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Stellingen 

1. De expressie-strategie van het TSWV M RNA segment ondersteunt de hypothese dat 

de evolutionaire ontwikkeling van ambisense RNA segmenten terug te voeren is op 

een fout in de RNA replicatie. 

Dit proefschrift. 

D.H.L. Bishop (1986). Ambisense RNA viruses: Positive and negative polarities combined in RNA 

virus genomes. Microbiological Sciences 3, 183-187. 

2. De aanname van Lucas et al. (1993) voor het bestaan van een "plant protein I" en een 

"plant protein II" in het TMV transport model is voorbarig en maakt dit model 

onnodig ingewikkeld. 

Lucas et al. (1993). Plasmodesmata and the supracellular nature of plants. New Phytol. 125,435-476. 

3. Het feit dat het genoom van tenuivirussen uit 4 of 5 RNA segmenten bestaat, 

waarvan tenminste 3 een ambisense structuur bezitten, rechtvaardigt een classificatie 

van deze virussen in een aparte virusfamilie. 

4. De conclusie dat AVR9' stammen naast het avr9 gen een aanzienlijk stuk 

flankerende sequenties van dit gen missen, is prematuur. 

Marmeisse et al. (1993). Disruption of the avirulence gene avr9 in Cladosporium fulvum causes 

virulence on tomato genotypes with the complementary resistance gene Cf9. Molecular Plant-Microbe 

Interactions 6. 

5. De term in-planta-induced betekent nog niet dat expressie van deze genen wordt 

aangeschakeld door een interactie met de plant gastheer. 

C.MJ. Pieterse (1993). Differential gene expression in Phytophthera infestans during pathogenesis 

on potato. Thesis, Wageningen. 
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6. Door zich sinds 1947 slechts op papier uit te spreken voor een opdeling van (de 

Westelijke helft van) Palestina is de VN mede verantwoordelijk voor de huidige 

toestand op de bezette Westelijke Jordaanoever en de Gaza-strook. 

7. Vanwege het hoge kwaliteitsgehalte van Grolsch bier kan een "grolse kater" maar 

voor één uitleg vatbaar zijn. 

8. Het is de vraag of in artikelen betreffende intercellulair plantevirustransport de 

openingszin "It is generally accepted that plant viruses move from cell-to-cell through 

plasmodesmata" geoorloofd is. 

Wellink et al. (1993). The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible 

for induction of tubular structures in protoplasts. Journal of General Virology 67, 3660-3664. 

M.-C. Perbal (1994). A functional analysis of the cauliflower mosaic virus movement protein. Ph.D. 

thesis, University of East Anglia (UK). 

9. De dagen van het AJ.O.-schap zijn geteld. 

10. De latente aanwezigheid van een derde groep virussen, phylogenetisch niet verwant 

aan plante- en diervirussen, kan funest zijn voor de afronding van een proefschrift. 

Stellingen behorend bij het proefschrift: 
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a plant-infecting bunyavirus 
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Voorwoord 
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Chapter 1 

Tomato spotted wilt virus 

Introduction 

The history of the "spotted wilt" disease goes back to 1919, when Brittlebank reported 

the first observations of this severe disease of tomatoes in Australia. It was not until 1930 

that Samuel et al. (1930) identified the causal agent of this disease as a virus, for which 

the name tomato spotted wilt virus (TSWV) was coined. Ever since, TSWV has been 

reported from most of the other continents and to date it is recognized as a cosmopolitic 

virus, widespread in (sub)tropical as well as in temperate climate zones. The virus causes 

great yield losses in a large number of economically important crops, e.g. tomato, lettuce, 

pepper, potato, tobacco, groundnut, pea, papaya and in ornamental crops, such as 

chrysanthemum, begonia, alstroemeria, cyclamen, gerbera, gloxinia and impatiens. To 

date more than 650 different plant species belonging to 72 botanical families, both 

monocotyledons and dicotyledons, have been reported to be susceptible to TSWV (Cho 

et al, 1987; Matthews, 1982; D. Peters, unpublished data). Disease symptoms vary from 

chlorosis, mottling, stunting and wilting to severe necrosis on leaf and stem tissues. They 

even may vary within the same host species due to environmental conditions, as well as 

to the conditions and age of the plant itself (Best, 1968; Francki and Hatta, 1981). 

TSWV is the only plant virus shown to be biologically transmitted by thrips 

(Thysanoptera: Thripidae) (Sakimura, 1962a). Thus far, eight thrips species have been 

described as a vector of TSWV (Table 1; Pittman, 1927; Samuel et ai, 1930; Gardner et 

al., 1935; Sakimura, 1962a, b; Kobatake et al, 1984; Paliwal, 1974; Bournier, A. and 

Bournier, J.P., 1987; Zitter et al, 1989). Since 1980, the occurrence of TSWV revived due 

to the global expansion of one of its major vectors, Frankliniella occidentalis Pergande. 

It is generally accepted that adult thrips do not acquire the virus. Thrips can only 



Frankliniella occidentals Pergande 

Frankliniella schultzei Tiybom 

Frankliniella fusca Hinds 

Frankliniella tenuicornis Uzel 

Thrips tabaci Lindeman 

Thrips palmi Karny 

Thrips setosus Moulton 

Scirtothrips dorsalis Hood 

Table 1: Thrips species reported as vectors of TSWV. 

western flower thrips 

common blossom or cotton bud thrips 

tobacco thrips 

onion thrips 

melon thrips 

chilli thrips 

transmit the virus after acquisition in their larval stage (Linford, 1932; Smith,1932; Bald 

and Samuel, 1931; Bailey, 1935). Recent investigations have revealed that up to 80% of 

the larvae can become infective and transmit the virus before they pupate (Wijkamp and 

Peters, 1993). The minimal acquisition period is 15 to 30 minutes. After acquisition and 

before transmission, i.e. during the latent period, the thrips is not infectious. Depending 

on the thrips species, different lengths of this period have been reported, varying from 

4 to 18 days (Sakimura 1962). The virus is transstadially passed and in most cases 

retained for life, although irregularly transmitted. Weed plants play an important role in 

the spread and survival of virus. They form a virus reservoir from where infective thrips 

migrate to crop fields that thereafter become heavily infected (Bond et al, 1983; Cho et 

al, 1986; Kobatake et al, 1984). 

For decades, TSWV isolates have been discriminated mainly on the basis of disease 

symptoms (Best and Gallus, 1953; Norris, 1946; Best, 1968). In some cases the 

phenomena of cross-protection, and genetic recombination (reassortants) have been 

brought up as an explanation for some observations on distinct isolates (Best and Gallus, 

1955; Best, 1968). During the last decade not only thrips-specificity but also host range 

and serology formed the basis for discrimination between isolates (Amin et al, 1981; Cho 

et ai, 1988; Ghanekar et ai, 1979; Gonsalves and Trujilo, 1986; Kameyi-Iwaki et al, 1988; 



Sherwood et ai, 1989; Hayati et ai, 1990; Avila et al, 1990; Law and Moyer, 1990; Wang 

and Gonsalves, 1990; Avila et al., 1992; Yeh et ai, 1992; Reddy et ai, 1992). In the past, 

however, the preparation of specific polyclonal antisera has often been hampered due 

to host protein contaminations in virus preparations, resulting in high background 

reactions with healthy control material (Tas et ai, 1977b; Gonsalves and Trujillo, 1986). 

Currently, three distinct serogroups can be distinguished using polyclonal and 

monoclonal antisera directed to the structural nucleoprotein of TSWV (Avila et ai, 1990, 

1992). Based on the absence of any serological cross-reactivity between viruses of 

serogroups I and III, they are considered as different species. For serogroup I, the name 

tomato spotted wilt virus has been reserved, and for serogroup III the name Impatiens 

necrotic spot virus (INSV) has been coined (Avila et ai, 1992). Based on different 

reactivities with monoclonal antibodies, two serotypes, named tomato chlorotic spot virus 

(TCSV; serotype I) and groundnut ringspot virus (GRSV; serotype II), are recognized 

within sergroup II (Avila et ai, 1990). In near future, other isolates currently reported 

as TSWV may turn out to be further new species, among those are groundnut bud 

necrosis (Reddy et ai, 1992), watermelon silver mottle virus (Kameya-Iwaki et ai, 1988; 

Yeh et ai, 1992), an isolate of Verbesina alternifolia (Hayati et ai, 1990), and peanut 

yellow spot virus (Reddy et ai, 1991). 

Cytopathology and virus structure 

Extensive electron microscopical analyses demonstrated that TSWV is found in 

almost all tissues and organs following systemic infection of plants (Kitajima, 1965; 

Francki and Grivell, 1970; Ie, 1973). Mature virus particles are mainly found clustered 

in the cisternae of the rough endoplasmatic reticulum (RER) and consist of spherical 

lipid-bound particles, 80-120 nm in diameter, covered with spike projections (Fig.la and 

b; Best and Palk, 1964; Best and Katekar, 1964; Martin, 1964; Ie, 1964; Kitajima, 1965; 

Van Kammen et ai, 1966; Francki and Grivell, 1970 Francki et ai, 1984; Francki and 

Hatta, 1981). The core of the particles consists of ribonucleocapsid structures 

("nucleocapsids"), in which the three genomic RNAs are wrapped with nucleoprotein 



Figure 1: Cytopathology of TSWV. (A) presence of TSWV virions in the lumen of the endoplasmatic riticulum 
(ER); (B) electron dense massess consisting of non-enveloped nucleocapsid aggregates in the cytoplasm; (C) 
fibrous structures in the cytoplasm of a TSWV-infected cell; (D) virus particles bound by two membranes. 
Scale bars represent 200 nm. V: Virus; NA: Nucleocapsid aggregates; F: Fibrous structures. 



units. The virus particles most likely mature by budding of nucleocapsids through the ER 

membrane (Milne, 1970). 

In addition to mature virus particles, specific cytopathic structures associated with 

TSWV infection are found. One type is characterized by dark diffuse amorphous masses, 

also denoted viroplasm, with locally electron dense striated spots, located freely 

dispersed in the cytoplasm (Fig.lb; Ie, 1971; Kitajima, 1965; Milne, 1970; Francki and 

Grivell, 1970; Francki et al., 1984; Francki and Hatta, 1981). These dense spots have a 

diameter slightly smaller than mature virus particles and are never found in older 

systemically infected mesophyll cells (Ie, 1971). They have a proteinaceous nature, 

suggested to consist of ribonucleoprotein and to form a normal developmental stage in 

the formation of TSWV particles (Milne, 1970; Ie, 1971). The nature of these dense 

masses as non-enveloped nucleocapsid aggregates is founded by studies of morphological 

defective TSWV isolates (Ie, 1982, Verkleij and Peters, 1983). In these studies purified 

infectious fractions of TSWV resemble the amorphous masses, and therefore are 

suggested to present aggregates of nucleocapsids of morphologically defective TSWV 

that for some reason can not produce enveloped particles (Ie, 1982; Verkleij and Peters, 

1983). The second type of cytopathic structures associated with TSWV infections consists 

of fibrous structures (Fig.lc; Francki et al., 1984; Francki and Grivell, 1970), the nature 

and function of these, however, are unknown. 

Sometimes, though only at an early stage of infection, doubly-enveloped particles are 

found in the cytoplasm (Fig.ld; Milne, 1970; Francki et al., 1984). They are proposed to 

arise as a result from budding of the electron dense aggregates, i.e. nucleocapsids, in 

parallel membranes to form enveloped particles (Milne, 1970; Francki et ai, 1984). 

Subsequent joining of several doubly-enveloped particles then leads to a cluster of 

enveloped particles in the cisternae of RER (Milne, 1970). Sofar, virus particles are 

never observed in the Golgi complex or vacuoles (Kitajima et al, 1965), suggesting that 

these are not involved in the maturation or transport of the virus. Still, only limited 

information is available on the intermediate stages of particle budding, probably because 

these are passed through rapidly. 

Purified virus particles contain at least 4 structural proteins with a molecular weight 



Figure 2: Schematic representation of a TSWV particle. 

of 29 kilodalton (kDa), 58 kDa, 78 kDa and a large (L) protein of >200 kDa present 

in minor amounts (Mohamed et al, 1973; Tas et al, 1977a). The 78 kDa and 58 kDa 

proteins are glycosylated and represent the envelope glycoproteins often referred to as 

G l (78 kDa) and G2 (58 kDa) (Mohamed et al, 1973; Tas et al, 1977a). Often a fifth 

structural protein of 52 kDa is observed (Tas et al, 1977), however this product is 

believed to represent a stable degradation product of the 58 kDa G2 protein. The 29 

kDa protein represents the nucleoprotein (N) (Tas et al, 1977a; Mohamed, 1981). 

Further, the large protein has recently been found encoded by the viral genome and its 

function elucidated as the putative viral RNA polymerase (De Haan, thesis 1991). A 

schematic representation of the particle morphology of TSWV is depicted in Figure 2. 

The genome of TSWV consists of three single-stranded linear RNA segments 



denoted S RNA (small), M RNA (medium) and L RNA (large) with reported sizes of 

2900 bases, 5000 bases and 9000 bases, respectively (Van den Hurk et ai, 19T7; Verkleij 

et al., 1982). Isolated TSWV RNA is non-infectious and does not contain poly(A)-

sequences. 

Taxonomy 

It is clear from the preceding paragraph that tomato spotted wilt virus is very distinct 

from other plant viruses. It has a unique particle morphology, a very broad host range 

and is biologically transmitted by thrips. Hence, this virus has originally been classified 

as the representative of the monotypic tomato spotted wilt virus group (Ie, 1970; 

Matthews, 1982). Though, Milne and Francki (1984) already suggested that TSWV may 

be considered as a member of the arthropod-borne Bunyaviridae, a virus family 

exclusively consisting of animal-infecting viruses (Matthews, 1982; Bishop, 1980), the data 

presented in the thesis of De Haan (1991) and in this thesis provide the conclusive 

molecular evidence that this classification would be correct. 

Scope of investigation 

The aim of the research described in this thesis was to elucidate the genetic 

organisation, the coding functions and the expression strategy of the TSWV genome. 

At the onset of this research, only preliminary sequence data were available mainly 

on the TSWV L and S RNA segments, but the availability of cDNA clones derived from 

all three genomic RNA segments made it possible to study the viral RNA synthesis in 

plants and to gain insight in the transcription/replication strategy of TSWV (Chapter 2). 

The initiation of transcription of the viral genome was subsequently analysed in more 

detail and showed analogies with that of other segmented negative strand RNA viruses, 

i.e. Bunyaviridae, Orthomyxoviridae and Arenaviridae (Chapter 3). Meanwhile the 

nucleotide sequence of the TSWV S and L RNA segments was elucidated (De Haan, 

thesis 1991). With the determination of the nucleotide sequence of the M RNA segment, 



as described in Chapter 4, the complete nucleotide sequence of the TSWV genome 

became available. Whereas the M RNAs of the animal-infecting Bunyaviridae only 

contain one ORF encoding the precursor to the glycoproteins and, in some cases, a 

nonstructural protein, the TSWV M RNA, in addition to the glycoprotein precursor 

gene, was found to contain an extra ORF encoding a putative nonstructural protein 

(NSM) of 33.6 kDa. In order to analyse the functions of this and a second nonstructural 

protein (NSS) of TSWV, both proteins were expressed in heterologous expression 

systems to obtain specific antibodies. Using these antibodies, the intracellular locations 

of both NSS and NSM were determined (Chapter 5 and 6). Additionally, the gene 

encoding the precursor to the glycoproteins (Gl and G2) was expressed in a 

heterologous expression system as a first step towards understanding the biosynthesis and 

maturation of these envelope glycoproteins (Chapter 7). 
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Chapter 2 

Viral RNA synthesis in tomato spotted wilt virus-infected 

Nicotiana rustica plants1 

SUMMARY 

The synthesis of viral RNA species in tomato spotted wilt virus (TSWV)-infected 

Nicotiana rustica plants was followed in terms of time and relative abundancy. While 

systemic symptoms were visible after 4 days post-infection (p.i.), viral (v) and viral-

complementary (vc) strands of all three genomic RNA segments (L RNA, M RNA and 

S RNA) were detected from 2 days p.i. on. In addition, two subgenomic mRNAs, 

derived from S RNA, were detected. For the L RNA segment no subgenomic mRNAs 

were detected, suggesting that this segment is expressed via the synthesis of a genome-

sized vc mRNA. A possible M-specific subgenomic mRNA was detected, showing a 

similar time course of appearance as the subgenomic mRNAs derived from the S RNA 

segment. Analysis of cytoplasmic RNA fractions revealed that both v- and vc strands of 

all three genomic segments associate with the nucleoprotein (N) into nucleocapsid 

structures, the vc RNA species being present in lower amounts. Intact, enveloped virus 

particles showed the presence of the v strand of the L RNA segment only and 

surprisingly, both v-and vc strands of the M and S RNA segments, though in different 

ratios. 

1This chapter has been published in a slightly modified version as : Richard Kormelink, Peter de Haan, 
Dick Peters and Rob Goldbach (1992). Viral RNA synthesis in tomato spotted wilt virus-infected Nicotiana 
rustica plants. Journal of General Virology Ti, 687-693. 
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INTRODUCTION 

Tomato spotted wilt virus (TSWV) is a representative of the arthropod-borne 

Bunyaviridae, unique in its property to infect plants (De Haan et al, 1989a). At the 

ICTV meeting in Berlin (1990) TSWV has been accepted as the sole member of a newly 

created genus within the Bunyaviridae, denoted Tospovirus. Typical for members of the 

Bunyaviridae (Francki et ai, 1991), TSWV has enveloped particles that contain three 

different segments of single stranded RNA, denoted S RNA (2.9 kb), M RNA (5.0 kb) 

and L RNA (8.9 kb) (Van Den Hurk et al., 1977; Mohamed et al, 1981; De Haan et ai, 

1990, 1991). The genomic RNAs form pseudo-circular structures tightly associated with 

the nucleoprotein (N) of 29 kDa, and a few copies of a large L protein (>200 kDa), 

proposed to represent the viral transcriptase. Two membrane glycoproteins of 78 kDa 

(Gl) and 58 kDa (G2) form the spikes on the viral envelope (Mohamed et al, 1973; Tas 

et al, 1977; De Haan et al, 1989a). 

Recently, the nucleotide sequences of the S- and L RNA segments have been 

determined (De Haan et al, 1990 and 1991). The L RNA is of negative polarity, 

containing a single large open reading frame (ORF) in the viral complementary (vc) 

strand. This ORF encodes a protein of expected size 331.5 kDa which, based on 

sequence homology with the Bunyamwera L protein and Influenza PB1, is proposed to 

represent the viral transcriptase. The S RNA segment of TSWV has an ambisense gene 

arrangement, as also found for the S RNAs of phleboviruses, another genus within the 

Bunyaviridae (Ihara et al, 1984; Marriot et al, 1989; Simons et al, 1990; Giorgi et al 

1991). The gene encoding the N protein is located on the vc strand, while a second gene, 

encoding a nonstructural protein (NSS) of 52.4 kDa, is found on the viral strand (De 

Haan et al, 1990). 

To further study the expression and replication of the TSWV genome the synthesis 

of viral RNA species has now been followed during systemic infection of Nicotiana 

rustica. To this end total RNA extracts, prepared from infected leaf material at different 

times after inoculation, were analysed using strand specific probes for each of the three 
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genomic RNA segments. The results obtained demonstrate that TSWV follows the 

replication strategy characteristic for negative strand RNA viruses, by which L, M, and 

S viral (v) RNA, and M and S viral complementary (vc) RNA become encapsidated in 

enveloped virus particles. In addition to S-RNA-derived subgenomic mRNAs, a possible 

M-specific subgenomic mRNA has been detected in TSWV-infected N. rustica. 

MATERIALS AND METHODS 

Plants, virus and cDNA clones 

The Brazilian isolate BR-01 (CNPH1) of TSWV was maintained in Nicotiana rustica 

'America' by mechanical inoculation. Complementary DNA clones representing the 

different RNAs of TSWV BR-01 have been described previously (De Haan et al., 1989b, 

1990, 1991). 

Purification of TSWV and total cellular nucleocapsid material 

Intact virus particles were purified according to Tas et al. (1977) with one 

modification as described by Avila et al. (1990). Viral particles were banded in 10-40% 

sucrose gradients and subsequently used for RNA extraction. Virus yield was usually in 

the range of 0.8-1.2 mg virus/100 g infected leaf material. Viral nucleocapsids were 

isolated from infected leaf tissue as described by Avila et al. (1990), omitting the sucrose 

gradient step. RNA from intact virus particles or free nucleocapsids was isolated by 

treatment with 1% SDS and phenol extraction. After ethanol precipitation, the RNA 

pellet was washed with 70% ethanol, dried and resuspended in H 20. 

Total RNA extraction and Northern blot analysis 

Young seedlings of N. rustica 'America' (three leaves stage) were mechanically 

inoculated with extracts of TSWV BR-01-infected leaves. After inoculation, systemically 

infected leaf samples were taken at different times until 14 days post inoculation (p.i.). 

Total RNA was extracted from healthy and infected N. rustica according to De Vries et 
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al. (1982). Total RNA samples of 7 u,gwere resolved by electrophoresis in 0.6-1.2% 

agarose gels after treatment with methylmercuric hydroxide (Bailey and Davidson, 1976). 

The RNA was blotted onto Genesereen (New England Nuclear, NEN), and hybridised 

to ^- labelled riboprobes of TSWV specific sequences. As a control, 0.5 u,gTSWV BR-

01 nucleocapsid RNA was included. 

Preparation of strand-specific probes 

Complementary DNA clones of TSWV BR-01 representing the 3' and 5' terminal 

regions of the L, M and S RNAs were cloned in transcription vector pSK + (Stratagene) 

according to standard procedures (Maniatis et al., 1982). The cDNA clones used for this 

purpose are described in Fig.l. The pSK+ plasmids were linearized immediately 

downstream of the viral inserts and radioactive RNA probes were prepared by in vitro 

transcription using T7 or T3 RNA polymerase (BRL) in the presence of [a-^PJUTP 

(3000 Ci/mmol, Amersham) as described by Melton et al. (1984). The run-off transcripts 

were checked for strand specificity by hybridisation on spotted, template-free RNA 

transcripts. 

RESULTS 

RNA species present in virions and nucleocapsid fractions 

Nucleotide sequence determinations (De Haan et al., 1989b, 1990 and 1991) have 

revealed that the genomic L RNA of TSWV is of negative polarity, while the S RNA is 

ambisense, containing one ORF in the v strand (encoding the NSS protein) and a second 

ORF in the vc strand (the N protein gene, Fig.l). For the M RNA, the limited sequence 

data available (De Haan et al., 1989 and unpublished results) indicate that this genomic 

segment, is at least partly of negative polarity. To investigate which viral RNA species 

are present in enveloped viral particles and which RNA species are found encapsidated 

by N protein in infected cells, RNA extracts from purified virions and from cellular 

nucleocapsid fractions were denatured with methylmercuric hydroxide and 
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Figure 1: Schematic representation of the genomic structure of the S and L RNA (A,B). The location of 
cDNA fragments used for the synthesis of riboprobes is shown in alignment with the L and S RNA segments. 
The replication of the vRNA strand into the vcRNA strand is indicated by the arrows. The black boxes at the 
termini of the RNA strands represent complementary sequences. Due to the lack of sequence data, no 
genomic map for the M RNA is shown. E, H and B are JECORI, HindLU and Bgäl restriction sites, respectively. 
L2 is a L-specific blunt-end cDNA fragment. 

resolved by agarose gel electrophoresis (Fig.2a; Bailey and Davidson, 1976). The RNA 

was transferred to genesereen membranes and hybridised to 32P-labelled strand specific 

probes corresponding to the S, M or L RNA segment of TSWV (Fig.l). Northern 

analysis showed that cellular nucleocapsid fractions contained both v- as well as vc 

strands of all 3 genomic segments, the vc strands mostly occurring in lower quantities 

(Fig.2b, lanes indicated with N). Intact, enveloped virus particles, however, only 

contained the viral strand of the L RNA segment and surprisingly, both v- and vc strands 

of the M and S RNA segments, though in different amounts (Fig.2b, lanes indicated with 
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Figure 2: Analyses of purified intact virus particles and cytoplasmic nucleocapsid fractions for content of 
vRNA and vcRNA. A) Ethidium bromide stained agarose gel containing RNA markers (Ma), RNA from 
purified virus particles (V) and RNA from cytoplasmic nucleocapsids (N). The sizes of the RNA markers (in 
kilobases) are shown on the left side. B) RNA from purified virus and nucleocapsids was resolved on agarose 
gels and subsequently transferred to gene screen membrane. The Northern blots were hybridised with 
riboprobes, specific for the L, M and S RNA segment. V and N represent the RNA fractions of purified intact 
virus particles and cytoplasmic nucleocapsids, respectively. - and + indicate vRNA and vcRNA, respectively. 
Northern blots of ( + ) RNA strands have been exposed ten times as long as the (-) RNA strands. C) 
Ethidium stained pattern of total RNA of TSWV-infected N. rustica (1) and Northern blot containing total 
RNA of TSWV-infected N. rustica hybridised first to a dsDNA probe of the L RNA (LI), and subsequently 
also to probes of the M (Ml) and S (SI) RNA segments (2). 

V). The reason for this phenomenon is not clear and was further investigated. As a first 

step, total RNA of TSWV-infected N. rustica 8 days p.i. was analysed on agarose gels 

(Fig.2c, lane 1). The pattern of TSWV RNA species visible, did not differ from the RNA 

pattern of purified virus or nucleocapsids (Fig.2a), but Northern blot analyses using 32P-

labelled dsDNA probes of all 3 TSWV genomic RNA species demonstrated the presence 

of six distinct viral RNA species, ranging in size between 1.7 kb and 9 kb (Fig.2c, lane 

2). The RNA bands appeared as 2 doublets, on the position of L and S RNA 

respectively, a single band at the position of M RNA and one additional minor RNA 

species. In order to resolve the identity and polarity of these bands, time courses of total 

RNA extracts of TSWV-infected N. rustica were analysed using strand specific 

riboprobes corresponding to the 3' and 5' terminal regions of the S, M, and L RNA. 

Fig.l shows the location of most of the probes used for these analyses in alignment with 

the original viral S and L RNA segments. Due to the lack of sequence data, the genomic 
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structure of the M RNA and, as a consequence the location of the M RNA riboprobe 

used, is not represented. 

Synthesis of TSWV S RNA species 

Total RNA extracted from systemically infected N. rustica leaves at different times 

p.i. were resolved by agarose gel electrophoresis, transferred to genesereen membrane 

and hybridized to ^P-UTP labelled riboprobes from pSK+/Sl (Fig. 3a) and pSK+/S2 

(Fig. 3b) of either polarity. As controls, total RNA from healthy N. rustica and purified 

TSWV nucleocapsids were included. The riboprobes clearly distinguished two genome 

length S RNA species, i.e. the vRNA and vcRNA strands of this genome segment 

(Fig.3). In case time courses were analysed with respect to the synthesis of vRNA 

strands, probe Sl-vc always showed, although to a lesser extent, some hybridisation with 

the vcRNA strand (Fig.3a, upper panel). This was caused by the fact that this probe 

never showed a 100% strand specificity (see Materials and Methods). After comparison 

with the S RNA doublet observed during analysis of a total RNA extract of TSWV-

infected N. rustica (Fig. 2c), it was concluded that the vc S RNA strand migrated ahead 

of the v S RNA strand. Whereas the amount of vRNA increased with time, the 

production of vcRNA appeared to reach a steady state level at 4 days p.i.. Densitometrie 

analysis of several autoradiograms indeed showed that, whereas the vRNA strand clearly 

accumulated, the vcRNA strand did hardly or not accumulate from 4 days p.i. on (data 

not shown). Both strands became detectable at 2 days p.i.. At the same time two 

subgenomic RNA molecules with the size of 1.7 kb (Fig. 3a, probe pSK + /Sl-vc) and 1.2 

kb (Fig. 3b, probe pSK+/S2-v) respectively, were detected. In view of the location of the 

probes within the physical map of the S RNA, and the sizes of the NSS and N gene 

encoded by this RNA segment (Fig.l), the subgenomic RNA molecules are likely to 

correspond to these two genes and represent subgenomic messengers. Both mRNAs are 

transcribed from complementary strands as they are detected by probes of different 

polarities, which is in agreement with the ambisense coding arrangement of the S RNA. 

These data furthermore indicate that the genome-length vc S RNA is not a mRNA but 

represents a replicative intermediate. 
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Figure 3: Time course of synthesis of S RNA species in TSWV-infected N. rustica. Total RNA extracts from 
the times indicated at the top of the figure (days p.i.) were analysed using riboprobes of cDNA fragments SI 
(A, B) and S2 (C, D). As controls, total RNA of healthy N. rustica (H) and nucleocapsid RNA (N) were 
included. The sizes of the RNA strands detected (in kb) and the position of the S RNA doublet, observed 
in total RNA extracts of TSWV-infected N. rustica, are indicated. The notation pSK+/Sl-v (B) and pSK + /Sl-
vc (A) indicates that riboprobe SI, detecting vcRNA and vRNA strands respectively, was used in the 
hybridisation experiment. The Northern blots were hybridised with equal amounts of cpm to detect v- or 
vcRNA strands. Exposure of pSK+/Sl-v and pSK+/S2-v was three times longer than for Sl-vc and S2-vc, 
respectively. 

Synthesis of TSWV M RNA species 

To analyse the synthesis of M-specific RNA species during TSWV infection cDNA 

clone pSK + /Ml, containing 600 basepairs of viral insert, was used to prepare 

riboprobes. According to the restriction map and partial sequence data of the M RNA 

segment, the position of clone Ml was located within the 3' terminal region of the M 

RNA. Time courses similar to those produced for TSWV S RNA species were analysed 

using these M RNA-derived riboprobes (Fig.4). As found for the TSWV S RNA 

segment, both genome-length strands of the M RNA were detected from 2 days p.i. on. 

The vRNA, was synthesised in increasing amounts during the course of infection, 
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Figure 4: Time course of synthesis of M RNA species in TSWV-infected N. rustica. Total RNA extracts from 
the times indicated at the top of the figure (days p.i.) were analysed using riboprobes of cDNA fragment Ml: 
(A) pSK+/Ml-vc and (B) pSK+/Ml-v. Controls were as for Fig.3. Exposure of pSK+/Ml-v was three times 
longer than for pSK+/Ml-vc. 

indicating that newly synthesised M RNA was present in the extracts. The antigenomic 

strand accumulated much less, and from 4 days p.i. on hardly or not at all. This was 

confirmed by densitometric analysis of several autoradiograms (data not shown). 

Furthermore, also an M-specific vc sense RNA molecule with a size of approximately 

4.0 kb was detected (Fig.4). Since this RNA molecule has a plus polarity it may 

represent a subgenomic mRNA, which would indicate the presence of two distinct 

cistrons in M RNA. Indeed, this RNA species showed a similar course of appearance 

as the two subgenomic mRNAs of the TSWV S RNA segment. 

19 



A) 
PSK+/U2-VC d a y s p . 

N H 0 1 2 3 4 5 6 7 9 1 1 1 4 

8.9- -«f-rffirtf 

B) 
pSK+/L2-v 

days p.i. 

N H 0 1 2 3 4 5 6 7 9 1 1 1 4 
.'É i -

8.9- •s^Hsigii»-*»*«»«»«»«' 

Figure 5: Time course of synthesis of L RNA species in TSWV-infected N. rustica. Total RNA extracts from 
the times indicated at the top of the figure (days p.i.) were analysed using riboprobes of cDNA fragment L2; 
(A) pSK+/L2-vc and (B) pSK+/L2-v. Controls were as for Fig.3. 

Synthesis of TSWV L RNA species 

The L RNA segment of TSWV is 8.9 kb long, containing one large ORF in the 

vcRNA (De Haan et al., 1991). Analyses of TSWV-infected N. rustica revealed that 

various smaller L specific RNA species may be generated from L RNA, by the 

introduction of deletions of variable sizes (Resende, R. de O. et ai, 1991). These smaller 

defective L RNA species seem to interfere with the replication of wild type L RNA and 

may play a role in symptom attenuation in the host. For this reason, precautions had to 

be taken when analysing time courses on the appearance of functional TSWV L RNA 

species. Therefore, riboprobes of three different cDNA clones, two corresponding to the 

5' and 3' terminal regions (pSK+/Ll and pSK+/L3) and one located internally 

20 



(pSK + /L2) were used (Fig.lb). As no different L RNA species were detected with all 

of the three probes, only the results with probe pSK+/L2 (Fig. 5) are shown. Two full-

length L RNA molecules were detected, a vRNA molecule being found in increasing 

amounts during the course of infection and a vcRNA molecule reaching a steady state 

level (Fig.5). The accumulation of the v strand and the lower, steady-state amount of the 

vc-strand is characteristic for (-) RNA viruses. Comparison of these results with the 

pattern of viral RNA species in a total RNA extract of .TSWV-infected N. rustica 

demonstrated that, similar to the doublet of the S RNA, the L RNA doublet (Fig. 2c) 

consisted of a vc strand migrating ahead of the v strand. In accordance to the sequence 

data that revealed that L RNA contains one large ORF in vc sense, comprising the 

whole RNA segment, no subgenomic mRNA for the L RNA segment was detected, 

indicating that the ORF in the vc strand of the L RNA is expressed from a genome-sized 

mRNA. 

DISCUSSION 

Analyses of viral RNA synthesis in TSWV-infected N. rustica revealed the presence 

of both the v- and vc strand of all three genomic RNA segments, and three subgenomic 

RNA species. Using strand specific riboprobes it was demonstrated that the doublets 

observed in the RNA patterns from infected leaf extracts (Fig.2c) consisted of full-length 

v- and vcRNA strands of the genomic RNA segments, the vcRNA strands migrating 

faster than the v strands. For L RNA, the vcRNA strand was present in smaller amounts 

(Fig.2c and 5), whereas for M RNA the v- and vcRNA strands could not be observed 

separately (Fig. 2c). Similar doublets have been shown within other Bunyavirus-infected 

animal cells (Cunningham and Szilagyi, 1987). The full-length RNA strands of both 

polarities were shown to be present in nucleocapsids, purified from infected cells, 

indicating that vcRNA is also associated with N protein. The vc strands, however, are 

encapsidated in smaller amounts, possibly reflecting the difference in amounts present 

in TSWV-infected N. rustica. 
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From 2 days p.i. on, full-length v- and vcRNA strands of all three genomic segments 

(L, M and S RNA) could be detected. The replication of TSWV as a (-) strand RNA 

virus is clearly demonstrated in the time course analyses of the L RNA, where the 

positive strand did hardly or not accumulate, and increasing amounts of the negative 

strand were observed during the course of infection. Similar results were obtained for 

the M and S RNA segments. In addition, for the S RNA, two subgenomic mRNAs were 

detected, transcribed from opposite strands. No subgenomic mRNAs of the L RNA 

could be detected, indicating that the single ORF in the vc strand of the L RNA (De 

Haan et al., 1991) is expressed from a genome-sized mRNA. 

Although analyses on M RNA species demonstrated the presence of a subgenomic 

RNA molecule with the size of approximately 4.0 kb, the identity of this RNA molecule 

is still unknown. According to the nucleotide sequence of clone 201, used for the 

synthesis of riboprobes, this subgenomic RNA species is of plus polarity, indicating that 

it may function as a mRNA. If this is true, then M RNA of TSWV must contain at least 

two different translational units, which may be arranged in one strand, or, similar to S 

RNA, possibly in an ambisense way. In that case, a subgenomic mRNA with the size of 

approximately 4.0 kb could potentially encode a precursor to both Gl (78 kDa) and G2 

(58 kDa) glycoproteins. Future elucidation of the nucleotide sequence will provide the 

definite determination of the gene arrangement in this segment. 

The RNA synthesis of TSWV specific RNA species during the time course of 

infection resembles that of the animal Bunyaviridae and other segmented negative-strand 

RNA viruses like the Orthomyxoviridae and Arenaviridae where RNA species of viral 

sense occur in excess over those of viral complementary sense (Fuller-Pace and 

Southern, 1988; Ihara, T. et al., 1985; Eshita, Y. et al., 1985; Smith and Hay, 1982). 

After infection, negative-strand viruses usually start RNA synthesis with primary 

transcription of the infecting genome by the virus associated RNA polymerase. By using 

cycloheximide or other protein synthesis inhibitors, it has been shown for several negative 

strand RNA viruses, that ongoing protein synthesis is required for replication of the viral 

genome, indicating that a virally encoded protein is necessary for the synthesis of vc- and 

vRNA. Primary transcription of the infecting genome is, however, often not or only 
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partly inhibited (Hay et al, 1977; Barrett et al., 1979; Abraham and Pattnaik, 1983; 

Pattnaik and Abraham, 1983; Patterson and Kolakofsky, 1984; Eshita, Y. et al., 1985; 

Ihara, T., 1985; Bellocq and Kolakofsky, 1987; Bellocq et al, 1987; Franze-Fernandez et 

al, 1987; Raju and Kolakofsky, 1987; Shapiro et al, 1987). In case of influenzavirus, a 

member of the Orthomyxoviridae, the nucleocapsid protein has been shown to 

antiterminate transcription resulting in the synthesis of full-length vc- and vRNA, thus 

causing a switch from transcription to replication (Beaton and Krug, 1984, 1986). A 

temporal separation of TSWV primary transcription and replication in vivo was not 

observed. This might be due to the asynchronous infection of cells during systemic 

infection of plant tissue. This is best illustrated by the time course analyses of the S RNA 

species where the N mRNA and NSS mRNA both appear at 2 days p.i.. According to 

the ambisense coding arrangement of the S RNA, the NSS mRNA, however, can only 

appear after viral replication has taken place (Fig.l). A protoplast system may enable 

to distinguish between primary transcription and replication, and to investigate a possible 

involvement of virally encoded proteins in the switch from transcription to replication, 

in analogy to animal-infecting negative strand viruses. 

Analysis of RNA from purified, enveloped virions showed the encapsidation of both 

v- and vc strands of the S and M RNA segment. Encapsidation of the subgenomic 

RNAs, however, appeared not to take place. The reason for encapsidation of both full-

length strands is unknown but a similar situation has previously been shown to occur 

with the ambisense S RNA segment of Uukuniemi virus (Simons et al, 1990). The 

presence of v- and vc S RNA in virus particles implies that both the N and NSS 

subgenomic mRNAs may be produced through primary transcription. Along this Une, 

involvement of NSS in the replication of the viral genome, is plausible. A similar situation 

also appears with the M RNA, where vc M RNA becomes encapsidated in enveloped 

virions, even in relatively larger amounts than in the case of S RNA. Ethidium bromide 

stained RNA patterns of purified, enveloped virions and free nucleocapsids, however, 

do not show an excess of M RNA over S RNA indicating that encapsidation of relatively 

larger amounts of vc M RNA is not merely a concentration effect. In this case, the 

absence of vc L RNA in purified intact virions is plausible, since the L RNA always 
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appears in nucleocapsids and purified intact virions in similar amounts as the M RNA. 

The reason for encapsidation of vc M RNA in purified enveloped virions is not clear 

but the encapsidation of both v and vc RNA strands of the ambisense S RNA segments 

of TSWV and Uukuniemi virus respectively (this Chapter and Simons et al., 1990) 

indicate that the encapsidation of vc M RNA may be explained by an ambisense gene 

arrangement within the M RNA segment. The detection of a possible M-specific 

subgenomic mRNA supports this hypothesis. 
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Chapter 3 

Non-viral heterogeneous sequences at the 5' ends of tomato 

spotted wilt virus mRNAs2 

SUMMARY 

Subgenomic messenger RNAs transcribed from the tomato spotted wilt virus (TSWV) 

S RNA segment were partially purified from total RNA extracts of TSWV-infected 

Nicotiana rustica and analysed by primer extension analysis. The data obtained show the 

presence of non-viral sequences, 12-20 nucleotides in length, at the 5' ends of the N and 

NSS mRNAs, indicating a cap-snatching mechanism for the initiation of transcription. 

This is the first report of a plant virus using such a mechanism for transcription of the 

viral genome. 

2This chapter has been published in a slightly modified version as : Richard Kormelink, Frank van 
Poelwijk, Dick Peters and Rob Goldbach (1992). Non-viral heterogeneous sequences at the 5' ends of tomato 
spotted wilt virus mRNAs. Journal of General Virology 73, 2125-2128. 
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INTRODUCTION 

Recent molecular studies on the genome of tomato spotted wilt virus (TSWV) have 

revealed that this virus represents a member of the Bunyaviridae, being unique in its 

property to infect plants. Mainly based on its distinct host range TSWV has been 

classified into the newly created genus Tospovirus, within this large family of arthropod-

borne viruses (Francki et ai, 1991). For both the S RNA and L RNA genomic segments, 

complete nucleotide sequences have become available. The L RNA segment (8897 

nucleotides long) is completely of negative polarity, encoding the putative (331.5 kDa) 

viral transcriptase (De Haan et al, 1991). The S RNA segment (2916 nucleotides long), 

like that of phleboviruses (Ihara et al, 1984; Marriott et al, 1989; Simons et al, 1990; 

Giorgi et al, 1991), is ambisense and encodes the N protein of 28.8 kDa and a 

nonstructural protein (NSS) of 52.4 kDa (De Haan et al, 1990). 

Expression of the L RNA has been demonstrated to occur via the synthesis of a 

genome-sized mRNA (Chapter 2). The two open reading frames in the ambisense S 

RNA are expressed from two subgenomic mRNAs that are transcribed from opposite 

strands and terminate at the central, intercistronic region, most probably in a long A-U 

rich hairpin ( De Haan et al, 1990; Chapter 2). 

For several animal-infecting members of the Bunyaviridae the process of initiation-

and termination of transcription has been further studied by characterizing the 5' and 

3' ends of viral messenger RNAs. These studies have demonstrated the presence of short 

heterogeneous nonviral sequences at the 5' ends of the mRNAs, indicating that the viral 

transcriptase utilizes RNA primers to initiate transcription (Bishop et al, 1983; Patterson 

and Kolakofsky, 1984; Eshita et al, 1985; Ihara et al, 1985; Collett, 1986; Gerbaud et al, 

1987; Bouloy et al, 1990; Simons and Pettersson, 1991; Gro et al, 1992; Jin and Elliott, 

1993a and b). These primers are generated from capped host messenger RNA species 

by a process referred to as "cap-snatching", i.e. the 5' terminal sequence of a cellular 

messenger RNA is cleaved off by an endonuclease and subsequently used to initiate 

transcription on the viral genome (Braam et al, 1983; Ulmanen et al, 1981a). Less is 
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known about the termination of transcription, but some typical structural features, i.e. 

palindromic sequences or hairpin structures, have been found close to the sites where 

termination occurs (Bouloy et al., 1990; Simons and Pettersson, 1991). How these 

features are involved in transcription termination has remained unknown sofar. 

To determine whether TSWV, differing from all other bunyaviruses in being 

completely adapted to multiplication in plant cells, also utilizes cap-snatching to initiate 

transcription, the 5' ends of the N and NSS subgenomic mRNAs were analysed. Primer 

extension analysis revealed the presence of a heterogeneous sequence at the 5' end of 

both mRNAs ranging in size from 12 to 20 nucleotides. 

MATERIALS AND METHODS 

Plants, virus and cDNA clones 

The Brazilian isolate BR-01 (CNPH1) of TSWV was maintained in Nicotiana rustica 

'America' by mechanical inoculation. Complementary DNA clones representing the 

different RNAs of TSWV BR-01 have been described previously (De Haan et al., 1989b, 

1990, 1991). 

Total RNA extraction 

Young seedlings of N. rustica 'America' (three leaves stage) were mechanically 

inoculated with extracts of TSWV BR-01-infected leaves. After inoculation, systemically 

infected leaf samples were taken at 8 days post inoculation (p.i.). Total RNA was 

extracted from infected N. rustica according to De Vries et al. (1982). 

Sucrose gradient centrifugation 

Total RNA extracted from TSWV-infected N. rustica was resolved by centrifugation 

through 15-22.5% sucrose gradients in 50 mM Tris pH8.0, 1 mM EDTA and 0.5% SDS. 

Prior to loading, the RNA was denatured with methyl mercuric hydroxide at a final 

concentration of 25 mM. Centrifugation was for 17 hr at 24,000 rpm at 20°C in a SW41 
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rotor. RNA was recovered from individual fractions of the gradient and subsequently 

resolved on 1% agarose gels (Bailey and Davidson, 1976). The RNA was blotted onto 

Genesereen (New England Nuclear, NEN), and hybridised to ^P-labelled strand specific 

riboprobes corresponding to the 3' or 5' terminal region of the S RNA (Chapter 2). 

Relevant fractions were pooled and the RNA was ethanol precipitated. 

CsCl preparation of RNA 

RNA samples from sucrose gradients were further prepared by centrifugation through 

a CsCl cushion according to Davis et al. (1986). To this end, RNA samples were 

resuspended in 2 ml GIT buffer (4M guanidine isothiocyanate (GIT); 25 mM NaAc, 

pH6). After the addition of 1.67 |il 14.4 M ß-mercaptoethanol, the RNA samples were 

loaded on top of a 1.7 ml CsCl foot (5.7 M CsCl; 25 mM NaAc, pH6) and centrifuged 

for 21 hr at 35,000 rpm at 20°C in a SW55 rotor. The RNA pellet obtained, was 

resuspended in 200 ui 0-3 M NaAc, pH6, transferred to a microfuge tube and the SW55 

tube rinsed with an additional 100 JJLI 0.3 M NaAc pH6. The RNA was precipitated by 

the addition of 750 u.1 ethanol and incubated for 1-2 hr at -70°C. The RNA pellet was 

washed with 80% ethanol, dried and resuspended in H 20. 

Primer extension analysis 

The 5' ends of the N and NSS mRNAs were analysed using two oligonucleotides 

representing the viral sense cDNA hybridising with nucleotides 2834 to 2852 (SV) and 

the viral complementary sense cDNA hybridising with nucleotides 32 to 51 (SIV) of the 

S RNA, respectively (Fig.2). The oligonucleotides were labeled at their 5' end using 

[gamma-^jATP and T4 polynucleotide kinase and subsequently purified from an 8% 

sequencing gel. The primers were mixed with the RNA in 10 |xl annealing buffer (250 

mM KCl; 10 mM Tris-HCl pH8.3), heated at 90°C for 2 min and subsequently incubated 

at 37°C for 5 min. Ten JJLI reverse transcriptase mix (100 mM Tris-HCl pH8.3; 10 mM 

MgC12; 10 mM DTT; 50 U MuMLV reverse transcriptase; 20 U RNasin; 1 mM dNTP) 

was added and the reaction incubated at 37°C for 30 min to synthesize run-off copies of 

the upstream sequences in the S-specific RNAs. 
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RESULTS 

Enrichment for subgenomic TSWV S RNA-specific mRNAs 

Recent studies on viral RNA synthesis in TSWV-infected Nicotiana rustica revealed 

the presence of low amounts of the S-specific mRNAs and viral complementary (vc) S 

RNA strands, relative to full-length viral (v) S RNA (Chapter 2). To allow unequivocal 

analysis of the 5' ends of the N and NSS mRNAs, and of the 5' end of the S vcRNA, it 

was necessary to purify these RNA species to a certain extent. To this end, total RNA 

from TSWV-infected N. rustica was extracted 8 days post inoculation (p.i.) according to 

de Vries et al. (1982), and resolved on 15-22.5% sucrose gradients (Ulmanen et al., 

1981b; Bishop et al., 1983). The fractions collected were analysed for their absorbance 

at 254 nm (Fig.la), and for their RNA content. For the latter, RNA samples were 

resolved on a 1% agarose gel (Bailey and Davidson, 1976), transferred to Genesereen 

membrane and hybridised to strand-specific probes corresponding to the N (Fig.la) and 

NSS (data not shown) coding regions in S RNA. The relevant fractions, enriched for the 

N and NSS mRNA (fractions 3 and 4), and enriched for the S vcRNA strands (fractions 

7 and 8), were pooled and the RNA precipitated after the addition of 0.1 vol. 3 M NaAc 

and 2.5 vol. ethanol. 

CsCl preparation of enriched RNA fractions 

The RNA fractions enriched for N mRNAs, NSS mRNAs and S vcRNAs respectively, 

were resuspended in GIT buffer and subsequently pelleted through a 5.7 M CsCl 

cushion as described in Materials and Methods. The RNA pellets obtained were 

analysed on Northern blots for the contents of full-length S vcRNA, and the subgenomic 

mRNAs (Fig.lb). It is clear from the results that a significant enrichment has been 

obtained for both S RNA-specific subgenomic mRNAs (Fig.lb; Chapter 2, Fig.3). 
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Figure 1: Sedimentation analysis and separation of RNA species from TSWV-infected N. rustica plants, 8 days 
post-inoculation. Five hundred u,g of total RNA from infected tissues was layered on a 15-22.5% sucrose 
gradient. A) Absorbance profile of RNA fractions collected from the gradient. Sedimentation was from left 
to the right. Two u.g RNA from each fraction was resolved on a 1% agarose gel, transferred to Genesereen 
membrane and hybridised to riboprobe S2-v, specific for the N gene. B) RNA pellets obtained after 
centrifugation through a CsCl cushion (as described in the text), enriched for the NSS mRNA (lane 2), for 
N mRNA (lane 4), and for the S vcRNA (lane 3), analysed on a Northern blot using riboprobes Sl-vc (lanes 
1 and 2) and S2-v (lanes 3 and 4). Lane 1 contains purified nucleocapsid RNA which was used for primer 
extension analysis of the 5' end of the S vRNA strands. The riboprobes were prepared as described in Chapter 
2. 

Primer extension analyses on the N and NSS mRNAs 

Ten |xg of the selected RNA samples, and two jxg of purified nucleocapsid RNA 

were used for primer extension experiments. For this purpose, two oligonucleotides, one 

complementary to the vc sense RNA at positions 2834 to 2852 (primer pN) and one 

complementary to the v sense RNA at positions 32 to 51 (primer pNSs) of the S RNA 

(Fig.2a), were used. From the sequence data of the S RNA segment (De Haan et al., 

1990) it was predicted that primer pNSs should be extended for 31 nucleotides (nt) on 

the v sense S RNA template, resulting in a run-off product with the size of 51 nt. Primer 

extension synthesis on nucleocapsid RNA using pNSs, and subsequent analysis of the 
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vRNA 5' 

vcRNA 3' 

TRANSCRIPTION 
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pNSs REPUCATION f \ a ! 989 2763 2916 

\ TRANSCRIPTION 

NSsmRNA(1.7kb) 

pN 

B) 
1 2 3 

51 nt # • 

: extra sequences (12-20 nts) 

Figure 2: (A) Genetic organisation and 
expression of the TSWV S RNA segment. 
Nucleotides are numbered from the 5' end of the 
v strand, and open reading frames presented as 
open bars. The locations of the primers (pNSs 

and pN) used for primer extension analysis, are 
indicated. (B) Primer extension analyses on 
unfractionated nucleocapsid RNA (lane 1), NSS 

mRNA-enriched RNA fraction (lane 2), S 
vcRNA-enriched RNA fraction (lane 3), and the 
N mRNA-enriched RNA fraction (lane 4) using 
primers pNSs or pN as described in the text. 
Reaction products were analysed on an 8% 
sequencing gel. A sequence ladder is included, as 
a standard to determine sizes of the various 
primer extension products. 
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run-off products on an 8% sequencing gel, indeed showed the presence of the expected 

band (Fig.2b, lane 1). Similarly, when primer pN was extended on vc sense S RNA, a 

run-off product with an expected size of 85 nt was found (Fig.2b, lane 3). Analyses of 

NSS- and N mRNA enriched fractions revealed an additional ladder of products 12-20 

nt larger in size than the 51 and 85 nt products, respectively (Fig.2b lanes 2 and 4). This 

indicates the presence of extra sequences, heterogeneous in length, at the 5' ends of the 

TSWV-specific mRNAs. As these additional terminal sequences do not appear at the 

5' end of the nucleocapsid S RNA, except for a distinct extension product of 63 nt, it is 

unlikely that the extra sequences in both the N and NSS mRNA are templated by the 

viral RNA. They probably originate from host messenger RNAs, and are utilized by the 

viral RNA transcription machinery to initiate transcription. An additional single 

extension product of 63 nt was found in minor amounts when pNSs was extended on 

nucleocapsid RNA (Fig.2b, lane 1). The origin of this band has not been further 

investigated, but could be caused by spurious amounts of viral mRNA co-purified (or 

even co-encapsidated) with the genomic RNA. 

DISCUSSION 

The presence of non-viral sequences in mRNAs has previously been found for other 

members of the Bunyaviridae (Bishop et al., 1983; Patterson and Kolakofsky, 1984a; 

Eshita et al., 1985; Ihara et ai, 1985; Collett, 1986; Gerbaud et al., 1987; Bouloy et ai, 

1990; Simons and Pettersson, 1991; Gro et al, 1992; Jin and Elliott, 1993a and b), and 

also for members of the Orthomyxoviridae (Caton and Robertson, 1980; Dhar et al., 1980) 

and Arenaviridae (Garcin and Kolakofsky, 1990; Raju et al, 1990) (Table 1). In most 

cases, the added sequences ranged in size between 15 and 18 nt in length, in the case 

of the arenavirus Tacaribe however, only 1 to 4 extra nucleotides have been reported 

(Garcin and Kolakofsky, 1990; Raju et al., 1990). Here it is demonstrated that TSWV, 

a bunyavirus with a very distinct host range, also uses cap-snatching to initiate 
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transcription. This indicates that all members of the Bunyaviridae, irrespective whether 

they infect animal or plant cells, use the same mechanism to initiate transcription of their 

genome. The process of cap-snatching, in particular the involvement of a host- or virally 

encoded endonuclease activity, needs to be further investigated. For Influenza virus 

(Plotch et al., 1981), La Crosse virus (Patterson et ai, 1984b), Germiston virus (Vialat 

and Bouloy, 1992), and Bunyamwera virus (Jin and Elliott, 1993a) the responsible 

endonuclease activity has already been demonstrated to be virus encoded. During 

influenza virus replication three different viral proteins are involved in genome 

transcription and replication, i.e. proteins PA, PB1, and PB2, of which PB1 represents 

the core RNA polymerase and PB2 probably the endonuclease activity required for cap-

snatching (Plotch et ai, 1981; Ulmanen et ai, 1981a). In view of the size of the L protein 

of TSWV (331.5 kDa), which exceeds the sum of the sizes of the 3 replication proteins 

of influenza, it is tempting to assume that this L-RNA-encoded product encompasses, 

in addition to a core polymerase domain (De Haan et al, 1991), an endonuclease 

domain charged with the cap-snatching. 
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Chapter 4 

The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, 

a bunyavirus with two ambisense RNA segments3 

SUMMARY 

The complete sequence of the tomato spotted wilt virus (TSWV) M RNA segment has 

been determined. The RNA is 4821 nucleotides long and has an ambisense coding 

strategy, similar to the S RNA segment. The M RNA segment contains two open reading 

frames (ORFs), one in viral sense which encodes a protein with a predicted size of 33.6 

kDa, and one in viral complementary sense which encodes the precursor to the Gl and 

G2 glycoproteins, with a predicted size of 127.4 kDa. Both ORFs are expressed via the 

synthesis of subgenomic messenger RNAs that possibly terminate at a stable hairpin 

structure, located at the intergenic region. The precursor for the glycoproteins contains 

a sequence motif (RGD) which is characteristic for cellular attachment domains. 

Significant sequence homology was found between the Gl glycoprotein of members of 

the genus Bunyavirus and a corresponding region in the glycoprotein precursor of 

TSWV, indicating a close evolutionary relationship between these viruses. With the 

elucidation of the M RNA sequence, the complete nucleotide sequence of TSWV has 

been determined. The sequence data obtained show that TSWV represents the first 

member of the Bunyaviridae that contains two ambisense RNA segments. 

3This chapter has been published in a slightly modified version as: Richard Kormelink, Peter de Haan, 
Cor Meurs, Dick Peters and Rob Goldbach (1992). The nucleotide sequence of the M RNA segment of 
tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. Journal of General Virology 73, 
2795-2804. 
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INTRODUCTION 

Tomato spotted wilt virus (TSWV) is an enveloped plant virus that causes great yield 

losses in many economically important crops in (sub)tropical and temperate regions. 

More than 400 species in 50 plant families, both mono- and dicotyledons, are susceptible 

to TSWV (Cho et al, 1987; Peters, et al, 1991). The virus is exclusively transmitted by 

thrips in a persistent manner (Sakimura, 1962; Paliwal, 1974). Based on morphological 

and molecular data, TSWV has recently been classified into a newly created genus 

Tospovirus, within the large family of arthropod-borne Bunyaviridae (Francki et al., 1991; 

Elliott, 1990). 

Typical for members of the Bunyaviridae, TSWV consists of a spherical membrane-

bound particle, 80-110 nm in diameter, covered with surface projections that consist of 

two glycoproteins denoted G l (78 kDa) and G2 (58 kDa; Mohamed et al, 1973; Tas et 

al, 1977). The virus contains three single-stranded RNA segments called S RNA (2.9 

kb), M RNA (5.0 kb), and L RNA (8.9 kb). Each RNA segment is associated with 

nucleoproteins (N) to form pseudo-circular nucleocapsid structures (Van den Hurk et 

al, 1977; Mohamed, 1981; De Haan et al, 1989). 

Recently, the nucleotide sequences of the S and L RNA segments have been 

determined (De Haan et al, 1990, 1991). The L RNA (8897 nucleotides long) is 

completely of negative polarity, encoding a single large protein of 331.5 kDa which 

represents the putative viral transcriptase. Expression of this protein has been 

demonstrated to occur via the synthesis of a full-length mRNA (Chapter 2). The S RNA 

(2916 nucleotides long) has an ambisense gene arrangement and encodes the N protein 

of 29 kDa in viral complementary sense and a nonstructural protein (NSS) of 52.4 kDa 

in viral sense. Both proteins are expressed by subgenomic mRNAs, transcribed from 

complementary strands via a process of cap-snatching (Chapter 3). The mRNA 

molecules terminate at the central, intercistronic region, most probably in a long A-U 

rich hairpin (De Haan et al, 1990; Chapter 2). 

Here we report the complete nucleotide sequence of the genomic M RNA segment 
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of TSWV. It is shown that this RNA segment, like the S RNA segment, has an 

ambisense gene arrangement, encoding a putative nonstructural protein in viral sense and 

a precursor to G l and G2 in viral complementary sense. With the sequence of the M 

RNA segment the complete nucleotide sequence of the TSWV genome has become 

available, allowing precise comparison with the animal-infecting members of the 

Bunyaviridae. 

METHODS 

Virus and plants 

The Brazilian isolate BR-01 (CNPH1) of TSWV was maintained in Nicotiana rustica 

'America' by thrips transmission and mechanical inoculation. Virus was purified 

according to Tas et al. (1977). Viral nucleocapsids were isolated from infected leaf tissue 

as described by De Avila et al. (1990). RNA from virus particles or nucleocapsids was 

isolated by treatment with 1% SDS followed by phenol extraction, and ethanol 

precipitation. 

Molecular cloning and sequence determination 

First-strand cDNA to the M RNA segment of TSWV was synthesized using a specific 

oligonucleotide, complementary to the 3' end of the M RNA (Ml; de Haan et al, 1989). 

Second-strand synthesis was performed according to Gubler and Hoffman (1983). 

Double-stranded (ds) cDNA was made blunt-ended using T4 DNA polymerase and 

subsequently cloned in pUC19 after addition of £coRI adaptors (Amersham). To verify 

the sequences at the 5' and 3' end of the M RNA, an additional cloning experiment was 

done. To obtain cDNA clones containing the 3' end of the M RNA, 5 |xg of genomic 

RNA was polyadenylated at the 3' end, using poly-A-polymerase (Bethesda Research 

Laboratories) according to Devos et al. (1976). First-strand cDNA synthesis was primed 

with oligo(dT) and subsequently used in a polymerase chain reaction to amplify the 3' 

end sequences of the M RNA. For this purpose, oligo(dT)1618 and J16, identical to 
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nucleotides 4548-4562 of the vRNA strand, were used. For cloning the 5' terminal 

sequence, an oligonucleotide, complementary to the M RNA sequence at nucleotide 

position 584-600 from the 5' end (Z10; dCCCTTCAGGATGACTTG), was used to 

prime first-strand cDNA, followed by second strand synthesis (Gubler and Hoffman, 

1983). DNA sequencing was performed by the dideoxynucleotide chain termination 

method (Sanger et al., 1977) on alkaline denatured dsDNA templates (Zhang et al., 

1988). Nucleotide and amino acid sequences were compiled and analysed using programs 

developed by the University of Wisconsin Genetics Computer Group (Devereaux et al., 

1984). 

RNA extraction and Northern blot analysis 

Total cellular RNA was extracted from TSWV-infected N. rustica according to de 

Vries et al. (1982). Total RNA samples of 7 |uLg were resolved by electrophoresis through 

1% agarose gels after treatment with methylmercuric hydroxide (Bailey and Davidson, 

1976). The RNA was blotted onto GeneScreen (New England Nuclear) and hybridised 

to 32P-labelled riboprobes of TSWV M-specific sequences corresponding to the small 

ORF (probe M-2; transcribed from a 600 bp EcoRl/Hindlll cDNA fragment from clone 

M16) or the large ORF (probe M-3; transcribed from a 800 bp EcoRl/Hindlll cDNA 

fragment from clone M43) as described in Chapter 2. 

RESULTS 

Cloning and sequencing of the TSWV M RNA 

The nucleotide sequence of 30 nucleotides at the 3' end of the M RNA was 

determined after end-labelling of the RNA, followed by partial degradation with base-

specific ribonucleases (de Haan et al., 1989). From the deduced sequence, a synthetic 

oligonucleotide (Ml; dAGAGCAATCAGTGCAAA) complementary to the 20 3' 

terminal nucleotides was synthesized and used to prime first-strand synthesis, followed 

by second-strand synthesis and cloning in pUC19. A set of overlapping cDNA clones to 
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M RNA was obtained after repeated screening of the cDNA library, which yielded a 

restriction map covering approximately 4800 nucleotides (Fig.l). The nucleotide 

sequence of the TSWV M RNA segment was determined from cDNA clones M201, 

M10, Mil, M43, M12, M13, M14, M16, M17, M18, M24, M28, M31 (Fig.l). 

The 3' terminal sequence of the M RNA was verified in an independent experiment 

using RNA from a separate virus purification. Genomic RNA was polyadenylated at the 

3' end and first-strand cDNA was synthesized by priming with oligo(dT). Single-stranded 

cDNA containing the 3' terminal sequence of the M RNA was amplified by PCR using 

oligo(dT) and oligonucleotide J16 (dGTTGAATCGATGCAG) as primers (Fig.l). The 

DNA was subsequently cloned in pUC19 and clones were selected using a 250 bp Kprü 

restriction fragment of clone Mil as probe in a hybridisation experiment. The conserved 

5'-terminal sequence of the M RNA was present in clones M24, M28, and M31 as they 

contained the sequence 5' AGAGCAATCAGTGCA.., which is complementary to the 

sequence at the 3' end of the TSWV M RNA. 

The 5'-terminal sequence was also verified in an independent cDNA synthesis 

experiment. For this purpose primer Z10 (Fig.l) was used to prime first-strand cDNA 

synthesis, followed by second-strand synthesis according to Gubler and Hoffman (1983). 

H Sg Bg S H X EV H Bg X H H E H EV K E 
5' I I I ' I ' I I I J_J U-J I I I U 3' 

5000 

i nucl*otld*a 

J16 M1 

201 

16 
17 

Figure 1: Cloning strategy for the TSWV M RNA segment. Ml, J16, and Z10 represent the synthetic 
oligonucleotides used for cDNA synthesis. The numbers correspond to the cDNA clones used. Restriction 
enzymes are abbreviated as follows: Bg, BgAl; E, JScoRl; H, HindlU; K, Kpnl; S, SsA; X, Xbal. 
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The cDNA was made blunt-end with T4 DNA polymerase and subsequently cloned into 

the Smal site of pUC19. A 400 bp EcoRl/Bglll restriction fragment from clone M28 was 

used as a probe to select positive clones in a colony hybridisation experiment. Their 

nucleotide sequences were identical to that of clone M24, M28 and M31, except for the 

last 16 5' terminal nucleotides, which were only present in M24, M28 and M31. 

Characteristics of the TSWV M RNA sequence 

The complete nucleotide sequence of the TSWV M RNA (Fig. 2) is 4821 nucleotides 

long, and has a base composition of 31.8% A, 32.5% U, 18.0% C, and 17.6% G. The 

termini of the M RNA show a complementarity between the 5' and 3' ends for about 64 

nucleotides, and can be folded into a stable 'panhandle' structure with a free energy of 

G = -187.3 kj/mol (Fig. 3a). The length of the panhandle is similar as found for those of 

the L and S RNA segments, which also involve basepairing of approximately 65-70 nt 

(De Haan et al, 1990, 1991). 

An internal inverted sequence of A-rich stretches followed by U-rich stretches is 

located between positions 1075 and 1245 (numbered from the 5' end of the viral RNA 

strand), and can be folded into a hairpin structure with a G = -151.2 kj/mol. The stem 

of the hairpin structure is slightly shorter (85 nt in length) than that found in the TSWV 

S RNA (126 nt). A sequence located at the top of the hairpin (CAAACUUUGG; 

Fig.3b) is conserved among the top of the hairpins in the S RNA segments of TSWV and 

a second tospovirus, Impatiens necroticspot virus (INSV) (CAAUUUGG) (Maiss et al., 

1991; De Haan et al, 1992). This nucleotide sequence motif may therefore have a 

possible role as a signal for transcription termination of the ORFs within the ambisense 

RNA segments of tospoviruses. 

Predicted gene products of TSWV M RNA 

Analysis of the six different reading frames of the viral and viral complementary RNA 

revealed the presence of two open reading frames (ORFs) located in opposite strands 

(Fig.4). One smaller ORF is located in the viral strand, starting with an AUG codon at 

position 101, and terminating with a UAG stop codon at position 1007. This ORF 
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H I T I F G H K R P S K S 
AGAGCMUCAGUGCAUCaGAAAUAUAaUAUUAUACAUUUUGCUAAGMUCM^ 

140 

A 6 K 0 E G P L V S L A K H I I G S V E Y S K P U S S S D E K L A I T K A H D A S K G K 1 1 L N 
CCG6AAA6GAUGAAGGUœUUUAGUUUCACUUGCUAAACAUAAUGGCAGUGUUGA^ 

280 

I E G T S S F G I V E S D S I t E S E G Ï O L S A R K I Ï O I H H H I S N W K K D L F V G I I G 
AUUGAG*6AACAUCUUCCIJUlXiGAACCUAUGMUCUSAlRIC<»l^^ 

420 

K Q N A N K V I K I C P T W D S R K Q Y N M l S R I V I K V C P T I P H P T G K L Y Y A t . 1 
AAAeCÀWuGCUMUAAGCUUAUCAAGAUCUGUCCGACUUS6GACAGUGAAMCMUACAU» 

560 

O P N H P S G K g v l L K G Q G T I T D P I C F V F Y l N U S I P K M N K T P E H C C Q L H L 
AUCCCAACAWXCAUCUGWAAGCAAGUCAIKmAAGGGUCtó 

700 

M C S 0 F Y K K G V S F G S V M Y S W T K F F G D S P R A D K D K S C M V 1 P ( . I I R A 1 R A R 
AUGUGUAœMAGAAUACMGAAAGGGGUUUCUUUUGSU«^ 

840 

S g A F I E A C K L I I P K G N S E K Q I K K Q L 
AUCUCAGGCAUtlCAUUGAAGCCUGCAAGCUGAUAAUUCCUAAAGGAAACAGUGAGAAGUGAÜAAM 

V A Q I S F O E I * 
UUGCUCWUUAKCUUUGAUGAAAUAItlSIHCUUUAAAUAUCACUUAIHIIWAGCUUAAAUU^ 

CAAAAAACAAAAACAAAAUAAGWUGAAAAGCAAACUUU6GUCCGAAGACUUW^^ 
1260 

AGAUUUUUCUAUAUAUAUAAUCCUGCUAAUAU/USAAGAUUGAAO^ 
1400 

• Y L H S F D N P P R R P . T M T D K M I . M P A K 

UGAUCXAGaJUCAUCAUCAUCCUCUAIOUGGAUCUAG^^ 
1540 

I E P E D D O E I K S R S K Y S E R K V Y G K C I S T I I S C F Y T V I F I F A I L I V Y R 

AUAGUAUCAAAAAAUGA6CCAAAGUAACUUGOAUGAAAUU6AAUGGAC™ 
1680 

I T 0 F F S 6 F Y S A I F H F P S K I Y 0 U F G W A S S 0 S N r Q Q F . E H A Y E 0 N Q D I I N 

CUCUGGUUCUUCUACMUAACXUUAUUAACCAAAACUUC^^ 
1820 

E P E E Ï I Ï B I I Y I V E V S I O P I I G E P Y L T H K K K D P H A S C F H T 1 II Y K K S G K K 

UAACAœUAGCUGAUAAGUAMUAAAGAGCAAGCAUCUAUAGAAAUUGCAGU^^ 
1960 

V A I Q Y T S L S C A D I S I A T S F T L O S F F E L L C S L G Q G C L I . C G I I C N I . S T S 

GUtlAUGGAAGGUUUCUUAGGAGCAACUUUAAAAAGAUCAGAUGGAAGAUCAACtlACMUUUUCAGUUUCCCUAGACUAAA^ 
2100 

T I S P K K P A V K F L D S P L O V V H K L K G I S F S K A I F F S S F D K F S V P I O S I Q 

ClCUAAACCAGAUCUAAAaUGUAUGUGUCGUAIKX^OVUGUUUUGAUAGUGACUGAUUUUUUCCCUAUUGCUGCACAAW 
2240 

E L 6 S R F R Y T 0 Y G C T K I T V S K K G I A A C D I I S M 0 0 G E L T K K T F I P V G D H T 

UCAAUUGUGGAUGACUAACAUUUUCADmUUtUUUA^ 
2380 

L Q P H G F H K V P D K L N A I N G S Y I H S D P G H A I L E G I T I G D N H L O A Q I O A 

UGAAACAAUGUAUUUUUUAAGGAACCUXUUCAGUAAUCCUUGAGCAUUGACCIXXCAAAAUACCGGAAAUACAAA^ 
2520 

Q F L T N E Y P V E E T I R S C Q G G L I G S I C V D A V I T S K L Y S Y I R Y S K O H D Y I 

AUUXG«»GMUCCGCAUGUAGCACCCUttUUAAUUGCAAAACACCAAŒ^ 

N R C F G C T A G E N I A F C W A E E C G U Y S T P T V C F O Q F G T L A Q N K R C T D C N G 

CUGUACAAGUGGAAUAAAMUCCGUGIKraUGCUUUGGAUGGGAKUGUCGUAU^ 

T C T S Y F D T H T S Q I P A T T Y K E S V E Y H 1 G Y S K I Y I V F K K A T E S T K 0 N L 

AUGMUAUAGUUCCUCCUCCUCCUAAAAGAGAUUGUUCUAUCAUAUAUCUA^^ 
2940 

M F I T G G G G L L S Q E I H Y R Y K G D V V S D F I L S Q R P L I N E P I S T E II K N L S D 

UCCGGt^CAUlXXAGAAAUUUUGaCUGACGGUUAUA6GAAUCUAlPU^ 

G A Y H G S I K G Q R I I Y S O I I G H R L R K A E Y I G V S I L G L S S G I Y D S F G I I Y L 0 8 ? 

GUUUGUUUCG6MUAAAUCUA6GUAUUC«»ACCUAAUCUGCAUUUUAl^^ 

K N R F L D L Y E C G L R C K I L N O t S P R A I C N Q N E I C D N P G E I V I N T G F I ' i * 0 

UCUAUGAKUUAUCUUCUUUUACAUIJGCAGUAACAUUG^ 
3360 

E I I K D E K V N C Y C Q D K E S C K E F K S T V L F P C G P V Y F C G S L C Q T T Q A M S M 

OSCAUCUGAGACAAAAUGACUAAACCUAUCAAMUUUCGGUCACAAAUW^ 

P H Q S L I V L G I L I E T V F K L t S L S L K T N V I L H F M E H S T W K H K H r D H D 1 * °? 

CUUUGSAUAGUAUGGGA<^UCU6AAGAAUGCUCUUUUGAAGCUUUGC^^ 

K S L 1 P C E S S H E K S A K S K N C I C Y K T C E H T V I C L N G C N S C K L P F Y K W 'f'0 
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CAAUUUAUGAGCAAUAAGACAGGGUAtJ6UAAUCAAGCCCAUAAGAl«Utt^ 
3780 

C H I L I L V P Ï T I L G M L O Y H L F I P K T T K M V L W R I P F Y I L L A I 1 . I L R I U S 

AAAAUUGAUGCAGGCUGUUOGCUUAUAAAUACUUUUUGAAUAUU^^ 
3920 

F I I I C A T Q K Y I $ K S Y K I I C D R V R K N T K P I K A S K O G C I . L N H E G O L M E E T 

UAAAAGUGAIIACUUGCUGAUCCAGAAAAAGAUAUAACCUUGUGUIKM^ 
4060 

F T I S A S G S F S I V K H E V N E G P K K I L Y G M I K E P S T I S V T Y P H A F H S K T 

AUUWGCAGUCACCGGAUAACUUUACAGUUUGUAAUGAUACUGUira^ 

4200 

I K C D 6 S L K V T Q L S V T 6 » T P Y S N Y T I P Y N O g T L S E S I F F K G G V S F H R K 

CUU6UCUAeCUU6SUAAUGG6AAUAACCG6GACUUUGGAGAAXUCUUU6GCAAAU^^ 
4340 

K D I K T I P I V P V K S F R K P I N L S H O C K E L G E A S O S V C S Y I V G K I I E Y O Y Y 

AAACAUUAUAAGUG6AUAUCCCUUllUAUCUCAaUUUUAAUGAA6AAGCAU^^ 
4480 

V K Y T S I G K I E C K I S S A M L C K t l P L O L V S l T K O I T P E A S I P I I S K E E R 

AUCgGAC6GGUXCA6GA6UCC6A6AUUCUA6CAUCAGAUUAeUUAAAaiCUCU^ 

I Q R T G P T R S E L H I H T I T E I I A E R Q I S A A T P V E I I E A S D D Y I E P H | p 6 R p 

UAUUUCUACUUUAGCAUCUGUGGCUCU6AAGAU»AGAAUGCCAACAAAACAGA^ 
4760 

I E Y K A O T A R F I L F A L L Y S S I A I I F L S V K V Y L E L L K L I R M 

AUGGUUGUGUGAUUAAUUIJCAAGAUGUCUG6AUWAGGUUUUUGUUUGCACUGAUUGCUCU 

4821 

Figure 2: The complete nucleotide sequence of the TSWV M RNA (numbered from the 5' end of the viral 
RNA strand) and the predicted gene products. The deduced amino acid sequence of the protein encoded by 
the viral RNA is shown above the RNA sequence. The sequence of the protein encoded by the viral 
complementary strand is shown below the RNA sequence. Potential N-glycosylation sites are underlined. The 
asterisks (*) indicate termination codons. The cell-attachment site is boxed. 

encodes a protein of 302 amino acids (Fig.2) with a predicted Mr of 33.6 kDa. Analysis 

of this amino acid sequence did not reveal any hydrophobic domains that could function 

as signal sequences or transmembrane domains, according to the hydropathy algorithms 

of Hopp and Woods (1981) and Kyte and Doolittle (1982) (data not shown). Instead, a 

rather acidic carboxy terminus was found, as can be seen by the number of aspartic (D) 

and glutamic (E) acid residues (Fig.2). An acidic carboxy terminus is also present in the 

large protein encoded by the L RNA segment (De Haan et al., 1991). The amino acid 

sequence of the small ORF contains 2 potential N-glycosylation sites, but it is not known 

whether these are indeed used in vivo. A search in the EMBL protein and nucleotide 

sequence database did not reveal significant homology to any other published sequence. 
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(a) S' 

(h) 
Since a protein with the size of 33.6 kDa 

is not found in purified virus particles on 

SDS-PAGE, the predicted protein is 

probably nonstructural, and therefore 

tentatively named NSM. 

A second, larger ORF is located in the 

viral complementary strand, starting with 

an AUG codon at position 4737 

(numbered from the 5' end of the vRNA) 

and terminating with a UGA codon at 

position 1332. This ORF has the capacity 

to code for a protein of 1136 amino acids 

and a Mr of 127.4 kDa. Previous studies 

on morphological defective isolates of 

TSWV linked the genetic information for 

the glycoproteins to the M RNA (Verkleij 

and Peters, 1983). Analysis of the amino 

acid sequence of the predicted translation 

product from the vcORF indeed 

demonstrated the presence of 8 potential 

N-glycosylation sites (Fig.2) and several 

hydrophobic regions (Fig.5), as expected 

for a precursor to the glycoproteins. 

Figure 3: (A) The complementary sequences at the 5' and 3' ends, and (B) the secondary structure in the 
intergenic region of the TSWV M RNA. The nucleotide positions are numbered from the 5' end of the viral 
RNA. Asterisks (*) represent gaps corresponding to unpaired nucleotides in the sequence. The conserved 
sequence motif, a putative transcription termination signal, is indicated with a bar. 
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Figure 4: Distribution of translation initiation (short vertical bars) and termination (long vertical bars) codons 
in the three possible reading frames of the viral (1,2, and 3) and viral complementary (-1, -2, and -3) M RNA 
strands. 
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Figure 5: Hydropathy plot of the large gene product encoded by the vcORF of the M RNA. The plot was 
obtained as described by Hopp and Woods (1981). Regions above the line represent sequences of net 
hydrophilicity, and below the line that of hydrophobicity. 

Furthermore a search in the EMBL protein database revealed sequence homology with 

the glycoprotein precursor encoded by the M RNA of Bunyamwera and snowshoe hare, 

members of the genus Bunyavints. This homology was mainly restricted to Gl with 45% 

homology, and 22% identity, in a 485 amino acid overlap. No homology, however, was 

found with members from other genera of the Bunyaviridae (Fig. 6a; Lees et al, 1986; 

Collett, et al, 1985; Ihara et al, 1985; Ronnholm and Pettersson, 1987; Schmaljohn et al, 

1987). Alignment of the amino acid sequences from Gl of SSH, Bunyamwera, La Crosse, 
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and Germiston virus (Eshita and Bishop, 1984; Lees et al., 1986; Grady et al., 1987; 

Pardigon et al., 1988), and the carboxy-terminal part of the protein encoded by the 

vcORF of the TSWV M RNA demonstrated the presence of a homologous stretch of 

amino acids, indicating motifs in glycoprotein Gl conserved among members of the 

genera Bunyavirus and Tospovirus (Fig.6b). 

I 500 

G2 NSm ? 
! (30K) | (16K); 
J _ , ' rl 

G2(46K) 

G1 

(115K) 

I -cooH Bunyamwera 

GK75K) 

I -COOH T S W V 

Y-T-PX CTG-C ^11?T FX, TS-WGCEEX C-AX GX G-C 
(4) ?2) <3) 13) 

Figure 6: (A) Dot plot comparison of the glycoprotein precursors of TSWV, Bunyamwera, Punta Toro, and 
Hantaan viruses, using the Compare (window = 30, stringency = 16) and Dotplot programs of the GCG 
package. Sequence data were obtained from Lees et al. (1986) (Bunyamwera virus), Ihara et al. (1985) (Punta 
Toro virus), and Schmaljohn et al. (1987) (Hantaan virus). Homologous sequences are indicated by diagonal 
lines. (B) The conserved amino acid sequence within the Gl glycoprotein of TSWV with that of members of 
the genus Bunyavirus is shown. Hydrophobic domains are indicated by hatched areas. X and hyphens refer 
to non-identical amino acids. The position of the RGD-motif is indicated. 
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Based on these data, and since the two envelope glycoproteins of TSWV were previously 

found not to be encoded by either S or L RNA (De Haan et al., 1990, 1991), it is 

concluded that the vcORF in the M RNA segment, similar to the M RNAs of animal-

infecting bunyaviruses, encodes the precursor to the glycoproteins (Gl and G2). Taking 

into account that the sizes of glycoproteins Gl (78 kDa) and G2 (58 kDa) are 

overestimated due to the glycosylation, the size of the predicted protein of the large 

ORF fits with this conclusion. From the homology between Gl of the bunyaviruses and 

the glycoprotein precursor of TSWV it is assumed that the carboxy-terminal portion of 

the glycoprotein precursor encodes the Gl glycoprotein. The hydropathy plot of the 

precursor to the glycoproteins is in agreement with this, indicating the larger 

glycoprotein (Gl; 78 kDa) to be located at the C-terminus, and the smaller glycoprotein 

(G2; 58 kDa) at the N-terminus (Fig.5, Fig.6b). Analysis of the hydropathy plot of the 

glycoprotein precursor furthermore shows a hydrophobic N-terminus for a stretch of 30 

residues that probably corresponds with a signal sequence for translocation across the 

endoplasmatic reticulum (ER) membrane. This sequence will be cleaved from the 

glycoprotein precursor at amino acid residue 35 from the N-terminus 

(VLLAFLIFRATDA ~ KV) according to the algorithms of Von Heijne (1986). Similar 

to this, the hydrophobic domain found between amino acid residues 400 and 500 

probably functions as a signal sequence for the Gl protein which is located at the C-

terminus of the precursor. Hydrophobic domains found between amino acid residues 

300-400, and 1000-1100 may represent anchoring domains of the two glycoproteins in the 

ER membrane (Fig.5). Based on these assumptions, the Mr of G2 and Gl can be 

estimated at about 46 and 75 kDa, respectively. The latter is in good agreement with the 

previously estimated size of Gl (78 kDa). However, the calculated size of G2 is 

considerably smaller than the previously estimated size from SDS-PAGE gels (58 kDa), 

which could be due to glycosylation. 

Furthermore, analysis of the amino acid sequence of the glycoprotein precursor 

revealed the presence of an RGD-motif (Fig.2, Fig.6B; Ruoslahti and Pierschbacher, 

1986, 1987) at the amino terminus, immediately downstream of the hydrophobic signal 

sequence. As this latter sequence is proposed to be cleaved off the precursor protein, 
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it is anticipated that the RGD motif is not found close to a membrane anchoring site, 

but rather exposed from the viral envelope membrane. 

Transcriptional expression of the M RNA segment 

Analysis of M RNA-derived RNA species in infected N. rustica plants recently 

demonstrated the presence of a possible (4 kb) subgenomic mRNA transcribed from the 

3' part of the vRNA (Chapter 2). This result was the first indication for the presence of 

two distinct cistrons in the M RNA. The nucleotide sequence of this RNA now indeed 

demonstrates the presence of two cistrons in M RNA, arranged in an ambisense manner. 
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Figure 7: Identification of M-specific subgenomic RNA species in TSWV-infected N. rustica. Northern blots 
were prepared and analysed according to procedures given in Methods. Total RNA was hybridised with strand-
specific riboprobes corresponding to the small (lanes 1 to 4) or large (lanes 5 to 8) ORF to detect M-specific 
vRNA species (lanes 1, 2,5, and 6) and M-specific vcRNA species (lanes 3,4,7, and 8). The subgenomic RNA 
species are indicated. Lanes 1, 3, 5, and 7 contain 0.5 u.g of purified nucleocapsid RNA, and lanes 2, 4, 6, 8 
contain 7 u,g of total RNA from TSWV-infected N. rustica plants purified 8 days post-inoculation. The 
notation M2-v and M2-vc indicates that riboprobe M2, detecting vcRNA and vRNA strands respectively, was 
used in the hybridisation experiment. Northern blot M3-v was exposed three times as long as blot M-3vc. 
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To demonstrate that these cistrons in M RNA are expressed via subgenomic messenger 

RNAs transcribed from opposite strands, RNA extracts of TSWV-infected N. rustica 

were analyzed on Northern blots using strand-specific riboprobes. Previous analyses of 

cytoplasmic nucleocapsid RNA fractions demonstrated the presence of M RNA strands 

of both polarities (Fig.7, lanes 1, 3, 5, and 7), the viral complementary M RNA species 

being present in smaller amounts (Fig.7, lanes 3 and 7; Chapter 2). In addition to 

genome-length M RNA species, a viral-sense subgenomic RNA species of approximately 

1.1 kb (Fig. 7, lane 1 and 2) was detected with riboprobe M2-vc, corresponding to the 

small ORF. A riboprobe (probe M3-v) corresponding to the glycoprotein precursor gene 

also hybridised with genome-length M RNA species and revealed a second subgenomic 

RNA species of approximately 3.5 kb (Fig.7, lane 7 and 8). A fast migrating RNA 

species (Fig.7, lane 8) was detected with probe M3-v, but appeared to be a-specific as 

it was also detected in a total RNA extract of healthy plants. No subgenomic M-specific 

RNA species were found when probes M2-v, and M3-vc were used in a 

hybridisation experiment (Fig.7, lanes 3 to 6). In view of the location and polarity of both 

probes on the physical map of the M RNA, and in view of the sizes of the NSM gene and 

glycoprotein precursor gene encoded by this RNA segment, it is concluded that the M 

RNA-derived species probably represent subgenomic mRNAs corresponding to both 

cistrons in M RNA. As these mRNAs are transcribed from opposite strands, the 

ambisense coding strategy of the TSWV M RNA could thus be confirmed. 

DISCUSSION 

With the determination of the M RNA sequence the genetic organisation of the 

complete genome of TSWV has been unraveled, the features of which are shown in 

figure 8. The sequence data on the M RNA show that this genomic segment is 4821 

nucleotides long. Like the S and L RNA segments, the M RNA has complementary 

termini for about 64 nucleotides which are involved in the formation of a stable 

panhandle structure, causing the RNA segments to appear as pseudo-circular structures 
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in virus particles (Peters et al., 1991). The terminal sequences of the M RNA are 

identical for the first eight nucleotides to the 5' and 3' termini of the S and L RNA, and 

probably have an important function in genome transcription and replication. From the 

nucleotide sequence it can be deduced that the M RNA has an ambisense coding 

strategy. One small ORF encoding a putative protein of 33.6 kDa is located in viral 

sense. Based on its absence in purified virus particles, this protein is tentatively called 

NSM. A second, but larger, ORF is located in viral complementary sense and encodes 
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Figure 8: The genome structure and expression strategy of the tripartite genome of TSWV. The hatched areas 
indicate non-viral sequences used to initiate transcription of the viral mRNAs (Chapter 3). 
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a protein with a predicted size of 127.4 kDa. From sequence homology with glycoprotein 

Gl of the bunyaviruses and the hydropathy plot of the predicted protein, it is concluded 

that this ORF encodes the precursor to both glycoproteins, in the order NH2-G2-G1-

COOH. The ambisense gene arrangement in the M RNA has been confirmed with 

northern blot analyses, revealing the presence of a 1.1 kb (v-sense) and a 3.5 kb (vc-

sense) subgenomic RNA species in infected plant cells. Analysis of the nucleotide 

sequence of the intergenic region showed the presence of internal inverted A- and U-

rich stretches capable of forming a stable hairpin structure. As previously discussed for 

the TSWV S RNA, this structure could be involved in termination of transcription of the 

subgenomic mRNAs. A conserved sequence found at the top of the hairpins of the 

TSWV and INSV S RNA was also found at the top of the TSWV M RNA hairpin, 

pointing towards a possible function in transcription termination. Whether both 

structural features are a requirement for termination of transcription or only one of 

them, remains to be investigated. Ambisense coding strategies have recently been 

demonstrated for the S RNA segments of two different tospoviruses, TSWV and INSV 

(De Haan et al., 1990,1992), and is also found for the S RNA segments of viruses of the 

genus Phlebovims (Ihara et ai, 1984; Marriot et ai, 1989; Simons et ai, 1990; Giorgi et 

al, 1991). However, TSWV is the first member of the Bunyaviridae with an ambisense 

M RNA, thus having a genome with two ambisense RNA segments. 

Sofar, computer alignments between L and S RNA encoded gene products of TSWV 

with those of their animal-infecting counterparts of the Bunyaviridae revealed significant 

homology only among the L RNA- encoded RNA polymerases of TSWV and 

Bunyamwera, the type species of the genus Bunyavirus (De Haan et al., 1991). No 

significant homology was found between the other proteins of TSWV and other members 

of the Bunyaviridae (De Haan et al., 1990). The data presented now reveal significant 

homology between the Gl glycoproteins of TSWV and members of the genus Bunyavirus. 

This finding seems to confirm that TSWV is most closely related to the genus 

Bunyavirus, although they do not share an ambisense S RNA. This could suggest that the 

creation of ambisense RNA molecules is a relative late event in bunyavirus evolution. 

No significant homology was found between the G2 glycoproteins of TSWV and 
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members of the genus Bunyavims, but analysis of the putative G2 glycoprotein of TSWV 

revealed the presence of a putative cell attachment site (RGD) in the amino terminus. 

Sofar, this motif has only been found in glycoproteins that are found in the extracellular 

matrix of animal and plant cells, and are thought to be involved in adhesion of cells to 

the extracellular matrix (Pierschbacher and Ruoslahti, 1984; Ruoslahti and 

Pierschbacher, 1986, 1987; D'Souza et ai, 1988; Schindler et al, 1989; Sanders et al, 

1991). The RGD sequence in such adhesive proteins is crucial for the recognition by cell 

surface receptors (referred to as integrins). For TSWV it is tempting to assume that this 

sequence is only involved in the insect part of the virus multiplication cycle, possibly in 

binding of virus particles to cell receptors in the midgut of the thrips vectors. Indeed, 

morphological defective isolates, i.e. virus mutants lacking a lipid membrane, are still 

able to infect plants but are deficient in thrips transmission (Ie, 1982; Verkleij and 

Peters, 1983; Resende et al., 1991). The relevance of the RGD motif in the glycoprotein 

precursor of TSWV remains to be tested, also since analysis of the glycoprotein 

precursor proteins of other members of the Bunyaviridae only revealed this motif in 

Germiston and SSH bunyavirus, and Punta Toro phlebovirus. 

The TSWV M RNA encodes, in addition to the glycoproteins, a putative 

nonstructural protein (NSM). A search in the EMBL protein database did not reveal 

significant homology with other known proteins. Alignment with the glycoprotein 

precursor (containing potential NSM sequences) encoded by the M RNAs of different 

members of the Bunyaviridae also did not reveal any homology. The protein has not yet 

been detected in TSWV-infected plant cells and appears to be absent in virus 

preparations. 

With the determination of the M RNA sequence the genetic organisation of the 

complete genome of TSWV has been elucidated. This will be a good starting point for 

future research aimed to unravel the adaptation of this bunyavirus to plants. Comparison 

of the genome of TSWV with those of other members of the animal-infecting 

Bunyaviridae reveals that one extra ORF is present in the genome of TSWV, i.e. the 

gene in the M RNA, encoding the putative nonstructural protein of 33.6 kDa. Therefore, 

it is likely to assume that this protein is involved in adaptation of TSWV to plants as host. 
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Chapter 5 

The non-structural protein (NSg) encoded by the ambisense S RNA segment of 

tomato spotted wilt virus is associated with fibrous structures 

in infected plant cells4 

SUMMARY 

The open reading frame located in the viral strand of the ambisense S RNA of tomato 

spotted wilt virus (TSWV), was cloned into transfer vector pAc33DZl and inserted 

downstream of the polyhedrin promoter in the Autographa californica nuclear 

polyhedrosis virus genome. A recombinant baculovirus was obtained that showed a high 

level expression of a 52.4 kDa protein corresponding to the inserted TSWV gene. The 

viral protein thus produced, was purified and injected into rabbits to raise antibodies. 

Western immunoblot analyses of extracts from TSWV-infected plants demonstrated that 

the 52.4 kDa TSWV-specific polypeptide represents a non-structural protein (denoted 

NSS), being absent in purified virus particles. Immunogold labelling of tissue sections of 

TSWV-infected Nicotiana rustica plants showed that this protein was, depending on the 

virus isolate, either found dispersed throughout the cytoplasm or associated with fibers 

which appeared as elongated flexible filaments or paracrystalline rods. 

4This chapter has been published in a slightly modified version as: Richard Kormelink, Elliott W. Kitajima, 
Peter de Haan, Douwe Zuidema, Dick Peters and Rob Goldbach (1991). The nonstructural protein (NSS) 
encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures 
in infected plant cells. Virology 181, 459-468. 
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INTRODUCTION 

Tomato spotted wilt virus (TSWV) causes great yield losses worldwide in a large 

number of economically important crops. The host range of TSWV includes at least 400 

plant species in 50 botanical families, both dicotyledons and monocotyledons (Matthews, 

1982; Cho et al, 1987; Peters, pers. commun.). TSWV is the only plant virus shown thus 

far to be transmitted by thrips (Sakimura, 1962). TSWV virions are spherical, enveloped 

particles (80-110 nm) containing 4 structural proteins: the nucleoprotein (N) of 29 kDa, 

two membrane glycoproteins of 78 kDa (Gl) and 58 kDa (G2) which form spikes on the 

viral envelope, and a large protein (L) of >200 kDa present in minor amounts 

associated with the nucleocapsids (Mohamed et al., 1973; Tas et al., 1977). The viral 

genome consists of 3 single stranded RNA molecules, denoted S RNA (2.9 kilobases), 

M RNA (4.8 kb) and L RNA (8.9 kb) (De Haan et al, 1990, 1991; Chapter 4). The 

genomic RNAs are tightly associated with the nucleoprotein and form circular 

nucleocapsids (Van Den Hurk et ai, 1977; Mohamed, 1981; De Haan et al., 1989a). 

Recently, the nucleotide sequence of the S RNA has been determined (De Haan et 

al, 1990). The genetic organisation of this genome segment is very similar to that of the 

S RNAs of phleboviruses, another genus within the family of arthropod-borne 

Bunyaviridae (Bishop et al, 1980). This, and other similarities has led to the conclusion 

that TSWV is a bunyavirus, unique in its property to infect plants (De Haan et al, 1989a, 

1990; Milne and Francki, 1984). TSWV S RNA is 2916 nucleotides long and has, like 

phleboviral S RNA (Ihara et al, 1984; Marriott et al, 1989; Simons et al, 1990), an 

ambisense coding strategy (Fig. la). One open reading frame (ORF), located on the viral 

complementary strand (vcORF), has been shown to encode the nucleoprotein. The 

second ORF, in the viral strand (vORF), corresponds with a putative protein of 52.4 

kDa, which has not yet been detected. This hypothetical protein has been suggested to 

represent a non-structural protein which we, in analogy to the bunyaviral nomenclature, 

propose to refer to as NSS protein (De Haan et al, 1990). Both ORFs are expressed by 

two subgenomic messenger RNAs, transcribed from complementary strands via a process 
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of cap-snatching (Chapter 3). Termination of transcription occurs at the central, 

intercistronic region, most probably in a long A-U rich hairpin (De Haan et ai, 1989b, 

1990; Chapter 2). 

Although the nucleoproteins of TSWV and phleboviruses share a similar molecular 

weight of about 25-29 kDa, the NSS protein of TSWV is much larger than the 

corresponding proteins of the animal Bunyaviridae (TSWV, 52.4 kDa; phleboviruses, 30 

kDa). To characterize the gene product corresponding to the vORF, a cDNA fragment 

containing this ORF was expressed using a novel baculovirus vector (Zuidema et al, 

1990) and the resultant TSWV protein used for the production of specific antibodies. In 

this report it is shown by immunogold labelling techniques that these antibodies react 

specifically with a TSWV-specific protein that is found either associated with fibrous 

structures or dispersed throughout the cytoplasm of infected plant cells, depending on 

the virus isolate. 

MATERIALS AND METHODS 

Viruses, cells and cDNA clones 

TSWV isolates were maintained in Nicotiana rustica 'America' plants by mechanical 

inoculation. Complementary DNA clones representing the S RNA of the Brazilian 

TSWV isolate BR-01 (CNPH1) were described previously (De Haan et al, 1989b, 1990). 

Wild type (wt) and recombinant Autographa californica nuclear polyhedrosis viruses 

(AcNPV) were grown in monolayers of Spodoptera frugiperda 21 cells (Vaughn et al., 

1977) in TNMFH medium (Hink, 1970) containing 10% foetal calf serum. 

Construction of the AcNPV recombinant transfer vector 

Plasmid vector pAc33DZl (Zuidema et al., 1990) was used to construct a transfer 

vector containing the TSWV NSS gene. A bacterial plasmid containing the complete 

open reading frame of NSS (pTSWV514), was digested with EcoRl, and supplied with 

BamVn linkers after treatment with T4 DNA polymerase (Maniatis et al, 1982). After 
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purification by LMP agarose gel electrophoresis the cDNA fragment was cloned into 

ßamHI-digested pAc33DZl. A recombinant plasmid, pAc33DZl/NSS) was recovered 

and its composition verified by restriction enzyme analysis. Nucleotide sequences at 

insertion sites were verified (Fig.lc) by the dideoxy chain termination method (Sanger 

et al., 1977) using oligonucleotide S IV as a primer (De Haan et al., 1990). 

Construction of recombinant virus 

Recombinant baculoviruses expressing the NSS gene were produced by co-

transfection of S. frugiperda cells with a mixture of AcNPV DNA and pAc33DZl/NSs 

DNA (Smith et al., 1983). After 3 days of incubation at 27°C, nonoccluded virus (NOV) 

was collected from the medium and titrated in dilutions to render separated plaques in 

a plaque assay (Brown and Faulkner, 1977). Recombinant viruses were plaque purified 

4 times and grown in high titer stocks. 

Southern blot analyses of recombinant AcNPV DNA 

S. frugiperda cells were infected with wt or recombinant AcNPV with a multiplicity 

of 20 TCIDgo units per cell and incubated at 27°C for 4 days. NOV was collected and 

DNA was purified according to Summers and Smith (1987). Viral DNA samples were 

digested with BamHI and the restriction fragments were resolved by electrophoresis in 

1% agarose gels and transferred to Genesereen (New England Nuclear, NEN). The 

immobilised DNA samples were hybridised (Southern, 1975) to an 350 bp EcoRl-Bglll 

fragment of pTSWV520 (De Haan et al., 1989b), labelled with 32P using the 'Prime-a-

Gene' Labelling System (Promega) according to the manufacturers procedure. The 

membranes were washed and autoradiographed. 

SDS-PAGE of proteins from infected S. frugiperda cells 

S. frugiperda cells were infected in portions of 5xl06 cells, with a multiplicity of 20 

TCIDgo units per cell, and incubated at 27°C for 48-52 hr. The cells were collected, 

washed twice with PBS (phosphate buffered saline) and resuspended in 200 JJLI PBS. For 

SDS-PAGE analyses of proteins, the cells were boiled in 10 mM Tris-HCl pH 8.0,1 mM 
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EDTA, 2% (w/v) SDS, 10% (v/v) glycerol, 0.001% (w/v) bromophenol-blue, 5% (v/v) ß-

mercaptoethanol (protein loading buffer). Samples were analyzed on a 12.5% SDS-

polyacrylamide gel (Laemmli, 1970). 

Purification of NSS protein 

For large scale preparation of the TSWV NSS protein, proteins from S. frugiperda 

cells infected with Ac33DZl/NSs-l were resolved on 0.75 mm thick 10% preparative 

SDS-polyacrylamide gels (Protean II system, Bio-Rad). The proteins were stained with 

CuClg (Lee et al., 1987) and the NSS protein band excised from the gel. Gel slices were 

destained for 1.5 hr in 3 changes of 0.25 M EDTA, 0.25 M Tris-HCl, pH 9.0, and the 

protein subsequently electro-eluted from the gel in 20 mM Tris, 150 mM glycine, 0.01% 

SDS for 5 hr using an ISCO electrophoretic concentrator applying 100 V at 4°C. The 

polarity was reversed for 1 min prior to protein sample collection. Eluted proteins were 

analysed on a SDS-polyacrylamide gel and its yield determined by the Bio-Rad protein 

assay according to the manufacturers procedure. 

Preparation of antibodies to the NSS protein 

Portions of 50 to 100 |xg purified NSS protein were emulsified in Freund's incomplete 

adjuvant (Difco Laboratories) and injected into the hind legs of a rabbit at days 1, 8 and 

22. From day 36 on, the rabbit was bled several times and gamma-globulin fractions 

isolated according to Clark and Adams (1977) and tested with protein blots. 

Immunoblot analyses 

TSWV BR-01 virions were purified according to Tas et al. (1977). Samples from 

TSWV-infected N. rustica were prepared by homogenizing 0.1 g of systemically infected 

leaves (12 days p.i.) in 0.5 ml PBS containing 0.05% Tween-20. After combining the 

extract with 4x protein loading buffer, 15 |xl of healthy- and TSWV-infected N.rustica 

extracts were applied on a SDS-polyacrylamide gel. After SDS-PAGE, proteins were 

transferred to Immobilon membrane (Millipore) by electroblotting in an LKB Transphor 

electroblotting unit at 60 V overnight in 20 mM Tris-HCl pH 8.3, 150 mM glycine, 20% 
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(v/v) methanol at 4°C. Membranes were dried, washed in PBS containing 0.3% BSA 

(PBS-BSA) and blocked for 3 hr in 3% BSA (in PBS) at room temperature. After 

several washings with PBS-BSA, membranes were incubated in the same buffer 

containing 1 jig/ml NSS antiserum for 1 hr. After washing, antigen-antibody complexes 

were detected using 1 p-g/ml alkaline phosphatase conjugated goat-anti-rabbit 

immunoglobulins (Tago Inc., Burlingame, CA, USA), using 0.33 mg/ml nitroblue 

tetrazolium (NBT) and 0.165 mg/ml bromochloroindolyl phosphate (BCIP) as a 

substrate. 

Immunogold labelling of NSS protein in tissue sections of TSWV-infected N.mstica 

plants 

In situ detection of NSS protein was performed in tissue sections of TSWV-infected 

plants, fixed in glutaraldehyde and embedded in LRGold, using essentially the protocol 

described by Van Lent et al. (1990). Tissue sections were prepared from systemically 

infected leaves, 12 days post infection (p.i.). For immunolabelling, sections were treated 

with NSS antiserum at a 1:400 dilution in PBS-BSA for 2 hr. 

RESULTS 

Construction and analyses of recombinant baculoviruses 

A cDNA fragment containing the complete open reading frame of the TSWV NSS 

protein (vORF, Fig.la) was cloned into transfer vector pAc33DZl (Zuidema et al., 

1990), according to Materials and Methods. This resulted in a construct, pAc33DZl/NSs, 

in which the NSS gene was inserted downstream of the polyhedrin promoter (Fig.lb). 

After verification of the nucleotide sequences at the insertion sites (Fig.lc), the NSS gene 

was transferred to AcNPV by co-transfection of S. frugiperda cells with a mixture of wild 

type AcNPV and pAc33DZl/NSs DNA. NOV-DNA from these recombinants was 

isolated and its composition analysed. To this end, the viral DNA was digested with 

BatnHl and analysed by agarose gel electrophoresis and Southern blotting. Using TSWV 
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Figure 1: Genetic organisation of TSWV S RNA (A) and construction of the transfer vector pAc33DZl/NSs 

(B,C). The position of cDNA clone 514, containing the vORF encoding protein NSS, is depicted in alignment 
with the sequence of S RNA. The replication of the vRNA strand into the vcRNA strand illustrates the 
ambisense coding strategy of the TSWV S RNA segment (A). The insert of clone 514 was transferred into 
transcription vector SK+ and subsequently cloned into the BamHl site of transfer vector pAc33DZl 
(Zuidema et al., 1990), resulting in pAc33DZl/NSs (B). The nucleotide sequence surrounding the insertion 
site in pAc33DZl/NSs was verified using oligonucleotide S IV, of which the position is indicated. The 
sequence is shown in comparison to pAc33DZl (C). 
Arrows indicate the direction of transcription from the polyhedrin (php) and heat shock (hsp) promoters. H, 
Xb, X, E, B, Sp and Bg indicate the position of Hindlll, Xbal, Xh<A, fitoRI, BamHl, SpM and Bgâl cleavage 
sites, respectively. Autographa califomica NPV polyhedrin flanking sequences are denoted Ac. 
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S RNA specific clone pTSWV520, positive recombinants were obtained, containing the 

NSS gene in the right position (Fig.2). The level and correctness of transcription of 

TSWV specific sequences from the polyhedrin promoter were verified by Northern blot 

analyses (data not shown). In this way, correct recombinant baculoviruses were identified 

of which Ac33DZl/NSs-l was selected for further studies. 

& & ^ & 

<^^4>\4>\<\> ff/ff/ 

« vORF 

Figure 2: Southern blot analyses of baculovirus recombinants Ac33DZl/NSs-l, -2, and -4. NOV DNA was 
purified from the recombinant viruses and digested with BairiHl. The resulting restriction fragments were 
resolved in a 1% agarose gel (left), blotted to Genesereen and hybridised to a 32P-labelled NSS probe (right). 
As controls pAc33DZl, pAc33DZl/NSs and wt AcNPV were analysed. The BamHI fragment containing the 
ORF encoding NSS is indicated vORF. The BamHI restriction fragments of wt AcNPV DNA are sized 86.5 
kb, 23.3 kb, 8.50 kb, 3.45 kb, 3.33 kb, 1.92 kb and 0.96 kb respectively. 
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Expression and purification of TSWV NSS protein 

Production of the NSS protein was analysed by comparing the protein pattern of 

Ac33DZl/NSs-l infected S. frugiperda cells with that of wt AcNPV infected S. fntgiperda 

cells. A major protein band corresponding with the expected size of the TSWV NSS 

protein (52.4 kDa; De Haan et al., 1990) was identified for Ac33DZl/NSs-l (Fig.3). This 

protein was produced at levels comparable to that of the 33 kDa polyhedrin protein in 

wt AcNPV infected S. frugiperda cells (Fig.3, lane wt AcNPV). Similar results were 

obtained in case the other, separately plaque purified Ac33DZl/NSs recombinants were 

analysed. NSS protein from Ac33DZl/NSs-l infected S. frugiperda cells was purified and 

used for the production of antibodies. The purity and quality of the isolated protein was 

verified by electrophoresis (Fig.3, lane NSS purified). Yields of NSS protein were always 

in the range of 75-100 u.g per 1.5xl07 infected S. frugiperda cells. The NSS protein 

appeared to be slightly contaminated with proteins from the insect cells. It was 

anticipated, however, that these contaminations would not interfere with further 

immunological studies in plant systems. 

** <\>' 
*P 
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*NSs 

20.1 • 

Figure 3: Production of TSWV NSS protein 
in Ac33DZl/NSs-l infected S frugiperda 
cells. Proteins from recombinant baculovirus 
infected Sf cells were resolved on a 12.5% 
SDS-polyacrylamide gel and stained with 
Coomassie Brilliant Blue. Purified NSS 

protein (1.5 u.g) used for the production of 
antibodies is shown in the last lane. As a 
control wt AcNPV-infected S. frugiperda 
cells were included in the analyses. Low 
Molecular Weight (LMW) size markers 
(Pharmacia) are indicated at the left. The 
NSS protein expressed by the recombinant 
baculovirus is indicated by the arrow. The 33 
kDa band present in wt AcNPV-infected S. 
frugiperda cells cells represents the 
polyhedrin protein, which was substituted by 
the NSS protein in case of the recombinant. 
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Antiserum to NSS protein 

Purified NSS protein was injected into rabbits three times at intervals of 1-2 weeks. 

After the third injection, blood was collected and the immunoglobulin fraction isolated. 

To test the serum for the presence of antibodies against NSS protein, a sample of 

Ac33DZl/NSs-infected S. frugiperda cells was subjected to electrophoresis, transferred 

to an Immobilon membrane and subjected to Western immunoblot analysis using 1 u,g/ml 

of NSS antiserum. The resulting immunoblot confirmed the presence of antibodies 

against denatured NSS (Fig.4, lanes SfxAc33DZl/NSs-l and NSS purified). By dot-

immunoblot analyses purified NSS could be detected in amounts as low as 10 r) g (data 

not shown). The titer of the antiserum was concluded to be high enough to allow further 

studies on the presence of NSS in TSWV-infected plant samples. 

A) y */ASS 

NSs 

20,1 -

Figure 4: Specificity of antibodies raised against TSWV BR-01 NSS protein. (A) Proteins from healthy, wt 
AcNPV and Ac33DZl/NSs-l infected S. frugipezxia cells were resolved by 12.5% SDS-PAGE and 
electroblotted on Immobilon. A sample of 250 ng purified TSWV virus and 15 uJ portions of extracts from 
healthy N. rustica and TSWV BR-01 infected N. rustics plants (prepared according to Materials and Methods) 
were included. The Western blot was analyzed using 1 u,g/ml NSS antiserum. As a control a similar Western 
blot (B) was screened with antiserum against N protein. LMW size markers are indicated on the left and were 
stained with amidoblack. 
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Detection of NSS protein in TSWV-infected plant material 

In order to establish the actual production of NSS during the TSWV infection cycle, 

purified TSWV preparations and extracts from healthy and infected plants were analysed 

by immunoblotting. The results obtained indicate that purified TSWV virions appear not 

to contain NSS (Fig.4a, lane TSWV) but that a protein with a size expected for NSS can 

be specifically detected in TSWV-infected plants (Fig.4a, lane Nic.rust.xTSWV). This 

result provides evidence that the vORF of TSWV S RNA indeed encodes a non­

structural protein. The control blot, shown in Fig.4B, verifies that the absence of any 

signal with anti-NSs serum in case of purified virus, is not due to the lack of viral 

antigen. The conclusion that NSS protein is not present in virus particles is also 

supported by immunogold analysis (see below). 

Intracellular localization of the NSS protein 

To localize the intracellular position of the NSS protein and to gain insight in the 

function of this protein during the TSWV infection cycle, ultrathin sections of TSWV-

infected N. rustica were prepared for electron microscopy and immunogold analysis. 

Also, in order to test whether NSS is conserved among various TSWV isolates N. rustica 

plants infected with different isolates were screened. As described in detail elsewhere 

(Kitajima et al., 1992), TSWV-infected cells usually contain virus particles (80-110 nm 

in diameter) within the cisternae of the endoplasmatic reticulum system, viroplasm of 

medium density and masses with a high density ("dense masses"). The dense masses 

represent accumulations of nucleocapsids, as shown by their specific labelling with 

antibodies to nucleocapsid protein. In addition, for approximately half of the twenty 

TSWV isolates studied, fibrous structures were found in infected cells which consisted 

of either elongated flexible filaments (Fig.5a) or more rigid rods (Fig.5b), about 10 nm 

in diameter and of variable length . The filaments formed a loose parallel mass, while 

the rigid rods were organized in a paracrystalline array. These fibrous structures, which 

could form clusters as large as the nucleus, did not react with antisera against TSWV 

structural proteins (Kitajima et al., 1992), but are now found to be specifically labelled 

with NSS antiserum (Fig.6a and b). The rigid rods were consistently found to 
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Figure 5: Electron micrographs of the intracellular location of fibrous structures in tissue sections of N. 
clevelandii infected with TSWV isolate SI (A) and D. stramonium infected with isolate INSV NL-07 (B), 
respectively. Fibrous structures consisting of either flexible filaments (A) or paracrystalline rods (B) are 
shown. Tissue sections were from osmium fixed preparations. F, fibrous structures; V, virus particles; DM, 
dense masses; M, mitochondrion; P, chloroplast. The bars in both electron micrographs represent 0.5 p.m. 
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immunostain less intensively than the flexible filaments. On the other hand, virion 

particles were not specifically labelled when using anti-NSs serum (data not shown), 

confirming the conclusion drawn from the Western blot analysis that the NSS protein 

indeed represents a non-structural protein. The specificity of the labelling with the NSS 

antiserum was clearly demonstrated by double labelling experiments in which sections 

were first incubated with NSS antiserum labelled with gold particles of 7 nm, followed 

by a treatment with nucleocapsid antiserum labelled with gold particles of 15 nm. The 

15 nm gold particles were mainly found on virus particles, viroplasm and dense masses, 

while the small 7 nm gold particles consistently tagged the fibrous material (Fig. 6c). 

Some isolates did not induce the formation of flexible filaments or paracrystalline rods. 

With such isolates the NSS antiserum reacted dispersed throughout the cytoplasm (Fig. 

6d). Time course experiments furthermore showed that specific labelling of the 

cytoplasm with NSS antibodies started 6 days post infection, i.e. when the first symptoms 

of TSWV infection became visible. 

DISCUSSION 

The results presented in this paper demonstrate that TSWV S RNA specifies, in 

addition to the nucleoprotein, a non-structural protein (NSS) of 52.4 kDa, that may form 

long, filamentous masses in the cytoplasm of infected cells. From sequence data and 

comparison with the genetic organisation of the S RNAs of the related animal 

Bunyaviridae, we already suggested previously that such protein would be expressed from 

S RNA (De Haan et ai, 1990). For the definite detection of this protein the production 

of specific antibodies was crucial. These were obtained after producing the NSS protein 

in a heterologous expression system, i.e. the baculovirus/insect cell system. 

Using a novel transfer vector (Zuidema et al, 1990), a recombinant baculovirus was 

obtained that expressed the TSWV NSS protein to similar levels as the polyhedrin 

protein in wt baculovirus infected insect cells (Fig.3). Antibodies raised against NSS 

protein thus produced reacted with a protein in TSWV-infected N. rustica similar in size 

71 



Figure 6: Sections of TSWV-infected N. rustica leaf tissue, treated with antiserum against NSS and complexed 
with protein A-gold. Fibrous structures (F) consisting of flexible filaments (panel A) or rigid rods (panel B) 
types, present in cells infected by TSWV isolate NL-04 and INSV NL-07 respectively, were labelled with 
antiserum against NSS. Gold particles were enhanced by silver. C: A double labelling experiment in a cell 
infected by TSWV isolate SI. The section was incubated with NSS antiserum, labelled with 7 nm pAg, and 
then treated with nucleocapsid (isolate BR-01) antiserum labelled with 15 nm pAg. D: Cytoplasm of a leaf 
parenchyma cell of N. rustica infected by isolate BR-01, treated with antiserum against NSS and complexed 
with protein A-gold. DM, M and P refer to dense masses, mitochondrion and chloroplast, respectively. The 
bars in all electron micrographs correspond to 0.5 p.m. 
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as the NSS protein produced by the recombinant baculovirus. This protein appeared to 

be present in the cytoplasm of infected cells and (virtually) absent in purified virions, as 

demonstrated both by Western blot analysis and immunogold electron microscopy. 

As a first step to resolve the function of NSS in the TSWV infection cycle, ultrathin 

sections of N. rustica plants infected with different isolates of TSWV were screened for 

the presence of NSS using immunogold labelling techniques. It appeared that for 

approximately 50% of the TSWV isolates tested, fibrous structures were found that 

reacted with the antiserum against NSS. The amount and morphology of these fibrous 

structures differed from isolate to isolate. For some isolates only small amounts of 

fibrous material, consisting of flexible filaments, were found while for other isolates large 

amounts were discernible or appeared in well organised paracrystalline arrays (Fig.6A 

and B; Kitajima et al, 1992). 

Similar fibrous structures, associated with TSWV infections, were previously 

described (Francki and Grivell, 1970; De Avila et al, 1990; Law and Mover, 1990) but 

never analysed in terms of the presence of virus-encoded proteins. Although Law and 

Moyer (1990) suggested that the paracrystalline arrays of filamentous structures consist 

of nucleocapsids, the double immunolabelling experiments presented in this paper 

(Fig.6C) demonstrate that these cytopathological structures do hardly or not contain N 

protein. 

Although the immunogold labelling experiments unequivocally demonstrate the 

presence of the NSS protein within the fibrous material, the question whether these 

fibrous structures are solely made up of NSS protein remains to be answered. In relation 

to this it is interesting to note that recombinant baculovirus Ac33DZl/NSs-l infected S. 

frugiperda cells, containing high amounts of NSS protein, do not reveal fibrous structures 

(data not shown). This observation supports the hypothesis that the appearance of 

fibrous structures in TSWV infected plants is not a matter of concentration only. It is 

also not clear why for some TSWV isolates the NSS protein is organised in fibrous 

structures while for others it is found dispersed throughout the cytoplasma. A more 

detailed and extensive description on the cytopathology will be published elsewhere. 

As mentioned before, both the structural organisation and ambisense coding strategy 
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of TSWV S RNA show striking similarities to those of the S RNAs of phleboviruses, 

another genus of the Bunyaviridae. In fact these similarities have been important reasons 

to propose TSWV as a member of the Bunyaviridae, being unique in its property to 

infect plants (De Haan et ai, 1990). For phleboviruses, the S RNA also contains two 

ORFs in ambisense arrangement, one encoding the viral nucleoprotein and the other a 

non-structural protein. Although the nucleoproteins of TSWV and phleboviruses share 

a similar molecular weight (approximately 25-29 kDa), the NSS protein of TSWV is 

significantly larger (52.4 kDa) than those of the phleboviruses (approximately 30 kDa). 

This raises the question whether the TSWV NSS protein contains an extra domain, that 

could be involved in plant infection-related processes, and thus represents an adaptation 

of bunyaviruses to plants. So far, only the NSS protein of Punta Toro phlebovirus has 

been analysed (Overton et al., 1987). In contrast to the results with TSWV, the NSS 

protein of this phlebovirus was found associated with virions and nucleocapsids. The 

amounts of the phleboviral NSS protein detected were low and its function during the 

infection cycle has remained unclear. 

Also the function of the TSWV NSS protein in infection, though specifically localized 

in infected plant cells, still remains to be elucidated. The similarities in genome structure 

and expression strategy of the S RNAs of TSWV and phleboviruses may indicate similar 

functions for the NSS protein. Along this line, it is worthwhile mentioning that 

intranuclear filaments, observed in Rift Valley fever phlebovirus infected cells, have been 

proposed to correspond to a virally encoded non-structural protein (Swanepoel and 

Blackburn, 1977; Struthers and Swanepoel, 1982). Whatever the primary function of the 

NSS protein may be, preliminary results seem to indicate a correlation between the 

amount of NSS protein produced and the severity of disease symptoms induced (De 

Haan and Kormelink, unpublished results). Analyses of TSWV-infected plants by dot 

blot immunobinding assay suggest that severe TSWV isolates express, in general, higher 

amounts of NS3 protein than mild isolates. Also, time course analyses of total RNA from 

TSWV BR-01 infected N. rustica point in that direction since the synthesis of NSS 

mRNA starts just before symptoms are apparent (Chapter 2). 
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Chapter 6 

Expression and subcellular location of the NSM protein of tomato spotted wilt virus, 

a putative viral movement protein5 

SUMMARY 

The 33.6 kDa nonstructural (NSM) protein gene, located on the ambisense M RNA 

segment of tomato spotted wilt virus (TSWV), was cloned and expressed using the Exoli 

pET-llt expression system. The protein thus produced was purified and used for the 

production of a polyclonal antiserum. Western immunoblot analyses of TSWV-infected 

Nicotiana rustica plants showed NSM synthesis only during a short period early in 

systemic infection. Although NSM was found associated with cytoplasmic nucleocapsid 

preparations, it was absent from purified virus particles. Analyses of subcellular fractions 

from young, systemically-infected leaves showed the presence of NSM in fractions 

enriched for cell walls and cytoplasmic membranes, respectively. Furthermore, 

immunogold labelling of tissue sections of TSWV-infected N. rustica plants showed that 

this protein was found associated with nucleocapsid aggregates in the cytoplasm and in 

close association with plasmodesmata. The data obtained provide evidence that NSM 

represents the viral movement protein of TSWV, involved in cell-to-cell movement of 

nonenveloped ribonucleocapsid structures. 

TTiis chapter will be published in a slightly modified version as: Richard Kormelink, Marc Storms, Jan 
van Lent, Dick Peters and Rob Goldbach (1994). Expression and subcellular location of the NSM protein of 
tomato spotted wilt vims (TSWV), a putative viral movement protein. Virology, in press. 
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INTRODUCTION 

Tomato spotted wilt virus (TSWV) is the type species of the genus Tospovirus, in 

which a number of plant-infecting bunyaviruses have been classified (De Haan et al., 

1989; Elliott, 1990; Milne and Francki, 1984; Francki et al., 1991). Whereas animal-

infecting members of the Bunyaviridae are mainly transmitted by ticks, mosquitoes and 

sandflies (Elliott, 1990), TSWV is exclusively transmitted by thrips in a persistent manner 

(Sakimura, 1962). 

Recently, the complete nucleotide sequence of the genome of TSWV has become 

available (De Haan et al., 1990,1991; Chapter 4). The TSWV L RNA is 8897 nucleotides 

(nt) and completely of negative polarity, encoding the putative viral RNA polymerase 

(De Haan et ai, 1991). The M RNA is 4821 nt and has an ambisense gene arrangement. 

It encodes a putative nonstructural protein (NSM) of 33.6 kDa in viral (v) sense, and the 

precursor to the glycoproteins (Gl and G2) of 127.4 kDa in viral complementary (vc) 

sense (Chapter 4). The S RNA is 2916 nt and has, similar to the M RNA, an ambisense 

gene arrangement. This genome segment encodes a nonstructural protein (NSS) of 52.4 

kDa in v sense and the nucleocapsid (N) protein of 28.8 kDa in vc sense (De Haan et 

al., 1990; Chapter 5). 

Comparison of the TSWV genome with those of animal-infecting bunyaviruses (Elliot, 

1990; Francki et al., 1991) reveals the presence of one extra gene in the former, i.e. the 

NSM gene located on the M RNA segment (Chapter 4). This extra gene, therefore, may 

reflect an adaptation of bunyaviruses to botanical hosts. 

In order to investigate the function of the NSM protein in the infection cycle of 

TSWV, this protein was expressed in the E. coli pET-llt system to enable the 

production of a specific polyclonal antiserum. Using this antiserum both the synthesis 

and the intracellular location of NSM during TSWV multiplication was analysed. 
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MATERIALS AND METHODS 

Virus, plants and cDNA clones 

TSWV isolate BR-01 was maintained in Nicotiana rustica "America" plants by thrips 

transmission and mechanical inoculation. Virus was purified according to the method of 

Tas et al. (1977). Nucleocapsids were isolated from infected leaf tissue as described by 

de Avila et al. (1990), omitting the sucrose gradient step. Complementary DNA clones 

representing the M RNA of TSWV BR-01 have been described previously (Chapter 4). 

Wild type (wt) and recombinant Autographa californica nuclear polyhedrosis viruses 

(AcNPV) were grown in monolayers of Spodoptera frugiperda 21 cells (Vaughn et al., 

1977) in TNMFH medium (Hink, 1970) containing 10% fetal calf serum. 

Construction of AcNPV recombinant virus 

The baculovirus Autographa californica Multiple Nuclear Polyhedrosis Virus 

(AcNPV) was used for eukaryotic expression of NSM in Spodoptera frugiperda insect cells. 

Complementary DNA clone pTSWV28 containing the complete open reading frame 

(ORF) of NSM was digested with BamHl and cloned in the BamHl site of pAc33DZl 

(Chapter 4; Zuidema et al., 1990). The resulting transfer vector, pAc33DZl/NSM + L 

( + L denotes the presence of the TSWV-specific 5'-untranslated sequence), contained 

the complete ORF of NSM including the TSWV viral 5'-untranslated sequence. 

For convenient cloning of the NSM gene without the viral 5'-untranslated sequence, 

the gene was amplified by polymerase chain reaction (PCR) using oligonucleotides 

Zup51 (dGGGAATTÇTTTTCGGTAACAAGAGGCC), containing 27 nucleotides of 

which 21 are identical to nucleotides 109 to 129 of the viral (v) strand of M RNA, and 

Zupl4 fdCCCTGCAGGATCCGAAATTTAAGCTTAAATAAGTG). having 22 

nucleotides complementary to nucleotides 1022 to 1043 of the vRNA strand (Fig.lA). 

After PCR-amplification, the DNA was digested with EcoRl, a BamHl-EcoRl adaptor 

(containing the nucleotide sequence 

GGATCCGGCAACGAAGGTACCATGGGAATTC), with an internal start codon, 

ligated in order to restore the NSM ORF, and subsequently digested with BamHl to 
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generate the NSM gene as a BamHl fragment. This fragment was purified from an 

agarose gel, cloned in the Bam HI site of plasmid pAc33DZl resulting in transfer vector 

pAc33DZl/NSM. Recombinant baculoviruses were produced by co-transfection of S. 

frugiperda (Sf) cells with a mixture of BSu36 I digested AcNPV PAK6 DNA and 

pAc33DZl/NSM + L or pAc33DZl/NSM DNA according to Kitts and Possee (1993). 

Recombinant baculoviruses were plaque purified (Brown and Faulkner, 1977) and 

subsequently grown in high titer stocks. Analysis of proteins from infected S. frugiperda 

on SDS-PAGE were as described previously (Chapter 5). 

Construction of pET-llt/NSM 

For cloning of the NSM gene in pET-llt the PCR-amplified DNA, obtained as 

described above, was digested with restriction enzymes EcoRl and BamHl, leaving an 

NSM gene lacking the ATG start codon. The fragment was subsequently cloned in frame 

with the ATG start codon of pET-llt, resulting in plasmid pET-llt/NSM. The nucleotide 

sequences at the insertion sites were verified by the dideoxynucleotide chain termination 

method (Sanger et al, 1977). Due to the use of oligonucleotide Zup51, containing an 

altered TSWV sequence for introduction of an EcoRl cloning site, two amino acids at 

the N-terminus of the NSM protein were changed, i.e. the second amino acid (leucine to 

glycine) and the third (threonine to isoleucine). 

Expression in Escherichia coli 

For analysis on NSM expression, BL21 cells were transformed with the pET-llt/NSM 

construct and grown overnight in LB medium and ampicillin selection pressure (100 

jig/ml). A fresh flask was inoculated with 1/100 vol. of the overnight culture and the cells 

were grown until an OD^» = 0.5 was reached. IPTG was added to a final concentration 

of 0.4 mM and growth was prolonged for an additional 2-3 hr. The cells were collected, 

resuspended in lysis buffer (50 mM Tris-HCl pH 8.0; 5% SDS; 15 mM 2-

mercaptoethanol) and boiled for 15 min. 

For SDS-PAGE analyses of the proteins, the cells were subsequently boiled in 10 mM 

Tris-HCl pH 8.0,1 mM EDTA, 2% (w/v) SDS, 10% (v/v) glycerol, 0.001% bromophenol 
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blue, 5% (v/v) beta-mercaptoethanol (protein loading buffer). Samples were analysed on 

a 12.5% Polyacrylamide gel containing SDS (Laemmli, 1970). 

Purification of NSM protein 

For large-scale preparation of the TSWV NSM protein, proteins from 4 ml IPTG-

induced E.coli cells transformed with pET-llt/NSM were resolved on 0.75-mm-thick 

preparative 12.5% Polyacrylamide gels containing SDS (Protean II system, Bio-Rad). The 

NSM protein was purified as described previously for NSS (Chapter 5). 

Preparation of antibodies to the NSM protein 

Portions of 50 to 100 jxg purified NSM protein were emulsified in Freund's incomplete 

adjuvant (Difco Laboratories) and injected into the hind legs of a rabbit at days 1, 13, 

26 and 46. From day 41 on, the rabbit was bled several times and gamma-globulin 

fractions isolated according to Clark and Adams (1977) and tested with protein blots. 

Western immunoblot analyses 

Samples from TSWV-infected N. rustica were prepared by homogenizing 0.1 g of 

systemically infected leaves in 0.1 ml PBS containing 0.05% Tween-20. After combining 

the extract with 4x protein loading buffer, 10 |xl of healthy- and TSWV-infected N. 

rustica extracts were applied on a 12.5% SDS-polyacrylamide gel. After SDS-PAGE, 

proteins were transferred to Immobilon membrane (Millipore) and screened with 

polyclonal antisera as described previously (Chapter 5). 

Immunogold labelling of NSM protein in tissue sections of TSWV-infected N. rustica 

plants 

In situ detection of NSM protein was performed in tissue sections of TSWV-infected 

plants, fixed in paraformaldehyde/glutaraldehyde, dehydrated and embedded in LRGold 

at low temperature. Tissue sections were prepared from systemically infected leaves from 

5 days post infection (p.i.) on. For immunolabelling, sections were treated with NSM 

antiserum at a 1:500 dilution in PBS-BSA for 2 hr, using essentially the protocols 
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described by Van Lent et al. (1990). 

Preparation of subcellular extracts from TSWV-infected leaves 

Subcellular extracts of systemically infected leaves were prepared essentially as 

described by Deom et al. (1990). In brief, TSWV-infected leaves were harvested 6 to 7 

days after inoculation. The midribs were removed and 10 g of leaves ground to a fine 

powder under liquid nitrogen. The material was subsequently resuspended in 20 ml 

grinding buffer (GB: 100 mM Tris-HCl pH 8.0; 10 mM EDTA; 5 mM dithiothreitol) and 

filtered through two layers of cheesecloth. The extract was centrifuged for 10 min at 1000 

x g to obtain a crude cell wall pellet (Pe-1). To obtain a Pe-1 fraction mainly consisting 

of cell wall material, the pellet was washed for two times in GB plus 2% Triton X-100. 

The supernatant obtained after the first centrifugation was subsequently centrifuged for 

30 min at 30,000 x g to obtain a Pe-30 pellet and S-30 supernatant. Half of the S-30 

sample was layered on a 30% sucrose-cushion (in GB) and centrifuged for 60 min at 

40,000 rpm in a Ti45 rotor, to obtain a pellet (S-30P, mainly containing the cytoplasmic 

nucleocapsids) and supernatant (S-30S) fraction. The proteins of the S-30 and S-30S 

fractions were concentrated by precipitation with 50% ammonium sulfate, resuspended 

in a smaller volume and dialysed prior to preparation for SDS-PAGE. All samples were 

concentrated 20-fold with respect to the original extract. Five JJL.1 of each fraction was 

applied on a 12.5% SDS-polyacrylamide gel. 

RESULTS 

Construction of recombinant baculovirus AcNPV/NSM 

To express the NSM gene in the baculovirus/insect cell system a cDNA fragment from 

clone pTSWV28 (Chapter 4) containing the complete ORF and most of the 5'-

untranslated sequence of the TSWV NSM gene (nucleotides 10 to 1065 of the vRNA 

strand of TSWV M RNA) was cloned into plasmid pAc33DZl (Zuidema et al., 1990), 

and transferred to baculovirus AcNPV by co-transfection of S. frugiperda cells with a 
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Figure 1: Genetic organisation of TSWV M RNA (A) and vectors used for the expression of NSM in 
eucaryotic (B) and procaryotic (C) systems. The position of primers ZUp51 and ZUpl4 used for PCR-
amplification of NSM are indicated. The replication of the vRNA strand into the vcRNA strand is indicated 
by the arrowheads. The black boxes at the termini of the RNA strands represent conserved TSWV 
complementary sequences (A). The NSM gene was PCR-amplified with primers ZUp51 and ZUpl4, and 
cloned into pAc33DZl as described in Materials and Methods. The resulting transfervector pAc33DZl/NSM 

was used for the production of recombinant baculoviruses (B). For cloning into the pET-llt expression vector, 
PCR-amplified NSM was digested with ficoRI and BamHI. The resulting vector pET-llt/NSM was used for 
expression in Eco//'(C). Restriction enzymes are abbreviated as follows: B, BamHI; Bg, Bgäl; E, EctiRl; EV, 
ficoRV; H, Hindlll; N, Ned; Sp, Ssd; Ss, SsA; Xb, Xba\\ X, Xhd. 
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mixture of BSu36 I digested AcNPV PAK6 DNA (Kitts and Possee, 1993) and 

pAc33DZl/NSM + L ( + L stands for the presence of the TSWV-specific 5'-untranslated 

sequence). In addition, an NSM construct lacking the viral 5'-untranslated sequence was 

PCR-amplified using oligonucleotides Zup51 and Zupl4 (Fig.lA; Materials and 

Methods), cloned into pAc33DZl (Fig.lB) to form transfer vector pAc33DZl/NSM, and 

transferred to AcNPV. Recombinants of AcNPV containing the NSM gene with 

(AcNPV/NSM + L) or without (AcNPV/NSM) the TSWV 5'-untranslated sequence were 

isolated and the production of the NSM protein was analysed by comparing the protein 

patterns of the recombinant baculovirus infected 5. frugiperda cell extracts with that of 
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Figure 2: Production of TSWV NSM protein in AcNPV/NSM + L and AcNPV/NSM -infected S frugiperda (Sf) 
cells. Proteins from infected Sf cells were resolved on a SDS-polyacrylamide gel and stained with Coomassie 
brilliant blue (A). As controls healthy, wild type AcNPV-infected and AcNPV PAK6 infected Sf cells were 
included in the analyses. Low-molecular-weight size markers (Pharmacia) are indicated at the left. The NSM 

protein expressed by the recombinant baculovirus is indicated. Western blot analysis of NSM protein produced 
in recombinant baculovirus-infected Sf cells using antiserum against Eco//expressed NSM (B). Also included 
is a protein sample of Sf cells infected with the AcNPV/NSM + L construct, which included the TSWV NSM 

5'-untranslated sequence. The last lane contains a protein sample of AcNPV/NSM-infected Sf cells grown 
under 25 u,g/ml tunicamycin pressure, indicated with a " + ". 
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wild type AcNPV-infected 5. frugiperda cell extract. No protein band corresponding to 

the expected size of the TSWV NSM protein (33.6 kDa; Chapter 4) was identified for the 

AcNPV/NSM + L recombinant (data not shown), but a minor protein band at the 

expected position was identified for the AcNPV/NSM recombinant (Fig.2B, lane 

SfxAcNPV/NSM). However, the amounts of NSM produced were too low to be purified 

for the production of a polyclonal antiserum. 

Expression of the NSM gene in E.coli 

In order to produce larger quantities of the NSM protein for the production of a 

polyclonal antiserum, it was decided to express the NSM protein in E.coli using 

expression vector pET-llt. To this end, the PCR-amplified NSM construct previously 

cloned into pAc33DZl, was digested with EcoRl and Bamlil and cloned in frame with 

the ATG start codon in pET-llt. Clones containing the NSM gene were selected and 

analysed by restriction enzyme analyses. The nucleotide sequence in the resulting pET-

llt/NSM construct (Fig.lC) was verified in order to confirm the intactness of the open 

reading frame. 

The production of NSM protein in pET-llt/NSM transformed BL21 cells was induced 

with IPTG, and analysed by SDS-PAGE. A protein band corresponding to the expected 

size of the NSM protein was clearly visible (Fig.3A, lane pET-llt/NSM). The NSM protein 

produced in this way was purified (Fig.3A, lane NSM) and subsequently used for the 

production of antibodies. 

Antiserum to NSM protein 

Purified NSM protein was injected into rabbits four times at intervals of 1-2 weeks. 

After the third injection, blood was collected, the immunoglobulin fraction isolated, and 

the antiserum tested for the presence of antibodies against NSM protein. A sample of 

pET-llt/NSM transformed BL21 cells, induced with IPTG, was subjected to 

electrophoresis, transferred to Immobilon membrane, and analysed by immunoblot 

analysis using 1 fig/ml of NSM antiserum. The results demonstrate the presence of 

antibodies against denatured NSM (Fig.3B, lane pET-llt/NSM), although also 
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Figure 3: Production of TSWV NSM protein in Ecoli (A) and specificity of the antibodies raised against 
TSWV NSM protein (B).The production of NSM in Eco//was induced with IPTG, and analysed on Coomassie 
brilliant blue stained SDS-polyacrylamide gel (A). Purified NSM protein used for the production of antibodies 
is shown in the fifth lane. As a control pET-llt transformed BL21 cells was included. Low-molecular-weight 
size markers (Pharmacia) are indicated at the left. The NSM protein expressed in Ecoli is indicated. Similar 
protein samples were analyzed on a Western blot to test the specificity of antibodies raised against the NSM 

protein (B). A sample of 250 ng purified TSWV BR-01 virus and 10 u.1 portions of extracts from healthy- and 
TSWV-infected N. rustics plants were included. The Western blot was analyzed using 1 |xg/ml NSM antiserum. 

immunoglobulins against proteins co-purified from BL21 cells were present (Fig.3B, lane 

pET-llt). Moreover, the antiserum detected specifically very low amounts of a protein 

with the expected size of NSM in insect cells infected with the AcNPV/NSM + L 

recombinant baculovirus (Fig.2B, lane SfxAcNPV/NSM + L), which was clearly absent 

from healthy or wt AcNPV-infected insect cells. A higher level of expression of this 

protein was found when the TSWV NSM 5'-untranslated sequence was absent from the 

baculovirus construct (Fig.2B, lane SfxAcNPV/NSM). These results showed that the 

protein detected originated from the TSWV NSM coding sequences in AcNPV/NSM, and 

demonstrated the specificity of the anti-NSM serum. Also, the absence of any cross 

reaction with proteins from healthy or wt baculovirus-infected insect cells indicated that 

the contamination of immunoglobulins against proteins co-purified from BL21 cells did 
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not interfere with immunological analyses. Hence it was anticipated that these 

contaminations would not interfere with further immunological analyses in plant systems. 

Some smaller protein bands, probably stable degradation products, were often seen in 

AcNPV/NSM-infected insect cells that were reacting with anti-NSM serum (Fig.2B, lane 

SfxAcNPV/NSM; Fig.6A, lane SfxAcNPV/NSJ. 

Analysis of the nucleotide sequence of the NSM gene demonstrated the presence of 

two potential glycosylation sites in the NSM protein (Chapter 4). Western immunoblot 

analysis of NSM protein produced from the AcNPV/NSM recombinant in the presence of 

tunicamycin (25 |xg/ml) revealed no detectable shift in migration of this protein 

indicating that, at least in insect cells, this viral protein is not glycosylated (Fig.2B, lane 

SfxAcNPV/NSM" + "). 

Detection of NSM protein in TSWV-infected plant material 

In order to establish the actual production of NSM during the TSWV infection cycle, 

plant extracts from healthy and systemically infected Nicotiana rustica leaves were 

analysed on Western blots using the antiserum raised against E.coli expressed NSM. In 

extracts from infected plants a protein could be detected with the expected size of NSM 

(Fig.3B, lane N. rustica x TSWV) which was absent from healthy plant extracts (Fig.3B, 

lane N. rustica), confirming the viral origin of the protein detected in TSWV-infected 

plants. Additionally, a protein of about 67 kDa specifically reacted with antiserum 

against NSM in TSWV-infected M rustica, most likely representing a dimer of NSM. No 

reaction was obtained with purified TSWV particles (Fig.3B, lane TSWV), demonstrating 

that this viral protein indeed represents a nonstructural protein. 

To follow the synthesis of NSM during infection of N. rustica, plant extracts, prepared 

from systemically infected leaves at different times after inoculation, were analysed on 

Western immunoblots. The results revealed that the production of NSM, and the putative 

NSM dimer (NSM"), was maximal at days 6 and 7 p.i., coinciding with the appearance of 

systemic symptoms, and drastically decreased at 8 days p.i. (Fig.4A). The kinetics of NSM 

accumulation is therefore clearly distinct from that of N protein and NSS, the amounts 

of which accumulated throughout later stages of infection (Fig.4B). These data indicate 
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a transient character of NSM and the involvement in an early process during TSWV 

infection. During the course of infection, another protein of about 40 kDa weakly cross-

reacted with the anti-NSM serum. The identity of this band is not clear, however, its 

presence in extracts of healthy N. rustica (Fig.3B, lane N.rustica) suggests that this 

protein is of host origin. 

V H 2 3 4 5 7 8 9 10 11 

94.( 

67.0 

43.0 

30.0 

20.1 

0 - -Au*\ 

DAYS P.I. 

N S M " 

NS. 

B 

94.0 
67.0 

43.0 

30.0 

20.1 

DAYS P.I. 

- N 

Figure 4: Time course of synthesis of NSM (A) and N (B) protein in TSWV-infected N. rustica. The plant 
extracts were prepared from systemically infected leaves at different times after inoculation, indicated at the 
top of the figure, as described in Materials and Methods. Ten u.1 of plant extract was applied on a 12.5% SDS-
polyacrylamide gel. As controls, 250 ng purified TSWV virus (V), and an extract of healthy N. rustica (H) were 
included. After Western blotting on Immobilem membranes, the filters were screened with 1 |xg/ml anti-NSM 

(A) or anti-TSWV serum (B). Low-molecular-weight size markers (Pharmacia) are indicated at the left. The 
positions of N, NSM and a potential dimer of NSM (denoted as NSM") are indicated. 
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Intracellular localization of the NSM protein 

To determine the intracellular position of the NSM protein and to get a clue about 

its function during the TSWV infection cycle, ultrathin sections of TSWV-infected N. 

rustica were prepared for electron microscopy and analysed with immunogold labelling. 

NSM was found associated with electron dense aggregates (Fig.5A), previously identified 

as nonenveloped, viral nucleocapsid aggregates (Kitajima et al., 1992). Labelling with 

antiserum against the N protein confirmed the composition of this electron dense 

material (Fig.5B). On the other hand, the NSM protein could not be detected in mature 

virus particles (data not shown) indicating that during further assembly, the NSM protein 

is absent from the viral nucleocapsids. 

Additionally, the NSM protein was found to be associated with plasmodesmata (Fig.5C 

and D), Within the plasmodesmata the NSM label was frequently arranged along electron 

dense extensions (Fig.5D). No labelling as such was ever found in healthy N. rustica 

demonstrating its viral-specific character. The association of NSM with plasmodesmata 

suggests a possible involvement in cell-to-cell movement, a function that has not been 

assigned to any of the proteins encoded by the genome of TSWV yet. Analyses of 

TSWV-infected cells also showed that in cells where relatively high amounts of NSM were 

detected, no enveloped virus particles were detected, while in cells that contained 

enveloped particles, hardly or no NSM protein could be detected, again indicating that 

NSM has a transient function early in the infection of the cell. 

Subcellular localization of NSM 

To confirm the intracellular location of the NSM protein, different fractions from 

infected leaf material were isolated and analysed for the presence of the NSM protein. 

To this end, cytoplasmic nucleocapsid (TSWV-nu) fractions were prepared from TSWV-

infected N. rustica at day 6 and day 9 p.i.. Additionally, by another method, subcellular 
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Figure S: Elecfronmicrographs of ultrathin sections of TSWV-infected N. rustics leaf tissue, immunogold 
labelled with antiserum against NSM (A, C and D), and antiserum against N (B). Scale bars represent 200 nm 
(A and B) and 100 nm (C and D), respectively. PD: Plasmodesma; NA: Nucleocapsid aggregates; CW: Cell 
wall. 
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fractions from TSWV-infected leaves were prepared according to Deom et al. (1990), 

and the resulting fractions (Pe-1, Pe-30 and S-30) applied on an SDS-polyacrylamide gel 

and transferred to Immobilon membranes. Western immunoblot analysis revealed that 

NSM co-purified with nucleocapsids, and that it disappeared from those structures in 

later stages during the infection cycle (Fig.6A, lane TSWV-NU 6 days p.i. and 9 days 

p.i.). A control Western immunoblot was analysed with anti-N serum to confirm the 

presence of equal amounts of nucleocapsids in both samples (data not shown). The NSM 

protein present in nucleocapsid extracts, though, migrated slower than NSM produced in 

the baculovirus system (Fig.6A, lane SfxAcNPV/NSM). This migration difference was not 

genuine but rather due to a difference in protein content or ionic strength of the 

samples. 

Using a different fractionation protocol, it could be demonstrated that the NSM 

protein was mainly present in the Pe-1 and Pe-30 fractions (Fig.6B). A similar Western 

blot treated with antiserum against the TSWV N protein revealed highest amounts of N 

protein in the S-30 fraction (data not shown), indicating that the NSM protein detected 

in the Pe-1 and Pe-30 samples was specifically associated with these subcellular fractions, 

which contained enriched amounts of cell wall and cytoplasmic membrane material 

(Deom et al., 1990). The presence of high amounts of nucleocapsids in the S-30 fraction 

suggests that the low amounts of NSM protein detected in this fraction was probably due 

to its association with nucleocapsids. In order to test this, the S-30 fraction was further 

fractionated, via a sucrose-cushion, into a pellet (S-30P) that was enriched for 

nucleocapsids, and a supernatant (S-30S) fraction. Subsequent Western immunoblot 

analysis showed the presence of NSM in the S-30P fraction and the absence in the S-30S 

fraction (Fig.6B, lane S-30P and S-30S). The subcellular fraction data, therefore, are in 

agreement with the electron microscopical data that showed a close association of NSM 

with plasmodesmata and nucleocapsid aggregates. 
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Figure 6: Presence of NSM in nucleocapsid fractions (A) and subcellular fractions of TSWV-infected N. tvstica 
(B). Purification of nucleocapsids and preparation of different fractions of TSWV-infected N. tvstica leaf 
material were as described in Materials and Methods. Ten u.1 of nucleocapsid preparations (TSWV-NU) and 
5 u.1 of the subcellular fractions (Pe-1, Pe-30, S-30, S-30P and S-30S) were applied on a 12.5% SDS-
polyacrylamide gel. The proteins were transferred to Immobilon membrane and the filter subsequently 
screened with 1 u.g/ml antiserum against NSM. As controls were included, 250 ng purified TSWV virus, a 
protein extract of AcNPV/NSM-infected S. frugiperda (Sf) cells and an extract of healthy N. tvstica. The 
position of NSM is indicated. 

DISCUSSION 

For a growing number of plant-infecting positive strand RNA viruses a virally-

encoded movement protein, involved in cell-to-cell movement of the pathogen, has been 

identified either based on biochemical evidence or on protein sequence analysis (for 

recent reviews see Deom et al., 1992; Hull, 1991; Koonin et al., 1991; Maule, 1991). Also 

various mechanisms for the process of cell-to-cell movement of these viruses, or their 

genomes, have been proposed (Goldbach, et al. 1990; Citovski et ai, 1990; Deom et al., 

1992), which always involve the modification of plasmodesmata. For negative strand 

RNA viruses of plants, e.g. rhabdo- and tospoviruses, no information is available about 
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their mode of cell-to-cell movement or about the possible involvement of viral gene 

products therein. 

Comparison of the genome of TSWV with those of animal-infecting members of the 

Bunyaviridae already suggested that NSM represents a possible candidate for a viral 

movement protein, as it is specified by an extra open reading frame, not present in the 

genome of animal-infecting bunyaviruses. In order to gain insight into the function of this 

protein, an antiserum was produced against NSM expressed in E. coli and its actual 

synthesis demonstrated in infected N. rustica. Time course analyses showed the presence 

of NSM only during a short period early in the infection cycle (Fig.4A), always coinciding 

with the first appearance of systemic symptoms, in contrast to other TSWV specific 

proteins that further accumulated from that moment on (Fig.4B). This timing may be a 

first indication that the NSM protein could actually represent the putative viral movement 

protein, in agreement with the suggestion by Atabekov and Dorokhov (1984) that virus 

movement is an early function which is eventually switched off. Similar transient 

expression has been demonstrated for several other (putative) movement proteins, e.g. 

the TMV 30 K protein (Watanabe et al, 1984; Lehto et al, 1990) and the A1MV P3 

protein (Berna et al, 1986). 

Immunogold labelling experiments of ultrathin sections of TSWV-infected N. rustica 

revealed the presence of NSM in nucleocapsid aggregates and in close association with 

plasmodesmata. In the latter case, NSM was often found arranged along electron dense 

extensions connected to the plasmodesmata. Furthermore, the NSM protein was only 

found in those cells where mature, enveloped particles were not yet assembled. In case 

the latter were present, no NSM could be detected, providing another indication that NSM 

is associated with a process early in the infection cycle of a cell. Similar electron 

microscopic observations of transient expression were found in case of the (putative) 

movement proteins of A1MV (Stussi-Garaud et al, 1987) and TMV (Tomenius et al, 

1987). 

Subcellular localization studies on TSWV-infected N. rustica 6 to 7 days p.i. 

confirmed the intracellular location of NSM, i.e. the protein was especially found located 

in the fractions relatively enriched for cytoplasmic membranes (Fig.6B, lane Pe-30) and 
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cell wall residues (Fig.6B, lane Pe-1), respectively. The presence of NSM in these 

fractions suggests that the electron dense extensions, found to contain NSM in 

immunogold labelling studies, are somehow specifically associated with the cytoplasmic 

membranes and/or cell walls. To be more conclusive on this assoiation, the exact nature 

of these structures has to be analysed. The NSM protein was also found in low amounts 

in the S-30 fraction. This localization could be explained by its association to 

nucleocapsids in this fraction. Hence, the time course analysis, the immunogold studies 

and the fractionation studies provide strong indications for the involvement of the NSM 

protein, as the putative viral movement protein, in the cell-to-cell movement of TSWV. 

It is doubtful whether TSWV is transported in the form of enveloped particles 

through the plasmodesmata as these particles have a diameter of 80-120 nm, requiring 

drastic modification of plasmodesmata (effective diameter 3 nm, Terry and Robards, 

1987). Instead it is more likely that the TSWV genome is transported as infectious 

ribonucleocapsid structures. This idea is further supported by several observations. 

Firstly, the NSM protein is found associated with ribonucleocapsid structures from which 

it apparently detaches during later stages of the infection cycle (Fig.6A, cf. lanes TSWV-

NU 6 and 9 days p.i) resulting in its absence from mature virus particles (Fig.6A, lane 

TSWV). In this context it is worthwhile mentioning that the NSM protein contains an 

acidic carboxy-terminus which could establish the binding of NSM to the rather basic N 

protein within the nucleocapsid structures (Chapter 4). Secondly, morphologically 

defective isolates of TSWV, i.e. isolates which are deficient in glycoprotein synthesis and 

lack the lipid envelop (Ie, 1982; Verkleij and Peters, 1983; Resende et al, 1991), are able 

to spread through plant tissues at wild type rate. 
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Chapter 7 

Heterologous expression of the glycoprotein precursor (G1/G2) 

and nucleoprotein (N) genes of tomato spotted wilt virus 

SUMMARY 

The tomato spotted wilt virus S RNA-encoded nucleoprotein gene and M RNA-

encoded glycoprotein precursor gene were cloned into transfer vector pAc33DZl and 

inserted dowstream of the polyhedrin promoter in the Autographa califomica nuclear 

polyhedrosis virus genome. Recombinant baculoviruses were obtained that showed a 

high-level expression of the 28.8 kDa nucleoprotein. Recombinant baculoviruses 

containing the glycoprotein precursor gene were found to express the glycoproteins Gl 

(78 kDa) and G2 (58 kDa), though at lower levels, only detectable on immunoblots. 

Using tunicamycin it was established that both Gl and G2 undergo N-linked 

glycosylation. This glycosylation takes place at the stage of the non-processed G1/G2 

precursor protein. 
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INTRODUCTION 

Like all members of the Bunyaviridae (Elliott, 1991), tomato spotted wilt virus 

(TSWV), type species of the genus Tospovirus (Francki et al, 1991), has enveloped 

particles that contain two surface glycoproteins Gl (78 kDa) and G2 (58 kDa) (Tas et 

al, 1977; Mohamed et al, 1973). The core consists of ribonucleocapsid structures, each 

composed of a single stranded RNA segment tightly associated with the nucleoprotein 

(N) of 28.8 kDa and minor amounts of the L protein (331.5 kDa), the putative viral 

polymerase (Van Poelwijk et al, 1993). The TSWV genome consists of 3 single-stranded 

linear RNA segments denoted S RNA (small), M RNA (medium) and L RNA (large). 

The L RNA encodes the putative viral RNA polymerase (De Haan et al, 1991). The M 

RNA encodes, in an ambisense arrangement, the nonstructural protein NSM, implicated 

in viral movement and the (G1/G2) precursor to the glycoproteins (Chapter 4 and 6). 

The S RNA encodes, also in ambisense arrangement, a second nonstructural protein 

(NSS) and the N protein (De Haan et al, 1990; Chapter 5). 

A characteristic feature of the animal-infecting members of the Bunyaviridae is their 

intracellular maturation by budding of the nucleocapsids at smooth-surfaced membranes 

of the Golgi complex (Murphy et al, 1973; Lyons and Heyduk, 1973; Smith and Pifat, 

1982; Booth et al, 1991). For several of these viruses, studies demonstrated that the viral 

glycoproteins are synthesized and cleaved from a large precursor at the ER and 

subsequently targeted to the Golgi complex where they are retained (Ulmanen et al, 

1981; Kuismanen, 1984; Kuismanen et al, 1984). This process occurs even in the absence 

of virus maturation (Gahmberg et al, 1986), as well as when the glycoproteins are 

expressed by recombinant vaccinia viruses (Wasmoen et al, 1988; Matsuoka et al, 1988; 

Chen et al, 1991; Pensiero and Hay, 1992; Ruusala et al, 1992), or by SV40 vectors in 

COS cells (Ronnholm, 1992). Following the accumulation of viral glycoproteins at certain 

loci in the Golgi complex, viral ribonucleoproteins (RNPs) are found to condense only 

at the cytoplasmic face of these areas prior to budding (Smith and Pifat, 1982; 

Kuismanen et al, 1984). This phenomenon has not been observed when the viral 
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glycoproteins are absent (Smith and Pifat, 1982). Hence, an interaction between the viral 

glycoproteins, e.g. a cytoplasmic domain, and the nucleocapsid protein could be involved 

as a trigger for budding into the Golgi vesicles. 

During the infection cycle of TSWV, virus particles accumulate in the lumen of the 

rough endoplasmatic reticulum (RER) (Kitajima, 1965; Francki and Grivell, 1970; Milne, 

1970; Ie, 1971; Kitajima et al., 1992). However, further information on the processes 

leading to maturation of TSWV particles is lacking, neither it is known whether the 

Golgi complex is involved. As a first step towards understanding the biosynthesis and 

maturation of the viral glycoproteins, and the function of the N protein in the process 

of budding, these structural proteins of TSWV were expressed in the heterologous 

baculovirus/insect cell expression system. 

MATERIALS AND METHODS 

Viruses, cells and cDNA clones 

TSWV isolate BR-01 was maintained in Nicotiana rustica "America" plants by thrips 

transmission and mechanical inoculation. Complementary DNA clones representing the 

S and M RNA clones of isolate BR-01 were described previously (De Haan et al, 1990; 

Chapter 4). Wild type (wt) and recombinant Autographa californica nuclear polyhidrosis 

viruses (AcNPV) were grown in monolayers of Spodoptera frugiperda 21 cells (Vaughn 

et al., 1977) in TNMFH medium (Hink, 1970) containing 10% fetal calf serum. 

Construction of the AcNPV recombinant transfer vectors 

Plasmid vector pAc33DZl (Zuidema et al., 1990) was used to construct the transfer 

vector containing the TSWV N or glycoprotein precursor (GP) gene. A bacterial plasmid 

containing the complete open reading frame (ORF) of N (pTSWV-vcORF; De Haan et 

al., 1990) was digested with Kpnl and Hindlll in order to completely excise the N-ORF 

from pSK + . After repair with T4 DNA polymerase, BamHl linkers were ligated and the 

N-ORF subsequently cloned in the BamHl site of pAc33DZl according to Maniatis et 
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al. (1982). The complete ORF of the GP gene was reconstructed via a three-points 

ligation of an EcoRl fragment from clone pTSWV43, containing the coding sequences 

for the N-terminal part of the precursor to the glycoproteins, and of pTSWV17-12, 

containing the coding sequences for the C-terminal (Chapter 4), into the EcoRl site of 

pET-llt. As pTSWV43 contained one EcoRl site located just 5 nucleotides downstream 

the ATG start codon sequence (ATGAGAATTC.) of the GP ORF, digestion with 

EcoRl lead to the loss of the ATG start codon sequence from TSWV43. The reading 

frame for the GP gene, however, was restored again by an "in frame" ligation with an 

ATG start codon sequence provided by the Ncol site, located just 6 nucleotides 

upstream of the EcoRl site (sequence CCATGGGAATTC...) in the multiple cloning 

linker of pET-llt. Clone pTSWV17-12 provided the genuine TGA stop codon for the 

GP ORF. The resulting pET-llt/GP construct contained a complete GP-ORF that could 

be excised from pET-llt as an Ncol fragment. After repair with T4 DNA polymerase, 

BamHl linkers were added and the fragment cloned into the BamHl site of pAc33DZl. 

The resulting recombinant plasmids, pAc33DZl/N and pAc33DZl/GP, were verified for 

their constitution by restriction enzyme analysis and sequence analysis at the insertion 

sites. 

Construction of AcNPV recombinant virus 

Recombinant baculoviruses expressing the N gene were produced by cotransfection 

of S. frugiperda cells with a mixture of AcNPV DNA and pAc33DZl/N DNA (Smith et 

al., 1983). Recombinants containing the GP gene were obtained after cotransfection with 

a mixture of Bsu36 I digested AcNPV PAK6 DNA and pAc33DZl/GP (Kitts and 

Possee, 1993). After 3 days of incubation at 27°C, nonoccluded virus (NOV) was 

collected from the medium and titrated in dilutions to render separated plaques in a 

plaque assay (Brown and Faulkner, 1977). Recombinant plaques were plaque purified 

and grown in high-titer stocks. 

Analyses of recombinant AcNPV DNA 

S. frugiperda cells were infected with wt or recombinant AcNPV with a multiplicity 
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of 20 TCIDgo units per cell and incubated at 27°C for 4 days. NOV was collected and 

DNA was purified according to Summers and Smith (1987). Viral DNA samples were 

digested with BamHl and the restriction fragments were resolved by electrophoresis in 

1% agarose gels. 

SDS-PAGE of proteins from infected S. frugiperda cells 

S. frugiperda cells were infected in portions of 5xl06 cells, with a multiplicity of 20 

TCIDjjo units per cell, and incubated at 27°C for 48-52 hr. The cells were collected, 

washed twice with PBS and resuspended in 200 p,l PBS. For SDS-PAGE analyses of 

proteins, the cells were boiled in 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 2% (w/v) SDS, 

10% (v/v) glycerol, 0.001% (w/v) bromophenol-blue, 5% (v/v) ß-mercaptoethanol 

(protein loading buffer). Samples were analysed on a 12.5% SDS-polyacrylamide gel 

(Laemmli, 1970). 

Immunoblot analyses 

TSWV-BR01 virions were purified according to Tas et al. (1977). After SDS-PAGE, 

proteins were transferred to Immobilon membrane (Millipore) by electroblotting in an 

LKB Transphor electroblotting unit at 60 V overnight in 20 mM Tris-HCl, pH 8.3, 150 

mM glycine, 20% (v/v) methanol at 4°C. Membranes were dried, washed in PBS 

containing 0.3% BSA (PBS-BSA) and blocked for 3 hr in 3% BSA (in PBS) at room 

temperature. After several washings with PBS-BSA, membranes were incubated in the 

same buffer containing 1 |xg/ml antiserum for 1 hr. After washing, antigen-antibody 

complexes were detected using 1 |xg/ml alkaline phosphatase conjugated goat-anti-rabbit 

immunoglobulins (Tago Inc., Burlingame, CA, USA), using 0.33 mg/ml nitroblue 

tetrazolium (NBT) and 0.165 mg/ml bromochloroindolyl phosphate (BCIP) as a 

substrate. 

Tunicamycin treatment of infected S. frugiperda cells 

S. frugiperda cells were infected with wt or recombinant AcNPV with a multiplicity 

of 20 TCID50 units per cell. Tunicamycin was added to the infected cells from a stock 
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solution, to a final concentration of 25 (ig/ml in the tissue culture medium. The drug was 

added the same time the cells were infected and was maintained until the cells were 

lysed at 60 hr post infection. Cellular extracts were prepared for SDS-PAGE and 

Western blot analysis as described above. 

Figure 1: Constructs used for baculovirus 
expression of the TSWV M and S RNA 
encoded genes. Schematical representation 
of pAc33DZl (A), and the TSWV cDNA 
constructs (B) to be expressed in the 
baculovirus system. The nucleotide 
sequences of the TSWV cDNA constructs 
from the BamHl site in pAc33DZl until the 
ATG-start codon is shown (C). 
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RESULTS 

Construction and analyses of recombinant baculoviruses 

Complementary DNA fragments containing the complete ORFs of the TSWV N and 

GP gene were reconstructed as described in Materials and Methods, and subsequently 

cloned into the BamHl site of pAc33DZl. The resulting transfer vectors, i.e. 

pAc33DZl/N and pAc33DZl/GP, were analysed by restriction enzyme analysis and 

nucleotide sequence determination (Fig.l). The N and GP genes were transferred to 

AcNPV by co-transfection of S. frugiperda cells with a mixture of wt AcNPV or AcNPV 

linearized PAK6 DNA and the transfer vector containing the respective genes. NOV-

DNA from these recombinants, i.e. AcNPV/N and AcNPV/GP, was isolated and its 

composition analyzed by BantHI restriction enzyme analysis (Fig.2). For comparison, 

previously made recombinants containing the TSWV NSS and NSM genes (Chapter 5 and 

6) were included. Insertion of the N and GP genes was confirmed by Southern blot 

analyses (data not shown). The level and correctness of transcription of TSWV specific 

sequences from the polyhedrin promoter were verified by Northern blot analyses and 

showed a similar level in all recombinants (data not shown). In this way recombinant 

AcNPV/N and AcNPV/GP were selected for protein expression analyses. 

Expression of the N and GP protein 

Production of the N and GP protein was analysed by comparing the protein patterns 

of AcNPV/N and AcNPV/GP-infected S. frugiperda cells with that of wt AcNPV-infected 

S. frugiperda cells. A major protein band corresponding to the size of the N protein (29 

kDa; De Haan et al., 1990) was identified for the AcNPV/N recombinant (Fig.3, lane 

AcNPV/N). The level of expression was similar to that of the TSWV NSS (52.4 kDa; 

Fig.3, lane AcNPV/NSs) or AcNPV polyhedrin protein (Fig.3, lane AcNPV). However, 

no protein bands that could correspond to the glycoprotein precursor (expected size 

127.4 kDa) or the processed Gl (78 kDa) and G2 (58 kDa) glycoproteins were visible 

in the protein extract AcNPV/GP-infected S. frugiperda cells (Fig.3, lane AcNPV/GP). 

The same results were obtained with three other separately plaque-purified AcNPV/GP 
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Figure 2: BamHl restriction pattern of baculovirus recombinants AcNPV/N and AcNPV/GP. NOV DNA was 
purified from the recombinant viruses and digested with Bamlil. The resulting restriction fragments were 
resolved on a 1% agarose gel. Wild type (wt) AcNPV, AcNPV PAK6 and baculovirus recombinants containing 
the TSWV NSS and NSM genes, i.e. AcNPV/NSs, AcNPV/NSM + l and AcNPV/NSM, were included for 
analyses. The BamHI restriction fragments of wt AcNPV DNA are sized 86.5, 23.3, 8.50, 3.45, 3.33, 1.92 and 
0.96 kb, respectively. Lambda DNA digested with PsA was included as a size marker. 

recombinants. As the level of transcription of the GP gene from the polyhedrin promoter 

was similar to that of the N gene within the AcNPV/N recombinant (data not shown), 

the low amount of GP expression was regulated at the level of translation. 

Immunoblot analyses of TSWV N and GP protein synthesized in insect cells 

In order to analyse the presence of low levels of the TSWV GP, Gl or G2 protein 

produced in 5. frugiperda cells, Western immunoblot analyses were performed on 
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Figure 3: Production of TSWV N and GP-
specific proteins in recombinant AcNPV-
infected Sf insect cells. Proteins from 
recombinant baculovirus-infected Sf cells 
were resolved on a SDS-polyacrylamide gel 
and stained with Coomassie brilliant blue. 
Spodopteia frugiperda cells infected with wt 
AcNPV, AcNPV PAK6, AcNPV/NSs and 
AcNPV/NSM were included in the analyses. 
Low- molecular-weight (LMW) size markers 
(Pharmacia) are indicated at the left. 

recombinant AcNPV infected cell extracts. Protein blots of AcNPV/GP-infected 5. 

frugiperda extracts probed with antiserum raised against whole TSWV particles 

demonstrated the presence, at low levels, of two specific proteins (Fig.4, lane 

AcNPV/GP) that were absent in wt AcNPV-infected insect cells (Fig.4, lane AcNPV). 

These two protein products co-migrated with Gl and G2 of purified TSWV (Fig.4, lane 

TSWV), and therefore most likely represent the glycoproteins. This indicates that the 

glycoprotein precursor gene is expressed and correctly processed in insect cells, as 

expected for this eukaryotic system. Additionally, a larger protein with an estimated size 

of about 140 kDa specifically reacted with the antiserum against whole TSWV particles. 

The size of this protein is approximately in agreement with the sum of G l and G2 

(glycosylated), and its absence from wt AcNPV-infected insect cells (Fig.4, lane AcNPV) 

moreover suggests that this protein most likely represents the precursor to the 

glycoproteins. 
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Western immunoblot analyses of AcNPV/N-infected S. frugiperda cell extracts 

demonstrated that the major protein produced indeed was the TSWV N protein. It co-

migrated with the TSWV N protein (Fig.5, lane TSWV) and reacted with antiserum 

raised against purified TSWV particles, as well as with antiserum raised against purified 

TSWV nucleocapsids (Fig.5, lane AcNPV/N; Avila et al., 1993). 

Figure 4: Western immunoblot analysis of TSWV GP-
specific proteins produced in Sf insect cells. Proteins 
from AcNPV/GP-infected Sf cells were resolved on a 
12.5% SDS-poIyacrylamide gel, transferred to Immobilon 
membrane and subsequently screened with 1 u.g/ml anti-
TSWV serum. As controls healthy Sf cells, wt AcNPV-
infected Sf cells and 250 ng purified TSWV BR-01 virus 
were included. Low-molecular-weight markers 
(Pharmacia) are indicated at the left. Expression of the 
glycoproteins in the presence of 25 u,g/ml tunicamycin is 
indicated by a " + ". 
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Figure 5: Western immunoblot analysis of 
TSWV N protein produced in Sf insect cells. 
Proteins from AcNPV/N-infected Sf cells 
were resolved on a 12.5% SDS-
polyacrylamide gel, transferred to Immobilon 
membrane and subsequently screened with 1 
u.g/ml anti-TSWV serum. Controls were as 
for Fig.4. Low-molecular-weight (LMW) 
markers (Pharmacia) are indicated at the 
left. Expression of the N protein in the 
presence of 25 u,g/ml tunicamycin is 
indicated by a " + ". 
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Post translational modification of TSWV proteins produced in insect cells 

Previous studies regarding glycosylation of the structural proteins of TSWV always 

showed some discrepancy. Two different groups had previously shown that the TSWV 

78 kDa and 58 kDa proteins are glycosylated (Tas et al., 1977; Mohamed et al., 1973), 

but Mohamed et al. (1973) also suggested that the 29 kDa N protein was glycosylated. 

Moreover, a 52 kDa protein band was frequently found in virus purifications. This 

protein was shown to be G2-specific and therefore may represent a stable degradation 

product of the 58 kDa G2 protein. Experiments indicated that this protein was also 

glycosylated (Tas et al., 1977; Mohamed, 1981). 

To verify whether the structural proteins of TSWV are glycosylated, the N-linked 

glycosylation was investigated. To this end, AcNPV/N- and AcNPV/GP-infected S. 

frugiperda cells were grown in the presence of tunicamycin, an inhibitor of N-linked 

glycosylation. Subsequent SDS-PAGE and Western immunoblot analyses of the proteins 

synthesized revealed no shift in migration of the N protein compared to N protein 

produced in insect cells without tunicamycin (Fig.5, lane AcNPV/N and AcNPV/N " + "). 

Although the baculovirus expression system does not reflect the situation in plant cells, 

based on the absence of glycosylation of the N protein in insect cells it now seems most 

unlikely that the N protein is glycosylated in plant cells, opposed to what Mohamed et 

al. (1973) suggested. 

Similar analyses for the G l and G2 proteins showed a shift in migration when the 

proteins were expressed in the presence of tunicamycin (Fig.4, lane AcNPV/GP and lane 

AcNPV/GP " + "), indicating that these proteins are indeed glycosylated. For Gl, a 

difference of approximately 5 kDa in migration was observed between the glycosylated 

and unglycosylated form. The migration shift for G2 was even larger, corresponding with 

an apparent size of 10 kDa. Inspection of the primary sequence of the TSWV 

glycoprotein precursor (Chapter 4) reveals the presence of 8 potential N-linked 

glycosylation sites, i.e 5 sites in G2 and 3 in Gl (Fig.6). The larger shift in migration for 

G2 compared to Gl may therefore indicate that most, if not all, sites are actually 

glycosylated. In addition to G l and G2, the putative glycoprotein precursor also showed 

a shift in migration when produced in the presence of tunicamycin. However, due to 
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poor resolution, an exact difference in migration of the unglycosylated- compared to the 

glycosylated form could not be determined, but could roughly be estimated around 10-15 

kDa. 

N ^ -

,1 ? ? ? ? ? , ! ? 

G2 
46K-

G1 
75K-

? ?! 
-COOH 

Figure 6: Schematical representation of the TSWV glycoprotein precursor. The potential glycosylation sites 
(N-X-T/S) are indicated by the mark "9". 

DISCUSSION 

In some of the previous chapters of this thesis, the baculovirus expression system has 

already been demonstrated to be a valuable tool in the study of the TSWV nonstructural 

proteins, i.e. NSS and NSM. Therefore, a similar approach was chosen as a first step to 

analyse the synthesis, processing and structural functions of the TSWV N, Gl and G2 

proteins in the viral life cycle. 

A recombinant AcNPV, containing the N protein gene, was constructed and showed 

a high level expression of a protein that comigrated with the TSWV N protein. Western 

immunoblot analysis confirmed its identity as the N protein. 

In addition, recombinant AcNPV containing the TSWV GP gene was constructed. 

However, expression levels of Gl, G2, or their precursor remained low and could not 

be detected directly in Coomassie stained Polyacrylamide gels. Western immunoblots, 

though, revealed the expression of Gl and G2, comigrating with the authentic viral Gl 

and G2 glycoproteins. Furthermore, a large protein was found reacting specifically with 

TSWV antiserum in extracts of AcNPV/GP-infected insect cells. This protein had the 
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size of G l and G2 together, and therefore most likely represented the precursor to both 

glycoproteins. This finding indicates that, at least in insect cells, cleavage does not 

necessarily occur cotranslationally. Whether the biosynthesis and maturation of the 

TSWV glycoproteins occurs likewise in plant cells remains to be investigated. 

Expression of the glycoproteins in the presence of an inhibitor of N-linked 

glycosylation, demonstrated the actual glycosylation of Gl and G2, as previously 

suggested by several authors (Tas et al, 1977; Mohamed et al, 1973). Besides the mature 

glycoproteins, also the putative precursor to the glycoproteins was found to be 

glycosylated. Interestingly, the unglycosylated form of G2 comigrated with the 52 kDa 

protein species often detected in purified virus preparations. This supports the idea that 

the 52 kDa protein band represents unglycosylated G2, rather than a stable degradation 

product thereof, as previously suggested (Tas et ai, 1977; Mohamed et al, 1973). Along 

this line, the frequent observation of multiple polypeptide bands of G2 may be explained 

by differential usage of the multiple (five) sites of glycosylation of this viral glycoprotein 

(Fig.6). 

The large difference in expression levels of the TSWV nucleoprotein and 

glycoproteins could not be explained, but, in view of similar transcription levels, has to 

be on the level of translation. It has been suggested that the presence of extra leader 

sequences in the chimaeric mRNA might impede expression in the baculovirus/insect cell 

system, but this does not seem the case for the high expressor AcNPV/N recombinant 

which contains a 127 nucleotides TSWV leader sequence, whereas this sequence is 

absent from the AcNPV/GP construct. The low level expression of the glycoproteins can 

also not be explained by an unfavourable AUG context (Kozak, 1986; optimal consensus 

A/G-CCAUGG), as it is rather optimal in the AcNPV/GP recombinant (G at -3, and 

G at +4; Table 1), nor does the N-end rule (Bachmair et al, 1989; Tobia et al, 1991), 

which predicts the turnover speed of proteins due to the presence of rather unfavourable 

N-end amino acid residues downstream the methionine codon. In addition to the 

favourable N-end serine, another reason for the high expression level of the N protein 

could be the stabilization of the N protein when complexed to RNA. This normally 

occurs within TSWV ribonucleocapsid structures where the N protein is tightly 
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N 

NSS 

NSM + 1 

NSM 

GP 

Consensus 

TCATC/irGTCTAA 

CCATA/\TGTCAAC 

TCGAAArGTTGAC 

GTACCMTGGGAAT 

CCGGC4TGGGAAT 

CXGACCA7ÜG 

Table 1: ATG-context within the different recombinant baculovirus constructs. 

associated with the viral RNA, but a similar situation may also occur in insect cells 

where the N protein could be complexed to its own mRNA or to other RNAs. This does 

not apply for the glycoproteins and sofar, the reason for the low expression level of the 

glycoproteins remains unknown. A combination of factors, i.e. AUG context, absence of 

viral leader sequences and N-end amino acid, may all have contributed to the difference 

in expression levels as found for the two NSM recombinants (Chapter 6, Fig.2; this 

chapter Fig.lc and Table 1). 

For the animal-infecting bunyaviruses electron microscopical analyses revealed that, 

prior to maturation, viral RNPs condense at the cytoplasmic face of the Golgi complex 

only where the bunyaviral glycoproteins are found to accumulate. This indicates that an 

interaction between the nucleocapsid protein and a cytoplasmic domain of the 

glycoproteins triggers the process of budding of RNPs into the lumen of the Golgi. For 

TSWV no information is available on the process of morphogenesis. However, if an 

interaction of the N protein with either of the two glycoproteins occurs, than it is most 

likely to be G2, as this protein has a large cytoplasmic domain (Fig.6; Chapter 4). As 

part of a study on the morphogenesis of TSWV, and to investigate the role of the N 

protein in this, the interaction of N with Gl and/or G2 was investigated by expressing 

both the N protein and the glycoproteins in insect cells. Immunoprecipitation of the N 

protein from these doubly infected-cell extracts, and subsequent analyses of this 

110 



precipitate on Western immunoblots for the presence of Gl and/or G2 sofar failed to 

demonstrate an interaction between the N protein and Gl and/or G2. This could be due 

to the low level of glycoprotein expression in the insect cells, making these analyses 

difficult. On the other hand, it is also possible that the interaction between the N protein 

and the glycoproteins occurs only when the N protein is present in the right 

conformation, i.e. in viral ribonucleocapsid structures. Co-transfection of insect cells or 

plant protoplasts, expressing the viral glycoproteins, with purified nucleocapsids might 

be worthwhile to test this hypothesis. 
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Chapter 8 

General discussion and concluding remarks 

Tomato spotted wilt virus (TSWV) is a relatively new and emerging virus, having 

become of particular economic importance during the past ten years. Currently, more 

than 650 different plant species within 72 families, monocots as well as dicots, are known 

to be susceptible to the virus. With respect to particle morphology and genomic 

structure, TSWV is quite distinct from all other plant viruses and was therefore originally 

classified as the sole member of a distinct group, the tomato spotted wilt virus group 

(Matthews, 1982). In 1984 though, Milne and Francki proposed to consider TSWV as 

a possible member of the Bunyaviridae, a family of arthrophod-borne, animal-infecting 

viruses (Elliott, 1990). Only during the past seven years attention has been given to the 

elucidation of the genetic organisation, the coding functions and the expression strategy 

of the TSWV genome. Parts of the data resulting from these analyses have been 

described in the thesis of De Haan (1991) and in the current thesis. Based on these 

molecular data TSWV could be definitely identified as a bunyavirus, and has therefore 

been classified within the Bunyaviridae as the representative of a newly created genus, 

the genus Tospovirus (Francki et al., 1991). 

As a consequence, the family of Bunyaviridae now encompasses 5 genera, i.e. 

Bunyavirus, Phlebovirus, Hantavirus, Nairovirus and Tospovirus, the latter containing the 

viruses which infect plants. For the representatives of most genera, except for Nairovirus, 

the nucleotide sequence of the complete genome has been elucidated. Some features 

derived from these data are summarized in Figure 1. 

In all genera the L RNA is of complete negative polarity and codes, in the viral 

complementary (vc) strand, for the putative viral RNA dependent RNA polymerase. In 

case of Uukuniemi virus, Lumbovirus, Hantaan virus, La Crosse and Germiston an RNA 

polymerase activity has been demonstrated to be associated with purified virion particles 
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Figure 1: Genetic organisation of the type species of all genera within the family Bunyaviridae. 

114 



(Ranki and Pettersson, 1975; Bouloy and Hannoun, 1976; Schmaljohn and Dalrymple, 

1983; Patterson et al., 1984; Vialat and Bouloy, 1992). However, only in the case of 

Bunyamwera bunyavirus, the RNA polymerase activity has been demonstrated to be 

encoded by the L RNA (Jin and Elliott, 1992 and 1993). Additionally, it was shown that 

the Bunyamwera L RNA encoded protein contains an endonuclease activity (Jin and 

Elliott, 1993), necessary for the cleavage of 5' capped leader sequences from host cell 

messenger RNAs. These sequences, 12 to 17 nucleotides in length, are subsequently used 

as primer for the initiation of transcription of the viral genome. This phenomenon, 

generally referred to as "cap-snatching", was described first for influenza virus 

{Orthomyxoviridae), where from the three viral proteins encompassing the polymerase 

complex, PB2 has been shown to recognize and bind the methylated cap-structure and 

PB1 to initiate transcription by adding the first residue onto the 3' end of the capped 

primer-fragment (Plotch et al., 1981; Ulmanen et al., 1981; Braam et al., 1983). For La 

Crosse and Germiston bunyaviruses, in vitro transcription experiments have demonstrated 

the presence of an endonuclease activity in purified virions which, at least for La Crosse, 

was shown to be methylated cap-dependent (Patterson et al., 1984; Vialat and Bouloy, 

1992). Indirect evidence for a virus-encoded cap-dependent endonuclease activity has 

been found for other members, encompassing all animal-infecting genera of the 

Bunyaviridae, by the presence of heterogeneous non-viral sequences at the 5' end of the 

viral mRNAs. TSWV was the first tospovirus for which these sequences were shown at 

the 5' end of the S RNA-specific subgenomic mRNAs (Chapter 3), indicating that a 

similar strategy for the initiation of transcription occurs in the plant cell system. 

Recently, similar results were reported for maize stripe tenuivirus (Huiet et ai, 1993), 

another group of segmented, negative-strand RNA plant viruses, and distinct from the 

Bunyaviridae in having 4 or 5 RNA segments, and in lacking a viral envelope (Gingery, 

1987). Altogether, the picture emerges that all segmented, negative-strand RNA viruses 

use a similar mechanism to initiate transcription of the viral genome, irrespective of 

infecting either a plant or an animal host. 

Unique for the genus Tospovirus, among the other Bunyaviridae, is the ambisense 

character of the M RNA, encoding a nonstructural protein of 33.6 kDa in the viral (v) 
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Strand, and the precursor to the glycoproteins, G l and G2, in the vc-strand (Chapter 4, 

Fig.l). For all the animal-infecting members of the Bunyaviridae, the M RNA is of 

complete negative polarity and codes for the glycoproteins in the vc strand (Fig.l). In 

these viruses, the glycoproteins are translationally expressed as a large precursor protein 

which is most likely processed via Golgi- or endoplasmatic reticulum (ER)-associated 

proteases, as no viral encoded proteases have been found. However, nothing is known 

on the processing of the TSWV glycoproteins, and whether the Golgi complex is involved 

herein. 

For some animal-infecting species of the Bunyaviridae family, the order and mode of 

processing of the G l and G2 glycoproteins is known (Fig.2). In some cases, the 

processing of the glycoprotein precursor at the ER and Golgi has been studied via 

heterologous expression systems, and these analyses revealed the presence of Golgi 

retention signals in either or both of the glycoproteins (Wasmoen et al., 1988; Matsuoka 

et al., 1988; Chen et al., 1991; Pensiero and Hay, 1992; Ruusala et ai, 1992; Ronnholm, 

1992). However, the picture for the glycoproteins of Dugbe nairovirus is still not clear 

(Marriott et al., 1992) and apparently involves a complex pattern of processing (Fig.2). 

As a first step towards elucidation of the processing of the TSWV glycoproteins, a 

cDNA construct containing the complete ORF of the glycoproteins was cloned and 

expressed in the baculovirus/insect cell expression system (Chapter 7). Although the 

expression level was low, both glycoproteins could be detected and were demonstrated 

to be glycosylated. Moreover, the precursor to both glycoproteins could be detected, and 

was also shown to be glycosylated. As a next step towards resolving questions on 

targeting and retention signals within the glycoproteins of this plant-infecting bunyavirus, 

certain domains of the glycoprotein precursor gene can be deleted and the constructs 

subsequently analysed. 

It is generally believed that for members of the Bunyaviridae the glycoproteins are 

involved in the attachment to and subsequent infection of the midgut cells of their 

vectors. Only in case of La Crosse virus experimental data are available which 

demonstrate an interaction of viral glycoproteins with specific cellular sites (Ludwig et 

al., 1989,1991). For TSWV several observations suggest that the glycoproteins play a role 
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Figure 2: Glycoprotein precursors of the type species of all genera within the family Bunyavitidae. The 
location and sizes of the cleavage products are indicated. Hydrophobic domains are indicated by hatched areas. 
The conserved amino acid sequence within the Gl glycoprotein of TSWV with that of members of the genus 
Bunyavirus is shown with a black box. "9" represents potential glycosylation sites (N-X-T/S). Vertical dotted 
and continuous lines represent the putative resp. proven N or C-termini of the maturated glycoproteins. 
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in the transmission by its vector, the thrips. Studies on morphologically defective 

TSWV isolates, i.e. virus mutants which are deficient in glycoprotein synthesis and lack 

the lipid envelope, showed that these mutants are still capable to spread through plant 

tissues at wild type rate (Resende et ai, 1991). However, these mutants fail to be 

transmitted by thrips (I. Wijkamp, pers. commun.). In this context, it is important to 

report that within the N-terminal region of the G2 glycoprotein of TSWV an RGD-

sequence was found (Chapter 4), a motif which has been previously reported as a 

cellular attachment domain of extracellular matrix proteins of animal- and plant cells 

(Pierschbacher and Ruoslahti, 1984; Ruoslahti and Pierschbacher, 1986). In these 

proteins the RGD-motif was found to be crucial for the recognition of cell surface 

receptors. The RGD motif has also been found within structural proteins of footh-and-

mouth disease virus (FMDV; Fox et ai, 1989), Coxsackie virus (Roivainen et ai, 1993) 

and adenovirus type 2 (Bai et ai, 1993, Belin and Boulanger, 1993), and shown to be 

involved in receptor binding, either as a primary target site or mediating the receptor 

binding at another site. In all of these cases, the RGD sequence is located within a 

hypervariable region of the structural protein. For TSWV it is tempting to assume that 

the RGD sequence is the putative binding site to cellular receptors of thrips midgut 

cells. It can not be excluded, however, that actual binding to cellular receptors takes 

place at another domain, like for instance the sequence conserved among the Gl 

glycoproteins of the genera Bunyavirus and Tospovirus (Fig.2). Sofar, virtually no 

information is available on binding of the animal-infecting members of the Bunyaviridae 

to cellular receptors in their vectors. Moreover, only for snowshoe hare and Germiston 

bunyavirus, and Punta Toro phlebovirus an RGD motif is present in the G2 glycoprotein. 

Whether the RGD sequence in these viruses is of biological significance remains to be 

established. 

The second, smaller ORF in the ambisense M RNA of TSWV is absent from the 

animal-infecting bunyaviruses and, therefore, most likely reflects an adaptation of this 

virus to plants as hosts (Chapter 4; Fig.l). In Chapter 6, it has been shown, by 

immunogold labelling and subcellular fractionation studies, that the product of this gene, 

the NSM protein, is found associated with nucleocapsid aggregates and with 
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plasmodesmata of virus-infected cells. At the plasmodesmata, the protein was found 

arranged in tubular extensions, suggesting that NSM most likely represents the putative 

viral "movement" protein involved in the cell-to-cell transport of TSWV nucleocapsid 

structures. Furthermore, computer comparisons using the OPTAL program (Gorbalenya 

et al, 1989) demonstrated the presence of a conserved sequence in the NSM proteins of 

TSWV and INSV that resembled the so-called "D-motif ' of other plant viral movement 

proteins (Koonin et al, 1991; Mushegian and Koonin, 1993). Currently, there are two 

reported mechanisms of plant viral cell-to-cell movement: (1) movement as 

unencapsidated RNA as exemplified by tobamoviruses, and (2) movement as virus-like 

particles as exemplified by comoviruses (Goldbach et ai, 1990; Hull, 1991; Maule, 1991; 

Deom et al, 1992). In case of the first mechanism, studied in most detail for TMV, viral 

RNA is proposed to associate with the movement protein resulting in an unfolded 

protein-RNA complex. Subsequent cell-to-cell movement of this complex does not 

require the coat protein and occurs through plasmodesmata which are not significantly 

modified (Tomenius et ai, 1987; Wolf et al, 1989). For plant viruses that use this 

concept of cell-to-cell transport, the viral movement protein has been shown to contain 

an RNA binding domain, which in some cases is single-stranded RNA-specific 

(Schoumacher et al, 1992) and in other cases, e.g. TMV, single-stranded DNA and RNA 

specific (Citovsky et al, 1990). The second concept of cell-to-cell movement, mainly 

studied for comoviruses, involves movement of virus particles through tubular structures 

extending from plasmodesmata (Van Lent et al., 1990, 1991; Perbal et al., 1993; 

Wieczorek and Sanfaçon, 1993). The mechanism of intercellular movement of TSWV is 

not clear yet, as it is neither transported as whole virions, nor (probably) as naked RNA 

(Chapter 6). Western immunoblot analysis demonstrated the association of NSM with 

nucleocapsid structures, which may suggest that tospoviruses move as (infectious) 

nucleocapsid structures. Inspection of the amino acid sequence of the NSM protein 

reveals the presence of an acidic carboxyl terminus, due to the presence of several 

aspartic acid (D) and glutamic acid (E) residues. It is, therefore, anticipated that this 

domain is involved in binding of NSM to the (basic) N proteins within the nucleocapsid 

structures. In addition the presence of a second domain can be hypothesized, i.e. a 
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domain involved in targeting and/or binding to plasmodesmata. 

The coding strategy of the S RNA differs among the various genera (Fig.l). Whereas 

the tospoviral and phleboviral S RNAs encode a nucleoprotein (N) and a nonstructural 

(NSS) protein in ambisense arrangement, members of the genus Bunyavirus possess an 

S RNA of complete negative polarity, encoding these two proteins in overlapping reading 

frames. The S RNAs of members of the genera Hantavirus and Nairovirus are also of 

complete negative polarity, but encode only an N protein which, moreover, is 

considerable larger than that of the other genera (Fig.l). Information about the function 

or even intracellular location of the nonstructural protein encoded by the phleboviral S 

RNA is hardly available. Some protein expression studies and immunogold labelling 

analyses have been performed, but no hints about its possible function have been 

obtained. Recently it has been demonstrated that the Uukuniemi virus and Punta Toro 

virus NSS proteins associate with the 40S ribosomal subunit (Simons et ai, 1992; Watkins 

et ai, 1993). Whether this interaction is significant remains to be elucidated. Immunogold 

labelling studies on the NSS protein of TSWV, as described in Chapter 5, showed the 

presence of this protein in fibrous structures, sometimes arranged in paracrystalline 

arrays, depending on the isolate. The BR-01 isolate of TSWV, of which the complete 

genomic sequence has been determined, showed the presence of NSS dispersed 

throughout the cytoplasma. These localization studies, however, did not give a clue on 

the function of the NSS protein. Moreover, it can be doubted whether the tospoviral NSS 

protein and phleboviral or bunyaviral NSS protein share a similar function, since the 

tospoviral NSS protein is much larger than those of its animal viral counterparts. 

Sequence analyses also revealed some primary and structural features of bunyaviral 

RNAs that might play important functions in replication, transcription and packaging. 

As shown in Figure 1, and demonstrated for TSWV in Chapter 4 and in the thesis of 

De Haan (1991), within each species the viral RNA segments contain a terminal, 

inverted repeat of about 8 nucleotides. Moreover, within each viral RNA segment, the 

terminal sequences are complementary to a larger extend than these 8 conserved 

nucleotides, enabling the formation of a stable panhandle structure. The terminal, 

inverted repeats are characteristic for segmented, negative strand RNA viruses and, for 
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members of the Orthomyxoviridae, have been shown to contain sequences required for 

transcription, replication and packaging (Luytjes et al., 1989; Parvin et al., 1989; Li and 

Palese, 1992; Seong and Brownlee, 1992a, 1992b; Piccone et al., 1993). The studies 

performed on the repücation and transcription of the TSWV genome, as followed in 

systemically-infected N. rustica plants (Chapter 2), did confirm the genetic organisation 

of the TSWV genome, and showed that TSWV replicates as a negative stranded RNA 

virus. However, these data did not give any insight into the function of the conserved 

sequences in these processes, nor in the packaging of the viral RNA strands into mature 

virus particles. With respect to the latter process, these studies surprisingly revealed the 

presence of exclusively the negative strand of the L RNA in mature virus particles, while 

for the other two genomic segments both strands are packaged. This phenomena might 

perhaps be due to the ambisense character of the M and S RNA segments. A similar 

observation has been reported for the Uukuniemi phleboviral S RNA (Simons et al., 

1991), which also has an ambisense polarity. 

Recent investigations with hantaviruses demonstrated that the binding of the 

nucleoprotein to RNA is not sequence-specific and shows a preference for dsRNA (Gott 

et al., 1993), suggesting that the panhandle structure, resulting from hybridisation of the 

complementary termini, might play an essential role in packaging. This idea is supported 

by the observation for TSWV, and other bunyaviruses, that viral mRNAs are not 

contained in mature virus particles (Chapter 2). 

A second specific feature is the presence of an intergenic region (IR) within the 

ambisense RNA segments of all Bunyaviridae, which is either AU-rich (TSWV, INSV, 

Punta Toro, Uukuniemi) or GC-rich (Sicilian sandfly fever, Toscana, Rift Valley fever). 

It is speculated that this region contains transcription termination signals, i.e. the AU-

rich IR by formation of a stable hairpin structure and the GC-rich IR by the presence 

of conserved sequence motifs. For members of the genus Tospovirus, an additional 

sequence at the top of the hairpin within the S and M RNA was found conserved 

between the species sequenced sofar, i.e TSWV and INSV (Chapter 4). Termination of 

transcription within all the other, negative stranded RNA segments of the Bunyaviridae 

has been suggested to occur via conserved sequence motifs (Bouloy et al., 1990). 
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Whether these primary or structural features indeed represent the signals for termination 

still needs to be determined. 

Finally, the availability of the complete nucleotide sequence of TSWV (Chapter 4; 

De Haan, thesis 1991) enables a thorough comparison with the animal-infecting members 

of the Bunyaviridae and to speculate on possible evolutionary relationships. Interviral 

sequence comparisons of the glycoprotein precursor revealed a sequence motif 

conserved between the G l glycoprotein of TSWV and those of members of the genus 

Bunyavirus (Chapter 4; Fig.2). This, together with the homology between the TSWV and 

Bunyamwera viral L proteins (De Haan et al, 1991), may indicate that tospoviruses are 

evolutionary most closely related to the genus Bunyavirus, even more closely than the 

genus Bunyavirus is to e.g. the genus Hantavirus. It is, therefore, tempting to assume that 

TSWV has recently descended from an animal-infecting bunyavirus. This idea is further 

strengthened by two additional observations. Firstly, while the number of vertebrate-

infecting bunyaviruses is high, the number of bunyaviruses (tospoviruses) capable of 

infecting plants is limited. Secondly, the virtual absence of efficient natural resistance 

genes in host plants may indicate that TSWV and the other tospoviruses have invaded 

the plant kingdom recently, and that co-evolution of bunyaviruses and plants has yet to 

start. Hence, it is most likely that TSWV has evolutionary departed from an animal 

bunyavirus, that became able to infect thrips species and, due to the very close ecological 

interactions between this insect group and plants, subsequently became adapted to plants 

instead of vertebrates. Although tospoviruses seem evolutionarily most closely related to 

members of the genus Bunyavirus, they have an ambisense S RNA and share this feature 

only with members of the genus Phlebovirus. This raises the question how the TSWV 

ambisense S RNA, apparently not encoding proteins required for host adaptation, could 

evolve from a fully negative strand bunyaviral S RNA. Possible the NSS protein of both 

genera are genetically unrelated and is the generation of an ambisense S RNA a 

relatively late event during bunyaviral evolution. This option is supported by the 

observation that TSWV has been adapted to plant hosts by inclusion of the NSM gene, 

in an ambisense arrangement, within the M RNA segment. 
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Summary 

This thesis describes studies which are aimed at the elucidation of the genetic 

organisation and expression strategy of the tomato spotted wilt virus (TSWV) RNA 

genome. 

Using specific cDNA clones, corresponding to all three genomic RNA segments, the 

synthesis of virus specific RNA species in systemically infected Nicotiana mstica plants 

was followed (Chapter 2). These analyses revealed the presence of low (steady state) 

levels of vc strands and accumulating amounts of v strands, and confirmed that TSWV 

replicates as a negative strand RNA virus. Moreover, it could be demonstrated that the 

two genes contained in the S RNA are transcribed from complementary strands, 

confirming the ambisense nature of this genome segment. 

To gain more information on the first steps in the transcription process of the TSWV 

genome, the subgenomic mRNAs, transcribed from the S RNA, were partially purified 

from infected plant material and their 5' ends analysed by primer extension. These 

analyses revealed the presence of non-viral, heterogeneous sequences, 12-20 nucleotides 

in length, at the 5' end of the mRNAs (Chapter 3). These observations indicated that the 

initiation of transcription of the viral genome most likely occurs via a mechanism 

referred to as "cap-snatching", a process that was first described for influenza virus. 

The elucidation of the nucleotide sequence of the M RNA, as described in Chapter 

4, revealed an ambisense coding strategy for this RNA segment. Meanwhile, TSWV had 

been classified as the representative of a newly created genus, denoted Tospovirus, within 

the Bunyaviridae, a family that until then only consisted of animal-infecting viruses. Thus 

it was concluded that TSWV represents a bunyavirus with two ambisense RNA segments. 

In M RNA a large open reading frame (ORF) was localized on the viral complementary 

(vc) strand, encoding the precursor to both envelope glycoproteins, G l (78 kDa) and G2 

(58 kDa). The second, smaller ORF, located on the viral strand of M RNA, encoded a 

putative nonstructural protein, denoted NSM, of 33.6 kDa. The amino acid sequence of 

the glycoprotein precursor revealed the presence of an RGD-motif in the N-terminal 

region of G2. It was therefore anticipated that the glycoproteins are involved in 
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acquisition and transmission by thrips via receptor binding. 

Comparison with the genomes of the animal-infecting members of the Bunyaviridae, 

reveals that the second ORF within the M RNA of TS WV, i.e. the NSM gene, represents 

an addition to the standard bunyaviral genome, suggesting that this gene might be 

involved in the adaptation of this bunyavirus to plant hosts. To gain more insight into the 

function of the nonstructural proteins of TSWV, both the NSS and NSM genes were 

cloned and expressed in heterologous expression systems. The proteins thus produced 

were purified and used for the production of polyclonal antisera. In Chapter 5, 

immunogold labelling analyses demonstrated the presence of the NSS protein in fibrous 

structures within the cytoplasm of infected cells. Depending on the isolate, these 

structures were arranged in flexible or paracrystalline arrays. Similar studies were 

performed for the NSM protein (Chapter 6), and revealed a transient character of this 

protein in a time course analysis of systemically infected plants. Immunogold analyses 

showed the association of NSM with both non-enveloped nucleocapsid aggregates and 

plasmodesmata, though only during a short period early after infection. These results 

provided evidence that NSM represents the viral movement protein, involved in cell-to-

cell transport of non-enveloped ribonucleocapsids. 

As a first step towards unravelling the maturation pathways of the glycoproteins, the 

gene for the glycoprotein precursor was cloned and expressed in the eukaryotic 

baculovirus/insect cell expression system. The results obtained, and presented in Chapter 

7, demonstrated the actual glycosylation of the viral glycoproteins. Moreover, the 

precursor to the glycoprotein was found to be glycosylated, indicating that glycosylation 

takes place at the stage of the non-processed G1/G2 precursor protein. Finally, in 

Chapter 8 a general discussion is presented within the family Bunyaviridae. The 

evolutionary relationship to the animal-infecting members of the Bunyaviridae is 

emphasized. 
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Samenvatting 

Dit proefschrift beschrijft onderzoek naar de opheldering van de genetische 

organisatie en expressiestrategie van het RNA-genoom van het tomatebronsvlekkenvirus 

(Engels: tomato spotted wilt virus, afgekort TSWV). Dit virus is de type-soort van het 

genus Tospovirus, een groep van plantevirussen behorend tot de grote familie 

Bunyaviridae, waarvan de meeste leden vertebraten infecteren. 

Met behulp van specifieke cDNA-klonen, elk corresponderend met één van de drie 

genomische RNA-segmenten, is de synthese van virus-specifieke RNA-moleculen in 

systemisch geïnfecteerde Nicotiana rustica planten nader onderzocht (Hoofdstuk 2). Op 

basis van de kinetiek van de virale RNA-synthese kon worden bevestigd dat TSWV zich 

vermenigvuldigt als een negatief-strengig RNA-virus. Tevens kon worden aangetoond dat 

twee genen die gecodeerd liggen op het S RNA, getranscribeerd worden van 

complementaire strengen, waarmee het "ambisense" karakter van dit RNA segment 

definitief werd aangetoond. Detectie van M RNA-specifieke subgenomische RNA 

moleculen vormde een eerste aanwijzing dat ook het M RNA ambisense van karakter 

is. 

Om meer informatie te verzamelen over de eerste stappen in het virale 

transcriptieproces werden de beide subgenomische boodschapper-RNA's (mRNA's), die 

van het S RNA worden overgeschreven, gedeeltelijk opgezuiverd en hun 5'-uiteinden 

geanalyseerd. Aldus kon de aanwezigheid van niet-virale nucleotidenvolgorden, met een 

lengte van 12 tot 20 residuen, worden aangetoond aan de 5'-uiteinden van deze mRNA's 

(Hoofdstuk 3). Hiermee werd aannemelijk gemaakt dat de transcriptie van het TSWV-

genoom geïnitieerd wordt met behulp van leaders van cellulaire mRNA's, een proces dat 

bekend staat onder de naam "cap-snatching", en voor het eerst beschreven is voor 

influenzavirussen. 

De bepaling van de nucleotidenvolgorde van het M RNA, beschreven in Hoofdstuk 

4, toonde aan dat dit RNA, evenals het S RNA, inderdaad ambisense is. In de streng die 

complementair is aan het virale M RNA bevindt zich een open leesraam coderend voor 

de precursor van de beide glycoproteinen, G l (78 kDa) en G2 (58 kDa). De aminozuur-
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volgorde van deze precursor bleek een RGD-motief in de amino-terminus van het G2 

eiwit te bevatten, hetgeen suggereert dat dit virale eiwit een rol speelt in opname en 

overdracht door trips door middel van binding aan een receptor. Het tweede gen in het 

M RNA is gelegen op de virale streng, en codeert voor een niet-structureel eiwit, 

genaamd NSM, met een Mr van 33.6 kDa. 

Op basis van vergelijkingen met de genomen van de dier-infecterende leden van de 

Bunyaviridae kon geconcludeerd worden dat het NSM-gen van TSWV een extra 

toevoeging is aan het standaard bunyavirale genoom. De aanwezigheid van dit extra gen 

in TSWV leidt tot de veronderstelling dat NSM een rol zou spelen bij de aanpassing van 

dit bunyavirus aan planten als gastheer. Om meer inzicht te krijgen in de mogelijke 

functie van het NSM-eiwit, en tevens van het tweede niet-structurele eiwit NSS, werden 

de desbetreffende genen gekloneerd en in heterologe expressiesystemen tot expressie 

gebracht (E.coli, baculovirus/insektecel). De aldus geproduceerde eiwitten werden 

opgezuiverd en gebruikt voor de produktie van polyklonale antisera. Door middel van 

immuno-elektronenmicroscopische studies kon vervolgens de intracellulaire locatie van 

het NSs-eiwit worden vastgesteld in fibrillaire structuren in het cytoplasma van de 

geïnfecteerde plantecel (Hoofdstuk 5). De functie van dit eiwit bleef echter onbekend. 

Analyse van de NSM-eiwit-synthese toonde aan dat dit eiwit alleen vroeg in het 

infectieproces detecteerbaar is. Het NSM-eiwit bleek specifiek geassocieerd te zijn met 

nucleocapside-aggregaten en met plasmodesmata waarin het lijkt te aggregeren tot 

buisvormige structuren (Hoofdstuk 6). Deze waarnemingen vormen een sterke aanwijzing 

dat NSM funktioneert als een viraal transporteiwit, betrokken bij het transport van cel 

naar cel van de ribonucleocapside-structuren. 

Als eerste stap tot opheldering van de maturatie van de glycoproteïnen is het gen 

coderend voor de precursor voor deze eiwitten, gekloneerd en tot expressie gebracht in 

het baculovirus/insektecel-systeem. Zowel de rijpe glycoproteïnen als het precursoreiwit 

blijken geglycosyleerd te worden, op grond waarvan wordt aangenomen dat glycosylering 

zeer vroeg, op het niveau van de ongemodificeerde G1/G2 precursor, plaats vindt 

(Hoofdstuk 7). Hoofdstuk 8 bevat, ter afsluiting, een algemene discussie, waarin de 

evolutionaire verwantschap van TSWV met de dier-infecterende leden van de 

Bunyaviridae wordt belicht. 
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