Polyacrylamide and 

agarose gel electrophoresis have shown that the S RNA is approximately 3000 

nucleotides long, with a molecular mass of 1,1 x 10e; the M RNA is approx. 5000 nucleo

tides long (1,7 x 106) and the L RNA has a length of approximately 8000 nucleotides (2,7 

x 108) (Van den Hurk et al., 1977; Verkleij et al.. 1982). Chromatography of genomic 

RNA on oligo-dT cellulose columns has demonstrated that the genomic RNA molecules 

are not poly-adenylated at their 3' termini (Verkleij et al.. 1982). At the start of the 

studies described in this thesis, the structure and coding capacity of the RNA segments 

was completely unknown. 



1.4 Taxonomy 

Polyclonal antisera have been raised against purified virus preparations, or against 

TSWV nucleocapsids, in a number of laboratories (Joubert et al.. 1974; Paliwal, 1974; 

Tas et al.. 1977b; Gonsalves & Trujillo, 1986; Law & Moyer, 1990; Resende et al.. 1991). 

With these antisera sensitive, serological detection assays have been developed, for 

diagnostic purposes and for supporting fundamental research on TSWV. Recently, also 

monoclonal antibodies have been obtained to the nucleocapsid protein and to the 

membrane glycoproteins to analyse different TSWV isolates in more detail (Huguenot 

et al.,1989: Sherwood et_al.,1989; Avila et al.,1990Y 

Sofar plant viruses have been classified on the basis of serology, particle morphology, 

genome structure and biological properties, such as transmission and host range. A 

criterium of increasing importance for the taxonomy of RNA viruses has become the 

structure and genetical organization of the genome (Goldbach, 1986; Strauss & Strauss, 

1988). Hence, the polarity of the genomic RNA is an important mainstay for virus 

classification. At the beginning of the molecular studies presented in this thesis, the 

polarity of the genome of TSWV was not unequivocally determined. Purified TSWV 

RNA is not infectious, in contrast to purified nucleocapsids, indicating a negative 

polarity (Van den Hurk et al.. 1977; Mohamed, 1981). On the contrary it has been 

reported that TSWV RNA encodes virus specific proteins in cell-free translation assays. 

In addition, no in vitro transcriptase activity could thusfar be detected under conditions 

described for RNA polymerases of other negative-strand viruses. These results would 

suggest a positive polarity (Verkleij et al., 1982). 

If TSWV is indeed an enveloped, positive-strand RNA virus, such as the Corona-

viridae, Flaviviridae, Togaviridae and Toroviridae, then it would be the only enveloped 

positive-strand RNA virus with a tripartite genome. When alternatively, TSWV has a 

negative-stranded genome, it has many properties in common to members of the 

Bunyaviridae, a large family of arthropod-borne viruses, sofar only found in the animal 

kingdom. 

The similarities of TSWV to members of the Bunyaviridae are so striking that it has 



been proposed to consider TSWV as a possible member of this virus family (Milne & 

Francki, 1984; De Haan étal.. 1989) (Table 1.3). 

The current lack of detailed knowledge on the structure and genetic properties of 

the genome and on the biology of TSWV makes a reasonable comparison and definitive 

Property TSWV Bunyaviridae 

Morphology 
Shape 
Diameter (nm) 
Envelop 
Surface projections 
Circular nucleocapsids 
oO 

° 20,w Buoyant density in 
CsCl, g/cm3 

Morphogenesis 
Maturation 
Localization 

Structural proteins 
N (Mrxltr3) 
Gl 
G2 
L 

Genome 
Type 
Number of segments 
Polarity 
Length of the segments(Kb) 
and coding properties 

S RNA 
M RNA 
LRNA 

Transmission 
Vector 

Vertical transmission 
Replication in the vector 

spherical 
80-110 
+ 
+ 
+ 
520-530 S 

1.21 

budding into RER 
cysternae of ER 

29 
78 
58 (52) 
200 

ssRNA 
3 
? 

3.0 (?) 
5.0 (Gl and G2,?) 
8.0 (?) 

Thrips 

? 
7 

spherical 
90-120 
+ 
+ 
+ 
350-470 S 

1.20 

budding into RER 
Golgi-complex 

19-54 
55-120 
29-70 
145-250 

ssRNA 
3 
negative/ambisense 

0.8-2.0 (N, NSs) 
3.2-4.6 (Gl,G2,NSm) 
6.5-15.0 (L) 

Ticks, mosquitos, sandflies 
and other arthropods 
+ 
+ 

Table 1.3: Some properties of TSWV compared with those of the Bunyaviridae (Milne & Francki, 1984) 



classification thusfar impossible. Among the plant viruses, TSWV is certainly unique and 

for this reason it has sofar been classified as the single representative of a distinct group 

of plant viruses: the tomato spotted wilt virus group (Ie, 1970; Matthews, 1982). 

1.5 Scope of the investigation 

As outlined in the previous paragraphs, among the plant viruses TSWV takes a 

unique position. Moreover, this virus has become a limiting factor in the cultivation of 

many crops. Despite the considerable economical importance of TSWV, our knowledge 

on the molecular structure of this virus has thusfar remained very limited and 

fragmentary. In order to classify this virus properly and to design effective management 

strategies, it is of great importance to gain insight into the coding capacity and genetic 

organization of the genomic RNAs and into the functions of the viral proteins in 

replication, virulence and transmission by its vector. For these reasons research on the 

molecular properties of TSWV has been initiated. The obtained nucleotide sequence 

data will enable development of faithful detection techniques and moreover, transforma

tion strategies to gain virus-resistance can be employed. In addition, these data will 

confirm or deny the phylogenetical relationships between TSWV and the Bunyaviridae 

as proposed for several years. 

In view of this possible relationship, Chapter 2 of this thesis starts with a description 

of the molecular properties of the Bunyaviridae in relation to other negative-strand virus 

families. 

The next three Chapters (3, 4 and 5) will describe the molecular cloning and 

sequence determination of the S and L RNA segments of the TSWV genome. 

Chapter 6 subsequently describes the application of the cDNA clones obtained for 

diagnosis and sensitive detection of TSWV. Last (but not least), Chapter 7 deals with 

the utilization of the cloned nucleocapsid protein gene of TSWV, for creating resistance 

of host plants to this virus. This genetically engineered resistance is a first step on the 

way to control TSWV-induced diseases. 
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CHAPTER 2 REPLICATION OF NEGATIVE-STRAND RNA 

VIRUSES 

2.1 General introduction 

Viruses consist of a relatively small amount of genetic information, protected by 

protein, which is in some cases also surrounded by a lipid envelop. Despite the obligate 

requirement for host cell structural and metabolic compounds, the viral genomes encode 

and regulate essential functions for their own replication, maturation, transport and 

hence survival of the virus. From this point of view, these intracellular parasitic entities 

can be regarded as 'independently operating genetic matter' and the intriguing question 

can be asked, whether there exist evolutionary relationships between the many different 

viruses, or in other terms, what is the origin of viral matter? 

Especially, RNA viruses are interesting subjects to unravel their evolution. They are 

very diverse and widespread in nature and possess the capacity to adapt rapidly to 

changing environmental circumstances, due to the high rate at which mutation and 

recombination of their genomes occurs (Holland et al.. 1982; Reanney, 1982; Goldbach, 

1986; Strauss & Strauss, 1988; Smith & Palese, 1989). Besides, it is now commonly 

accepted that RNA is an older biological agent than DNA or protein (Reanney, 1979), 

which means that the study on viral RNA replication may reveal insight into one of the 

earliest molecular biological processes on earth (Eigen & Schuster, 1982; Zimmern, 

1982). 

The classical taxonomy of viruses is based on parameters like serological relation

ships, particle morphology, genome structure, host range, transmission, disease syndrome 

etc. (Matthews, 1982), Since no comparative virus material from the past is available, 

such as fossiles as found for other living organisms, evolution of viruses can only be 

investigated at the molecular level by analysis of their genomes. 

Modern cloning and sequence determination techniques have led to the elucidation 

of complete nucleotide sequences of the genomes from a large number of viruses. This 
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has enabled the possibility to compare viruses and their genes in terms of nucleotide and 

amino acid sequences, and a considerable number of such comparative studies on the 

genomes of RNA viruses have demonstrated that, although sequence homologies are 

virtually absent, some of the presently recognized virus families may be clustered into 

•supergroups' (Goldbach, 1986; Strauss & Strauss, 1988; Goldbach et al.. 1991). This 

grouping is based on similarities in genome structure and expression, and on the preser

vation of conserved amino acid sequence motifs in viral proteins among different 

members. It implicates that viruses with RNA genomes are more or less related, and all 

evolved from a small number of common ancestor viruses (Strauss & Strauss, 1988). 

At least seven supergroups of eukaryotic RNA viruses are presently recognized: the 

carmo-like, the corona-like, the flavi-like, the picorna-like, the sobemo-like, the negative-

strand, and the double-strand virus supergroup. The supergrouping concept fits 

remarkably well with the other properties, previously used for virus taxonomy (Goldbach, 

1986; Goldbach & Wellink, 1989; Strauss & Strauss, 1988; Gorbalenya et al.. 1989; Can-

dresse et al.. 1990). 

The most homogeneous supergroup is undoubtedly formed by the negative-strand 

viruses, which include the Rhabdoviridae, Filoviridae, Paramyxoviridae, Orthomyxoviri-

dae, Bunyaviridae and Arenaviridae. All negative-strand viruses have single stranded 

RNA genomes, which are tigthly encapsidated with protein to nucleocapsids. The RNA 

is of negative polarity and after entrance in a cell, genomic RNA is transcribed into 

mRNAs by a viral RNA polymerase, present in the virus particles. The particles are 

enveloped and covered with surface projections. The majority of negative-strand viruses 

is transmitted by arthropod vectors, although other transmission strategies are also used. 

Besides these common general properties, all members of the separate families are 

characterized by their own distinct features. The main molecular properties of the 

different families of this supergroup, will be described in the next paragraphs. 
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2.2 The Mononegavirales: Rhabdoviridae. Filoviridae and Paramyxoviridae 

2.2.1 Taxonomy 

Rhabdo-, filo- and paramyxoviruses are characterized by unsegmented RNA 

genomes with great similarities in genetical organization and with considerable sequence 

homologies. Since they share many molecular biological properties, these virus families 

have recently been placed in a higher taxon by the ICTV, the order of the Mononega

virales. 

The family of Rhabdoviridae includes members that can infect either animals or 

plants. More than a hundred viruses have been classified as members of this family on 

the basis of their characteristic baciliform or bullet-shape structure. Some of the animal 

rhabdoviruses can be divided into two genera, the vesiculoviruses (with vesicular 

stomatitis virus, VSV, as the prototype virus) and the lyssaviruses (with rabies virus, RV, 

as prototype). Others await further classification. The plant rhabdoviruses are poorly 

studied, which makes it almost impossible to classify them properly. There are however 

some arguments to divide the plant rhabdoviruses into the subgroup A (lettuce necrotic 

yellows virus, LNYV) and the subgroup B (potato yellow dwarf virus, PYDV), in analogy 

to their animal counterparts (Peters, 1981) (Table 2.1). 

Members of the Paramyxoviridae are characterized by particles that are poly

morphic in size and shape, ranging from spherical to filamentous. The present family 

includes the parainfluenza- (Newcastle disease virus, NDV), morbilli- (measles virus, 

MV) and pneumovirus (respiratory syncytial virus, RSV) genera (Kingsbury, 1985) 

(Table 1). 

The Filoviridae, including Marburg and Ebola virus are characterized by having 

pleomorphic, U-shaped (often branched) virus particles. Sofar, both viruses are poorly 

studied, but they have many properties in common with the rhabdo- and paramyxo

viruses. 

The infection cycle of rhabdoviruses usually involves replication in an arthropod 
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Rhabdoviridae 

vesiculovirus: 

Lyssa vi rus: 

subgroup A: 

subgroup B: 

vesicular stomatitis virus (VSV), indiana, New Jersey, Chandipura etc. 
serotypes 

rabies virus (RV), Duvenhage, Lagos, Mokola etc. serotypes 

lettuce necrotic yellows virus (LNYV), 
broccoli necrotic yellows virus, 
sonchus virus, 
wheat striate mosaic virus. 

potato yellow dwarf virus (PYDV), 
sonchus yellow net virus (SYNV), 
eggplant mottled dwarf virus, 
sowthistle yellow vein virus. 

plus many unassigned members 

Paramyxoviridae 

Parainfluenzavirus: 

morbillivirus: 

pneumovirus: 

parainfluenza virus (PIV) type 1 to 6 (Sendai virus (SV) is the murine 
Parainfluenzavirus type 1 and Newcastle disease virus (NDV) is the 
avian Parainfluenzavirus type 1), 
mumps virus (MuV). 

measles virus (MV), 
canine distemper virus (CDV), 
Rinderpest virus (RV), 
peste-des-petits-ruminants. 

Respiratory syncytial virus (RSV), 
murine pneumonia virus (MPV). 

Table 2.1: Classification of the Rhabdoviridae and Paramyxoviridae 

vector (with the exception of lyssaviruses). Virus particles enter their host cells by 

receptor-mediated endocytosis and nucleocapsids are released in the cytoplasm after 

fusion of the virus-containing endosomes with lysosomes. The paramyxoviruses are all 

air-borne and viral nucleocapsids enter their host cells by direct fusion of viral 

envelopes with cellular membranes. Transcription and replication takes place in the 

cytoplasm of infected cells. 
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The best studied members from the Mononegavirales thusfar are, VSV and RV of 

the Rhabdoviridae, and NDV, Sendai virus (SV) and MV of the Paramyxoviridae 

(Banerjee, 1987; Vainionpaa et al.. 1989). 

2.2.2 Virus structure and genome organization 

Virus particles of the mononegavirales are bounded by a lipid envelop, which is 

acquired by budding of the nucleocapsids through the cellular membrane or, in case of 

a number of plant rhabdoviruses, through the inner nuclear membrane. The viral 

envelopes are studded with glycoprotein spikes. Rhabdoviruses contain only one 

membrane glycoprotein, denoted G, which is involved in receptor-mediated cell 

attachment and membrane fusion. Parainfluenza viruses have two types of glycoproteins, 

a membrane-fusion protein (F) and an HN protein with both haemagglutinin and 

neuraminedase activity. Both glycoproteins are involved in receptor-binding and virus-

release. The membrane protein of morbilliviruses, corresponding to HN, is denoted H, 

which has only haemagglutinin activity, whereas the second membrane protein of the 

pneumoviruses, denoted G, has neither of the two activities. In case of paramyxoviruses, 

cleavage of the surface glycoproteins (F, HN, H or G) by host cell proteases is necessary 

to yield activated surface proteins, essential for infectivity (Sato et al., 1988). 

The viral nucleocapsids consist of one linear single stranded RNA molecule of 11-16 

kilobases (kb) long, tightly encapsidated with nucleocapsid protein (N or NP). In 

addition, minor amounts of a large (L) protein, representing the functional polymerase 

subunit, and a highly phosphorylated protein, denoted NS (vesiculoviruses), Ml 

(lyssaviruses) or P (paramyxoviruses), are associated with the internal nucleocapsids. 

Together, both L and NS (Ml or P) form the active transcriptase-complex (Emerson & 

Yu, 1975; Banerjee, 1987). 

The final structural component is the hydrophobic matrix protein (M or M2 for 

lyssaviruses), which bridges the internal nucleocapsid with the surface glycoprotein(s). 

It plays a crucial role in viral transcription, assembly of virus particles (Galinski et al.. 

1987; Vainionpaa et al.. 1989) and cytopathogenesis (Blondel et al.. 1990). 
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The genetical organization of the genomes have been determined by mapping the 

genes in transcription/ translation experiments, using UV-treated virus particles and by 

nucleotide sequence analysis. The genes in the genome of VS V are arranged in the order 

3' 1-N-NS-M-G-L 5', where 1 stands for the short non-coding leader sequence, which is 

the first and most abundant transcript. It is involved in the inhibition of the cellular RNA 

synthesis (the 'host shut off) (Eisemann Crone & Keene, 1989). Compared to the VSV 

genome, the RV genome contains one extra 'remnant' gene (rg) between the G and L-

genes (Tordo et a l , 1986). The only plant rhabdovirus from which sequence data are 

available (SYNV), contains one extra gene (sc4) between the NS and M genes, while the 

fish rhabdoviruses also have one additional gene (NV) between the G and L genes 

(Heaton et al.. 1989). The function of the proteins encoded by these extra genes has 

remained unresolved sofar. 

Paramyxoviruses have a similar genetic organization, but normally possess more 

genes. Pneumoviruses, for example, contain ten genes in their genomes. Strikingly, the 

membrane glycoprotein genes (G and F) of RSV are located on the genome in reversed 

order, compared to the other paramyxo- and rhabdoviruses. Moreover, pneumovirus 

RSV contains a second matrix protein of 22K and a third membrane associated protein 

(la) of 7.5K. Its function is unknown, just as that of other 'non-structural' proteins (lb, 

lc). 

The genes on the genomic RNA of filo-, paramyxo- and rhabdoviruses are separated 

by gene junction sequences. A gene junction region consists of a polyadenylation signal, 

some non-transcribed nucleotides and a transcription start signal (Table 2.2). 

Paramyxo- and rhabdoviral genes usually encode a single protein, with only one 

exception. The NS gene of VSV additionally encodes a small C protein from an 

overlapping reading frame. Another small 7K protein is translated from an internal start 

codon, located at the carboxy-terminal end of the NS ORF (Herman, 1986; Hudson et 

al., 1986). The corresponding P genes of paramyxoviruses also express multiple proteins. 

Usually, the P protein is encoded by normal templated mRNAs, whereas the mRNAs 

encoding other proteins contain non-templated G insertions in the middle of the gene 

(Fig.2.2). This mechanism, known as RNA editing (Thomas et a l . 1988; Vidal et a l . 
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1990; Ohgimoto et al., 1990), most likely occurs by a stuttering mechanism of the viral 

polymerase (Vidal et al.. 1990; Pelet et al.. 1991). In addition, smaller C proteins are 

translated from overlapping open reading frames in case of MV, SV, PIV1, PIV3 and 

CDV (Bellini et al.. 1985; Spriggs & Collins, 1986) (Fig. 2.2). 
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virus termination 
s ignals 

intergenic 
region 

initiation 
signals 

VSV . . . . U A U G ( A 7 ) CU AACAG.. .UC. 

RV UG(A7_8) C ( N ! . 4 2 2 ) A A C A . . . C U . . 

SNYV . . . . U A A G ( A 5 ) CC AACA 

SV . .A .UAAG(A 5 ) CUU AGGGU.AAAG. 

PIV3 .AA .UA. . (A 5 ) CUU AGGA..AAAG. 

MuV . . . . ( > (A 6 . 7 ) Nl.7 AJGJJ 
MV . . . . U U A U ( A g ) CUU AGGA.C 

RSV (A 4 ) (N 0 . 5 1 )U GGGGAAAU... 

Table 2.2: The intergenic regions and transcription signals ofrhabdo- and paramyxoviruses. 

2.2.3 Transcription and replication 

After entrance of a paramyxo- or rhabdovirus in a host cell, the viral polymerase 

most likely enters its encapsidated RNA template at the extreme 3' end and sequentially 

synthesizes the short leader (1) RNA (which remains unencapsidated) followed by the 

mRNAs, by terminating and restarting at each gene junction region (Vidal & Kolakofski, 

1989). At the first gene junction transcription terminates and since this junction sequence 

does not contain a polyadenylation signal, the 1 RNA remains unmodified. All mRNAs 

are immediately capped at the 5' end by the viral polymerase, while poly-A tails are 

added at the 3' ends by slippage of the polymerase at the U-rich polyadenylation signals 

(Horikami & Moyer, 1982; Sanchez et al., 1985). As a consequence of this sequential 

and polar mode of transcription, decreasing amounts of 3'-distal mRNAs are found in 

infected cells, which leads to relatively large amounts of N mRNA and low amounts of 

L mRNA (Fig.2.3). The amount of each mRNA is also regulated by the nucleotide 

sequences around the gene junctions. The RSV M2 and L genes are overlapping for 68 

nucleotides. Due to this overlap, the transcription termination site of the M2 gene is 

located downstream of the initiation site of the L gene. This causes premature 
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Fig. 2.2: The NS and P gene products ofrhabdo- and paramyxoviruses. The arrows correspond with the RNA 
editing sites. The arced regions are only expressed after introduction of one or more G nucleotides in the 
corresponding mRNA. 

termination of most L transcripts, hence a very low level expression of viral polymerase 

is observed in infected cells (Collins et al., 1986). The unusually long 5' non-translated 

regions of the mRNAs encoding the F protein of morbilliviruses (CDV and RV) are 

GC-rich, contain multiple AUG translational start codons and are capable of folding into 

extensive secondary structures. It has been demonstrated that they play a strong 

regulatory role in the synthesis of F protein, an important determinant of viral 

pathogenicity (Evans et al., 1990). 

At later stages of infection, when viral proteins are accumulating in infected cells, 
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Fig.2.3: Transcription and replication of rhabdo- and paramyxoviruses, examplified with vesicular stomatitis 
virus (VSV). The open bars represent ORFs, the arced bars correspond with proteins. vRNA, viral sense 
RNA; vcRNA, viral complementary sense RNA. 

the polymerase switches to the replicative mode and unmodified, genome-length 

antigenomes are synthesized, which serve as intermediates in RNA replication. Both viral 

RNA and viral complementary RNA are immediately encapsidated with nucleocapsid 

protein, in contrast to the subgenomic mRNAs. The origin of encapsidation is located 

on the leader at the extreme 5' end of the RNA. The transcription to replication switch 

is most likely affected by the amount of intracellular, unassembled nucleocapsid protein 

(Vidal & Kolakofski, 1989). Encapsidation of the nascent RNA strand with N protein 

makes that the polymerase overrides the termination signal of the first gene junction and 

consequently, replicative intermediates are synthesized. However, polycistronic 

transcripts, spanning contiguous genes, have been described several times, demonstrating 

that there are considerable amounts of readthrough mRNAs present in infected cells 

(Moscona & Galinski, 1990). In some cases, the 'minimal' model for transcription and 

replication needs further extension to completely explain all observed events. In MV-

infected cells for example, free leader sequences are almost completely absent (Chan et 
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al., 1989). Leader-containing subgenomic RNAs ( 1-N, 1-N-P and even 1-N-P-M ) are 

present, but always encapsidated with nucleocapsid protein (Castaneda & Wong, 1990). 

This demonstrates that at least MV uses alternative regulatory mechanisms for trans

cription and replication. 

The NS (Ml) or P proteins play a dual regulatory role in viral transcription and 

replication. Their interaction with L proteins and nucleocapsids enables binding of the 

polymerase to the encapsidated template RNA, while its specific binding to free N (NP) 

protein prohibits its precipitation or interaction with non-specific RNAs. The nature of 

the association between L and NS (Ml) or P has remained unknown sofar (Paul et al.. 

1988; Ryan & Portner, 1990). 

2.3 Orthomyxoviridae 

2.3.1 Taxonomy 

The family Orthomyxoviridae consists of the single genus influenzavirus, which is 

divided into three types of viruses (A, B and C), based on serologically distinct 

nucleocapsid (NP) and matrix (M) proteins. The viruses are further classified into a 

considerable number of antigenic subtypes, based on the immunological properties of 

their specific surface glycoproteins. Influenzaviruses are responsible for severe epidemic 

outbreaks in man, mammals and birds, due to the extraordinary high rate of mutation 

(antigenic drift) and recombination (antigenic shift) in their genomes. 

Besides these air-borne influenzaviruses, a group of tick-transmitted viruses (Thogoto 

and Dhori viruses) should also be included into this virus family (Clerx et al.. 1983). 

2.3.2 Virus structure and genome organization 

The morphology of the influenzaviruses resembles that of the paramyxoviruses. 

Besides, the surface glycoproteins exhibit similar biological properties. Influenzaviruses 
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A and B contain two different types of surface proteins, haemagglutinins (HA) and 

neuraminedases (ND), which are responsible for receptor binding, membrane fusion and 

release of the virions from the cellular membrane. This indicates that ortho- and 

paramyxoviruses are evolutionary related. These are the major reasons why these viruses 

were in the past classified as one, undivided virus family, the Myxoviridae. 

In addition to having segmented genomes, the Orthomyxoviridae differ from the 

Paramyxoviridae in a number of other properties. Influenzaviruses enter their host cells 

by receptor-mediated endocytosis and viral nucleocapsids are released in the cytoplasm 

by membrane-fusion, after acidification of the virus-containing endosomes. Cell-

attachment and membrane-fusion are both mediated by the HA protein, while the 

receptor-destroying, neuraminedase activity of the NA is responsible for the release of 

progeny virions from the cellular membrane. In contrast, paramyxoviruses have both 

haemagglutinin and neuraminedase activity joined in one HN glycoprotein. Paramyxo

viruses enter their host cells by fusion with cellular membranes, mediated by their fusion 

(F) proteins. Although the F proteins are structurally related to influenzavirus HA 

proteins, they are not involved in adsorption of virions to the host membranes. 

The most striking difference, however, is the localization in infected cells. When 

released in the cytoplasm, influenzavirus nucleocapsids directly migrate to the nucleus, 

where transcription, replication and assembly of progeny nucleocapsids take place. 

The genome of the Orthomyxoviridae consists of six (Dhori and Thogoto), seven 

(influenza C) or eight (influenza A and B) linear single-stranded RNA molecules. In 

virions these genomic RNAs occur in a circular conformation, due to base-pairing of the 

termini that form panhandles of approximately 16 nucleotides long (Hsu et al.. 1987). 

The morphology, genome structure and coding capacity of influenzaviruses have recently 

been reviewed extensively by Lamb (1989) and Krug et al. (1989) (Fig.2.1). 

The three largest RNA segments denoted one, two and three, encode the three 

polymerase subunits PB2, PB1 and PA, respectively. These P proteins are present as 

complexes in infected cells (Detjen et al.. 1987) and represent the equivalents of the L 

proteins of the other negative-strand viruses. 

RNA segment four encodes the haemagglutinin (HA), located on the viral envelope 
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as trimers. After translation and translocation on the endoplasmatic reticulum 

membrane, the HA precursor molecules are cleaved by a cellular trypsin-like protease 

to yield activated HAI- HA2 dimers. Influenza C viruses have only one single type of 

membrane glycoprotein, with both haemagglutinin and neuraminedase activity (Vlasak 

et a l , 1987), denoted HEF (standing for Haemagglutinin Esterase Fusion protein) 

(Herrler et al.. 1988). 

RNA segment five encodes the nucleocapsid protein (NP of 56K) and since this 

sequence contains a nuclear accumulation signal, NP accumulates in the nucleus, where 

viral nucleocapsids are assembled (Davey et al.. 1985). 

RNA segment six of the influenza A and B viruses encodes the viral neuraminedase 

(NA), which is not further processed and occurs as mushroom-shaped tetramers on the 

viral envelope. Influenza B viruses encode another protein (NB) from a second reading 

frame on the same mRNA. This small membrane-bound glycoprotein is found in large 

amounts on plasma membranes, but not on the viral envelopes. The role of this third 

surface protein in influenza B virus infections still awaits to be determined (Shaw et al.. 

1983). 

RNA segment seven (A and B) or six (C) encodes two proteins. In influenza A 

infected cells, the viral matrix protein (Ml) and a non-glycosylated M2 protein have 

been detected. Ml is expressed from a colinear mRNA molecule, whereas M2 is 

translated from a second mRNA, derived from the colinear transcript by splicing. 

Splicing occurs by the host nuclear splicing machinery. M2 is abundantly present on the 

cellular membrane, but only in very small amounts in virions. This protein might be 

involved in virion maturation (Zebedee & Lamb, 1988) (Fig.2.4). Strikingly, in case of 

influenza C viruses, the spliced mRNA encodes the structural M protein (Yamashita et 

al., 1988). In addition, influenza B viruses use an alternative strategy to express a second 

overlapping ORF. A coupled translational stop and start mechanism leads to the 

synthesis of M2 with a size of 12-15K (Fig.2.4). Influenza B M2 is a cytoplasmatic 

protein, with an unknown function (Horvath et al.. 1990). 

The smallest RNA segment of influenza A, B (eight) and C (seven) encodes two 

non-structural proteins NS1 (26K) and NS2 (14K). The latter protein is also expressed 
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Fig.2.4: Organization of RNA segments 7 and 8 of influenza A and B viruses, which code for the matrix 
proteins and non-structural proteins from unspliced (Ml, NS1) and spliced (M2, NS2) mRNAs. For 
explanation of symbols see Fig. 2.1 and Fig. 2.3. 

from a mRNA molecule derived by splicing (Fig.4). Both proteins accumulate in the 

nucleus of infected cells and are essential for virus multiplication but their functions have 

thusfar remained unknown. 

2.3.3 Transcription and replication 

After entrance of viral nucleocapsids in the cytoplasm and subsequent transport to 

the nucleus, primary transcription takes place by the polymerase subunits PA, PB1 and 

PB2 (Ishihama & Nagata, 1988). In contrast to the polymerases of the Mononegavirales, 

those of the segmented negative-strand viruses do not possess capping activity. In order 

to obtain 5'-capped mRNAs, transcription is initiated by capped primers, derived from 

nascent host cell mRNAs (a mechanism known as 'cap snatching'). Capped primers are 

generated by cleavage of a host mRNA behind an A residue 12-14 nucleotides 

downstream of the 5' cap, most likely by the PB2 subunit. Transcription is initiated by 
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addition of a G residue to the primer, complementary to the second C residue at the 3' 

end of the viral RNA strand (Krug et al.. 1989). Chain elongation is performed by the 

PB1 subunit and proceeds up to 17-22 nucleotides from the 5' end of the viral RNA, 

where a short stretch of U residues serve as polyadenylation signal (Braam et al.. 1983). 

Poly-A tails are added to the 3' ends of the mRNAs by slippage of the polymerase. 

Using purified influenza polymerase and in vitro RNA transcripts as templates (Parvin 

et al.. 1989), it has been demonstrated that approximately 25 3'-terminal nucleotides are 

essential for template recognition by the viral polymerase. The precise mechanism by 

which transcription is performed by the three different subunits is not completely 

understood thusfar. It is clear however, that splicing and cap-snatching makes the 

replication of influenzaviruses dependent of the host nuclear transcription machinery. 

The synthesized mRNAs are transported into the cytoplasm where translation takes 

place. Influenzavirus gene expression is regulated mainly at the transcriptonal level, but 

the mechanisms by which this occurs, are not completely elucidated yet (Shapiro et al.. 

1987). As with the non-segmented negative-strand viruses, the amount of free NP protein 

in the nucleus discriminates between transcription and replication (Beaton & Krug, 1986; 

Shapiro & Krug, 1988). Later during infection, when NP starts to accumulate in the 

nucleus, the viral polymerase-complex is switched to the replicative mode. Viral 

complementary RNA molecules are synthesized, which are exact copies of the viral 

RNAs. These antigenomic RNA molecules are immediately encapsidated with NP 

protein, which indicates that the origins of encapsidation are most likely located at the 

5' ends of the RNA molecules. Encapsidation by NP is essential for elongation of anti

genomic RNA synthesis but not for synthesis of cap endonuclease-primed mRNAs (Krug 

et al.. 1989). The capped primers at the 5' ends of the mRNAs most likely interfere with 

encapsidation of the nascent RNA strands by NP. 

The antigenomic RNAs remain in the nucleus and serve as intermediates in 

replication, while the nascent encapsidated viral RNA molecules are transported out of 

the nucleus as nucleocapsid structures to yield progeny virions (Shapiro et al.. 1987). 
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2.4 Arenaviridae 

2.4.1 Taxonomy 

The Arenaviridae represent a relatively small negative-strand virus family and are 

characterized by a bipartite genome. On the basis of serology, approximately 11 different 

viruses have been placed into 2 groups within this family; the 'new world' viruses (with 

Pichinde virus as the prototype virus) and the 'old world' species (with lymphocytic 

choriomeningitis virus as prototype). Arenaviruses usually have rodent hosts and are 

transmitted by aerosolized excretions to a variety of other mammals, including humans. 

The only exception is Tacaribe virus, a new world species, which has been isolated from 

fruit-eating bats (Johnson, 1985). 

2.4.2 Virus structure and genome organization 

Arenavirus particles are extremely pleomorphic, measuring 50-300 nm in diameter. 

The lipid envelopes are studded with surface projections, which consist of one or two 

different glycoproteins, denoted GP or respectively Gl, G2. The internal components 

include two different nucleocapsid structures with minor amounts of L protein (250K). 

In addition, a small zinc-binding protein, denoted Z or P„ of 10K has been detected 

in virus particles (Vezza et al.. 1978; Salvato & Shimomaye, 1989; Iapalucci et al., 1989b). 

L and Z (P„) most likely represent the viral polymerase components (Fig.2.1). The 

characteristic morphology may be explained by the fact that a number of host ribosomes, 

RNAs and enzymes are also enclosed in virus particles (Pedersen, 1979). 

Arenaviruses enter their host cells by direct fusion with the plasma membrane, while 

subsequent transcription and replication take place in the cytoplasm of infected cells. 

Progeny virus particles are released by budding from the plasma membrane (Johnson, 

1985). 

The viral genome consists of two species of linear single stranded RNA, denoted S 

(small) RNA (3.4 kb) and L (large) RNA (7.2 kb) (Fig.2.1 and 2.5). The genomic RNA 
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segments contain complementary ends, which most likely serve as recognition signals for 

the viral polymerase and which are involved in the formation of circular nucleocapsids 

(Palmer et al., 1977). Both RNAs have an ambisense gene arrangement. The S RNA 

encodes the major structural proteins, the membrane glycoprotein(s) from a viral sense 

gene and the nucleocapsid protein (NP of 62-72K) from a viral complementary sense 

gene (Auperin et al„ 1984; Romanowski et al., 1985) (Fig.2.5). For those members with 

two membrane glycoproteins, a GP precursor is glycosylated, transported to the 

dictyosomes and subsequently cleaved to yield Gl and G2. The cleavage mechanism is 

sofar unknown (Buchmeier et al„ 1978; Wright et al.. 1990). 

The L RNA encodes the minor structural proteins, the Z or P„ proteins from a viral 

sense gene and the L protein from a viral complementary sense gene (Salvato et al„ 

1989; Iapalucci et al„ 1989a; Salvato & Shimomaye, 1989) (Fig.2.5). 

All arenavirus genes are expressed by subgenomic mRNA species. The non-

encapsidated mRNAs possess cap structures and 1-5 additional nontemplated 

nucleotides at their 5' ends, that have been obtained by cap-snatching as found for 

influenzaviruses (Raju et al„ 1990). The intergenic regions are rich in G and C 

nucleotides. Mapping of the 3' ends of the mRNAs has revealed that 3'-terminal 

secondary structures of the transcripts most likely signal transcription termination, rather 

than particular sequences at the intercistronic regions. The mRNAs do not contain poly-

A tails at their 3' ends. It is tempting to speculate that the viral N protein, which tightly 

binds viral and viral complementary RNA, functions as antiterminator by preventing the 

folding of the RNA (Auperin et al.. 1984; Iapalucci et al.. 1991). 

2.4.3 Transcription and replication 

The intracellular molecular events during arenavirus infection, are thusfar poorly 

studied. Time course experiments in the presence or absence of inhibitors of protein 

synthesis have demonstrated that, ongoing viral protein synthesis is required for synthesis 

of the viral sense mRNAs (Franze-Fernandez et al, 1987; Fuller-Pace & Southern, 1988). 

This indicates that, in analogy to the orthomyxo-, paramyxo- and rhabdoviruses, NP is 
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Fig.2.5: Ambisense gene arrangement of arenavirus (LCMV) S and L RNA. The mature membrane 
glycoproteins are cleaved from a precursor protein (GPC). For explanation of symbols see Fig. 2.1 and Fig. 
23. 

involved in the switch from transcription to replication and (during replication) in anti-

termination at the intergenic regions by the viral polymerase. An ambisense coding 

strategy implies that all genes are expressed under control of distinct promoters, and 

furthermore, enables a time regulated gene expression. The NP and L proteins are the 

first viral proteins that accumulate in infected cells, while the 'late' viral sense mRNAs, 

encoding the membrane glycoprotein(s) and the Z or P,, proteins are synthesized after 

RNA replication (Franze-Fernandez et al., 1987). It is unclear, why both components of 

the presumed active polymerase are encoded in an ambisense gene arrangement 

(Fig.2.5). 
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2.5 Bunyaviridae 

2.5.1 Taxonomy 

The family Bunyaviridae is a very large and heterogeneous virus family. On the basis 

of serology and some limited biochemical analyses, more than 200 different species 

belonging to this virus family, have been separated into five genera, the bunyaviruses, 

phleboviruses, uukuviruses, hantaviruses and nairoviruses. The genera bunyavirus and 

phlebovirus consist of numerous serogroups, based on the antigenic properties of the 

more conserved internal nucleocapsid proteins (Bishop & Shope, 1979; Travasso da 

Rossa et al.. 1983). Each serogroup contains serotypes or species, which are distin

guished by the antigenic properties of the more variable surface glycoproteins (Bishop 

et al.. 1980). Since the uukuviruses and phleboviruses exhibit considerable sequence 

homologies, it has been proposed to classify both genera within one subfamily, the 

Phlebovirinae (Bishop, 1985). 

Except for hantaviruses, the Bunyaviridae are arthropod-borne and many warm

blooded vertebrates have been shown to be hosts. Some members can infect the central 

nervous system, others cause haemorrhagic fevers in susceptable hosts (Karabatsos, 

1985). Hantaviruses are not transmitted by arthropod vectors. They cause symptomless 

persistent infections in rodents, from which they are spread by aerosols and urine 

(Schmaljohn et al.. 1986). 

2.5.2 Virus structure and genome organization 

Bunyaviruses are spherically shaped and approximately 90-120 nm in diameter. The 

viral envelopes are covered with surface projections, which consist of two glycoproteins, 

denoted Gl and G2. Virus particles contain nucleocapsids, which consist of nucleocapsid 

protein (N), a few copies of polymerase (L) and genomic RNA (Bishop et al., 1980). 

Conform influenzaviruses and arenaviruses, bunyavirus nucleocapsids have a circular 

structure, due to base-pairing of the terminal RNA sequences (Petterson & Von 
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Bonsdorff, 1975; Raju & Kolakofski, 1989). Each nucleocapsid contains one copy of 

genomic RNA, denoted S (small), M (medium) or L (large) RNA. Considerable 

nucleotide sequence information is available of at least the type members of four genera. 

The data obtained demonstrate that members of the Bunyaviridae use rather different 

coding strategies (Fig.2.1). 

Members of the genus bunyavirus have a simple negative-stranded coding 

arrangement for all three genomic RNA species. The S RNA segment codes for the viral 

nucleocapsid protein (N, 26-27K) and a small non-structural protein (NSs, 10.4-11K) by 

a single viral complementary mRNA species. Both proteins are translated from 

overlapping reading frames (Bishop et al.. 1982; Akashi & Bishop, 1983; Cabradilla et 

al-, 1983; Akashi et al.. 1984; Gerbaud et al., 1987; Elliott & McGregor, 1989; Elliott, 

1989) (Fig.2.6). 
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Fig.2.6: Structure and expression of the S RNA segments of members of the Bunyaviridae. For explanation 
of symbols see Fig. 21 and Fig. 2.3. 
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The M RNA segment encodes a large primary translation product (162.6K) from a 

viral complementary mRNA, which is approximately 100 nucleotides shorter than 

genome-length (Eshita & Bishop, 1984; Lees et al., 1986; Grady et al., 1987; Pardigon 

et al., 1988). The primary translation product is co-translationally processed on 

endoplasmatic reticulum membranes to yield the mature viral glycoproteins (Gl of 108-

120K, G2 of 29-41K) and a non-structural protein, NSm of 15-18K. The order of the 

proteins translated from the large open reading frame is 5' G2-NSm-Gl 3' (Fazakerley 

et al., 1988) (Fig.2.7). 

The L RNA encodes the viral transcriptase (L, 259K) which is translated from a 

viral complementary mRNA species (Elliott, 1989). 

Hantaviruses have an identical, but even more simple coding arrangement. The S 

RNA only encodes the relatively large nucleocapsid protein (N, 49K) (Schmaljohn et al„ 

1986; Stohwasser et a l , 1990; Parrington & Yong Kang, 1990), while the M RNA codes 

for both membrane glycoproteins, in the order 5' G1-G2 3' (Schmaliohn et al„ 1987; Yoo 

& Kang, 1987; Giebel et a l . 1989) (Fig.2.6 and 2.7). The L RNA codes for the viral 

polymerase (L, 246K) (Schmaljohn, 1990). 

The nairovirus S RNA segment is of negative polarity and only encodes the 

nucleocapsid protein of 48-54K (Ward et al.. 1990). Sofar no sequence information is 

available for the other genomic RNAs of nairoviruses. The length of the M RNA 

segment (4.6 Kb), compared to the molecular weight of both membrane glycoproteins 

(Gl, 71-84K; G2,30-40K), predicts that nairovirus M RNA is simply of negative polarity 

(Clerx et al., 1981). Strikingly, the L RNA is extremely long, approximately 13 kb (Clerx 

& Bishop, 1981) and for this reason it would be very interesting to unravel the coding 

properties of this genomic RNA segment. 

Phleboviruses have an ambisense S RNA segment, an arrangement similar to that 

found in both RNAs of the Arenaviridae. The nucleocapsid protein (N, 25-27K) is 

encoded in viral complementary sense and a non-structural protein (NSs, 29-30K) in viral 

sense. Both proteins are expressed by subgenomic mRNA species, which terminate in 

a secondary structure located at the intergenic region of the RNA (Ihara et al., 1984; 

Marriott et al., 1989) (Fig.2.6). 
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The M RNA segment encodes the precursor protein for the two membrane 

glycoproteins and a non-structural protein (NSm, 14-30K) in viral complementary sense. 

The gene product order in the glycoprotein precursor is 5' NSm-G2-Gl 3', which is 

slightly different from that of members of the genus bunyavirus (Ihara et al., 1985; 

Collett et al.. 1985) (Fig.2.7). Rift Valley fever virus M RNA encodes an additional non

structural protein of 78K (Kakach et a l . 1988). The biogenesis of these four M RNA-

encoded proteins is remarkably complex and remains to be completely elucidated 

(Suzich et al., 1990). 

The structure and genetic organization of the S RNA segment of uukuvirus is similar 

to that of the S RNA of phleboviruses, including the ambisense gene arrangement 

(Simons et al„ 1990). Uukuvirus M RNA however does not encode a non-structural 

protein, but only the precursor protein for the envelop glycoproteins in order 5' G1-G2 

3' (Ronnholm & Petterson, 1987) (Fig.2.6 and 2.7). 

2.5.3 Transcription and replication 

Viral nucleocapsids are released in the cytoplasm of host cells after adsorption of 

virions and entrance by endocytosis (Vezza et al.. 1979). Transcription and replication 

occur in the cytoplasm of infected cells. Like influenza- and arenaviruses, transcription 

is primed by host derived, capped RNA sequences of 10-18 nucleotides in length (cap-

snatching) (Bishop et a l . 1983; Patterson & Kolakofski, 1984; Eshita et a l , 1985; Collett, 

1986; Boulov et al.. 1990). The synthesized mRNAs are approximately 60-120 nucleotides 

shorter than the corresponding viral RNAs. Like arenaviruses, bunyavirus mRNAs are 

not polyadenylated at their 3' ends. It is not known what signals transcription 

termination. The secondary structures located in the intergenic regions of the ambisense 

S RNA segments of phlebo- and uukuviruses may act as such (Emery & Bishop, 1987). 

Although relatively poorly studied, ongoing viral protein synthesis is essential for RNA 

replication (Ihara et a l . 1985). This implies that, like for other negative-strand viruses, 

the amount of intracellular free nucleocapsid protein regulates the switch from 

transcription to replication. It has been reported for La Crosse virus (genus bunyavirus), 
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Fig.2.7: Translation products of the M RNA segments of members of the Bunyaviridae. The processing sites 
within the primary translation products are indicated by arrowheads. 

that ongoing protein synthesis is also required to prevent premature termination of 

transcription. Loading of nascent mRNAs by host ribosomes seems to be necessary, due 

to the presence of certain, unknown cellular factors (Bellocq et al., 1987). This 

translational requirement however, is 'cell-type' dependent and, for example, does not 

occur during infection of mosquito cells (Raju et al.. 1989). 

The S and L RNA specific mRNAs are most likely translated in the cytoplasm, 

whereas the M RNA specific mRNAs are translated on membranes of the endoplasmatic 

reticulum. The M RNA-encoded primary gene products are co-translationally processed 

and translocated, to yield mature membrane glycoproteins (Ulmanen et al., 1981; Kakach 

et al. 1988). The mature glycoproteins are subsequently transported to dictyosomes and 
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virus particles are formed by budding of nucleocapsids into Golgi vesicles. Progeny virus 

particles accumulate in the dictyosomes, from where they are transported out of the cell 

(Murphy et al., 1968; Bishop & Shope, 1979). 

2.6 Negative-strand viruses: variations on a few themes 

The previous paragraphs have demonstrated that negative-strand viruses share many 

features. Molecular studies on their genome structure and coding properties have 

revealed that they form a relatively homogeneous supergroup of virus families. They 

share the following properties: 

Morphology and protein composition: 

Virus particles contain lipid envelopes covered with surface projections, which consist 

of clusters of one or two membrane proteins. These projections play an important role 

in cell attachment, maturation of the virus particles, their release from host cells and 

they are the main determinants of virus transmission and disease development (Smith 

& Palese, 1989; Shope et al., 1981). The genomes consist of single stranded RNA, 

complexed with protein to form stable nucleocapsids, which have either an amorphous 

or distinctly helical structure, when visualized by electron microscopy. Matrix proteins 

are Unking the internal nucleocapsids to the envelopes of the virus particles. Although 

Bunyaviridae and Arenaviridae lack distinct matrix proteins, one of the membrane glyco

proteins may have taken over this function. 

Assembly and transmission: 

Virus particles enter susceptible host cells by membrane-fusion, endocytosis or by 

mechanical damage (plant viruses). Nascent virus particles maturate by budding of 

nucleocapsids from the inner nuclear membrane, the endoplasmatic reticulum or directly 
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from the plasma membrane. Released particles are transmitted by either arthropod 

vectors, vertebrates or even by air, to new hosts. Plant viruses are not released from the 

host cells, but accumulate intracellularly and are acquired by their arthropod vectors 

during ingestion of food from plants. 

Genome structure: 

Negative-strand viruses can have either a monopartite or a segmented single 

stranded RNA genome, which is tigthly wrapped with nucleocapsid protein to stable 

nucleocapsids. In these structures the sugar-phosphate backbone of the RNA is 

protected against ribonuclease activity, while the base-pairing capacity remains 

unaffected. As far as analyzed, the genomic RNAs possess pyrophospate groups at their 

5' termini and free hydroxyl groups at their 3' ends. The sequences at the 3' and 5' ends 

are complementary and serve as recognition sites for the viral RNA polymerase. The 

segmented negative-strand viruses have circular nucleocapsids, due to base-pairing of the 

terminal nucleotides. The arrangement of the genes in the genomes among representative 

members shows to a lesser or greater extend resemblance to that of VSV, the prototype 

genome of the supergroup (Fig.2.1). 

Transcription and replication: 

The genomic RNA is transcribed into mRNAs by a viral polymerase or polymerase-

complex, brought along with the virus particle. The nascent mRNAs subsequently encode 

the proteins involved in virus multiplication. RNA replication is a process, clearly distinct 

from transcription and takes place at later stages in the course of infection. Both 

processes are regulated by the intracellular free N (NP) concentration, which is the 

central regulatory event in the multiplication cycle of negative-strand viruses. 

The common properties summarized above suggest that the negative-strand viruses 

are all evolutionary interrelated. Based on molecular and epidemiological data, it seems 
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likely that the ancestral virus was an arthropod virus with an unsegmented RNA genome. 

Indeed, a major part of the negative-strand viruses is able to replicate in their arthropod 

vectors. Since virus spread obviously follows the host feeding behaviour, virus evolution 

is narrowly associated with that of its host. This resulted in adaptation of viruses to all 

kinds of animals and plants. Some viruses even became independent of their vectors for 

their transmission (arena-, influenza- and paramyxoviruses, rabies virus and hantaan 

virus). 

The two driving forces for molecular evolution are mutation and recombination. The 

absence of proofreading activity of RNA-dependent RNA polymerases causes point 

mutation frequencies of 10'3 /10'5. This will lead to a rapid divergence of sequence 

information, when selective pressures alter (Holland et al., 1982; Reanny, 1982) and may 

be an explanation why the amino acid homologies between related viral proteins are 

often virtually absent, or only preserved in functional domains (Kamer & Argos, 1984; 

Argos, 1988; Hodgman, 1988). The other mechanism to obtain variability, is recombina

tion of genetic information. Several models have been developed to explain this 

phenomenon. A 'polymerase jumping' model, as outlined by several authors (Perrault, 

1981; Lazzarini et al.. 1981; Cascone et al.. 1990) is an elegant model to explain the 

mechanism of rearrangement of RNA sequences. This model, based on copy choice, 

where the viral polymerase changes from template during elongation at a certain 

frequency, may also explain the formation of defective interfering (DI) particles, 

segmented genomes or even ambisense RNAs. In addition, extension of RNA genomes 

by duplication and subsequent mutation or by introduction of 'host' RNA sequences, 

may also be explained by this model (For example, the spliced genes in influenzavirus 

genomes or the additional genes in some rhabdo- or paramyxovirus genomes, compared 

to VSV). Reassortment of RNA segments, as observed for influenza- and bunyaviruses 

(antigenic shift), hereby, is an extra mechanism leading to viral variation. 

Our knowledge on the molecular biology of negative-strand viruses has rapidly 

expanded over the last few years. Research on this group of viruses is rather intense, 

since many members cause severe diseases in animals, man and plants. In the near future 

many questions concerning their replication strategies will undoubtly be addressed. The 
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recent development of in vitro systems that yield infectious negative-strand virus particles 

from cloned cDNA, opens the way to detailed analysis of gene functions after site-

directed mutagenesis, tools previously applicable only to positive strand viruses and 

retroviruses (Mirakhur & Peluso, 1988; Luytjes et al., 1989; Ballart étal.. 1990). 
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CHAPTER 3 TERMINAL SEQUENCE ANALYSIS AND MOLECULAR 
CLONING OF THE GENOMIC RNA SEGMENTS OF 
TOMATO SPOTTED WILT VIRUS 

Peter de Haan, Lia Wagemakers, Dick Peters and Rob Goldbach 

SUMMARY 

Complementary DNA (cDNA) to the genomic RNA of tomato spotted wilt virus 

(TSWV) was synthesized and cloned in either pUC19 or lambda gtlO. Restriction 

endonuclease maps were constructed from cDNA clones specific for the S and the L 

RNA segment, extending 3.0 and 8.9 kbp respectively. The nucleotide sequences of the 

3' and 5' termini of both RNA molecules have been determined. The S and L RNA 

contain inverted repeats at their termini, probably involved in RNA replication and in 

the formation of circular nucleocapsids in virions. The terminal structures of the TSWV 

genome resemble in these aspects those of the Bunyaviridae. 

Parts of this Chapter have been published as: De Haan, P., Wagemakers, L., Peters, D. 

& Goldbach, R. (1989). Molecular cloning and terminal sequence determination of the 

S and M RNA of tomato spotted wilt virus. J. Gen Virol. 70: 3469-3473. 
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3.1 Introduction 

Tomato spotted wilt virus (TSWV) causes important plant diseases in tropical, 

subtropical and temperate regions. At least 400 species in 50 plant families, both mono-

and dicotyledons are susceptable to TSWV (Matthews, 1982; D. Peters, personal 

communication). The virus is exclusively transmitted by thrips (Thvsanoptera') 

(Sakimura,1962). 

The virion of TSWV is a spherical membrane-bound particle 80-110 nm in diameter, 

covered with surface projections (Van Kammen et al., 1966). The core consists of three 

different ribonucleocapsid structures each containing a single species of genomic RNA. 

Virus particles contain three distinct structural proteins: an internal nucleocapsid protein 

(N) of Mr 27,000 (27K) and two membrane glycoproteins of 78K (Gl) and 58K (G2). In 

addition minor amounts of a large protein (L) of approximately 200K have been detected 

in virus particles (Mohamed et al.. 1973; Mohamed, 1981; Tas et al.. 1977). 

The genome consists of three linear single stranded RNA molecules of approximately 

3000 nucleotides (S RNA), 5000 nucleotides (M RNA) and 8000 nucleotides (L RNA). 

Analysis of transmission-defective strains has provided evidence that the M RNA 

encodes the G l membrane glycoprotein (Verkleij & Peters, 1983). The coding properties 

of the other RNA molecules and the polarity of the genomic RNA remain unknown, 

although preliminary in vitro translation studies provided indications that the genome of 

TSWV is of positive polarity (Verkleij et a l . 1982). 

Since TSWV differs in morphology and genome structure from any other known 

plant virus, it has been classified as the single representative of a distinct group (TSWV 

group) (Ie, 1970; Matthews, 1982). However, TSWV has a number of properties in 

common with the Bunyaviridae, a large family of arthropod-associated viruses (Bishop 

et al., 1980; Milne & Francki, 1984). Viruses from this family have enveloped particles 

and tripartite single-stranded RNA genomes of negative polarity. Sofar, insufficient 

molecular information is available to determine whether TSWV should be regarded as 

a member of the Bunyaviridae. 

To gain more insight into the polarity, structure and coding capacity of the different 
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RNA segments of TSWV and to study its possible relationship to the Bunyaviridae, 

nucleotide sequence data are required. As a first step in the unravelling of the molecular 

biological properties of TSWV, we here describe the determination of the terminal 

nucleotide sequences of the genomic RNA molecules. In addition, the cloning and 

physical mapping of complementary DNA (cDNA) to the majority of the sequences from 

the S and L RNA of TSWV is described. 

3.2 Methods 

3.2.1 Virus and plants 

TSWV CNPH1, a Brasilian isolate from tomato, was maintained in tomato by grafti

ng or in Nicotiana rustica var. America by mechanical passage. Virus was isolated from 

mechanically inoculated N. rustica leaves as described by Tas et al. (1977). Nucleocap-

sids were purified from infected leaves according to Verkleij & Peters (1983). 

3.2.2 RNA purification and terminal sequence determination 

RNA was recovered from purified virions, or from purified nucleocapsids by adding 

sodium dodecyl sulfate (SDS) to 1 % (w/v) and phenol extraction followed by ethanol 

precipitation (Verkleij & Peters, 1983). 

In order to determine the nucleotide sequence at the 3' ends, the TSWV RNAs were 

labelled using RNA ligase and (5'-32P)pCp (England & Uhlenbeck, 1978). The 5' ends 

were labelled using (Y-32P)ATP and T4 polynucleotide kinase after treatment with 

tobacco acid pyrophosphatase (Promega) and/or calf intestinal alkaline phosphatase 

(Pharmacia), to remove possible caps or (pyro) phosphate groups at the 5' end. In 

order to detect potential genome-linked proteins, extracted RNA was also iodinated with 
,25I according to Markwell (1982). 

End-labelled RNA molecules were resolved by electrophoresis in 'Low gelling 
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3.3.2 Cloning and physical mapping of TSWV cDNA 

RNA was isolated from virus particles, purified from infected N. rustica leaves 

according to Tas et al. (1977). Generally, 100 g of leaf material yielded approximately 

0.5 mg of virus, from which 1 - 5 |xg of RNA could be extracted. The intactness of the 

isolated RNA molecules was tested by agarose gel electrophoresis (Fig.3.2). From a large 

number of gel patterns apparent sizes of 3000 nucleotides (S RNA), 5000 nucleotides (M 

RNA) and 8000 nucleotides (L RNA) could be estimated for the three genomic TSWV 

RNA molecules (data not shown). These values are in rather good agreement with 

previous calculations (Van den Hurk et al..l977: Mohamed, 1981; Verkleij & Peters, 

1983). Two different approaches have been followed for the synthesis and cloning of 

cDNA. A first series of cDNA clones has been obtained by random priming using 

fragmented single stranded calf thymus DNA, followed by blunt-end cloning in the Smal 

site of plasmid pUC19. 

A second series has been created by priming with random primers and synthetic 

oligonucleotides complementary to the 3' ends of the genomic RNAs and subsequent 

cloning in phage lambda gtlO, using EcoRl linkers. To select cDNA derived from S, M 

or L RNA sequences, clones from both plasmid and phage lambda cDNA libraries were 

further characterized by Northern blot analysis (Fig.3.2). In order to select sets of over

lapping cDNA clones representing the complete S and L RNA sequences, plasmid and 

phage 'walking' was performed by Southern blot analysis, using 32P-labelled cDNA 

inserts as probes. In this way, a restriction map of approximately 3.0 kilobasepairs (kbp.) 

could be constructed for TSWV S RNA (Fig.3.3). To avoid any misinterpretations, all 

regions in the physical map were covered by at least 2 independent cDNA clones. 
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Fig.3.1: Comparison of the 3 '-terminal sequences of the genomic RNA molecules of TSWV to those of 

members of the Arenaviridae, Bunyaviridae and Orthomyxoviridae. Nucleotides conserved between TSWV 

and Thogoto virus are underlined. 
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Fig.3.2: ElectTophoretic analysis of TSWV genomic RNA (A) and selection ofcDNA clones. After electro
phoresis under denaturating conditions (Bailey & Davidson, 1976) TSWV RNA was transferred to nitrocel
lulose and hybridized to 3ZP-labelled inserts ofcDNA clones: 662, 201 and 520 as denoted by the numbers 
(B). 

The Northern blot experiments furthermore revealed that the previously reported 

restriction map of TSWV M RNA (De Haan étal., 1989), actually represents that of a 

defective L RNA molecule of 4.7 kb in length. This defective RNA molecule is 

abundantly present in the TSWV line used in this study and almost completely masks the 

authentic M RNA segment (5.0 kb). This TSWV line has been maintained by 

mechanical passage of the virus for many years (see Chapter 5). To obtain cDNA clones 

to the full-length L RNA sequence, the original cDNA libraries were screened again, 

and additional cDNA clones to TSWV L RNA could be aligned, yielding a restriction 
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Fig.3.3: Restriction endonuclease maps of aligned cDNA clones to the L RNA ((A) and the S RNA (B) of 
TSWV. The arrows correspond with synthetic oligonucleotides used for primer extension sequencing. The 
numbers refer to the cDNA clones. Restriction enzymes are abbreviated as follows: Be, Bell; Bg, Belli; E, 
EcoRI; H, Hindlll; Hp, Hpal; K, Kpnl; P, Pstl; S, Sphl; Ss, SstI; X, Xbal. 

map covering approximately 8,900 nucleotides (Fig.3.3). Since clones 280, 803, 806 and 

808 hybridized only to the full-length L RNA and not to the defective L RNA molecule 

(results not shown), it can be assumed that the latter molecule is the result of an internal 

deletion in TSWV L RNA (Resende et_aL, 1991). 

The lengths of the two physical maps are in rather good agreement with the 

estimated sizes of the corresponding RNA molecules, which indicates that the physical 

maps almost completely cover both genomic RNA sequences. The polarity of both 

restriction maps in relation to the viral RNAs was determined by sequence analysis of 

the termini of both S and L RNA as described in the next paragraph. 
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3.3.3 Determination of the 5'-terminal sequence of the S and L RNA 

To determine whether the the genomic RNA molecules possess special structures 

at their 5' ends, the RNAs were subjected to various labelling protocols. No genome-

linked protein could be detected after iodination with 125I, The 5' termini could only be 

labelled with ̂ P by T4 polynucleotide kinase after treatment of the RNAs with alkaline 

phosphatase (15000 c.p.m./(jLg RNA), or even better after successive treatment with acid 

pyrophosphatase and alkaline phosphatase (35000 c.p.m./jLgRNA). These results suggest 

the presence of pyrophosphate groups: (p)ppN, at the 5' termini. Direct RNA sequence 

determination experiments revealed that all three RNA segments start with 5' AGAGC. 

3' (results not shown). 

In order to further analyse the nucleotide sequences at the 5' ends of both S and L 

RNA and to determine the polarity of the restriction maps shown in Fig.3.3, synthetic 

oligonucleotides corresponding to the ultimate 3' ends of the cloned regions (S3 and L2) 

were synthesized and used for direct sequencing on the RNA. In this way 'run off 

transcripts were obtained at the 5' termini, indicating that the oligonucleotides used, 

were of viral complementary sense. The sequence data of the 5'-terminal regions of the 

genomic S and L RNA molecules are included in Fig.3.4. Both S and L RNA have 

complementary ends, S RNA over a length of 65-70 nucleotides and L RNA over a 

length of 62-66 nucleotides. 

3.4 Discussion 

Two sets of cDNA clones have been aligned, covering the S and L RNA sequence 

for more than 95 % (Fig.3.3). The terminal sequences of both RNA molecules were 

determined using direct 'enzymatic' RNA sequencing techniques and primer extension 

on RNA with reverse transcriptase, or by sequence analysis of a cDNA clone containing 

the complete genetic information of the 3' region of the corresponding RNA segment. 

The polarity of the S and L RNA specific cDNA clones could be verified by primer 

extension on RNA. 
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Fig.3.4: The complementary sequences at the tetmini of 
the S (left) and L (tight) RNA of TSWV. The numbers 
represent the position to the S end of the RNA, derived 
from the complete sequences as described in the Chap-
tets 4 and 5. 

From these preliminary sequence data it can 

be concluded that both TSWV RNA mole-

u-A cules have complementary ends of 65-70 (S 

RNA) and 62-66 (L RNA) nucleotides in 

u'-k length. These terminal sequences may con-
G-C 

»;". tain important regulatory signals, such as the 
u 

; c recognition sites for the viral polymerase 

jj";jj ' ° (Strauss & Strauss, 1983,1988). Since nucleo-

capsids of TSWV are circular (Peters et al.. 

ûj* 1991), whereas the purified viral RNA mole

cules are linear, the complementary ends may 

AU be involved in maintaining a 'pseudo circular' 

state of the nucleocapsids, as has been re

ported for bunyaviruses (Petterson & Von 

,":*„ Bonsdorf, 1975; Obijeski et al.. 1976; Pardi-

gon et al.. 1982; Raju & Kolakofski, 1989). 

Both the tripartition of the genome and the 
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structure of the termini, support the hypothesis that TSWV is related to the Bunyavirid-

ae. An alignment of the 3'-terminal sequences of the RNAs from segmented negative-

strand viruses is shown in Fig.3.1. On the basis of terminal nucleotide sequence 

homology, the animal bunyaviruses can be clustered into three groups, the nairoviruses 

(Clerx-Van Haaster et al.. 1982), the uuku-/phleboviruses (Ihara et al.. 1984; Ihara et al.. 

1985; Ronnholm & Petterson, 1987; Simons et al.. 1990) and the hanta-/bunyaviruses 

(Schmaljohn et al.. 1986; Schmaljohn et al.. 1987; Clerx-Van Haaster et al.. 1982). 

Members of the Arenaviridae and Orthomyxoviridae have their own distinct terminal 

sequences (Fig.3.3. and Desselberger et al.. 1980; Auperin et al.. 1982). The terminal 

sequences of TSWV RNA differ from those of all members of the Bunyaviridae, which 

might indicate that TSWV represents a distinct genus within this virus family. Strikingly, 

the termini of the TSWV RNAs show considerable sequence homology to that of RNA 

segment 3 of Thogoto virus and segment 2 of Dhori virus, members of the Orthomyxo

viridae, which might reflect ancestral relationships between these viruses. Further 

sequence analysis should answer the question of the polarity and coding capacity of the 

TSWV genome and will allow proper classification of this virus. In addition, the cDNA 

clones characterized in this paper may be utilized for sensitive and unequivocal detection 

of TSWV (Chapter 6). 
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CHAPTER 4 THE S RNA SEGMENT OF TOMATO SPOTTED WILT 
VIRUS HAS AN AMBISENSE CHARACTER 

Peter de Haan, Lia Wagemakers, Dick Peters and Rob Goldbach 

SUMMARY 

The complete nucleotide sequence of the S RNA of tomato spotted wilt virus 

(TSWV) has been determined. The RNA is 2916 nucleotides long and has an ambisense 

coding strategy. The sequence contains two open reading frames (ORFs), one in the 

viral sense which encodes a protein with a predicted Mr of 52,400 (52.4K) and one in the 

viral complementary sense which encodes the viral nucleocapsid protein of 28.8K. Both 

proteins are expressed by translation of two subgenomic RNA species that possibly 

terminate at a long stable hairpin structure, located at the intergenic region. The 

structure of this RNA segment resembles that of the arthropod-borne phlebo- and 

uukuviruses (family Bunyaviridae). The absence of significant sequence homology 

between TSWV and bunyaviruses infecting animals suggests that TSWV should be 

considered as a representative of a new genus within the Bunyaviridae. 

A slightly modified version of this Chapter has been published as: De Haan, P., Wage-

makers, L., Peters, D. & Goldbach, R. (1990). The S RNA segment of tomato spotted 

wilt virus has an ambisense character. J. Gen. Virol. 71: 1001-1007. 
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4.1 Introduction 

Among the plant viruses, tomato spotted wilt virus (TSWV) is unique in its particle 

morphology and genome structure. It has therefore been classified as the only 

representative of a distinct group, the tomato spotted wilt virus group (Ie, 1970; 

Matthews, 1982). The virus has a broad host range and causes large yield losses in many 

economically important crops. It is transmitted exclusively by thrips species in a 

persistent manner (Sakimura, 1962; Paliwal, 1974). 

TSWV virions are spherical enveloped particles, about 80-110 nm in diameter, that 

contain four different proteins: an internal nucleocapsid protein (N) of Mr 27,000 (27K), 

two membrane glycoproteins (Gl and G2) of 78K and 58K respectively, and a large 

protein (L) of approximately 200K (Mohamed et al., 1973; Tas étal., 1977). The genome 

consists of three linear ssRNA molecules approximately 3000 (S RNA), 5000 (M RNA) 

and 8000 (L RNA) nucleotides long, each complexed with N proteins to form circular 

nucleocapsids (Chapters 1, 3 and Van den Hurk et al.. 1977; Mohamed, 1981). Based 

on this and other properties it has been suggested that TSWV should be considered as 

a member of the arthropod-borne Bunyaviridae (Milne & Francki, 1984; De Haan et al.. 

1989). Recently, the S and L RNA segments of TSWV have been cloned and their 

terminal sequences determined (Chapter 3). This analysis has revealed that, like RNAs 

of the Bunyaviridae and other negative-stranded RNA viruses, TSWV RNAs have 

complementary ends. 

To gain more insight into the molecular properties of TSWV and to study its possible 

relationship to the Bunyaviridae in more detail, information on the nucleotide sequence 

of the TSWV genome is required. In this paper we report the complete nucleotide 

sequence of the TSWV S RNA. The data show that this RNA molecule has an 

ambisense gene arrangement with a putative 'non-structural' protein gene located on the 

viral RNA strand and the nucleocapsid protein gene on the viral complementary RNA 

strand. Evidence will be provided that both genes are expressed by the synthesis of two 

subgenomic mRNAs. 
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4.2 Methods 

4.2.1 Cloning of cDNA and sequence determination 

Complementary DNA to the S RNA segment of TSWV isolate CPNH1 was 

synthesized and cloned as described in the previous Chapter. DNA sequencing was 

performed by the dideoxy chain termination method (Sanger et al.. 1977), after 

subcloning of restriction fragments in M13 mpl8 or mpl9 vectors (Yanisch-Perron et al.. 

1985). The RNA sequences of the 3' and 5' ends of the TSWV S RNA were determined 

as described before (Chapter 3). Sequence data were stored, edited and analysed using 

the Staden programs (Staden, 1982) 

4.2.2 RNA isolation and Northern blot analysis 

Total RNA from healthy and TSWV-infected Nicotiana rustica var. America plants 

was isolated according to De Vries et al. (1982). RNAs in samples of five |i.g were 

separated by electrophoresis in 1 % agarose gels, under denaturating conditions (Bailey 

& Davidson, 1976), transferred to nitrocellulose and hybridized to 32P-labelled DNA 

probes by standard methods (Maniatis et_al.,1982). 

4.2.3 In vitro transcription and cell free translation 

For in vitro expression purposes, viral cDNA was cloned in the transcription vector 

Bluescript SK+ (Stratagene). Two |i,g of plasmid DNA was linearized with HindlH. 

downstream of the cDNA insert and messenger sense 'run-off transcripts were 

synthesized using T7 RNA polymerase according to the manufacturer's conditions. After 

incubation for 2 hr at 40 °C, the RNA was selectively precipitated in 2 M-lithium 

chloride and 1 p-g of the transcript was incubated in 25 u,l of rabbit reticulocyte lysate 

(Boehringer, Mannheim) containing 50 ^Ci (35S)methionine according to protocols 

provided by the manufacturer. Translation products were either analysed directly by 
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H S 5 S V Y E S I I Q T R A S V W 
AGAeCAAUUGUGUCAGMUUUUGUUCAUMUCAAACCUCACUUAGAAMUCACMUAC^^ 

70 140 

G S T A S G K A V V D S Y W I H E L G Ï G S q L V Q T q i Y S D S R S K V V L W l Y C K V G I 
GAUCAACUGCAUCUGGUAAAGCUGUUGUAGAUIOUACUGGAULOUIMCUUGGUACUG&UUCUC^ 

Z10 280 

F P V K K K R F L S Q H V Y I P I F D D I D F S I N I Ü H S V I A L S V C S N T V N A N G V K 
UUCCCUGWMfiAAGAAGAGAUUlKUUUCtKAGCAUSWUAUAUCCCWUUUUUGAUG^^ 

350 420 

H Q G H L K V L S P A Q L H S I E S I H H R S O I T O R F Q L Q E K O I I P N D K Y I E A A 
ACAUCAAGSWAUUlffiAAGGUUUWGUCUCCUGCCCAGCWCACUCUAUUGAAUCUAUaUGAA«^ 

490 560 

H K 6 S L S C V K E H T Y K I E H C Y H Q A L G K V K V L S P N R N V H E H L Y S F K P H F N 
ACAAAGGCUCUUlKlKUWUGtKAAAGAGCAUACCUAl̂ GAUCGAGAUGUGCUAUMUCAG6CUUUAGGCAAAGUGAAUGUUCUAUCUCCUMCAGAAAUGUCCAUGUU 

630 700 

O V E S N N R T V N S L A V K S L L H S A E N N I H P N S O A S T O S H F K L S L W L H V P K 
CAAGUUGAMSCAMÀÀCAGMCUGUAAAinrcUCUUGCAGUGAA^ 

770 840 

V L K Q V S I Q K L F K V A G D E T N K T F Y I S 1 A C I P N H N S V E T A L H I T V I C K 
GGUUUUGAAGCAGGUUUCCAUUCAGAMUUGUUCAAGGUUGCAG6AGAUGAAACAAACAAMCAUUUUAUUUAUCUAUUGCCUGCAUUCCAMCCAUAACAGUGUUGAGACAGCUUUAAACAUUACUGUUAUUUGCMGC 

910 960 

H Q I P I R K C K A P F E L S H M F S D L K E P Y H I V H D P S Y P K G 5 V P H I W I E T H T 
AUCA6CIKCCAAUUC6CAAAUGCAAAGCUCCUUM(MUUAUCAAUGAUGUUUUCUGAUUUA^ 

1050 1120 

S L H K F F A T N L Q E D Y I I Y T L N H L E I T P G K L D L G E R T L H Y S E D A Y K R K Y 
ITCUUIKCACAAGUIOUUGCMCUAACUUGCMGAAGAUGUAAUCAUCUACACUUUGAACAAC^ 

1190 1260 

F I S K T L E C L P S K T Q T H S Y L D S I Q I P S W K I O F A R G E I K I S P Q S I S V A 
UUUCCUUUCAAAAACACUUGAAUGUCUUCCAUCUAACACACAAACUAUGUCUUACUUAGACAGCAUCCAAAUCCCUUCAUGGAAGAUAGACUUUGCCAGAGGAGAMUUAAAAUUUCUCCACAAUCUAUUUCAGUUGCAA 

1330 1400 

K S L L K L O L S G I K K K E S K V X E A Y A S G S K * 
AAIKUUUGmiAMGCUUGAUUUAAGCGGGAlX^AAAAGAAAGAAWUAAGGUUMGGAAGCGUAUGCUUCAGGAUCAMAUMUCUUGCUUUGUCCAGCUUUUUCUM 

1470 1540 

AAUUAUUUCUCUGUUUGIK*IKUCUUUCAAAUUCCUCCUGIKUAGUAGAMC 
1610 1680 

AAMCCAAAMGACCCGAAAGGGACCAAUUUGGCCAAAUUUGGGUUUUGUUüUUGUUUUUUGÜUUtJUUGUUUUUOAUUUUUUAUÜUUAllUUUUAUUÜUAUUUUAUUUUUAUUUUAÜUUUÜAUUtJUAUUUAUUUUUUGUUU 
1750 1B20 

UCGUUGUUUW«UWUlUinMUUAUUUAUlMGCA(^ACACAGAM6CAAACUUUAA^ 
1890 1960 

UUUUAUAAUUUMCUUACAGCUGCUUUCAAGCAAGUUCUGCGAGUUUUGCCUGCUUUUUAACCCCGAACAUUUCAUAGAACUUGUUAAGAGUUUCACUGUAAUGUUCCAUAGCAACACUCCCUUUAGCAUUAGGAUUGCU 
2030 2100 

» A L E A L K A Q K K V G F M E Y F K N I T E S Y H E H A V S G K A N P H S 

GGAGCUMGUAUAGCAGCAUACUCUUUCCCCUUCUUCACCUGAUCUUCAUUCAUUUCAMUGCUUUGCUUUUCAGCACAGUGCAAACUUUUCCUAAGGCUUCCUUGGUGUCAUACUUCUUUGGGUCGAUCCCGAGGUCCU 
2170 2240 

S S L I A A Y E K G K K V Q O E K M E F A K S K I V T C V K G L A E K T O Y K K P O I G L D K 

UGUAÜUUUGCAUCCUGAUAUAUAGCCAA6ACAACACUGAUCAUCUCAAAGCUAUCAACUGAAGCAAUAAGAGGUMGCUACCUCCCAGCAUUAUGGCAAGUCUCACAGACUUUGCAUCAUC 
2310 2380 

Y K A O O Y I A L V V S I M E F S O V S A I L P L S G G L H I A L R V S K A O D L P L G Y A 

WMUCAAAGGAW6GGMGCMUCUUAGAUU%AUAGl»UUGAGAUtOCAGAAUUCCCAGUUUC^^ 
2450 2520 

Q l t - P H S A I K S K I T N L H E S N G T E E V L R V R I L S Q L R R F T M D T G G I R D S T 

UUUCUUUAUGGUAAUUUUACCAAMGUAAMUCGCUUUGCUUAAUMCCUUCA^ 
2590 2660 

K K I T I K G F T F D S Q K I V K M I S Q R N K L F T L C S I V S M K K I Q D I N E L C F T K 

UGAAGUU6AAUGCUACCAGAUIKUWUCUUCCIM:AAACUCAA6GUCUUUGCCUUGUGUCM^ 
2730 2BOO 

F H F A V I N Q O E E F E L D K G Q T L L A V I S É K T L K V K S M 

UAACUCAAGGtlGCGAAAGUGCAACUCUGUAUCCCGCAGUCGUUUCUUASGUUCUUAAUGUGAUGAUUUGUAAGACUGAGUGUUAAGGUAUGAACACAAAAUUGACACGAUUGCUCU 
2870 

Fig.4.1: The complete nucleotide sequence of TSWV S RNA (numbered from the S end) and the predicted 
gene products. The deduced amino acid sequence of the protein encoded by the viral RNA is written above 
the RNA sequence. The sequence of the protein encoded by the viral complementary strand is written below 
the RNA sequence. Potential Ngfycosylation sites are underlined. The asterisks (*) indicate termination 
codons. 
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SDS-PAGE, or immunoprecipitated using polyclonal antibodies against purified TSWV 

nucleocapsids, prior to electrophoresis, as described by Bernstein & Hruska (1981). 

4.3 Results 

4.3.1 Cloning and sequencing of the TSWV S RNA 

The nucleotide sequences of 30 nucleotides at the 3' end of the S RNA and five 

nucleotides at the 5' end, were determined after end-labelling of the RNA, followed by 

partial degradation with base-specific ribonucleases. From the deduced sequence, a 

synthetic oligonucleotide was synthesized to be complementary to the 20 3'-terminal 

nucleotides (SI). This oligonucleotide was used for synthesis and cloning of cDNA, and 

for determination of the nucleotide sequence of approximately 200 nucleotides at the 3' 

end of the RNA, by primer extension (Chapter 3). Based on the restriction map of S 

RNA-specific cDNAs, the clones 514, 520, 608 and 614 were selected for further 

sequence analysis (Fig.3.3). The sequence of each DNA restriction fragment was 

determined from both strands. Finally, a second synthetic oligonucleotide (S3) was 

synthesized, corresponding to the most 5'-proximal sequence of cDNA clone 520 and the 

5'-terminal sequence of the S RNA (5' AGAGCAA.. 3') was verified by primer extension 

(Chapter 3). 

The complete sequence of the TSWV S RNA is 2916 nucleotides long (Fig.4.1). This 

is approximately 100 to 500 nucleotides shorter than previously reported values, which 

were based on electrophoretic mobilities (Verkleij & Peters, 1983). Its base composition 

is 31.6% A, 32.9% U, 19.3% C and 16% G. The 3'- and 5'-terminal sequences are 

complementary over a stretch of 65 to 70 nucleotides and can be folded into a stable 

panhandle structure, with a free energy of ÛG = -254.1 kJ/mol (Fig.3.4). An internal 

inverted complementary sequence of U-rich stretches followed by A-rich stretches, is 

located between position 1582 and 1834 (numbered from the 5'-end of the viral RNA). 

This sequence can be folded into a stable hairpin structure with a ÛG = -452.7 kJ/mol 

(Fig.4.3). 
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Fig.4.2: Distribution of translation initiation (short vertical bars) and termination (long vertical bars) codons 
in the three possible reading frames of the viral (1, 2 and 3) and viral complementary (• 1, -2 and -3) S RNA 
strands. 

4.3.2 Predicted gene products of TSWV S RNA 

Analysis of the six different reading frames of the viral and viral complementary 

RNA strand revealed two long open reading frames (ORFs), one on each strand. No 

additional ORFs of significant length (i.e. ORFs encoding proteins larger than 5K) 

could be detected in any of the other reading frames (Fig.4.2). The ORF on the viral 

RNA strand starts with an AUG codon at position 88 and terminates at an UAA 

stopcodon at position 1481 (numbered from the 5' end of the viral strand), which 

corresponds to a protein of 465 amino acids and an Mr of 52.4K. The amino acid 

sequence of this putative protein does not contain hydrophobic regions that might funct

ion as signal peptides or transmembrane domains, according to the hydropathy algo

rithms of Hopp & Woods (1981) and Kyte & Doolittle (1982) (data not shown). 

Although the sequence contains five potential N-glycosylation sites, it is not known 

whether these sites are indeed glycosylated in vivo. No significant homology could be 

detected to any other protein in the EMBL protein and nucleotide sequence data base. 
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The O R F on the viral complementary R N A s t rand u 
A U 

A U 

c-o^ s tarts with an A U G codon at position 2763 and termi-
G-C 
G-C 

G A nates at an U G A s topcodon at position 1989 (num-
L A 

A-U* b e red from the 5 ' end of the viral s t rand) ; it encodes 

ÜiJ} a protein of 259 amino acids with an M r of 28.8K. The 
C-G 

£8 amino acid sequence also does not contain any 
A-U 

; : strongly hydrophobic regions and there a re no possi-

c-c* J;iJ b le N-glycosylation sites present . The length of this 
*"" A-U 

£u O R F suggests that it encodes the nucleocapsid p ro-
• . * - u 

'c-o „ A u „ tein. In o rder to verify this, a c D N A fragment con-
*:" Ä-* 

£:" A ;J taining this O R F was expressed in vitro. T o this end 

u«-°, ï:î a 387 bp EcoRI c D N A fragment of clone 614 was 

£Ü £jj fused to the 494 bp Hindlll/EcoRI cDNA fragment 
J;jj U-A 1800 
A;g *:S of clone 520 and subsequently c loned in Bluescript 

» *A.„° S K + (pTSWV-vcORF) . Run-off t ranscripts were 
A-U 

u-° synthesized and t ranslated in a rabbit reticulocyte 
A

:« lysate. (Fig.4.4). On e discrete t ranslation p roduc t was 

A-U 
A-U 
A-U 
A-U 
A-U 

G 

C-G 
A-U 
A-U 

A-U 
A-U 
A-U 
A-U 

A-U 
A-U 

Â-5 1600 *;£ obtained (Fig.4.4, lane 4) , which comigrated with U-A 
A-U 
A-U 
A-U 
G-U 

A-U 
A-U 
j;» purified viral nucleocapsid prote in (Fig.4.4, lane 8) , 

U A " c 

A-u A:„ and moreover, which reacted with an ant iserum raised A-U 
A-U 
A-U 
A-U 

C-G 

A-U 
A-U 
A-U 
A-U 
U-A 
A-U 

U-G 
C-U 
A-U 
U-A 

C U 

*|« against purified nucleocapsids (Fig.4.4, lane 7). 
A-U 

U-A" !j:[j Translation products of unrelated plant virus RNAs 

(tobacco mosaic virus (TMV) and cowpea chlorotic 

mottle virus (CCMV)) were not precipitated by this 

antiserum (Fig.4.4, lanes 5 and 6). These results 

indicate that the ORF located on the 

Fig.4.3: The secondary structure at the intergenic region of TSWV S RNA. The nucleotide positions are 
numbered from the S end. Asterisks ( *) represent gaps corresponding to unpaired nucleotides in the 
sequence. 
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viral complementary strand of the TSWV S RNA represents the nucleocapsidgene. 

When searching the EMBL protein and nucleotide sequence data base, no significant 

homology could be detected to other nucleocapsid proteins of positive- or negative-

strand viruses, or to any other protein. 

4.3.3 Detection of subgenomic RNA species in TSWV-infected plant cells 

The ambisense gene arrangement of the S RNA predicts that the two ORFs are 

expressed by the formation of two subgenomic mRNA species, as found for other 

ambisense RNA molecules of members of the Arenaviridae and Phlebovirinae (Auperin 

1 2 3 4 5 6 7 8 9 kD 

94 

67 

43 

30 - N 

20.1 
Fig.4.4: Identification of the TSWV nucleocapsid gene by cell-free translation of the in vitro transcripts of 
plasmid pTSWV-vcORF in a rabbit reticulocyte lysate. Samples were: lanes 1 and 5, control i.e. the 
endogenous translation products in the absence of RNA transcripts; lane 2, translation products ofTMV RNA 
(Mr 126,000 (126K) and 183K); lane 3, translation products ofCCMVRNA (23K, 3SK, lOOKand 10SK); lanes 
4 and 7, translation products directed by the pTSWV- vcORF transcripts; Lane 6, translation products directed 
by TMV RNA plus CCMV RNA. Translation products were analysed directly (lanes 1 to 4) or immunoprecip-
itated using polyclonal antibodies against purified nucleocapsids prior to electrophoresis (lanesS to 7). Lanes 
8 and 9 contain Coomassie-blue stained purified nucleocapsid proteins (N) and marker proteins respectively. 
Mr values are indicated on the right. 
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et al., 1984; Salvato, 1989; Giorgi et al.. 1991). To identify possible mRNA species 

corresponding to the nucleocapsid protein and the putative non-structural protein, 

Fig.4.5 shows Northern blots of total RNA isolated from healthy and infected plants, 

hybridized to 32P-labelled probes. The probe corresponding to the ORF on the viral 

strand (probe NSs) hybridized to the genomic S RNA and to a subgenomic RNA species 

of approximately 1.7 kb. With the probe corresponding to the nucleocapsid gene (probe 

N), a second smaller subgenomic mRNA (1.2 kb) was detected, in addition to full-length 

S RNA. These results indicate that the expression strategy of the TSWV S RNA is 

similar to that of the ambisense RNAs of arenaviruses and phlebo-/ uukuviruses. 

0.5 1.0 1.5 2.0 ?.5 kbp 

5' 

Bg H 
^A.,,,.,,1, 

H 

3' 

H E 

jPfiOBES- NSs 

P 
1 2 3 4 

Fig.4.5: Identification of subgenomic RNA 
species in TSWV-infected tobacco cells, 
(a) Position ofcDNA probes used, on the re
striction map of TSWV S RNA. The shaded 
regions in the open bar, correspond to the 

mm __s RNA— .^M two ORFs shown in FigZ The horizontal 
W —i J (tb ^ ^ lines correspond to the cDNA fragments 

1.2 kb — I f used a s Probes (denoted NSs and N). (b) 
* Total RNA from healthy (lanes 1 and 3) and 

TSWV-infected (lanes 2 and 4) tobacco leaf 
tissue was resolved in agarose gels, blotted to 
nitrocellulose and hybridized to probes NSs 
(left panel) and N (right panel), as described 
in Methods. 
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4.4 Discussion 

The sequence data presented here, show that the TSWV S RNA is 2916 nucleotides 

long. From the sequence it can be deduced that the TSWV S RNA has an ambisense 

gene arrangement. The Northern blot hybridization experiments demonstrate that the 

two genes on this RNA are expressed by two subgenomic RNA species. This genome 

strategy is also found for the S RNA segments of viruses of the genera phlebovirus and 

uukuvirus (Giorgi et al., 1991) and for the S and L RNA segments of viruses of the 

family Arenaviridae (Auperin et al.. 1984; Romanowski étal.. 1985; Clegg & Oram, 1985; 

Salvato, 1989), but has not yet been reported for any plant virus. 

Together with morphological data (Chapter 1), the structure and genetic organisation 

of the S RNA provide strong evidence that TSWV should be regarded as a member of 

the Bunyaviridae. Preliminary nucleotide sequence data demonstrate that TSWV M and 

L RNA, like the corresponding RNAs of the animal Bunyaviridae, are entirely of 

negative polarity (Chapter 5). 

Compared to the ambisense RNA molecules of the animal phlebo-, uuku- and 

arenaviruses, TSWV S RNA contains relatively long terminal untranslated regions. This 

may be related to the formation of a long stable panhandle structure at the termini of 

the genomic RNA molecule and may explain the circular appearance of isolated TSWV 

nucleocapsids (Peters et al.. 1991). These non-coding sequences probably contain 

important signals for replication and transcription (Strauss & Strauss, 1988; Raju & 

Kolakofski, 1989). Another putative regulatory element is located in the intergenic region 

of the RNA, where the sequence can be folded into a long hairpin structure. A similar 

hairpin structure has been found in the S RNA of Punta Toro virus (Emery & Bishop, 

1987). For this virus it is known that the peak of the hairpin forms the transcription 

termination point for the two subgenomic RNA molecules produced from this RNA. The 

estimated sizes of the subgenomic RNA species of TSWV S RNA (1.2 and 1.7 kb) and 

the location of the hairpin structure are consistent with TSWV using the same 

mechanism for transcription termination. Investigations are currently in progress to study 

the regulation of the expression of both genes of TSWV S RNA and to map precisely 
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the transcription initiation and termination sites. 

TSWV S RNA appears to encode a non-structural protein which we propose to 

designate NSs, according to the nomenclature used for the Bunyaviridae. It does not 

show significant amino acid homology to any of the reported phlebo- or uukuvirus NSs 

proteins (Giorgi et al. 1991). The protein has not yet been detected in TSWV-infected 

plant cells and its role in the viral infection process is sofar unknown. 

In conclusion, the data presented in this paper indicate that TSWV should be 

considered as a member of the Bunyaviridae. However, in view of the lack of homology 

in both the nucleotide sequence and the derived amino acid sequence to any of the 

animal Bunyaviridae analysed sofar, we propose to place TSWV into a new genus. In 

view of its proposed taxonomie position the question needs to be answered as to whether 

TSWV replicates also in its insect vectors. Further studies on its genome organization 

and replication may reveal how this virus departed evolutionarily from other bunyaviruses 

as an insect-animal virus to become an insect-plant virus. 
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CHAPTER 5 TOMATO SPOTTED WILT VIRUS L RNA ENCODES A 
PUTATIVE RNA POLYMERASE 

Peter de Haan, Richard Kormelink, Renato de Oliveira Resende, Frank van Poelwijk, 

Dick Peters and Rob Goldbach 

SUMMARY 

The complete nucleotide sequence of the large (L) genome segment of tomato 

spotted wilt virus (TSWV) has been determined. The RNA is 8897 nucleotides long and 

contains complementary 3' and 5' ends, comprising 62 nucleotides at the 5' end and 66 

nucleotides at the 3' end. The RNA is of negative polarity, with one large open reading 

frame (ORF) located on the viral complementary strand. This ORF corresponds to a 

primary translation product of 2875 amino acids in length, with a predicted Mr of 

331,500. Comparison with the polymerase proteins of other negative-strand viruses 

indicates that this protein most likely represents the viral polymerase. The genetic 

organization of TSWV L RNA is similar to that of the L RNA segments of Bunyamwera 

and Hantaan virus, animal-infecting representatives of the Bunyaviridae. 

This Chapter will be published in a slightly condensed form as: De Haan, P., Kormelink, 

R., Resende, R. de O..Van Poelwijk, F., Peters, D. & Goldbach, R. (1991). Tomato 

spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol, in press. 
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5.1 Introduction 

Based on its unique properties among other plant viruses, tomato spotted wilt virus 

(TSWV) has previously been classified as the single representative of a distinct virus 

group (Ie, 1970; Matthews, 1982). Recently obtained molecular data however, have pro

vided evidence that TSWV should be considered as a member of the arthropod-borne 

Bunyaviridae, unique in its property to infect plants (Chapter 3 and 4). 

Like the established members of the Bunyaviridae (Elliott, 1990), TSWV is 

characterized by spherical enveloped particles of approximately 80-110 nm in diameter. 

Two virus-encoded glycoproteins, denoted G l (Mr 78,000 (78K)) and G2 (Mr 58K) are 

associated with the virus envelope (Tas et al., 1977). The internal pseudo-circular 

nucleocapsids consist of three species of single stranded RNA, denoted S RNA (2916 

nucleotides), M RNA (approximately 5000 nucleotides) or L RNA (approximately 8000 

nucleotides), which are each seperately encapsidated with nucleocapsid (N) protein (Mr 

28.8K) (Chapter 1). In addition few copies of a large (L) protein (approximately 200K) 

are present in the virus particle, which may represent the viral polymerase (Mohamed 

et al., 1973; Mohamed, 1981; Tas étal., 1977). 

As described in Chapters 3 and 4, the genomic RNA segments have been cloned and 

the complete nucleotide sequence of the S RNA has been determined from a set of 

overlapping cDNA clones. TSWV S RNA encodes two proteins, the nucleocapsid (N) 

protein and a non-structural (NSs) protein in an ambisense gene arrangement. The 

nucleocapsid protein is expressed from a subgenomic mRNA species of approximately 

1.2 kb, transcribed from the viral RNA strand, while the NSs protein (Mr 52.4K) is 

expressed from a mRNA of approximately 1.7 kb, transcribed from the viral com

plementary RNA strand. The structure of TSWV S RNA conforms that of the 

phleboviruses and uukuviruses, two genera of the family Bunyaviridae (Giorgi et al., 

1991). 

Here we report the complete nucleotide sequence of TSWV L RNA. It contains a 

single large open reading frame (ORF) in viral complementary sense, which most likely 

corresponds with the viral polymerase gene. The genetic organization of the TSWV L 
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RNA segment further strengthens our previous conclusion, that this virus represents a 

plant-infecting member of the Bunyaviridae. 

5.2 Methods 

5.2.1 Virus and plants 

TSWV CNPH1, a Brasilian isolate from tomato, was maintained in tomato by 

grafting and infected leaf tissue was stored in liquid nitrogen. Nicotiana rustica var. 

America plants were either mechanically inoculated from this original virus stock, or 

from previously inoculated, systemically infected N. rustica. Virus was purified from 

infected N. rustica leaves according to Tas et al. (1977) and RNA extracted as described 

in Chapter 3. 

5.2.2 Synthesis, cloning and sequence determination of cDNA 

Complementary DNA (cDNA) to TSWV RNA was synthesized and cloned as 

previously described (Chapter 3). To obtain cDNA clones containing the 3' end of the 

L RNA, a portion of 5 |a,g of genomic RNA was polyadenylated at the 3' end, using one 

unit of poly(A)-polymerase (BRL), according to Devos et al. (1976). First strand cDNA 

synthesis was primed with oligo(dT), followed by second strand synthesis according to 

Gubler & Hoffmann (1983). Double stranded cDNA was made blunt-ended using T„ 

DNA polymerase and subsequently cloned into the Smal site of plasmid pUC19. 

DNA sequencing was performed by the dideoxy chain termination method (Sanger et 

al., 1977) on double stranded DNA templates (Zhang et al., 1988), or after subcloning 

of restriction fragments in M13 mpl8 or mpl9 vectors (Yanisch-Perron et al.. 1985). 

Nucleotide and amino acid sequences were compiled and analyzed using programs 

developed by the University of Wisconsin Genetics Computer Group (UWGCG). 
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5.3 Results 

5.3.1 Cloning and sequence determination of the TSWV L RNA 

Northern blot analysis of genomic RNA, purified from the original CNPH1 virus 

stock has revealed that the previously reported restriction map of TSWV M RNA (De 

Haan et al.. 1989), actually represents that of a defective L RNA molecule of 4.7 kb in 

length. This defective RNA molecule is abundantly present in the TSWV CNPH1 line 

used in this study and masks the authentic M RNA segment (5.0 kb). This TSWV line 

has been maintained by mechanical passage of the virus for several years. 

In order to obtain cDNA clones corresponding to the full-length genomic RNA 

sequence, the original cDNA library was screened again and additional cDNA clones 

to TSWV L RNA could be aligned, yielding a restriction map covering approximately 

8,900 nucleotides (Fig.5.1 and Chapter 3). The cDNA clones denoted 70, 266, 280, 299, 

329, 420, 662, 669, 803, 806, 808 and 810 were selected for sequence analysis. 

As described under 3.3.1, clone 669 contained the 3'-terminal sequences of the L 

RNA segment. Direct dideoxy sequencing, using L RNA as a template and four different 

synthetic oligonucleotides as primers, was used to obtain the 5'-terminal sequence 

(Chapter 3) and to verify internal sequences (Fig.5.1). 

5.3.2 Characteristics of the TSWV L RNA 

The complete nucleotide sequence of the TSWV L RNA is shown in Fig.5.3. The 

RNA is 8897 nucleotides long, with a base composition of 28.7% A, 37.8% U, 19.0% C 

and 14.5% G. The length is in rather good agreement with the previously estimated sizes, 

deduced from electrophoretic mobility (Chapter 1 and Van den Hurk et al.. 1977). The 

L RNA exhibits complementarity between its 3' and 5' ends for 62 nucleotides at the 5' 

end and to 66 nucleotides at the 3' end, similar in range to the complementary termini 

of the S RNA (Chapter 4). The resulting 'panhandle' structure has a free energy of 

ÛG= -217.1 kJ/mol (Fig.3.4). 
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Fig.5.1: Cloning strategy for the TSWV L RNA segment. The viral complementary RNA strand is repre
sented. The box corresponds with the large ORF. The arrows represent the synthetic oligonucleotides used 
for primer extension sequencing on the L RNA as a template The numbers correspond with the cDNA clones 
used. Restriction enzymes are abbreviated as follows: Bg, Belli; E> EcoRI; H, Hindlll; K, Kpnl; S, SphI; Ss, 
Ss±I; X, Xbal. 

5.3.3 Predicted gene product encoded by TSWV L RNA 

Analysis of the six reading frames of the viral and viral complementary RNA strand 

revealed only one large ORF, located on the viral complementary RNA strand (Fig.5.2). 

This ORF starts with an AUG codon at position 34 and extends to an UAA stopcodon 

at position 8659, hence the non-coding regions of the plus sense RNA are 33 bases long 

at the 5' end and 235 bases at the 3' end. 
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Fig.5.2: Distribution of translation initiation (short vertical bars) and termination (long vertical bars) codons 
in the three possible reading frames of the viral (1, 2 and 3) and viral complementary (-1, -2 and -3) L RNA 
strands. 

The amino acid sequence derived from this ORF is shown in Fig.5.3. The sequence 

of the predicted gene product is 2875 amino acids long with an Mr of 331.5K. Analysis 

of the amino acid sequence of the predicted protein reveals several short hydrophobic 

regions (Kyte & Doolittle, 1982) and a very acidic carboxy-terminus, as can be seen by 

the large number of aspartic acid (D) and glutamic acid (E) residues (Fig.5.3). A search 

in the EMBL protein and nucleotide sequence database showed that the predicted 

protein encoded by TSWV L RNA is homologous to the L proteins of the animal-

infecting Bunyaviridae. Hence, it can be deduced that the L RNA segment of TSWV 

encodes the L protein. 
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1 AGAGCAAUPA CGUAACAACC AUUUUAAGCA AACAUGAACA UCCACAAAAU ACAAAAAUUA AUAGAAAAUG CAACCACUUU ACUGUUGUOf AUUCAGGAUU 

C V G S H H D L A L D L H K R H S D E I P E D V X T H H H A K N Y E 
1 0 t CUGUACGUUC UAACCACGAU CUAGCUUUCG AUUUACAUAA GAGAAAUAGU GAUGAGAUCC CAGAAGAUGU GAUUAUAAAU AAUAAUCCAA AAAAUUAUCA 

E V K I E H A L R E Y L D E L U K K S C I H K L S D D E F E R I N K 
AAGUGGAGAU AGAGCAUGCA CUAAGAGAAU AUCUGGAUGA ACUCAACAAA AAGUCCUCCA UUAACAAGCU CUCUGAUGAU GAGUUUGAGA CAAUAAAUAA 

V D A R T E T K O U R N T Y K N I V K S F K D I K V N G K P F L E 
GUCCAUGCCA GGACUGAAAC CAAACAAUGG AGAAAUACCU ACAAGAAUAU UUGCAAAUCU UUCAAAGAUA UAAAAGUGAA UGGAAAGCCA UUCCUCGAAG 

E B P V F V S X V I L K P I A G M P I T V T S S R V L E K F E D S P 
AGCAUCCUGU UUUCGUUUCU AUAGUUAUAU UCAAACCÜAU UGCUGGGAUC CCAAUCACUG UUACUAGUAG CACGGUUUUG GAGAAAUUCG AAGAUUCUCC 

R N Y T A U T O R I K S F V R C I L C D D F G e r rt y F P S H W T 
9 0 1 AGAAACUAUU AUGCAAÀCAC UCAAAGAAUC AAAUCUGAAG UCACAGGAAU CUUAGGUCAU GAUUUUGCAU CUAAAGAUGU GUUUUUCAGU CACUGGACCA 

3 K Y K E R H P T E I A Y S E D I E R I I D S L V T D E I P R E E I 
1001 CCAAAUACAA AGAAAGAAAU CCUACUGAGA UAGCCUAUUC CGAAGAUAUU CAAAGAAUAA UUCAUUCACU UGUUACAGAU GAAAUCCCUA GAGAGGAAAU 

L K I E P K A D L A D L K D f T L I O K O O l t f E S L Y C K H L E E 
1201 UUAAAAAUAG AGCCAAAACC UGAUUUAGCU CAUUUGAAAG ACCACUUAAU CCAAAAGCAG CAAAUAUCGG AAUCUCUCUA UGGAAAACAC CUUGAGAAGA 

N C F N D L £> E L K L T F H D T V P S L K I E T S ^ R V H Y N N A 
1401 UAACUGUUUC AAUGAUCUCU CUCAACUAAA ACUAACUUUC CAUGACUUCG UCCCCAGUUU GAAGAUAGAA UUGAGCUCAG ACCUACAUUA CAACAACGCA 

1601 UAACAAACUU AGUUAGACUC UCUUUAGCAG AGCUAAGUUG UGAUACAACC AAAAUGCAAA AGCACGAACU UGAAGAUGAA AUAGAUAUAA ACACCCGGAG 

I K V E R T K K S K R U N H O C S C L T R N K N E F C M K D T G R 
1701 UAUCAAAGUU GAGAGAACAA AAAACUCUAA ACAAUGGAAU AAGCAACGUU CGUGUUUAAC CACAAACAAA AAUGAAUUUU GCAUGAAACA UACACGCACC 

E H K T T Y F K O L A V H H I G H S S K K R I L K K E E I K E R I 
1801 CACAACAAAA CUACCUAUUU UAAACCCUUA CCAGUAAUGA AUAUAGGAAU GACUUCUAAC AAAACAAUUC UAAAAAAACA ACAAAUAAAA GAAAGGAUCU 

1901 CUAAAGGCUU GGAAUAUGAU ACCUCUGAAA GCCAGGCUGA CCCAAAUGAU GAUUACUCAA GUAUAGACAU GUCUUCUCUC ACUCAUAUGA AAAAACUGAU 

ZOOI AAGGCAUGAC AAUGAUGAUA GCUUAAGUCG UAAAAGAUUU AAGCCCUClttJ UUUUUCUACU UCAUAAUUUU AAUAUAAUAC ACGAUCGUAA GAUCACAUCU 

2201 AUGAUCUAGC CAÜUUACCAÜ UACUCUGAAG ACAUGAUGCA AUUCUCCAAA CGUUUAAUGG UGGCUGACAG GUACAUGACU AAAGAAACUU UCAACAUAUU 

T T A H T S M M L L A F K G D C M H T G G S G V P Y I A L H I V O 
2301 AACCACAGCA AAUACUAGCA UGAUGCUAUU AGCAUUCAAA GGGGAUGGAA UGAACACCGG AGGAUCCGGA GUUCCUUACA UAGCAUUCCA UAUAGUGGAU 

L N O V R L L R L F K T P S K V P V C F P O F S K K A H E I G K 5 L 
2 501 UAAACCAGGU GAGGCUGCUC AGCCUUUUCA AAACGCCUAG UAAAGUUCCU GUAUGUUUUC CACAAUUUUC AAAGAAACCU AAUCAAAUCG GAAAAUCCCU 

V T K L S R M G I F D E M R Y A C F L U L S D Y S N T K F Y I R D 
2701 GUGACAAAGC UCAGUAGAAU GGGAAUUUUU GAUUUCAUGC GGUAUGCAGG UUUUUUGCGA CUAUCCGAUU AUUCUAACAU AAAAGAAUAC AUUACAGACA 

K S D P D I T N C C R Y T F R N O I K K L L F R M E T ) F H T 5 T H A 
2801 AAUCUGAUCC UGAUAUAACU AACUGUGGCA GAUAUCUAUÜ UCGUAAUGGA AUCAAAAAAC UAUUGUUCAG AAUGGAAGAU CUCAAUUUAA CCACAAAUGC 

K P V V V D H E N D I I G G I T N L H 1 K C P I T G S T L L T L E 
2901 CAAGCCUGUU GUUGUGGACC ACGAAAAUGA UAUUAUAGGA GGGAUAACAA ACUUGAAUAU AAAAUGUCCU AUAACAGGAU CAACUCUACU CACACUUGAC 

W E L K F R K E L C F K 1 F E D I Y P K K A M F D D K D L F S I N G 
3101 GGGAGCUAAA GUUCAGAAAA GAAUUAGCUU UCAACAUAUU UGAACACAUA UACCCUAACA AAGCAAUGUU UGAUGACAAA GACCUAUUCU CCAUAAAUGG 
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3401 UUCAAGAUAU AGAAAAUUGG AAACGAAAUA ACCUAGCUAU UAUAAAAGGG CUUAUAAGAA CCUACAAUGA GGAGAAAAAU AGAUUGCUGG AAUUUUUUGA 

D H C V H S L Y L I £ K L K E I I S S G S I T V G K S V T S K F 1 
3501 AGAUAAUUGU GUCAAUUCAU UAUAUCUUAU AGAAAACCUU AAAGAGAUAA UUACUAGUCG AUCAAUAACU CUAGCGAAAU CUCUAACAUC UAAAUUCAUA 

L Y D L V K Q F B D H M E I O L D S V H N L G K G T E G K K L T F L 
3701 UCUAUGACCU UGUAAAACAG UUCCAUCACA UGAUGCAAAU AGACCUACAU UCUGUUAUGA ACCUCCGGAA AGGUACACAA GGAAAAAAAC UCACAUUCUU 

O M L E" P V M S K A K N V T G S V D F L V S V F E K H O R T K T D 
3B01 GCAGAUGCUU GAAUUUGUCA UGUCCAAGGC UAAAAAUCUC ACCGGGUCUG UAGAUUUUCU AGUUUCUGUU UUUGAAAAAA UGCAGAGAAC CAAAACAGAC 

3901 AGACAAAUAU ACUUGAUGAG CAUGAAACUG AAAAUGAUCC UUUAUUUUAU AGAGCAUACA UUCAAACAUG UAGCGCACAG UGAUCCAUCG CAAGCCAUAU 

L A F L S A D 0 S R U S A S G L T T Y K Y V L A i l L H P I L T T 
4101 AUUGGCUUUC CUAUCUGCAC AUCAGUCGAA AUGGUCGGCA UCAGGCCUUA CCACCUAUAA AUAUGUUUUA GCUAUCAUAU UAAAUCCAAU UUUAACUACU 

G Ë A S L M I E C I L M Y V K L K K V C X P T D 1 F L N L R R A Q 
4201 GGUGAAGCUA GCUUAAUCAU AGAAUGCAUC UUAAUGUAUG UUAAAUUGAA GAAGGUUUGU AUACCAACAC AUAUUUUUUU GAAUCUAAGA AAAGCUCAAC 

4301 AAACUUUUGG GGAAAAUGAA ACUGCCAUAG CACUUUUGAC CAAAGGCUUG ACCACAAACA CAUACCCUGU UAGCAUGAAU UGGUUGCAAG GCAAUUUAAA 

v r e S V Y H S C A M K A Y H N T T R C Y K N C D P Û T R W 1 V H 
4401 UUAUCUGUCU UCUCUUUAUC ACUCUUGUGC AAUGAAAGCU UAUCACAACA CUUUGGAAUG UUACAAAAAC UGUGAUUUCC AAACUACAUC GAUUCUCCAC 

T R A H F 1 C S F C I T L N P K R S Y A S S S E V E P I S E R I S R U 
4601 UUGAAGCUCA UUUCAAAACU UUUUGCAUAA CUUUGAACCC AAAAAACAGU UAUGCUUCUU CAUCAGAAGU AGACUUUAUA UCUGAAAGAA UUAGUAAAUC 

T M L L R K G C P N E V I P F A Y C A V Q V Q A L S I Y S M L P C 
4801 ACAAUGCUUC UCAGAAAAGG CUCUCCUAAU GAAGUUAUAC CUUUUGCUUA UGGGGCUGUC CAGCUACAAG CGUUAAGCAU CUAUUCAAUG CUUCCUGGUG 

R V N D S T fl I P N K L F V Ç T R ^ N E I P T N M C G U L T 5 P I E 
4901 AAGUGAAUGA UAGUAUUACA AUUUUUAACA AGCUUGCACU AAGUUUAAAG UCAAACCAGA UUCCCACAAA CAUCGCGGGC UGCUUGACCU CUCCUAUAGA 

4501 GCCGUUGUCU AUAUUACGUC CAUCAUCAAA UGAUCAAAUC AUCUAUUACA AUGUGAUAAC ACAUUUUUUC AACAAAAAAA GUUUAGAAGA ACUAAAAGAU 

N P T H F N A L N K M ^ ^ Y 7 D F S R L Y P N L K K H E D L Y K S 
5301 UAAUUUUAUA AAUGAGAAUG CUUUAAACAA GAUCUCAAGU UAUAAAGAUU UUUCAAAACU UUAUCCUAAU UUAAAAAAGA AUCAAGAUUU AUAUAAAAGC 

5401 ACUAAGAACU UAAAGAUACA CGAGGAUGCU GUUUUAGAGG AAGAUGAGUU AUAUAAGAAG AUUGCAUCUA GCUUACAAAU GCAAUCUCUC CAUGACAUAA 

M T K H P E T 1 L I A P L H D R D F L L S Q L F M Y T S P S K R N Q 
5501 UGAUAAAAAA UCCUGAAACA AUUCUGAUAG CACCAUUGAA UGAUAGAGAU UUUUUACUUA GUCAGCUGUU CAUGUACACA AGCCCUUCUA AAAGAAACCA 

N F S M L I P I L O S A Y P C E S R K R D N Y N F R W F Q T E R W 1 
5801 AUUUCACCAU GCUGAUUCCA AUAUUAGAUU CUGCAUACCC UUGUGAAUCU AGGAAAAGAG AUAACUACAA UUUCAGCUGC UUUCAGACUG AGAGAUGGAU 

P V V E G S P G L V V H H A V Y G S N Y 1 E N L C L K N I P L T D 
5901 ACCUGUUGUU GAAGGCUCUC CGGGACUAGU AGUAAUCCAU GCUGUCUAUG GAUCAAAUUA UAUAGAGAAC UUAGGUUUAA AAAACAUCCC UCUAACAGAC 

6001 CAUACUAUUA AUGUUUUAAC AAGCACGUUU GGAACAGGUU UAAUCAUGGA AGAUGUAAAA UCCCUAGUUA AUGGCAAAGA CAGCUUCGAA ACAGACGCUU 

F S N 5 N E C O R L V R A T N Y M 1 A A O H R L L A X N T C F T R K 
6101 UUACCAAUUC UAAUGAAUCU CAAAGAUUGG UCAAAGCAUG CAAUUAUAUC AUAGCAGCAC AAAACACGCU UUUACCAAUU AACACAUGCU UUACUAGGAA 
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Y 1 S O E L Q S L F F T I T R E D I V L I L Q N V C L D S E P I W Q 
6 4 0 1 ACAUAUCAGA UAAAUUGCAG UCACUUUUCC CAACAAUUAC AAGAGAGGAU AUAGUUUUAA UAUUGCAAAA UGUUUGCCUU GACAGUAAAC CUAUAUGGCA 

O K O I V U M W H M G L C S H U T L D P V I R Y I R R R D V R Y V 
i < 0 1 CAGAAACAAA UUCUCUGCAU GUGCAACAUG CGUUÖGIJGUU CUCACAGAAC AUUAGAUUUU GUIMÖCAGGU AUAUUAGAAG AAGGGAUGUA AGAUAUGUAA 

E T E E O D E S G H Y V S G T M Y K I G T M T R S G Y V E T T A S D 
6 7 0 1 AAACUGAAGA ACAAGAUGAA UCAGGAAAUU AUGUCUCUCG AACUAUGUAC AAAAUAGGGA UCAUGACAAG AAGCUCCUAU GUCCAAUUCA UAGCAUCUGA 

E 1 M F D E V H I T H O T T T D C F L R T R R S C 1 R K T T D H R 
6901 GAAAUUAUGU UUCAUAAAGU GAACAUAAUA AAUCAAACAA CCACAGAUUG UUUUCUUAGA ACCAGGACAU CUUGCAUCAG AAUGACCACA GACAACAAAA 

H I V K V H A T S R Q I R L E H V E L V V K I K T E N V H S D V U D 
7001 UCAUUCIMAA GGUUAAUCCU ACAUCAACAC AAAUAAGACU ACAGAAUCUA AAAUUAGUUG UAAAGAUAAA AUAUCAAAAU GUGAAUUCCG AUCUAUCGCA 

E T I E H R L H T S L T F I E A F G N L S Q Q I E E 1 V D D D I R 
7201 AAAACCAUAA AAAACAGGCU UAÜCACUUCU UUAACUUUCA UAGAAGCCUU UCGAAACUUA UCACAGCAGA UCAAACAGAU UCUAGAUCAU GAUAUCACAG 

B T H D E F L M N I R D T C L E G L E H C K . S V E E T 0 S Y L D E N 
7301 AAACGAUGGA UGAAUUCUUA AUGAACAUCC GCGAUACCUG CUUAGAACCU UUCGAAAACU GCAAAAGUGU CCAACAAUAU GAUACCUAUC UUGAUCAAAA 

7401 UGGAUUUAAU GACACACUAG AACUAUUCCA AAACUUGCUA AGAACACAUC ACAACUUUGA AAAUGAGUAU AGUCCUCUUU UUUCAGAGAU UGUUGACAAA 

7501 CCAAAACAGU AUACUAGACA UUUACAAGCU UUCAAAGAM UACUGCUCAU GCUUAAAUAU UCUCUAAUAA AUCAUGCAUC ACCAUUUAAA ACCUAUAGAG 

7701 AUGCCACAAC AAUGACUCUA UAUUAAACUU ACCAACÜUUA AGGAAUGUUC UUAGCACGAC AUAUCCCACA UUUGCCAGGA GAAUAACAUU GGAUCAUGAU 

8 3 0 1 UUAUCUAAAA CUGACAAAAA CCAGGUCCAA GGAACAUUUC UUGUCUGCAA GACUUAAAAA AGCUUUCAUA CAAUUAAGAG AUGAACAAUC GCGAACUAAA 

E L E V Y K D I A H F L A R H P L C F S F R T L Y G R Y T Y S D I 
8 4 0 1 AAACUAGAGG UCUAUAAGGA UAUCGCAAAU UUCCUUCCUA GGCACCCACU AUGUUUAUCA GAAAAAACAU UGUAUGGAAG AUAUACCUAC UCUCAUAUCA 

N D Y I M O T R E I I L S E I S E L D E V V E T D E D H F L L S Y L 
8501 AUGAUUAUAU CAUGCAAACA AGACAGAUUA UUUUGACUAA AAUAAGUGAC UUGGACGACG UUGUUCAAAC ACAUCAAGAC AAUUUCUUGC UUACUUAUCU 

R G E E D A F D E D E L D E E E D T D * 
8 601 AAGAGGGGAA GAACAUGCCU UUGAUGAAGA UGACCUUGAU GAAGAAGAAG AGACAGAUUA AAUUGAAAGU AAUCACUAAC AAUCCAUGAA UAACAGAUUA 

8701 GAUAUAACUU ACAAUAUAAA UUUAUUGCUA UUUUAGAAUU ACAUUACAUC UACUUAGCCU AAAACAAUUU GCUCAACCAA AUCUAUAGUG UAUAUAAAUC 

8801 UAGACUCCCG GUAUAGUUUC ACUGGAGGGA AUUCUUAUGU AAUIWGUAAA GUCUGGCUGU GGAGAGGUUA UAUGUUUUAG UUGUACCÜGA UUCCUCU 

Fig.5.3: The complete nucleotide sequence of TSWV L RNA (numbered from the S end of the viral 
complementary RNA strand) and its predicted gene product. The deduced amino acid sequence of the protein 
encoded by the viral complementary RNA is written above the RNA sequence. The asterisk C) indicates the 
UAA termination codon. 
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The discrepancy between the size reported here (331.5K) and the previously estimated 

size (approximately 200K) may be due to the gel systems used in those experiments 

(Mohamed et al.. 1973; Tas étal.. 1977). 

Computer-assisted alignment of the predicted L protein of TSWV to that of Bunya-

mwera virus (Elliott, 1989) revealed one internal region (approximately 1000 amino acids 

long) with significant (27% identity) amino acid sequence homology (Fig.5.4). Homology 

between TSWV and Hantaan virus L proteins, and between those of Bunyamwera and 

Hantaan virus however, is lower and restricted to a shorter internal stretch of 

approximately 200-250 residues long (Fig.5.4). For the animal-infecting Bunyaviridae it 

has been proposed that the L proteins represent the viral RNA polymerases. Proteins 

involved in transcription and replication of RNA viruses contain conserved signature 

sequences, such as putative polymerase, helicase or methyltransferase motifs (Kamer & 

Argos, 1984; Goldbach, 1987; Hodgman, 1988; Gorbalenya et al.. 1989). The presence 

or absence of these motifs, together with other molecular characteristics such as genome 

structure and expression, are important determinants for evolutionary relationships 

between viruses and virus families (Goldbach, 1986; Strauss & Strauss, 1988; Poch et al. 

1989; Candresse et al., 1990). A search for such conserved sequences in the (putative) 

polymerase proteins of members of the Bunyaviridae and Orthomyxoviridae reveals five 

types of short consensus sequences: GDX,.3K, GXXNXXS, SDD, FX10.17KK and 

EFXSXF (Fig.5.5). These amino acid motifs are present in the region where the 

predicted L protein of TSWV shows sequence homology to Bunyamwera and Hantaan 

L protein and to influenza A protein PB1, the core polymerase of this virus (Braam et 

al., 1983; Krug et al.. 1989). Hence, it is anticipated that the major ORF in TSWV L 

RNA represents the polymerase gene. 
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5.4 Discussion 

Determination of the complete nucleotide sequence of the TSWV L RNA 

demonstrates that TSWV is a negative-strand RNA virus. The presented nucleotide 

sequence data confirm the previous conclusion, derived from the S RNA sequence, that 

TSWV should be considered as a member of the Bunyaviridae. Indeed, on the ICTV 

meeting during the 8th International Congress of Virology in Berlin (1990), TSWV has 

been accepted as the first member of a newly created genus, tospovirus, within the 

Bunyaviridae. 

The TSWV L RNA segment is 8897 nucleotides long, which is significantly longer 

than the L RNAs of Bunyamwera (6875 nucleotides) and Hantaan virus (6530 

nucleotides) (Elliott, 1989; Schmaljohn, 1990). Additional domains may be present in the 

gene product of TSWV L RNA, which may reflect adaptation of this bunyavirus to 

plants. 

TSWV L RNA contains complementary ends of 62 to 66 nucleotides in length. 

Hence, the RNA can be folded into a stable panhandle structure (Fig.3.4), which may 

be involved in the appearance of circular nucleocapsids in virus particles (Peters et al.. 

1991), as also found for the Bunyaviridae (Raju & Kolakofski, 1989). Moreover, these 

terminal sequences will play an important role in genome transcription and replication 

(Krug et a l , 1989; Parvin étal.. 1989). 

TSWV L RNA contains a single ORF in viral complementary sense, corresponding 

with a protein of predicted Mr of 331.5K. Analysis of viral RNA species in infected plant 

cells, indicated that this ORF is expressed by the formation of a mRNA of approximately 

genome length. No subgenomic RNA species derived from the L RNA could be 

detected (unpublished results). Remarkably, in several TSWV isolates, defective L RNA 

species appeared, when maintained under laboratory conditions. In line CNPH1, which 

has been used for sequence determination of the L RNA, a deleted form of this RNA 

segment accumulated, which had approximately the size of the M RNA. The genesis and 

implication of these defective RNA molecules for virus multiplication is currently under 

investigation (Resende et al., 1991). 
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Fig.5.4: Dot plot comparison of the predicted L proteins of TSWV, Bunyamwera and Hantaan virus, using 
the 'compare' and'dotplot programs (window= 30, stringency= 16) of the GCG-package. Sequence data were 
obtained from: Elliott, 1989 (Bunyamwera virus) and Schmaljohn, 1990 (Hantaan virus). 

The predicted 331.5K protein encoded by TSWV L RNA most likely corresponds to the 

viral polymerase. Comparison of (putative) RNA polymerases from TSW, Bunyamwera, 

Hantaan and influenza A viruses revealed the presence of amino acid sequence motifs, 

which are 

present in all polymerases showing RNA template specificity and most likely form the 

active sites for RNA synthesis (Poch et al.. 1989). The region in the predicted TSWV 

L protein, surrounding these 'polymerase' motifs, shows considerable sequence homology 

(approximately 27% identity) to the putative polymerase of Bunyamwera virus, but to a 

much lesser extend to that of Hantaan virus. All three L proteins in their turn share 
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Inf A PB1 (308) FTITGDNT.K WNEN QNPRMFLA 
TSWVL (1321) ISISGDN. .K IRAL STLSLDTIT SYNDILNKNS KKSRLAFLSA 
BunL (1020) SIIKGDPS.K ALKL EINA 
HanL (936) ISYGGE..KK ILAIQGALEK ALRWASGESF IELSNHKFIR MKRKLMYVSA 

GD...K 

Inf A PB1 MITYITKNQP EW.FRNVL.S IAPIMFSNKM ARLGKGYMFE SKSMKLRTQI 
TSWVL DQSKWSASGL TTYKYVLAII LNPILTTGEA SLMIECILMY VKLKKVCIPT 
BunL DMSKWSAQDV F.YKYFWLIA MDPILYPAEK T.RILYFMCN YMQKLLILPD 
HanL DATKWSPGDN SAKFRRFTSM NNKLKNCVID ALKQVYKTDF FMSRKLRNYI 

InfA PB1 
TSWVL 
BunL 
HanL 

InfA PB1 
TSWVL 
BunL 
HanL 

InfA PB1 
TSWVL 
BunL 
HanL 

InfA PB1 
TSWVL 
BunL 
HanL 

PAEMLASIDL KYFNESTRKK IEKIRPLLID GTASLSPGMM 
DIFLNLRKAQ QTF.GENATA IGLLTKGLTT NTYPVSMMWL 
DLIANILDQK RPY. . .NDDL ILEMTNGLNY NYVQIKRNWL 
DSMESLDPHI KQF LDFFPDG HHGEVKGNWL 

LGVSILNLGQ KRYT KTTYWWDGLQ SSDDFALIVN 
YHSCAMKAYH NTL.ECYK. . NCDFQTRWIV HSDDNATSLI 
VHSCAMLVYK DILKECMKLL DGDCLINSMV HSDDNQTSLA 
.RGVAMSLLF KQVWTNLFP. ELDCFFEFAH HSDDALFIYG 

SDD 

GIQ AG VDRFYR TCKLVGINM. 
DFSSSSLP EMLFRS IEAHFKSFCI 

VIQ YA ANTFES VCLTFGCQA. 
WFLFVSQQIQ AGHLHWFSVN TEMWKSMFNL HEHILLLGSI 

F 

RTGTFEFTSF FYRYGFVANFS (514) 
.SSEVEFISE RISKWSDYSSL (1562) 
.HTCKEFVSL FNLHGEPLSVF (1229) 
.PTNAEFLST FFEGCAVSIPF (1197) 

EF.S. F 

MGMFNMLSTV 
QGNLNYLSSV 
QGNFNYISSY 
QGNLNKCSSL 
G..N..S 

APNHE 
ASGEVDKMLT 
IIQNKVSDQI 
YLEPVDDGTD 

..SKKKSYIN 
TLNPKKSYAS 
. . NMKKTYIT 
KISPKKTTVS 
....KK 

Fig.5.6: Amino acid sequence homology between the RNA polymerases of members of the Bunyaviridae and 
protein PB1, the core polymerase of the influenzaviruses. Residues conserved in at least three sequences are 
indicated in bold. Sequence data were obtained from: Yamashita et al., 1989 (Influenza A); Elliott, 1989 
(Bunyamwera virus) and Schmaljohn, 1990 (Hantaan virus). 

conserved amino acid motifs, in a stretch of 200-250 residues, with the PB1 polymerase 

subunits of influenza viruses (Fig.5.5). These findings further underline the importance 

of these common signature sequences and, moreover, justify the assumption that TSWV 

L RNA indeed encodes the viral polymerase. Strikingly, on the basis of amino acid 

homology, TSWV is more closely related to Bunyamwera virus than Hantaan virus is to 

this prototype bunyavirus. It may be anticipated that the amino acid homology between 

TSWV L protein and those of phlebo- and uukuviruses is even higher, since these viruses 

are even more closely related to TSWV, sharing similarly organized ambisense S RNA 
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segments (De Haan étal., 1990; Giorgi et al, 1991). 

The presented data furthermore imply that, based on molecular properties, such as 

terminal sequences, and based on the exclusive host range and mode of transmission, 

TSWV indeed represents a virus of a new distinct genus (tospovirus) within the 

Bunyaviridae. 
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CHAPTER 6 DETECTION OF TOMATO SPOTTED WILT VIRUS IN 
INFECTED PLANTS B7 MOLECULAR HYBRIDIZATION 
AND PCR 

Peter de Haan1, Jan Gielen2, Mart van Grinsven2, Dick Peters1 & Rob Goldbach1. 

SUMMARY 

In addition to serological techniques, of which ELISA is the most important one, two 

molecular techniques have been developed for sensitive detection of tomato spotted wilt 

virus (TSWV). Using a dot blot hybridization assay, approximately 1 pg of viral RNA 

could be detected in leaf extracts from TSWV-infected plants. Using the polymerase 

chain reaction (PCR) technique the sensitivity is further increased to approximately 0.1 

pg of viral RNA. 

The usefulness of the two molecular techniques in sensitive and early detection of 

TSWV will be discussed. 

1 Dept. of Virology, Agricultural University Wageningen, Binnenhaven 11, P.O. Box 8045,6709 PD Wagening
en, The Netherlands. 
2Zaadunie Research, Westeinde 62, P.O. Box 26, 1600 AA Enkhuizen, The Netherlands. 
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6.1 Introduction 

Tomato spotted wilt virus (TSWV) ranks among the most damaging plant viruses, 

causing worldwide yield losses in many crops and ornamental plants (Peters et al., 1990). 

TSWV is transmitted by thrips species, of which Frankliniella occidentalis (Perg.) and 

Thrips tabaci (Lind.) are the most important (Sakimura, 1962). 

The virus particles of TSWV are enveloped, spherically shaped (80-110 nm. in 

diameter) and studded with membrane spikes. The genome consists of three linear single 

stranded RNA segments, denoted S RNA (2.9 kb), M RNA (5.0 kb) and L RNA (8.9 

kb), which are tightly associated with nucleocapsid proteins to form stable circular 

nucleocapsids (Chapters 1 and 3). 

In general, plant virus diagnosis is based on symptom development on test plants, 

on detection of viral protein using serological techniques, such as ELISA, or based on 

detection of viral nucleic acids using molecular hybridization or the polymerase chain 

reaction (PCR) technique. 

TSWV diagnosis by means of serology is hampered for a number of reasons. For 

instance, since TSWV is characterized by its fairly labile virus particles, it is difficult to 

obtain highly purified antigen preparations required for the production of specific 

antisera. Furthermore, the occasional generation of defective isolates of this virus may 

cause serious misinterpretations of results (Avila et al.. 1990). 

Another complication is the considerable natural variability among the different 

TSWV isolates. Recently performed serological studies on isolates, obtained from many 

different sources, revealed that they can be separated into a number of serogroups and 

serotypes (Wang & Gonsalves, 1990; Avila et al.. 1990). For example, recently a new 

'TSWV-like' virus has been characterized (Law & Moyer, 1989; Avila et al.. 1991), which 

is serologically distinct from TSWV and escapes detection when using antisera raised 

against other isolates. 

The availability of both cDNA clones and nucleotide sequence information on the 

genomic RNAs of TSWV, enables identification and detection of this virus using 
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molecular techniques. Although the use of cDNA clones in TSWV diagnosis has been 

reported previously (Ronco et al.. 1990; German et al.. 1990), the lack of sensitivity 

makes it thusfar less valuable for practical application. 

We here describe two methods for detection of TSWV, one involving Northern dot 

blot hybridization, using synthetic RNA transcripts (riboprobes), and another involving 

the 'polymerase chain reaction' (PCR) technique. Both methods enable sensitive and 

unequivocal detection of TSWV. 

6.2 Methods 

6.2.1 Virus and plants 

TSWV CNPH1, a Brasilian isolate from tomato, has been used in all experiments. 

TSWV-infected plants have been obtained from professional growers in the Netherlands. 

Virus was purified from infected Nicotiana rustica var. America according to Tas et al. 

(1977) and RNA was extracted from purified virions using SDS-phenol and subsequent 

ethanol precipitation. 

6.2.2 Probe preparation 

Complementary DNA (cDNA) to TSWV RNA was synthesized and cloned as 

described in Chapter 3. DNA fragments of several clones were inserted in bluescribe 

vectors pSK+ (Stratagene), flanked by bacteriophage T3 and T7 RNA polymerase 

promoters (Fig.6.1). After linearization of the templates, 32P-labelled, run-off transcripts 

were synthesized using T3 or T7 RNA polymerase (Gibco-BRL), according to conditions 

recommended by the manufacturer. Routinely a specific incorporation of 109 c.p.m. was 

obtained per jig linearized plasmid DNA. The strand-specific RNA probes were tested 

by Northern blot analysis of RNA, extracted from purified virus, or from TSWV-infected 

and healthy N. rustica leaves. 
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6.2.3 Northern dot blot hybridization 

Deproteinized RNA samples were prepared by grinding 1 g leaf material in 5 ml 

extraction buffer (10 mM Tris-HCl (pH = 7.5), lOmM NaCl, 5 mM EDTA, 0.1 % Triton 

X-100 and 0.1 % 2-mercaptoethanol), followed by phenol extraction. Purified virus and 

RNA preparations were diluted and spotted on membranes in quantities of 3 JJL.1 per sp

ot. Several membrane types (nitrocellulose, nylon) obtained from different companies 

were tested. Nylon membranes, such as Hybond N+ (Amersham) or Genescreen-plus 

(NEN) gave the most satisfactory results. The RNA was UV-cross-linked, prehybridized 

for 4 h at 60 °C in a buffer consisting of 5 X SSC, 5 X Denhardts, 50 mM NaH^O,,, 50 

mM EDTA, 100 (i.g/ml denaturated herring sperm DNA and subsequently hybridized 

in the same buffer, for 18 h at 60 °C, after adding 105 c.p.m./ml RNA probe. The filters 

were washed twice with 2 X SSC, 0.1 % SDS for 5 min at room temperature, washed 

once with 0.1 % SSC, 0.1 % SDS for 5 min at 50 °C and exposed to X-ray films. 

6.2.4 PCR reactions 

Crude RNA samples were prepared by grinding 1 g leaf material in 5 ml of sterile 

water, immediately followed by phenol extraction. One JJLI of RNA sample was reverse 

transcribed and subsequently amplified in a final volume of 100 JJUI, containing 100 units 

(u) MuMLV-reverse transcriptase (Gibco-BRL) and 2.5 u Tag polymerase (Promega), 

using 4 n,g/ml primer SI and S2 or LI and L3 (see Fig.6.1) for 30 min at 37 °C followed 

by 30 amplification cycles (1 min denaturation at 93 °C, 1.5 min annealing at 55 °C and 

2 min extension at 72 °C). The amplified DNA fragments were visualised on 1% agarose 

gels. 
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6.3 Results 

6.3.1 RNA probe synthesis and dot blot hybridization 

A number of methods can be used for the preparation of labelled probes to detect 

viral RNA by molecular hybridization. Hybridization techniques using labelled synthetic 

RNA transcripts have been shown to be particularly sensitive (Maule et al.. 1983; 

Baulcombe et al.. 1984; Roy et al.. 1988; Varveri et al.. 1988; Koenig et al, 1988). To 

obtain templates for synthesis of strand specific RNA probes to be used for detection 

of TSWV, several cDNA fragments derived from the TSWV S, M and L RNA segment 

(70, 201, 270 and 514) were subcloned in plasmid pSK+. For each template, RNA 

transcripts complementary to the viral RNA were synthesized using T7 RNA polymerase 

(Fig.6.1). The experiments described in this Chapter have all been performed with a L 

RNA-specific probe, i.e. clone 70, which contained a viral insert of 1175 nucleotides. 

As a next step in the development of a sensitive detection assay, experiments were 

performed to optimize the hybridization procedure. The resulting favourable membrane 

type, hybridization and washing conditions have been described under methods. To 

prepare samples from infected plants, a number of different grinding buffers were tested. 

Buffers giving the best results contained 0.1 % Triton X-100 and 0.1 % 2-mercaptoetha-

nol. An extraction step with phenol was used to remove proteins that cause non-specific 

hybridization signals. Polyphenols present in some test samples such as tomato, were 

removed by addition of 1 % L-polyclar (BDH) during extraction. Polysaccharides 

present in many ornamental plant leaves were removed by addition of 1 % cetyl-

trimethyl-ammoniumbromide (CTAB) to the grinding buffer. Samples of purified viruses 

were spotted directly on membranes without any pre-treatment. Fig.6.2 shows that 

TSWV can be detected in tobacco leaf extracts when diluted up to 1/10,000, which 

corresponds to approximately one picogram of viral RNA. 
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Fig.6.1: Restriction endonuclease map of aligned cDNA clones to TSWV S and L RNA, together with the 
location of the primers used for PCR (SI, S3, LI, L3) and the cDNA clones (70, 201, 270 and 514) used as 
templates for synthesis of^P-labelled RNA probes. 

6.3.2 PCR detection 

The most recent and a most promising technique for virus detection, is the 

polymerase chain reaction (PCR), where viral nucleic acids are enzymatically amplified 

using reverse transcriptase and the thermo-stable Taq-polymerase (Ehrlich, 1989; Innis 

et al. 1990). Using primers derived from the 3' region of the S RNA sequence (see Fig. 

6.1), DNA fragments of expected size (500 bp) were generated from crude RNA samples 

of TSWV-infected plants. In a same assay primers derived from the 3' region of TSWV 

L RNA yielded 800 bp DNA fragments. 

Under these standard amplification conditions approximately 100 fg viral RNA could 

be detected (Fig. 6.3). Virus could be detected in plant sap when diluted up to 50,000 

times. Based on the band intensities on the agarose gels, it can be concluded that the 

standard PCR conditions used, were apparently sub-optimal for detection of extremely 

low amounts of RNA. The detection levels may be further increased by using more 

reverse transcriptase and/or Taq-polymerse or by using longer extension times. In 
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Fig.6.2: Detection of TSWV in 
dilutions of a purified virus prepa
ration and in extracts of infected 
plants, using the dot blot hybrid
ization assay. 

contrast to the hybridization method, no additives or additional steps in the sample 

preparation were necessary for proper PCR reactions. 

6.3.3 Indexing of plants for TSWV infection 

In order to determine the value of both molecular detection methods a large number 

of uninfected and TSWV-infected plants, obtained from individual growers, were 

analyzed. 

Routinely, leaf extracts were diluted tenfold prior to analysis. Examples are shown 

in Fig.6.4, where pepper plants have been tested. These experiments revealed that 

although both methods are sensitive and reliable, the critical step in both assays is the 

choice, which leaf to select as sample to be analysed. In our hands, the use of the upper 

(young) leaves showing systemic, non-necrotic symptoms gave the best results. 
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6.4 Discussion 

In standard double sandwich ELISA procedures routinely up to 1 ng of TSWV 

protein can be detected, corresponding with-approximately 10 pg of viral RNA (Resende 

et al.. 1991). With the described dot blot hybridization assay up to 1 pg of viral RNA can 

be detected. This method, which is approximately ten times more sensitive than ELISA, 

may therefore be useful for detection of TSWV at early stages of infection. However, 

hybridization techniques are relatively expensive and time consuming, compared to 

serological techniques. Working with radio-isotopes requires facilities, usually not 

available in plant pathology laboratories that carry out routine diagnosis. In the future, 

these problems might be circumvented by the use of non-radio-isotope labelling 

techniques, or by the use of the PCR technique. The described PCR assay is indeed 

more sensitive (0.1 pg of viral RNA can easily be detected) and less laborious than 

hybridization. At this moment the costs of PCR are significantly higher than those of 

serology. When PCR becomes a more widely applied technique, the prices of used 

equipment and biochemicals will certainly decrease significantly. 
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Fig.6.4: Dot blot hybridization (A) and PCR (B) 
to index pepper plants for infection with TSWV 

Although both molecular methods are highly valuable for virus identification under 

laboratory conditions (Fig.6.4), additional refinements and simplifications are necessary 

to make them suitable for diagnostic purposes in practise. 

As outlined in the introduction, several serogroups of TSWV can be recognized. 

Preliminary hybridization experiments revealed that nucleotide sequence homology 

between representatives of different serogroups is low (Avila et al.. 1991). This implies 

that other TSWV isolates may not be identified using the RNA probes and primers 

described here. Nucleotide sequence data on other TSWV isolates are therefore urgently 

required to select for conserved sequences, which can be used for the production of 

more universal riboprobes or PCR-primers, as reported recently for luteo- and 

potyviruses (Robertson et al.. 1991; Langeveld et al.. 1991). 
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CHAPTER 7 ENGINEERED RESISTANCE TO TOMATO SPOTTED 
WILT VIRUS, A NEGATIVE-STRAND RNA VIRUS 

Peter de Haan1, Jan Gielen2, Ad Kool2, Dick Peters1, Mart van Grinsven2 & Rob 

Goldbach1 

ABSTRACT 

For a growing number of positive-strand RNA viruses, it has been demonstrated that 

transformation of host plants with the viral coat protein gene confers resistance to the 

corresponding virus. Sofar, successful transformation strategies to gain resistance to 

negative-strand RNA viruses have not been reported. Here we show that genetically 

engineered resistance can be obtained to tomato spotted wilt virus, an enveloped virus 

with a negative-strand RNA genome, by transforming tobacco with the gene encoding 

the viral nucleocapsid (N) protein, an internal RNA-binding protein. 

1 Dept. of Virology, Agricultural University Wageningen, Binnenhaven 11, P.O. Box 8045,6709 PD Wagening
en, The Netherlands 
2Zaadunie Research, Westeinde 62, P.O. Box 26, 1600 AA Enkhuizen, The Netherlands. 
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7.1 Introduction 

Among plant viruses tomato spotted wilt virus (TSWV) is unique in its particle mor

phology and genome structure, and moreover, it is the only plant virus transmitted by 

thrips species (Sakimura, 1962; Paliwal, 1974). TSWV particles are enveloped, spherically 

shaped (80-110 nm in diameter) and are studded with surface projections (Best & Palk, 

1964; Ie, 1964; Kitajima, 1965). The genome consists of three species of linear single 

stranded RNA denoted S, M and L. The genomic RNAs are tightly associated with 

nucleocapsid (N) proteins to form pseudo-circular nucleocapsids (Van den Hurk et al., 

1977; Mohamed, 1981; Peters étal., 1991). 

The TSWV S RNA segment is 2916 nucleotides long and has an ambisense gene 

arrangement, exactly as found for bunyaviruses belonging to the genera uukuvirus and 

phlebovirus (Giorgi et al., 1991). This RNA contains two genes, the nucleocapsid (N of 

28.8K) protein gene in viral complementary sense and a gene encoding a non-structural 

(NSs of 52.4K) protein in viral sense (Chapter 4). 

TSWV L RNA is 8897 nucleotides long and completely of negative polarity. It 

encodes a primary translation product of 331.5K, which most likely corresponds with the 

viral polymerase, which is present in the virus particles (Chapter 5). Preliminary 

sequence data on the M RNA (approximately 5000 nucleotides long) indicate that it is 

also of negative polarity. It most likely encodes the membrane glycoproteins G l of 78K 

and G2 of 58K. 

The properties summarized here indicate that TSWV represents a member of the 

arthropod-borne Bunyaviridae, a large family of negative-strand RNA viruses (Elliott, 

1989). Indeed at the latest meeting of the International Committee on Taxonomy of 

viruses in Berlin 1990, TSWV has been classified as the prototype of the genus 

tospovirus within the Bunyaviridae, being unique in its property to infect plants. 

The worldwide distribution of TSWV, together with the current dramatic expansion 

of one of its major vectors, the Western Flower thrips (Frankliniella occidentalism, makes 

this virus one of the most harmful plant viruses. To date more than 400 plant species, 

both mono- and dicotyledons, are known to act as susceptible hosts for TSWV and 
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considerable yield losses have been reported in the cultivation of many important crops, 

such as tomato, tobacco, lettuce, groundnut, pepper and ornamentals such as Impatiens, 

Ageratum and Chrysanthemum (Iwaki et al.. 1984; Barnes & Halliwell, 1985; Reddick 

etal., 1987; Allen & Matteoni, 1988; Brown, 1988; Mantel & Van de Vrie, 1988; Gebré-

Selassie et al.. 1989; Cho et al.. 1989). Mainly due to the resistance of thrips species to 

insecticides and routine sanitary measures are no longer adequate to limit the incidence 

of TSWV infections. Therefore, natural occurring resistance or tolerance to TSWV has 

been topic of intensive breeding research. However, studies on tobacco, tomato and 

lettuce have shown that natural resistance or tolerance to TSWV is predominantly 

polygenic and based on complex interactions between virus, vector and host plant (Smith 

& Gardner, 1951; Finlay, 1953; Borchers, 1956; Holmes, 1958; Best, 1968; Moldovan & 

Chokan, 1972; Vinogradov et al.. 1982; Cupertino et al.. 1986; O'Malley & Hartmann, 

1989; Paterson et al.. 1989). 

We therefore addressed the question whether engineered resistance to TSWV 

infections can be achieved by expression of the viral N protein in tobacco. The rational 

behind this molecular approach is the dual function of this protein. It has been 

demonstrated for other negative-strand viruses (i.e. arena-, bunya- and influenzaviruses) 

that the N protein is involved in wrapping the viral RNAs to yield nucleocapsids. 

Moreover, the amount of intracellular, free, unassembled N protein discriminates 

whether the viral polymerase is active in transcription or replication of the RNA genome 

(Ihara et al.. 1985; Beaton & Krug, 1986; Franze-Fernandez et al.. 1987; Vidal & 

Kolakof ski, 1989). It is envisaged that accumulation of the TSWV N protein in a 

susceptible host plant could lead to to blocking of the transcriptional activity of the viral 

polymerase, causing abortive replication of incoming viral RNAs. 
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7.2 Methods 

7.2.1 Virus and plants 

TSWV isolate CNPH1, originating from Brasil, was maintained in tomato by grafting. 

Virus was purified from mechanically inoculated tobacco (Nicotiana rustica var. 

America) as described by Tas et al. (1977). For the transformation experiments, in vitro 

grown N. tabacum var. SRI was used as recipient. Transgenic tobacco plants were grown 

under greenhouse conditions (PKII), according to the legislation imposed by the Dutch 

authorities (voorlopige Commissie Genetisch Modificatie: vCOGEM). 

7.2.2 Construction of the plant expression vectors 

All manipulations involving DNA or RNA were performed according to standard 

procedures (Ausubel et al.. 1990). A cDNA fragment containing the TSWV N gene and 

124 nucleotides of its 5' untranslated leader sequence and 6 nucleotides of its 3' trailer 

sequence (Chapter 4) was provided with Pstl linkers and subsequently cloned into the 

expression vector pZU-A, yielding pTSWVN-A (Fig.7.1a). The vector pZU-A contains 

the cauliflower mosaic virus (CaMV) 35S promoter sequences and the transcription-

terminator sequences from the nopalin synthase (nos) gene of the Agrobacterium 

tumefaciens Ti plasmid. A second gene cassette was constructed by removal of the 5' un

translated leader sequence from the TSWV N gene, using site directed mutagenesis (an 

EcoRV restriction site was created just in front of the AUG startcodon). The resulting 

DNA fragment was cloned in expression vector pZU-B, yielding pTSWVN-B (Fig.7.1b). 

The vector pTSWVN-B is identical to pTSWVN-A, except that the 5' untranslated 

leader sequence of the TSWV N gene has been replaced by that of tobacco mosaic virus 

(TMV). Both chimaeric gene cassettes were cloned as Xbal DNA fragments in binary 

transformation vector pBIN19 (Bevan, 1984). 
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Fig. 7.1: Schematical representation of the chimaeric gene cassettes containing the TSWV N gene. A, 
pTSWVN-A; B, pTSWVN-B. 

123 Transformation of tobacco 

The pBIN19 derived tranformation vectors were mated into the non-oncogenic 

A. tumefaciens strain LBA4404 (Hoekema et al.. 1983) by a triparental plasmid transfer 

using pRK2013 as a helper plasmid (Ditta et al., 1980). The resulting recombinant A. 

tumefaciens strains were checked for the integrity of the TSWV N gene by Southern blot 

analysis. Transformation and regeneration of in vitro grown N. tabacum var. SRI was 

performed by the leaf disk method essentially according to Horsch et_al.(1984). Tobacco 

transformants were selected for resistance to kanamycin (100 (i-g/ml), rooted, potted in 

soil and subsequently transferred to the greenhouse. 

7.2.4 Southern and Northern blot analysis 

Total DNA was extracted according to Ausubel et al. (1987). Portions of 10 jo-g 

DNA were digested with Xbai. fractionated by electrophoresis in 0.8 % agarose gels and 
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transferred to Hybond-C membranes by capillary blotting. The resulting Southern and 

Northern blots were subsequently hybridized to a 32P-labelled cDNA fragment, 

containing the TSWV N gene (See 7.2.1). 

Total RNA was extracted from transgenic tobacco plantlets according to Logemann 

et al. (1987). RNA samples of 20 n-g were fractionated on 1.2% agarose gels under 

denaturating conditions and tranferred to Hybond-C membranes (Amersham) by 

capillary blotting. 

7.2.5 Protein analysis in transgenic plants 

The amounts of N protein in young tobacco leaves were quantified by DAS-ELISA 

using a polyclonal rabbit antiserum to purified TSWV nucleocapsids (Resende et al., 

1991). Purified nucleocapsid protein was included as standard. The soluble protein 

content of the leaf extracts was determined using the Bio-Rad protein assay. The steady-

state levels were calculated and presented as percentage of total soluble protein. 

The integrity of the TSWV N protein accumulating in the transgenic tobacco plants 

was verified by Western blot analysis. Leaf tissue was grinded in PBS-T (phosphate-

buffered saline supplemented with 0.1% Tween-20) and portions of 50 p.g of soluble 

protein were fractionated by electrophoresis in 12.5 % SDS-polyacrylamide gels 

(Laemmli, 1970). The proteins were blotted to Immobilon-P membranes (Millipore) and 

incubated with antiserum, conjugated with alkaline phosphatase (Avila et al., 1990). 

7.2.6 Analysis of protection against TSWV infection 

Progeny plants of self-pollinated initial tobacco transformants were analyzed for the 

segregation of the introduced N gene cassette by DAS-ELISA (See 7.2.5) and 

subsequently inoculated with TSWV, approximately 6 weeks after sowing (two-leaves 

stage). The plants which did not receive a copy of the N gene after self-pollination were 
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used as controls. The largest leaf was dusted with carborundum and inoculated with 25 

\sA inoculum, containing approximately 5-10 fig virus. The inocula were prepared by 

grinding 1 g of systemically infected N. rustica leaves in 5 ml 0.1 M sodiumphosphate 

(pH = 7.0) supplemented with 0.01 M Na^C^. Since TSWV is one of the most unstable 

plant viruses known (le, 1970; Francki etal., 1985), all inocula were prepared freshly and 

kept on ice. The transgenic plants were inoculated first, followed by the control plants. 

After inoculation, the leaves were rinsed with water and the plants were monitored daily 

for the development of local and systemic symptoms. Upon mechanical inoculation of 

tobacco var. SRI with TSWV, usually, necrotic primary infection spots appear on the 

inoculated leaves within 4-6 days. In addition, chlorosis and/or mosaic symptoms can be 

observed on the systemically infected leaves within 6-10 days. The plants will die a few 

A B 
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1.6 kb ^ _ ^ ^ _ _ f c 

Fig.7.2: Panel A: Southern blot analysis of the primary transformants. Genomic DNA was digested with Xbal 
to reveal the complete TSWV Ngene cassette, fractionated on a 0.8 % agarose gel, blotted to a Hybond-C 
membrane and hybridized to a ̂ P-labelled DNA fragment, containing the TSWV Ngene. Panel B: Northern 
blot analysis of the N gene transcripts in transgenic tobacco. Total plant RNA was fractionated on a 1.2 % 
agarose gel, transferred to a Hybond-C membrane and hybridized to the same probe as panel A The numbers 
above the lanes correspond to the transgenic tobacco lines. SRI, untransformed tobacco SRI; C, control 
Plasmid DNA; I, RNA from TSWV-infected tobacco leaves; H, RNA from healthy leaves 
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days later. In the inoculation experiments, plants were scored as being susceptible, when 

any leaf younger than the inoculated leaf showed typical systemic symptoms. Leaf 

samples were collected from visually healthy and from infected plants to check for the 

presence of virus by DAS-ELISA using monoclonal antibodies directed to the membrane 

glycoproteins of the virus (Avila et al.. 1990). 

7.3 Results 

7.3.1 Transformation of tobacco with the TSWV N gene 

A chimaeric gene cassette (pTSWVN-A) was constructed which contained the 

TSWV N gene with 124 nucleotides of the 5'-untranslated leader sequence, downstream 

of the CaMV 35S promoter (Fig.7.1a). To enhance the expression levels of the N gene, 

a second construct (pTSWVN-B) was made, in which the original TSWV-specific 5'-

leader was replaced by the leader from TMV, which was known to function as a 

translational enhancer (Gallie et al.. 1987)(Fig.7.1b). The polyadenylation signal was 

derived from the 3'flanking region of the nopalin synthase (nos) gene. Both gene 

cassettes were cloned into the binary transformation vector pBIN19 and subsequently 

transferred to N. tabacum var. SRI by means of A. tumefaciens mediated leaf disc 

transformation. The integrity of the introduced N gene cassettes was verified by Southern 

blot analysis (Fig.7.2a). Northern blot analysis showed that mRNAs of expected size were 

transcribed from these chimaeric genes (Fig.7.2b). In total, 65 pTSWVN-A transformants 

(numbered 1-65) and 55 pTSWVN-B transformants (numbered 101-155) have been 

obtained. Except for one transformant, all transgenic tobacco plants exhibited normal 

phenotypic appearances and set seeds after self-pollination. 
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F/£. 73: Western blot analysis of nucleocapsidproteins accumulating in transgenic tobacco. Protein extracted 
from leaves, were separated on a 125 % SDS-potyacrylamide gel, blotted to an Immobilon-P membrane and 
N protein was detected using an antiserum to purified TSWV nucleocapsids. Lane 1, marker proteins with 
the Mr values indicated on the left; Lane 2, TSWV-infected leaf extract; Lane 3, healthy leaf extract; Lanes 
4 to 10, leaf extracts of transformants 10, 12, 61, 129, 139, 141 and 142 respectively. 

132 Expression of the TSWV N gene in transgenic tobacco 

The presence of N protein in the transgenic plants was determined by Western blot 

analysis (Fig.7.3). These experiments showed that the N protein produced in these 

plants, comigrated with that extracted from tobacco plants infected with TSWV. The 

expression levels were quantified by DAS-ELISA (Fig.7.4). The amounts of N protein 

differed considerably between individual transformants, ranging from below detection 

level to 1.5 % of the soluble leaf protein fraction. The differences in the amounts of N 

protein in the transgenic plants are most likely due to positional effects of the local 

genomic environment on the introduced gene cassettes. The average amount of N 
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protein accumulating in the pTSWVN-B transformants was approximately twice as high 

as that of the pTSWVN-A transformants. 
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Fig. 7.4: Accumulation of TSWVNprotein in transgenic tobacco quantified byDAS-ELISA. The accumulation 
levels are presented as percentages of total soluble leaf protein content. The numbers refer to the primary 
tobacco transformants. 

DAS-ELISA analysis of SI progeny plants, obtained by self-pollination of the initial 

transformants, revealed the segregation ratios of the introduced gene cassettes. In most 

cases a segregation ratio of 3:1 (expressor : non-expressor) was obtained, indicating that 

the N gene cassette behaved as a single dominant gene. Southern blot experiments 

confirmed that most transgenic tobacco plants contained an unrearranged copy of the 

TSWV N gene. However, transformant nr. 139 (Fig.7.4) contained two or more active 

copies of the N gene. The expression levels of the TSWV N transgene in the SI progeny 

plants were similar to that of the initial transformants. A correlation between the level 

of expression and the zygosity (homo- or heterozygote) of the plant could not be 

observed. 
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7.3.3 Virus susceptibility of the transgenic plants 

To determine the susceptibility of the transgenic tobacco plants to TSWV-infections, 

progeny SI plants were challenged by mechanical inoculation with TSWV. Over three 

separate experiments 80 progeny plants of each line were inoculated with 5-10 \ig virus 

(isolate CNPH1), approximately 6 weeks after sowing. Control plants consisted of SI 

individuals which did not inherit the N transgene after self-pollination of the original 

transformants. After inoculation, plants were monitored daily for the appearance of 

systemic symptoms. On average, four out of ten transgenic N protein-expressing (N+) 

tobacco lines showed reduced susceptibility to TSWV-infection, compared to the control 

plants, the non-expressing (N) segregants. Figure 7.5a shows a typical experiment, using 

pTSWVN-A transformed lines 12 and 61, which both accumulated the N protein to 

approximately 0.25 % of total soluble protein (Fig.7.4). The N" plants of both lines all 

showed severe systemic symptoms, 6 days after inoculation. The progeny N+ plants of 

line 12 exhibited a delay in the symptom-development and moreover, approximately 70 

% of the plants escaped from TSWV-infection. The progeny N+ plants of line 61 all 

became systemically infected, albeit one day later than the control plants. Similar results 

have been obtained with the pTSWVN-B transformed tobacco plants (Fig.7.5b). Again, 

approximately four out of ten lines showed significant levels of protection to TSWV-

infection. The results obtained with three lines, in which the N protein accumulated to 

approximately 1% of total soluble protein are shown in Fig.7.5b. Approximately 90 % 

of the N+ progeny plants of line 139 were protected, whereas no protection could be 

observed for line 141. Line 129, which accumulates N protein to a level comparable to 

139, displayed an intermediate level of resistance, since only approximately 25% of the 

N+ progeny plants were protected. In addition, compared to non-expressing control 

plants, N+ progeny plants of line 129 and 139 exhibited a delay of three to four days in 

symptom-development upon mechanical inoculation. In tobacco lines that showed 

reduced susceptibility to TSWV the numbers of primary infection spots were significantly 

lower (results not shown). It is evident from our study that no correlation could be found 

between the amounts of N protein accumulating in the transgenic plants and the levels 
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Fig.7.5: Development of systemic disease symptoms in transgenic SI progeny plants, after mechanical 
inoculation with TSWV. Control plants consisted of plants that did not inherit a copy of the Ngene after self-
pollination of the initial transformant. Plants were inoculated six weeks after sowing with approximately 5-10 
\i,g of virus. The development of systemic symptoms was monitored daily. Panel A: two representative lines 
nr. 12 and 61, ofpTSWVN-A transformed tobacco plants. Panel B: Three pTSWVN-B transformed tobacco 
lines, nr 129, 139 and 141. 

of protection to TSWV infection. 

DAS-ELISA experiments using monoclonal antibodies to the membrane glycopro

teins of the virus demonstrated that TSWV could only be detected in plants showing 

symptoms. Virus could not be detected in the protected transgenic plants, except for the 

few primary infection spots that appeared on the inoculated parts of the leaf. 

7.4 Discussion 

In this report we demonstrated that transformation of tobacco with the TSWV N 

gene confers resistance to this virus. Hence, this is the first example of genetically 

engineered resistance to a negative-strand virus. Transgenic tobacco plants have been 

obtained that express the introduced gene to high levels (up to 1.5 % of the total amount 
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of soluble protein). The TSWV N gene is stably inherited by inbreeding, through the 

third generation produced to date. In general, the transgene does not have any 

deleterious effects on phenotype and fertility of the initial transformants or their 

progeny. 

The amounts of TSWV N protein in transgenic plants is not affected by gene dosage 

effects (either zygosity or gene copy number). Thus, a correlation between amount of N 

protein and number of loci expressing the gene could not be observed. This might be 

due to the overall high levels of expression. Generally, the steady-state levels of N 

protein in the pTSWVN-B transformed plants were twice as high as those of the 

pTSWVN-A transformants. This may indicate that in these plants the TMV 5'-

untranslated leader sequence indeed served as a translational enhancer (Gallie et al.. 19-

87). 

Upon mechanical inoculation, a number of transgenic tobacco lines expressing the 

TSWV N gene, show reduced susceptibility to TSWV. In comparison to control plants, 

transgenic plants escaped from infection and moreover, the few plants that became 

infected showed a significant delay in symptom development. DAS-ELISA experiments 

revealed that virus could only be detected in those parts of the leaves that showed 

systemic symptoms, or in the primary infection spots. Since, both the number of primary 

infections is decreased and systemic transport of virus is inhibited (the infection remains 

localized), these results suggest that this genetically engineered resistance operates at 

several levels. 

It has been shown that the CaMV 35S promoter consists of multiple regulatory 

elements, which can each be differently affected according to its position in the 

chromosome. As a consequence, even when the overall amounts of N protein in different 

plants are equal, the 35S promoter in these plants may exhibit divergent levels of 

transcriptional activity among different tissues and cell types (Benfey et al.. 1990a, 

1990b). As we measured only overall N protein accumulation and not specifically at the 

site of infection, this could explain why there is no correlation between the amount of 

N protein and the observed level of resistance. 

It should be noticed that the transcripts of the N gene cassettes are complementary 
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to the viral S RNA molecules. Hence, these transcripts could exhibit 'antisense' activity. 

To address this question, tobacco has to be transformed, with a TSWN N gene cassette, 

in which the open reading frame is distorted by frame shift mutation. Challenging of 

these transformants with TSWV should reveal whether the observed protection to viral 

infection is caused by accumulation of the N protein or by antisense inhibition. If the 

resistance indeed resides at the protein level, we could assume that the presence of N 

protein in the transgenic plants will block transcription by the viral polymerase, which 

is present in the infecting virus particles. This then implies that the mechanism on which 

the protection is based, would differ from coat protein-mediated protection as reported 

for plus-strand RNA viruses (Beachy et al., 1990; Hemenway et al., 1990). 

This successful approach to obtain genetically engineered resistance to TSWV in 

tobacco will be of great value to combat this devastating plant pathogen. Therefore, this 

strategy will be extended to other economical important crops. Moreover, this approach 

may work for other negative-strand viruses, infecting plants. 
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CHAPTER 8 CONCLUDING REMARKS 

Tomato spotted wilt virus has become a limiting factor in the cultivation of many 

crops and ornamental plant species. The rapid spread of its most important vector 

species CFrankliniella occidentalism, is the most plausible explanation of its recent revival 

in the temperate climate zones of both the Old and New World. Besides the economic 

importance, also scientific reasons may explain the renewed interest to this plant virus. 

TSWV is characterized by its typical enveloped, spherically-shaped particles, which 

are covered in a layer of spikes. The genome consists of three species of linear single 

stranded RNA, which are tightly wrapped with nucleocapsid protein to form pseudo-

circular nucleocapsids. These unique properties among plant viruses formerly led to a 

classification into a monotypic plant virus group; the tomato spotted wilt virus group (Ie, 

1970). The analysis of the structure and coding properties of two of the three genomic 

RNA segments (Chapters 3, 4 and 5), has revealed that TSWV actually belongs to the 

Bunyaviridae, a large family of viruses with arthropod and mammalian hosts (Bishop et 

al., 1980; Elliott, 1990). 

TSWV S RNA is 2916 nucleotides long and encodes the nucleocapsid protein (N of 

28.8K) in a viral complementary sense subgenomic mRNA species and a putative non

structural protein (NSs of 52.4K) in a viral sense subgenomic mRNA. No sequence 

relationships can be identified between TSWV N and NSs to any other protein 

(Fig.8.1a). This typical coding arrangement, termed ambisense, is also found for the S 

RNA segments of uuku- and phleboviruses, two genera within the Bunyaviridae (Giorgi 

et al.. 1991) and for the S and L RNA segments of arenaviruses (Auperin et al.. 1984; 

Salvato & Shimomaye, 1989). Recently, ambisense coding strategies have also been 

reported for the RNA segments 3 and 4 of tenuiviruses, i.e. rice stripe virus (Gingery, 

1988; Kakutani et al.. 1990, 1991; Zhu et al.. 1991) and maize stripe virus (Huiet et al.. 

1991). Tenuiviruses represent a group of segmented negative-strand viruses, which seem 

to lack a lipid envelope. Rice stripe virus is the prototype of this small family of plant 

viruses. The intergenic region of TSWV S RNA consists of an A-rich stretch of 
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nucleotides followed by an U-rich stretch and can be folded into a stable 'hairpin' 

structure. Among the ambisense RNA segments, two types of intergenic regions can be 

distiguished. The S RNA segments of TSWV, Punta Toro virus (PTV), Uukuniemi virus 

and the segments 3 and 4 of tenuiviruses have A-U rich intergenic regions. The S RNAs 

of Rift Valley fever virus, Toscana virus, Sandfly Sicilian fever virus and the S and L 

RNAs of arenaviruses have G-C rich intercistronic regions. The 3' ends of the 

subgenomic mRNAs of only two viruses (PTV and Tacaribe virus) have been 

characterized. Transcription termination of both the N and the NSs mRNAs of PTV 

occurs in the vicinity of the loop of the proposed hairpin structure. On the basis of the 

lengths of the subgenomic mRNAs of TSWV S RNA (1.2 kb and 1.7 kb), it seems likely 

that both transcripts also terminate in the top of the intergenic hairpin. For Tacaribe 

virus, no special sequences that could function as termination signals were identified in 

the S RNA. In this case the structure at the 3' ends of the mRNAs, rather than 

particular sequences in the template RNA may be involved in transcription termination. 

The sequences which signal termination of transcription have not been elucidated in the 

other viruses with ambisense RNA segments. 

TSWV L RNA is 8897 nucleotides long and is completely of negative polarity. One 

large ORF is located on the viral complementary strand, which corresponds with a 

predicted protein of 331.5K In analogy to other bunyaviruses it can be assumed that 

TSWV L RNA encodes the L protein, the viral polymerase (Fig.8.1). Comparison of the 

predicted L protein of TSWV to the putative polymerases of two other bunyaviruses, 

Bunyamwera and Hantaan virus and to PB1 of Influenza A virus, revealed the presence 

of five conserved amino acid sequence motifs, which are specific for all polymerases 

using RNA as a template (Poch et al..l989). These signature sequences most likely 

represent the catalytic domains of the polymerase molecules. The comparative studies 

furthermore demonstrated that obviously, TSWV is more closely related to Bunyamwera 

virus than Hantaan virus is to the prototype of the Bunyaviridae (Fig.8.2). Bunya- and 

arenaviral L proteins are much larger than PB1, of the influenzaviruses. The active 

RNA polymerase of influenzaviruses consists of three subunits (PA, PB1 and PB2), 

which are encoded by the three largest RNA segments (Chapter 2). Since PB1 is the 
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Fig.8.1: Schematic representation of the ambisense gene arrangement ofTSWV S RNA and the negative-
stranded L RNA segment. 

core polymerase subunit, it can be anticipated that the catalytic domains responsible for 

'cap-snatching' and polyadenylation of the mRNAs are most likely present in the PA and 

PB2 subunits. 

As outlined in Chapters 3 and 5, a defective L RNA molecule was present in the 

TSWV line used in these experiments. Truncated genomic L RNAs are abundantly 

present in some TSWV isolates, when maintained by mechanical transmission (Resende 

et al.. 1991). 

Both TSWV S and L RNA have complementary terminal sequences, which is a 

property typical for negative-strand viruses. The termini can be folded in 'panhandle' 

structures, which are involved in the formation of circular nucleocapsids in the virus 

particle (Chapter 3). Moreover, they certainly will contain recognition signals for the 

viral polymerase and hence, play an important role in transcription and replication of 

the genomic RNAs (Chapter 2). The terminal sequences of members of the Bunyaviridae 

are more or less genus-specific. On the basis of these sequences, the genera can be 
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clustered into three groups, the nairoviruses, the phlebo/uukuviruses and the 

bunya/hantaviruses. Remarkably the termini of the TSWV RNAs show remarkable 

sequence homology to those of RNA segment 3 of Thogoto virus, a tick-borne member 

of the Orthomyxoviridae (chapter 5). This suggests that these viruses share some 

genetical interrelationship. 

Taken all morphological, serological and molecular data into account, it is clear that 

TSWV should be classified as the representative of a distinct genus within the 

Bunyaviridae. Recently the genus name tospovirus has been accepted by the ICTV 

(International Committee on Taxonomy of Viruses). During the coarse of the 

investigations described in this thesis, other TSWV-like viruses have been described such 

amino acids 1000 2000 3000 
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TSWV (L, 331.5K) Y///////mw/zzz. 
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Fig.8.2: Schematical representation of the L proteins of TSWV, Bunyamwera and Hantaan lirus and 
comparison with the polymerase P proteins of influenza A virus. The arced boxes represent regions within 
the TSWV and Bunyamwera L proteins with significant amino acid sequence homology (277o identity). The 
black boxes represent the regions harbouring the putative polymerase motifs 
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as isolates from Impatiens, watermelon and peanut (Kameyi-Iwaki et al., 1988; Law 

& Moyer, 1990; Avila et al.. 1991; Reddi et al.. 1991). These viruses may represent 

different virus species within this newly created genus. 

Despite the detailed knowledge on the molecular properties of many members of the 

negative-strand virus supergroup, the evolutionary relationships between the different 

families and genera remain unclear. For example, as outlined above, on the basis of 

amino acid sequence homology in the polymerase proteins, TSWV is more closely 

related to Bunyamwera virus than Hantaan virus is. Nucleotide sequence homology at 

the RNA termini however, suggests the opposit. The identical termini of the 

phlebo/uukuviral RNAs and those of tenuiviruses suggests a close ancestral relationship, 

although tenuiviruses do not have enveloped virus particles and contain 4 genomic RNA 

species. In summary, no phylogenetic relationships can be deduced from the complex 

patterns of similarities between these viruses. This is a general problem in the definition 

of higher taxa for viruses. 

Now nucleotide sequence data and cDNA clones have become available, new 

molecular detection methods can be developed, which may serve as alternatives of the 

currently applied ELISA assays. Chapter 6 describes the use of two molecular 

techniques for sensitive detection of TSWV. The first assay is based on dot blot 

hybridization, using synthetic radioactively labelled RNA probes. It enables detection of 

approximately 1 pg of viral RNA in TSWV-infected leaf material. The second method 

(PCR) is based on amplification of DNA fragments, using specific oligonucleotides, 

reverse transcriptase and taq-polymerase. In this assay, quantities as low as 0.1 pg of 

viral RNA can be detected. In principle, after further optimalizations, both methods can 

be applied in TSWV diagnosis. 

Another result of the research described in this thesis is that cloned TSWV genes 

have become available. This has opened the way to investigate whether they can be 

utilized for creating genetically engineered resistance to this harmful pathogen. Sofar, 

no plant resistance genes to TSWV have been characterized, which can be of potential 

use in breeding programs. Chapter 7 deals with the introduction and expression of the 

TSWV nucleocapsid protein (N) gene in tobacco. For several other negative-strand 
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viruses it has been reported that the N protein plays an important regulatory role in the 

viral infection cycle. The amount of free unassembled N protein in the cytoplasm 

discriminates whether transcription or replication takes place by the viral RNA 

polymerase (Chapter 2). It may be anticipated that high levels of N protein in transgenic 

plants lead to immediate and abortive replication of incoming viral RNA. The 

experiments described in Chapter 7 demonstrate that high levels of TSWV N protein 

accumulated in transgenic tobacco. Moreover, a number of lines show reduced 

susceptibility to TSWV-infection. Upon mechanical inoculation, the numbers of primary 

infections that appear on the leaves of protected plants are drastically decreased. The 

few plants that still become systemically infected show a delay in symptom development. 

Obviously the resistance works at two levels, i.e. primary infection and cell-to-cell or 

systemic movement. In addition to coat protein-mediated resistance for positive-strand 

RNA viruses (Beachy et al.. 1990; Hemenway et al., 1990), the experiments described in 

chapter 7 clearly show successfull genetically engineered resistance to a negative-strand 

RNA virus. Although the mechanisms by which this resistance works has remained 

unclear, this approach may be generally applied for creating resistance to minus-strand 

RNA viruses of plants (tospo-, tenui- and rhabdoviruses). 
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SAMENVATTING 

Het bronsvlekkenvirus virus van de tomaat, tomato spotted wilt virus (TSWV) was 

voor lange tijd de grote onbekende onder de plantevirussen. Ondanks het feit dat het 

een economisch erg belangrijk plantepathogeen is, kwam het onderzoek aan dit virus pas 

relatief laat op gang. Dit wordt in de eerste plaats veroorzaakt door het feit dat het een 

labiel en moeilijk hanteerbaar virus is. In de tweede plaats is TSWV pas echt onderwerp 

van intensieve studie geworden nadat één van de belangrijkste vectoren voor verspreid

ing, de Californische thrips fFrankliniella occidentalis) zich vanuit de Noord-

Amerikaanse westkust is gaan verspreiden over het noordelijk halfrond en wellicht de 

gehele wereld. Daarnaast is TSWV een wetenschappelijk interessant virus. De 

virusdeeltjes (met een diameter van 80-110 nm) bestaan uit nucleocapsiden, omgeven 

door een lipidemembraan, die bedekt is met 'spikes'. Het genoom bestaat uit drie enkel-

strengs lineaire RNA segmenten, die S (small), M (medium) en L (large) RNA worden 

genoemd. De complexe morfologie van de virusdeeltjes samen met het feit dat er 

nagenoeg geen moleculaire gegevens zijn, heeft lange tijd een goede classificatie in de 

weg gestaan. 

Dit proefschrift beschrijft een moleculair genetisch onderzoek aan TSWV, met als 

doel enerzijds de moleculaire eigenschappen en de taxonomische positie te bepalen en 

anderszijds een bijdrage te leveren aan de beheersing van dit schadelijke virus. 

De hoofdstukken drie, vier en vijf beschrijven de moleculaire clonering van het virale 

genoom en de vaststelling van de nucleotidenvolgorde van respectievelijk het kleinste (S) 

en het grootste (L) genomische RNA segment. De nucleotidenvolgorde van het 

middelgrote (M) RNA segment bleef bij dit onderzoek buiten beschouwing. 

Het TSWV S RNA is 2916 nucleotiden lang en bevat twee genen in een zogenaamde 

'ambisense' rangschikking. Op de virale RNA streng ligt een non-structureel eiwit (NSs, 

52,4K) gecodeerd, terwijl het nucleocapside eiwit (N, 28.8K) op de viraal complemen

taire RNA streng gecodeerd ligt. Voor beide eiwitten kan geen significante aminozuur 

sequentie homologie gevonden worden met enig ander eiwit. De twee genen komen tot 
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expressie middels de synthese van subgenomische mRNA moleculen. De regio tussen 

beide genen, rijk aan A en U residuen, kan gevouwen worden in een haarspeld structuur 

en bevat waarschijnlijk belangrijke signalen voor transcriptie door het virale polymerase. 

Het TSWV L RNA is 8897 nucleotiden lang en heeft een negatieve polariteit, met 

één groot open leesraam op de viraal complementaire streng. Het voorspelde genproduct 

bevat een vijftal geconserveerde aminozuur sequentie motieven, die typerend zijn voor 

alle Polymerasen met RNA als matrijs. Dit maakt het erg waarschijnlijk dat het L RNA 

codeert voor het virale RNA polymerase (L, 331,5K). Zoals beschreven in de 

hoofdstukken 3 en 5, werd een verkort L RNA molecuul aangetroffen in het gebruikte 

TSWV isolaat. Verkorte L RNA segmenten zijn in diverse isolaten aangetroffen, die 

middels mechanische inoculatie in stand worden gehouden. 

Zowel het S als het L RNA bezitten complementaire uiteinden. Deze vormen 

waarschijnlijk de herkenningsplaatsen voor het virale RNA polymerase. Vergelijking met 

andere RNA virussen laat zien dat er homologie bestaat tussen de terminale sequenties 

van TSWV en die van Thogoto virus, een door teken overgebracht orthomyxovirus. Dit 

kan mogelijk duiden op evolutionaire verwantschap tussen TSWV en de 

Orthomyxoviridae. De verkregen moleculaire gegevens samen met de morfologische 

eigenschappen laten zien dat TSWV behoort tot de familie der Bunyaviridae, een grote 

groep door arthropoden verspreide virussen. De structuur en genetische organisatie van 

het TSWV genoom lijkt sterk op dat van phlebo- en uukuvirussen, die twee genera 

vormen binnen deze grote virusfamilie. Omdat er geen serologische verwantschap bestaat 

tussen TSWV en de andere bunyavirussen en omdat er ook geen homologie in 

nucleotiden- of aminozuurvolgorde bestaat (behalve de geconserveerde 'polymerase 

motieven' in de L eiwitten natuurlijk), moet TSWV beschouwd worden als de 

vertegenwoordiger van een nieuw genus binnen de Bunyaviridae. Recentelijk is de genus 

naam tospovirus geaccepteerd door de ICTV (Internationaal Comité voor Taxonomie 

van Virussen). 

Met behulp van de verkregen cDNA clonen en de nucleotidenvolgorde informatie 

is het thans mogelijk geworden om gevoelige detectiesystemen te onwikkelen, die een 

aanvulling kunnen zijn op de reeds bestaande serologische detectiemethoden. Hoofdstuk 
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zes gaat over de onwikkeling van een detectiemethode gebaseerd op 'dot blot' 

hybridisatie met behulp van radioactief gemerkte synthetische RNA transcripten en van 

een methode gebaseerd op de 'polymerase chain reaction' (PCR). Respektievelijk 1 en 

0,1 picogram viraal nucleinezuur kon met deze methoden worden gedecteerd in TSWV-

geïnfecteerd plantemateriaal. In principe zijn beide methoden bruikbaar voor vroegtijdige 

TSWV diagnose. 

Door de beschikbaarheid van gedoneerde virale genen lag het vervolgens voor de 

hand te zoeken naar mogelijkheden voor resistentie tegen TSWV, door introductie van 

virale genen in waardplanten. Dit omdat tot op heden geen bruikbare natuurlijke 

resistentie genen tegen dit virus gevonden zijn. Gekozen is voor het tot expressie brengen 

van het TSWV N gen in tabak, omdat voor andere negatief-strengs RNA virussen 

vastgesteld was dat de hoeveelheid intracellulair N eiwit een sterk regulerende rol speelt 

in de virale infectiecyclus. De hoeveelheid vrij, cytoplasmatisch N eiwit bepaalt immers 

of er transcriptie danwei replicatie plaatsvindt door het virale polymerase. Wellicht zal 

een grote hoeveelheid N eiwit in transgene planten leiden tot voortijdige en abortieve 

replicatie van binnenkomend viraal RNA. De experimenten beschreven in hoofdstuk 

zeven laten zien dat een aantal transgene tabakslijnen verkregen werden die inderdaad 

verminderd vatbaar geworden zijn voor TSWV. Hoewel nog erg veel onderzoek nodig 

is, vormen deze resultaten een eerste en belangrijke stap op weg naar de beheersing van 

TSWV. 
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