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Abstract 

Bink, M.C.A.M., 1998. Complex pedigree analysis to detect quantitative trait loci in dairy 
cattle. Doctoral thesis, Wageningen Agricultural University, P.O. Box 338, 6700 AH 
Wageningen, The Netherlands. 

This thesis considers development of statistical methodology for detection of 

quantitative trait loci (QTL) in outbreeding dairy cattle populations. Information on genetic 

markers is used to study segregation of chromosomal segments from parents to offspring. The 

presence of complex pedigrees and incompleteness of genetic marker information seriously 

complicate the statistical analysis of QTL mapping experiments in livestock populations. In 

this thesis, a Bayesian approach to QTL detection and mapping is developed, which makes 

use of Markov chain Monte Carlo (MCMC) methodology to perform the otherwise intractable 

computations. The Bayesian approach combined with the MCMC computing methodology, 

proved very flexible in the construction of a realistic model for the analysis of livestock data. 

Methodology was tested empirically by Monte Carlo simulation and was successfully applied 

to data on Dutch dairy cattle, identifying chromosomal regions likely containing QTL for 

traits of biological importance. 
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tegen je aan te mogen kletsen en zeuren, tevens bedankt voor je kritische feedback. Richard, 
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Stellingen 

1. Het benutten van maternale en patemale relaties tussen half-sib families in een 

granddaughter design leidt tot een grotere statistische power om QTL's op te sporen. 

Dit proefschrift 

2. De toepassing van data-augmentatie om te komen tot bekende verdelingen van trekkingen 

voor de Gibbs sampler, leidt tot inefficiente menging van modelparameters indien er 

relatief veel data aangevuld moet worden. 

Dit proefschrift 

3. Schattingsmethoden waarin een genetisch model met random effecten voor het QTL 

wordt verondersteld, zijn geschikt voor gesimuleerde data waarin het QTL slechts 2 

allelen bevat, maar andersom is dit niet het geval. 

Hoeschele et al. Genetics, 1997,147:1445-1457 

4. De in de data aanwezige informatie over een modelparameter kan eenvoudig worden 

bestudeerd door de veronderstelde voorkennis over deze parameter te variëren. 

Dit proefschrift 

5. Het direkte gebruik van waarnemingen van de dochters leidt tot nauwkeurigere 

schattingen van variantiecomponenten dan het gebruik van zogenaamde Daughter Yield 

Deviations. 

Dit proefschrift; Van Arendonk et al. J Dairy Sei (1998, accepted); Grignola et al. (1996) Genet Sel Evol 

28:491-504; Thaller & Hoeschele (1996) Theor Appl Genet 93:1167-1174; Uimari et al. (1996) Genetics 

143:1831-1842 

6. Aangezien veefokkers een beter idee hebben van verhoudingen van variantiecomponenten 

dan van de variantiecomponenten zelf, ligt het meer voor de hand om in een Bayesiaanse 

analyse de voorkennis over genetische parameters te definieren in termen van deze 

verhoudingen. 



7. Bayesiaanse modelbepaling is de beste statistische methode voor de bestudering van het 

aantal QTL's dat aanwezig is binnen een gemarkeerd chromosoomsegment. 

Satagopan & Yandell (1996) Special contributed paper session on genetic analysis of quantitative traits and 

complex diseases, Biometrie section, Joint Statistical Meetings, Chicago, IL.; Uimari & Hoeschele (1997) 

Genetics 146:735-743; Sillanpaa & Arjas (1998) Genetics 148:1373-1388 

8. Voor het opsporen van QTL's voor kenmerken waarop fenotypisch selectie moeizaam 

verloopt, is het verzamelen van fenotypische gegevens cruciaal. 

9. Het succes van merker-ondersteunde selectie in een fokprogramma hangt in sterke mate af 

van het vinden van nieuwe QTL's. 

Meuwissen & Goddard (1996) Genet Sel Evol 28:161-176 

10. In tegenstelling tot de situatie bij de handel in aandelen wordt het in een Bayesiaanse 

analyse zeer gewaardeerd wanneer aanwezige voorkennis zo goed mogelijk wordt benut. 

11. Het succes van het zogenaamde polder-model heeft geen betrekking op het aantal 

Wageningse carpoolers dat uiteindelijk in Lelystad gaat wonen. 

12. Universiteiten en professionele voetbalclubs in Nederland hebben gemeen dat ze prima in 

staat zijn om talent op te leiden maar tevens dat ze dit talent daarna niet weten te 

behouden. 

13. Life is what happens to you while you're busy making other plans. 

John Lennon 

Stellingen behorende bij het proefschrift 

"Complex pedigree analysis to detect quantitative trait loci in dairy cattle", 

Marco Bink, 

Wageningen, 4 september 1998. 
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General introduction 

In dairy cattle, phenotypic variation can be observed in many traits, such as milk 

yield, fertility and disease resistance. For breeding purposes, analysis of this phenotypic 

variation and uncovering the contribution of genetic factors is very important. The observed 

variation results from the combined action of multiple segregating genes and environmental 

factors. An intrinsic feature of such traits is, however, that the individual genes contributing 

to the quantitative genetic variation can hardly be distinguished. The detection of the 

individual gene is hampered by their generally small effects, and the fact that segregation of 

alleles from parents to offspring cannot be followed. Therefore, the genetics of such traits 

until recently were studied in general terms of classical quantitative genetics, e.g., heritability 

and covariances between relatives, rather than in terms of individual gene effects (Falconer 

and MacKay 1996). Developments in molecular genetics during the last decade, however, 

have opened the way to follow segregation of chromosomal segments in families. Through 

the use of these genetically marked chromosomal segments, it has become possible to detect 

and locate the genes affecting quantitative traits ("quantitative trait loci" or "QTL"). After 

successful identification of QTL, the genetic markers linked to the QTL can be used to 

improve selection schemes. 

Without markers, prediction of genetic merit of animals and selection decisions are 

entirely based on phenotypic and pedigree information. Phenotypic information to identify 

within family genetic differences only becomes available after measurement on the animal or 

its offspring. For example, with milk production traits information on within family genetic 

differences between brothers comes available when the bulls are 5 years old, i.e. when their 

offspring have completed their first lactation. Genetic markers linked to QTL can be used to 

improve prediction of genetic merit and selection of animals. The transmission of alleles at 

the QTL from parents to offspring can be traced based on the genotypes of linked markers. 

Marker information is available very soon after birth or even at the embryo level and 

facilitates early identification of genetic differences within a family. Information on genetic 

markers can be used to select animals at a younger age and/or to improve the accuracy of 

prediction of genetic merit. Additional genetic improvement from marker assisted selection 

in dairy cattle breeding programs has been reported (Soller and Beckmann 1983; Kashi et al. 

1990; Meuwissen and VanArendonk 1992). 
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UTILIZATION OF FIELD DATA TO DETECT QTL IN DAIRY CATTLE 

The structure of commercial dairy cattle breeding programs, where sires have a large 

number of offspring, can be utilized to detect QTL directly in commercial populations. 

Weiler et al. (1990) investigated the daughter and granddaughter design for detection of QTL 

in dairy cattle populations. In a daughter design, sires and their daughters are scored for 

markers and the daughters are measured for the quantitative trait. In a granddaughter design, 

grandsires and their sons are genotyped for markers, while the daughters of the sons (i.e., the 

granddaughters) are measured for the trait. The granddaughter design makes use of the 

generally large amount of phenotypic data that are routinely collected in dairy cattle 

populations, while minimizing the genotyping effort (Weiler et al. 1990). 

In the statistical analysis of granddaughter design data grandsires are usually assumed 

to be unrelated and the sons only related through their (grand) sire. This assumption often 

does not hold since additional relationships are often present. For example, bull dams may 

have multiple sons tested in a breeding program, or bull dams are sired by a grandsire. A full 

pedigree analysis, accounting for all relationships, can improve the power to detect QTL 

since more segregation events are included. Low power implies a small probability of 

detecting a QTL. The additional increase in power is especially beneficial when the size of 

the granddaughter design is limited by the progeny test capacity of breeding programs. A full 

pedigree analysis will include individuals (bull dams) that do not have marker genotypes 

observed. Furthermore, breeding programs are ongoing and new generations of individuals 

can be added to detect more QTL or to confirm previously detected QTL. 

In summary, complex pedigrees of individuals in a granddaughter design for dairy 

cattle and the incomplete marker data require sophisticated statistical methods for analysis. 

These methods are currently not available, since most methods used to date, only use a single 

kind of relationship and assume that all individuals have observed marker genotypes (see 

reviews by Bovenhuis et al. 1997; Hoeschele et al. 1997). Markov chain Monte Carlo 

(MCMC) methods may offer the opportunity to utilize all pedigree information in QTL 

analysis in complex pedigrees. In this thesis, MCMC methods will be used to make Bayesian 

inferences and in the following section the essentials of Bayesian methods is briefly 

introduced. 
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BAYESIAN DATA ANALYSIS AND MARKOV CHAIN MONTE CARLO 

The essential characteristic of Bayesian methods are their explicit use of probability 

for quantifying uncertainty in inferences based on statistical data analysis (Gelman et al. 

1995). Bayesian data analysis starts with setting up a full probability model - a joint 

probability distribution for all observable and unobservable quantities in a problem. For 

example, trait phenotypes are assumed to follow a normal distribution, but also the 

distributions of variance components are specified a priori. Bayesian statistical inference is 

concerned with drawing conclusions about quantities that are not observed, after combining 

prior knowledge on all unobserved quantities with information from the observed data. 

Bayesian inferences about a particular parameter are made in terms of probability statements 

or probability distributions. Marginal posterior distributions take into account uncertainty in 

a single parameter due to uncertainty in all other parameters in the model. This treatment of 

uncertainty involves complicated integration of the joint posterior density, and analytical 

integration is often impossible due to the high-dimensional complexity of the problem. 

In the 1990's, the interest in Bayesian analysis has increased rapidly due to the 

increasing availability of inexpensive, high-speed computing, and the advent of methods 

based on Markov chain Monte Carlo (MCMC) algorithms, i.e., Monte Carlo integration 

using Markov chains. Monte Carlo integration draws samples from the required distribution 

(the joint posterior density), and Markov chain Monte Carlo draws these samples by running 

a cleverly constructed Markov chain for a long time. The Markov chain has an equilibrium 

distribution equal to the joint posterior distribution being approximated. One can construct 

these chains in many ways, but all of them, including the Gibbs sampler (Geman and Geman 

1984), are special cases of the general framework of Metropolis et al. (1953) and Hastings 

(1970). Recommendations for further reading on Bayesian data analysis and MCMC 

methodology are Gelman et al. (1995) and Gilks et al. (1996), respectively. 

AIM AND OUTLINE OF THIS THESIS 

The aim of this thesis is to contribute to the efficient utilization of data on genetic 

markers and quantitative traits to detect and utilize QTL in complex outbred pedigrees in 

dairy cattle breeding programs. Due to the lack of flexible and efficient statistical methods to 

analyze such data, presentation of statistical methods developed forms the core of this thesis. 

Methodology is based on Bayes theory and implemented via MCMC algorithms. 
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Throughout this thesis, we assume a mixed linear model with two random genetic 

components, i.e., effects due to a marked QTL and residual polygenes. These components 

are assumed to be normally distributed and independent in the base population. To arrive at a 

flexible method for full pedigree analysis, an animal model is taken as the starting point. The 

amount of information on parameters for the QTL analysis varies throughout this thesis 

(Table 1). In most chapters, the developed methodology is empirically tested by the use of 

simulated data. In chapter 6, however, experimental data on bovine chromosome six is 

analyzed to estimate position and size of a putative QTL for protein percent. 

Table 1 : Assumptions made with respect to model, marker genotypes and QTL. 

chapter 
2 
3 
4 
5 
6 

modell 

AM 
RAM 
RAM 
RAM 
RAM 

marker 
no. loci 2 

single 
multiple 
multiple 
multiple 
multiple 

genotypes 
missing data 

yes 
no 
no 
yes 
yes 

QTL 
variance 

fixed 
estimated 
estimated 
estimated 
estimated 

position 
fixed 
fixed 

estimated 
fixed 

estimated 
1 AM = animal model, RAM = reduced animal model 
2 number of loci within a known marker linkage map 

Incomplete marker data prevent application of marker-assisted breeding value 

estimation using animal model BLUP. In chapter 2, a Gibbs sampling approach is presented 

for Bayesian estimation of breeding values for pedigrees that include ungenotyped 

individuals. The procedure is described for a single marker linked to a QTL, and 

concentrates on how phenotypic information can be included in deriving sampling 

distributions for augmentation of marker genotypes. Complete knowledge is assumed for the 

recombination rate between marker and QTL as well as the additive genetic variance due to 

the QTL. 

Analysis of data from a granddaughter design provides knowledge on size and map 

location of a QTL. The granddaughters form the majority of individuals in the granddaughter 

design, but they do not contribute efficiently to the detection of QTL due to their unobserved 

marker genotypes. From chapter 3 onwards, we implement a reduced animal model to absorb 

the genetic effects of granddaughters analytically. The reduced animal model maintains the 

flexibility of including (ungenotyped) individuals, e.g., dams, with relationships to multiple 

genotyped individuals in the granddaughter design. In chapter 3 we concentrate on the 

estimation of QTL variance (fixed position) with a reduced animal model. In chapter 4, the 

method is extended to estimate the QTL position within the marker linkage map. 
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In chapter 5, the methodology of handling ungenotyped animals (chapter 2) and the 

reduced animal model (chapter 3) are combined to estimate model parameters in 

granddaughter designs, where ungenotyped dams of sons provide additional relationships 

between genotyped elite sires and sons. 

The general discussion (chapter 6) contains four sections. First, the method described 

in chapter 5 was extended to estimate QTL position in a way similar to that described in 

chapter 4. Secondly, results are presented from QTL analysis of experimental data for 

chromosome six in dairy cattle. Thirdly, the developed Bayesian method for QTL analysis in 

complex pedigrees is compared to literature. Finally, practical implications of marker-

assisted genetic evaluation in dairy cattle breeding programs are briefly addressed. 
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ABSTRACT 

Incomplete marker data prevents application of marker-assisted breeding value 

estimation using animal model BLUP. We describe a Gibbs sampling approach for Bayesian 

estimation of breeding values, allowing incomplete information on a single marker that is 

linked to a quantitative trait locus. Derivation of sampling densities for marker genotypes is 

emphasized, because reconsideration of the gametic relationship matrix structure for a 

marked quantitative trait locus leads to simple conditional densities. A small numerical 

example is used to validate estimates obtained from Gibbs sampling. Extension and 

application of the presented approach in livestock populations is discussed. 

INTRODUCTION 

Identification of a genetic marker closely linked to a gene (or a cluster of genes) 

affecting a quantitative trait, allows more accurate selection for that trait (Goddard 1992). 

The possible advantages from marker-assisted genetic evaluation have been described 

extensively (e.g., Soller and Beekman 1982; Smith and Simpson 1986; Meuwissen and Van 

Arendonk 1992). 

Fernando and Grossman (1989) demonstrated how Best Linear Unbiased Prediction 

(BLUP) can be performed when data is available on a single marker linked to quantitative 

trait locus (QTL). The method of Fernando and Grossman has been modified for including 

multiple unlinked marked QTL (Van Arendonk et al. 1994), a different method of assigning 

QTL effects within animals (Wang et al. 1995); and marker brackets (Goddard 1992). These 

methods are efficient when marker data is complete. However, in practice, incompleteness of 

marker data is very likely because it is expensive and often impossible (when no DNA is 

available) to obtain marker genotypes for all animals in a pedigree. For every unmarked 

animal, several marker genotypes can be fitted, each resulting in a different marker genotype 

configuration. When the proportion or number of unmarked animals increases, identification 

of each possible marker genotype configuration becomes tedious and analytical computation 

of likelihood of occurrence of these configurations becomes impossible. 

Gibbs sampling (Geman and Geman 1984) is a numerical integration method that 

provides opportunities to solve analytically intractable problems. Applications of this 
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technique have recently been published in statistics (e.g. Gelfand and Smith 1990; Geyer 

1992) as well as animal breeding (e.g., Wang et al. 1993; Sorensen et al. 1994). Janss et al. 

(1995) successfully applied Gibbs sampling to sample genotypes for a bi-allelic major gene, 

in absence of markers. Sampling genotypes for multiallelic loci, e.g., genetic markers, may 

lead to reducible Gibbs chains (Thomas and Cortessis 1992; Sheehan and Thomas 1993). 

Thompson (1994) summarizes approaches to resolve this potential reducibility and concludes 

that a sampler can be constructed that efficiently samples multiallelic genotypes on a large 

pedigree. 

The objective of this paper is to describe the Gibbs sampler for marker-assisted 

breeding value estimation for situations where genotypes for a single marker locus are 

unknown for some individuals in the pedigree. Derivation of the conditional, discrete, 

sampling distributions for genotypes at the marker is emphasized. A small numerical example 

is used to compare estimates from Gibbs sampling to true posterior mean estimates. 

Extension and application of our method are discussed. 

METHODOLOGY 

Model and Priors 

We consider inferences about model parameters for a mixed inheritance model of the 

form 

y = Xß + Zu + Wv + e [1] 

where y and e are «-vectors representing observations and residual errors, ß is a p-vector of 

'fixed effects', u and v are q and 2^-vectors of random polygenic and QTL effects, 

respectively, X is a known n x p matrix of full column rank, and Z and W are known nx q 

and n x 2q matrices, respectively. For each individual we consider three random genetic 

effects, i.e., 2 additive allelic effects at a marked QTL ( v' and v], see Figure 1) and a residual 

polygenic effect («,-). Here e is assumed to have the distribution Nn (O, \<s\), independently of 

ß, u and v. Also u is taken to be Nq (O, Aa2
u ), where A is the well-known numerator 

relationship matrix. Finally, v is taken to be N2q(o,GaJ), where G is the gametic 

relationship matrix (2q x 2q) computed from pedigree, a full set of marker genotypes and the 

known map distance between marker and QTL (Wang et al. 1995). In case of incomplete 
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marker data, we augment genotypes for ungenotyped individuals. We then denote m^ and 

G(k) as the marker genotype configuration k and as the corresponding gametic relationship 

matrix. Further, ß, u, v, and missing marker genotypes are assumed to be independent, a 

priori. We assume complete knowledge on variance components and map distance between 

marker and QTL. 

Linkage between Marker and QTL 

M s i -

Q s 1 -

- M s
2 Md ' -

- Q s 2 Qd1 -

M j 1 -

Q i 1 -

- M d
2 

- Q d 2 

- M j 2 

- Q i 2 

Figure 1 : Linkage between marker and quantitative trait locus (QTL) alleles. Assignment of 
QTL alleles is based on marker alleles. Given a known recombination rate, r, the 
probability that the first QTL allele of animal i is identical to the second QTL allele of 
its sire is given as P( Q) = Q2) = ( l - r ) xP (M ' = M2) + {r)xP(M) = M]), where M 
= marker allele; Q = QTL allele; i = individual, s = sire; and d = dam. 

Joint Posterior Density and Full Conditional Distributions 

The conditional density of y given ß, u, and v for the model given in [1] is 

proportional to exp{->£ <7~2 (y - Xß - Zu - Wv)'(y - X/? - Zu - Wv)}, so the joint posterior 

density is given by 

p(ß,u,vlCT^,aJ,oe
2,mobs,r,y) 

- exp{- /2 c;2 (y - Xß - Zu - Wv) (y - Xß - Zu - Wv)} 

xexp{-Xa;2(u'A_1u)} 

XH |G("k)Gv2| 'expt-^o^v'GloVjjxpipaolm,*,) [2] 

The joint posterior density includes a summation (nc) over all consistent marker genotype 

configurations (n^k)). In the derivation of the sampling densities for marked QTL effects, 
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however, one particular marker genotype configuration, ni(k), is fixed. The summation needs 

to be considered only when the sampling of marker genotypes is concerned. 

To implement the Gibbs sampling algorithm, we require the conditional posterior 

distributions of each of ß, u, and v given the remaining parameters, the so-called full 

conditional distributions, which are as follows 

(frlß-i,o,v,y) 

~ N [ (x /x J -y ( y - X . ^ - Z u - W v M V x J - y ] 

(u ilu. i,ß,v,y) 

N (z/Zi+aX)"1 z X y - X ß - Z ^ - W v ^ J a X U i j .W^+^aJa, 

[3] 

[4] 

(Vilv.,,ß,u,m (k),y) 

N (wjwi+g^ocj1
 w ; (y -Xß-Zu-W_,v . i ) -£a v gf k ) v j ,(w;Wi+gji

k)av )r'ae
2 

where, a'j ,gjjk) is the (i,))th element of A" and G(k), respectively, <xu = % , a 

[5] 

and 

2« 

2^a,JotuUy, and Xav£(k)v; a r e m e corrections for polygenic and gametic covariances in the 

pedigree, respectively. Note that the means of the distributions [3], [4], and [5] correspond to 

the updates obtained when mixed model equations are solved by Gauss-Seidel iteration. 

Methods for sampling from these distributions are well known (e.g., Wang et al. 1993; or 

VanTassell et al. 1995). 

Sampling Densities for Marker Genotypes 

Suppose m is the current vector of marker genotypes, some observed and some of 

which were augmented (e.g., sampled by the Gibbs sampler). Let m.j denote the complete set 

except for the ith (ungenotyped) individual, and let gm denotes a particular genotype for the 

marker locus. Then the posterior distribution of genotype gm is the product of 2 factors 

P(mi =gm lm-i,ß>u.v,mobs,r,y) 

« P f o ^ gm 'm- Jxp^ lm j =g r a ,m_ i ,o ' ,r) [6] 

with, 

p(vlm i=gm,m_,,^,r)=|G( i;)a;2fexp{-XG;2(v'G(k
1

)v)j [7] 
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where, G^j corresponds to marker genotype set {m.j, mi =gm). So, equation [7] shows that 

phenotypic information needed for sampling new genotypes for the marker is present in the 

vector of QTL effects (v). 

Now, it suffices to compute equation [6] for all possible values of gm, and then 

randomly select one from that multinomial distribution (Thomas and Cortessis 1992). In 

practice considering only those gm that are consistent with m.j and Mendelian inheritance, can 

minimize the computations. Furthermore, computations can be simplified because 

"transmission of genes from parents to offspring are conditionally independent given the 

genotypes of the parents..." (Sheehan and Thomas 1993). Adapting notation from Sheehan 

and Thomas (1993), let Sj denote the set of mates (spouses) of individual i and Oy be the set 

of offspring of the pair i and j . Furthermore, the parents of individual i are denoted by ^ (sire) 

and d (dam). Then, equation [6] can be more specifically written as 

p(m( =gm ,m_ ilv,a' ,mobs ,r) 

K P K =g jm s ,m d ) xp (v i l v s , v d , m i =g m ,m s ,m d , c ' , r ) 

[8] 
x n n W m i l m i =gm.mj)xp(vl IVi.Vj.irii =gro,mj,m1,a',r)} 

jeS, leO,, 

When parents of individual i are not known, then the first 2 terms on the right-hand side of 

[8] are replaced by 7i(mi), which represents frequencies of marker genotypes in a population. 

The probability p ^ = gm I ms,md) corresponds to Mendelian inheritance rules for 

obtaining marker genotype gm given parental genotypes ms and m<i, similar for 

p(m, Inij =gm ,mj). The computation of p[\i I vs,vd,mi,ms,md,r} (and 

p{v,lvi,vj,mi,mJ,m,,r}) can efficiently be done by utilizing special characteristics of the 

matrix G~'. 

Let Qi denote a gametic contribution matrix relating the QTL effects of individual i to 

the QTL effects of its parents. The matrix Qj is 2(i-l)x2. For founder animals, matrix Qi is 

simply zero. The recursive algorithm to compute G"1 of Wang et al. (1995, equation [18] ) 

can be rewritten as, 

G? =L l2 Dj-'t-Qi' I2 0,] [9] 
0, 
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where D~' = (C; -Q j 'G^Qj) ' 1 (which reduces to D~' = (lf -Q , 'Q , ) ' with no inbreeding), 

Oj is a 2(q-i)x2 null matrix. The off-diagonals in Ci equal the inbreeding coefficient at the 

marked QTL (see Wang et al. 1995). Equation [8] shows the similarity to Henderson's rules 

for A"1 (Henderson 1976). The nonzero elements of G~' pertaining to an animal arise from its 

own contribution plus those of its offspring. So, when sampling the Ith animal's marker 

genotype, only those contribution matrices need to be considered that contain elements 

pertaining to animal i. These are the individual's own contributions and those of its progeny 

when i appears as a parent. 

( v ' G - ' v ) . ^ 1 
-Qi ' 

Dil-Qi' I2 Ojv + X I v ' 
jeS, lsOM 

D : ' [ - Q ; I2 Ojjv 

=k -QX -QfvjDr'h -Q,svs -QfvJ 

+SE[v,-Q;vi-Qjvj]Dr1[v,-Qivi-Q;vJ] 
*sS, kO, j 

[10] 

where, Vk is the vector of animal k's two marked QTL effects, andQ£ denotes the rows of Qk 

pertaining to P, one of fc's parents. Again, we recognize each term in the sum is the kernel of a 

(bivariate) normal which are p{v i lv , ,v d ,m i ,m, ,m d , r}orp{v 1 lv i ,v j ,m i ,m j )m 1 , r} . 

Running the Gibbs Sampling 

The Gibbs sampler is used to obtain a sample of a parameter from the posterior 

distribution and can be seen as a chained data augmentation algorithm (Tanner 1993). So, 

one augments data (y and niobs) with parameters (0) to obtain, for example, p(Q\ I 02 , . . . , 

0d , y). For the purpose of breeding value estimation, Gibbs sampling works as follows: 

1) Set arbitrary initial values for 0[O], we use zeros for fixed and genetic effects and 

for each unmarked animal, we augment a genotype that is consistent with 

pedigree, Mendelian inheritance, and observed marker data. 

2) Sample 0|t+1! from 

[3], i =1,2,..,p; for fixed effects, 

[4], i =p+l,p+2,..,p+q; for polygenic effects, 

[5], i =p+q+l,p+q+2,..,p+q+2q; for marked QTL effects, or 

[6], i =p+3q+l,p+3q+2,..,p+3q+t; for marker genotypes, 
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and replace e[Tl with 6|T+11. 

3) repeat 2) N (length of chain) times. 

For any individual parameter, the collection of n values can be viewed as a simulated 

sample from the appropriate marginal distribution. This sample can be used to calculate a 

marginal posterior mean or to estimate the marginal posterior distribution. For small 

pedigrees with only a few animals missing observed marker genotypes, posterior means can 

be evaluated directly using 

E(Q'\ol,ol,olmobs,r,y) = £ E ( 8 * I G ( k ) , c r » ^ y ) x p(G(k)lmobs,r,y) [11] 

where 6* is a fixed, polygenic or marked QTL effect.. This provides a criterion to compare 

the estimates obtained from Gibbs sampling. 

Pedigree of Numerical Example 

Sire (01) 
y = . . . 
gm = AB 

1 FS (03,04,05) 
y = + 20 
gm = BC 

Animal 09 
y = +20 

Dam (02) 
y = . . . 

Animal 10 
y = -20 
Sm = 

| 
FS (06,07,08) 
y = -20 
gm = AD 

Figure 2: Pedigree of numerical example. Two parents, sire 01 and dam 02, have eight 
offspring. The sire and dam have observed marker genotypes, AB and CD, 
respectively, but do not have phenotypes observed. Three full sibs (FS 03,04,05) have 
marker genotype BC and phenotype +20; three other full sibs (FS 06, 07, 08) have 
marker genotype AD and phenotype - 20. Animals 09 and 10 have no marker 
genotypes but have phenotypes + 20 and -20, respectively. 
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NUMERICAL EXAMPLE 

A small numerical example is used to verify the use of the Gibbs sampler to obtain 

posterior mean estimates and illustrate the effect of the data on the estimates obtained from 

two different estimators, i.e., a posterior mean and the well-known BLUP estimator (by 

solving the MME given in Appendix). Pedigree and data of the example are in Figure 2. Both 

sire (01) and dam (02) have observed marker genotypes, AB and CD, respectively, but do not 

have phenotypes observed. 

Three full sibs have a marker genotype BC and a phenotype +20 (denoted FS 

03,04,05); three other full sibs have a marker genotype AD and a phenotype - 20 (denoted FS 

06, 07, 08). Both animals 09 and 10 have no marker genotypes but have a phenotype + 20 

and -20, respectively. Complete knowledge was assumed on variance components and 

recombination rate between marker and MQTL (Table 1). The thinning factor in Gibbs 

sampling chain was 50 cycles and the burn in period was twice the thinning factor, and 20000 

thinned samples were used for analysis. 

Table 1 : Population genetic parameters, used in numerical example. 

Parameter Value 
Phenotypic variance 1000 
Polygenic variance 300 
Marked quantitative trait locus variance 50 
Recombination rate 0.05 

Estimates for genetic effects. The posterior estimates obtained from Gibbs sampling 

were similar to the TRUE posterior estimates, as shown in Table 2. The posterior estimates 

of MQTL effects of animals 09 and 10 (± 0.70) were much less divergent than those of their 

full sibs that had their marker genotypes observed (± 2.48). These less divergent values 

reflect the uncertainty on marker genotypes of animals 09 and 10. The TRUE and GIBBS 

posterior densities for an MQTL effect of animal 09 were also very similar (Figure 3). The 

posterior variance was 52.3, which was larger than the prior variance (CTJ =50) and reveals the 

data are not decreasing the prior uncertainty on MQTL effects for animals 09 and 10 in this 

situation. 
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For the other full sibs, the posterior variance was 47.02, which was lower than the 

prior variance because segregation of MQTL effects was known with higher certainty, i.e., 

marker genotypes were known. The BLUP estimates for MQTL effects of animal 09 and 10 

were equal to /6 of the polygenic effects of these animals, which equaled the variance ratio of 

the MQTL and the polygenes. 

Figure 3: Posterior density of the first marked quantitative trait locus effect of animal 09. 
TRUE: Direct computation (u.TRUE = 0.697; OTRUE = 7.234); GIBBS: Indirect 
approximation (UGIBBS = °-730; OGIBBS = 7.234). 

Table 3: Prior and posterior marker genotype probabilities for animals 09 and animal 10. 

Animal 09 

Prior 

TRUE 
GIBBS 

Animal 10 

Prior 

TRUE 
GIBBS 

AC 
0.2500 

0.2504 
0.2470 

AC 
0.2500 

0.2504 
0.2477 

Marker genotypes 

AD 
0.2500 

0.2196 
0.2203 

AD 
0.2500 

0.2796 
0.2815 

BC 
0.2500 

0.2796 
0.2801 

BC 
0.2500 

0.2196 
0.2191 

BD 
0.2500 

0.2504 
0.2527 

BD 
0.2500 

0.2504 
0.2518 

TRUE : directly computed; 
GIBBS : approximated by Gibbs sampling. 
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Marker genotype probabilities. In the following marker genotype AB represents both 

AB and BA. In the latter case, alleles for both marker and MQTL are reordered, maintaining 

linkage between marker and MQTL alleles within an animal. So, 4 marker genotypes were 

possible for animals 09 and 10 (Table 3). Based on pedigree and marker data solely, each of 

these 4 genotypes was equally likely (prior probability = 0.25). After including phenotypic 

data, (posterior) probabilities changed: marker genotype BC and AD for animal 09 became 

more and less probable, respectively. The reverse was true for animal 10. The estimates from 

the Gibbs sampler were very similar to the TRUE posterior probabilities. Complete 

phenotypic and marker information on 6 full sibs gave the MQTL effects linked to marker 

alleles B and C positive values and marker alleles A and D negative values. Note that 

probabilities (TRUE) for marker genotypes AC and BD also (slightly) changed after 

considering the phenotypic data. 

DISCUSSION 

Marker-assisted breeding value estimation in livestock has been hampered by 

incomplete marker data. Previously described methods (Fernando and Grossman 1989; Van 

Arendonk et al. 1994; and Wang et al. 1995) can accommodate ungenotyped individuals that 

do not have offspring themselves as was shown by Hoeschele (1993). However, they do not 

provide the flexibility to incorporate parents with unknown genotypes, which results in the 

loss of information for estimating marker-linked QTL effects. The described Gibbs sampling 

algorithm now provides this required flexibility. The innovative step in our approach is the 

sampling of genotypes for a marker locus that is closely linked to QTL with normally 

distributed allelic effects. Normality of QTL effects is a robust assumption to allow 

segregation of many alleles throughout a population and allow changes in allelic effects over 

generations, e g, due to mutations and interactions with environments (Jansen 1996). In 

sampling missing genotypes information from marker genotypes as well as phenotypes of 

animals in the pedigree are used. Jansen et al. (1998) indicate that, as a result of the use of 

phenotypic information, unbiased estimates of effects at the QTL can be obtained in situations 

where animals have been selectively genotyped. 
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In this paper we have concentrated on the use of information from a single marker 

locus. Using information from multiple linked markers can increase accuracy of predicting 

genetic effects at the QTL. The principles applied here have been extended to situations 

where genotypes for all the linked markers are known for all individuals (Goddard 1992; 

Uimari et al. 1996). In order to incorporate individuals with unknown genotypes, the method 

presented in this paper needs to be extended to a multiple marker situation. In extending the 

method to multiple markers, the problem of reducibility deserves special attention. 

Reducibility of Gibbs chains can arise when sampling genotypes for a locus with more than 

two alleles (Thomas and Cortessis 1992). The reducibility problems will become more 

severe when sampling genotypes for multiple linked markers. Thompson (1994) suggested 

several, workable, approaches to guarantee irreducibility of the Gibbs chain. These 

approaches make use of Metropolis-coupled samplers (Lin 1993), importance sampling, with 

0/1 weights (Sheehan and Thomas 1993), and "heating" in the Metropolis- Hastings steps 

(Lin et al. 1993). Alternatively, Jansen et al. (1998) sampled IBD values for all marker loci 

indicating parental origin of alleles instead of actual alleles to avoid the reducibility problem. 

In extending the method to multiple linked markers, attention also needs to be paid to an 

efficient scheme for updating haplotypes or genotypes at the linked loci. Updating of 

genotypes at closely linked loci will be more efficient when genotypes at the linked loci are 

updated together ('in blocks') in order to reduce auto-correlation in the Gibbs sampler (Janss 

etal. 1995). 

For posterior inferences on the breeding value of an animal a minimum of 100 effective 

samples may suffice (Uimari et al. 1996). In the numerical example this minimum would 

correspond to a chain of 5000 cycles which required 8 seconds of CPU at a HP9000 K260 

server. It has been found that computing requirements increase more or less linearly with the 

number of animals (Janss et al. 1995). The presented method can be applied to data originating 

from nucleus populations which comprises the relatively small number of genetically superior 

animals from the population. In a marker assisted selection scheme marker genotypes will be 

collected largely on these animals. Straightforward application in large commercial populations 

with thousands of marker genotypes missing, is not a valid option because of computational 

requirements of Markov chain Monte Carlo (MCMC) algorithms like Gibbs sampling. Hybrid 

schemes will need to be developed to incorporate information from the commercial population 

into the marker-assisted prediction of breeding values of nucleus animals. Similar schemes 
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have been implemented to incorporate foreign information into national evaluations in dairy 

cattle. 

Our Bayesian approach can also be considered as a first step towards a MCMC 

algorithm, not necessarily Gibbs sampling, that can estimate dispersion parameters, which were 

held constant in this study. The next step, therefore, comprises estimation of variance 

components, both marked QTL and polygenic, given a fixed map position of the QTL. And, 

eventually, one could estimate the most likely position of the QTL within a linkage map 

containing multiple markers. The complete MCMC algorithm can then be used for the analysis 

QTL mapping experiments in outbred populations with complex pedigree structures. 
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APPENDIX 

Computation of average G with incomplete marker data. Wang et al. (1995) 
suggested computing an average G, here denoted G , as 

G = Z,GwxP{mm\mohs) 
m d ) = ' 

where G<k) is the gametic relationship matrix given a particular marker genotype 
configuration m^; and p(ni(k) Imobs) is the probability of m^) given mobs- This equation is not 
conditioned on phenotypic information. 

Marker-assisted Best Linear Unbiased Prediction of Breeding Values. Mixed model 
equations (MME) to obtain BLUE for fixed effects and BLUP for random effects are, 

XX 

Z'X 

W'X 

X'Z 

Z'Z + A-'a,, 

W'Z 

X'W 

Z'W 

W'W + G-'a 

F 
û 

V 

= 
"X'y" 

zy 
W y 

2 / 2 / 
where, a = "/ i , a = '/ 2 and G are all known. Solutions can be obtained by iteration 

on the data (Schaeffer and Kennedy 1986). These equations can be used in three situations. 
First, G is unique (complete marker data). Second, with missing markers, a linear estimator 
is obtained by taking G = G. Third, with G = G(k), they are used to compute 
E ( 0 I G ( k ) , a » e

2 , y ) . 



Chapter 3 

Bayesian Estimation of Dispersion Parameters with a Reduced 

Animal Model including Polygenic and QTL effects 

Marco C. A. M. Bink', Richard L. Quaas and Johan A. M. van Arendonk 

Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences, 
Wageningen Agricultural University, PO Box 338,6700 AH Wageningen, The Netherlands 

"Department of Animal Science, Cornell University, Ithaca, NY 14853, USA 

Published in Genetics Selection Evolution 30:103-125 (1998) 

Reproduced by permission of Elsevier/INRA, Paris 



Reduced animal model and dispersion parameters 29 

ABSTRACT 

In animal breeding Markov chain Monte Carlo algorithms are increasingly used to 

draw statistical inferences about marginal posterior distributions of parameters in genetic 

models. The Gibbs sampling algorithm is most commonly used and requires full conditional 

densities to be of a standard form. In this study, we describe a Bayesian method for the 

statistical mapping of quantitative trait loci (QTL), where the application of a reduced animal 

model leads to non-standard densities for dispersion parameters. The Metropolis Hastings 

algorithm is used to obtain samples from these non-standard densities. The flexibility of the 

Metropolis Hastings algorithm also allows changing the parameterization of the genetic 

model. Alternatively to the usual variance components, we use one variance component 

(^residual) and two ratios of variance components, i.e., heritability and proportion of genetic 

variance due to the QTL, to parameterize the genetic model. Prior knowledge on ratios can 

more easily be implemented, partly by absence of scale effects. Three sets of simulated data 

are used to study performance of the reduced animal model, parameterization of the genetic 

model, and testing the presence of the QTL at a fixed position. 

INTRODUCTION 

The wide availability of high-speed computing and the advent of methods based on 

Monte Carlo simulation, particularly those using Markov chain algorithms, have opened 

powerful pathways to tackle complicated tasks in (Bayesian) statistics (Gelfand and Smith 

1990: Gelfand 1994). Markov chain Monte Carlo (MCMC) methods provide means for 

obtaining marginal distributions from a complex non-standard joint density of all unknown 

parameters (which is not feasible analytically). There are a variety of techniques for 

implementation (Gelfand 1994) of which Gibbs sampling (Geman and Geman 1984) is most 

commonly used in animal breeding. The applications include univariate models, threshold 

models, multi-trait analysis, segregation analysis and QTL mapping (Wang et al. 1993; Wang 

et al 1997; Van Tassell and VanVleck 1996; Janss et al 1995; Hoeschele 1994). 

Because Gibbs sampling requires direct sampling from full conditional distributions, 

data augmentation (Tanner and Wong 1987) is often used so that 'standard' sampling densities 

are obtained. Often, however, this is at the expense of a substantial increase in number of 
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parameters to be sampled. For example, the full conditional density for a genetic variance 

component becomes standard (Inverted Gamma distribution) when a genetic effect is sampled 

for each animal in the pedigree, as in a (Full) Animal Model (FAM). The dimensionality 

increases even more rapidly when the FAM is applied to the analysis of granddaughter 

designs (Weiler et al. 1990) in QTL mapping experiments, i.e., marker genotypes on 

granddaughters are not known and need to be sampled as well. In addition, absence of 

marker data hampers accurate estimation of genetic effects within granddaughters, which 

form the majority in a granddaughter design. This might lead to very slow mixing properties 

of the dispersion parameters (see also Sorensen et al. 1995). 

The reduced animal model (RAM, Quaas and Pollak 1980) is equivalent to the FAM, 

but can greatly reduce the dimensionality of a problem by eliminating effects of animals with 

no descendants. With a RAM, however, full conditional densities for dispersion parameters 

are not standard. Intuitively, RAM, used to eliminate genetic effects and concentrate 

information, is the antithesis of data augmentation, used to arrive at simple standard densities. 

For the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hastings 1970), 

however, a standard density is not required, in fact, the sampling density needs to be known 

only up to proportionality. Another alternative for the FAM is the application of a sire model 

which implies that only sires are evaluated based on progeny records. With a sire model, the 

genetic merit of the dam of progeny is not accounted for and only the phenotypic information 

on offspring is used. The RAM offers the opportunity to include maternal relationships, 

offspring with known marker genotypes and information on grand-offspring. As a result the 

RAM is better suited for the analysis of data with a complex pedigree structure. 

The flexibility of the MH algorithm also allows for a greater choice of the 

parameterization (variance components or ratios thereof) of the genetic model. If Gibbs 

sampling is to be employed, the parameterization is often dictated by mathematical 

tractability - to get the simple sampling density. The MH algorithm readily admits much 

flexibility in modeling prior belief regarding dispersion parameters which is an advantageous 

property in Bayesian analysis (e.g., Hoeschele and VanRaden 1993). 

In this paper, we present MCMC algorithms that allow Bayesian linkage analysis with 

a RAM. We study two alternative parameterizations of the genetic model and use a test 

statistic to postulate presence of a QTL at a fixed position relative to an informative marker 

bracket. Three sets of simulation data using a typical granddaughter design are used. 
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METHOD 

Genetic Model 

The additive genetic variance ( o\ ) underlying a quantitative trait is assumed to be due 

to two independent random effects, due to a putative QTL and residual independent 

polygenes. The QTL effects (v) are assumed to have a N(0,Gal) prior distribution where G 

is the gametic relationship matrix (e.g., Fernando and Grossman 1989, Bink et al. 1998a), and 

rjj is the variance due to a single allelic effect at the QTL. Matrix G depends upon one 

unknown parameter, the map position of the QTL relative to the (known) positions of 

bracketing (informative) markers. Here we consider the location of the QTL to be known. 

The polygenic effects (u) have a N(0,\a2
u) prior distribution, where A is the numerator 

relationship matrix. The genetic model underlying the phenotype of an animal is 

yj = xlb + ui +Vj' +vf+ej, 

where Xj is an incidence vector relating fixed effects to yu b is the vector with fixed effects, vj 

and vf are the two (allelic) QTL effects for animal i, and e; ~ N(Q,\a2
t). (QTL effects within 

individual are assigned according to marker alleles, as proposed by Wang et al. 1995). The 

sum of the three genetic effects is the animal's breeding value (a). In addition to genetic 

effects, location parameters comprise fixed effects that are, a priori, assumed to follow the 

proper uniform distribution: f(b) ~ u l b ^ . b ^ J , where bmin and bmax are the minimum and 

maximum values for elements in b. 

Reduced Animal Model (RAM) 

The RAM is used to reduce the number of location parameters that need to be 

sampled. The RAM eliminates the need to sample genetic effects of animals with no 

descendants nor marker genotypes, i.e., ungenotyped non-parents. The phenotypic 

information on these animals can easily be absorbed into their parents without loss of 

information. Absorption of non-parents that have marker genotypes becomes more complex 

when position of QTL is unknown; it is therefore better to include them explicitly in the 

analysis. In the remainder of the paper, it is assumed that marker genotypes on non-parents 

are not available. The genetic effects of non-parents can be expressed as linear functions of 

the parental genetic effects by the following equations (Cantet and Smith 1991), 
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Unon-parents = "parentsUparents "•" ̂ Pnon-parents H J 

and 

V non-parents = ViparentsVparents "" Ynon-parcnts L^J 

where each row in P contains at most 2 non-zero elements, (= 0.5), and each row in Q has at 

most 4 non-zero elements (Wang et al. 1995), the terms (pnon-parems and <)>non-parents pertain to 

remaining genetic variance due to Mendelian segregation of alleles. In a granddaughter 

design, the P and Q for granddaughters, not having marker genotypes observed nor 

augmented, have similar structures, 

Q = P®iJ 2 x 2 , [3] 

where <8> denotes the Kronecker product, and J is a unity matrix (Searle 1982). This equality 

does not hold if marker genotypes are augmented, since phenotypes contain information that 

can alter the marker genotype probabilities for ungenotyped non-parents (Bink et al. 1998a). 

The phenotype for a quantitative trait can now be expressed as, 

y, =x jb + Piu + Qiv + ei [4] 

for row vectors P; and Qj (possibly null), and 

ol=c2
e+(ui(a

2
u+2ü2

v), [5] 

where C0i reflects the amount of total additive genetic variance that is present in a2 . Based on 

the pedigree, four categories of animals are distinguished in the RAM (Table 1). The vectors 

Pi and Qj contain partial regression coefficients. For parents, the only nonzero coefficients 

pertain to the individual's own genetic effects (ones); for non-parents, the individual's 

parents' genetic effects (halves). Note that Pj and Qi are null for a non-parent with unknown 

parents, and that non-parents' phenotypes in this category contribute to the estimation of fixed 

effects and phenotypic (residual) variance only. 

Table 1 : Categories of animals in a reduced animal model and values for C0j for each category. 

Category No. of parents known cas ' 

1 non-parent 0 1 
2 non-parent 1 % 
3 non-parent 2 /2 

_4 parent ^ 0 
1 without inbreeding 
2 not relevant 
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Parameterization 

Let 0 denote the set of location parameters (b, u, and v) and dispersion parameters. 

We consider the following two parameterizations for the dispersion parameters, 

0vc : b, u, v, a], o], and cs] 

eRT : b, u, v, a), h2, and y 

where 

h2=^for , a " + , 2 ° v , .with 0< h2<\, [6] 

and 

Y = - f o r ; wi thO<y<l. [7] 
°a Ou+20v 

In the first, 0yc, the parameters are the variance components (VC). This is the usual 

parameterization. A difficulty with this is that it is problematic for an animal breeder to elicit 

a reasonable prior of the genetic VC. Animal breeders, it seems to us, are much more likely 

to have, and be able to state, prior opinions about such things as heritabilities. Consequently, 

in 0RT, parameter h2 is the heritability of a trait, and parameter y is the proportion of additive 

genetic variance due to the putative QTL. This parameterization allows more flexible 

modeling of prior knowledge because h2 and y do not depend on scale. Theobald et al. (1997) 

used a variance ratio, G 2 / a 2 , parameterization but noted that the animal breeder may prefer 

to think in terms of heritability. We prefer the part-whole ratios h2 and y. The components 

a\ and a j can be expressed in terms of a2
e, h

2 and y 

(1-AZ) o ' = a - Y ) T 7 ^ T I 7 0 , 2 ' a n d [8] 

h2 
2 / c- -> " 2 

O-fc2) 
< = C 5 x y ) T — — a t . [9] 

Priors 

We now present the prior knowledge on dispersion parameters, priors for location 

parameters have been given earlier. In earlier studies, two different priors are often used to 

describe uncertainty on VC. The inverted gamma (IG) distribution, or its special case the 

inverted chi-square distribution, is common because it is often the conjugate prior for the VC 

if the FAM (or sire model) is applied. Hence, the full conditional distribution for VC will 
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then be a "posterior" updating of a standard prior (Gelfand 1994). This simplifies Gibbs 

sampling. We will use the IG as the prior for ax - though with a RAM it is not conjugate, 

f ^ l c ^ ß j o c ^ - ' e x p J_J_ [10] 

where x = e, u, or v. The rhs of [10] constitute the kernel of the distribution. The mean (\i) of 

an IG(a,ß) is ((a-l)ß)~' , and the variance equals ((oc-l)2(a-2)ß2)"'. Van Tassell et al. 

(1995) suggests setting a = 2.000001 and ß = (fi)"1 for an 'almost flat' prior with a mean 

corresponding to prior expectation (u,). The IG distributions for three different prior 

expectations are given in Figure 1. 

\ E[ IG(<J*) ] = 5 

11(0,200) 

80 

Figure 1: Inverted Gamma and Uniform densities that are used to represent (lack of) prior 
knowledge on variance components. 

When the prior expectation is close to zero (|A = 5.0), the distribution is more peaked and has 

less variance because mass accumulates near zero. When the prior expectation is relatively 

high (\i = 60), the probability of a2 being equal to zero is very small, which might be 

undesirable and/or unrealistic for o 2 . An alternative prior distribution for a2 is 

f(°i)< 
k 0 < a ; < a 2 

x.max 
[11] 

10 otherwise 

which is a proper prior for a2 with a uniform density over a pre-defined large, finite interval, 

for example from zero to 200 (Figure 1). These prior distributions for VC are used mainly to 
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represent prior uncertainty (e.g., Wang et al. 1993, Van Tassell et al. 1995, Sorensen et al. 

1995). 

Corresponding to [10] ([11]) there is an equivalent prior distribution for h2 (and y). 

However, because neither [10] nor [11] were chosen for any intrinsic "rightness" we prefer a 

simpler alternative of using Beta distributions for the ratio parameters h2 and y to represent 

prior knowledge, 

f(x|ax,ßJoc(xr"-'(l-xr--' [12] 

where x = h2 or y. When prior distribution parameters ocx and ßx are both set equal to 1, the 

prior is a uniform density between 0 and 1 (Figure 2), i.e., flat prior. Alternatively, a* and ßx 

can be specified to represent prior expectations for parameter of interest. For example, center 

the density for heritability of a yield trait in dairy cattle around the prior expectation (=0.40), 

with a relatively flat (Beta (2.5, 3.75) ) or peaked (Beta (30.0, 45.0) ) distribution when prior 

certainty is moderate or strong, respectively. Furthermore, prior knowledge on y, proportion 

of additive genetic variance due to a putative QTL, can be modeled to give relatively high 

probabilities of values close to zero, e.g., (Beta(0.9, 2.7). Another option, suggested by a 

reviewer, would be to put vague priors on ctx and ßx as in Berger (1985). 

8 

Beta(1,1) 

0.0 0.1 0.2 0.3 0.9 1.0 

Figure 2: Beta densities that are used to represent (lack of) prior knowledge on (part whole) 
ratios of variance components. 
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Joint posterior density 

The joint posterior density of 0 is the product of likelihood and prior densities of 

elements in 6, described above. Let n\ denote the number of observations on animals of 

category i (Table 1), the total number of observations is given as N. And let q denote the 

number animals with offspring, i.e., parents. Then, 2q are the number QTL effects (2 allelic 

effects per animal). With 8Vc. 

f ( 9 v c l y . « e ' ß e . « u . ß U . « v . ß v ) 

ocf(evc ,ylae ,ßc ,au ,ßu ,av ,ßv) 

n (o.1 + co,(a> +2oî))- * x e x p j - l ^ 2 / ^ +co,(c> + 2a>))j 

x(oiy* xexpj-l^A-uJx-Lj x(a^5<2î) xexpj-^G-'vJx-L} 

^^Aû}*^ tl3] 

Under 0RT, dispersion parameters, and priors thereof, are different from 6vc; the joint 

posterior density is 

f(eRTly,ac,ße,ah2,ßh2,a rßT) 

°=f(eRT)ylae,ße,ah2,ßh2,arßY) 

^^xeJ-tâeï & + »,£) ~&rNxn 

xfd-^x^Jxa^^xexp -^(urA-'u)x-
( ! - ^ x t e ) x a e 

x N ^ x ^ P ' xexJ-it(YrG-'T)x- l 1 
[ k=\ ' 

(5y)x^xa2
e 

*te^^f?\*b2T*^-*1J*Myr(i-yr- [14] 
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Full Conditional Densities 

From the joint posterior densities [13] and [14], the full conditional density for each 

element in 8 can be derived by treating all other elements in 0 as constants and selecting the 

terms involving the parameter of interest. When this leads to the kernel of a standard density, 

e.g., Normal for location parameters or an IG distribution, e.g., variance components with 

FAM, Gibbs sampling is applied to draw samples for that element in 8. Otherwise, the full 

conditional density is non-standard and sampling needs to be done by other techniques. (All 

full conditional densities are given in the Appendix). 

Sampling non-standard densities by Metropolis-Hastings algorithm 

Sampling a non-standard density can be done a variety of ways, including various 

rejection sampling techniques (Devroye 1986, Gilks and Wild 1992, Chib and Greenberg 

1995, Gilks et al. 1995), and Metropolis-Hastings sampling within Gibbs sampling (Chib and 

Greenberg 1995). We use the Metropolis-Hastings algorithm (MH). Let TT(X) denote the 

target density, the non-standard density of a particular element in 8, and let <?(x,y) be the 

candidate generating density. Then, the probability of move from current value x to 

candidate value y for 6j is, 

[l otherwise. 

When y is not accepted, the value for 8j remains equal to x, at least until the next update for 

8i. Chib and Greenberg (1995) described several candidate generating densities for MH. We 

use the random walk approach in which candidate y is drawn from a distribution centered 

around the current value x. To ensure that all sampled parameters are within the parameter 

space the sampling distribution, q(x,y), was U(BL, By) with 

BL =max(0,x-f) for a2,a2
u,a

2,h2, y 

„2 „2 „2 
i x f I. 11)1 I 

B U - 1 • /, . , A - . 2 
x + t for o2,a2

u, a; 

lmin(l,x + f) for h ,y 

where t is a positive constant determined empirically for each parameter to give acceptance 

rates between 25 and 50 %, (Tierney 1994; Chib and Greenberg 1995). For each of the non

standard densities, an univariate MH was used. We perform univariate MH iterations (10 

times) within a MCMC cycle to enhance mixing in the MCMC chain, as suggested by Uimari 

etal. (1996). 
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Comparison to a Full Animal Model (FAM) 

From the conditional densities presented, two hybrid MCMC chains can be used to 

obtain samples of all unknown parameters (9vc or 6RT) using a RAM. For comparison, the 

equivalent FAM can be used with similar parameterization (0vc and 8RT)- The conditional 

densities for the FAM are a special case of RAM (see Table 1): all animals are in category 4 

and co, = 0. In case of 9yc the conditional densities for G\,G\, and CTJ are now recognizable 

IG distributions and Gibbs sampling can be used to draw samples from these densities 

directly. In case of 9RT the conditional densities for h2 and y remain non-standard and MH is 

used to draw samples. Table 2 gives the four constructed MCMC sampling schemes. 

Table 2: Sampling algorithms for location and dispersion parameters for alternative models 
(RAM versus FAM) and parameterizations (0Vc versus 0RT). 

RAM 
8 vc 9 RT 

FAM 
9yç 9RT 

ß 
u 
V 

GS 
GS 
GS 

GS 
GS 
GS 

GS 
GS 
GS 

GS 
GS 
GS 

ĥ  

y 

MH 

MH 

MH 

GS 

MH 

MH 

GS 

GS 

GS 

GS 

MH 

MH 

GS = Gibbs sampling 
2 MH = Metropolis Hastings algorithm 

Post MCMC Analysis 

Depending on the dispersion parameterization (9vc or 0RT), three out of five 

parameters were sampled (Table 2). In each MCMC cycle, however, the remaining two were 

computed, using [6] and [7] or [8] and [9], to allow comparison of results of different 

parameterizations. For parameter X, the auto-correlation of a sequence of samples was 

m-I 

calculated as ^^[ (JC,- -&-x\xM - ji^)]/*2 where m = number of samples, p.x and sx are 

posterior mean and standard deviation, respectively. The correlation among samples for 
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m 

parameters x and z, within MCMC cycles, were computed as^-^[(jt,. — p-^Xz, - M - Z ) ] / [ M Z ] -

For each parameter an effective sample size (ESS) was computed which estimates the number 

of independent samples with information content equal to that of the dependent samples 

(Sorensen et al. 1995). 

The null hypothesis that y = 0 - the QTL explains no genetic variance - was tested via 

mode{p(y)j 
an odds ratio ;—=—T-^->20 following Janss et al. (1995). They suggest that this 

MY = °) 
criterion, however, may be quite stringent. The 90 % Highest Posterior Density regions 

(HPD90) (e.g., Casella and George 1990), were also computed for parameter y. 

SIMULATION 

In this study, granddaughter designs were generated by Monte Carlo simulation. The 

unrelated grandsire families each contained 40 sires that were half sibs. The number of 

families was 20 except in simulation HI where designs with 50 families were simulated as 

well (Table 3). Polygenic and QTL effects for grandsires, were sampled from N (0 ,G*) and 

N(0,O"J), respectively. The polygenic effect for sires was simulated as u^ = y(uGS)+<|>, 

where UGS is the grandsire's polygenic effect, and <|), Mendelian sampling, is distributed 

independently as N (0,Var(<|>)) with Var(<|>) = .75 x GJ (no inbreeding). The sires inherited 

one QTL at random from its (grand) sire. The maternally inherited QTL effect for a sire was 

drawn from N (0,aj). Each sire had 100 daughters with phenotypes observed, that were 

generated as 

y - w{.5usirc + pvjirc + ( l -p)v 2
r e , .750-;; + G2 + G2}, 

where p is a 0/1 variable. In all simulations the phenotypic variance and the heritability of the 

trait were 100 and 0.40, respectively. The proportion of genetic variance due to the QTL (= y) 

was by default 0.25, or 0.10 in simulation HI (Table 3). Two genetic markers bracketing the 

QTL position at lOcM (Haldane mapping function), were simulated with 5 alleles at each 

marker, with equal frequencies over alleles per marker. For grandsires, the marker genotypes 

were fully informative, i.e., heterozygous, and the linkage phase between marker alleles is 

assumed to be known, a priori. The uncertainty on linkage phase in sires can be included in 
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8, but we did not. All possible linkage phases within sires were weighted by their probability 

of occurrence and one average relationship matrix between grandsires' and sires' QTL effects 

was used. 

Table 3: Simulation of Granddaughter designs and MCMC chains. 

No. grandsires 
proportion QTL (y) ' 
No. replicates 

Purpose 

MCMC chains 
Length 
Thinning factor 
Stored samples 

Simulation I 
20 
0.25 
1 

Comparison 
RAM versus FAM 

500,000 
250 

2000 

Simulation II 
20 
0.25 
5 

Comparison 
9vc versus 0RT 

250,000 
250 

1000 

Simulation in 
20,50 
0.10,0.25 

25 

Hypothesis testing 
Power for detection 

200,000 
1000 
200 

proportion QTL = proportion of additive genetic variance due to the QTL. 

RESULTS & DISCUSSION 

Simulation I Comparison RAM versus FAM 

For each of the four MCMC algorithms that are given in Table 2, a single MCMC 

chain run and 2000 thinned samples were used for post-MCMC analysis (Table 3). In case of 

9vc, prior distributions for o2
e,o

2
u,andaj were "flat" IG's (Figure 1) with expected means 

equal to 60, 30 and 5 (values used for simulation), respectively. In case of 0RT, prior for a\ 

was again an IG and priors for h2 and y were Beta(2.5, 3.75) and Beta(0.9, 2.7), respectively. 
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Figure 3: Two-thousand thinned samples for parameter o j , from MH algorithm (RAM, top) 

and from Gibbs sampling (FAM, bottom) (Simulation I). 

Figure 3 presents the mixing properties for parameter a2
v within the chains for the 

RAM-0VC and FAM-Gvc alternatives and points to slower mixing when using the FAM. This 

slow mixing is also indicated by high auto correlation (=1) among samples for parameters c j 

and y when the FAM was used (Table 4). With the same thinning, the auto-correlation among 

samples in the RAM is <0.70. The estimates for posterior mean and coefficient of variation, 

derived from samples of the four chains, are given in Table 5. These estimates are very 

similar over models (RAM and FAM) and parameterizations (0vc and 0RT). The coefficients 

of variation for o\ and y are relatively large and indicate that a posteriori knowledge on 

these parameters remains small, while estimates for a] and h are accurate. 
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Table 4: Sampling correlation and effective sample size for alternative models (RAM versus 
FAM) and parameterizations (9vc versus 6RT) from Simulation I (see Table 3). 

9vc 
°l 
°l 
< 

0RT 

°l 
h2 

Y 

RAM 

auto 

0.07 
0.34 
0.60 

0.05 
0.06 
0.71 

correlation ' 

°l 

-0.47 
-0.29 

-0.98 
-0.19 

< 

-0.69 

0.20 

ESS2 

1880 
856 
611 

1481 
1571 
350 

FAM 
correlation 
auto 

0.29 
0.61 
0.97 

0.57 
0.59 
0.99 

< 

-0.57 
-0.18 

-0.99 
-0.17 

< 

-0.67 

0.17 

ESS 

1635 
133 
62 

654 
604 
29 

1 auto-correlation = between subsequent samples for the same parameter; otherwise 
correlation between samples for different parameters within cycle. 

2 ESS = effective sample size. 

Table 5: Estimates of posterior mean and standard deviation for dispersion parameters, for 
alternative models (Reduced AM versus Full AM) and parameterizations (9vc versus 
9RT) from Simulation I. (see Table 3). 

9vc 
< 

°l 
Ov 

h2 

Y 
ORT 

< 

< 
ö2v 

h2 

J-

RAM 
mean 

62.7 
30.5 

2.8 

0.37 
0.16 

62.6 

30.3 
3.0 
0.37 
0.17 

CV 

0.03 
0.09 
0.44 

0.05 
0.42 

0.03 

0.11 
0.53 
0.05 
0.54 

FAM 
mean 

62.7 
30.0 

3.1 

0.37 
0.17 

62.3 

29.9 
3.4 
0.37 
0.18 

CV 

0.03 

0.09 

0.35 

0.05 
0.34 

0.03 

0.12 
0.51 
0.07 
0.49 

1 Parameters underlined were actually sampled in that parameterization. 
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The magnitude of the sampling correlation among parameters within MCMC cycles 

was very similar for both models and parameterizations. The samples for a2 and a2 showed 

a moderately high negative correlation (-0.7), while the sampling correlation between h2 and y 

was relatively low and positive (0.2). The correlation among samples for a2 and h2 was very 

high but apparently did not adversely affect the auto-correlation of these parameters. Taking 

100 ESS as a minimum (Uimari et al. 1996) the MCMC chain was rather short for statistical 

inferences for y in FAM-8RT. However, running a longer MCMC chain was not practical 

since the FAM-9VC MCMC chain needed 68593 minutes CPU (47 days) on a HP 9000-

735(125Hz) workstation. This was almost 100 times the 11 hours that were needed to run the 

RAM with similar chain length. 

The slow mixing of parameters for a FAM was likely due to the lack of marker data 

on granddaughters. Distinction between polygenic and QTL effects within these animals is 

hardly possible. Consequently, they provide little information regarding dispersion but 

because they are so numerous they dominate the distribution from which the next sample for 

the dispersion parameter is drawn. Heuristically, one first generates u and v with variances 

reflecting current a2. Subsequently one samples a new a2 from a peaked distribution with a 

mean near the sample variance of the u and v. Not surprisingly one gets back a a2 very 

similar to the previous, as a result of which the chain is slowly mixing. 

The data from Simulation I was also used to examine the effect of priors on posterior 

inferences on the proportion of QTL when 0RT was used. Four different priors for y were 

used, ranging from a "flat" (but not a "non-informative") uniform prior to a density at peaked 

zero. The latter reflects the prior expectation that the genetic variance due to the QTL is 

small or equal to zero. Figure 4 presents both prior and posterior densities. The uniform and 

the "peaked-at-zero" prior resulted into the highest (0.20) and lowest posterior mean estimate 

(0.10), respectively. For this design, the information from the data is not overwhelming the 

prior knowledge. All priors studied, however, showed consistency for the posterior 

probability of 7^0, i.e., the data supported the presence of a QTL at the studied position of the 

chromosome. 
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Figure 4: Effect of prior knowledge on posterior densities (RAM - 6RT, Simulation I). 
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Simulation II Parameterization of the Genetic Model 

In Simulation E, five replicates of data were used to study the effects of alternative 

parameterizations of the genetic model, for the RAM only. Genetic and population 

parameters were similar to those in Simulation I (Table 3). Based on the results for ESS from 

the initial MCMC chains (table 4), the MCMC chains were run for 250,000 cycles and every 

250th sample used for analysis (m =1000). Now, uniform priors for all dispersion parameters 

were used. The sampling correlations are averaged over the five replicates and are presented 

in Table 6. These correlations are consistent with those from the initial MCMC chains (Table 

4); i.e., auto-correlations were highest among samples for a] (in 0Vc) and y (in 9RT), i.e., 

around 0.68. These parameters also had lowest and similar ESS (=230). These results 

indicate that sampling efficiency is similar for the two studied parameterizations (Ovc and 

0RT) of the genetic model - and shorter chains may suffice. The posterior mean estimates, 

averaged over five replicates, for all dispersion parameters were in close agreement with the 

values used for simulation (not shown). 

Table 6: Sampling correlation and effective samples for RAM and alternative 
parameterizations (9vc versus 0RT) from Simulation H. 

correlation ' ESS 2 

auto 
6vc 

al 0.14 724 
o\ 0.52 -0.09 284 
<sl 0.68 -0.44 -0.84 228 

auto o ] h2 

9RT 
0.10 759 
0.11 -0.99 773 
0.68 -0.27 0.28 232 

h2 0.11 -0.99 773 

_ï 
1 auto-correlation = between subsequent samples for the same parameter; otherwise 

correlation between samples for different parameters within cycle. 
2 ESS = effective sample size. 

Simulation III Presence of the QTL 

In simulation HI, two different designs (20 or 50 grandsire families) were studied in 

combination with two different sizes of the QTL (explaining either 10 or 25 percent of the 

genetic variance). Two different priors for y were studied with the 9RT parameterization. For 
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each combination of design and y, test runs preceding the 25 replicates were used to 

empirically determine values for t in the MH algorithm, in order to achieve the desired 

acceptance rates. From the marginal posterior density an odds ratio was computed and the 

presence of the QTL was accepted only if this ratio exceeded a critical value of 20. Using this 

test statistic we postulated the power of detecting the QTL for specific designs and using 

different priors (Table 7). 

Table 7: Power' for detection of QTL for RAM and parameterization ÖRT from Simulation HI. 

Design 2 

20x40 

50x40 

QTL(Y)3 

0.10 

0.25 

0.10 

0.25 

prior on y 
= Beta(l,l) 

0.24 

0.64 

0.80 

1.00 

prior on y 
= Beta(l ,19) 

0.28 

0.56 

0.68 

1.00 

1 Power is defined as the acceptance rate for a QTL, for an odds ratio, mode{p(y)}/p(y=0), 
exceeds 20. For each "design - QTL" combination, 25 replicates were simulated. 

2 Design is defined as 20 (50) grandsire families, each family contains 40 sons. 
3 QTL (y) is the proportion of genetic variance due to the QTL. 

The small design (20x40) has low power of QTL detection, i.e., only 25 %, for a QTL 

that explain 10 % of the genetic variance. Power increased when either the QTL explained 

more genetic variance or when a large design (50x 40) was used. For the large design with a 

relatively large QTL, power of detection is 100%, for both priors considered. The use of the 

"peaked-at-zero" prior reduced power in the two intermediate cases but increased power in 

the small design with the small QTL. Estimates for posterior mode, mean and HPD90 were 

averaged over the 25 replicates and these averages are presented Figure 5. When the 

"peaked-at-zero" prior was used, point estimates are lower compared to using the uniform 

prior. This prior also led to shorter - and closer to zero - HPD90 region in all combinations 

of design and y but the impact was more noticeable for the small design. 
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Figure 5: Estimates for posterior mode, mean and 90 % Highest Posterior Density (HPD90) 
region. Estimates are averages over 25 replicates (Simulation LET). 

CONCLUSIONS 

We presented MCMC algorithms, using the Gibbs sampler and the MH algorithm, 

which facilitate Bayesian estimation of location and dispersion parameters with a RAM. The 

RAM proved to be superior to the FAM; RAM required much less computational time 

because of the greatly reduced number of location parameters and also better mixing of the 

dispersion parameters. Information on individual phenotypes led to accurate estimation of 

both residual variance and heritability, as was similar to Van Arendonk et al. (1998). On the 

contrary, Daughter Yield Deviations (Wiggans and VanRaden 1993) may result into poor 

estimation of polygenic and residual variances (e.g., Uimari and Hoeschele 1997). The use of 

0RT allows a better representation of prior belief about dispersion parameters while sampling 

efficiency was similar to the usual 0vc parameterization. 

Considering ratios of variance components rather than variance components 

themselves in sampling procedures, has been previously proposed (Theobald et al. 1997). 

However, our ratios can be interpreted directly and have implicit boundaries (zero and one), 

where Theobald et al. (1997) needed a specific restriction on their ratio. The representations 

of prior knowledge in the two parameterizations were not equivalent and differences in 
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posterior estimates can be expected. However, the use of vague priors (absence of prior 

knowledge) in the two parameterizations lead to very similar results. 

In this study, position of the QTL was assumed known. Extension of the MCMC 

algorithm to allow estimation of QTL position has been studied and implemented (Bink et al. 

1998b). Currently, the method of Bink et al. (1998a) to sample genotypes for a single marker 

is being extended to multiple markers linked to a normally distributed QTL. Then, a robust 

MCMC method becomes available for linkage analysis in multiple generation pedigrees 

allowing incomplete information on both trait phenotypes and marker genotypes. 
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APPENDIX 

Full Conditional Densities 
Location parameters The conditional densities for location parameters are the same 

with either sets of dispersion parameters (0vc or 9RT). When sampling genetic effects, the 
ratios of VC needed can be computed from either parameterizations, i.e., 

a"1 = ̂ f = ((1 - y) x -j^-J, and cc~' = •% = Uy x - ^ r ) . In this study we considered only one 

fixed effect, an overall mean \i, for which the conditional density becomes 
( • ( 4 n, \ / ' \ - ' A 

M.ie_u,y ~ N 
4 n, \ f 4 

X X Pk • XniG
E", 

where, pk equals yk corrected for genetic effects, following the categorization in Table 1. 

The conditional variance of this overall mean is an weighted average over categories. Again, 

for phenotypes on animals in category 1 to 3, the residual variance, <s\ , contains parts of the 

genetic variances. The conditional density for the polygenic effect of animal 7' can be given as 

"jM-u^-Nfcj/djtf/dj) 
where 

keo (j) leo• (j) i'=l 

dj -rij+a 8J + 

*S'V(J) 

where y, is the ith phenotype for animal j , corrected for all effects, other than polygenic, y,. is 
the average of phenotypes on non-parent /, also corrected for all effects other than polygenic, 
op(j) represents the offspring of animal j , which are parents themselves, onp(j) represents the 
offspring of animal j , which are non-parents. Furthermore, uM,k is the polygenic effect of the 
other (if known) parent (mate of animal j) of offspring k, nj is the number of phenotypes for 

animal j , 8j,= 1, %, 2 when 0, 1, or 2 parents of j are identified (with no inbreeding), (ôy1 is 

the fraction o2
u in the sampling term fy.) Finally, q); is the reciprocal of the amount of variance 

present in the residuals of phenotypes on animal /, and can be calculated as, 

<p, = ( « , - ' + a : V + a 7 l l ï D / l 2 ) 
where n; is the number of observations on animal /, and D; = I2 - Q;xQ/T (with no inbreeding, 
see also Bink et al. 1998a). The conditional density for the xlh QTL effect of animal j can be 
given as 

v , * i e_ v ; , y~Ar (c , 7 j ; , 0^ ; ) , x= i , 2 

where 

^ X * + a, *-,vlJ+dafvlJ+dqfvlJ + <WA<j) 

+a. • X K + dq?vl -dqd3
k*v[

MJ -dqdt^lj) 
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,(3-x) 

and dx = ^ +0^ 
kso.(j) 

1 

teo„,(j) 

Where y,- is the ith phenotype for animal j , corrected for all effects other than QTL, yt. is the 

average of phenotypes on non-parent /, also corrected for all effects other than QTL, dq j ' 1 is 

the first element of the xth row of D ^ ' Q J for animal j , and corrects for the covariance at the 

QTL between parent and offspring. Similarly, dqd*'1 is the first element of the Xth row of 

QjD~'Qy for animal j , and corrects for the covariance between parent j and the mate 

belonging to a particular offspring of that parent ƒ 

Dispersion parameters In the RAM, the residuals (e) have different variances over 
the categories of animals (Table 1). Hence, conditional densities for VC in 9vc are not 
standard densities. For example, when deriving the full conditional density for O e , the term 

00;(oI +2a2
v) is known in the likelihood part of the joint posterior density [13]. It can thus 

be treated as a constant, but it does not drop out of the equation. With 8RT, the conditional 

density of CT 2 is standard, but those for h2 and y are not. 

With 9vc. the conditional density of variance component x, for x = e, u or v, is 
( », / > 

/H i evc,-o-y)=p(^)xn 

where 

and 

x(co,)= l + (of(oj + 2av
2)/o2 = l + co,7z2/(l-/z2), 

p (o ' ) = (a2)"a '_1exp 
V*< 

q(x) = tar 
ta) 

x exp, 2 

5(2q) ^ 

x exp 

(iTA-'u): 

(vTG-'v): 

( T ( c o , ) a 2 p ' x e x p - | X ^ 7 ( ^ M ^ ) ) 
V*=i 

ifx = e 

ifx = u 

ifx = v 

xq(x) 
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With ORT, the conditional density for a \ is IG(r, s) distribution with 

s = IX: 
2 A uTA"'u v rG- 'v 

ße 2{tiÙA°>,)) 2 (1-Y)x^ 2-5yx^_ 
where N is the total number of phenotypes. 

4 <n ^r-xexJ-ifj^/^K) 
/ J . 

x(T^r5<"2î,xexP-i[(u^A-'u/(l-Y))+(v^G-'v/.5y)]xi^ 

where T(©,.)=1 + (Ö1.Ä2/(I-A2). 

/(Tie^T,y)oc(Yr-,(l-Y)ß-1 

x(l-T)-5( ' )x(y)-5(2 ' )xexp{-i[(u^A-'u/(l-y))+(v^G-'v/.5y)]xl^; 
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ABSTRACT 

A Bayesian method for identification of the most likely marker bracket interval 

containing a quantitative trait locus (QTL) with normally distributed effects, is presented. 

Parameter estimation was implemented via Markov chain Monte Carlo (MCMC) algorithms. 

Parameters of the mixed model are residual variance, heritability, proportion of genetic 

variance due to QTL, and QTL position on a linkage map. Straightforward implementation of 

a Metropolis Hastings algorithm to sample QTL position results in a reducible chain, i.e., the 

chain does not move away from the initial marker interval. This is due to a different set of 

marker brackets that are used in computing the gametic relationship matrix for QTL effects 

when the candidate QTL position is in a different marker interval as the current QTL position. 

A relatively new MCMC technique, simulated tempering, is implemented to improve mixing 

of QTL position. Although computer intensive, the simulated tempering sampler yields 

proper mixing of QTL position. Inferences on the most likely position of the QTL are based 

on marginal posterior probabilities. 

INTRODUCTION 

Mapping loci responsible for variation in quantitative traits (quantitative trait loci or 

QTLs) in humans, animals and plants has rapidly become a major area of interest. Due to 

high density of molecular markers now available, segregation and transmission of 

chromosomal segments can be accurately followed throughout a population. A variety of 

methods are used for identification of marker-QTL associations (e.g., Weiler et al. 1986; 

Knott and Haley 1992; Zeng 1994). Most were developed assuming simple pedigrees, e.g., 

backcrosses or F2s. They cannot fully account for the more complex data structures of 

outbred populations such as found in domestic animals. 

Markov Chain Monte Carlo (MCMC) algorithms (Metropolis et al. 1953; Hastings 

1970) provide a powerful computational tool for analysis of complex data structures, either in 

a maximum likelihood or Bayesian context. Ideas of a Bayesian analysis for QTL detection 

were described in Hoeschele and VanRaden (1993a, 1993b), and implemented, via MCMC 

algorithms, in contributions by Thaller & Hoeschele (1996); Satagopan et al. (1996), Uimari 

et al. (1996); Uimari & Hoeschele (1997); and Sillanpää & Arjas (1998). Most of these 
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Bayesian methods assume a bi-allelic QTL model (Hoeschele et al. 1997). Though 

reasonable for a cross of inbred strains it is less so for a population such as the Holstein breed 

of dairy cattle. Outside of North America, populations typically resulted from several crosses 

of the North American breed on the local strain of black and white cattle. Currently the gene 

flow among countries continues unabated. A population with such varied origins is a long 

way from inbred strains; a polyallelic model seems more appropriate. 

In this paper a Bayesian approach is presented for estimating position and contribution 

to variance of a random, normally distributed QTL together with additive polygenic and 

residual variance components. We show that a straightforward implementation of a 

Metropolis-Hastings (MH) algorithm to shuffle the QTL position within the linkage map 

leads to an effectively reducible Markov chain, i.e., not all possible positions are reached 

from a given starting position of the QTL. We suggest a modified MCMC scheme, which is 

simulated tempering (Marinari & Parisi 1992; Geyer & Thompson 1995), to solve the mixing 

problem for QTL position. The presented MCMC scheme is empirically evaluated for 

simulated data from a granddaughter design (Weiler et al. 1990). In a granddaughter design, 

marker genotypes are available on elite sires and their sons and trait phenotypes are observed 

on daughters of sons. The extension and application of the Bayesian method presented to 

complex pedigree analysis to detect QTL in outbred populations are discussed. 

METHOD AND APPLICATION 

Mixed linear model: Fernando and Grossman (1989) derived best linear unbiased 

prediction (BLUP) of normally distributed QTL allelic effects. The animal model including 

QTL effects and residual polygenic effects (QTL not linked to marker map under study) of 

Fernando and Grossman (1989) is: 

y = Xb + Zu + ZTv + e 

with VflKu) = Acr„2,VaKv) = G(Tv
2,Var(e) = RcTe

2 [1] 

where y is an N x 1 vector of phenotypes, b is a vector of fixed effects, X is a 

design/covariate matrix relating b to y, u is a q x 1 random vector of residual additive 

(polygenic) effects, Z is an incidence matrix relating records in y to individuals, v is a 2q x 1 

random vector of QTL allelic effects, T is an incidence matrix relating each individual to its 

two QTL alleles, e is a vector of random residuals, A is the additive genetic relationship 
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matrix (Henderson 1976), a] is the polygenic variance, Ge 2 ' s m e variance-covariance 

matrix of the QTL allelic effects conditional on marker information, a2 is half the additive 

genetic variance explained by the QTL, R is a known diagonal matrix, and a2 is the residual 

variance. Matrix G is the gametic relationship matrix for the QTL with size 2q x 2q, where 

the (i,j) element represents the probability of QTL allele i being identical by descent (IBD) to 

QTL allele j . The IBD probabilities for QTL effects are computed given marker data and a 

map position, (IQ, of the QTL. Parameters related to the marker map (marker distances and 

allele frequencies) are assumed to be known. In this study we apply the recursive method of 

Wang et al. (1995) to construct matrix G and its inverse. For animals with many genotyped 

offspring, the linkage phase is assumed known a priori, for the remaining animals an 

averaged linkage phase, i.e., weighting each possible linkage phase by its probability of 

occurrence, is taken. The model in [1] is parameterized in terms of the unknown heritability 

(h2 = a2 la1) with additive genetic errand phenotypic variance a2
p, proportion of the 

additive genetic variance due to the QTL (y = a1 la]), residual variance a2, and QTL 

position CIQ. 

Estimation of location and dispersion parameters: Bayesian inferences about the 

parameters are based on the posterior distribution of parameters given the observed data (y) 

and marker data (m). The missing data are the fixed effects (b), and random QTL (v) and 

polygenic (u) effects. Priors for b are assumed to be uniform over a large but fixed interval. 

The polygenic and QTL effects are a priori Normal (0, ACT2 ), Normal (0, G a2 ), respectively. 

Now let 0 denote {b,u,v,h2,y,o2}. Given the position of the QTL relative to the set of 

available linked markers, the sampling distributions for all elements in 8 are similar to those 

in Bink et al. (1998b). For the location parameters b, u, and v sampling distributions are 

Normal. The sampling distribution for oj is a scaled inverted chi-squared distribution with 

df equal to dim(e) - 2, resulting from the use of uniform prior on [0, °°). Beta distributions 

were used to specify prior knowledge on both h2 and y. The resulting sampling distributions 

for h2 and y are non-standard and a Metropolis Hastings (MH)-algorithm is used to obtain 

samples for these parameters (Bink et al. 1998b). 
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Estimation of QTL position: Let d be a discrete set {d{,d2,....,dn_x,dn}, with dQ 

being positions within a marker linkage map, and n the number of possible QTL positions 

between the first and last marker on the linkage map. Recombination fractions between loci 

are computed using Haldane's mapping function. Then for equidistantly spaced positions, the 

prior distribution of dQ is given as 

f\do)= V 
0 otherwise 

[2] 

The joint posterior density of 9 and dQ can be given as 

f(8,dQ \m,y) = f(d\dQ,m,y)xf(dQ) 

~f(y\6,dQ)xf{b)xf{u\A,h2,Y,(j>)xf{y\Ga,h
2,Y,<Jï) [3] 

xf{h2)xf(y)xf{a2)xf{dQ) 

From this joint posterior distribution, the full conditional distribution for JQ can be obtained 

by omitting those parts in [3] that do not involve dQ itself. The position of the QTL only 

affects the elements of matrix G, and the full conditional can be given as, 

f{dQ=di\Q,m,y) = 

IG"' r x expf .5a;2 ( vTG "' v)}x f(di ) 

; xexp{ - . 5o \ 2 ( v r G»}x / (< ) 
if d; e d 

[4] 

0 otherwise. 

Either the MH algorithm or the Gibbs sampler can be used to sample from this full 

conditional distribution. Because the denominator need not be computed, the MH algorithm 

is advantageous especially for exploring many positions for the QTL. The numerator of [4] 

needs to be evaluated for current and candidate positions, dt & dj. The probability of move, 

i.e., acceptance of candidate value dj, is min( cc(i, j), 1 ) , where 

a(i,j)--
'f{dj) 

\% xexp - .5 (v rG>)— x ƒ(</.) 

M\dj) 
Adj-.d.y 

[5] 

where q{df,dt)is the probability of proposing a move to dj from dt. To implement MH we 

used a candidate generating density that was uniform centered on the current value d, (Chib 

and Greenberg 1995). The length of this uniform is determined empirically and should result 

in average acceptance of 20 and 50 %, suggested by e.g., Tierney (1994). 
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Effectively reducible MCMC chain: A candidate position for the QTL in another 

marker interval usually involves a different set of marker loci (and genotypes). Consequently, 

very different IBD patterns are used to compute G"1. A different G"1 will result in 

(vTGj'v » vTGj'v) (equation [5]) because values for v were sampled conditional on G^1. 

This gives a relatively very small value for the numerator in [5], and, for large pedigrees, the 

probability of move in [5] is virtually zero. Consequently, the QTL position remains within the 

starting marker interval, independent of which starting position is chosen, i.e., effectively 

reducible. However, density [4] remains useful to find the most likely position of the QTL 

within a marker bracket. 

Simulated tempering: Simulated tempering was first described by Marinari & Parisi 

(1992) and in the modified form used here by Geyer & Thompson (1995). It is a procedure to 

improve the mixing properties of a chain such as described above. A set of unnormalized 

densities, rather than just one, is sampled from; one being the original and the others 

modifications with (expected) better mixing properties. One such modification is to "heat" the 

target density. This flattens the distribution, making it easier for the chain to move around in the 

parameter space. A simulated tempering scheme includes an index to the current distribution as 

part of the state of the Markov chain. With this index, a new stage is added to the sampling 

scheme outlined previously. When the chain is sampling the target - "cold" - distribution it 

will explore within a local mode; when it is sampling from the hot distributions it should be able 

to move easily around in the parameter space. Each time the chain moves from the hot 

distributions to the cold distribution, it has the potential to enter a different local mode. 

Because differences in the inverse matrices computed for current and candidate marker 

interval causes the non-mixing for parameter CIQ, the heated distributions were obtained by 

modifying G '. The elements of G ' are recursively computed by using, for each individual, 

an IBD probability matrix Q (= q in [17] in Wang et al. 1995). For each individual with 2 

identified parents, nonzero elements (< 8) in Q are computed from the individual's and 

parental marker genotypes and recombination fractions between QTL and adjacent marker 

loci. Now, let Qlrue denote the Q matrix conditional on marker data and true recombination 

fractions between QTL and adjacent marker loci. And let Qfree denote a matrix Q where the 

QTL is not linked to any markers. That is, recombination fractions between QTL and 
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adjacent markers equal 0.5 and, consequently, the elements in Qfree do not depend on marker 

data and dQ. 

Let Xj,j= 1,..., k, be an ordered series of 'temperatures' ranging from X\ = 0 up to Xk = 

1. A set of unnormalized densities A,-, j= 1, ..., k, is formed by using 

QÎ ;= ( i - ^X j r + ^Q f r e e [6] 

for the computation of GT in the numerator of [4]. 

The stationary distribution of the chain of X's is proportional to A/.) g(j), where g(j) is a 

pseudoprior, or prior weight, for distribution j . The temperatures X and the number of 

distributions k must be set up to allow the chain to move freely within the entire parameter 

space. In addition, the pseudopriors g should be set so that number of visits, occupation 

numbers, to all distributions A/ s are approximately equal. In other words, pseudopriors are set 

such that moves from A/.) to A/+/(.) are accepted with the same probability as moves from A7+/(.) 

to A/.). Geyer and Thompson (1995) describe several methods to determine the spacing and 

pseudopriors to arrive at desired acceptance rates (0.20 - 0.50). 

The MH algorithm for a proposed move from distribution i toy' is: 

'hjUgiflq&j) 
min ,1 [7] 

{ A((.)g(0 qU;0 ) 

where q(rj) is the probability of proposing a move to i from j . Moves are only allowed 

between adjacent distributions. Estimates of /(rf^lm, y) can be obtained by calculating the 

proportion of times a given QTL position is visited when j = 1 (i.e., when sampling from the 

target distribution). 

Regeneration: A process is regenerative if there is a sequence of random times at 

which the process starts over independently and identically. Simulated tempering can allow the 

implementation of a regenerating sampler that can improve estimation of the Monte Carlo error 

of the estimates (Mykland et al. 1995). The tours of the process between these times are 

independent and identically distributed. In this study, the chain regenerates when the hottest 

distribution is visited because in this distribution the samples can be drawn independently of the 

current value of dQ. That is, in the hottest distribution matrix G ' does not depend parameter dQ 

and the candidate value for dç> is always accepted. We draw candidate values from the prior 

distribution of dQ. By starting the chain with j=k and running until the chain returns to k (and 

visiting the cold distribution, j= 1), Monte Carlo errors can be simply estimated (Geyer and 
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Thompson 1995). Estimating Monte Carlo errors with a standard MCMC scheme is much 

harder due to the dependency between samples (Geyer 1992). The method described by Geyer 

and Thompson to estimate Monte Carlo errors was used in this study. 

Simulated data: Monte Carlo simulation was used to generate granddaughter designs 

comprising 20 unrelated grandsire families each having 40 sires (paternal half sibs). This 

approximately reflects a Dutch granddaughter experiment design as described by Spelman et 

al. (1996). Polygenic and QTL effects for grandsires, were sampled from N(0,a2
u) and 

N(0,O2
v), respectively. The polygenic effect for a sires was simulated a su s = ^ (uGS)+()>, 

where us is the grandsire's polygenic effect, and (j), Mendelian sampling, is distributed 

independently as N(Q,Vai(§)) with Var(<t>) = .75 x G2
U (no inbreeding). Each sire inherited one 

QTL allele at random from its grandsire. The maternally inherited QTL effect for a son was 

drawn from N(0, c2,). Each sire had 100 daughters with phenotypes observed, that were 

generated as 

y ~ N{{±US + pvi + (1 -p)v2\(X2 + < + <)). 

where p is a 0/1 variable. The phenotypic variance and the heritability of the trait were 100 

and 0.40, respectively. The proportion of genetic variance due to the QTL (= y) was 0.25, 

except for data II where y = 0.00 (table I). Data II was chosen to verify that absence of a QTL 

within the linkage map was also detected by the MCMC method. 

Table 1 :Characteristics of simulation of DATA 
1 _ 

DATA y QTL position heterozygosity 

1 Ö25 90 cM 100% 

H 0.00 - 100% 

m 0.25 90 cM 60% 

IV 0.25 50 cM 60% 

1 Position of QTL relative the map position of first marker in linkage group; 
2 Heterozygosity is the percentage of heterozygous marker genotypes for grandsires. 

Marker data was generated for all grandsires and sons. Six markers were spaced 

equidistantly (20 cM, Haldane's mapping function) with the first marker being the origin of 

the linkage map. Each marker locus contained five alleles with equal frequencies. For 
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grandsires, the informativeness of marker genotypes, i.e., heterozygous, was arbitrarily set 

equal to 100% or 60% (table I). The 100% heterozygosity is the ideal situation; 60% is a 

level found in practice (e.g., chromosome six in dairy cattle, Spelman et al. 1996). 

MCMC simulation: In the analysis, we restricted the set of QTL positions to 5 for 

program coding reasons. These positions were the middle of each marker bracket, i.e., 10, 30 

50, 70, and 90 cM. The five possible positions of the QTL had equal prior probabilities 

(=0.20). In the analysis, Beta(l,l) (= uniform) prior distributions were used for parameters h2 

and y. Initial values for location parameters were zero, while starting values fora2, h2, and y 

were 60.0, 0.40, and 0.25, respectively. The simulated tempering sampler always started in 

the hottest distribution (Xk =1)- Due to independent sampling of d in this distribution, the 

starting value for d was not relevant. For each of the four data sets, one final long MCMC 

chain was run (after fine-tuning the number of distributions with their spacing and 

pseudopriors in the simulated tempering scheme). The length of each MCMC run was 

arbitrarily set at 5,000,000 iterations. Total CPU-time per MCMC run was about 40 hours on 

a HP 9000-k260 server. In each iteration (in chronological order), b, u, v, and a2 were 

updated by Gibbs sampling, while h2, y, d, and \ were updated by MH algorithms. (To 

decrease the number of elements in u and v, a reduced animal model was fit (Bink et al. 

1998b).) The samples for parameters a2 h2, y, and d were stored when the cold distribution 

(kj = 0) was visited. 

RESULTS AND DISCUSSION 

Parameter Estimation: The four data sets yielded similar, firm, posterior knowledge 

on h2 and a2 i.e., peaked symmetric densities centered on values very close to the values 

(0.40, and 60) used for simulation (results not shown). Marginal posterior densities for the 

proportion QTL variance (y) for all 4 data sets are presented in Figure 1. These densities are 

not very peaked, but do indicate presence of a QTL in the three data sets where a QTL was 

simulated (I, H, and IV) and absence of a QTL in II where none was simulated. This was 

supported by the estimated 90% Highest Posterior Density (HPD90) regions, [0.03, 0.34], 

[0.00, 0.19], [0.05, 0.42] and [0.03,0.42] for data I, H, m, and IV, respectively. 
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Figure 1 : Marginal posterior densities for proportion QTL (y), and probabilities for position of 
the QTL (d) relative to origin of linkage map, after analyzing DATA I, II HI, and IV. 
Uniform priors were assumed for both parameters. 
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Computed odds ratios - marginal posterior density at mode divided by marginal 

posterior density at zero - were decisive for data I, n and HI, i.e., 180.9, 1.4, and 57.0, 

respectively. The odds ratio for data IV equaled 17.8, which is below but very close to the 

critical value of 20 (as suggested by Janss et al. 1995), and presence of the QTL seems 

justified. 

Estimation of QTL position within marker linkage map: The total length of the 

MCMC chains was arbitrarily set to 5,000,000 iterations, under the presumption that this was 

sufficient to minimize Monte Carlo error on the estimated QTL position. When only 500,000 

iterations were used for data I, the MC error on the estimated position was zero because only 

1 of the possible positions, i.e., 90 cM, was visited. After 5,000,000 iterations only position 

30 cM was not sampled. Posterior probabilities for positions other than 90 cM were below 

0.02 (Figure 1). Based on the marginal posterior density for proportion QTL (y) the presence 

of the QTL within the marker linkage map was rejected for data H In this case the position is 

meaningless though the chain did not visit all intervals equally as might have been expected. 

The most likely position for the QTL in data III was at 70 cM (Figure 1), what was not in 

agreement with the value (90 cM) used in simulation. This may be because the QTL was 

simulated at the end of the chromosome and the sixth marker (at 100 cM) was informative for 

only 10 of the 20 grandsire families, single marker information is less powerful than marker 

bracket information (e.g., Haley and Knott 1992). In addition, Van Arendonk et al. (1998) 

showed that estimated QTL position is biased towards "informative regions" of the marker 

linkage map. In addition, lack of information on the fifth marker (at 80 cM) for some 

grandsires caused the same markers to be used for both position 70 cM and 90 cM to compute 

IBD probabilities, although with different recombination rates. In data IV the most likely 

position of the QTL was at 50 cM, which was in agreement with the value used in simulation. 

The probability for position 30 cM was almost half of the probability for 50 cM. These 

results point to a rather low power for estimation of QTL position when markers are only 

partially informative for grandsires. Uimari et al. (1996) and VanArendonk et al. (1998) 

found similar results. 

Mixing of QTL position: For data I and II the simulated tempering sampler needed 

35 (modified) distributions to move from hot to cold and reverse. In data III and IV fewer 
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distributions (n=26) were needed to obtain an average acceptance rate of approximately 0.30. 

This difference is likely due to the lower heterozygosity of markers in data HI and IV. The 

MCMC run for data I resulted in a total of 25626 tours with 295 informative ones, i.e., at least 

one visit of the cold distribution. For a fixed number of iterations, the number of informative 

tours will decrease when more distributions are needed in the simulated tempering sampler 

since it will take longer to move between the cold and hot distributions (tours will become 

longer). Mixing of the QTL position only occurred near the hot end of the "heated" 

distributions. For example, in data I, 84%, 15%, and 1% of accepted QTL position occurred 

when sampling distributions h^{d), h^.\{d), and h^d), respectively. In all studied cases, 

sampling the hottest distribution, yielding independent sampling, contributes most of the 

mixing of parameter <1Q. From this, it becomes evident that mixing between the distributions 

in the simulated tempering is crucial to efficiently move from cold (valid sampling) to hot 

(good mixing) and reverse. Therefore, sufficient time and effort need to be spend on the fine-

tuning process of the simulated tempering scheme, i.e., optimization of the spacing and 

pseudopriors of the distributions. 

Table 2: Estimates for Monte Carlo error (in cM) on QTL position for Data I, E, HI, and IV, 

for subsequent lengths of the MCMC sampler. 

MCMC iterations 
(x 103) 

500 

1000 

2000 

3000 

4000 

5000 

DATAI 

0.00 

0.86 

0.62 

0.44 

0.39 

0.32 

DATA II 

3.05 

3.83 

2.41 

1.82 

1.51 

1.30 

DATA m 

2.33 

1.51 

1.07 

0.91 

0.77 

0.69 

DATA IV 

1.94 

1.46 

1.10 

0.82 

0.75 

0.66 

Desired length of MCMC run with simulated tempering: Table 2 gives the 

estimated Monte Carlo (MC) errors on QTL position (d). In data HI and IV with less 

informative marker data, major reductions in MC-errors were achieved when increasing the 

number of iterations from 500,000 up to 2,000,000, thereafter decreases in MC-errors were 

marginal. This suggests that MCMC runs with 2,000,000 iterations appears to be sufficient in 

this kind of applications. The effective sample sizes (ESS, see Sorensen et al. 1995) for 
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dispersion parameter y were 2623 and 2882 for data HI and IV, respectively (ESS for h2 were 

4 times larger). Minimum values for ESS of about 100 were suggested by Uimari et al. 

(1996). 

CONCLUDING REMARKS 

We presented an MCMC technique to identify the most likely marker bracket interval 

for a normally distributed QTL within a marker linkage map in a Bayesian analysis. Using 

simulated data from a granddaughter design we empirically tested the method. Because 

straightforward sampling of QTL position by an MH algorithm results in a non-mixing chain, 

we applied simulated tempering to improve mixing of QTL position. In this study we only 

focused on the most likely interval. A second grid search within most likely interval, using 

the initially proposed MH algorithm, could more precisely locate the QTL relative to markers 

with known positions. 

The use of the simulated tempering sampler is not new in genetics. Geyer and 

Thompson (1995) applied it to compute the probability distribution of carrier status of a lethal 

recessive disease over a pedigree in Hutterites. Heath (1997) used the simulated tempering 

sampler to improve mixing in the analysis of haploid radiation hybrid mapping data. In these 

studies, mixing properties of important parameters in the Markov chain were insufficient 

without the implementation of the simulated tempering sampler. When the simulated 

tempering scheme regenerates, tours from different MCMC runs can be combined. This 

means that a large analysis could be run on several processors (or personal computers), and 

the results simply combined. Alternatively, a second MCMC run could be produced if the 

precision obtained from an initial MCMC run was not enough. There are, however, several 

technical difficulties with using simulated tempering schemes, particularly with regard to 

setting up the modified densities and their pseudopriors. Simplification of that process will 

allow a widespread use of methods using simulated tempering schemes in practice. 

For the analysis discussed in this study only paternal relationships within unrelated 

grandsire families were considered and model assumptions might have been much simpler. 

However, we are currently working on methodology for complex pedigree analysis where 

ungenotyped individuals provide additional ties between members of different families. This 

methodology is based on the ideas of Bink et al. (1998a) for sampling genotypes for a single 

marker that is linked to a random normally distributed QTL, and on the ideas of Jansen et al. 
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(1998) to improve mixing of IBD values for marker loci. Examples of ungenotyped 

individuals are dams that have sons in multiple grandsire families, or dams of sons that are 

sired by a grandsire. Allowing these ungenotyped individuals will increase the number of 

segregation events in the analysis and thereby likely improve the power and accuracy of QTL 

detection and mapping. The Bayesian analysis presented is primarily described for detection 

of QTL in outbred animal populations, but can also be applied to complex pedigrees in 

humans or plants. 
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ABSTRACT 

Augmentation of marker genotypes for ungenotyped individuals is implemented in a 

Bayesian method for QTL detection via the use of Markov chain Monte Carlo techniques. 

Marker data on relatives, and phenotypes are combined to compute conditional posterior 

probabilities for marker genotypes of ungenotyped individuals. Accommodating 

ungenotyped individuals allows the analysis of complex pedigrees to detect segregating QTL. 

Allelic effects at the QTL were assumed to follow a normal distribution with a covariance 

matrix based on known QTL position and identity-by-descent probabilities derived from 

flanking markers. The Bayesian approach estimates variance due to the single quantitative 

trait locus, together with polygenic and residual variance. The method was empirically tested 

through analyzing simulated data from a complex granddaughter design. Ungenotyped dams 

were related to one or more sons or grandsires in the design. Heterozygosity of the marker 

loci and size of QTL were varied. Simulation results indicated a significant increase in power 

when all relationships were included in the analysis. 

INTRODUCTION 

Recent advances in molecular genetics technology have lead to the availability of 

moderate resolution genetic marker maps for plant and livestock species (e.g., Barendse et al. 

1994). Animal and plant breeders are currently using these genetic markers to identify 

chromosomal regions containing quantitative trait loci (QTL) (e.g., Paterson et al. 1988; 

Stuber et al. 1992; Andersson et al. 1994; Georges et al. 1995). The power of QTL detection 

is an important factor in the analysis of experiments, that is, maximize the chance of detecting 

QTL and minimize the risk on false-positives. 

Weiler et al. (1990) outlined the granddaughter design to map QTL in dairy cattle. In 

this design, marker genotypes are determined for grandsires and their sons (paternal half 

sibs), and quantitative trait phenotypes are measured on daughters of sons. This scheme 

capitalizes on the existing structure in dairy cattle populations and minimizes the amount of 

marker genotypes for a given power of detection (Weiler et al. 1990). Traditional methods 

such as (multiple) linear regression and maximum likelihood interval mapping assume 

unrelated elite sire families and only 2 generations of genotyped individuals. However, 

relationships between families, such as related grandsires and maternal grandsons frequently 
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occur in outbred populations. Furthermore, available data may involve multiple generations 

of genotyped or phenotyped individuals. Exploiting all relationships between individuals and 

all information collected over generations seems a very appropriate approach to increase 

power of QTL detection. 

Parameter estimation in complex animal (and plant) breeding pedigrees may be 

tackled by Bayesian analysis, a comprehensive overview is given by Wang (1998). In 

Bayesian analysis, prior assumptions and the likelihood of the data at hand form the joint 

posterior density of all unknown variables in a model underlying the observed phenotypes. 

Markov chain Monte Carlo (MCMC) methods provide means for exploration of complex 

non-standard joint densities, and marginal posterior densities for parameters of interest can be 

approximated. There are a variety of techniques for their implementation (Gelfand 1994) of 

which Gibbs sampling (Geman and Geman 1984) is the most commonly used. Bayesian 

linkage analysis in combination with MCMC methods have been applied in human genetics 

(e.g., Thomas and Cortessis 1992; Heath 1997a), in plant genetics (e.g., Satagopan et al. 

1996; Sillanpää and Arjas 1998), and in animal genetics (e.g., Thaller and Hoeschele 1996a; 

Uimariefa/. 1996; Hoeschele et al. 1997). 

A second assumption in methods currently employed for QTL linkage analysis of 

half- sib or full-sib designs, is that all individuals have observed marker genotypes. The 

incompleteness of marker data may be due to genotyping expenses or lack of DNA. This has 

hampered the implementation of a full pedigree evaluation in QTL mapping. Augmentation 

of missing genotypes via the Gibbs sampler has been suggested (e.g., Thomas and Cortessis 

1992). However, the Gibbs samper may be theoretically reducible, i.e., not be able to reach 

all permissible genotypes from the starting configuration, when genotypes are missing on 

parents and the locus has more than 2 alleles (e.g., Sheehan and Thomas 1993). This 

reducibility problem does not occur if at least one parent has observed marker genotypes, 

which may hold for dairy cattle data, where semen of sires is stored for artificial insemination 

and available for DNA typing. 

In this study a Bayesian approach is presented that estimates variance due to a single 

quantitative trait locus, together with polygenic and residual variance, allowing ungenotyped 

individuals. We adapt the method of Jansen et al. (1998) to describe marker information on 

an individual in terms of allelic constitution of its homologues and identity-by-descent (IBD) 

values. We extend the genotype sampling approach of Bink et al. (1998a) from single marker 
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to multiple linked markers. The described approach will be used for the analysis of simulated 

data from a granddaughter design with many maternal ties between sons, and between sires 

and sons. Emphasis is on the accuracy of estimates of dispersion parameters. The position of 

the QTL relative to multiple linked markers is fixed in this study, possibilities to estimate this 

parameter are discussed. We also discuss an extension of our approach to pedigrees with no 

restrictions on incompleteness of marker data. 

MATERIALS AND METHODS 

Marker genotypes: Consider a q member population on which marker scores are 

observed. Let gt denote the i'h individual's genotype at all marker loci (excluding the QTL 

genotype). The genotype g includes full multi-locus information about alleles and their 

identity-by-descent (IBD) pattern, but this information can be observed only partially. For 

each possible genotypic configuration g on the population (that is, being consistent with 

observed marker scores) a scalar probability of occurrence may be calculated. The number of 

possible genotypic configurations exponentially increases when considering marker data on 

many individuals for many marker loci, and containing many missing marker scores. The 

Gibbs sampler has been successfully used to explore a large number of genotypic 

configurations and their probability of occurrence (e.g., Guo and Thompson 1992; Janss et al. 

1995). Jansen et al. (1998) introduced different descriptions of the genotype of founders (that 

is, individuals with both parents unknown) and non-founders in the population. They 

specified the genotypic state of any founder by the alleles at each of its homologues, and they 

expressed the state of any non-founder by IBD values indicating parental origin of its alleles. 

For illustration, consider a small pedigree in Table 1. Two founder individuals had observed 

marker scores and the linkage phase was assumed to be known for convenience (limits the 

number of genotypic configurations that are consistent with observed marker scores). Marker 

alleles of these individuals are arbitrarily assigned to their first and second homologues, 

where first and second correspond to paternally and maternally inherited gametes, 

respectively. Based on observed marker scores, three genotypes were allowed for the 

ungenotyped non-founder. For completeness, alleles of non-founders' homologues are also 

given. Marker data may provide full information on the IBD pattern, e.g., the paternally 

inherited alleles of individuals 4 and 5, respectively. More often the IBD patterns are not 

constant, due to allelic switches in parent or offspring. Note that for a homozygous parent, 

the IBD value of alleles transmitted to its offspring can be either 1 or 2. 
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Table 1: Numerical example for illustration of allelic constitution of paternally and 
maternally inherited homologues and identity-by-descent (IBD) patterns. Three 
genotypic configurations (denoted A, B, and C) are consistent with pedigree and 
observed marker genotypes. 

pedigree 
ind sire dam 
1 - -
2 - -
3 1 -
4 2 3 
5 2 3 
6 2 3 

marker 
genotypes 
locus 1 
ac 
ab 

3 

ac 
be 
ab 

locus 2 
ac 
ab 

3 

ac 
bb 
ac 

Configuration A 
homo
logues 
dl 1 9 
aa/cc2 

aa/bb2 

cc/bb 
aa/cc 
bb/cb 
aa/bc 

IBD -
patterns 
a / 9 

2 2 / . . 
11/11 
22/12 
11/21 

configuration B 
homo
logues 
a 1 9 
aa/cc 
aa/bb 
ac/cb 
aa/cc 
bb/cb 
ba/ac 

IBD -
patterns 
d- / 9 

1 2 / . . 
11/21 
22/22 
21/11 

configuration C 
homo
logues 
<? / 9 
aa/cc 
aa/bb 
cc/ab 
aa/cc 
bb/cb 
ba/ac 

IBD -
patterns 
a 1 9 

2 2 / . . 
11/22 
22/12 
21/21 

1 <5 ( 9 ) Denotes the paternally (maternally) inherited homologue; 
2 Known linkage phase between alleles at marker 1 and 2, arbitrary assignment of alleles to 

homologues; 
3 Marker genotype not observed. 

The major advantage of the approach of Jansen et al. (1998) is that in each state of the 

Markov chain, each marker is informative for each offspring. Uncertainty on transmission of 

alleles is incorporated in the analysis by updating allelic constitution of genotypes in founders 

and by updating the IBD pattern for non-founders, as will be described later. 

QTL model: In animal genetic models, allelic effects at the QTL in an outbred 

population may be represented by normally distributed random effect where covariances 

between allelic effects depend on gene identity-by-descent probabilities. The identity-by-

descent probabilities are derived from marker information and map position of the QTL 

(Fernando and Grossman 1989; Van Arendonk et al. 1994; Wang et al. 1995). Let v denote 

the vector of additive effects of QTL alleles, containing 2q elements for q individuals. That 

is, 2 unique QTL allelic effects are fitted for each individual. For individual i, let vf and v™ 

denote the paternally and maternally inherited QTL allele, respectively. Let P(a = b) denote 

the probability that alleles a and b are identical-by-descent. Then we can write, 

v," = Piyf m vƒ )vf' + P(v," m v," )vs
m + s,' [la] 

v," = W S V ; K +P(v,m = v ; )v ; +8," [it>] 
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where, s, d denote the sire and dam of the individual, and ef ,e" are residuals. When the 

QTL is located between marker k and k + 1 and IBD pattern for these markers is known, then 

the probability of IBD for the QTL can be represented as, 

IBDikx IBD, 

(1 ~h,qa ) * ( l -V* + i ) l 

1 P(vf , ) * (l-r*,,„)x(V,*+i) 

K , « ) x ( l - V w ) 2 

(r*,„,)x(v*+i) 2 

i,t+l,Jt 

1 

2 

1 

2 

[2] 

where, x = p, or m if the parent considered is the sire or dam, respectively, and r^q„ is the 

recombination fraction between marker k and the QTL. For example, IBDiXp=\ means that 

for individual i at the A* marker the paternally inherited allele is identical by descent to the 

first allele in its sire (where the latter is the paternal allele within the sire). For simplicity, we 

assume recombination fractions to be equal in males and females. The 

probabilityP(v' = vm
pareM) equals 1-P(v' = vp

parenl). The residuals ef,s™ are bivariate 

normally distributed, that is 

N 
0 of 0 

[3] 

where 

1 - \p(vr = v;)f + {2 x P(vf = vf) x P(v," = v,") x P{yp
s = v,")} + {p(vf = V;)}2> 

vl _ {P(vr ^ v;)j2 + j 2 x PW = v;) x Ptf = v,7) x P(V> S vj)} + {P(v," ^ vj)}: 

and, a I is half the additive genetic variance explained by the QTL. When a parent is not 

inbred at the QTL, the second probability drops out, (P{vp
s =v™) = 0 and/or P(yp =VJ) = 0), 

and when parent x is unknown, 5 ' = 1. Our model is an approximation to a mixture model in 

which the QTL allelic effect is exactly identical to one of the parental QTL allelic effects (see 

also Hoeschele et al. 1997 and Jansen et al. 1998). Changes in allelic effects between parent 

and (grand) offspring might be due to mutations, or to the fact that a QTL represents a cluster 

of closely linked QTL, or to epistatic effects. 

Let G denote the gametic relationship matrix for the QTL (2q x 2q) where the (ij) 

element represents the probability of QTL allele i being identical by descent to QTL allele j . 

Then, the conditional density of v can be given, 
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( v I G . a ^ l G G ^ x e x p l - X c ^ V G - ' v } [4] 

Van Arendonk et al. (1994) presented a recursive algorithm to efficiently construct matrix G 

and its inverse G' . Matrix G"1 has a nice sparse structure: The non-zero elements in G"1 

pertaining to an individual's QTL allelic effect arise from its own contribution (to its parents) 

plus those of its offspring, i.e., its neighborhood set (e.g., Sheehan and Thomas 1993). The 

determinant of G"1 and the term vrG"'v can be efficiently computed using partitioned matrix 

theory (Searle 1982). After some algebra, the conditional density of v is, 

/»(v|G,oj) 

«n(|(sr)>|(srr|)xexp|-KcT;2|:((ôrr x(v; -?>?+&y x(v; -v;)2)J 

where v/ = P(yx
k = v^Jv^ + P(vx

k = v™ renl )v™ rml with parent being a sire or dam for x 

being the paternal or maternal derived allele of the individual, respectively. And, for 

example, the full conditional density of the paternal QTL effect of male i, v ' , 

/ ,(< I G .aJ)« |(6f Y|xexpf-/2a;2(ôf )'' x{vf -v(')
2} 

r f 
xnk)"'|xexp -K^2 +Z(ôf)"' x(v,' -v,') 

[5] 

where O, represents the set of offspring for male /. Equation [5] shows that the full 

conditional density for a QTL effect can efficiently be computed and only involves the IBD 

patterns of the individual itself and those of its offspring. Equations [2], [3] and [5] are used 

to draw samples for elements in v and to compute conditional probabilities in updating 

marker genotypes (see also Bink et al. 1998a, equation [6]). 

Updating of marker genotypes 

Three classes of individuals are distinguished when updating genotypic information: 

(1) Genotyped founders (with offspring); (2) Genotyped non-founders; and (3) Ungenotyped 

parents (ungenotyped non-parents are not considered). Examples in Table 1 of each category 

are individual 1 and 2, individual 4,5 and 6, and individual 3, respectively. The sampling of 

genotypes is described for each of these categories in the subsequent section. 

Category 1: genotyped founders. In order to take all possible linkage phases in the 

genotypes of genotyped founders into account, linkage phases are sampled interval by 
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interval and founder by founder, as suggested by Jansen et al. (1998). For a particular set of 2 

neighboring markers, e.g., j and (/' + 1), one can use information on the individual and its 

offspring (their IBD values) to calculate the conditional probabilities for two options "phase 

switch" and "no phase switch" and subsequently sample one of the options. In case of a 

phase switch, the distal part of its homologue 1 (marker j+\ to end) is attached to the 

proximal part of homologue 2 (map origin to marker j) and vice versa. Also, the IBD values 

at the distal part of the chromosome in its offspring are switched (1 becomes 2 and vice 

versa). 

Updating of linkage phase for the marker interval containing the QTL actually 

involves two interval updates, i.e., the interval "left flanking marker - QTL" and "QTL - right 

flanking marker". The conditional probabilities of the two linkage phases now also include 

information from the random QTL, using equation [5] (the QTL has no IBD patterns). For 

the left interval, the option "phase switch" involves a switch in founder QTL effects. This 

affects the computation of equation [5] and in case of a phase switch the founder QTL effects 

do switch (nothing changes for the QTL effects in its offspring). For the right interval, order 

of QTL effects within a founder is unaffected. 

Category 2: genotyped non-founders. To generate complete genotypes of non-

founders, one can sample a new IBD pattern given the genotypes of parents. This can be 

done individual by individual and marker locus by marker locus. If we update the IBD at a 

certain marker locus, then the two flanking marker loci (with "known" IBD) are fully 

informative and no other marker loci are needed. One considers at most 4 IBD patterns (2 per 

known parent), discarding the ones inconsistent with the individual's marker score. The IBD 

values of the individual's offspring are used when one of the consistent IBD patterns for the 

individual involves an allelic switch in the individual. When only one parent is known, 

population allelic frequencies are used. When the individual's alleles are switched 

(heterozygous), its offspring' IBD values are switched as well (1 becomes 2 and vice versa). 

When a marker flanks the QTL, the conditional probabilities include information of 

the QTL by using equation [5] for each consistent IBD pattern. 

Category 3: ungenotyped parents. This is the most complicated category since genotypes 

should not be updated individual by individual. To illustrate this, suppose a sire with 

genotype a / b, an ungenotyped dam, and their two offspring (g0, = a / b, go2 = a / c). Starting 

with gd = b / c, the first offspring will have a / b, i.e., the a-allele at its paternal homologue 

and the b-allele at its maternal homologue. Then, updating individual by individual will not 



78 Chapter 5 

allow a switch to the configuration gd = a / c that would be consistent with the first offspring 

having b / a instead of a / b. To avoid this problem, we update an ungenotyped parent and its 

offspring in a block, allowing an allelic switch in the offspring. This allelic switch needs of 

course to be consistent with the other parent's marker genotype. The genotype for the 

ungenotyped parent is sampled from its marginal (w.r.t. its offspring) distribution, and the 

IBD of its offspring is subsequently updated from its full conditional (w.r.t. parent) 

distribution. Updates are done marker locus by marker locus. When one or both parents (of 

the ungenotyped parent) are unknown, the conditional probabilities also involve population 

allelic frequencies. Note that for an augmented homozygous genotype, the offspring's IBD 

value may equal 1 or 2 and both values are taken into account. This also holds for an 

augmented heterozygous genotype when parent and offspring have the same alleles. When a 

marker flanks the QTL, the conditional probabilities include information from the QTL using 

equation [5]. After updating an ungenotyped parent, its genotyped offspring are updated (as 

described under category 2). 

Allele frequencies. The allelic frequencies at a particular marker locus in a 

population are likely unknown and can be treated as such. Let r\mi denote the counts of allele 

i at marker locus m at "founder" homologues, i.e., homologues of founders plus the non-

parental homologue of non-founders with only one parent identified. Then, allelic 

frequencies at each marker locus can be sampled from a Dirichlet distribution with 

parameters r\mi+ 1 (for Dirichlet distribution, see p.482 - Gelman et al. 1995). 

Mixed linear model: Let b be a vector of fixed effects, and let u be an q x 1 vector of 

residual additive (polygenic) effects (not linked to the marker linkage group under 

consideration). Then the model underlying the phenotypes is given as, 

y = Xb + Zu + ZTv + e [6] 

with b ~ i/[bmin,bmaJ,u ~ JV(0, Aa>),v ~ N(0,Ga2
v),e ~ N{0,Ro2

e) 

where y is an N x 1 vector of phenotypes, X, Z are known design matrices relating records in 

y to fixed effects and to q individuals, T is a known incidence matrix relating each individual 

to its two QTL alleles, e is a vector of residuals, bmin, b^ are vectors with minimum and 

maximum values for fixed effects, A is the additive genetic relationship matrix (e.g., 
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Henderson 1988), a 2 is the polygenic variance, R is a known diagonal matrix, a 2 is the 

residual variance. 

The model is parameterized in terms of the heritability(A2 =cr2 / a 2 ) , proportion of 

the additive genetic variance due to the QTL (y = 2a 2 / a 2 ) and residual variance ( c 2 ) , 

wherea2 is the additive genetic anda2 is the phenotypic variance. In the remainder of the 

paper y will be referred to as proportion QTL. In this study, the QTL position relative to the 

origin of the marker map is assumed known, but this assumption may be removed as shown 

by Bink et al. (1998c). 

Prior knowledge on dispersion parameters: Different priors may be useful to explore 

the amount of information coming from the data for a particular parameter in the model. In a 

previous study, Bink et al. (1998b) showed that the posterior density of y was clearly affected 

by using different Beta distributions to represent prior knowledge on the proportion of QTL ( 

y), indicating lack of information on y from the data. In this study, two Beta distributions are 

considered to represent prior knowledge on y. A Beta (1,1) prior is uniform between 0 and 1 

with mean equal to 0.5, and will be denoted UNIFORM. A Beta (1,9) prior has the mode at 

zero with mean equal to 0.10, and will be denoted PEAKED AT ZERO. Based on Bink et al. 

(1998b), priors on h2 and a] were taken uniform over the interval [0,l] and [0,oo), 

respectively. 

Implementation of MCMC sampling: Bayesian inferences about the parameters are 

here computed using the Gibbs sampler and the Metropolis Hastings (MH) algorithm 

(Metropolis et al. 1953; Hastings 1970) based on the joint posterior distribution of the 

missing data and the parameters given the observed data (y) and marker data (m). The 

missing data are the fixed effects (b), the random QTL (v) and polygenic (u) effects, and 

marker genotypes (i.e., linkage phase between alleles at the markers and marker scores for 

ungenotyped individuals). Now let 9 denote |b,u, v, h2,y,a2}. 

To reduce the number of genetic effects that must be sampled (in a granddaughter 

design), a Reduced Animal Model (RAM, Quaas and Pollak 1980) is used. That is, the 

genetic effects of ungenotyped granddaughters are absorbed into the parental genetic effects, 

as described by Bink et al. (1998b). 

The sampling distributions for all elements in 6 are similar to those in Bink et al. 

(1998b). For location parameters b, u, and v, the full conditional densities are Normals and 
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values are drawn by using the Gibbs sampler. A scalar-wise sampling strategy may lead to 

slow convergence of the Markov chain (Smith and Roberts 1993), especially when elements 

in 0 are highly correlated. A full block sampling strategy, i.e., sample all correlated elements 

in 0 at once, may improve convergence significantly (Liu et al. 1994), but may also be hard 

to implement in animal breeding applications (Garcia-Cortes and Sorensen 1996). Within the 

RAM, block sampling, as proposed by Janss et al. (1995) is applied to polygenic effects of 

grandsires together with those of their sons. Block sampling (again within the RAM) is also 

applied to the QTL effects of grandsires together with the paternally derived QTL effects in 

their sons and also to the QTL effects of elite dams together with maternally derived QTL 

effects of their sons. First a new realization is drawn for the parental effect from the reduced 

conditional density, after absorption of genetic effects of sons. Secondly, new realizations are 

drawn for the sons, conditional on the new value of the parental genetic effect. 

The full conditional density for a2
e is an inverse chi-squared distribution with degrees 

of freedom equal to (dim(e) - 2), and sampling is done via the Gibbs sampler. The sampling 

distributions for h2 and y are non-standard and samples of these parameters are obtained using 

MH-algorithms (Bink et al. 1998b). In the MH algorithms for updating h2 and y, we used the 

random walk approach as candidate generating density (Chib and Greenberg 1995). Length 

of sampling intervals in the random walk need to be empirically determined to arrive at 

desired acceptance rates, e.g., between 0.20 and 0.50 (see Chib and Greenberg 1995). 

Data simulation: In this study, we simulated the segregation of a QTL in a 

granddaughter design. The pedigree material consisted of 20 unrelated grandsires, 400 elite 

dams, and 800 sons, equally distributed over the 20 grandsires. Two hundred elite dams were 

daughters of randomly assigned grandsires and the remaining 200 were unrelated to the 

grandsires. There were no maternal relationships between dams. Dams may have 1, 2, 3, 4, 5, 

or 6 sons with probability 0.50, 0.25, 0.10, 0.075, 0.050 and 0.025, respectively (relaxing 

fixed probabilities, a truncated Poisson distribution may apply). Mating of dams with 

grandsires was at random, but father-daughter mating was avoided. As a result of this 

strategy approximately 300 dams are related to at least 2 males in the pedigree (e.g., multiple 

sons and/or elite sire). About 400 sons are also maternal grandsons of grandsires. These 

numbers approximately reflect a Dutch granddaughter experiment design as described by 

Spelman et al. (1996). Polygenic and QTL effects for grandsires and founder-dams, were 
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sampled from N(0,CT^) and N(0,CTJ), respectively. The polygenic effect of individual i is 

simulated as u-L = \ [us ; + wD, )+ <j>, where uSi and uDi are the polygenic effects of the sire and 

dam of individual i, respectively. When individual i has unknown parents, zeros are 

substituted for usi and uDi. The term <j> represents Mendelian sampling that follows a Normal 

distribution with mean zero and variance equal to .50 a2,, .75a], or I.OCT2,, when 2, 1 or 0 

parents are known. Inheritance of QTL effects (and the linked marker alleles) from parent to 

offspring occurred at random. When a parent is unknown the QTL effect is drawn from N (0, 

a I ). Individual phenotypes, observed on 100 daughters for each son, were generated as 

v~ N[{^US +pvl
s +(i-p)v^(iCT2 +al + a2)), 

where p is a 0/1 variable. No phenotypes were simulated for dams. The phenotypic variance 

and the heritability of the trait were equal to 100 and 0.40, respectively. The proportion of 

genetic variance due to the QTL (= y) was equal to 0.10 or 0.25, representing a small and 

large QTL, respectively (Table 2). 

Table 2: Sets of parameters used in simulation. 

Proportion alleles per marker 
QTL' locus 2 

Small QTL, high informative markers 0.10 4 
Large QTL, high informative markers 0.25 4 
Large QTL, low informative markers 0.25 2 

1 Proportion of genetic variance explained by the QTL (y); 
2 Alleles have equal frequencies. 

For each individual a lOOcM chromosome was simulated with 6 markers at 20 cM 

intervals. The position of the QTL was 30 cM from the origin of the linkage group. Each 

marker contained either 2 (low informative markers) or 4 (high informative markers) alleles 

with equal frequencies, assuming Hardy-Weinberg equilibrium within marker alleles and 

linkage equilibrium between alleles of different markers (Table 2). 

Approaches to analyze data from granddaughter designs: Marker data in 

granddaughter design typically comprise marker genotypes for grandsires and their sons. 

Three different approaches for analysis are presented in Table 3. The first approach (denoted 

PATRLT) considers only paternal relationships between males in the pedigree, all with 

marker genotypes. The second approach (denoted ALL_RLT) considers all relationships 
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between individuals in the pedigree, and allows ungenotyped parents (dams) with the 

condition that all their mates (grandsires) have marker genotypes observed. The third 

approach (denoted ALLGTP) also considers all relationships, as in ALL_RLT, but all dams 

had observed marker genotypes. This third approach was included as a control for two 

reasons, first to verify whether the results from approach ALLRLT made sense and secondly 

whether approach ALL_RLT could compete with a situation where dams were genotyped. 

Table 3: Approaches for analysis of data from complex granddaughter designs. 

Approach Relationships Genotypes observed 
PATRLT paternal males 
ALLRLT paternal and maternal males 
ALL GTP paternal and maternal males and females 

Post MCMC analysis, Bayesian inferences: For each parameter an effective sample 

size (ES) was computed which estimates the number of independent samples with 

information content equal to that of the dependent samples (Sorensen et al. 1995). From the 

Bayesian perspective, inference about parameter vector 0 can be addressed via the posterior 

density p(0|y). The Highest Posterior Density (HPD) region attempts to capture a 

comparatively small region of the parameter space that contains most of the mass of the 

posterior distribution (Tanner 1993). We will compute a 90 percent HPD region (HPD90). 

The null hypothesis that y = 0 - the QTL explains no genetic variance - was tested via a 

posterior odds ratio {mode{p(y)}/ f (0)} where ƒ (0) is max[p(Y=0|y), 0.001], with a critical 

value of 20 (Janss et al. 1995). In the results section the natural log (ln(odds)) of the posterior 

odds ratio is given and the critical value then equals 3.0. Note that for both priors used in this 

study, UNIFORM and PEAKED AT ZERO, the prior odds ratio equals one. 

RESULTS 

Running the MCMC sampler: The MCMC sampler was run for 100,000 cycles 

preceded by a burn-in period of 500 cycles. Each 250th sample was stored for further 

analysis. This chain length proved to be sufficient to obtain at least 100 effective samples 

(Sorensen et al. 1995) in most runs. When the effective sample size was below 75, the 

particular replicate was repeated with a different seed and this procedure was sufficient to 

obtain enough effective samples. Among all parameters, lowest effective sample sizes were 

found for parameter y, indicating that estimating this parameter is most difficult. Effective 
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sample sizes decreased for smaller QTL and for lower informative markers (Table 4). The 

prior density of y did not seriously affect the effective sample size (Table 4). The MCMC 

sampler was run on a HP 9000 K260 server, computing time of a single chain for approach 

PATRLT, ALLRLT, and ALL_GTP were 23 minutes, 2 hours 12 minutes, and 1 hour 1 

minute, respectively. This indicates that the updating marker haplotypes and IBD patterns for 

ungenotyped individuals was the most time consuming part of the MCMC sampler. 

Parameter estimates: Heritability. In all replicates, estimates for parameters h2 and 

a2 were very accurate, independent of approach or size of y. For example, for data with a 

large QTL and low informative markers, the posterior mean estimates of h2 (simulated 0.40) 

were, averaged over 10 replicates, 0.393, 0.394, and 0.394 for approach PAT_RLT, 

ALL_RLT, and ALLGTP, respectively. The averages of estimates of the posterior standard 

deviation were 0.023, 0.022, and 0.023 for approach PAT_RLT, ALL_RLT, and ALL_GTP, 

respectively. Similar levels of accuracy were found for estimates of the residual variance. 

The use of individual phenotypes allows a clear dissection of the phenotypic variance into 

genetic and residual components. This result was also found by Bink et al. (1998b) and Van 

Arendonk et al. (1998), but was not found by others (Thaller and Hoeschele 1996b; Uimari et 

al. 1996; and Uimari and Hoeschele 1997) which used the average phenotype of daughters of 

a sire instead of all individual phenotypes. 
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Table 4: Average effective samples (ES), average posterior mean estimates (mean), average 
posterior standard deviations (mean), and the average In of the odds ratio test statistic 
(ln(odds)) across 10 replicates for proportion QTL (y). Simulated proportion QTL 
was small (y=0.10) or large (y=0.25), and information content per marker was high 
(n=4) or low (n=2). Prior knowledge on proportion QTL (y) was UNIFORM or 
PEAKED AT ZERO. 

prior (y) = UNIFORM 
ES mean sd 

Small QTL, high informative markers 
PAT RLT 134 0.15 0.08 
ALL RLT 101 0.12 0.06 
ALL GTP 132 0.12 0.05 

Large QTL, high informative markers 
PAT RLT 192 0.29 0.12 
ALL RLT 280 0.25 0.07 
ALL GTP 253 0.25 0.07 

Large QTL, low informative markers 
PAT RLT 110 0.29 0.15 
ALL RLT 121 0.26 0.09 
ALL GTP 158 0.27 0.08 

ln(odds)1'2 

2.69 
5.58 
6.53 

5.67 
8.31 
8.68 

3.46 
7.04 
8.50 

(7) 
(3) 
(1) 

(2) 
(0) 
(0) 

(5) 
(0) 
(0) 

prior 
ES 

117 
106 
119 

179 
218 
211 

113 
110 
149 

(y) = PEAKED AT ZERO 
mean 

0.10 
0.10 
0.10 

0.19 
0.21 
0.21 

0.15 
0.19 
0.20 

sd 

0.06 
0.04 
0.04 

0.07 
0.06 
0.06 

0.08 
0.07 
0.07 

ln(odds)1'2 

2.20 (7) 
5.18 (3) 
6.16 (1) 

6.09 (1) 
8.47 (0) 
8.88 (0) 

3.04 (6) 
7.09 (0) 
7.22 (1) 

1 ln(odds) = ln(posterior mode (y) / posterior (y=0)); 
2 Number of replicates with ln(odds) below the critical value of 3.0. 

Small QTL, high informative markers: The marginal posterior density was flatter and 

shifted towards the mean of the UNIFORM prior (0.5), when using only paternal 

relationships compared to using all relationships (Figure 1). The posterior density for 

PATRLT was more similar to those of the other two approaches when using the PEAKED 

AT ZERO prior. Including all relationships lead posterior densities with a smaller standard 

deviation, that is higher accuracy of estimates. Including genotypes for dams (ALLGTP) did 

not further improve the accuracy. Including all relationships lead to smaller estimated 

HPD90 regions for Y (Figure 1). The HPD90 regions were smaller when the PEAKED AT 

ZERO prior was used, especially when only paternal relationships were considered. Averaged 

over 10 replicates, the posterior mean of y for approach PAT_RLT and the UNIFORM prior 

was 0.15, which was clearly larger than the simulated value (0.10). Apparently, the data did 

not provide sufficient information to reduce the effect of the UNIFORM prior, which has an 

expected mean of 0.5. When the PEAKED AT ZERO prior on y was used, estimated 

posterior mean was equal to the simulated value, which is also the expected mean of the prior. 
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Figure 1 : Marginal posterior inferences for proportion QTL (y) for data with small QTL and 
high informative markers. Marginal posterior density is given for replicate 1, with 
UNIFORM prior (top), and with PEAKED AT ZERO prior (middle). Ninety-
percent highest posterior density regions, averaged over 10 replicates (bottom). 
Approaches PATRLT, ALL_RLT, and ALLGTP, are defined in Table 3. 
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Figure 2: Marginal posterior inferences for proportion QTL (y) for data with large QTL and 
high informative markers. Marginal posterior density is given for replicate 1, with 
UNIFORM prior (top), and with PEAKED AT ZERO prior (middle). Ninety-
percent highest posterior density regions, averaged over 10 replicates (bottom). 
Approaches PAT_RLT, ALL_RLT, and ALL_GTP, are defined in Table 3. 
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Figure 3: Marginal posterior inferences for proportion QTL (y) for data with large QTL and 
low informative markers. Marginal posterior density is given for replicate 1, with 
UNIFORM prior (top), and with PEAKED AT ZERO prior (middle). Ninety-
percent highest posterior density regions, averaged over 10 replicates (bottom). 
Approaches PATRLT, ALLRLT, and ALL_GTP, are defined in Table 3. 
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Large QTL, high informative markers: In approach PAT_RLT, the marginal posterior 

density for parameter y was relatively flat when the UNIFORM prior was used (Figure 2). 

The marginal posterior density for y was clearly shifted towards zero when applying the 

PEAKED AT ZERO prior in approach PATRLT. The other two approaches (ALLRLT 

and ALLGTP) gave similar and more stable densities with the two priors for y, indicating 

more information coming from the data compared to PAT_RLT. The HPD90 region was 

largest for approach PATRLT with an UNIFORM prior (Figure 2). The PEAKED AT 

ZERO prior led to a downward shift of the HPD90 regions, in particular for approach 

PATRLT. The PEAKED AT ZERO prior led also to estimated posterior mean that were 

smaller than the simulated values for all approaches (Table 4). The UNIFORM prior led to 

an upward bias in the estimated posterior mean for approach PAT_RLT but not for the other 

approaches. 

Large QTL, low informative markers: Low informative markers (2 alleles per locus) 

resulted in relatively flat posterior densities for y (Figure 3), but differences were observed 

between the three approaches. The use of all relationships improved the accuracy, but in this 

case the use of all genotypes gave an additional improvement over ALL_RLT. The 

PEAKED AT ZERO prior led to posterior densities that were closer to zero in all approaches 

but especially for PAT_RLT. The estimated HPD90 region was again largest for approach 

PATRLT with the UNIFORM prior. The HPD90 regions for approaches ALLGTP and 

ALLRLT were very similar for UNIFORM prior. However, the HPD90 region for approach 

ALLRLT was shifted more towards zero than the region for approach ALL_GTP with the 

PEAKED AT ZERO prior (Figure 3). The posterior mean estimates were all higher than the 

simulated value for the UNIFORM prior and below the simulated value for the PEAKED AT 

ZERO prior. Differences between estimated and simulated value were largest for approach 

PAT_RLT. 

Hypothesis testing, detection of QTL: The hypothesis of the presence of a QTL at a 

particular position in a linkage map was tested via a posterior odds ratio. For a small QTL 

the ln(odds), averaged over 10 replicates, for approach PATREL was 2.69, which was below 

the critical threshold of 3.0. For approach PATREL only 3 out of 10 replicates yielded 

significant evidence for the presence of a QTL (Table 4). This was very similar to the power 

of QTL detection found by Bink et al. (1998b). Approach ALLRLT resulted in an average 
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ln(odds) of 5.58 and the QTL was significantly detected in 7 out of 10 replicates. Approach 

ALLGTP only failed to significantly detect the small QTL in one of the replicates. 

For a large QTL and high informative markers, approach PAT_RLT was detected the 

QTL in at least 8 out of 10 replicates, i.e., 2 and 1 failures for UNIFORM and PEAKED AT 

ZERO prior, respectively (Table 4). The approaches ALL_RLT and ALL_GTP detected the 

QTL in all replicates. The average ln(odds) was clearly higher for the large QTL. Note that 

the posterior odds of approach ALL_RLT for a small QTL (ln(odds)=5.64) was even a little 

higher than the posterior odds of approach PATRLT for a large QTL (ln(odds)=5.58), when 

high informative markers were considered. 

Reducing heterozygosity of the markers resulted in lower averaged estimates of the 

ln(odds) for all cases. The detection rate for approach PATRLT with low informative 

marker was 50 percent or lower depending on the prior (Table 4). In all except one case, the 

QTL was still significantly detected by approaches ALLRLT and ALL_GTP. 

DISCUSSION 

A variety of statistical gene mapping methods have been developed and applied to 

outbred populations (see Bovenhuis et al. 1997; Hoeschele et al. 1997). Computationally 

inexpensive methods, such as regression interval mapping, allow data permutation to 

determine genome-wide threshold values for test statistics and can be extended more easily to 

incorporate multiple QTLs; however, these methods can only use certain types of relatives 

(e.g., half-sibships or full-sibships). Bayesian analysis is computationally more demanding 

but takes fully account of the uncertainty associated with all unknowns in the QTL mapping 

problem and offers the opportunity to analyze general pedigree data and to fit other random 

components such as polygenic effects (e.g. Thaller and Hoeschele 1996a). Bayesian linkage 

analysis has been applied in animals (e.g. Thaller and Hoeschele 1996a; Uimari et al. 1996), 

plants (e.g. Satagopan et al. 1996) and humans (e.g., Thomas and Cortessis 1992). 

Application of these methods to large pedigrees with missing genotypes, as described in this 

paper, has not been explored in depth (Hoeschele et al. 1997). The procedures of Janss et al. 

(1995), i.e., block sampling of ungenotyped dams and their offspring, and Jansen et al. 

(1998), i.e., sampling IBD patterns, were implemented in order to achieve good mixing of the 

sampler in the full pedigree analysis with incomplete marker information. To accommodate 

missing marker data, special precautions need to be taken for the sampling procedure to avoid 
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reducibility, i.e. not all possible genotype configurations can be reached from any valid 

starting configuration. Reducibility especially occurs in situations in which offspring are 

genotyped but both parents are not. In livestock, the number of offspring per sire is usually 

large and genetic material from males is often stored which facilitates genotyping of the male 

parent. When genetic material is not available, genotypes of males can often be inferred from 

its offspring. In the present study, it is assumed that marker genotypes on at least one parent 

are known. This is assumption is not limiting the application of the presented approach to 

livestock, but it might be limiting in situations where family sizes are smaller. Sheehan and 

Thomas (1993) allowed non-Mendelian segregation of alleles (e.g., genotype AB transmitting 

allele C) to solve the theoretical reducibility. Inferences were based on samples from only 

those Gibbs cycles with strict Mendelian segregation, which may be an inefficient procedure 

in large animal breeding populations. Instead of fixing the non-Mendelian segregation 

probability, one may implement a simulated tempering scheme (Geyer and Thompson 1995) 

that allows this probability to randomly increase from and decrease to zero. 

Uimari et al. (1996), Grignola et al. (1996b) and Hoeschele et al. (1997) investigated 

the effect of ignoring relationships among families on estimates of QTL location and genetic 

parameters. Virtually no difference was found between analyses with and without 

relationships between families for situations with much and little information about the QTL. 

In our study a large impact of including additional relationships was found (Table 4). This 

apparent discrepancy with literature can be explained by the relationships considered. In the 

earlier studies, relationships between the grandsires were included which leads to additional 

information on estimating the paternally inherited QTL alleles. In the present study, the 

ungenotyped dams of the sons were included which provides information for estimating the 

maternally inherited QTL alleles. The impact of including additional relationships is clearly 

demonstrated in Figures 1 to 3. Including additional relationships resulted in improved 

estimates of parameter y, i.e., lower posterior standard deviations and smaller HPD90 regions, 

(Table 4, Figure 1 to 3). These results strongly suggest that including all relationships in 

complex pedigrees does improve power of QTL detection. 

The pedigree we analyzed consisted of close to 100,000 individuals. The largest 

proportion of individuals was offspring of sires that only had phenotypic records. The 

dimensional complexity of the problem was reduced by applying a reduced animal model 

(Quaas and Pollak 1980) in which genetic effects of ungenotyped non-parents are absorbed 

into those of their parents as presented by Bink et al. (1998b). The procedure presented in 
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this paper which applies a reduced animal model, offers the opportunity to combine the 

information from different experimental designs, e.g., a granddaughter design, a grand-

granddaughter design (Coppieters et al. 1998), or a daughter design and also the information 

collected with a closed breeding population spanning several generations. Despite higher 

computational requirements, the application of a RAM in a Bayesian context more naturally 

treats missing genotypes than the restricted maximum likelihood procedures described by 

Grignola et al. (1996a). 

In this study, we assumed a fixed QTL position relative to known markers. Bink et al. 

(1998c) showed that the position of the QTL can be included as an additional parameter in the 

model. Appropriate sampling of QTL position was facilitated through the use of simulated 

tempering (Geyer and Thompson 1995). Simulated tempering, which has also been applied 

in radiation hybrid mapping (Heath 1997b), proved especially useful to improve mixing by 

relaxing the distance between closely linked loci. An alternative approach to estimate QTL 

location within a marker linkage map was presented by George et al. (1998). They 

implemented the reversible jump sampler (Green 1995) to order a bi-allelic QTL relative to 

multiple markers via model choice. 

In conclusion, the work presented shows that detection of QTL in data from 

complex pedigrees is feasible by the use of MCMC and Bayesian analysis. It is shown that 

utilizing all existing relationships increases the power of detection and the accuracy of the 

estimates. This work also lays the foundation to study the number of QTL and their relative 

positions within marker linkage maps. 
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INTRODUCTION 

In this thesis statistical tools have been developed to identify linkage between markers 

and quantitative trait loci (QTL) in outbred populations. A Bayesian method for detection of 

a segregating QTL in complex pedigrees has been described stepwise. The method has been 

implemented via the use of Markov chain Monte Carlo (MCMC) algorithms. First, a method 

was proposed for prediction of breeding values when data on a single marker was incomplete, 

the size of the QTL and its distance to the marker were known with certainty (chapter 2). It 

was shown that for incomplete marker data, the marginal posterior mean estimates for 

breeding values differ from the BLUP values. These differences arose because in a Bayesian 

analysis, phenotypic trait information contributes to the estimation of conditional 

probabilities for marker genotypes, while in BLUP only marker information is used. 

When the size and position of the QTL are unknown, these parameters should be 

included as unknowns in the genetic model. In chapter 3, the interest was in estimating the 

size of the QTL in terms of the proportion of genetic variance explained. A reduced animal 

model (RAM) was proposed to facilitate a full pedigree analysis in a granddaughter design 

setting, making full use of all information on the genotyped individuals. The genetic effects 

of ungenotyped final offspring that only provided trait phenotypes, were absorbed. In chapter 

4, the position of the QTL was estimated via implementation of a modified MCMC scheme to 

ensure correct mixing of this parameter through its parameter space. In chapter 3 and 4, 

restrictions were imposed on the genotypic uncertainties, i.e., it was assumed that all 

individuals in the RAM analysis had marker genotypes and that the linkage phase in parents 

was known with certainty. In chapter 5, a Bayesian method was described that accounts for 

ungenotyped animals and uncertainty on all parameters in the mixed linear model, except the 

position of the QTL. In this chapter, the theory developed in chapters 2 and 3 was combined, 

and the proposed Bayesian method was empirically tested on simulated data. 

In this chapter we first complete the Bayesian method for QTL detection by 

combining theory of chapters 4 and 5, and apply this method to four simulated data sets. In a 

second section, experimental data from chromosome six in dairy cattle is analyzed for 

presence of QTL for milk production traits. Furthermore, the developed Bayesian method for 

QTL analysis in complex pedigrees is compared to literature. A brief section on practical 

implications for dairy cattle breeding programs completes this chapter. 
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ESTIMATION OF QTL POSITION IN SIMULATED DATA 

Introduction: In this section we extend the model used in chapter 5 to allow 

estimation of the position of the QTL relative to multiple linked markers. As shown in 

chapter 4, sampling of QTL position by a Metropolis-Hastings algorithm resulted in a 

reducible MCMC chain, i.e., the chain did not move away from the starting marker interval 

for the QTL. The implementation of the simulated tempering method resulted in appropriate 

mixing, as shown in chapter 4, and is also applied in this chapter. 

Methodology: The simulated tempering sampler is implemented by modification of 

the relation between recombination rate between marker and QTL and their distance. Let r 

denote the recombination fraction between QTL and a flanking marker, let d denote the 

distance between marker and QTL positions (in Morgans), and let X denote the modification 

factor, then, 

r = (A.)x0.5 + (l-A,)x0.5x(1.0-exp{-2d}), 

with 0 < X < 1. In MCMC states with X equal to zero, the true Haldane mapping function 

(Haldane 1919) is used. Samples from these states are valid to approximate posterior 

inferences on unknown parameters in the model, e.g., QTL position. When parameter X 

increases towards unity, mixing of QTL position likely improves since marker information 

disappears in the sampling density of QTL position. Note that for X=l, the QTL is unlinked, 

and each position within the marker linkage group becomes equally likely. The number of 

QTL positions under study was limited to 5, that is, one position (the middle) within each 

marker bracket (6 markers). 

Data: We studied one simulated data set for four granddaughter designs (Table 1). 

For the first three designs the first replicate of the simulation study in chapter 5 was used, and 

data for the fourth design was simulated additionally. For each of the data sets, two analysis 

approaches were used: including only paternal relationships (PAT_RLT), and one including 

relationships through dams with multiple ties to grandsires and/or sons in the granddaughter 

design. Marker genotypes on these dams were unavailable and treated as missing values as 

described in chapter 5. The latter situation is referred to as all relationships (ALL_RLT). 
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Table 1 : Sets of parameters used in simulation 

alleles per QTL position 
Proportion QTL l marker locus 2 (cM)3 

Large QTL, high informative markers 
Large QTL, low informative markers 
Small QTL, high informative markers 
Small QTL, low informative markers 

0.25 
0.25 
0.10 
0.10 

4 
2 
4 
2 

30 
30 
30 
30 

1 Proportion of genetic variance explained by the QTL (y); 
2 Alleles have equal frequencies. 
3 Position relative to origin of marker linkage group. 

Markov chain Monte Carlo: In total 8 individual MCMC chains (4 data sets x 2 

approaches) were run. In the simulated tempering sampler, 44 modified versions were added 

to the target density (X = 0), i.e., 45 X's were defined, spanning the interval from 0 to 1. The 

values of X's (distances between modified densities) were empirically determined and kept 

equal in all MCMC chains. The relative weights (or pseudopriors) of modified densities were 

empirically determined for each MCMC chain separately to obtain proper mixing between 

the (modified) densities. The equal number and distances between modified densities, 

resulted in differences in average acceptance rate of moves between densities. The length of 

each MCMC chain was arbitrarily set to 2,000,000 cycles. Computing time per MCMC 

chain was 15 and 48 hours on a HP 9000 K260 server, for approach PAT_RLT and 

ALL_RLT, respectively. 

Sampling densities of other parameters in the model were equal to those in chapter 5. 

A PEAKED AT ZERO prior on y (proportion additive genetic variance explained by QTL) 

was used in each MCMC chain. The effective sample size (Sorensen et al. 1995) was always 

lowest for parameter y and ranged from 357 to 1392. 

Results: The presence of a QTL within the marker linkage group was tested via the 

posterior odds ratio of p(mode(y)ly) and p(y=0ly) (as previously described in chapters 3, 4 

and 5). Presence of a QTL was declared when the ln(odds) statistic exceeded the critical 

value of 3.0. Based on this criterion, the presence of a small QTL in the data, with low 

informative markers was rejected in the PAT_RLT analysis (ln(odds) of y was 1.5). Table 2 

presents the posterior probabilities for QTL position in the four data sets analyzed by the two 

approaches. For highly informative markers (4 alleles), the position of the QTL was 

accurately estimated, especially for the large QTL. For the latter case, the posterior 

probability for the true position (30 cM) was 100% for both PATJRLT and ALL_RLT. 



100 Chapter 6 

Reduction of the number of alleles at the markers led to less accurate estimation of the QTL 

position, especially for the small QTL. Including all relationships improved the accuracy of 

QTL position estimates in all cases. When marker heterozygosity decreased, approach 

ALL_RLT tended to position the QTL more to the origin of the linkage group, whereas the 

approach PAT_RLT tended to position the QTL more to the middle of the linkage group. 

The reason for this difference is unclear and might be due to chance since only one replicate 

was studied. 

Table 2: Posterior probabilities on QTL position. 

] 

QTL 
large 

large 

small 

small 

Data set 
marker info 

high 

low 

high 

low 

approach 2 

PAT RLT 
ALL RLT 

PAT RLT 
ALL RLT 

PAT RLT 
ALL RLT 

PAT RLT 
ALL_RLT 

0.10 

.00 

.00 

.07 

.35 

.02 

.04 

.05 

.34 

QTL positi 
0.30 

1.00 
1.00 

.41 

.60 

.79 

.88 

.26 

.47 

on (in 
0.50 

.00 

.00 

.43 

.05 

.15 

.04 

.35 

.02 

Morgan) ' 
0.70 

.00 

.00 

.09 

.00 

.03 

.02 

.27 

.13 

0.90 

.00 

.00 

.00 

.00 

.01 

.01 

.07 

.04 
1 Position relative to origin of marker linkage group. 
2 Approaches: PAT_RLT = analysis includes paternal relationships only; 

ALL_RLT = analysis includes all relationships, marker genotypes on males. 

Discussion: After implementation of the simulated tempering method, mixing of QTL 

position over different locations within the marker linkage group was established. For data 

with a large QTL and highly informative markers, the MCMC sampler only visited the true 

QTL position when sampling from the target density, irrespective of the approach used. For 

this data set, one could study the QTL position within the marker bracket. For the other data 

sets, one could study multiple positions within several marker brackets, providing more 

knowledge on the most likely position of the QTL. Further improvements of the simulated 

tempering sampler will allow widespread use. For example, the guidelines provided by 

Geyer and Thompson (1995) to determine distances (A,'s) between and weights on modified 

densities may be implemented in a software package. This will allow application by less 

experienced MCMC users, and less manual efforts in the fine-tuning process. 

The results further support the findings in chapter 5 that using all relationships results 

in more accurate estimation of QTL parameters. Sophisticated statistical methods that 
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naturally treat missing data such as unobserved marker genotypes, are an important 

supplement to the analysis of phenotypic and marker data for QTL detection. 

DETECTION OF PUTATIVE QTL FOR CHROMOSOME SIX IN DAIRY CATTLE 

Introduction: Georges et al. (1995) reported five chromosomes that gave evidence 

for the presence of a QTL affecting milk yield in the American Holstein population. 

Chromosome six was one of the five chromosomes identified. The QTL on chromosome six 

affected milk yield but not fat or protein yield and as a result influenced protein and fat 

percent. Bovenhuis and Weiler (1994) reported effects of casein loci and an effect for fat 

percent that was linked to the casein locus, which is also found on chromosome six. Spelman 

et al. (1996) analyzed data from 20 Dutch Holstein-Friesian families, with a total of 715 sires, 

in a granddaughter design for marker-QTL associations. They reported a QTL for protein 

percent, significant at the 1 % level. Approximately the same data was released to the animal 

breeders community for further analysis and the results on this have been reported by 

Bovenhuis et al. (1997). The data for the current study stems from the same granddaughter 

experiment, but information from additional sons is available since their daughters obtained 

trait phenotypes. First the data is analyzed by the multi-marker approach of Knott et al. 

(1994), as extended by Spelman et al. (1996). Secondly, the data on protein percent are 

analyzed with the ALL_RLT and PAT_RLT approaches as described earlier. In this study, 

we limit ourselves to including relationships via ungenotyped dams, relationships between 

grandsires were not included. 

Data: Twenty-two grandsire families, with 922 sons, were included in the analysis 

(Table 3). All available sons were included, i.e., no correction was made for selection among 

sons, or sons not being informative at any marker. Small families were not excluded which 

allowed maternal links between members of these families and other families. The data 

contained 455 (elite) dams with direct links to at least two male individuals. Fourteen 

grandsires were also sires of 399 dams, with a range of 2 to 99 per sire. As a result of this, 

these grandsires had in total 653 maternal grandsons. The average number of sons per dam 

was 1.8 with a range of 1 to 12. 
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Table 3: Experimental design and genetic markers used for chromosome six. 

Grandsire 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Total 
Map, cM 
# alleles 

1 
1 

1 

15 
0 
3 

2 

1 
1 

1 

14 
29 
7 

3 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

21 
47 
11 

marker 
4 

1 

1 
1 
1 
1 

1 
1 

1 
1 
1 
1 
1 

1 

13 
67 
5 

5 

17 
75 
7 

6 

1 
1 

1 

1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 

15 
89 
5 

7 

1 

1 

1 

1 

1 
1 
1 
1 
1 

1 

1 

11 
124 
8 

sons 

84 (70) 
25 (17) 
47 (29) 
15 (11) 
45 (42) 
99 (95) 
25 (22) 
40 (39) 
26 (25) 
22 (20) 
74 (68) 
16 (11) 
13 (6) 
40 (36) 
61 (60) 
17 (11) 
16 (8) 

148 (141) 
28 (24) 
11 (10) 
47 (45) 
23 (19) 

922 (809) 

The table details the markers for which grandsires are heterozygous (indicated by a 1), the 
number sons with between brackets the number of sons with their dam in the analysis, 
number of grandsires heterozygous at each marker, marker distances based on Haldane's 
mapping function, and the number of alleles per marker. Marker loci 1 to 7 are ILSTS90, 
URB016, BM143, BM4528, BM415, BP7, and BM2320, respectively. 

In the present study, the marker genotypes were available in absolute readings, while 

previously, marker alleles were scored 1, 2 for a heterozygous grandsire and 1,2 or 3 for his 

sons (3 for alleles not present in grandsire). Seven microsatellite markers were positioned 

and ordered on chromosome six with the ANIMAP programs (D Nielson and M Georges, 

unpublished data) as described by Georges et al. (1995). The map for chromosome six is 124 

cM long using Haldane's mapping function (Table 3). Our first marker was positioned 31 

cM to the left of the origin of the map used by Spelman et al. (1996). The seven markers 

used were selected on their level of heterozygosity and their map position in order to get 
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more or less equal coverage of the chromosome (Table 3). For these seven markers, 152, 34, 

14, 3, and 2 sons did not have marker genotypes available for 1, 2, 3, 4, or 5 loci, 

respectively. In the analysis, these missing genotypes are augmented within the MCMC 

procedure using both marker and phenotypic information on linked marker loci and related 

individuals. 

Five traits are analyzed for putative QTL on chromosome six: milk, fat, and protein 

yield and fat and protein percent. Only daughters who resulted from the young bull 

inseminations (based on date of birth) were included in the analysis. In the analysis, records 

on individual daughters, as stored during the animal evaluations conducted by the Royal 

Dutch Cattle Syndicate, were used. All records were adjusted for fixed effects and 

heterogeneity of variance between herds. In the case of multiple lactations, the permanent 

environmental effect was subtracted. For each individual, the average yield over lactations 

(maximum of three) and the number of lactations was stored. For the analysis, however, 

information on individual lactation production is needed. The sum of squared daughter 

deviation can not be determined directly from the average production. Data were adjusted to 

account for the reduced variance in mean production with increased number of lactations, and 

for permanent environmental effects. Within sire deviations for daughters with two or three 

lactations were multiplied with 1.55 and 2.10, respectively. These factors were based on 

heritability of 0.33 and repeatability of 0.55 for yield traits. The percentage traits were 

calculated from the adjusted yield deviations and the population means (6365 kg milk, 4.42 

%fat and 3.45% protein). Information on daughters was weighted to account for the 

repeatability of observations on the same animal by using factors 1.000, 1.625 and 1.772 

when the daughter produced 1, 2, and 3 lactations, respectively. 

Results: An across-family regression analysis (similar to Spelman et al. 1996) for 

five traits again revealed a possible QTL for protein percent positioned at 47 cM, i.e., the 

location of the third marker (Figure 1). This is the same position as reported by Spelman et 

al. 1996). At position 47 cM, test statistics for milk, fat, and fat percent also showed peaks, 

however, the effects were not significant. No significant QTL was found for protein percent 

or for other traits at other positions. 
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•a 2.3 

50 60 

Map position (cM) 

Figure 1: Test statistics for different positions on chromosome six from an across-family 
analysis for five milk production traits (arrows indicate position of markers). 

Protein percentage: Based on the results from the regression analysis, the Bayesian 

approaches PAT_RLT and ALL_RLT were applied to analyze protein percentage data. 

Table 4 presents the posterior inferences for position and size of a putative QTL for protein 

percent on chromosome six. In a chromosome grid-search analysis at 6 positions (each 

position being the middle of a marker bracket), map position 38 cM was identified as the 

most likely position containing a QTL for protein percent. One other map position, i.e, 57 

cM, had a posterior probability higher than zero. The posterior probability for this second 

position became higher when all relationships were included (Table 4). 

Table 4: Posterior probability of QTL position, estimated posterior mean, standard deviation 
(sd), natural log of posterior odds ratio and 90 % highest posterior density region 
(HPD90) for proportion QTL (y), and posterior mean estimates of heritability (h2) and 
additive genetic standard deviation, for data on protein percent at chromosome six. 

PAT_RLT 
ALL RLT 

PAT_RLT 
ALL_RLT 

15 
.00 
.00 

mean 
.204 
.153 

map position (cM) 
38 57 
.89 .11 
.78 .22 

proportion QTL (y) 

71 
.00 
.00 

sd ln(odds) HPD90 
.080 6.3 [.073, 
.051 9.0 [.069, 

.333] 

.235] 

82 
.00 
.00 

h2 

mean 
0.63 
0.66 

106 
.00 
.00 

o . 
mean 
0.157 
0.161 
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The high natural log posterior odds ratios, 6.3 and 9.0 for PAT_RLT and ALL_RLT, 

respectively, clearly declared the presence of a QTL within the linkage map. The posterior 

mean estimate for proportion QTL (y), was lower, and more accurate, when all relationships 

were included in the analysis (Table 4). 
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Figure 2: Marginal posterior mean estimates and 90% Highest Posterior Density regions for 
the proportion QTL for protein percent on different fixed positions at chromosome 
six, using only paternal relationships (top) or using all relationships (bottom). 

The analyses for 6 individual fixed map positions, using approaches PAT_RLT and 

ALL_RLT, revealed 3 and 5 positions, respectively, with significant posterior odds ratios for 

proportion QTL (Table 5). For these significant positions the posterior mean estimate for 

proportion QTL was highest at position 38 cM in both analyses. For approach PAT_RLT, no 



106 Chapter 6 

significant effects at the fourth map position (71 cM) were detected, while significant QTL 

effects were found for the fifth position (82 cM). This latter region is known to contain 

multiple casein loci that affect protein percentage (Bovenhuis et al. 1992). Approach 

ALL_RLT resulted in a steady decrease in size of the QTL when moving from the second 

position (38 cM) towards the end of the map. This steady decrease can also clearly be seen 

for the estimated 90% highest posterior density regions in Figure 2. 

Table 5: Marginal posterior mean estimates and natural log posterior odds ratios for 
proportion of genetic variance due to a QTL (y) for protein percent for fixed map 
positions for the QTL at chromosome six. 

Map 
position (cM) 

PAT_RLT 
mean ln(odds) 

ALL_RLT 
mean ln(odds) 

15 
38 
57 
71 
82 
106 

0.228 
0.205 
0.179 
0.106 
0.159 
0.105 

1.6 
8.7 
5.1 
1.6 
5.5 
0.6 

0.145 
0.174 
0.134 
0.096 
0.085 
0.069 

9.0 
8.9 
9.0 
9.5 
6.7 
1.0 

Figure 3: Estimates for absolute difference between QTL allelic effects for grandsires at 
position 38 cM on chromosome six. 

Two grandsires were identified as having large effects (absolute difference between 

the two allelic effects) for protein percent at map position 38 cM (Figure 3). The largest 

effect was found for grandsire 8, i.e., 0.16 %, which is one genetic standard deviation (Table 

4). The effect for grandsire 2 was 0.14% and 0.12%, without and with including maternal 
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relationships, respectively. Grandsire 2 was the sire of many dams and including maternal 

relationships can explain the difference in estimated effects for this sire. 

The differences between QTL effects in grandsires were in general smaller for the 

QTL at 82 cM (casein locus) when compared to the QTL at 38 cM (Figure 4). The 

correlation between differences at the two positions was not high, i.e., 0.53. 

0.08 0.10 

position 38 cM 

Figure 4: Estimates for absolute difference between QTL allelic effects within grandsires for 
position 38 cM and 82 cM on chromosome six. 

Discussion: Bayesian analysis fully accounts for uncertainty in parameters in the 

model and data in a full pedigree analysis. The marker data was incomplete since all dams 

were ungenotyped but also a number of sons did not have complete data on all seven 

markers. Our normal-effects QTL model directly estimated the proportion of additive genetic 

variance due to a QTL. A technical difficulty occurred in estimating the difference in QTL 

effects for founders (grandsires). For these individuals the updating of the allelic constitution 

of their two marker haplotypes may also involve switches of QTL effects (see chapter 5). 

Estimates of allelic QTL effects can be improved by linking them to alleles at flanking 

markers. Here we simply computed the absolute difference between their two QTL allelic 

effects to identify individuals heterozygous for the QTL. At map position 38 cM, two 

grandsires were identified with large effects for protein percentage. Grandsire 2 was known 

to be the sire of grandsire 8, although this relationship was not used in the analysis. Including 

ancestral information on grandsires and dams can further improve the estimation of QTL 

variance and QTL effects of individuals. 
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Some of the available markers were not included in the analysis to avoid slow mixing 

of the MCMC chain when updating genotypes for closely linked markers. Sampling closely 

linked markers in blocks might solve this problem. Another possible solution might be the 

construction of a virtual marker that combines the information from several closely linked 

markers. All available marker data need to be included to obtain the maximum information 

on transmission of alleles from parents to offspring. 

The Bayesian analysis using a one-QTL model clearly suggested the presence of one 

putative QTL at chromosome six. When estimating the QTL position within the marker map, 

the most likely position of this QTL was close to the left of the marker at 47 cM. However, 

the analysis for QTL detection at fixed positions did not reject the presence of a QTL at 

position 82 cM. That region is known to contain the casein locus (Bovenhuis et al. 1992). 

Using the ALL_RLT approach, the genetic effects of grandsires for a QTL fitted at 82 cM 

and the genetic effects for a QTL fitted at 38 cM showed a moderate correlation, i.e., 0.53 

(Figure 4). From this, it is not clear whether the effects found for a QTL at 82 cM are due to 

effects of a linked putative QTL at 38 cM, or due to a second QTL near 82 cM. The distance 

between these two positions is not large enough to assume independent segregation of alleles 

for loci in these regions. A full pedigree analysis fitting a two-QTL model may unravel this 

problem. 

STATISTICAL METHODS FOR QTL ANALYSIS IN COMPLEX PEDIGREES 

The aim of this thesis was the detection and mapping QTL in complex pedigrees that 

exist in outbred livestock populations. Hoeschele et al. (1997) recently gave a review on the 

advances in statistical methods to map QTL in outbred populations. Which method one 

decides to use will depend on data structure, computational constraints and expertise, and 

distributional assumptions one is willing to make. Within the complex structure of a 

population, one may focus on a well-designed and simple subset, which may facilitate a 

simple analysis, such as linear regression (least squares analysis). For instance, with multiple 

families one can estimate allele contrasts for the parents (sires) of the families without 

considering the relationships between families; one can ignore full-sib relationships within 

families and perform a paternal half-sib analysis. Also, instead of sampling the linkage phase 

among markers, the most likely linkage phase in parents can be taken as being the true phase. 

Regression analysis allows the application of data permutation to determine genome-wide 
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significance thresholds. This can be used as the first step in the analysis of QTL experiments. 

Due to the approximations involved, the application of most simple methods is limited to 

certain designs (e.g., a number of large half-sib families). At the second stage, one may want 

to relax the simplifying assumptions to explore the data in more detail in order to get more 

accurate estimates of QTL at interesting chromosomal regions, at the expense of higher 

computational requirements. For example, linkage phases in parents and allele frequencies at 

marker loci can be included as unknowns in the model. This second stage analysis may be 

performed with methods that make less assumptions and account for model uncertainties. 

To avoid a repetition of reviews given by Hoeschele et al. (1997), Bovenhuis et al. 

(1997), and Jansen et al. (1998), we compare the Bayesian method presented in this thesis to 

statistical methods previously described by Grignola et al. (1996a), Uimari et al. (1996), and 

Jansen et al. (1998). Occasionally other methods will be mentioned. Comparisons are made 

with respect to handling genetic marker information, assumptions on the genetic model for 

the QTL, possibility for correction for other QTL, and hypothesis testing. 

Genetic marker information: For QTL mapping in outbreeding livestock 

populations moderately dense genetic maps based on molecular genetic markers are 

available. Recombination frequencies between marker loci are often assumed to be known as 

we did, however, these can be included as unknowns in the analysis (e.g., Uimari et al. 1996). 

The number of alleles and allele frequencies in the (base) population for marker loci are 

typically unknown for outbreeding species. Data might not provide complete information on 

genotypic status of animals at the marker loci. The marker genotypes may be observed on 

only a subset of the population, e.g., due to selective genotyping. In addition to unobserved 

marker data, marker data might not be fully informative about the actual marker genotype, 

e.g., when markers are dominant. In that case, a heterozygous genotype cannot be 

distinguished from one of the homozygous genotypes. In addition, only a fraction of parents 

are usually heterozygous for a marker locus. Homozygous marker genotypes in parents 

complicate the identification of parental origin of alleles at a linked QTL. A special case of 

unknown parental origin of marker alleles arises when an offspring and both its parents are 

heterozygous, carrying the same alleles, at a marker locus. Therefore, it is important to use 

all available marker information simultaneously to study segregation of chromosomal 

segments from parents to offspring. A priori, the linkage phase between marker alleles in 

parents is unknown. Phenotypes contain information on QTL genotypes, and when a marker 

is linked to a QTL, the phenotypes also contain information about incomplete marker 
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genotypes. The impact of including phenotypes in the calculation of genotype probabilities 

increases with the size of the QTL and likely decreases with the amount of marker data 

available. The Bayesian method (chapter 2 and 5) takes into account marker plus phenotype 

information to calculate marker genotype probabilities. In contrast, in the REML approach of 

Grignola et al. (1996a), the probabilities are calculated on the basis of marker data only and 

this calculation precedes the QTL analysis. Furthermore, the computation of the variance-

covariance matrix of the QTL effects in the REML approach of Grignola et al. (1996a) 

becomes inefficient when applied to pedigrees where individuals are related through both 

paternal and maternal relationships and when genotypes are missing. Grignola et al. (1996b) 

considered data for half-sib designs, i.e., ignored maternal links between animals, and 

assumed that for a parent the most likely linkage phase was the true phase. 

In summary, statistical methods for QTL mapping by full pedigree analysis should 

consider all uncertainties with respect to marker information. The Bayesian approach allows 

for individuals with no or partial data for marker loci. Partial data may for example occur 

when animals are genotyped for different subsets of marker loci. Augmentation of genotypes 

was implemented via a Gibbs sampler. The Gibbs sampler may be further improved to 

circumvent reducibility problems that may occur when sampling genotypes for two 

ungenotyped parents and when sampling genotypes for closely linked marker loci. The latter 

will be crucial since marker maps in outbred species are becoming more and more dense 

(e.g., Barendse et al. 1996). 

Assumption of the genetic model: The genotype at the QTL is typically unknown in 

outbred populations. The number of alleles in the population and their frequencies of 

occurrence are also unknown. In mixture models and mixed inheritance models it is usually 

assumed that the QTL is biallelic (e.g., Guo and Thompson 1992, Uimari et al. 1996, Jansen 

et al. 1998). Except for potential computational problems (e.g., number of parameters in the 

likelihood) there is no basic problem in extending the number of QTL alleles in these models 

(Hoeschele et al. 1997). The problem remains that the number of alleles should be inferred 

and preferably models with different numbers of alleles should be compared. On the other 

hand, the models with expected covariance matrix of random QTL effects make no specific 

assumptions with respect to the number of QTL alleles. The biallelic model will likely 

perform badly if there are three or more alleles, all at reasonable frequencies and with 

measurable differences in effects. A situation with two closely linked QTL might be 

observed as one QTL with multiple alleles. For data simulated under a biallelic model, 
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Hoeschele et al. (1997) reported that a Bayesian analysis fitting a normal-effects (mixture) 

model provided more accurate estimates of QTL variance than the Bayesian analysis fitting a 

biallelic model. For data simulated under the normal-effects model, the analysis fitting the 

biallelic model underestimated QTL variance substantially, while the QTL variance was 

accurately estimated with the normal effects QTL analysis. 

Our genetic model for the QTL is identical to that of Grignola et al. (1996a). 

Individuals have two random additive allelic effects with covariance matrix composed of 

elements equal to probabilities of allele identity by descent conditional on marker information 

(Fernando and Grossman 1989). This can be viewed as an approximation of the model where 

all base individuals have two random allelic effects and the QTL effect inherited from a 

particular parent is exactly identical to one of the parental effects. This latter model is a 

normal-effects mixture model as used by Uimari et al. (1996) and Hoeschele et al. (1997). 

The approximate expectation model can accommodate QTL clusters and mutations in the 

sense that the QTL effect inherited from a particular parent is modeled as a weighted average 

of the two parental QTL effects plus a residual. In addition, this model transforms to a 

polygenic model when marker information is low. Further research is needed to compare 

both procedures in multiple generation pedigrees - which should involve a study of the 

evolution of QTL effects over time. 

In a full pedigree analysis with biallelic (or multi-allelic) QTL in a mixture model, 

univariate genotype sampling causes slow or non-sufficient mixing of the Gibbs sampler. 

Block sampling of genotypes is useful for parents with large progeny groups (Janss et al. 

1995). Sampling identity-by-descent values at the QTL for non-founders as proposed by 

Jansen et al. (1998) also improves mixing of QTL genotypes in unrelated half-sib family 

analysis. Further research is needed to compare computational and mixing properties of the 

approximate expectation model and the exact mixture model for normal QTL effects in a full 

pedigree analysis. 

Correction for other QTL: In this thesis, we considered one QTL within a marked 

chromosomal segment. The QTL at other chromosomes were accounted for via a residual 

polygenic effect for each individual, which was independent of the marked QTL. In crosses 

from inbred lines background QTL can be taken into account by including linked markers as 

cofactors in the model, as first proposed by Jansen (1992). In livestock species, a QTL can 

be segregating in some families, whereas, the linked marker is not and vice versa. Then a 

marker linked to a putative QTL can not be used as the cofactor in the model. In such cases, 
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the QTL itself should be included instead of the marker as cofactor in the model, as suggested 

by Spelman et al. (1996). Grignola et al. (1997) and Uimari and Hoeschele (1997) presented 

methods to include two linked QTL in the model for a REML and Bayesian approach, 

respectively. A polygenic component was still included to account for (unlinked) QTL at 

other chromosomes. 

Hypothesis testing: The presence of a single QTL in the REML approach of Grignola 

et al. (1996a) was done by comparing the likelihood under the null hypothesis of zero 

variance due to the QTL versus the likelihood of the estimated variance due to the QTL. The 

distribution of this test statistic is unknown, but is a chi-square distribution with between 1 

and 2 degrees of freedom (Xu and Atchley 1995). Computational requirements of the REML 

method prohibited the use of data permutation (Churchill and Doerge 1994) to obtain the 

distribution of the likelihood ratio statistic and calculation of genome-wide significance 

thresholds (Grignola et al. 1996a,b). 

The test statistic for presence of a QTL in the Bayesian approach was the odds ratio 

between the posterior mode and the density at zero for the proportion additive genetic 

variance due to the QTL. The prior odds ratio of this parameter equaled one for both a 

UNIFORM prior and a PEAKED AT ZERO prior. The PEAKED AT ZERO prior reflects 

the prior expectation that the genome contains very few genes with large effects, some genes 

with moderate effects, and many genes with small effects (as was reported by Shrimpton and 

Robertson (1988) for experimental populations). The PEAKED AT ZERO prior appeared to 

be useful in the analyses of data with low informative markers. When markers are not very 

informative, the variance-covariance matrix of QTL effects and that for the residual 

polygenic effects have an almost identical structure. This hampers accurate estimation of the 

variance due to the QTL from the data and the posterior density will be similar to its prior. A 

PEAKED AT ZERO prior will therefore regress the posterior towards zero, while a 

UNIFORM prior allows any estimate between zero and one with equal probability and 

'regresses' towards 0.5 (the prior mean). 

Uimari et al. (1996) in their Bayesian analysis used an indicator variable representing 

either nonlinkage or linkage of the QTL to the marker group. Thaller and Hoeschele (1996) 

and Satagopan et al. (1996) performed QTL model selection based on Bayes factors, which 

were estimated using different MCMC algorithms. Thaller and Hoeschele (1996) found that 

MCMC sampling with model indicators gave much more stable results than MCMC 

estimates of Bayes factors. In this thesis, the application of Bayes factors for model selection 
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has been studied for two situations, i.e., a model with or without the QTL, and for the 

position of the QTL relative to multiple markers. However, we were not successful in 

obtaining stable estimates for the Bayes factors and we used alternative procedures, i.e., a 

posterior odds ratio and the simulated tempering sampler, to draw inferences about presence 

and position of the QTL, respectively. For our test statistic, the critical significance value 

was arbitrarily set to 20 (or the natural log equal to 3.0), as suggested by Janss et al. (1995). 

A recent development to Bayesian model selection via MCMC is the use of a 

reversible jump sampler (Green 1995). In the reversible jump sampler, jumps are made 

possible between models with different parameter spaces within a single Markov chain. This 

reversible jump sampler has already been implemented to obtain posterior probabilities for 

models with none, one or multiple linked QTL, within a marker linkage group for plants 

(Satagopan and Yandell 1997), animals (Uimari and Hoeschele 1997) and humans (Heath 

1997). The reversible jump sampler has also been implemented for ordering a biallelic QTL 

relative to multiple linked markers (George et al. 1998). Based on these studies, the 

reversible jump sampler contributes to the potential and flexibility of the MCMC framework 

for Bayesian model selection and analysis in QTL mapping. Developments in this area will 

contribute to more realistic models and a better understanding of the genetics underlying 

quantitative traits. 

MARKER ASSISTED PREDICTION OF BREEDING VALUES 

For the application of genetic markers in a dairy cattle selection scheme, prediction of 

breeding values is an essential component. We may envision a dairy cattle breeding program 

with a nucleus breeding scheme producing young bulls that are progeny tested in commercial 

populations. Here, we outline a procedure, using both schemes, to include marker 

information in the genetic evaluation and selection. 

At this moment, the high costs for marker genotyping prohibit the routinely 

genotyping of large numbers of animals. Among individuals with missing marker genotypes, 

two categories of individuals can be distinguished. The first category comprises the (grand) 

daughters of young bulls that only contribute phenotypic information in a granddaughter 

design type of analysis. The second category comprises the ungenotyped-parents of 

genotyped nucleus individuals, e.g., elite dams. In this thesis we described methodology to 

handle both categories. The genetic effects of ungenotyped granddaughters are absorbed in 
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the reduced animal model (chapter 3). The marker genotypes for ungenotyped parents are 

treated as missing values in the Bayesian analysis where the Gibbs sampler is used to 

augment the genotypes (chapter 2 for single marker and chapter 5 for multiple markers). In 

an open nucleus system, parents of nucleus individuals may be present in the commercial 

population. Procedures to incorporate information from these parents (without including 

them explicitly in the analysis) need to be developed similar to procedures that incorporate 

foreign information in national genetic evaluation of dairy cattle. 

In prediction of genetic effects at marked QTL, we may assume to have accurate 

estimates for the QTL location and the QTL variance. This would greatly reduce the 

computational requirements. Initially, the number of animals within the nucleus scheme 

having observed marker genotypes is probably too small for accurate estimation of QTL 

parameters. In that case, the parameter estimates obtained from a granddaughter design 

analysis, exploiting the progeny-testing scheme, seem most appropriate. The amount of 

information within the nucleus, however, will increase over time and this may enable 

estimation of the genetic parameters from the current breeding population. Spelman and Van 

Arendonk (1997) have investigated the consequences of inaccurate estimation of variance 

and location of the QTL on genetic response to marker-assisted selection. They concluded 

that the loss in genetic response due to errors in parameters could be reduced when the 

parameters were re-estimated over time. Instead of assuming that the parameters are known, 

a complete Bayesian analysis can be conducted in which uncertainty about genetic 

parameters is accounted for explicitly. In a Bayesian analysis, results from other QTL 

experiments, described in literature, can be used as prior knowledge on position and size of 

putative QTL. Furthermore, data from the nucleus and a granddaughter design can be 

combined in a Bayesian analysis for parameter estimation via the use of the reduced animal 

model and MCMC algorithms. Close relationships between sires in the granddaughter design 

and nucleus individuals will provide accurate predictions of breeding values of selection 

candidates in the nucleus. 

In conclusion, breeding values are derived from the phenotypic information collected 

on all animals in the population and genotypic information on a selected group of animals. 

The Bayesian procedure for predicting marker assisted breeding values combines the 

genotypic and phenotypic information in an optimal manner. The accuracy of predicted 

breeding values and the response to marker assisted selection will depend on the type and 

number of relatives of the selection candidates on which genotypic and phenotypic is 

collected. The reduced animal model no longer puts a restriction on the type of relatives to 
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be genotyped and, therefore, opens new opportunities to capitalize on this new source of 

information. The prediction of breeding values in a dairy cattle population with complex 

pedigrees forms a very important step towards the application of marker assisted selection in 

dairy cattle populations. 
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Summary 

In dairy cattle, many quantitative traits of economic importance show phenotypic 

variation. For breeding purposes the analysis of this phenotypic variation and uncovering the 

contribution of genetic factors is very important. Usually, the individual gene effects 

contributing to the quantitative genetic variation can not be distinguished. Developments in 

molecular genetics, however, have resulted in the identification of polymorphic sites in the 

genome, which are called genetic markers. Genetic markers have opened the way to follow 

segregation of chromosomal segments in families. Through the use of these genetically 

marked chromosomal segments, detection and mapping the genes affecting quantitative traits 

("quantitative trait loci" or "QTL") becomes possible. After identifying QTL, genetic 

markers may, for example, be used to select animals at a younger age and/or to improve the 

accuracy of predictions of genetic merit. 

The aim of this thesis is to contribute to the efficient utilization of genetic marker and 

quantitative trait data in detecting and utilizing single QTL in complex pedigrees in dairy 

cattle breeding programs. Implementation of marker-assisted selection in dairy cattle has 

been hampered by the lack of identified QTL, and the lack of efficient methods for marker-

assisted genetic evaluation for situations with incomplete marker data. The development of 

statistical methods forms the core of this thesis. Methodology is based on Bayes theory and 

implemented via Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings 

algorithm and the Gibbs sampler. 

Throughout this thesis, a mixed linear model with two random genetic components, 

i.e., effects due to a marked QTL and residual polygenes, was assumed. These components 

are assumed to be normally distributed and independent in the base population. To arrive at a 

flexible method for full pedigree analysis, an animal model is taken as the starting point. 

Covariances among genetic effects of related individuals are taken into account via the 

numerator relationship matrix for polygenes and the gametic relationship matrix for QTL. In 

most chapters, the developed methodology is empirically tested by the use of simulated data. 



118 

In chapter 6, however, experimental data on bovine chromosome six is analyzed to estimate 

the position and size of a putative QTL for protein percent. 

Incomplete marker data hinders application of marker-assisted breeding value 

estimation using animal model BLUP. In chapter 2, Gibbs sampling is applied to facilitate 

Bayesian estimation of breeding values with incomplete information on a single marker that 

is linked to a QTL. Gibbs sampling is a Markov chain Monte Carlo procedure to 

approximate the joint posterior distribution of data and all unknowns. Exact knowledge on 

position and size of the QTL is assumed in estimating the breeding values. Derivation of 

sampling densities for marker genotypes is emphasized, because a study of the structure of 

reconsideration of the gametic relationship matrix structure for a marked QTL leads to simple 

conditional densities. In the Bayesian procedure, the posterior probabilities of marker 

genotypes are based on trait phenotypes as well as observed marker genotypes of the animal 

and its relatives. Due to computational requirements, the presented Bayesian approach is less 

applicable to large populations with many ungenotyped individuals, but may be used in 

nucleus breeding schemes with relatively small numbers of ungenotyped individuals. 

In chapter 3, a Bayesian method is presented for the statistical detection of QTL, 

where the application of a reduced animal model leads to non-standard densities for 

dispersion parameters. The Gibbs sampling algorithm requires full conditional densities to be 

of a standard form and, therefore, an alternative technique, i.e. the Metropolis-Hastings 

algorithm, is used to obtain samples from these non-standard densities. The flexibility of the 

Metropolis-Hastings algorithm also allows studying the parameterization of the genetic 

model. Alternatively to a parameterization in terms of the usual variance components, we 

also parameterized the genetic model in terms of one variance component (=residual) and two 

ratios of variance components, i.e., heritability and proportion of genetic variance due to the 

QTL. Prior knowledge on variance ratios rather than variances can more easily be 

implemented, partly due to the absence of scale effects. Three sets of simulated data are used 

to study performance of the reduced animal model, parameterization of the genetic model, 

and testing for the presence of the QTL at a fixed position. 

In absence of exact knowledge on the size and position of the QTL, these parameters 

can be included as unknowns in the model. In chapter 3, exact knowledge is assumed about 

the position of the QTL relative to multiple linked markers. In chapter 4, the previously 
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described Bayesian method is extended for the identification of the most likely marker 

bracket containing a QTL. Parameters to be estimated in the mixed linear model are residual 

variance, heritability, proportion of genetic variance due to QTL, and QTL position on a 

linkage map. Straightforward implementation of a Metropolis-Hastings algorithm to sample 

QTL position results in practical reducibility of the chain, i.e., the chain does not move away 

from the initial marker bracket. Candidate positions for the QTL in adjacent marker brackets 

are not accepted. The non-mixing of the chain is caused by the large changes in the gametic 

relationship matrix for QTL effects when moving QTL position from one bracket to the next. 

To overcome this non-mixing problem, a relatively new MCMC technique, simulated 

tempering is implemented. Although computer intensive, the simulated tempering sampler 

yields proper mixing of QTL position among marker brackets when empirically tested on 

simulated data. Inferences on QTL position can be based on marginal posterior probabilities. 

In chapter 3 and 4, restrictions are imposed on the genotypic uncertainties, i.e., it is 

assumed that all individuals in the reduced animal model analysis have observed marker 

genotypes and the linkage phase in parents is known with certainty. In chapter 5, the Bayesian 

method is further extended to account for ungenotyped animals and uncertainty on all 

parameters of the mixed linear model except the position of the QTL. Augmentation of 

marker genotypes for ungenotyped individuals is implemented. Marker data on relatives, and 

phenotypes are combined to compute conditional posterior probabilities on marker genotypes 

for ungenotyped individuals. Accommodating ungenotyped individuals allows QTL analysis 

in populations with complex pedigrees and missing marker data. The method is empirically 

tested by analyzing simulated data from a complex granddaughter design. Ungenotyped dams 

are related to one or more sons and/or to a grandsire in the design. Information per marker 

locus and size of QTL is varied. Results from Monte Carlo simulations indicate a significant 

increase in power of QTL detection when all relationships are included in the analysis. 

In chapter 5, exact knowledge on QTL position is assumed, i.e. this parameter is not 

estimated. The general discussion (chapter 6) starts with combining theory of chapter 4 and 

chapter 5, to complete the Bayesian method that estimates both position and size of a QTL 

with complex pedigree data. The method is then empirically tested on four simulated data 

sets. The second section of the general discussion describes the QTL analysis on 

chromosome six in dairy cattle. The data stems from the Holland Genetics/Livestock 

Improvement QTL experiment. Approximately the same data have been analyzed previously 
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by Spelman and co-workers who identified a QTL for protein percentage. Our data 

comprised 22 Dutch Holstein-Friesian families, with a total of 922 sons, and 455 elite dams 

with direct links to at least two male genotyped individuals. Fourteen grandsires were also 

sires of 399 elite dams, corresponding with a total of 653 maternal grandsons. A QTL for 

protein percent was identified. The most likely position of this QTL is similar to that 

previously reported by Spelman and co-workers. The presence of a second putative QTL for 

protein percent is uncertain and requires further research probably with a two-QTL model. In 

the third section of the general discussion, the presented Bayesian method is compared to 

other methods for QTL analysis in complex pedigrees. Our method at this moment is unique 

in being able to handle complex pedigrees in outbred populations with missing marker data. 

The general discussion is completed with a brief review of issues related to practical 

implications for marker-assisted genetic evaluation in dairy cattle breeding schemes. 
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Samenvatting 

Veel kwantitatieve eigenschappen bij melkvee vertonen fenotypische variatie. In de 

veefokkerij is de analyse van deze fenotypische variantie en het blootleggen van de 

genetische factoren erg belangrijk. Normaliter kunnen de individuele effecten van genen die 

bijdragen aan de kwantitatieve genetische variatie, niet worden onderscheiden. Echter, 

recente ontwikkelingen in de moleculaire genetica hebben geleid tot de identificatie van 

polymorfe posities op het genoom welke ook wel genetische merkers worden genoemd. 

Genetische merkers bieden de mogelijkheid om de segregatie van segmenten van 

chromosoom te volgen in families. Met behulp van gemerkte chromosoomsegmenten, kan 

men bepalen welke segmenten genen bevatten die bijdragen aan de genetische variatie van 

kwantitatieve kenmerken. Eén zo'n gen wordt in de veefokkerij ook wel aangeduid met de 

engelse term quantitative trait locus (afgekort tot QTL). Zodra een QTL opgespoord is, kan 

men genetische merkers gebruiken om bijvoorbeeld dieren op een jongere leeftijd te 

selecteren of om de genetische verschillen tussen dieren nauwkeuriger te schatten. 

Het doel van het in dit proefschrift beschreven onderzoek was het verbeteren van het 

gebruik van alle beschikbare data (genetische merkers en kwantitatieve kenmerken) voor het 

opsporen en benutten van QTL in melkveepopulaties. De implementatie van 

merkerondersteunde selectie is op dit moment niet mogelijk door het ontbreken van 

geïdentificeerde QTL en het ontbreken van efficiënte methoden voor het uitvoeren van 

merkerondersteunde fokwaardeschatting in situaties waarin niet alle dieren getypeerd zijn 

voor merkers. Een belangrijk deel van dit proefschrift wordt in beslag genomen door de 

presentatie en testen van nieuwe methoden. De ontwikkelde methoden zijn gebaseerd op de 

Bayesiaanse theorie en maken gebruik van Monte-Carlo-Markov-keten algoritmen, zoals de 

Gibbs sampler en het Metropolis-Hastings algoritme. Door deze algoritmen is uitvoeren van 

complexere genetische analyses mogelijk geworden. 

In dit proefschrift wordt uitgegaan van een gemengd lineair model met 2 genetische 

componenten, te weten effecten van het gemerkte QTL en effecten van de resterende 
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(achtergrond) genen (ookwel polygenen genoemd). We veronderstellen dat deze effecten een 

normale verdeling volgen en onafhankelijk van elkaar zijn in de basispopulatie. Om rekening 

te houden met de co-varianties tussen genetische effecten van verwante dieren, bijvoorbeeld 

ouder - nakomeling, wordt in de veefokkerij vaak gebruik gemaakt van het diermodel. Dit 

model vormt het vertrekpunt voor de complete stamboom analyse beschreven in dit 

proefschrift. In vrijwel alle hoofdstukken, worden de ontwikkelde methoden getest door 

gesimuleerde data te analyseren. In Hoofdstuk 6 wordt ook een analyse beschreven van 

experimentele data gericht op het opsporen van genen / QTL voor productiekenmerken op 

chromosoom zes in melkvee. 

Onvolledige merker data belemmert het gebruik van het diermodel voor de toepassing 

van merkerondersteunde fokwaardeschatting. In Hoofdstuk 2 wordt de toepassing van Gibbs 

sampling beschreven om fokwaarden volgens de Bayesiaanse methode te schatten. Deze 

methode kan worden toegepast wanneer de informatie voor een merker, gekoppeld aan het 

QTL, onvolledig is. Met deze benadering wordt een marginale a-posteriori verdeling geschat 

middels trekkingen uit de werkelijke marginale a-posteriori verdeling. Voor het genereren 

van de gewenste trekkingen wordt een Monte Carlo Markov keten geconstrueerd. In 

Hoofdstuk 2 veronderstellen we volledige kennis over de positie en de grootte van het QTL. 

De nadruk ligt op het afleiden van de verdelingen waaruit genotypes afgeleid kunnen worden 

voor dieren met ontbrekende merker genotypen. Het blijkt dat de specifieke structuur van de 

gametische relatiematrix van het QTL benut kan worden om te komen tot eenvoudige 

verdelingen voor merker genotypen. In de Bayesiaanse benadering, dragen waarnemingen 

aan het kenmerk ook bij aan de a-posteriori kansen voor de merker genotypen van een niet-

getypeerd individu. Uitbreiding en toepassing van de beschreven benadering in grote 

populaties van landbouwhuisdieren worden bediscussieerd. 

Vanaf Hoofdstuk 3 staat de detectie en positionering van QTL centraal. Hierbij wordt 

allereerst onderzocht of een significant deel van de genetische variantie verklaard wordt door 

het QTL. Vervolgens wordt aandacht besteed aan het bepalen van de meest waarschijnlijke 

plaats van het QTL op een gemerkt stuk chromosoom bepaald. Er wordt steeds uitgegaan van 

een (deel van het) chromosoom waarop meerdere merker loei voorkomen op bekende 

posities. In de veefokkerij worden Monte-Carlo-Markov-keten algoritmen steeds vaker 

gebruikt om statistische conclusies te trekken over marginale a-posteriori verdelingen van 

parameters in het gebruikte genetische model. De Gibbs sampling wordt hierbij het meest 
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gebruikt en vereist dat de conditionele kansverdelingen van een standaard vorm zijn, 

bijvoorbeeld een Normale verdeling. In Hoofdstuk 3 beschrijven we een Bayesiaanse 

benadering voor het statistisch opsporen van QTL, waarbij het gebruik van het gereduceerde 

dier model leidt tot verdelingen van dispersie parameters die niet standaard zijn. In dat geval 

wordt het Metropolis-Hastings algoritme gebruikt om trekkingen te verkrijgen uit deze niet-

standaard verdelingen. Het Metropolis-Hastings algoritme biedt tevens mogelijkheden om 

verschillende parameterizaties van het genetisch model te bestuderen. Als alternatief voor de 

parameterizatie in termen van variantiecomponenten, gebruiken we ook een parameterizatie 

in termen van één variantie component en twee ratios van variantie componenten, te weten de 

erfelijkheidsgraad en de proportie genetische variantie verklaard door het QTL. In 

vergelijking tot de variantie componenten, is het implementeren van voorkennis is in het 

geval van ratios gemakkelijker dan in het geval van variantie componenten, mede door de 

afwezigheid van schaaleffecten. De eigenschappen van het gereduceerde diermodel zijn 

bestudeerd door analyse van drie verschillende sets van gesimuleerde gegevens. Hierin komt 

naar voren dat door het gebruik van het gereduceerde diermodel de rekentijd enorm wordt 

verkort terwijl eigenschappen van schatters gelijk zijn aan die van volledig diermodel. 

In Hoofdstuk 3 is de kaartpositie van het QTL bekend verondersteld. In Hoofdstuk 4, 

wordt de eerder beschreven Bayesiaanse methode uitgebreid om ook de meest waarschijnlijke 

positie (merker interval) voor het QTL te bepalen. Echter, simulaties toonden aan dat een 

Metropolis Hastings algoritme voor het trekken van nieuwe QTL posities niet toereikend was 

om de positie over een kaart met meerdere merker loei te bepalen. Vanuit een willekeurige 

startpositie kwam de keten nooit in een andere merker interval, een probleem wat bekend 

staat als onvolledige menging. Deze onvolledige menging wordt veroorzaakt door de 

gametische relatie matrix voor de QTL effecten. Om dit probleem op te lossen, is een relatief 

nieuwe MCMC techniek, simulated tempering, geïmplementeerd. Hoewel simulated 

tempering computer intensief is, resulteert het wel in adequate mixing van de QTL positie 

over de verschillende merker intervallen. Conclusies over de meest waarschijnlijke QTL 

positie kunnen nu gebaseerd worden op marginale a-posteriori kansen. 

In Hoofdstuk 3 en 4 is uitgegaan van een populatie alle (ouder-)dieren in het 

reduceerde dier model bekende merker genotypes hebben en verder is aangenomen dat de 

koppelingsfase van merker allelen volledig bekend is. In Hoofdstuk 5 wordt de Bayesiaanse 

benadering uitgebreid om rekening te houden met niet-getypeerde dieren en met onzekerheid 
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over alle parameters in het gemengde lineaire model, met uitzondering van de positie van het 

QTL. Het aanvullen van merker genotypen voor niet-getypeerde dieren is geïmplementeerd 

een Bayesiaanse benadering en MCMC technieken. Merker informatie van verwante dieren 

en fenotypische informatie worden gecombineerd om a-posteriori kansen voor merker 

genotypen uit te rekenen. Het kunnen meenemen van niet-getypeerde dieren in de analyse 

biedt de mogelijkheden tot QTL analyse in populaties met complexe stamboomstructuren en 

ontbrekende merker gegevens. De ontwikkelde methode is empirisch getest door 

gesimuleerde gegevens te analyseren voor een complex granddaughter design. In een 

granddaughter design wordt vaak uitgegaan van ongerelateerde half-sib families bestaande uit 

stiervaders en hun (proefstier)zonen. In fokprogramma's, is er naast deze vader zoon relaties 

nog sprake van vele andere (maternale) familie relaties tussen dieren. Deze relaties lopen 

deels via niet-getypeerde stiermoeders. Door alle niet-getypeerde dieren op te nemen in de 

analyse wordt het onderscheidingsvermogen voor QTL detectie vergroot. Dit blijkt uit 

resultaten gepresenteerd in hoofdstuk 5 waarin het voordeel van meenemen van alle relaties is 

gekwantificeerd aan de hand van gesimuleerde data. 

In Hoofdstuk 5 werd volledige kennis over de positie van het QTL verondersteld. In 

de algemene discussie wordt de procedure beschreven in Hoofdstuk 5 gecombineerd met de 

procedure in Hoofdstuk 4 voor het schatten van de positie van het QTL. Hierdoor ontstaat 

een Bayesiaanse benadering die zowel positie als grootte van het QTL kan schatten welke kan 

worden toegepast in populaties met complexe stamboomstructuren. Deze methode is ook 

empirisch getest met Monte Carlo simulatie. Vervolgens zijn praktijkgegevens uit het 

Holland Genetics/Livestock Improvement QTL experiment geanalyseerd. In een eerdere 

analyse van deze gegevens door Spelman en medewerkers is een QTL voor eiwit% gevonden. 

De hier geanalyseerde gegevens omvatten 22 Nederlandse Holstein-Friesian families met in 

totaal 922 zonen, en 455 stiermoeders met relaties naar tenminste 2 manlijke getypeerde 

individuen. Veertien stiervaders zijn tevens de vader van 399 stiermoeders, wat 

correspondeert met in totaal 653 maternale kleinzonen. In de analyse wordt opnieuw het 

QTL voor eiwit percentage gevonden, waarbij de meest waarschijnlijk positie van dit QTL 

goed overeenkomt met de positie die eerder gevonden is. Door het meenemen van de extra 

familierelaties is het mogelijk om een nauwkeurige uitspraak te doen over de grootte en de 

positie van het QTL. Tevens zijn er aanwijzingen gevonden voor de aanwezigheid van een 

mogelijk tweede QTL en een nadere analyse, mogelijk met een zogenaamd 2-QTL model, is 
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gewenst. In het derde deel van de algemene discussie wordt de ontwikkelde Bayesiaanse 

benadering vergeleken met andere, in de literatuur beschreven, methoden voor QTL analyse 

in populaties met complexe stambomen. Op dit moment is de in dit proefschrift beschreven 

methode uniek omdat het een analyse mogelijk maakt van complexe stamboomstructuren 

waarin niet alle dieren getypeerd zijn voor merker loei. Tenslotte worden in de algemene 

discussie enige aspecten van de praktische implementatie van merker ondersteunde evaluatie 

van fokprogramma's behandeld. 
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