
Xylose Metabolism 

in 

Bacteroides xylanolyticus X5-1 

sf Ub-

0000 0821 



BIBLIOTHEEK 
LANDBOUWUNIVERSITEIT 

WACEMNCEN 

Promotor: dr. A.J.B. Zehnder 
hoogleraar in de microbiologie 

Co-promotor: dr. Ir. A.J.M. Stams 
Universitair docent bij de vakgroep microbiologie 



fJuoPtol, / f ^Y 

S. Biesterveld 

Xylose Metabolism 

in 

Badervides xylanolyticus X5-1 

Proefschrift 

ter verkrijging van de graad van doctor 

in de landbouw- en milieuwetenschappen 

op gezag van de rector magnificus, 

Dr. C.M. Karssen, 

in het openbaar te verdedigen 

op vrijdag 22 april 1994 

des namiddags te half twee in de aula 

van de Landbouwuniversiteit te Wageningen. 



MfJO^ol,/?^ 

STELLINGEN 

1. Het verstrekken van het promotiereglement bij aanvang van het promotie 
onderzoek kan een hoop frustraties voorkomen. 

2. Het niet vermelden van de fosfoketolase route als belangrijke route voor de 
fermentatie van xylose door gisten (Skoog en Hahn-Hägerdahl 1988) is zeer 
onvolledig en getuigd van gebrekkige literatuurkennis. 

Evans, CT., and C. Ratledge. 1984. Arch Microbiol 139:48-52. 
Skoog, K., and B. Hahn-Hägerdal. 1988. Enzyme Microb Technol 1:66-80. 

3. Er zijn mensen die denken dat hun waarde stijgt, evenredig met het aantal 
vakantiedagen dat zij per jaar overhouden. 

4. Dat het NADP-afhankelijke alcohol dehydrogenase in Thermoanaerobium brockii 
verantwoordelijk is voor de in vivo reductie van aceton (Ben-Bassat et al. 1981) 
is een te hard getrokken conclusie, aangezien ook een alcohol dehydrogenase 
geïnduceerd kan worden. 

Ben-Bassat, A., R. Lamed and J.G. Zeikus. 1981. J Bacteriol 146:192-199. 
Dit proefschrift. 

5. Het door de dierenbescherming gebruiken van "biotechnologie" en "genetische 
modificatie" als synoniemen, bemoeilijkt de maatschappelijke acceptatie van 
andere disciplines van de biotechnologie. 

6. De conclusie "Xylose isomerase appeared to be produced constitutively in these 
ruminai bacteria, ...." in het artikel van Matte et al. (1992) is onbegrijpelijk als 
in hetzelfde artikel wordt aangetoond dat xylose isomerase niet actief is als een 
van de organismen op glucose gekweekt wordt. 

Matte, A., C.W. Forsberg, and A.M. Verrinder Gibbins. 1992. Can J 
Microbiol 38:370-376. 

7. Koude thee is lekker als het warm is en hete chocola als het koud is. 

8. De zin uit het artikel van Salyers (1984): "Glucose is fermented via the Embden-
Meyerhof pathway (Macy and Probst, 1979)" is een stellige bewering gebaseerd 
op de zeer voorzichtige uitspraak gedaan door Macy en Probst (1979): 
" ...catabolism of sugars to pyruvate is possibly accomplished via the Embden-
Meyerhof pathway, ... ". 

Macy, J.M., and 1. Probst. 1979. Ann Rev Microbiol 33:561-594. 
Salyers, A.A. 1984. Ann Rev Microbiol 38:293-313. 



9. Een continuïteit binnen het universitair promotieonderzoek in tegenstelling tot het 
wisselende projectmatige promotieonderzoek, zal waarschijnlijk een hogere 
wetenschappelijke output hebben en een promotieduur die binnen de gestelde tijd 
valt. 

10. Een hogere H2-opbrengst in Clostridium thermocellum LQR1 door een "hogere 
hydrogenase activiteit" is strijdig met het katalytische karakter van enzymen. 

Lamed, R.J., and J.G. Zeikus. 1980. J Bacteriol 144:569-578. 

11. "Universitair onderzoek is zien wat iedereen al gezien heeft, en bedenken wat 
nog niemand bedacht heeft". 

Prof. Dr. Szentgyorgyii, Chemisch weekblad, 2 september 1993. 

12. De bewering dat de fermentatie van xylose en arabinose door Prevotella 
ruminicola subsp. brevis B ^ via "similar metabolic pathways" verloopt (Strobel 
1993), is gebaseerd op verhoudingen in eindprodukten, maar is nooit echt 
bewezen. 

Turner, K.W., and A.M. Roberten. 1979. Appl Environ Microbiol 38:7-12. 
Strobel, H.J. 1993. Arch Microbiol 159:465-471. 

13. Dat van de 4 basis elementen van het bestaan (aarde, lucht, vuur en water), 
"aarde" zo'n grote invloed kan hebben op wetenschappelijk onderzoek was mij 
niet bekend bij aanvang van het promotie onderzoek. 

Stellingen behorende bij het proefschrift "Xylose metabolism in Bacteroides 
xylanolyticus X5-1 ". 

Steef Biesterveid Wageningen, 22 april 1994 
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Chapter 1 

Biomass as renewable resource. 

The oil crisis of the mid 1970s lead to a renewed interest in the use of plant 

biomass for the production of chemical feedstock and fuels (Mishra and Singh 

1993, Rosenberg 1980). It can be calculated that the total energy content of plant 

biomass presently available on earth is equivalent to about 640 billion tonnes of 

oil (Coughlan 1985; Gilbert and Hazlewood 1993). Due to the annual fixation of 

more than 100 billion tonnes of C0 2 by photosynthesis (Schlegel 1984) plant 

biomass is an abundantly available, inexpensive and virtually inexhaustible 

resource for industrial production processes to obtain alcohols and solvents. 

Several industrial waste streams are potential resources as well, as they are rich 

in (biomass derived) carbohydrates. These include agricultural and logging 

residues, pulp and paper mill effluent, food industry wastes, and molasses 

(Magee and Kosaric 1987). Of these, the agricultural and forestry waste streams 

are most abundant. 

Plant cell walls consist of three groups of polymers; lignin, cellulose and 

hemicellulose (Gong et al. 1981, Wong et al. 1988). Cellulose molecules, 

forming highly ordered, crystalline fibrils, are surrounded by amorphous 

hemicellulose. These polymers are embedded in a matrix of lignin. Lignin has 

a complex polyphenolic structure, and is difficult to degrade biologically. 

Cellulose is a linear polymer composed of ß-l,4-glycosidically linked D-glucose 

units (500-1,000 units per molecule). Unlike cellulose, hemicelluloses are short 

branched-chain heteropolysaccharides of mixed hexosans and pentosans (Gong et 

al. 1981). The ratio of cellulose, hemicellulose and lignin depends on the plant 

source and the part of the plant (Table 1). 

In particular cellulose and hemicellulose, which can make up more than 50% of 

plant biomass (Gilbert and Hazlewood 1993), are ideal sources to be used as 

renewable substrates for the chemical and food industries (Zeikus 1980). 

Hydrolysis of these polymers (either chemically or enzymatically) will yield 
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Table 1. Biomass constituents 

Type of material 

Monocotyledons 

Stems 

Leaves 

Fibers 

Woods 

Hardwood (angiosperms) 

Softwood (gymnosperms) 

Papers 

Newspaper 

Wastepaper 

Waste fibers 

Hemicellulose 
% 

25 -50 

80 -85 

5 - 20 

2 4 - 40 

2 5 - 35 

25 -40 

10-20 

20 -30 

Cellulose 
% 

25 -40 

15-20 

80 -95 

4 0 - 55 

4 5 - 50 

4 0 - 55 

6 0 - 70 

6 0 - 80 

Lignins 
% 

10-30 

-

-

18-25 

2 5 - 3 5 

18 -30 

5 - 1 0 

2 - 1 0 

data from Gong et al. 1981 

high amounts of hexoses and pentoses. Microbial fermentation of these monomers 

offers the possibility to produce a variety of compounds. Aerobic microbial 

processes are important for the biotechnological production of antibiotics, amino 

acids and single cell protein (Zeikus 1980). However, aerobic microorganisms 

can not be used for large scale production of e.g. fuels and solvents, because C02 

and H20 are the main end-products. Anaerobic fermentation can yield organic 

acids and solvents (Jones and Woods 1986, Zeikus 1980). Furthermore, a 

complete anaerobic mineralization of carbohydrates will result in the formation 

of methane, which can be used as a combustible energy source. Less attention 

has been paid to the fermentative production of H2. H2 is a very important 

chemical used for industrial hydrogénation reactions (e.g. vegetable and animal 

oils) and H2 is a clean and highly efficient energy carrier (Heyndrickx et al. 

1991b). 

Microbial degradation of cellulose and hemicellulose polymers will not only yield 
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free sugars that can be used for the fermentation processes. The (hemi)cellulolytic 

enzymes themselves, produced for (hemi)cellulose hydrolysis by the 

microorganisms, possess a great biotechnological value as well. Applications of 

cellulases and hemicellulases can be found in the food industry. They can be used 

as a flavour improver, for the production of sugar syrups for both human and 

animal consumption, or to obtain improved nutritional quality and digestibility of 

ruminant feeds (Gilbert and Hazlewood 1993). Purified hemicellulases can be 

used e.g. for structural analysis of polysaccharides and oligosaccharides, for the 

production of protoplasts in plant biotechnology (Zimmermann 1992), and for the 

bio-bleaching of paper pulps (Gilbert and Hazlewood 1993). 

Hemicellulose composition and degradation. 

For a long period of time, the potential use of hemicellulose has largely been 

ignored. At present it is recognized that hemicellulose, which can make up to 

40% of plant biomass, has the same biotechnological potential as cellulose. 

According to the type of sugar present in the main chain of the polysaccharide, 

hemicelluloses can be classified in four groups: i) xylans (l-*4 linked 

ß-D-xylopyranosyl residues), ii) mannans (l-*4 linked ß-D-mannosyl and 

ß-D-glucopyranosyl residues), Hi) arabinogalactans (l-*3 linkedgalactopyranosyl 

residues), and iv) arabinans (l-»5 linked a-L-arabinofuranosyl residues). 

Accessibility of hemicelluloses for microbial degradation may be obtained by a 

variety of methods. These include alkaline or acidic pretreatment, treatments with 

S02 , Na2S03, TFA (trifluoroacetic acid) and steam explosion, or pretreatment by 

enzymatic digestion. Combinations of these methods can be used as well (Saddler 

et al. 1983, Skoog and Hahn-Hägerdal 1988, Wong 1988). In contrast to e.g. 

acid hydrolysis (Skoog and Hahn-Hägerdal 1988, Yu et al. 1984), the enzymatic 

degradation is not accompanied with the formation of toxic compounds (e.g. 

(hydroxy methyl) furfural), which is preferred for further microbial fermentation. 
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For a complete enzymatic hydrolysis of hemicelluloses, the synergistic action of 

a variety of enzymes is required. Enzymes involved are endo-l,4-ß-xylanases, 

ß-xylosidases, a-L-arabinofuranosidases, acetylxylan esterases, a-glucuronidases, 

ferulic and p-coumaric acid esterases, mannanases, ß-mannosidases, 

a-galactosidases, galactanases and arabinases (Biely 1985, Gong et al. 1981, 

Zimmermann 1992). Xylans are the most abundant hemicelluloses and are present 

in large quantities in annual plants and deciduous trees (Gong et al. 1981). Five 

distinct enzymes are known to be involved in xylan depolymerization (Fig. 1). 

H H H H H 
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-4XylB1 -4XylB1 -4Xyl81 -4Xyl31 -4Xylß1 -4Xylß1 -4Xylß1 -4Xylß1 -4Xylß1 -4Xylß1 -
2 2 2 

l<5 I « l<3 
1 Ac 1 
a a 

MeGIcA MeGIcA 

_ Xylß1-4Xylß1-
~W endo-1,4-ß-xylanase (E.C. 3.2.1.8) 

V ß-xylosldase (E.C. 3.2.1.37) 

'V a-glucuronidase (E.C. 3.2.1. ) 

v a-L-arabinofuranosidase (E.C. 3.2.1.55) 

• acetylestetase (E.C. 3.1.1.6) or acetyl xylan esterase 

Fig.l. A hypothetical plant xylan and the sites of attack by microbial 
xylanolytic enzymes. A fragment comprising five D-xylose units is presented 
in the upper part of the figure. The sites of enzymatic attack are drawn 
schematically in the lower part of the figure. Abbreviations: Ac, acetyl 
group; Araf, L-arabinofuranose; MeGIcA, 4-0-methyl-D-glucuronic acid; 
Xyl, D-xylose. (Redrawn from Biely 1985). 
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Several xylan degrading enzyme systems have been studied, but in much less 

detail than the cellulose degrading enzymes (Biely 1985). The regulation of the 

synthesis of hemicellulolytic enzymes in microorganisms is not yet well 

understood. 

A complete enzymatic hemicellulose digestion will yield a mixture of mainly 

monomeric sugars. The ratio of these sugars depends again on the plant source 

and the part of the plant. The main sugar components in hemicelluloses are 

xylose and glucose (Table 2). 

Table 2. Hemicellulose neutral carbohydrate content of agricultural residues 

Plant residues 

Com residues 

Cobs 

Leaves 

Stalks 

Husks 

Pith 

Fibers 

Wheat straw 

Soybean 

Stalks and leaves 

Hulls 

Sunflower 

Stalks 

Pith 

Flax straw 

Sweet clover hays 

Peanut hulls 

Sugar cane bagasse 

% of total sugars 

Xylose 

65.1 

59.0 

70.5 

53.5 

71.5 

63.8 

57.9 

59.9 

26.6 

60.6 

10.7 

64.6 

49.3 

46.3 

59.5 

Arabinose 

9.6 

9.4 

9.0 

12.3 

9.8 

6.6 

9.1 

6.6 

12.7 

2.2 

11.8 

12.8 

21.9 

5.0 

14.5 

Glucose 

25.3 

29.1 

14.5 

32.6 

15.7 

26.8 

28.1 

6.1 

21.0 

32.6 

63.5 

1.2 

8.9 

46.6 

26.0 

Others" 

-

2.5 

5.9 

1.6 

3.0 

2.8 

5.0 

27.4 

39.7 

4.6 

14.0 

21.4 

9.9 

2.1 

-

data from Gong et al. 1981 
* mannose and galactose 
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Anaerobic sugar metabolism. 

The anaerobic fermentation of (hemi)cellulose derived (mixtures of) sugars can 

yield organic acids (e.g. acetic, propionic, butyric acids, lactic acid), alcohols 

(ethanol, (iso)propanol, butanol) and acetone. The composition of the product 

mixtures formed, depends on the organism (Table 3). 

Table 3. Representative fermentation products, microorganisms and growth substrates of 
selected acidogenic and solventogenic bacteria. 

Product 

acetic 

lactic 

butyric 

propionic 

succinic 

caproic 

ethanol 

butanol 

isopropanol 

acetone 

Organism 

C. formicoaceticum 
C. thermoaceticum 
A. woodii 

L. amylophilus 
L. casei 
L. brevis 
T. brockii 

C. butyricum 
C. thermosaccharolyticum 
S. maxima 

C. propionicum 
P. arabinosum 

R. flavofaciens 
F. succinogenes 

C. kluyveri 

C. thermocellum strain LQR1 
C. thermohydrosulfuricum 
srain 39E 
T. brockii strain HTD4 
S. venlriculi 
R. albus 

C. acetobutylicum 
C. butylicum 

C. butylicum 

C. acetobutylicum 

Energy source 

fructose 
hexose, pentose, lactic 
hexose, lactic, H2/C02 

starch, hexose 
hexose, pentose, cellobiose 
hexose, pentose 
starch, hexose, cellobiose 

starch, hexose, pentose 
hexose, pentose, cellobiose 
carbohydrates 

lactic 
hexose, pentose 

cellulose, hexose 
cellulose, hexose 

ethanol/acetate 

cellulose, cellobiose 
starch, hexose, pentose, cellobiose 
starch, hexose, cellobiose 
hexose 
cellulose, hexose, pentose, cello­
biose 

starch, hexose 
starch, hexose 

starch, hexose 

starch, hexose 

data from Zeikus (1980) 
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Relatively little information is available on the utilization of pentoses and 

pentose/hexose mixtures by strictly anaerobic microorganisms. As a result, the 

efficiency of conversion of pentose oligosaccharides and pentoses still is a major 

obstacle in the fermentation processes of wood hydrolysates (Lacis and Lawford 

1991). To be able to influence the fermentation and product formation from these 

sugars a detailed knowledge on the metabolic pathways of the organisms involved 

is required. 

In strictly anaerobic microorganisms sugars are transported mainly via active 

transport systems. These include i) the PEP-dependent suganphosphotransferase 

system (PTS), ii) sugar transport linked to ATP hydrolysis, often in combination 

with a binding protein, and iii) ion gradient-linked translocation of sugars (Booth 

and Mitchell 1987). Most of the sugars are metabolized to pyruvate as the key 

intermediate of metabolism. Four main catabolic routes could be found in strict 

anaerobic microorganisms, namely the Embden-Meyerhof-Parnass pathway 

(=EMP =glycolysis), the pentose phosphate pathway (=PPP), the 

phosphoketolase pathway (PKP), and the Entner-Douderoff pathway (=EDP) 

(Table 4). In anaerobic microorganisms, hexoses are mainly converted via the 

EMP. Thus far, Zymomonas mobilis is the only strict anaerobic organism in 

which the EDP route has been demonstrated (Conway 1992). Pentoses are 

converted via sequential isomerization and phosphorylation reactions to xylulose-

5-P04, which is a key intermediate in pentose metabolism (Fraenkel 1987). 

Xylulose-5-P04 is either rearranged via the PPP to intermediates of the EMP 

(fructose-6-P04 and glyceraldehyde-3-P04), or is cleaved in glyceraldehyde-3-P04 

and a C2-moiety (e.g. acetyl-P04) by means of the enzyme phosphoketolase 

(=PKP). 

Concerning the 'known' metabolic pathways for pentoses in anaerobic 

microorganisms it should be mentioned that, especially in gastrointestinal 

Bacteroides species, the pathways involved in pentose metabolism were hardly 

investigated (Macy and Probst 1979, Salyers 1984, Caldwell and Newman 1986a 

8 
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and b). Jones and Woods (1986) stated: 'The solvent-producing Clostridia 

metabolize pentose sugars by way of the pentose phosphate pathway'. However, 

most pathways have been 'elucidated' by measuring one or two enzymes like 

transaldolase and transketolase in cell free extracts of organisms grown on only 

one substrate (e.g. Joyner and Baldwin 1966). However, transaldolase and 

transketolase also play a role in the anabolism in the production of pentose 

phosphates like ribose-5-P04, and probably are also present in microorganisms 

growing on e.g. glucose. Detailed research on the metabolism of D-arabinose has 

shown that pentoses can be fermented via three different metabolic pathways. 

These include i) the generally accepted pentose phosphate pathway in combination 

with the glycolysis as present in B. ruminicola subsp. brevis strain 1^4 (Caldwell 

and Newman (1986b)), ii) conversion via the reaction sequence D-arabinose, 

D-ribulose, D-ribulose-l-P04, dihydroxy-acetone phosphate + glycolaldehyde as 

shown in E. coli strain K12 and B. fragilis strain 2044 (Leblanc and Mortlock 

(1971), Caldwell and Newman (1986a)), and iii) via the sequence D-arabinose, 

D-arabino-7-lactone, D-arabonic acid, 2-keto-3-deoxy D-arabonic acid, pyruvic 

acid + glycolic acid as present in Pseudomonas saccharophila and probably in 

B. vulgatus 8482 (Palleroni and Douderoff (1957), Leblanc and Mortlock (1971), 

Caldwell and Newman (1986a)). Different end-product ratios will be observed 

when pentoses are metabolized via one of these fermentation pathways, and an 

overestimation of product yields can occur when the pentose phosphate pathway 

is assumed to function, while one of the other routes mentioned above (item ii) 

or iii)) is operative. Therefor, when studying product formation from pentose 

sugars, one should be cautious assuming fermentation of a pentose via the 

generally accepted pentose phosphate pathway (Fraenkel 1987). 
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Chapter 1 

Product formation. 

Pyruvate is the central metabolite from which most of the fermentation end-

products are formed (Figure 2). 

Monosaccharide 

[H] 

Butyrate 

[HI-

Ethanol CO H | Butanol 

l>r ATP [H]- [H]-!> [H] 

2-propanol 2,3-Butanediol 

X 

Fig.2. Fermentation pathways of the product formation from the most important 
sugar fermentations with pyruvate as central metabolite. (Adapted from Magee and 
Kosaric 1987, Schlegel 1984, and Wood 1961). 

The amount of a product and the ratio between the end-products depends to a 

large extent on the pathway of the carbon and electron fluxes in microorganisms. 

These pathways can be affected by changing environmental parameters, like pH, 

temperature, sugar concentration, type of substrate, etc. In the following, an 

attempt is made to discuss the regulation of the pathways of carbon and electron 

fluxes, separately. However, it is often difficult to strictly discriminate between 

the two pathways, and regulation of one flux can affect the other. 
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Regulation of the carbon flow. 

Fermentation of mixed substrates. Wood hydrolysates (both enzymatically and 

chemically obtained) consist of mixtures of sugars. Product formation from these 

hydrolysates may be affected adversely due to 'catabolite regulatory mechanisms' 

when small amounts of preferred sugars are present in these sugar mixtures 

(duPreez et al. 1986, Hsiao et al. 1982, Jeffries and Sreenath 1988, Kilian et al. 

1983, Lee 1992, Lucas and van Uden 1986). Catabolite repression and inducer 

exclusion are the best known catabolite regulatory mechanisms. Both mechanisms 

are regulated by components of the phosphotransferase system (PTS) and have 

been studied extensively in E. coli and S. typhimurium (figure 3, Saier 1989). 

S.P 

^ © 

Repression -
(will not bind 

to DNA) 

II' J (Inactive 
Permease) 

v'+v(7) (Ao,ive 
Permease) 

(Inactive 
A.C.) 

(Active 
GÜVp A.C.) 

Fig.3. Mechanism of the regulation of non-PTS carbohydrate uptake systems and 
adenylate cyclase in E. coli and S. typhimurium by catabolite repression (solid lines) 
and inducer exclusion (solid and dashed lines). T, Enzyme I; II, an enzyme specific 
for a particular PTS-sugar (S); IIIG|C, the central regulatory protein; HPr, heat-
resistant protein; ~ P , phosphate group; P, a non-PTS permease; A.C., adenylate 
cyclase; CRP, c-AMP receptor protein. (Adapted from Gottschalk 1985 and Saier 
1989). 

When a PTS-sugar is absent, the enzymes of the PTS are phosphorylated. 

E-IIIGlc~P plays a key role in the regulation of catabolite repression and inducer 
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exclusion. In the case of catabolite repression, E-IIIGlc~P will bind to adenylate 

cyclase (A.C.), which will become active. Active A.C. will produce cyclic-AMP 

(c-AMP) from ATP. c-AMP-receptor protein (CRP) is a regulator protein. In the 

presence of c-AMP, CRP will bind to the DNA and enzyme induction is 

possible. In the presence of a PTS sugar, E-IIIGk will not be phosphorylated and 

A.C. is not active. As a consequence, cyclic-AMP is not produced and CRP does 

not bind to the DNA, thereby preventing enzyme induction. In the case of 

inducer exclusion, E-IIIGlc~P has the same function as described for catabolite 

repression. But also the non-phosphorylated E-IIIGlc has a function. It will bind 

to the permease of a non-PTS sugar, thereby inactivating transport of the non-

PTS sugar. Inducer exclusion is a much faster mechanism than catabolite 

repression. 

Mixed substrate fermentation by strictly anaerobic rumen microorganisms has 

been studied extensively (Russell and Baldwin 1978, Russell and Baldwin 1979, 

Ounine et al. 1985, Patel et al. 1986, Cook et al. 1993, Strobel 1993a). Rumen 

microorganisms have a broad, overlapping range of substrates. Competition for 

these substrates will occur, especially because the substrate concentrations in the 

rumen are very low (Russell and Baldwin 1979). Different strategies to control 

the utilization of sugar mixtures have evolved in rumen microorganisms. These 

different strategies (e.g. high substrate affinities, catabolite repression, inducer 

exclusion) enable the various microorganisms to coexist in the rumen (Russell 

and Baldwin 1978 and 1979). To increase the efficiency of biotechnological 

product formation from sugar mixtures (e.g. wood hydrolysates), organisms 

without substrate preference have obtained special attention in the last decade 

(Patel 1984, Patel et al. 1986). 

Fermentation by mixed cultures. Two major processes were investigated to get 

a combined polymer hydrolysis and fermentation. These are, i) sequential 

polymer hydrolysis and monomer fermentation (Yu et al. 1985a and b), and ii) 
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simultaneous saccharification and fermentation of the polymers (Asther and Khan 

1984 and 1985, Cavedon and Canale-Parola 1992, Ng et al. 1981, Scheifinger 

and Wolin 1973, Yu et al. 1984, Yu and Saddler 1985). In the latter process an 

increased availability of fermentable carbohydrates is obtained and an improved 

product recovery is found because the (extracellular) hydrolytic enzymes are less 

inhibited by catabolite repression. Methanogenic cocultivation was used as well 

to improve polymer digestion and to produce methane from (hemi)cellulosic 

material (Khan et al. 1979, Latham and Wolin 1977, Pavlostathis et al. 1990, 

Weimer and Zeikus 1977). Most of these studies were performed with rumen 

microorganisms including several anaerobic fungi (Latham and Wolin 1977, 

Bauchop and Mountfort 1981, Mountfort et al. 1982, Joblin et al. 1990, 

Pavlostathis et al. 1990). These investigations showed that methanogenic 

cocultures are helpful in increasing the rate and the extent of the carbon flux in 

microorganisms from polymers to end-products (e.g. by relieving catabolite 

repression; Joblin et al. 1990). 

Regulation by environmental parameters. In order to affect the carbon flow, 

much research has been done on the effect of environmental factors on the 

physiology of microorganisms. Much of the present knowledge in this field is 

obtained from research done on the acetone-butanol-ethanol fermentation by C. 

acetobutylicum. Especially the effect of pH was studied in detail, since the pH 

drops in a culture simultaneously with the onset of solventogenesis (e.g. Datta 

and Zeikus 1985, Jones and Woods 1986). The industrial strains for solvent 

production are grown at a pH of 6.0, indicating that pH itself is not the only 

trigger for solvent production (Gottschal and Morris 1981, Long et al. 1984). In 

continuous culture experiments with C. acetobutylicum, at several pH values and 

under limitation of either ammonia or glucose exclusively an acetate-butyrate 

fermentation was observed (Andersch et al. 1982, Bahl et al. 1982a and b). 

However, when grown under phosphate limitation and at a pH value of 4.3 
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almost solely acetone-butanol fermentation was obtained (Andersch et al. 1983). 

Enzyme activity measurements in cell free extracts of cells grown under 

phosphate limitation at low pH (4.3) or high pH (6.0) revealed that the catabolic 

carbon flow leading to solvent production was regulated at enzyme level 

(Andersch et al. 1983). Experiments with increased extracellular levels of acetate 

or butyrate at different pH values showed that during solvent production the 

intracellular Co A and P0 4 pools decreased drastically (Monot et al. 1984, 

Gottwald and Gottschalk 1985, Huang et al. 1986). Gottwald and Gottschalk 

(1985) pointed out that continuous cultures run under phosphate limitation also 

might result in decreased levels of CoA, suggesting a relation between 

solventogenesis and the CoA-pool. Jones and Woods (1986) formulated several 

parameters that are important factors for solvent production: i) low pH, ii) low 

growth rate, iii) an excess of the carbon substrate, iv) a definite threshold 

concentrations of acetate and butyrate, and v) an appropriate growth limiting 

factor. 

Other factors affecting product formation in several microorganisms include 

growth a) under limiting concentrations of sulfate and magnesium (Bahl and 

Gottschalk 1985), b) at elevated temperatures (McNeil and Kristiansen 1985, 

Alexander et al. 1989, Barbosa et al. 1990), c) in the presence of metabolic 

inhibitors like sodium azide, dinitrophenol and polyethylene glycol (Lohmeier-

Vogel and Hahn-Hägerdal 1985, Singh et al. 1991), d) under high or low 

concentrations of C0 2 (Caspari and Macy 1983, Parameswaran et al. 1988), e) 

in the presence of culture filtrate concentrate and cell-free extract concentrate 

(Soni et al. 1987), and f) at high sugar concentrations (Lacis and Lawford 1991). 

Of these studies only the use of sulfate limiting growth conditions (Bahl and 

Gottschalk 1985) and the use of metabolic inhibitors (Singh et al. 1991) resulted 

in an improved product formation. The other investigations did not result in a 

clear concept on how to increase product formation by microorganisms. In 

contrast to the findings by Bahl and Gottschalk (1985), Stephens and co-workers 
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(1985) reported that C. acetobutylicum grown under magnesium limitation 

displayed an increased solvent production. These conflicting results might indicate 

that more, thus far unknown, factors are involved in the regulation of the 

catabolic carbon flux. 

Strain selection and strain improvement. Mutants and genetically modified 

microorganisms, with changed enzyme levels and metabolic pathways can help 

to direct the carbon flux in microorganisms. Z. mobilis is an interesting organism 

because of its high ethanol production from glucose and its high tolerance for 

ethanol. Pentoses are no growth substrates for this organism (Bringer-Meyer and 

Sahm 1988). Recombinant strains of Z. mobilis were constructed that contained 

xylAB genes of Klebsiella pneumoniae and a tkt gene of E. coli. This resulted in 

increased xylose isomerase, xylulose kinase and transketolase activities. 

However, growth on xylose as sole carbon source could still not be detected, 

which is probably due to the absence of a gene coding for transaldolase activity 

(Feldmann et al. 1992). In these recombinant cells sedoheptulose-7-P04 

accumulated to a concentration of 9 mM, showing that the first part of the 

pentose phosphate pathway was present in Z. mobilis. E. coli mutants, containing 

the wild-type pentose catabolic pathway and an artificial Operon (=pet operon), 

coding for pyruvate decarboxylase and alcohol dehydrogenase II genes of Z. 

mobilis, exhibited a change of the catabolic carbon flow towards an efficient 

ethanol production from xylose (Ohta et al. 1990). 

Thus far only few results were obtained with genetically modified Clostridia. This 

was due to the lack of gene transfer systems in these organisms. At present, two 

transfer systems have been developed (electroporation and conjugal plasmid 

immobilization). Problems of fundamental biological interestin Clostridia can now 

be studied (Young et al. 1989). The two molecular techniques, combined with the 

knowledge of (wild-type) microbial physiology, will eventually lead to 

fermentation processes with the highest product recoveries. 
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Regulation of the electron flow. 

Cofactor regeneration. The regeneration of oxidized cofactors is of vital 

importance for the continuation of sugar metabolism, because only limited 

amounts of cofactors are present in the cell. In anaerobic, fermentative bacteria 

re-oxidation of these cofactors occurs via either proton reduction or via the 

reduction of intermediates of the sugar metabolism (e.g. pyruvate, acetaldehyde, 

acetoacetate). Reduced ferredoxin is involved in low potential oxidation-reduction 

reactions, like e.g. the formation of H2 (Glass et al. 1977, Ragsdale and 

Ljungdahl 1984). NAD(P)H is often observed as the electron donor in reactions 

leading to reduced end-products like e.g. ethanol and lactate (Petersen et al. 

1991, Vancanneyt et al. 1990). However, it has been shown in Clostridia that H2 

also could be produced from NAD(P)H (Thauer et al. 1969). The biochemistry 

of cofactor regeneration was studied extensively in Clostridia (Jungermann et al. 

1971, Jungermann et al. 1973, Petitdemange et al. 1976, Thauer et al. 1969, 

Thauer et al. 1971). Ferredoxin and Fd:NAD(P) oxidoreductases were shown to 

play pivotal roles in the distribution of reducing equivalents liberated during 

carbohydrate oxidation. The NADH:Fd oxidoreductase is obligatory activated by 

acetyl-CoA, whereas free CoA is a strong inhibitor of this activity. The reduction 

of NAD by FdH is strongly inhibited by NADH and will only proceed under 

conditions where the end-product (NADH) is efficiently removed (Figure 4A). 

NADPH:Fd oxidoreductase is not regulated by the acetyl-CoA/CoA couple, but 

NAD is an obligatory activator of this enzyme. NADH inhibits the oxidation of 

NADPH by Fd. The reduction of NADP is only inhibited to some extent by its 

end-product NADPH (Figure 4B). 

Ferredoxin:NADP oxidoreductase was supposed to function as an anabolic 

enzyme to supply NADPH for biosynthesis (Jungermann et al. 1973). However, 

several NADPH-dependent alcohol dehydrogenases have been detected (Dürre et 

al. 1987, Hiuetal. 1987), suggesting that ferredoxin:NADP oxidoreductase plays 
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an essential role in the regulation of the catabolic electron flow. 

NADH 

Acetyl-CoA s: 
CoA 7 

NAD' 

-*^^ ^*- NADH 

NADH J/-
— - ^ _ < T ^ — NAD + 

NAD 

NADPH 

+obligatory 

NADH-

NADP 

Fd, 

Fd red 

-*-^ ^-*- NADPH 

— ^ _ V*-— NAD 

NADPH 

NADPT 

B 

Fig.4. Scheme of the regulation of the reversible ferredoxin reduction by NADH (A) 
or NADPH (B). Abbreviations: Fd„, oxidized ferredoxin; Fd^,, reduced ferredoxin. 
(Redrawn from Thauer et al. 1977). 

Apparently, the electron flow between these cofactors (NAD, NADP, FD) is 

strictly regulated. However, under appropriate physiological conditions, electrons 

can flow 'freely' from one reduced cofactor to the other. In the following several 

ways are described how the flow of electrons can be influenced. 

Regulation by interspecies electron transfer. Hydrogen formation from NAD(P)H 

via the reaction : 

NAD(P)H + H+ *=• NAD(P)+ + H2 (AG°' = + 18.8 kJ/reaction) 

is under standard conditions a thermodynamically unfavourable reaction (Thauer 

et al. 1977, Gottschalk 1985). However, when H, is removed from the reaction 

mixture, the equilibrium will shift towards the right side of the reaction equation 

shown above. At a partial H2 pressure of less than 10"3 atmospheres the AG for 

this reaction will become negative (Figure 5, Gottschalk 1985) meaning that H2 
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formation from NAD(P)H becomes thermodynamically possible. H2 formation 

from reduced ferredoxin is much easier as can be deduced from figure 5. 

-40 
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-6 

Fig.5. Effect of the partial pressure of hydrogen (P,t) on the change of free energy (AG) 
for the reactions involving H2 formation from reduced ferredoxin (upper line) and 
NAD(P)H (lower line). The AG°'-values to calculate this figure were taken from Thauer 
et al. 1977. 

Methanogenic organisms (among others) possess the ability to remove H2 

efficiently to a very low level (10"4-105 atmospheres, i.e. 1-10 Pa). Therefore, 

when a hydrogen producing organism is cocultivated with a hydrogen consuming 

organism, reducing equivalents formed during substrate oxidation in the form of 

NAD(P)H can be used for the production of H2. This process, i.e. the coupling 

of formation and consumption of H2, is called interspecies hydrogen (or electron) 

transfer. Amino acid and fatty acid oxidation reactions are thermodynamically 

unfavourable reactions, like the H2 formation from NAD(P)H. Nevertheless, 

several organisms are able to obtain energy for growth on e.g. propionate 

(Houwen et al. 1990), butyrate (Ahring and Westermann 1987a and b), ethanol 
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(Bryant et al. 1967), and glutamate (Stams and Hansen 1984) due to the process 

of interspecies electron transfer. 

The effect of interspecies electron transfer on fermentative bacteria was first 

shown in a coculture of Ruminococcus albus with Vibrio (Wolinella) succinogenes 

growing on a glucose/fumarate mixture (Figure 6; Ianotti et al. 1973). 

R. Albus 

2ATP-«-

Glucose 

-V2NADH1 (0.6)-
I 1-

2 pyruvate + H + 
-(1.4) 

1 .3ATP- * -

2 Acetyl CoA 

X 

• 2.6 FdH 

A : 

1.3 acetate + H+ 0.7 ethanol 2 C02 2.6 H2 

R. Albus 

2 A T P - * -

Glucose 

•"»-2 NADH (2.0) ' 4 FdH 

A : 
2 pyruvate + H + 

2 Acetyl CoA 

2ATP-

2 acetate + hf 2 CO? 

t . 
4 H , 

W. succinogenes 
Fumarate 

4 H, 

4 ATP 

Succinate 

Fig. 6. The effect of interspecies electron transfer on the product formation and the ATP gain 
during glucose metabolism by Ruminococcus albus, when grown in the absence (A) and presence 
(B) of Wolinella succinogenes. (Redrawn from Thauer et al. 1977, after Ianotti et al. 1973). 

In pure culture R. albus produced H2, C02, ethanol and acetate as end-products. 

Due to the cocultivation a shift in product formation was observed to acetate and 
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C0 2 as the main end-products, whereas fumarate was stoichiometrically converted 

with hydrogen to succinate by V. succinogenes. Since the discovery of 

interspecies electron transfer the effects of methanogenic cocultivation on 

carbohydrate fermentation has been shown in many other studies (e.g. Chung 

1976, Khan et al. 1979, Latham and Wolin 1977, Marvin-Sikkema et al. 1993, 

Mountfort et al. 1982, Pavlostathis et al. 1990, Scheifinger et al. 1975, Weimer 

and Zeikus 1977). 

Regulation of hydrogen formation. As discussed above, H2 is an important 

electron sink of reducing equivalents in anaerobic microorganisms. Inhibition of 

H2 formation by the addition of high amounts of exogenous H2, resulted in C. 

saccharoperbutylacetonicum and C. thermocellum in a shift in the fermentation 

products to more butanol and ethanol and less acetate and butyrate (Brosseau et 

al. 1986, Ben-Bassat et al. 1981, Freier et al. 1988, Lamed et al. 1988). A more 

effective method to affect H2 formation is to inhibit the hydrogenase by carbon 

monoxide (CO), which is a competitive inhibitor of this enzyme (Legall et al. 

1982). Modulation of electron flow using CO was studied thoroughly in C. 

acetobutylicum (Datta and Zeikus 1985, Kim et al. 1984, Meyer et al. 1986) and 

C. pasteurianum (Dabrock et al. 1992). A shift in the fermentation products to 

more solvents was observed. The effect of CO could be increased by the addition 

of acetic and butyric acids to the fermentation broth. These acids were used as 

alternative electron sinks by the organism, resulting in increased butanol yields. 

Remarkably, a complete inhibition of hydrogenase was not obtained; the H2 

production decreased maximally 50% (Datta and Zeikus 1985). Similar results 

were found using methyl and benzyl viologen in continuous cultures of C. 

acetobutylicum (Rao and Mutharasan 1987). Due to the addition of the viologen 

dye, a transient shift to the production of more reduced compounds and less H2 

was observed. It was concluded that the viologen dyes inhibited hydrogenase 

competitively, analogous to CO. 

The trigger for the initiation of solvent formation remains still to be answered. 

Meyer et al. (1986) showed evidence that solvent formation in C. acetobutylicum 
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might be triggered by an altered electron flow. This hypothesis was further 

supported by the analysis of NADH levels in C. acetobutylicum grown under 

different physiological conditions (Rao and Mutharasan 1989). It was shown that 

not NADH levels, but NADH/NAD+ turnover rates controlled the solvent 

formation. CO might be used as a modulator of the microbial electron flow in a 

fermentation process, though the optimization of this process still needs further 

investigations. 

Cofactor regeneration with alternative electron acceptors. The value of the use 

of alternative electron acceptors to control the catabolic electron flow is probably 

underestimated. Growth of Thermoanaerobium brockii was shown to be inhibited 

completely by exogenous H2 gas (1 atmosphere). The use of acetone not only 

relieved the growth inhibition, but also increased the specific growth rate and the 

growth yield of the organism. Furthermore, the product formation shifted to less 

ethanol and to more acetic acid, whereas the reducing equivalents were mainly 

used to reduce the acetone stoichiometrically to 2-propanol. Similar effects on 

growth and product formation were observed with other electron acceptors like 

acetate (Heyndrickx et al. 1989, Hino et al. 1991), glycerol (Talarico et al. 

1990), acetoin (Delgenes et al. 1991) and pyruvate (Nuraida 1992). These results 

show, that several electron acceptors can be used to control the intraspecies 

electron flow during carbohydrate fermentation. 

Regulation of catabolic electron flow at the level of enzyme activities. Lamed and 

Zeikus (1980b) determined the relationship between fermentation product yields 

and catabolic enzyme activities in C. thermocellum and T. brockii. They showed 

that the electron flow in these organisms was regulated by means of differences 

in kinetic properties of enzymes (i.e. substrate specificity, Km and Vmax) involved 

in electron transfer. Significant quantitative differences in end-product yields were 

observed for each organism when grown on cellobiose, due to the differences in 

the kinetic properties. pH-controlled enzyme induction was found with several 

microorganisms (Lowe and Zeikus 1991, Vancanneyt et al. 1990, Yan et al. 
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1988). At neutral pH, pyruvate dehydrogenase and acetaldehyde dehydrogenase 

were active in Sarcina ventriculi, with a concomitant production of acetate, 

ethanol and formate. When grown at acid pH (3.0), pyruvate decarboxylase 

activity increased significantly and acetaldehyde dehydrogenase decreased, 

leading primarily to ethanol production (Lowe and Zeikus 1991). 

Regulation at enzyme level could also be obtained by genetical modification of 

an organism. As mentioned above, the pet operon was cloned in E. coli, which 

resulted in the expression of pyruvate decarboxylase and alcohol dehydrogenase 

II. As a result, the electron flow was affected and an efficient ethanol production 

was observed (Ohta et al. 1990). Thus far, little is known about mutants defective 

in ferredoxin and/or NAD(P)H ferredoxin oxidoreductases. Mutants defective in 

these enzymes could be of particular interest for product formation from sugars. 

Bacteroides xylanolyticus X5-1 as a model organism. 

As part of a study on the production of biogas from agricultural waste (cattle 

manure), several organisms were isolated at our department (Scholten-

Koerselman et al. 1986). One of these organisms was Bacteroides xylanolyticus 

X5-1 (Figure 7). 

This organism, a strictly anaerobic, non-sporeforming, motile, Gram-negative, 

rod-shaped bacterium, could ferment a wide range of monomelic and dimeric 

sugars. Furthermore, it could grow on the hemicellulose xylan, a polymer of 

mainly xylose molecules. Other hemicelluloses (e.g. gum xanthan, laminaran, 

gum arabic) and cellulose were not utilized. As xylan was the only hemicellulose 

degraded by this organism, it was an interesting model organism to study the 

biochemistry and the regulation of the xylanolytic system, as no interference 

could occur with cellulolytic enzymes. The research on the xylanolytic system 

was performed by Philippe Schyns. Endo-1,4-ß-xylanases (I and II), ß-xylosidase, 

acetyl esterase, and a-L-arabinofuranosidase could be detected when the organism 

was grown on xylan. These enzymes were inducible, as no activities were found 

when the organism was grown on glucose. The mode of action of these enzymes 
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Fig. 7. a. Phase contrast photomicrograph of B. xylanolyticu.i X5-1, bar equals 4.3 /im. 
b. Scanning electron micrograph shows clearly the tapered ends, bar equals 1.4 /xm. 
c. Electron micrograph depicting the length and the location of the flagella, bar equals 
1.3 /im. d. Transmission electron micrograph indicates the tapered ends and the Gram 
negative cell wall (insert), bar equals 0.3 ^m, in insert 7.7 nm. (Taken from Scholten-
Koerselman et al. 1986). 
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was elucidated. Furthermore, the induction mechanisms of the xylanase and the 

ß-xylosidase were studied (Schyns and Stams 1992). 

When grown on xylan or xylose the organism produced acetate, ethanol, H2, 

C02, and formate as the main fermentation products. In addition, small amounts 

of 1,2-propanediol and lactate were produced. This suggested that the organism 

has a branched xylose fermentation pathway. As the organism was able to grow 

on a variety of sugars (including the pentose xylose) at a relatively high growth 

rate, and as it seems to possess a branched xylose catabolic pathway, it was an 

interesting model organism to study the regulation of xylose fermentation under 

anaerobic conditions in detail. The results of the study on regulation are described 

here. 

Outline of the thesis. 

The aim of the research presented in this thesis, was to study the biochemistry 

and the physiology of product formation from xylose in Bacteroides xylanolyticus 

X5-1. As only very little was known of this microorganism, first the xylose 

fermentative pathway had to be resolved. The results from substrate uptake 

studies, fermentation balance determination, and the elucidation of the xylose-

degrading pathway by enzyme measurements and studies with 13C-labelled xylose 

are described in chapter 2. Hemicellulose hydrolysates contain mixtures of 

sugars. Therefor, the conversion of glucose/xylose mixtures by B. xylanolyticus 

X5-1 and the induction mechanism of key enzymes of the xylose catabolism were 

studied (chapter 3). Chapter 4 describes the regulation of the anaerobic xylose 

metabolism by interspecies electron transfer, in particular, the regulation of the 

enzymes involved in ethanol production. Results obtained on the effect of 

alternative electron acceptors on the physiology and the biochemistry of the 

xylose metabolism are summarized in chapter 5. The references are given in 

chapter 6, and the thesis ends with the Summary (chapter 7) and the 

Samenvatting (chapter 8). 
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Chapter 2 

Abstract 

The xylose metabolism of Bacteroides xylanolyticus X5-1 was studied by 

determining specific enzyme activities in cell free extracts, by following 13C-label 

distribution patterns in growing cultures and by mass balance calculations. 

Enzyme activities of the pentose phosphate pathway and the Embden-Meyerhof-

Parnas pathway were sufficiently high to account for in vivo xylose fermentation 

to pyruvate via a combination of these two pathways. Pyruvate was mainly 

oxidized to acetyl-CoA, C02 and a reduced cofactor (ferredoxin). Part of the 

pyruvate was converted to acetyl-CoA and formate by means of a pyruvate-

formate lyase. Acetyl-CoA was either converted to acetate by a combined action 

of phosphotransacetylase and acetate kinase or reduced to ethanol by an 

acetaldehyde dehydrogenase and an ethanol dehydrogenase. The latter two 

enzymes displayed both a NADH- and a NADPH-linked activity. Cofactor 

regeneration proceeded via a reduction of intermediates of the metabolism (i.e. 

acetyl-CoA and acetaldehyde) and via proton reduction. According to the deduced 

pathway about 2.5 mol ATP are generated per mol of xylose degraded. 

Introduction 

Hemicellulose, a major component of plant cell walls, is a group of hetero 

polysaccharides consisting of hexoses and pentoses with xylose as the most 

abundant sugar (Gong et al. 1981). Bacteroides species and Clostridium species 

have been shown to degrade hemicellulose. The anaerobic product formation 

from hemicellulose and hemicellulose hydrolysates has been studied to some 

extend (Patel et al. 1986). For the genus Bacteroides anaerobic hexose 

metabolism has been documented abundantly (Joyner and Baldwin, 1966; Howlett 

et.al. 1976; Miller and Wolin 1979; Franklund and Glass 1987; Martin 1992). 
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However, relatively little attention has been paid to anaerobic pentose 

metabolism. 

In most aerobic and anaerobic bacteria, pentoses are converted by a sequence of 

reactions to xylulose-5-P04. This is a central metabolite of the pentose phosphate 

pathway (PPP) and of the phosphoketolase pathway (PKP). The PPP is the main 

metabolic pathway for the degradation of pentose (Fraenkel 1987). It was found 

to be present in several anaerobic organisms like Prevotella (Bacteroides) 

ruminicola brevis B,4 (Turner and Robertson 1979; Caldwell and Newman 

1986b), Thermoanaerobacter ethanolicus (Lacis and Lawford 1991), and 

Clostridium butyricumLMG 1213^ (Heyndrickxetal. 1991a). However, also the 

PKP may be an important catabolic pathway in microorganisms. It was found in 

several Lactobacilli (Heath et al. 1958; Hurwitz 1958), Acetobacter xylinum 

(Racker 1962), Leuconostoc mesenteroides (Goldberg et al. 1966), 

Bifidobacterium globosum (Sgorbati et al. 1976), different yeast species (Evans 

and Ratledge 1984), and two Bacteroides species, B. fragilis strain 2044 and B. 

vulgatus strain 8482 (Caldwell and Newman 1986a). Pentose catabolism via the 

PKP or the PPP will result in a different substrate to product ratio. Via PKP per 

mol of pentose 2 C2-products (ethanol and acetate) will be formed whereas 1.67 

C2-products are formed via the PPP. In addition, product ratios will differ 

because the PKP yields only 4 mol of reducing equivalents per mol of xylose, 

whereas the PPP will yield 6.7 mol of reducing equivalents per mol of xylose. 

At our department the anaerobic degradation of the hemicellulose xylan is 

studied, using Bacteroides xylanolyticus X5-1 as a model organism. B. 

xylanolyticus X5-1 is able to grow on a variety of mono-, di- and tri-meric 

saccharides and on xylan, but no growth can be found on other hemicelluloses 

or cellulose (Scholten-Koerselman et al. 1986). The aim of the present study was 

to obtain detailed knowledge on the energy conservation and the cofactor 

regeneration during growth of Bacteroides xylanolyticus X5-1 on xylose. 
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Materials and methods 

Microorganism and cultivation. 

Bacteroides xylanolyticus X5-1 (DSM 3808) was isolated and described by 

Scholten-Koerselman et al. (1986). The organism was grown in a basal 

bicarbonate buffered medium with a composition as described by Huser et al. 

(1982). To one litre of medium 0.5 g of yeast extract, 1 ml of a trace elements 

solution (Zehnder et al. 1980) and 1 ml of a vitamin solution (Wolin et al. 1963) 

were added. The vitamin solution was filter sterilized separately. The gas phase 

above the medium was N2/C02 (80%/20%) and the pH of the medium was 6.8-

6.9. Xylose was added from a 2 M filter-sterilized stock solution. Experiments 

performed to determine C02 formation were done in a phosphate-buffered 

medium. Bicarbonate was replaced by 20 mM of sodium-potassium-phosphate 

(pH 6.8), and the gas phase was replaced by N2. 

Routinely, B. xylanolyticus X5-1 was cultivated at 37 °C in the dark in 120-ml 

serum vials with 30 ml of medium. Bottles were sealed with butyl rubber 

stoppers (Rubber BV, Hilversum, Holland) and aluminium caps. Mass cultivation 

was done at the same conditions in 1- or 3-1 serum bottles or in 10-1 carboys 

containing 0.3, 1 or 8 1 of medium, respectively. 

Analytical methods. 

Sugars, organic acids and alcohols were quantified using a LKB high 

performance liquid Chromatograph (HPLC) as described by Stams et al. (1993). 

Samples were diluted 1:1 with 20 mM xylitol in 50 mM of HCl; xylitol was used 

as an internal standard. 1,2-Propanediol was also measured by gas 

chromatography using a CP9000 gas Chromatograph (Chrompack, Middelburg, 
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The Netherlands) as described by Stams et al. (1993). Hydrogen was determined 

by gas chromatography using a Packard-Becker 406 gas Chromatograph equipped 

with a thermal conductivity detector and molecular sieve. The column 

temperature was 100°C and the carrier gas was argon at a flow rate of 20 

ml/min. C02 was determined in a similar fashion as hydrogen, using a Poropak 

Q column. Bicarbonate was determined as C02; culture samples (5 ml) were 

injected into closed 36-ml serum bottles and 1 ml 5N HCl was added to purge the 

C02 from the liquid phase. 

Growth was determined by measuring the increase in optical density at 660 nm 

( O D ^ in a LKB/Biochrom Ultraspec K spectrophotometer using cuvettes with 

a 1-cm light path. When necessary, samples were diluted 1:1 with water to obtain 

an OD,;«, below 0.4. Bacterial dry weight was quantified by centrifuging 100 ml 

culture samples at 20,000 X g for 15 min. Cells were washed once with 50 mM 

Tris-HCl (pH 7.8) and 2 mM of MgCl2. Cell pellets were transferred 

quantitatively with demineralized water to preweighed aluminium trays and dried 

overnight at 100°C. The trays were placed in a vacuum exicator until a constant 

weight of the trays was obtained. Protein in cell free extracts was estimated with 

coomassie brilliant blue G250 as described by Bradford (1976). Total cell protein 

was determined after boiling of cell pellets in 1 N NaOH for 15 min according 

to the method described by Lowry et al. (1951). Bovine serum albumin was used 

as a standard for the protein determinations. 

Xylose uptake. 

Cells were harvested in the mid-exponential growth-phase by centrifugation under 

anaerobic conditions, and washed once with anaerobic medium without substrate. 

Cells were suspended in the same medium to an OD,^ of 3. This value 

corresponded to about 0.6 mg of cell protein per ml. Unless stated otherwise, 
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uptake studies were performed under an atmosphere of N2/C02 (80%/20%) in 

13-ml vials closed with butyl rubber stoppers. The reaction mixtures (1.5 ml) 

were preincubated at 37°C for 10 min. The uptake study was started by addition 

of xylose (1 mM final concentration, 0.25 /xCi/^mol). At various periods of time 

samples (0.2 ml) were taken using a 1-ml syringe equipped with an 18-gauge 

needle and filtered through prewashed membrane filters (Schleicher & Schuell 

BA85). Filters were washed with 4 ml of 100 mM LiCl and transferred to 4 ml 

aqualuma scintillation cocktail. The radioactivity was counted in a LKB Wallac 

liquid scintillation counter (Pharmacia/LKB, Woerden, The Netherlands). 

Metabolic inhibitors were dissolved either in demineralized water or in absolute 

ethanol (96%) and were added to the cells 10 min prior to the initiation of the 

uptake. Controls were incorporated to measure the effect of the solvent only. 

Cell extract preparation and enzyme assays. 

Unless stated otherwise, all operations were performed at room temperature 

under strict anaerobic conditions in an anaerobic glove box with N2/H2 (96%/4%) 

as gas phase. To remove traces of oxygen the gas phase was continuously 

circulated over a palladium catalyst (BASF, Arnhem, the Netherlands). Cells 

were harvested at the late log phase by centrifugation at 20,000 X g for 10 min, 

washed once in 50 mM Tris-HCl (pH 7.8) containing 5 mM MgCl2 and 1 mM 

DTT, and resuspended in either the same buffer or in 20 mM triethanolamine-

HC1 (TEA) (pH 8.0) and 10 mM MgS04. The latter buffer was used when xylose 

isomerase and xylulose-5-P04 kinase were assayed. The cell suspension was kept 

on ice and disrupted by sonication (Sonics & Materials sonifier, CT, USA; 10 

times 20 s with an intermittent cooling for 20 s). The cell debris was removed 

by centrifugation (8,000 X g for 15 min), and the supernatant was used as cell 

free extract. 
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Enzyme measurements and absorbance readings were made in a LKB/Biochrom 

Ultraspec K spectrophotometer using 1-ml cuvettes with a 1-cm light path. All 

enzymes were assayed anaerobically at 37°C, unless stated otherwise. 

Calculations of the specific activity were made in a range where linearity in time 

and in protein concentration was established. One unit of enzyme activity 

represents the amount of enzyme catalyzing the conversion of 1 /jmol of substrate 

per min. 

The following enzymes were assayed according to standard methods. Details of 

the individual assays are described in the references; xylose isomerase (Callens 

et al. 1986); xylulose kinase (Shamana and Sanderson 1979; KCN and NaF were 

omitted from the assay mixture); transaldolase (Levering et al. 1982; 50 mM 

Tris-HCl (pH 7.5) was used instead of 100 mM TEA); hexokinase, 

glyceraldehyde-3-PO^dehydrogenase (assayed aerobically; 3 mM glyceraldehyde-

3-P04 was used as a substrate), lactate dehydrogenase (100 mM KH2P04 (pH 

6.2) was used instead of imidazole-HCl), hydrogenase, phosphotransacetylase, 

acetaldehyde dehydrogenase, and ethanol dehydrogenase (Lamed and Zeikus 

1980a); phosphoglucose isomerase, phosphofructokinase and pyruvate kinase (Wu 

and Racker 1959); phosphogluconate dehydratase I6-phospho-2-keto-3-

desoxygluconate aldolase (these enzymes were assayed together), glucose-6-PO\ 

dehydrogenase and 6-phosphogluconate dehydrogenase (van Dijken and Quayle 

1977);pyruvate carboxylase (Scrutton et al. 1969); malate dehydrogenase (Stams 

et al. 1984); pyruvate decarboxylase (Bringer-Meyer et al. 1986); formate-H2-

lyase (Houwen et al. 1990); formate dehydrogenase (Thauer et al. 1973); acetate 

kinase (assayed aerobically; Lamed and Zeikus 1980b); methylglyoxal reductase 

(assayed aerobically; Willets and Turner 1970). Pyruvate-formate-lyase was 

assayed according to the method described by Jungermann and Schön (1974). 

Pyruvate removal and formate production were analyzed by HPLC. The assay 
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was performed under an atmosphere of carbon monoxide to prevent H2 formation 

(Thauer et al. 1972). Acetol reductase was assayed in the same fashion as ethanol 

dehydrogenase but with acetol (=hydroxy propanon) instead of acetaldehyde. 

Phosphoketolase activity was assayed by determining both the amount of acetyl-

P04 and the amount of glyceraldehyde-3-P04 released from xylulose-5-P04. 

Glyceraldehyde-3-P04 was determined as described by Evans and Ratledge 

(1984). Acetyl-P04 was determined as ferric acetyl hydroxamate as described by 

Whitworth and Ratledge ( 1977). Pyruvate.ferredoxine oxidoreductase was assayed 

using methyl viologen (MV) as electron acceptor. The assay mixture contained 

50 mM Tris-HCl (pH 7.8), 1 mM DTT, 2 mM MgCl2, 2 mM MV, 0.2 mM 

HSCoA, 20 mM sodium pyruvate. Transketolase was assayed in a mixture that 

contained 50 mM Tris-HCl (pH 7.5), 1 mM DTT, 2 mM MgCl2, 0.5 U of triose-

phosphate isomerase, 0.5 U of or-glycero-phosphate dehydrogenase, 3 mM 

thiamine pyrophosphate, 0.15 mM NADH, 1 mM ribulose-5-P04 and 1 mM 

xylulose-5-P04. Ferredoxine (MV).NAD(P) oxidoreductase was assayed in 50 mM 

Tris-HCl (pH 7.8), 1 mM DTT, 2 mM MV, gas phase 100% CO (1 

atmosphere), 1 mM of either NAD or NADP. MV was prereduced with small 

amounts of sodium dithionite. Pyridine nucleotide oxidation or reduction was 

measured at 340 nm (e34o„m=6.22 mM'cm1). Methyl viologen reduction or 

oxidation was measured at 560 nm (e560nm = 8.0 mM'cm"1) 

Nuclear magnetic resonance experiments. 

Media (10 ml) were prepared in 30-ml serum bottles. The media contained 5 mM 

D-[l-13C]-xylose and 15 mM unlabelled xylose. To study xylose conversion in 

a growing culture of B. xylanolyticus X5-1 the bottles were inoculated (2.5 %) 

with a xylose fermenting culture and incubated at 37°C for 22 hours. Periodically 

2.1 ml samples were taken and the cells were centrifuged. D,0 (25 % v/v) was 
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added to the supernatant to provide the NMR lock signal and 1 mM of [3-
13C]propionate was used as internal standard, resulting in a final sample volume 

of 3.0 ml. l3C-labeIIed compounds were analyzed at 75.47 MHz with a Braker 

AMX-300 Fourier-Transform spectrometer equipped with a 10 mm probe-head, 

The sample temperature was kept at 16°C. For all samples 7200 (2 hrs) free 

induction decay's were accumulated into 16k data points and stored on disk, 

using a puis angle of 45° (9 /is) and an interpulse delay of 1 s; a spectral range 

of 20,000 Hz was covered. I3C-NMR spectra were obtained after zero-filling to 

64k data points and subsequent Fourier transformation, using a Lorentzian line-

broadening of 3 Hz. The analyzed products were quantified by integration of 

their resonance intensities. Resonance intensities were corrected for differences 

in Nuclear Overhauser Effect enhancement and relaxation by comparison with a 

calibration spectrum of an equimolar mixture (50 mM) of all measured 

compounds in the medium used and recorded under identical conditions as the 

fermentation samples. 

Chemicals. 

All chemicals were at least of analytical grade. Enzymes and biochemicals were 

obtained from Boehringer Mannheim (Almere, The Netherlands), from Sigma 

Chemical Co. (Amsterdam, the Netherlands), or from Merck (Darmstadt, 

F.R.G.). D-12C-xylose was purchased from Janssen (Geel, Belgium), D-[1-13C]-

xylose from Campro Scientific (Eist, The Netherlands) and D-[U-14C]-xylose 

from Amersham ('s Hertogenbosch, The Netherlands). Gases and gas mixtures 

were supplied by Hoekloos (Schiedam, The Netherlands). Aqualuma scintillation 

cocktail was obtained from Lumac (Landgraaf, The Netherlands) 
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Results 

Xylose fermentation and product formation. 

Growth and product formation during xylose conversion by B. xylanolyticus X5-1 

are given in figure 1. 

Fig. 1. Growth and product formation by B. xylanolyticus X5-1 during xylose 
catabolism under standard conditions on 20 mM of xylose at 37°C in the dark. A^g, 
(•), xylose (A), acetate (A), ethanol (D), formate ( • ) , H : (O). 

The short exponential growth phase is characteristic for the organism. In the 

medium used in this study its maximum specific growth rate was 

0.11 ± 0.02 h"1. Table 1 shows the fermentation balance aftergrowth on 20 mM 

of xylose for 48 hours. A reasonable good carbon and electron recovery was 

found. The main fermentation products were acetate, ethanol, H2, C02 and 

formate. Small amounts of lactate and 1,2-propanediol were also produced. 

During fermentation about 8.7 g of dry cells per mol of xylose were formed. 
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Table 1. Xylose fermentation products of Bacteroides xylanolyticus X5-1. 

product amount* 

acetate 0.66 

ethanol 0.61 

H2 1.32 

C02 1.75 

formate 0.07 

lactate 0.01 

1,2-propanediol 0.02 

biomass (g/mol xylose) 8.7 

e-recovery (%)b 87 

C-recovery (%)b 96 

* Unless otherwise stated the amount of the products is given in mmoles per mmoles of 
xylose converted by Bacteroides xylanolyticus X5-1 after 48 hours of growth at 37°C. 
b For the calculation of carbon and electron recovery, biomass was estimated using 
<C5H702N> as the structural formula for biomass with a molecular weight of 113 g/mol. 

Xylose uptake and the effect of metabolic inhibitors. 

Xylose uptake by washed whole cells of B. xylanolyticus X5-1 was linear for at 

least 6 minutes. An uptake rate of 20 nmol/min.mg cell protein was found. The 

effects of several metabolic inhibitors on xylose uptake were examined (Table 2). 

Strong inhibitors (>50%) of xylose uptake were mercury chloride, sodium 

arsenate, molecular oxygen, molecular hydrogen and 2,4-dinitrophenol. To some 

extent the uptake was also inhibited by the ATPase inhibitor DCCD. 

Valinomycin/nigericine and CCCP had only little effect on xylose uptake. Neither 

menadione nor Antimycin A inhibited the xylose uptake significantly. Xylose 

uptake was not affected by D-glucose and hardly affected by D-arabinose. 
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Table 2. Effect of metabolic inhibitors on xylose uptake by whole cells of Bacteroides 
xylanolyticus X5-1 

inhibitor*b % inhibition 

none 

o2 

HgCl2* (0.5 mM) 

Sodium Arsenate* (10 mM) 

Antimycine A (50 JJM) 

Menadione (0.1 mM) 

Valinomycine/Nigericine (30 /*M each) 

CCCP (50 ßA) 

2,4-DNP (1 mM) 

Monensin (12 piM) 

DCCD (0.1 mM) 

H2/COj (gas phase 80%/20%) 

D-arabinose (15 mM) 

D-glucose (15 mM) 

0 

100 

85 

55 

5 

10 

22 

21 

78 

29 

41 

60 

22 

0 

CCCP, carbonylcyanide m-chlorophenyl hydrazone 
DCCD, N,N-dicyclohexylcarbodiimide 
2,4-DNP, 2,4 dinitrophenol 
* Control specific activity values were 19 nmol/min.mg for untreated cells and 13 
nmol/min.mg for ethanol treated cells. 
b Inhibitors marked with an asteriks were dissolved in water and compared to controls 
without addition. All other inhibitors were dissolved in absolute ethanol and compared to 
incubations with the same amount of ethanol (final concentration 1 % (v/v)). 

Enzymes involved in the conversion of xylose to pyruvate. 

From experiments with cell suspensions it became clear that B. xylanolyticus 

X5-1 was able to convert xylose at a rate of about 90 nmol/min.mg cell protein. 

Therefore, the specific activities of the key enzymes of the xylose metabolism 

should be in this range or higher. Table 3 shows the specific enzyme activities 

measured in cell extracts of B. xylanolyticus X5-1 grown on 20 mM of xylose. 

38 



Xylose Catabolism 

Table 3. Specific activities of enzymes found in cell free extracts of Bacteroides 
xylanolyticus X5-1 grown on 20 mM xylose. 

Enzyme 

xylose isomerase 

xylulose kinase 

transketolase 

transaldolase 

phosphoketolase 

hexokinase 

phosphoglucose isomerase 

phosphofructokinase 

glyceraldehyde-3-P04 dehydrogenase 

pyruvate kinase 

pyruvate-ferredoxin (MV) oxidoreductase 

pyruvate-formate lyase 

pyruvate carboxylase 

malate dehydrogenase 

phosphotransacetylase 

acetate kinase 

acetaldehyde dehydrogenase 

ethanol dehydrogenase 

hydrogenase 

MV:NAD oxidoreductase 

MV:NADP oxidoreductase 

methyl glyoxal reductase 

acetol reductase 

Cofactor 

NADH 
NADPH 

MV 

NADH 

NADH 
NADPH 

NADH 
NADPH 

MV 

MV 

MV 

NADH 
NADPH 

NADH 
NADPH 

Sp. act' 

0.08 

0.2 

0.1 

0.27 

0.01 

0.09 

0.2 

0.08 

7.5 
0 

0.075 

0.5 

0.02 

0.6 

0.75 

0.18 

0.8 

0.08 
0.005 

0.75 
0.2 

7.3 

0.025 

3.1 

0.01 
0.09 

0.04 
0.35 

No detectable activities could be found for the following enzymes; glucose-6-P04 

dehydrogenase, phosphogluconatedehydrogenase, glucose dehydratase/6-phospho-2-keto-3-
desoxy aldolase, pyruvate decarboxylase, lactate dehydrogenase'', formate-hydrogen lyase, 
formate dehydrogenase and NADH:NADP transhydrogenase. 
MV = Methyl viologen. 
* Values are expressed as units per milligram protein and are the average of at least three 
separate measurements. 
b See text. 

Xylose isomerase, xylulose-5-P04 kinase, transketolase and transaldolase were 

detected, suggesting conversion of xylose via the pentose phosphate pathway to 
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fructose-6-P04 and glyceraldehyde-3-P04. Phosphoketolase could be detected 

when glyceraldehyde-3-P04 formation was taken to calculate the activity. 

However, acetyl-P04 formation from xylulose-5-P04 could not be detected. The 

activities found for glucokinase, phosphoglucose isomerase, phosphofructokinase, 

glyceraldehyde-3-P04 dehydrogenase and pyruvate kinase suggested the 

conversion of fructose-6-P04 and glyceraldehyde-3-P04 to pyruvate via the 

Embden-Meyerhof-Parnas pathway. Activities of glucose-6-P04 dehydrogenase, 

phosphogluconate dehydrogenase and glucose-6-P04 dehydratase/6-phospho-2-

keto-3-desoxy aldolase could not be detected, suggesting the absence of the 

hexose monophosphate shunt and the Entner Douderoff pathway. 

Enzymes associated with product formation from pyruvate. 

Pyruvate conversion could be subscribed to the action of the enzymes 

pyruvate:ferredoxin oxidoreductase and pyruvate-formate lyase. No activities 

were found for pyruvate decarboxylase and lactate dehydrogenase. Lactate 

formation when cells were grown on 20 mM xylose was relatively low. 

However, when cells were grown under an atmosphere of CO/C02 more lactate 

was formed and a NADH-dependent lactate dehydrogenase activity of 50 

nmol/min.mg protein could be detected (data not shown). A methyl viologen-

linked hydrogenase was detected. Formate dehydrogenase and formate-hydrogen 

lyase activities could not be detected in cell extracts of B. xylanolyticus X5-1. 

Acetyl-CoA forms a branching point in the xylose metabolism of B. xylanolyticus 

X5-1. It was either converted to acetate or reduced to ethanol. Acetate is 

probably formed by the action of phosphotransacetylase and acetate kinase. 

Ethanol formation proceeds apparently via a NAD(P)H-linked acetaldehyde 

dehydrogenase and a NAD(P)H-linked ethanol dehydrogenase. 
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Enzymes coupled to the production of 1,2-propanediol. 

1,2-Propanediol may be synthesized via the methyl glyoxal bypass (Tran-Din and 

Gottschalk 1985; Cameron and Cooney 1986). In this bypass dihydroxyacetone 

phosphate is converted to methyl glyoxal, which is then reduced in two steps via 

acetol or lactaldehyde to 1,2-propanediol. We found activities for methylglyoxal 

reductase and acetol reductase in cell extracts of B. xylanolyticus X5-1. The 

reduction reactions showed higher NADPH-dependent than NADH-dependent 

activities. Methyl glyoxal synthase activity could also be detected, but the activity 

was not linear with the amount of cell extract added. 

D-[l-,3C]-xylose fermentation by B. xylanolyticus X5-1. 

Figure 2 shows a stack plot of l3C-NMR spectra of culture supernatant taken 

periodically during growth of B. xylanolyticus X5-1 on a mixture of 5 mM 

D-[l-13C]-xylose and 15 mM unlabelled xylose. 

J _ 

A i_ 

Chemical shift (ppm) 

Fig. 2. Time course of the conversion of a mixture of 5 mM of D-[l-"C]-xylose and 15 
mM of unlabeled xylose in a growing culture of B. xylanolyticus X5-1 using the in-vivo 
NMR-technique. The resonances belonging to. the products formed are enlarged by a factor 
of 4 in vertical sense. Resonances of the carbon atoms of xylose other than the C-l position 
are not shown. Chemical shifts (ppm): 11.2, [3-,3C] propionate; 17.8, [2-l3C] ethanol; 24.2, 
[2-l3C] acetate; 58.5, [1-I3C] ethanol; 93.2, a-[l-l3C]-xylose; 97.6, ß-[l-l3C]-xylose. 
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All 10 resonances of the a- and the ß-form of xylose could be detected due to the 

natural abundance of l3C-labelled carbon in the unlabelled substrate. A 

preferential utilization of the a- or the ß-form of the xylose was not observed. 

Concomitantly with the xylose utilization a production of both acetate and 

ethanol, labelled at the C-2 position was found. During degradation, also some 

[l-13C]-ethanol was formed and small amounts of some unidentified products. 

From proton-carbon coupling spectra (data not shown) it could be deduced that 

about 10% scrambling of the label had occurred during xylose degradation. 

Assuming that 6 % of the xylose was used for biomass synthesis we could 

recover 63 % of the label as C-2 product. 

Discussion 

The data presented here are in accordance with a xylose fermentative pathway in 

Bacteroides xylanolyticus X5-1 as depicted in figure 3. Xylose uptake probably 

is an active process as can be deduced from the specificity of the uptake system 

(Gottschalk 1985) and the inhibition by 2,4-dinitrophenol, HgCl2, arsenate and 

DCCD (Franklund and Glass 1987; Martin 1992; Williams and Martin 1990). 

However, the mechanism of xylose uptake in B. xylanolyticus X5-1 remains to 

be elucidated. After transport, xylose is isomerized, phosphorylated and 

converted via the enzymes of the pentose phosphate pathway and the Embden-

Meyerhof-Parnas pathway to pyruvate. The activities of the key enzymes of both 

metabolic pathways are sufficiently high to account for the in vivo xylose 

conversion rates. Pyruvate is converted to acetyl-CoA, resulting in the formation 

of either formate or a low potential reduced cofactor (like ferredoxin) and C02. 

Pyruvate-formate lyase was the only formate producing enzyme which could be 

detected. Acetate is formed by the action of a phosphotransacetylase and an 

acetate kinase. Ethanol is produced in two steps from acetyl-CoA by a NAD(P)H 

dependent acetaldehyde dehydrogenase and a NAD(P)H-linked ethanol 

dehydrogenase. 
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Fig. 3 . Xylose fermentative pathway in B. xylanolyticus X5-1. (Sedohept = sedoheptulose; 
Gly-3-P04 = g!yceraldehyde-3-P04; DHAP = dihydroxyacetone phosphate; Fd = 
Ferredoxin; CoA = coenzyme A). 
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The hexose monophosphate pathway and the Entner-Douderoff pathway can be 

excluded as metabolic pathways because the key enzyme glucose-6-P04 

dehydrogenase could not be detected and because of the little scrambling of the 

label found in the 13C-NMR experiments. Involvement of these pathways would 

have resulted in a significant decrease in the label present in the C2-products, as 

an increased amount of 13C02 would be formed. In the C2-products 63% of the 

label was recovered. This corresponds to 95% of the theoretical possible 

percentage (66%) when [l-13C]-xylose is degraded via the PPP. The formation 

of [1-13C] ethanol could be explained by scrambling of label via the reaction 

sequence pyruvate, oxaloacetate, malate, fumarate. Fumarate is a symmetric 

molecule resulting in a scrambling of label at the C-3 and the C-2 position in 

pyruvate. The C-2 position of pyruvate becomes the C-l position in ethanol. To 

detect intermediates of the metabolism using the l3C-NMR technique relatively 

high concentrations of compounds must be formed and be present during a longer 

period of time. Using cell suspensions of B. xylanolyticus X5-1 (± 1012cells/ml) 

we were able to detect the three characteristic resonances (the a-, the ß- and the 

open chain-form) of [l-l3C]-xylulose (data not shown). Other intermediates could 

not be detected, suggesting that the phosphorylation of xylulose is the rate 

limiting step in the xylose metabolism. 

Using the growth yield and the product ratios as given in table 1, thereby 

neglecting the small amounts of 1,2-propanediol and lactate, a mass balance for 

the catabolism of xylose can be calculated (McCarty 1972). The following overall 

stoichiometric reaction equation was found: 

C5H10O5 + 0.913 H20 -» 0.86 Acetate + 0.79 Ethanol + 1.60 C02 + 1.72 H2 + 

0.10 Formate + 0.96 H+ (AG°'= -181.4 kJ/reaction) 

The ratio substrate : C2-product = 1 : 1.64 and the ratio CI : C2 product = 

1.04 : 1. The amounts of ethanol, formate and H2 can only be produced if 3.4 

mol of reduced cofactors are available. These data fit very well with the expected 
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values for xylose fermentation via the PPP. The ratios should be 1 : 1.67 and 

1 : 1 , and the fermentation of one mol of xylose to acetyl-CoA should yield 3.4 

moles of reduced cofactors. If the PKP had played a significant role in the xylose 

catabolism, both ratios would have been 1 : 2. These considerations strongly 

suggest the idea that xylose is solely fermented via the PPP. The activity found 

for the enzyme phosphoketolase is probably caused by an artifact as only 

glyceraldehyde-3-P04 formation but not acetyl-P04 formation could be detected 

from xylulose-5-P04. The glyceraldehyde-3-P04 formed in the assay for PKP 

could have been the result of a combined action of ribulose-5-P04-3-epimerase, 

ribose-5-P04 isomerase and transketolase. Studies suggesting the involvement of 

phosphoketolase as a major catabolic pathway in pentose metabolism (e.g. Evans 

and Ratledge 1984; Lachke and Jeffries 1986) in which only glyceraldehyde-3-

P0 4 was determined as a product of the enzymatic reaction, should for this 

reason be interpreted with caution. 

According to the proposed pathway 1.67 mol of NADH and 1.67 mol of reduced 

ferredoxin will be formed per mol of xylose converted to acetyl-CoA. 

Regeneration of the oxidized cofactors in this organism proceeds mainly via 

reduction of acetyl-CoA and acetaldehyde or via proton reduction, and to a minor 

extend via formation of 1,2-propanediol and lactate. NAD is regenerated by a 

NADH-dependent acetaldehyde dehydrogenase and a NADH linked ethanol 

dehydrogenase. Electrons from reduced ferredoxin are used for proton reduction 

to form H2. Moreover, they can be transferred via the ferredoxin:NADP 

oxidoreductase to NADP, yielding NADPH. This can be used for reduction of 

acetaldehyde to ethanol and is needed for biosynthesis. Other reactions generating 

NADPH (e.g. NADH:NADPtranshydrogenase, glucose-6-P04 dehydrogenase or 

6-phosphogluconate dehydrogenase) could not be detected. The low activity found 

for the ferredoxin:NAD oxidoreductase suggests that under standard growth 

conditions no electron transfer occurs between ferredoxin and NADH. 
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Substrate level phosphorylation will yield 1.67 mol of ATP per mol of xylose 

degraded to acetyl-CoA and 1 additional mol of ATP per acetyl-CoA converted 

to acetate. On the basis of the data presented here it is not likely that additional 

ATP is formed via electron transport phosphorylation or decarboxylation linked 

Na+ export. End-product-mediated proton extrusion, as described for lactic acid 

bacteria and E. coli (Konings 1985) might be an additional way of energy 

conservation for B. xylanolyticus X5-1. The amount of ATP equivalents used for 

xylose uptake or produced during end-product-mediated proton extrusion is not 

known. From the calculated mass balance we can deduce a nett ATP yield for B. 

xylanolyticus X5-1 of 2.53 moles of ATP per mol of xylose. This corresponds 

to a YATP of about 3.5 g/mol, which is low when compared to the generally 

accepted value of 10.5 g/mol. However, it is known that this value can be 

strongly influenced by the growth conditions (Stouthamer 1978). The Gibbs free 

energy change for ATP formation in B. xylanolyticus X5-1 would be -72 kJ/mol. 

For Clostridium pasteurianum when grown on glucose a value of -70.6 kJ/mol 

ATP was found (Thauer et al. 1977). From other organisms it has been shown 

that the Gibbs free energy change for biological ATP formation was in the same 

range (Kroger 1980). 
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Abstract 

During cultivation on a mixture of xylose and glucose B. xylanolyticus X5-1 

showed neither diauxic growth nor a substrate preference. Xylose limited, 

continuous culture cells were able to consume xylose and glucose both as single 

substrates and as mixed substrates without any lag phase. When glucose was the 

growth limiting substrate the microorganism was unable to consume xylose. 

However, in the presence of a small amount of glucose or pyruvate, xylose was 

utilized after a short lag phase. In glucose limited cells xylose isomerase was 

present in low activity, but xylulose kinase activity could not be detected. Upon 

addition of a mixture of xylose and glucose, xylose isomerase was induced 

immediately and xylulose kinase was induced after about 30 minutes. The 

induction of the two enzymes was sensitive to chloramphenicol showing de novo 

synthesis. Xylose uptake in glucose grown cells was very low, but the uptake rate 

could be increased when incubated with a xylose-glucose mixture. The increase 

in the uptake rate was not affected by chloramphenicol indicating that a 

constitutive uptake system had to be activated. The inability of B. xylanolyticus 

X5-1 to induce the xylose catabolic pathway in glucose limited continuous culture 

cells by addition of only xylose probably was caused by energy limitation. 

Introduction 

Hemicelluloses are short, branched-chain heteropolysaccharides of mixed 

pentosans and hexosans (Gong et al. 1981). Hydrolysis of these polymers yields 

mixtures of mainly xylose, arabinose, glucose, glucuronic acid, mannose and 

galactose (Gong et al. 1981, Rosenberg 1980). Fermentation of hemicellulose and 

hemicellulose hydrolysates was a major subject of research, mostly in connection 

with the production of ethanol (duPreez et al. 1986, Hsiao et al. 1982, Kilian et 

al. 1983, Patel 1984, Patel et al. 1986). One of the problems in this fermentation 
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was the inability of many microorganisms to efficiently metabolize all the 

carbohydrates derived from hemicellulose (Patel 1984). Moreover, the presence 

of mixtures of sugars may lead to a sequential utilization of substrates (Patel et 

al. 1986, Russell and Baldwin 1978). Because glucose often is the preferred 

substrate, xylose utilization was adversely affected (Lee 1992). 

Sequential substrate fermentation is known to be under catabolite regulatory 

control mechanisms like catabolite inhibition, catabolite repression and inducer 

exclusion (Saier 1989). For ruminai bacteria both sequential and simultaneous 

substrate utilization was reported (Russell and Baldwin 1978, Russell and Baldwin 

1979, Strobel 1993a). Different strategies for mixed substrate utilization are used 

in these organisms. These strategies include control of carbohydrate utilization 

by substrate affinities, catabolite regulatory mechanisms and phosphotransferase 

system mediated transport of carbohydrate (Russell and Baldwin 1979, Strobel 

1993a). Much research has been conducted on mixed substrate utilization by 

anaerobic microorganisms with xylose as one of the constituent sugars (duPreez 

et al 1986, Hsiao et al. 1982, Lee 1992, Patel et al. 1986, Russell and Baldwin 

1979, Standing et al. 1972). The regulation of key enzymes involved in the 

anaerobic xylose catabolism plays a crucial role. Xylose uptake, xylose isomerase 

and xylulose kinase are regulated differently in Prevotella ruminicola B,4 and S23 

(Matte et al. 1992, Strobel 1993b), Selenomonas ruminantium strain HD4 and 

strain D (Matte et al. 1992, Strobel 1993a, Williams and Martin 1990), and in 

Clostridium acetobutylicwn (ATCC 824) (Ounine et al. 1985). 

Bacteroides xylanolyticus X5-1 is a strictly anaerobic hemicellulolytic organism. 

It can ferment several mono-, di-, and trimeric sugars and the hemicellulose 

xylan. Cellulose and hemicelluloses other than xylan are not utilized (Scholten-

Koerselman et al. 1986). Xylose, the main constituent of xylan, is mainly 

fermented to acetate, ethanol, H2, C02 and formate. Labelling studies and 

enzyme levels showed that the pentose phosphate pathway in conjunction with the 

glycolysis is involved in xylose catabolism. This route of xylose fermentation is 
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common in anaerobic bacteria growing on xylose (Caldwell and Newman 1986b, 

Heyndrickx et al. 1991a, Lacis and Lawford 1991, Turner and Roberton 1979). 

In this study, the utilization by B. xylanolyticus X5-1 of xylose as single and as 

mixed substrate was investigated in both batch and continuous cultures. 

Materials and methods 

Organism and cultivation. 

Bacteroides xylanolyticus X5-1 (DSM 3808) was isolated and described by 

Scholten-Koerselman et al. (1986). The organism was grown in a basal 

bicarbonate buffered medium with a composition as described by Huser et al. 

(1982). To one litre of medium 0.5 g of yeast extract, 1 ml of a trace elements 

solution (Zehnder et al. 1980) and 1 ml of a vitamin solution (Wolin et al. 1963) 

were added. The vitamin solution was filter sterilized separately. The gas phase 

above the medium was N2/C02 (80%/20%) and the pH of the medium was 6.8-

6.9. Xylose and glucose were added from 2M filter-sterilized stock solutions. In 

batch cultures the organism was cultivated in 250-ml serum bottles containing 

100 ml medium with 20 mM of substrate. For the continuous culture experiments 

the same medium was used except that 0.2% of yeast extract was added instead 

of 0.05%. In addition, 0.05% of cysteine was added. Continuous cultivation was 

performed at 37°C in IL chemostats with a working volume of 500 ml. The 

cultures were grown at a dilution rate of 0.1 h"1. The pH was maintained at 

7.0 ± 0.1 with 2N NaOH. A continuous stream of N,/C02 (80%/20%) at a flow 

rate of 130 ml per hour was led over the cultures. To guarantee steady state 

conditions cells were analyzed after at least 6 volume changes. 
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Mixed substrate utilization. 

B. xylanolyticus X5-1 was adapted to glucose or xylose by subculturing the 

organism (1 % inoculum) for three times on either substrate. Adapted log phase 

cells were used as inoculum (10%) to test growth in batch cultures on single 

substrates (20 mM glucose or 20 mM xylose) and on mixed substrates (10 mM 

glucose and 10 mM xylose). At different time intervals samples were taken to 

determine substrate consumption and growth. 

Induction experiments. 

The induction of xylose uptake, xylose isomerase and xylulose kinase was studied 

with glucose limited continuous culture cells. Steady state continuous culture cells 

were harvested anaerobically and divided up into serum bottles. The gas phase 

was changed to N2/C02 (80%/20%) and the bottles were preincubated for 15 

minutes at 37CC in the absence or presence of chloramphenicol (0.4 mg/ml). To 

the cells either 15 mM glucose, 15 mM xylose, 5 mM glucose + 15 mM xylose, 

50 mM pyruvate or 50 mM pyruvate + 15 mM xylose were added. At different 

time intervals samples were taken and analyzed for xylose uptake, xylose 

isomerase and xylulose kinase activities. In addition, the substrate consumption 

was determined. 

Preparation of cell free extracts and enzyme assays. 

Cells were harvested by centrifugation at 20,000 X g for 10 min and washed 

once in 20 mM triethanolamine-HCl pH 8.0 and 10 mM MgS04. The cell pellets 

were resuspended in this buffer solution and disrupted by sonication (Sonics & 

Materials sonifier, CT, USA; 10 times 20 s with an intermittent cooling for 20 

s). The cell debris was removed by centrifugation (8,000 X g for 15 min), and 
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the supernatant was used as cell free extract. Xylose isomerase and xylulose 

kinase activities were determined as described by Callens et al. (1986) and 

Shamanna and Sanderson (1979), respectively. Cell free extracts were prepared 

aerobically. No differences were found in enzyme activities when determined 

under either strict anaerobic conditions or aerobic conditions. 

Xylose uptake. 

Cells (10 ml) were harvested by centrifugation (8,000 X g) under anaerobic 

conditions, and washed once with anaerobic medium without substrate but with 

chloramphenicol (CAP, 0.4 mg/ml). Cells were suspended in the same medium 

to an ODfjso of 3. Uptake studies were performed under an atmosphere of N2/C02 

(80%/20%) in 13-ml vials closed with butyl rubber stoppers. The reaction 

mixtures (1.5 ml) were preincubated at 37°C for 10 min. The uptake study was 

started by addition of xylose (1 raM final concentration, 0.25 fiCi/fimol). At 

various periods of time, samples (0.2 ml) were taken using a 1-ml syringe 

equipped with an 18-gauge needle and filtered through prewashed membrane 

filters (Schleicher & Schuell BA85). Filters were washed with 4 ml of 100 mM 

LiCl and transferred to 4 ml aqualuma scintillation cocktail. The radioactivity 

was counted in a LKB Wallac liquid scintillation counter (Pharmacia/LKB, 

Woerden, The Netherlands). 

Analytical methods. 

Substrate consumption and product formation were measured by HPLC and GC 

as described by Stams et al. (1993). Samples for HPLC analysis were diluted 1:1 

with 20 mM xylitol in 50 mM HCl; xylitol was used as an internal standard. 

Growth was determined by measuring the increase in optical density at 660 nm 

in a LKB/Biochrom Ultraspec K spectrophotometer, using cuvettes with a 1-cm 
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light path. When necessary samples were diluted 1:1 with water to obtain an 

ODgfio below 0.4. Protein in cell free extracts was estimated with coomassie 

brilliant blue G250 (Bradford 1976). Total cell protein was determined after 

boiling of cell pellets in IN NaOH for 15 min according to Lowry et al. (1951). 

Bovine serum albumin was used as a standard. 

Chemicals. 

All chemicals were at least of analytical grade. Enzymes and biochemicals were 

obtained from Boehringer Mannheim (Almere, The Netherlands), Sigma 

Chemical Co. (Amsterdam, the Netherlands), or Merck (Darmstadt, F.R.G.). 

D-[U-14C]-xylose was purchased from Amersham ('s Hertogenbosch, The 

Netherlands). Gases and gas mixtures were supplied by Hoekloos (Schiedam, The 

Netherlands). Aqualuma scintillation cocktail was obtained from Lumac 

(Landgraaf, The Netherlands). 

Results 

Substrate utilization by batch grown cells. 

B. xylanolyticus X5-1 grew well on D-xylose and D-glucose. The molar growth 

yields were 8.7 and 11.3 g dry cells and the maximum specific growth rates were 

0.11 + 0.02 h1 and 0.24 ± 0.01 h'1, respectively. Metabolism of xylose, glucose 

and a xylose-glucose mixture by B. xylanolyticus X5-1 cells adapted to either one 

of these sugars is shown in Figure 1. With the mixed substrate diauxic growth 

was not observed. The maximum specific growth rate on a mixture of glucose 

and xylose (0.23 ± 0.01 h') was almost the same as the maximum specific 

growth rate on glucose alone (Fig. 1A and B). A substrate preference was not 

observed, irrespectively of the substrate of pre-growth (Fig. 1C and D). 
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FIG. 1. Growth and substrate utilization by B. xylanolyticus X5-1 pregrown on 
glucose (panels A and C) or on xylose (panels B and D). Panels A and B show 
growth on glucose ( • ) , xylose ( • ) , or a mixture of glucose and xylose ( A ) . 
Substrate utilization in these cultures of glucose ( • ) or xylose ( A ) as single 
substrates, and glucose (D) and xylose (A) as mixed substrates are shown in panels 
Cand D. 

Substrate utilization by continuous culture cells. 

B. xylanolyticus X5-1 was grown in the chemostat with either xylose or glucose 

as the growth limiting substrate. Steady state cells of B. xylanolyticus X5-1, 

grown on xylose, were able to consume xylose, glucose or a mixture of xylose 

and glucose within 7 hours at a rate of approximately 6.3 mmol of 

carbohydrate/g dry cells per hour (Fig. 2A). No substrate preference was seen 

when a xylose-glucose mixture was given. When glucose was used as the growth 
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limiting substrate, steady state cells of B. xylanolyticus X5-1 consumed glucose 

at a rate of about 6.0 mmol/g dry cells per hour (Fig. 2B), but more than 24 

hours were needed for a complete consumption of 15 mM of xylose. However, 

when glucose (4 mM) was added to these cells, xylose was consumed rapidly 

after a short lag phase (Fig. 2B). 
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FIG. 2. Glucose (B,D) and xylose (A ,A) utilization by xylose limited (panel A) and 
glucose limited (panel B) steady state continuous culture cells of B. xylanolyticus 
X5-1. Closed symbols represent experiments with single substrates added, the open 
symbols with a mixture added. 

The same phenomenon was found when pyruvate was used instead of glucose 

(data not shown). Chloramphenicol, an inhibitor of protein synthesis, did not 

affect glucose consumption in a xylose-glucose mixture, but the xylose 

fermentation was completely prevented (Fig. 3). 

Activation of the xylose uptake system. 

Xylose uptake was studied in B. xylanolyticus X5-1 cells grown in the chemostat. 

Glucose grown cells showed a relatively low 14C-xylose uptake rate 
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FIG. 3. Influence of chloramphenicol on the mixed substrate utilization by glucose 
limited, steady state continuous culture cells of B. xylanolyticus X5-1. Symbols: 
glucose (O.B), xylose (A,A). Open symbols represent incubation without 
chloramphenicol, whereas closed symbols represent incubation with 
chloramphenicol. 

(3 nmol/min.mg cell protein) compared to xylose grown cells (25 nmol/min.mg 

cell protein). However, incubation of the glucose grown cells with a xylose-

glucose mixture increased the xylose uptake rate to 20 nmol/min.mg cell protein 

after 2 h (Fig. 4). This increase in uptake rate was not affected by 

chloramphenicol, indicating that protein synthesis is not required for this 

activation (Fig. 4). 

Induction of xylose isomerase and xylulose kinase. 

B. xylanolyticus X5-1 catabolizes glucose via the glycolysis, while xylose is 

catabolized via a combined pentose phosphate pathway and the glycolysis. Key 

enzymes of the pentose phosphate pathway are xylose isomerase and xylulose 

kinase. In extracts of xylose grown chemostat cells of B. xylanolyticus X5-1, 
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FIG. 4. Influence of chloramphenicol on the activation of the xylose uptake rate of 
glucose limited, steady state continuous culture cells of B. xylanolyticus X5-1. 
Induction was started at time zero by the addition of a xylose and glucose mixture 
in the absence (open symbols) and presence (closed symbols) of chloramphenicol. 
Uptake activity was determined at time 0 h (squares) and at time is 2 h (triangles) 
after the addition of the substrate mixture. 

specific enzyme activities of 45 and 180 nmol/min.mg cell protein were found for 

xylose isomerase and xylulose kinase, respectively. Glucose grown cells showed 

a low xylose isomerase activity (5-10 nmol/min.mg protein) and no activity could 

be detected of xylulose kinase. When glucose, xylose or pyruvate were added to 

glucose grown cells, the enzymes were not induced. However, with a xylose-

glucose mixture the activities of xylose isomerase and xylulose kinase increased 

rapidly. A short lag in the expression of xylulose kinase was observed (Fig. 5A). 

When the same experiment was performed with chloramphenicol in the medium, 

xylulose kinase and xylose isomerase were not induced (Fig. 5B). 
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FIG. 5. Induction of xylose isomerase ( • ) and xylulose kinase (A) in glucose 
limited continuous culture cells of B. xylanolyticus X5-1. Cells were induced at time 
zero with a mixture of xylose and glucose without (panel A) or with (panel B) 
chloramphenicol. 

Discussion 

B. xylanolyticus X5-1, when grown in batch cultures utilized mixtures of xylose 

and glucose simultaneously. A diauxic growth or a substrate preference was 

never observed, despite the fact that the maximum specific growth rates on 

glucose and xylose differed considerably. This indicates that the xylose 

metabolism in B. xylanolyticus X5-1 is not catabolite repressed, unlike the xylose 

metabolism in 5. ruminantium strain D and in C. acetobutylicum (ATCC 824) 

(Ounine et al. 1985, Strobel 1993a). Other mixtures with xylose, glucose, 

arabinose and rhamnose were tested as well. With none of these mixtures we 

observed diauxic growth or substrate preference. Similar results were found with 

other Bacteroides strains, like B. fragilis, B. fibrisolvens A38 and B. 
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polypragmatus strain GP4 (Patel 1984, Patel et al. 1986, Russell and Baldwin 

1978). 

Glucose grown chemostat cells of B. xylanolyticus X5-1 hardly consumed xylose, 

whereas glucose was consumed immediately. However, when glucose was added 

together with xylose, the latter was metabolized after a short lag phase. The fact 

that chloramphenicol could reverse the glucose effect on the xylose fermentation 

showed that the xylose metabolism was regulated on enzyme level. The first three 

steps in xylose metabolism involve xylose uptake, and xylose conversion via the 

enzymes xylose isomerase and xylulose kinase. The xylose uptake rate was low 

in glucose grown continuous culture cells, but increased after 2 hours of 

incubation with a xylose-glucose mixture. Because this increase was not affected 

by the presence of chloramphenicol, it is likely that xylose uptake is not 

controlled on the level of enzyme synthesis. Induction with a xylose-pyruvate 

mixture instead of xylose-glucose mixture had the same effect on the xylose 

conversion. Probably the xylose uptake system is energized by a metabolic 

intermediate, like ATP, acetyl-P04 or another energy rich phosphate bond (Ames 

1986). Xylose isomerase activity was present in glucose-grown cells, but the 

activity in xylose-grown cells was 4 to 5 times higher. Xylulose kinase activity 

could not be detected in glucose grown cells. Both enzymes were induced after 

the addition of a xylose-glucose mixture, whereas xylose or glucose alone did not 

induce the enzymes. The induction was repressed by chloramphenicol, showing 

de novo synthesis of these enzymes. Prevotella (Bacteroides) ruminicola B,4 and 

S23 also possessed inducible xylose isomerases, but had constitutive xylulose 

kinases (Matte et al. 1992). Like B. xylanolyticus X5-1, strain B,4 possessed a 

constitutive xylose permease (Strobel 1993b). Selenomonas ruminantium D 

showed a constitutive xylose isomerase and an active, but inducible xylulose 

kinase (Matte et al. 1992). Whether the inducible activities in 5. ruminantium and 

P. ruminicola are controlled on the level of enzyme synthesis is not known. 

B. xylanolyticus X5-1 grown in continuous culture on glucose is carbon and 
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energy limited. When the xylose catabolic pathway is induced with xylose as a 

single substrate, the cells need metabolic energy (i) to transport the substrate, (ii) 

to synthesize the xylose isomerase and the xylulose kinase and (iii) to 

phosphorylate xylulose. Due to the energy limiting conditions, xylose is poorly 

catabolized in glucose limited continuous culture cells. When some glucose is 

added as well, metabolic energy becomes available. Similar results were found 

by Standing et al. (1972), when a glucose fed chemostat of E. coli B/r was 

switched to xylose. About 50% of the cells was washed out in about 12 hours, 

before the cells were able to ferment the new substrate. 

The regulation of the xylose catabolism in B. xylanolyticus X5-1 is different from 

the known xylose catabolisms in E. coli, A. aerogenes and 5. typhimurium. In 

these organisms all three enzymes (permease, isomerase and kinase) are inducible 

enzymes (Shamanna and Sanderson 1979, Wilson and Mortlock 1973). Using 

xylose isomerase negative mutants it could be shown that xylose was the inducer 

of both the xylose isomerase and the xylulose kinase. Xylose concentrations as 

low as 0.66 mM were enough to induce the enzymes (Shamanna and Sanderson 

1979). In B. xylanolyticus X5-1 xylulose probably is the inducer of the enzyme 

xylulose kinase, because the first response to the induction with the sugar mixture 

was an increase of xylose isomerase activity, followed by the induction of 

xylulose kinase. However, the lack of mutants and genetic data of B. 

xylanolyticus X5-1 precludes any conclusions regarding the inducer(s) involved 

in the xylose catabolic pathway. 
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Abstract 

Bacteroides xylanolyticus X5-1 was grown in pure culture and in mixed culture 

with Methanospirillum hungatei JF-1 under xylose limitation in the chemostat. In 

the pure culture ethanol, acetate, C0 2 and hydrogen were the products. In the 

mixed culture acetate, C0 2 and presumably hydrogen were the only products 

formed by B. xylanolyticus X5-1. The biomass yield of B. xylanolyticus X5-1 

increased due to the cocultivation. In cell free extracts of the pure culture both 

NAD- and NADP-dependent acetaldehyde dehydrogenase and ethanol 

dehydrogenase activities were found. In cell free extracts of the mixed culture, 

activities of these enzymes were not detected. Inhibition of methanogenesis by the 

addition of bromo-ethano-sulfonic acid (BES), resulted in an accumulation of H2, 

ethanol and formate. Immediately after the addition of BES, NAD-dependent 

acetaldehyde dehydrogenase and ethanol dehydrogenase activities were induced. 

After a short lag phase, a NADP-dependent ethanol dehydrogenase was also 

induced. The induction of acetaldehyde dehydrogenase and ethanol dehydrogenase 

was inhibited by chloramphenicol, showing de novo synthesis of these enzymes. 

These results clearly show that the shift in product formation caused by 

interspecies electron transfer is regulated at the level of enzyme synthesis. 

Introduction 

Interspecies electron transfer is an important process in methanogenic ecosystems. 

The influence of obligate and facultative electron transfer on the degradation of 

fatty acids, amino acids and carbohydrates has been studied in mesophilic and 

thermophilic microorganisms (Ahring and Westermann 1987a, Ahring and 

Westermann 1987b, Bonch-osmolovskaya and Stetter 1991, Boone et al. 1989, 

Dolfing 1992, Ianotti et al. 1973, Joblin et al. 1990, Marvin-Sikkema et al. 1993, 

Pavlostathis et al. 1990, Stams and Hansen 1984, Thiele and Zeikus 1988, Yang 
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and Tang 1991). These studies have indicated that H2 and formate may function 

as electron carriers. Interspecies formate transfer was suggested to play an 

important role in the transfer of electrons during butyric acid, ethanol and lactic 

acid degradation (Boone et al. 1989, Thiele and Zeikus 1988). The influence of 

interspecies hydrogen transfer on carbohydrate fermentation is ascribed to a 

decrease in the partial hydrogen pressure. A role of formate transfer in sugar 

fermentation was not yet shown. Hydrogen is formed by proton reduction via the 

enzyme hydrogenase. The mid-point potentials for the redox couples H2/2H+ and 

reduced ferredoxin/oxidized ferredoxin (-414 mV and -398 mV, respectively 

(Thauer et al. 1977)) are in the same range. As a result H2 can easily be formed 

from reduced ferredoxin, even at high hydrogen partial pressures (Gottschalk 

1986). The mid-point potential of the redox coupple NADH/NAD"1" is much 

lower (-320 mV (Thauer et al. 1977)). Therefore, H2 evolution from NADH 

cannot proceed, unless H2 is removed efficiently by methanogens. It can be 

calculated that at a partial pressure of hydrogen below 103 atmosphere the Gibbs 

free energy of the reaction : 

NADH + H+ •-* NAD+ + H2 

will become negative (Gottschalk 1986). Enzymes involved in the electron flow 

from reduced adenine nucleotides (NAD(P)H) to ferredoxin and vice versa have 

been studied extensively (Jungerrpann et al. 1971, Jungermann et al. 1973, 

Petitdemange et al. 1976, Thauer et al. 1971, Thauer et al. 1974). 

When grown in mixed culture with hydrogenotrophic organisms the carbon flux 

in fermentative organisms like Clostridium thermocellum, C. pasteurianum, C. 

cellobioparum, Ruminococcus albus, and R. flavefaciens shifts from reduced 

products, like ethanol, lactate, succinate and butyrate, to the more oxidized 

product acetate (Chung 1976, Ianotti et al. 1973, Latham and Wolin 1977, 

Thauer et al. 1977, Weimer and Zeikus 1977). Acetate formation is an important 

site of energy conservation in anaerobic metabolism as per acetate produced one 
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ATP is formed. Therefore, often more biomass is produced in cocultures. B. 

xylanolyticus X5-1 is a strictly anaerobic organism which is able to grow on the 

hemicellulose xylan and a variety of mono-, di- and tri-meric sugars (Scholten-

Koerselman et al. 1986). It is not able to grow on other hemicelluloses or on 

cellulose. With labelling studies and enzyme measurements we could show that 

B. xylanolyticus X5-1 ferments xylose, which is the main constituent of xylan, 

via the pentose phosphate pathway in conjuction with the glycolysis (Biesterveld, 

unpublished results). This fermentation route is common in anaerobic bacteria 

growing on xylose (Caldwell and Newman 1986b, Heyndrickx et al. 1991a, Lacis 

and Lawford 1991, Turner and Roberton 1979). Acetate, ethanol, H2, C02 and 

formate are the main fermentation products when grown on xylose (Scholten-

Koerselman et al. 1986). Thus far, most research on the influence of interspecies 

electron transfer on fermentative organisms was focused on the regulation of 

product formation. The objective of the research presented here, was to 

investigate the regulation of product formation on enzyme level when B. 

xylanolyticus X5-1 is grown in pure culture and in mixed culture with 

methanogens. Preliminary results of this study have been published before 

(Biesterveld and Stams 1990). 

Materials and methods 

Organisms and cultivation. 

Bacteroides xylanolyticus X5-1 (DSM 3808) was isolated at our laboratory 

(Scholten-Koerselman et al. 1986) and Methanospirillum hungatei JF1 (DSM 864) 

was obtained from the Deutsche Sammlung von Mikroorganismen 

(Braunschweig, Germany). The organisms were grown in a basal bicarbonate 

buffered medium with a composition as described by Huser et al. (1982). To one 

litre of medium 0.5 g of yeast extract, 1 ml of a trace elements solution (Zehnder 
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et al. 1980) and 1 ml of a filter-sterilized vitamin solution (Wolin et al. 1963) 

were added. For the cultivation of B. xylanolyticus X5-1 the pH of the medium 

was 6.8-6.9 and the gas phase was N2/C02 (80%/20%). The medium for M. 

hungatei JF-1 was supplemented with 0.05% biotrypticase and the gas phase was 

H2/C02 (80%/20%). Xylose was added from a 2M filter-sterilized stock solution 

to a final concentration of 20 mM. In batch cultures the organisms were 

cultivated in 250-ml serum bottles containing 100 ml of medium. For the 

continuous culture experiments the same medium was used except that 0.2% of 

yeast extract was used instead of 0.05% yeast extract, and 0.05% of cysteine was 

added. Continuous cultivation was performed at 37°C in lL-chemostats with a 

working volume of 500 ml. The cultures were grown at a dilution rate of 

0.03 h ' . The pH was maintained at 7.0 + 0.1 with 2N NaOH. N2/C02 

(80%/20%) at a flow rate of 260 ml per hour was lead continuously over the 

cultures. Continuous cultivation of mixed cultures were started using 1% and 

10% inocula of growing cultures of B. xylanolyticus X5-1 and M. hungatei JF1, 

respectively. Batch growth of the mixed culture was allowed for 12 hours before 

continuous feeding was started. When the partial pressure of H2 in the gas phase 

had decreased to a value below 50 Pa, cultivation was continued during at least 

6 volume changes to guarantee steady state conditions. 

Preparation of cell free extracts and enzyme assays. 

Cells were harvested by centrifugation at 20,000 X g for 10 min and washed 

once in 50 mM Tris-HCl pH 7.8 containing 5 mM MgCl2 and 1 mM DTT. The 

cell pellets were resuspended in the same buffer and disrupted by sonication 

(Sonics & Materials sonifier, CT, USA; 10 times 20 s with an intermittent 

cooling on ice for 20 s). The cell debris was removed by centrifugation (8,000 

X g for 15 min), and the supernatant was used as cell free extract. 
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Glyceraldehyde-3-P04 dehydrogenase, hydrogenase, phosphotransacetylase, 

acetaldehyde dehydrogenase, and ethanol dehydrogenase were assayed as 

described by Lamed and Zeikus (1980a). Acetate kinase was assayed as described 

by Lamed and Zeikus (1980b). Pyruvate:ferredoxine oxidoreductase was assayed 

using methyl viologen (MV) as electron acceptor. The assay mixture contained 

50 mM Tris-HCl (pH 7.8), 1 mM DTT, 2 mM MgCl2, 2 mM MV, 0.2 mM 

HSCoA, 20 mM sodium pyruvate. Pyruvate-formate-lyase was assayed according 

to the method of Jungermann and Schön (1974); pyruvate conversion and formate 

production were analyzed by HPLC. The assay was performed under an 

atmosphere of carbon monoxide to prevent H2 formation (Thauer et al. 1972). 

Formate dehydrogenase (NAD(P)-dependent) and formate :ferredoxin (MV) 

oxidoreductase were assayed according to the method of Spormann and Thauer 

(1988). Transhydrogenase was assayed according to the method as described by 

Höjeberg et al. (1976). Ferredoxine (MV):NAD(P) oxidoreductase was assayed 

in 50 mM Tris-HCl (pH 7.8), 1 mM DTT, 2 mM MV, and 1 mM of NAD or 

NADP, under a gas phase of 100% CO (105 Pa). MV was prereduced with a 

small amount of sodium dithionite. NADH dehydrogenase and NADPH 

dehydrogenase were assayed as described by Kremer and Hansen (1987). 

However, 2 mM NADH was used for the NADH dehydrogenase assay instead 

of 0.2 mM, and for the NADPH dehydrogenase assay 0.2 mM NADPH was used 

instead of 2 mM. Pyridine nucleotide oxidation or reduction was measured at 340 

nm (e34o„m= 6.22 mM'cm'1). Methyl viologen reduction or oxidation was 

measured at 560 nm (e560nra= 8.0 mM'cm1) . 

Induction experiments in mixed culture cells. 

Enzyme induction studies were performed in steady state chemostat cultures after 

inhibition of methanogenic bacteria by bromo-ethano-sulfonic acid (BES; 5 mM 
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final concentration). The medium flow was kept at the same rate as before the 

addition of BES. At different time intervals liquid samples (60 ml) were taken to 

determine the cumulative amounts of substrate consumption, product formation 

and bacterial growth and to determine enzyme levels. Gas samples were taken to 

analyze for H2 and CH4 formation. 

To study the effect of chloramphenicol (CAP; 0.4 mg/ml final concentration) on 

enzyme induction, steady state mixed cultures (90 ml) were transferred 

anaerobically to 250 ml serum bottles. BES (5 mM) and xylose (20 mM) were 

added to bottles with and to bottles without CAP. In these bottles product 

formation and substrate consumption were measured after 24 hours of incubation 

at 37°C. 

Analytical methods. 

Substrate consumption and product formation were measured by HPLC and GC 

as described by Stams et al. (1993). Samples for HPLC analysis were diluted 1:1 

with 20 mM xylitol in 50 mM HCl; xylitol was used as internal standard. In the 

mixed culture experiments, the bacterial dry weight of the methanogen was 

estimated from the methane production, assuming that 3 g of dry weight was 

formed per mol of CH4 produced (Pavlostathis et al. 1990, Schönheit et al. 

1980). In the induction experiments, the yield of B. xylanolyticus X5-1 was 

calculated from the change in optical density at 660nm (OD660). An 00650=1 

corresponded to about 600 mg of dry cells per litre. OD660 readings were done 

in a LKB/Biochrom Ultraspec K spectrophotometer using cuvettes with a 1-cm 

light path. When necessary, samples were diluted 1:1 with water to maintain an 

OD660 below 0.4. Protein in cell free extracts was estimated with coomassie 

brilliant blue G250 (Bradford 1976). Bovine serum albumin was used as a 

standard. 
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Chemicals. 

All chemicals were at least of analytical grade. Enzymes and biochemicals were 

obtained from Boehringer (Almere, the Netherlands), Sigma Chemical Co. 

(Amsterdam, the Netherlands) or Merck (Darmstadt, F.R.G.). Xylose was 

purchased from Janssen (Geel, Belgium). Gases and gas mixtures were supplied 

by Hoekloos (Schiedam, the Netherlands). 

Results 

Xylose fermentation in chemostat cultures. 

B. xylanolyticus X5-1 was grown in the chemostat in pure culture and in mixed 

culture with M. hungatei JF-1. The biomass yield and the specific rates of 

substrate consumption and product formation of steady state chemostat cultures 

are given in table 1. In batch cultures of B. xylanolyticus X5-1 low amounts of 

formate were produced (results not shown). However, in steady state continuous 

cultures formate production could not be detected neither in the pure culture nor 

in the mixed culture. Cocultivation with the methanogen led to a shift in product 

formation; the acetate production rate and the biomass yield increased, whereas 

the ethanol production rate decreased to a very low level. The H2 partial pressure 

in the gas phase of the mixed culture was about 25-50 Pa, which was about 1 per 

cent of the concentration found in pure culture of B. xylanolyticus X5-1 measured 

under the same conditions. Reasonable carbon and electron recoveries were found 

in both the pure and the mixed culture. 

Enzyme activities in cell extracts of pure and mixed cultures. 

To investigate whether product formation was regulated at the level of enzyme 

synthesis, enzymes involved in product formation and electron transfer reactions 
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Table 1. Steady state values expressed in xylose limited chemostat cultures of Bacteroides 
xylanolyticus X5-1 in pure and mixed cultures (D=0.03 h ' , 37°C, pH = 7.0 ± 0.1, 
xylose concentration influent = 20 mM, gas flow=260 ml per hour). In the mixed culture 
the methanogen Methanospirillum hungatei JF-1 was used. 

pure 
culture 

mixed 
culture 

Specific rates' 

xylose 

acetate 

ethanol 

formate 

H2
b 

co2< 

CH4" 

1.9 

1.2 

1.3 

ND 

1.6 

2.5 

ND 

1.6 

2.3 

0.03 

ND 

5.4 

2.3 

8.8 

dry weight (mglXf 

(g/mol)' 

, (g/mol)e 

316 

15.8 

6.6 

372(X5-1) 
56(JF-1) 

19 

6.0 

C-recovery (%)f 

e-recovery (%)' 

93 

89 

105 

109 

ND means not detectable 
* The specific rates are expressed as mmols consumed or produced per gram dry B. 
xylanolyticus X5-1 cells per hour, except for the methane production rate. The latter is 
expressed as mmols per gram dry M. hungatei JF-1 cells per hour. 
b H2 in the mixed culture was calculated from the methane formed, assuming that hydrogen 
was produced in stead of formate and that 4 mois of H2 are used to form 1 mol of CH4. 
c C02 was calculated assuming that per acetate and per ethanol 1 C02 is formed. 
d A yield of 3 g of dry M. hungatei JF-1 cells per mol of CH, formed was used 
(Pavlostathis et al. 1990, Schönheit et al. 1980) to estimate the dry weight of the 
methanogen in the mixed culture. 
• The yields are given as g of dry B. xylanolyticus X5-1 cells per mol of either xylose or 
ATP. ATP was calculated assuming that per xylose consumed, 1.67 pyruvate + 1.67 ATP 
are formed. Furthermore, per pyruvate converted to acetate 1 additional ATP is produced, 
whereas per ethanol no extra ATP is gained. 
' For the calculation of carbon and electron recovery, biomass was estimated using 
< C5H7O2N > as the structural formula for biomass with a molecular weight of 113 g/mol. 
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were measured. Table 2 shows enzyme levels measured in steady state cells of 

the pure and the mixed culture. 

Table 2. Specific activities of enzymes of steady state cells of B. xylanolyticus X5-1 grown 
in pure and in mixed cultures, with M. hungatei JF-1. Xylose was the growth limiting 
substrate (D=0.03 h"\ 37°C, pH = 7.0 ± 0.1). Values are expressed as fimol/min.mg 
protein. The specific activities measured in the mixed culture were not corrected for the 
protein content of the methanogen. 

enzyme 

Fd(MV): NADP oxidoreductase 

NADH DH 

NADPH DH 

glyceraldehyde-3-P04 DH 

pyruvate:Fd oxidoreductase 

hydrogenase 

formate DH 

phosphotransacetylase 

acetate kinase 

acetaldehyde DH 

ethanol DH 

cofactor 

MV/NADP 

MTT 

MTT 

NAD 

MV 

MV 

MV 

NAD 
NADP 

NAD 
NADP 

specific 

pure 
culture 

3.35 

0.03 

1.13 

3.82 

1.39 

17.4 

< 0.005 

0.60 

1.01 

0.16 
0.01 

0.34 
0.69 

activity 

mixed 
culture 

1.89 

0.06 

1.63 

1.78 

0.34 

3.5 

0.09 

0.22 

0.82 

<0.01 
<0.01 

<0.01 
<0.01 

DH = dehydrogenase. No detectable activities could be found for the following enzymes: 
Fd(MV):NAD oxidoreductase, NADP dependent glyceraldehyde-3-P04 DH, pyruvate-
formate lyase, NAD(P)-dependent formate DH and NADH:NADP transhydrogenase. 

Assuming that 50 % of the dry weight consists of cell protein (Scholten-

Koerselman et al. 1986) it can be calculated that the minimal activities of 

catabolic enzymes to account for the observed xylose conversion rates should be 

57 and 53 nmol/min mg protein for the pure and the mixed culture, respectively. 

The activities found were high enough to account for the in vivo xylose 

conversion rates in both cultures. In the mixed culture, most of the enzymes 

showed lower activities when compared to the activities found in the pure culture. 
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The specific activities determined in the mixed culture were not corrected for the 

protein content of the methanogen. This can partly explain these differences. 

High activities were found in both cultures for Fd(MV):NADP oxidoreductase, 

whereas only low activities of Fd(MV):NAD oxidoreductase were detected. The 

most remarkable differences between pure and mixed culture cells were found for 

the activities of acetaldehyde dehydrogenase and ethanol dehydrogenase. These 

enzymes could not be detected in the mixed culture. 

Inhibition of interspecies electron transfer. 

Bromo-ethano-sulphonic acid (BES) is a specific inhibitor of methanogenesis, and 

was used in a steady state mixed culture. In a separate experiment it was assured 

that BES did not inhibit xylose catabolism by B. xylanolyticus X5-1 (data not 

shown). Methane formation stopped immediately after addition of BES and 

dilution of methane from the gas phase of the chemostat was observed (Fig. 1). 

1 

0.8 

0.6 O 
c 
O 

I 0.4 
o c o 
Ü 0.2 

0 
0 8 12 

time (h) 
16 20 

FIG. 1. Dilution of methane from the gas phase of the chemostat after addition of 
BES at t=0 to a steady state mixed culture of B. xylanolyticus X5-1 and M. hungatei 
JF-1. The squares show the measured methane concentration. The line shows the 
theoretical decrease in the methane concentration as could be expected at a gas flow 
rate of 260 ml per hour. 

71 



Chapter 4 

The formation of products and biomass after addition of BES is shown in 

figure 2. 

8 12 
time (h) 

FIG. 2. Cumulative product formation and growth by B. xylanolyticus X5-1 after 
inhibition of methanogenesis in a steady state mixed culture of B. xylanolyticus X5-1 
with M. hungatei JF-1. To a steady state mixed culture BES was added at t=0 , 
while the medium flow was continued. At several time intervals, the cumulative 
amounts of the products and growth were determined. Symbols: • = acetate, 
H = ethanol, A = H2, n = formate, * = biomass. Products are given in mmols, 
biomass is given in mg dry cells. 

Formate and ethanol were additional products that could be measured in the 

liquid phase and H2 was detected in the gas phase. Formate production stopped 

about 16 h after addition of BES, while a linear increase of the other products 

was measured for more than 30 h (data not shown). 

Induction of acetaldehyde dehydrogenase and ethanol dehydrogenase. 

Cocultivation with the methanogen influenced both product formation and enzyme 

levels in B. xylanolyticus X5-1. The induction of acetaldehyde dehydrogenase and 
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ethanol dehydrogenase was studied after inhibition of the methanogen in the 

mixed culture. Within two hours after addition of BES, NADH-dependent 

acetaldehyde dehydrogenase and NADH-dependent ethanol dehydrogenase were 

detected (Fig. 3). 
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FIG. 3. Enzyme induction in cells of B. xylanolyticus X5-1 grown in mixed culture 
with M. hungatei JF-1. The experiment was performed under the same condition as 
mentioned in figure 2. Symbols: D = ethanol dehydrogenase, NAD dependent; 
H = ethanol dehydrogenase, NADP dependent; • = acetaldehyde dehydrogenase, 
NAD dependent. 

Induction of the NADPH-dependent ethanol dehydrogenase was found after a short lag 

phase. Induction of a NADPH dependent acetaldehyde dehydrogenase, which was 

present in low activity in the pure culture of B. xylanolyticus X5-1, could not be 

detected over the period that enzyme activities had been measured. 

Influence of chloramphenicol (CAP) on the enzyme induction. 

To characterize the regulation of induction of acetaldehyde dehydrogenase and ethanol 

dehydrogenase, the influence of CAP on the enzyme induction was studied. Batch 
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incubation of steady state mixed culture cells with BES and xylose, showed xylose 

fermentation to mainly acetate, ethanol, H2, formate and C02. In the presence of CAP, 

only an isomerization of xylose to xylulose occurred (Table 3). These data suggest de 

novo synthesis of the enzymes involved in ethanol formation in B. xylanolyticus X5-1. 

Table 3. Influence of chloramphenicol on the xylose degradation by mixed culture cells of 
B. xylanolyticus X5-1 and M. hungatei JF-1. Steady state chemostat cells were harvested 
anaerobically and transferred to serum bottles. Incubations were done with xylose (20 mM) 
and BES (5 mM), and with or without chloramphenicol (CAP; 0.4 mg/ml). Samples were 
analyzed after 24 hours of incubation. Values are given in mmols. 

incubation 

with CAP without CAP 

substrate degraded 

xylose 

products formed 

xylulose 

lactate 

formate 

acetate 

ethanol 

H2 

CH4 

5.0 

5.0 

<0.1 

<0.2 

<0.2 

<0.2 

<0.05 

<0.2 

16.0 

0.5 

0.3 

7.8 

9.6 

11.3 

6.2 

0.3 

Discussion 

When cocultivated in continuous culture with M. hungatei JF-1, B. xylanolyticus 

X5-1 shifted its product formation to more acetate and less ethanol. Because 

acetate formation coincided with substrate level phosphorylation a biomass 

increase for B. xylanolyticus X5-1 of about 20% was observed. The same effect 

of interspecies electron transfer has been described for many other organisms in 

coculture with hydrogenotrophic anaerobes (Bryant et al. 1967, Ianotti et al. 

1973, Pavlostathis et al. 1990, Scheifinger et al. 1975). Our results clearly show 
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that regulation by interspecies electron transfer is not only a control of metabolic 

fluxes, but that regulation of enzyme levels occurs as well. Activities of 

acetaldehyde dehydrogenase and ethanol dehydrogenase were repressed during 

cocultivation with the methanogen. Inhibition of methanogenesis by BES in a 

mixed culture of B. xylanolyticus X5-1 with M. hungatei JF-1 resulted in a rapid 

induction of NADH dependent acetaldehyde dehydrogenase and ethanol 

dehydrogenase activities. After a short lag phase a second, NADPH dependent 

ethanol dehydrogenase was induced. The enzyme induction was sensitive to 

chloramphenicol, showing de novo synthesis of these enzymes. Recently, a 

similar influence of cocultivation with methanogens on enzyme levels has been 

shown in the anaerobic fungus Neocallimastix sp. strain L2 (Marvin-Sikkema et 

al. 1993). However, in other studies with ethanol producing anaerobic bacteria 

like Clostridium thermocellum and Ruminococcus albus (Ben Bassat et al. 1981, 

Pavlostahis et al. 1990, Weimer and Zeikus 1977) this effect was never taken into 

account. 

When grown in coculture with M. hungatei JF-1, B. xylanolyticus X5-1 has to 

couple the oxidation of NADH and reduced ferredoxin, which are formed during 

xylose degradation, to H2 or formate formation. NADH-dependent hydrogenase 

and NADH-dependent formate dehydrogenase could not be detected, and 

NADH:ferredoxin oxidoreductase activity was too low to be involved in a 

catabolic route. In contrast, high activities of NADPH:ferredoxin oxidoreductase 

were present in both the pure and the mixed culture. After transhydrogenation, 

H2 formation from NADH might occur via the enzymes NADPH:ferredoxin 

oxidoreductase and hydrogenase. However, NADH:NADP transhydrogenase 

could not be detected. Lamed and Zeikus (1980b) proposed transhydrogenation 

in T. brockii from NADH to NADP via the reaction sequence pyruvate, 

oxaloacetate, malate, pyruvate. In B. xylanolyticus X5-1 this is not very likely, 

as malic enzyme could not be detected. Therefore, it is not clear how reducing 

equivalents in B. xylanolyticus X5-1 are transformed to formate or H2. 
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Formate was formed rapidly in mixed cultures when methanogens were inhibited 

by BES. However, we could not detect pyruvate-formate lyase activity in steady 

state mixed culture cells, and other formate producing enzymes were also not 

present. In E. coli pyruvate-formate lyase is constitutively present in an in-active 

form, as the active form of the enzyme contains a free radical. The activity is 

strictly regulated by two converter enzymes, an activating enzyme and a 

deactivating enzyme (Knappe and Sawers 1990). In strict anaerobes a similar 

mode of regulation may occur as well (Knappe and Sawers 1990). Inhibition of 

M. hungatei JF-1 in the mixed culture most probably will affect the intracellular 

concentrations of intermediates of the xylose catabolism (e.g reduced ferredoxin, 

pyruvate and acetyl-CoA), thereby activating pyruvate-formate lyase. An 

alternative explanation for the rapid formation of formate is that methanogens 

might be involved. Wu et al. (1993) showed that formate is produced by 

Methanobacterium formicicum and Methanospirillum hungatei when 

methanogenesis from H,/C02 was inhibited by BES. In control experiments we 

were not able to detect formate production from H2/C02 by a pure culture of M. 

hungatei JF-1. However, the time course of our induction experiment and the 

control experiment is much shorter, than the experiments performed by Wu et al. 

(1993), indicating that probably not the methanogens but B. xylanolyticus X5-1 

itself is involved in formate production. 

This study was done in xylose limited chemostat cultures in order to maintain the 

same constant growth rate (0.03 h') for the hydrogen producing and the 

hydrogen oxidizing bacteria. High growth rates of fermentative organisms in 

batch mixed cultures caused problems in investigating the influence of 

interspecies electron transfer on carbohydrate fermentation (Chung 1976, Weimer 

and Zeikus 1977). The rapid enzyme induction as shown here after inhibition of 

methanogens shows that a precise control of cultivation is essential. Without the 

use of xylose-limited chemostats we would not have been able to demonstrate a 

regulation at the level of enzyme synthesis. 
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Abstract 

When Bacteroides xylanolyticus X5-1 was grown in batch culture on xylose, 

acetate, ethanol, H2, C0 2 and formate were the main fermentation products. CO 

inhibited H2 formation by B. xylanolyticus X5-1. As a result the product 

formation shifted to more ethanol and formate and less acetate. Furthermore, less 

biomass was produced. H2 had almost no effect on the product formation from 

xylose. In batch cultures, dihydroxy acetone, acetone, acetoin and acetol could 

act as electron acceptors during xylose metabolism. The electron acceptors were 

reduced to their corresponding alcohols. The product formation from xylose by 

B. xylanolyticus X5-1 shifted to mainly acetate and C0 2 , and an increased 

biomass yield was obtained. H2, ethanol and formate were no longer produced. 

In continuous cultures not only 1,2-propanediol was formed from acetol, but also 

acetone. The NADP dependent ethanol dehydrogenase that was present in xylose 

grown continuous culture cells, was repressed when the organism was grown in 

the presence of acetol. However, another alcohol dehydrogenase was induced for 

the reduction of the external electron acceptor. 

Introduction 

Hydrogen formation is an important mechanism by which heterofermentative 

microorganisms dispose off reducing equivalents, formed during the oxidation of 

sugars (e.g. Chung 1976, Datta and Zeikus 1985, Caldwell and Newman 1986b, 

Dabrock et al. 1992). The product formation by these H2 producing organisms 

has been studied extensively (Ben-Bassat et al. 1981, Datta and Zeikus 1985, 

Heyndrickx et al. 1989, Dabrock et al. 1992). Depending on the partial H2 

pressure, more reduced or oxidized products can be formed. Several methods 

have been used to influence the ratio of reduced and oxidized products in such 

H2 forming organisms. Growth under H2 and CO has been used to increase the 

ratio reduced/oxidized cofactors in the cell (Chung 1976, Kim et al. 1984, Datta 
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and Zeikus 1985, Meyer et al. 1986, Freier et al. 1988, Lamed et al. 1988), 

whereas electron acceptors and methanogenic cocultures were used to decrease 

this ratio (Chung 1976, Ben-Bassat et al. 1981, Rao and Mutharasan 1987, 

Heyndrickx et al. 1989, Pavlostathis et al. 1990, Hino et al. 1991). In these and 

other studies it was shown that ferredoxin:NAD(P) oxidoreductases play a key 

role in the regulation of the catabolic electron flow (Jungermann et al. 1973; 

Lamed and Zeikus 1980b; Ben-Bassat et al. 1981). 

Bacteroides xylanolyticus X5-1 is a strict anaerobic hemicellulolytic organism, 

which can ferment several mono-, di-, and trimeric sugars and xylan, but not 

cellulose and hemicelluloses other than xylan (Scholten-Koerselman et al. 1986, 

Schyns and Stams 1992). With labelling studies and enzyme measurements we 

could show that xylose, the main constituent of xylan, is fermented via the 

pentose phosphate pathway and the glycolysis. This is a common pathway in 

anaerobic organisms growing on xylose (Turner and Roberton 1979; Caldwell 

and Newman 1986b; Heyndrickx et al. 1991a; Lacis and Lawford 1991). During 

xylose degradation, B. xylanolyticus X5-1 formed acetate, ethanol, H2, C02 and 

formate as the main fermentation products. Small amounts of 1,2-propanediol and 

lactate were formed as additional products. The catabolic electron flow during 

xylose metabolism is influenced by interspecies electron transfer (Biesterveld and 

Stams 1990). In coculture with Methanospirillum hungatei JF-1, xylose is 

completely oxidized to acetate, C02 and presumably H2, whereas ethanol and 

formate were no longer produced. Furthermore, the enzymes involved in ethanol 

production were completely repressed. The objective of this study was to 

investigate how product formation by B. xylanolyticus X5-1 can be affected. 

Alternative electron acceptors, and growth under H2 and CO were used to 

prevent hydrogen formation. By cocultivation with M. hungatei JF-1, H2 

formation could be stimulated. The effect of the external electron acceptor acetol 

(=hydroxy propanon) on the catabolic electron flow during xylose catabolism 

was investigated in more detail. 
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Materials and methods 

Organisms and cultivation. 

Bacteroides xylanolyticus X5-1 (DSM 3808) was isolated and described by 

Scholten-Koerselman et al. (1986) and Methanospirillum hungatei JF-1 (DSM 

864) was obtained from the Deutsche Sammlung von Mikroorganismen 

(Braunschweig, Germany). The organisms were grown in a basal bicarbonate 

buffered medium with a composition as described by Huser et al. (1982). To one 

litre of medium 0.5 g of yeast extract, 1 ml of a trace elements solution (Zehnder 

et al. 1980) and 1 ml of a vitamin solution (Wolin et al. 1963) were added. The 

vitamin solution was filter sterilized separately. The gas phase above the medium 

was N2/C02 (80%/20%) unless otherwise stated. The pH of the medium was 6.8-

6.9. The medium for M. hungatei JF-1 was supplemented with 0.05% of 

biotrypticase and the gas phase was H2/C02 (80%/20%). Xylose was added from 

2M filter-sterilized stock solutions. External electron acceptors were added from 

6M filter-sterilized stock solutions. In the batch culture experiments the 

organisms were cultivated in 250-ml serum bottles containing 100 ml medium. 

For B. xylanolyticus X5-1 20 mM of substrate was used. When CO was used as 

the gas phase, the serum bottles were first brought under vacuum. The proper 

amounts of CO and C02 were added and the bottles were pressurized with N2 to 

1.8 atmospheres. For the continuous culture experiments the same medium was 

used except that 0.2% of yeast extract was added instead of 0.05 % yeast extract, 

and 0.05% of cysteine was added. Continuous cultivation was performed at 37°C 

in 1-L chemostats with a working volume of 500 ml. The cultures were grown 

at a dilution rate of 0.03 h ' . The pH was maintained at 7.0 ±0 .1 with 2N 

NaOH. A continuous stream of N2/C02 (80%/20%) at a flow rate of 130 ml per 

hour was led over the cultures. To guarantee steady state conditions cells were 

analyzed after at least 6 volume changes. 
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Preparation of cell free extracts and enzyme assays. 

Cells were harvested by centrifugation at 20,000 X g for 10 min and washed 

once in 50 mM Tris-HCl pH 7.8 containing 5 mM MgCl2 and 1 mM DTT. The 

cell pellets were resuspended in the same buffer and disrupted by sonication 

(Sonics & Materials sonifier, CT, USA; 10 times 20 s with an intermittent 

cooling on ice for 20 s). The cell debris was removed by centrifugation (8,000 

X g for 15 min), and the supernatant was used as cell free extract. 

Glyceraldehyde-3-PO4 dehydrogenase, hydrogenase, phosphotransacetylase, 

acetaldehyde dehydrogenase, and ethanol dehydrogenase were assayed as 

described by Lamed and Zeikus (1980a). Acetate kinase was assayed as described 

by Lamed and Zeikus (1980b). 1,2-propanediol dehydrogenase was assayed in 

a similar fashion as ethanol dehydrogenase but with acetol (=hydroxy propanon) 

instead of acetaldehyde. Pyruvate .ferredoxine oxidoreductase was assayed using 

methyl viologen (MV) as electron acceptor. The assay mixture contained 50 mM 

Tris-HCl (pH 7.8), 1 mM DTT, 2 mM MgCl2, 2 mM MV, 0.2 mM HSCoA, 20 

mM sodium pyruvate. Pyruvate-formate lyase was assayed according to the 

method described by Jungermann and Schön (1974). Pyruvate removal and 

formate production were analyzed by HPLC. The assay was performed under CO 

atmosphere to prevent H2 formation (Thauer et al. 1972). Formate dehydrogenase 

(NAD(P)-dependent) and formate.ferredoxin (MV) oxidoreductase were assayed 

according to the method of Spormann and Thauer (1988). Ferredoxine 

fllV).NAD(P) oxidoreductase was assayed in 50 mM Tris-HCl (pH 7.8), 1 mM 

DTT, 2 mM MV, gas phase 100% CO (1 atmosphere), 1 mM of either NAD or 

NADP. MV was prereduced with small amounts of sodium dithionite. 

NADH.NADP transhydrogenase was assayed according to the method as 

described by Höjeberg et al. (1976). NADH dehydrogenase and NADPH 

dehydrogenase were assayed as described by Kremer and Hansen (1987). 
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However, 2 mM NADH was used for the NADH dehydrogenase assay instead 

of 0.2 mM, and for the NADPH dehydrogenase assay 0.2 mM NADPH was used 

instead of 2 mM. Pyridine nucleotide oxidation or reduction was measured at 340 

nm (f340 nm= 6.22 mM'cm"1). Methyl viologen reduction or oxidation was 

measured at 560 nm (e560nm= 8.0 mM'cm'1) 

Gel electrophoresis and activity staining. 

Soluble alcohol dehydrogenase activities could be visualized in native 

Polyacrylamide gels (10% acrylamide, pH 8.8). After ultra centrifugation 

(100,000 X g, 4°C, 2h) 25 /d of the cell free extracts (6 mg protein/ml) were 

applied on the gels. The gels were run at room temperature at 200 V (constant 

voltage) for about half an hour. Then, gels were stained for alcohol 

dehydrogenase activity with phenazine methosulfate and nitro blue tetrazolium 

chloride according to the method of Benoist and Schwencke (1990). NAD or 

NADP (1 mM each) and ethanol or 1,2-propanediol (100 mM each) were used 

as substrates. The activity staining was done by incubating the gels in the dark 

at room temperature for 10 to 30 minutes in an anaerobic glove box (gas phase 

N2/H2 (96%/4%)). A palladium catalyst (BASF, Arnhem, The Netherlands) was 

used to remove traces of oxygen from the gas phase. Control experiments were 

done under the same conditions in the absence of the alcohol in the incubation 

buffer. 

Analytical methods. 

Substrate consumption and product formation were measured by HPLC and GC 

as described by Stams et al. (1993). Samples for HPLC analysis were diluted 1:1 

with 20 mM xylitol in 50 mM HCl; xylitol was used as internal standard. Growth 

was determined by measuring the increase in optical density at 660 nm in a 
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LKB/Biochrom Ultraspec K spectrophotometer, using cuvettes with a 1-cm light 

path. When necessary samples were diluted 1:1 with water to obtain an OD^ 

below 0.4. Protein in cell free extracts was estimated with Coomassie brilliant 

blue G250 (Bradford 1976). Bovine serum albumin was used as a standard. 

Chemicals. All chemicals were at least of analytical grade. Enzymes and 

biochemicals were obtained from Boehringer Mannheim (Almere, The 

Netherlands), from Sigma Chemical Co. (Amsterdam, the Netherlands or from 

Merck (Darmstadt, Germany). Xylose was purchased from Janssen (Geel, 

Belgium). Gases and gas mixtures were supplied by Hoekloos (Schiedam, The 

Netherlands). 

Results 

Effect of CO and H2 on product formation. 

CO affected the product formation from xylose by B. xylanolyticus X5-1 

(Table 1). A gas phase containing 20% CO or more, inhibited H2 formation for 

more than 95%. The xylose conversion decreased in the presence of CO. 

However, even in the presence of 80% CO about 11 mM of xylose was degraded 

in 48 h, whereas 20 mM was used in the absence of CO. The amounts of ethanol 

and formate increased when cells were grown under CO. Both the biomass yield 

and the acetate production decreased. When B. xylanolyticus X5-1 was grown 

under an atmosphere of 80% H2 only small changes in product formation were 

found. It could be calculated that a significant amount of H2 still was formed 

under a gas atmosphere of 80% H2. The calculated YATP was constant for all gas 

phases used, and reasonably good carbon and electron recoveries were found. 
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Table 1. Xylose fermentation products by B. xylanolyticus X5-1 under an atmosphere of 
either N2/C02, H2/C02, or CO/C02 (80%/20%). Bottles were inoculated with 2% (v/v) of 
a xylose grown culture of B. xylanolyticus X5-1. Xylose conversion and product formation 
were analyzed after 48 hours of incubation. Unless otherwise stated the amount of the 
products is given in mmoles per mmol of xylose converted. 

Products 

acetate 

ethanol 

H2 

formate 

lactate 

1,2-propanediol 

biomass (g/mol xylose) 

YATP» (g/mol ATP) 

carbon recovery (%)° 

electron recovery (%)° 

N2/C02 

0.66 

0.61 

1.32 

0.07 

0.01 

0.02 

8.7 

3.7 

86 

87 

gas phase (80%/20%) 

H2/C02 

0.65 

0.76 

1.15' 

0.25 

<0.01 

<0.01 

8.5 

3.7 

92 

93 

co/co2 

0.33 

1.03 

0.002 

0.59 

0.03 

0.06 

6.8 

3.4 

93 

94 

" H2 production was estimated, assuming that per acetate, 2 (H2 + formate) are formed. 
b YATP was calculated assuming that per xylose consumed, 1.67 pyruvate + 1.67 ATP are 
formed. Furthermore, per pyruvate converted to acetate 1 additional ATP is produced, 
whereas per ethanol formed no extra ATP is gained. 
° For the calculation of carbon and electron recovery, biomass was estimated using 
<C sH,02N> as the structural formula for biomass with a molecular weight of 113 g/mol, 
and C02 was estimated assuming that per acetate + ethanol, 1 (C02 + formate) were 
formed. 

Effect of external electron acceptors. 

Several alternative electron acceptors were used to influence the xylose 

metabolism by B. xylanolyticus X5-1 (Table 2). Only dihydroxy acetone (DHA), 

acetone, acetoin, and acetol were effective in withdrawing the reducing 

equivalents liberated during xylose metabolism. These electron acceptors were 

reduced to glycerol, 2-propanol, 2,3-butanediol, and 1,2-propanediol, 

respectively. Growth on these electron acceptors in the absence of xylose was 
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never observed, irrespectively whether N2/C02, H2/C02 or CO/C02 was the gas 

phase. H2 was hardly formed in the cultures containing the electron acceptors. A 

decreased ethanol production was observed when DHA, acetoin or acetone were 

used as electron acceptors, and very low amounts of ethanol were produced when 

acetol was used. Acetate and biomass yields increased significandy. No 

significant differences were observed for the maximum specific growth rate of 

B. xylanolyticus X5-1 when grown on xylose in the absence or presence of the 

electron acceptors. The effect of CO on acetate and ethanol production in a 

xylose grown culture (Table 1) was overcome by the addition of the external 

electron acceptor acetol (Table 2). It could be calculated that H2 was not formed 

by B. xylanolyticus X5-1 in the culture containing H2/C02 (80%/20%) and the 

electron acceptor acetol. This in contrast to the incubation in the absence of 

acetol (Table 1). 

Xylose fermentation in continuous culture. 

B. xylanolyticus X5-1 produced acetate, ethanol, H2 and C0 2 as fermentation 

products when grown on xylose as the growth limiting substrate in continuous 

cultures. Formate, lactate, and 1,2-propanediol could not be detected (Table 3). 

In mixed culture with M. hungatei JF-1 a shift in product formation was observed 

due to interspecies electron transfer. Ethanol was no longer produced, and 

acetate, C0 2 and presumably H2 were the only products formed during xylose 

catabolism. When grown in the presence of acetol, an increased biomass yield 

and acetate production rate were found. H2 formation was hardly detectable and 

a substantial decrease in the ethanol production rate was measured. However, 

more ethanol was formed in the culture grown with acetol, than in the mixed 

culture. In contrast to the batch cultures, not only 1,2-propanediol was produced 

from acetol, but also high amounts of acetone. 
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Table 3. Steady state values expressed in xylose limited chemostat cultures of B. 
xylanolyticus X5-1 in a xylose culture and in a xylose + acetol culture (D=0.03 h ' , 37°C, 
pH = 7.0 + 0.1, gas flow = 130 ml per hour, xylose influent concentration = 20 mM). 
The steady state values for the mixed culture were taken up in this table for a comparence 
with the xylose + acetol culture. 

pure 
culture 

mixed 
culture" 

xylose/acetol 
culture 

Specific ratesb 

xylose 

acetol 

1,2-propanediol 

acetone 

acetate 

ethanol 

co2
d 

CH4" 

formate 

lactate 

dry weight (mg/L)° 

Y ^ (g/mol)' 

YATP (g/mol)f 

C-recovery (%)E 

e-recovery (%)g 

1.9 

-
-
-

1.2 

1.3 

1.6 

2.5 

-
<0.05 

<0.01 

316 

15.8 

6.6 

93 

89 

1.6 

-
-
-

2.3 

0.03 

5.4 

2.3 

8.8 

<0.05 

<0.01 

372 (X5-1) 
56 (JF-1) 

19 

6.0 

105 

109 

1.3 

3.1 

0.6 

2.4 

1.8 

0.2 

0.005 

2.0 

-
<0.05 

<0.01 

426 

22.8 

7.1 

101 

99 

" The methanogen Methanospirillum hungatei JF-1 was used in the mixed culture. 
b The specific rates are expressed as mmols per gram dry B. xylanolyticus X5-1 cells per 
hour, except for the methane production rate. The latter is expressed as mmols per gram 
dry M. hungatei JF-1 cells per hour. 
CH2 in the mixed culture was calculated from the methane formed, assuming that hydrogen 
was produced in stead of formate and that 4 mois of H2 are used to form 1 mol of CH, 
d C02 was calculated assuming that per acetate and per ethanol 1 C02 is formed. 
* A yield of 3 g of dry M. hungatei JF-1 cells per mol of CH< formed was used (Schönheit 
et al. 1980, Pavlostathis et al. 1990) to estimate the dry weight of the methanogen in the 
mixed culture. 
f The yields are given in g of dry B. xylanolyticus X5-1 cells per mol of either xylose used 
or ATP formed. ATP was calculated assuming that per xylose consumed, 1.67 pyruvate 
+ 1.67 ATP are formed. Furthermore, per pyruvate converted to acetate 1 additional ATP 
is produced, whereas per ethanol formed no extra ATP is gained. 
8 For the calculation of carbon and electron recovery, biomass was estimated using 
<C5H702N> as the structural formula for biomass with a molecular weight of 113 g/mol. 
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Enzyme activities in extracts of continuous culture cells. 

To investigate whether product formation in the different cultures was regulated 

at the level of enzyme synthesis, enzymes involved in product formation and 

electron transfer reactions were measured (Table 4). 

Table 4. Specific activities of enzymes of steady state cells of B. xylanolyticus X5-1 grown 
in the absence and presence of the external electron acceptor acetol. The specific activities 
found in the mixed culture were taken up in this table for a comparence with the xylose + 
acetol culture. (D=0.03h'\ 37°C, pH=7.0 + 0.1). Values are expressed as ^mol/min.mg 
protein. The specific activities measured in the mixed culture were not corrected for the 
protein content of the methanogen 

enzyme 

Fd(MV):NADP 
oxidoreducta.se 

NADH DH 

NADPH DH 

glyc-3-P04 DH 

pyruvate:Fd(MV) 
oxidoreductase 

hydrogenase 

formate DH 

phosphotransacetylase 

acetate kinase 

acetaldehyde DH 

ethanol DH 

1,2-propanediol DH 

cofactor 

MV/NADP 

MTT 

MTT 

NAD 

MV 

MV 

MV 

NAD 
NADP 

NAD 
NADP 

NAD 
NADP 

pure 
culture 

3.35 

0.03 

1.13 

3.82 

1.39 

17.4 

< 0.005 

0.60 

1.01 

0.16 
0.01 

0.34 
0.69 

0.02 
0.78 

specific activity 

mixed 
culture 

1.89 

0.06 

1.63 

1.78 

0.34 

3.5 

0.09 

0.22 

0.82 

<0.01 
<0.01 

<0.01 
<0.01 

<0.01 
<0.01 

xylose/acetol 
culture 

4.80 

0.08 

1.79 

0.95 

0.18 

3.0 

< 0.005 

0.16 

0.44 

1.21 
0.17 

0.25 
0.01 

0.03 
0.16 

Glyc-3-P04 = glyceraldehyde-3-P04, DH = dehydrogenase 
No detectable activities could be found for the following enzymes: Fd(MV):NAD 
oxidoreductase, NADP-dependent glyceraldehyde-3-P04 dehydrogenase, pyruvate-formate 
lyase, NAD(P) dependent formate dehydrogenase, and NADH:NADP transhydrogenase. 

Assuming that 50% of the cell dry weight consisted of cell protein (Scholten-

Koerselman et al. 1986) it can be calculated that the minimal activities of 

catabolic enzymes needed to explain substrate conversion in the continuous 

cultures should be 57, 53 and 43 nmol/min.mg protein in the pure culture, the 
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mixed culture, and the xylose + acetol culture, respectively. In all cultures the 

activities were high enough to account for the in vivo xylose conversion rates. In 

the mixed culture no activities could be determined of the NAD(P)-dependent 

acetaldehyde and ethanol dehydrogenases, whereas these activities were present 

in the pure culture. Acetaldehyde dehydrogenase showed a much higher activity 

in the xylose + acetol culture than in the pure and the mixed culture. The NAD-

dependent ethanol dehydrogenase activity was not significantly different in the 

pure and the xylose + acetol culture. However, as in the mixed culture, xylose 

+ acetol grown cells did not contain NADP dependent ethanol dehydrogenase 

activity. Remarkably, cells from both the pure culture and the xylose + acetol 

culture exhibited NADP dependent 1,2-propanediol dehydrogenase activities, with 

the highest specific activity in the pure culture cells. 

Activity staining of the alcohol dehydrogenase activities. 

To characterize the alcohol dehydrogenases in more detail, proteins of 

ultracentrifuged cell free extracts were separated by native Polyacrylamide gel 

electrophoresis and enzyme activities were stained using nitro blue tetrazolium 

chloride. The NAD-dependent ethanol dehydrogenase might be membrane 

associated, because the activity staining of the gel with NAD and ethanol as 

substrates revealed enzyme activity in the slot of the stacking gel (data not 

shown). This was not observed with the NADP-dependent alcohol 

dehydrogenases. After electrophoresis of ultra-centrifuged cell extracts, half of 

a gel was assayed for NADP dependent ethanol dehydrogenase (substrates: 

NADP and ethanol), whereas the other half was assayed for NADP dependent 

7,2-/jropa«e<#0/dehydrogenase(substrates: NADPand l,2-propanediol)(Fig. 1). 

A prominent intensity was observed for the ethanol dehydrogenase in the pure 

culture cell free extract (Fig. 1, lane 2), whereas only a small intensity was 
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Xo + Xo - Xo + Xo -

m *"* «Mi 

Fig. 1. Activity staining of NADP-dependent ethanol dehydrogenase (lanes 1 and 2) 
and NADP-dependent 1,2-propanediol dehydrogenase (lanes 3 and 4), after 
separation of ultra-centrifuged cell free extracts by native Polyacrylamide gel 
electrophoresis. Lanes 1 and 3 contain cell free extract of the xylose + acetol 
(= Xo +) grown culture. Lane 2 and 4 contain cell free extract of the xylose grown 
culture (= Xo -). The arrows indicate the alcohol dehydrogenase activities, whereas 
the other bands with low intensity represent non-specific activities. 

observed in the lane of the xylose + acetol culture (Fig. 1, lane 1). When the gel 

was incubated with 1,2-propanediol as the substrate the same protein band in the 
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pure culture cell free extract was stained as the one which was stained with 

ethanol as a substrate (Fig. 1, lanes 2 and 4). In contrast, another protein band 

appeared in the lanes of the xylose + acetol culture (Fig. 1, lane 3), suggesting 

another NADP dependent 1,2-propanediol dehydrogenase activity. 

Discussion 

Carbon monoxide (CO) is often used as an inhibitor of hydrogenases (Kim et al. 

1984, Meyer et al. 1986, Rao and Mutharasan 1987, Marvin-Sikkema et al. 

1993). However, CO did not completely inhibit H2 formation in Clostridium 

acetobutylicum (ATCC 39236) (Datta and Zeikus 1985) and C. pasteurianum 

(DSM 525) (Dabrock et al. 1992). During xylose metabolism by B. xylanolyticus 

X5-1, H2 production was completely inhibited by CO. Ethanol and formate 

production increased, and a decrease was observed in the acetate formation. In 

addition, a decreased biomass yield was found. This is in accordance with the 

decreased acetate production, as this is an important site of energy conservation 

for B. xylanolyticus X5-1. In batch cultures formate is only produced by 

pyruvate-formate lyase (data not shown) and not via a NAD(P)H dependent 

formate dehydrogenase. However, from the amount of formate produced, it can 

be deduced that part of the pyruvate formed during xylose catabolism is not 

converted via pyruvate-formate lyase, but via pyruvate:ferredoxin oxidoreductase, 

yielding acetyl-CoA, C0 2 and reduced ferredoxin. As the electrons of reduced 

ferredoxin cannot be transferred to the hydrogenase due to the inhibition by CO, 

they will be transferred to NAD(P) to form NAD(P)H. Re-oxidation of NAD(P)H 

is coupled to the production of ethanol, as no other products are known to 

function as electron sink in B. xylanolyticus X5-1. 

Growth yields and product formation of T. brockii, C. thermocellum and C. 

cellobioparum were affected when the organisms were grown under an 

atmosphere of H, (Chung 1976; Ben-Bassat et al. 1981; Freier et al. 1988). 

91 



Chapter 5 

However, xylose metabolism and product formation by B. xylanolyticus X5-1 

were hardly affected by high concentrations of molecular hydrogen. It could be 

calculated that during xylose catabolism by B. xylanolyticus X5-1 under an 

atmosphere of H2/C02 (80%/20%) a significant amount of H2 still was produced. 

The redox couples for H2/2H+ and reduced ferredoxin/oxidized ferredoxin (-414 

mV and -398 mV, respectively (Thauer et al. 1977)) are in the same range. As 

a result, H2 formation from reduced ferredoxin can occur and product formation 

is hardly affected. 

During xylose metabolism in B. xylanolyticus X5-1 the electron flow was 

influenced by the external electron acceptors dihydroxy acetone, acetone, acetoin 

and acetol. The electron acceptors were reduced to their corresponding alcohols 

glycerol, 2-propanol, 2,3-butanediol and 1,2-propanediol, respectively. In 

continuous culture, acetol functioned as electron acceptor as well. However, not 

only 1,2-propanediol was a product of acetol reduction, but also acetone. It is not 

known whether acetone is formed via the classical pathway via acetoacetyl-CoA 

and acetoacetate as is found in C. acetobutylicum (Datta and Zeikus 1985) or via 

dehydration of 1,2-propanediol. Due to the presence of electron acceptors, a 

decrease was found in the H2 and ethanol production, and an increased production 

of biomass and acetate. Similar results have been found by Ben-Bassat et al. 

(1981) who used acetone as electron acceptor to reverse the inhibition of the 

growth of T. brockii by H2. In that organism, the presence of acetone even 

increased the specific growth rate on glucose. The growth rate of B. xylanolyticus 

X5-1 on xylose was not affected by the electron acceptors, suggesting that 

anabolic reactions were growth limiting. Acetoin has been used to overcome the 

redox imbalance in yeast cells grown anaerobically on xylose (Bruinenberg et al. 

1983; Delgenes et al. 1991), though the concentrations used, inhibited the xylose 

conversion to some extent. 

Enzyme levels in B. xylanolyticus X5-1 differed when the organism was grown 

on xylose, on xylose + acetol or on xylose in the presence of M. hungatei JF-1. 

However, the catabolic enzyme activities remained high enough to account for 

the in vivo xylose degradation. The reducing equivalents liberated during pyruvate 
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oxidation in the xylose + acetol grown cells were probably transferred to NADP 

via ferredoxin:NADP oxidoreductase. NADPH was used for the reduction of 

acetol by the NADPH-dependent 1,2-propanediol dehydrogenase. 

Glyceraldehyde-3-P04 dehydrogenase was strictly NAD-dependent. From the 

amount of ethanol produced by the xylose + acetol grown cells, it could be 

deduced that a large part of the NADH that is formed during xylose catabolism 

is used for the acetol reduction. However, NADH:NADP transhydrogenase and 

NADH:ferredoxin oxidoreductase could hardly be detected. In addition, NADP-

dependent malic enzyme was not detectable either, thereby excluding the electron 

transfer from NADH to NADP via the reaction sequence pyruvate, oxaloacetate, 

malate, pyruvate. This sequence was proposed to act as a transhydrogenase 

activity in T. brockii (Lamed and Zeikus, 1980b). Thus far, it is not fully 

understood how the reducing equivalents are channelled from NADH to the 

NADP-dependent acetol reducing enzyme. 

When grown on xylose, B. xylanolyticus X5-1 possesses a NAD-dependent 

alcohol dehydrogenase (ADH) and a NADP-dependent ADH. The latter likely 

has a non-specific activity with 1,2-propanediol, as suggested from the in gel 

activity staining. This explained the activity for the 1,2-propanediol 

dehydrogenase that was found in cell free extract of the xylose grown culture. A 

third ADH, also NADP dependent, was induced when B. xylanolyticus X5-1 was 

grown on xylose in the presence of the electron acceptor acetol. This enzyme is 

different from the NADP-dependent ADH that was found in the xylose grown 

culture, as could also be deduced from the in gel activity staining. Several NADP 

dependent ADH's have been described (De Moss 1955; Lamed and Zeikus 

1980b; Dürre et al. 1987; Ismaiel et al. 1993). Lamed and Zeikus (1981) have 

purified and characterized the NADP dependent alcohol dehydrogenase of T. 

brockii. This enzyme is possibly of biotechnological value, since it has a broad 

substrate specificity. Primary and secondary alcohols, ketones and aldehydes 

were substrates for this enzyme (Lamed et al. 1981). From the data described in 

this paper, it is clear that B. xylanolyticus X5-1 is able to regulate the xylose 

metabolism by induction/repression mechanisms of several alcohol 
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dehydrogenases. A simplified scheme of the carbon and electron flow during 

xylose catabolism by B. xylanolyticus X5-1 grown under different physiological 

conditions is shown in figure 2. 

pur« culture 

X y l o l * 

Pyruvate I 

electron acceptor culture mixed culture 

Xylose 

— NADH 
I I 

"I I 

Pyruvat * | ' ? Acetol 

-1 1 
1 

Acetyl-CoA i NADPH Acetyl-CoA iNADPH 

- y F d H L 

ADH I H ADH II 

Acatat« Ethanol 

/ „„„\ 

Xylose 

Pyruva t * i f 

I 
— F d H — e » ^ 

" 
Acetyl-CoA 

Acetate Ethanol 1,2-propanediol Acetate 

Fig. 2. Proposed pathway for the carbon and electron flow in B. xylanolyticus X5-1 
during growth on either xylose as single substrate, on xylose in the presence of the 
electron acceptor acetol or on xylose in the presence of the methanogen M. hungatei 
JF-1. Solid and dashed lines represent the carbon and electron flow, respectively. 
The question mark indicates that the enzymes involved in these reactions could not 
be demonstrated. 

Chiral products are important building blocks for the food, the agrochemical and 

pharmaceutical industry (Cameron and Cooney 1986, van den Tweel et al. 1992). 

R-(-)-1,2-propanediol can be used as emulsifier of foods (Cameron and Cooney, 

1986), and is an important chiral building block in organic synthesis of for 

example optically active polymers. 1,2-Propanediol and 2,3-butanediol, formed 

by B. xylanolyticus X5-1 during growth on xylose in the presence of the electron 

acceptors acetol or acetoin, are optical active products. However, we did not 

investigate which of the enantiomers were formed. The data presented here can 

be used to evaluate the biotechnological potential of B. xylanolyticus X5-1 with 

respect to the production of optically active products, in particular the stability, 

the stereo specificity and the substrate range of its alcohol dehydrogenases. 
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Plant cell walls represent a major part of the available biomass on earth. They 

are mainly composed of the energy-rich polymers lignin, cellulose, and 

hemicellulose. For many decades, research is done to exploit agricultural and 

forestry wastes as renewable resources. Much research was focused on the 

degradation of cellulose. In contrast, hemicellulose has got less attention, though 

it can account for up to 40% of the total dry weight of plant cell walls. 

Fermentation by anaerobic bacteria offers the possibility to conserve most energy 

fixed in the energy-rich polymeric and monomeric sugars in the form of organic 

acids and solvents (e.g. acetic acid, butanol and acetone). 

A project in which the anaerobic conversion of hemicellulose to potentially 

biotechnological interesting products was investigated, was divided into two parts. 

One part, performed by Philippe Schyns, concerned the microbial degradation of 

xylan, which was used as a model substrate for hemicellulose. Several xylanolytic 

enzymes (endo-xylanase, ß-xylosidase, acetylesterase, a-L-arabinofuranosidase) 

were purified and characterized. The mode of action of some of these enzymes 

was investigated. Furthermore, the induction mechanism of xylanase and 

ß-xylosidase was studied. The results of this research will be presented in a 

separate thesis. The other part of the project, of which the outcomes are given 

in this thesis, was focused mainly on the fermentation of xylose, a major 

constituent of hemicelluloses. 

Bacteroidesxylanolyticus X5-1 was used as a model organism. This organism had 

been isolated from fermenting cattle manure. B. xylanolyticus X5-1 can only 

grow on one specific hemicellulose, xylan. Cellulose and other hemicelluloses 

could not be utilized for growth. This fact made the organism interesting for 

studying the (regulation of the) xylanolytic enzyme synthesis, since interferences 

from other (hemi)cellulolytic enzymes could be excluded. In addition, the 

organism could ferment a wide variety of monomeric sugars, produced a mixture 

of end products, and showed a relatively high growth rate. These latter features 
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made B. xylanolyticus X5-1 a suitable microorganism for studying the regulation 

of the anaerobic xylose fermentation. 

Information concerning the composition and degradation of biomass, and the 

(regulation of) product formation from biomass has been reviewed in a general 

context in chapter 1. Some biotechnological applications of biomass fermentation 

have been mentioned in this chapter as well. 

Using 14C-labelled xylose, the xylose uptake system of this organism was studied. 

It was shown that xylose transport occurs via an active uptake system, and 

probably a binding protein was involved. The exact mechanism of xylose uptake 

remains to be elucidated. Based on mass balance calculations, measuring specific 

enzyme activities of key enzymes of catabolic pathways, and determining label 

distribution patterns with 13C-NMR, the pentose phosphate pathway in 

conjunction with the glycolysis was shown to be operative in xylose fermentation 

by B. xylanolyticus X5-1. Acetate, ethanol H2, C02 and formate were the main 

end products formed during xylose metabolism. At higher xylose concentrations, 

lactate and 1,2-propanediol were produced in small amounts as additional 

products. Reducing equivalents formed during the oxidation of glyceraldehyde-

3-P04 and pyruvate, were used for the production of H2, formate, and ethanol. 

According to the proposed pathway about 2.5 mol of ATP, synthesized at 

substrate level, were generated per mol of xylose degraded. This part of the 

research is presented in chapter 2. 

The degradation of mixtures of hexoses and pentoses by B. xylanolyticus X5-1 

is described in chapter 3. Batch culture cells did not show diauxic growth or a 

substrate preference for either glucose, xylose, arabinose or rhamnose, 

independent of the substrate the organism was grown on. In contrast, glucose-

limited continuous culture cells were not able to consume xylose, unless some 

glucose or pyruvate was present as additional substrate. Glucose-limited 

continuous culture cells exhibited low activities of xylose transport and of xylose 

isomerase. Xylulose kinase could not be detected at all. Upon addition of xylose 
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as single substrate to the glucose grown cells no increase in the transport rate and 

the isomerase and kinase activities was observed. However, when together with 

the xylose some glucose was added, all activities were induced. In the presence 

of chloramphenicol, an inhibitor of protein synthesis, xylose isomerase and 

xylulose kinase were not induced. The transport activity increased in a similar 

fashion as in the absence of chloramphenicol, suggesting that the transport system 

had to be activated and not induced. These experiments showed that i) xylose 

isomerase and xylulose kinase were regulated at the level of protein synthesis, ii) 

xylose transport was constitutively present, and iii) apparently, the glucose grown 

cells were carbon and energy limited. When grown under non-limiting conditions, 

as will probably happen in hemicellulose hydrolysates, B. xylanolyticus X5-1 can 

use sugar mixtures. This certainly is of biotechnological relevance, as conversion 

of the major substrate xylose will not be negatively affected by the minor, often 

preferred substrate glucose. 

Chapter 4 describes the effect of a low partial hydrogen pressure on the xylose 

metabolism in B. xylanolyticus X5-1. When grown in pure culture in the 

chemostat with xylose as the growth limiting substrate, B. xylanolyticus X5-1 

produced acetate, ethanol, H2 and C02 as the only end products. When grown in 

the presence of the methanogen Methanospirillum hungatei JF-1, xylose was 

converted to mainly acetate and C02, and presumably H2. Due to the 

cocultivation an increased biomass production was observed. H2 could hardly be 

detected because it was efficiently converted to CH4 by the methanogen. Ethanol 

was no longer produced. This type of regulation of product formation has been 

observed in many anaerobic microorganisms. However, xylose fermentation in 

B. xylanolyticus X5-1 was not only regulated at product level, but also on enzyme 

level. In cell free extracts of the pure culture of B. xylanolyticus X5-1 NAD and 

NADP-linked acetaldehyde and ethanol dehydrogenases could be detected. When 

grown in mixed culture with M. hungatei JF-1 these enzymes were no longer 
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observed. The NAD and NADP-1 inked dehydrogenases were induced 

sequentially, when the interspecies electron transfer was inhibited, unless 

chloramphenicol was present. These results showed that product formation at low 

partial hydrogen pressure in B. xylanolyticus X5-1 is regulated at the level of 

enzyme synthesis. 

Several environmental conditions were used to affect xylose metabolism of B. 

xylanolyticus X5-1 (chapter 5). Growth under a hydrogen atmosphere did not 

affect the xylose metabolism significantly. CO inhibited H2 production from 

xylose completely with formate and ethanol as major reduced products. An 

increased ethanol yield resulted in a reduced amount of acetate and biomass 

formation. Xylose metabolism could also be affected by using alternative electron 

acceptors such as acetol, acetone, acetoin, and dihydroxy acetone. They were 

reduced to their corresponding alcohols 1,2-propanediol, 2-propanol, 

2,3-butanediol, and glycerol, respectively. With these electron acceptors mainly 

acetate and C02 were formed and hardly any H2, formate and ethanol. As a result 

of more acetate formation, biomass production increased. In continuous culture 

with xylose as growth limiting substrate and acetol as electron acceptor, product 

formation from xylose shifted to mainly acetate and CO, as well. Acetol was not 

only reduced to 1,2-propanediol, but also converted to acetone. In gel activity 

staining of the alcohol dehydrogenases revealed that i) the NADP-linked ethanol 

dehydrogenase was repressed in the xylose + acetol grown culture, ii) the 

NADP-linked ethanol dehydrogenase in the xylose grown cells exhibited a non­

specific activity for both ethanol and 1,2-propanediol, and iii) another, also 

NADP-linked, 1,2-propanediol dehydrogenase was induced in the xylose + acetol 

grown cells. 

The data presented in this thesis show that it is possible to modulate the xylose 

metabolism of B. xylanolyticus X5-1 by several methods and at different levels 

during metabolism. The outcomes of this research might be applicable for other 

microorganisms of biotechnological value as well. Accordingly, the results can 
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be used for biotechnological production processes and the biotechnological 

formation of valuable products (e.g. microbiological reduction processes, 

optically active products, enzymes like (stereospecific) alcohol dehydrogenases). 
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Plantecelwanden vertegenwoordigen het grootste gedeelte van de op aarde 

aanwezige biomassa en bestaan uit energierijke polymeren zoals lignine, cellulose 

en hemicellulose. Gedurende tientallen jaren is er onderzoek gedaan om 

landbouw- en bos-afval te gebruiken als herbruikbare grondstof. Met name de 

afbraak van cellulose is veelvuldig onderzocht. Hemicellulose heeft veel minder 

aandacht gekregen, ondanks dat dit polymeer tot 40 % kan uitmaken van het 

totale drooggewicht van plantecelwanden. Fermentatie door anaërobe bacteriën 

biedt de mogelijkheid om de meeste energie die opgeslagen ligt in de polymere-

en monomere-suikers te bewaren in de vorm van organische zuren en 

oplosmiddelen (bijvoorbeeld azijnzuur, alcohol en aceton). 

Een project waarin de anaërobe omzetting van hemicellulose naar potentieel 

biotechnologisch interessante produkten werd onderzocht, werd in twee delen 

opgesplitst. Eén deel, uitgevoerd door Philippe Schyns, had betrekking op de 

microbiologische omzetting van xylaan, hetgeen als model substraat voor 

hemicellulose werd gebruikt. Verschillende xylaan splitsende enzymen (endo-

xylanase, ß-xylosidase, acetylesterase, a-L-arabinofuranosidase) werden 

gezuiverd en gekarakteriseerd. Van enkele enzymen werd de werkwijze nader 

onderzocht. Bovendien werd het inductie mechanisme van xylanase en 

ß-xylosidase bestudeerd. De resultaten van dit deel van het onderzoek zullen in 

een apart proefschrift gepresenteerd worden. Het andere deel van het project, 

waarvan de uitkomsten in dit proefschrift gegeven worden, was gericht op de 

fermentatie van xylose, hetgeen één van de meest voorkomende suikers in 

hemicellulose is. 

Bacteroides xylanolyticus X5-1 is gebruikt als model organisme. Het organisme 

was eerder geïsoleerd uit gefermenteerde koeiemest. B. xylanolyticus X5-1 kan 

alleen groeien op één specifiek hemicellulose, namelijk xylaan. Cellulose en 

andere soorten hemicellulose kunnen niet gebruikt worden door dit micro­

organisme. Hierdoor was dit organisme interessant voor het bestuderen van de 
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(regulatie van) de synthese van xylanolytische enzymen, aangezien interferentie 

met andere (hemi)cellulolytische enzym systemen uitgesloten kon worden. Verder 

kan het organisme een grote verscheidenheid aan monomere suikers fermenteren, 

produceert het een mengsel aan eindprodukten en heeft het een relatief hoge 

groeisnelheid. Deze laatstgenoemde eigenschappen zorgden ervoor dat B. 

xylanolyticus X5-1 een geschikt micro-organisme was voor het bestuderen van de 

regulatie van de xylose fermentatie onder anaërobe omstandigheden. 

De samenstelling en de afbraak van biomassa en de (regulatie van) produkt 

vorming uit biomassa, worden in algemene zin besproken in hoofdstuk 1. Enkele 

biotechnologische toepassingen van de fermentatie van biomassa worden ook in 

dit hoofdstuk genoemd. 

Door gebruik te maken van 14C-gelabeld xylose kon het xylose opname systeem 

bestudeerd worden. Er werd aangetoond dat de opname via een actief transport 

systeem plaatsvindt, en dat er waarschijnlijk een bindings eiwit bij betrokken is. 

Het exacte mechanisme van xylose opname moet nog verder opgehelderd worden. 

Gebaseerd op massa balans berekeningen, het bepalen van specifieke enzym 

activiteiten van sleutel enzymen uit katabole routes, en door het bepalen van het 

label-distributie patroon met behulp van "C-NMR kon aangetoond worden dat de 

pentose fosfaat weg in samenwerking met de glycolyse actief is tijdens de xylose 

fermentatie door B. xylanolyticus X5-1. Azijnzuur (acetaat), alcohol (ethanol), 

mierezuur (formiaat), waterstof-gas (H2) en koolzuur-gas (C02) zijn de 

belangrijkste eindprodukten die gevormd worden tijdens de xylose fermentatie. 

Bij hogere xylose concentraties worden bovendien kleine hoeveelheden melkzuur 

(lactaat) en 1,2-propaandiol gevormd. Reductie equivalenten, gevormd tijdens de 

oxydatie van glyceraldehyde-3-fosfaat en pyruvaat, worden weer gebruikt bij de 

produktie van H2, formiaat en ethanol. Volgens de voorgestelde route worden 

ongeveer 2,5 mol ATP op substraat niveau gevormd per mol omgezet xylose. Dit 

gedeelte van het onderzoek wordt gepresenteerd in hoofdstuk 2. 
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De afbraak van mengsels van C6-suikers en C5-suikers door B. xylanolyticus 

X5-1 wordt beschreven in hoofdstuk 3. Batch cultuur cellen vertoonden geen 

diauxie en geen substraat voorkeur voor glucose, xylose, arabinose of rhamnose, 

ongeacht het substraat waar het organisme op voorgekweekt was. In contrast 

hiermee, waren glucose gelimiteerd gekweekte continu cultuur cellen niet in staat 

om xylose om te zetten, tenzij een kleine hoeveelheid glucose of pyruvaat 

aanwezig was als extra substraat. Glucose gelimiteerd gekweekte continu cultuur 

cellen vertoonden lage activiteiten voor xylose transport en xylose isomerase. 

Xylulose kinase was helemaal niet meetbaar. Na toevoeging van xylose als 

enkelvoudig substraat aan de glucose gekweekte cellen, werd geen toename in 

transport snelheid, in xylose isomerase- en xylulose kinase- activiteit 

waargenomen. Echter, als tegelijkertijd met xylose ook een beetje glucose werd 

toegevoegd, namen alle activiteiten toe. In aanwezigheid van chlooramphenicol, 

een remmer van de eiwit synthese, werden xylose isomerase en xylulose kinase 

niet geïnduceerd. De transport activiteit nam in gelijke mate toe als in 

afwezigheid van chlooramphenicol, hetgeen suggereert dat het transport systeem 

geactiveerd moest worden en niet geïnduceerd. Deze experimenten toonden aan 

dat i) xylose isomerase en xylulose kinase werden gereguleerd op het niveau van 

enzym synthese, ii) dat het xylose transport constitutief aanwezig was, en iii) dat 

klaarblijkelijk de glucose gekweekte cellen zowel koolstof als ook energie 

gelimiteerd waren. Wanneer het organisme gekweekt wordt onder niet-

limiterende omstandigheden, zoals waarschijnlijk plaatsvindt in hemicellulose 

hydrolysaat, kan B. xylanolyticus X5-1 suiker mengsels gebruiken. Dit is van 

biotechnologisch belang, aangezien de omzetting van het belangrijkste substraat 

xylose niet negatief beïnvloed zal worden door een lagere concentratie van het 

vaak geprefereerde substraat glucose. 

Hoofdstuk 4 beschrijft het effect van een lage partiële waterstof spanning op het 

xylose metabolisme van B. xylanolyticus X5-1. Als het organisme gekweekt werd 
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in rein cultuur, met xylose als groei-limiterend substraat, produceerde B. 

xylanolyticus X5-1 acetaat, ethanol, H2 en C02 als enige eindprodukten. Als het 

organisme gekweekt werd in de aanwezigheid van de methanogene bacterie 

Methanospirillum hungatei JF-1 werd xylose omgezet in acetaat, C02 en 

vermoedelijk H2. Door het co-cultiveren (=interspecies elektron overdracht) werd 

een hogere biomassa produktie waargenomen. H2 kon nauwelijks gemeten worden 

omdat het efficiënt werd omgezet in methaan (CH4) door de methanogene 

bacterie. Ethanol werd niet meer geproduceerd. Deze soort regulatie van de 

produkt vorming is in meerdere anaërobe bacteriën waargenomen. Echter, de 

xylose fermentatie in B. xylanolyticus X5-1 werd niet alleen gereguleerd op 

produkt niveau, maar ook op enzym niveau. In cel vrije extracten van de rein 

cultuur van B. xylanolyticus X5-1 konden NAD- en NADP-afhankelijke 

acetaldehyde- en ethanol-dehydrogenase activiteiten gemeten worden. Als het 

organisme gekweekt werd in co-cultuur met M. hungatei JF-1 werden deze 

activiteiten niet meer waargenomen. De NAD- en NADP-afhankelijke 

dehydrogenases werden sequentieel geïnduceerd wanneer de interspecies elektron 

overdracht werd opgeheven, tenzij chlooramphenicol aanwezig was. Deze 

resultaten laten zien dat produkt vorming door B. xylanolyticus X5-1 bij lage 

partiële waterstof spanning wordt gereguleerd op het niveau van de eiwit 

synthese. 

Verschillende groei condities werden gebruikt om het xylose metabolisme in B. 

xylanolyticus X5-1 te beïnvloeden (hoofdstuk 5). Het kweken onder een 

atmosfeer van H2-gas beïnvloedde het xylose metabolisme niet significant. 

Koolmonoxyde (CO) gas remde de H2 produktie uit xylose volledig, en formiaat 

en ethanol werden de belangrijkste gereduceerde produkten. De toegenomen 

ethanol opbrengst resulteerde in een gereduceerde hoeveelheid acetaat- en 

biomassa-vorming. Het xylose metabolisme kon verder beïnvloed worden door 

gebruik te maken van alternatieve elektronen acceptoren, zoals acetol, aceton, 
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acetoïne en dihydroxy aceton. Zij werden gereduceerd tot hun corresponderende 

alcoholen, respectievelijk 1,2-propaandiol, 2-propanol, 2,3-butaandiol en 

glycerol. Met deze elektronen acceptoren werden voornamelijk acetaat en C02 

gevormd, en nauwelijks H2, formiaat en ethanol. Door de verschuiving naar meer 

acetaat vorming, werd een hogere biomassa produktie bereikt. In continu cultuur 

met xylose als groei-limiterend substraat en acetol als elektronen acceptor 

verschoof de produkt vorming uit xylose ook naar acetaat en C02. Echter, acetol 

werd niet alleen gereduceerd naar 1,2-propaandiol, maar werd ook omgezet in 

aceton. De in gel activiteit kleuringen van de alcohol dehydrogenases liet zien dat 

i) het NADP-afhankelijke ethanol dehydrogenase gerepresseerd werd in xylose 

met acetol gekweekte cellen, ii) dat het NADP-afhankelijke ethanol 

dehydrogenase in xylose gekweekte cellen een niet specifieke activiteit vertoond 

voor zowel ethanol als 1,2-propaandiol, en iii) dat een ander, óók NADP-

afhankelijk 1,2-propaandiol dehydrogenase werd geïnduceerd in xylose + acetol 

gekweekte cellen. 

De meetgegevens die in dit proefschrift gepresenteerd zijn, laten zien dat het 

mogelijk is het xylose metabolisme van B. xylanolyticus X5-1 op verschillende 

manieren en op verschillende niveaus te beïnvloeden. De verkregen resultaten 

zijn mogelijk ook toepasbaar bij andere micro-organismen met een 

biotechnologische waarde. Daarom kunnen de resultaten gebruikt worden voor 

biotechnologische produktie processen en voor de biotechnologische produktie 

van waardevolle verbindingen (b.v. microbiologische reductie processen, optisch 

actieve produkten, enzymen zoals (stereospecifieke) alcohol dehydrogenases). 

116 



Dankwoord 

Stel je voor: het vasteland, een grote diepe zee en ver weg een heel klein, paradijselijk 

eilandje. Het "vasteland" (= de thuishaven van een afgestuurde le-fase student, 

gewapend met een opleiding van jaarlijks terugkerende colleges, dictaten en practica) 

wordt verlaten om het paradijs (de promotie) te bereiken. Na enkele meters in die 

"grote diepe zee" (het onderzoek) gezwommen te hebben, lijkt het datje er alleen voor 

staat en dat het eiland verder weg is dan je dacht. Een weg terug is er niet meer, door 

de grote stroom (= een horde aio's en oio's) vanaf het vasteland naar dat eiland. Tot 

overmaat van ramp blijk je onderweg extra belast te worden (bijeenkomsten, practica, 

verslagen e.d.) en lijk je langzaam onder water geduwd te worden. En toch, 

verdrinken doe je niet. 

Het gevoel van "er alleen voor staan" is de laatste paar jaren van het promotie 

onderzoek duidelijk minder geworden. Een fiks aantal mensen, waaronder Caroline, 

Christof, Cor, Frits, Loes, Mike, Nées, en Wim, hebben door middel van 

aanwijzingen, technische en praktische hulp, raadgevingen, en (relativerende) 

opmerkingen, aan dit proefschrift een bijdrage geleverd. Deze groep wil ik bij deze 

bedanken, zonder alle andere medewerkers van de vakgroep microbiologie te kort te 

willen doen. De hele vakgroep heeft er voor gezorgd dat ik een onvergetelijke tijd in 

Wageningen heb gehad. Een aantal mensen wil ik hier echter nog persoonlijk bedanken 

(in strikt willekeurige volgorde): 

- Fons, ondanks alle administratieve rompslomp bij de vakgroep microbiologie, met 

name na Alex zijn vertrek, heb je altijd tijd gemaakt voor praktische en theoretische 

discussies. Het was vaak moeilijk om je enthousiast te maken voor mijn onderzoek. 

Daardoor leerde je me wel mijn eigen resultaten zeer kritisch te bekijken en deze 

weloverwogen te presenteren. Waar ik je ontzettend dankbaar voor ben is de manier en 

de snelheid waarmee je de verschillende manuscripten hebt verwerkt tot 

wetenschappelijke teksten. 

- Serve, jouw komst naar de werkgroep "moleculaire fysiologie" heeft mijn onderzoek 

echt vorm gegeven. Jouw kennis op biochemisch gebied en je inspanningen op een 
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soortgelijk onderzoeksproject als dat van mij, vormde voor mij een klankbord waar ik 

graag en (te?) veel gebruik van gemaakt heb. 

- Alex, ondanks jouw drukke bezigheden in Zwitserland "en omgeving" heb je toch 

steeds tijd gevonden om het restant van mijn gedachten kronkels in de manuscripten op 

korte termijn weer te ordenen. Helaas hebben wij tijdens het onderzoek wat weinig 

contact gehad. Echter, de discussies die we hadden, leverden mij iedere keer voor 

enkele maanden enthousiasme én werk op. 

- Stefanie, Hans en Marika, jullie wil ik bedanken voor de leuke samenwerking die we 

hebben gehad, de grote inzet die jullie hebben getoond, en de enorme hoeveelheid werk 

die jullie voor mij verricht hebben. Mede door jullie inspanningen was het mogelijk om 

de hoofdstukken 2, 3, en 5 als wetenschappelijke artikelen te publiceren. 

- Philippe, als twee volslagen vreemden werden we bij aanvang van het PcLB-project 

aan elkaar uitgehuwelijkt. Ik denk dat wij een nieuw soort LAT-relatie ("labouring-

apart-together") hebben geschapen. Gelukkig hebben we het goed met elkaar kunnen 

vinden, en hebben we elkaar op wetenschappelijk gebied af en toe een helpende hand 

kunnen toereiken. Met name de "late avond"- en de "vroege ochtend"-monsters hebben 

we aan elkaar te danken. 

- Mijn ouders en mijn schoonouders wil ik bij deze bedanken voor de mogelijkheden 

die zij mij geboden hebben om mijn studie te volbrengen. Ondanks alle vage, niet 

tastbare verhalen over "beestjes", "enzymen" en "routes" hebben jullie steeds interesse 

getoond in mijn werk. De "zorgen voor morgen" hebben jullie waarschijnlijk meer 

gehad dan ik, en ik hoop dat die zorgen spoedig zullen verdwijnen. Bedankt voor alle 

steun in de afgelopen jaren. 

- Rian, zonder jou was het allemaal een stuk moeilijker geweest. Menig avondje heb 

je op mij zitten wachten; ofwel met het eten thuis, of wat misschien nog erger is, 

zonder eten op je eigen werk. Op de juiste momenten wist je me over te halen om aan 

het werk te gaan, of er juist mee te stoppen. Je hebt een aantal humeurige avonden 

moeten doorstaan, maar dat kon jouw stimulans om door te zetten niet verminderen. Als 

er iemand is, waarvan ik zeker weet dat ie achter mijn onderzoek stond, dan was jij dat 

wel. Bedankt voor jouw vertrouwen in mij. 
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Op 15 juli 1964 werd ik in Amsterdam geboren, en kreeg daarbij de naam Steven 

Biesterveld mee. Na 4 jaar in Amsterdam te hebben gewoond heb ik in Leusden 

de lagere school gevolgd. Vervolgens heb ik op het "Baarnsch Lyceum" in Baarn 

het VWO gevolgd met o.a. wiskunde, natuurkunde, scheikunde en biologie als 

examen vakken. In mei 1983 ben ik voor het examen geslaagd. In september van 

datzelfde jaar ben ik begonnen met de studie scheikunde aan de Universiteit van 

Amsterdam. In het derde jaar van de studie is gekozen voor de biologische 

deelstroom. Deze is aangevuld met enkele radiochemische- en biochemische-

vakken, als ook met een cursus research -management en -organisatie. Mijn 

afstudeervak heb ik verricht in de (toenmalige) werkgroep celwanden van de 

vakgroep microbiologie, waarbij onderzoek aan bacteriofaag-resistentie van 

melkzuur bacteriën gedaan is. Kort na het afstuderen in 1988 ben ik als assistent 

in opleiding begonnen in de "anaërobe groep" van de vakgroep microbiologie aan 

de Landbouwuniversiteit in Wageningen. Het onderzoek wat ik daar verricht heb 

aan de anaërobe omzetting van xylose is samengevat in het werk wat nu voor u 

ligt. 
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