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Propositions 
1. Class areas that are estimated as sums of posterior probabilities are more 

accurate than those obtained by counting pixels after classification. 
This thesis 

2. Avoiding spectral overlap during training data selection is hiding the head in 
the sand. Avoiding spectral overlap during test data selection is cheating. 
This thesis 

3. Often, satellite image classification is considered less valuable when more 
knowledge about the area is already available. Apparently it is difficult to 
exploit this knowledge for classification improvement. 
•This thesis 

4. Accurate estimation of probability densities in Bayesian classification is only 
helpful if prior probabilities are accurately estimated as well. 
This thesis, Table 3.11. 

5. Without considering the relation between mapping scale and thematic class 
definition, classification evaluation becomes unacceptably subjective. 
This thesis 

6. The development of segmentation algorithms progresses slowly, because the 
matter is too complex to be fully understood in the course of one Ph.D. project 
[Pavlidis, 1986]. 

7. Quadtree data structures allow to implement the raster data model with vector 
accuracy. 
This thesis 

8. The linguistic advantage of maximum likelihood over k-nearest neighbor is 
difficult to compensate with statistical arguments. 

9. Certain hobby's, such as knitting and riding motorcycles, are partly based on 
the charm of being able to master inadequate technology. This principle often 
helps to explain the popularity of software. 

10. Increasingly certain skills are considered, in addition to education, when judg­
ing an employee's professional quality. This does not imply that education 
institutes should try to teach those skills. 

11. Advertisers pay commercial TV-stations to obtain, through attractive pro­
grams, a large audience for their commercials. Too much advertisement on 
a publically sponsored network makes the viewer think that he supports the 
advertisers. 

12. According to probabilistics, some things that can go wrong might not. What 
cannot go wrong, will not. Statistical views allow for more optimism than 
deterministic ones. 

Propositions related to the dissertation 
Probabilistic Segmentation of Remotely Sensed Images 
Ben Gorte, Wageningen, October 12, 1998. 
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Abstract 

For information extraction from image data to create or update geographic informa­
tion systems, objects are identified and labeled using an integration of segmentation 
and classification. This yields geometric and thematic information, respectively. 

Bayesian image classifiers calculate class posterior probabilities on the basis of esti­
mated class probability densities and prior probabilities. This thesis presents refined 
probability estimates, which are local, i.e pertain to image regions, rather than to 
the entire image. Local class probability densities are estimated in a non-parametric 
way with an extended /c-Nearest Neighbor method. Iterative estimation of class mix­
ing proportions in arbitrary image regions yields local prior probabilities. 

The improved estimates of prior probabilities and probability densities increase the 
reliability of posterior probabilities and enhance subsequent decision making, such 
as maximum posterior probability class selection. Moreover, class areas are esti­
mated more accurately, compared to standard Maximum Likelihood classification. 

Two sources of image regionalization are distinguished. Ancillary data in geographic 
information systems often divide the image area into regions with different class 
mixing proportions, in which probabilities are estimated. Otherwise, a regionaliza­
tion can be obtained by image segmentation. A region based method is presented, 
being a generalization of connected component labeling in the quadtree domain. It 
recursively merges leaves in a quadtree representation of a multi-spectral image into 
segments with arbitrary shapes and sizes. Order dependency is avoided by applying 
the procedure iteratively with slowly relaxing homogeneity criteria. 

Region fragmentation and region merging, caused by spectral variation within ob­
jects and spectral similarity between adjacent objects, are avoided by regarding 
class homogeneity in addition to spectral homogeneity. As expected, most terrain 
objects correspond to image segments. These, however, reside at different levels in 
a segmentation pyramid. Therefore, class mixing proportions are estimated in all 
segments of such a pyramid to distinguish between pure and mixed ones. Pure seg­
ments are selected at the highest possible level, which may vary over the image. 
They form a non-overlapping set of labeled objects without fragmentation or merg­
ing. In image areas where classes cannot be separated, because of spatial or spectral 

m 



resolution limitations, mixed segments are selected from the pyramid. They form 
uncertain objects, to which a mixture of classes with known proportion is assigned. 

Subsequently, remotely sensed data are used for taking decisions in geographical 
information systems. These decisions are usually based on crisp classifications and, 
therefore, influenced by classification errors and uncertainties. Moreover, when pro­
cessing spatial data for decision making, the objectives and preferences of the de­
cision maker are crucial to deal with. This thesis proposes to exploit mathematical 
decision analysis for integrating uncertainties and preferences, on the basis of care­
fully estimated probabilistic class information. It aims to solve complex decision 
problems on the basis of remotely sensed data. 
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List of symbols 

The following list contains symbols that are used throughout the thesis, or at least 
within a number of successive sections. Symbols, that are only used in derivations 
are defined locally. 

A : area, measured as a number of pixels 

A(I),A(s) : a function returning the area of an image ƒ or of a subset 
S C / 

Ci,i G [1..N] : classes in a supervised classification, i.e. the probabilistic 
event that the true class of a pixel is C» 

Co : The unknown class, the probabilitic event that a pixel 
should not be classified as belonging to any class d(i G 
[1..N]) 

D : 2 x A matrix of class probability densities d^ for class d 

(i 6 [1,2]) at pixel j (j e [1..A]) 

G C M2 : grid space with rows r € [l-.rmax] and columns c € [l..cmax] 
I : G —>• X : an image, which maps grid cell coordinates (r, c) € G into 

feature vectors x 6 X 
L : 2 x A matrix of class a posteriori probabilities d^ for class 

Ci (i £ [1,2]) at pixel j (je [1..A]) 

M : the number of bands of a multi-spectral image = 
the number of features in a classification = 
the dimensionality of the feature space 

N : the number of classes (C\, . . . , CV) in a classification, ex­
cluding the eventual unknown class Co 

P(Ci) : the probability that a pixel belongs to class Ci, irrespective 
of the feature (prior probability) 

P(x|Ci) : the probability that a class C» pixel has feature vector x 
(class probability density) 

P(Ci|x) : the probability that a pixel with feature vector x belongs 
to class d 

Vil 



SYMBOLS 

P(X) 

P(C, |x)j s 

p=(r,c)eG 

S = {*;} 

# 5 

s, Sj C / 

TtcT 

'TS rpj 
x i i M i 

X 
x e x 

the probability that a pixel has feature vector x 

P(C»|x) for a pixel in a subset s C I 

grid coordinate of a pixel 

subdivision (stratification, segmentation) of I. 
I = {Jsj (complete) or I D (J Sj (incomplete) 

the number of elements of a set S, the number of segments 
in a segmentation S 
a subset (stratum, segment, region) of image I 

Training samples, a set {Tj} of tuples Tj =< j,x.,Ci > re­
lating feature vectors to classes. The training sample num­
ber j is often omitted. 
Training samples for class Ci 

Training samples {< xp,Ci,n >} for class d, sampled at 
pixels p G s or p € Sj 

the M dimensional feature space 

a feature vector (x\, ... , i j j ) , for example reflections in M 
spectral bands 
feature vector of pixel at grid coordinate p 
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Chapter 1 

Introduction 

To monitor, analyze and interpret developments in our changing environment, up-
to-date spatial data are periodically collected and processed. Increasingly, remote 
sensing is used as a valuable source for this purpose. It yields data that can be 
subjected to further analysis in a geographical information system (GIS) at advan­
tageous average cost. By systematic application of spatial operations and visual­
ization, a GIS is able to generate, on request, derivative data sets contributing to 
making decisions that involve characteristics of spatially-related phenomena of the 
environment. 

Earth observation satellite sensors measure electro-magnetic radiation emitted or 
reflected by the earth surface. Measured radiation depends on local earth surface 
characteristics. The relationship between measurement values and land cover al­
lows to extract terrain information from image data. An effective method is visual 
image interpretation. Human vision, combined with terrain knowledge and under­
standing of imaging processes, has unsurpassed image interpretation capabilities. 
Computer vision is steadily advancing and has reached production level maturity 
in applications concerning, for example, industrial control, medical diagnosis and 
hand-written text recognition. However, the earth surface, as recorded in remotely 
sensed imagery, is too complex to be analyzed automatically. 

Nevertheless, during the last decades considerable research effort has been given to 
computer-assisted and (semi-)automatic interpretation of remotely sensed imagery 
of the earth surface. Image processing and image analysis have entered lecture rooms 
and geoinformation production organizations. 

A distinction can be made between digital image processing and information ex­
traction. The purpose of digital image processing is to obtain transformed images 
that are more suitable for subsequent analysis. For example, 

Geometric transformations are used to make an image geometrically adhere 
to a cartographic projection, or to make different images of the same area 
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exactly coincide with each other. 
Image enhancements support image interpretation by improving image contrast 

and sharpness, or by reducing image noise. 
Color transformations identify different aspects of reflection, such as hue, satu­

ration and intensity, and allow for example to separate terrain characteristics 
from illumination effects. 

Feature extraction yields quantified terrain characteristics, such as relative veg­
etation cover. 

Image transformations create data with an 'image' data structure. The values in 
the data structure represent estimates of quantified terrain characteristics on an 
ordinal scale. 

Information extraction converts measurements of earth surface characteristics into 
a delineation of entities (objects) in the terrain with attached attributes describ­
ing their properties. A distinction can be made between segmentation and clas­
sification, where the former is mainly concerned with the spatial distributions of 
reflection measurements to obtain object delineation, and the latter with spectral 
characteristics to provide object characterization. 

Classification 

Classification of remotely sensed data into qualitative information classes is useful to 
extract information from the spectral attributes of these data, yielding an insightful 
representation of the real world. Such a representation can be exploited directly as 
a thematic map or as part of a time series in a change detection application. 

Classification procedures apply statistical pattern recognition of image measure­
ment vectors to label each pixel with an appropriate class from a set of information 
classes, concerning for example land-cover or land-use. 

Statistical or probabilistic approaches to classification are motivated by the circum­
stance that the relation between information classes and measurement vectors is 
not one-to-one. Different measurements are observed for each class (grass can be 
green or yellow) and, more important during classification, similar values can be 
measured for different classes (grass and wheat can both be yellow). Consequently, 
the decision upon a class given a measurement vector has an element of uncertainty, 
which can be modeled probabilistically: For the variety of measurements within each 
class probability densities are estimated and a posteriori probabilities are used to 
decide upon a class, given a measurement vector. 

When information about an area is available, the purpose of image classification 
is, for example, to update this information or to improve its quality by refining 
thematic class definitions or spatial accuracy. In such cases, accuracy and reliability 
of classification results should be at least comparable to those of existing infor­
mation. For this reason, the advancement of GIS technology stimulates research 



into pattern recognition and classification methods for remotely sensed imagery. 
Many improvements to standard maximum likelihood techniques have been pro­
posed. Overviews have been published, for example [Argialas and Harlow, 1990] and 
[Janssen and van der Wel, 1994], and can also be found in digital image processing 
textbooks [Richards, 1993]. 

Segmentation 

The purpose of image segmentation is to subdivide an image into different parts 
(segments) that correspond to objects in the terrain. 

Whereas image classification, despite imperfections, has become a routinely applied 
method to analyze imagery, segmentation never became very popular in earth ob­
servation applications. Problems still associated with image segmentation are sum­
marized by [Acton, 1996] as: object merging, poor object boundary localization, 
object boundary ambiguity, object fragmentation and sensitivity to noise. More­
over, segmentation algorithms typically require large computer memory capacities 
and long processing times. Finally, spatial resolutions of satellite date are consid­
ered the prime limiting factor for many applications. Satellite images are often used 
as substitutes for aerial photography, because of cheaper or faster data acquisition. 
However, users are reluctant to sacrifice spatial accuracy. It is common to squeeze 
the largest possible map scale out of the image, which in turn requires to map ob­
jects that are covered by only a few image pixels. In such cases, grouping pixels into 
segments does not significantly contribute to information extraction. 

A new chance for image segmentation is justified by ever-increasing computer hard­
ware performances and by the order of magnitude at which spatial resolutions of 
satellite imagery are expected in improve in the near future. Digital (soft-copy) 
photogrammetry, using scanned aerial photography, as well as advancements in de­
velopment of airborne sensors and digital cameras will also increase availability of 
high resolution digital image data. Generally, the increasing area covered by digital 
images, combined with the increasing data volume per unit area, motivates further 
research in automated information extraction. 

Integration 

To combine the complementary information from segmentation and classification is 
not straightforward. The results are usually incompatible, because both procedures 
take decisions independently, using different data characteristics. 

This thesis aims at integrating segmentation and classification, by first gathering 
evidence concerning spatial and class-membership characteristics, and then combin­
ing these to delineate and identify relevant terrain objects. During the combination, 
user requirements play a role. The relevance of objects depends on, for example, 
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the application domain, the project scale (in relation to the image resolution) and 
the available knowledge about the terrain. Therefore, a flexible integration method 
is needed. 

Structure of the thesis 

Following this introduction, Chapter 2 is about image classification. It reviews com­
mon classification methods and puts these in a Bayesian framework. The advantage 
of non-parametric methods in certain circumstances motivates a further exploration, 
leading to an estimate of mixing proportions of a set of classes that includes the 
unknown class. 

Chapter 3 introduces local statistics in non-parametric Bayesian classification, to 
exploit available data and terrain knowledge for the improvement of classification 
results. The main idea is that refined statistics can be obtained if the image area 
is subdived according to units in ancillary maps in a Geografie Information System 
(GIS). Since the probability densities of measurements in a class may vary over 
these units, em local probability densities are introduced and an algorithm for their 
estimation is presented. Furthermore, a method is described to obtain class area 
information inside each GIS map unit. This information by itself may be useful 
for many applications, but also enables further classification improvement after 
normalizing the area estimates into a priori class probabilities. 

Spatial image characteristics are investigated in Chapter 4, which describes a novel 
region-based image segmentation method. The resulting algorithm is a generalized 
version of a connected component labeling in quadtree GIS. Segments are created for 
spectrally homogeneous regions with arbitrary shapes and sizes in a multi-spectral 
image. Later, the algorithm is expanded to produce a segmentation pyramid, rather 
than a single segmentation. 

In chapter 5, classification and segmentation are combined into segmentation pyra­
mid classification to recognize terrain objects from image data. Basically, the pro­
posed method estimates probability densities and prior probabilities in each segment 
of an entire segmentation pyramid, and selects segments according to class homo­
geneity from different pyramid levels until complete coverage of the area is obtained. 
Because selection is expressed in relational database queries, it can be easily tailored 
to user requirements. 

Chapter 6 shows how statistical information that becomes available during classifi­
cation can be directly applied in application-oriented decision analysis. 

Conclusions and recommendations for further research are formulated in the final 
chapter. 



Chapter 2 

Classification 

Classification is a common technique to extract information from remote sensing 
image data. It converts measurements of earth surface characteristics into thematic 
maps that suit user requirements. 

After describing satellite imagery, emphasizing characteristics that are relevant for 
classification, this Chapter reviews popular classification methods in a Bayesian 
framework. A non-parametric method is further explored and developed towards a 
solution of the unlcnowij-class problem. 

2.1 Satellite imagery 
Earth observation satellite sensors measure electro-magnetic radiation that is emit­
ted or reflected by the earth surface. Active sensors send radiation pulses in the 
microwave range of the electro-magnetic spectrum to the earth and measure the re­
turned amounts in successive time-intervals, according to radar principles. Passive 
sensors measure thermal infrared radiation which is emitted by the earth surface, 
or visible and near-infrared radiation which originates from the sun and is reflected 
by the earth surface (Figure 2.1). 

2.1.1 Image radiometry 

Multi-spectral sensors measure reflection in different parts of the electro-magnetic 
spectrum separately, but at the same time. The number of bands and their loca­
tions in the spectrum, expressed as wavelengths or wavelength intervals, specify the 
spectral resolution of a sensor. 

Measurement principles vary according to sensor type, but, eventually after pre-
preprocessing, each measurements corresponds to a location in the terrain and is 
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presented as a pixel in an image. A sensible geometrical correspondence exists be­
tween terrain locations and image pixels, such that the image can be regarded as a 
projection of the earth surface on an image plane. The distance between locations 
that correspond to adjacent image pixels is a sensor characteristic, which determines 
the spatial resolution of an image. 

It is quite common to pretend that the terrain is subdivided in rectangles or squares, 
the terrain elements, whose size determines the spatial resolution, such that a pixel's 
measurement value is representative for the entire terrain element. However: 

• The reflection may be not uniform within the terrain element, for instance 
at the boundary between two land cover types, or when details are smaller 
than the resolution. 

• The satellite measures a reflection in an area called instantaneous ßeld of 
view (IFOV), which is rather circular than square. The measured value is a 
weighted average of the different reflections within that circular area, where 
the weight is larger in the center than towards the outside of the circle. 
Sensors are designed with such a spatial resolution that the circular IFOV's 
slightly overlap each other. This ensures that the terrain is entirely covered 
by measurements, without creating too much data redundancy. 

Figure 2.2: Terrain elements and instantaneous field of view 



2.1. SATELLITE IMAGERY 

2.1.2 Image geometry 

Due to earth curvature, earth rotation, orbit parameters, satellite movements, ter­
rain relief etc., the projection of the earth surface into a satellite image is not a 
cartographic one. To make an image coincide pixel by pixel with a raster map in 
a Geographic Information System (GIS), such that pixels with the same row and 
column position correspond to the same location in the terrain, extensive geomet­
rical corrections have to be performed. In this study, these corrections will be not 
elaborated upon, although they are a prerequisite for many of the operations to be 
described. 

The examples and case studies in this thesis analyze imagery of multi-spectral 
SPOT (XS) and Landsat Thematic Mapper (TM) sensors. Both are passive, optical 
sensors that measure reflected sunlight in the visible and near-infrared regions of 
the electro-magnetic spectrum 1. 

Their spatial and spectral resolutions are given in Table 2.1. 

Satellite 
/ Sensor 
Spot pan 
Spot XS 

Landsat TM 
Landsat MSS 

Spatial resolution 
east-west 

10-12 
20-25 

30 
57 

north-south 
10 
20 
30 
76 

Spectral 
bands 

1 
3 

6(+l) 
4 

Image 
area (km) 

60x60 
60x60 

185x185 
185x185 

Table 2.1: Resolutions of SPOT and Landsat sensors 

2.1.3 Definition 

An image / is a function I : G —> X that maps grid cells (coordinates) (r, c) £ G 
into feature vectors x e X. The vector space X is called the feature space. 

A grid cell (r,c) is the element at row r and column c of the grid space G = 
{1, . . . , r m a x } x {1, . . . ,cmax}> which is a subset of the discrete two-dimensional 
space IN2. 

A pixel PrtC £ I links a grid cell (r, c) with a feature vector xp , which is usually a vec­
tor of measurements that originates from image acquisition. In case of multi-spectral 
imagery, a feature vector x consists of reflection measurements (x\, ... ,XM) in M 
spectral bands. The notation A = A(I) = rm a x x cmax will be used to denote the 
total number of pixels in image I. 

When the positions of pixels in G are irrelevant, it may be convenient to denote 
pixels in (a subset s of) the image as pi, (i 6 {1, . . . ,.4}) and the corresponding 

1. The thermal infrared band of Landsat TM, containing measurements of emitted radiation with 
120m resolution, is not used in this study. 
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feature vectors as x^. This yields a collection, rather than a set, since duplicates 
may occur. 

2.2 Pattern recognition 
This thesis is mainly concerned with supervised classification, which involves au­
tomatic recognition of patterns in spectral measurements. In the description by 
[Ripley, 1996], of a pattern recognition machine 

" . . . we are given a set of N pre-determined classes, and assume (in 
theory) the existence of an oracle that would correctly label each ex­
ample which might be presented to us. When we receive an example, 
some measurements are made, known as features, and these data are 
fed into the pattern recognition machine, known as the classifier. This 
is allowed to report 

'this example is from class CV 
'this example is from none of these classes' or 
'this example is too hard for me' 

The second category are called outliers and the third rejects or 'doubt' 
reports. Both can have great importance in applications." 

Applied to satellite image classification, the presented examples are pixels in an 
image. Each pixel should be labeled as belonging to a class from a user-defined 
set of, for example, land-use of land-cover classes. The measurements are avail­
able as feature vectors and usually concern reflection in different spectral bands, 
although feature transformations may have been applied. Examples of so-called de­
rived features are principal components, vegetation indices, hue-saturation-intensity 
and measures of texture. 

The oracle in Ripley's description, which is capable to label every pixel correctly, 
is given by the terrain. After georeferencing the image, for each pixel the corre­
sponding location on the earth surface (the terrain element), is known and the class 
label can be determined, for example by field inspection. However, there are a few 
difficulties. Class definition should, strictly speaking, include how to label a pixel, 
when its terrain element covers several objects of different classes. For example, the 
label of the largest object (within the terrain element) could be chosen, or the label 
of the object at center of the element. The reflection measurements, however, do 
not represent an exact square or a point, but rather a weighted average in a circular 
IFOV (Figure 2.2). Moreover, such definitions assume extremely precise georefer­
encing, whereas in practice a better geometric accuracy than (say) half the terrain 
element size is hard to achieve. Therefore, mixed pixels pose a problem. They are 
due to small or narrow (linear) objects, compared to the spatial resolution, but 
they also occur at boundaries between large objects. At best, 'doubt reports' are 
generated for those pixels — otherwise, labeling errors must be expected. 
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Other 'doubt reports' may be caused by spectral overlap between classes. Re­
flectance is a local earth surface characteristic, and can be considered a class prop­
erty. Generally, a class cannot be associated with a single reflectance. For a certain 
crop species, for example, reflectance is influenced by crop variety, growing stage 
(even within a single image), cultivation, moisture, soil type etc. Moreover, the ob­
servations concern reflections, which are influenced by atmospheric conditions and 
illumination. The former may vary over an image, the latter almost certainly does, 
especially in hilly terrain. As a consequence, a variety of reflections is associated 
with each class and must be handled by the pattern recognition machine. Moreover, 
reflections of different classes should be different enough — whether this is the case 
depends on class definitions on one side and available data on the other. Often 
between-class differences are small compared to within-class variations, such that 
some class Ci pixels have the same reflection as some other class Cj pixels. It is 
difficult to judge image information content in general, independent of applications. 
Finally, it the user's responsibility to acquire image data that meet his requirements. 
Nevertheless, in most cases he will try to get as much information from his data 
as possible, and sometimes a little bit more. Then, the above-mentioned problem 
appears as spectral overlap between classes. The pattern recognition machine may 
generate errors, produce 'doubt reports', or accompany the selected label with a cer­
tainty indication. It is worthwhile to investigate which information can be extracted 
from which kind of imagery, and what is the quality of the extracted information. 

The 'outliers' in Ripley's description present an interesting problem in satellite 
image classification. Usually, outliers are not caused by unfortunate coincidences in 
the measurement process, but by the presence of an unknown class in the terrain. For 
instance, when making a crop inventory reflection characteristics of various crops 
should be be determined accurately. But to characterize reflections of other classes 
in the image, such as villages, roads and forests, might involve much additional 
effort. For the purpose of the inventory, a classification into a set of classes that 
consists of the different crops plus a class other would be perfectly adequate. The 
outliers themselves are not a problem, but their detection is (section 2.4). 

The above allows to formulate the goal of this study more precisely: 

• to minimize the errors that are caused by spectral overlap 
• to quantify the remaining classification uncertainty 
• to used the uncertainty information in subsequent decision making 
• to incorporate additional information to reach these goals: 

— from external sources (maps, expert knowledge) 
— from additional (i.e. spatial) image characteristics. 



CHAPTER 2 CLASSIFICATION 

2.3 Supervised classification methods 

Supervised classification labels a feature vector x with class d when x is more 
similar to the reflection characteristics of d than to those of other classes. Therefore, 
a measure of similarity between feature vectors and class reflection characteristics 
has to be established. 

It would be ideal to have a universal database, describing class reflection character­
istics that are valid for any image of a given satellite/sensor system. After following 
a standardized pre-processing procedure, the user would have to select a set of can­
didate classes for a particular image from the database, according to the theme of 
his interest. Subsequently, the classifier could compare each feature vector in the 
image with the reflection characteristics of candidate classes and assign a label after 
maximum similarity has been established. 

However, the database needs to take spectral variability across images into account, 
caused, for example, by different atmospheric conditions and sun angles, and by 
seasonal influences (soil moisture, crop growing stage etc.). This causes excessive 
spectral overlap between different classes. Correction for these influence can be 
attempted. Some of them, such as atmospheric conditions and sun angle, can be 
accounted for quite reliably [Mulder, 1976], but others require large amounts of 
additional data, as well as extremely complicated reflection models. 

Therefore, in practice class reflection characteristics are established for each image 
to be classified. Still, the reflection characteristics are influenced by, for example, 
differences in soil type and soil moisture, but within an image these differences 
are smaller than across images. Consequently, supervised classification involves a 
training stage, in which the user gives examples of each class to the classifier. This 
means that for a number of pixels in the image the class of the terrain elements 
must be known beforehand. 

On the basis of the examples the classifier determines class reflection characteristics 
in such a form that the image feature vectors can be compared to them during the 
decision stage of supervised classification. 

2.3.1 Training s tage 

Training a classifier for a particular image yields a set of <grid coordinate, class 
label> pairs. Since the image defines a feature vector at each grid coordinate and 
since the coordinates are irrelevant, this set can be transformed into a collection 
of tuples < Xp,d > having a feature vector and a class label as components. The 
training samples form a collection, rather than a set, since duplicates may occur, 
which are relevant for class characterization. To allow for set notation, a training 
sample number can be added to the tuples. Therefore, the elements tj of the set 
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T = {tj} of training samples have the form 

Tj — <, j , Xp , O j *> . 

The training sample number will be omitted when this causes no confusion. 

When xp is located in a part of the feature space where classes Ci and Cj have spec­
tral overlap, it may happen that some pixels with this feature vector are indicated 
as d and others as Cj. Then 

tj = < Xp,d > and tk = < xp,Cj > (2.1) 

may both be members of T. 

In this definition, training samples are taken inside the image to be classified. This 
is not strictly necessary. Training samples could be taken from another image, if 
circumstances like atmospheric conditions and sun angle were the same during ac­
quisition of both images (for example with two adjacent images recorded during the 
same satellite orbit), or if the differences were corrected for. 

Classification can benefit from availability of (digital) data, for example during the 
— usually expensive — task of finding sufficient numbers of training samples. As 
a rule, with M spectral bands between 10 M and 100 M samples are needed for 
each class to estimate parameters for class distributions in a maximum likelihood 
classification [Swain and Davis, 1978]. When using non-parametric methods to es­
timate class probability density, larger numbers of training samples are required, 
because in such a case the shape of the distribution must be estimated, not only 
the parameters. 

In remote sensing applications, it is often difficult to find sufficient numbers of 
reliable training samples. Image interpretation easily leads to selecting obvious, 
spectrally distinct ones only, thereby reducing representativeness for the entire pop­
ulation. 

Moreover, even after extensive fieldwork training samples may appear doubtful when 
the corresponding feature vectors in the image are examined. A good training sample 
selection should include deviating pixels due to within-class spectral variability, but 
exclude those that are caused by irregularities in the terrain. This involves precise 
class definition, which, in turn is also related to image resolution and map scale, 
when image date is going to be combined with map data. Crisp cover classes may 
become fuzzy for aggregated objects. During training sample selection, the question 
is when cover classes are crisp: Is a pixel with a clear space of sub-pixel size still 
a forest pixel? Is a pixel with a few trees still an urban pixel? If so, is the user 
prepared to accept the resulting spectral overlap? If not, can he accept that such 
pixels become outliers? 
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These choices, which are related to the necessity to provide the classifier with repre­
sentative samples on one hand, while avoiding errors on the other hand, still hamper 
routinely application of supervised classification in production environments. 

Other cases show a potential abundance of training samples. Many regions in the 
(developed) world were already mapped numerous times, and the purpose of clas­
sification is to update information. With an existing map and a limited amount of 
fieldwork it may be possible to identify large, unchanged areas for each class, from 
which training samples for classification of a new image can be selected at will. This 
allows to apply refined classification techniques. At the same time, application of 
such refined methods is necessary to prevent that classification gives lower quality 
than the existing information has. 

2.3.2 Decision stage 

In addition to the above-mentioned class definition issues, concerning cover classes 
being crisp or fuzzy, depending on aggregation level, one of the main problems 
in classification is spectral overlap between classes. It was already mentioned that 
two very similar feature vectors Xi and X2, or even different occurrences of the 
same feature vector Xi, may once get trained as class Cj and once as class Cj. 
Consequently, the classifier cannot decide "for sure", whether a feature vector x in 
the neighborhood of Xi and X2 (in the feature space) belongs to class Cj or to class 
C,. For any given feature vector x a decision in favor of one of the classes will be 
made, and it will be applied to all occurrences of x in the entire image. It is very 
likely, however, that in a number of cases this decision is the wrong one, and the 
classifier cannot identify these cases. 

Statistical classification methods attempt to take the best decisions in a statistical 
sense: those with the highest probability of being correct. Still, a single decision will 
be applied to all occurrences of a particular feature vector, still this will sometimes 
be wrong and still there is no way to tell when, but the point is exactly to maximize 
the number or correct decisions for any given feature vector. 

Statistical classifiers apply a maximum a posteriori probability decision rule. The 
algorithms calculate for each C* the a posteriori probability P(C;|xp) that a pixel 
p with feature vector xp belongs to class Cj, and select the class where this is 
maximum. 

When all elements from the right hand side of Bayes formula 

P(C i | x p )=
P ( x^ x

)J ( C ' ) (2.2) 

are known, correct a posteriori probabilities are obtained. The maximum a posteriori 
probability classification yields the optimal result, providing an upper limit for the 
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class 1 probability density 

class 1 ƒ 
frequency /.. 

1 \ class 2 
! \ frequency 

\ 

dl 
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class 2 into class 1 reclassifications 

class 1 Into class 2 reclassifications 

additional mlsclasslflcatlons with non-optimal 
decision boundary (using equal prior probabilities) 

Figure 2.3: Decision boundaries between two normally distributed classes, using class probabil­
ity densities P(x |C i ) with equal prior probabilities, ( d l ) and actual class frequencies 
P(C i |x ) , which can be obtained by applying prior probabilities (d2). 

overall classification accuracy: No other classifier can be expected to give a better 
result [Ripley, 1996], if all misclassifications are considered equally unfavorable2. 

In practice, the elements at the right hand side of (2.2) are not known, but have 
to be estimated. Class probability densities P(xp |Cj) are estimated on the basis of 
training samples, and classification algorithms differ in the way this is accomplished. 
In addition, some methods allow the user to specify class a priori probabilities P(Ci) 
as the proportions of the different classes in the total area. Correct estimation of 
a priori probabilities, combined with correct probability densities, maximizes the 
expected overall classification accuracy (Fig. 2.3). 

The unconditional feature probability density P(xp) is often neglected, since it is 
equal for all classes at a given xp , and therefore does not influence the decision. 
Consequently, no "proper" values for P(Ci|xp) are calculated. This is of no concern 
if only a labeled map is output and probability values are not presented to the 
user, as it is the case in commonly used image processing software. If the resulting 
(maximum) probabilities are to be output as well, normalization has to take place, 
which substitutes 

sifications of class Ci into Cj (with en = 0), the theory expands into minimum cost classification, 

where the decision minimizes the expected cost Ki = ]T \ P (Ci |x p ) C;J. Chapter 6 describes 

utility based decision making, which covers this situation. 
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M 
P(xp) = ^ P ( x p | C j ) P ( C j ) (2.3) 

in eq. (2.2). 

Estimating P(xp) independently from P(xp |Ci) yields a posteriori probabilities 
without normalization, such that their sum may be less than 1. Then, under the 
assumption that all classes together partition the space [Molenaar, 1998], the prob­
ability that a pixel belongs to an unknown class can be estimated as 

M 

P(Co|xp) = l - ^ P ( C i | x p ) . 
i = l 

This enables identification of outliers in the terminology of [Ripley, 1996], as will 
be demonstrated in section 2.4. 

2.3.3 Review of classification algorithms 

Besides statistical classification methods, there are classifiers whose decision mech­
anisms algorithms are usually described non-statistically. The following section is 
inspired by [Duda and Hart, 1973] and places representatives of both categories in 
a Bayesian framework. 

Maximum Likelihood 

In most satellite image classifications, the class probability density P(xp |C;) is mod­
eled by a multivariate normal (Gaussian) distribution function 

P(xp|C7i) = (27r)-M/2\Vi\-h-^yTV''1y) (2.4) 

with: 

M : the number of features 
Vi : the M x M variance-covariance matrix of class Ci, with elements Vjk 

| Vi | : the determinant of Vi 
V~l : the inverse of Vi 
y : x p — m , (m* is the class mean vector), as a column vector with M components 
y T : the transposed of y (a row vector). 

For each class C,, the training samples Ti = {< x,Cj >} 6 T are analyzed. The 
feature vectors x in Ti are put into a sequence. The average of the vectors in this 
sequence yields the mean vector mj . Looking at the j-th component of each feature 
vector, the variance uj. can be obtained. With j £ [1..M], this gives the diagonal 
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elements of Vi. Similarly, between the j-th and k-th components of all feature vectors 
in the training samples of Ci, the covariance v*k,(j,k 6 [l..M],j ^ k) can be 
determined, to yield the off-diagonal elements of Vi. 

Strictly speaking, the values of m^ and Vi, as calculated from the training samples, 
are used as estimates for the parameters fn and E« of a multi-variate normal dis­
tribution N(ni,Hi) for the entire d population. This distinction opens a variety 
of statistical methods for parameter estimation, which is ignored in this study. A 
major problem in maximum likelihood is that the Gaussian distribution model is 
not always suitable, and that subjectivity is involved in training sample selection 
— both problems are related to class definition schemes. Only little improvement 
can be expected from advanced parameter estimation methods. 

The algorithms implement a decision function, by attributing to each xp the class 
with the maximum P(Cj|xp). 

In the remote sensing community, it is common to use the term maximum likelihood 
(or full maximum likelihood) for classifiers which: 
1. use Bayes formula to calculate a posteriori probabilities 
2. normalize these (eq. 2.3) 
3. assume Gaussian class probability densities 
According to definitions in statistics, the second and third property are not nec­
essary for maximum likelihood. Independent estimation of unconditional feature 
densities P(xp) enables to bring the class unknown into the maximum likelihood 
framework. Moreover, estimators exist for parameters of other distribution func­
tions, as well as direct (non-parametric) class probability density estimators, after 
which maximum likelihood can still be applied. 

Maximum probability density 

A simplification is obtained by disregarding the class prior probabilities P(Ci), 
thereby reducing the decision rule to maximum probability density. Overall classi­
fication accuracy is expected to decrease, compared to maximum likelihood (Fig­
ure 2.3). On the other hand, the result does not suffer from the bias that max­
imum likelihood tends to have in favor of classes with large prior probabilities 
[Conese and Maselli, 1992]. 

Consider the task to find roads in a forested area, where the proportion of forest 
pixels (say, 99 %) is used as prior probability for the class forest, leaving 1 % for 
road. In the result, forest may be assigned to all image pixels, giving the user a 
useless map with an overall accuracy of 99 %. If priors are not considered, the user 
can expect some forest to become classified as road, but at least most of the road 
will be found, too, The overall accuracy is expected to be lower, for example, 97 %. 
The user has to decide which of the classified road pixels are really road, but this 
is probably easy when looking at the spatial arrangement of these pixels. 
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Minimum Mahalanobis distance 

For an efficient implementation, it is allowed to omit the constant factor (2TT)~M/2 

from (2.4) and to take -2 times the logarithm of the remaining part. This yields for 
each class a value 

Di(xp)=\n\Vi\+yTV-1y. (2.5) 

For each class, In |Vj| and V~x are calculated at the beginning of the classification, 
and no time-consuming exponentiations are necessary at each pixel. The decision 
function selects the class with the minimum Dt value. 

Class prior probabilities P(Ci) can be included by minimizing over 

D'i(xp) = Di{xp)-2ln(P(Ci)) (2-6) 

The decisions are the same as from maximum likelihood. Actual a posteriori prob­
ability values can be obtained, applying 

P (C i | x p )~e -5 D : ( x P ) ; (2.7) 

followed by normalization (but the efficiency gain is lost). 

A further reduction omits In |Vj| and minimizes over the squared Mahalanobis dis­
tances Mi: 

M ? ( x p ) = y T V i -
1 y (2.8) 

between a feature vector xp and a class mean vector m;. 

Sometimes, V. is replaced by V, the matrix of covariances between the M features 
over the entire image. Then, the differences between within-class variabilities are 
neglected, but feature space anisotropy is still considered. 

Minimum Distance 

If also Vi is omitted from the calculation (set to the M x M unity matrix), the 
decision is based on the minimum squared Euclidean distance Ef. 

£?(xP) = yTy. (2.9) 

Compared to the Euclidean distance .E,(xp), the Mahalanobis distance Mj(xp) be­
tween a feature vector xp and a class mean vector m^ is weighed by the inverse 
of the variance-covariance matrix Vi. Therefore, wide-spread classes seem 'nearer' 
than compact ones. 

Similar to (2.7), probabilities could be re-constructed, now under the assumption 
that the variances are equal in all bands for all classes, while covariances are 0. 
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A final simplification might be obtained by using city-block distances 

M 

ß i ( x p) = ^2 \XPJ - mi,j\ > (2-10) 

where xpj and rriij are the components of xp and m;, respectively. 

Box classißer 

Outside the above family of classifiers is the box classißer (or parallelepiped classi­
ßer). For each class, a box, i.e. a rectangle, block or hyper-block, according to the 
number of features, is created in the feature space on the basis of the training sam­
ples. The decision rule attributes a class to a pixel according to which box contains 
the pixel's feature vector. According to the min-max method, boxes are chosen that 
fit exactly around the training samples. Alternatively, the mean-standard deviation 
method positions a box in such a way that the class mean vector is at the center, 
whereas the size in each dimension is determined by the standard deviation of the 
corresponding feature. A statistical model would be that for each class the features 
are uniformly distributed over an interval, and that the features values are inde­
pendent — especially the second assumption is not very realistic, considering, for 
example, that illumination effects affect all image bands equally. Under the model, 
with mean m ^ and standard deviation Sij for feature j in class C«, the interval 
should be chosen as [m;j — Sij\/3,mij + Sijy/S], since the standard deviation of 
such interval equals Sij. If the box Bi of class d covers bi feature space cells, the 
class probability density P(xp |Ci) is estimated as: 

P(xp|Ct) = { £ if X" G 
otherwise 

When Xp is inside a feature space area where two boxes overlap, the class with the 
smallest box should be chosen (in the absence of prior probabilities), since it yields 
the highest probability density. 

k-Nearest Neighbor 

Non-parametric classifiers, such as fc-Nearest Neighbor, implement decision rules 
that do not assume parameterized class probability distribution functions. Instead, 
they consider a (small) subset of the training samples around the feature vector xp 

to be classified, and assign the class label of to the majority of these samples. 

The Ar-nearest neighbor method selects those k training samples that are nearest 
to xp in the feature space. Usually, Euclidean distance is used, but Mahalanobis 
distance could be preferred for anisotropic feature spaces. 
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The relationship between the fc-Nearest Neighbor decision function and class prob­
ability density estimates can be explained intuitively. If many d pixels are found 
near to xp , apparently C, has a high density in that part of the feature space. In 
addition, the total numbers of training samples should be considered. If the training 
set contains many more samples for d than for Cj, then also relatively many d 
samples, compared to Cj, will be found near to xp . 

Let hi (i £ [l-.A^]) be the number of C» samples among the k nearest neighbors of 
Xp. Therefore, ^T,ki = k. Two cases can be distinguished: 

Equal sampling: If equal numbers of samples were taken for each class, the values 
of ki for Xp are proportional to the class probability densities P(Ci|xp). The 
majority vote yields a non-parametric maximum class probability density 
classifier. 

Proportional sampling: If the (expected) class proportions are reflected in the 
numbers of training samples per class, for example when sample locations 
were randomly chosen, the values of ki are proportional to the enumerator 
P(xp|Ci) P(Ci) of Bayes formula. With normalized P(Ci|xp) (i € [1-N]), 

P(Ci|xp) = j 

A non-parametric maximum likelihood decision is taken by the majority vote 
[Duda and Hart, 1973], [Mulder and Middelkoop, 1990]. 

2.3.4 Comparison 

Compared to full maximum likelihood, its simplified dérivâtes, such as minimum 
Mahalanobis distance and minimum Euclidean distance, are not inferior in all cases. 
It may be worse to use poorly estimated class covariance matrices, caused by insuf­
ficient training samples, than to ignore them entirely. 

Non-parametric classifiers are able to model irregularly-shaped class probability 
densities, which often occur in satellite images. Certain land-use classes, such as 
built-up and agricultural areas, may consist of several land covers with different 
spectral signatures in different (unknown) proportions, for which Gaussian class 
probability densities may be unrealistic. Also signatures of land-cover classes, in­
fluenced by soil type, soil moisture, sun incidence angle (on slopes) etc. may be 
inadequately modeled by Gaussian densities. To obtain accurate non-parametric 
probability density estimates, many training samples are required. Where paramet­
ric methods only need to estimate a few distribution function parameters, non-
parametric ones must be able to produce many density estimates independently of 
each other in different, preferably small parts of the feature space. 

Therefore, the fc-Nearest Neighbor classifier is suitable when there already is infor­
mation available about the area, for example when the goal is to update existing 
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information. To use this existing information is the main objective of this study, and 
fc-Nearest Neighbor is a promising tool. The next section further explores the statis­
tical estimation capabilities of this method. It will be the primary class probability 
estimation tool throughout the subsequent Chapters. 

The parameter k in fc-Nearest Neighbor, the number of neighbors to be searched 
for in the feature space around each xp to be classified, has to be specified by the 
user. It is obvious that it depends on the training set size — k should certainly 
not be larger than the number of training samples of the smallest class in the set, 
otherwise a pure pixel of that class can never be found. On the other hand, when 
many training samples are available for each class, the results of fc-Nearest Neighbor 
appear to be quite stable under different fc-values. 

As an example, results of a series of straightforward fc-NN classification with differ­
ent k of the "Twente" data set (see section 3.2.3), using training samples according 
to Table 2.2, are shown in Table 2.3. 

class 
agric. 
ind. 
city 
resid. 
water 
natveg 

samples 
12164 

522 
868 

2177 
125 

3086 

Table 2.2: Number of sam­
ples per class 

k 
1 
3 
5 
7 
9 
11 
13 
17 
25 
31 
39 
49 

average 
accuracy 

72.83 
74.55 
76.00 
75.54 
75.43 
75.31 
75.47 
75.92 
76.03 
75.87 
75.50 
75.40 

average 
reliability 

65.74 
67.21 
68.78 
69.26 
69.36 
69.85 
69.90 
70.27 
70.63 
70.78 
70.80 
70.70 

overall 
accuracy 

84.14 
84.92 
85.62 
85.98 
86.12 
86.23 
86.33 
86.67 
86.82 
86.89 
86.88 
86.75 

Table 2.3: fc-NN classifications with different k 

Feature space partitioning 

Since classification labeling is irrespective of the position of the pixel p in the im­
age, a decision function provides a partitioning of the feature space X. Figure 2.4 
illustrates the above-mentioned classification methods in a two dimensional feature 
space of a the "Flevo" example (see sections 2.4 and 3.2.2). 
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Figure 2.4: Partioning of a two-dimensional feature space (Thematic Mapper bands 3 and 5) 
by five common classification methods, using Flevo data set. 

2.4 Estimation of prior and conditional probabilities per 
class 

To implement a classifier, prior probabilities and conditional probability densities 
of all classes must be either known or estimated from training data. However, in 
some applications, this information is not available for all classes. There can be 
an unknown class in the image, and information about the number of pixels that 
belong to it is usually not present. For instance, in remote sensing images used 
for estimation of different vegetation types, classes of plants can be sampled very 
accurately. But there can be other classes in the image, such as built-up areas, with 
unknown probability distributions. They distort classification. 

In these cases, classification with rejection can be used. 

In section 2.2, following [Ripley, 1996], a distinction was made between rejects (or 
doubt reports) and outliers, where the first refer to the problems of spectral over­
lap and mixed pixels, and the second to pixels that cannot be attributed to any 
class. [Dubuisson and Masson, 1993] make the same distinction, but use the terms 
ambiguity reject and distance reject, respectively. I have a slight preference for the 
latter terminology, although it might be argued that 'distance reject' already refers 
too much to the implementation. 

Ambiguity reject indicates that there is not enough information in the training set 
to classify a pixel. The pixel belongs to a region between different classes in the 
feature space. In case of nearest neighbor classification, a pixel is not attributed to 
any class (rejected) if the number of neighbors of each class is less than a qualify­
ing majority level [Hellman, 1970], [Dasarathy, 1980]. This type of rejection is not 
sufficient when an unknown class is present. In this case distance reject must be 
used, which indicates that a pixel is located too far from all known classes to be 
attributed to one of them. 

In terms of probabilities, we would like to reject the pixels for which the max-
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Figure 2.5: Partioning of a two-dimensional feature space (Thematic Mapper bands 3 and 5) 
by five common classification methods, using Flevo data set with unknown class. 

imum a posteriori probability belongs to the unknown class. In case of nearest 
neighbor the search radius [Dasarathy, 1980] or the mean distance to the neigh­
bors [Dubuisson and Masson, 1993] can be thresholded, but this takes neither the 
unconditional probability density, which is different in every point of the feature 
space, nor the class priors into account. This leads to classification errors. 

When a maximum a posteriori probability classifier is used, it would be an advan­
tage to be able to threshold the a posteriori probabilities of known classes to find 
the unknown class, for which, however, the prior probabilities and the uncondi­
tional probability density must be known. Commercially available image processing 
packages approximate this by thresholding Mahalanobis, Euclidean or city-block 
distance [the ERDAS Field Guide, 1993]. Also in this case, unconditional probabil­
ity density and class priors are not considered. Another problem is that in both 
cases the threshold is not known and has to be guessed interactively or estimated 
from the training set. 

Feature space partitionings, obtained by the above methods, are shown in Figure 
2.5 and can be compared with Figure 2.4. 

In section 2.3.2 it was mentioned that knowing the a posteriori class probabilities 
P(Ci|x) (i G [1.../V]), the a posteriori probability that a pixel belongs to a different 
(unknown) class Co equals P(Co|x) = 1 —53 P(Cj|x). However, usually 53 P(Cj|x) = 
1, because P(Cj|x) is normalized. 

To find the probability for the unknown class, P(x) has to be estimated indepen­
dently, in addition to class probability densities. 

Estimation of conditional and unconditional densities 

Whereas the (conditional) class distributions are often assumed to be Normal, this 
assumption can certainly not be made for the unconditional distribution of feature 
vectors. To simply take this distribution from the frequency of occurrence in the 
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image (the multi-dimensional histogram) introduces too much noise, since the num­
ber of possible feature vectors in a multi-dimensional feature space, compared to 
the number of pixels in the image, is very large. The feature space if only sparsely 
filled with actual image pixels. 

An extended fc-NN algorithm is able to estimate the conditional feature probability 
density P(x|Cj) and the unconditional density P(x) at the same time. 

The way to obtain the first is described in [Fukunaga & Hummels, 1987] and 
[Therrien, 1989], and was already suggested by [Duda and Hart, 1973]. While look­
ing in the feature space for k training samples around a feature vector x, meanwhile 
counting ki per class, the algorithm keeps track of the size of the volume Vx C X 
in the feature space neighborhood around x that is traversed. Vx is a sphere in a 
3-dimensional space, generally it is a hyper-sphere. At the center of Vx is x; its 
radius is such that Vx contains k training samples. The size vx of the volume is, 
therefore, the discrete number of inspected feature space cells. 

Using the symbol N = A{Ti) for the total number of training samples of class d, 
an estimate for the probability that such a training sample Xo is inside Vx is 

P(x0 € Vx\d) = ji- (2.11) 

Assuming that the conditional feature density P(x|Cj) is constant inside the volume, 
it can be estimated as 

P (x |C) = ± | (2.12) 

As mentioned before, the assumption implies that the volume must not be too large. 
To fill a large number of small volumes in the feature space, many training samples 
are needed (Figure 2.6). Moreover, declaring the estimate in (2.12) valid for all C, 
pixels with feature vector x in the image requires representative sampling. 

While scanning the feature space, the algorithm also counts the total number Ax 

of image pixels that have their feature vectors inside the volume Vx. Note that this 
is a subset of the image, whereas Vx is a subset of the feature space. 

Ax=A({peI:xpeVx}). 

Knowing how many pixels out of the total number A — A(I) of pixels in the entire 
image are similar to x, i.e. are near to x in the feature space, the probability that 
this happens to a "random" image pixel is estimated as 

P(x e y x ) = ^ (2.13) 
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Figure 2.6: k-Nearest Neighbor estimation of probability densities 

Assuming that the unconditional density is constant inside the volume, this becomes 

A* 
P(x) = 

If Qi(x) denotes 

Bayes formula (2.2) becomes 

Qi(x) 

Avx 

P(x\d) 
P(x) ' 

P(Ci|x) = Qi(x)P(Ci). 

An estimate for Q,(x), using (2.12) and (2.14), is 

P(x|C ;) kiA 
Qi{x) 

P(x) NiAx 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

It is advantageous that vx disappears from the calculation. The variables fcj, ^4X 

and «x are stochastic and the possibility to eliminate one of them reduces statistical 
noise. 

Estimation of a priori and a posteriori probabilities 

For a pixel of class Ci without any spectral overlap with other classes, the a poste­
riori probability P(Ci|x) = 1, whereas P(Cj|x) = 0 for j ^ i. 
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CHAPTER 2. CLASSIFICATION 

In such a pixel, Qi(x) is at its maximum value <9™ax, so there we can derive the 
prior probability P(Ci) of class d from (2.16) 

1 = Qf axP(Ci) (2.18) 

Since P(C;) does not depend on x (it is valid for the entire image), we can now also 
substitute it in (2.16) for unpure pixels: 

P(C i |x) = Q1(x)P(C7î) = | Ê r - (2-19) 

Because Qi(x) is stochastic, some care must be taken during the calculation of 
Qmax rpne gj0baj maximum might be an outlier. Instead, assuming that training 
samples are pure, the average value of Qi in the training samples of C; can be used 
to estimate Q™ax. 

It is interesting to observe that the stochastic nature of Qi(x) is not the only reason 
for its variability. Also among the pixels that belong to the unknown class, there 
are some that are much more similar to class Ci than to any other. For those pixels, 
fc-NN will find ki = k and kj = 0 for j / i, and before knowing the unknown class 
they can only be considered pure C, pixels. They, however, will get a small Qi value 
and, accordingly, P(Ci|x) is small. 

Classification 

After the a posteriori probabilities of all known classes are estimated, the a posteriori 
probability of the unknown class, as was already mentioned, can be easily calculated 
as 

N 
P(Co|x) = l - ^ P ( C i | x ) . 

Pixels are then, as usual, assigned to the class with the highest a posteriori proba­
bility. 

Experiment 

The experiment concerns a satellite image of an agricultural area in the Netherlands. 
The image is recorded by the Thematic Mapper sensor of a LANDSAT satellite, 
which measures reflected sunlight in six spectral bands (visible and infrared) with a 
spatial resolution of 30 m (Figure 2.7). In the experiment bands 3, 4 and 5 are used. 
The study area is located around Biddinghuizen in the Flevopolder, the Netherlands. 

The purpose is to make a map of agricultural crops in the area. The seven pre­
dominant crops define the classes of the classification: grass, wheat, potatoes, sugar 
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2.4. ESTIMATION OF PRIOR AND CONDITIONAL PROBABILITIES PER CLASS 

Figure 2.7: Thematic Mapper image bands 4,5,3 of Flevo study area 

beets, peas, beans and onions. Agricultural survey data are available, from which 200 
training samples are taken for each class. Not part of the survey, although present 
in the area, are a village, a few canals, some forested areas, roads, farmhouses and 
orchards. Together these constitute the unknown class. 

During the experiment, the prior probabilities of the seven classes are estimated 
as P(Cj) = 1/Qfax. Their sum equals 0.723, leaving 0.277 for the unknown class 
(Table 2.4). 

class 
unknown 
grass 
wheat 
potatoes 
sugar beet 
peas 
beans 
onions 

prior 
0.277 
0.016 
0.212 
0.166 
0.204 
0.016 
0.054 
0.055 

Table 2.4: Estimated class prior probabilities, including unknown 

This result is reasonably in accordance with the survey data; an exact comparison 
is not possible since the survey is incomplete (Fig. 2.8). 

Next, a posteriori probabilities are calculated for each class in each pixel. Subtract­
ing their sum from 1 gives the probabilities for unknown. The final classification 
is obtained by selecting the class with the maximum probability from all classes, 
including unknown (Figure 2.8). 
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Figure 2.8: Upper: survey map - lower: non-parametr ic classif ication w i t h unknown class, over-

layed w i th crop map boundaries 

2.5 Classification uncertainty 

When the maximum a posteriori probability of pixels after classification is less than 
1, the correctness of the assigned label is uncertain. Chapter 6 describes automated 
decision support, taking classification uncertainty into account. 

For the time being, to support the user to evaluate classifications and to make deci­
sions on the basis of the results, the software should provide an certainty measure, 
in addition to the classification itself. The per-pixel a posteriori probability vector 
contains the complete information, but for interpretation, a single scalar number is 
preferable. Several scalar certainty measures can be conceived, which can be visu­
alized as a gray-scale map, or be combined with the classified map, for example by 
displaying each pixel with a hue and a saturation according to the class label, and 
an intensity according to the certainty measure. (Figure 2.9). 

An obvious certainty measure is the maximum probability value, which (by defini­
tion) indicates the probability that the classifier took the correct decision. 
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i 

Maximum probability 

Figure 2.9: Visualization of classification uncertainty by intensity modulation 

Entropy 

To capture the entire probability vector, instead of only its maximum, weighted 
uncertainty measures can be used, such as the well-known entropy measure, orig­
inating from information theory [Shannon, 1948], [Kullback, 1954]. The measure 
pertains to a statistical variable and to the uncertainties in its possible values, ex­
pressing the distribution and the extent of these uncertainties in a single number 
[Goodchild et al., 1994]. In the entropy measure, the uncertainty in a single value of 
a statistical variable is defined as the information content of a piece of information 
that would reveal this value with perfect accuracy. This quantity is weighted by the 
probability that the value occurs and summed over all values, which gives 

N 

e x„ ^ - P ^ l x p ) log2(P(Ci|xp)) (2.20) 

The Flevo example in the previous section deals with eight classes, including un­
known. In case of complete certainty concerning class membership, three bits are 
needed to encode the information in each pixel: a class number between 0 (binary 
000) and 7 (binary 111). The entropy measure (eq. 2.20 with iV=7) yields a number 
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2.6. CONCLUSION 

between 0 and 3, which specifies how much of these three bits of information is 
still missing after classification has been completed (Figure 2.10). All a posteriori 
probabilities being equal to | means that nothing is known about class member­
ship, and the entropy value equals 3. If, on the other hand, one of the probabilities 
equals 1 (and the others 0), class membership is completely determined, which is 
reflected in entropy value 0. Between these two extremes is the situation with two 
probabilities equal to 0.5, the remaining six being 0. Then the entropy measure 
yields the value 1: one additional bit of information would be needed to change the 
complete ambiguity between two classes into a definite choice. Similarly, four times 
0.25 and four times 0 gives entropy 2, the number of bits needed to choose one out 
of four. 

Note, that entropy expresses uncertainty according to the vector of a posteri­
ori probabilities. It does not involve uncertainty concerning these probabilities: 
they are assumed to be correct. However, to estimate them correctly is exactly the 
problem in classification. As a consequence, the entropy measure cannot be used to 
compare classifiers that estimate probabilities in different ways. 

I 
3.0 

0.0 

Figure 2.10: Entropy measure for classification uncertainty 

2.6 Conclusion 

This Chapter explored fc-NN methods to gather statistical information relevant 
for satellite image classification. These methods can reveal more information than 
traditional image classifiers, concerning quantification of classification uncertainty 
and assignment of pixels to an unknown class. The algorithm is mathematically 
solid, without too many heuristic assumptions. The classification is according to 
maximum a posteriori probability. 
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CHAPTER 2. CLASSIFICATION 

It is noticed, that the method is based on the assumption of a representative sam­
pling of known classes. An investigation of the sensitivity of the results with respect 
to this assumption can be a future research topic, as well as the question how results 
are influenced by classes being crisp or fuzzy. 

Another question to be considered in the future is a further use of the obtained 
unknown class. In fact, we are speaking about a 'remainder-class'. This might consist 
of several unknown cover classes, for which further subdivision may be desirable. A 
possibility, suggested in [Dasarathy, 1980] and [Dubuisson and Masson, 1993], is to 
use unsupervised classification (clustering) to reveal the structure of the unknown 
class. Another possibility is to use region-based segmentation techniques, such as 
region merging (Chapter 4), to distinguish areas inside the unknown class. 
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Chapter 3 

Local statistics 

Let an area, consisting of a left and a right half si and S2, be covered by two classes 
A and B, in proportions 1:3 for si and 3:1 for S2- (Figure 3.1). 

A 

B 

A 

B 

Figure 3.1: Two classes in two mixing proportions 

When classifying Si with prior probabilities P(A) = 0.25 and P(-B) = 0.75, a higher 
overall classification accuracy can be expected than with equal prior probabilities. 
The same holds in S2, when P(A) = 0.75 and P(B) = 0.25 are used. 

Therefore, classifying the two halves separately with the correct prior probabilities 
and combining the results gives a higher overall classification accuracy than classi­
fying the entire image at once with prior probabilities P(^4) = 0.5 and P(B) = 0.5. 
The improvement requires: 

1. a subdivision of the area, such that different mixing proportions are obtained 
2. estimates of these mixing proportions, to be used as local prior probabilities. 

Class mixing proportions depend on local terrain conditions, such as soil, elevation, 
slope, hydrology, infrastructure and socio-economic factors. Therefore, a suitable 
subdivision can be obtained from available GIS maps concerning these themes. 
Expert knowledge can be brought into play to relate the units in those maps to 
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expected class mixing proportions. Alternatively, procedures to estimate prior prob­
abilities can be applied locally. 

Section 2.4 described a prior probability estimator in the context of exploring fc-NN 
classification. It also enables estimation of probabilities for the unknown class. The 
first section of this Chapter develops a more robust prior probability estimator, 
which, however, involves normalization and does not allow for an unknown class. 
Secondly, this algorithm is applied locally, and two experiments will be presented. 
The third section identifies specific circumstances in which also class probability 
densities must be estimated locally. Both a semi-parametric and a non-parametric 
method are given. 

A comparison of results of the various methods will be presented in the final section. 

3.1 Iterative prior probability estimation 
Statistical pattern recognition procedures, such as maximum likelihood classifica­
tion, are applied to (multi-spectral) satellite images, in order to produce thematic 
maps, mostly concerning land-use or land-cover. Sometimes, the purpose of a clas­
sification is not primarily to make a map, but to obtain estimates of the sizes of the 
areas covered by the different classes, for example to make crop yield predictions. 

Area estimates created by counting the number of pixels per class label after a 
maximum likelihood classification are not reliable, because classifiers tend to be 
biased. For example, when prior probabilities are chosen according to the expected 
class areas, classes with high prior probabilities are likely to be over-estimated. In 
the hypothetical case where we know the correct class areas beforehand and base 
prior probabilities on these, we obtain an improved classification compared to using 
equal priors. However, the area estimates which result from making a histogram 
afterwards will be different from the prior knowledge [Conese and Maselli, 1992]. 

Maximum a posteriori probability classifiers select for a given feature vector x the 
class label Cm from a set of classes {CJ (i e [1—N]) with the highest a posteriori 
probability. This requires estimation of class probability densities (from training 
samples) and of class a priori probabilities. The latter have to be specified by the user 
as the expected relative class areas. In applications as mentioned above, however, 
this is part of the information that the user hopes to get from the classifier, not 
what he wants to specify beforehand. 

Suppose that 100 image pixels have the same feature vector x and that the posterior 
probability P(C{|x) = 0.77. This should be interpreted as: 77 out of these 100 pixels 
can be expected to belong to C»; the other 23 belong to other classes. Unfortunately, 
a per-pixel classifier is unable to tell which 23 these are. It will classify all 100 as 
d and, therefore, makes 23 wrong decisions and over-estimates the area of Ci by 
23 pixels. 
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Therefore, an iterative process in which histogram-based area estimates of iteration 
step n are used as prior probabilities in step n + 1 will not converge to the correct 
result. Once one of the priors is over-estimated, it may be more over-estimated in 
the next iteration. (This does not necessarily imply that one of the classes will go to 
a prior of 1 and the rest to 0. It only means that the final estimate is not correct.) 

The previous chapter described an a priori probability estimator by estimating the 
ratio between a priori and a posteriori probabilities. In pixels without overlap with 
other classes, the latter equals 1, and, using the ratio, the former can be established. 

The approach, followed in this Chapter, uses the entire vector of posterior proba­
bilities per pixel. [Duda and Hart, 1973] suggests that the sum of these vectors over 
the entire image yields an estimate for the vector (A\, . . . , AN) of the areas per 
class, measured in pixels; by normalizing the areas we obtain the vector of prior 
probabilities. This claim will be validated for non-parametric local prior estimation. 

Iteration 

The method, described below, iteratively calculates prior probabilities for an image 
on the basis of class probability densities per pixel. The claim to be proven is that 
if the initial prior probabilities are correct, the resulting ones are the same. But if 
they deviate, the resulting ones are different and closer to the correct ones, and will 
finally converge to those. 

3.1.1 Description 

Suppose an image has 3 spectral bands and A pixels. The feature vectors look like: 

pixel number : 
band 1 
band 2 
band 3 

feature vectors : 

1 
12 
47 
88 
X l 

2 

x2 

A 

•X-A 

Note that the feature vectors are not necessarily all different. 

We want a classification with N classes. From training data, either using parametric 
(Gaussian) or non-parametric (k-NN) methods, we get class probability densities 
as functions of x: 

P(xp|C7i) : 

Ci 

c2 

CN 

X l 

.1 

.6 

.2 

X2 X 4 
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Figure 3.2: Iterative calculation of prior probabilities 

Note that with many different feature vectors in an image, the probability to find 
N a paricular one is usually very small. Therefore, ]Ci=i P(xp|C«) ¥" 1- Also the sum 

5Zi=i P(x j |Ci) ^ 1, because of duplicate feature vectors. The sum increases with 
A. 

If class prior probabilities are available: 

PT(Ci) = | 0.1 | 0.2 | | 0.65 

then for each pixel and each class 

P(xp\Q) P(Ci) : 
Ci 
C2 

Cjv 

X l 

.01 

.12 

.13 

X2 XA 
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can be calculated. After normalization of every column posterior probabilities 

P(xp |Ci) P(d) 
P(Ci|xp) = ^N Ef=iP(xp|ci)P(cj) 

are obtained: 

Ci 

c2 

CN 

X l 

.02 

.24 

.26 

X2 X A 

P(Ci|xp) 

The interpretation is that if there are 100 pixels with the same feature vector Xi, 
then 2 are expected to belong to class 1, 24 to class 2, . . . , and 26 to class N. 
These are the contributions of those 100 pixels to the respective class areas. Since 
it is not possible to differentiate between pixels with the same feature vector, the 
contributions are spread equally over these 100 pixels. Each of them contributes 0.2 
to class 1, 0.24 to class 2, etc. Therefore, the contribution of each pixel with feature 
Xi to the total area covered by class d is equal to the a posteriori probability 
P(Ci|xi). Of course, this is independent of the number 100. 

1 
.02 
.24 

.26 

2 A 
-y 

->• 

—> 

a rea 
A1 

A2 

AN 

The sum of the areas = A, the size of the image in pixels. 

We can normalize the array into prior probabilities, for example: 

P1 (Ci) = | 0.3 | 0.09 0.55 

But we were already using prior probabilities: 

PT{Ci) = | 0.1 | 0.2 0.65 

If the prior probability values that were specified beforehand were correct, there is 
a problem: the estimated areas are obviously wrong. But (i) if the initial priors are 
only roughly estimated, (ii) the classes are well-defined and (Hi) there is confidence 
in the training samples being selected representatively (these requirements exist for 
any image classification), then we may assume that the calculated priors are more 
accurate than the initial ones. This opens the possibility to repeat the process, 
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starting off with the newly calculated priors . . . , and so on. The interesting point 
is that this process stabilizes. 

So, the iterative process looks like: 
1. initialize priors (for example: all to jj). 
2. apply Bayes' formula: 

• multiply probability densities by priors 
• normalize per pixel 

3. sum over pixels => class areas 
4. normalize =>• updated priors 
5. if priors changed significantly, go to 2 
6. select maximum likelihood class per pixel =» map 
(See Fig. 3.2). 

The only data needed for this process is a vector of class probability densities for 
each pixel, as it can be estimated, for example, by the .ftf-NN method of Chapter 2. 
In the following Lemma, conditions will be formulated for a set of (probability) vec­
tors, under which the iteration converges to a sensible (non-trivial) solution. Next, 
it will be shown that a collection of probability density vectors, established during 
supervised classification, satisfies those conditions, if the training samples are rep­
resentative for the class populations. After this has been proven for a classification 
with only two classes, the general case with N classes is considered. 

3.1.2 A central Lemma 

We consider a two-class (Ci and C2) problem with A pixels having feature vectors 
X.1...XA- Note that not all x^ are necessarily different. Suppose, the probability 
densities du = P ( X J | C I ) and d2i = P(x*|C2) are known for each pixel. So, we have 
a collection D of A probability densities vectors 

D = 
f dn \ f di2 A ( dlA \ 
V * i ) \ d22 ) ' " ' \d2A ) 

We will use pi and p2 for the prior probabilities P(Ci) and P(C2), respectively; 
obviously, p\ +p2 = 1. Let In be the shorthand for the posterior probability P(Ci |x^) 
that pixel i belongs to class C\. According to Bayes' formula, it can be calculated 
as 

lu = - r - % - (3-D 
duPi + d2ip2 

Similarly, l2i = P (C2 |XJ ) 

After applying Bayes' rule A times, we obtain a collection L with A posterior 
probability vectors: 

- ( ! : : ) • ( £ ) (t) 
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The sum of the vectors in L equals the vector (A\,A2), the total areas covered by 
C\ and C2, respectively. The priors p\ and p2 are supposed to be the relative areas, 
such that p\ = ^ and p2 = fy. Therefore: 

dupi 

i = l i = l 

and 

y h i = y
 d ^ = A p i (3.2) 

1 
2 

1 r-. 

3 ' ^ 2 = 
4 
1 

2 
1 

2 
1 

1 
1 

1 2 _. 
2 3 ' D 3 -

4 
1 

2 
1 

2 
1 

1 
1 

1 
2 

4 
7 

Note that these equations are equivalent, since In +l2i = 1 and p\ + p2 = 1. 

Moreover, if the prior probabilities pi and P2 are unknown, they can be obtained 
by solving equation (3.2). The solution depends only on the matrix D. 

Let us look at three small examples of D, D\, D2 and D3, given (omitting the 
parentheses) as: 

D _ 4 2 2 
Dl~ 1 1 1 

When dividing all the numbers by 1000 it becomes more easy to imagine them 
as probability densities, but it will have no effect on the results, because of the 
normalization in 3.2 and 3.3. We will show below that D\ gives a solution 0 < p\ < 1, 
£>2 does not give a regular solution, and D3 yields p\ = 1. 

This leads to the following considerations: 

• What conditions must D satisfy in order to yield a (unique) solution? 
• How to find the solution? 
• Does D meet the conditions if it consists of probability densities? 

The answers to those three questions will be given in the next three paragraphs. 

Conditions on D for a non-trivial solution 

The conditions that D must satisfy to yield a non-trivial solution can be found 
by solving pi in equation 3.2. A non-trivial solution 0 < p\ < 1 exists under the 
conditions, formulated in the following Lemma. 

Lemma: 

Given A observations Xj . . . x^ of samples belonging to two classes C\ and 
C2, and the collection D of class probability densities dn = P ( X J | C I ) and 
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dii = P(xi|C2). One and only one non-trivial solution for the population 
sizes will be found if 

T^>A and TI^->A. 

Otherwise, the population sizes are equal to A for one class and to 0 for 
the other. 

Proof: 

Consider the equation 

r-f f-f dupi + d2iP2 

(see 3.2) and try to solve p\. First, we rewrite the equation as 

A 

^(Pi) = I > ( p i ) = 0 (3.5) 
t = i 

with 

/«Cft) = rf n
d T d n -

P l <3"6> 
dupi + d2ip2 

Next, we observe that, because of the normalization in (3.1), in each pixel the 
posterior probabilities only depend on the ratio between the two densities rather 
than on their absolute values. This implies that we do not allow O's to occur in D so 
that the class probability density for purple grass pixels is positive. Also negative 
values will not occur. 

Therefore, instead of D we can use a collection E: 

- = (" • ) • ( ? ) ( e 0 = ( ^ ) . ( Ç ) ( ¥ ) («•») 
This allows us to change (3.6) into 

fM = -J^-Pi (3-8) 
e«Pi + P2 

and since p<i = 1 — p\ : 

fi(Pi) = j-^-—r-Pi (3-9) 
(ei - l)pi + 1 
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Because /j(0) = 0 and fi(l) — 0, it is clear that pi = 0 and pi = 1 are solutions of 
(3.5). We will call these the trivial solutions, because they reduce the classification 
to a one-class problem. Moreover, solutions with p\ < 0 or p\ > 1 may occur. We 
will not worry about these, since p\ is a probability. The question is whether there 
is a (unique) solution for 0 < pi < 1. 

Let us have a look at the fi type of functions. For convenience, we simplify the 
notation slightly and write (3.9) as 

M = JTWTi-p (3-10) 

The first, second and third derivatives f'e, ƒ" and ƒ"' of ƒ with respect to p will be 
needed. Let ge(p) be the denominator of the first term of fe: ge(p) = (e — l)p + 1, 
and g'e(p) — e — 1. In the interval 0 < p < 1 of our interest, fe{p) is continuous and 
9e(p) > 0. It can be shown easily that 

fe(p) = - T T - P (3-11) 
9e(p) 

Mri = 7 2 7 ^ - ! (3-12) 
9 KP) 

t"(n\ -2e(e-l) 
fe(P) = - ^ - (3.13) 
f , n , s 6 e ( e - l ) 2 / , ,.s 
fAp) = -HUT' (3-14) 

We observe that in the interval 0 < p < 1 : 

• /e(0) = 0 and /e(l) = 0 
• if e > 1, f"(p) < 0, so fe is convex and fe(p) > 0 V p : 0 < p < l 
• if e < 1, f"(p) > 0, so fe is concave and fe(p) < 0 V p : 0 < p < l 
• if e = 1, gi (p) = 1 and / i (p) = 0 

Two examples, ƒ0.2 (p) and f5 (p) are shown in Fig. 3.3. They have only trivial 
solutions. Their sum, however, has a non-trivial solution, as the Figure illustrates. 

Returning to the problem of solving J-{p) = 0, where T{p) is the sum of A functions 
feip), the question is now which combinations of fe's give non-trivial solutions. The 
answer is given by the derivative of T at the points p = 0 and p = 1: .F'(O) and 
^"'(l) . If they have different signs, or if one equals 0, then the function is either 
entirely positive or entirely negative (within 0 < p < 1). 

Only if both derivative values are positive, the function has a non-trivial solution. 

The situation that both derivative values are negative, which would also lead to a 
non-trivial solution, will not occur, because J-'"{p) = Yl f'"(p) > 0. As p increases, 
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Figure 3.3: Plots of fo.iip) , hip) and ƒ0.2(p) + hip) 

T can change from convex into concave, but not the other way round. This also 
explains why there will never be more than one non-trivial solution. 

Consequently, 

t=i i=i 3«v ' i=i i=i " 

du 
. , d2l 

A>Q 

and 

This result is summarized in the lemma. 

If we return to the three small examples, we see that all three satisfy the first 
condition of the Lemma. D\ also satisfies the second, D2 does not and D3 is an 
example of the limiting case: | + | + § + Y + f + | = x ~ 6 = A 
Finally, a special case occurs when 

Y^=A*nd Y^=A 
d2i du 

This implies that for all i, du = d2i, because with ^ = 1 + ôi (and therefore 
£ ^ = £ A 1 - A = o), from 

E*** - Srhi 
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follows: 

^ 1 + Si ^ 1 + Si 

£a+*)a = E 1 

A + O + Y,6* = A 

Si = 0 

Therefore, everywhere the two probability densities are the same. The image con­
tains no information upon which the two classes could be distinguished, T\ (x) = 0 
for all p\. 

Checking the conditions for a non-trivial solution when D is a collection of 
probability densities 

Suppose that the conditional probability density functions for two classes are F(x) 
and G(x). Let A^ be the (unknown) number of pixels that actually belong to Ck, 
so that Ai + A2 = A. 

To be proven is that the condition stated by the Central Lemma is satisfied: 

_ v F(x) 

Let K{x) = (4^y, so SK = J2A^- Since we prefer to work in the feature space, 
instead of in the image space, we must take the frequencies of occurrence n x of each 
x into account: 

5K = E^(x) = E n ^ w 
A X 

where X is the set of all possible feature vectors. 

Let nix and ri2X be the number of pixels with feature vector x in C\ and C2, 
respectively. They follow from the probability density functions: 

nx = n i x + "2x = AiF{x) + A2G(x) 

and, therefore, 
5A- = ^2A1F(K)K(K) + A2G(XL)K(X). 
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The sum over K(x) now becomes 

^ v ' x 
?2 

x G<*> 

Introducing A(x) as A = G — F and observing that £ ] x A = ]TX G — J2x ^ = 0' 
we obtain: 

v F(x) (G + A ) 2 

= ^(i + o + J2TT) + A 

G 

\ 

\ -t- A„ 
G 

= MJ2G + 2 E A + E ^ ) + ^ 

X 

> Ay + A2 = A. (3.16) 

We can prove the same for ^2A G/F, and hence the two conditions in the Lemma 
in the previous section are satisfied. 

In the limiting case of Ai = 0, (3.15) reduces to J2A F/G = A2 — A; if A2 = 0, we 
get ^2A G/F = 0. Both sums are equal to A in the special case of F = G. 

From two to N classes 

The case of N classes, instead of two, can be handled by the above lemma by taking 
one class at a time, say C\, and group the other N — 1 classes into C2 by averaging 
their probability densities. Note that no assumption was made about probability 
density functions. As a result, we will get 2 x N conditions. 

Note that the limiting case of priors being equal to zero is not just a theoretical 
one, in particular in case of stratification. In many strata, only a subset of classes 
may occur. 
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3.2 Local prior probabilities 
Prior probabilities can be a remedy against spectrally overlapping classes. If a fea­
ture vector x has non-zero probability density values for several classes, the pixel 
potentially belongs to any of these. Selection of classes on the basis of spectral char­
acteristics (x) only, results in a large probability of error. Proper prior probabilities 
help to make the guess more educated. 

Many classifiers allow the use of global prior probabilities, estimated on the expected 
(relative) class areas. Although improvement of overall classification accuracy is 
achieved, it is usually, quite limited [Middelkoop and Janssen, 1991] (also see Fig. 
2.3). 

The previous section described an iterative method to estimate priors, which need 
no longer to be specified by the user. This can be considered advantageous, but also 
now no spectacular classification improvement is expected. 

However, decisions are made for each pixel, independent of the others, and the 
decision for a pixel could theoretically be influenced by a vector of prior probabil­
ities that is valid for only that pixel. Unfortunately, we do not know the correct 
prior probabilities for each individual pixel a priori — there would be no point 
in making any classification. Subdivision of the image into regions (segments or 
strata) according to a (GIS) context map and finding a prior probability vector for 
each region, yields a compromise between global and individual-pixel priors. Using 
this additional information, significant classification improvements can be achieved 
[Strahler, 1980] [Middelkoop and Janssen, 1991]. As demonstrated in the introduc­
tion of this Chapter, higher accuracies may be expected with a set of local priors 
per region than with (global) priors for the entire image. 

Many sources of such spatially-distributed prior probabilities can be conceived, con­
cerning the influence of elevations, slopes and aspects on agricultural and natural 
vegetation, the expansion of built-up areas around existing urban areas, deforesta­
tion around settlements, etc. The user must be able to specify a large number of 
prior probabilities, one for each class in each stratum [Strahler, 1980] 
[Middelkoop and Janssen, 1991]. If he is able to do so, a statistically sound method 
is obtained to integrate expert knowledge into classification. Otherwise, a problem 
remains. Collecting the necessary priors may involve much additional effort. 

3.2.1 Iterative local prior probability estimation 

Therefore, it becomes interesting to apply iterative class area estimation, not for 
the entire image at once, but for each region separately. In this way, similar classifi­
cation accuracy improvements can be obtained as by using user-specified local prior 
probabilities, but without the need to know these priors. The class area estimates 
are normalized and used as prior probabilities (a different set in each region) during 
the next iteration. 
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The user obtains relative class area estimates (the final set of prior probabilités) 
for each region at the end of the process, instead of having to enter them at the 
beginning. 

3.2.2 Flevo case study 

A very nice example of the use of knowledge based local prior probabilities was 
elaborated by [Middelkoop and Janssen, 1991]. Their study concerned an area of 6.5 
x 10.2 km2 around the village of Biddinghuizen in the Flevopolder, the Netherlands. 

The purpose was to make an image classification based on three spectral bands (3, 
4 and 5) of a Thematic Mapper satellite image, recorded during the growing season 
in 1987. The farmers in the area were requested to indicate (in a map) which crops 
they were growing in 1985, 1986 and 1987. Seven predominant crops were selected: 
grass, potato, wheat, sugar beet, peas, beans and onions. The 1987 crop map was 
used to obtain training samples and to evaluate the classification results. The 1986 
crop map was used to subdivide the area into strata, according to the seven classes. 
For each stratum a vector of prior probabilities for 1987 was made, which results in 
the transition matrix of Table 3.1, where for example the number 15.3 in the top 
row, third columns means: 15.3% of last years grass land is expected to be used for 
wheat this year. 

Different methods were investigated by Middelkoop and Jansen to obtain such a 
matrix: 

• By using crop rotation schemes: it turned out that three of those existed, 
to be used at the individual farmers discretion; in addition, two farmers 
using the same scheme are usually not synchronized. The information was 
combined into one matrix using Markov modeling. 

• By overlaying the crop map of 1985 and the one of 1986, assuming that the 
same transitions also occur between 1986 and 1987. 

• By interviewing experts, asking them to make an educated guess of the values 
in the matrix. 

\ gr 

gr 

po 
wh 
sb 
pe 
be 
on 

2.5 
0.2 
5.6 
1.4 
0.0 
1.4 
3.4 

po 

0.0 
1.3 

70.3 
31.2 
14.1 
1.1 
3.8 

wh 

15.3 
24.1 
0.6 
6.3 

68.2 
76.6 
84.2 

sb 

82.1 
68.8 
12.8 
0.7 

17.5 
15.8 
8.2 

pe 

0.0 
1.6 
1.9 
5.8 
0.0 
1.9 
0.0 

be 

0.0 
1.5 
3.4 

27.0 
0.0 
0.0 
0.1 

on 

0.0 
2.2 
5.1 

27.2 
0.0 
3.0 
0.0 

Table 3.1: Ideal crop rotation transition matrix, obtained by overlaying crop maps of two suc­
cessive years 
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As expected, the results of these methods were not the same. The matrix printed 
in Table 3.1 is actually the reference matrix: it was obtained by overlaying the crop 
maps of 1986 and 1987. It was created to evaluate the other matrices and should 
not be used to improve the classification. 

With the same data sets (Thematic Mapper bands 3, 4 and 5, and the crop maps 
of 1986 and 1987), I repeated the classification, using iteratively estimated instead 
of knowledge based prior probabilities. 

The availability of the 1987 crop map was used also now as a source for training 
samples: 200 per class, randomly distributed over the area. k-Nearest-Neighbor with 
k = 7 was used to make the probability density maps, one per class. 

The iterative process calculates for each crop in 1986 prior probabilities for the 1987 
classification. These can be formatted in a transition matrix (Table 3.2), which can 
be compared with the one in Table 3.1. 

\ 

gr 

po 
uh 
sb 
pe 
be 
on 

gr 

3.5 
2.6 
5.6 
1.3 
2.8 
5.1 
7.2 

po 

1.4 
2.9 

61.2 
25.2 
12.8 
1.4 
3.3 

wh 

12.2 
22.0 
0.7 
8.3 

63.4 
69.4 
79.6 

sb 

76.9 
64.7 
18.3 
10.3 
18.4 
19.4 
8.5 

pe 

0.0 
0.9 
3.4 
5.0 
0.3 
1.2 
0.0 

be 

0.4 
2.0 
2.5 

22.5 
0.5 
1.2 
0.4 

on 

5.6 
4.9 
8.3 

27.4 
1.8 
2.3 
1.0 

Table 3.2: Crop rotation transition matrix, estimated by iterative calculation of prior probabil­
ities, differentiated according to previous years' crop map 

Using these priors for a maximum likelihood classification and comparing the results 
with the 1987 crop map yields an overall accuracy of 82.1 %, compared to 76.3 % 
with equal prior probabilities. Middelkoop and Jansen, who were using Gaussian 
maximum likelihood and a larger number of training samples, obtained with their 
different transition matrices overall accuracies between 79.6 and 81.9 % (and 76.0 
% when they used equal prior probabilities). 

All those figures seem quite disappointing. One must take into account that a lot of 
misclassifications occur at the boundaries of the fields, partly because of the mixed 
pixel effect, but mostly because it is impossible to align the map exactly (with an 
accuracy of, say, less than half a pixel) with the imagery. 

Alternatively, I compared classification and crop map using only those pixels that 
are not adjacent to a field boundary. In that case, the overall accuracy using equal 
priors is 91.5 %; iteratively estimated priors give 94.7 % (Middelkoop and Jansen 
did not make such a comparison.) 

To test the method under less favorable spectral circumstances, the experiment was 
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repeated using only band 4 of the Thematic Mapper image. 

The overall classification accuracy increases from 57.0 % (with equal priors) to 
78.2 %, using estimated priors. I emphasize that prior estimation and subsequent 
maximum a posteriori probability class selection were both based on a single band. 
The estimated priors, therefore, are different and can be compared to those obtained 
before (3.3). Also Middelkoop and Jansen classified on band 4 only and obtained 
overall accuracies increasing from 61.4 (equal priors) up to between 74.3 and 80.9 
%, using different transition matrices. 
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1.0 
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76.6 

23.4 

8.0 
1.5 
0.6 

wh 

5.0 
16.6 

0.3 
11.6 

66.8 

71.2 

88.8 

sb 

72.8 

64.0 

8.0 
8.0 

15.9 

13.7 

5.0 

pe 

0.0 
1.3 
4.8 
6.3 
0.9 
1.4 
0.2 

be 

1.7 
4.2 
2.0 

17.0 

4.9 
10.3 

4.3 

on 

0.3 
1.3 
5.4 

27.8 

2.5 
1.2 
0.2 

Table 3.3: Crop rotation transition matrix, estimated by iterative calculation of prior probabil­
ities, differentiated according to previous years' crop map, based on a single band 
image 

3.2.3 Twente case study 

The area in the eastern part of the province of Overijssel in the Netherlands, the 
so-called Twente region, containing the cities of Enschede and Hengelo, is predomi­
nantly rural, and covered with grassland, agricultural crops (mainly maize), woods 
and heather. The image area of approximately 26 by 22 km also contains resi­
dential and industrial areas. Landsat TM imagery of 1992 was available (Fig. 3.4) 
and a classification was carried out using six classes: city, residential (suburbs and 
villages), industrial, agriculture (including grasslands), natural vegetation (forest 
and heather) and water. 

The class-selection was according to land use. For example, there is only one class 
agriculture , without differentiation according to crops - also in practical cases such 
differentiation is often difficult to obtain, and perhaps not even required by the 
application. The class is spectrally heterogeneous. On the other hand, the classes 
city, residential and industrial are not only heterogeneous, but also have a large 
spectral overlap, whereas to distinguish them may be a user requirement. 

The main purpose was to test the iterative classification method in a controlled 
experimental setup. 

Training samples were selected using area frame sampling (AFS) [Cochran, 1977], 
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Figure 3.4: TM image of Twente, Netherlands, R: band 4, G: band 5, B: band 3. 

which found wide acceptance in agricultural statistics and remote sensing 
[Meyer-Roux, 1987], [Gallego, 1995]. 

The area was subdivided in blocks of 10 km x 10 km. A sampling density of 3 % 
was chosen and realized using three segments of one square kilometer in each block. 
The location of the segments with respect to a block is chosen at random, and 
subsequently applied to each block. From the 18 segments thus identified, 16 were 
digitized from 1:25000 topographic maps, published in 1992. The remaining two 
segments are located in Germany, outside the study area. The results were converted 
into training samples, while eliminating pixels that were found suspicious, according 
to our knowledge of the terrain and inspection of the feature space (Fig. 3.5 and 
Table 2.2). 

Between map survey and image recording, some land use changes may have taken 
place. 
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Figure 3.5: Training Samples 

Following the same procedure, another set of samples was collected to evaluate the 
classification results. The training set and the evaluation set have no overlap in the 
terrain. 

The AFS method provides representative sample sets, which is a prerequisite for 
reliable estimates of conditional probability densities. 

From a straightforward Gaussian maximum likelihood classification, not too much 
was expected: the classes city, residential and industrial are very inhomogeneous and 
largely overlap each other. Agriculture poses another problem, by being a multi­
modal class, which is also the case for natural vegetation. From the error matrix of a 
maximum likelihood classification we conclude, however, that these classes behaved 

well (Table 3.4). 
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Figure 3.4: TM image of Twente, Netherlands, R: band 4, G: band 5, B: band 3. 

which found wide acceptance in agricultural statistics and remote sensing 
[Meyer-Roux, 1987], [Gallego, 1995]. 

The area was subdivided in blocks of 10 km x 10 km. A sampling density of 3 % 
was chosen and realized using three segments of one square kilometer in each block. 
The location of the segments with respect to a block is chosen at random, and 
subsequently applied to each block. From the 18 segments thus identified, 16 were 
digitized from 1:25000 topographic maps, published in 1992. The remaining two 
segments are located in Germany, outside the study area. The results were converted 
into training samples, while eliminating pixels that were found suspicious, according 
to our knowledge of the terrain and inspection of the feature space (Fig. 3.5 and 
Table 2.2). 

Between map survey and image recording, some land use changes may have taken 
place. 
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Figure 3.5: Training Samples 

Following the same procedure, another set of samples was collected to evaluate the 
classification results. The training set and the evaluation set have no overlap in the 
terrain. 

The AFS method provides representative sample sets, which is a prerequisite for 
reliable estimates of conditional probability densities. 

From a straightforward Gaussian maximum likelihood classification, not too much 
was expected: the classes city, residential and industrial are very inhomogeneous and 
largely overlap each other. Agriculture poses another problem, by being a multi­
modal class, which is also the case for natural vegetation. From the error matrix of a 
maximum likelihood classification we conclude, however, that these classes behaved 
well (Table 3.4). 

Classification somewhat improved using non-parametric estimation of probability 
densities, without applying prior probabilities. We used kNN with A: = 13, followed 
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0 
0 
0 
0 
0 

0.58 

0.95 

0.64 

0.79 

0.86 

overa l l accuracy = 79.13 '/. 

Table 3.4: Error matrix of Gaussian ML classification, using classes Agriculture, Industrial area, 
City (center) area, Residential area (suburbs and villages), Water and Natural vege­
tation. The rows of the matrix refer to ground truth, according to an evaluation set. 
The columns refer to the result of the classification, which, in this case, contains 
no unclassified pixels (unci). The column ACC contains the class accuracies: the 
fraction of evaluation set pixels that was classified correctly. The row REL indicates 
the reliability per class, or the fraction of pixels of a certain class in the classification 
result, which indeed belongs to that class according to the evaluation set 

by compensation for the different numbers of training samples per class, as described 
in section 2.4. The overall accuracy increased from 79.1 % to 82.0 %. (Table 3.5). 
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Table 3.5: Error matrix of non-parametric classification with equal prior probabilities 

In the context of our proposed method, additional information was used to perform 
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a stratification of the area in the required sense. We used the Dutch Postal district 
map for this purpose. The Netherlands have been subdivided into postal districts, 
each one having a 4-digit area code. The districts usually coincide with distinct 
regions, such as industrial zones and town quarters. Therefore, different class area 
distributions can be expected in each postal district. They can be estimated by 
applying the iterative process to each district separately. The image area contains 
66 districts. (Fig. 3.6). 

Figure 3.6: Final classification, overlaid with post-code area boundaries. 

While performing the iterative process, the (relative) areas covered by the six classes 
are calculated in each postal district. The result after 10 iterations is presented in 
Table 3.6, which shows for each district the relative class areas as percentages. 

Convergence has been reached in the sense that during the 10th iteration none of 
the probabilities changed more than 0.05 %. 

Using the data in Table 3.6 as prior probabilities, a maximum a posteriori probabil-
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63.7 
54.0 
35.8 
53.7 
10.5 

1.3 
26.7 

0.3 
0.0 
4.4 
0.4 

23.8 
0.7 
4.5 
0.1 
3.2 
0.1 
6.2 
0.2 
7.7 
0.2 
2.4 
0.3 

73.9 
3.2 

20.2 
0.6 
0.7 
4.1 
8.5 
0.2 
0.0 
0.1 

40.8 
2.0 
0.7 
0.3 
3.3 
0.4 
0.1 
0.4 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
2.1 
4.9 
1.8 
0.0 
0.1 
3.3 
0.1 
0.0 
0.0 
0.0 
0.0 

resid. 
5.7 
6.6 

38.0 
3.4 
1.7 
5.4 

22.5 
20.7 
37.8 
29.9 
50.3 

9.4 
55.2 

9.1 
1.3 

36.9 
11.6 
62.3 
13.6 
29.0 

2.1 
44.3 
28.1 
42.3 
23.4 
39.9 
11.3 
12.2 

6.0 
22.7 
42.9 
44.7 

5.7 
22.7 
34.6 
53.5 
77.6 

3.1 
4.2 

48.8 
52.2 
59.8 
42.1 
19.4 
43.3 
36.1 
15.1 
16.7 

5.5 
15.4 

2.5 
1.5 
4.4 
2.7 
1.9 

39.7 
91.4 
11.8 

6.5 
39.1 
62.0 
12.8 

4.3 
2.8 
5.3 
0.8 

water 
0.0 
0.0 
0.1 
0.2 
0.0 
0.0 
0.0 
0.0 
0.1 
0.0 
0.0 
1.6 
0.0 
1.2 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.3 
0.6 
0.1 
0.0 
2.6 
2.4 
0.2 
0.0 
1.1 
1.3 
0.6 
0.1 
0.6 
0.0 
0.0 
1.5 
0.6 
0.0 
0.0 
0.0 
0.1 
0.2 
4.5 
0.0 
1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.1 
0.2 
0.0 
0.1 
0.0 
0.0 
0.0 
0.0 

nat.veg. 
29.3 

6.3 
22.3 
37.4 

2.0 
15.3 

0.7 
0.9 
6.4 
2.5 
8.7 

60.0 
6.2 

35.1 
42.8 
31.7 
28.7 

4.3 
16.0 
16.9 
18.3 

2.8 
30.0 

5.5 
15.4 

3.8 
26.1 
22.1 
23.9 

0.4 
16.5 

1.4 
30.5 
25.6 

7.9 
1.9 
6.0 
4.9 

21.2 
1.8 
3.0 

21.3 
17.0 

8.8 
21.2 

7.0 
15.2 
12.6 

5.2 
7.3 

31.3 
26.2 

5.9 
15.7 

8.8 
3.3 
0.0 

16.4 
66.4 
11.7 

3.6 
5.5 
5.5 
9.1 

18.3 
4.4 

nr. pixel. 

12668 
32416 

6651 
35874 

933 
12183 

1240 
1073 
1174 
1253 
3236 

13791 
2302 

16204 
9976 
3948 

12923 
817 

8996 
2792 
4900 
2242 
6205 
2194 

10632 
4801 

13555 
13354 
20300 

757 
6966 
3209 

28773 
11549 

6665 
3188 
3044 
7226 

30727 
466 

2345 
1573 
1990 
3789 
3436 
3285 

13412 
9600 
4697 
7277 

42993 
12756 
20653 
13177 
20760 

2802 
62 

7755 
1440 
4810 
2769 
4506 

11010 
5454 
6562 

10971 

Table 3.6: Relative class areas per postal district 

ity classification was performed, resulting in an improvement of the overall accuracy 
from 82.0 % to 91.3 % (Table 3.7). 

Note that, in contrast to [Strahler, 1980] and [Middelkoop and Janssen, 1991], no 
semantic information about the stratification map is needed. The correspondence 
between postal districts and thematic classes is established by the iterative process. 
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+-
agr I 
ind 1 

city 1 

res I 

water 1 

nat I 

+-

RELI 

average 

average 

agr 

10214 

31 
0 

102 
0 

109 

0.98 

ind 

57 
626 

4 
129 
12 
7 

0.75 

accuracy 

reliab Llity 

city 

4 
118 
185 
93 
0 
0 

0.46 

87 
75 

res 

116 
62 
12 

2387 

0 
92 

0.89 

20 '/. 

.43 7. 

water 

50 
3 
0 
0 

97 
8 

0.61 

nat 

377 
2 
1 

115 
3 

2408 

0.83 

unci 

0 
0 
0 
0 
0 
0 

ACC 

0.94 

0.74 

0.92 

0.84 

0.87 

0.92 

overa l l accuracy 91.35 '/. 

Table 3.7: Error matrix of non-parametric classification with iteratively calculated, spatially 
distributed prior probabilities 

Some doubts remain concerning the final classification. Some of the districts are 
dominated by a single class, which will consequently be over-represented, at the 
expense of classes with very small prior probabilities. For example, a few small 
villages in rural areas almost disappeared, although this may also be caused by the 
wider spacing between buildings in small villages, when compared to urban areas. 

A possible solution is to modify the class selection stage, such that it distributes class 
labels in accordance with the calculated area estimates, over each postal district. 
This modification involves sorting the a posteriori probabilities in the area. However, 
such a modification is not straightforward and it is not certain that it will lead to an 
improvement of accuracies and reliabilities, because it is not maximum a posteriori 
probability classification any more. 

3.3 Local probabili ty densities 

First, consider a constructed example, involving an image of 400 pixels (Fig. 3.7). 
The image is divided in 2 regions, Si and S2, covering 153 and 247 pixels respectively. 
There are 26 pixels in the entire image with feature vector x. Of those, 14 are in 
Si and 12 in s2- Furthermore, it is assumed that 207 pixels belong to class d: of 
these, 67 d pixels are in s\ and 140 in C2. 

The image pixels in Fig. 3.7 have been rearranged such that all pixels with feature 
vector x occur in one horizontal strip, region Si is entirely located to the left of 
S2, and the pixels that belong to Ci are located in the center of the image — this 
rearrangement does not cause any loss of generality. 
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By counting pixels, various probabilities can be estimated, applying to either the 
entire image, or to si and S2 separately. These probabilities are summarized in 
Table 3.8. 

st S2 

i-J Ci 

Figure 3.7: Synthetic image with two regions 

P(x) 

P(Ci) 

P(x|C0 

P(Ci|x) 

Image 

26 
400 

207 
400 

17 
207 

17 
26 

«1 

14 
153 

67 
153 

8 
67 

8 
14 

«2 

12 
247 

140 
247 

9 
140 

9 
12 

Table 3.8: Probabilities in synthetic two-
region image 

In each of the three cases (entire image, region si and region S2), the probabilities 
obey Bayes' formula. For example, for Si we obtain by substitution in 

that 

P(Ci|x) = 

14 

P(x|C<) P{d) 
P(x) 

JL 67 
67 153 

14 
153 

The posterior probabilities P(Cj|x) are different in the three cases, as are the prior 
probabilities P(Cj). A new observation is that there are also three different values 
for the probability densities P(x|Cj) of class Cj. Therefore, probability density es­
timation of image feature vectors has to be refined, which leads to the distinction 
between global and local probability density models. 

The conclusion is trivial and well-known, but often disregarded: Bayes formula can 
only be applied if the four probabilities involved (P(Ci|x),P(x|Ci),P(Cj) and P(x)) 
concern the same population of pixels. 

3.3.1 Global Probability Density Model 

The previous sections used a global probability density model, assuming that class 
probability densities for the feature vector x of a given pixel, as derived from the 
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training samples in the feature space, are valid for all pixels with feature vector x in 
the entire image and do not depend on the position of the pixel. A non-parametric 
estimate for the (global) class probability density P(x|Cj) was given in eq. (2.12) as 

P(x|G)= ki 

Nivx 

Because vx, the size of the volume in the feature space around x that contains the 
k nearest training samples, is class-independent, 

PMC) ~ | -

Note that ^ P(x|Ci) ^ 1, so normalization is not allowed. 

When the area is subdivided into regions, the global probability density model 
assumes that class reflection characteristics, modeled by probability densities, are 
region-independent. Three details are to be noted, especially when iterative area 
estimation is applied: 

• If most classes are present in a region, probably the region has so much 
spectral variation that each class shows heterogeneity similar to its training 
samples. 

• Many regions contain only a limited subset of the total number of classes. 
For those classes that do not appear and have low spectral overlap with the 
present classes, we expect that the probability densities are small enough to 
lead to the 'limiting case' in the central lemma in Chapter 2. Then the area 
of those classes will rightly be estimated 0. For the classed that are present, 
the global probability density assumption becomes important. When it is not 
valid, i.e. when a class in a region only partly covers the cluster in the feature 
space of the training samples, errors in prior probability estimates are to be 
expected. 

• If only one class is present in a region, it is generally irrelevant that the 
local spectral variation of that class (in the region) is smaller than the global 
one (over the entire training set). Although probability density estimates are 
probably incorrect, the class will still dominate the others and force them to 
the trivial solution, mentioned in the central lemma. 

The examples in the previous sections fit these requirements. In the crop rotation 
case, it is expected that the spectral signature of a crop does not depend on which 
crop was grown last year. In the land-use classification using postal districts it may 
occur that certain regions are dominated by one class, while others are absent. 

For certain situations, however, the global probability density model appeared to be 
not strict enough. In general, this is the case when regions are small (for example, 
individual agricultural fields) and/or spectrally homogeneous, and are in a feature 
space area with spectral overlap between classes. This situation will often occur 

54 



3.3. LOCAL PROBABILITY DENSITIES 

when the regionalization is done automatically by image segmentation (Chapter 4), 
where segments are formed on the basis of spectral homogeneity. Therefore, the 
spectral variation in almost every segment is much smaller than that of any class 
in the training samples. Since the method is supposed to estimate class areas in 
mixed segments, as well as in segments that cover parts of the feature space with 
spectral overlap, inadequately modeled classes will frequently occur and cause poor 
area estimates. 

Consider, for example, an image from a digital color (RGB) camera, where pixels 
are displayed with (approximately) the colors of the corresponding terrain elements. 
Most of the grass pixels are green, but some are yellow. If xy is a feature vector in 
the yellow part of the RGB feature space, the global probability density P(xy \grass) 
is small. 

Image segmentation creates segments of adjacent pixels with similar colors. Seg­
ments containing pixels with feature vector xy correspond to yellow fields in the 
terrain. If s is one of these segments and if it contains grass pixels, the probability 
that a grass pixel in s is yellow equals 1. The local probability density that the 
feature vector of a grass pixel in this segment equals x is significantly larger than 
the global one. This probability does not depend on the presence or the amount of 
green grass elsewhere in the image. Therefore, to establish the probability, only the 
yellow grass pixels in the training set are taken into account. 

For this reason, a local probability density model was developed. 

3.3.2 Local Probability Density Model 

The local probability density model aims at estimating class probability densities 
P(xp |Ci) for pixels p with feature vectors xp in a particular image region. It will be 
derived from the global model. In chapter 2, using the modified k-Nearest Neighbor 
(fc-NN) estimator, P(xp|Cj) was shown to be proportional to the number ki of 
class Ci samples in a neighborhood with k samples around xp, divided by the total 
number N of training samples for class Cj. 

Training sample selection 

Training samples are usually, but not necessarily, taken inside the image to be 
classified. When estimating probability densities, pixel positions in the image do 
not play a role. The training samples could be taken from another image as well, as 
long as a number of circumstances (atmospheric conditions, sun angle etc) during 
the acquisition of both images were the same. 

Similarly, we are allowed to apply the estimation procedure to a single region, on 
the basis of training samples that were taken elsewhere in the (same) image. We 
will treat the entire collection of training samples as a "pool", from which we only 
use those that are required to classify the region. 
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Non-parametric estimation 

Applying fc-NN to a region s, we find for each pixel p those k training samples that 
are nearest to p's feature vector xp in the feature space. They form a set Tp G T 
with k elements. This set is split into subsets Tf, such that 

ki = A(Tf) and it = A{TP). 

The union of the sets Tf over the pixels in s gives a set T* for each class: 

T° = {jTf, 

denoting the Ci training samples involved in the classification of s. We define A\ as 

At = A(Tf), 

the number of training samples for each class, relevant for the classification of s. 
These are precisely the training samples that we are looking for: the yellow grass 
samples in the example. 

For some classes Nf may be 0, which means that none of the pixels in s has a class 
Ci sample in the neighborhood of its feature vector. Then, P(xp |Cj) = 0 for all 
pixels p in s. For the other classes, we estimate for each pixel: 

P(*p|C0 ~ | r - (3-17) 

Semi-parametric estimation 

Although the emphasis in this thesis, as far as classification is concerned, is on non-
parametric (fc-NN) methods, a semi-parametric local probability density estimator 
was also implemented. Here, subsets Tf of the training data are selected as above, 
consisting of those samples that would be involved in a fc-NN classification of a 
region. Subsequently, class mean vectors m^ and covariance matrices Vi are based 
on those subsets and used to calculate Euclidean or Mahalanobis distances or Gaus­
sian class probability densities. Since each segment has its own covariance matrix, 
determinants and the inverse matrices are calculated for each of them, using the 
method in [Press et ai, 1992] and stored in the segment table. Gaussian densities 
can be used for iterative local prior probability estimation (Table 3.11). 

3.3.3 Completely homogeneous regions 

Returning to the example of the yellow field in the image, in the limiting case of a 
completely homogeneous region, where all feature vectors equal x, the local prob­
ability density P(x\grass) equals 1. If, according to the training data, also yellow 
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wheat exists, the local probability density P(x\wheat) is also 1. Moreover, inside the 
region, the unconditional probability P(x) = 1. Then, according to Bayes formula, 
the a posteriori probabilities are equal to the priors. If additional knowledge, i.e. 
prior probabilities, suggest that this was a grass field, then it is probably still like 
that. The classifier cannot contribute to the information about this yellow field. 

In case the priors are iteratively estimated, the prior and posterior probabilities for 
both classes in this homogeneous region will be equal to | . 

3.3.4 Comparison with stratified classification 

A well-known method to improve classifications is stratified classification 
[Meyer-Roux, 1987]. First, the area is subdivided in n strata sa, (a £ [l..n]), on 
the basis of additional data or image interpretation, to obtain in those strata less 
spectral variability than in the entire image, thereby reducing spectral overlap. 
Certain classes may be not present in all strata. Next, the n strata are classified 
independently, using n training sets, possibly with different sets of classes, and 
n prior probability vectors, either specified by the user or iteratively estimated. 
Finally, the results, which are spatially disjoint, are combined into a single classified 
map. 

An obvious drawback of this method is that, depending on the number of strata, very 
many training samples are needed from all over the area. Requirements concerning 
numbers of training samples must be met in each stratum. Assuming the availability 
of these samples, let T" be the collection of training samples for class Ci in stratum 
sa and consider stratified classification vs. local probability density estimation in 
sa-

• If T" has no overlap with any T\ (b ̂  a), both methods use T" and produce 
the same estimates. If T° has overlap with some Tf (a ^ b), but not with 
other Tf (a / b ̂  c), stratified classification uses only Tf, whereas for local 
probability density estimation T\ is also available, while T? is not considered. 
If all Tf (b S [l-.rc]) overlap, the area subdivision did not help for class d — 
it looks the same everywhere in the image. Again, local probability density 
estimation benefits from the larger number of available samples. 

• If Tj overlaps T/", but not T", stratified classification is successful for both 
Ci and Cj, whereas local probability density estimation for Cj in sa is erro­
neously based on T/\ 

Combining both observations, the local probability density method, compared to 
stratified classification, may give better estimates for d, but worse ones for Cj. How 
this affects the final results needs further investigation. Local probability density 
estimation was primarily developed for 'automatic stratifications' from image seg­
mentation (Chapter 4), where very many strata (segments) are created, for which 
no separate training sample sets can be collected. 
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3.3.5 Implementation 

k-Nearest Neighbor classification is expensive. It requires a large memory for storing 
feature space and training sample data and searching neighbors in the feature space 
takes considerable time. Especially for local probability density estimations, the 
algorithm needs to be carefully designed. 

According to equation 3.17, the local probability P(x|Cj) in a segment s of a seg­
mentation is proportional to jjV, where kt is the number of class Ci samples among 
the k nearest neighbors of x and A* is the total number of class d samples involved 
in the classification of segment s. 

The algorithm consist of four steps: 

1. Collecting feature space and training sample data 
2. Nearest neighbor search 
3. Calculation of A\ 
4. Calculation of ^ and normalization 

The number of different feature vectors in an image is usually much smaller than 
the number of pixels. The window of the Ameland SPOT image used in Chapter 5, 
for example, consists of 460 x 785 = 361100 pixels, but there are only 10494 different 
feature vectors. If neighbors are searched only once per feature vector, and only for 
feature vectors that actually occur, the number of searches is drastically reduced. 

To be able to process each feature vector only once, all occurring feature vectors have 
to be stored, as well as the associated statistics, such as class probability densities. 
A hash table technique, which provides fast random access to data records with a 
sparse key, is suitable, since the feature vectors are a (composite) key from a domain 
of 2563 = 16,777, 216 elements. Also training data is stored in this data structure. 

A hash table is an array of pointers to data records (Fig. 3.8). The array must be 
somewhat larger than the maximum expected number of records. A hash function 
maps a key into an index in the hash table, where a pointer to the actual data is 
found. An overflow mechanism takes care of the inevitable situations that different 
key values are mapped on the same index. The hash function should distribute 
the occurring key values as uniformly as possible over the index range, which is 
not trivial, since the data are not yet known when the hash function is designed 
[Date, 1981]. 

In [Mather, 1987], hashing is used to speed up maximum likelihood classification, 
by classifying occurring feature vectors instead of image pixels. The benefit is even 
larger for fc-NN, where the feature space is accessed very many times when searching 
for neighboring training samples of feature vectors (Table 3.9). 
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b1 b2 b3 hi h2 h3 h4 h5 h6 samp 

Lrm 
d c2 c3 c4 c5 c6 c7 c8 c9 c10 

| NULj 

feature pointers to neighboring 
vector training samples 

pointer 
to class 
list (only 
for training 
samples) 

TU: 
G 

Class array to store frequencies 
of occurrence of this feature 
vector as training sample of 
different classes. 

last 
used 
for. . . 

TZL 

HMAX ; i 

Hash table 

m 

Figure 3.8: Hash table data structure for kNIM local probability density algorithm 

Collecting feature space and training sample data 

First, the algorithm makes a pass through the image and the map of training samples 
simultaneously to evaluate which feature vectors are present in the image, and which 
of those feature vectors occur as training samples, with their associated classes. Pixel 
by pixel, each feature vector is looked up in the list and new ones are inserted. If 
a pixel is used as training sample, a class array is added to the feature vector, if it 
did not yet exist. Different training sample pixels, from one or several classes, may 
have the same feature vector (Eq. 2.1). In the Ameland case (see Chapter 5), there 
are 1744 pixels in the training set, but these pixels have only 849 distinct feature 
vectors. When a feature vector occurs in the training set again, the class array is 
updated. 
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Nearest neighbor search 

In a second step, the program scans through the feature space data structure to find 
for all feature vectors that are present k neighboring training samples, by inspecting 
the feature space around the feature vector. Feature space cells are visited in order 
of increasing Euclidean distance around the current feature vector, until k neighbors 
are found or a maximum distance (search radius) R is reached. For each feature 
vector, a list of k pointers to training samples is created, To avoid calculation of 
countless distances, a list with index offsets with respect to a current feature vector 
is created once, when the program starts. Traversal of this list gives feature vectors 
to be inspected, relative to the current one, in increasing distance order. 

The average required number of feature space accesses depends on several factors, 
such as the number of training samples and the ranges of pixels values in the different 
bands. If the density of training samples in the feature space is low, the search radius 
R determines how many feature space cells have to be examined (Table 3.9). 

R 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

3 bands 
7 
33 
123 
257 
515 
925 
1419 
2109 
3071 
4169 
5575 
7153 
9171 
11513 
14147 
17077 
20479 
24405 
28671 
33401 

4 bands 
9 
89 
425 
1281 
3121 
6577 
11833 
20185 
32633 
49689 
72465 
102353 
140945 
190121 
250553 
323721 
411913 
519025 
643441 
789905 

Table 3.9: Number of neighbors within search radius R in feature spaces with 3 or 4 dimensions. 

Calculation of A\ 

The third step, traverses the sorted pixel table, which was created in the previous 
paragraph. Thus, all image pixels are visited in a segment by segment order. The 
purpose is to create a list with one row for each segment and one columns per 
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class, showing how many samples of each class are involved in the classification of 
a segment (Table 3.10). These are the A? values in 3.17. 

For each pixel in the table, the feature vector is retrieved from the image. Via the 
hash table the list of nearest training samples is accessed, and each training sample 
is checked for whether it was already used in the current segment. If not, the training 
sample counts are updated and the the training sample is marked "used". 

Segment 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

1 
0 
0 
0 
0 
0 

223 
0 
0 
0 
0 
0 
0 
0 
0 

2 
0 
12 
0 
0 
0 

202 
0 
85 
21 
0 
0 
0 
32 
0 

3 
0 

202 
43 
2 
0 
64 
12 
58 
13 
11 
0 
0 
70 
6 

4 
0 
0 

192 
0 
0 

204 
0 
0 
0 
0 
0 
0 
0 
0 

Class 
5 
0 
2 
0 
0 
0 

194 
0 
0 
0 
0 
0 
0 
5 
0 

6 
0 
13 
1 
0 
0 

196 
0 
1 
0 
0 
0 
0 
19 
0 

7 
0 
8 
0 
0 
0 

212 
0 
14 
0 
0 
0 
0 
13 
0 

8 
0 
0 
0 
0 
0 

109 
0 
0 
0 
0 
0 
0 
0 
0 

9 
30 
202 
80 
21 
22 
202 
21 
54 
0 
32 
31 
118 
85 
38 

Table 3.10: A\: Number of training samples per class, involved in the classification of each 
segment at the highest segmentation level. 

Calculation of ^V 

The fourth and final step traverses the image once more, now in the usual line by 
line order. It takes the feature vector of each pixel from the image and the segment 
number from the rasterized segmentation quadtree. Via the hash table and the 
training sample pointers the hi values are retrieved. The A* values are fetched from 
the table that contains the number of samples of each class in each segment. Hence, 
for each pixel jjfc is found. These values are normalized and stored in probability 

density maps (Figure 5.9). 

Semi-parametric methods 

For semi-parametric local probability density estimation, for each region s subsets 
T% of the training data are formed for each class C„ according to a fc-nearest neigh­
bor criterion, and distribution parameters m* and V£ are estimated using these 
subsets. The implementation closely resembles the non-parametric one. Differences 
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are in the third and fourth step of the algorithm. Instead of only counting the train­
ing samples per class (step 3) in s, their feature vectors are now also considered. 
They are looked-up in the hash table and variables sf and ss^ are maintained, 
where s* denotes the sum of the i-th component over T*, and ssij the sum of prod­
ucts of the i-th and j - th component (including ssu). At the end of a segment, the 
components m^ of m* are formed by 

•r\-n 

and the elements Vij of V£ by 

An-I 

The class mean vectors m* are stored with s, as well as the logarithm of the 
determinant of the covariance matrix In \V„\ and the inverted matrix (V^f)-1. 

In step four, the feature vectors to be classified are retrieved from the image once 
more, and class probability density values are calculated with the parameters of the 
segment containing the pixel. 

3.4 Comparison 

Different classifiers were applied to the Twente image, used in section 3.2.3. The 
results are summarized in Table 3.11. Each time the same training set was used. 
The figures in the table are based on a single evaluation set. Unfortunately, it was 
different from the one in section 3.2.3. The fc-NN classifications were made with 
k — 11. Local prior probabilities (per postal district) were estimated iteratively. 

Table 3.11 allows for the following observations: 

• Gaussian methods are superior to minimum Euclidean distance methods (row 
1 vs. 3 and 2 vs. 4). Due to differences in class variability, covariance matrices 
must be used and there are enough training samples to estimate them reliably. 

• Straightforward fc-NN classification (row 6) performs remarkably well. Pro­
portional area frame sampling was applied (Table 2.2), such that a maximum 
a posteriori probability result is obtained. 

• After compensating for differences in class training set sizes, fc-NN gives 
maximum probability density classification (row 7) and can be compared 
with the equal-priors Gaussian method using (row 3). 

• Local prior probability estimation improves classification significantly (row 
5 vs. 4, 8 vs. 7 and 10 vs. 9). 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

probability 
density 

min. distance 
min. distance 

gaussian 
gaussian 
gaussian 

k-NN 
k-NN 
k-NN 
k-NN 
k-NN 

prob, dens 
model 
global 
local 

global 
local 
local 
global 
global 
global 
local 
local 

prior 
probability 

-

local 
inherent 

local 

local 

average 
accuracy 

70.99 
59.86 
74.59 
71.99 
81.01 
75.31 
76.45 
82.40 
74.68 
81.80 

average 
reliability 

47.79 
43.22 
56.55 
55.21 
68.48 
69.85 
59.95 
73.93 
58.83 
73.24 

overall 
accuracy 

65.93 
68.88 
77.84 
76.31 
86.25 
86.23 
79.44 
89.13 
78.46 
88.87 

Table 3.11: Comparison of classifiers for Twente data set 

Local prior probabilities give better results than global ones (row 8 vs. 6) 
especially in average accuracy, where all classes have the same weight. The 
underestimation of small classes is less severe with local priors than with 
global priors Also average reliability and overall accuracy increase. 
Local probability density estimation works, but does not help in this case. 
There is no reason to apply it without using local priors as well. That one 
component in Bayes formula is unknown cannot be repaired by changing 
another (row 2 vs. 1,4 vs. 3 and 9 vs. 7). Gaussian local probability densities 
serve the purpose to enable local prior probability estimation (row 5 vs. 4), 
in order to improve classification results (row 5 vs 3). Although the data do 
not require local probability density estimation (see section 3.3.1), the results 
are only slightly inferior than those from global estimation (row 10 vs. 8). 
With the available training samples, fc-NN methods outperform Gaussian 
methods (rows 7 vs. 3, 9 vs. 4 and 10 vs. 5). 

3.5 Conclusions 

This Chapter explained the benefit of local statistics for classification, differentiated 
according to regions defined by ancillary GIS data. 

Local a priori probabilities can be the reflection of the user's knowledge concern­
ing class mixing proportions in different regions. However, in the absence of this 
knowledge, similar information can be obtained by an iterative class area estimation 
algorithm. It was shown that requirements concerning class probability densities for 
this method are fulfilled when training samples are representative for class popula­
tions. 
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The crop-rotation experiment confirms that the algorithm serves the purpose to 
accurately estimate class-areas and to increase classification accuracies to the same 
extent as with knowledge-based local prior probabilities. 

A second algorithm estimates local class probability densities, which is required 
for homogeneous regions, which, for example, may result from image segmenta­
tion. This method can be used as an alternative for stratified classification when 
it is not possible to collect sufficient training data in all strata. Depending on the 
available training data, a choice can be made between a non-parametric and a 
semi-parametric local probability density estimation. 
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Chapter 4 

Segmentation 

Although image segmentation has received attention in literature since the seven­
ties [Horovwitz and Pavlidis, 1976], it did not become widely accepted in the field 
of analysis of remotely sensed imagery. For example, in respected textbooks in this 
field, such as [Mather, 1987] and [Richards, 1993], image segmentation is not men­
tioned. Also the major commercial digital image processing software packages do 
not include image segmentation. 

The abstract of "a critical survey of image analysis methods" [Pavlidis, 1986], in 
which image segmentation is a major issue, says: 

" A survey of the literature of the last fifteen years reveals that in spite 
of increased understanding of the nature of images we have been very 
slow in integrating the results into useful image analysis programs." 

Ten years later, problems still associated with image segmentation are summarized 
by [Acton, 1996] as: region merging, poor boundary localization, region boundary 
ambiguity, region fragmentation and sensitivity to noise. 

Although [Pavlidis, 1986] warns against anthropomorphic implications, image seg­
mentation is intuitively appealing. Human image vision generally tends to divide 
the image into homogeneous areas first, and characterize those areas more carefully 
later. Applying this approach to digital image analysis software leads to a segmenta­
tion step, which divides the image into segments that correspond — in the ideal case 
— to meaningful objects in the terrain, followed by a supervised classification step, 
in which each segment is compared with class characteristics that are derived from 
training data. In contrast to usual classification methods, the comparison does not 
have to be limited to spectral properties, but can also take spatial characteristics 
of segments (size, shape and adjacency to other segments) into account. 

The remainder of this Chapter focuses on quadtree based segmentation. The ad­
vantages of quadtrees in the context of segmentation will be elaborated upon later. 
The success of any segmentation algorithm depends on the availability of 
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• High resolution imagery, such that relevant objects are represented by a 
significant number of pixels; otherwise there is no point in segmentation. 

• Powerful hardware: fast and with a large memory capacity. 
• An efficient implementation, regarding the sizes of remote sensing images. 

Since the first two requirements are increasingly being fulfilled, it is worthwhile to 
focus on the third and try to re-introduce image segmentation in earth observation 
image analysis. 

A special case, which is typical for earth observation applications, is multi-band 
imagery. Grey-scale segmentations ([Morris et ai., 1986], [Chang and Li, 1995]) of 
the individual bands do not exploit the full image information content. Each band 
gives give a different set of segments, which creates additional difficulties when they 
are to be combined. In this paper a method is presented that segments a multi-
spectral image into one unique set of objects. 

The purpose of image segmentation is to subdivide an image into regions that 
are homogeneous according to certain criteria, in such a way that these regions 
correspond to relevant objects in the terrain. The relevance of objects depends on 
user requirements. 

4.1 Existing methods 
The two major approaches in image segmentation are edge based and region based. 

4.1.1 Edge-based segmentation 

Edge based segmentation is executed in two steps. The first step is to find segment 
boundaries in the image by identifying edge pixels, at those places where grey value 
changes occur. This is a neighborhood operation: to decide whether a pixel is an 
edge pixel, neighboring pixels have to be examined. Subsequently, each image region 
that is completely surrounded by edge pixels becomes a segment. A problem is that 
edge pixels, identified during the first step, do not obey topological constraints 
for segment boundaries. Therefore, an intermediate step is necessary to remove 
superfluous edge pixels and fill gaps in boundaries. Edge based segmentation divides 
the image pixels into two kinds, those belonging to segments and those belonging 
to boundaries. This corresponds to a model for object representation in the raster 
domain where 'object pixels' are labeled with the object they belong to, and a 
separate label is reserved for 'boundary pixels' [Molenaar, 1998]. 

4.1.2 Region based segmentation 

Area based segmentation creates segments by applying homogeneity criteria inside 
candidate segments. A distinction is made between region growing and split and 
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merge algorithms, Region growing can be implemented in different ways, for ex­
ample as follows. Segments are formed starting from (randomly placed) seed pixels 
by iteratively augmenting them with surrounding pixels as long as the homogeneity 
criteria are satisfied. When no more pixels can be attributed to any of the segments, 
new seeds are placed in the the unsegmented areas and the process is repeated. This 
continues until the whole image is segmented. Split and merge algorithms start by 
subdividing the image into squares of a fixed size, usually corresponding to leaves 
at a certain level in a quadtree. Recursively, leaves are tested for homogeneity and 
heterogeneous leaves are subdivided into four lower level ones, while homogeneous 
leaves may be combined with three (homogeneous) neighbors into one leaf at a 
higher level, provided the homogeneity criteria continue to be satisfied. The recur­
sion stops at the low end at single-pixel leaves (they are homogeneous), and at the 
high end when no further combinations can be made (the extreme case being an 
entirely homogeneous image). Subsequently, adjacent leaves at different levels are 
combined into irregularly shaped, homogeneous segments. 

After region-based segmentation, each pixel belongs to a segment. There are no 
boundary pixels. This corresponds to the raster model which labels a pixel accord­
ing to the object that has the largest overlap with the cell [Molenaar, 1998]. The 
advantage of this model, compared to the above-mentioned model that distinguishes 
between object and boundary pixels, is that the objects form a spatial partitioning: 
Also the terrain is usually regarded as being completely filled with objects. More­
over, as long as spatial resolutions are still an important limiting factor in satellite 
image applications, boundary pixels may completely obscure small objects — how 
to represent a 10 m wide road in a 10 m resolution map, using boundary pixels? 

Region-based segmentations generally suffer from order dependency. During region 
growing, a segment could be expanded with any of a subset of neighboring pixels, 
but not with all of them. Conversely, a pixel can be adjacent to more than one 
segment and might be added to each of those. The choices made in those cases are, 
to a certain degree, arbitrary and they are usually influenced by the order in which 
the data are stored and possible combinations examined. Similar considerations 
apply to split and merge. In the initial (recursive) phase, the homogeneous regions 
are restricted by the quadtree structure. They are square, their sizes are powers of 
two, and they can only be located at a limited set of positions within the image. 
When merging leaves into segments during the final stage of split and merge, the 
order in which the combinations are examined plays a role. 

4.2 Definitions 
Adjacency 

Two grid cells (ra,ca) and (r6,c&) are adjacent in G (they are neighbors) if they 
are in subsequent rows within the same column (\ra — n,\ = 1 and ca = cj) or in 
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subsequent columns within the same row (\ca — C(,| = 1 and ra = 77,). 

Therefore, every grid cell that is not at one of the edges of the image has exactly 
four neighbors. This is called the 4-adjacency model, as opposed to the 8-adjacency 
model where also diagonally adjacent pixels (\ra — r\,\ = 1 and \ca — C(,| = 1) are 
considered neighbors (Figure 4.1). 

• mm 
Raster representation 

4 - adjacency 8 - adjacency 

Figure 4.1: 4-adjacency: two segments — 8-adjacency: one segment. 

Segment 

A segment s is a subset of G in which the grid cells are connected (form a contiguous 
set). This means that for each pair of grid cells (ra,ca) and (/•(,, c;,) in s there exists 
an ordered set of grid cells {(r a ,c a) , . . . , (rfc,Cfc)} in which any pair of subsequent 
elements are adjacent. 

We can distinguish between 4 and 8-adjacent segments depending on the adjacency 
model used. Which model is more suitable depends upon the type of objects and 
the image resolution. If the objects extend over areas that are typically large in 
comparison to the area covered by one grid cell in the terrain, 4-adjacency is appro­
priate. For example, two agricultural fields with the same crop having only a corner 
in common should be considered two objects. If, on the other hand, we want to 
model linear objects, such as roads and railways, which have a width smaller than 
the image resolution, the 8-adjacency model is required to prevent an object to be 
broken in many small segments. (Figure 4.2). 

Areas -> 4-adjacency Lines -> 8-adjacency 

Figure 4.2: Object types, raster representation and preferred adjacency model 
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The 4 or 8-adjacency issue is of particular importance in binary images I : G —» 
{0,1}, which represent a collection of objects (segments in which the pixel value 
equals 1) against a background (0). A relevant observation that can be made in 
Figure 4.1 is that the 8-adjacency model (for objects) implies that the background 
is 4-adjacent, and vice versa. 

However, here we are developing a model for the situation that the entire terrain is 
filled with objects and, therefore, the entire grid space will be filled with segments. 
Then, using 8-adjacency, it will be difficult to imagine what kind of objects are 
modeled in case of two pairs of diagonally adjacent pixels that meet at one corner, 
as in M b , a problem that does not arise when 4-adjacency is assumed. 

Two segments si and S2 are adjacent if there are 4-adjacent pixels pi € si and 
P2 € S2- Then s\ U «2 is a segment as well. 

Segmentations 

A segmentation S of the grid space G is a set of non-overlapping segments {s,} in 
G. Therefore, each Si c G and Vi / j : Si fl Sj = <f>. S contains # 5 segments. It 
follows that (J Si c G. If |J Sj = G, we call the segmentation complete. 

When a segmentation of the grid space G is based on the image itself, i.e. on the 
spatial distribution of feature vectors in I, we will call it an internal segmentation 
or image segmentation of I. 

If a segmentation is based on additional data, such as stratifications or context 
maps (Chapter 2), it is called external with respect to I. 

The above definition of segmentation is not very strict. Many authors, e.g. in the 
survey of [Fu and Mui, 1981], restrict the notion of segmentation to what is called 
internal, complete segmentation in our terminology. Moreover, the definition in 
[Fu and Mui, 1981] involves a homogeneity predicate Y(s), which only depends on 
the feature vectors in s, such that Y(si) — TRUE for all s; 6 5 , and Y(si U Sj) — 
FALSE for all adjacent pairs Sj, Sj. This seems unnecessarily restrictive. For example, 
the merging criterion in section 4.4 includes the spectral distance between adjacent 
segments, which cannot be expressed in a predicate Y(s) that depends on one seg­
ment. On the other hand, including the predicate in the definition is not so helpful, 
since with a single predicate Y(s) several segmentations of I are still possible. 

Hybrids between internal and external segmentation use ancillary data to guide the 
segmentation process [Ballard and Brown, 1982]. For example, a digital map can 
indicate where segment boundaries are likely to occur [Janssen, 1994]. 

Internal segmentations 

Region based image segmentation algorithms identify segments in which the pixels 
satisfy homogeneity criteria in the feature space X. This applies as well to tex-
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ture based segmentations, where the reflections in a segment are not necessarily 
homogeneous. The feature space X will contain features where different image tex­
tures are mapped into different feature values, according to a texture-detecting 
filter algorithm, in such a way that a region with a uniform texture will become 
a homogeneous region in the texture feature [Rosenfeld, 1975], [Haralick, 1979], 
[Iron and Petersen, 1981]. In an MSc project [Talukdar, 1997], average gray value 
difference [Cross et ai, 1988] was used to derive a texture feature from high reso­
lution pan-chromatic imagery, adding a dimension to the feature space of a lower 
resolution multi spectral image. Several combinations of pan-chromatic SPOT (10 m 
resolution) or IRS-C (5.8 m) with multi-spectral SPOT (20 m) or Thematic Mapper 
(30 m) were investigated. The multi resolution approach is valid, since texture-
feature extraction implies loss of resolution due to inexact identification of the 
location of boundaries between differently textured objects [Pratt, 1978]. 

4.3 Quadtrees — a data structure for integration of GIS 
and image data 

To widen the opportunities to study and investigate spatial data structures in the 
institute, a modest software system for region quadtrees [Samet, 1990] was gradually 
developed during the last few years [Gorte, 1995b]. 

Region quadtrees constitute a spatial data structure, suitable to support implemen­
tation of the raster spatial data model [Molenaar, 1998]. 

4.3.1 The raster spatial data model 

The raster data model, in accordance with the definition of data model 
[Tsichritzis and Lochovsky, 1982], allows to structure spatial data and to specify 
operations to be performed on these data. Concerning the structuring part of the 
definition, the user can organize the data about the study area in different raster lay­
ers and attach meanings (semantics) to pixel values in each layer [Burrough, 1986], 
[Gorte et ai., 1988], such as: 

• Mapping unit identifier, providing a link to an attribute table 
• Class label or nominal attribute identifier, such as soil type or land-use class 
• Measurement, such as elevation, slope, soil depth, pH. 
• Distance, e.g to the nearest road 
• Reflection or feature vector in image data. 

Spatial analysis and query can be specified in terms of primitive operations, as 
defined by the data model. These include: 

• Overlay, to establish relations between layers 
• Adjacency analysis, to establish topological relationships within a layer 
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• Indexing, to exploit relationships between raster maps and attribute tables 
• Classification, to create class labels from measurements 
• Connected component labeling, to create objects from classes or other at­

tributes 
• Window operations, to calculate densities, perform smoothing of values and 

shapes, etc. 
• Distance transforms to calculate distances to objects and to create buffers 

around objects 

The expressive power of these primitive operations is quite high and they offer great 
flexibility. Many kinds of spatial analysis can be formulated easily [Tomlin, 1990]. 
Another advantage of using the same (raster) data structure for maps and images 
is the ease of integration of the two. 

To implement the raster data model in a spatial data base system, a data storage 
structure has to be chosen. Straightforward implementations store the data sequen­
tially in a row-by-row order. The byte-position p of a pixel in this structure can be 
easily obtained from a raster coordinate (r,c), given the number of columns nc in 
the map and the number of bytes b per pixel, as p = b(ncr + c). More advanced 
methods divide the area in tiles or patches to allow random access to the data 
without excessive input/output load, assuming locality of reference, which means 
that the next pixel to be accessed is usually near to the current one. This increases 
performance when 'roaming' through a map on the screen, or when performing 
geometric transformations that involve rotation. 

A major drawback of the raster data model is that a trade-off has to be made be­
tween spatial resolution on one hand, and storage requirements and execution times 
on the other. Despite ever-increasing capacities and speeds of personal computers 
and workstations, certain combinations of spatial resolution and area size are simply 
not practical. 

For example, a mapping scale of 1:25000 requires a spatial resolution in the order 
of 2.5m — this would correspond to 0.1mm on the map. An area of 200 x 200 km2, 
which is not large enough to cover the Netherlands, contains 80,000 x 80,000 pixels. 
A layer in which one byte is sufficient to code the data occupies is 6.4 Gb. Certain 
queries and analysis operations traverse the entire data set and (extrapolating from 
measurements that will be described in section 4.3.2) will need hours or days to 
execute. 

Many general purpose data compression techniques, such as Lempel-Ziv (LZ77), 
LZW and Huffman coding can be used to greatly relieve the storage requirements. 
However, they do not improve processing speed at all, since data have to be decom­
pressed prior to any operation (which takes a little bit of extra time, in fact). 

Region quadtrees are equivalent to raster maps. They offer the same semantic con­
tent as the raster maps on which they were based [Molenaar, 1998]. Raster GIS 
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analysis operations are also defined in the quadtree domain and most of them can 
be implemented efficiently. 

Therefore, the quadtree data structure offers an alternative storage method for im­
plementations of the raster data model. Data, stored using this method, are seman-
tically valid for the model, and algorithms exist to support the required operations. 

Quadtree data structure and software help to decrease the storage and processing 
time requirements at the same time, especially at high resolutions. Roughly, storage 
requirements increase linearly with resolution when using quadtrees, and quadrat-
ically using rasters. The challenge of quadtrees is to create algorithms that work 
in the quadtree domain, which means that they do not expand the data to raster 
format at any stage. In that case, processing times depend on the quadtree data set 
sizes, which leads to a significant gain at high resolutions. 

The advantages of using quadtrees are largest when using high resolution GIS maps, 
especially when they contain relatively large objects or homogeneous regions. Unfor­
tunately, not much is gained in terms of space and time, when images are processed 
as quadtrees. However, quadtrees allow to combine data layers with different reso­
lutions without having to re-sample one to the other. 
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Figure 4.3: Quadtree data structure 
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The quadtree package in which the segmentation algorithms are embedded is briefly 
described below. It is based on a linear, sequential quadtree data structure, without 
indexing (Fig. 4.3). The programs read input and write output streams sequentially 
and simultaneously, without excessive buffering in internal memory. Therefore, there 
are no (practical) limitations to the sizes (resolutions) of the data sets to be pro­
cessed. The entire data set does not have to reside in internal memory at any time. 

The following modules are present: 

General: raster to quadtree and quadtree to raster conversions, image calculations, 
statistical analysis (histograms, multi-band statistics), simple map and im­
age generalization, which allows to create levels of detail (LOD) at different 
representation scales. 

Image Analysis: Training data analysis and maximum likelihood classification, 
principal component transformation, RGB to IHS transforms. 

GIS: Map overlay and map calculation, aggregation functions, determination of 
topology (region adjacency), connected component labeling. 

The segmentation algorithm is based on the one for connected component labeling 
— in fact, the latter will appear to be a special case of the former. Also, the map 
calculation module will be involved in the segmentation process, as well as the 
connected component labeling. Therefore, we describe these three modules with 
somewhat more detail. 

Connected component labeling: a program that assigns to each homogeneous 
region a unique value. The output quadtree values have the type integer, 
which allows over 2.109 regions. It is interesting to notice that the structure 
of the quadtree does not change with this operation. 
The program assumes 4-adjacency: only four neighbors of a pixel (above, 
below, left and right) are taken into account when connectivity is established, 
instead of 8 neighbors (including the diagonal ones). In case of very high 
resolutions that can be handled by quadtrees, region pairs that are 8-adjacent 
without being also 4-adjacent are very unlikely to occur, 

Image and map calculations are carried out by a program which allows over­
laying data layers by performing arithmetical, mathematical, logical and re­
lational operations on corresponding pixels in different layers. 
This program also provides the link between spatial and attribute data. If 
pixel values have the meaning of object number, attribute values can be 
found at any pixel by indexing the attribute table with the pixel value. See 
the result of segmentation in Figure 4.5. 

Region Adjacency software can be used to establish adjacency between pixel 
values in a quadtree. The result is a relational table with two columns; if 
somewhere in the quadtree a pixel with value p is neighboring a pixel with 
value q, then (p, q) will be a record in the table. The table is sorted in 
ascending order of (primarily) the first column and (secondarily) the second 
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column. The value in the second columns is always larger than the one in the 
first; if p is larger than q, there will be a record (q, p) in the table. Therefore, 
every combination is listed only once. 
The operation makes most sense if the quadtree is filled with regions that 
have unique numbers, such as the result of an image segmentation. In that 
case it generates region adjacency information, which can be incorporated in 
subsequent classification. 

4.3.2 Quadtree performance 

As an example, quadtree performance was measured using a land-use map of the 
Razan area in the province of Hamadan, Iran [Sharifi et al., 1996] (Fig. 4.4). The 
original raster map covers an area of 74.3 x 78.0 km2 at a spatial resolution of 20m, 
giving a data set of 3714 rows and 3900 columns. From this data set versions with 
lower resolutions (40, 80, 160 and 320 m) were generated by replacing square areas 
in the original (with sizes of 2 x 2,4 x 4,8 x 8 and 16 x 16 pixels, respectively) by a 
single pixels at a lower resolution. For the output pixel value the predominant value 
in each input square was used. 

Figure 4.4: Sample landuse map (Iran) 

The results were converted to quadtrees. Table 4.1 shows the data volume in raster 
pixels and in quadtree leaves. Whereas the former increases quadratically with the 
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res. 
(m) 
320 
160 
80 
40 
20 

rows 
232 
464 
928 

1857 
3714 

size 
col ums 

243 
487 
975 

1950 
3900 

volume 
pixels 

56367 
225968 
904800 

3621150 
14484600 

leaves 
11566 
26305 
59374 

138862 
245080 

ar(r) 
0.21 
0.78 
3.07 

12.34 
50.47 

execution times (s) 
ar(q) 
0.07 
0.16 
0.32 
0.68 
1.23 

ad(r) 
0.03 
0.08 
0.32 
1.44 
5.94 

ad(q) 
0.07 
0.13 
0.28 
0.70 
1.27 

cc(q) 
0.08 
0.22 
0.50 
1.28 
2.78 

Table 4.1: Performance of quadtree vs. raster at different resolutions. Executions times are 
given for ar(r) and ar(q) (arithmetic calculation in raster and vector), for ad(r) and 
ad(q) (adjacency analysis in raster and vector) and for cc(q) (connected component 
labeling, only in quadtree). The measurements concern CPU time on a Pentium 133 
MHz computer with 96 Mb main memory, running the Linux (PC-UNIX) operating 
system. All algorithms are implemented in the C programming languare. 

resolution, the latter shows an approximately linear increase. Note, that to get the 
actual quadtree storage requirements, the space to store levels has to be added to 
the space for values. In the described implementation, the increase is theoretically 
between 12.5% and 50% (see Fig. 4.3). At the different resolutions of this example 
it is between 26.1% and 31.4%. The quadtree with 20m resolution occupies 322134 
bytes: 245080 for values and 77054 for levels. 

For the record, Lempel-Ziv compression reduced the 20m-resolution raster map to 
163408 bytes, and the corresponding quadtree to 69720 bytes. Therefore, there is 
not so much reason to discuss quadtrees vs. general purpose compression techniques. 
They are complementary. 

Execution times of the following operations were measured (Table 4.1): 

Arithmetic calculation of r = y/a + 1 on an attribute a (columns ar(r) and ar(q)). 
The time for both raster and quadtree depends on the number of square-root 
calls involved, although the table shows that for some extra time is caused 
by quadtree overhead (compare, for example, 1.23s for 245080 leaves with 
0.78s for 225986 pixels). 

Region adjacency, which determines for each pair of map units whether they are 
adjacent (using 4-adjacency), shows the advantage of quadtrees at higher 
resolutions (columns ra(r) and ra(q)). The figures for lower resolutions show 
that the additional quadtree overhead is quite heavy, but it is (again) pro­
portional to the quadtree size. 

Connected component labeling, which determines a unique identifier for each map 
unit with a homogeneous attribute value (or class number), also shows linear 
increase of execution time with resolution (column cc(q) — I do not have an 
equivalent program for raster maps). The algorithm is the basis for region-
merging image segmentation (section 4.4). 

Let me allow myself to make some extrapolations. A 80,000 x 80,000 pixel map (as 
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was mentioned above) of this area, therefore with lm resolution, might contain some 
20 x 250,000 = 5 million leaves to represent 6.4 billion pixels. Region adjacency 
calculation could be done in 20 x 1.27s « 25s, whereas in a raster implementation 
it would take 400 x 5.94s « 40 minutes. Extrapolated execution times for the arith­
metic calculation example are 25 seconds and 5.6 hours, respectively. I must admit 
that these figures are not completely honest. At a so much higher resolution the 
map will contain more units, which does not matter in the raster implementation, 
but has a negative influence on performance when quadtrees are used. In addition 
I should mention that my implementation cannot handle such large quadtrees. A 
hard limitation is caused by the four bits that are reserved for levels, which puts 
the maximum level at 16 and the maximum size at 65535 x 65535. But 'softer' lim­
itations may be the consequence of memory capacity, for example. I did not have 
the opportunity to test data sets of such sizes, since they would have to imported 
from raster maps, which do not fit on any computer within my reach. 

The last twelve years have shown doubling of computer performance approximately 
every 18 months, giving an increase of a factor 28 = 256 during this twelve year 
period. Between 1986 and 1998, main memory sizes went from 512kB to 128MB 
and hard disk capacities from a typical 20 MB to 5 GB, Pentium-II chips easily 
reach performance indices of a few hundred times the 80286, only the price for all 
this luxury is more or less the same. However, to bring hours or days of execution 
time for raster processing back to acceptable seconds or minutes requires again a 
performance increase of, say, a factor between 1000 and 4000 (210 - 212), which can 
be expected in 15 to 18 years — can it? 

Twelve years ago, maps with 512 x 512 pixels were as practical or impractical as 
8000 x 8000 maps are nowadays: certain things can be done quite quickly, but 
usually the word 'interactive' really does not apply anymore. A simple formula like 
r = y/a + 1, for example, takes almost four minutes, which is acceptable if you 
really need it, but annoying when you find out that r should be yfa+ 1. 

In 1986, quadtrees did not help, since 512 x 512 quadtrees are more demanding 
than raster maps of that size. For 8000 x 8000, however, quadtrees already offer 
advantages, and they will increasingly do so when hardware allows for larger data 
sets in the near future. Quadtree implementations might bring very-high resolution 
raster data models for GIS much nearer. 

4.4 Segmentation by region merging l 

In the course of developing the quadtree system, a stage was reached were quadtree 
based image segmentation could be implemented without too much additional effort. 

Region merging as a segmentation method, not as the problem of merging terrain regions into 
nsle seement. a single segment. 
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A region merging segmentation method resulted, which does not show order depen­
dency problems. It is a hybrid between region growing and split and merge. The 
algorithm makes a recursive, bottom up quadtree traversal, which starts at single 
pixels (or larger quadtree leaves in which the pixel values are constant) and recur­
sively merges adjacent regions, forming irregularly shaped segments at all stages. 
The order dependency problem is solved by performing several iterations, while 
slowly relaxing the homogeneity criteria until a user defined degree of segmentation 
is reached. 

4.4.1 Description 

Input image (3 spectral bands, raster format) 

raster to quad­

tree conversion! ' * ' 

— 
~"ï 

^ J f ^ 

V 
qtseg 

feature 

vector 

quadtree 

0# siz ml m2 mc 

attribute table 

Figure 4.5: Data structures for quadtree segmentation of multi-spectral images 

The region merging algorithm uses several image bands, which are first combined 
into a feature vector quadtree, as input and gives one segmentation as output: a 
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set of objects, where each object has multi-spectral properties (mean vector and 
variance-covariance matrix). Moreover, topological (object adjacency) information 
can be retrieved as well as, of course, object locations, sizes and perimeters. 

The algorithm recursively merges leaves and regions of the feature vector. Since all 
the leaves are used, the resulting segmentation is complete. In each recursion level 
of the algorithm, adjacency of (sub)segments to be merged is determined along the 
horizontal and vertical boundaries in quadtree nodes, so that the segmentation uses 
4-adjacency. 

A merging criterion controls whether adjacent regions can be merged. In the current 
implementation the criterion is quite simple: With a user-selected spectral distance 
threshold 6, the Euclidean distance between the feature vectors of two candidates 
may be not larger than 26 and none of the variances and covariances after merging 
may exceed 62. The algorithm leafs room for more advanced criteria, but in experi­
ments to date, the simple criterion appeared to be satisfactory. Note that connected 
component labeling is a special case with only one band and 6 = 0. 

Like in the other programs in the quadtree package, the quadtree is scanned sequen­
tially, which implies a single traversal through the image in Z-scan order (Figure 
4.3). Therefore, the algorithm is recursive and works bottom-up. It starts trying 
to combine individual pixels (within quadrants) first, and looks at possibilities to 
combine adjacent regions in larger quadrants later. 

The program relies on a highly dynamic data structure consisting of an index table 
and an object table. The object table has one record for each (intermediate) object, 
in which the object size and spectral attributes are stored. In case of three spectral 
bands, these attributes are: the sums of the pixel values in band 1, 2 and 3 over 
the entire object (Si, S2, 53), the sum-of-squares (5n , S22, £33) and the sums of the 
cross-products (S12, S13,523)- These are used in the calculations of the mean values 
and the covariance matrix for the object. 

An object is entered in the table when a new leaf from the input is read. A new 
entry in the index table points to the object. When processing a quadrant, the 
values to either side of the boundaries between the sub-quadrants are taken from 
a stack. Via the index table, the spectral data are retrieved from the object table 
and used in the merge criterion. 

If two objects can be merged, their respective attribute values (sizes and sums) are 
added and stored in the table entry of the object with the lowest object number. 
The other object is removed from the table. Also the index table is updated: the 
higher entry will point to the lower one. Figure 4.6 shows the states of the index 
and object table before and after processing the quadrant in Figure 4.7. 

After the quadrant is finished, the (new) values at the outer boundaries are known. 
They are stored at the next higher level of the stack, from where they will be 
retrieved when the next larger quadrant (containing this one) is processed. 
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Figure 4.6: Index and Object table before and after processing fig. 4.7 

When the entire quadtree has been processed in this way, which is when the program 
reaches the highest level, the index table is updated: All entries that have an object 
number associated with them are moved to the top of the table; the pointers of all 
other entries are updated so that they will point to the end of the chains. Then 
the input quadtree is read again and the output (segmented) quadtree is produced. 
Finally, an attribute table is created from the object table, by transforming sums 
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Figure 4.7: Segmentation at intermediate level 

and sizes into means and covariances. The attribute table is stored on disk and can 
be used in subsequent analysis. 

4.4.2 Iteration 

Due to the recursive z-scan order, the algorithm has a slight tendency to create 
segments of regular shapes, according to the quadrants (order dependency). At a 
certain quadtree level, the algorithm attempts to merge regions within quadrants, 
before examining adjacent quadtrees at the next higher level. This effect could be 
completely removed by making the process perform a few iterations, with increasing 
threshold values. When starting with a lower threshold value than the final one, the 
risk of inadvertedly merging sub-quadrants reduces. Irregular shapes will already 
be formed, however, and will be the basis for further merging later, when higher 
threshold values come into effect. 

4.4.3 Small objects 

Segmenting satellite images creates many small segments (say, less than five pixels 
in size). One reason may be, of course, that due to the limited resolution of satellite 
imagery, there are many of such small objects in the terrain. 

More important, however, is the effect of mixed pixels, especially at the boundaries 
of objects with quite different spectral signatures. In the feature space, those mixed 
pixels are too far away from both objects, and therefore they cannot be merged with 
one of them. The question is what to do with them. From a segmentation point of 
view, we would like them to be incorporated into larger (neighboring) segments. 
To achieve this, we can relax the merging criterion, by increasing the threshold 
value especially for small segments. However, the spectral values of the boundary 
pixels will contaminate those of the entire segment (unless we don't update the 
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values of the larger segment when merger is due to criterion relaxation — this was 
not investigated, however) and influence a later classification. Another possibility 
is to leave the small segments (mixed pixels) out of the classification procedure and 
classify only the large ones. The above-described map calculation program can be 
used to make the selection of large segments, based on the sizes in the attribute 
table. Under the assumption that objects are relatively large, compared to the pixel 
size, there is a slight preference for the second option. 

4.4.4 Experiment 

Segmentation was applied to a Landsat TM image of the Flevopolder in the Nether­
lands. The area is suitable for demonstrating the segmentation method, because 
there are large fields. Usually, Landsat TM does not satisfy the previously stated 
condition that objects should consist of a significant number of pixels. The method 
will be more useful when higher resolution imagery becomes available. 

The results are shown in Figures 4.8 and 4.9. Using map calculation, combining the 
segment quadtree with the attribute table, only large segments were selected and a 
random grey value was assigned to them. Small segments were removed. 

Figure 4.8: Detail of segmented image. Objects are displayed with random grey values, those 
that are smaller than five pixels are black 
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Figure 4.9: Segmented image (1000 * 1000 pixels) 

The image consists of 1000 x 1000 pixels. With a final spectral distance threshold 
value of 6, 180811 segments were created. Despite the large objects in the terrain, 
many segments are very small: 136870 single pixels and respectively 20053, 5252, 
4009 and 2539 segments of two, three, four and five pixels. Figure 4.8 shows small 
segments in black and reveals that they are mostly boundary (mixed) pixels. 

On the other side of the scale, there are four segments with more than ten thousand 
pixels. They are water bodies (Usselmeer and Randmeren), with 11149, 33317, 
44069 and 111375 pixels, respectively. The distribution of the sizes of the more 
moderate objects is shown in Figure 4.10 

82 



4.4. SEGMENTATION BY REGION MERGING 

160 

120 

100 

80 

60 

40 

20 

number of objects as function of object size 

-

• 

-

• 

-

• 

-

Figure 4.10: Distribution of object sizes 

4.4.5 Evaluation 

Although the presented region merging algorithms resembles classical split and 
merge, the result are significantly better (Fig. 4.11. Split and merge creates segments 
that coincide with quadtree leaves, which does not really help in case resolution is 
a constraint. Most quadtree leaves, except those at very low levels, contain segment 
boundaries and are, therefore, not suitable parts of segments. A subsequent step is 
needed to merge quadrants into final segments [Cross et ai, 1988], but with a reso­
lution constraint this means that almost the entire merging is done in this second 
step. Region merging, as presented, combines both steps throughout the algorithm. 

The resulting program is far from trivial. It is embedded in the quadtree system, 
which was designed with optimization objectives from the beginning, to exploit the 
potential performance increase by using a quadtree data structure, instead of raster. 
As a result, the segmentation program is really fast. Whereas [Schoenmakers, 1995] 
spends considerable effort to optimize a hybrid region growing / split and merge 
method, he mentions execution times of between 55 and 135 hours for an image 
of 1.48 million pixels on a Sun Sparc 10-41 workstation with 64 MB of RAM. The 
segmentation of the 1 million pixel example presented above, using four iterations, 
takes 52 s on a 133 MHz Pentium with 96 MB. 

Order dependency can be checked by slightly shifting the input image in the grid 
space, for example by removing the first row and column from the image, prior to 
converting it to a quadtree. The quadtree structure changes quite significantly, but 
hardly any changes are observed in the resulting segmentation. 

The algorithm presents two difficulties: 

• The user has to provide a series of threshold values t\, ... ,tn. The last 
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Figure 4.11: Conventional split-and-merge (upper left) vs. proposed method (upper right). 
Bottom row: with added segment boundaries. 

value, tn determines the "coarseness" of the final result, whereas the pre­
ceding values serve to make the merging gradual, to prevent a too large 
influence of the quadtree-induced subdivision of the space on the shapes 
of the segments. This solves the order dependency problem, described by 
[Haralick and Shapiro, 1985], [Tilton, 1989], [Pavlidis, 1986] and 
[Fu and Mui, 1981]. Unfortunately, the user has to apply trial and error to 
find suitable threshold values and to visually inspect the segmentation re­
sults. If he observes too many small segments, such that many (supposed) 
terrain objects are still subdivided, the final threshold value tn should be 
increased. Conversely, if too many terrain objects are combined into single 
segments, the tn threshold value should be lowered. Moreover, those occur­
rences of region merging and region fragmentation, in the terminology of 
[Acton, 1996], happen at the same time in any segmentation that is not ex­
tremely fine or extremely coarse. (Figure 4.12.) 
Segmentations contain many segments of only few pixels. This is partly 
caused by small terrain objects compared to the image resolution. Recogni-
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Figure 4.12: Segment boundaries during four segmentation iterations 

tion of such objects is inherently difficult — whether it is important depends 
upon the user's requirements. For the other part, small segments occur at 
mixed pixels, which are pixels that are intersected by boundaries between 
larger terrain objects. 

The first problem is inherent to any image segmentation algorithm. It is exactly the 
reason to look for semantic merging criteria, based on class homogeneity, rather than 
feature vector homogeneity (Chapter 5). There, an entire segmentation pyramid 
(section 4.5) is used to select homogeneous segments (objects) at the highest possible 
pyramid level. In areas where no homogeneous segments can be found at any level, 
I will select suitable segments at an appropriate level and mark them as "mixture 
of terrain objects for which the exact location cannot be determined". 

The second problem is tricky. It is inherent to region based image segmentation 
techniques ([Schoenmakers, 1995]), as opposed to edge based techniques. In the 
latter, most mixed pixels will be within the set of boundary pixels and, therefore, 
not expected to be included in the segments themselves. However, the question 
remains whether this is a real solution, since the notion of boundary pixels does 
not agree with the model that area objects cover the entire image region. To have 
separate boundary pixels is unfavorable in case spatial resolution is a limiting factor, 
as in satellite imagery. There are many objects of only a few pixels and, therefore, 
the fraction of boundary pixels in the total image will be large (Chapter 4). This 
conclusion is in line with the data model of [Molenaar, 1998], where objects provide 
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a space partitioning and boundaries are implicit. 

[Schoenmakers, 1995], [Haralick and Shapiro, 1985] [Pavlidis and Liow, 1990] and 
[Le Moigne and Tilton, 1992] propose hybrids between edge and region based seg­
mentation. 

4.5 Segmentation Pyramids 
A segmentation pyramid S of G is a collection of D nested segmentations S1 , . . . , SD, 
D being the depth of the pyramid. S\ is a segment in the segmentation at level I of 
the pyramid (1 < I < D,l < i < #SL). At higher levels in the pyramid the number 
of segments is smaller and the segmentation becomes coarser, because higher level 
segments are supersets (aggregates) of lower level ones. Using U for the number of 
segments in S J : 

Lm>Ln (m,n € [1,...,D], m < n) 

and 

Vfc6[i,...,i-]3(6[i,..,L"] : ST C sf (m, n £ [ 1 , . . . , D], m < n). 

When all segmentations in a pyramid are complete, each segment at a certain level 
n > 1 can be composed of a subset of segments from a segmentation at a lower 
level: 

Vie[i i»]3 t .C[i , . . , i»] : U sf = s" (m, n G [ 1 , . . . , D], m < n). 

The highest level segmentation in a pyramid may consist of only one segment, which 
is then the root of a segmentation tree. Otherwise, a segmentation pyramid becomes 
a tree when we add a dummy segmentation SD+1 of one segment (SD+1 — {G}) 
at the top. At the lowest level, each pixel may be a separate segment. If required, 
a segmentation 5° of single pixel segments may be added otherwise at the bottom 
of the pyramid. 

A parent - child relation exists between segments at two successive levels. Indirect 
parents (grandparents, grand-grandparents etc.) are called ancestors, indirect chil­
dren are descendents. The operator anc(s) gives a set that contains all ancestors of 
a segment s. Likewise, dec(s) yields the descendents. Therefore, s U dec(s) forms a 
segmentation tree. 
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An alternative representation is by means of a relational table with #S* records 
(one record for each segment in the lowest level segmentation S1) and D fields (one 
for each segmentation level), showing for each segment s] in which of the higher level 
segments it is contained. Normalizing the table separates it into D — 1 tables, each 
showing the parent-child relationship between two successive segmentation levels. 

Figure 4.13 shows both representations. The displayed segmentation pyramid con­
tains three complete segmentations and, therefore, the tree has uniform depth and 
the table contains no empty fields (fields with vales NULL). In a tree with non-
complete segmentations, it is possible that none of the pixels of a segment s at level 
/ > 1 are included in lower level segmentations. Then, the node corresponding to s 
becomes a leaf in the tree at level I. The lower level fields in the segment's record 
in the table are empty (and the total number of records is larger than #5 X ) . 

Iterative region merging with a sequence of thresholds yields a segmentation pyra­
mid when the result after each iteration is stored. 
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Figure 4.13: Segmentation pyramid with tree and table representations 

4.6 Conclusion 

This Chapter introduces a multi-spectral image segmentation method, which is 
embedded in a quadtree based GIS and Image Processing system. Generally, the 
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system gives the possibility to integrate remote sensing data, map data and attribute 
data. It processes high resolution raster maps and images, without excessive storage 
and processing time requirements. 

The segmentation algorithm avoids order dependency by making a few iterations 
in which the merging criteria, which involve spectral distance and covariance, are 
gradually relaxed. Despite iteration, the algorithm is fast. Moreover, it creates a 
segmentation pyramid by outputting a segmentation after each iteration. Whereas 
region fragmentation and merging are inherent to data-driven segmentation, these 
problems can be solved by segment pyramid classification, i.e. class mixing propor­
tion estimation in all segments within the pyramid. This is addressed in the next 
Chapter. 
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Chapter 5 

Integration 

The previous chapters addressed improvement of procedures for information extrac­
tion from multi spectral imagery. A distinction was made between classification and 
segmentation. 

Classification attempts to find the most appropriate class label for each pixel in an 
image (Chapters 2 and 3). The purpose of image segmentation, on the other hand, 
is to subdivide an image into regions that are homogeneous according to certain 
criteria, such that these regions correspond to objects in the terrain (Chapter 4). 

In the context of information extraction from imagery to create or update data in 
a geographic information system, it is required to identify objects and label them 
in such that they can be stored as entities in a data base. Therefore, we want to 
combine segmentation and classification. Object identification yields geometric in­
formation (where is an object to be found?), whereas the labeling provides thematic 
information (what type of object is identified?). 

Sequential application of segmentation and classification (or of classification and 
segmentation) is straightforward. The result of a classification can be submitted to 
connected component labeling, which yields a unique identifier for each connected 
set of pixels of the same class. The pixels in the resulting raster data set have these 
identifiers as their values. Simultaneously, a list is produced that links each identifier 
to a class label. Conversely, multi spectral image segmentation produces an image 
with a unique identifier for each homogeneous region, together with a list that links 
each identifier to the spectral properties, e.g. mean vector and covariance matrix, of 
the corresponding region. Subsequently, the spectral property list can be submitted 
to classification, such that each element of the list is assigned a class label. 

Both combination approaches are illustrated in Figure 5.1 . They share the disad­
vantage that errors and uncertainties from the first stage are carried over to the 
second. Therefore, erroneous results may be obtained. 
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Figure 5.1: Sequential combination of classification and segmentation 

When classification is applied first, it has the tendency to give misclassified pix­
els due to image noise and terrain cover irregularities, such as sandy patches in 
grassland, open spaces in forests, varying conditions in agricultural fields, etc. Sub­
sequent connected component labeling will treat those as separate segments, which, 
from the user perspective, usually do not coincide with meaningful terrain objects. 
Therefore, the results must be edited extensively, before they are suitable for storage 
in a GIS database. Automatic editing, based on geometric and topological segments 
properties, is possible, but complex [Abkar, 1994]. 

When starting off with segmentation, a balance has to be found between region 
merging and region fragmentation. When several objects merge into one segment, 
subsequent classification will not split them. Fragmentation is less severe, as far 
as the resulting segments are classified into one class. Letting the scale tip too far 
in the direction of fragmentation, however, will produce so many small segments 
that the point of segmentation is lost. In a procedure called layered classification 
[Franklin and Wilson, 1991] apply conventional split and merge segmentation, re­
stricting the quadrant size to a minimum of 4 x 4 pixels. They applied a quite 
large variance threshold to prevent that "an unacceptably large amount of quad­
rants" would be declared inhomogeneous. Next, F-statistics, followed by a Stu­
dent's <-test, compare quadrants with class statistics. Since it appeared that many 
quadrants do not obtain a label, a second stage follows where unlabeled pixels 
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are submitted to straightforward minimum distance classification. Finally, in areas 
where the minimum distance exceeds a threshold an ancillary (elevation) "channel" 
is added to the feature space and the first two stages are repeated for pixels that 
were not labeled yet. [Franklin and Wilson, 1991] achieved significant improvement, 
compared to standard maximum likelihood classification. In a recent M.Sc. study 
[Shresta, 1998], however, the accuracy of a land-use classification in a mountainous 
area was lower with layered classification than with standard maximum likelihood. 
After replacing minimum distance in the second step by minimum Mahalanobis 
distance, accuracy increased from 62% for maximum likelihood to 65% for layered 
classification. 

To improve upon this, an algorithm has been developed to integrate classification 
and segmentation. 

5.1 Class homogeneity cri teria 

Segmentation, described in the previous chapter, is controlled by merging criteria 
on homogeneity of feature vectors within segments. A conceptually straightforward 
approach to include class statistics in segmentation is to design a merging criterion 
that evaluates class homogeneity, rather than feature vector homogeneity. Such an 
approach is attractive, because we are ultimately looking for meaningful objects in 
the terrain, by identifying labeled segments in the image. 

Formulating a merging criterion for class homogeneity involves some considerations. 
First, two segments can be merged if there is sufficient confidence that they belong 
to the same class. Second, we want to have sufficient confidence that the merged 
segments belongs to a single class. At this moment, it is not possible to tell whether 
the first requirement implies the second, because it depends on how confidence will 
be quantified and called sufficient. 

In an MSc research project [Lat, 1996], the student-t test was applied to assess the 
correspondence between segment and class feature vector distributions. A major 
problem is that a single object of a certain class is usually much more homogeneous 
than the entire collection of objects in that class. 

Another consideration concerns segment size. We consider three cases: 

Two small segments: A segmentation process that only merges starts from single 
pixels. If two pixels can only be merged when they have the same maximum 
likelihood class, the result of segmentation will be exactly the same as from 
connected component labeling of a segmented image. Therefore, this require­
ment is too strict. Two adjacent pixels that would be classified differently by 
a conventional maximum likelihood classifier can be merged under certain 
conditions, which have to be formulated. 
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Two large segments: It has to be decided, whether adjacent segments that belong to 
the same class should always be merged. For example, two spectrally different 
segments, both classified as agriculture are most likely two different fields. 
Whether they are considered one or two objects depends on the definition of 
"object". 

A large and a small segment To an extent that depends on the algorithm, segmen­
tation tends to create small segments for noise and boundary pixels, which 
may have a different maximum likelihood class than their neighbors. How­
ever, in the chosen data model (see Chapter 4) boundaries between objects 
are no objects themselves. 

It is not entirely clear how two pieces of evidence that two adjacent segments belong 
to a certain class can be combined into evidence that the merged segment belongs 
to that class ' . I n a probabilistic approach, given the probabilities Pi and P2 that 
segment 1 and segment 2 belong to a certain class, a function ƒ is needed that yields 
P\2 = f{P\,P2), the probability that the combined segments belong to that class. 

A second attempt to integrate segmentation and classification was more successful, 
on the basis of algorithms described in the previous chapters: 

• An improved algorithm for segmentation of multi spectral images, which 
iteratively yields a pyramid of segmentations with different degrees of aggre­
gation 

• An algorithm for regionalized class area estimation. 

Although class area estimation intents to facilitate incorporation of ancillary data 
(GIS context maps) in classification, it also allows to incorporate segmentations. In 
this case, segmentation only provides a subdivision of the area, whereas local class 
probability densities are still calculated in the original image. 

In coarse segmentations of segmentation pyramid, most segments will show a mix­
ture of classes, because they contain several terrain objects. Only objects that are 
spectrally quite distinct from their neighbors in the terrain will appear as separate 
segments with single-class coverage. Other objects are expected to be present as 
segments in lower levels of the pyramid. 

This leads to a global description of a recursive procedure, which will be refined in 
the next sections: 

1. Generate a sequence of segmentations, using increasing threshold values. 
2. Start from the last result in the series, which is the coarsest segmentation. 
3. Estimate class areas for every segment. 
4. For each segment s: 

1. An interesting question in an aggregation/generalization perspective is whether they might 
belong to a common superclass, and how evidences should be combined in that case. Compare 
generalization strategies in Ch. 8 in [Molenaar, 1998] 
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(a) if the segment s is covered by only one class, mark it as "object", which, 
together with its unique class label, is to be stored in the result 

(b) otherwise, go back in the sequence (i.e. down in the pyramid) to a seg­
mentation where s is subdivided in two or more subsegments si , S2, • • • 

(c) estimate class areas for each subsegment 
(d) if s i ,S2, . . . are similarly mixed as s, conclude that s is a single object 

consisting of a mixture of classes, s is marked as 'mixed object', which 
will be stored in the result together with the class area vector. 

(e) otherwise, repeat 4. with si , s2, • • • 

5.2 Selecting segments from a segmentation pyramid 
The previous sections gave a pyramid of segmentations with different levels, and 
the opportunity to define a boolean function p(s), which tells whether a segment s 
contains a single class or a mixture of classes, by examining relative class areas. 

In this section, subsets will be selected from different pyramid levels such that the 
union of those subsets covers the entire area, i.e. a new complete segmentation is 
created from segments that are selected from different levels of the segmentation 
pyramid 2. Preferably, pure segments are selected. If pure segments at different levels 
of the pyramid coincide, the one at the highest level has priority. At locations where 
no pure segments exist, mixed segments will be placed. More precisely: selected 
pure segments have no pure ancestors, and selected mixed segments have no pure 
ancestors or descendents. Also mixed segments (for which no pure subsegments 
exist at lower levels) will be selected from the highest segmentation level possible, 
which means that each of its ancestors should have at least one pure descendent. If 
a mixed segment has an ancestor with nothing but mixed descendents, this ancestor 
should get priority. 

We use the symbol's P and M for the sets of selected pure and mixed segments, 
respectively, and the operators anc(s) and dec(s) to denote the sets of ancestors and 
descendents of a segment s. Then, the segment selection scheme can be formulated 
as 

P ={s: p(s) A (V t6anc(5) : -np(t))} (5.1) 

M = {s : ->p(s) A 

Vt6anc(s) : ^P(t) A 

V(Gdec(S)
 : ^P(t) A 

Vi eanc( s )3„ 6dect • p(u)} (5.2) 

P and M are segmentations, as well as P U M. Moreover, if the segmentation 
pyramid is complete, P U M is a complete 

2. If the selection pyramid is not complete, the resulting segmentation may be also not complete 
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5.3 Detailed description and case study 
The entire procedure, which I will call segmentation pyramid classification, consists 
of five steps: 

1. Data preparation, including class definition and collection of training samples 
2. Segmentation of the image into a pyramid 
3. Area estimation of classes within segments 
4. Selection of segments from the pyramid, based on area estimates. 
5. Final classification and evaluation. 

The procedure is demonstrated with an example of a multi-spectral SPOT image 
of the island of Ameland in the Netherlands, which will be introduced first. 

5.3.1 Data Preparation 

Image 

The input image is a window of 460 x 785 pixels from a multi spectral SPOT image 
of August 9th, 1992. The image area of approximately 9.2 x 15.7 km covers most 
of the island of Ameland, to the North of the Netherlands. 

Figure 5.2: SPOT XSS Ameland, the Netherlands, August 9, 1992 

No radiometric or geometric preprocessing were performed, other than the standard 
corrections that are done by the image distributor. Therefore, the image and the 
results shown do not conform to a standard map projection. 
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Class Selection 

Based on image inspection and familiarity with the terrain, nine classes were selected 
(Fig. 5.4). 

Shallow water was chosen, because large reflection differences were noticed in the 
sea. Parts of the Waddenzee, the sea between the island and the main land, are 
very shallow or dry during low tide. However, the distinction between shallow water 
and sea was considered irrelevant for the application. After the classification, these 
classes will be combined, such that confusion between them will not influence the 
classification evaluation. 

The class bare soil refers to recently ploughed agricultural fields. This class is spec­
trally similar to beach. Also, between beach and dune spectral overlap can be 
expected, since the dunes are partly sandy. Marshland is densely vegetated and 
predominantly located in depressions between dunes. The class built-up contains 
the four villages on the island, as well as areas for recreational habitation, such as 
camping grounds with semi-permanent caravans and summer houses. 

A few preliminary image segmentations with different thresholds were executed. 
From these, a number of segments were selected that, according to visual inspection, 
have single class coverage (Fig. 5.3). 
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Figure 5.3: Preliminary segmentation with class assignment for 
training sample selection 

Figure 5.4: Ameland 
classes 

After identifying one or two segments for each class, approximately 200 pixels per 
class were randomly chosen from these segments, to be used as training samples. 

By image interpretation, without using image segmentation, a separate set of pixels 
was chosen for evaluating classifications. 
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Figure 5.5: Maximum Likelihood Classification 

Maximum Likelihood Classification 

A standard maximum likelihood classification with equal prior probabilities serves 
as a yardstick, against which segmentation pyramid classification will be measured. 
At first sight (Fig. 5.5), many pixels appear to be erroneously classified as built-up. 
This is confirmed by the error matrix (Table 5.1). At the same time, a consider­
able fraction of the built-up evaluation set pixels were misclassified. The remaining 
classes perform satisfactory, confirming the suitability of the class selection. 

grass for water beach built dune marsh bare UNCL I ACC 

grass 
forest 
water 
beach 
built-up 
dune 
marshl. 
bare 

377 
0 
0 
0 
0 
0 
0 
0 

0 
189 

0 
0 
0 
0 

39 
0 

0 
0 

484 
0 
0 
0 
0 
0 

0 
0 
0 

193 
0 
0 
0 
0 

61 
1 
0 
0 

72 
78 
17 
1 

7 
1 
0 
0 

16 
332 

0 
0 

7 
26 
0 
0 
0 

11 
205 

0 

18 
0 
0 
0 

11 
0 
0 

60 

0 
0 
0 
0 
0 
0 
0 
0 

0.80 
0.87 
1.00 
1.00 
0.73 
0.79 
0.79 
0.98 

1.00 0.83 1.00 1.00 0.31 0.93 0.82 0.67 

average accuracy = 
average reliability = 

86.98 7, 
82.15 7. 

overall accuracy 
overall reliability 

86.67 7. 
86.67 7. 

Table 5.1: Error matrix of ML classification of Ameland, SPOT XS 
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Prior probability (area) estimates 

tevel segid 

Figure 5.6: Object identification from classified segmentations 

5.3.2 Building Segmentation Pyramid 

The creation of a segmentation pyramid involves a number of steps, for converting 
the image bands into a feature vector quadtree, creating the segmentation pyramid 
and editing it to remove small segments (Fig. 5.7). 

Quadtree processing 

The three bands of the image are converted one by one from raster into quadtree 
files and then combined into a single feature vector quadtree. In the current imple­
mentation, the value-field of a leaf in a feature vector quadtree occupies four bytes, 
supporting four bands at most. In case of a SPOT image, one byte is unused. 

Image segmentation 

The image segmentation method, described in Ch. 4, was slightly adapted to gen­
erate a series of segmented quadtrees and attribute tables, one pair for each of a 
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Figure 5.7: Building Segmentation Pyramid 

sequence of thresholds. The method performs area based image segmentation via 
recursive merging, controlled by homogeneity criteria. Two adjacent segments sj 
and S2 can be merged if their average feature vectors are close enough and if the 
heterogeneity (in terms of variances and covariances) after merging is not too large 
(see Ch. 4). The threshold value which is involved has to be specified by the user 
and controls the coarseness of the segmentation. 

To avoid the effect of order dependency, the user may specify a sequence of ascending 
threshold values, after which the program acts iteratively, making a sequence of 
segmentations, from fine to coarse. During each iteration, the entire quadtree is 
recursively traversed. 

After each iteration, a quadtree and an attribute table are stored. The values of 
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the leaves in the quadtree are unique segment identifiers, which serve as indices in 
the table to link segments with their attribute data (segment size and aggregate 
spectral properties). The output of the program forms a complete segmentation 
pyramid. 

Whereas the threshold values (especially the final one in the sequence) for an 'opti­
mal' image segmentation in Ch. 4 were difficult to determine, it can now be expected 
that the final results of segmentation pyramid classification are quite insensitive to 
these values. At a later stage, suitable segments will be selected from the entire 
pyramid and all the other segments will be discarded. A few practical considera­
tions still exist, however. 

• The first (smallest) value in the sequence determines the initial number of 
segments and, therefore, the memory requirements for the segment attribute 
table. In this table, several operations (insertion, combination, re-ordering) 
are performed that require random access. If the table size exceeds the avail­
able physical memory, the entire process slows down dramatically. 

• Large threshold values produce a single segment for the entire image. This 
determines an upper bound for the threshold value. 

• The length of the sequence determines the number of levels in the pyramid. 
Each level will, later in the process, be submitted to non-parametric iterative 
class area estimation algorithm, which is a quite costly operation. 

For the SPOT image in this case study, a sequence often spectral distance threshold 
values was used, ranging from 10 to 105. The intermediate values were chosen in 
such a way that the number of segments between each pair of successive iterations 
decreases by approximately 50 % (Table 5.2). 

When linking the segmentation quadtree of a certain level with the average feature 
vector columns of its attribute table, a segmented color composite can be made 
(Fig. 5.8). 

Small Object Removal 

Chapter 4 describes that the area based recursive quadtree merging algorithm pro­
duces many small segments. In the Ameland case, in all segmentation levels, except 
level 10, more than 60 % of the segments have a size of 5 pixels or less. They cover 
only a few percents of the image area, however. (Table 5.2). 

In this example, small segments are removed. In general, the following considerations 
play a role: 

• Small segments occur at boundaries between contrasting objects. The bound­
ary pixels are mixed and they may be not similar enough to either of the two 
segments that correspond to the objects. 
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Figure 5.8: Levels 1, 3, 6, and 10 of segmentation pyramid of the Ameland XSS image (Fig. 
5.2) 

• The statistical area estimates are expected to be unreliable when segments 
become (very) small, especially if they contain a mixture of classes, as bound­
ary pixels do. 

• Whether small segments are expected to represent relevant object depends 
on the application and on the spatial image resolution. 

To remove small segments, a new segment Jd column is added to the attribute table. 
Segments with a value less than 6 in the existing npix column get a new.segment Jd 
of zero. The larger segments get a unique positive new segment Jd value. Next, the 
leaf values in the segmentation quadtree, which are indices in the attribute table, 
are replaced by the newsegmentJd values. Finally, the small segment records (with 
newsegmentJd = 0) are removed from the table. Now, the quadtree values can 
again be used as indices in the table. 

The result of small segment removal at all levels is a segmentation pyramid which 
is not complete, according to the definition in Chapter. 5. 

Pyramid creation 

The result of the previous section is a collection of segmentations at different levels, 
with for each segment in every segmentation a set of area estimates for the differ­
ent classes. However, the spatial coincidence of the different segmentations is not 
explicitly described in a data structure. It would have been possible to have this 
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level 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

threshold 
10 
15 
20 
25 
30 
35 
45 
55 
75 

105 

segments 
30951 
15320 
8477 
4892 
3021 
2016 
996 
551 
251 
22 

small segments 
27662 
12931 
6893 
3856 
2272 
1476 
677 
359 
155 

8 

area (perc). 
11.72 
5.89 
3.25 
1.85 
1.12 
0.72 
0.34 
0.19 
0.09 
0.01 

Table 5.2: Homogeneity criterion threshold values and number of segments in each level of 
the segmentation pyramid of the Ameland test image. The fourth and fifth columns 
show the number of small segments (with less than 6 pixels) and the percentages 
of the total image area covered by these segments. 

description be output by the segmentation algorithm, because in this algorithm 
it is known which segments at a certain level are part of a new one at a higher 
level. However, this turned out to unduly increase the complexity of the algorithm. 
It is easier to re-create the coincidence relationships between the segmentations 
now, by overlaying the segmentation quadtrees of successive levels two by two into 
coincidence tables (Fig. 5.6). 

5.3.3 Classification and Area Estimation 

Each level of the 10-level segmentation pyramid, obtained in the previous section, 
is submitted to iterative class area estimation, to establish which segments are pure 
in terms of class membership and which ones are mixed. This section describes 
the class area estimation process (Fig. 5.9). On the basis of the results, a selection 
of segments from different pyramid levels will be made to form the final labeled 
segmentation. 

Local class probability density estimation 

Because segments are created on the basis of spectral homogeneity, local probability 
density estimation (section 3.3) has to be used. 

Local probability density estimation in a segment needs to know which subset of 
training samples of each class is used to classify the segment. For a practical im­
plementation the image is processed segment by segment, instead of line by line or 
leaf by leaf. Therefore, the segmentation quadtree is converted into a table with 
one record per pixel and three columns segment-id, line.nbr and column.nbr. The 
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Figure 5.9: Class area estimation in segmentation pyramid 

table is sorted on segment Jd. The sorted table determines the processing order in 
the next stage. 

Iterative local class prior probability estimation 

According to sections 3.1 and 3.2, for each image segment the vector of prior prob­
abilities P(Cj) can found by iteratively solving 

n P(xp |C i)P(C i) 

P(Ci) = 
V " VIT l-ir Ï V " "VLP\^i)r 
Zvp=l r*,°«lXpJ _ Z-,p=l P(xp) (5.3) 

where P(xp |Cj) is the local class probability density for class d inside the segment, 
and n is the segment size in pixels. 

The program that implements this equation, needs as input the class probability 
density maps from the previous section, the segmentation map, and an initial table 
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of prior probabilities. This table has as many rows as there are segments in the 
segmentation and one column per class. The initial values do not have to be chosen 
very carefully. Automatically initializing the table with values ^ (with N classes) 
is adequate. 

The output of the program is an updated prior probability table, which can be used 
as input for the next iteration. Convergence is usually quick: after ten iterations the 
difference between values in input and output table is negligible. 

Implementation of 5.3 is straightforward. Inside the algorithm, the a posteriori prob­
abilities P(Ci|xp) are calculated. Optionally, using these probabilities, the program 
outputs a maximum a posteriori probability classification. 

Figure 5.10: Classified Levels 1, 3, 6, and 10 of segmentation pyramid, where colors are ac­
cording to the class with the highest prior probability in each segment. Hatching 
indicates segments containing class mixtures 

5.3.4 Segment selection 

This section combines segmentations and per-segment class area estimates, by se­
lecting segments from the pyramid, such that the entire area is covered. Where 
possible, pure segments are selected, which are dominated by a single class. If, at a 
certain location, pure segments exist at different levels of the segmentation pyramid, 
the one at the highest level is selected. At locations where no pure segments exist, 
mixed segments will be placed, again from the highest possible level in the tree. 
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Two approaches were tested to implement segment selection: recursive tree traversal 
and relational algebra query. Although they are equivalent implementations of the 
current segment selection model, it is difficult to predict which of them is more 
suitable when the model is refined. Therefore, both solutions are described below. 

Recursive tree traversal 

Tree traversal is implemented by a recursive function, which processes segment s 
at level / of the segmentation pyramid. The function handles the subtree that may 
exist below s by invoking itself for each child of s. The function return value can 
b e PURE, MIXED Or DONE. 

PURE is returned when the contribution of a single class to the area of s exceeds a 
threshold t. The function ignores descendents of s and outputs a data tuple 

M-
MIXED is returned when s (being not PURE) has no children, or when all its children 

appear to be MIXED after recursive function invocation. 
DONE is returned otherwise: s is not PURE, has children Sj at level / — 1 and not 

all of them are MIXED. Now, the function has to output data tuples [I — 1, Sj] 
for all PURE and MIXED children. 

After transforming the segmentation pyramid into a tree, by adding a dummy seg­
mentation of one segment above the highest level, the function is invoked once, with 
this dummy segment as argument. 

Segment selection by recursive tree traversal yields a list of [level, segment pairs]. 
From the prior probability tables, on the other hand, predominant classes can be 
derived, which are the classes with the highest and the second highest probabil­
ity in each segment. The locations of the selected segments, finally, are stored in 
the segment quadtrees. The data can be combined in a quadtree map calculation, 
overlaying quadtrees that are linked with predominant class tables, to visualize the 
selected objects (Fig. 5.11). 

The ieveJ field in the selected segment list points to a segmentation quadtree and the 
segment field corresponds to the values of the quadtree. Together they identify the 
spatial extent of a segment. The selected segment list also identifies a record in one 
of the predominant class tables. It contains one or two classes, for pure and mixed 
segments, respectively, which determine the color of each pixel for visualization 
(Fig. 5.12). 

Relational tuple calculus 

Since the relevance of objects depends on user requirements, a more flexible selection 
mechanism was implemented as well. Selection can be regarded as a query on a 
collection of relational tables: 
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Figure 5.11: Selected segments, colored according to predominant classes, with added object 
boundaries 

Segment tables belonging to the different segmentation levels in the pyramid 
Coincidence tables which define the pyramid structure by describing coincidence 

relations between successive levels 
Area estimate tables or prior probability tables, containing relative class areas 

in each segment of the entire segmentation tree. 

Such queries can be formulated by users and executed in a relational database 
management system environment. For the relatively simple selection scheme of 5.2 
and 5.2, the queries are given using relational tuple calculus. 

Relational tuple calculus is a database language based on first-order predicate logic, 
tuple variables and relational tables (sets of fc-tuples). Its most important expression 
form is the predicative set generation {t £ T \ ip(t) • ƒ(£)}> which can informally 
be defined as "for those tuples t in the table T that satisfy f(t), evaluate the tuple 
generator function f(t) and put the result in the result table". It allows to experts 
a large number of queries, which can all be translated into SOL expressions. 

The segmentation process generates segments, which are collected in the set 5. At 
the same time, we maintain a parent-child relation A C S x S, which records the 
segment s at pyramid level i and its direct descendent s' at level i — 1 as a pair (s, s'). 
From A, we may obtain its (non-reflexive) transitive closure A+, which records the 
full ancestry lineage (Fig. 5.13). 

We note in passing that + is not a standard relational algebra operator, but that 
many of the newer database systems are now starting to incorporate it. (It is well 
known that + cannot be expressed in terms of the standard operators.) 

105 



CHAPTER 5. INTEGRATION 

Prior probabilitiy (area) estimates 

seg p1 P2 p9 

^ 

X 

Segmentations 

^ select 
pyramid level 

select location 

Predominant classes 

1st 
class 

2nd 
class 

/ 
" X 

Selected 
segments 

level 

"• % 

seg id 

/- ' 
/ 

select 1 st 
* *- 2nd cla 

\ labi 

Figure 5.12: Linking selected segments, segmentation quadtrees and prior probability tables for 
visualization 

From A+, we derive two parameterized subsets of S: 

def dec(s) = {t e A+ | t.l = s • t.2} 

anc(s) d= {t e A+ | t.2 = s • t.l}, 

where tA and t.2 are there first, respectively second field of tuple t in the ancestry 
relation A+ (Fig. 5.13). 

Two relational tuple calculus queries select P and M, the sets of selected pure and 
mixed segments, according to equations 5.2 and 5.2. (Fig. 5.14). The queries contain 
a predicate pure(s) that indicates the conditions for which a segment s is considered 
pure, by inspecting the class area tables. 

def 
P =' {s e S I pure(s) A 

Vt6anc(s) : -'pure(i) • s} (5.4) 
def M = {s 6 5 I ^pure(s) A 
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Figure 5.13: Generation of ancestry relation. Segment identifiers are a combination of a level 
(a, b, . . . ) and a segment number ( 1 , 2 , . . . ) 

Vt6anc(s) : --pure(i) A 

Vtgdec(s) : ^pure( i ) A 

Vt6anc(s)3„6dec(t) : pure(w) • s} (5.5) 

These expressions define a rather simple segment selection scheme. Important is, 
however, the flexibility of the mechanism, which allows to refine the selections, 
according to application requirements. 

For example: 

Figure 5.14: Selected pure and mixed segments 
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• At 30 m image resolution, a single residential pixel within a forest area of 30 
pixels can be considered noise. Although there may really be a house, class 
assignment to an isolated pixel is unreliable, due to the mixed-pixel effect. A 
threshold value of, say, t = 0.95 adds the pixel to the forest. However, if the 
prior probabilities for a segment of 1000 pixels are 0.96 for forest and 0.04 
for residential, a settlement covering 40 pixels (3.6 ha at 30 m resolution) 
may not be detected. 
Improvement is achieved by making the threshold a function of the segment 
size. In the example of the large forest, the selection will go deeper into the 
tree. Eventually, if a settlement is present, a pure residential segment will 
be found, or at least a mixed segment with a significant residential coverage. 
Otherwise, if the residential pixels are scattered, the segment will be split 
into several smaller segments that will become pure forest, due to a smaller 
threshold function value. In the latter case, a further refinement could still 
identify the original segment as pure forest (see below). 

• Some land use types are characterized by a mixture of land cover classes in 
a typical (textural) configuration. For example, at a sufficient resolution a 
residential area, with houses, streets, gardens and trees, may be a mixture 
of grass, bare soil and forest. The selection scheme could discover that in a 
subtree of the pyramid the relative areas of these cover types do not change 
over several levels, and then decide to identify the segment at the top of the 
subtree as a single residential area. 

• With the simple thresholding selection scheme, adjacent mixed segments are 
merged, unless their nearest common ancestor also has pure descendents. 
This may be undesirable when the mixtures in the segments are different, 
i.e., involve different classes, or the same classes in different proportions. 
On the other hand, segmentation pyramid classification does not always 
merge adjacent pure segments of the same class, because their common an­
cestor may also contain segments of other classes and, therefore, be mixed. 
When judging these two situations, application requirements play a role. 
However, in both cases we observe that the merging decision is influenced by 
the presence of other (pure) segments in the neighborhood, which is unfavor­
able. The first case can be improved upon with a refined selection scheme, 
the second requires post-processing in addition. 

5.3.5 Final classification 

With the set of selected segments and the associated class statistics, object and 
pixel classifications can be made. 

An object classification is a labeled map according to the predominant class in each 
segment. 

A pixel classification is obtained by selecting the maximum a-posteriori probability 
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Figure 5.15: Object classification of selected segments 

class, after applying Bayes' formula once more for each pixel, using local class prior 
probabilities and local class probability densities within the selected segments. (Fig. 
5.16 and Table 5.4). 

Figure 5.16: Pixel classification using local class prior probabilities and local class probability 
densities within the selected segments 

Both error matrices (Table 5.3 and Table 5.4) show improvement in comparison to 
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grass fo r water beach b u i l t dune marsh bare UNCL I ACC 

grass 
forest 
water 
beach 
built-up 
dune 
marshl. 
bare 

466 
0 
0 
0 
0 
0 
0 
0 

0 
191 

0 
0 
0 
0 

37 
0 

0 
0 

484 
0 
0 
0 

14 
0 

0 
0 
0 

193 
0 
0 
0 
0 

0 
0 
0 
0 

83 
12 
19 
0 

0 
0 
0 
0 
0 

389 
0 
0 

0 
6 
0 
0 
0 

14 
165 

0 

1 
0 
0 
0 
0 
0 
0 

61 

3 
20 
0 
0 

16 
6 

26 
0 

0.99 
0.88 
1.00 
1.00 
0.84 
0.92 
0.63 
1.00 

REL I 1.00 0.84 0.97 1.00 0.73 1.00 0.89 0.98 

average accuracy = 90.83 '/• 
average r e l i a b i l i t y = 92.67 */. 

o ve r a l l accuracy = 92.11 '/• 
o ve r a l l r e l i a b i l i t y = 95.18 '/, 

Table 5.3: Error matrix of object classification of selected segments (see Fig. 5.15) 

grass for water beach built dune marsh bare UNCL I ACC 

grass 
forest 
water 
beach 
built-up 
dune 
marshl. 
bare 

427 
0 
0 
0 
0 
0 
0 
0 

0 
191 

0 
0 
0 
0 

40 
0 

0 
0 

484 
0 
0 
0 
8 
0 

0 
0 
0 

193 
0 
0 
0 
0 

23 
0 
0 
0 

74 
12 
16 
0 

1 
0 
0 
0 
1 

389 
0 
0 

0 
6 
0 
0 
0 

14 
171 

0 

16 
0 
0 
0 
8 
0 
0 

61 

3 
20 
0 
0 

16 
6 

26 
0 

0.91 
0.88 
1.00 
1.00 
0.75 
0.92 
0.66 
1.00 

RELI 1.00 0.83 0.98 1.00 0.59 0.99 0.90 0.72 

average accuracy = 88.94 7, 
average reliability = 87.63 7. 

overall accuracy = 90.21 7t 

overall reliability = 93.21 7. 

Table 5.4: Error matrix of pixel classification with local statistics (see Fig. 5.16). 

conventional maximum likelihood classification (Table 5.1). Visual inspection gives 
the impression that pixel classification provides more detailed information than 
object classification. Apparently, according to the error matrices, this extra detail 
does not contribute to classification accuracy and reliability. This is partly caused 
by errors due to noise and mixed pixels in the pixel based classification. Obviously 
segmentation succeeds to avoid such errors. However, the error matrices depend 
on criteria concerning noise and mixed pixels that were used while creating the 
evaluation set. For example, when a forest area contains a few isolated pixels that 
look different from the surrounding, three actions can be taken: 

1. They can be considered noise and added to the forest, which is favorable for 
the evaluation of object classifications. 

2. They can be considered an object of a different class. The class itself is diffi-
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cult to determine from the image and additional ground truth is required. If 
such objects are relevant for the application, pixel classification is preferable, 
although errors are likely to occur. 

3. They can be excluded form the evaluation set. However, any classification 
looks better if "difficult" pixels are not evaluated. 

The choice between the first and the second strategy depends on application re­
quirements and on the relation between resolution, object size and desired map 
scale. The third alternative creates data that should not be used as an evaluation 
set. 

5.4 Conclusions 
By integrating segmentation and classification, this Chapter describes image anal­
ysis involving spatial and spectral image characteristics. 

Comparison of the error matrices shows that one of the purposes of segmentation, 
to lead to classification improvement [Schoenmakers, 1995], was reached. 

The goal of segmentation pyramid classification, however, is not just to make a 
classification, but to delineate and identify GIS data base objects. It distinguishes 
between pure (crisp) and mixed (fuzzy) objects and provides more statistical infor­
mation than can be expressed in a classification map. 
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Chapter 6 

Decision analysis 

Increasingly, remotely sensed data are used for taking decisions in geographical in­
formation systems. Decision making can in principle be based on a classification 
of such remotely sensed data into nominal information classes. Such a classifica­
tion, however, typically includes errors and uncertainty. Moreover, when processing 
spatial data for decision making, not only uncertainties inherent in these data but 
also objectives and preferences of the decision maker have to be taken into account. 
This Chapter proposes to exploit concepts from mathematical decision analysis for 
integrating uncertainties and preferences. It aims to solve complex decision prob­
lems on the basis of remotely sensed data. The feasibility of the decision-analytic 
approach to the interpretation of spatial data is demonstrated by means of a case 
study. 

6.1 Introduction 
Classification generally introduces uncertainty in the information classes assigned to 
the spectral objects. This uncertainty propagates through the subsequent stages of 
the decision making process [Lunetta et al., 1991]. The uncertainty can be reduced 
by using ancillary data and information, usually derived from sources such as do­
main experts, maps, field work, aerial photographs, or thematic maps from former 
classifications. Such evidence can be exploited before, during, and after classifica­
tion and hence contribute to its accuracy in various different ways [Strahler, 1980]. 
Despite all efforts to reduce uncertainty introduced by classification, imperfections 
may still seriously affect the adequacy of using classification results for taking envi­
ronmental decisions. For example, the commonly used maximum a posteriori prob­
ability classification discards useful information that may serve to yield insight into 
the uncertainties. In this approach to classification, the posterior probabilities that 
are computed for each spatial object within an information class distinguished dur­
ing sampling, are used only to select the most likely class. The entire probability 
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distribution for the object, however, reflects highly valuable information about the 
extent and distribution of uncertainty which could be further utilized in a GIS. 

If decisions are to be made on the basis of remotely sensed data, uncertainty tells 
only part of the story: the objectives to be pursued with interpretation of the data 
become crucial. In the presence of uncertainty, the best decisions are those that, 
in view of the objectives, carefully weigh the benefits of correct interpretation of 
the data on the one hand and the losses due to incorrect interpretation on the 
other hand. This idea is illustrated by an example dealing with fraud with subsidies 
assigned to agricultural crops by the European Union. In this example, the main 
objective is to detect illegal declarations of subsidized crops by taking remotely 
sensed images from crops on parcels, to avoid waste of public resources. From this 
objective alone, the number of detected illegal declarations should be maximized. 
However, unjust implication of fraud is highly unfavorable as it results in extra 
costs for verification and in loss of face. Therefore, the number of unjust implica­
tions should be kept to a minimum. In pursuing both objectives simultaneously, 
overlooking fraud is considered worse than over-estimating. It now depends on the 
probabilities computed for the various possible crops for a parcel under considera­
tion whether or not fraud should be implied. Interpretation of remotely sensed data 
for decision making therefore involves both the extent and distribution of uncer­
tainty introduced by classification and the preferences of the decision maker. These 
preferences concern the objectives that are being pursued with the interpretation 
and therefore differ from knowledge about the subject of the interpretation as re­
ferred to by [Strahler, 1980]. Both types of knowledge equally contribute to the 
interpretation, yet at different levels. 

Further elaborating on the idea that remotely sensed data can serve as a basis 
for decision making, the question arises whether or not it is necessary to derive 
a complete classification before considering viable decisions. In principle, decisions 
can be taken on the basis of a classification. However, classification contains errors 
and uncertainties of which the extent and distribution are unknown. By making 

Figure 6.1: Founding decision making on data 
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decision directly on the data, full knowledge about the uncertainties involved can be 
included, thereby allowing for making better decisions. As decision making does not 
so much involve classification results as the extent and distribution of uncertainty 
introduced by classification, deriving a complete classification is no longer required 
and, in fact, has become obsolete (Figure 6.1). However, an accurate classification 
nevertheless serves various purposes beyond decision-making. 

This Chapter addresses the interpretation of remotely sensed data in view of the 
objectives that are to be pursued when exploiting the data for decision making. 
To this end, various concepts from decision analysis are introduced which allow 
integration of uncertainties and a decision-maker's preferences. Section 2 expresses 
the interpretation of remotely sensed data as a decision problem and introduces 
the mathematics for solving this problem. Section 3 describes the assessment of 
the various parameters involved in quantification of uncertainties and preferences. 
A case study will be presented in Section 4, demonstrating the feasibility of the 
decision-analytic approach. 

6.2 Interpretation of data: a decision problem 
Interpretation of remotely sensed data is in essence a decision problem: the prob­
lem is to decide upon which decision to take for each spatial object on the ba­
sis of available data. The solution to this problem is for each object the decision 
that is expected to best meet the objectives that are being pursued with the in­
terpretation. The field of Decision analysis provides the mathematical framework 
for solving complex decision problems such as the data-interpretation problem 
[Raiffa, 1968, von Winterfeldt & Edwards, 1986, Smith, 1988]. It offers means for 
structuring decision problems and for computing solutions. In this section, we ex­
press the interpretation problem and its solution in decision-analytic terms. 

A decision problem involves two types of variable: 

• a decision variable is a variable that represents viable decisions or actions 
that can be taken in the context of the problem at hand; 

• a chance variable is a variable that represents the true 'state of the world'; 
the value of such a variable cannot be selected by the decision maker. 

In the data-interpretation problem, there is only one variable of each type: a chance 
variable C that represents the true information class of a spatial object O and a 
decision variable D that represents the possible decisions that can be taken with 
regard to this object. 

A variable in a decision problem can take its value from among a pre-defined set 
of values. We assume that Ci,... ,CN, N > 1, are possible information classes of 
O. These classes therefore are values for the chance variable C. We further assume 
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that the decision variable D takes its value from among the decisions D\,...,Dm, 
m > 1. 

In a decision problem, there typically is uncertainty regarding the true values of the 
chance variables involved. In data interpretation, there is uncertainty concerning 
the true value of the chance variable C since the true information class of O is 
unknown at the time of interpretation. This uncertainty is expressed as a probability 
distribution P(C) for the variable C, specifying for every possible information class 
d the probability P(C — Ci) that d is the true class of the object. Note that this 
probability distribution will not be influenced by the various decisions that can be 
taken. 

In addition to uncertainties, a decision problem involves preferences. The desirability 
of a decision and its consequences, with each other called a scenario, is quantified 
by means of its utility. In our data-interpretation problem, each combination of 
a decision D = Di and a true information class C = Cj has associated a utility 
u(D = Di A C = Cj). The utility expresses the desirability of the scenario where 
the decision Di is taken with regard to a spatial object, while it has Cj as its true 
information class. Actual utilities associated with the various scenarios depend upon 
the objectives that are being pursued with the interpretation. 

Structuring all aspects of a decision problem can be done with a decision tree. 
A decision tree is a pictorial, tree-like representation of the problem. The various 
variables and values of the problem are organized in a (rooted) tree. Each node in 
the tree models a variable; the edges emerging from a node represent the values of its 
associated variable. The topological structure of the tree is an explicit representation 
of all scenarios that can possibly arise from a decision. The root node of the tree 
represents the initial situation before any decision is taken and each path from the 
root node to the tip of a terminal edge corresponds with a scenario. Figure 6.2 shows 
a tree organizing the variables of our object-interpretation problem. To distinguish 
between the decision and chance variable, the former is depicted as a square box 
and the latter is shown as a circle. In the tree, the uncertainties concerning the 
chance variable's values are depicted with the appropriate edges; the utilities are 
depicted at the tips of the terminal edges of the tree. 

Once a decision problem has been structured in a decision tree, the best decision 
for the problem is easily computed. For this purpose, the tree is evaluated by fold-
back analysis. Fold-back analysis starts at the tips of the terminal edges, works 
its way through all intermediate nodes and edges, and ends at the root of the 
tree. In fold-back analysis, for each viable decision the desirability of taking this 
decision is computed. The desirability of a decision depends on the values of the 
chance variables modeling its consequences. However, these values are not known 
before the decision is taken. The desirability of a decision therefore is computed by 
weighting the utilities of the various possible scenarios that can arise from taking 
this decision with the probabilities that these scenarios actually do occur. For each 
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C = d 
Pr(C = C71) 

C = CN 

Pr(C = CN) 

u(D = Di*C = Ci) 

u(D = Di A C = CN) 

u(D = DmAC = C1) 

u(D = DmAC = CN) 

Figure 6.2: A decision tree for the data-interpretation problem. 

chance variable, the expected utility over its values is computed, which expresses 
the expected utility of taking the decision corresponding with the incoming edge of 
the node modeling the chance variable. For each decision variable, the maximum 
expected utility over its values is computed. In a fold-back analysis of the decision 
tree for the data-interpretation problem, the expected utility û(D = Di) for each 
decision D — Di is computed as 

n 

Û{D = Di) = ^2u(D = Di AC = Cj) • P (C = C,). 

The best decision is the decision Dk with the highest expected utility. Computing 
the best decision with regard to a spatial object as outlined before will be coined 
decision-analytic data interpretation. 

The statistical description of decision analysis provides a general and flexible frame­
work for data interpretation. In fact, the framework also provides for conventional 
classification by taking for the decision the various possible information classes; 
the utilities then express the severity of different types of misclassification. As an 
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example, we express the common maximum a posteriori probability classification. 
The only objective pursued in maximum a posteriori probability classification is to 
maximize the probability of correct classification: every misclassification is consid­
ered equally undesirable. This objective can be expressed in terms of utilities by 
taking u{D = DtAC = d) = l, for all i = 1,...,N, and u(D = Dt AC = Cj) = 0, 
for all i, j = 1 , . . . , n, i ^ j , where Di is the decision to assign class Ci to a spatial 
object. 

6.3 Assessing parameters 

For decision-analytic data interpretation, a decision tree to model the interpreta­
tion problem is evaluated. This decision tree includes the various uncertainties and 
preferences involved. The accuracy of the assessment of these quantities directly de­
termines the quality of the decision computed for the problem. This section briefly 
addresses the assessment of the quantities required for the decision-analytic ap­
proach. 

6.3.1 Probabi l i ty assessment 

The uncertainties involved in data-interpretation are expressed as probability distri­
butions over the various information classes distinguished for a spatial object under 
consideration. The probabilities in these distributions are computed from remotely 
sensed data as posterior probabilities given the spectral attributes of these data. 
As before, given a vector x of spectral attributes, for each information class Ci, 
i — 1,...,N, the posterior probability P(C = Cj | x) is computed using Bayes' 
formula: 

P(G - C, | x) - p ( x ) 

where P(x | C = d) is the probability that the vector of spectral attributes x 
occurs in the data given that the true class of the object is Cf. P(C = C,) is the 
prior probability that the object has class Ci for its true class and P(x) denotes 
the probability of the vector x occurring in the data. P(x) is the same for every 
information class and does not have to be computed independently: P(x) is ob­
tained by normalizing the enumerators of the right-hand side of the formula over 
all information classes. The probabilities P(x | C = d) and P(C = Ci), however, 
have to be assessed explicitly for each class Ci. 

Since the method works on a posteriori class probability values, rather than on 
labeled pixels, the accuracy of those values is very important. Therefore, depend­
ing on the availability of ancillary data, the algorithms, described in the previous 
Chapters can be fully exploited here: 
• Non-parametric estimation of (local) class probability densities 
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• Iterative estimation of class prior probabilities 
• Region-merging multi-spectral image segmentation 
• Integration of the above (segment pyramid classification). 

6.3.2 Utility a ssessment 

The utilities of a decision problem are derived from the objective which is pursued 
and express the desirability of the various scenarios that can arise from a viable de­
cision. In most decision problems several different objectives are pursued simultane­
ously. Therefore, a utility can be a complex combination of quite different commodi­
ties, such as monetary gain, status, and time. Decision analysis offers various, more 
or less formal, methods for performing this task [von Winterfeldt & Edwards, 1986]. 

The simplest, and least formal, method for utility assessment is to visualize all 
possible scenarios of a decision problem on a linear scale. The least desirable and 
the most desirable scenarios are identified and assigned to the ends of the scale. 
Every other scenario is now positioned on the scale, where the distance between 
two scenarios is indicative of the difference in desirability between these scenarios. 
Once all scenarios have been positioned, for each scenario a utility is yielded by 
projecting its position onto a matching numerical scale. Figure 6.3 illustrates the 
basic idea for two scenarios Si and Sj. 

ordinal scale 

u(si) = 2.5 u(sj) = 7.4 numerical scale 

Figure 6.3: The visualization method for utility assessment. 

Instead of first visualizing the differences in desirability among scenarios, these 
differences can be quantified directly, by using a standard reference gamble. A stan­
dard reference gamble serves for comparing three scenarios with regard to their 
desirability. Let s;, Sj, and s* be scenarios such that Sj is less desirable than Sj, and 
Sj in turn is less desirable than Sk- In assessing utilities for these three scenarios, a 
probability p is found such that scenario Sj is as desirable as a gamble that yields 
scenario s/t with probability p and scenario si with probability 1 — p. Through this 
probability p, the utilities u(si), U(SJ), and u(sk) have now been assessed to satisfy 

u(sj) = p • u(sk) + (1 - p) • u(si) 
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By using the standard reference gamble for appropriate three-tuples of scenarios, a 
system of equations is obtained from which a set of utilities is computed. The use 
of a standard reference gamble tends to yield better calibrated utilities than the 
visual method; the method, however, is more time-consuming. 

If the utilities of a decision problem are composed of various commodities that are 
hard to compare, utility assessment can be especially cumbersome. The assessment 
then often is simplified by decomposing the utilities into their separate commodities. 
In terms of these separate commodities, marginal utilities are assessed, for example 
using one of the techniques outlined above. These marginal utilities subsequently 
are combined to yield overall utilities [von Winterfeldt & Edwards, 1986]. 

6.4 A case s tudy 

The decision-analytic approach to data interpretation has been applied to a case 
study. Although the situation described in the study in itself is hypothetical, it 
emerges from a real-life issue. The study concerns fraud with subsidies provided by 
the European Union to support the cultivation of certain agricultural crops. These 
subsidies are paid on the basis of declarations submitted by farmers. A fraud detec­
tion mechanism can make use of remotely sensed data. For each parcel, the viable 
decisions to consider on the basis of the data concern approval of the declaration 
on one hand, and an implication of fraud followed by further investigation on the 
other hand. 

The study area is located around the village of Biddinghuizen in the province of 
Flevoland, the Netherlands. A Landsat Thematic Mapper image of the area is avail­
able (we used spectral bands 3, 4 and 5) from June 1987, as well as crop maps from 
1986 and 1987. Seven different land-cover classes are distinguished: grass, wheat, 
potatoes, sugar beets, peas, beans, and onions. The crop maps, originating from 
an initial survey that included interviews with farmers, likely contain errors and 
uncertainties. In our study, we have used the 1986 map to calculate local prior 
probabilities. In the calculation, crop rotation cycles have been taken into consider­
ation; so, the land-cover classes in successive years are not independent. Part of the 
1987 crop map has been used for training sample selection, in combination with a 
color composite of the image. From the 1987 map we have subsequently extracted 
the fields with peas or beans, and considered them as farmers' declarations for 
subsidy on those two crops. 

To investigate viable decisions, various utilities have been assessed. The decision to 
imply fraud and suggest further investigation is very advantageous if the farmer's 
declaration specifies peas or beans and there is a different agricultural crop reality: 
this scenario uncovers an illegal declaration. The scenario is assigned a utility of 10. 
The decision to not inspect such as field is extremely bad. This scenario is assigned 
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a utility of 0. If a declaration turns out to be legal after further investigation, we 
have put ourselves (or the farmer) through unnecessary trouble. However, an inves­
tigation that turns out superfluous is not so bad as overlooking a false declaration. 
This scenario therefore is assigned a utility of 3. Avoiding superfluous investigations 
is more advantageous anyway: we assign a utility of 8. These utilities are summa­
rized in Table 6.1. Based on these utilities, we have applied our decision-analytic 

crop 
grass 
wheat 
potato 
sugar beet 
pea 
bean 
onion 

inspection 
yes 
10 
10 
10 
10 
3 
3 

10 

no 
0 
0 
0 
0 
8 
8 
0 

Table 6.1: Utilities for the detection of illegal farmer declarations. 

method to the decision for each pixel. The result is a binary raster map, indicat­
ing the decision per pixel. Subsequently, a majority criterion has been applied to 
identify the ßelds that have been indicated for further investigation. These results 
are shown in Figure 6.4. Of 81 fields with a declaration of peas or beans, 22 will be 
inspected. 

Now consider a slightly different (perhaps less realistic) situation in which the sub­
sidies paid are rather small and the fraud detection agency is under-staffed. In 
this situation, farmers generally will be given the benefit of the doubt and only 
very suspicious looking declarations will be inspected. The utility assigned to the 
scenarios for this situation are shown in Table 6.2. After applying our decision-
analytic method to the same data with these new utilities, the number of fields to 
be investigated has decreased from 22 to 16 as expected. 

crop 
grass 
wheat 
potato 
sugar beet 
pea 
bean 
onion 

inspection 
yes 
10 
10 
10 
10 
0 
0 

10 

no 
6 
6 
6 
6 

20 
20 
6 

Table 6.2: Modified utilities for the detection of obvious illegal declarations 
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6.5 Conclusion 

Remotely sensed data are exploited to an increasing extent for decision making. 
For processing spatial data for this purpose, the objectives and preferences of the 
decision maker have to be taken into account. In principle, decisions may be taken 
on the basis of a complete classification of the data at hand. However, as taking 
the best decision involves the full extent and distribution of the uncertainty in the 
data, decision making is better founded directly on the data themselves. Decision-
analytic interpretation, provides such an approach by integrating preferences and 
uncertainties in a mathematically well-founded way. The aim of the method is to 
assist a decision maker in taking the best decision and not so much to reconstruct 
reality, thereby contrasting conventional classification. 
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Figure 6.4: Experimental results. Upper Left: Landsat T M Image (band 4). Upper Right: Fields 
under consideration. Center Left: Fields with declaration for 'peas' or 'beans'. Cen­
ter Right: Pixels with positive 'inspection' decision. Lower Left: Fields to be in­
spected. Lower Right: Fields to be inspected after modification of utilities. 
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Chapter 7 

Conclusions and recommendations 

Research for this thesis has resulted in a number of improvements in (semi-) auto­
matic satellite image interpretation. 

1. Extended /c-Nearest Neighbor class probability density estimation 
2. Local class probability density estimation after image regionalization 
3. Iterative (local) prior probability estimation 
4. Quadtree-based region merging segmentation 
5. Segment pyramid classification 
6. Decision-analytic interpretation of fuzzy classifications 

Improvement of land-use/land-cover classifications is achieved in a variety of circum­
stances, depending on the availability of ancillary data and information. It appears 
from this study that the following topics are relevant: 

Regionalization and expert knowledge: Data from Geografie Information Sys­
tems may provide a regionalization of the image area, such that different 
class mixing proportions occur in each region. Regionalization may be based 
on, for example, soil data, digital elevation models, previous land-use/land-
cover data, and on certain kinds of administrative units. If the expected class 
mixing proportions in each region can be estimated, typically requiring ex­
pert knowledge, classifications can be improved by translating this knowledge 
into spatially distributed (local) a priori probabilities. Proper application of 
Bayes formula, however, requires that local a priori probabilities in a region 
are combined with class probability densities that are also local, i.e. pertain 
to the same region. Of course, global class probability densities, which are 
independent of the position in the image, can be used as estimates for lo­
cal ones, but the study has shown that in the circumstance of many small 
and/or homogeneous regions these estimates are very poor. To estimate den­
sities using different training sets for each region (classical stratification) is 
not feasible in such circumstances, because very large amounts of training 
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samples would be required. In such cases, local class probability density es­
timation from a single (global) set of training data, is preferable (Chapter 

. 3 )" . 
Regionalization only: Often, like in the previous case, a regionalization is avail­

able, based on ancillary data, but the relation with class mixing proportions 
is unknown. Also now local class probability density estimation is appropri­
ate, but more important is the method to iteratively estimate class mixing 
proportions per region on the basis of class probability densities. The esti­
mated mixing proportions can be used as area estimates, when multiplied 
by the area of each region, and as prior probabilities in a Bayesian classifi­
cation. Chapter 3 provides a mathematical foundation and demonstrates a 
significant classification improvement. 

Without ancillary data: Extended fc-Nearest Neighbor provides an estimate of 
unconditional feature densities, in addition to the conditional class proba­
bility densities. This opens the possibility to estimate probabilities for the 
unknown class, which, for example, is crucial when estimating areas of the 
"known" classes that are part of the training data. 
When no ancillary data are available to supply a regionalization of the im­
age area, it can be obtained by image segmentation. Any segmentation al­
gorithm could be used, but usually the results suffer from order dependency 
and region fragmentation/merging problems. Therefore, Chapter 4 describes 
a new segmentation method, which avoids order dependency by making a 
few iterations in which the merging criteria, involving spectral distance and 
covariance, are gradually relaxed. Moreover, the method creates a segmen­
tation pyramid by outputting a segmentation after each iteration. Whereas 
region fragmentation and merging are inherent to data-driven segmentation, 
these problems can be solved by segment pyramid classification, i.e. class 
mixing proportion estimation in all segments within the pyramid. This leads 
to integration of segmentation and classification (Chapter 5). The image is 
analyzed on the basis of both spectral and spatial characteristics, such that 
delineation and characterization of terrain objects is provided. It is important 
that the entire process is (almost) threshold-free. The necessity to provide 
spectral-distance thresholds for segmentation is greatly relaxed by integra­
tion with classification, where a suitable spectral-distance value is established 
automatically for each object, following a cJass purity criterion. 

In each case, classification accuracies and reliabilities significantly improve, com­
pared to Maximum Likelihood classifications. 

Moreover, the algorithms yield much more information than only a classification. 
Regionalized class mixing proportions, as well as posterior probabilities are esti­
mated with high precision, and could be stored in a GIS that supports objects with 
fuzzy class membership values, allowing for queries such as: "Show all areas which 
have a probability of larger than 0.8 to have changed from agricultural into indus-
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trial over the past ten years". Updating the GIS data base can be implemented as 
updating posterior probabilities, using the current ones to establish priors and new 
data to derive class densities. 

Chapter 6 shows how probabilistic data may be exploited to support and optimize 
decision making. In principle, decisions may be taken on the basis of a classifica­
tion. However, taking the best decision involves the full extent and distribution of 
the uncertainty in the data. Decision-analytic interpretation provides an approach 
that integrates decision-maker's preferences and class membership uncertainties in 
a mathematically well-founded way. The aim of the method is to assist a decision 
maker in taking the best decision and not so much to reconstruct reality. 

The decision-analytic approach to the interpretation of spatial data has been illus­
trated by means of a simple case study, which does not demonstrate the potential 
power of the approach. However, it illustrates the issue of customization: from a sin­
gle set of spatial data, various results can be obtained, tailored to a decision-maker's 
objectives, by interpreting the data with different sets of utility assessments. 

The approach is based on a well-known and long-established mathematical frame­
work from decision analysis for solving complex decision problems. The field of 
decision analysis provides a wealth of methods, for example for assessing probabil­
ities and utilities, that can be applied to the problem of interpreting image data. 
Thanks to its flexibility and mathematical well-foundedness, the framework has the 
potential to become an integral part of geographical information systems. 

All methods, developed in this study, yielded algorithms that were carefully imple­
mented and can be readily applied. Although the programs, for example concerning 
their user-interfaces, are still experimental, considerable effort was spend to optimize 
notably the segmentation and fc-Nearest Neighbor implementations. Without these 
optimizations the practical usefulness of the programs would be very limited. Inte­
gration of image analysis with Geographic Information Systems technology, which 
was a design goal during the entire project, is well reflected in the software. Segmen­
tation (Chapter 4) is executed completely in the quadtree domain, as is segment 
pyramid classification (Chapter 5), which shows numerous examples of integration 
of geometric with attribute data. 

Recommendations 
The algorithms require representative sampling of the class populations during the 
training stage. The measures to be taken when this requirement cannot be satisfied 
can be a future research topic. 

Another interesting issue that remains to be addressed is the performance of the 
decision-analytic approach to data interpretation at a level beyond pixels. The ap­
proach is suitable for decision making for spatial objects instead of for individual 
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pixels, as the concepts involved remain the same; however, an image segmentation 
pre-processing step is required. Applying the approach to spatial objects is expected 
to benefit from (probabilities of) geometrical and topological properties of objects 
for decision making. 

In context of decision analysis, but also with respect to the above-mentioned prob­
abilistic GIS-model, it should be noticed that in this thesis a posteriori class proba­
bilities are only estimated per pixel. Decision analysis at segment or object level, as 
well as probabilistic GIS models, would require these probabilities per object. Also 
this needs further investigation. For example, during probabilistic (as opposed to 
spectral) segmentation, where class densities govern the merging criteria, it is not 
entirely clear how the probabilities that two adjacent segments belong to a certain 
class can be combined into a single probability that the merged segment belongs 
to that class, or to a common superclass. It might be interesting to look at those 
issues from an aggregation/generalization perspective, taking into account that a 
spatial compound of fuzzy land-covers might form a distinct land-use at a higher 
aggregation level. A starting point for this kind of investigations could be a further 
exploration of the object selection rules in segment pyramid classification. 
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Samenvatting 

Dit proefschrift behandelt het gebruik van kanstheorie bij het inwinnen van geogra­
fische informatie uit satelliet-opnames van het aardoppervlak. Dergelijke opnames 
bestaan uit metingen van de intensiteit van electromagnetische straling, doorgaans 
zonlicht, die door het aardoppervlak wordt gereflecteerd. Het gebied dat door een sa­
tellietopname wordt bedekt is denkbeeldig in rijen en kolommen verdeeld waardoor 
terreinelementen ontstaan. De afstand tussen aangrenzende rijen (resp. kolommen) 
bepaalt de resolutie van het beeld. De gemeten reflectie van de terreinelementen 
wordt digitaal in beeldelementen opgeslagen. Wanneer de beeldelementen op de 
rijen en kolommen van een computerscherm worden afgebeeld met intensiteiten die 
met de reflectiemetingen overeenkomen, wordt het terrein zichtbaar. In dit proef­
schrift worden hoofdzakelijk multispectrale beelden gebruikt, waarvan elk beeldele­
ment uit reflecties in verscheidene spectrale banden bestaat, bijvoorbeeld een aantal 
zichtbare kleuren en infrarood. Om informatie uit beelden te verkrijgen moeten de 
meer-dimensionale continue reflectiemetingen worden omgezet in discrete objecten, 
die van elkaar onderscheiden worden volgens een discrete Massificatie. Helaas is het 
verband niet eenduidig. Binnen verschillende objecten van dezelfde klasse en zelfs 
binnen een enkel object kunnen verschillende reflecties voorkomen. Omgekeerd zijn 
verschillende thematische klassen in een satellietbeeld soms moeilijk te onderschei­
den zijn omdat ze bijna dezelfde reflectie vertonen. In dergelijke gevallen zijn deter­
ministische methodes niet afdoende. Een probabilistische aanpak daarentegen kan 
de spectrale variatie binnen een klasse beschrijven en bovendien de kans op foutieve 
klasse-toewijzingen zo klein mogelijk maken. 

Klassificatie 

Klassificatie kiest voor elk beeldelement een thematische klasse uit een verzameling 
die vooraf door de gebruiker bepaald is. De keuze wordt gemaakt op grond van de 
reflectie-metingen die in het beeldelement zijn opgeslagen. Klassificatie kampt met 
een aantal problemen, waardoor de resultaten vaak tegenvallen. De gemeten reflec­
ties hangen niet alleen af van de thematische klasse, maar bijvoorbeeld ook van 
atmosferische omstandigheden, bodemvochtigheid en lichtinval, waarbij de laatste 
beïnvloed wordt door de zonnestand en de helling van het terrein. Ook het toeval, 
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in de vorm van ruis, speelt een (kleine) rol. Bovendien bestaan sommige themati­
sche klassen uit samenstellingen van bodembedekkingen met verschillende spectrale 
kenmerken. De klasse stedelijke bebouwing bijvoorbeeld omvat huizen (daken), we­
gen, tuinen, plantsoenen enzovoort, die tot verschillende reflecties aanleiding geven. 
Anderzijds komt het voor dat terreinelementen van verschillende klassen dezelfde 
reflectie-metingen opleveren. De betreffende beeldelementen kunnen dan niet met 
zekerheid geklassificeerd worden. 

Een ander probleem treedt op in elementen die objecten van verschillende klassen 
bevatten. Dit kan veroorzaakt worden doordat objecten kleiner of smaller zijn dan 
een terreinelement, zoals bij huizen of wegen in de gangbare satellietbeeld-resoluties 
het geval is. Daarnaast worden sommige terreinelementen doorsneden door de grens 
tussen objecten die op zichzelf groot genoeg zijn, iets dat bij elke resolutie optreedt. 
Bovendien zijn sommige objecten ook in het terrein niet duidelijk afgebakend. Zo 
is de grens tussen bos en hei, of tussen stedelijke bebouwing en het omringend 
landbouwgebied, niet altijd duidelijk te trekken. Er is dan een overgangszone die 
verscheidene terreinelementen breed kan zijn, afhankelijk van de resolutie. De over­
eenkomstige beeldelementen zijn moeilijk te klassificeren. 

Een ander probleem waarop in dit proefschrift wordt ingegaan, doet zich voor indien 
het terrein objecten bevat waarvan de klasse niet tot de verzameling behoort die 
door de gebruiker is gekozen. Vooral indien de klassificatie gemaakt wordt om het 
areaal van de diverse klassen te bepalen is het noodzakelijk om met de zogenaamde 
restklasse rekening te houden. 

Vaak wordt statistiek gebruikt om deze problemen het hoofd te bieden. Men kan 
klassificatiefouten daarmee niet voorkomen, maar de kans erop zo klein mogelijk 
maken. Bovendien kan men deze kans op fouten bepalen, zo nodig voor elk beeld­
element afzonderlijk. Bayesiaanse klassificatie berekent in elk beeldelement de a 
posteriori kans voor iedere klasse op grond van schattingen van kansdichtheid en a 
priori kans, en kiezen vervolgens de klasse met de grootste kans. Bij het schatten 
van kansdichtheden neemt men vaak aan dat de reflecties binnen elke klasse uit 
een Gaussische verdeling afkomstig zijn. De parameters voor de verdelingen worden 
berekend aan de hand van trainingsgegevens, voorbeelden van beeldelementen die 
de gebruiker voor elke klasse in het onderhavige beeld aangewezen heeft. Vervol­
gens kan de kansdichtheid voor elke willekeurige reflectie-vector en voor elke klasse 
eenvoudig bepaald worden. De gebruiker kan soms de a priori kans specificeren als 
het verwachte aandeel van elke klasse in het totale oppervlak. In bepaalde gevallen 
is het beter om gelijke a priori kansen voor alle klassen te veronderstellen - dit 
komt weliswaar de klassificatie-nauwkeurigheid niet ten goede, maar de resultaten 
worden minder bevooroordeeld. 

136 



SAMENVATTING 

Lokale kansen 

Statistische klassificatie-methodes proberen niet altijd de diverse kansen zo nauw­
keurig mogelijk te schatten. Men hoopt wellicht dat de grootste kans ook met vrij 
ruwe schattingen bij de juiste klasse optreedt. Dit proefschrift toont verfijnde schat­
tingen van de diverse kansen door ze lokaal te maken, dat wil zeggen betrekking 
te laten hebben op deelgebieden in het beeld, in plaats van op het hele beeld. 
De benodigde onderverdeling van het beeld kan gemaakt worden met additionele 
(kaart-)gegevens, die bijvoorbeeld in een geografisch informatiesysteem aanwezig 
zijn. Het uitgangspunt is dat bij het nemen van een klassificatie-beslissing voor een 
bepaald beeldelement, statistische gegevens over bijvoorbeeld de specifieke grond­
soort van het element relevanter zijn dan statistische gegevens over het hele gebied. 
Tot dusverre was het bezwaar tegen deze werkwijze dat dergelijke specieke gegevens 
doorgaans niet voorhanden zijn. Dit proefschrift toont aan dat zulke gegevens uit 
reflectieverdelingen geschat kunnen worden. 

Wanneer de a priori kansen in Bayesiaanse kansrekening betrekking hebben op een 
deelgebied, moeten de kansdichtheden over hetzelfde deelgebied gaan. Wil men kans-
dichtheden gebruiken die voor het hele beeld gelden, dan moet men veronderstellen 
dat deze inderdaad onafhankelijk zijn van de positie in het beeld, bijvoorbeeld dat 
de reflectie van een gewas niet afhangt van de grondsoort. Naarmate de deelgebie­
den kleiner worden, wat gunstig is voor de verfijning van de schattingen, wordt deze 
aanname steeds twijfelachtiger. Daarom presenteert dit proefschrift een tweetal ma­
nieren om kansdichtheden lokaal te schatten op grond van een enkele verzameling 
trainingsgegevens. Dit laatste is cruciaal als er veel deelgebieden zijn - afzonder­
lijke trainingsverzamelingen per deelgebied zijn dan niet verkrijgbaar. Naast een 
parametrische methode, die Gaussische verdelingen veronderstelt, wordt een niet-
parametrische methode beschreven, die willekeurige verdelingen kan schatten, indien 
voldoende trainingsgegevens voorhanden zijn. 

Een gebruiker die op deze wijze additionele gegevens inbrengt krijgt een hogere 
klassificatie-nauwkeurigheid. De grootste kans valt nu af en toe op een andere klasse 
dan voorheen en dit levert gemiddeld een betere keuze op. De conclusie is dat de 
lokale schattingen van kansdichtheden en van a priori kansen tot a posteriori kansen 
leiden die relevanter zijn. Zeer veel soorten additionele gegevens zijn geschikt, zo­
als bodemkaarten, geologische kaarten, hoogtegegevens en historische landgebruiks-
kaarten. De enige eis is dat ze het terrein in stukken verdelen, waarin verschillende 
mengverhoudingen van klassen verwacht mogen worden. Deze mengverhoudingen 
hoeven niet vooraf bekend te zijn. 

Segmentatie 

Binnen de automatische beeldanalyse neemt segmentatie een belangrijke plaats in. 
Segmentatie is probeert aangrenzende beeldelementen samen te voegen tot segmen-
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ten die overeenkomen met objecten in het terrein. De gevormde segmenten zijn 
homogeen ten aanzien van een bepaald kenmerk, in het eenvoudigste geval reflectie. 

In tegenstelling tot Massificatie is segmentatie van satellietbeelden niet erg gang­
baar. Segmentatie is erg rekenintensief, wat bij een satellietbeeld van bijvoorbeeld 
6000 x 6000 elementen zwaarder telt dan bij een video-opname van 512 x 512 ele­
menten. Bovendien is de resolutie van satellietbeelden een beperkende factor bij de 
meeste toepassingen. Men zoekt vaak naar objecten die maar een paar beeldelemen­
ten groot zijn, zodat er weinig te groeperen valt. De populariteit van segmentatie 
stijgt waarschijnlijk naarmate computers sneller en beeldresoluties hoger worden. 

Er zijn verschillende methodes. Sommige zoeken eerst naar reflectie-overgangen tus­
sen aangrenzende beeldelementen, om zodoende objectgrenzen op te sporen. Vervol­
gens worden de segmenten bepaald die door deze grenzen omsloten worden, waarbij 
het een probleem is dat er gaten en andere topologische inconsistenties in de grenzen 
kunnen zitten. 

Andere methodes proberen rechtstreeks segmenten te vormen, bijvoorbeeld door 
op willekeurige plaatsen een nieuw segmentje te starten en daaraan één voor één 
aangrenzende elementen toe te voegen, zolang deze nog voldoende op elkaar lijken 
(region growing). Een andere mogelijkheid is het hele beeld eerst in gelijke vierkant­
jes te verdelen en vervolgens te proberen deze recursief samen te voegen zolang het 
resultaat homogeen genoeg is, of ze anders recursief in kleinere vierkantjes op te 
delen totdat die allemaal homogeen genoeg zijn (split-and-merge). Vervolgens wor­
den aangrenzende vierkantjes, die nu verschillende groottes hebben, samengevoegd, 
waarbij wederom de homogeniteit van het resultaat betracht moet worden. Deze 
methodes hebben als bezwaar dat lang niet alle mogelijkheden om elementen of 
deelsegmentjes samen te voegen telkens helemaal doorgerekend kunnen worden. Er 
worden arbitraire keuzes gemaakt, die afhangen van de volgorde waarin de beelde­
lementen tijdens de berekeningen in beschouwing genomen worden. 

Binnen sommige terrein-objecten komen verschillende reflecties voor, terwijl elders 
in het beeld aangrenzende objecten vrijwel dezelfde reflectie kunnen hebben. In het 
ene geval levert een object soms verschillende segmenten op en in het andere kunnen 
verschillende objecten in één segment terechtkomen. Beide soorten fouten komen 
voor in elke segmentatie, ongeacht de segmentatie-methode. Het probleem wordt 
over het algemeen bij de gebruiker gelegd. Deze moet over de gewenste 'fijnheid' 
van de segmentatie beslissen en met een drempelwaarde de toegestane heterogeniteit 
kiezen, dan wel bepalen wanneer een reflectie-overgang een grens is. 

Het proefschrift beschrijft een nieuwe segmentatie-methode, uitgaande van een al­
gorithme om uniforme segmenten te nummeren in een quadtree. De methode behan­
delt multispectrale beelden en biedt de mogelijkheid om met homogoniteits-criteria 
te experimenteren. Het algorithme vormt segmenten door recursief beeldelementen 
en deelsegmenten samen te voegen, waarbij de deelsegmenten tijdens alle fasen van 
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de recursie willekeurige vormen mogen hebben. Afhankelijkheid van de volgorde 
van de beeldelementen in het quadtree-bestand wordt vermeden door een beeld een 
aantal keren te doorlopen, waarbij het homogeniteits-criterium langzaam verruimd 
wordt. 

Wanneer men het resultaat van iedere doorloop bewaart, ontstaat een serie seg­
mentaties met verschillende fijnheden. Omdat in iedere doorloop grotere segmenten 
ontstaan door eerder gevormde segmenten samen te voegen, ontstaat een hiërarchie 
van segmentaties, die segmentatie-pyramide wordt genoemd. 

Integratie 

Massificatie en segmentatie proberen beide terreininformatie uit beelden te win­
nen, waarbij klassificatie gebruikt maakt van spectrale kenmerken in combinatie 
met trainingsgegevens, terwijl segmentatie ruimtelijke kenmerken van objecten be­
schouwt. Aan beide methodieken kleven bezwaren, maar ze zijn complementair, 
zodat ze samen betere resultaten kunnen geven dan ieder afzonderlijk. Tijdens het 
onderzoek dat in dit proefschrift wordt beschreven, is gezocht naar een geschikte 
integratiemethode. 

Indien additionele kaartgegevens ontbreken, kan segmentatie een onderverdeling 
van het beeld geven, waarbinnen vervolgens een klassificatie met lokale kansen uit­
gevoerd kan worden. Dit levert doorgaans inderdaad een lichte verbetering van 
de klassificatienauwkeurigheid op, maar voor de gebruiker is volstrekt onduidelijk 
welke segmentatie-fijnheid het meest geschikt is, en derhalve welke drempelwaarde 
hij moet kiezen. 

Een betere methode is gebaseerd op segmentatie-pyramides. Het uitgangspunt is dat 
er voor ieder terreinobject ergens in de pyramide een segment bestaat. Een object 
met een zeer homogene reflectie komt als segment voor in een 'fijne' segmentatie, 
waar een strikt homogeniteits-criterium is toegepast. Minder homogene objecten 
worden gerepresenteerd door segmenten in segmentaties met ruimere homogeniteits-
criteria. Om voor ieder object het bijbehorende segment op te sporen, wordt de 
klassificatie met lokale kansen op elke segmentatie in de pyramide toegepast. Zo­
doende worden de mengverhoudingen van klassen bepaald in alle segmenten van 
elke segmentatie van de pyramide, waarna het mogelijk wordt om pure segmenten, 
waarin één klasse domineert, van gemengde segmenten te onderscheiden. Om seg­
menten te selecteren, beschouwen we vervolgens een van de segmentaties. De pure 
segmenten in deze segmentatie komen voor selectie in aanmerking, tenzij ze op een 
hoger niveau in de pyramide (met grotere segmenten) ook puur zijn - in dat ge­
val wordt dat hogere niveau gekozen. Bij gemengde segmenten gaat de voorkeur in 
principe uit naar kleinere segmenten, lager in de pyramide, in de verwachting dat ze 
dan puur genoeg worden om voor selectie in aanmerking te komen. Indien dit echter 
niet het geval is, wordt een gemengd segment geselecteerd, wederom op een zo hoog 
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mogelijk niveau. Blijkbaar bevat dit deel van het terrein een mengsel van klassen 
die niet onderscheiden kunnen worden, ten gevolge van resolutie-beperkingen of 
spectrale overlap. De uiteindelijke verzameling segmenten bedekt het hele gebied. 
Wanneer in elk segment de dominerende klasse geselecteerd wordt, ontstaat een 
object-klassificatie. Een elements-gewijze Massificatie wordt verkregen wanneer de 
mengverhoudingen in de geselecteerde segmenten als a priori kansen genomen wor­
den en de kansdichtheden voor elk element afzonderlijk geschat worden. In beide 
gevallen is de nauwkeurigheid hoger dan die van een conventionele Massificatie. 

De geïntegreerde methode wordt probabilistische segmentatie genoemd. Merk op dat 
geen additionele gegevens vereist zijn. Bovendien is de methode niet kritisch ten aan­
zien van drempelwaarden. Het resultaat bestaat, naast de thematische Massificatie, 
uit statistische gegevens die betrekking hebben op segmenten en op afzonderlijke 
beeldelementen. 

Besluitvorming 

Vaak wil men informatie uit satellietbeelden halen om beslissingen te nemen, bij­
voorbeeld voor planologische doeleinden. Gedurerende het besluitvormingsprocess 
wordt veelal een Massificatie vervaardigd, omdat de beslissingen afhangen van de 
ruimtelijke verdeling van thematische klassen. Een nadeel van deze werkwijze is dat 
fouten in de Massificatie, die nooit helemaal te voorkomen zijn, de besluitvorming 
beïnvloeden. 

Nadat dit proefschrift klassificatie-onzekerheid kwantificeert in de vorm van kansen 
en mengverhoudingen, wordt in het laatste hoofstuk een methode gepresenteerd 
die de onzekerheid meeneemt in de besluitvorming. Daartoe wordt een besliskun­
dig model gehanteerd dat gebaseerd is op een utiliteits-begrip en waarin mogelijke 
beslissingen en thematische klasses aan elkaar gerelateerd worden. De gebruiker 
specificeert wat bepaalde beslissingen op zouden leveren als thematische klassen 
met zekerheid bepaald waren. Het algorithme berekent vervolgens de verwachte op­
brengst van elke beslissing, rekening houdend met de onzekerheid in de Massificatie. 

Experimenten 

De theorie in dit proefschrift wordt geïllustreerd met een aantal experimenten. In 
een Thematic Mapper beeld met een resolutie van 30 m, van een gebied rond Biddin-
ghuizen in de Flevopolder worden de oppervlakte-percentages voor zeven gewassen 
geschat, uitgesplitst naar de gebieden waarin dezelfde gewassen het jaar ervoor ver­
bouwd werden. Dit levert een verbeterde Massificatie op, alsmede een gewasrotatie-
matrix, die zeer nauwkeurig blijkt te zijn. Hetzelfde beeld wordt gebruikt om de 
'restklasse' in kaart te brengen: de gebieden die niet bij een van de zeven klassen 
horen. Bovendien wordt een besluitvormings-experiment beschreven, met als doel 
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frauduleuze aanvragen voor landbouwsubsidies op te sporen, waarbij objectieve en 
subjectieve gevolgen van verkeerde beslissingen een rol kunnen spelen. 

Een verrassend voorbeeld van klassificatieverbetering met lokale kansen betreft een 
Thematic Mapper beeld van Twente, onderverdeeld in de (vier-cijferige) postcode-
gebieden. Hoewel de sommige landgebruiksklassen in dit voorbeeld spectraal sterk 
op elkaar lijken, terwijl andere zeer heterogeen zijn, wordt een alleszins acceptabele 
klassificatie verkregen, wat met gangbare methodes niet het geval is. 

Probabilistische segmentatie wordt geïllustreerd aan de hand van multispectraal 
SPOT beeld van Ameland, met een resolutie van 20 m. De object-klassificatie en de 
elementsgewijze klassificatie die aldus verkregen kunnen worden zijn beide nauw­
keuriger dan gangbare klassificaties. 
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