
Mechanisms of self-incompatibility and unilateral incompatibility 

in diploid potato {Solanum tuberosum L.) 



Promotor: dr ir E. Jacobsen 

Hoogleraar in de plantenveredeling, 

in het bijzonder in de genetische variatie en reproductie 

Co-promotor: dr M.S. Ramanna 

Universitair docent, 

Departement Plantenveredeling en Gewasbescherming 



Ronald Eij lander 

Mechanisms of self-incompatibility and unilateral 

incompatibility 

in diploid potato (Solanum tuberosum L.) 

Proefschrift 

ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 

van de Landbouwuniversiteit Wageningen 

dr C.M. Karssen, 

in het openbaar te verdedigen op maandag 14 september 

des namiddags te 13.30 uur in de Aula 

'VA/ 3S'V'T 



This thesis encompasses a part of the scientific research carried out on diploid potato, at the former 

department of Plant Breeding, Wageningen Agricultural University. An international cooperation 

on self-incompatibility (SI) in potato between partners in Italy (University of Siena), Germany (Max 

Planck Institute, Cologne) and The Netherlands (KUN, Nijmegen and WAU, Wageningen) was 

focused on various aspects of SI. This joint project was supported by the European Community 

'Bridge Programme' (BIOT-CT-900172). 

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Eij lander, R 

Mechanisms of self-incompatibility and unilateral incompatibility in 

diploid potato {Solanum tuberosum L.) 

Thesis Wageningen Agricultural University- with references- with summaries in 

English and Dutch. Department of Plant Breeding, P.O. Box 386, 6700 AJ, 

Wageningen, NL 

ISBN 90-5485-893-1 

Cover: see also Fig.5, page 66 

Key words: Solanum tuberosum, Solanum verrucosum, self-incompatibility, self-compatibility, 

unilateral incompatibility, unilateral incongruity, 5-glycoprotein, S-RNase, sense, antisense, 

overexpression. 

Bibliographic Abstract: This thesis describes the creation and selection of diploid potato genotypes 

with well defined self-incompatibility (SI) reactions. The contribution of the stylar products of the 

incompatibility alleles, the ^-glycoproteins, is described for both the gametophytic self-

incompatibility reaction and the incomplete interspecific crossing barrier that exists between diploid 

potato and its self-compatible relative, S.verrucosum. This barrier is called unilateral 

incompatibility or unilateral incongruity (UI). Complex interactions between incompatibility 

determining genes are described. 

BIBLIOTHEEK 
LANDBOUWUNIVERSITEIT 

WAGENINGEN 



Stellingen 

1 De aanscherping van de unilaterale incongruentie-hypothese door de S-locus uit te sluiten van de 
bijdrage aan interspecifieke incompatibilité« (Hogenboom, 1973) is onterecht. De UI hypothese heeft 
in deze vorm derhalve zijn tijd gehad (dit proefschrift). 

2 De RNase-activiteit van S-glycoproteïnen speelt in het unilaterale incompatibiliteitssysteem bestaande 
tussen Lycopersiconperuvianum en L.esculentum een ondergeschikte rol (Rick, 1986; Kowyama et 
al., 1994; Royo et al., 1994; dit proefschrift). 

3 Het "allele-specific dominant negative effect" van een RNase-defecte kopie van een werkzaam 
incompatibiliteitsallel zoals beschreven door Mc Cubbin et al (1997) is op zijn best co-dominantie. 

4 Alle verwijzingen door de in dit proefschrift genoemde auteurs naar oudere literatuur m.b.t. de 
uitdrukking "wederzijdse afzwakking (mutual weakening)" betreffen in tegenstelling tot wat wordt 
gesuggereerd niet de uitdrukking maar slechts het verschijnsel. 

5 De "two-power competition" hypothese van Abdalla (1970) die beschrijft hoe S.verrucosum en 
S.tuberosum kruisingstechnisch van elkaar gescheiden zijn, heeft een hoog antropopatisch gehalte (= 
het vertonen van menselijke gevoelens). 

6 Cytoplasmatische Mannelijke Steriliteit zoals die optreedt in het systeem S.verrucosum x S.tuberosum 
(Abdalla &Hermsen, I97lb) is geen probleem voor de veredeling maar een oplossing. 

7 Het gebruik van incompatibiliteit in de hybride-rassen-productie van zelfcompatibele Solanaceae is 
een achterhaald idee. 

8 De toekenning van de soortstatus aan S.sucrense door Hawkes wordt ontkracht door de beschrijving 
van Hawkes (1989). (Hawkes &Hjertig, The potatoes of Bolivia. 1989). 

9 De detectie van 9 (negen!) verschillende incompatibiliteitsallelen in een diploïde Fl van Nicotiana 
glauca (Pandey, I98l) is een sterke aanwijzing voor slaperigheid bij de referenten of hoge activiteit 
van specifieke paramutatie (sic). Dit pleit voor het vermelden van de referenten bij gerefereerde 
artikelen. 

10 De mogelijkheid van xenotransplantatie zou voor het individu niveau zeer aantrekkelijk zijn, maar 
ongewenst voor de gemeenschap. 

11 Het model zoals dat door de theoretisch natuurkunde Gerard 't Hooft werd gepresenteerd in het 
programma Noorderlicht ("Kosmische anarchie",VPRO, 28-12-1997, 20:05 - 20:28) impliceert niet 
alleen zoals hij zelf al aangaf, predestinatie, maar ook dat de geest een functie is van de materie. 

12 De "Pensee" die bekend staat als "Het Godsbewijs van Pascal" bewijst alleen Pascal's opportunisme 
en zijn feilbaarheid in de kansrekening. 

13 Slimheid verhoudt zich tot A.I.O.-schap als S-homozygotie tot incompatibiliteit. 

Stellingen behorende bij het proefschrift "Mechanisms of self-incompatibility and unilateral incompatibility 
in diploid potato (Solanum tuberosum L)" 

Ronald Eijlander 
Wageningen, 14 september 1998 



Voorwoord 

In de jaren zestig en zeventig werd er aan het toenmalige Instituut voor Plantenveredeling van de 

Landbouw Hogeschool Wageningen veel onderzoek gedaan aan aardappel en aan aardappel 

verwante soorten, en dit gaat in feite tot op de huidige dag verder. In die tijd is er veel bijzonder 

materiaal ontwikkeld. Een deel van dit materiaal heeft direct of indirect zijn weg gevonden naar 

aardappelveredelingsbedrijven, terwijl ander materiaal verder gebruikt werd op tal van andere 

onderzoeksinstellingen. Nakomelingen van drie heel bijzondere aarappelplanten vonden zo hun weg 

naar het Max Planck Instituut te Keulen, alwaar Dr Richard Thompson en medewerkers opnieuw 

een aantal eigenaardigheden onder de loupe namen, maar dit keer met modernere, moleculaire 

technieken. De complicaties in de analyses waren aanleiding om de hulp in te roepen van zowel 

Prof. Dr Ir Jacobsen's onderzoeksgroep "Genetische variatie en reproductie" van de vakgroep 

Plantenveredeling als van de emeritus hoogleraar Prof. Dr Ir Hermsen, die nog steeds actief was 

op de vakgroep en bereid gevonden werd zijn kennis omtrent dit materiaal met anderen te delen. 

Deze samenwerking resulteerde uiteindelijk in een bij de vakgroep geplaatste positie voor een A.I.O. 

binnen een E.E.G. gefinancieerd internationaal project. Deze positie werd door mij ingevuld en hier 

heb ik dan ook de afgelopen jaren met veel plezier aan gewerkt. 

Dit proefschrift is een weergave van slechts een deel van al het werk wat ik samen met vele anderen 

aan dit aardappelmateriaal heb verricht. Het is voor sommigen, niet in de laatste plaats voor mijzelf, 

misschien dan ook frustrerend te moeten zien dat zoveel werk niet in publicatievorm het daglicht 

zal zien. De tegenslagen en achteraf onjuist gebleken werkhypothesen hebben mij en mijn studenten 

dan ook een zekere "faam" opgeleverd. Ik herinner mij nog de uitspraak naar een student toe, toen 

een experiment wat normaal gesproken nooit mis gaat, maar nu jammerlijk de mist in ging, die 

luidde: " ja, wat had je anders verwacht, je werkt immers bij Ronald". Het heeft deze student er 

echter niet van weerhouden om ook zelf A.I.O. te worden. Maar het proefschrift is er dan toch 

gekomen. 

Ik wil hierbij mijn promotor prof. dr ir. Evert Jacobsen bedanken. Evert, je hebt mij in de 

gelegenheid gesteld dit toch wel erg leuke onderzoek te verrichten. Je hebt voortdurend de grote 

lijnen in het oog gehouden en je hebt er voor gezorgd dat e.e.a. hopenlijk toch nog enigszins 

begrijpelijk op papier is gezet. Ons hemelsbrede verschil in stijl heeft er voor gezorgd dat we het 

nodige geduld met elkaar moesten hebben, maar we zijn er samen toch uitgekomen. Ikzelf ben in 

ieder geval tevreden met het uiteindelijke resultaat. Ik hoop dat jij en de lezers dat ook zijn. 



Verder wil ik mijn co-promotor Dr Ramanna bedanken voor zijn, zoals dat heet, dagelijkse 

begeleiding. Ik heb u, zoals al vele promovendi voor mij, leren kennen als aimabel, geduldig en 

onbaatzuchtig. U vond altijd tijd om mijn uiteenzettingen aan te horen en vanuit uw grote kennis 

mee te denken. Ik heb in u niet alleen een kundige collega gevonden, maar ook een vriend. 

Prof. Hermsen heb ik reeds in mijn studententijd en ook nu tijdens mijn A.I.O.-schap leren 

waarderen als docent en als mens. De heb met u vele, vele uren aan tafel doorgebracht, gebogen over 

papieren vol met afstammingen en genetische modellen, speculerend over wat er nu weer aan de 

hand kon zijn. Uw kennis van het materiaal en het verschijnsel "incompatibiliteit" zijn voor mij van 

onschatbare waarde geweest. Uw bijdragen aan mijn onderzoek hebben dan ook geresulteerd in een 

co-auteurschap, waar u mij een groot plezier mee heeft gedaan. 

Dirk-Jan Huigen wil ik bedanken voor al het werk dat hij gemerkt en ongemerkt voor mij heeft 

verricht. Jij coördineerde, samen met de mensen van Unifarm, het werk in de kassen. Toen ik op de 

vakgroep kwam, had jij het voorwerk al gedaan en kon ik zo aan de slag. Je hebt me veel 

organisatorische taken uit handen genomen en waarschuwde wanneer er weer eens wat hooi van de 

overvolle vork afviel. En tot de promotie aan toe blijf je betrokken bij wat er moet gebeuren. 

Veertien september is waarschijnlijk de laatste dag datje nog voor me in de weer bent. Bedankt. 

Marja Schippers en Anja Posthuma, jullie hebben voor mij het nodige in-vitro werk verricht en veel 

werk uit handen genomen. Dit betrof een aantal transformatie-experimenten, maar de meeste tijd 

is denk ik toch wel gaan zitten in de instandhouding van de gigantische hoeveelheid basisklonen en 

transformanten. Hoewel niet alles heeft opgeleverd wat er van werd verwacht, zijn er toch leuke 

dingen uitgekomen. Een deel hiervan vinden jullie in dit proefschrift terug. 

Voorts wil ik de mensen van TUPEA bedanken. Het lijkt erop dat ik magische vingertjes heb om 

PC's vast te laten lopen. Het inloggen onder mijn eigen naam was vaak al voldoende om een PC op 

tilt te krijgen. Een mailtje aan jullie via een niet-recalcitrante computer was meestal voldoende om 

jullie te doen uitrukken. Jullie hebben me altijd naar tevredenheid uit de brand geholpen. 

Dan heb ik nog met een groot aantal studenten samengewerkt. Hoewel de meeste van hun werk 

weinig terug zullen vinden in dit proefschrift, wil dit niet zeggen dat zij niet een belangrijke bijdrage 



hebben geleverd. Monique Mouwen was reeds bezig met diverse analyses toen ik op de vakgroep 

binnenkwam. Zij werd gevolgd door Mohammed Sohani, Bart Bronnenberg, Marlijn Vos, Jaap 

Kooyman, Ester Abad I Cantero en Wendy ter Laak. Het was prettig om met jullie samen te werken. 

Ik hoop dat dit wederzijds is. Een deel van de beloning zit in ieder geval in dit proefschrift. 

Voorts zijn daar de vele collega's van de laboratoria die ik wil bedanken. Om er een paar te noemen: 

Luuk Suurs, Elly Jansen, Irma Straatman en Marjan Bergervoet. Ik heb jullie allemaal wel voor de 

voeten gelopen en met vragen en problemen lastig gevallen. Als goede collega's hebben jullie 

meegedacht en meegeholpen waar dat nodig was. Ik heb er veel van opgestoken. 

Binnen de vakgroep heb ik met vele mensen een prettig contact gehad. Dit betreft niet alleen de 

mensen waarmee ik op de kamer heb gezeten of gedurende mijn schrijffase op de Terp lief en leed 

heb gedeeld, maar ook vele andere mensen. De lijst is lang, en om het risico van mensen vergeten 

te vermijden, wil ik jullie zonder verder namen te noemen hierbij bedanken voor de gezellige tijd. 

Tot slot wil ik hierbij mijn familie bedanken. Het is haast traditioneel, maar niet minder waar en 

oprecht. Mijn ouders wil ik bedanken voor al het medeleven wat ze hebben getoond. Mijn succesjes 

hebben jullie altijd meer vreugde gebracht dan ik waard vond, maar de tegenslagen bedrukten jullie 

ook altijd meer dan nodig was. Kijk eens aan, er is een proefschrift. 

Mij kinderen weten haast niet beter dan dat werken inhoudt dat pappa of "weg" is, of op zolder 

achter de computer zit, of dat het ervoor heeft gezorgd dat pappa weer "heel erg moe" is. Jullie 

moeten me maar geloven, het is meestal heel erg leuk, tenminste als je het werk doet waar je, zoals 

ik, zelf voor hebt kunnen kiezen. Ik hoop dat ik er in mijn volgende baan meer voor jullie kan zijn. 

En ten slotte mijn partner, Leontine. Je weet wat het is om te promoveren, maar ook bij jou zal de 

vertwijfeling wel eens hebben toegeslagen, al heb je dat nooit zo laten blijken. Je kwam wel eens 

met de vraag "moet je nu echt weer naar het lab/overwerken/achter de computer/vannacht 

doorwerken/humeurig zijn/etc", maar over het algemeen heb je met een bewonderenswaardige 

tolerantie mijn A.I.O.-trekjes geaccepteerd. Ik hoop dat ik deze trekjes nu achter me gelaten heb. 

Bedankt. 
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Chapter 1 

General introduction. 

Flowering plants can propagate themselves in two ways: vegetatively and sexually. Vegetative 
propagation leads normally to individuals that are genetically identical to the original plant. Well-
known examples of vegetative propagation are the runners produced by strawberry (Fragaria) and 
the tubers produced by potato. Variation in nature on vegetative propagation is endless, various 
plant organs can be used to produce clonal offspring. Even seeds, normally the result of a sexual 
process, can produce clonal offspring: for instance, twin-embryos (polyembryony) in seeds of citrus 
often contain clones of the mother plant (e.g. Webber, 1948) and apomixis in blue grasses (Poa sp) 
is another good example of bypassing syngamy. Vegetative propagation is attractive when important 
characteristics have to be kept together, but this limits the response of the plant to changes in the 
environment: response depends completely on the genetic information present in the genotype 
dealing with. 

Sexual propagation, involving fertilisation and genetic recombination, provides plant species not 
only another mechanism of spreading in the environment, but also the possibility to adapt to changes 
in the environment or to invade different environments. Self-fertilisation or hybridisation with a 
close relative (inbreeding) limits the variation in the offspring and thus limits adaptiveness. Due to 
inbreeding, accumulated fitness-negative characteristics which might be recessive, have a higher 
chance of becoming homozygous, thus reducing the fitness of those plants. Another effect of 
inbreeding, that can be advantageous, is that it also purifies species from a part of those fitness 
negative traits and can fix positive gene combinations. Combined with a certain amount of 
outcrossing, which ascertains also the adaptiveness, inbreeding proved to be a succeesful strategy 
for some species, and can be found in many important cultivated crops, such as wheat, barley, peas 
and beans, which are called self-pollinators. Inbreeding is, however, for many plant species a risky 
strategy to rely on. 

There are many mechanisms to prevent or limit selfing. Some are based on floral morphology, 
others on difference of maturation time of male and female reproductive organs within individual 
flowers. A number of these self-fertilisation impeding mechanisms are well visible and 
recognisable, based on temporal or spatial separation of male and female reproductive organs. 
Dioecy, which means that plants carry either male or female flowers, is such a mechanism, well 
known from, for instance, willow (Salix). Separation mechanisms, such as protogyny (temporal 
separation, e.g. Victoria amazonica, anonymus), monoecy (male and female flowers on the same 
plant, e.g.in Zea mais), and hermaphrodity (flowers are male and female at the same time, e.g. 
potato or cabbage) do exist that are less strict then dioecy. 

Self-incompatibility systems 
Some of the variations on the separation mechanisms as described above are effective, but cannot 

always avoid high levels of self-fertilization or cross-hybridization with closely related genotypes, 
thus leading to inbreeding. 

In many cases, undesired selfing does not lead to fertilization, though, due to specific pre-
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fertilization barriers. Barriers against self-fertilisation can be found at many places, e.g., on the 
stigmatic surface ( e.g., Cruciferea, like Brassica oleracea), at various places in the transmitting 
tract in the style (e.g., various Solanaceae, like Petunia hybrida and Solanum tuberosum), in the 
ovary (e.g., Beta vulgaris) or even in the ovule just before syngamy (e.g., Theobroma cacao). 
Mango (Magnifera indica) shows fertilization even after selfing, but the resulting zygotes die 
approximately two weeks post-fertilization (Sharma and Singh, 1970), although it can be disputed 
whether or not this phenomenon really belongs to incompatibility. Some of those incompatibility 
characteristics appear to be correlated with aspects such as pollen being bi- or trinucleate, dry or wet 
stigma surface, etc. These aspects are extensively reviewed and exemplified in the monograph of 
De Nettancourt (1977) and recently by, for instance, De Nettancourt (1997), Kao and McCubbin 
(1997) and Nasrallah (1997). It is known that the sporophytic incompatibility system (to be 
explained later) contains both diallellic and poly-allelic systems. The heteromorphic system appears 
to coincide with diallelic systems, which means that differences in flower morphology reflect which 
types are intercompatible and which are not. The homomorphic incompatibility systems 
(sporophytic and gametophytic) do not betray their intercrossability by their morphology. The 
barriers that are active in plants with dry stigmata are usually on or directly under the stigma, 
whereas plant species with wet stigmata usually display the barriers in the style or, less frequently, 
even in the ovaries. Most gametophytic SI systems display wet stigmata and bi-nucleate pollen. Dry 
stimata and tri-nucleate pollen are usually found in sporophytic systems. 

Sporophytic Self-Incompatibility. 
In the sporophytic self-incompatibility system (SSI) the genotypes of both the pollen parent and 

the pollen recipient (the sporophytes) determine whether a combination is compatible or not. The 
pollen (the gametophyte) reflects the genotype of the pollen donor but not the actual genotype of 
the pollen itself. 

Sporophytic heteromorphic systems. 

In the heteromorphic self-incompatibility systems there exists an association between 
incompatibility groups and floral morphology: incompatibility behaviour depends on the phenotype. 
This is believed to be always sporophytic (Pandey, 1970). Distylic and tristylic systems have been 
described for various plant species. A heterodistylic self-incompatibility system has been described, 
for instance, for primrose (Primula) or Hypericum . Flowers with long anthers and short styles (Pin), 
can only fertilize plants with long styles and short anthers (Thrum), and vice versa. Offspring will 
segregate in a 1: 1 ratio of Pin and Thrum. Here selfing is excluded, but full sib mating is possible 
in 50 % of the cases. 

It has been reported for several primrose species that linkage between S-morphology and actual 
crossability can be broken or disrupted (Ernst, 1932,1936, reviewed by De Nettancourt, 1977; Shar
ma and Boyes, 1961). Some of the biochemical aspects of the system have been characterised by 
Heslop-Harrison et al (1981) and Shivanna et al (1981). 
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Sporophytic homomorphic systems 

Sporophytic homomorphic self-incompatibility has been described for the Cruciferae and at least 

five other families (Bateman, 1955; Charlesworth, 1988), but it has become clear that sporophytic 

systems can display characteristics that are normally found in gametophytic self-incompatibility sys

tems and vice versa (see also review by De Nettancourt, 1997). SSI is, as mentioned before, 

characterised by the fact that the interaction between pollen and stigma/style depends on the 

dominance relationships between the ̂ -alleles of both parental plants (the sporophytes), the pollen 

(the gametophyte) carrying the information of the pollen donor in the pollen coating (Stephenson 

et al., 1997). The genotype of the pollen grain itself is of no importance for the reaction in SSI (Fig. 

la), this in contrast with gametophytic self-incompatibility (GSI), where the genotypes of the style 

and that of the pollen grain itself determine whether a combination is compatible or not (Fig. lb). 

In such a sporophytic system the fraction of compatible pollen in a population, is a function of the 

number of alleles present, as well as dominance relationships between S-alleleles in pollen and style. 

Polyallely results then in numerous compatible combinations, which is increased when 5-alleles can 

be dominant over other S-alleles (e.g., SI over S2 in the pollen phenotype, as in Fig. 1, most right 

combination). 

Most of the fundamental research on the one-locus multi-allelic sporophytic self-incompatibility 

system is done within the Brassicaceae (reviewed by Nasrallah, 1997), that belong to the 

Cruciferae. Brassica displays a one-locus, multi-allelic system, the genetics of it being elucidated 

by Bateman (1955). He described a single S-locus that segregated Mendelian. Due to the 

incompatibility mechanism, S-homozygotes are possible but will be very rare: plants are in general 

heterozygous. Recom- bination between different alleles would in theory lead to a rapid increase 

SSI 

-•S1S2-

pollen: SI = S2 
jtyle : SI - S2 

GSI 

S2S3^ 

51 - S2 
52 - S3 

Fig. 1. Compatible and incompatible 
combinations in a sporophytic one-locus 
self-incompatibility (SSI) system (top) and 
a one-locus gametophytic self-incompatibil
ity (GSI) system (bottom). Some dominance 
relationships between S-alleles combina
tions are shown (SSI, top). The pollen 
grains are genetically of the genotype 5/ or 
S2. The pollen grains in the sporophytic 
system are coated with both SI and S2 
determinants. The pollen recipients are, 
from left to right: S1S2, S2S3, S3S4 and 
S2S3 (top) or S1S2 (bottom).The gameto
phytic incompatibility shows the effect of 
two different alleles present in the same 
pollen grain, as produced by polyploids 
(bottom right). The interaction between 
different 5-alleles (known as competitive 
action or mutual eakening) causes self-
compatibility, a phenomenon not known 
from the sporophytic system, but here -
(inversed) dominance relationships between 
the 5-alleles can also bring about (self-) 
compatibility (top right). 
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of the number of alleles and perhaps even to a break-down of the SI system. Although a multitude 

of S-alleles has been found (Nou et al., 1993; Brace et al., 1994), frequent recombination on the S-

locus seems not to be the case. The reason is that the S-locus complex (also called S-haplotype) has 

been shown to contain a subset of genes in close linkage (S-locus complex, Fig. 2 top), that 

maintain functional specificities and do function as a set (see also review by Nasrallah, 1997). Two 

genes, important for the stylar SI reaction, have been investigated extensively, and also other genes 

linked to those two genes are investigated on their contribution to the pollen-style interaction, 

leading to either a compatible or an incompatible reaction. 

Fig. 2 

• - 200 kb 

K-
SLG SRK 

Ligand, pollen borne 

Ligand 
f 

ff • 
•iff f • 

AQ 

Cell wall 

Plasma 
membrane 
papillär 
cell 

The S-locus and a model for self-incompatibility in Brassica. Top: a diagram showing the genes that code 

for the stigmatic receptor molecules SLG ( <S-locus glycoprotein) and SRK (S-locus receptor kinase). Linked 

to this is a hypothetical pollen ligand-encoding gene. The putative SI involved SLL (S-locus pollen ligand) 

genes are located between SLG and SRK (SLLmd linked genes are not shown). The unlabeled box to the right 

represents one of several genes that map to the <S-locus complex but whose contribution to the SI response 

is unclear yet. For simplicity, introns in SRK are not depicted, but the extracellular (S) and the linked kinase 

(K) domain are presented seperately. The size of the locus spans approximately 200 kb, but can vary with 

the S haplotype. 

Bottom: Model for the hypothesized interactions between SLG, SRK and pollen ligands at the surface of a 

stigmatic epidermal cell. SRK spans the membrane. When SLG, SRK and the pollen ligand bind, a complex 

intracellular signal transduction cascade is initiated, finally resulting in the arrest of pollen tube germination 

and growth. The arrows indicate a Ca2+ and phosphorylation dependent signal transduction pathway and is 

acting on a membrane protein related to water-transporting aquaporins (AQP). With minor modifications, 

from Nasrallah (1997). 
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The two stigma expressed 5-locus genes that are required for an inhibition of self-pollen, are 
both highly polymorphic. One of these genes codes for the so-called S-locus glycoprotein (SLG), 
which is a soluble cell wall-localized glycoprotein with a molecular weigth of 55-65 kD ( Nasrallah 
and Nasrallah, 1984; Nasrallah et al., 1985,1987), highly polymorphic and useful for 5-phenotype 
identification. The second gene codes for an 5-locus receptor kinase (SRK), which is a receptor-like 
kinase that spans the membrane (Stein et al., 1991,1996). SLG sequences are higly homologous 
with sequences of the extracellular (S) domain of SRK. It is speculated that early in the evolution 
of the S-haplotypes SLG arose from SRK by duplication (Tantikanjana et al., 1993). Quite some 
(pseudo-) genes belonging to this family have been found to be clustered and linked to the S-locus 
(Suzuki et al., 1997), although also unlinked related genes were detected that might play a role in 
the SI process (Luu et al., 1997). Other features of SLG and SRK led to the belief that the 
hypothesized S-locus encoded pollen Si-determinant is a ligand for the receptor. SRK and SLG 
should bind to different sites of the same pollen ligand, thus precipitating an intracellular (Ca2+ 

dependent) phosphorylation cascade that results in the arrest of self-type pollen (Fig. 2, bottom). 
The sense and anti-sense approach for elucidating more of the functions of SLG and SRK is 
seriously hampered by the high sequence homology between those two genes. Sense and antisense 
inhibition will in most cases affect both genes, whereas only one effect was hoped for (Conner et 
al., 1997). That both genes play a key role in SI, is undisputed, however. 

Although the pollen component is still unknown, some candidate genes and products have been 
found. Yu et al (1996) found inB. napus two genes located in between SLG and SRK, one of them 
(SLL,, S-locus pollen ligand 1) being S-locus and SI specific. Its expression was only detectable 
in anthers. It was deduced that the SLLl protein was 2 or 3 kDa, but no related sequences could be 
found in the databases. Stephenson et al (1997) analysed protein fractions from SI pollen from B. 
oleracea and detected water soluble components, with a M, <. 10 kDa. From this, a basic, cysteine-
rich protein could be isolated that belongs to the family of Pollen Coat Proteins class A (PCP-A), 
one of which is known to bind to stigmatically expressed components of the S-locus in Brassica. 
PCP-Al is regarded as a candidate for playing a role in SI and perhaps also in a specific type of 
interspecific incompatibility: unilateral incompatibility. Unilateral incompatibility in Brassica 
might be related to self-incompatibility (Hiscock and Dickinson, 1993). 

Gametophytic Self-Incompatibility 

In the gametophytic self-incompatibility system (GSI) the genotypes of the pollen (gametophyte) 
and the pollen recipient (the sporophyte) determine whether or not a combination is compatible 
(Fig. lb). In the SSI system the genotype of the pollen itself is of no importance for SI, but the 
information about the pollen donor, carried at the outside of the pollen grain, is (fig. la). This 
difference in information supply by the pollen forms the basis of distinguishing GSI and SSI. 
Nevertheless, classifications are not always clear-cut and GSI species can have other features that 
are more common in the SSI group (e.g. rye, Wehling et al, 1994) or vice versa. Thus, also within 
the gametophytic self-incompatibilty system several distinct groups can be recognized. Based on 
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the number of loci involved, the number of plant families showing one-locus GSI, is presumably 
larger than those found for multi (>2) loci GSI. The two loci system has been found so far in only 
four families (De Nettancourt, 1977). 

Polygenic GSI. 

Within the heteromorphic SSI classes can be identified visually, which facilitates the analysis 
of even the multi locus system. One locus GSI systems are relatively easy to identify, because the 
number of allele combination permutations is quite limited. Nevertheless, also some of the more 
multi locus GSI systems have been analysed. Lundqvist (1956, 1990, 1991) reports complex SI 
systems with three or four loci in the genera Ranunculus, Beta and Lilium. 
In the grasses a less complex two-loci sytem with dry stigmata has been found. In rye (Secale 
cereale), the two unlinked loci S and Z (Lundqvist, 1956) have been reported to control the system. 
When for both loci the alleles in the style are matched by those in the pollen, an incompatibility 
reaction occurs. Until recently, for rye neither female S and Z products nor incompatibility-related 
products could be identified (Tan and Jackson, 1988). It has been shown, though, that Ca2+ and 
kinase activity play a role in SI of rye (Wehling et al., 1994) and here too, stigma papillär ligands 
are expected to be involved. From the grass Phalaris coerulescens pollen S-alleles were cloned, 
from which the deduced amino acid sequences shared homologies with thioredoxins (Li et al., 
1994). 

One-locus GSI systems with a dry stigma and without S-RNases: Poppy. 

Field poppy (Papaver rhoeas) has extensively been investigated on the underlying mechanisms of 
SI. The incompatibility reaction of poppy is determined by a polyallelic one locus system. The 
incompatibility reaction occurs on a dry stigma (Lawrence, 1975; Lawrence et al., 1978). From this 
plant species stigmatic glycoproteins were isolated and identified, and they cosegregated with the 
^-alleles (Franklin-Tong et al., 1989). Subsequently, the cDNA of the stigma papillär SI 
glycoprotein was cloned and sequenced (Foote et al., 1994). To date, the sequence is different from 
any known in the Brassicaceae or Solanaceae. The ̂ -glycoproteins do not possess RNase activity, 
which the 5-glycoproteins of the Solanaceae do have (Franklin et al., 1995; McClure et al.,1989). 
The ^-glycoproteins, that proved to be S-specific, are believed to adhere to (yet unknown) 
receptors, thus eliciting Ca2+ (Franklin-Tong et al., 1993, 1995), which results in a cascade of 
phosphorylation of specific proteins, in which Ca2+ dependent protein kinases and inositol 
triphosphate may be involved (Franklin-Tong et al., 1995, 1996). An incompatible combination 
of ^-alleles results in an increased Ca2+ dependent phosphorylation of at least two 26 kD pollen 
proteins (Rudd et al., 1996) and it also causes the slow-moving calcium wave, regulating the pollen 
tube growth, to show "rapid and dramatic alterations in [Ca2+]( within a few seconds of challenge". 
An unusual high peak is reached, followed by a break-down of the tip-focused [Ca2+]; gradient 
(Franklin-Tong et al., 1997). Finally, the pollen tube growth is inhibited. A model for some of the 
elucidated interactions involved in pollen tube growth and inhibition is presented in figure 3. 
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direction of Ca wave 

Fig. 3. Model for the propagation of the Ca2+ wave in poppy (Papaver rhoeas) pollen tubes. The normal growth of 
pollen tubes of P. rhoeas is regulated by a slow moving calcium wave propagated by inositol 1,4,5-
triphosphate. Increases of [Ca2*], will activate Ca2+ sensitive phosphoinositidase C (PIC), which will then 
hydrolyze specifically the membrane lipid PIP. The now raised Ins(l,4,5)P3 will stimulate release of Ca2+ 

from Ins(l,4,5)P3 sensitive intracellular stores. Continued slow Ca2+ waves can be generated. 
It is hypothesized that the binding of a stigmatic S-protein (S) to a membrane receptor initiates a signal 
transduction chain in which Ca2+ dependent phosphorylation plays an important role. The normal Ca2+ 

gradient is disturbed. Increases of Ins(l,4,5)P3 and the consequent elevation of [Ca2*]; , inhibition of 
phosphoinositide (PI) turnover and inhibition of Ins(l,4,5)P3 binding to its receptor lead to an inhibition of 
pollen tube growth. With small modifications, from Franklin-Tong et al, 1996. 

One-locus GSI systems with a wet stigma and with S-RNases: Solanaceae 
Single-locus gametophytic self-incompatbility is believed to be the most common incompatibil

ity system within the solanaceous species, although there might exist also solanaceous species that 
are governed by a two-loci system (e.g. Abdalla and Hermsen, 1971). A remarkable feature of most 
SI systems is, that SI seems to be very stable and resists to a great extent the spontaneous mutation-
induced turn-over into self-compatibility. From the population-genetic point of view new S-alleles, 
and especially self-compatibilizing alleles, would relatively easily accumulate in a population. 
A large number of natural S-alleles that are found, seems to conflict with low frequencies of 
mutants with a disrupted S-locus. Natural selection against those mutants may be one reason, but 
difficulty in recognizing those mutants may be another. Because, in general, important information 
can be gained from the analysis of deviant genotypes, spontaneous or induced mutants are regarded 
as highly valuable research material. Induced mutations facilitate a rational search for those 
mutants. 

Mutation studies (by means of chemical mutagens and irradiation), in order to create point 
mutations, deletions, duplications and translocations, resulted in nearly all cases in self-compati
bility that was either pollen-borne or style-borne. A change in specificity (Van Gastel and De 
Nettancourt, 1975; Van Gastel and Carluccio, Van Gastel 1976; see also monograph by De Nettan
court, 1977) could not be shown, or can be explained now otherwise by applying the accumulated 
knowledge about the organisation of the 5-locus. This holds a lso true for nearly all the cases of 
believed-to-be pollen-part mutations. 
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An elegant model of the 5-locus as proposed by Lewis (1949,1960), was the so-called tri-partite 
structure, that could explain satisfactorily most of the results of the aforementioned studies. In this 
model (Fig. 4), the 5-locus consisted of an S-specificity- (identity), a stylar- and a pollen activity 
part, all in tight linkage. The specificity part gave rise to a specific protein in both pollen and style, 
whereas the style and pollen parts were specifically expressed in style and pollen respectively. The 
combination of activity and identity parts resulted in a specific receptor- ligand pair, causing inhibi
tion of the pollen tube when pollen and style matched in specificity. 

There are few reports on a change of the specificity (change of S-allele specificity), for instance 
after anther-culture (Ramulu, 1982) or inbreeding (Maheswaran et al., 1986; Kheyr-Pour and 
Pernes, 1986). Some of these results may be explained by the expression of accumulated modifier 
genes (polygenic) that can also bring about reduced self-incompatibility (pseudo-compatibility) up 
to a level of self-compatibility (e.g. Henny and Ascher, 1976; Robacker and Ascher, 1978). Even 
the appearance of monogenic pseudo-compatibility genes with strong effects cannot be excluded 
(see also introductions by Dana and Ascher, 1986; Liedl and Anderson, 1994). 

Mutations of SI are, as stated, a valuable source for research. Olsder and Hermsen (1976) 
detected both a self-incompatible (G609) and two self-compatible dihaploid potato genotypes 
(G254 and B16) with a high degree of male and female fertility. In successive studies on this 
material (Hermsen, 1978a, 1978b, 1978c), the underlying genetics was analysed. The self-
incompatibility system within the population based on those three clones was very reliable for its 
expression. 

Based on a complete diallel crossing scheme, four 5-alleles were identified. The self-
compatibility was explained by a putative translocation of the pollen-part of the SI allele from 
chromosome 1 to chromosome 12 (Hermsen, 1978 a; Hermsen et al., 1973,1978b). Heterozygosity 
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for S-alleles in the pollen (e.g., in 2n-pollen and pollen from polyploids; fig. lb) would then bring 
about "competitive interaction" (Lewis, 1947), nowadays known as "mutual weakening". This 
material was originally analysed by classical crossing experiments; biochemical identification of 
^-groups was unsuccessful until the late eighties. Hermsen's material formed the basis for an 
extensive study on molecular, biochemical and biological aspects of SI in diploid potato (see for 
instance Kirch, 1993; Van Eldik, 1996; Li et al, 1994). 

The ̂ -glycoproteins in solanaceous species were shown to co-segregate with the S-phenotypes 
(e.g.Kirch et al., 1989) and different S-classes could easily be identified. These ^-glycoproteins 
could be traced extracellularly in the same tissue (stigma, transmitting tract of the style and even 
in a single cell layer) where the SI reactions occurred (Anderson et al., 1989). These tissues 
showed also an accumulation of corresponding mRNA (Cornish et al., 1987). Within the 
solanaceous species, a whole range of S-alleles has molecularly been cloned. Kirch (1992,1995) 
isolated, from the aforementioned diploids, molecular clones of SI and S2 alleles. The 
translocation hypothesis for AS7was investigated by Thompson et al (1991), using RFLP analysis 
of plant material, coding for this tSl with the cloned stylar part of SI. With this approach it showed 
to be impossible to discriminate between plants with and without tSl and subsequently a good 
candidate for the S-pollen part or otherwise a useful Si-interacting tool could not be cloned. Based 
on these data, as well as on sequence data, the tri-partite structure of the 5-locus, as proposed by 
Lewis (1961) had to be rejected. The translocation hypothesis for tSl could be maintained under 
the assumption that the translocation would have involved only the pollen part but nothing of the 
analyzed stylar expressed SI-fragment. 

The pollen component plays an essential role in the elucidation of the SI mechanism in the 
Solanaceae. It was shown that the ̂ -glycoproteins have RNase properties (McClure et al., 1989) 
and are therefore also called S-RNases. This led to a range of experiments dealing with sense and 
anti-sense transformations and transformations with coding regions of ^-alleles, modified for 
RNase properties or for presumed identity determining stretches (see for references chapter 5). 
Based on some of the information gained, two mechanisms were considered for the contribution 
of the S-glycoprotein. One model (Fig. 5, left) is based on the assumption that the pollen part codes 
for a membrane receptor that is specific in the uptake of the 5-RNase, the other one is based on a 
non-specific uptake combined with a specific inhibition of non-self ribonucleases (Fig. 5, right). 
Both models result in only one specific ^-glycoprotein being active in the pollen tube. Identifica
tion of the membrane receptor (model 1) or the ribonuclease inhibitor (model 2) will play an 
important role in unraveling the SI mechanism. 

To date, many factors have been found that play a role in pollen tube growth and pollen viability, 
some of them being essential for a successful fertilization, but none proved to be the long-sought 
pollen SI factor. Recently, however, Ca2+- dependent protein kinases have been isolated from pollen 
tubes of Nicotiana alata that seem to play a role in the SI reaction, presumably shortly after the 
uptake of the S-RNase ( Kunz et al, 1997). This discovery is in accordance with the important role 
of phosphorylation in the SI response of Brassica, poppy and rye (see above) and will presumably 
be very helpful in a further elucidation of the SI pollen pathway. 
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Fig. 5. Two models for self-incompatibility interactions 

Left: model based on the assumption that the pollen 

S-alleles encode membrane receptors. Specific uptake 

of the S2 RNase (^-glycoprotein) by the correspond

ing S^-receptor occurrs. SI RNase can only be 

transported over the membrane by an SI receptor, 

which is absent here.The S2 RNase degrades non-

specifically the rRNA and /or the mRNA, resulting in 

inhibition of protein synthesis and finally in pollen 

tube arrest. Pollen tubes carying other S-alleles that 

SI or S2 do not transport the S-RNases over the 

membrane and are hence not arrested. 

in the one-locus GSI system of the Solanaceae. 

Right: model based on the assumption that the pollen S-

alleles encode ribonuclease inhibitors. Here, all S-

RNases can be transported over the membrane. Pollen S-

allele ribonuclease inhibitors have two binding domains: 

one binding indiscriminately to the ribonuclease activity 

domain of the S-RNases and one binding specifically to 

the specificity domain of the corresponding S-RNase. As 

a result, in this example, only the self Si-RNase is 

capable of degrading pollen RNA, whereas the (pollen 

non-self) SI -RNase is inactivated. With minor modifica

tions, from Kao and McCubbin (1997). 

Unilateral incompatibility in the Solanaceae 

It is frequently found that in interspecific hybridisation between a self-compatible and a self-
incompatible species, fertilisation is possible in one direction only. This phenomenon is, therefore, 
called Unilateral Incompatibility (UI) and is found throughout the incompatibility systems. It was, 
according to De Nettancourt (1977), first defined by Harrison and Darby (1955) but in the early 
days described by many others (e.g. Anderson and De Winter, 1931; Mather, 1943; Lewis and 
Crowe, 1958). In general, the SI species can be used successfully as a pollinator, but not as a 
pistillate parent when pollen from a SC parent is used (SC x SI -* Fl ; SI x SC -* -). Because of 
the strong correlation between one parent being SC and another being SI, there has been a strong 
opinion among many researchers that the 5-locus is involved in this process. Lewis and Crowe 
(1958) formulated the dual function hypothesis for the S-locus, and described an evolutionary 
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pathway for the development from SI to SC, finally resulting in UI. The two-powers competition 
hypothesis, described for UI between the SI diploid potato and the SC relative S.verrucosum (ver), 

is based on this and on the co-evolution of sympatric SC and SI species (Abdalla, 1970; Abdalla 
and Hermsen, 1971, 1972; Abdalla, 1974). The presence or the evolution of cytoplasmic male 
sterility in hybrids derived from SC x SI, plays an important role in this. In this hypothesis, 
additional genes with various alleles are introduced, that are not necessarily located at the S-locus. 
At the same time, research in other crops indicated that the S-locus did not play a role at all in UI. 
Hogenboom (1973) introduced, based on his work on Lycopersicon esculentum (SC) and L. 

peruvianum (SI), the Unilateral Incongruity hypothesis (also abbreviated UI). He made a distinction 
between SI and UI and argued that incompatibility and incongruity are separate phenomena. 

Hermsen et al (1974) detected, in the same material that played such an important role in the 
research on SI in potato, clones that were "acceptor" for ver pollen. Absence of the UI response 
in species crossing combinations where UI is the rule, is also called "acceptance", and "non-
acceptance" stands therefore for UI. Genetic models were tested and similarities were found with 
a model proposed by Grun and Aubertin (1966). Acceptance segregated independently from both 
the S-alleles and the pollen-borne SC-factor tSl, and appeared therefore to support the UI 
hypothesis of Hogenboom (1973). Chetelat and De Vema (1991) mapped pollen-mediated UI 
factors on the chromosomes 1, 6 and 10. The factor on chromosome 1 mapped on or near the S-

locus, thus supporting both the possible involvement of the S-locus and S-locus independent acting 
genes on UI. 

For a long time, now, a debate is ongoing about the possible involvement of the S-locus in UI, 
and, directly related to this, whether in this connection the term incongruity or incompatibility 
should be used. The molecular cloning of S-alleles and the construction of sense and anti-sense 
constructs opened the possibility to test whether the S-locus has a dual function (causing both SI 
and UI, or more indirectly, causing SI and contributing to UI) or not. 

General aims of the Thesis 
The diploid potato material of Hermsen, based on the clones G254, G609 and B16, was 

maintained over a long period by means of both vegetative and generative propagation. This 
resulted in material that became weak and diseased. Inbreeding is known to affect the reliability 
of the SI response and should be restricted as much as possible.The S-homozygous clones that were 
present, were all based on the SC factor tSl and of little value for SI research. The use of pseudo-
compatibility (brought about by inbreeding) to create ^-homozygotes was also not an option for 
the creation of fertile, well-flowering and Si-reliable clones. Some incompatibility related genes 
or their products had previously been isolated from this type of material. Molecular constructs, 
based on these cloned genes, had to be tested in potato on their effect. Well transformable diploid 
potato material with the proper S-allele composition was not available yet, so this was another 
problem that had to be tackled. 
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The main aims of the research of which this thesis is a reflection, were: 

1 The creation and selection of S-homozygous and S-heterozygous material and tester clones with 
a reliable SI reaction, lacking negative factors like inbreeding depression, poor flowering, poor 
fertility and pseudo-compatibility. 

2 Creation and selection of well transformable clones with a proper functioning of the SI response. 
3 Elucidation of more biological aspects of gametophytic self-incompatibility. 
4 Testing whether or not there is a direct relation between self-incompatibility and the interspecific 

crossing barrier called "Unilateral incompatibility". 

In Chapter 2, the development of well performing diploid potato clones with a reliable SI 
reaction is described. Some of this material was used to create well-transformable clones (briefly 
mentioned in the chapters 3 and 6). In Chapter 2, the procedure is also described how the creation 
of self-incompatible S-homozygotes was achieved, without accompanying effects as break-down 
of the SI reaction. This material was used as tester clones, as described in some of the following 
chapters. 

In chapter 3, the effect of sense and anti-sense constructs based on the coding region of the SI 
and the S2 alleles, on the incompatibility reaction is described. An attempt was made to prove the 
essential role of ̂ -glycoproteins (5-RNases) in the SI reaction. 

In chapter 4, the creation of male and female fertile S.tuberosum (tbr) x S.verrucosum (ver) 
hybrids is described. Potato clones (SI) that are acceptor for ver (SC) pollen were selected from the 
material mentioned in chapter 2. Furthermore, the expression of self-compatibility of ver in hybrids 
and in (backcross) offspring thereof is investigated. The contribution of the pollen part of the S-
locus of ver on self-(in)compatibility and unilateral incompatibility is analysed. 

In chapter 5, the materials and results described in the preceding chapters are used in an 
integrating analysis of the relation between UI and SI. The loss-of function approach, as used in 
chapter 3, is applied in both tbr and tbr x ver hybrids. The role of the stylar part of the tbr S-locus 
in UI is examined and various UI and SI phenomena are integrated in a descriptive model. 

In chapter 6 the relevance of the developed material is addressed. Some of the results already 
mentioned in the experimental chapters are discussed in a broader framework. Some significant 
questions, not addressed in the chapters 2-5, are posed and some speculative approaches and ideas 
are highlighted. 
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Selection of vigorous and fertile 5-homo- and heterozygous tester clones from 

self-incompatible diploid potato, Solanum tuberosum L. 

Abstract 

For the selection of diploid (2n=2x=24) potato ( Solanum tuberosum) genotypes that are useful for 

the molecular and genetic analysis of the phenomenon of gametophytic self-incompatibility, three 

different types of basic populations were investigated. These populations were derived from three 

primary dihaploid clones, G609, G254 and B16, which possessed the S-allele combinations S1S2, 

SI S3 and S3S4 respectively. In order to select highly vigorous, profusely flowering, fertile and 

tuberising progenies, three types of populations, derived from the above mentioned diploid 

genotypes, were screened for performance and classified for the expression of self-incompatibility. 

Although the selection for well defined S-genotypes was sometimes complicated due to the 

occurrence of pseudo-compatibility and of a self-compatibilising factor, the use of a combination 

of criteria, viz., Iso Electric Focusing (IEF), pollen tube growth in the styles and the extent of berry 

and seed set made the selection of sufficient representatives of all six types of 5-heterozygotes 

(S1S2, S1S3, S1S4, S2S3, S2S4 and S3S4) possible. After evaluating the strength of the self-

incompatibility reaction in these heterozygotes, those with high expression were selfed, and 

intercrossed within their ^-allele incompatibility group through the method of counterfeit 

pollination. In these progenies, well-performing ^-homozygotes (S1S1; S2S2; S3S3; S4S4) for all 

four ^-alleles with high expression of self-incompatibility were selected. As a result, all possible 

S-homo- and heterozygous genotypes with a predictable type of self-incompatibility are available 

and maintained both vegetatively and as botanical seed. The development of this material has paved 

the way for more critical analysis of molecular factors involved in self-incompatibility in diploid 

potato. 

This chapter is published in a slightly modified version as:R.Eijlander, M.S.Ramanna and E.Jacobsen (1997) 
Selection of vigorous and fertile S-homo-and heterozygous tester clones from self-incompatible diploid potato, 
Solanum tuberosum L. Euphytica 97:97-111 
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Introduction 

The cultivated potato, Solanum tuberosum (2n=4x=48), is a self-compatible (SC) crop. Dihaploids 

(2n=2x=24) from tetraploid cultivars are usually highly sterile, less vigorous and self-incompatible 

(SI). Self-incompatibility in dihaploids is expected to be similar to the one-locus, multi-allelic, 

gametophytic system that is found in almost all other tuberous, diploid Solanum species. This 

expectation was proved to be true from the genetic analysis of self-incompatibility in male fertile 

genotypes that occurrs rarely among dihaploids (Olsder and Hermsen, 1976; Hermsen, 1978a; 

Hermsen et al., 1978). These authors analysed three fertile dihaploids, and the presumed tetraploid 

parent of two of the dihaploids, the cultivar Gineke, and postulated the presence of five S-alleles 

viz., S1,S2, S3, S4 and S5. 

Through a complete diallel crossing scheme, the following genotypes were assigned to the three 

dihaploids that were investigated (Hermsen, 1978a): S1S2-G609; S1S3-G254 and S3S4-B16. The two 

latter clones, G254 and B16, possessed the necessary S-alleles for conferring self-incompatibility; 

nevertheless, they were self-compatible (i.e., set seed after selfing). This anomalous phenomenon 

was explained as due to the presence of an extra SI allele (a duplication) in a presumably 

translocated segment on a different chromosome and the authors designated this segment as "tSl" 

(Hermsen, 1978a ; 1978b). This hypothesis was investigated by Thompson et al (1991), using RFLP 

analysis of plant material, coding for this tSl with the cloned stylar part of SI. The tri-partite 

structure of the 5-locus, as proposed by Lewis (1961) had to be rejected and the translocation 

hypothesis for tSl could be maintained under the assumption that the translocation would have 

involved only the pollen part but none of the analyzed genomic SI -fragment. In dihaploids, 

containing such a tSl translocation, a fraction of the pollen grains contained the pollen parts of two 

different S-alleles instead of one, and hence inhibited self-compatibility by a competitive interaction 

(Crane and Lawrence, 1929; see also review, De Nettancourt, 1977) or mutual weakening as, for 

example, in Brassica (Wallace, 1979) or in polyploids (Lewis, 1943). Besides competitive 

interaction, also the so-called 'pseudo-compatibility' can occasionally bring about berry 

development with a few seeds in a basically otherwise self-incompatible genotype (Hermsen, 

1978b). 

Apart from such complications regarding self-incompatibility, the above mentioned genotypes were 

valuable for the characterisation of proteins that are associated with self-incompatibility in Solanum 

tuberosum (Kirch et al, 1989; Peil, 1995). As a result of this study, it was possible to correlate SI 

to S4 alleles with specific bands of a number of polypeptides differing in their iso-electric points 

(Kirch et al, 1989). This observation, obviously, opened up possibilities for a more reliable method 
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of identification of the S-alleles through electrophoresis, and characterisation of the self-

incompatibility system in diploid potato more critically. In this context, it was essential to select 

defined diploid potato material, homozygous or heterozygous for particular S-alleles, that would be 

suitable for more critical genetic and molecular analysis of the incompatibility system. 

Selection of diploid potato genotypes with a defined S-allele composition, e.g., S-homo- and 

heterozygotes, with a predictable expression of self-incompatibility is difficult for several reasons. 

Potato being a highly heterozygous crop, inbreeding depression is a severe problem both for selfing 

and for intercrossing among individuals within a small group of (diploid) genotypes. This is because 

the progenies in these cases are generally less vigorous, non-flowering, highly sterile, non-tuberising 

and frequently segregating for lethal and semi-lethal genes. In order to circumvent these difficulties, 

a rigid selection of diploid parents based on the performance of their progenies for some of the 

important characteristics, including the typical expression of self-incompatibility, is essential. 

The aims of the present investigation were: 1) to select diploid potato genotypes with highly 

vigorous, fertile, early and profusely flowering habit, showing good tuberisation characteristics; 2) 

to isolate homo- and heterozygous tester stocks for different S-alleles with predictable and reliable 

expression and 3) to produce sufficient plant material of each allelic class (seeds and tubers) for 

generative and vegetative maintenance. 

Materials and methods 

Selection of the basic genotypes 

Two different types of populations were screened for desirable genotypes. The first of these 

consisted of 'basic' populations derived from crosses between three dihaploid Solanum tuberosum 

(2n=2x=24) clones, G609 (S1S2), G254 (S1S3) and B16 (S3S4). The origin and the indicated 

genotypes of these basic clones have been described earlier (Olsder and Heimsen, 1978; Heimsen, 

1978a). The progeny used for the selection of desirable genotypes had originated (see Table 1, 

column 2) not only from direct crosses (five original Fl 's) bet-ween the dihaploid clones but also 

from intercrossing and selfing of progeny plants (14 populations from selfings and inbreds). 

Because the 5-genotypes of each of the parents were homozygous for the marker 'embryo-spot' 

(Hermsen and Verdenius, 1967), the seeds resulting from counterfeit pollination could be separated 

from those resulting from the first pollination. In diallel crossing, at least 10 pollinations per 

combination were made, using flowers from two or more inflorescences in the case of both normal 

and counterfeit pollination methods. 
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Besides normal and counterfeit pollinations, "prickle pollinations" (pollination with only IvP-
pollen) were made in order to use them as controls for determining the production of spontaneous 
spotless seeds in such female plants. These particular spotless seeds are believed to be normally the 
result of diploid or haploid parthenogenesis, the latter leading to monohaploid offspring (Van 
Breukelen et al, 1977; Uijtewaal et al, 1987). 

Statistical analysis 

Data on the number of pollinations, obtained berries and number of seeds were analysed with the 
computer programme Statgraphics Plus v 7.1. 

The number of spotless seeds after an incompatible cross plus counterfeit pollination with IvP 
pollen was corrected within each Si-group by subtraction of the number of spotless seeds produced 
after pollination with only IvP-pollen . 

Table 1. Basic populations (column 1) obtained from SI and SC parents (column 2) with known 5-genotypes (column 3) used 

for the selection of well performing SI heterozygotes and SC homozygotes (column 4). 

GB = G254 x B16; BG = B16 x G254; S1S3, S2S3 and S3S4 = self-incompatible tester clones selected from GB, Gx(G x 

G609) and GB respectively. Numbers behind brackets indicate clone number. 8 = selfing, SI = self-incompatible, SC =Self-

compatible due to tSl. Italics bold: last SC-clone used in a cross. 

Population 

Selfings 

6107 

6108 

6233 

6234 

Inbreds 

6101 

6102 

6103 

6104 

6105 

6106 

6206 

6208 

6536 

6539 

Original F1 ' 

6221 

6222 

6223 

6224 

6225 

Parents 

{(G254 x S1S3)20 x S1S3)8 S 

{(G254xSlS3)20xSlS3)l0E 

6105-6 S 

6105-8 S 

(G254xSlS3)20xS\Sl 

S2S3 x {(G2S4xSlS3)20x S1S3J1 

{(G254 x S1S3)20 x S1S3}1 x S2S3 

S2S3 x {(G254 x S1S3)20 S }4 

{(BG112x GB61)21 x S3S4J2 x S2S3 

{(BG112xGB61)23 » / J x S2S3 

{(G2S4 x S1S3)20 x S1S3J9 x S2S3 

S2S3 x {(G254 x S1S3)20 x S1S3}2 

(GB49 x B16)\l x (GB53 x G2S4)4\ 

(GB66xGB65)ll X S 1 S 4 

5 

G254 xB16 

G254 x G609 

G609xB/(J 

G609 x G254 

B16 x G254 

Description 

5 7 5 3 » 

S1S3B 

S2S4H 

S2S3H 

5 75 / x S I S3 

S2S3xS lS3 

S lS3xS2S3 

S2S3 x 5757 

S3S4xS2S3 

S4S4x S2S3 

5753 x S2S3 

S2S3 x 5753 

5 / 5 3 x S l S 4 

5 7 5 4 x S l S 4 

5753 x 5354 

5 / 5 3 x S l S 2 

S l S 2 x 5 3 5 4 

S l S 2 x 5 7 5 3 

5354 x 5753 

Obtained genotypes 

S1S3 + S3S3, SC 

S1S1 +S1S3 + S3S3 

S2S2 + S2S4 + S4S4* 

S2S2 + S2S3 + S3S3 

S1S3,SI/SC 

S1S2 + S1S3 

S1S2 + S2S3 

S1S2 + S1S3.SI/SC 

S2S3 + S2S4 

S2S4 + S3S4, SI/SC 

S1S2 + S2S3, SI/SC 

S1S2 + S1S3, SI/SC, S2S3 + 

S1S4 + S3S4, SI/SC 

S1S1 + S1S4 + S4S4, SI/SC 

S1S4 + S3S4, SI/SC, S1S3 + 

S1S2 + S2S3, SI/SC 

S1S3 + S1S4 + S2S3 + S2S4 

S1S3 + S2S3.S1/SC 

S1S3 + S1S4, SI/SC, S3S3 + 

S3S3.SC 

S3S3, SC 

SI/SC 

S3S4, SC 

! S4S4 not detected. 
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Selections of spotless seed samples were sown and the seedlings were tested for the accuracy of 
embryo spot detection, for plant performance and the expression of SI/PC/SC. The statistical 
analysis of the production of spotless seeds was, however, based on the determination of spotless 
seeds and not on seedlings without nodal band. 

Simultaneous analysis of pollen and style effect was performed on "within incompatibility group" 
level. On total population level, the analysis of the main effects of pollinator (pollen parent) or 
recipient (seed parent) was performed separately. Here, pollinator or stylar effect means per clone 
out of the over-all analysis were consecutively added four times as covariates in an iterative 
approach after an initial separate analysis. The analysis on the over-all level was also performed by 
adding within-group means as covariate. 

Classification of genotypes for S-alleles 

Four criteria were used for the classification of S-allele genotypes and their SI reaction: 1) the S-

alleles were identified by iso-electric focusing of stylar extracts with Polyacrylamide gel 
electrophoresis (PAGE) or precast agarose gels; 2) PAGE results were verified through test crossing 
and vice versa; 3) the extent of pollen tube growth in the pollinated styles was monitored under a 
fluorescent microscope; 4) berry and seed set were evaluated after selfing as well as after crossing 
with tester genotypes. 

Biochemical identification-PAGE 

Iso-electric focusing of stylar extracts with PAGE was performed as described by Kirch et al (1989) or 
by means of pre-cast agarose gels (Hypure gel VG 1020, Isolab inc.) following the silver staining 
procedure based on Tungstosilicilic acid in stead of sodium permanganate, according to company 

specifications. 

Pollen tube growth in styles 
Pollen tube growth in styles was studied according to the modified technique of Martin (1959). 
Briefly, the technique was as follows: receptive styles were pollinated; 48 h later, they were fixed 
in freshly prepared 3:1 solution of ethanol acetic acid for a day or longer; macerated with 8N 
sodium hydroxide solution at 65°C for at least 8 min.; rinsed with water; stained with 0.1% aniline 
blue dissolved in 0.1 M potassium pyrophosphate; softened styles were mounted in glycerol and 
observed under a fluorescent microscope (BG12/4 filter combination in Zeiss microscope). 

Estimation of berry and seed set 
At least 10 pollinations were made in order to determine whether a genotype was SC or SI. The 
genotypes that had a high percentage of pollen stainability but failed to set berries on selfing were 
classified as SI and those that produced berries and seeds in high numbers were considered as SC. 
Because a SC reaction could result either from the presence of tSl or be due to pseudo-compatibi
lity, in ambiguous cases progenies of PC/SC plants were tested in order to verify whether those 
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parents were SC or PC. Berry and seed set were estimated on the basis of seeds per berry, seeds per 
pollination and berries per pollination. In the case of counterfeit pollinations and the control 
pollinations with only IvP-pollen, the spotless seeds were separated from those with spots under a 
binocular microscope and counted. 

Pollen stainability was estimated by mounting fresh pollen grains from three flowers, on different 
dates in each case, in a drop of 2% acetocarmine solution. On an average, 200 pollen grains were 
counted per assessment. 

Results 

Performance of the basic populations 

Three types of basic populations consisting of selfs, inbreds and the original Fis, that were 
investigated in the greenhouse for performance are described in Table 1 with indication of their 
parents and of the genotypes obtained. In all cases, with the exception of the population 6233, the 
obtained 5-allele genotypes of the progenies were fully concurrent with the established genotypes 
of the parents (Table 1). In the exceptional population 6233, only S2S2 and S2S4 genotypes could 
be detected, whereas the also expected S4S4 genotype was absent. 

There were clear differences in performance (Table 2) among the progeny populations derived from 
selfs, inbreds and the basic Fis with regard to the average scores for vigour, flowering, fertility, 
tuberisation and the number of cripples (plants that were tiny, weak and brittle). In general, the 
progenies of the basic Fis were superior to the other two categories for all the four parameters 
estimated. For example, the average scores in the five basic Fl populations (6221 to 6225, Table 
2) were consistently higher ( with 77 useful plants) than in the 14 populations (with 74 useful 
plants) derived from the selfs and inbreds. Especially the frequency of useful plants after selfing was 
low. Because of these differences between the three population types, the progenies of the basic Fis 
were not only more useful for ̂ -heterozygotes but also for the selection of the S-homozygotes using 
counterfeit pollination (see later). 

Selection of SI and well performing ^-heterozygous plants out of the basic populations 

The evaluation of the basic populations proved that a majority (407/548) of the plants among them 
were unfit for selection of S-heterozygotes since they did not meet the four criteria used for 
selection (Table 2). In a further round of selection among well performing plants of the populations, 
a total of 31 useful individuals from different populations were evaluated for Si-expression. All 
these genotypes were classified on the basis of •S-allele composition through both IEF and test 
crossing. 
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Table 2. Performance of basic populations for the selection of useful heterozygous SI genotypes. 
All characters were scored on an ordinal scale for each plant and the average values are presented in the columns. 
Ranking: 1 = lacking, 2 = present but bad, 3 = poor, 4 = insufficient, 5 = just sufficient, 6 = sufficient, 7 = satisfactory, 
8 = good, 9 = very good; between brackets (): # well performing self-compatible clones, - = not segregating SC-plants 

Population 

Selfings 

6107 

6108 

6233 

6234 

Inbreds 

6101 

6102 

6103 

6104 

6105 

6106 

6206 

6208 

6536 

6539 

Basic Fl 's 

6221 

6222 

6223 

6224 

6225 

# plants 

10 

30 

11 

14 

30 

30 

40 

30 

20 

40 

30 

40 

20 

20 

40 

40 

40 

23 

40 

Vigour 

2 

3 

4 

5 

6 

5 

5 

6 

6 

6 

6 

7 

6 

5 

8 

8 

8 

8 

8 

Flowering 

3 

3 

4 

4 

6 

5 

5 

6 

6 

6 

8 

8 

6 

5 

6 

7 

7 

7 

6 

Fertility 

2 

4 

4 

5 

7 

5 

5 

8 

7 

6 

7 

8 

7 

7 

8 

8 

8 

8 

8 

Tuberization 

1 

2 

3 

4 

4 

5 

4 

7 

6 

6 

4 

3 

7 

6 

7 

7 

7 

7 

7 

# useful 

SI 

0 

0 

1 

5 

6 

7 

9 

11 

7 

7 

5 

2 

6 

8 

13 

18 

18 

9 

19 

plants 

SC 

(0) 

(-) 
(-) 
(-) 

(6) 

(-) 
(-) 

(H ) 

(-) 
(10) 

(4) 

(6) 

(6) 

(6) 

(22) 

(19) 

(15) 

(11) 

(16) 

The expected six classes of four different alleles, i.e., S1S2, SI S3, S1S4, S2S3, S2S4 and S3S4 were 
found. Table 3 presents for all six expected SI classes the average scores of the selected plants for 
each of the four characters vigour, flowering, pollen shedding (scale 1-10) and pollen fertility (% 
stainable), together with their Si-expression. A notable feature was that 19 out of 31 of the 
genotypes that showed a typical Si-reaction (Table 3) were derived from the progeny of the five 
basic Fis (cf Table 1), whereas only 12 of the genotypes originated from the 10 inbred populations 
and none from the selfings. 

In order to evaluate the strength of Si-expression, all six 5-genotypes, consisting of 30 plants in 
total, were tested for berry and seed set after selfing (Table 3). A strict self-incompatibility reaction 
(no berry and seed set) was expected in all plants. However, testing the 30 plants sever-all years, 
revealed that still nine of them occasionally did set (self)seed, ranging from 10- 80 seeds per berry 
(compatible crosses give good berry formation and 150 - 250 seeds per berry). This could often be 
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attributed to pollination of young flowers in which there might still have been an incompletely 
developed SI barrier (cf. bud-pollination). This phenomenon was considered as a less reliable SI 
reaction. Excluding these genotypes, the strength of the Si-expression in all others was satisfactory 
as was evident from the absence of berry and seed set after 30 to more than 100 sellings that were 
made in different genotypes (Table 3). Berry and seed set in some of the S-heterozygotic plants was 
an indication for the persistence (genetic transmission) of pseudocompatibility. As pointed out 
already in the population section, a majority of the useful S-heterozygotes (viz., serial numbers: 
6221, 6222, 6223, 6225) in Table 3 was derived from three of the five populations of basic Fis 
mentioned in Table 1. This was reflected in the final selection of the clones to be maintained. The 
populations 6221 and 6225 as well as the populations 6222 and 6224 are the result of reciprocal 
crosses. The underrepresentation of the populations 6224 and 6225 does not reflect inferiority but 
was just a matter of random choice. 

Selection of 5-homozygous SI plants from the basic populations 

All well performing plants in the self and inbred populations, that could have contained S-
homozygous genotypes, were investigated. Among those plants, self-incompatible as well as tSl-
based self-compatible S-homozygous genotypes could be present. Because only the 5-homozygotes 
with self-incompatibility were essential, the basic populations were screened for such genotypes, 
and those with self-compatibility were discarded. In populations 6108,6233,6234 and 6539 (Table 
1), S-homozygotes with a typical SI reaction were found. On the other hand, the S-homozygotes 
from populations 6107, 6208,6221,6225 and 6539 were all found to be self-compatible and were, 
therefore, discarded. Among the self-incompatible 5-homozygotes, the population 6108 consisted 
of less vigorous individuals, and 6539 had high levels of sterility besides poor tuberization; and 
these were not suitable for the final selection. Only two populations, 6233 and 6234, gave rise to 
some desirable genotypes with valuable features (Hermsen, 1978c; Hermsen and Olsder, 1974) 
despite having a relatively poor general performance. Both of these populations were derived from 
6105-06 and 6105-08 which were rare cases of seed set upon selfing (Table 1). This seed set was 
most probably the result of environment-induced PC. The success rate of this type of selfing was 
not predictable. The performance and ^-genotypes of six of the plants selected from the 6233 and 
6234 populations are presented in Table 4. Although the selected genotypes were not completely 
satisfactory in performance, they were typically self-incompatible, and initially useful as testers. A 
greater disadvantage of these successful populations was that only S2S2 and S3 S3 S-homozygotes 
were obtained. For the selection of more vigorous S2S2 and S3S3 genotypes and of SI SI and S4S4 
homozygotes as well, a more effective method of bypassing SI, using many genotypes within an 
incompatibility group, was required. This was done through counterfeit pollinations. 
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Table 3 Performance of selected Si-expressing S-heterozygous genotypes + key identifiers to table 8. 

Vigour and flowering impression: 1 = extremely bad, 2 = bad, 3 = poor, 4 = insufficient, 5 = nearly sufficient, 6 = sufficient, 

7 = satisfactory, 8 = good, 9 = very good, n.d. = not determined; pollen fertility expressed as % acetocarmine stainable 

pollen; no additional mark = standard deviation between periods: 0 -5, * = 5 - 10, ** > 10. Si-expression: totals of 

seeds/berry/selfing in the first two years; * = caused by pollination of very young flowers; SC = self-compatible 

Plant nr. 

6102-16 

6104-09 

6104-21 

6222-05 

6222-39 

6101-11 

6104-19 

6104-23 

6223-15 

6225-05 

6225-15 

6223-40 

6221-01 

6221-05 

6221-17 

6221-19 

6221-20 

6105-08 

6222-06 

6222-24 

6222-40 

6105-06 

6105-15 

6223-01 

6223-29 

6223-39 

6536-01 

6536-02 

6536-09 

6221-32 

6221-37 

Key 

I 

2 

4 

15 

18 

1 

3 

5 

III 

IV 

V 

23 

8 

9 

10 

11 

12 

II 

16 

17 

19 

6 

7 

20 

21 

22 

24 

25 

26 

13 

14 

Genotype 

S1S2 

S1S2 

S1S2 

S1S2 

S1S2 

S1S3 

S1S3 

S1S3 

S1S3 

S1S3 

S1S3 

S1S4 

S1S4 

S1S4 

S1S4 

S1S4 

S1S4 

S2S3 

S2S3 

S2S3 

S2S3 

S2S4 

S2S4 

S2S4 

S2S4 

S2S4 

S3S4 

S3S4 

S3S4 

S3S4 

S3S4 

Vigour 

7 

8 

7 

8 

9 

7 

7 

8 

7 

8 

8 

9 

8 

7 

8 

8 

7 

7 

7 

8 

9 

7 

7 

8 

9 

9 

7 

8 

8 

7 

8 

Flowering 

7 

9 

8 

9 

9 

7 

8 

8 

8 

9 

8 

9 

8 

9 

8 

8 

9 

8 

9 

9 

9 

7 

6 

7 

9 

9 

9 

9 

8 

9 

9 

Pollen fert. 

84 

93 

92 

96 

87 

90 

80 

97 

78 

92 

80 

60* 

78 

61* 

64 

64 

75 

50** 

80 

91 

74** 

72 

70 

82 

79* 

67* 

71* 

42** 

64 

82 

46** 

Pollen shed 

6 

8 

9 

9 

7 

8 

7 

9 

7 

8 

8 

9 

7 

8 

7 

8 

9 

9 

7 

8 

9 

8 

8 

6 

8 

9 

9 

8 

9 

9 

8 

SI expression 

Seeds / berries / selfs 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

8 0 / 

0 / 

0 / 

0 / 

0 / 

4 / 

5 0 / 

4 2 / 

0 / 

3 0 / 

150/ 

0 / 

0 / 

61 / 

1 9 / 

0 / 

0 / 

0 / 

3 2 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

IV 

0 / 

n.d 

0 / 

0 / 

0 / 

2 7 

2 / 

4 / 

0 / 

17 

3 7 

0 / 

0 / 

57 

27 

0 / 

0 / 

0 / 

17 

0 / 

0 / 

0 / 

0 / 

32 

71 

43 

39 

49 

73 

78 

148 

30 

(SC) 

22 

69 

92 

64 

50 

62 

107 

32 

51 

48 

70 

112 

52 

41 

50 

51 

55 

55 

52 

71 

54 
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Production of superior homozygotes from selected S-heterozygotes 

All genotypes mentioned in Table 3 have been used in some way, trying to obtain more S-

homozygotes. Not all the genotype combinations that were made for this purpose have been used 

for the screening and selection of S-homozygotes, particularly because of suspected expression of 

PC in the offspring or (expected) inbreeding depression. Some parental clones that have been used 

were excluded from the statistical analysis because of (re)appearance of SC in the selected clones 

or temporary regrowth problems, leading to bad synchronisation of flowering. Five clones were 

excluded because of virus infection, resulting in too few observations to be of use for statistical 

analysis. Those genotypes were indicated by 'Roman numbers" in Table 3. Four of them gave 

useful 5-homozygotes though (Tables 4 & 8). The PC genotypes with occasional seed set after 

young flower pollination were included in this experiment. Unlike the selection of S-heterozygotes, 

it was generally much more difficult to create S-allele homozygotes from genotypes that showed 

the typical SI reaction. The problem in these genotypes was to obtain seeds from selfing, or from 

intercrossing within an incompatibility group. These difficulties were largely overcome by making 

a large number of pollinations, followed by counterfeit pollinations. 

For making the counterfeit pollinations, different genotypes within each ^-incompatibility group 

were selfed and intercrossed, following the general crossing scheme exemplified for S2S3 genotypes 

(A, B and C) in table 5. This scheme was applied for all possible six S-heterozygous groups. One 

set of these crosses was carried out without counterfeit pollination (normal incompatible 

pollination) and the other identical set with counterfeit pollination (normal + counterfeit 

pollination); this means that 48 hrs after the incompatible cross, a second pollination was carried 

out but now with pollen from the IvP marker genotypes of S.phureja. In this context, approximately 

4300 pollinations were made. These pollinations included three groups of within group incompatible 

crossing: 1) selfing a SI genotype (Self, in Table 5: bold), 2) the same genotype used as seed parent 

(SP, Table 5: row) with various non-self pollinators (non-bold) and 3) the same genotype used 

aspollen parent (PP) (Table 5: column) in non-self crosses. These pollinations yielded, 

approximately, a total of 1100 berries with 125000 seeds of which 9500 were without embryo-spot. 

In order to assess of the strength of the incompatibility reaction and to determine whether the 

number of spotless seeds resulting from the counterfeit pollinations was different from the number 

of spotless seeds obtained from the control pollinations (styles pollinated only with pollen from the 

marked IvP clones ), a statistical analysis was performed (Table 6). The occurrence of spotless 

seeds from prickle pollination alone (based on LSD-values) was statistically not significantly 

different from zero, but significantly different from the counterfeit pollination effect (Table 6). This 

was evident regardless of the consideration of parental effects. The occurrence of the number of 

spotless seeds after counterfeit pollination or normal single cross was calculated and analysed in 



Creation and selection of basic S-homo- and heterozygous SI material 31 

Table 4 Performance of selected SI S-homozygous genotypes derived from selfed SI clones. 

Plant Genotype Vigour Flowering Pollen fert. Pollen shed SI 

Seeds/ berries/ selfs 

6233-11 

6234-05 

6234-12 

6234-01 

6234-08 

6234-10 

S2S2 

S2S2 

S2S2 

S3S3 

S3S3 

S3S3 

5 

5 

5 

5 

6 

6 

5 

7 

5 

5 

6 

6 

55** 

75** 

50** 

60** 

74** 

41** 

5 

5 

5 

4 

6 

5 

0/ 

0 / 

0 / 

0 / 

0/ 

0/ 

0/ 

0/ 

0/ 

0 / 

0/ 

0/ 

70 

50 

75 

50 

90 

50 

The scale of values is ranging from 1 (extremely bad) to 9 (very good). ** = Standard deviation > 10%. SI reaction as 

seeds/berries/selfed flowers (totals). 

Table 5. Crossing scheme of the counterfeit pollination experiment for the production of S-homozygotes 

'Seed parent • Pollen parent Normal incompatible crossing Normal + ( 

A B C A 

Control 

IvP 

A: S2S3 

B: S2S3 

C: S2S3 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

X X 

X X 

X 

X 

X 

X 

X 

X 

A, B and C belong to the same S-allele combination group, e.g. S2S3. Bold X = selfing. Control with IvP = pollination with 

IvP-pollen as in counterfeit pollination but without an incompatible first pollination. 

Table 6 A -îalysis of variance (ANOVA) in counterfeit pollination experiment using spotless seed proc 

pollination or per berry. Main Eff. = Main effect; Seedp. = 

d.f = degrees of freedom; S.S= Sum of squares; F= (S.S. 

Spotless seeds/pollination 

Main Eff 

Seedp. 

Phu 

Residual 

d.f S.S. 

24 4293.17 

1 558.09 

207 15039.48 

F Y 

2.82 0.0000 

7.68 0.0061 

uction per 

= seed parent; Phu = counterfeit/prickle pollination with IvP's; 

main effect/df)/(S.S. residual/d.f); Y = significance 

Spotless seeds/berry 

Main Eff d.f 

Seedp. 24 

Phu 1 

Residual 207 

S.S. F 

13530.17 4.02 

2149.44 15.32 

29037.51 

evel. 

Y 

0.0000 

0.0001 

two ways, viz., per pollination and per berry (Table 6). Analyses within 5-genotype groups and the 
iterative approaches of the determination of the main effects gave basically the same (nearly 
identical) results. One conclusion was that the number of spotless seeds/berry was twice as high 
as the number of spotless seeds / pollination (Fig. 1). From these calculations, it was evident that 
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Figure 1. LSD analysis for set 

of spotless seeds after single 

normal incompatible pollina

tion (S.P.) or counterfeit 

pollination assisted incompati

ble crossing (C.P.). 

Y-axes: Left (+): spotless 

seeds/ pollination; Right (O) 

spotless seeds/berry. + and O; 

means. Capped error bars: 

0.95% confidence intervals, 

p p op p p Based on 473 corrected 

POLLINATION TYPE means-

counterfeit pollinations gave rise to more seeds (spotless) that were potentially 5-homozygotes than 
single pollinations in incompatible genotypes. The other difference was that in the case of 
counterfeit pollinations more berries were obtained and had to be extracted. 
Despite a strong selection for typical self-incompatible genotypes, it was evident that certain 
individuals occasionally set seed after selfing. This was an indication for the occurrence of pseudo-
compatibility due to the influence of either the male or the female parent. The genotype 6222-40, 
for example, was an instance of showing PC effect from the seed parent and 6222-06 from the 
pollen parent (Table 7). The occurrence of pseudo-compatible genotypes occurred in the progeny 
in a number of cases, especially when a parental clone (e.g. 6502-38, parent of 1127-14, table 8) 
showed strong PC (data not shown), clearly indicates the genetic basis of this character. After 
excluding such PC genotypes, it was still possible to retain a considerable number of genotypes of 
all ̂ -allele homozygotes with high levels of vigour, flowering, pollen fertility, pollen shedding and 
Si-expression (Table 8). Those homozygotes were either hybrids (intercrosses within incompatibil
ity group) or selfings. Both groups were obtained with and without the aid of counterfeit pollination. 
As a result of selection of well performing genotypes, most of the selfing-based genotypes (many 
of them showing inbreeding depression), have been excluded in favour of hybrid types. Because 
this population was still excessively large, it was narrowed down. The plants indicated by an 
asterisk (*) have been selected either on the basis of performance, scale of testing for SI expression 
and their value for other research topics, or have been selected at random. The SJS1 and S2S2 
genotypes and to a lesser extent the S3S3 genotypes were the most important for the molecular 
unravelling of the Si-system (Kirch et al, 1989, Eijlander and Ficker, in prep). The S4S4 genotypes 
are slightly underrepresented; this may partly be due to the low priority of obtaining this genotype, 
but the number was still lower than expected. Numbers are too small, however, to draw final 
conclusions on 5-genotype-related fitness or certation. 
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Table 7. Strength of the SI reaction in selfings and intercrossings within incompatibility groups of selected SI-

expressing S-heterozygous genotypes with or without using counterfeit pollination. SP = tested as seed parent; PP = 

tested as pollen parent. Ranking is from "1 = most PC genotype" to "9= most SI genotype", sc = self-compatible. 

Plant Key 

Normal ino 

Self SP 

Normal + Counterfeit pollination 

PP Self SP PP 

6104-09 

6104-21 

6222-05 

6222-39 

6101-11 

6104-19 

6104-23 

6221-01 

6221-05 

6221-17 

6221-19 

6221-20 

6223-40 

6222-06 

6222-24 

6222-40 

6105-06 

6105-15 

6223-01 

6223-29 

6223-39 

6536-01 

6536-02 

6536-09 

6221-32 

6221-37 

2 
4 

15 

18 

1 

3 

5 

8 

9 
10 

11 

12 

23 

16 

17 
19 

6 

7 
20 

21 

22 

24 

25 
26 

13 
14 

9 

9 
8 

9 

9 

9 

8 

8 
7 

sc 

7 

9 

9 

4 

7 
9 

8 

8 

8 

7 

8 

8 

9 
9 

9 
9 

7 

sc 
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Table 8. Selected SI and SC homozygous clones derived from SI and SC clones respectively after (in)compatible 

pollinations using within incompatibility group pollinations or selfings in combination with or without counterfeit 

pollination Italic-bold : SC-genotypes. Method= obtained by counterfeit pollination ( cf ), selfing (se), non counterfeit 

pollination aided intra incompatibility class pollination (ii) or by a SC-based compatible cross (co). Fl. = flowering, P.F. 

= pollen fertility expressed as % acetic carmine stainable pollen, P.Sh. = pollen shed. Scales ranging from 1= extremely 

bad to 9= very good. SI-expr. = self-incompatibility expression expressed as seeds/berries/selfed flowers, n.d = not 

determined. A = vegetatively maintained 

Plant Parents Method Genotype Vigour Fl. P.F. P.Sh. StexpressionjsJQtals...of 

Seeds/ Berries/ Flowers 

6496-01A 

6496-04A 

6499-04A 

1127-14A 

1130-03 

1136-01 

1136-02 

1136-05 

1181-02 

1138-07 

1138-08 

1139-03 

1139-05 

1140-01 

1140-02A 

1140-05A 

1146-02 

6499-01A 

1130-01 

1138-04 

1138-08 

1142-02A 

1171-01 

1095-04 

1095-06 

1134-01 

1147-04 

6539-10* 

1132-07 

1132-20 

IVx3 

IVx3 

111x3 

6502-38 x 6496-01 

5 x 1 

12x23 

12x23 

12x23 

(7254x6496-1 

16x 16 

16x16 

17x19 

17x19 

6 x22 

6 x 2 2 

6 x22 

16x 19 

111x3 

5 x 1 

16x16 

16x16 

25x26 

24x24 

23x11 

23x11 

11x11 

23 x 11 

see table 1 

12x70 

12x70 

cf 

cf 

cf 

ii 

cf 

cf 

cf 

cf 

cf 

cf, se 

cf, se 

cf 

cf 

cf 

cf 

cf 

cf 

cf 

cf 

cf, se 

cf, se 

cf 

cf, se 

ii 

ii 

se 

cf 

ii 

co 

CO 

S1S1 

S1S1 

S1S1 

S1S1 

S1S1 

S1S1 

S1S1 

S1S1 

S1S1 

S2S2 

S2S2 

S2S2 

S2S2 

S2S2 

S2S2 

S2S2 

S2S2 

S3S3 

S3 S3 

S3S3 

S3S3 

S3S3 

S3 S3 

S4S4 

S4S4 

S4S4 

S4S4 

S1S1-SC 

S1S1-SC 

S1S1-SC 

8 

7 

7 

8 

7 

8 

7 

9 

8 

7 

7 

9 

8 

8 

7 

7 

8 

8 

7 

7 

7 

8 

7 

7 

7 

6 

7 

8 

5 

7 

9 

8 

8 

8 

8 

7 

8 

8 

8 

7 

7 

7 

8 

8 

7 

7 

9 

9 

3 

6 

7 

7 

7 

7 

7 

7 

6 

9 

5 

6 

57** 

71** 

96 

88 

92* 

65** 

74* 

77* 

55** 

62** 

69++ 

63** 

70* 

55** 

60** 

70** 

90 

88 

50** 

64** 

72* 

79 

66* 

69** 

75** 

78* 

71 

99 

51** 

75* 

9 

8 

7 

7 

8 

7 

6 

7 

8 

6 

7 

7 

7 

4 

7 

6 

5 

8 

3 

7 

7 

7 

7 

6 

7 

8 

6 

8 

7 

5 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

n.d./ 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

52 / 

12/ 

0 / 

0 / 

0 / 

0 / 

n.d/ 

0 / 

2204/ 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

1/ 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

0 / 

2 / 

1/ 

0 / 

0 / 

0 / 

0 / 

8 / 

0 / 

10/ 

60 

64 

73 

58 

22 

n.d. 

n.d. 

33 

25 

12 

20 

30 

30 

20 

54 

48 

22 

55 

4 

5 

32 

26 

23 

67 

71 

18 

12 

12 

n.d 

n.d 
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Self-compatibility in S-homozygotes 

As mentioned before (Table 1), self-compatible clones were found some of which were S-

homozygous. The S2S2, S3S3 and S4S4 self-compatible clones have already been obtained on a 

routine basis, as is partly shown in Table 1. This was not the case with SI SI. The crosses IV 

(=6225-05) x 3 (=6104-19) and G254 x 6496-1, (in italics, bold: SC-clones; Table 8) were made 

with the secondary aim of testing the validity of the assumption made by Olsder and Hermsen 

(1976) that tSl does not cause mutual weakening when together in a (monohaploid) pollen grain 

with the complete SI -allele. Offspring populations of these crosses did not contain self-compatible 

S1S1 plants. Progeny of these S1S1 plants proved the absence of the SC-factor tSl. Plants 6539-10, 

1132-07 and 1132-20, however, proved by IEF (Fig. 2) and test crossing to be SI SI homozygotes, 

but they were self-compatible (table 8) and capable of fertilizing other SI -expressing plants.The 

presence of the tSl -based SC-clones 1132-07 and 1132-20 (two SI SI SC clones out of 20 SC plants, 

P(k (n=20, p=l/4) < 2) = 0.09) proves that even S 1-tSl pollen is not completely superseded by S4-

tSl pollen, although a certative disadvantage is very likely. 

-^ — ^- o 
ov n - - a 
Os r̂ l e*l E 
T 3 - <-^ CNI I 
^D <0 * 0 t>0 

Figure 2 . Iso-Electric-Focusing 

(IEF) pattern of stylar extracts 

after silver staining of 3 S-

homozygotes (6233-11, 6539-19, 

6499-03), 5 5-heterozygotes and 

a control sample. Approximately 

15-25^g protein was added to 

each slot. SKI and SK2 are style 

specific proteins but not 5-locus 

related.. SI, S2, S3 and S4 are 

stylar expressed 5-allele specific 

glycoproteins. S4 gives facul

tatively a secondary band. 
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Maintenance of the selected genotypes by means of in vitro preservation, seed tubers and true 
seed production. 

Most of the selected material is maintained in vitro, and the genotypes mentioned in Tables 3,4 and 

8 are also available in the form of seeds and tubers. Seeds were produced by crossing S-heterozy-

gotes with S-homozygotes in order to produce 'single-class' ̂ -heterozygotes, i.e., SI SI x S1S2 gives 

rise to a single-class S1S2 heterozygote. Such genotypes are available for all six combinations with 

the four S-alleles. Besides these, a limited amount of single-class homozygotes (in true seed form), 

derived from counterfeit pollination, is available for SI SI, S2S2 and S3S3. One group of S-

homozygotes, S4S4, was recently lost because of viral infection and is now only present in true seed 

form. The number of S-homozygous seeds from S-homozygotes with self-incompatibility was 

relatively small because of the difficulty of producing seed from their well functioning SI, even 

when counterfeit pollination was used (Table 8). 

Discussion 

In spite of the presence of a well defined monogenic, multiallelic, gametophytic type of self-

incompatibility in diploid potato, the system was not amenable to a critical genetic and molecular 

analysis in the past for the following main reasons: 1) criteria for the classification of S-allele 

genotypes were less well defined; 2) well performing genotypes, or testers, of S-homo- and/or 

heterozygotes were not available and 3) potato being a highly heterozygous crop, inbreeding 

depression and the expression of deleterious recessive genes in the progeny were serious 

impediments for analyses. In the present investigation, an attempt was made to overcome the above 

mentioned drawbacks by the selection of well performing and well defined SI genotypes. 

The classification of the genotypes of S-alleles in potato is complicated by the fact that self-

compatibility often occurs either due to the so-called pseudo-compatibility or self-compatibilising 

factors, such as tSl, in an otherwise self-incompatible genotype. Classification of such genotypes 

in afore mentioned cases on the basis of berry and seed set, together with pollen tube growth studies 

(Hermsen, 1978 a, b), were relatively subjective in some cases. The identification of S-alleles 

through IEF (Kirch et al., 1989) combined with studies on pollen tube growth in styles as well as 

on test crossing was a step forward for a more reliable classification of the S-genotypes. Using a 

combination of the three criteria, well performing genotypes of both homo- and heterozygous 

genotypes for four different S-alleles have been selected in the present investigation. Accurate 

determination of S-allele genotypes through IEF was especially useful for the selection of self-
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incompatible homozygotes as well as heterozygotes and for gaining more insight into the probable 

inheritance of pseudo-compatibility. 

Olsder and Hermsen (1976) found a complete absence of self-compatible S1S1 homozygotes. 

Segregation ratios displayed skewness and pollen certation or absence of mutual weakening 

between the SI allele and the hypothesised tSl was one of the explanations. 

Mutual weakening between two identical S2 alleles does not occur (crosses were made with a 

tetraploidised version of clone 1140-2, - S2S2S2S2, not giving a compatible reaction pattern in S2-

containing styles, data not shown). This means that by applying the mutual weakening hypothesis 

on the ocurrence of ?*S7-based SC S1S1 genotypes the self-compatibilizing factor tSl is not 

expressing the pollen part of the SI allele but probably an independent gene. This was already 

suggested by the results obtained by Thompson et al (1991), although they did not rule out the 

possibility that only the pollen-part was translocated. Re-evaluation of old material of Olsder and 

Hermsen (1976) by IEF proved the presence of a previously undetected self-compatible SI SI plant. 

SI tSl pollen has probably a certative disadvantage compared with the other three SC pollen types. 

This means that their tô7-hypothesis is not valid anymore, and one of the other six available 

hypothesis has to be accepted that was previously rejected because of the absence of self-

compatible SlSl-tSl genotypes. The expression tSl is therefore actually an incorrect one. We have 

strong indications that self-compatibilizing factors like this "tSl" do occur much more frequently 

than is generally believed. 

For producing tester genotypes, such as the 5-homozygotes, showing typical Si-expression, it was 

essential to self the genotypes that showed strong Si-expression. In certain cases, such as 6105-06 

and 6105-08 (Table 1), it was rarely possible to obtain berry set and a limited amount of seeds and 

progenies. The performance of these progenies with regard to vigour, flowering and pollen fertility 

(Table 4), however, did frequently not reach the acceptable levels observed in the progenies 

generated from the basic Fis (Tables 2 and 3). Moreover, the number of really well performing 

progeny genotypes in the case of 6105-6 and -8 was very low. Obviously, it was necessary to 

produce more progenies after selfing genotypes that were well performing and showing a strong 

SI reaction. In other plant species such as Petunia and Nicotiana, the so-called bud pollinations are 

practised for producing seeds and progenies from SI genotypes (Pandey, 1963; Shivanna and 

Rangaswamy, 1969;Clark et al, 1990). This method, however, was not applicable in potato, because 

the stigma becomes receptive only during anthesis when the exudate becomes available on the 

stigmatic surface. Self-pollinations, using the pseudo-compatible genotypes for producing seeds and 

progenies, could be another option for obtaining S-homozygotes. 
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Flaschenriem and Ascher (1979), Dana and Ascher (1985,1986a,b) and Liedl and Anderson (1994) 

investigated aspects of PC in Petunia hybrida. This species traces back to interspecific hybrids and 

displays SC or a high level of PC. They often found strong PC at levels difficult to distinguish 

from SC. Expression of PC could be at either the pollen or the stylar side. Nevertheless, this system 

may have more in common with the hybrid system ofS.tbr x S.ver, (like S-locus linked SC-factors 

and segregation of Unilateral Incompatibility factors) than with the SI system in diploid potato 

(Eijlander et al, in prep.). Complications and deviations from the normal SI system in hybrids is 

discussed by Trognitz and Schmiediche (1993). These authors tried to integrate the incongruity 

hypothesis of Hoogenboom (1973) with the normal gametophytic self-incompatibility hypothesis. 

Because the type of pseudo-compatibility investigated here seems to be a heritable character, both 

from the male and the female side, the Si-expression in the progenies might be weaker and the 

selections will be more frequently unreliable. It has been observed as likely for several crops that 

PC may be polygenic and heritable ( Mather, 1943; Takahashi, 1973; Henny and Ascher, 1976; 

Litzow and Ascher, 1983) and offers a good explanation why inbreeding can lead to an increased 

level of PC. 

In view of this, it is essential to avoid PC through careful progeny testing in such genotypes so that 

completely predictable types of self-incompatible genotypes are selected. The problem with 

bypassing the SI reaction in the style is that there might be a constant selection for PC expression 

on the pollen side. Although this is unavoidable, it might be reduced in its effect. For reducing this 

selection, stylar PC clones can be used when only strong SI at the pollen side is required (and vice 

versa). The use of PC is out of the question when pollen and style of the desired ^-homozygotes 

are used in test crosses, unless a large progeny can be screened for reliable Si-clones. Additionally, 

the use of young flowers and at least one strongly SI parent is preferred for the production and 

selection of SI 5-homozygotes. Here the counterfeit pollination with pollen from appropriate clones 

like IvP 35, 48 and 101 have proven to be of great help for obtaining otherwise extremely rare 

genotypes. This was also observed for difficult interploidy and interspecific crosses like S.tbr x S.acl 

and S.sto x S.tbr (Iwanaga et al, 1991; Singsit and Hanneman, 1991; Brown and Adiwalaga, 1991). 

As was already detected in some of the <S-heterozygous genotypes that were highly SI after selling, 

there still might be a level of PC present that can only be elucidated by test crossing with other 

clones. This has extensively been done with the selected SI SI and S2S2 tester clones. A pitfall with 

testing S-homozygotes might be that in the style two identical S-alleles will be expressed. Because 

the SI reaction is a quantitative one, the ^-glycoprotein content might be that high that a pollen 

expressed PC may remain undetected. Nevertheless, even S-homozygotes may be quite PC, as has 

been detected in genotype 6502-38 (Table 8) and a considerable part of its offspring. Therefore, S-

homozygotes have to be tested for PC in crosses on heterozygotes as well. On the other hand, 

various tetraploid genotypes, that were present in our collection, have been tested for their SI 
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reaction against pollen from diploid relatives, expressing an identical 5-allele. A S1S2S3S6 

genotype was completely incompatible with SI, S2 and S3 pollen (data not shown), thus indicating 

that there can be a wide range for ̂ -glycoprotein content in the style and/or the glycoprotein content 

needed for a reliable SI reaction. However, differences between expression levels of the S-alleles 

may reduce the efficacy of some of the ^-alleles when the weakest are down-regulated, as is 

suggested by results of Kirch et al (1989) and Eijlander et al (in prep, see chapter 3). It also indicates 

that S-homozygous diploids can be quite useful in testing tetraploids. 

The term pseudo-compatibility has often been used in other plant species although the definition of 

this expression is not clear cut. In a broad sense, it has been considered as 'leakage' of a functional 

incompatibility system. The criteria for considering a genotype to be pseudo-compatible are 

generally arbitrary. The basis is, however, the level of seed set in a self-incompatible genotype after 

self-pollination as compared with the mean seed set of the population, expressed as seeds/berry or 

the number of seed bearing berries/pollination. Such seed set can also result from a system where 

a self-compatibilising factor is operative (for discussion, see, Rowlands, 1964; Olsder and Hermsen, 

1976; Hermsen, 1978a and 1978b). Pseudo-compatibility has also been observed in several crops 

after some cycles of inbreeding of self-incompatible genotypes (De Nettancourt, 1977). The 

mechanism of the origin of pseudo-compatibility in these crops is not clear yet. In the present 

investigation, as was also reported earlier (Olsder and Hermsen, 1976; Hermsen, 1978a and 1978b), 

there were genotypes that were difficult to be classified either as PC or SC. They were considered 

to be PC. Genotype 6221-17 (Table 3) is a typical example of the fact that even SC may be 

unreliable in its expression. It is quite possible that even this pollen expressed factor is influenced 

by modifier genes as has been observed for a comparable S.verrucosum-derived self-com-

patibilizing factor (Eijlander, unpublished). The level of seed set upon selfing was initially 

considered as an indication for a putatively useful level of PC in order to easily obtain S-homozy-

gotes but this proved to be incorrect because of its inheritable character. In any case, all those 

genotypes that showed seed set upon selfing were eliminated and, as a consequence of this, only 

typical heterozygous SI genotypes were presumably selected. Such a careful selection was indeed 

effective as is evident from the fact that a large majority of the genotypes (20 out of 29, Table 3) 

was strictly self-incompatible after several rounds of selection during different years. 

Because of the importance of plant vigour, fertility, avoidance of lethal genes and the high degree 

of heterozygosity required in the progeny plants, the performance of the basic populations used in 

this investigation deserve attention. The three original dihaploid clones, G254, G609 and B16 were 

known to be vigorous, profusely flowering and fertile (Olsder and Hermsen, 1976). The Fl 

progenies of these clones, on average, performed much better than the progenies obtained from 
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selfings or inbreds (Table 2). Furthermore, the number of ^-heterozygotes that were selected 

originated predominantly (19 out of 31) from the progenies of the original Fis (Table 3) which is 

even more striking when the ratio of SI /SC is considered. This clearly indicates that even within 

a restricted number of genotypes that were used in this investigation, competent SI parents could 

be selected, giving rise to desirable progenies. From the point of view of the good performance of 

the progenies of the basic Fis and some of the inbred lines, it should be concluded that the 

establishment of inbred lines of diploid potato, comparable to those of maize, might be possible. 

In view of the recent molecular approaches to elucidate the phenomenon of self- incompatibility in 

diploid potato ( such as gain and loss of function analysis in genetically modified plants), genetically 

well defined plant material is essential. Part of the material selected in this investigation, which 

includes both S-homo- and heterozygous genotypes, expressing typical SI reaction, was highly 

valuable for this research. The two most important factors for using such selected clones as testers 

are the absence of PC and a good pollen fertility when used as a pollinator. This stresses the need 

for an extensive screening procedure as describred here. 
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Manipulation of self-incompatibility in diploid Solanum tuberosum L using 

sense and antisense constructs of S-RNase genes 

Abstract 

Diploid potato (S. tuberosum) expresses a one locus gametophytic self-incompatibility system. The 

so-called ^-glycoproteins are style specific and are held responsible for the stylar part in the self-

incompatibility (SI) interaction between pollen and style. The potato genes coding for SI and S2 

glycoproteins have been isolated molecularly and used for the construction of various homologous 

and heterologous sense and anti-sense constructs. Six different diploid potato clones, expressing 

either SI or S2, have been transformed with these constructs. 

The anti-sense approach was most successful when the 35S promoter was used, as opposed to anti-

sense versions driven by the 52-RNase or SK2 promoters. Transformation of genotypes displaying 

SI or S2 incompatibility reactions resulted in compatibility with the corresponding SI or S2 pollen, 

that gave incompatibility reactions in the non-transformed genotypes. 

The sense approach confirmed the finding that the ̂ -glycoproteins are directly involved in the SI 

reaction, because the introduction of strongly S2 expressing constructs resulted in the predicted S2 

pollen inhibition. The constructs based on the SK2 promoter were much more efficient in this 

respect, than those driven by the S2 promoter. Introduction of S2 driven by the SK2 promoter 

resulted not only in gain-of function, but in some cases also in an efficient down-regulation of 

endogenous alleles like S3 or 570. 

Thus, the anti-sense approach gave a specific suppression of the target alleles, whereas the sense 

approach could not only add a new incompatibility group, but could also simultaneously suppress 

all other ̂ -alleles. This possible effect should be taken into consideration whenever these types of 

constructs will be used for the production of hybrids in breeding programmes. 

This chapter is submitted for publication in a slightly modified version as:Ronald Eijlander, Michael Ficker, Ester Abad 
I Cantero, Munikote S. Ramanna, Richard D. Thompsonand Evert Jacobsen. Manipulation of self-incompatibility in diploid 
Solanum tuberosum L using sense and antisense constructs of S-RNase genes 
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Introduction 

The phenomenon of self-incompatibility (SI) occurs in almost all diploid tuberous Solanum species, 
including the diploid forms (dihaploids, 2n=2x=24 ) of the cultivated (tetraploid, 2n=4x=48) potato, 
Solanum tuberosum L {tbr). As in the case of other Solanum species, in diploid-tór SI is genetically 
controlled by the gametophytic system based on a single locus, the S-locus, with multiple S-alleles. 
Such 5-alleles were detected in three dihaploids of tbr through diallele crossing and were identified 
as SI, S2, S3 and S4 by Hermsen (1978 a,b). Although the dihaploids that were heterozygous for S-

alleles (e.g., S1S2) showed typical Si-reactions, there were also similar genotypes that were self-
compatible (SC). The SC reaction was caused by a pollen expressed factor, called tSl, which was 
believed to be a translocation of the pollen part of the SI allele (Hermsen, 1978a; Thompson et al, 
1991). Recently, using the same basic material, all possible S-allele heterozygotes (viz., S1S2, S1S3, 

S1S4, S2S3, S2S4 and S3S4) with well defined SI reactions have been selected. In addition, 
homozygous genotypes for most of the ̂ -alleles have been produced and are being maintained as 
tester stocks (Eijlander et al., 1997). 

Besides the traditional methods of detection and classification of S-genotypes ( Olsder and Hermsen, 
1976; Hermsen, 1978a,b), gene products corresponding to the four ^-alleles have also been 
molecularly characterised in the above mentioned plant material (Kirch et al, 1989). By analysing 
protein extracts from the styles of defined S-allele genotypes through two dimensional gel 
electrophoresis, the presence of a group of basic glycoproteins was established. It was further shown 
that each of the four S-alleles was associated with the presence of polypeptides differing in their 
isoelectric points and with the help of these Si-associated proteins (the ̂ -glycoproteins or S-RNases) 
the S-genotypes could be clearly distinguished. A comparison of sequence homologies of S-
associated glycoproteins of tbr revealed similarities with those of other solanaceous plants such as 
Nicotiana alata and Lycopersicon peruvianum (Kirch et al., 1989; Peil, 1995). Within the 
Solanaceae, the highly basic glycoproteins have been shown to possess RNase activity and, because 
of their specific association with the S'-locus they are called S-RNases (Cornish et al., 1987; McClure 
et al., 1989; Clarke and Newbigin, 1993; Newbigin et al., 1993; Sims, 1993; Kowyamaet al., 1994; 
Royo et al., 1994). In addition to these S-RNases, two more abundant proteins, that are designated 
as SKI and SK2, were also constantly present in the styles of most of the genotypes and these were 
non-S-linked pistil specific proteins. Of the two non-S-linked pistil specific proteins, the most 
abundant SK2 polypeptide has been shown to be specifically located (through a immuno-
cytochemical method) in the styles and proved to be an endochitinase (Wemmer et al., 1991; 1994), 
showing homologies with the tomato ChiP gene. 

Genomic and cDNA clones, corresponding to pistil specific proteins, have been isolated and 
characterised in potato (Kaufman et al., 1991; Kirch, 1992; Li et al., 1994; Wemmer et al., 1994; 
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Kirch et al., 1995; Peil, 1995; Ficker et al, 1998a,b). These included two alleles, SI and S2, of the 
5-locus (Kaufman et al., 1991) and SK2 of a non-S-linked gene (Wemmer et al., 1994). A functional 
analysis has been carried out for SI- and 52-RNase promoters as well as the promoter OÎSK2 gene 
by using GUS as reporter (Ficker et al., 1998; and unpublished results). These analyses have 
indicated that the expression patterns of these genes may be strongly dependent on the type of 
promoter and the host plant into which they are introduced. Similar functional analyses on S-RNases 
(promoters and especially coding regions) in other solanaceous plants like Tobacco and Petunia 
have established that S-RNases are indeed responsible for SI reaction of the styles (Huang et al., 
1994; Lee et al., 1994; Murfett et al., 1994). RNase activity was shown to be essential for a 
functional inhibition and gradually more information has become available about the identity 
determinants in the hyper variable regions of the S-Rnases (Me Cubbin et al., 1997; Matton et al., 
1997). 

In view of the available functional information, together with the cloned genes and defined plant 

material, it was relevant to test whether the biological activity (i.e., Si-reaction) in diploid potato can 

be manipulated, as earlier described for Petunia and Nicotiana, through the introduction of S-alleles 

into appropriate plant genotypes. In this context, antisense versions of homologous and heterologous 

constructs of SI and S2 alleles as well as a sense version of the S2 allele were introduced into 

defined genotypes of potato through genetic transformation. The results of the transgenic expression 

of 5-alleles in different types of transformants are described and discussed in this article. 

Material and methods 

Basic plant material 

Two groups of diploid potato (Solanum tuberosum, 2n=2x=24) genotypes were used for genetic 

transformation. The first group consisted of two self-incompatible (SI) genotypes, S1S4 (code: 

195/5, Kirch et al., 1989) and S3S10 (code: 6618-10-IV, El-Kharbotly et al., 1995). The second 

group consisted of four self-compatible (SC) genotypes, viz., SI S3: 6486-04 (R2); SI S3: 6486-19 

(R5); S1S10: 6486-09 (R3) and S2S10: 6487-09 (V). The latter group of clones possessed pollen-

based SC (homologous to the so-called tSl-like reaction, data not shown) , but expressed stylar 

specific SI reliably and was related to two interrelated well-transformable genotypes, A16 (El-

Kharbotly et al., 1995) and 1024-02 (Jacobsen et al., 1989), see also Appendix 2. In addition, six 

diploid homo- and heterozygotes for 5-alleles were used as tester pollinators in order to verify the 

SI reaction in the transformants. Among these six groups, three were SI-homozygotes, SI SI (6496-

01, 6496-04, 6499-04), S2S2 (6233-12, 6234-05, 1140-02) and S3S3 (6499-01); and the other three 

were S-heterozygotes: S1S2 (6222-39), S2S3 (6222-40) (Eijlander et al., 1997) and S2S10 (4002-

04) (El-Kharbottly et al., 1996). 
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Plasmid constructions 

All the constructs used (without showing vectors) are shown in figure 1. 

Plasmids containing those inserts are addressed by the insert names. The construction of inserts and 
Plasmids is described below. 

P35S - S1AS 

P35S - S2AS 

(P35S - S2AS)2 

S2 genomic 

P(0.7)S2 - S2 

PSK2 - S2 

PSK2 n - S2 

L P CaMV DS S1 cDNA 

| P CaMv" ^«^ESSTCaMV 

| P CaMV ~jf^ s? rnNApiBBB p CaMV 

| / / P S2 9.9 kb ) | S2 %M 

^GfWWlA TCaMV 

P S2 0.7 kb S2 

"7 / P SK2 1 kb )T S2 

| / / P SK2 1 kb >n| S2~ 

Fig. 1. Schematic representation of the inserts in the binary vectors pGDW32 ( P35S-S/AS) and pBin 19 (from P35S-
S2AS to PSK2CÏ-S2 ). External arrow headed polygons: promoters (P) of CaMV and of the style specific genes S2 and 
SK2. Promoters larger than 0.7 kb are indicated by broken polygons, ii - enhancer fragment. Internally arrow headed 
boxes: sense (>) and antisense (<) orientated SI cDNA, S2 cDNA or the intron (striped box) containing genomic S2 
coding region. Black boxes: polyadenylation sequence (T = terminator) of the CaMV or 52-RNase gene. 

Anti-sense (AS) S1&S2 
Type: P35S - SIAS. Plasmid pGDW57AS was constructed by cloning into the EcoRI site of 
pGDW32 (Wing et al., 1989) a partial EcoRI digest fragment (P35S - SIAS) of 1,48 kb of 
pAP57AS. pAPS7AS was constructed by insertion of a 0.7 kb Sall/BamHI fragment of SI cDNA 
into a 35S-NOS cassette of vector pAP (Kirch; Pereira, unpublished).Type: P35S - S2AS. Plasmid 
p35S-52AS was constructed by cloning into the Ncol and BamHl site 

of pRT104GUS the 320 bp BgUVNcol fragment of the 52-RNase cDNA (plasmid pHK22, 
unpublished, genomic clone published by Kaufmann et al, 1991). 
Type: P52 - 52AS. Plasmid P52-52AS was constructed by cloning into the NcoV Hindm sites of 
plasmid p522-2 (Ficker et al.,1998 b) a fusion of a 320 bp BglWNcol fragment, extending from bp 127 
to 447 of the 52-RNase cDNA and a 250 bp BamMJHindm fragment of pRT104GUS containing the 
CaMV terminator (Töpfer et al., 1993). 
Type: P 5 0 - 52AS. Plasmid pSK2/l contains the promoter of the style-specific endochitinase SK2 

(Wemmer et al., 1994) and has previously been described by Ficker et al (1998a, in press). Plasmid 
pSK2-S2AS was constructed by cloning into the Ncol and Hindlll sites of plasmid p5r^2/l a 570 bp 
NcoVHindlll fragment of plasmid p52-52AS, containing a fusion of the 52-RNase coding region in 
antisense orientation and the CaMV terminator. 
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Sense S2 

Type: S2 genomic. Plasmid pBinS2 was constructed by the insertion of a 12,9 kb Saä fragment of a 
genomic clone of the S2 RNase (starting at approximately 9.8 kb upstream from the start codon) out of 
1G131/1 (Kaufmann, 1991) at the SaK site of pBinl9 (Bevan, 1984). 

Type: S2 genomic. Plasmid p(Q.l)S2-S2 was constructed by replacing the GUS-CaMV-terminator-
fragment of pS24 (Ficker et al., 1998b) by a 1.8 genomic NcoV Saä fragment of 52, the Ncol restriction 
site containing the start codon. 
Type: VSK2- S2. Plasmid pSK2-S2 was constructed by cloning into the Ncol and HindUl sites of pSK2/\ 

a 1.7 kb NcoVHindUl fragment of plasmid pLAT52S2 containing the S^-RNase coding region and S2-

RNase 3' flanking sequences (Kirch et al., 1995) . 

Type: PSK2 - S2, Q-enhanced. Plasmid pSK2DS2 was constructed by cutting pSK2S2 with Ncol and 

removing the nucleotide overhang with SI nuclease followed by an HindUl digest. The Q-sequence was 

constructed by annealing partially overlapping nucleotides, Klenow fill in and cutting with Ncol. This 

Q sequence is blunt at the 5' end and contains a Ncol site at the 3' end. The Q. sequence was fused with 

a 1.7 kb NcoVHindUl fragment of'pSK2S2 and the resulting fusion was cloned into pSK2S2 processed 

as described above. The 68 bp Q sequence corresponds to the leader sequence of the TMV RNA strain 

Ul and acts as a translational enhancer (Wilson et al., 1993). The oligonucleotides used for constructing 

the Q. sequence were: 

sense 5'GTATTTTACAACAATTACCAACAACAACAAACAACAAACAACATTACAA3' 

antisense 5' CCCCATGGTAATTGTAAATAGTAATTGTAATGTTGTTTGTTGTTTGTTGT 3' 

The afore mentioned inserts of plasmids pSK2Q-S2, pSK2-S2 and pSK2-S2AS were cloned into 
pBIN19 as EcoRVHindUl fragments, p(0J)S2-S2 as a SalUHindUl, p35S-S2AS as a HindUl fragment 
and pS2-S2AS as a KpNllHindUl fragment. A tandem insertion of P35S - S2AS resulted in (P35S -
S2AS)2, with a mutated, non-cleavable HindUl site. All plasmid constructions were checked by 
restriction mapping. 

DNA methodology 

DNA isolation, subcloning, restriction analysis and screening of the genomic library were carried 
out using standard procedures (Sambrook et al., 1989). 

DNA sequencing 
DNA sequencing was performed with an automated DNA sequencer (Applied Biosystems model 
373A) using the Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit (Applied 
Biosystems) according to the manufacturers instructions. 

Transformation procedures and vectors 
For plant transformation the plasmids were introduced into Agrobacterium tumefaciens LBA4404 
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(Hoekema et al., 1983) by either electroporation (Wen-jun and Forde, 1989) or direct transformation 

of competent cells according to Höfgen and Willmitzer (1988). Potato transformation was carried out 

in two ways: 1) as described by Visser (1991) or 2) according to Flipse et al, (1994). Transgenic calli 

obtained by the method of Visser were selected on MS-medium (Murashige and Skoog, 1962) 

supplemented with 10 g/1 sucrose, 2 mg/1 zeatin, 0.01 mg/1 NAA, and 0.1 mg/l GA3. Shoots were 

induced on MS-medium containing 30 g/1 sucrose, 0.25 mg/1 benzyladenine and 0.1 mg /l GA3. Expiants 

inoculated according to Flipse et al (1994) were transferred two days after inoculation onto selective 

media (kanamycin 100 mg/1 or hygromycin 25 mg/1) with MS medium supplemented with 20g/l sucrose, 

lmg zeatin and both 200 mg cefotaxime and vancomycin. Hygromycin resistance was tested under a 

monthly recurrent selection cycle of two weeks of 25 mg/1 hygromycin and two weeks of no selection 

pressure. Selected shoots were transferred to hormone-free MS-medium. All media were supplemented 

with 200 mg/1 cefotaxime and 50 mg/1 kanamycin or 10 mg/1 hygromycin. 

Protein gel electrophoresis 

Up to 50 mg of plant tissue was ground in an Eppendorf tube with 20-100 ß\ 5 mM potassium 

phosphate pH 6.0, 2.5 % (w/v) sucrose, 0.1 % (v/v) b-mercaptoethanol, using a ground-glass pestle. 

Single style extracts were made in a volume of 25 (A extraction buffer.Total anther extracts were made 

by collecting all anthers of a flower and grinding them in lOOfA buffer. After centrifugation of the 

homogenate at 14000g for 15 min, the supernatant was fractionated on horizontal thin-layer isoelectric 

focussing (IEF) poly-acryl-amide gels (pH3.5-10) (Schmidt-Stohn, 1979) or agarose gels (Hypure gel 

VG 1020, Isolab inc). Separated proteins were electro transferred to nitrocellulose filters using a 'semidry' 

procedure (Kyhse-Anderson, 1984) with a Sartoblot IIS (Sartorius, Göttingen). 

Detection of IEF-separated and electroblotted proteins 

Immunodetection was carried out using the ECL Western blotting detection system (Amersham 

Buchler, Braunschweig) basically as described by Kaufmann et al. (1991). Silver staining was 

performed as described by Kirch et al (1989) for the Polyacrylamide gels and according to company 

specifications for the agarose gels. 

Monitoring of incompatibility 

Using transformed and non-transformed plants (controls) as pistillate parents, test crosses were 

made by using pollen from the three classes of S-allele homozygotes, SI SI, S2S2 and S3 S3 or with 

the pollen of the heterozygotes S1S2 (compatible with all transformants), S2S3, S2S10 or S3S10 

depending upon the genotype and the reaction that was to be monitored. 

Styles were harvested 48 hours after pollination and fixed and stained according to the modified 

technique of Martin (1959) and pollen tube penetration was observed under a fluorescence 

microscope (Eijlander et al., 1997). 
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Results 

Antisense suppression 

Antisense effect of the SI allele construct in S1S10 transformants 

After transformation of the diploid potato clone, 6486-09 (SIS10, pollen-expressed SC), with the 

SJ antisense construct pGDW<S7AS (containing full length SI cDNA), plants were selected for 

hygromycin resistance (hyg+). From the eight transgenic plants, five vigorously growing ones were 

further tested. They were monitored for: a) the copy number of the T-DNA inserts through Southern 

hybridisation, b) the presence/absence of SI glycoprotein through IEF followed by silver staining 

and c) the incompatibility reaction through the observation of pollen tube growth of S J tester pollen 

in the styles under a fluorescence microscope. The untransformed potato clone 6486-09 (R3) was 

used as a control. 

A minimum of two copies of the construct was present in all selected transformants except for the 

clone R3-S35S1AS-S that had a single copy. In agreement with the expectations a reduction in SI 

reaction, as compared to the control, was observed in tube growth of pollen from SI S J homozy

gotes, whereas in the case of the control plant there was complete inhibition of pollen tube growth 

of SI pollen. The transformants permitted different degrees of pollen tube penetration, with full 

compatibility being observed in R3-P35S7AS-24 (Table 1&2). In order to verify whether the styles 

of all the transformants confined to the expected norm of the SI reaction, they were pollinated with 

S2 pollen and all were found to be fully compatible (Table 2). With regard to the style-specific 

proteins, IEF revealed that there was no strong reduction of the SI glycoprotein detectable in four 

Table 1. Expression of antisense SI by P35-S7AS in five transformants of the SIS10 - clone 6486-09 (R3). 

The plants were analysed for minimal copy number of pGDWS/as (insert: P35S-57AS), the pollen tube ingrowth 

of SI andS2 pollen from S-homozygotes (SI SI: 6496-01, 6499-04 ; S2S2: 1140-02) in the styles by fluorescence 

microscopy (C = compatible, PC = Pseudo compatible, I = incompatible) and for the banding pattern after silver 

staining of single style extracts on IEF gels (— = absent, - = barely visible, + = clearly visible, ++ = apparently 

normal level, +++= higher). 

Untransformed 

R3-P3557as-3 

R3-P35S7as-8 

R3-P35S7as-24 

R3-SP351as-29 

R3-P35S7as-32 

0 

>2 

>1 

>2 
>2 
>2 

ST reaction against SI and S2 

SI 
I 

I - C 

I -PC 

c 
I - C 

I -PC 

S2 

c 
c 
c 
c 
c 
c 

TF.F-partarn 

57-H-, 

S1++, 

S1++, 

SI +/++, 

SI ++, 

SI ++, 

SW ++, 

S10 ++, 

SI0++, 

S10+++, 

SI0++, 

SI0++, 

SK1++ 

SK1++ 

SKI ++ 

SK1 + 

SKI -^ 

SKI ++ 
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out of five of the transformants. As a comparison, the style expressed SKI, together with S10, the 
levels of which were expected not to be altered, are also indicated in table 1. This revealed that 
transformant R3-P35S7AS-24, which was fully compatible with SI pollen, showed a detectable 
relative reduction of SI, with an estimated 50% when compared to either its S10 band or SI in the 
control plant. 

Antisense effect of S2 allele constructs in S2S10 transformants 

For the antisense S2 approach, two constructs were used that were based on a 320 bp S2 fragment. 
The constructs F35S2AS and (P535S-52AS)2, were used for the genetic transformation of the 
diploid potato clone 6487-09 (V); the latter construct contained a tandem duplication of the former 
insert within the vector pBinl9. Clone V had the genotype OÎS2S10 and showed like R2, R3 and 
R5, a pollen-factor-based self-compatible reaction. 
A total of 30 transformants, 20 based on the P35-S2AS construct and 10 on the (P35-S2AS)2 
construct, was tested for their SI reaction, by monitoring pollen tube growth, using pollen from S2S2 

homozygotes instead of selfing them. The clones had insert copy numbers ranging from 1 to 3. 

Control: S2-inc. as-eff: S2 comp. Sense-eff: S2 inc. 

Figure 2. (Left). Fluorescence microscopy pictures of pollen tube 

penetration in styles. 
A: Control pollination with 52-pollen on clone V (S2S1Ö): 

incompatible. 
B: Pollination with S2 pollen on clone (P35S-52AS)2-V-6, 
showing antisense 52 effect: compatible. 
C: Pollination with S2 pollen on clone PSK2Q-S2-VI-2, showing 

sense S2 effect: incompatible. Clone VI is S3S10. Pollination of 
clone VI with S2 pollen reacts as in panel B. 

» W W w W W W W 

S10-
S2 • 

SK1-
SK2- m. ^jLinm 

V 6 6 6 6 6 6 6 5 

Figure 3. (Right) Silver stained Iso Electric 
Focusing pattern of style extracts of 
untransformed (V) and (P35S-S2AS)2 
transformed clones 5 and 6. Single style 
extracts show a strong reduction of S2 only in 
clone (P35S-52AS)2-V-6 but not in transgenic 
clone 5 or untransformed clone V. 52 and 570 
are S-glycoproteins. SKI and SK2 are other 
style specific proteins. 
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A majority (23) showed a stable SI reaction. However, in some cases there was a tendency for 
pseudo-compatibility when the plants were still young, but at later stages typical SI was evident in 
all of them. The remaining seven transformants showed clearly antisense effects. Among those 
seven, three were phenotypically unstable by showing full SC and SI reactions in different flowers 
of one and the same plant when pollinated by S2S2 plants. In the remaining four transformants, 
P35-S2AS-V-5&8, (P35-S2AS)2-V-4&6 (copy numbers 3, 1, 1 and 2 respectively), a strong and 
stable antisense effect was observed in all flowers. S2 pollen was compatible and full pollen tube 
penetration was visible, indistinguishable from compatible control pollinations. 
Accompanying the change in SI reaction (Figures 2A and B), IEF showed that the 52-RNase band 
was greatly reduced in intensity (Fig. 3: arrowhead), thus contrasting with the limited effect shown 
earlier for the antisense SI constructs (Table 1). There was clear correspondence between the 
reduction of S2 protein and the compatible pollen tube growth of S2S2 pollen in the styles. 

Sense expression studies. 

Expression of genomic S2 constructs. 
pBin£2 was used to introduce a 12kB genomic S2 clone into two SIS3 genotypes (with pollen-
mediated SC). R2 (6486-04) gave rise to 38, and R5 (6486-19) yielded 32 flowering transgenics. 
These 70 plants were tested by IEF for S2 expression in styles and leaves and in none of them was 
the 52-RNase detected. Some test crosses with S2S2 pollinator genotypes were made, and , as 
expected from absence of the S^-RNase, all of them reacted compatibly. Two diploid transgenics 
( pBinS2-R2-l and pBiaS'2-R5-35) with unknown T-DNA copy number were selfed (<8>) and 35 
transgenic offspring plants from each were tested for S2 expression. The two offspring plants 
pBmS2-R5-35<S>-33 & -39 showed a faint 52-band when stylar extracts were silver-stained after IEF, 
in intensity comparable with the S2-bands shown in figure 3 for the antisense S2 clones. 
The cut-back promoter version of pBin£2, ~P(0.7)S2-S2, was transformed into SI S3 clone R2 . One 
out of 22 flowering transgenic plants showed a weak S2 band, as described above. 
As expected from the low level of expression, none of these weakly S2 expressing transgenics were 
incompatible with ^-pollen. 

Gain of SI function by heterologous sense S2 constructs. 

The two heterologous constructs ?SK2-S2 and VSK2Q-S2, containing the SK2 promoter and the 

coding region of 52, differed only by the absence or presence of the Q-enhancer fragment, which 

is a translational enhancer. They were expected to be style specific and to give rise to a high S2 

expression (Ficker et al., 1998, in press). The YSK2S2 construct was introduced into clone VI 

(S3S10) and PSK2Q. S2 into the clones VI (S3S10) and 195/5 (S1S4). The presence of T-DNA was 

confirmed for 14 régénérants of clone 195/5 by PCR analysis and for all 11 tested régénérants of 
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Fig. 4. Expression of the pSK2 based heterologous constructs, driving S2 

Panel A (top left). IEF patterns of style extracts of PSK2C1-S2 transformed clone 195/5 (SJS4) and controls (S1S2 S1S4 
and S2S2). 

Panel B (middle left). Western blot with monoclonal anti bodies against SI, as a control on panel C, s pec ia l ly 

detecting the presence of SI as detected by silver staining in panel A. 

Panel C (bottom left). Western blot with monoclonal anti bodies against S2, confirming the presence and identity of 
S2 in transgenics of panel A. 

Panel D (top right). Over-expression of S2 by PSK2-S2 and VSK2Q-S2 in clone V (S2SI0) and VI (S3S10). V40 shows 

down-regulation for SIO and VI8 for both S3 and SIO. VI6 shows normal gain of function {S3S10 -> S2S3S10). V and 

VI are untransformed controls. 

the clone VI by Southern blotting. Southern blotting showed a copy number ranging from 1 (e g 
FSK2-S2-VI-2 and SK2Q «-VI-1 ) to 6 ÇPSK2ÇI-S2-VI-2). 

Ten out of 14 transformants of clone 195/5 showed IEF detectable «-bands (Fig. 4A), up to 
endogenous levels of the other S-RNases or higher, and so did nearly all (16 out of 18) of the trans
formants of clone VI (Fig. 4D). Two transgenics (?SK2nS2 -VI-2&8) showed in several cases 
much higher «-contents than the endogenous level. The identity of the IEF-detected bands on the 
«-position as «-RNase was confirmed by Western blotting (Fig.4B,C). The strength of the SI 
reaction coincided with the amount o f « glycoprotein present. Plants with high levels o f « 
expression showed strong incompatibility reactions and plants with normal levels allowed for a 
deeper pollen tube penetration (Fig. 2C) before the arrest was complete. Many plants were unstable 
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in the expression of the transgene in the course of time. High temperatures reduced the level of 52 
in most of the plants, causing a shift towards compatibility with S2 pollen. The most stable 
genotypes (1/3 of the transformants) in VI and 195/5 were incompatible with S2 under all circum
stances. Some genotypes showed a barely detectable amount of the S2 glycoprotein in entire anther 
extracts. Pollen from these plants did not show a shift from SI towards SC on non-transformed 
plants of the same genotype. 

S2- sense inhibition and -over-expression. 

Of the selected 21 ?(0.7)S2-S2 (sense) transformed plants (clone V, S2S10 SC), none showed a 
clear-cut inhibition effect on the endogenous S2 incompatibility reaction, which was in accordance 
with the apparent normal levels of stylar 52-RNase when analysed by IEF. 
The constructs VSK2ÇÏ-S2 and PSK2-S2 were also introduced into genotype 6487-9 (clone V, 
S2S10). Transformants were tested for SI by pollination with tester clones. None of the 28 tested 
plants showed a breakdown of the SI reaction against S2 pollen. IEF showed S2 levels at least as 
high as the endogenous concentration and under moderate climatic conditions often an enhanced 
^-content was found when compared with S10. Two clones, FSK2-S2-V-8 & -40, synthesised 
(much) more S2-RNase, than that derived from the endogenous S10 allele. Even excess of complete 
single style extracts (thus not standardised for total protein content) did show little or no S10 

glycoprotein when silver-stained but only SK2 and S2-bands, as if the clones were iS'2-homozygous. 
This phenomenon was also incidentally observed for two ,S2-sense transformed S3S10 plants, 
PSK2Q.-S2-VI-2 & -8 (Fig. 4D). Pollinations with S2S2, S3S3 and S2S10 plants revealed a loss of 
both the S3- and S10- incompatibility reaction, whereas the reaction against S2 was maintained, thus 
reconfirming the key role of specific S-RNases in the incompatibility reaction. The indicated effects 
of the constructs used, are summarized in table 2. 

Discussion. 

S2 genomic clones: sense expression and sense inhibition. 

Long ,S2-RNase promoter fragments fail to direct high-level style-specific expression of reporter 
genes in transgenic potato and tobacco (Kirch, 1992; Kirch et al., 1995; Murfett et al., 1995) and 
distally located cis acting regulatory elements have been postulated for an optimal level of 
expression. Ficker et al (1998 a, in press) conducted a functional analysis on middle-long and short 
versions of the S2 promoter and hypothesised that there is an interaction between the coding region 
of the ̂ -allele and its promoter to regulate a proper tissue-specific activity. This hypothesis argues 
fairly against the expected result. But we (arguably) tested this hypothesis by transformation with 
a construct having a long promoter and one with a short one. Because all constructs used in this and 
the previous studies apparently lacked those distally located regulatory elements, high-level 
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Because the cut-back versions of the S2 promoter showed nearly the same expression levels in 
activity studies (Ficker et al, 1998b) when compared with the larger promoter versions (up to 9.8 
kb), little systematic effect was to be expected from our transformants based on either the small or 
the large promoters. Only a fortuitous integration of the homologous constructs in an "activating" 
site of the potato genome, containing such regulatory elements, might have given a good expression 
of S2. Passing through a sexual cycle, which also involves recombination, can bring about 
expression of transgenes that were not expressed before (see also review by Stam et al., 1997). For 
that reason, some offspring was tested on transgene activity as well. The low level of S2 expression 

Table 2. Overview of maximal effects detected in the antisense, sense and over-expression studies. 

Blancs: not determined; - = presence not detected / pollen tube growth arrested; + = presence detected / full pollen 

tube penetration; blank = not tested; ++ = high contents, < = slightly reduced; < « strongly reduced, barely 

noticeable. 

Construct 

none 

(control) 

P35 SIAS 

P35 S2AS 

(P35 S2AS)2 

S2 genomic 

P(0.7)S2 S2 

VSK2 S2 

VSK2C1 S2 

Host plant 

Clone 

R2 

R3 

R5 

V 

VI 

195/5 

R3 

V 

V 

R2 

R5 

R2 

V 

VI 

V 

VI 

195/5 

5-genotype 

SJS3 

S1S10 

S1S3 

S2S10 

S3S10 

SIS4 

SIS10 

S2S10 

S2S10 

S1S3 

S1S3 

S1S3 

S2SI0 

S3S10 

S2S10 

S3S10 

S1S4 

IEF detected glycoproteins 

SI 

+ 

+ 

+ 

-

-

+ 

< 

-

-

+ 

+ 

+ 

-

-

-

-

+ 

S2 

-

-

-

+ 

-

-

-

< « 

< « 

+* 

+* 

+ 

++ 

++ 

++ 

++ 

+ 

S3 

+ 

-

+ 

-

+ 

-

-

-

-

+ 

+ 

+ 

-

< 

-

-

-

S4 

-

-

-

-

-

+ 

-

-

-

-

-

-

-

-

-

-

+ 

S10 

-

+ 

-

+ 

+ 

-

+ 

+ 

+ 

-

-

-

-

< 

-

-

-

Pollen tube growth in styles 

SI 

-

-

-

+ 

+ 

-

+ 

+ 

+ 

-

-

-

+ 

+ 

+ 

+ 

-

S2 

+ 

+ 

+ 

-

+ 

+ 

+ 

+ 

+ 

_ i_** 

_!_** 

+ 

-

-

-

-

-

53 
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*) = in offspring after selfing; **) = also in offspring after selling; < « : in offspring 
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in expressing ofsspring was comparable to that of the single expressor plant containing the 0.7kb 
promoter version of pBinS2 and this was in accordance with the findings of Ficker et al., (1998 b) 
after transformation of a comparable construct into tobacco. It was, due to the quantitative nature 
of the SI response, not sufficient to promote a functional SI reaction against ̂ -pollen. The detection 
of sense-inhibition is therefore highly unlikely if this depends on the transcription level of an 
inserted construct. 

Antisense SI and S2 effects. 
The antisense effect for S2 is indisputable, although the phenomenon was not expressed in all plants 
stably. It was shown that the P35 based antisense ^-constructs were transmitted through the 
gametes. Offspring clones like 1184-01 (= S2S2 +(P35-S2AS)2, derived from crossing (P35-
S2AS)2-V-6 with the S2S2 clone 1140-02) showed the expected antisense effect (data not shown). 
The high percentage (80%) of transformants showing some antisense effect for SI (by pGDWS7 AS, 
Table 1) is most likely due to the selection procedure, because only a few stably Hyg+ responding 
transgenics were obtained, whereas Kan+ based constructs would have yielded many more transgenics. 
The reduction of the SI -glycoprotein has even in clone R3-P35-57AS-24 not been so dramatic as 
observed for S2 in various transgenics derived from clone V. The S10 allele belongs probably to the SU 
S3! SIR family (Kirch et al., 1989) because SI and S3 specific primers allowed for PCR- amplification 
and SI probes strongly hybridised with S10 in RFLP analyses (data not shown). Comparison of the SI 
signal with that of 570 can, therefore, give a false impression of absence of antisense effect on protein 
level when S10 is reduced as well. Antisense affecting alleles has also been reported by Lee et al (1994) 
for the S2 and S3 alleles in Petunia inflata. I.E.F based comparison with the SK2 signal may be difficult, 
because this signal is in general very strong, in this way a 50% reduction of SI may remain undetected, 
whereas SKI is inappropriate for this due to its unpredictable level of expression. There remained only 
one transgenic with some demonstrable reduction of the S-RNases, but this reduction was not as strong 
as detected for some antisense S2 transgenics. Nevertheless, clone R3-P35-S7AS-24 was constant and 
reliable in this acquired SI compatibility. It is possible, that the S7-RNase content in styles of clone R5 
was initially lower than the .S -̂RNase in styles of clone V, and it might also be that in these clones the 
activity of SI and S2 RNase differs, thus explaining why an antisense induced reduction of S7-RNase 
content with 50% is much more effective than a comparable reduction of S2-RNase. 
There was no seed set on the stable antisense SI clone, because the chromosome number of this plant 
was spontaneously doubled during transformation. This was also true for some of the S2 antisense plants. 
The diploid transgenic clone PS2-S2AS-V-6, showing such a strong S2AS effect (Fig. 2B, 3), had a 
disturbed female fertility and set only limited seed in all pollination types. The male fertility, however, 
was nearly unaffected. Due to this and to the presence of the pollen-expressed self-compatibilizing factor, 
the aforementioned S2S2 - S2AS clone 1184-01 could be obtained, and this allowed testing of the 
heritability of the AS-effect. The weaker or less stable expression of (P35 -5'2AS)2 in this clone might 
be due to a reduction in transgene copy number from two to one by meiotic-recombination. In addition 
to this, or instead of this, the homozygosity of the S2-allele could account for a weaker AS-effect than 
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in the parental clone. This double contribution in an endogenous S-homozygous plant is, according to 
Me Cubbin et al (1997), also the most likely explanation why their introduced mutated .S-protein was less 
effective in breaking down the stylar part in SI (probably by competition/multimer formation with the 
homologous endogenous glycoprotein) than when present in an ̂ -heterozygous plant. 

Sense expression of heterologous constructs. 

The sense-expression of S2 driven by the ( Q ̂ SK -̂promoter is in accordance with the strong and tissue-
specific expression of the reporter constructs (Ficker et al., 1998 a, in press) and is also supported by the 
results of Murfett et al (1994), using constructs driven by the promoter of the SK2 tomato homologue 
ChiP. 52-RNase content in styles of S-allele transgenics can surpass that of the endogenous S-alleles 
The studies by Ficker et al (1998 a,b) pointed out that there might be a specific interaction between 
promoter, coding region and postulated distally located regulatory elements for a tissue specific 
expression of the 5-alleles. The SO-promoter was in this respect different from the ̂ -promoter. The 
down-regulation of endogenous ̂ -alleles might, therefore, be a logical result of over-expression of 52 
when driven by the SK2 promoter. The heterologous construct may be less sensitive to some down-
regulating mechanisms or might even lack some of those regulatory elements. The SK2 promoter being 
this effective is in accordance with the success reported for the homeologous promoter ChiP. Matzke 
et al (1989) reported epistatic suppression by reversible methylation, which might be the case here too, 
because the apparent suppression of S10 in the transformed V and VI clones disappeared and reappeared 
with the fluctuation of the greenhouse temperatures. The suppression of 570, which was not detected in 
all 52-expressing transformants, stresses the need to combine H5F with the utilisation of 5-homozygous 
tester lines, for test crosses with S2S10 pollinators would have given conflicting results: high S2 
expression and nevertheless compatibility in test crosses. 

Ficker et al (1998 a, in press) reported that Gt/5-expression of the heterologous ?SK2-GUS constructs 
could also be found in anthers, and this was in accordance with the observations (Murfett et al., 1994) 
on the heterologous constructs based on the ChiP promoter (Chi2;l encodes, as stated earlier, a tomato 
homologue of SK2). This can explain why some of the transformants showed a low but detectable level 
of S2 in total anther extracts during the periods of high stylar expression. It was not determined whether 
the 52-RNase was present in pollen only or that it had a sporophytic origin. The pollen fertility appeared 
not to be affected by the presence of 52-RNase, which is supported by observations of Kirch et al 
(1995). 

It is now confirmed for potato by sense-, antisense- and over-expression of the 52-allele that the style-
specific 5-RNases are the key factor in the stylar contribution to the gametophytic self-incompatibility 
reaction. It has also become clear that a reliable gain and loss of specific SI reactions by a molecular 
approach is not so evident, but manipulation of the stylar expression of SI in potato is shown to be 
possible now. 
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Expression and inheritance of self-compatibility and self-incompatibility 

after crossing diploid S.tuberosum (SI) with S.verrucosum (SC) 

Abstract 

Diploid potato, Solanum tuberosum (tbr), and S.verrucosum (ver) can hybridise when the latter 

species is used as the pistillate parent but not when used as the staminate parent. This phenomenon, 

called unilateral incompatibility (UI), is frequently observed when a self-compatible (SC) species 

is intercrossed with a self-incompatible (SI) one. S.verrucosum is such a self-compatible species. 

Ver x tbr hybrids display cytoplasmic male sterility (CMS) and are, therefore, not suitable for 

genetic analysis of other crossing barriers. Previously, specific diploid tbr clones, called acceptors, 

were detected that showed bilateral compatibility with ver instead of UI. These selected clones were 

used to realize the reciprocal crosses in order to circumvent CMS and to create, by repeated 

backcrossing, ver with tbr cytoplasm. The resulting Fl's were both male and female fertile. This 

"acceptance" for ver -pollen is based on the presence of a dominant gene A (acceptance), in 

combination with the absence of an inhibitor gene I. The Fl's showed only expression of the S-

allele that was derived from the tbr parent. It was shown that this ver does not produce style-

specific ^-glycoproteins, ^-glycoproteins are responsible for the stylar contribution to the self-

incompatibility reaction in potato. The Fl-populations investigated here, were SC, but skewed 

segregation ratios for this trait, and disappearance and re-appearance of SC showed up in the 

following offspring generations. These deviations from the expected behaviour could be explained 

by postulating a more complex interaction of the acceptance (of ver pollen) determining genes A and 

I, the involvement of SI governing S-alleles from tbr, a stylar non-active SVCI allele (SV) and a weakly 

S-locus-linked pollen-expressed SC factor (SCver) from ver, resulting in "SI by UI based inhibition 

of SC", is explained hereafter. The presence of the stylar non-active Svtr -allele allowed for the 

penetration of ver-pollen in styles of hybrids when the recipient was of the genotype A* ii and for 

any tbr pollen that did not express style-active tbr- S-alleles. The latter behaviour is normal in any 

gametophytic SI reaction. Pollen containing simultaneously an active tbr »S-allele and the SCVC, 

pollen factor was not effective in causing SC when the recipient was of the genotype aal*. It caused, 

however, the expected SC reaction on any other genotype, irrespective of the tbr ̂ -alleles active in 

both parents. Thus, aal* non-acceptor genotypes, containing SCmT, are SI by UI based inhibition of 

SC. 

Tetraploid hybrid genotypes, obtained from doubling an SI non-acceptor diploid hybrid, produced 

This chapter is submitted for publication in a slightly modified version as: Ronald Eijlander, Wendy ter Laak, Jan G.Th. 
Hermsen, Munikote S. Ramanna and Evert Jacobsen. Occurrence of Self-Compatibility, Self-Incompatibility and 
Unilateral Incompatibility after crossing S.tuberosum (SI) with S.verrucosum (SC):I Expression and inheritance of Self-
Compatibility 
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pollen that showed mutual weakening. This was caused by in interaction of the pollen-active tbr S-

allele and the, apparently pollen-active, Svtr allele from ver. Styles of non-acceptor recipients 

showed for this type of pollen a complete break-down of the SI and UI reaction in the upper part of 

the style, whereas in the lower part inhibition reactions reappeared, thus indicating at least two 

different factors in UI, which may coincide with "a" and "/". Thus, it was concluded that at least 

four different loci are involved in the expression of UI: the acceptor locus Ala, Hi for inhibition, 

the compatibilizing factor SCm and the pollen part of the regular S-locus. 

Introduction. 

Many plant species have developed systems against inbreeding. They can be based, for instance, on 

morphological features by which self-pollination is prevented, or on differences in maturation time 

of pollen and style. In some species heteromorphic characteristics are linked with incompatibility 

genes controlling pollen-pistil interaction (e.g. Primula vulgaris, Richards, 1986), but homomorphic 

self-incompatibility is more common. Based on the type of interaction between pollen and pistil, 

two major self-incompatibility (SI) systems can be distinguished: sporophytic and gametophytic. 

In the sporophytic system the SI reaction is determined by the expression of the parental sporophytic 

genotypes in the pollen and in the pistil. In the gametophytic system it is based on the expression 

of the individual alleles present in the pollen (the gametophyte) itself and in the style. 

Interspecific and higher order crossing barriers exist in nature. Quite often, related species can be 

intercrossed reciprocally. Sometimes intercrossing is possible in one direction only. When this is 

based on processes between pollen landing and fertilization, it can be called unilateral incompatibi

lity (UI), although the expression "incongruity" is also often used instead of incompatibility, when 

not referring to SI (Hogenboom, 1973). UI is most frequently found in crosses between SC and SI 

species. UI following the SI/SC rule can be found throughout the two major incompatibility 

systems. For an extensive review on (unilateral) incompatibility may be referred to a monograph 

by de Nettancourt (1977), which is still informative. More recently, Mutschler and Liedl (1994) 

gave a good overview on interspecific crossing barriers in Lycopersicon, and they favoured the 

opinion that SI and UI are discrete barriers, although they admit that there might exist systems in 

which SI contributes somehow to UI. A more refined and extensive theoretical approach on 

unilateral incongruity by Trognitz and Schmiediche (1993) deals with all kinds of interactions, 

involving a limited set of necessary genes with a limited number of essential alleles, but even with 

this approach it remains difficult to draw conclusions about the correctness of Hogenbooms 

incongruity hypothesis (1973). 

One of the debates that is ongoing over the past 40 years, is whether or not the S-locus is involved 

in the UI reaction. It has always been tempting to assume such a genetic relation, because UI and 

SI often have several aspects in common, and a strong correlation may be observed between UI on 
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the one hand and parental species being SI and SC on the other; this suggests to be more than a 

coincidence. Of course, many arguments have been countered by exceptions and erratic results 

(Mutschler and Liedl, 1994). Nevertheless, there has been an accumulation of experimental evidence 

that SI and UI are frequently associated (Lewis and Crowe, 1958; Chetelat and DeVerna, 1991; 

Hiscock and Dickinson, 1993). Lately Murfett et al (1996) carried out transformation experiments 

with S'-gene based constructs in Nicotiana and demonstrated that 5'-glycoproteins(also called S-

RNases, e.g., McClure et al., 1993) can contribute to at least a part of the UI reaction. 

One of the reasons why the debate is still ongoing, might be that different taxons may show UI with 

different strengths and reaction patterns, based on different numbers and types of genes and alleles. 

The extrapolation of results from one species to another relative may, therefore, be inappropriate. 

Potato, Solanum tuberosum L. (tbr) is a self-compatible crop, but this can be attributed to its ploidy 

level (2n=4x=48). Mutual weakening between different 5-alleles in the same pollen grain makes that 

the species is self-compatible. Potato dihaploids (2n=2x=24) are usually SI, although exceptions to 

this rule do occur (Olsder and Hermsen, 1977; Hermsen, 1978 a,b,c). These dihaploids display UI 

when crossed with the self-compatible species S. verrucosum (ver). This species is closely related 

to potato and even belongs to the same series (Tuberosa). The appearance of SC in a putative SI 

potato plant does not necessarily cause a shift in the UI/SI relationship. The SC diploid potato 

clones G254 and B16 (Olsder and Hermsen, 1977) did not cause a break-down of UI when 

pollinated by ver, and remained compatible as staminate parent with all other diploid potato clones. 

Hybrid offspring of these two clones segregated, however, into acceptor and non-acceptor clones 

for ver pollen. Acceptance is the exception to UI, thus non-acceptance is equivalent to UI. The 

simplest and best fitting hypothesis is based on two stylar active genes, the acceptor gene A and its 

inhibitor gene I. Both genes are dominant, but I is epistatic over A. So, only AM tbr genotypes are 

acceptor (Hermsen et al, 1974). Analysis of other types of plants, including S.andigena based 

dihaploids and other accessions of ver, revealed differential behaviour of pollinator and recipient 

(Hermsen et al, 1977; Hermsen and Sawicka, 1979), thus refining the model. The possibility of the 

involvement of more alleles and/or more genes was discussed here, and gene-for-gene relationships, 

pollen penetration capacity, differential reactions to foreign pollen and unilateral incongruity as 

proposed by Hogenboom (1973) were included, but the results were not conclusive. 

The reason why a species is self-compatible can play an important role in answering the question 

which factors are really involved in the UI reaction between SC and SI species. From ver no active 

^-allele products are known (Kaufmann et al, 1992). They claimed that a ver x tbr hybrid ( male 

sterile), expressing the 57 allele from tbr, was unexpectedly compatible with SI pollen from the 

latter species, thus giving rise to SI SI homozygotes. They postulated, therefore, the existence of a 

ver borne style-expressed suppressor of the SI function. 

The existence of the acceptor lines as described by Hermsen et al (1977) and Eijlander et al (1997) 

allowed for more detailed analysis of male and female fertile backcross progenies. Now the 
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segregation of SC related factors, S-alleles and UI could be tested for their interrelationship. Here 

the results of those experiments are presented and it will be discussed which factors play a role in 

the SC behaviour of ver and how they are related to the UI, SI and SC factors as reported for the tbr 

material used here. 

Materials and Methods 

All diploid potato clones used here, with the exception of clone 1024-02, are offspring from the 

three basic tbr clones G254, G609 and B16, and were used earlier as basic material for the 

investigation of the gametophytic Si-system and UI (Hermsen et al, 1974; Olsder and Hermsen, 

1976; Hermsen, 1978, a,b,c; Eijlander et al, 1997). In this material genotypes were found that were 

acceptor (AAii or Aaii) for ver pollen, and non-acceptor clones were based on the absence of the 

acceptor gene A (thus aa**) or on the expression of the dominant inhibitor gene /(thus **ƒ*). 

The offspring clone 6233-11 = S2S2 and non-acceptor (NA) of the type aaii, 6234-08 = S3S3 and 

acceptor of the type AAii, clone 6536-01 = S3S4 and acceptor of the type AAii and full sib clone 

6536-02 = S3S4 and acceptor of the type Aaii. These clones and all other diploid tbr tester clones 

( 1140-02, 1140-05, 6104-21, 6221-17, 6221-32, 6221-30, 6221-39, 6223-39, 6223-40) used here, 

have been assesses earlier for their SI reaction by Eijlander et al (1997). Clone 1024-02 (Kuipers 

et al, 1994) has the genotype S2S10, is non-acceptor and, as mentioned before, not related to G254, 

G609 or B16. The clone was used as pistillate parent in some test crosses. 

All ver pollen parents were füll sibs from ver accession PI 195172, or offspring of those sibs. This 

accession was chosen because among the ver accessions tested on various acceptor tbr clones, PI 

195172 had the highest pollen penetration capacity (Hermsen et al, 1974). 

The backcross population VTV= {ver PI 195172 x G254) x ver PI 195172, segregates for SI, S3 

and Sv, all clones being 100% cytoplasmic male sterile. The Fl VT (ver PI 195172 -27 x tbr S2S3) 

is also CMS and contains S2Sv and S3Sv genotypes. 

TV5 = tbr (acceptor)-ver hybrid, backrossed 4 times with various ver accessions (mainly and at least 

the last time with ver PI 195172) = 97% ver. It contains 5-alleles from tbr. All plants were male 

fertile and self-compatible. TV6= TV5 x ver PI 195172. TV5 and TV6 were used in backcrosses with 

non-acceptor tbr genotypes. 

The population 6484 = TV6 x tbr 6233-11 (SvSv x S2S2, aalT) consisted of fourteen plants.These 

Fl hybrids are nearly pure ver-tbr hybrids, male and female fertile and non-acceptor (S2Sv, a*I*); 

the full sib clone 6251-19 = (TV5 x tbr S2S3 aaii) x (TV5 x tbr S2S3 aaii) = S3Sv, NA and SI; 

population 1173 (11 plants) = tbr 6234-08 x 6251-19 (S3S3, acceptor x S3*,NA). 

The population 6541 (25 plants) = tbr 6234-08 x ver PI 195172 -27 (= S3S3, acceptor x SvSv, ver) 

= Fl hybrid. Clones from population 6541 (all expected to be S3Sv, acceptor) were randomly 
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picked and backcrossed with tbr 6536-01 or 6536-02 (both S3S4, acceptor): 1051 (35 plants) = 

6541-03 x 6536-01; 1052 (30 plants)= 6541-03 x 6536-02; 1053 (65 plants)= 6541-06 x 6536-01; 

1054 (30 plants)= 6541-06 x 6536-02 and 1055 (30 plants)= 6541-11 x 6536-01. 

Populations 1061 to 1066 (up to ten plants each) were obtained by selfing of respectively the Fl 

clones 6541-01, -02, -03, -06, -11, -25. 

Pollinations were manually performed. Flowers, used for controlled pollinations, were emasculated 

prior to anthesis. Compatibility was tested by observing berry and seed set after pollinating at least 

5 flowers. In case of doubt pollen tube ingrowth was monitored by means of fluorescence 

microscopy as described by Eijlander et al (1997). Penetration capacity was classified based on the 

amount of pollen tubes capable of penetrating upper and lower stylar sections. 5-alleles and some 

other style specific proteins (like SKI and SK2; Kirch et al (1989)), were determined by making test 

crosses with tester lines (Eijlander et al, 1997) and/or by means of Iso-Electric Focusing (IEF) of 

stylar extracts on poly-acryl amide or agarose gels. PAGE was performed as described by Kirch et 

al (1989) or by means of pre-cast agarose gels (Hypure gel VG 1020, Isolab inc.) following the 

silver staining procedure based on Tungstosilicilic acid in stead of sodium permanganate, according 

to company specifications. 

Results. 

Expression studies on tbr ̂ -alleles in ver cytoplasm. 

Kaufmann et al (1992) detected in a ver x tbr hybrid {SISv) that some offspring plants after 

backcrossing with SI S3 genotypes did not show the expected S3 allele, but only the SI allele; the 

postulated ver borne allele Sv does not produce a detectable basic glycoprotein. Two likely 

explanations for this type of progeny are parthenogenesis (Abdalla, 1970) or suppression of the tbr 

«S-allele (SI) in the hybrid. Presence of such phenomena could impede research on SC/SI, non-

acceptance (NA, here equivalent to UI) and the possible relation between UI and SI in our hybrid 

system. Therefore, the (ver x tbr)x ver BC1 (TVT, in S-alleles: SvSv x SlS3)x SvSv) and the ver x 

tbr Fl hybrid <SV,SV x S2S3 were tested for suppression of tbr 5-alleles in the styles. A limited set of 

genotypes was tested for ^-alleles by means of IEF and of test crosses with S1S1, S2S2 and S3S3 

(Table 1). As expected, all plants were male sterile. All the S-alleles of tbr that were present in the 

Fl or BC1, appeared to be functional in respect of 5-glycoprotein production and incompatibility 

reaction against the same S-allele. Thus, in this material, no indications for genie or plasmic SI 

suppression were observed, and the types of ver that were intended for further investigation on SC 

and UI, could therefore be used. 
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Table 1. Incompatibility reaction of VT Fl and VTV BC1 plants in response to SI, S2 and S3 pollen. 

VT = ver PI 195172 -27 x tbr S2S3 ; VTV = (ver PI 195172 x tbr SI S3 ) x ver PI 195172. S-alleles were detected 

by IEF followed by silver staining. Sv = postulated S-allele from ver, no band visible; S1/S2/S3: S-alleles derived 

from the tbr clones. Pollinations were made with SIS1, S2S2 and S3S3 homozygotes (Eijlander et al, 1997). Berry 

set is indicated by + or -, based on 5 to 10 pollinations ; blank = + expected, but not tested. Average seed set in case 

of berry formation ranged from 31 to 107. 

Clone 

VT-4 

VT-6 

VT-7 

VTV4-1 

VTV4-5 

VTV5-8 

VTV6-2 

VTV7-1 

VTV7-4 

S-alleles 

S3 

S2 

S2 

Sv 

SI 

S3 

Sv 

S3 

Sv 

Berry set or polle tube ingrowth after pollination with: 

SI -pollen 

+ 

-

+ 

+ 

+ 

+ 

<52-pollen 

+ 

-

-

•Si-pollen 

-

+ 

+ 

+ 

-

+ 

-

+ 

lit 

Fig 1. IEF pattern of stylar extracts 

after silver staining of a population 

of nearly-ver TV6 (left panel) and 

ver. Two bands of basic proteins are 

visible: Kl (upper) and K2 (lower). 

Segregation of the bands of TV6 and 

ver can be explained by assuming 

that TV5=K2K2 was crossed with ver 

=K1K2 or vice versa and that the ver 

population tested here, oroginated 

from the cross verl x ver2 = KIKl x 

K1K2. 
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Segregation and allelism of style specific proteins in "S.verrucosum" and its hybrid offspring. 

For ver 15 full sib clones and for TV6 eight clones were tested for SC and the presence of stylar 

proteins. All 23 genotypes were, as expected, SC. Both populations segregated for two proteins (Fig. 

1), abundantly present in the most basic (pH>7) part of the IEF gel (silver stained). Those proteins 

were not visible in extracts of leaf and stem tissue. Because of their localisation and their presumed 

non-S-allele nature, they were designated Kl and K2, analogous to the style specific non-S-linked 

tbr polypeptides SKI (presumably an RNase: Lee et al, 1992; Thompson et al, 1995) and SK2 (an 

endochitinase: Wemmer et al, 1994). Kl focused approximately at the SKI place, but could be 

identified by a more redish colouring after silver staining. K2 focused even more basic than SK2. 

Based on observations as shown in the figures 1 and 2, the ranking from acid to basic of the stylar 

proteins appears to be as follows: S4 (1st band), ,S7(not shown here), S4 (main band), S2, S3, Kl, 

SKI, SK2, K2. The ver (selfing) population segregated in 7 Kl : 8 (K1+K2) plants and TV6 

segregated into 4 (K1+K2) : 4 K2 plants (Fig. 1). Segregation analysis of offspring plants from 

crosses based on K-bands ( Kl®; K2®\ (K1+K2)® ;K1 xKl; Klx K2; (K1+K2) x K2 and (K1+K2) 

x (SK1+SK2)) showed both normal and skewed segregations, but no genotypes were found missing 

simultaneously both Kl and K2. This strongly indicates allelism of Kl and K2. If this assumption 

is correct, then the S-alleles of ver (Sv) produce apparently little or no basic 5-glycoproteins. 
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Fig. 2 IEF pattern of stylar extracts after silver staining of (left panel) tbr parent 6234-08 (1), ver parent PI 195172-27 
(m), the Fl clone 6541-06 (r) and (right panel) some offspring BC1 clones of population 1053, derived by backcrossing 
clone 6541-06 with an S3S4 tbr clone. Visible bands: S4 (upper two), S3, Kl and SK2. SKI is faintly visible in some 
lanes between Kl and SK2. 
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The Fl population 6541 came from the cross tbr 6234-08 x ver PI 195172-27 (=S3S3, acceptor x 
SvSv). The ver clone used here, was previously tested for absence of tbr- 5-allele suppression (see 
above). Twelve 6541-clones were tested for SC and IEF-band composition. All plants were, as 
expected, SC and all were showing the S3 and SK2 band from the tbr parent and also the Kl band 
from the ver pollen parent (Fig. 2). Seven randomly selected plants were tested for acceptance of 
ver pollen and proved to be acceptors. All seven were as pollen parent compatible on the parental 
acceptor clone 6234-08 (S3S3). Functional activity of the S3 allele in 6541 plants was directly 
confirmed by fluorescence microscopy performed on styles of test crosses, showing a proper 
incompatibility reaction against S3 pollen (Fig.3). Thus, SI against S3 pollen was still active, 
acceptance was maintained and SC characteristics of ver were expressed in the 6541 population. 

The Fl 6541 clones that were tested for acceptance (all S3Sv and acceptor) were backcrossed with 
the S3S4 acceptor lines 6536-01 and 6536-02 as pollen parents. Five BC1 populations (1051 to 
1055), with a total of 143 flowering plants, were investigated in more detail. All these clones 
showed the 54-allele of the S3S4 pollinator clones (Fig. 2), thus excluding selling or fertilisation by 
an S3 pollen grain and confirming that the S3 allele was fully functional and effective in the style 
and not suppressed by some unknown ver factor. If there had been a stylar Si-suppressor, the 
penetration ratio (certation) between S4 and S3 would have been at least 98: 2 (at y = 0,05), so this 
possibility can be ruled out. 
It was postulated that ver contained an 5-locus but that its stylar expression could not be detected 
through IEF because it lacked an 5-specific band. The ratio "presence of S3" to "absence of the S3 

(= presence of "Sv")" was pooled over five populations, and segregated into 70 S3 : 73 SV ( fits 1:1 ; 
X2 = 0,06). The Kl band segregated in a ratio of 65 present and 78 absent (X2 = 0,59; P):1=0.8), 
which is also reflected in the ratio of K1+S3 : Kl+Sv : S3 : Sv (32:33:38:40), which fits a 1:1:1:1 
segregation (X2 = 1,04; ?,.,.,.,= 0.8), thus proving the independent assortment of the S-alleles and 
Kl (fig.2). That K2 (presumably allelic with Kl) was not allelic with the tbr ^-alleles, was 
confirmed by banding patterns of clone 6251-22, a sibling from clone 6251-19, that had the 
genotype S2S3 K2 (fig. 4). So, S3S4K1 and S2S3K2 plants were found, indicating, as expected, the 
non-allelism of either Kl or K2 with the tbr 5-alleles. 

The six populations 1061 to 1066 (6541 clones selfed) allowed for 30 plants a proper identification 
of Kl and SK2 bands. Because these genes proved to be non-allelic with S-alleles, segregation 
analysis of the ̂ -alleles was not considered here. Seven plants showed only the Kl band, 13 both 
the Kl and SK2 bands and 10 showed only the SK2 band. When Kl and SK2 would be allelic, then 
the Fl population (6541) was most likely derived from the cross SK2SK2 x K1K1, resulting in 6541 
with the SK2K1 genotype. In the case that SK2 and Kl are not allelic but independent genes, the Fl 
would then have been hemizygote: SK2—Kl—, selfing would give different segregation ratios. 
Testing for these ratios gave a x2 of 1,13 for allelism (P=0.57) and a %2 of 6,50 for the hypothesis 
of unlinked genes(P=0.09). Hence Kl and K2 are most likely allelic with SK2. 
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—S2 
—S3 
—S4 
—SKI 
—SK2 
—K2 

Fig. 3 (left) Incompatibility for S3-pollen as monitored in styles 

from the S3Sv clones from the Fl population 6541 after 

fluorescence microscopy on anilin-blue stained styles. Top: 

stigma; bottom: ovary with ovules. 

Fig. 4 (top) IEF pattern of stylar extracts after silver staining of 

tbr-ver offspring clones. From top to bottom: S2, S3, Kl, SKI, 

SK2 and K2. Most left lane: 6251-19, expresses S3Sv SK1K2. 

Most right lane: 6251 -22, expresses S2, S3, SKI, SK2 and K2. 

Self-compatibility based on (differential) acceptance of Sv and a pollen-expressed factor, SCvt 

The populations 1052 and 1054 (= 6541-03 & 6541-06 x 6536-02 = S3Sv, acceptor x S3S4, 

acceptor) segregated into acceptor lines (AAii and Aaii) and non-acceptor lines (aaii) when tested 

with the hereafter mentioned tester clones, in a pooled segregation ratio of 32 acceptors : 14 non-

acceptors (= 3:1; X2 = 0,72). The populations 1051,1053 and 1055 (= 6541-03, 6541-06 & 6541-11 

x 6536-0K S3S4, acceptor>) showed only acceptor genotypes (AAii or Aaii) when pollinated with 

the tester clones ver PI 195172(clone22 x clone27)-31&-32, but showed in about a quarter of the 

cases an UI (thus non-acceptor) reaction when tested by another ver genotype, (clone 35 x clone 37)-

1 (data not shown). No clones were found that were acceptor for the latter ver clone and non-

acceptor for the former two ver clones. It was clear from these observations that in this material a 

differential non-acceptance reaction against certain types of ver pollen was found, as previously 

reported for this system (Hermsen et al., 1977; Hermsen and Sawicka, 1979). 
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Table 2. Segregation of S-alleles and SC in the acceptor populations 1051 and 1053. The populations are BCl's 

of the type TVT: 6541-06 x 6536-01 & 6536-02; 6541-06 = tbr 6234-08 x ver. All are acceptor for ver pollen of 

tester lines 31 and 32 (Fl of PI 195172). Numbers are pooled. S-alleles detected by IEF: S3 and S4 were derived 

from the tbr clones 6234-08 and 6536-01 ; Sv = postulated stylar non-active S-allele from ver","detected" by absence 

of the S3 tbr allele. SI = self-incompatible, SC = self-compatible; 5Cver - = single SC factor from ver, - - = no 5Cver 

factor. The class S4Sv, SC contains S4Sv plants with and without the SCm factor. 

•S-alleles 

compatibility 

number found 

postulated genotypes 

S3S4 

SI 

33 

S3S4, - -

SC 

9 

S3S4,SC„-

S4Sv 

SI 

2* 

S4Sv, - -

SC 

33 

S4Sv,--/SCm-

* showing differential reaction against ver. 

Self-compatibility was predominantly found in the S4Sv genotypes (table 2). The SC of the S4Sv 

genotypes can simply be explained by acceptance for the Sv self pollen type. The two SI S4Sv clones 

showed a differential reaction against pollen of the ver tester clones, but the rest of the S4Sv clones 

with a differential reaction were still SC. Here a quarter of the S4Sv plants appeared to be of the 

differential type. This SC/non-acceptor discrepancy was also detected in the 1052 and 1054 

populations. Because nine S3S4 plants were SC, not attributable to Sv (Sv is allelic with the tbr S-

alleles, thus not present in diploid S3S4 genotypes), an additional pollen expressed SC-factor must 

be postulated, coded SCva. The skewed segregations in the S3S4 and S4Sv subgroups indicate that 

SCver is likely to be linked with the S-locus. In the mother clone 6541-06 it is in coupling phase with 

SV and thus in repulsion phase with S3. For the S3S4 part of the population there was a recombinant 

fraction of 9/42= 0.214 and for the S4Sv subpopulation it was (2/35)/ (1/4) = 0.229, so on average 

there appeared to be 22% recombination between Sv and the SCvtr factor, with a confidence interval 

of 13% - 33% (y = 0.05). S4Sv plants can, therefore, be SC due to acceptance for Sv pollen, and to 

the presence of the ̂ -linked SCver factor; S3S4 plants can only be SC beause of SCvtr. 

From selfing the BCl-clone 1053-27( = S3S4, SCveT—, acceptor), a clone with the genotype "S4S4, 

ScveT*, acceptor" was identified and coded 1144-02. Selfing of 1144-02 resulted, as expected for 

pollen-borne SC, in SC plants only, all being acceptor. Clone 1144-02 was as male compatible with 

clones 6221-17 (S1S4, NA) and 6223-40 (S3S4, NA), but not with 6221-32 (S3S4, NA) 6221-37 

(S3S4, NA) and 6223-39 (S2S4, NA). This indicates that a differential reaction not only against Sv 

exists, but against the SCV„ factor as well. 

Self-incompatibility by UI- based SC inhibition: expression of the pollen-SCver factor. 
The populations TV5 and TV6 (both SvSv and expected to contain SCver) are ver with tbr cytoplasm, 

yielding male and female fertile hybrid populations when crossed with non-acceptor tbr as male 

parent. Two non-acceptor based hybrid populations were investigated more closely, because the 
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Table 3. Reaction patterns of population 1173 (S3S3, SI, acceptor x S3Sv, SI, non-acceptor) in crosses, and deduced 

genotype composition. The staminate parent of 1173 was known to be S3Sv aal*. 

Eleven plants were selfed (SC= self-compatible, SI = self-incompatible), all were SC. Ten were tested for acceptance 

based on berry set and/or pollen tube penetration (A= acceptor, NA= non-acceptor). The genotypes mentioned below 

(except clones 6, 7 and 11) were additionally tested for pollen tube penetration in styles of clone 1024-02 (S3S10, 

NA). Pollen tube arrest is indicated in fractions compatible ( C ) and incompatible ( I ) pollen. S3 and S\: S-alleles; 

SCy„= SC-factor from ver, - = no SC-factor; A = acceptor allele; I = inhibitor allele. Blank = not determined. 

Plant nr. 

1173-01 

1173-03 

1173-04 

1173-05 

1173-06&11 

1173-08 

1173-09 

1173-10 

SI/SC 

SC 

SC 

SC 

SC 

SC 

SC 

SC 

SC 

Acceptor/non-acceptor 

NA 

NA 

A 

A 

NA 

A 

NA 

A 

Pollen tube arrest in S3S10, NA 

1/2 C 1/21 

1/4 C 3/41 

I 

1/2 C 1/21 

1/2 C 1/2 I 

1/4 C 3/4 I 

1/4 C 3/41 

Deduced genotype 

S3S3, SCm-, Aali 

S3Sv, SCm-, Aali 

S3Sv , - -, Aaii 

S3S3, SCm-, Aaii 

S3S*, SC^.-, Aali 

S3S3, SCm-, Aaii 

S3Sv, SCm-, Aaii 

S3Sv, SCm-, Aaii 

expression of SC in the hybrids deviated from expectation. The first investigated population, coded 

1173, was derived from a cross in which an acceptor tbr and a non-accptor Fl clone (TV5 x tbr, 

S2S3, NA) were involved. The second population, coded 6484, was an Fl from the cross TV6 x non-

acceptor S2S2 tbr clone 6233-12. 

The population 1173 (= 6234-08 x 6251 -19 = S3S3 (SI), acceptor x S3Sv (SI), non-acceptor) showed 

the S3 band by IEF, for the pistillate parent was S3S3. Genotypes like S3Sv and S3S3 can be 

distinguished by test crossing but not by IEF. Therefore, the 1173 -plants were selfed, tested for 

acceptance of ver pollen and test crossed on the S3S10 non-acceptor 1024-2 (table 3). All eleven 

obtained clones were self-compatible (Fig. 5a) and all of them, except 1173-02, were tested for 

acceptance. Five were non-acceptor, the other five were acceptor. The pollen tube penetration 

fractions (in)compatible pollen and site of pollen tube arrest) of three acceptors and three non-

acceptors was investigated in test crosses on clone 1024-02 (S3S10, non-acceptor). 55-pollen can 

be inhibited by SI, and Sv pollen by UI. The genotypic constitution of the 1173 clones was deduced 

from combining pollen tube penetration data with acceptor- and SI behaviour. Re-appearance of SC 

in non-acceptor 1173-plants indicated that parental clone 6251-19 contained the pollen factor 5Cver 

and confirmed the expectation that its non-acceptor background was aali. Clone 1173-04, which 

was self-compatible and acceptor, was fully incompatible on clone 1024-2. This proved, as 

expected, the heterozygosity of SCver in clone 6251-19 as well as its heterozygosity for the 5-locus. 
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Fig. 5 Pollen tube growth monitored by fluorescence microscopy in anilin-blue stained styles of non-acceptor tbr-ver hybrids. 

Fig. 5a (left): Self-compatibility based on SCver pollen as monitored in styles from the non-acceptor 1173-08 (S3Sv SCver). 

Fig 5b (middle) and Fig 5c (right): SI and UI in styles from the non-acceptor Fl clone 6484-06 as function of the ploidy level 

of the pollen. Middle: incompatible reaction for S2 pollen after test crossing with an S2S2 pollinator. Upper arrow: 

approximate inhibition site when pollinated with ver type pollen. Lower arrow: approximate inhibition site when pollinated 

with tbr S2 pollen. Selfing results in a mix of those reactions. Right: Pollen tube growth after selfing of the tetraploidised 

clone 6484-06. S2Sv pollen is deeply penetrating the style. Other pollen tube types are earlier arrested. 

The second population investigated for a putative suppression of SC was the Fl population 6484: 

TV6 x tbr 6233-11 (= SVSV x S2S2, aall). All fourteen 6484-clones (S2Sv, a*I*) were SI, and as 

expected, incompatible for S2- and non-acceptor (NA) for ver pollen (Fig. 6b). At least 150 flowers 

of each plant were self pollinated, 2600 pollinations in total. Twelve seeds were obtained by end-of-

season-compatibility, giving rise to six weak and poorly flowering plants with a reduced fertility. 

All six seedlings showed the S2-glycoprotein band and were, based on a limited number of 

pollinations, self-incompatible and non-acceptor. No SvSv plants were found, which has under the 

assumption that S2 and Sv pollen tubes are equally arrested, a likelihood of at least 17%. 

Pollinations with clone 6484-06 (S2Sv, non-acceptor) on the clones 6233-11 (S2S2, NA) and 6223-

39 (S2S4, NA) were incompatible, but compatible on 6104-21 (S1S2, NA). This observation of a 
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Fig. 6. Detail of fluorescence microscopy images of anilin blue stained pollinated styles. Reaction of pollen tubes in 

various crosses. Left panel (a-d): rupture op pollen tube tips in normal UI reactions and (e) most common type of pollen 

tube tips of SI inhibited pollen tubes. Right panel: Deteails of mutual weakening based pseudo-compatible pollen tubes 

with the presumed genotype S2Sv in S2S2SvSv styles, as monitored in styles like shown in Fig 5c. Panel fl: directly 

under the stigma; fl: halfway the style; f3: at 3/5 of the style; f4: pollen tube arrest in the lower part of the style. 

differential reaction is highly similar to the observed crossing results with the clones 6541-06 

(S3Sv, Aaii, SCV„ -) and 1144-02 {S4S4, A*ii, SCver *) (see above). When clone 6104-21 was 

pollinated with 6484-06, an estimated 10- 20% of the pollen tubes monitored by UV-fluorescence 

microscopy was of the compatible type. 

Mutual weakening by combining S2 and Sv in pollen from a tetraploid NA tbr-ver hybrid 

Non-acceptor clone 6484-06 (S2Sv a*I*) was somatically doubled by tissue culture (data not 

shown). Twenty tetraploidised clones were obtained and tested for acceptance and incompatibility 

against S2 pollen in test crosses. All tetraploid plants behaved as the original diploid clone 6484-06, 

they were incompatible for S2 pollen (from clones 6233-11, 1140-02 and 1140-05) and non-

acceptor for ver (Fig. 5 b, c). One clone was male sterile, but the remaining nineteen of the 

tetraploidized clones were sufficiently male fertile and allowed for selfing. These tetraploid clones 

showed a low level of SC, which was strictly absent in both the original 6484-06 clone and the non-

doubled tissue culture derived control plants. From these tetraploids, berries with few seeds were 

obtained in a much higher frequency than after selfing of the original diploids. Fluorescence 

microscopy on pollinated styles showed that about 5-10 % of the pollen tubes were of a remarkably 

different type. In the upper 1/3 of the style they were of a compatible type, with long, thin tubes, 

with regularly interspaced small callose plugs (Fig. 6: fl, f2), as usually found in normal compatible 

crosses. At about halfway the style the tubes became broader and irregular, sometimes even 

branched, with more but irregular callose deposition, and finally the pollen tubes were arrested, with 

much inflated pollen tubes (Fig.6 ß) , differing from the normal incompatibility or unilateral 
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incompatibility type in this material. The incompatibility reaction was completed at about the end 

of the style, usually showing swollen pollen tube tips instead of ruptured ones (Fig. 6, f4 versus 

a,b,c,d). 

Doubling of the genome allowed for a type of gene combination that is not attainable in pollen from 

a diploid. Heterozygosity is, therefore, the most likely explanation, and mutual weakening between 

Sv and S2 can be held responsible for this. The weakening effect appears to be barely strong enough 

to bypass the UI reaction, though. So, the pollen part of the S-locus of ver appears to be still 

functional, not only in triggering an UI reaction, but also in causing the SI related phenomenon of 

mutual weakening when together with a tbr 5-allele. 

Discussion 

Stylar S-allele suppression. The backcross experiments with the VTV and VT clones indicated that 

these ver accessions neither express a cytoplasmic, style specific incompatibility suppressing factor 

nor genie suppressing factors, as postulated by Kaufmann et al (1992) in their material. It is possible 

that their material contained a factor such as reported for Petunia ( Flaschenriem and Ascher, 1979; 

Dana and Ascher, 1986, b), which might cause, for instance, (pseudo-)compatibility, although the 

expression of this factor in Petunia appeared to act only in cis. Parthenogenesis, as repored to be 

present in some ver lines (Abdalla, 1970), is another explanation for Kaufman's compatibility. 

Furthermore, the normal incompatibility reaction is not always reliable. Besides, modifiers are 

commonly found and early pollination can bypass an otherwise fully functional SI system (Eij lander 

et al, 1997). None of the afore mentioned factors appeared to operate in our material and, therefore, 

the SI, S2 and the S3 alleles were fully functional in our system. In the reciprocal type of material, 

TVT (e.g. the 1053 population), the penetration of S4 c.q. the arrest of S3 was fully in accordance 

with these findings. 

Stylar proteins and allelism. Although Kl and K2 are accepted to be alleles from the same gene, 

there is still a small chance (of about 0.2 %) that they are not, because the analysis of the segregation 

behaviour had to be based on relatively small populations. The presence of Kl or K2 together with 

S2 and S3 (6251-22) or S3 and S4 (e.g. 1053-27) in a diploid plant proved that they are not located 

on the same locus as the 5-alleles. SC can be found in plants that lack both Kl and K2 and plants 

with two different S-alleles and Kl or K2 can be SI. Thus, mutual weakening caused by Kl or K2 

is not an explanation for SC. Because of this and because of the relatedness of tbr and ver, 

translocation or duplication of S-alleles during the evolution of ver is therefore not a likely 

hypothesis to explain SC. Segregation ratios of Kl and SK2 in F2 progenies showed that allelism 

is very likely. It is likely that Kl and K2 are located at (approximately) the same locus as SK2 in tbr 
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and that they are probably allelic. Allelism of Kl and K2 with SK2 implies that they should belong 

to the family of endochitinases (Wemmer et al, 1994). It is unclear whether they play a role in UI, 

because the Kl-, K2-, SK2- and also the S£7-band could not be linked to UI. 

Acceptance and differential reactions . The acceptance of ver pollen by tbr has been reconsidered 

several times and has been put in a broader perspective by comparing it with UI systems between 

other species as well ( e.g. Abdalla, 1970; Abdalla and Hermsen, 1972; Abdalla, 1974; Hermsen, 

1977; Hermsen et al, 1977; Hermsen, 1979; Hermsen and Sawicka, 1979). Differential acceptor 

series and penetration capacity levels passed in review and this seemed, on the face of it, to conflict 

with a previous model of Hermsen et al (1974), where only the Aalli system (dominant inhibitor 

epistatic over dominant acceptor gene) was discussed as an alternative for the postulated AtA2 

system (only double récessives, a,a;a2a2, are acceptors); penetration capacity did not play a role in 

this analysis. Extending the Aali model by introducing more alleles and various dominance 

realtionships can bring all results in accordance with each other. Hermsen (1974) used pollen 

mixtures of S.ver PI 195172, and the other articles dealt with various accessions and separate 

genotypes of tbr and ver. In our study differences in penetration capacity between ver PI 195172 

based siblings were detected too. We did not use pollen mixtures, but individual ver siblings were 

used for testing the segregation of acceptance and non-acceptance in hybrid populations. When all 

individual tester genotypes failed, even those with a high penetration capacity, it was concluded that 

a tested plant was non-acceptor. 

Based on this approach, fully expressed non-acceptance for all ver tester clones was detected in the 

1052 and 1054 populations. The 1051 and 1053 populations were entirely acceptor for at least one 

of the ver tester clones. The inbred clone 6234-08 was AA ( data not shown) and, consequently, ver 

must have been A'a {A' gives an differential acceptor reaction when compared with A; a must be 

present because of the segregation of non-acceptors in populations 1052 and 1054) and 6541-06 

must have been AA '. Backcrosses with 6536-01 (S3S4 AAii) resulted in differentials, so 6536-01 

must have contained two different co-dominant ̂ -alleles, eg. AA'oxAA ". 

The self-compatibilizingfactors Sv and SCver. There are various ways by which plants can become 

self-compatible. For instance, a gene can become silenced, but mutation of the coding region is 

another possibility which has been described for many crops. For Lycopersicon peruvianum, a 

diploid SI tomato species, it has been reported that a single point mutation caused loss of the S-

RNase activity, resulting in full SC (e.g. Kowyama et al, 1994), but a basic protein remained 

detectable. A frame shift, as reported for L.esculentum (Thompson et al, 1995), truncated the 

putative 5-glycoprotein, resulting in another IEF point and loss of its RNa.se activity, thus causing 

SC of tomato. 

The presence of the not-stylar-active Sv allele in a diploid hybrid tbr-ver plant means that there can 

http://RNa.se
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be only one active S-allele. So, all S-heterozygous tbr clones will be compatible on such a hybrid. 
A hybrid tbr-ver plant will also be SC, as long as the plant is acceptor (A *ii) for ver pollen. So, the 
effect of the Sv allele in the style depends on the presence or absence of the acceptance determining 
genes A and I. 

The pollen active SC-factor SCya that has been found, appeared to be weakly linked with the S-locus 
(chromosome 1). This is in agreement with the location of a pollen active SC factor in Petunia 

hybrida (called pollen inactivator), that was reported to be at a distance of about 20 to 28 map-units 
from the S-locus (whereas also a stylar factor was reported at approximately the same distance: Dana 
et al, 1986 a,b; Flaschenriem et al, 1979). Therefore, this factor is clearly different from the SC 
factor reported for the diploid tbr clones G254 and B16, which was localised on chromosome 12 
and not linked with the 5-locus on chromosome 1 (Hermsen et al, 1973, 1978). A remarkable 
characteristic of the 5Cver-factor is that its effectiveness of causing a mutual weakening effect 
depends on the genotype of the recipient. All results obtained so far can be explained by the 
assumption that SCVCI is not effective in overcoming the UI barriers caused by the genotypes aall 

and aali, but that other non-acceptor genotypes like aaii and A*I* allow for a 5Cver induced 
compatibility in a combination that would be incompatible when only «S-alleles were regarded. Thus, 
genotypes like 6484-6 (S2Sv, aa,li) and 6251-19 (S3Sv, aa, Ii) can contain a self-compatibilizing 
factor (SCmT) but are SI by an Ul-based inhibition of SC. SC can show up in offspring populations, 
but only when non-aal* genotypes segregate. 

Recognition of the pollen part of the ver-S-locus. The tacitly accepted assumption that pollen of the 

ver type is arrested by non-acceptors, implies that the pollen part of the 5-locus of ver is still capable 

of causing an UI reaction when penetrating a non-acceptor style (see also below). This is confirmed 

by segregation ratios in a population based on a non-acceptor (S2S4) x 6251 -19 (S3Sv) cross, where 

only the S3 allele penetrated (data not shown). It is also in agreement with the pollen tube 

penetration types as reported for 1024-02 x 1173, where also the SCnr factor played a role. When 

the iSC^-factor makes S3 pollen on 6234-08 (S3S3, AA, ii) as compatible as the Sv-pollen type, the 

pollen that led to population 1173 will have had the composition of 1 S3 SCvct al:\ S3 SCvcr ai : 1 

Sv ai : \ Sv al : 1 Sv SCva ai : 1 Sv SCya ai. Not all possible genotypes for this cross have been 

found, for S3SvAaIi was not detected (see table 3) and this is the only possible SI genotype resulting 

from the cross S3S3 AAii - - x S3Sv aali 5Cver -. This is presumably due to the limited population 

size, because the segregation found was in agreement with the expected one. 

Dual function of the pollen part of the S-locus: polyploidy-effects. A most striking result on the Sv 

allele was obtained after doubling of genotype 6484-06 (S2Sv; NA). Although it was known that 

the stylar part of the ver 5-allele was not active, a dual function of the pollen part (contributing to 

both SI and UI) could still be present. Somatic doubling of an ̂ -heterozygous clone will normally 

lead to SC, because of heterozygosity of 50 % of the pollen for the ^-alleles involved. Mutual 
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weakening, an SI related phenomenon, can then be active. It was known from the diploid that 

normal recombination does not result in self-compatibility of S2 or Sv pollen, irrespective of the 

presence or absence of SCwa and will not play a role in a somatically doubled plant. SvSv pollen will 

be inhibited by UI. Pollen being homozygous S2S2 will be blocked by SI and competitive 

interaction does not play any role here (Eijlander et al, 1997). The more compatible polle tubes 

respond in the upper part of the style like S2S3 pollen tubes in an S2S3 or S2S2S3S3 style. Mutual 

weakening between Sv and S2 in S2Sv pollen offers the best explanation for this. 

The observation that Sv is capable of raising a UI reaction, the aforen mentioned polyploidy based 

SC and the dual function hypothesis of Lewis and Crowe (1958) justify the assumption that Sv is 

also capable of causing mutual weakening. Thus, the S-locus of ver contains a pollen-part that is still 

active and co-dominant in SI. Furthermore, the fact that the combination of Sv + S2 in the pollen 

(thus being ̂ -heterozygous) is also breaking down the UI reaction in the upper part of the style, is 

a strong indication, if not proof, that the S-locus is involved in the UI reaction. However, in the 

lower part of the style a second reaction type became visible, that has remained unnoticed in the 

diploid situation. This has presumably been masked or prevented by the much stronger UI reaction 

in the upper part of the style. 

General considerations on SI, SC and UI factors. Chetelat and DeVerna (1991) made it likely that 
"expression of unilateral incompatibility in pollen ofLycopersicon pennellii is determined by major 
loci on chromosomes 1, 6 and 10", with the remark that the locus on chromosome 1 mapped near 
or on the S-locus. When the tomato linkage maps of Chetelat and de Verna (1991) are integrated 
with the potato map of Van Eck et al (1994), the flower colour locus maps on or close to the UI 
related locus. When these results for linkage can be extrapolated to the solanaceous family of 
Nicotiana, more can be said about this locus. Pandey (1981) described for Nicotiana glauca (SC 
species) the phenomenon that SI was very strongly linked with flower colour. Although the 
explanation was rather speculative and partially flawed by too many reported S-alleles present, it 
can be regarded as SI by UI based inhibition of SC, as reported here. In this study it was shown that 
within the UI system, that operates between tbr and ver, the UI reaction in the style is two-fold and 
directed against the pollen-active part of the S-locus in ver pollen and that this pollen part of the 
locus in ver has still SI related properties (capable of causing mutual weakening). The UI-reaction 
is also directed against the pollen active SCveT factor, but differs in the mode of expression from the 
reaction against the S-locus. All this supports, at least for the pollen part, the dual function 
hypothesis for the S-locus (contribution to SI and UI) of Lewis and Crowe (1958) and is also in 
agreement with the observations of Chetelat and DeVerna (1991). It also illustrates that excluding 
the possibility of the SI system from contributing to UI, as proposed by Hogenboom (1973), is not 
correct and that prevalence of the expression "unilateral incongruity" over "unilateral incompatibi
lity" is not always justified. 



Chapter 5 

Contribution of the 5-locus to Unilateral Incompatibility when crossing 

S.verrucosum (SC) with S.tuberosum (SI) 

Abstract. 

Diploid potato, Solanum tuberosum (tbr), is characterized by a one-locus (S) gametophytic self-in

compatibility (SI) system. The diploid wild species S.verrucosum (ver) is self-compatible (SC), and 

forms an exception to the rule that diploid tuber-bearing Solanum species are SI. The cross ver x tbr 

is successful, but gives rise to cytoplasmic male sterile Fl hybrids. The reciprocal cross, tbr x ver, 

usually fails. This phenomenon is called unilateral incompatibility or unilateral incongruity (UI). 

Plants showing the UI reaction are called non-acceptors (NA) for the ver pollen. However, exceptio

nally tbr plants were found to accept ver pollen; the Fl hybrids thus obtained were fully male fertile. 

Now tbr x ver offspring could be tested for the contribution of functional 5-alleles to UI. 

An antisense S2 construct was introduced into an 52-homozygous non-acceptor by crossing with 

a transgenic S2 antisense expressor, and by transformation of this construct in a S2Sv tbrx ver hybrid, 

that was incompatible for S2- and .SV-pollen, thus showing SI and UI. Crossing the transformants 

with S2S2 and SvSv tester clones showed that the suppression of the SI reaction against S2 coincided 

with a break-down of the UI reaction against ver pollen. 

The analysis of the segregation ratios for SI/SC and A/NA in tbr x ver hybrid populations revealed 

that ver does contain non-acceptor factors against own pollen, not expressed in ver, but only in 

species-hybrid situations where ̂ -glycoproteins are expressed. These findings are in accordance with 

some earlier reports that the S-locus is involved in both SI and UI. Here the whole SI and UI system 

can be explained by a dual function of the 5-locus (pollen and style genes contributing to both SI 

and UI), the acceptor gene A and its epistatic inhibitor gene I, a pollen-expressed 5Cver factor. A 

model is presented explaining observed results as well as allowing predictions based on the afore

mentioned intergenic interactions. 

This chapter is submitted for publication in a slightly modified version as:Ronald Eijlander, Munikote S. Ramanna, 
Michael Ficker and Evert Jacobsen. Occurrence of Self-Compatibility, Self-Incompatibility and Unilateral 
Incompatibility after crossing S.tuberosum (SI) with S.verrucosum (SC): II Contribution of the S-locus to Unilateral 
Incompatibility. 
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Introduction. 

Self-incompatibility (SI) is a mechanism by which many plant species protect themselves from in

breeding by selfing. There are many mechanisms, some based on floral morphology, others on 

difference of maturation time of male and female reproductive organs within a flower or plant. There 

are also mechanisms that are based on the interaction between pollen (tubes) and the pistil. This may 

happen at all stages between landing of a pollen grain on the stigmatic surface and fertilisation. There 

are two major incompatibility systems: the sporophytic one, where incompatibility is controlled by 

the interaction of the genotypes of the pollen parent and the style parent (sporophytes), and the 

gametophytic one, where the incompatibility is determined by the interaction of the genotype of the 

pistillate parent and the genotype of the pollen grain (gametophyte). Irrespective of the incompati

bility system, it is frequently found that hybridisation of related species is possible in one direction 

only. It is usually found when self-compatible (SC) species are crossed with related SI species (e.g. 

Anderson and De Winter, 1931; Mather, 1943; Lewis and Crowe, 1958; De Nettancourt, 1977, 

etc),that the SI species are successful as pollinators, but not as pistillate parents (SC x SI -> Fl ; SI 

x SC -> -). This phenomenon is called unilateral incompatibility or unilateral incongruity (Hogen-

boom, 1973). Hogenboom tried to distinguish between SI and UI and introduced the concept 

"incongruity" for inhibitory reactions that are not based on self-incompatibilty, arguing that 

incompatibility and incongruity are separate phenomena. For a long time a debate is ongoing about 

a possible involvement of the S-locus in UI, and, directly related to this, whether in this connection 

the term incongruity or incompatibility should be used. 

For the Brassicaceae (sporophytic system) it was found likely that the S-locus is involved in UI 

(Hiscock and Dickinson, 1993). The genetic analysis of an interspecific hybrid system in Lyco-

persicon, (Solanaceae), with a one locus gametophytic system, showed the likelihood of (a part of) 

the S-locus being involved in UI (Chetelat and DeVerna, 1991). 

For the Solanaceous species, ver in particular, a genetic model for the evolution of species from SI 

to SC was postulated, in which the dual function of the »S-locus, as proposed by Lewis and Crowe 

(1958), is crucial. Here the S-locus contributes to both SI and UI. The two-powers competition hypo

thesis is based on this and on the co-evolution of sympatric SC and SI species (Abdalla, 1970; 

Abdalla and Hermsen, 1972; Abdalla, 1974). The development of CMS (Abdalla, 1970; Abdalla 

and Hermsen, 1971) in case of interspecific hybridisation with ver as pistillate parent is one of the 

necessary results in this hypothesis, turning most hybrids into a "dead end". The reciprocal cross 

would be possible only when the SI species has no UI genes, that could inhibit the postulated Sc allele 

of the SC species. Hybrid progeny created with such t/Z-lacking plants could open the possibility 

to investigate the UI model for the contribution of both stylar and pollen determined factors. 

In a diploid potato population originating from two SC parents, not accepting ver pollen, Hermsen 

et al (1974) detected clones that were SI or SC and were acceptor for ver. They analysed the genetics 
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of acceptance by pollinating several tbr populations with ver pollen mixtures and found segregation 

of acceptors (A) and non-acceptors (NA). Two models were tested for fitting the ratios. The first 

model was based on two independent loci, A, and A2, where only the double recessive genotypes 

(axaxa2a^) are acceptors. This model was similar to the hypothesis by Grun and Aubertin (1966), but 

did not fit two out of fourteen observed ratios. Model 2 was based on the independent genes A and 

1.1 is an inhibitor, epistatic over the dominant acceptor gene A. Here, only UAA and iiAa genotypes 

could be acceptor. This model fitted the observed segregations very well. The segregation of the S-

alleles and the SC-factor tSl, that was present in the original parents, segregated independenly from 

the acceptance. A thorough analysis of this and related material by Hermsen et al (1977), in which 

ver pollen was not pooled, revealed a kind of gene-for gene relationship in penetration and barrier 

capacity of pollen and style, resulting in a differential reaction pattern. Their explanations and ex

pressions correspond with those used for the incongruity hypothesis (Hogenboom, 1973). The results 

were, however, not conclusive about the exact mechanism, and the authors left open the possibility 

of other explanations. 

It is clear from the study on SC in the hybrid system of tbr x ver that both the S-locus from ver or 

tbr and (non-)acceptance play a role in the expression of SC and SI (Eijlander et al., b, submitted). 

For the pollen part of the S-locus, a dual function was made likely, thus introducing at least a part 

of the S-locus in both the SI and the UI hypothesis, which is in accordance with the conclusions of 

Chetelat and DeVerna (1991) and Foolad (1996). Murfett et al (1996) showed by a molecular ap

proach in tobacco that introduction of an active S-allele can contribute to unilateral incompatibility 

in those solanaceous species, but they did not link this to a genetic model. We used here both a 

molecular and genetic approach for the hybrid system of tbr x ver to prove that, like in Nicotiana, 

the stylar S-locus product (S-glycoproteins, also called S-RNases) can contribute to UI. We also 

integrated the results into an already existing genetic model for UI, explaining why interspecific 

hybridisation can result in unexpected appearance of SC or SI / UI based crossing barriers between 

Fl hybrids and the parental species. 

Materials and methods. 

The material that was used, was based on the expectations that factors like S-alleles, (responsible 

for the SI reaction), the acceptor gene A (dominant over non-acceptor allele a) that causes acceptance 

of ver pollen, and the acceptor-inhibitor gene I (epistatic over A, thus in dominant form always 

causing UI) could be identified by electrophoresis (S-alleles), by test-crossing with tbr, ver or by 

selling. The S2 antisense construct that was introduced here, was earlier proven to be effective 

against the S2 incompatibility allele, suppressing the synthesis of the S2 glycoprotein. With this 

material (see later for details) material could be created and selected to answer the question whether 

the S-locus contributes to the unilateral incompatibility reaction. 
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Non-transgenic clones. 
Six F2 populations, coded 1061 to 1066 (up to ten plants each) were obtained by selfing of the Fl-
acceptor clones 6541-01, -02, -03, -06, -11 and -25 respectively. These 6541- plants are all tbr x ver 
Fl hybrids (6234-08 x ver PI 195172-27) of the genotype S3SvAAii SCva- or S3SvAaii SCver-, and 
thus acceptor of ver pollen. SCva is a pollen-expressed self-compatibilizing factor, derived from ver 
(Eijlander et al., b, submitted). The F2 populations 1061 to 1066 were expected to segregate S3S3, 
S3Sv and SvSv genotypes, and, whenever a 6541-parent was acceptor of the type Aa, also in AA and 
Aa acceptor and in aa non-acceptor genotypes. In tbr, the aa genotypes behave as non-acceptors of 
ver pollen, thus showing UI with ver. 

Population 6484 (14 plants) originated from the cross of the non-acceptor tbr clone 6233-11 (S2S2, 
aall) with the fertile near-ver clone TV6-14 (14th plant of the 5th backcross generation of the Fl 
acceptor-fftr (T) x ver (V)). TV6-14 was of the genotype SvSv (no style-activity of the S-allele) and 
contained the pollen-expressed SC-factor SCya. Sv and SCver were transmitted to the 6484-population. 
The plants of this 6484-population have previously been tested for acceptance and for SC. All plants 
were non-acceptor for ver pollen and self-incompatible (SI). SI of the 6484-plants was explained 
by a combination of gametophytic self-incompatibility with S2, Ul-based rej ection of Sv and a special 
interaction between genes expressed in pollen and style, directed agains S2+S,Cver pollen (SI by UI-
based inhibition of SC; Eijlander et al., b, submitted). 

Transgenic clones. 
Clone 6484-06 was a randomly chosen SI genotype out of the afore-mentioned non-transgenic 
population, with the genotype S2Sv and had, presumably, the aali non-acceptor genotype. As stated 
above, it contained a pollen expressed "self-compatibilizing" factor (SCver). This factor appeared to 
be expressed in combination with a functional tbr S-allele (causing a mutual-weakning-like effect), 
but only when the tbr or hybrid recipient was not of the aallor aali non-acceptor genotype (Eijlander 
et al., b, submitted). The clone 6484-06 was transformed with the 52-antisense construct (P35-
S2AS)2 (Eijlander et al., a, submitted) in Agrobacterium tumefaciens LBA4404 (Hoekema et al., 1983). 
Transformation was carried out as described by Flipse et al (1994) and Eijlander et al (a, submitted). 
Population 1184 was obtained by pollinating tbr clone 1140-02 (S2S2, SI, NA) (Eijlander et al., 
1997; Eijlander et al b, submitted) with transgenic tbr clone (P35-S2AS)2 -V - 6. This transgenic 
clone V is of the genotype S2S10, NA, expressing the afore-mentioned antisense S2 construct 
(Eijlander et al., a, submitted) and it bears a pollen-expressed SC factor ( not SCver) derived from 
clone 1024-02 (Kuipers et al., 1994)), allowing for ^-penetration in S2 expressing styles. Due to 
the pollen-SC factor, S2S2 genotypes can be obtained, that are consequently all expressing this SC 
factor again. The antisense S2 construct was transmitted by pollen. So, it was tested whether 
offspring plants showed an antisense S2 induced reduction of ̂ -incompatibility. The population 
was screened by IEF and test crossed with S2 pollen for presence of S2S2 homozygotes that 
expressed the 52-antisense construct. Subsequently, the plants were tested for UI by test crossing 
with ver. 
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Monitoring incompatibility (UI & SI) 

Test crosses for monitoring biological expression of antisense effects on SI and UI respectively were 

performed by pollination with pollen from S2S2 homozygotes (Eijlander et al., 1997) and pollen 

mixtures of the ver (PI 195172) offspring clones 6555-31, 6555-33 and 1076-06. Styles were 

harvested 48 hours after pollination and fixed and stained according to the modified technique of 

Martin (1959). Pollen tube penetration was observed under a fluorescent microscope (Eijlander et 

al., 1997). 

Protein gel electrophoresis 

Up to 50 mg of plant tissue was ground in an Eppendorf tube with 20-100 ml 5 mM potassium 

phosphate pH 6.0, 2.5 % (w/v) sucrose, 0.1 % (v/v) b-mercaptoethanol, using a ground-glass pestle. 

Single style extracts were made in a volume of 25 ml extraction buffer. After centrifugation of the 

homogenate at 14000g for 15 min, the supernatant was fractionated on horizontal thin-layer 

isoelectric focussing (IEF) Polyacrylamide gels (pH3.5-10) (Schmidt-Stohn, 1979) or agarose gels 

(Hypure gel VG 1020, Isolab inc). Silver staining was performed as described by Kirch et al (1989) 

for the Polyacrylamide gels and according to company specifications for the agarose gels. 

Results 

The effect of antisense S2 on SI and UI in S2Sv and S2S2 non-acceptor genotypes 

The molecular approach of gain and loss of function was very successful in proving that the S-

glycoproteins play a key role in the SI reaction of the solanaceous species. Here we describe the loss 

of function approach as used in potato (Eijlander et al., a, submitted), but now applied to two 

different S2 containing genotypes of non-acceptors for ver pollen: the tbr-ver hybrid 6484-6 (S2Sv) 

and a pure tbr population: 1184, containing the ̂ -genotypes S2S10 and S2S2. 

The SI, NA clone 6484-6 was transformed with the antisense S2 construct (P35-S2AS)2. A total of 

40 transgenic hybrid plants was analysed for the expression of the S2 antisense transgene. Testing 

by pollination with only 52-pollen revealed that in one genotype, (P35-£2AS)2-6484-6-4, the SI 

reaction against S2 was effectively suppressed. This was confirmed by IEF of the stylar extract that 

showed a reduction of ̂ -glycoprotein content. S2 pollen was compatible with this transgenic hybrid 

clone, clearly contrasting with the strong SI reaction in the untransformed clone 6484-6. 

The same 40 clones were also tested for acceptance of ver pollen by monitoring the pollen tube 

ingrowth and seed set. Thirty-nine plants showed a very strong UI reaction, comparable with that 

of the untransformed genotype. Only one clone was altered in this respect. This was the same 

transgenic clone as the one that had become compatible for S2 pollen: clone (P35-S2AS)2-6484-6-4. 
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acceptance non-acceptance antisense S2 antisense S2 

(P35-S2AS)2-6484-6-4 
6484-06 x ver x ver 1184-01 x ver 6536-01 x ver 

Fig. 1 Reactions of different stylar genotypes on ver pollen. Effects of àntisense-S2-RNase based inhibition of S2 

RNase production on UI in S2-RNase expressing non-acceptors (c, middle right and d, far right) compared with normal 

acceptance (a, far left) andnon-acceptance (b, middle left) of ver pollen. Insets in panel d: callose plugs in the most 

compatible pollen tubes. See also text. 

The UI reaction against ver, though still intact (incomplete pollen tube penetration and thus no seed 

set), was strongly reduced and differed clearly from those in the other clones. Here, many ver pollen 

tubes reached to 2/3 of the style, whereas in the non-transgenic plant S2 pollen did not surpass 1/4 

tol/3 of the style and ver pollen was even inhibited at 1/5 to 1/4 of the style (Fig. 1 b, c). In the ver 

pollen tubes there was still a lot of callose deposition and many far-reaching pollen tubes showed 

inhibition phenomena like thickening of the tubes, irregular shapes, spongy callose deposition along 

large stretches of the pollen tubes and inflation of the tips. 

The cross 1140-02 x (P35 -£?AS)2 -V - 6 (= S2S2 x [S2S10, pollen-expressed SC, + 2 copies of S2 

antisense]) resulted, as expected, in S2S2 and S2S10 offspring plants. Twenty of them flowered well 

and were tested for SI and UI reaction by selfing and test crossing with S2 and Sv pollen. Seven 

clones were SI and were of the S2S10 genotype. Thirteen were pollen-based SC and seven of them 

had the desired S2S2 genotype. Test crossing detected antisense induced S2 suppression at various 
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levels in several S2S2 and S2S10 genotypes. Clone 1184-01 was S2S2, and expressed the strongest 

antisense induced S2 suppression among all S2S2 plants tested. However, this suppression was not 

as strong as that in the original transgenic parent. Variation in SI for S2 ranged from pseudo-

compatible to compatible with S2 pollen, which ran parallel to the S2 glycoprotein content of the 

styles. Clone 1184-04, also S2S2, showed variable reaction patterns from strictly incompatible to 

compatible with S2 pollen. 

The clones that showed no antisense effect on the SI reaction against S2 pollen were, as expected, 

all non-acceptor of ver pollen. Reduction of the UI reaction up to acceptance was only detected in 

S2S2 plants that showed the ̂ -antisense effect on SI. The UI reaction against ver pollen in clone 

1184-01 ranged from normal UI to highly pseudo-compatible (Fig. Id), with limited seed set and 

clone 1184-04 was slightly less compatible with ver pollen. The UI reaction was simultaneously 

suppressed with the SI reaction for S2 pollen and ran parallel to the decrease of the ̂ -glycoprotein 

content of the style. When the breakdown of UI was strong, the pollen tubes appeared to be normal, 

with small, regular interspaced callose plugs (see insets in figure Id). In the lower part of the style, 

however, many tubes, but not all, showed reaction patterns as observed after pollination of the 

antisense-.S2 transgenic 6484-6 clone with ver pollen(see above). 

The difference in reaction pattern in particular in clone 1184-01 (seed set with ver) compared to that 

in clone (P35-S2AS)2-6484-6-4 (inhibition at 1/3 of the style), probably indicates that both clones 

have different non-acceptor genotypes. Nevertheless, both types of material confirm that reduction 

of the stylar S2 glycoprotein content coincides with the simultaneous break-down of the SI and the 

UI reaction, thus implying that at least the ̂ -glycoprotein contributes to the UI reaction. 

Testing for (non)acceptance of SvSv aaii genotypes with ver pollen 

It was shown that the S-locus is involved in the UI reaction. The observations suggested that this 
contribution depended also on the type of non-acceptance, including the possibility that non-
acceptance can be expressed even in the absence of an active 5-glycoprotein. Genotypes with inactive 
or defective S-alleles may shed more light over this question. Those genotypes must have a non-
acceptor background (non-̂ 4 *ii) in order to see any effect of such a defect on the UI expression. The 
^-alleles of ver show no stylar activity, so the introgression of these alleles in a non-acceptor 
background may serve as an example of non-functional tbr ̂ -alleles. 

The hybrid population 6541 (S3Sv, SCver—) is known to contain solely Aaii and AAii acceptor 
genotypes, based on test crossing with ver pollen (Eijlander et al, b, submitted). After selling, any 
Aaii acceptor parent is expected to segregate into acceptors and non-acceptors in a 3:1 ratio of A *ii 
and aaii genotypes. Self pollen, capable of penetrating the style, is of the genotype Sv, S3 SCver or 
Sv SCver Thus, when no other selection mechanisms play a role, one-third of the genotypes will be 
of the desired SvSv genotype, all the others S3Sv or S3S3. 

Five of the six populations of selfed 6541 clones suffered from inbreeding depression and none of 
the populations gave over seven testable flowering plants. 
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Four self populations showed the expected segregation for acceptance (AAii or Aaii) and non-

acceptance (aaii) when S3S3 and S3Sv genotypes were tested for acceptance of ver pollen, indicating 

descendence from Aaii genotypes. SvSv plants were separately selected to be tested for 

acceptance.The hypothesis Ho is, that any SvSv aaii genotype will be non-acceptor, indicating that 

this type of UI is independent of style-expressed S-alleles, and Ha is that SvSv aaii genotypes are 

acceptor because they lack style-active S-alleles. Those four segregating populations gave 27 -

flowering plants, eight of them being SvSv (no S3 glycoprotein detected). As expected under Ha, 

all SvSv genotypes were acceptor. Under Ho the likelyhood of inadvertently not detecting an SvSv 

aaii genotype is P(k =0, N = 8| p = 0.25) = 0.758 = 0.10. These observations show that there is a 

strong indication for 5-allele dependence of non-acceptance expression in aaii genotypes. 

Analysis of ver on NA by analysis of likelihoods of expression patterns in population 6484. 

As mentioned before, one of the parents of the Fl population 6541 (tbr 6234-08 x ver) must have 
been heterozygous (Aa) for the acceptor gene A, because non-acceptance (NA) segregated in the F2-
populations (coded 1061 to 1066), as well as in some of the BC1 populations mentioned by Eij lander 
et al (b, submitted). The tbr parent 6234-08 was S3S3AAU, thus implying that ver was the most 
likely source for a, because of its origin denoted av. This was in accordance with old data on segre
gation of acceptor lines in ver x tbr and (ver x tbr)x ver crosses, based on hybridisations of ver with 
the diploid tbr clone G254 (SIS3, Aaii) (unpublished results). Just like the results from the afore
mentioned experiment, these unpublished results point to the possible existence of aaii ver 
genotypes, but are not conclusive. 

Research on the expression of SC in tbr-ver hybrids (Eijlander et al., b, submitted) resulted in a 
complex hypothesis concerning the suppression of pollen mediated SC in specific non-acceptor 
genotypes. This hypothesis, explained hereafter, suggested that the near-ver line TV6 could have 
contained the non-acceptor allele av. The cross with the self-incompatible non-acceptor clone 6233-
11 (S2S2, aaii) would then result in at least some aajiv genotypes. Theoretically one a allele in TV6 

could have been derived from the original tbr acceptor clone, but the presence of a second a allele 
(thus TV6 = avaji or aaji) should imply the presence of this recessive allele in the ver backcross 
parents.The inhibitor allele I seems to obstruct further analysis of interaction between S-locus and 
aa, because of its epistatic behaviour, but the presence of SCva can bypass this problem. It was 
hypothesised that the pollen expressed 5Cver-factor, as found in the hybrid clones 6484-06 and in 
6541-06 (Eijlander et al., b, submitted), is not functioning in aal* styles. Clone 6484-06 would then 
be SI by UI-based SC-inhibition. Based on this, an analysis has been made for the possible genetic 
constitutions of the parental clones TV6 -14 and tbr 6233-11 of population 6484 (table 1). From this 
analysis it can be deduced that TV6-14 being Avaji has a maximum likelyhood as low as 2%. With 
a relative likelyhood of 96% the most likely genotype of TV6-14 is aaji or avaji and that of 6233-11 
aaii. 
The dominant gene ƒ could not be tested here on S-allele dependance. 
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Table 1. Likelihood (y) for erratically missing a SC plant in population 6484 (14 plants) under the assumptions 

that SCya is inhibited in an S2Sv aaii style but expressed in an S2SvAaIi style and that TV6-14 can be either SCytr -

or SCver SCy„. This is calculated for all theoretically possible (non) acceptor backgrounds for both parental clones. 

TV4s acceptor for ver pollen and self-compatible, 6233-11 is 52-homozygous, self-incompatible and non-acceptor 

for ver pollen. 

Genotype of TVS-14 

SvSv, A AH 

SvSv, Aaii 

SvSv, aaii 

(non-acceptor?) 

Genotype of 6233-11 

S2S2, AAII 

S2S2, Aaii 

S2S2, aaii 

S2S2, All 

S2S2, Aaii 

S2S2, aaii 

S2S2, AAII 

S2S2, Aaii 

S2S2, aaii 

YifTV"-14 = SCv„-

0.00006 

0.00006 

0.00006 

0.00006 

0.0014 

0.0178 

0.00006 

0.0178 

1 

YifTV6-14 = SC„ r5Cv„ 

0 

0 

0 

0 

0.00000 

0.00006 

0 

0.00006 

1 

Discussion 

Contribution of the S-locus to UI 

The approach in testing the contribution of the stylar part of the S-locus to non-acceptance of ver 

pollen tbr styles was based on three different types of material: 

- hybrids that did not expess a tbr 5-allele but with a putative non-acceptor genetic background 

(SvSv aaii) 

- hybrids that were non-acceptors, contained a pollen SCyer factor but did not show SC where it was 

expected, unless certain interactions were postulated (SI by Ul-based SC inhibition, directed by 

aal* styles against SC„„ containing pollen). This hypothesis allowed for the analysis of the 

acceptance of self-pollen in ver, 

- non-acceptor clones with only one tbr 5-allele (S2S2 or S2Sv) that were antisense S2 transformants 

and showing antisense inhibition of the S2 alllele, thus disrupting a putative contribution of the 

stylar product to the UI reaction. 

Hybrids that were both male and female fertile and that contained only Sv were obtained by selling 

Fl hybrids. The five self populations, 1060 to 1065, gave strong indications about the relationship 

between (non)acceptance and the S-locus, because no SvSv non-acceptor genotypes were detected 
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(H0: SvSv aaii = non-acceptor). The alternative hypothesis Ha (SvSv aaii = acceptor), that in this 

material any non-acceptor of the genotype aaii needs a style-expressed 5-allele to exhibit its non-

acceptor nature, cannot be proven by direct identification of aaii acceptor genotypes, but can only 

be established by the rejection of the hypothesis that SvSv aaii genotypes are non-acceptors at any 

time. Thus, Ha has a likelihood of 90%. 

The postulated suppression of the SCm factor in aaii and aaii styles, as occurs after selfing of clones 

of the 6484 population (TV6 x S2S2 aaii), enabled a theoretical genetic analysis of TV6. When the 

commonly applied confidence level of 5% is applied, it can be concluded that TV6-14 is SvSv aaii 

SCve*. This implies that the genotype of ver is expected to be aaii. TV6-14 is self-compatible and 

has successfully been backcrossed with ver, resulting in TV7. Previous data (Hermsen, unpublished) 

on segregation of ver x tbr hybrids into acceptors and non-acceptors support our finding that Aaii 

and even aaii ver genotypes do exist, that are acceptor for self-pollen. 

Another approach to test for the dual function of the S-locus was to introduce the sense S2 

glycoprotein constructs by transformation (Eijlander et al., submitted). Any SvSv aaii genotype that 

expresses the S2 transgene, should then change from acceptor to non-acceptor for ver pollen.This 

transformation has been performed on several ver clones with the genotype Aaii or aaii. The only 

clone that has been analysed thoroughly for being aaii, was TV6-14. Despite the fact that the 

transformations were successful and resulted in nearly 100% (transgenic) callus formation, no 

régénérants were obtained (data not shown), thus disabling this option. Murfett et al (1996) were 

successful with this approach by causing an UI reaction against Nicotiana tabacum and N. glutinosa 

(both SC-species) pollen in N. tabacum when the introduced S2 ^-glycoprotein of N. alata (SI-

species) was expressed at high levels, but this approach failed for the SC species N. plumbaginifolia, 

indicating different UI backgrounds. 

Although in our experiments the approach of sense-transformation-induced UI failed, the approach 

of knocking down UI by an antisense S-allele was successful.The number of antisense S2 transgenic 

6484-6 plants showing antisense effect was much lower than previously reported for clone V 

(Eijlander et al., a, submitted), the pollen parent of population 1184. The S2 incompatibility reaction 

in the non-transformed plants is quite strong. An explanation for this low frequency might be that 

because of the absence of an additional style-expressed S-allele, an up-regulation of the 52-allele 

is obtained. This explanation is not unlikely because down-regulation of ̂ -alleles by over-expression 

of transgenic S-alleles has been shown (Eijlander et al., a, submitted). Natural weakening of the SI 

reaction by modifier genes is mentioned by many authors for many crops (Mather, 1943; Takahashi, 

1973; Henny and Ascher, 1976; Litzow and Ascher, 1983) and it is therefore tempting to assume 

that there are, as an alternative possibility, modifier genes in this clone that enhance the S2 expression 

rather than weaken it, thus limiting the antisense effect. That this stronger SI reaction is caused by 

a non-acceptance background can neither be confirmed nor rejected, because more loci than A and 

ƒ are likely to play a role.The extremely strong SI and UI reaction in the original 6484 hybrid 
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population showed that those plants, including genotype 6484-06, were highly reliable in those 

reactions. This was confirmed for all the transgenics derived from plant 6484-06, except transgenic 

number four, that provided the proof for S-glycoprotein involvement in UI. 

In addition to this, the transgenic clones (in 6484 and 1184 populations) that showed a break-down 

of UI formed an additional control population by themselves, because the fluctuation in strength of 

the UI reaction coincided with the fluctuation in strength of SI and in S2 glycoprotein content. 

There is a small discrepancy in the break-down of SI for S2 pollen and UI for ver pollen between 

the transformed hybrid 6484-06 and the anti-sense S2 expressing transgenic tbr clone 1184-01. 

Although both clones showed a break-down of UI that coincided with the break-down of SI for the 

S2 allele, the latter transgenic showed a stronger break-down of UI, that resulted in seed set after 

pollination with ver. This might be due to a stronger expression of antisense S2, but 1184-01 being 

a non-acceptor of the type A *I* or aaii instead ofaal*, is probably a better explanation. Based both 

on the analyses presented here and on the model for SC expression/ inhibition proposed by Eijlander 

et al (b, submitted), 6484-06 should have the genotype aaii, thus also blocking the SC-factor from 

ver. This implies an additional UI factor to react upon and a stronger UI reaction in this breaking-

down situation. That the 1184 population showed a weaker antisense induced break-down of the S2 

incompatibility reaction, might be due to variation in transmission of the T-DNA, or to the 

homozygosity of the S2 allele in the offspring (Heeres et al., 1998). 

It was proven ( Murfett et al., 1994; Lee et al., 1994; Eijlander et al., submitted) that the stylar SI 

reaction is determined by ̂ -glycoproteins. Chetelat and DeVerna (1991) showed that in L. pennellii-

pollen UI was determined by at least three loci, one of them mapping on or near the S-locus. Foolad 

(1996) found even more UI related loci, accounting for skewed segregations.That ver is still 

expressing a pollen factor, was proven in our experiments on SC in the interspecific hybrids 

(Eijlander et al, submitted). Theoretically, a UI determining factor might exist that is closely linked 

to the S-locus. Breaking of this linkage might be as difficult as breaking the linkage between the 

pollen- and style-factor of the S-complex. Because the pollen factor and the style factor are closely 

linked and together constitute the S-locus, the involvement of the S-glycoprotein in UI should not 

be surprising anymore. Murfett et al (1996) showed that in Nicotiana the introduction of an S-

glycoprotein can induce UI characteristics, that were not present before. By antisense suppression 

they could eliminate SI and UI reaction patterns for respectively N. alata (SI) and N. plumbaginifolia 

(SC) from TV. plumbaginifolia x N. alata (SI species, NA) hybrids. These results are comparable with 

those we found in the antisense S2 expressing clones 6484-6-4 and 1184-1. 

The genes directly responsible for (non-)acceptance A and I (or a, and a2, Hermsen et al., 1974; or 

IM, and UI2, Abdalla, 1974) segregate independently of the S-alleles. However, acceptance is not 

completely independent of the S-locus. That this has not been detected previously in the tbr-ver 

system, can be attributed to the technical difficulties encountered in the past in detecting S-alleles, 

but also to the rare occurrence of the relevant genotypes in self- and backcross populations. 
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Descriptive model for interactions of SC, SI and UIdetermining genes. 

All the results obtained on SC, SI and UI and discussed in this and in our afore mentioned article, 

can be explained by the loci A and I, the 5-alleles from the two species (tested here: S2,S3,S4 and 

Sv), the pollen-active self-compatibilizing factor SCva and the earlier discussed interactions between 

them. The occurrence of differentials (tbr-geno types that are acceptors for one ver genotype but non-

acceptors for another ver) as described by Hermsen and Sawicka (1979) and also observed by the 

present authors may be explained by the existence of more than two alleles of A and/or a dosage 

effect of the genes involved. The observations made and its predicted (incompatibility reactions 

are shown in table 2. This table deals only with the alleles A and a. Here individual reactions of 

pollen genotypes in styles of various tbr and ver based recipients are indicated. Pollen can be of a 

pure tbr type, a hybrid type or a ver type. Ploidy effects are also indicated: the left block deals with 

haploid pollen from diploids and the other block (right) shows some pollen types produced by, for 

Table 2. Predicted and/or observed interactions between pollen and style in various acceptor and non-acceptor back

grounds, based on tbr and ver. S2 and S3: 5-alleles from tbr, Sv = S-allele from ver. S- = silenced S-allele (by 

antisense) from tbr. Recipients with the genotype SvSv react like S-Sv. Pollen with S2S3 and S2Sv: diploid pollen 

as produced by tetraploids or by a restitution mechanism active in diploids. A and a: acceptor alleles. A= acceptor, 

/ a n d i: inhibitor alleles, ƒ is epistatic over A. The genotype aaii needs an active S-allele to cause UI. SCy„ = pollen-

expressed self-compatibilizing factor, not effective in a Slbr * aal* style. PC= pseudo-compatible= incomplete 

incompatible reaction, potentially giving some seed set. The question mark ? is placed where the effect of counter

acting powers is unknown and depends on dominance relationships. See also text. 

Style genotypes 

tbr 

tbr 

X 

ver 

tbr 

X 

ver, 

asS2 

ver 

S2S2,A*ii 

S2S2,A*Ii 

S2S2, aali 

S2S2, aaii 

S2Sv,A*ii 

S2Sv,A*I* 

S2Sv, aal* 

S2Sv, aaii 

S-Sv,A*ii 

S-Sv,A*I* 

S-Sv, aal* 

S-Sv, aaii 

SvSv, aaii 

Pollen genotypes 

produced by diploids 

S3 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

S3SC„, 

+ 

+ 

7 

+ 

+ 

+ 

7 

+ 

+ 

+ 

7 

+ 

+ 

S2 

-

-

-

-

-

-

-

-

+ 

+ 

+ 

+ 

+ 

S2SCm 

+ 

+ 

-

+ 

+ 

+ 

-

+ 

+ 

+ 

? 

+ 

+ 

Sv 

+ 

-

-

-

+ 

-

-

-

+ 

_? 

_? 

+ 

+ 

SvSC„, 

+ 

-

-

-

+ 

-

-

-

+ 

—? 

—? 

+ 

+ 

produced by tetraploids 

S2S3 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

S2Sv 

+ 

+ 

+ 

PC/+ 

+ 

+ 

PC 

+ 

+ 

+ 

+ 

+ 

+ 

S2SvSC,„ 

+ 

+ 

7 

+ 

+ 

+ 

PC? 

+ 

+ 

+ 

+ 

+ 

+ 
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instance, tetraploids. The inactivation of a tbr S-allele (stylar expression) by means of antisense 

gives, when 100% effective, functionally an Sv allele. SvSv genotypes are therefore not mentioned. 

The SI reaction against S2 pollen in an S2S2 style is presumably stronger than in an S2S3 (Mc Cub-

bin et al., 1997) or an S2Sv style (dosage effect). It is postulated that pollen containing both Sv and 

SCver causes a normal or enhanced UI reaction and that here the interaction like that between S2 and 

SCm is not effective in an S2Sx aal* style (Eijlander et al., submitted). Question marks indicate that 

the final effect depends on the balance of different effects, like in S2S2aaIi x S3SCyer , where 

inhibition of 5Cvermight be epistatic over the compatibility of S3. Co-dominance of S3 will lead to 

a moderately compatible reaction and epistasy to full compatibility. Sv pollen will presumably be 

inhibited in any I -containing style, unless I too depends on ̂ -allele activity. Alleles for UI other 

than A versus a and I versus i are not considered here. 

Most of the ̂ -glycoproteins of the solanaceaous species have RNase properties and are essential for 
activity of SI (e.g. McClure et al., 1989) and are therefore also addressed as S-RNases. Loss of S-

RNase activity has been shown to result in self-compatibility (Royo et al., 1994; Kowyama et al., 
1994). 
That absence of RNase activity would be enough to bypass a UI reaction, is not true. There are more 
factors involved in this, as is exemplified by the UI reaction between N. plumbaginifolia (SC-
species) and a SC line (SC due to absence of S-RNase activity) of the SI species N.alata (Murfett 
et al., 1996). UI was still intact here. L. esculentum and L. peruvianum, two species that are less 
related to each other than ver and tbr are, show a very strong UI reaction. Here too, the cross is only 
successful when performed on the SC species L. esculentum. There is, however, a SC line from L. 
peruvianum, LA2157, that is SC due to a mutation in the coding region for the S-glycoprotein, 
causing loss of RNase activity (Kowyama et al., 1994; Royo et al., 1994). Rick (1986) reported, 
however, that all the lines investigated, retained their UI reaction against L. esculentum. Our results 
confirmed his observation that plants homozygous for this mutation, are highly UI when pollinated 
by L. esculentum. Although the pollen tubes from this pollinator appeared to penetrate perhaps a 
tenth of a style length deeper into the styles of the SC homozygous plants than in styles from SISI 
or SISC plants (R.Eijlander, unpublished data), the differences were minute: all plants were 
definitely UI for L .esculentum.The simplest explanation for such a strong UI reaction, even when 
the ^-glycoproteins possess no RNase activity, might be due to a gene being different from the 
genes dealt with here. Such a gene might be strongly expressed when species are more distantly 
related and not as close as tbr and ver. Other explanations migth be a pleiotropic effect of/, ex
pressed in wider crosses, or stronger alleles of this gene in Lycopersicon. Another attractive 
explanation might be that an S-glycoprotein may not not need RNase properties to trigger a UI 
reaction (see also later). It would therefore be essential to test whether acceptor plants that are of the 
aaii genotype remain acceptor when transformed with a construct coding for an ̂ -glycoprotein that 
lacks RNase activity, like the modified Petunia inflata S3 glycoprotein that was described by 
McCubbin et al (1997). 
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Examples of S-glycopro teins not being necessary for a functional UI reaction can be found within 

Solanum.The species S. brevidens (brd) is a SC species and may lack S-RNase activities in the style, 

for IEF of the stylar proteins of a brd clone used here showed a single basic protein at the position 

of Kl. Backcross progeny of a tbr+brd fusion showed this band together with ^-glycoprotein bands, 

suggesting similar behaviour of brd and ver and thus Kl homology (unpublished results) and thus 

absence of ̂ -glycoproteins. This species shows, apart from crossing barriers due to problems during 

seed development, also UI reactions when crossed with SI Solanum species (Pandey, 1962). 

Additionally, brd and its relative S. etuberosum (etb) show unilateral incompatibility with ver. 

Despite the barriers at the seed formation level, they could be crossed with ver as pistillate parent 

(Hermsen,1983), supporting the belief that the latter species is a more recent SC one. 

Discrepancies 

The phenomenon that pollen tubes of the ver-type can be arrested by the ^-glycoproteins of tbr 

cannot be explained when a specific inhibition or transport of S-glycoproteins over the membrane 

occurs, as proposed for the SI reaction (McClure et al., 1989,1990; review by Kao and McCubbin 

(1997)), because ver pollen is not expected to possess those S-allele specificities, and should 

subsequently be indifferent to tbr S-RNases. Additionally, the SI reaction is dependent on the RNase 

activity of the ^-glycoprotein (Royo et al., 1994), which supports the hypothesis of transport over 

the membrane. Irrespective of which model (selective uptake over the membrane versus random 

uptake plus selective activation/inactivation of the S-glycoproteins: McClure et al., 1989; Clark et 

al., 1990; Kirch, 1993) is applied, the selective procedure causes a problem. So, when one of these 

models is basically correct, it must be modified or extended by introducing an additional function 

for ^-glycoproteins in UI systems, but outside the pollen tube. As already proposed, the expression 

of modified ^-glycoproteins (transgenes) or antisense suppression of the production of RNase-

activity lacking S-glycoproteins as in the SC lines of L. peruvianum can give more insight in other 

mechanisms of causing pollen tube inhibition. 

If those /Wase-activity lacking ^-glycoproteins are capable indeed of causing an UI reaction, the 

possibility is opened that 5-glycoproteins cause a signal transduction as presumably takes place in 

the SI system of Papaver rhoeas (Franklin-Tong and Franklin, 1993) or in the sporophytic system 

of the Brassicaceae (e.g. Stein et al., 1991; Nasrallah et al., 1994), with one important difference: 

here S-allele non-matching products are triggering a reaction instead of the 5-allele matching 

products. This implies that within a species the compatible crosses, like S1S2 x S2S3, the compatible 

non-matching of the style and the S3- pollen should not trigger a UI reaction. Here the products of 

the acceptor gene Ala and the inhibitor gene Hi must either block this signal transduction in case of 

species-own pollen or, when the membrane-bound ^-glycoprotein needs an additional factor, to 

enable the signal transduction in case of non-self-species pollen. 

From this it may be clear, that the contribution of the 5-locus to UI complicates some hypotheses 

and that both SI and UI might be more complicated than was expected. 
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General discussion 

Diploid potato expresses a one-locus gametophytic incompatibility (GSI) system. The diploid 

potato population derived from the clones G254, G609 and B16 (Olsder and Hermsen, 1976; 

Hermsen, 1978 a,b,c) proved to be a valuable source for research, and for GSI research in particular. 

The first two dihaploids were reported to be derived from the cultivar Gineke, the dihaploid B16 

was derived from a complex interspecific hybrid created by Black. Diallel crosses allowed for a 

classification of S-alleles, randomly assigned SI to S4. Plant material derived thereof was used for 

biochemical and molecular classification of factors involved in SI (e.g., Kirch et al. 1989; 

Thompson et al, 1991; Kirch, 1993;Wemmer, 1994; Peil, 1995). This basic material was used for 

the creation of well performing 5-homo- and hetero2ygotes, and the plant material was tested on SI. 

Test crosses, iso-electric focusing of stylar extracts, Southern blotting and investigation of SC 

sources made clear however, that Gineke could not be the direct source of the primary dihaploids 

G254 and G609, but more likely an indirect one. This uncertainty about the ancestors of this 

material has, though, no consequences for the validity of the SI results obtained on this material. 

This is not only corroborated by the consistency of these results, but also by the reports concerning 

SI in other solanaceous species. 

Obtaining reliable S- heterozygous and homozygous self-incompatible tester clones. 

It was argued in chapter 2 that pollen-bome PC can be used to create S-homozygotes that are, 

nevertheless, reliable in their stylar SI reaction, and vice versa. The S-homozygous tester clones that 

were required for the SI research described and used here (chapters 2-5), needed to be reliable in 

their pollen-borne SI response. The counterfeit pollination method proved to be a valuable tool in 

obtaining material with a strong SI response in pollen and style. Utilisation of strong pseudo-

compatibility (PC) already present in 5-heterozygotes, showed to be unattractive for the production 

of Si-reliable clones, because of the apparent heritability of PC, causing PC even in the S-

homozygotes. The 5-homozygotes that were used as tester pollinators, showed neither pollen-

expressed nor style-expressed pseudo-compatibility, and were thus well selected. 

Most of the selected clones were tested for their transformation efficiency. Although there was 

some variation in both regeneration ability (giving régénérants from a stem expiant) and trans

formation ability (= giving transformed cells, see also Kharbotly, 1995; Kharbotly et al, 1995), little 

progress by breeding for transformation efficiency (= transgenics obtained per transformed expiant) 

was anticipated. Therefore it was decided that this trait could be introduced by crossing with 

material that was good in this respect (see Appendix 1) and valuable material could be selected. The 

selected material was reliable in its stylar expression of SI, but all Fl plants were SC due to a pollen 

expressed SC factor, like the one found in G254 and B16. Transgenics obtained from these clones 

could be tested for their stylar SI expression. By backcrossing clones without this SC factor have 
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been obtained. Only a limited number of well performing clones with a reliable pollen- and style 

expressed SI reaction have been selected, like clone 6618-02 (VI). The continuation of the breeding 

and selection procedures, with the aim of combining all the good factors of the SI population with 

the transformation efficiency of the second population was the reason why a wide range of 

transformable clones was used, instead of sticking to one clone. 

Expression of the sense and anti-sense S-RNase based constructs. 

It is clear from both the anti-sense experiments with SI and S2 that a complete suppression of 

the corresponding S-glycoprotein production is not required to obtain an efficient break-down of the 

incompatibility reaction. A slight reduction of the S-RNase results in some pseudo-compatibility for 

pollen carrying that S-allele, and a strong reduction results in complete compatibility. This finding 

is not surprising, knowing that early pollination of flowers from clones that are slow in the building-

up of the stylar glycoprotein content frequently lead to seed set. This was also found and described 

in chapter 2. The gain-of-function approach (introduction of sense-S2 constructs) in potato showed 

that the strong S2 expressing clones displayed a very strong SI reaction, in extreme cases barely 

allowing the pollen to penetrate the stigma more than half a millimetre. The weak expressors hardly 

inhibited the pollen tube penetration, thus confirming the results obtained by the loss-of function 

approach, but then from the other side of the SI reaction spectrum. Analog results were obtained by 

gain and loss of function experiments with 5-allele based constructs in Nicotiana alata (Murfett et 

al., 1994) and Petunia inflata (Lee et al., 1994). The sense-inhibition approach in potato was not 

successful in this respect that the endogenous and homologous allele was not silenced or otherwise 

rendered ineffective. It was in some cases, however, successful in causing a break-down of the 

incompatibility reaction of the not-targeted non-homologous S-allele. In this case the apparent over-

expression of the transgene caused some kind of down-regulation of the non-homologous allele. It 

is also possible that the endogenous homologous allele was down regulated too, but this is 

impossible to demonstrate because both the transgene construct pSK2 QS2 and the endogenous S2 

gene code for the same product. This down regulation was also observed in some transgenics with 

the genotype S3SJ0 +pSK2 QS2, knocking down both S3 and S10. It might, therefore, be possible 

to find in nature genotypes with a combination of S-alleles that show dominance of one ̂ -allele over 

another by some kind of down-regulation, but there are to date no reports of this yet. 

Thus, both the sense and the anti-sense experiments confirm that the 5-glycoproteins are responsible 

for the stylar side of the SI reaction, as was also earlier found in Petunia and Nicotiana (Lee et al, 

1994; Murfett et al, 1994). 

Contribution of the S-locus to unilateral incompatibility/incongruity. 

As already stated in the chapters 4 and 5, it is debatable whether the S-locus is involved in UI. 

Until the report of Murfett et al (1996) showing proof for 5-involvement, only strong indications, 
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favouring or opposing this involvement, were reported. The apparent absence of S-locus 

contribution to UI, reported in some cases, led to the belief that unilateral incongruity was the proper 

expression, whereas a contribution supported the expression unilateral incompatibility. 

The work of Hermsen and co-workers on UI between diploid potato species made already clear 

that the expression of UI was independent from the tbr S-alleles, because all types of 5-heterozy-

gotes and even some S-homozygotes could be found that showed either UI or the opposite reaction, 

acceptance. Also, the absence or presence of tSI -caused SC could not be linked to acceptance or 

non-acceptance for ver-, etb- or ftrcf-pollen. In these experiments tbr genotypes in which S-RNase 

activity was lacking, were not used, so the influence of absence of active tbr S-alleles on UI could 

not be tested. Ver, however, lacks S-RNase activity, but nevertheless crossing barriers not based on 

differences in EBN, were encountered (Abdalla,1970). This supports the incongruity hypothesis, 

and also the SC mutant found in Lycopersicon peruvuianum, that lacked S-RNase activity, retained 

its UI reaction against L. esculentum. In the latter case it can be argued that 5-glycoprotein was 

present, but it had lost its RNase property due to a point mutation only, which still allowed for a 

non-RNase dependent UI mechanism. In the case of ver this is unlikely, however, because no S-

glycoproteins have been reported to be present in this species. 

The research of Murfett et al (1996), who worked with gain and loss of S-RNase expression in 

Nicotiana, showed evidence for the contribution of the ̂ -glycoproteins to UI. Because UI related 

reactions were not present in all the interspecific crossings where they were anticipated, which 

showed that also in Nicotiana more genes or alleles of UI determining genes are involved. This was 

in agreement with our detection of different levels of UI breakdown after the loss of S-RNase 

activity and with the existence of the previously postulated genes I and A. We could confirm here 

that the S-RNases can contribute to UI. Is was also clear that the UI reaction is complex, it knows 

several sites of activity in the style and has different mechanisms. It became also clear that the S-

locus of ver is recognised in the UI reaction when non-acceptor tbr genotypes are pollinated with 

ver pollen or with pollen from tbr-ver hybrids, which is in accordance with localisation of pollen 

determined UI linked factors on- or in close linkage with the S-locus (Chetelat and De Verna, 1991). 

The pollen-part of the ver 5-locus is still active and this might be a prerequisite for raising a UI 

reaction. Thus it was shown that the S-locus, both style and pollen part, really can contribute to the 

UI reaction. 

Concurrence of hypotheses on UI 

As stated in chapter 5, the model for non-acceptance of Gran and Aubertin (1966) did not differ 

significantly from one of the models proposed by Hermsen et al (1974). However, the best 

explaining hypothesis of Hermsen and co-workers, introduced a dominant gene for acceptance in 

stead of a recessive one. Abdalla and Hermsen (1972) developed the two-powers-hypothesis, an 

evolutionary model as also discussed by several other authors (e.g. Lewis and Crowe, 1958), but 
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in the two-powers-hypothesis the defence reaction of the SC species against most forms of 

introgression of genes from other species plays an important role. The basic assumption in these 

hypotheses was, that an SI species evolves stepwise into an SC species following the rule SI -> Sc 

- Sc' -> SC. According to Abdalla (1970), "the UIgenes have developed through the challenge of 

hybridisation between SI and SC populations" and for ver "the sensitive plasmons of SC species 

have developed in the counteracting competition subsequent to crossing of SC and SI populations, 

particularly after the development of UI genes". Thus, finally an SC species will have a genotype 

like ScSc uiui and the SI species for instance S1S2 UM. Little was known then how SI can be 

converted into SC. Sc can therefore also stand for an active 5-allele linked with a pollen-expressed 

SC-factor, as has been described in chapter 4. Style-expressed SC factors as described by 

Flaschenriem and Ascher (1979) and Dana and Ascher (1986b) can thus also be counteracted by the 

development of UI genes. All these hypotheses, including the incongruity hypothesis of Hogenboom 

(1973) can be brought in accordance with each other, when the S-locus is subdivided into at least 

a pollen part and a style part, against which separate UI genes can be developed, which can have 

various alleles and dominance relationships. Thus, non-acceptance genes can also have dominant 

acceptance alleles or show intermediate reactions when heterozygous. The appearance of SI 

affecting genes, like minor genes, causing pseudo-compatibility, the pollen and style SC factors 

reported for Petunia by Dana and Ascher (1986 a,b), tSl in tbr clone G254,5Cverin ver can thus 

trigger the development of corresponding UI genes. When these genes are not located within the 

S-locus complex, the UI genes are then 5-locus dependent evolved, but potentially S-locus 

independent in expression. These UI genes are then truly incongruity genes. Thus a mixed system 

with unilateral incompatibility and unilateral incongruity genes can evolve. The inhibitor gene I, as 

described in chapters 4 and 5, might be such an incongruity gene. It is not known against which 

factor it is directed, so it might still belong to the unilateral incompatibility genes group. 

Pollen expressed SC-factors. 

It is already argued that there exists a variety in pollen-expressed SC (chapter 2). There is to date 
no proof for SC due to mutation of the pollen factor of the 5-locus, whereas there is ample evidence 
for SC causing mutations in the style expressed S-gene. Like in B16 and G254, which were SC due 
to the pollen-expressed factor called tSl, the well-transformable clone 1024-02 proved to 
homozygous for pollen-expressed SC. It is tempting to assume allelism with tSl, especially after 
it was shown that tSl also causes SC with SI pollen. The offspring of 1024-02 did not show any 
strong preferential penetration of SI, S2, S3, or S10 pollen. All four ̂ -homozygotes were found after 
selfing of SC Fl offspring clones in more or less equal amounts. Hosaka and Hanneman (1998) 
detected skewed segregations of SC and SI in offspring from S. acaule and S. phureja. Their best 
fitting hypothesis was that the pollen-expressed SC factor Sli (S-locus inhibitor) acted sporophytic, 
and deviates in this respect from the expression pattern of tSl, which was a quite remarkable 
finding. It is, on the other hand, like tSl, localised on chromosome 12 (Hanneman, pers. comm), 
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which still keeps open the possibility of allelism of SU and tSl. The appearance of two pollen-
expressed SC alleles in 1024-2, unrelated with G254 and B16, shows that SC factors can be more 
common than believed. 

In Petunia hybrida Dana and Ascher (1986a) detected a pollen-expressed SC factor at 
approximately the same distance from S as SCver in the tbr-ver hybrids. If these genes are allelic, 
this Petunia SC factor might show acceptance dependent penetration too, but nothing has been 
reported on this yet. The complex expression pattern of SCvet and its dependence on the proper 
genetic background of the seed parent is explained in the chapters 4 and 5. The stylar suppression 
of pollen expressed SCver, as described in the chapters 4 and 5, explains why intercrossing of two 
self-incompatible potato species can bring about self-compatibility. For example, species 1 can be 
described by a basic genotype, S1S2 AA ii scsc, which represents a population of self-incompatible 
genotypes, acceptor for species 2. Species 2 can then be S3S4 aa IISCsc (and in some cases scsc), 
where aall inhibits the penetration of SC, but allows for the penetration of sc and the 5-alleles, as 
well as for the pollen of species 1. An Fl of these two species can then be S1S3/S1S4/S2S3/S2S4, 
Aa, Ii, scsc/Scsc. Only the Aa Ii Scsc plants will be SC. This phenomenon of sudden appearance 
of SC after intercrossing SI genotypes is known among potato breeders working with interspecific 
hybrids (e.g., in complexphu-stn hybrids, Hermsen, pers comm.). 

Interaction between pollen and style. 
The S-RNase is transported over the membrane of the pollen tube and is believed to cause an 

incompatibility reaction by degrading RNA, which finally results in pollen tube arrest. As explained 
in chapter 1, either the transport over the membrane is allele specific, or the uptake is nonspecific 
followed by an inhibition of the non-self S-RNases. Analysis of DNA sequences and protein 
structures of S-RNases gave already more insight in conserved regions (C1-C5), (hyper)variable 
regions (V1-V5) and presumed identity (V1-V5, except V3) and activity (C2, C3) determining parts 
of the S-RNases (e.g.. Ioerger et al., 1991; Tsai et al., 1992; Newbigin et al, 1993; Simms, 1993; 
McCubbin et al., 1997). Mutation studies have been performed on the regions that were expected 
to be responsible for the activity (e.g. Huang et al., 1994) or the identity. The activity was easily be 
disrupted by replacing a histidine residue in the activity parts (e.g. McCubbin et al., 1997) and 
interchanging hyper variable regions could disrupt the identity (Matton et al., 1997; Zurek et al., 
1997), but specific identity determining regions within the hyper variable regions could to date not 
be identified (except, for at least, 4 aminoacid coding triplets). The mechanism of recognition 
between pollen and style remained still unclear. 

The^SO-driven S2 sense constructs, reported in chapter 3, showed in some cases detectable 
expression in complete anther extracts. Nevertheless, the pollen appeared to stay completely 
functional. It was not clear whether the pollen produced this S-RNase, or the surrounding anther 
tissue. Expression by the pollen itself could theoretically have resulted in immediate pollen tube 
growth arrest or pollen death. Kirch et al (1995) expressed already a potato S-RNase in pollen of 
Nicotiana tabacum. The pollen remained fully functional and capable of giving seed set. This 
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showed that there is no cytotoxic effect of the S-RNase on the pollen tube, although the authors 
themselves came with possible explanations why this conclusion might be incorrect. An incorrect 
genetic background (wrong species) might have been such a reason, or the lack of the necessary 
protein. Even absence of a proper phosphorylation, directly after S-RNase entering the pollen tube 
(as in a normal situation) might be a reason for this. A Ca2+ dependent phosphorylation is a 
possibility and putative mediating proteins have been detected in Nicotiana alata by Kunz et al 
(1997). That phosphorylation and Ca2+ play an important role in the pollen tube growth and/or the 
incompatibility reaction appears to be likely. It was shown by Li et al (1994) that Ca2+ plays a key 
role in the growth and development of the pollen tube tip. In chapter 1, it is pointed out that Ca2+ 

and phosphorylation play key roles in the SI systems of poppy and brassica, so this comes all 
together not as a surprise. 

That a cytotoxic effect in a normal incompatible combination can be rejected, is shown by the style 
grafting experiments of Lush and Clarke (1997). Incompatibility reactions were, at least partly, 
reversible and supports the idea that the pollen tube actively synthesises RNA, which is degraded 
by the self-type S-RNase when transported over the membrane. 

Discrepancy between pollen recognition in SI and UI. 

As stated earlier in chapter 5, there is a problem when explaining the contribution of the S-
glycoproteins (S-RNases) to both SI and UI. In the incompatibility reaction, there is a selective 
mechanism. Self-type pollen transports selectively the S-RNase over the membrane or selectively 
inactivates non-self S-RNases. In the UI reaction, however, non-self S-RNases cause an inhibition 
reaction. This justifies to consider an alternative, or additional mechanism for the interaction 
between pollen and style. When the S-RNases are not transported over the membrane, it might cause 
a signal transduction over the membrane. Somehow there must be a mechanism that discriminates 
between species-self and non-species self combinations of pollen tube and S-RNases. Probably here 
the products of the acceptance genes and different acceptance alleles play a role. Species-self is 
always recognised by this product (from for instance, both A and a) and should then disable or 
interrupt the signal transduction cascade caused by, for instance, the combination of S2-RNase and 
an SI pollen tube of the same species. Pollen from ver is then allowed to penetrate any style of tbr, 
as long as it is of the genotype A*ii. Absence of the product from A allows now for the S-RNase 
induced signal transduction, finally resulting in pollen tube arrest. There are several ways to test 
properties of this model. Style grafting as performed by Lush and Clarke (1997) is in the case of 
signal transduction unlikely to be able to cause a reversion of the UI reaction when analogous with 
the SI response in poppy. When the introduction of an S-glycoprotein, lacking the RNase activity 
(such as described by McCubbin et al, 1997) in plants that express UI when transformed with 
correct S-RNases, it is clear that identity is the determinant and not activity, thus allowing for a 
hypothesised additional interaction mechanism. 

A key factor in elucidation more aspects of SI and UI still remains the identification and cloning of 
pollen-S'-locus factors. 



Appendix 1: Selection of well performing and well transformable clones, 

useful for SI research. Some characteristics and pedigree. 

There are from various tobacco species accessions available that are highly efficient for 
transformation. Additionally, they are easily grown in the greenhouse, with more generations per 
year than potato. Because S-alleles can vary within a species even more that some S-alleles between 
species do, it is tempting to use tobacco for transformation experiments with potato-S-allele based 
constructs. This approach was followed indeed (e.g., Kirch, 1992; Kirch et al., 1995; Ficker et al., 
(1998), but is not applicable for all aspects of SI research. Interspecific crossing might be necessary 
for testing the biological effect of a construct. Then not only factors like interspecific crossing 
barries (e.g., unilateral incompatibility) can play a role, but also the different genetic background 
of the host can cause subtle interactions that were not anticipated (Kirch et al, 1995; Murfett et al, 
1995), changing or inactivating the transgene's effect. Thus, for some basic experiments the 
constructs should be tested within the species of the S-allele origin. Therefore, well transformable 
potato clones with a reliable SI reaction were a prerequisite. 

Screening of the selected SI clones for a high efficiency of transformation ability by Agro-
bacterium tumefaciens showed that there was some variation in regeneration capacity so that some 
transformants could be obtained, but none of the clones showed both a good transformation ability 
and a good regeneration capacity (unpublished results). Breeding for these combined abilities would 
most likely, when using the best performing genotypes, have taken several crossing generations. 
Some well-transformable diploid potato clones were available that were not related to the SI 
material. In a combined effort (see also Kharbotly, 1995) crosses were made and progenies were 
screened for both transformation ability as well as other criteria as mentioned in chapter 2 for the 
basic clones. A good performance for vigour, flowering, male and female fertility and a reliable SI 
reaction were prerequisites. The clones had to contain at least an 57 or an S2 allele in order to be of 
use for sense and anti-sense transformation experiments. 

Clone 1024-2, one of the best transformable clones available, flowered late but abundantly. 
This clone was self-compatible, but it was expected to segregate for SC and SI clones in the Fl 
progenies. However, none of the 60 tested offspring clones was SI. The clones were SC due to a 
pollen-expressed factor like the one found in G254 and B16, indicating that 1024-2 was 
homozygous for SC. Segregation patterns of the 5-alleles showed that 1024-2 contained S3 and 
another S-allele, that probably belongs to the SI-S3 family. The SI reaction against S3 pollen was 
reliable: none of the offspring genotypes originated from fertilisation by Si-pollen (Fig. 1). The 
stylar SI reaction of the selected clones was also very reliable (for SI and S2 in the 6486 and 6487 
population respectively, for S3 only on SI S3 or S2S3), thus eligeble as good clones for testing of 
the stylar contribution of SI. The selection of well transformable clones was more labourious. The 
screening method developed by Kharbotly (1995) proved to be a powerful tool, but the performance 
in SI research formed a time bottle neck in this. Only few clones were found that met all criteria to 
a satisfying extent. 
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Plant A16, an offspring of clone 1024-2, was superior in transformation efficiency and was 

very vigorous, but had poor characteristics like, late flowering, functional male sterility, very poor 

in tuber set, easily wilting, wild branching, and it did not express the desired S-alleles. Most of these 

characteristics were transmitted to its progeny. Thus, only few transgenic clones out of hundreds 

screened, were suitable for our research on SI. Well performing, reliable self-incompatible clones 

were under represented, but found in a late stage of the project, which explains also why the pollen-

mediated SC clones predominate in this thesis. It also explains why a less easily transformable 

clone like 195/5 was used. All selected clones were, however, reliable in their stylar expression of 

SI. Only the transformed SI clones that were diploid (thus not spontaneous somatically doubled) 

could be used directly to test the influence of the constructs on the male expressed SI reaction. 

The pedigree of the transformable clones is presented in table 1, as well as the S-allele 

composition of the clones or populations, as far as investigated. Most of the clones in the 6618-

population suffered from a low degree of flowering and fertility problems. Population 1122 had an 

excess of SC clones and a tendency to flower malformation. Many clones, though vigorous, 

suffered from a low male fertility. Population 1120 segregated for some useful clones, but the vigour 

was somewhat reduced. Many clones had a tendency for pseudo-compatibility under unfavourable 

climatological conditions. 

Clone V is excellent in its transformation efficiency (an average of 80% in 5 weeks). It flowers 

middle late and fairly well, pollen fertility is excellent. Its tuberisation is late and only acceptable 

for vegetative propagation, when raised in early spring or grown under short day conditions. 

Clones R2 and R5 are slow in transformation: nine weeks are required for 50% transformation 

efficiency. The plants are vigorous, flower early and profusely with excellent fertility. Tuberisation 

in small pots is early and good. 

C Population 6487 

Si 

S10 
S2 
S3/ faint second S10 
SKI 
SK2 

Fig 1. Silver stained Iso Electric Focusing patterns of offspring of clone 1024-2. Most left: clone 1024-02. Left: 
population 92-6487 (535/0 x S1S2->S2S3 + 525/0); Right: 92-6486 (53570 x SlS3-> S1S3 +5/5/0). The 5/0 allele 
shows sometimes a faint second band, here at the position of 53. The penetration of only 5/ in population 6486 and 
only 52 in population 6487 confirms that the band on the 53 position has the S3 identity. 
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Table 1. Pedigree of well transformable clones and some characteristics. See for clone numbers and references 
also chapters 2 and 3 

Clone 

86-04-176 

87-10175-5 

87.0007 

87.0008 

87.1024-1 

87.1024-2 

87.1029-31 

91-6222-40 

91-6104-19 

91-6167-2 

A16 

93-4002-3 

VI (93-6618-02) 

R2 (92-6486-4) 

R3 (92-6486-..) 

R5 (92-6486-19) 

V(92-6487-09) 

94-1120-... 

94-1122-... 

Mother 

86-04-176 

86-040-231 

86-040-231 

87.1017-5 

G254 

S2S3 

Her-64 

91-6167-2 

91-6222-24 

A16 

1024-2 

1024-2 

1024-2 

1024-2 

R5 

R5 

Father 

87.0008 

87.0007 

87.0007 

87.1024-1 

G609 

S1S1, s c 

87.1029-31 

1024-2 

A16Ü! 

91-6222-40 

91-6104-19 

91-6104-19 

91-6104-19 

91-6222-40 

91-6105-06 

93-4002-03 

S-alleles 

S3S10 

S2S3 

S1S3 

S9S11 

S9S10 

S2SJ0 

S3S10 

S1S3 

S1S10 

S1S3 

S2S10 

SI/S3+S2/S4 

S1/S3+S2/S10 

SC/SI 

SC 

SI 

SI 

SC 

SI 

SI 

SC 

sc 
sc 
sc 

SC/SI 

SC/SI 

Remarks 

doubled monoploid, amf amf 

= SH82-62-247 

= SH82-70-297 

well transformable, Amf amf 

see chapter 2 

see chapter 2 

functionally male sterile 
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Summary 

In chapter 1 an overview is given of the major mechanisms operating in Angiosperms that prevent 
or limit the degree of inbreeding. The two major systems that function on the basis of interaction 
between pollen and stigma/style, are the sporophytic and the gametophytic self-incompatibility 
systems (SSI and GSI). The plant is called the sporophyte and pollen and egg cells are called 
gametophtytes. In the sporophytic system, the pollen grains carry the information about the pollen 
donor in their coating. Thus, the pollen coating does not reflect the pollen genotype but deposits in 
it reflects the genotype of the pollen donor and the dominance relationships between the self-
incompatibility alleles (5-alleles). When the recipient has incompatibility characteristics in common 
with the pollen coating, the combination will be incompatible and pollen germination and pollen 
tube growth will be arrested on or in the stigma. In the Brassicaceae, a group displaying SSI, signal 
transduction seems to be an important mechanism for triggering an SI response. 
In the gametophytic self-incompatibility system, the pollen reflects the genotype of the pollen grain 
itself. When the incompatibility allele(s) of the pollen grain are met by a similar allele in the 
recipient, the pollen tube growth will be arrested. Thus, selfing provokes a gametophytic self-
incompatibility (SI) response. Non-matching of ̂ -alleles between plants of the same species results 
in a compatible combination. Most diploid Solanaceous species display GSI. The styles contain 
extracellularly the products of the style-expressed ^-alleles, the ̂ -glycoproteins. About the pollen 
components, contributing to SI, little is known, but ^-heterozygosity in the pollen causes self-
compatibility. The cultivated potato, Solanum tuberosum L.(tbr), is a tetraploid and behaves, due 
to ^-heterozygosity in the pollen, as self-compatible species, whereas diploid potato generally 
possesses an active operating GSI system. 

There exist, however, also diploid species that are self-compatible (SC). Frequently, regardless of 
SSI and GSI, the SI species can be crossed with related SC species only when the latter are used as 
female parents. This means, the SC species can be used as the pollen acceptor (acceptance), but the 
SI species rejects the pollen of the SC species (non-acceptance). This phenomenon, in which 
interspecific hybridisation can occur in only one direction, is called Unilateral Incompatibility or 
Unilateral Incongruity (UI). 

In chapter 2 it is described how the basic plant material, used for SI research, was developed and 
selected. Vigour, abundant flowering and a good fertility were prerequisites for this material, but 
the most important characteristic was a reliable SI reaction in pollen and style. The combination of 
these characteristics is rarely found in diploid tbr. From a diploid tbr population, expressing four 
different ^-alleles, plants could be selected for all six S-heterozygosity classes, that met all the afore 
mentioned criteria. S-allele composition could be tested by performing test crosses, but in addition 
to this, stylar extracts were analysed by iso-electric focusing, followed by silver staining. The S-
glycoproteins, also called S-RNases because of their RNase properties, focus in the basic part of 
the gels. The selected material was used for the creation and selection of SI plants that were 
homozygous for the S-alleles. Normally, the SI system will prevent S-homozygotisation, unless the 
SI system is weakened by pollen- or style expressed minor or major Si-suppressor genes. A 
weakening of the SI response can cause seed set after selfing. This is called pseudo-compatibility 
(PC). Occasionally, however, some pollen tubes manage to penetrate the style , even when the SI 
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system is fully functional and PC can be excluded. The seed set will then, however be too low to 
establish a sink-source relationship that is strong enough to cause berry formation: the flowers will 
drop. The S.phureja (phu) clones IvP35 and IvP48 are normally compatible with diploid tbr, but the 
hybrid seed has the remarkable and useful characteristic, that the embryo's have a nodal band, which 
is visible through the seed coat as a seed spot at the first node between hypocotyl and the 
cotyledons. Pollination with those phu clones after making crosses that were incompatible, caused 
berry formation. This additional pollination is called "counterfeit pollination". Spotless seed, 
harvested from those berries, yielded both 5-heterozygotes and S-homozygotes. Analysis on the seed 
set and the strength of the SI reaction in this offspring showed that, even when the original parents 
were selected for their good SI reaction, weakened SI was present, that could be expressed in either 
the pollen or the style. It was shown that this had a heritable character. From this material, S-
homozygotes could be selected that were reliable in their SI reaction and that served as tester clones, 
as described in the chapters 3, 4 and 5. 

The selected material, described in chapter 2, was poor in its transformation efficiency. For the 
functional analysis of, for instance, S-allele based constructs, an efficient transformation system is 
essential. It was decided, therefore, to select for this trait. Transformation efficiency was introduced 
from other unrelated sources. Well transformable clones with a reliable stylar SI expression could 
be selected from this material (Appendix 2), that were used for a gain-and loss of function approach. 
Sense (chapter 3) and antisense S-RNase constructs (chapters 3 and 5) were introduced by genetic 
transformation. Indeed, sense S2 transgene constructs, driven by the promoter of the style-specific 
endochitinase SK2, were able to cause an incompatibility reaction against S2 pollen in plants that 
did not contain the S2 allele when not transformed. Some of those constructs showed such a high 
level of expression, that due to some mechanism, the endogenous 5-alleles were down-regulated and 
became compatible for the endogenous S-alleles, whilst remaining incompatible for the transgene 
S-allele. The antisense Sl-RNase and S2-RNase constructs were able to reduce the expression of the 
corresponding 57 and 52-alleles, which resulted in a break-down of the incompatibility reaction 
against the corresponding SI and 52-pollen. Thus, the gain and loss of function approach showed 
the key role of the S-RNases in the stylar side of the self-incompatibility reaction. 

In chapter 4 it is described why ver is self-compatible and how this is expressed in hybrid 
offspring, when crossed with self-incompatible tbr. When the former species is used as recipient, 
the hybrids suffer from cytoplasmic male sterility, thus disabling a further analysis of inheritance 
and expression of SI, SC and UI. The reciprocal cross fails normally, as already stated, due to UI. 
However, some of the potato clones, described in chapter 2, accepted ver-pollen and yielded male 
and female fertile hybrid offspring. Those particular potato clones are called "acceptors"for ver 
pollen, as an exception to the rule of UI. Plants that show UI are thus called "non-acceptors". It was 
shown that the species ver can be SC due to at least two different reasons: 1) there is no stylar S-
glycoprotein and a stylar SI response is therefore disabled, and 2) there is a pollen-expressed self-
compatibilizing factor, SCva. This SCva-factor was linked with the S-locus of ver, at an estimated 
distance of 18 cM. SCm is also capable of suppressing the SI reaction against pollen-expressed tbr 
^-alleles. This suppression depends, however, on the genotype of the pollen recipient. Acceptors 
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allow for the penetration of SCver carrying pollen, but specific non-acceptors can inhibit this type 
of pollen. It was shown that there exist differential reactions against ver pollen, and in particular, 
also against the SCve! factor. Experiments with somatically doubled hybrids showed that where the 
stylarpart of the S-locus of ver is inactive, that the pollen part of the ̂ -complex is not only capable 
of triggering a UI reaction, but also in causing the Si-based phenomenon of mutual weakening. 
Mutual weakening is the phenomenon that when two different S-alleles are expressed in a pollen 
grain, the GSI reaction in the style will not take place anymore, even when those ^-alleles are 
expressed in the style as well. Thus, a dual function of the pollen part of the S-locus is made likely. 

In chapter 5 the gain and loss of function approach, as described in chapter 3, was used to test 
whether the stylar part of the S-locus is involved in the UI response too. The sense approach failed, 
due to the absence of transgenic ver régénérants, but the loss-of-function was successful. Both a 
transgenic non-acceptor tbr x ver hybrid and a transgenic non-acceptor tbr clone, both expressing 
only the S2 allele in the style, showed a collapse of the UI reaction that coincided with the antisense 
S2 caused break-down of the SI response against S2 pollen. The S-locus complex shows thus a dual 
function for both the pollen part and the stylar part, both contributing to the SI and the UI response. 
It was made likely that ver can have a putative non-acceptor background for self pollen, but that its 
expression requires S-glycoproteins to be expressed. In this chapter it is discussed why the most 
important hypotheses about UI are not necessarily conflicting with each other. An explaining and 
predictive model with interactions of a range of genes and alleles is presented. The most important 
genes and their properties are: 

- the acceptance gene A, which causes acceptance (aa genotypes being non-acceptors), but knows 
different alleles that cause differential reactions against ver pollen, 

- the inhibitor gene /, which causes non-acceptance and is epistatic over A, 
- the pollen-expressed SC factor SCva, which is in weak linkage with the S-locus, causes pollen to 

be compatible in any style, except those with the genotypes aall and aali, in which it is inactive 
or even causes a UI reaction, 

- the S-locus complex with both a pollen component and a style component, in which the pollen 
ver factor triggers a UI response, and the active stylar part is needed for a UI reaction in aaii non-
acceptor genotypes. The latter explains why the introduction of an active S-allele in a SC species 
(such as reported by Murfett et al., 1996) can bring about a sudden SI or UI response and why ver 
can be a putative non-acceptor for self pollen, without becoming self-incompatible. 

As a consequence of this, the expression "Unilateral Incompatibility" cannot completely be 
replaced by the expression "Unilateral Incongruity". The latter expression is valid in cases where 
the 5-locus does not contribute to the UI response at all. 

In the final chapter some of the results are discussed in a broader context. The last part stresses 
that the dual function of the S-locus implicates that, within the existing model of S-RNase activity 
in the SI system, a second function of the S-glycoproteins must be postulated. This can be triggering 
a signal transduction, resulting in a SI like response, resulting in the arrest of the pollen tube, but 
which may be independent of the RNase properties of the ̂ -glycoproteins. 



Samenvatting. 

In hoofdstuk 1 wordt een overzicht gegeven van de belangrijkste mechanismen in bloeiende 
planten om inteelt te beperken of te voorkomen. Sommige mechanismen zijn direct herkenbaar 
zoals het voorkomen van uitsluitend mannelijke of vrouwlijke bloemen op een plant. Andere 
mechanismen zijn gebaseerd op het wel of niet doorlaten van pollenbuizen door de stijl en zijn niet 
direct zichtbaar. Verschillende van deze mechanismen worden nader toegelicht. De twee 
hoofdgroepen zijn "sporofytische zelf-incompatibiliteit" en "gametofytische zelf-incompatibiliteit". 
De plant zelf wordt de sporofyt genoemd, en het stuifmeel de gametofyt. Bij de sporofytische 
incompatibiliteit wordt, vereenvoudigd gesteld, de informatie van de bestuiverplant meegegeven 
met de stuifmeelkorrel. Deze informatie zit aan de buitenkant. Als de bestoven plant een 
"incompatibiliteitskenmerk" gemeenschappelijk heeft met de buitenkant van het stuifmeel, wordt 
de bevruchting onmogelijk gemaakt. Wat er aan genetische informatie in het stuifmeel zit, is dan 
niet meer van belang. Dit heet daarom sporofytische incompatibiliteit. Bij gametofytische 
incompatibiliteit is niet zozeer de buitenkant van het stuifmeel van belang, als wel de genetische 
inhoud van het stuifmeel. Als de genetische inhoud van de stuifmeelkorrels (pollenkorrels) voor 
"incompatibiliteit" wordt weerspiegeld in de te bevruchten bloem, wordt de doorgroei van de 
pollenbuis geremd en gestopt. Zelfbestuiving leidt dus tot een "gametofytische 
zelfincompatibiliteits-reactie". Het mechanisme dat in de meeste aardappelsoorten actief is, is de 
zogenaamde "gametofytische zelfincompatibiliteit". 

In hoofdstuk 2 wordt verteld hoe het basis-onderzoeksmateriaal is geselecteerd en wat daar uit is 
gekomen. Het basismateriaal vloeide voort uit kruisingen die ooit gemaakt waren tussen diploïde 
klonen (24 chromosomen), die uit de normale, tetraploïde aardappel (Solanum tuberosum (tbr), met 
48 chromosomen) verkregen waren De te gebruiken planten moesten uiteraard goed bloeien en 
mannelijk en vrouwlijk vruchtbaar (fertiel) zijn, maar bovenal heel betrouwbaar in hun zelf-
incompatibiliteitsreactie (SI). Op dit soort eigenschappen is er in de eerste ronde geselecteerd. Om 
duidelijk onderzoek te kunnen doen aan heel specifieke varianten van de incompatibiliteitsgenen, 
de "S-allelen", is geprobeerd planten te maken die slechts één type van zo'n S-allel bevatten, de 
zogenaamde S-homozygoten. Dit druist eigenlijk tegen het "incompatibiliteitsmechanisme" in, wil 
men toch nog een betrouwbare SI reactie behouden. Soms lukt het een pollenkorrel toch om door 
te groeien en de eicel te bevruchten, waar dit op grond van de SI reactie niet verwacht was. Omdat 
een lage zaadzetting meestal tot vroegtijdige vruchtval leidt, wordt dit soort zaad zelden verkregen. 
Daarom is er gebruik gemaakt van een aanvullende bestuiving, waarbij er wel voldoende zaad 
gevormd wordt. Het zeldzame zaad zit dan verstopt tussen het "reddende" zaad. Het reddende zaad 
is eenvoudig te herkennen aan kleine vlekjes op het embryo, wat door de zaadhuid zichtbaar is, en 
het zeldzame zaad heef zo'n vlekje dus niet. Uit dit zeldzame zaad zijn S-homozygoten geselecteerd 
die vitaal waren en betrouwbaar in hun Si-reactie. De identificatie van de 5-genotypen gebeurde niet 
alleen middels toetskraisingen, maar ook door stijlextracten via gel-electroforese (IEF) en 
zilverkleuring te analyseren. De S-allelen produceren in de stijl de zogenaamde S-glycoproteïnen, 
vanwege hun RNA-afbrekende eigenschappen ook wel S-RNasen genoemd, en deze zijn na IEF 
goed te herkennen. Deze techniek is door alle experimentele hoofdstukken gebruikt. 
Al dit materiaal heeft aan de basis gestaan van de aardappellijnen die gebruikt zijn in het 
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vervolgonderzoek. Omdat er ook getransformeerd moest worden, wat ook wel "genetische 

modificatie" wordt genoemd, is er bovendien gezocht naar lijnen die redelijk efficient getransfor

meerd konden worden. Hiervoor moest er verder gekruist en gescreend worden. Het materiaal wat 

hieruit is voortgekomen (weergegeven in de appendix en kort besproken in het discussiehoofdstuk), 

is gebruikt voor de transformatie-experimenten zoals beschreven in de hoofstukken 3 en 5. 

In hoofdstuk 3 worden de resultaten van zogenaamde "gain and loss of function" experimenten 

beschreven. Door het via transformatie toevoegen van een extra gen dat codeert voor een S-RNase, 

is het mogelijk aan de stijlkant een extra incompatibiliteitsgroep tot expressie te brengen. Dit is 

gebeurt voor het £2-allel. Als dit overmatig tot expressie komt, kan dit er toe leiden dat de plant de 

productie van de andere, niet-transgene, 5-allel producten terugschroeft. Daardoor kunnen de ander 

incompatibiliteitsreacties komen te vervallen. Zo is aangetoond dat de S3 en S10 allelen, die weinig 

overeenkoms vertonen met S2, zo goed als uitgeschakeld konden worden. Het bleek ook mogelijk 

om het SI en het S2 allel uit te schakelen door het introduceren van "antisense" constructen. Deze 

antisense-constructen bevatten een deel van het coderende stuk DNA van een gen coderend voor 

een S-RNase, maar dan omgedraaid. Deze nonsens-informatie ontregelt op de één of andere manier 

de expressie van het correcte gen. Het SI -gen produceerde nog redelijk wat Sl-RNase, maar toch 

bleken sommige planten compatibel geworden te zijn voor SI pollen. Het 52-allel kon vrijwel 

volledig uitgeschakeld worden; er was in sommige planten zo goed als geen S2-RNase meer te 

detecteren. Ook deze planten waren nu hun zelf-incompatibiliteit voor 52-pollen kwijt. Hiermee 

werd aangetoond dat de S-RNases, die co-segregeerden met de incompatibiliteitsgroepen, 

rechtstreeks betrokken zijn bij de incompatibiliteitsreactie. 

In hoofdstuk 4 wordt een eerste link gelegd tussen zelf-incompatibiliteit en een interspecifieke 

kruisingsbarrière, de zogenaamde unilaterale incompatibiliteit. Solanum verrucosum (ver) is een 

zelfcompatibele wilde soort die nauw verwant is aan de cultuuraardappel. De diploïde variant van 

onze cultuuraardappel kan normaal gesproken deze soort wel bevruchten, maar omgekeerd niet. 

Enkele diploïde tbr klonen, die reeds in hoofdstuk 2 besproken waren, vormden een uitzondering 

op deze regel. Met deze klonen bleek het mogelijk fertiele hybriden te maken die in daaropvolgende 

kruisingsgeneraties konden worden geanalyseerd. Het bleek dat ver om twee redenen zelfcompatibel 

kon zijn: 1) er was geen S-RNase productie, dus er kon aan de stijlkant geen SI reactie veroorzaakt 

worden en 2) er was een gen dat aan de pollenkant in bepaalde gevallen een incompatible 

pollenkorrel toch door kon laten groeien. Het mechanisme achter dat laatste bleek een ingewikkeld 

in elkaar te zitten. Voorts bleek dat de pollenkant van de S-locus van S. ver nog steeds actief was, 

dit in tegenstelling tot het stijl-expressiedeel. Bovendien bleek de pollenkant een tweeledige functie 

te hebben: het droeg bij aan de SI reactie maar ook aan de UI reactie. Verder bleek ook nog dat de 

UI reactie tussen tbr en ver op tenminste twee en mogelijk drie verschillende reactiemechanismen 

berust. 

In hoofdstuk vijf werd er verder geanalyseerd aan zowel ver zelf als aan transgene tbr-ver 
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hybriden en transgene nakomelingen van antisense S2 planten uit hoofdstuk 3. Het uitschakelen van 

het enige actieve S-allel in deze planten met behulp van antisense veroorzaakte een ineenstorten van 

de unilaterale incompatibiliteitsreactie. Verder bleek dat ver zelf een zogenaamde "nonacceptor" 

achtergrond voor eigen pollen kon hebben, hetgeen door het ontbreken van een actief 5-allel echter 

geen enkele consequentie bleek te hebben. Al deze resultaten kunnen met al reeds bestaande 

modellen goed in overeenstemming worden gebracht, mits er enige flexibiliteit wordt betracht 

aangaande dominatieverhoudingen van genen en allelen. De zelf-incompatibiliteitslocus blijkt wel 

degelijk bij te kunnen dragen aan de unilaterale incompatibiliteitsreactie. 

Als een consequentie van deze bijdrage van de S-locus aan zowel de zelf-incompatibiliteit als aan 

de unilaterale incompatibiliteit moet het model voor de interactie tussen pollenbuis en stijl 

uitgebreid worden. Alleen een specifieke opname of activatie van het S-RNase in de pollenbuis 

blijkt niet meer te volstaan om e.e.a. met elkaar in overeenstemming te brengen, aangezien de 

unilaterale incompatibiliteitsreactie niet-allel specifiek is. Bij handhaving van de bestaande 

modellen moet er een tweede pad gepostuleerd worden, dat mogelijk een signaaltransductie inhoudt. 
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