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STELLINGEN 

1 De door Yoshikawa et al. gepresenteerde redenering dat externe 
diffusielimitatie is uit te sluiten als de specifieke produktiesnelheid constant 
blijft bij een oplopende celconcentratie in suspensiecultures is 
fundamenteel onjuist. 
Yoshikawa N., Ohta K., Mizuno S. and Ohkishi H. Production of cis-cis-Muconic Acid 
from Benzoic Acid. In : Tanaka A., Tosa T., Kobayashi T. (Eds), Industrial Application of 
immobilized biocatalysts, Marcel Dekker, New York, 1993,137. 

2 De door Tyagi en Ghose gesuggereerde procedure voor ontwerp van 
series heeft met optimalisatie niets van doen. 

Tyagi, R.D. and Ghose, T.K. Batch and multistage continuous ethanol fermentation of 
cellulose hydrolysate and optimum design of fermentor by graphical analysis. Biotechnol. 
Bioeng. 1980, 22,1907-1928. 

3 Dat met de slogan "Doodt 99% van de huishoudbacteriën" een 
schoonmaakmiddel succesvol kan worden verkocht geeft aan dat er voor 
de biotechnologie op het gebied van de publieksvoorlichting nog een lange 
weg te gaan is. 

4 Daar het ecologisch gevaar bij de toepassing van recombinant-DNA-
technologie omgekeerd evenredig is met de omvang van het organisme, 
terwijl de weerstand tegen recombinant-DNA-technologie in de 
samenleving evenredig is met de omvang van het organisme, is enige 
publieksvoorlichting gewenst. 

5 De definitie van biotechnologie zoals voorgesteld door Houwink is onjuist, 
omdat Bioprocestechnologie daarin een basisdiscipline wordt genoemd. 

Houwink E. Biotechnology- controlled use of biological information. Kluwer Academic 
Publishers, Dordrecht, the Netherlands, 1990. 

6 De titel "Beter dan God" voor een programma over recombinant-DNA-
technologie zegt meer over de makers van het programma dan over de 
technologie of over God. 



7 De huidige hoogte van de arbeidsbeloning leidt tot een merkwaardige 
driedeling in de westerse samenleving : werkenden, niet-werkenden, en 
overwerkten. 

8 Het koppelen van de zuiveringsheffing aan het waterverbruik bestraft 
milieuvriendelijke teeltwijzen in volkstuinen. 

Sikkema, J. Microbial transformation of tetralin, PhD thesis, Wageningen Agricultural 
University, 1993. 

9 In het algemeen is een fotomodel een te mooie weergave van de 
werkelijkheid. 

10 Nu binnen de Acol-conventie elementen uit de Klaver-conventie worden 
opgenomen wordt het tijd beide biedsystemen kritisch te evalueren. 

11 De gebruikelijke eenheid voor regenval, mm, zou beter kunnen worden 
veranderd in m3.m2.h1. 

12 De ambtelijke salaristabel dient verticaal omgekeerd te worden uitgevoerd 
om het taalgebruik "een periodiek omhoog" beter bij de werkelijkheid aan 
te laten sluiten. 

13 De aanvangstijden van feesten zijn omgekeerd evenredig met de leeftijd 
van de gastheer of gastvrouw. 

14 Om als consument een ecologisch verantwoorde keuze te kunnen maken 
tussen vliegen en reizen per trein, bus of auto is het noodzakelijk dat op 
kerosine dezelfde accijns wordt geheven als op dieselolie. 

15 Een modern, gemiddeld bezet, vliegtuig op kruissnelheid verbruikt per 
persoon per kilometer minder brandstof dan een auto met twee inzittenden. 

16 De positionering van de regelkranen bij gasfornuizen is een ergonomische 
blunder. 

17 Wegens de onnauwkeurigheid in de beginsituatie bij zwangerschap 
verdient het aanbeveling het begrip 'uitgerekende datum' te vervangen 
door 'uitgerekende week'. 

18 Bij een prijsvergelijking tussen papieren en katoenen luiers dient de 
aanschaf van een wasmachine als 'sunk cost' te worden beschouwd. 



19 Het vermelden van de mogelijkheid van kinderopvang dient bij alle 
personeelsadvertenties in gelijke mate te gebeuren. 

20 Dat gepureerde tauge geschikte babyvoeding zou zijn, is onjuist. 

Ten Hoopen, E. Groeiboek. GVO, Den Haag, 1993, 36. 

21 Bij een stijgende participatie van mannen in het huishoudelijk bedrijf is een 
stijging van de werkbladhoogte van aanrechten en commodes dringend 
gewenst. 

22 Binnen het emancipatiebeleid dient meer aandacht te worden gegeven aan 
de invoering van zwangerschapsverlof voor mannen. 

23 De regels om in het Engels woorden door een koppelteken te verbinden 
zijn zo verwarrend, dat het de hoogste tijd wordt voor een streepjes-code. 

Weiner, E.S.C, and Delahunty, A. The oxford guide to english usage. 2nd edition, BCA, 
London, United Kingdom, 1994, 27. 

24 De suggestie die wordt gewekt dat door een groot aantal auteurs bij een 
publikatie de bijdrage per auteur steeds minder wordt, berust, zeker voor 
de eerste auteur, op gezichtsbedrog. 

25 De invoering van het dubbelblind-principe bij de beoordeling van ter 
publicatie aangeboden wetenschappelijke artikelen zal de objectiviteit in 
het wetenschappelijk bedrijf doen toenemen. 

26 In tegenstelling tot wat de positie doet vermoeden, wordt na de eerste 
auteur van een publicatie de meeste aandacht geschonken aan de laatste 
auteur. 

27 De benamingen Northern, Western and Southern blotting doen ernstige 
twijfels rijzen omtrent het geografisch inzicht van moleculair-biologen. 

28 Het aantal in omloop zijnde verschillende BIOSIM pakketten rechtvaardigt 
ernstige twijfels aan de creatieve vermogens van software producerende 
biotechnologen. 

29 Hoe geavanceerder de software, hoe groter de kans op fouten. Gelukkig 
dat tevens de mogelijkheden zo groot worden dat de kans om die fouten te 
vinden steeds kleiner wordt. 



30 Waren het maar tekstverwerkers ! 

31 De tarieven van de inkomstenbelasting zijn er om de politieke wens tot 
nivellering uit te voeren. Elke andere van overheidswege voorgeschreven 
inkomensafhankelijke bijdragentabel dient daarom te worden afgeschaft. 

32 En toch lijkt het verstandig geweest de minister-president van een land dat 
officieel per 15-7-94 461000 werklozen en tegelijkertijd 739000 
werkloosheidsuitkeringen telt, geen voorzitter van de Europese Unie te 
maken. 

De Volkskrant, 15-7-1994, 1. 

33 Om techniek in bredere lagen van toekomstige studenten als gemeengoed 
geaccepteerd te krijgen verdient het aanbeveling om in navolging van 
Duitsland basisfiguren en vergelijkingen op de bankbiljetten af te drukken. 

Zehn Deutsche Mark, Deutsche Bundesbank, Frankfurt am Main, 1989. 

34 Aangezien bij onderwijsevaluaties studenten wellicht niet in staat zijn tot 
reflectie, en docenten niet meer onbevangen staan ten opzichte van de 
stof, zit er niets anders op dan beide meningen serieus te nemen. 

35 Vanuit proceskundig oogpunt verdient het aanbeveling op drukke 
baanvakken de geldende maximumsnelheid te veranderen in een 
minimumsnelheid met dezelfde waarde. 

36 Het advies van de Veluwse Nutsbedrijven om bij afwezigheid de 
verwarming wat lager te zetten staat haaks op het geafficheerde 
energiebesparingsimago: uitzetten is altijd voordeliger. 

37 Het was correcter geweest als in het voorbeeld waarmee Bird, Stewart en 
Lightfoot partiële en volledige afgeleiden toelichten gebruik was gemaakt 
van een duikboot in plaats van een motorboot. 

Bird R.B., Stewart W.E. and Lightfoot E.N. Transport phenomena. Wiley, London, 
United Kingdom, 1960, 73. 

Stellingen behorende bij het proefschrift 'Cascades of bioreactors'. 

CD. de Gooijer 
Wageningen, 26 juni 1995. 



ter nagedachtenis aan mijn vader. 



VOORWOORD 

Het is verbazend hoe lang het antwoord "volgend jaar" gebruikt kan worden op 

de veelvuldig gestelde vraag wanneer ik nou eens ging promoveren. Nu is het 

dan zover. 

Tijdens de afgelopen jaren ben ik bij een aantal projecten betrokken 

geweest waar ik vanaf de zijlijn mocht toekijken en meedenken. Dit heeft in een 

aantal gevallen geleid tot het maken van een model. Deze modellen hebben 

steeds als doel gehad het verkrijgen van inzicht in de fenomenen die zich 

voordeden bij de verschillende processen. Buitengewoon bevredigend was het 

als een model iets voorspelde wat nog niet was waargenomen of opgevallen, en 

dat in werkelijkheid ook zo bleek te zijn. 

Modellen hebben geen enkele waarde zonder experimentele gegevens. 

Anderen hebben mij ruimhartig gegevens verstrekt, zodat die gebruikt konden 

worden bij validatie en verdere verfijning van de modellen. Met name Rene 

Wijffels, Wilfried Bakker, en Frank van Lier van de sectie proceskunde, en 

Marcel Kool en Magda Usmany van de vakgroep virologie hebben mij die, vaak 

zeer moeizaam verkregen, gegevens verstrekt. Bij deze wil ik hen daarvoor 

bedanken, wees overtuigd van mijn diepe respect voor jullie werk. 



In die modellen bleek een duidelijke rode draad aanwezig : alle processen 

speelden zich af, of konden zich afspelen, in series van bioreactoren. Het is aan 

Hans Tramper te danken geweest dat ik de ruimte kreeg om dit verder uit te 

werken in dit proefschrift. Hans, kort en goed : bedankt. 

Ruimte alleen bleek echter niet toereikend. Mijn schromelijk 

tekortschietende kennis van de virologie in zijn algemeenheid en van 

baculovirussen in het bijzonder werd op altijd boeiende wijze aangevuld door 

Just Vlak van de vakgroep virologie. Tevens bleek, op het moment dat het 

laadste loodje spreekwoordelijk zwaar begon te wegen, de steeds mild 

nuancerende invloed van Rik Beeftink van doorslaggevend gewicht, en zonder 

zijn behendigheid met Maple had het nog een jaar langer geduurd. Just en 

Rik : dank ! 

De basis voor hoofdstuk 7 is al in een zeer vroeg stadium gelegd door 

Marcel Zwietering. Tevens is zijn kennis van notaties en schrijfwijzen beroemd, 

waarvan ook ik dankbaar gebruik heb gemaakt. 

Wetenschap bedrijven is het stellen van vragen. Van de talloze discussies 

met Hans, Klaas, Just, Rene, Rik, Marcel, Frank, Fred, Jan, Marcel, Arie, Vitor 

en Imke heb ik niet alleen veel geleerd, maar ook erg genoten. 

Zonder de inbreng van studenten was dit allemaal niks geworden. Harry 

Hens, Sjon Kortekaas, Gertjan Smolders, Leonard Mallee, Meinard Eekhof, 

Evelien Beuling, Serge Lochtmans, Hans van 't Noordende, Aldo Schepers, 

Mirjam den Boer, Hans van den Homberg, Wiebe Kroon, Albert Hamming, Joost 

Knitel, en uiteraard Rick Koken, bedankt voor jullie bijdragen. 

Wilfried, de af en toe 'harde knallers' die we over en weer sloegen hebben 

mijn conditie op peil gehouden, tussen het zitten achter een buro en zitten in de 

auto door. De draad is met Marco weer opgepakt. 



Hendrik, je kennis van computers en het beschikbaar stellen van botte 

rekenkracht spaarden mij weken getob. Bedankt ! 

Henk, grafisch ontwerpen is toch ietsje meer dan wat met tekstverwerkers 

stoeien. Zonder jou had dit proefschrift er anders uitgezien ! 

Fred, je hebt de afgelopen jaren heel wat te verduren gehad als 

medebewoner van kamer 610. Maar zonder ons Algemeen Beschaafd Labs en 

Inheems Aziatisch als uitlaatklep zou het niet alleen een stuk minder gezellig zijn 

geweest ! Dat we dat nog lang mogen volhouden. 

Hedy, Joyce en Maria : jullie administratieve ondersteuning was meer dan 

welkom. 

Medewerkers van de sectie Proceskunde : wat een club ! 

Frank, Nettie, Marjet en Ed, afgezien van de verkregen broodnodige 

gezonde geest na onze avonden pas-pas-pas-doublet, de roddels over het 

Wageningse biotechnologie-circuit waren me een genoegen. 

Elsje, het leven dat wij leiden bestaat niet uit tijd verdelen maar uit tijd 

vermenigvuldigen. Eikaars werk en kinderen serieus nemen is een moeilijk en 

heerlijk gebeuren tegelijkertijd. Ik zou het niet anders willen. 
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CHAPTER 1 

BIOREACTORS IN SERIES: AN OVERVIEW OF 
DESIGN PROCEDURES AND PRACTICAL 

APPLICATIONS 

"If one fermenter gives good results, 
two fermenters will give better results and three fermenters better still. 

This is sometimes true, but often false." 

Herbert, D., 1964* 

INTRODUCTION 

Over the last decades, many papers described the design or application of 

series of bioreactors. Usually, these bioreactors in series are of the continuous 

stirred tank reactor (CSTR) type. This most widely used bioreactor is easy to 



Chapter 1 

operate, of simple construction, and replacement of biocatalysts and 

maintenance is not troublesome (Hill, 1977). 

The pertinent processes described in literature can be divided into two 

main groups: processes with a constant overall reaction stoichiometry that can 

be described by a single kinetic equation, and processes where the 

stoichiometry is variable and the descriptive kinetic equation changes. The first 

group consists of those bioprocesses that may well be performed in one 

bioreactor, but where segregation into two or more bioreactors may lead to a 

higher product concentration, a larger degree of conversion, or a higher 

volumetric productivity (also known as space-time yield), or a combination of 

these factors. The second group is by nature heterogeneous in time or space, 

and is characterized by two or more independent reactions each governed by its 

own kinetics, as in biogas production or nitrification/denitrification. 

For processes with a fixed overall reaction stoichiometry, this paper first will 

present a general theoretical outline that enables one to decide if a series of 

bioreactors is favourable. After that, the question of how such a series should be 

designed will be addressed. Subsequently, the general theory will be applied to 

catalytic reactions (enzymatic conversions), and also to autocatalytic reactions 

(cells in suspension). This will be done for different types of kinetics. After each 

theoretical treatise, a number of applications of series of bioreactors will be 

presented. 

For processes with a variable stoichiometry some examples will be 

presented, since up to now no design rules exist for series with these types of 

processes. The paper concludes with a short description of bioreactors suitable 

for bioprocesses in series, both with constant and variable stoichiometry. 

The descriptions of a single plug-flow type bioreactor with the 

tanks-in-series model (Powell & Lowe, 1964, Kleinstreuer 1987) are omitted, as 

10 
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well as the numerous papers devoted to this subject in the field of chemical 

engineering. This paper will also solely focus on single-feed series of 

bioreactors. 

CONSTANT STOICHIOMETRY PROCESSES 

Processes with a constant overall reaction stoichiometry may show a higher 

product concentration, a higher degree of conversion, a higher volumetric 

productivity, or a combination of those if executed in a series of CSTR's when 

compared to a single bioreactor. 

Theory 

As a process with a constant stoichiometry, Bischoff (1966), citing Herbert 

(1964A), describes an optimal series for biomass production, consisting of a 

CSTR followed by a plug-flow reactor. Such a system may be conceived of as 

one large CSTR, followed by an infinite number of infinitesimally small CSTR's 

(Figure 1A; for the calculations underlying figure 1 see appendix). This 

combination of a CSTR followed by a PFR has the lowest total residence time to 

achieve a certain degree of conversion (Figure 1A-G). Since for biomass 

production in most cases oxygen is required, and an aerated PFR does not 

exist, an alternative to this combination is a series of CSTR's with equal volume 

(Figures 1B and 1C), or a series of unequal-volume CSTR's (Figures 1D and 

1E). Implicitly, figure 1, which holds with no biomass in the influent, imposes that 

the desired degree of conversion of the process determines whether a series of 

bioreactors is favourable or not : if the substrate concentration at the exit of the 

11 
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series is to the left-hand side of point A in figure 1A (a high degree of 

conversion) then a series is favourable, if it would be to the right-hand side of 

point A (a low degree of conversion), a single CSTR would be the best solution. 

It should be noted, as also stated by Moser (1985), citing Topiwala (1974), that 

the PFR/CSTR volume ratio for such an optimal configuration is strongly 

dependent on the ratio K = Ks I S0, with Ks the Monod constant (mol.rrr3) and S0 

the substrate concentration at the inlet of the series (mol.nr3) (Figure 2). 

For Monod kinetics, and a quite common influent concentration K = 0.01 

(Van 't Riet & Tramper 1991), the minimum in figure 1C is attained at 

a = S/S„ = 0.1, indicating that up to conversions of 90% a single CSTR (without 

any PFR) would perform optimally. 

As far as the design of a reactor series is concerned, a distinction has to be 

made between the design of a series of equal volume CSTR's, and a series of 

non-equal volume CSTR's, the latter also referred to as optimal design. 

Figure 1. For a continuous-flow system with a autocatalytic processes (microbial 
reaction, Monod kinetics, single feed and no biomass in the influent), at a fixed 
stoichiometry, optimal design is inferred from a plot of the reciprocal dimensionless rate 
(1 / p = nm„S„ / r.) versus the dimensionless concentration (a = S / S„). Due to the 
existence of a minimum in the curve, minimalization of overall holding time may require a 
CSTR and a PFR in series. Shaded areas: holding times. A 95% degree of conversion is 
aimed for, and K = K, / S„ = 1. The number listed at the top of the graph is the total 
dimensionless holding time of each configuration. 
A: one CSTR followed by a Plug-flow reactor. Point A is the minimum of the curve, 

corresponding to acrlt. 
B: series of 3 equal-sized CSTR's designed by the procedure described by Fiechter 

(1981); the first vessel operates at the maximum rate. Note that more than 95% is 
converted. 

C: series of three equal-sized CSTR's where the first vessel operates at less than the 
maximum rate. 

D: series of three unequal-sized CSTR's, optimal design according to Hill & Robinson 
(1989). 

E: series of three unequal-sized CSTR's, where the first vessel operates at the maximum 
rate and the subsequent vessels have an equal volume. 

F: one single CSTR. 
G: one single PFR. 

12 
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Reciprocal rate p ( - ) 

20 -

10 -

Substrate concentration a ( - ) 
.A 

Reciprocal rate p ( - ) 
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10 -

K = 1 

' 1 

Y = 0 
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Substrate concentration a ( - ) 

Figure 2. Dimensionless rate (1 / p = nm„S0 / r,) versus the dimensionless concentration 
(a = S /S0). Upper graph: parameter K = Ks IS0, with no biomass in the influent (x0 = 0)- At 
low K, the minimum in the curves (acrt() decreases to a low value, indicating that a single 
CSTR performs best for most exit concentrations. Lower graph: parameter x„= X0I Y„S0, 
with K = 1. At high biomass concentrations at the inlet of the series, the minimum of the 
curves (acrft) shifts to 1, indicating that series of CSTR's perform best for all exit 
concentrations. 

14 
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Design of a finite equal-volume series 

The theory of a series of equal-sized CSTR's was first treated by Herbert 

(1964B), and later cited by Moser (1988). Two performance criteria were 

defined: biomass productivity (kg.nr3.s"1), and effective yield, defined as the ratio 

of biomass concentration at the outlet and the substrate concentration at the 

inlet of a bioreactor system. For the first criterion he showed that for a 

single-stage system this productivity equals D.Xwith D the dilution rate (s1) and 

X the biomass concentration (kg.nr3), whereas for a two-stage system this is 

-*2-Dare. with Dsve= DJ2 (or- 'n general terms, Dav= Fl (NV), with Vthe volume 

(m3) of each vessel in the series of N reactors, and F the flow rate (m3.s'1)). For 

single-feed series, three conclusions could be drawn, as illustrated in figure 3: 

i) the maximum possible overall productivity is higher in a single-stage 

system, 

ii) at lower dilution rates the overall productivity of a two-stage system is 

slightly larger than that of a single-stage system, and, derived from this, 

iii) at lower dilution rates, the effective yield (or the utilization of substrate) is 

slightly higher in a two-stage system. 

Herbert (1964B) also stated that more than two bioreactors in series have no 

practical advantage as far as the volumetric productivity is concerned. However, 

later stages might improve product quality, since the endogenous metabolism 

will continue in a third stage, leading to changes in the chemical and 

physiological state of the cells. Note that this in fact implies a change in 

stoichiometry. 

15 
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Productivity n ( - ) 

0.5-

first 

/ series x ^ / u 

second 

1 ' 

single 

0.0 0.5 1.0 

Dilution rate 8 ( - ) 

Figure 3. Dimensionless production rate per unit of reactor volume (n = D.X / ^„„ Yxs S0) 
in an equal-volume two-stage series versus dimensionless dilution rate (8 = DI \xmu!) as 
compared to a single CSTR. Each reactor on itself (the first and second reactor in the 
series, and the single CSTR) shows the same maximum in productivity. At low overall 
dilution rates, the series shows a slightly higher overall productivity; maximum 
productivity is attained in a single reactor at high dilution rates. Monod kinetics, with 
K = K, / s 0 = 0.05. 

For multiple-feed series of bioreactors, Fend et al. (1969, 1972) showed 

that under certain conditions the productivity can be higher than for a single 

CSTR. Herbert (1964B) gives mathematical descriptions of a multiple-feed 

reactor system. For an extensive theoretical treatise of series with multiple-feed 

operation we refer to Fend (1966). 

Fiechter (1981), citing Fend (1966) and Deindoerfer & Humphrey (1959), 

describes a four-step graphical procedure for the design of a series of 

chemostats of equal volume for biomass production. The first vessel should, in 

16 
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their view, operate at the maximal volumetric productivity, and subsequently the 

number of (equal-sized) vessels is determined in order to achieve a certain 

degree of conversion or biomass concentration (Figure 4): 

Rate dx I c%max.t) ( - ) 

0.2 

0.5 1.0 
Biomass concentration % (-) 

Figure 4. For a cascade of equal-volume CSTRs and a microbial reaction with Monod 
kinetics, the number of vessels in the series may be determined from a dimensionless rate 
vs. dimensionless concentration plot according to Fiechter (1981). Slopes represent 
dilution rates; the first reactor operates at the maximum rate. See text for details. 

Obtain dx/dnmaxf as a function of %, the dimensionless biomass 

concentration X/ YXSS0 with Yxs the yield of biomass on substrate (kg.mol"1), 

from a batch experiment or from mass balances over substrate and 

biomass if the parameters in the kinetic equation are known. 

Plot dx/d(imaxf , with [imsx the maximum specific growth rate (s1) and t the 

time (s) versus x-

17 
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jii) Draw a line from x=0 to x=Xi. the dimensionless concentration of biomass 

in the first stage, which is found at the maximum of the curve. The slope of 

this line is equal to FA/,. 

iv) Keep the slope of this line constant, start at x=Xi ar>d determine x2.
 a r |d s o 

forth. 

Similarly, if product formation is the aim of the process, dP/df versus the product 

concentration P (mol.m3) can be plotted, as applied by Tyagi & Ghose (1980) for 

the design of an ethanol fermentation with cellulose hydrolysate as substrate. 

For enzymatic conversions the latter procedure is also adequate. 

As shown in figures 1B and 1C, this procedure may lead to a higher degree 

of conversion than needed. The alternative design of series of equal-sized 

CSTR's can be done iteratively, starting with a desired rate of conversion 

calculating back along the series, or by means of a zero-finding routine, solving 

the set of equations for each CSTR in the series, in a similar way as will be 

discussed below. 

Optimal Design of a finite series of non-equal-volume-CSTR's 

The theory on cascade design may be quite perplexing, due to the plethora of 

performance criteria and kinetic equations (and combinations thereof). Although 

quite relevant, economic criteria will be ignored here in favour of an engineering 

measure : Luyben & Tramper (1982) defined optimal design of a finite series of 

CSTR's as that configuration that has the minimal total holding time at a given 

degree of conversion in a series consisting of N reactors. This means that the 

volumes for all reactors along the series are varied, with a subsequent change in 

the intermediate substrate concentrations, until a minimal total volume is 
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reached. Mathematically this leads to: 

r w 
d Z %j 

~àr=0 /=i,2,...(/v-i) m 

where a, is the dimensionless substrate concentration in the Z-th vessel, S / S0, 

so a0=1, N is the pre-defined number of vessels, and %s is the dimensionless 

residence time in the y'-th vessel, T is defined as I/, v ^ e / FS0 for enzymes with 

vmax the maximum specific velocity per unit amount of enzyme (mol.kg~1.s1) and 

e the enzyme concentration (kg.rrr3), and as \4imax/F for autocatalytic reactions. 

Although Luyben & Tramper (1982) defined this optimal design for a dissolved 

enzyme following Michaelis-Menten kinetics, equation [1] is independent of the 

kinetics involved, and has been used by many authors (Malcata 1988, 

Hill & Robinson 1989, De Gooijer et al. 1989, Malcata & Cameron 1992, 

Lopes & Malcata 1993, Paiva & Malcata 1993). 

For autocatalytic systems (suspended micro-organisms), Schügerl (1987) 

and Hill & Robinson (1989) introduced the concept of a dimensionless critical 

effluent substrate concentration acrit. At dimensionless effluent concentrations up 

to or equal to acrit, the optimal "series" is the single tank. This critical 

concentration can be found by assuming that the dimensionless effluent 

concentrations of the first and the second vessel in the optimal series are the 

same, or a, = a2 (= acrit ), meaning that the volume of the second vessel is zero. 

If it is found that the desired dimensionless effluent concentration ocN is smaller 

than acrH, an optimal design is feasible. In figure 1 and 2, acrit is the minimum of 

the curve. 

Below, the acrit concept and the optimal design of a series will be described 

for both autocatalytic and catalytic processes. To further classify the latter group, 
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a division is made between non-growing and growing biocatalysts. Within each 

division, a subclassification is made between freely suspended and immobilized 

biocatalysts. 

AUTOCATALYTIC SYSTEMS 

In this section papers dealing with growing cells (Figures 1-4), freely suspended 

or immobilized, will be reviewed. 

Theory 

The design of a reactor cascade for autocatalytic reactions depends on the 

optimization criterion. The minimum overall residence time at an arbitrary but 

fixed exit substrate concentration will be used as a criterion. To investigate if a 

series is worth considering, the critical effluent concentration at which the 

reaction order changes from positive to negative (point A in figure 1A) and at 

which the optimal cascade in fact is a single tank (acrit), may be obtained from a 

procedure given by Hill & Robinson (1989) and by Schiigerl (1987), as 

discussed below. 

A generalized form of the growth equation is used: 

[i pa + qa2 

Umax f+ga + ha2 [2] 

Here p, q, f, g, and h are dimensionless parameter groups depending on the 

particular kinetic equation (Tablel). Combining the specific growth rate n (s1) 
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Table 1. Values of the parameters f, g, h, p, and q in the general rate equation for 
autocatalytic reactions (Equation 2) and the critical substrate concentration acrtt at which 
an optimally designed series of bioreactors consists of a single vessel. For lethal 
product inhibition kinetics the implicit equation for acrtt has to be used, for all other 
kinetics a more convenient expression can be found, as shown. 

V _ 
nrnax ~ 

P 

q 

f 

9 

h 

a « 
(im­
plicit) 

^crit 

MONOD 

5 
«8+S 

SUBSTRATE 
INHIBITION 

5 

s2 

NON-LETHAL PRODUCT 
INHIBITION 

s 1 
Ks+5 1 + _P_ 

Kp 

LETHAL 
PRODUCT 
INHIBITION 

- ^ - f 1 -2-1 
Ks+S\ Kp) 

pa+ga2 

f+ga+h2 

1 

0 

Ks 
s0 

1 

0 

(1 - dent) 1 H 

Jfi + W+toï-f 

1 

0 

Ks 
«0 

1 

50 

(l+xo-«crit)(9+2"acrit) 

J'2+fi+x0)(i+'K1no)) - ' 

1+"(1+X0) 

1 

0 

(. , P0 yPS0"\Ks 
V' + Kp + Kp J s0 

1^^0-0 
yPs0 
Kp 

(1+Xo-«crit)(P t2 l 'acrit)") 0 

" " e n t r e n t > 

J'2+A:I+XO)(9+1(1+XO)) - ' 

S+^l+xo) 

> P0 yPs0 
Kp Kp 

y p s 0 

Kp 

Ks 
So 

1 

0 

with the yield factor Yxs (kg.mol1) and 

substrate consumption rate rs (mol.nrr3 

the biomass concentration X (kg.m'3), the 

s"1) is obtained : 

iL 
Yxs 

rs = ^X 
[3] 

A general mass balance over a single CSTR in a series yields : 

Vi (g;- i - a,-) 
"i — ~p — ; 

F rs,,/so 
[4] 
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where 9, is the residence time in the /-th reactor (s). Substituting equation [2] and 

[3] in equation [4] results in an expression for the dimensionless residence time 

for each vessel in the series in terms of substrate concentrations and kinetic 

parameters: 

V/Hmax*/ ( a n - a / ) ( f+ go-1 + haf) 
T ' ~ c p v ~ 2 I51 

r&O'xs pOLj + qOLi 

which, with the result of a mass balance over all vessels in the series: 

X, = Y«(So-S,)+Xo [6] 

can be written as : 

V/Hmax (a/- i - a / ) ( f+ ff«, + haf) 
T ' = —c— = T~ U] 

I- (1+xo-a,-)(pa/ + qaf) 

For a two-reactor cascade (A/=2 in equation [1]), operated at a fixed, arbitrary 

effluent concentration a2, optimization requires: 

da, - ° M 

and from this equation, an optimal a, value is obtained as a function of the 

effluent concentration chosen (<x2). Implicitly, the volumes of both reactors are 

defined by this result. 

In order to answer the question as to whether or not an optimally designed 

series is worthwhile, in other words if the desired effluent concentration is to the 

left of point A in figure 1A, the minimum of this curve has to be found. 
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Substituting equation [7] in equation [8], and applying a, = a2 = a^, for this 

general case of 2 reactors in series, results in the following implicit equation: 

(1-a c n() | (1 + xo - acritXg+2haCnt) (1 + %o - aCrit)(P + 2qaCrit) 

f+ gacrit + halrit paCnt + qo}crit 

= 0 [9] 

Table 1 shows the expression for a^, for different types of kinetics. If 

indeed two reactors in series are superior to a single vessel, that is a2 <acrit, then 

this procedure may be used to show the favourablity of multi-reactor cascades 

(Hill & Robinson 1989). This means that : 

i) if two reactors in series are superior to a single vessel then any series of 

reactors will be superior, and 

ii) the optimization of the design requires an infinite number of vessels that 

areincreasingly smaller along the series, or, the optimal reactor 

configuration is a single CSTR followed by a PFR. 

It can be derived from table 1 that a cascade is particularly suited for 

product-inhibited autocatalytic reactions: increasing the severity of the inhibition 

(i.e. decreasing Kp, the inhibition constant (mol.m3)), results in an increase in 

acm, thus widening the feasibility range for a cascade.This may also be clarified 

by taking the limit for Kp to zero of a^,. To find this expression, the realtion for acrit 

from the bottom row in table 1 is used, and appropriate expressions for f,g,h,p, 

and q are substituted. Thereby, for the sake of simplicity, it is assumed that both 

the biomass and product concentration are zero at the inlet of the first reactor 

(Xo=0 and Po=0). For non-lethal product inhibition it can then be found that: 

,. (Kp + YpSo)Ks + JKSKP(KP + YPS0)(KS + S0) 
hm a r f = lim g , v y — T T T = 1 [10] 

Kp->0 Kp->0 ûo( Ypt\s - Kp) 
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Hence at very strong inhibition (Kp approaching zero) a cascade becomes 

superior at all effluent concentrations (acrit approaching one). 

In case of substrate inhibition, the reverse is true: low K, values entail low 

acrit values, or, the more severe the substrate inhibition is, the less favourable 

series of reactors will become. 

Now having the answer to the question if a series is worthwhile, that is after 

the determination of acrit, the optimal design of the series according to equation 

1 (how) can generally be done as suggested by Hill & Robinson (1989). 

For N reactors in series, A/-1 equations with A/-1 unknown substrate 

concentrations can be derived by substituting equation [7] in equation [1] and 

taking the differentiation: 

B(g+2hai)-A BA BA(p + 2qai) f+gaM +ha2
M 

" + 7 ^ F ; 7^2 + 77" ~ . _..2 . - u [ " l CD C2D CD2 0+%o-aM)(paM+qali) 

with 

A = f+gai + haf;B = ai-i -cc,;C=1 + xo - a,-; D - pa,< + qaf [12] 

and/=1../V-1. 

This set of equations can be solved by a suitable algorithm with a 

zero-finding routine on a PC. Alternatively, for the first two reactors in series, a 

more convenient design equation can be found for all kinetics with q=0 (all 

kinetics except lethal product inhibition), and no biomass in the influent of the 

series (x0=0). Substition of equation [7] in equation [8] will then lead to an 

expression for a, in terms of a2 : 

2 _ fa2(1 - a2 ) 
a2(h+g) + f 

a i - TTThTÖTTf I13l 
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which is the same as found by Hill & Robinson (1989). Hence, for a two-reactor 

cascade, equation [13] is sufficient, and if the series consist of more than two 

reactors, equation [13] combined with equations [11] and [12] has to be used. 

After determination of the intermediate substrate concentrations, the 

required residence times are easily obtained through equation [7]. 

Hill & Robinson (1989) showed for Monod kinetics, Aiba kinetics (product 

inhibition) and Haldane kinetics (substrate inhibition) that if indeed a series 

design is favourable (i.e. if aN<acrit), three optimally designed non-equal volume 

CSTR's will provide an overall residence time that is close to the possible 

minimum, i.e. the CSTR-PFR sequence suggested by Bischoff (1966). Also, it 

was shown that if three equal-sized CSTR's are used, the decrease in overall 

residence time is less than with an optimally designed series of 

non-equal-volume-CSTR's. If a series of equal-sized CSTR's is used, one should 

consider washout problems in the first vessel. It is also pointed out that although 

for substrate inhibition kinetics one would intuitively choose a single CSTR, 

depending on a, series of CSTR's might still be advantageous (Table 1). 

A complication is the fact that with for example Haldane kinetics, the first 

reactor in the series operating at a substrate concentration beyond that 

concentration where the rate is maximal becomes inherently unstable (operating 

at a point to the right from point A in figure 5 : a small increase in the substrate 

concentration will result in washout, whereas a small decrease will result in an 

operating point to the left of point A at the same rate). 

In the theory above, the assumption was made that all reactors in the 

series can be described by the same kinetic parameters. Lo et al. (1983) discuss 

the situation where the parameters of the Monod equation are non-identical in 

the different vessels of the series. They showed, for that case, with the use of 

two equal-sized bioreactors in series, that design according to the rules 
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Figure 5. Dimensionless rate (r, / vm„) versus dimensionless substrate concentration 
(a = S / S0) for substrate inhibition kinetics. The dimensionless substrate concentration at 
which the maximum rate is attained (point A) equals aertt; it decreases with increasing 
severity of the inhibition (i.e. lower Ki values). 

discussed above is no longer possible. 

Cells in suspension 

In this section some examples of freely suspended cells will be discussed, 

whereas quantitative data on ethanol production are given in table 2, and a 

review of other processes described in literature is given in table 3. 

For the production of lactic acid from whey permeate Aeschlimann et al. 

(1990) conclude that the dilution rate of the series affects all important 

fermentation parameters. In a single vessel, a maximum volumetric productivity 
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of 2.3 10"3 kg.m3.s"1 could be reached at a dilution rate of 1.1 10"4 s"1 with a 

degree of conversion of 50%. The addition of a second (non optimally designed) 

bioreactor resulted in an increase of the degree of conversion, but also in a 

decrease of the volumetric productivity, due to the additional reactor volume, 

which is consistent with theory (Figure 3). From their data of the first reactor 

only, plotted as rs
1 versus S (compare figure 1D), they simply searched for the 

minimum area under the curve for two reactors in series, which is a correct 

approach. Further assuming that the data of the first reactor should also be valid 

for the second reactor, they conclude that for their case the total reactor volume 

may be reduced by almost 50% as compared to one fermentor (overall 

residence times of 3.2 104 s for the series as compared to 5.9 104 s for the single 

vessel, for a degree of conversion of 98%). They further report values for n ,̂,,, 

S0, and SN of 1.9 10"4 (s1), 49.2, and 0.9 (kg.nr3), respectively. In order to be 

able to illustrate the design procedure discussed above, Monod kinetics were 

assumed, and a value for Ks was obtained from a fit to their ry1 versus S plot for 

the first vessel in the series : 11.6 (kg.nr3). Using table 1 (Monod kinetics) a 

value of aorit of 0.3 can be calculated, indicating that indeed a series is 

favourable. Subsequently, a, is found through equation [13] to be 0.13 

(a2 = 0.018, fixed by the desired degree of conversion). Equation [7], for the 

case of Monod kinetics, reduces to v,
2nmax/F=(a1-a2)(Ks/S0+a2)/((1-a2)a2) and 

ViiimaJF^KJSo+aJlat for the second and first vessel of the series, respectively. 

This then enables the calculation of the residence times : 1.5 104 and 0.8 10" s 

for the first and second vessel in the series, respectively. This results in an 

overall residence time of 2.3 104 s. If a, = 0.018 is substituted in the latter 

derivation of equation [7], the residence time in a single vessel can be calculated 

to be 7.1 10" s. The differences in residence times found here compared to 

those found by Aeschlimann et al. may be explained by the organism not 
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Table 2: Quantitative data on ethanol fermentation by several species of Saccharomyces 
and Zymomonas. N is the number of vessels in the series, x, is the attained degree of 
conversion (%), P is the product concentration (kg.nr3), and Qp is the reported volumetric 
productivity (105 kg.m'.s1). a: S is Single feed at the entrance of the series, M is multiple 
feed in all reactors, b: 5 10"3 is with cell recycle, c: if a batch reactor requires 100 capital 
investment and 100 running costs, they calculate 62 and 89 for their series, respectively, 
d: two fluidized beds with recirculation followed by a plug-flow reactor, e: multistage 
fluidized bed with sieve plates, f : both vessels with settler and recycle. 
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M 
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S 
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S 

S 

S 

M 

S 

S 

SUBSTRATE 

glucose 

sugar beet 
molasses 

glucose 

glucose 

glucose 

glucose 

glucose 

cane molasses 

cane molasses 

cane molasses 

hydrolized 
waste starch 

hydrolized 
waste starch 

glucose 

glucose 

cane molasses 

cane molasses 

glucose 

glucose 

MICRO­
ORGANISM 

Z.mobilis 

Z.mobilis 

S.sake, S.c UG5, 
S. bayanus 

S.cerevisiae 

S.bayanus 

S.cerevisiae UG5 

S.cerevisiae UG5 

S.formosensis 
M111 

S.uvarum 

S.uvarum 

Z.mobilis 

Z.mobilis 

Z.mobilis 
DSM424 

Z.mobilis 

S.cerevisiae HA2 

S.cerevisiae IR-2 

S.carlsbergensis 

S.carlsbergensis 
STV89 

REFERENCE 

Charley étal. (ig83) 

Park&Baratti(19g2) 

Bovee&Sevely (1982) 

Leeefa/. (ig83) 

Douradoefa/. (1987) 

Chattaway et al. (1988) 

Moreno & Goma (1979) 

Fukushima & Hanai 
(1982) 

Chen & Mou (1992) 

Chen (1990) 

Weuster er a/. (1990) 

Weusterefa/. (1990) 

Klein & Kressdorf 
(1983) 

Klein & Kressdorf 
(1986) 

Kidaefa/. (1990) 

Kuriyama ef al. (19g3) 

Tzengefa/. (1991) 

Ryuefa/. (1982) 
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Table 3: Examples of autocatalytic processes described in literature. N is the number of 
reactors in series, a: a theoretical study, b: 2 CSTR's followed by one PFR, galactose is 
added to the PFR. 

PRODUCT 

Lactic acid 

Lactic acid 

Lactic acid 

Monoclonal 
Antibodies 

Monoclonal 
Antibodies 

Streptomycin 

Protease 

3-ketosteroid-A1-
dehydrogenase 

Biomass 

Biomass 

Biomass 

Biomass 

Biomass 

Biomass 

Biomass 

Biomass 

Biomass 

Gramicidin Sa) 

a-galactosidaseb> 

Acetone, Butanol 

Wine 

Mead 

SUBSTR. 

Lactose 

Lactose 

Whey 
permeate 

-

-

Glucose 

-
Glucose 

Ethanol 

Ethanol 

Molasses 

D-Sorbitol 

-
Sugar 

Glucose 

Glucose or 
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Glucose 

-
Glucose, 
galactose 

Glucose 
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grape must 

Honey 
mash 

BIOCATALYST 

Streptococcus cremoris 2487 

Lactobacillus helveticus 

Hybridoma cells 

Hybrydoma cells 

Streptomyces griseus 

Bacillus pumilus 

Arthrobacter simplex 

Candida utilis \ AM 4215 

Candida utilis 1AM 4215 

Torula utilis 

Acetobacter suboxydans 

Streptococci 

Saccharomyces cerevisiae 

Aspergillus niger 

Hansenula polymorpha 
CBS4732 

Escherichia coli ATCC 11105 

-
Monascus 

Clostridium acetobutylicum 

Saccharomyces cerevisiae 
2HY-1 

Saccharomyces cerevisiae, 
Hansenula anomala 

N 

3 

7 

2 

2 

2 

3 

2 

2 

3 

3 

2 

2 

2 

8 

2 

3, 
10 

3, 
10 

3 

3 

2 

5 

2 

REFERENCE 

Mulligan era/. (1991) 

Kulozik era/. (1992) 

Aeschlimann era/. (1990) 

Reuveny era/. (1986) 

Venables era/. (1993) 

Sikyta era/. (1959) 

Fabian (1969) 

Ryu & Lee (1975) 

Goto ef a/. (1973) 

Paca & Gregr (1979 A,B), 
Paca (1980,1982) 

Fend ef al. (1961), Fend 
(1964) 

Ricica (1969) 

Holström & Rose (1964) 

Prokopefa/. (1969) 

Fend era/. (1980) 

Schugerl(1982) 

Schügerl (1982) 

Blanch & Rogers (1972) 

Imanakaefa/. (1973) 

Bahl era/. (1982) 

Ogbonnaefa/. (1989) 

Qureshi & Tamhane (1986) 
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completely obeying Monod kinetics. This shows that one should take care on 

how kinetic data are obtained and used. 

An interesting theoretical study of the application of series of CSTR's (up to 

three reactors) for ethanol production is presented by Shimizu & Matsubara 

(1987). They use production kinetics with absolute inhibition (1-P/PJ, in 

combination with either growth-associated or non-growth-associated production, 

and the condition of a zero-maintenance level. Based on the kinetics and 

parameter values of Shimizu & Matsubara (1987), the productivity as a function 

of the product concentration of one, two and three reactors in series was 

calculated, as shown in figure 6. Obviously it is not possible to enhance the 

Productivity (*KT3kg.nr5.s1) 
1.6 

0.8-

Product concentration (kg.m ) 

Figure 6. Volumetric productivity of an ethanol fermentation versus product 
concentration. A = 1, B = 2, C = 3 reactors in series, respectively. Parameter values were 
as used by Shimizu and Matsubara (1987), with Ks = 1.6 kg.m-3, nm = 6.7 10"5 s \ Y„ = 0.06, 
Y%f = 0.16, Pm = 90 kg.m", and S„ = 220 kg.m-3. Note that at a product concentration of 82.5 
kg.m'3 all substrate is converted. 
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product concentration beyond Pm if this type of kinetics is involved. However, an 

improved volumetric productivity is possible at higher degrees of conversion by 

using more than one reactor. Note that, although the differences are marginal, 

for product concentrations below the point where the productivity is maximal, 

one single CSTR has the highest volumetric productivity. In other words, for 

substrate concentrations above acrit, a single vessel is superior, as expected. 

Shama (1988) reviewed the reactor development for fuel ethanol 

production. For a batch process with glucose as substrate and Saccharomyces 

cerevisiae as microbial strain, volumetric productivities of 2.8-6.7 10"4 kg.nr3.s~1 

are typical, whereas 19.4 10"4 kg.m3.s1 can be achieved in continuous 

processes. As can be seen from table 2, continuously operated series of 

bioreactors can lead to much higher productivities combined with high degrees 

of conversion, as for example the studies of Klein & Kressdorf (1983, 1986) 

showed : at almost complete conversion productivities of 158.3-300 10^ 

kg.m~3.s1 were reported. Also, compared to a batch process, the ease of control, 

and the absence of peak loads upon up- and downstream processes favour 

continuous processes. 

Few papers could be found dealing with animal cells, whereas theoretically 

(an autocatalytic system with growth-associated production, and very often 

by-product inhibition) series of bioreactors can be used advantageously for 

monoclonal-antibody production by hybridomas (Venables et al. 1993, Reuveny 

et al. 1986, Shimizu & Matsubara 1987, Pirt 1975). Reuveny et al. (1986) found 

that for a semi-continuous two-stage system with an extra feed of glucose and 

glutamine in the second stage, both the monoclonal-antibody concentration and 

the productivity doubled in the two-stage system as compared to the single 

semi-continuous bioreactor. 
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Immobilized growing cells 

By immobilization, high cell densities and high volumetric productivities can be 

achieved. Immobilization also introduces simultaneous diffusion, consumption of 

substrates, and growth, which is troublesome to relate mathematically to design 

of a series. Therefore, it is not surprising that no papers could be found that deal 

with the theory of optimal design of series of CSTR's with immobilized growing 

cells. However, one paper presents a graphical procedure to provide design 

rules and estimation of kinetic constants for activated sludge processes for 

waste-water treatment (Braha & Hafner, 1985). 

Godia et al. (1987) present a thorough review of the use of immobilized 

cells for continuous ethanol production. Table 2 shows experimental data on 

production of ethanol with series of immobilized-cell bioreactors. With ethanol 

production, three goals have to be met (preferably simultaneously) : 

i) high volumetric productivities to reduce reactor costs, 

ii) high product concentrations to reduce downstream processing costs, and 

iii) high conversion degrees to reduce feed costs. 

In a single vessel, these three goals can hardly be met simultaneously. Godia 

etal. (1987) show for example, that in a single vessel a productivity of 

150 10"4 kg.m3.s1 was obtained at a degree of conversion of 63%, wheras 

25 10"4 kg.nr3.s"1 was observed at a degree of conversion of almost 100%. It is 

still, however, a considerable improvement when compared with the review data 

of Shama (1988) where typical productivities of 2.8-6.710"4 and 

19.4 10"4 kg.m~3.s~1 were reported for batch and continuous processes with freely 

suspended cells. From table 2 it is clear that the use of series of reactors with 

immobilized cells are the most promising prospect to meet the three goals for 

ethanol production (Klein & Kressdorf 1983, 1986). 
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CATALYTIC SYSTEMS 

Non-growing biocatalysts may consist of enzymes, cell organelles, whole 

non-viable cells, or viable non-growing cells (Van 't Riet & Tramper 1991). In 

literature however, only reports based on free or immobilized enzymes, applied 

in bioreactor series, can be found. 

Theory 

The same optimization criterion as with autocatalytic processes is used : the 

minimization of the overall cascade residence time at a given final exit 

concentration of substrate (equation [1]). A fixed reaction stoichiometry is 

assumed, and the enzyme concentration in each reactor is assumed to be equal 

and constant. A generalized rate expression is used to represent various types 

of kinetics (Table 4). As a result, the reaction rate per unit volume rs equals: 

, _. . J + f a + ma2 

f+ga + ha2 1™J 

where parameters f, g, h, k, I, and m are kinetic characteristics depending on 

the kinetic equation (see table 4). 

Substitution of equation [14] in the general mass balance over a single 

CSTR in a series (equation [4]) yields: 

VjVmaxe ( aM-g,)(r+gg, + fax?) 
xi = —Eö— = ;—; 2 f 5 

r i o k+lai + maf 
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Table 4: Values of the parameters f, g, h, k, I, m in the general rate equation for enzyme 
catalysed reactions (Equation 14) and the critical substrate concentration acrtt at which an 
optimally designed series of bioreactors consists of a single vessel. 
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In order to answer the question if an optimally designed series is 

worthwhile, equation [15] is substituted in equation [8] for N=2, and a, = a2 = acrit 

is applied. For this general case of 2 reactors in series this results in: 

O-crit = ' 

hk-fm + J(hk-fm)2 + g2km - fgml - ghkl+fhl2 

gm-hi 
[16] 

Evaluation of equation 16 for the different types of kinetics (Table 4) shows 

that for Michaelis-Menten kinetics, unimolecular-equilibrium kinetics, 

product-inhibition kinetics, and first-order kinetics, an optimally designed series is 

superior to a single vessel at all effluent concentrations: the critical concentration 
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for these kinetics equals the system influent (i.e. a^V- F° r substrate inhibited 

reactions however (Figure 5), the series configuration may be superior, but only 

if the desired effluent concentration aN is below acrit i.e. below K^/Sg2 (Table 4). 

Evaluation of this latter expression shows that for substrate inhibition the 

feasibility range for the application of a cascade decreases with the severity of 

the inhibition: oĉ , decreases with decreasing K, values. For a zero-order 

reaction, there is no difference in performance between any cascade and a 

single-vessel system. 

Interestingly, occrit can be found in an alternative way by taking the first 

derivative of the reaction rate equation with respect to the substrate 

concentration. If a value of a exists at which this first derivative equals zero, 

Reciprocal rate vmax / 

1 0 -

5 -

0 -

\ 

's ( " ) 

< 4 X 

///// single tank / / ^ / / v / / / / / / / / / / / / / / / / / / / / 

j X / 3 0 0 > Ä X X < 2 V V O O 

§§§§§§§ 
>XxXXX/yy 1 jXXXXXX) 
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Substrate concentration a ( - ) 

Figure 7. Overall residence times (shaded areas) for an enzymatic reaction with 
Michaelis-Menten kinetics in a single CSTR and in a cascade consisting of 4 CSTRs. For 
these kinetics, the curve decreases monotonically, and the cascade requires less holding 
time at all effluent concentrations. 

35 



Chapter 1 

then this value of a is a^,. In other words, as long as the enzymatic reaction rate 

per volume is monotonically increasing with a, a series of bioreactors will allways 

be superior to a single vessel (Figure 7). 

Now having the answer to the question if a series is worthwhile, that is after 

the determination of acrit, the optimal design of the series according to equation 

[1] can generally be done in the same way as suggested by Hill & Robinson 

(1989) for autocatalytic processes. For the case of Michaelis-Menten kinetics, 

the final, surprisingly simple design equation following from equation [1] is 

(Luyben & Tramper, 1982) : 

a/=a;:ri) [17] 

Starting with the known aN, the intermediate substrate concentrations can easily 

be calculated by equation [17], if the total number of reactors in the cascade is 

known. Optimum design results in a monotonically decreasing reactor volume 

along the series. The decrease in required total holding time is the largest when 

going from 1 to 2 bioreactors. Also, this decrease is larger at higher desired 

degrees of conversion. Note that for first order kinetics, exactly the same result 

is obtained. 

Another way of assessing if a series of CSTR's is worthwhile is considering 

the difference between the residence time of a single CSTR and the residence 

time of a PFR. For Michaelis-Menten kinetics, the dimensionless residence time 

of a PFR can be described by (Luyben & Tramper, 1982) : 

tpfr = ( a 0 - a 1 ) -K ln ( a i ) t18l 
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with K being the dimensionless Michaelis-Menten constant (Km / S0). The 

maximum attainable decrease in dimensionless residence times then becomes 

(equations [4] and [18]): 

£ = lÉL =
 1~ai [19] 

Ç xcstr 1 + jSj-

This equation indeed shows that for high degrees of conversion (a, approaching 

zero), t, approaches zero, or the residence time of a single CSTR is infinite times 

higher than that of a PFR. This is in accordance with the findings of Luyben & 

Tramper (1982). For the zero-order extreme of Michaelis-Menten kinetics (K 

approaching zero) one can find that Ç equals one (no difference in residence 

times), and for the first order extreme it can be found that: 

_ -ai ln(ai) 
J'JJi ̂  — 1 _ a i [20] 

illustrating that at high degrees of conversion series of CSTR's might be 

worthwhile: with a, = 0.1 and 0.01, an % of 0.26 respectively 0.05 can be found, 

indicating that a single CSTR would be 4 or 20 times the volume of a PFR, 

respectively. 

Enzymatic decay 

First-order decay of enzymes is described by several authors (Lopes & Malcata 

1993, Paiva & Malcata 1993, Vos 1990, Yoon et al. 1989, Furusaki et al. 1980, 

Furusaki & Miyauchi 1977). Lopes & Malcata (1993) showed that as long as the 

time constant for decay is larger than the time constant for flow through the 
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series (VtJF), a simple relation can be found that allows a good estimate for the 

reactor sizes in series of 3 and 4 bioreactors. If non-isothermal operation is 

considered, completely different optima can be found (Paiva & Malcata, 1993). 

Vos (1990) describes a reactor system for the production of High Fructose 

Corn Syrup with immobilized glucose-isomerase. His reactor is a multiple 

fluidized bed, where intermittently the flow is stopped and the biocatalyst is 

refreshed top-down, by simply allowing the biocatalyst beads to pass the holes 

in the sieve plates between the different compartments and removing the beads 

from the bottom compartment. He concludes that HFCS could be produced 20% 

cheaper in such a reactor than in a single CSTR. 

Yoon et al. (1989) describe three other strategies to address enzymatic 

decay in continuously operated bioreactors: 

i) change the feed rate for a constant degree of conversion which may affect 

mass-transfer properties in the bioreactor, 

ii) accept a decreasing degree of conversion at a constant feed rate, or 

iii) apply temperature control. 

For the case of a multi-stage immobilized-glucose-isomerase reactor, it is 

described that at least 10% higher specific productivities (mol.kg"1 enzyme.s"1) 

can be attained with optimal temperature control, and that three bioreactors in 

series perform better than two. 

Dissolved enzymes 

Dissolved enzymes are favourable if large througputs are involved, the enzyme 

costs are not too high (since it has to be constantly added to the reactor), and 
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residual enzymatic activity can be easily removed, e.g. by thermal treatment 

(Malcata & Cameron 1992, Paiva & Malcata 1993, Lopes & Malcata 1993). 

Penicillin acylase shows substrate inhibition, non-competitive 6-APA 

inhibition and competitive phenyl acetic acid inhibition. Karanth (1979) showed 

that for the case of hydrolysis of penicillin-G to 6-APA and phenyl acetic acid, 

2 CSTR's in series are to be favoured over one batch reactor. In this analysis, at 

a degree of conversion of 98%, the volume of 1 CSTR would be 8.6 times the 

value of a batch reactor, and 2 CSTR's would require 1.5 times the batch 

volume, if the batch would have a zero downtime. If the downtime for the batch 

reactor would be 1 h with a reaction time of 2 h, the series of CSTR's would 

show a higher volumetric productivity. These results were confirmed by 

Noworyta & Bryjak (1993), where the superiorety of a three-reactor series was 

shown over a single CSTR; the total residence time could be reduced by 

about 40%. 

Malcata (1988, 1989) and Ong et al. (1986) extended the work of 

Luyben & Tramper (1982) with a description of the cost of scaleup by a power 

rule on the equipment capacity. The relation is only valid for a low number of 

reactors, and the extra costs (spare parts, cleaning) for differently sized 

bioreactors have to be carefully weighed. For a two-substrate reaction 

(ping-pong, obeying Michaelis-Menten kinetics) under application of the 

six-tenth-factor rule for capital investment, Malcata showed that the required 

volumes of the reactors in the series first decrease and after that increase again, 

and that never more than three reactors in the series are optimal with respect to 

reactor capital investment. This is in accordance with the findings of 

Blanch & Rogers (1972). 

Using unimolecular equilibrium kinetics for the production of L-malic acid 

from fumaric acid, Malcata & Cameron (1992) showed that if the Monod 
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constant Ks is close to the product inhibition constant Kp (Table 4), the optimal 

reactor series consist of equal-sized bioreactors. 

Immobilized enzymes 

Compared to dissolved enzymes, only a few papers can be found that describe 

series of bioreactors with immobilized enzymes. As a logic continuation of the 

work of Luyben & Tramper (1982), De Gooijer et al. (1989) describe the 

optimum design of a series of CSTR's with invertase immobilized in alginate, 

obeying intrinsic Michaelis-Menten kinetics. The mathematical approach is the 

same as that of Luyben & Tramper (1982), except for the definition of the 

dimensionless holding time for each vessel: here the efficiency factor r\ appears 

in the denominator: 

T ; - FSo W 

Consequently, for optimal design the dimensionless concentrations can be 

calculated as if the enzyme were free (equation [17]), and after that for each 

intermediate substrate concentration along the series an effectiveness factor is 

determined. These effectiveness factors thus account for the extra volume 

required to compensate for both internal and external diffusion limitation caused 

by the immobilisation of the enzyme. Analogously, the same procedure can be 

applied for other kinetics. Hence, as for suspended enzymes, series of 

bioreactors are favourable for immobilized enzymes except for substrate 

inhibited kinetics. Note that for first-order kinetics, with negligible external 

diffusion limitation, there will be only a single internal effectiveness factor for all 
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bioreactors in the series, since the Thiele modulus for that case is independent 

of the substrate concentration (Van 't Riet & Tramper, 1991). 

In 1994, Bakker et al. made the experimental comparison between a single 

vessel and a three-vessel reactor series. They observed improved sucrose 

conversion by immobilized invertase to 83% compared to 73% in the single 

vessel with the same overall residence time. 

Concluding remarks 

Theoretically, with respect to the overall residence time for a given degree of 

conversion, the use of more than one CSTR in series can be advantageous for 

any non-autocatalytic process that obeys non-zero order kinetics. For 

autocatalytic processes series of CSTR's can be favourable if a high product 

concentration combined with a high degree of conversion and an acceptable 

volumetric productivity is needed. However, one should always carefully weigh 

the practical and cost implications of more than one bioreactor to the possible 

advantages. 

Few recent papers could be found that describe the use of series of 

bioreactors in industry. For an early review see Hospodka (1966), describing a 

few processes including the production of baker's yeast, ethanol (from sugar and 

starch), beer, and acetone/butanol. The largest scale recently described is of the 

pilot-plant type (Takahashi & Kyosai, 1991). This may of course be caused by 

the reluctance of industry to publish regarding their source of income, but it may 

also be explained by a certain kind of conservatism in the implementation of the 

results of scientific research at an early stage (Tramper, 1993). 
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VARIABLE STOICHIOMETRY PROCESSES 

Processes with a variable stoichiometry need a physical separation into two or 

more reactors (either in space, or time) by their nature. Some examples of such 

processes are discussed below. 

Insect cells 

Insect-cell technology is a fast emerging tool for the expression of foreign genes. 

Also, due to the increase in strict regulations for chemical compounds for crop 

protection, the interest in the wild-type virus for use as a bioinsecticide emerges. 

Suspension cultures of insect cells can be generated by adapting cells of insects 

(e.g. Spodoptera frugiperda) via T-flasks to suspension cultures in spinner flasks 

or bioreactors. These cells are still susceptible to infection with the non-occluded 

form of a baculovirus (e.g. Autographa californica Nuclear Polyhedrosis Virus). 

After infection, cells will produce newly synthesized non-occluded viruses, and, 

subsequently, occluded viruses in the form of polyhedra, or recombinant 

proteins of foreign origin (Granados, 1976, 1980). After this, the cells lyse. 

Therefore, if continuous production is desired, a physical separation has to be 

introduced, as suggested by Tramper & Vlak (1986). Kompier et al. (1988) were 

the first to describe a successful experimental setup for such a process. They 

used a first CSTR to grow cells, followed by a second CSTR in series were 

infection takes place. Subsequently, Van Lier et al. (1990, 1992) investigated the 

optimization of the continuous production. It appeared that continuous 

production for prolonged periods of time is hampered by the occurrence of the 

so-called passage effect, which manifests itself as a reduction in the number of 

non-occluded viruses and a decrease in the infectivity of these viruses. Based 
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on an infection model, De Gooijer et al. (1992) suggested a pseudo-continuous 

mode of operation of the reactor series in the form of a repeated batch or 

fed-batch of the infection vessel, in order to reduce this passage-effect. The 

feasibility of such as process had already been demonstrated by Klöppinger et 

al. (1990) and was confirmed by Zhang et al. (1993). 

Waste-water treatment 

For waste-water treatment, reactor costs should be minimized under the 

constraint of high degrees of conversion. In the specialized journals in this field, 

numerous papers can be found describing reactor design. Some relevant 

studies are listed below. 

Mitchell & Shuler (1978) studied the production of Single Cell Protein (SCP) 

for feedstuff purposes. Here, in a first vessel, carbohydrates and urea in poultry 

manure were converted. In a second stage, where the SCP was formed, glucose 

was added as additional carbon source, while the ammonia from urea was used 

as nitrogen source. 

Aivisidis et al. (1989) described the anaerobic degradation of complex 

substrates to methane. In a first CSTR, acidogenic bacteria decomposed carbon 

sources into low-molecular-weight compounds with concommittant acidification 

of the waste-water to pH 3-4. In the second stage, for their case a fixed-bed loop 

reactor, methanogenic bacteria produced methane from these acids. This 

resulted in a more stable process with a lower occurrence of pathogens, but with 

a higher investment and a neccesarry pH control. A similar distribution of the 

subsequent steps in anaerobic degradation was found by Howgrave-Graham et 

al. (1994) for a three stage anaerobic digester with cellobiose as sole carbon 

source. Arora & Mino (1992) and Takahashi & Kyosai (1991) reported on the 
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use of a series of bioreactors for treating domestic wastewaters for standard 

COD removal. With 5 reactors in series at pilot-plant scale, a conversion degree 

of 90% could be reached producing less sludge and without the need of a final 

settler tank. Yang et al. (1993) reported on the development of a cascade of 5 

ponds in series, consisting of empty oil barrels, for treating swine waste water in 

tropical areas. Over 90% of all pollutants were removed well in this ultimately 

cheap series of bioreactors. 

(De)Nitrification 

Due to the low specific growth rate of nitrifying bacteria, the nitrifying capacities 

of traditional waste-water plants is often poor (Barnes & Bliss, 1983). Taniguchi 

et al. (1988) described the use of two airlifts in series with sludge for 

simultaneous nitrification and denitrification, in which 80% if the ammonia was 

converted to nitrogen gas. Al-Haddad et al. (1991) used four aerated submerged 

fixed-film bioreactors in series to nitrify ammonia. Brauer & Annachhatre 

(1992a,b) used three reciprocating jet bioreactors in series to remove ammonia 

from real-life waste water. A reciprocating jet bioreactor consists of a cylindrical 

vessel containing an assembly of sieve plates attached to vertical rods, which is 

given a reciprocatory motion. The first reactor was used to remove the majority 

of the carbon, the second did the nitrification, and the third the denitrification. In 

this process, 90% of the carbon was removed, and 85-95% of the ammonia was 

converted into nitrogen gas. For the denitrifying bacteria, methanol was used as 

additional carbon source. A similar process was suggested by Santos et al. 

(1993) in a multiple airlift-loop reactor (see 'reactors'). 
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Recombinant micro-organisms 

Barbotin et al. (1990) and Berry et al. (1990) described the improvement of 

apparent plasmid stability by immobilization of recombinant Escherichia coli in a 

two-stage bioreactor series. In the first stage, cells, immobilized in carrageenan, 

were grown. Released cells were fed to a second stage, where a temperature 

shock was used for derepression i.e. production). This resulted in a five-fold 

production rate of catechol 2,3-dioxygenase. Fu et al. (1993) and literature cited 

therein described the continuous production and excretion of ß-lactamase by 

genetically engineered Escherichia coli in suspension in a two stage-chemostat. 

The micro-organism was grown in the first chemostat, after which the expression 

of the protein was induced by isopropyl-ß-D-thiogalactopyranoside in the second 

chemostat. Continuous production was possible for over 50 days, with the 

product accounting for 25% of the cellular protein. Due to cell death and the 

selection for lac' cells this process fails in a single chemostat. 

Other products 

Already in 1959, Pirt & Callow suggested the use of a series of CSTR's to 

produce penicillin. In the first vessel the mould would be grown at a pH below 7, 

in order to avoid the formation of aberrant hyphae, wheras in a second stage 

penicillin could be produced at pH 7.4 where the penicillin production is optimal. 

Ricica (1964) showed that the biosynthesis of 6-azauracil (AzU) by 

Escherichia coli B was not feasible in a single CSTR since AzU inhibits cell 

growth. He successfully demonstrated the production in a series of four CSTR's, 

and also showed that the replacement of the last CSTR by a tubular reactor was 

not successful, which was attributed to a lack of oxygen in the latter reactor. 
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A rather important aspect of series was studied by Plevako (1964). Baker's 

yeast was grown in a first CSTR, after which in a smaller second stage, under 

the condition of slight aeration, the residual substances in the medium were 

utilized, thus allowing the stabilization of the cell's enzyme system in maturing 

cells. It was reported that a high-quality, stable product with good keeping 

conditions was obtained. 

Lelieveld (1984) described the continuous production of yoghurt (two 

strains) and buttermilk (three strains) with mixed cultures in a two-stage 

cascade. It was reported that in the first stage the lactic acid bacteria multiply 

whereas in the second stage they produced most of the desired (flavour) 

metabolites. He addressed the risk of the product being affected by the selection 

of a faster-growing mutant strain. If it is assumed that 1 mutant organism, having 

a 10% higher specific growth rate, is present at the very start of the fermentation, 

he showed that a continuous process can be run for 3.3 weeks for buttermilk 

cultures and for 1.1 weeks for yoghurt cultures if it is acceptable that 1% of the 

final microbial population is the mutant. The results from several years of 

full-scale production supported this conclusion. 

For the removal of hexose and pentose sugars from agricultural waste 

streams, Grootjen et al. (1991) concluded that a physical separation between the 

two yeast strains used (Pichia stipitis for pentose sugars and Saccharomyces 

cerevisiae for hexose sugars) was necessary, since otherwise the yeasts will 

compete for oxygen, resulting in a low conversion of xylose. 

Pfaff et al. (1993) described the use of two CSTR's in series for the 

removal of trichloroethylene (TCE) from drinking water. Pseudomonas putida 

was grown in the first chemostat, with ethanol as carbon source and phenol to 

induce the toluene dioxygenase enzyme system. In the second reactor, TCE 

was added. By the use of this second stage, the competition between phenol 
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and TCE was minimised while the biomass, inactivated by toxic TCE oxidation 

products, was replenished. 

Series of bioreactors can also function as a research tool in itself : Molly 

etal. (1993) used five CSTR's of different volumes to successfully mimiek the 

human gastro-intestinal tract. The small intestine was simulated by a two-step 

"fill-and draw" series (not continuously operated), the large intestine consisted of 

a continuously operated series of three CSTR's with different residence times. 

A last small-scale application is the use of two bioreactors in tandem in a 

continuous-flow / stopped-flow sample / reagent processing setup for the 

determination of alkaline phosphatase activity in serum, as described by Raba & 

Mottola (1994). With this analysis, co-immobilization of the enzymes involved 

(alkaline phosphatase and alcohol oxidase) would fail since the enzymes show 

mutual product inhibition, and buffer incompatability. By physically separating 

the two enzymes, a successful assay was reported. 

Concluding remarks 

Obviously, when the stoichiometry of the reaction changes with time in a batch 

process, a series of bioreactors is intrinsically favourable if a continuous process 

is aimed at. Some examples of such processes have been presented. The rules 

for deciding if a continuous process is more competitive than a classical 

(fed-) batch process, cannot be presented in a form analogous to the kinetically 

favourable series. Parameters involved in such a decision are the volumetric 

productivity, the stability of the organism, the acceptability of the risk of 

contamination, and the ease of construction and costs of a series compared to a 

single vessel. 
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REACTORS 

The costs of series of conventional bioreactors form an important incentive to 

develop novel bioreactor types incorporating the principles of series. Many of 

those devices are patented. Only those patents that describe reactors that are 

relatively easy to scaleup are presented here. Almost all patents deal with 

cylindrical vessels in which compartments are formed by sieve plates (Lumb 

etal., 1970, Kitai et al., 1971, Blaß et al., 1979, Caro, 1987). Already in 1970, 

Lumb et al. patented a device consisting of five compartments for the production 

of neomycin with Streptomyces fradiae. Blaß et al. (1979) patented the sieve 

plate itself : the holes in the plate should not occupy more than 15% of the 

bubble column area. Caro (1987) patented a cylindrical vessel with concentric 

cylinders inside to produce biogas from organic wastes. In the inner cylinder 

hydrolysis takes place, the middle stages show acidification, and in the outer 

stage methanogenesis occurs. The patent of Aivasidis et al. (1987) describes a 

fixed bed column for anaerobic decomposition processes, in which two or more 

compartments are stacked with open plates in between and a separate gas 

outlet for each chamber. Grobicki & Stuckey (1991) describe the Anaerobic 

Baffled Reactor (ABR) for waste-water treatment. These rectangular boxes, with 

working volumes of 8-10 dm3, are compartmentalized with alternately hanging 

and standing vertical baffles. ABR's with 4 to 8 compartments are decribed. 

As such, the ABR can be regarded as a series of upflow anaerobic sludge 

blanket reactors (Lettinga, 1980). 

Recently, Bakker et al. (1993) presented results with a novel bioreactor 

(De Gooijer 1989) consisting of a series of concentrical airlift reactors with 

internal loop incorporated into one vessel. From the mixing behaviour it is shown 

that their prototype with three ALR's in series can be described by three ideal 
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mixers in series, thus approximating an aerated plug-flow reactor (Levenspiel, 

1972). 

CONCLUSIONS 

In this paper a classification is presented to decide if and when a series of 

bioreactors can be advantageously used, for both catalytic and autocatalytic 

processes. The optimization criterion used is the total holding time of the series 

compared to a single CSTR, at a given substrate concentration in the last 

vessel. 

For autocatalytic processes there is no type of kinetics where a series is 

always superior to a single CSTR. With the critical substrate concentration 

concept as introduced by Hill & Robinson (1989), the feasibility of a series can 

be predicted. The first step to take is to calculate a critical substrate 

concentration at which the single vessel and a two-reactor cascade are 

equivalent. At desired effluent concentrations aw< acri„ a cascade is superior, 

and at desired effluent concentrations acrj, < aN < 1 the single vessel is to be 

preferred. 

For catalytic processes based on enzymes, it is shown that a series of 

bioreactors is always superior to a single CSTR if the rate of reaction is 

monotonically increasing with the substrate concentration (Michaelis-Menten, 

first order, product inhibition, and unimolecular equilibrium kinetics). For 

substrate inhibition kinetics, a single vessel may be superior. This superiority can 

also be determined by applying the acrit concept. If a series is superior, the 

second step is to calculate the intermediate substrate concentrations. For the 

case of free or immobilized enzymes following Michaelis-Menten or first-order 
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kinetics, these intermediary substrate concentrations can be calculated by a 

simple relation (equation [17]). Furthermore, from the work of Malcata (1988, 

1989), who evaluated the capital investment for series of bioreactors for 

enzymatic processes, and from the work of Blanch & Rogers (1972) and 

Hill & Robinson (1989), who evaluated series for autocatalytic processes, it can 

be concluded that the maximum number of bioreactors, when a series is 

worthwhile, is equal to three. 

From the examples of the application of series of bioreactors found in 

literature it is clear that the use of series on an industrial scale is limited, and that 

most applications for kinetically favourable series can be found in ethanol 

production. As illustrated in figure 1 and table 3, the combination of a high 

product concentration, a high degree of conversion, and a large volumetric 

productivity may well be attained in a series of bioreactors. 

In the situation where use of a series is intrinsically favourable, that is 

virtually any process where the overall stoichiometry of the reaction changes 

with time, some interesting applications are presented, all on a laboratory scale. 

The overview of the novel bioreactor types for series of CSTR's within one 

vessel shows that progress has been made in reactor development, which will 

lead to a possible reduction in cost for a series of reactors, and thus enhance 

the potential application of continuous processes on a larger scale. 

APPENDIX A. 

A general mass balance for biomass in an ideally mixed bioreactor is : 

V^ = FXo-FX+VXn 
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which, under the assumption of steady state, and no biomass in the influent, 

reduces to : 

^ = V [23] 

A general mass balance for substrate is : 

dS 
dt • " " " • " ' " s [24] 

V^ = FS0-FS+Vrs 

where rs, the volumetric substrate uptake rate, is defined as : 

\iX 
r°=Y7s w 

Again under staedy state conditions, equation [24] can be simplified, and 

after combination with equation [23] this results in : 

rs = n(So - S) 
[26] 

Introducing Monod kinetics, and combining equation [26] with the Monod 

equation, the result is : 

rs S(Sp - S) 

V»,- Ks + S I27l 

which, with the introduction of the following dimensionless variables: 

rs _KS _ s 
p-»mS0'

K-So'a-So ™ 
can be rewritten to: 
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X K + g 
P a - a 2 

which is the equat ion that is depicted in figure 1. 

[29] 

NOMENCLATURE 

a dimensionless substrate concentration (S / S0) 

X d imensionless b iomass concentration (X/YXSS0) 

x d imensionless residence t ime in enzyme reactor (V, vmaxe IF S0)-

or in autocatalytic reactor (V , \ \ .m a x IF) 

K dimensionless Michaelis constant (KJS,,) 

p d imensionless substrate consumption rate (r/(xmaxS0) 

t, ratio of the residence t imes in a PFR and a CSTR 

p. specific growth rate s"1 

0 residence t ime s 

D d i lution rate s"1 

e enzyme concentration k g . m 3 

f k inetic characteristic parameter (Table 1 and 2) 

F f low rate m3 .s1 

g kinetic characteristic parameter (Table 1 and 2) 

h k inetic characteristic parameter (Table 1 and 2) 

k k inetic characteristic parameter (Table 2) 

K d imensionless monod constant (Ks / (S0 + x0 / Yxs )) 

Kb k inetic constant, equil ibrium reaction backwards mo l .m 3 

K; substrate inhibition constant mo l .m 3 

Km Michaelis constant mo l .m 3 
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Kp product inhibition constant 

Ks Monod constant 

/ kinetic characteristic parameter (Table 2) 

m k inetic characteristic parameter (Table 2) 

N number of vessels in a series 

p k inetic charateristic parameter (Table 1) 

P product concentration 

Pm maximal product concentration 

q k inetic charateristic parameter (Table 1 ) 

rs volumetric reaction rate 

S substrate concentration 

V reactor vo lume 

v m a x max imum reaction rate per unit amount of enzyme 

mol.rrr3 

mol.nr3 

"max.b id., backward direction 

X b iomass concentration 

Xa degree of conversion 

Vp y ield of product on substrate 

Yxs y ield o f b iomass on substrate 

mol.nr3 

kg.m"3 

mol.nr3 

k g . m 3 

mol.rrr3 

mol .m 3 

m3 

mol. k g 1 

mol. k g 1 

k g . m 3 

kg .mo l 1 

kg. mol"1 

or 

or 

s"1 

.S"1 

.S"1 

Subscripts 

0 inlet of a series 

cht critical effluent concentration at which a single vessel and a 

two-reactor cascade are equivalent 

;' /-th vessel in a series 

j / - th vessel in a series 
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max maximum 

N last vessel in a series 
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CHAPTER 2 

OPTIMUM DESIGN FOR A SERIES OF 
CONTINUOUS STIRRED TANK REACTORS 
CONTAINING IMMOBILIZED BIOCATALYST 

BEADS OBEYING INTRINSIC 
MICHAELIS-MENTEN KINETICS 

ABSTRACT 

The optimum design of a series of mixed reactors containing immobilized 

biocatalysts is described. A detailed description is given of the modelling of 

internal diffusion and reaction in the beads, and external mass transfer 

resistance. The model is validated by experiments with cascades of two and 

three reactors, containing immobilized invertase. For that, invertase was first 

bound to DE-32 cellulose anion exchanger and then entrapped in calcium 

alginate. 
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INTRODUCTION 

In a previous paper (Luyben & Tramper, 1982) an analytical expression was 

derived for the optimum design of a cascade of continuous stirred tank reactors 

in which a biocatalytic reaction following Michaelis-Menten kinetics is executed. 

The optimum was defined as the smallest total reactor volume needed to 

accomplish a specific conversion. Assuming that the volumetric activity of the 

biocatalyst remains constant in the reactors, the expression was derived. 

In case of free biocatalyst special measures have to be taken to retain the 

biocatalyst in the reactors and thus keep the volumetric activity constant. 

Immobilization of the biocatalyst in a solid support can be such a measure. 

However, the consequence of this transition of homogeneous to heterogeneous 

biocatalysis can be a disguisement of intrinsic kinetics as a result of limitation of 

the reaction due to diffusion of substrate(s) and / or product(s). Only when mass 

transfer rate is fast in comparison to reaction rate this is not the case. 

In general a concentration dependent effectiveness factor is introduced in 

the rate equation to account for this rate limitation by diffusion. Mostly, this is 

described for the extreme cases of first and zero order reaction kinetics, for 

which analytical expressions for the relation between the substrate concentration 

and the effectiveness factors can be derived. In a recent study, however, Manjon 

et al. (1987) described a design model for a plug flow reactor with immobilized 

naringinase, obeying reversible Michaelis-Menten kinetics. 

In this paper we describe the derivation of the analytical expression for the 

dimensionless holding time of each reactor and the mathematical model used to 

calculate the effectiveness factor. The procedure is illustrated by a numerical 

example and verified experimentally by cascades of two and three reactors, 

using immobilized invertase as biocatalyst. 

66 



Optimum design for a series of CSTR's with immobilized enzymes 

THEORY 

Optimization 

Consider a series of N continuous stirred tank reactors containing immobilized 

biocatalyst obeying intrinsic Michaelis-Menten kinetics. Introducing in the 

Michaelis-Menten equation an effectiveness factor dependent of substrate 

concentration (TIS) gives : 

_ f ( s ) - Km + S m 

with r(s) being the rate of substrate consumption, S the substrate concentration, 

X the concentration of biocatalyst in the gel, s the holdup of gel in the reactor 

and Vm and Km the Michaelis-Menten constants. A mass balance over the /-th 

reactor in the steady state gives : 

_Vi_(Si-,-Si)(Km + Si) 
<K T|s,,VmXsS,- PI 

where 0, is the holding time in reactor i, V, the volume of reactor i and <)>„ the 

volumetric flow rate. Writing equation [2] in dimensionless form by introducing 

the following variables : 

_ S, _Km _ Ti,e,VmXs 
a / " S o ' K _ S o ' T / " So [3] 

with S0 being the substrate concentration at the inlet of the first reactor, leads to: 

(g/-i -a,)(K + g,) 
T ' ~ a , [4] 
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When optimum design is defined as the minimum total reactor volume 

(holding time) -realizing the limitations of this definition- the optimum can be 

found by : 

w 
S t ; 

L>1 . 
= 0 /=1,2, ... (W-1) [5] 8a i 

which, analogous to Luyben & Tramper (1982), results in : 

a , = o{i1
(/+1> /=1,2,...(AM) [6] 

By setting a desired degree of conversion (1-aN) and starting with the last reactor 

in the series, the dimensionless concentration a, (equation [6]) and from this the 

dimensionless holding time T, (equation [4]) can be calculated for each reactor. In 

order to be able to then calculate the holding times 0/( and thus the reactor 

volumes Vh the effectiveness factors r|s, must be known (equations [2] and [3]). 

Estimation of the effectiveness factor 

A differential mass balance over a biocatalyst bead in which simultaneous 

diffusion and consumption of substrate occurs yields : 

8S , ,, dS i-, , 1 8 ,JzdS^ „vox 
- + V c - = De(?^^))-^(S) [7 ] 

where t is the time, r is the distance from the centre of the bead, vc is the 

convection velocity, ^(s) the rate of substrate consumption and De is the effective 

diffusion coefficient of substrate in the support material. Assuming that in the 

bead there is : 
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i) only a radial concentration gradient, 

ii) a concentration independent diffusion coefficient, 

iii) no convective transport, and 

iv) a quasi steady state concentration profile, 

equation [7] combined with Michaelis-Menten kinetics for steady state conditions 

reduces to : 

n < 1 d , j dSy, _ VmXS 
UeVdr{r drV-Kn + S m 

with the boundary conditions : 

S = Ssatr = rb 

and 

^ = 0 a t r = 0 ( o r r = rf), 

where Ss is the substrate concentration at the surface of the bead, rb is the radius 

of the bead, and r, is the distance from the centre of the bead where the 

substrate concentration approaches zero. Partial differentiation yields : 

d2S ,VmXS„„ 2 OS 
d^,~{K^S) rdr [9] 

Equation [9] can only be solved by numerical integration, finally resulting in a 

substrate concentration profile in the bead, a computed substrate concentration 

Ss and a (dS/dr) at r = rb. In order to account for external mass transfer 

resistance, the latter can (optionally) be used for calculating a Ss by means of 

the equation representing the film theory : 

/ „ De(dSldr)r=rb 
Ss = Sb [10] 
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with Sb the substrate concentration in the bulk of the solution, and kt the 

substrate mass transfer coefficient in the film layer. 

The numerical integration is performed by a computer program on a 

VAX-8600 computer (Digital Equipment Corporation), using the IMSL-routine 

DREBS, a Rebson algorithm with variable step size. This routine needs a 

starting point for correct integration. Initially, this point is set to the centre of the 

bead : rf= 10"7m (not zero for numerical reasons) and Sf= Kml 105, however, like 

rf, S, should not be smaller than 10"7for numerical reasons. 

r r f= 10 

Sf=Km/105or1Ö7 

V s r = r 

Sf=Km /105or1Ô7 

r ƒ= variable S ƒ = variable 

Figure 1. The calculation of a substrate concentration profile in a biocatalyst bead 

From this point the subroutine calculates the appropriate concentration profile in 

the bead, as illustrated in figure 1. 
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The obtained substrate concentration at the bead surface Ss is compared 

with the known concentration in the bulk, Sb, or with the computed Ss' when the 

film theory option has been invoked. If S„(or Ss ) > Ss then r, is set to 10"7 and S, 

is variable. On the other hand, if S„(or S5 ) < Ssthen />will be variable and Sfis 

kept at the initial value. This process will iterate until Ss (or Ss ) = S„ within a set 

limit, and the appropriate substrate concentration profile is plotted. 

The internal effectiveness factor y\int, defined as the ratio of the macroscopic 

reaction rate and the rate at Ss, can be calculated using : 

abDe{dSlôf)r=rb 

^nt-VmX,Ssl{Km + Ss)
 [11' 

where ab is the surface area of one bead, and X1 is the amount of 

DE32-cellulose-invertase in one bead. 

When the film theory option has been invoked, the external effectiveness 

factor r|ex(1 defined as the ratio of the rate at Ssand at S6, is obtained from : 

Ssl(Km + Ss) 
t l e ,"=S ( ) / (Km + S/)) HZ] 

The overall effectiveness factor for the /-th reactor can then be calculated from : 

T|s,/ =r\int,mext,i t1 3 l 

Figure 2 summarizes the computing scheme. 
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Start 

-^L. 
Read 
initial 
parameters 

-S/L. 
Calculate 

K.tti 
eq. 3,6 

% 

_^_ 
Calculate 
T\ 
eq. 4 

* " 

Calculate 

eq. 2,3 

End 

De,rb,^,NaN 

• y f 

Calculate 
)| Sgj , dS/dR 

eq'. 9,10 

-^Id-
Calculate 
1s,i 
eq. 11,12,13 

Figure 2. Computing scheme. 

MATERIALS AND METHODS 

Materials 

Whatman DE32 Microgranular cellulose anion exchanger (rod shaped particles, 

30 urn diameter, 110 |am length) was obtained from Whatman Chemical 

Separation Division, Maidstone, Kent (UK). Invertase solution (Maxinvert 

L10,000) was a kind gift of Gist-brocades Industrial Enzymes Division, Delft, the 
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Netherlands. Sodium Alginate (Manucol DM) was obtained from Kelco/Ail Int. 

Ltd, Girvan Agrshire, Scotland (UK). All other chemicals were of pure or 

analytical grade from Merck, Darmstadt, Germany. Solutions were made up in 

demineralized water. 

Immobiiization Procedure 

As we found, in addition to the work of Klein et al. (1983), that a washout of 

invertase occurs when immobilized in 8% alginate without microcarrier, invertase 

was first coupled to DE32-cellulose before immobilization as described earlier by 

Woodward & Wiseman (1978). Half a gram of DE32-cellulose was equilibrated 

for 1-2 days in 100 cm3 sodium phosphate buffer (0.01 M, pH 7.0). One hundred 

mm3 of invertase solution was added to 10 cm3 of this suspension and shaked 

for 1-2 hours at room temperature. The free invertase then was removed by 

washing three times with the equilibrating buffer and once with a sodium acetate 

buffer (0.01 M, pH 4.2). The latter liquid showed no enzymatic activity. The 

DE32-cellulose-invertase then was added to a 2% sodium alginate solution in 

acetate buffer, eventually resulting in a gel load of 6.15 g 

DE32-cellulose-invertase per dm3 gel. The mixture was extruded dropwise 

through an 8 mm tube into a 0.2 M calcium chloride solution. After hardening for 

two hours, the beads were placed in a 0.05 M calcium chloride acetate buffer, 

and stored at 4 °C until needed. 
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Analysis 

The concentration of glucose was quantitatively determined by the GOD-Perid 

Test Combination Glucose from Boehringer Mannheim GmbH Diagnostica, 

Germany. Before this, a filtration through a 0.2 urn membrane filter was 

performed after sampling. Each sample volume was 1 cm3. 

Activity Assays 

DE32-cellulose-invertase (0.2 g) was kept at 30 °C in 80 cm3 acetate buffer in a 

stirred reaction vessel. At t=0, 80 cm3 of a 160 g.dm"3 saccharose solution was 

added. Samples (0.5 cm3) were taken each minute for thirty minutes. After 

sampling, the DE32-cellulose-invertase was removed immediately by filtrating 

through a 0.2 ^m membrane filter. From these experimentally obtained 

concentration versus time curves the kinetic parameters were calculated by 

means of a computer program as described by Van den Tweel et al. (1987) 

Diffusion Coefficient Assay 

The effective diffusion coefficient of saccharose in calcium alginate at 30 °C was 

obtained as described by Tanaka et al. (1984). In 120 cm3 of a 80 g.dm"3 

saccharose, 0.05 M calcium chloride acetate buffer solution, 60 cm3 beads (not 

containing DE32-cellulose-invertase) were added at t=0. Samples were taken for 

45 minutes each 30 seconds initially, and at greater intervals after 5 minutes. 

After complete conversion of the saccharose to glucose and fructose by adding 

invertase to the samples, the glucose concentration could be determined as 
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described. This experimentally obtained concentration versus time curve was 

evaluated by a computer program as described by Hulst et al. (1989), and the 

effective diffusion coefficient could be calculated. 

Cascade Experiments 

In order to check the validity of the model presented in this paper, it was tested 

with two cascades of two and three mixed reactors, respectively. With the 

computer program reactor volumes were calculated. Subsequently, the reactors 

were operated for one day in order to reach steady state, and the conversion 

rate, expressed as 1-ocN , was measured. 

RESULTS AND DISCUSSION 

Numerical Example 

For a numerical example table 1 shows the results of five runs of the computer 

program. In these runs, and also in our experiments, external mass transfer 

resistance was neglected. An estimation of the Biot number, defined as the ratio 

of the mass transfer resistance in the solution and in the bead, resulted in a 

value of 115, so external mass transfer resistance is, for our case, negligible. 

Initial parameters used were Vm = 0.5 mol.kg"1.s"1, Km = 200 mol.m"3, 

X = 5 kg DE32-cellulose-invertase.m"3 gel, De = 0.4 109 m2.s"\ rb = 2.5 mm, 

S0 = 400 mol.m"3, so K = 0.5, 4?v = 0.5 10"6 m3.s\ SN= 20 mol.m3 , so aN = 0.05, 

and s = 0.3. 
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Table 1 clearly shows the considerable difference in total holding time 

going from one to two or more reactors. This effect becomes even more 

significant when considering equations [2] and [3], and calculating the reactor 

Table 1 : Dimensionless concentrations (a,), holding times (x,), effectiveness factors (r\,), 
and Reactor volumes (V,) in cascades of CSTR's. 

a, 

N 

11/ 
N 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

0.05 

0.22 

0.37 

0.47 

0.55 

1 

0.21 

0.25 

0.28 

0.3 

0.31 

2 

0.05 

0.14 

0.22 

0.3 

2 

0.21 

0.23 

0.25 

0.27 

3 

0.05 

0.11 

0.17 

3 

0.21 

0.23 

0.24 

4 

0.05 

0.09 

4 

0.21 

0.22 

5 

0.05 

5 

0.21 

T, 

1 

10.45 

2.51 

1.49 

1.09 

0.86 

y[dm3] 

1 

13.17 

2.67 

1.42 

0.97 

0.74 

2 

1.91 

1.09 

0.81 

0.66 

2 

2.41 

1.26 

0.86 

0.66 

3 

0.94 

0.68 

0.55 

3 

1.19 

0.8 

0.61 

4 

0.61 

0.49 

4 

0.77 

0.59 

5 

0.45 

5 

0.57 

total 

10.45 

4.42 

3.52 

3.18 

3 

total 

13.17 

5.08 

3.87 

3.4 

3.16 

volumes, as the effectiveness factor decreases with decreasing bulk 

concentration. This effect decreases with increasing N. 

Determination of Diffusion Coefficient and Michaelis-Menten 
constants 

Experiments were carried out at 30 °C as described in Materials and Methods. 

For the effective diffusion coefficient of sucrose in calcium alginate at 30 °C we 
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found De = 0.385 ± 0.015 10"9 m2.s"\ which is 63% of the diffusion coefficient in 

water (Weast, 1979; Perry & Chilton 1973). This agrees well with the work of 

Toda & Shoda (1975), who found for the diffusion coefficient of sucrose at 

47.5 °C in 2% agar a value of 72% of the diffusion coefficient in water. 

The Michaelis-Menten constants Vm and Km for DE32-cellulose-invertase at 

30 °C, determined as described, were found to be 0.346 mol.kg"1 

DE32-cellulose-invertase per second and 198.3 mol.m"3, respectively, whereas 

for free invertase a value for Kmof 198.1 mol.m3 was found. These values were 

used as intrinsic parameters for DE32-cellulose-invertase immobilized in alginate 

in the reactor performance experiments. 

Reactor Performance experiment 

Two cascades of two and three reactors were tested as described in Materials 

and Methods. Initial and operational values for both the computer program and 

experiments were: Vm, Km and De as described above, X = 6.15 g 

DE32-cellulose-invertase.dm3 gel, rb= 2.66 mm, S0= 233.7 mol.m3, and e = 0.3. 

Other initial model parameters and experimental values for tyv, V(0(a, and aN are 

presented in table 2. 

Table 2 : Model input parameter values and experimental data for two cascades of two and 
three mixed reactors, respectively. 

<k 
"(ofa/ 

a» 

N = 2 

Model 

0.5 

1.51 

0.7 

Experiment 

0.51 

1.5 

0.73 

N = 3 

Model 

0.5 

1.37 

0.7 

Experiment 

0.51 

1.39 

0.69 

Dimensions 

lO-Ws"1 

I O - 3 ™ 3 

-

77 



Chapter 2 

Table 2 shows that the experimentally obtained conversion rates fit the 

initially set values well. Other tests with single mixed reactors showed relative 

errors in conversion rate of less than 6%. 

In the reactors the overall effectiveness factors were calculated to be 

between 0.28 and 0.24, and the Thiele modulus varied between 3.21 and 3.84. 

This modulus for a spherical particle with a biocatalyst obeying Michaelis Menten 

kinetics (Froment & Bischof 1979, Aris 1975), is defined as the ratio of substrate 

transport by diffusion and the substrate consumption rate : 

O _ r „ VmXSsl(Km + Ss) 

3J2(Km + Ss)De0 + ̂ H^)) 

As an example, a concentration profile for a biocatalyst bead in the last reactor 

of both series (Sb = 70.1) is shown in figure 3. This clearly shows the diffusion 

limitated use of substrate in the bead. 

CONCLUSIONS 

The modelling of immobilized biocatalyst beads has been successfully carried 

out and implemented in a model for optimal design of continuous stirred tank 

reactors in series. It is shown that, for immobilized DE32-cellulose-invertase, 

internal mass transfer limitation is of much more importance than external mass 

transfer resistance, which is negligible in this study. 

Additional work will be done on the modelling of the design of equal-sized 

mixed reactors in series containing immobilized catalysts, in order to improve the 

practical design purpose of the model. 
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s/s_ 

r / r 

Figure 3. Substrate concentration profile in a biocatalyst bead : substrate concentration 
related to the substrate concentration at the surface of the bead versus the distance from 
the center of the bead related to the radius of the bead. (Parameters are referred to in text.) 

ACKNOWLEDGEMENTS 

The authors gratefully wish to thank Dr.lr. A.C. Hulst for his evaluation of the 

model with oxygen substrate limited immobilized plant cell systems. 

NOMENCLATURE 

a„ Surface area of one bead m2 

De Effective diffusion coefficient m2.s"1 

k. Substrate mass transfer resistance coefficient in the film layer m.s1 
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Michaelis-Menten constant 

Number of reactors in series 

Distance from the centre of the bead 

Radius of the bead 

Distance from the centre of the bead where substrate 

concentration is negligible 

r(s) Reaction rate 

r'(s) Reaction rate in the gel 

S Substrate concentration 

Substrate concentration at the inlet of the first reactor 

Substrate concentration in the bulk 

Substrate concentration in the centre of the bead 

SN Substrate concentration in the last reactor of the series 

Ss Substrate concentration at the surface of the bead 

Ss' Substrate concentration at the surface of the bead, when 

external diffusion limitation is accounted for 

f Time 

Vm Maximum reaction rate 

X Gel load 

XI Amount of DE32-cellulose-invertase in one bead 

mol.m"3 

So 

Sb 

S, 

m 

m 

m 

mol.m"3.s"1 

mol.m"3.s"1 

mol.m3 

mol.m3 

mol.m3 

mol.m3 

mol.m3 

mol.m3 

mol.m3 

s 
mol.kg1.s1 

kg. m 3 

kg 

Greek symbols : 

a Dimensionless concentration (S/S0) 

e Gel holdup in reactor 

Tiexf External effectiveness factor 

r\in, Internal effectiveness factor 

n . Overall effectiveness factor 
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9 Holding time (mean residence time) s 

K Dimensionless Michaelis-Menten constant (K„/S0) 

x Dimensionless holding time (QVmr\seXI S0 ) 

§v Flow rate m3.s"1 

<|)m Generalized Thiele modulus 

REFERENCES 

1 Aris, R. The Mathematical theory of diffusion and reaction in permeable 
catalysts. Clarenoon Press, Oxford, United Kingdom, 1975. 

2 Hulst, A.C., Hens, H.J.H. and Tramper, J. Determination of the effective 
diffusion coefficient of oxygen in gel materials in relation to gel 
concentration. Biotechnol. Techn. 1989, 3, 199-204. 

3 Froment, G.F. and Bischoff, K.B. Chemical reactor analysis and design. 
Wiley & Sons, New York, USA, 1979. 

4 Klein, J., Stock, J. and Vorlop, K.D. Pore size and properties of spherical 
ca-alginate biocatalysts. Eur. J. Appl. Microb. Biot. 1983,18, 86-91. 

5 Luyben, K.Ch.A.M., and Tramper, J. Optimal design for continuous stirred 
tank reactors in series using Michaelis-Menten kinetics. Biotechnol. Bioeng. 
1982,24, 1217-1220. 

6 Manjon, A., Iborra, J.L., Gomez, J.L., Gomez, E., Bastida, J. and 
Bodalo A. Evaluation of the effectiveness factor along immobilized enzyme 
fixed bed reactors; design of a reactor with naringinase covalently 
immobilized into glycophase-coated porous glass. Biotechnol. Bioeng. 
1987,30,491-497. 

7 Perry, R.H. and Chilton, C.H. Chemical engineers handbook, fifth edition. 
McGraw-Hill, New York, USA, 1973. 

8 Tanaka, H., Matsumura, M. and Veliky, I.A. Diffusion characteristics of 
substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 1984, 26, 53-58. 

9 Toda, K. and Shoda, M. Sucrose inversion by immobilized cells in a 
complete mixing reactor. Biotechnol. Bioeng. 1975, 17, 481-497. 

10 Van den Tweel, W.J.J., de Laat, W.T.A.M., Ter Burg, N. and Tramper, J. 
Kinetic aspects of the bioconversion of 4-chlorobenzoate to 
4-hydroxybenzoate by Alcaligenes denitrificans NTB-1 immobilized in 
carrageenan. Biocatalysis, 1987, 1, 161-172. 

81 



Chapter 2 

11 Weast, R.C. (Ed.) CRC Handbook of chemistry and physics, 60th edition. 
CRC Press, Boca Raton, Florida, USA, 1979. 

12 Woodward, J. and Wiseman, A. The involvement of salt links in the 
stabilization of baker's yeast invertase; evidence from immobilization and 
chemical modification studies. Biochem. Biophys. Acta 1978, 527, 8-16. 

82 



This chapter has been submitted for publication by the authors De Gooijer, CD., Beeftink, H.H. 
and Tramper, J. 

CHAPTER 3 

OPTIMUM DESIGN OF A SERIES OF 
CONTINUOUS STIRRED TANK REACTORS 

CONTAINING IMMOBILIZED GROWING CELLS 

ABSTRACT 

The optimum design of a series of continuously operated stirred-tank reactors 

containing immobilized growing cells is described. Optimal design is defined as 

the minimal total holding time over the reactor series to achieve a certain degree 

of conversion. The analysis is made under the assumptions that there is a 

constant and equal concentration of immobilized biomass in all bioreactors along 

the series, no diffusion limitation takes place, all growth of the immobilized 

biomass will lead to an increase in suspended biomass, and that maintenance of 

the immobilized cells can be neglected. It is shown that the use of more than 

three bioreactors in series is likely to be obsolete. 
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INTRODUCTION 

The optimal design for cascades of bioreactors has been investigated by many 

researchers (Luyben & Tramper 1982, Schügerl 1982, Malcata 1988, 1989, 

De Gooijer et al. 1989, 1995, Hill & Robinson 1989, Malcata & Cameron 1992, 

Lopes & Malcata 1993). Series of bioreactors are favourable if the combination 

of a high degree of conversion, a high product concentration and an acceptable 

volumetric productivity is aimed at (Levenspiel 1972, 1979, Schügerl 1982, 

Moser 1985, Godia et al. 1987, Shimizu & Matsubara 1987, Shama 1988, 

De Gooijer et al. 1995). In general, either enzymes or autocatalytic systems with 

a constant overall stoichiometry are considered. For the latter, only papers can 

be found that discuss the optimum design of a series of bioreactors with 

suspended cells (Schügerl 1982, Hill & Robinson 1989). 

For immobilized cells only a strategy to design a single CSTR containing 

immobilized growing cells is described (Venkatasubramanian et al. 1983), 

whereby mass transport limitations were assumed to be negligible. In the 

present paper, using the same assumption, a straightforward approach for the 

optimal design of series of CSTR's containing immobilized growing cells will be 

presented. 

THEORY 

Optimal design can be defined as the minimal total holding time over the reactor 

series to achieve a certain degree of conversion, as introduced by 

Luyben & Tramper (1982) and as also used in previous papers (De Gooijer et al. 

1989, 1995), and by Hill & Robinson (1989), fully realizing the limitation of this 

definition. Mathematically this leads to: 
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d E Xj 

= 0 
M ' „ /=1...A/-1 [1] 

dSi 

with S the substrate concentration (mol.rrr3), T the residence time (s) in a vessel 

in the series, and N the number of vessels in the series. A mass balance for 

substrate over the i-th reactor in the series yields : 

_ Yxs Su - S; [2] 
' W Xi+Xim 

where Yxs is the yield of biomass on substrate (kg.mol1), u. is the specific growth 

rate (s1), Xthe biomass concentration (kg.m/3), and subscripts /' and im denote 

the /-th reactor in the series and the immobilized biomass concentration, 

respectively. In order to be able to execute the optimal design of a series of 

bioreactors, the following assumptions are made : 

i) the concentration of immobilized biomass is equal and constant in all 

bioreactors along the series, 

ii) no diffusion limitation takes place, 

iii) all growth of the immobilized biomass will lead to an increase in suspended 

biomass, and 

iv) maintenance of the immobilized cells is neglected. 

Assumptions ii) and iii) were also used by Venkatasubramanian (1983). 

Assumption iv) is in fact a prerequisite to be able to do the optimal design, since 

the overall stoichiometry of the reaction has to be constant (De Gooijer, 1995), 

and all well-accepted mathematical formulations for maintenance change the 

overall reaction stoichiometry (Herbert 1959, Pirt 1965, Beeftink et al. 1990). 

A mass balance for biomass over the ;-th reactor in the series gives : 

= X , - X M [3] 
\li(Xi + Xim) 
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A combination with equation 2, and addition over all vessels in the series 

up to the /-th reactor then yields the equation stating that along the series, 

substrate is converted into biomass : 

Xj = V X S ( S Q - Si) [4] 

with subscript 0 denoting the inlet of the first reactor of the series. Combining 

equations [2] and [4] leads to : 

T/U./ = • 
Si-: - Si [5] 

So — S / + Xjml Yxs 

Introducing Monod growth kinetics, and the following dimensionless variables 

n Si Ks 

9; = T;(imax, (X/ = ^ - , K = - = - , y = 
[6] 

So' So' VxsSo 

with Ksthe Monod constant (mol.rrv3), equation [5] can be rewritten as: 

(CCM - a,)(K + a,-) 
e, = -

[7] 

a,(1 +Y-a/) 

With the dimensionless variables, the optimal design criterion (equation [1]) turns 

into : 

dfdj 

OCX/ 

/ = 1...A/-1 
[8] 

= 0 

As with Luyben & Tramper (1982), and Hill & Robinson (1989), only two terms in 

equation [8] contain an a,. Hence, equation [8] simplifies to : 

d ( ( a / - i - a , ) ( K + g , ) ( g , - g / + 1 ) ( K + g ,+ i ) _ _ 

da.i( <x/(1+y-<x/) g / + 1 ( 1 + y - g w ) 

/=1..W-1 [9] 
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Taking the differentiation, it is found that 

(g;-i - a ; ) - ( K + g/) (1 + y - 2(X,)(K + a,)(a;-i - a,) 

a / ( 1+Y-a / ) ( a , ( 1+Y-a , ) ) 2 

| (K + a;+i) _ Q M../V-1 [10] 
a,+i(1 + y - a / + 1 ) 

Hill & Robinson (1989) report that it is possible to solve the set of equations [10] 

for all reactors in the series by means of a zero-finding routine on a PC. For the 

first vessel, aM is known, a, is estimated, and a/+1 is solved by the method of 

false position (Press et al., 1986). This is repeated for the subsequent vessels 

until aw is calculated, which value then can be compared to the known aN and a 

new value of a, is chosen, again by the method of false position. Where this 

method is valid for the three cases of Monod, Aiba and Haldane kinetics 

(Hill & Robinson, 1989), a closer inspection of equation [10] reveals, however, 

that for the pertinent case of Monod kinetics, equation [10] is quadratic 

in a/+1, and hence : 

(Q + Oy+1)±V(Q+Qy+1)2+4QK 
<XM= JO ] 

with 

- (aM - a , ) - ( K + a/) (1 + Y-2a,)(K + a,)(aM - a , ) 

a , ( 1 + Y - a , ) ( a , ( 1+Y-a , ) ) 2 [ 1 2 ] 

Here as well a, is used as estimator. Since for the first vessel <xM is known 

(aM = a0 = 1), a, is estimated, and aM can be calculated by equations [11] and 

[12]. This is repeated for all dimensionless substrate concentrations in the 

subsequent vessels until ocN is calculated. This value can then be compared with 
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the known aN, after which a, can be changed, until a minimal error between the 

calculated and known aw is found. This is done in two ways : for values of the 

dimensionless immobilized biomass concentration y larger or equal to 1 the 

interval with possible values of a,, i.e. [0..1], is constantly halved until the aNthat 

is calculated has a difference with the desired aw of less than 10"6. For values of 

the dimensionless immobilized biomass concentration y smaller than 1, it was 

found that the case can arise where equation [11] has no roots (in other words : 

a negative discriminant), causing that there is no longer information available to 

decide how to halve the interval. Therefore, the interval in which the 

dimensionless substrate concentration in the first reactor of the series a, can lie, 

i.e. [0.1], is evaluated stepwise until a minimal difference between the calculated 

and desired aN is found. This error was found to be in the range of 10"7-10"8. 

After the calculation of the intermediate dimensionless substrate 

concentrations, the dimensionless residence times can easily be calculated by 

equation [7]. 

Hill & Robinson (1989) introduced the concept of <xcrit with which the 

feasibility of optimal design of series of bioreactors can be evaluated : if the 

effluent concentration aimed for, ocw, is smaller than acrjt, series of bioreactors are 

superior to a single CSTR. For the pertinent case of Monod kinetics it can be 

derived that a^, can be calculated according to (Hill & Robinson, 1989, 

De Gooijer et al. 1995): 

a-cnt = V K 2 + K + Ky - K l 

For all values of the parameters investigated here aN was smaller than acrjt. 
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RESULTS AND DISCUSSION 

For the pertinent case of Monod kinetics, three parameters are of interest : the 

dimensionless degree of conversion of the series aN, the dimensionless Monod 

constant K, and the dimensionless immobilized biomass concentration y. Figures 

1-3 show the normalized dimensionless total residence time of a series (that is 

the total dimensionless residence time of the series divided by the dimensionless 

residence time of a single vessel with the same aN) versus the number of 

reactors N of the series for these three parameters. 

Normalized dimensionless residence time 
1 

6 7 8 9 10 
Number of reactors N 

Figure 1 : Normalized dimensionless residence time (£8 ,- / 8, ) versus the number of 
CSTR's in series. Parameter is the dimensionless substrate concentration at the exit of the 
series, <xN, with y = 10 and K = 0.1 
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Normalized dimensionless residence time 
1 

6 7 8 9 10 
Number of reactors N 

Figure 2A : Normalized dimensionless residence time (EG , / 0, ) versus the number of 
CSTR's in series. Parameter is the dimensionless Monod constant, K , with y = 10 and 
aN = 0.01 

From figures 1-3 it is clear that the total residence time of the series is 

decreasing with an increasing number of reactors. However, the graphs also 

show that it is hardly worthwhile to consider the use of more than two or three 

reactors in series, as also stated by Hill & Robinson (1989). 

Figure 1 shows that the total residence time of the series as compared to a 

single vessel increases with increasing outlet concentration aN, which is 

consistent with experimental results (Bakker et al., 1995). By far the largest 

decrease in residence time by adding a bioreactor in the series is attained by 

using two reactors instead of one. The same is true for other values of the 
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Normalized dimensionless residence time 
1 

7 8 9 10 
Number of reactors N 

Figure 2B : Normalized dimensionless residence time (£6 , / 9, ) versus the number of 
CSTR's in series. Parameter is the dimensionless Monod constant, K , with y = 10 and 
exw = 0.05 

dimensionless Monod constant K, e.g. 1 or 10, as shown in figures 2A and 2B for 

aN = 0.01 and 0.05, respectively. 

From figure 2 it can be concluded that the decrease in total dimensionless 

residence time is larger at increasing K, that is at higher Monod constants or 

lower substrate concentrations at the inlet of the series. Since a lower K means 

approaching zero-order kinetics, this was to be expected. The decrease is more 

pronounced at higher degrees of conversion. 
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Normalized dimensionless residence time 
1 

0.01, 0.1 

1.0 
10, 100, 1000 

1 2 3 4 5 6 7 8 9 10 
Number of reactors N 

Figure 3A : Normalized dimensionless residence time (16 , / 9, ) versus the number of 
CSTR's in series. Parameter is the dimensionless immobilized biomass concentration, y , 
with K = 0.1 and aw = 0.01 

In figure 3A and 3B the effect of varying the dimensionless immobilized 

biomass concentration y is depicted. Interestingly, both graphs indicate the 

existence of both a set of minimal and a set of maximal values of y. For high 

values of y, the contribution of suspended cells to the reaction is minimal and 

hence the reactor system approaches a catalytic system. For low values of y, the 

contribution of the immobilized biomass is low, in other words, the situation of 

suspended cells is approached. For the latter case, Hill & Robinson (1989) 

presented the design procedure. The top lines in figures 3A and 3B are identical 

to their lines for suspended cells. Hill & Robinson (1989) also discuss the optimal 

design of a series of bioreactors with biomass in the influent, which is 
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Normalized dimensionless residence time 
1 

0.01, 0.1 

1.0 
10 

0.4-

0.2-

100, 1000 

1 2 3 4 5 6 7 8 9 10 
Number of reactors N 

Figure 3B : Normalized dimensionless residence time (£6 , / 9, ) versus the number of 
CSTR's in series. Parameter is the dimensionless immobilized biomass concentration, y, 
with K = 0.1 and aN = 0.05 

mathematically comparable to the case discussed here. The point in figure 3A 

where N=3 and y = 1 matches exactly with their data, indicating that the design 

procedure and mathematical solution followed here are probably correct. 

Figures 3A and 3B show that a change in dimensionless immobilized 

biomass concentration y has not as large an influence on the ratio of the total 

dimensionless residence time of the series and the residence time of a single 

vessel as a change in dimensionless Monod constant K (Figure 2A and 2B) or a 

change in dimensionless outlet concentration <xw (Figure 1) have. 

In this paper only a steady-state situation is described. For a more 

thorough description of mass transfer and simultaneous substrate consumption 
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and growth of immobilized cells, a more detailed approach has to be used, as 

given by the dynamic models described by Nakasaki et al. (1989), 

Monbouquette et al. (1990), De Gooijer et al. (1991) and Wijffels et al. (1991). 

Whether these models, however, will result in a constant immobilized biomass 

concentration in each vessel along the series, as assumed in this paper, remains 

to be investigated. 

CONCLUSIONS 

For the case of immobilized growing cells, the largest decrease in residence time 

by adding a bioreactor in the series is attained by using two reactors instead of 

one reactor. The use of more than three bioreactors in the series has only a 

minor effect on the total dimensionless residence time. 

The decrease in total dimensionless residence time is larger at higher 

dimensionless Monod constants K. Also, the decrease is more pronounced at 

higher degrees of conversion. For low values of the dimensionless immobilized 

biomass concentration y the situation of suspended cells is approached. The 

effect of y on the normalized dimensionless residence time of the series is less 

pronounced than the effect of K or aN. 

The optimal design for a series of CSTR's containing immobilized growing 

cells is shown to be possible, under the assumptions of a constant immobilized 

biomass concentration, no diffusion limitation, and negligible maintenance 

conditions. 
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NOMENCLATURE 

a dimensionless substrate concentration (S / S0) 

y d imensionless immobil ized biomass concentration (Xi„/YxsS0) 

9 dimensionless residence t ime ( u.max T,) 

K d imensionless Monod constant (KJS0) 

H specific growth rate s"1 

T residence t ime s 

N number of vessels in a series 

S substrate concentration mol.m"3 

X b iomass concentration kg.m"3 

Yxs y ield of b iomass on substrate kg.mol'1 

Subscripts 

0 inlet of a series 

/' ;'-th vessel in a series 

im immobilized 

max maximum 

N last vessel in a series 
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CHAPTER 4 

GROWTH AND SUBSTRATE CONSUMPTION OF 
NITROBACTER AGILIS CELLS IMMOBILIZED IN 

CARRAGEENAN: PART 1. DYNAMIC MODELLING 

ABSTRACT 

The modelling of the growth of Nitrobacter agilis cells immobilized in 

K-carrageenan is presented. A detailed description is given of the modelling of 

internal diffusion and growth of cells in the support matrix in addition to external 

mass transfer resistance. The model predicts the substrate and biomass profiles 

in the support as well as the macroscopic-oxygen consumption rate of the 

immobilized biocatalyst in time. The model is tested by experiments with 

continuously operated air-lift loop reactors, containing cells immobilized in 

K-carrageenan. The model describes experimental data very well. It is clearly 

shown that external mass transfer may not be neglected. Furthermore, a 

sensitivity analysis of the parameters at their values during the experiments 

revealed that apart from the radius of the spheres and the substrate bulk 
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concentration, the external mass transfer resistance coefficient is the most 

sensitive parameter for our case. 

INTRODUCTION 

The application of immobilized, growing cell systems has become of increasing 

interest in the past few years. Examples of applications are immobilized yeast 

cells for ethanol production (Seki & Furusaki 1985, Godia et al. 1987, Nakasaki 

et al. 1989), and producing acrylamide from acrylonitril with Corynebacterium 

(Furusaki 1988). Traditionally, biofilms are used in wastewater treatment 

(Siegrist & Gujer 1987, Suidan et al. 1987, Canovaz-Diaz & Howell 1988, Saez 

& Rittmann 1988) and in this field the use of entrapped nitrifying bacteria is 

gaining importance (Wijffels & Tramper 1989). 

Many researchers have reported the phenomenon of growth of cells near 

the surface of immobilized particles, whereas in the centre of these particles no 

growth, or even decay of cells occurred (Sato & Toda 1983, Toda & Sato 1985, 

Mahmoud & Rehm 1986, Karel & Robertson 1989, Wijffels & Tramper 1989). As 

a result of this non-homogeneous growth, the characteristics of the solid phase 

will alter, thereby affecting, among other things, the effective diffusion coefficient 

(Hiemstra et al. 1983, Monbouquette & Ollis 1986, Chen & Huang 1988, 

Gosmann & Rehm 1989, Scott et al. 1989). 

The main feature of immobilized growing systems is the high attainable 

concentration of active biocatalyst in the solid phase, which, combined with a 

high reactor load, can lead to small reactor volumes compared to cell 

suspensions. A major drawback of these systems can be considered to be the 

rather troublesome mathematics involved with the simultaneous diffusion of 

substrate and/or product(s) and the growth of the immobilized cells. Steady-state 
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models for growing cells (Monbouquette & Ollis 1986, Suidan et al. 1987, 

Andrews 1988) can be quite satisfactory for design purposes but may fail to 

describe the start-up phase and the response to changing conditions in the 

reactor system. In recent work, Nakasaki et al. (1989) and Sayles & Ollis (1989) 

presented a dynamic model describing the transient growth of immobilized cells. 

However, in both studies external mass transfer resistance was neglected, 

whereas Nakasaki et al. (1989) also did not consider a biomass-dependent 

effective diffusion coefficient. Only recently, Monbouquette et al. (1990) 

presented a model that included both external mass transfer and a 

biomass-dependent diffusion coefficient. 

In this article we describe the modelling of the growth of immobilized cells, 

accounting for external mass transfer resistance and simultaneous diffusion and 

consumption of substrate for respiration and growth, using a biomass 

concentration-dependent diffusion coefficient. The growth model used allows a 

negative net growth, and the biomass concentration is limited to a maximum 

value. The model has been tested by experiments in continuously operated 

air-lift loop reactors with Nitrobacter agilis cells immobilized in K-carrageenan. 

THEORY 

General consideration 

In many aerobic systems oxygen is the limiting substrate, due to the rather low 

solubility. For our case, oxygen transfer can be divided into four different 

regions, as illustrated in figure 1. Oxygen has to be transferred (1) from the 

(ideally mixed, with a negligible stagnant gas layer) gas phase through a 

stagnant liquid layer to the (ideally mixed) bulk phase, (2) from the bulk phase 
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through a stagnant layer adjacent to the solid phase, (3), in the solid phase to 

the cells, and (4) into the cells to the enzyme complex. 

2 3 4 

Cell 

Liquid phase 

Figure 1. Oxygen transfer in an air-lift loop reactor with immobilized cells. 

In order to define the rate-limiting steps, we calculated the characteristic times 

for each step, as presented in Table 1. 

Table 1. Regime analysis for oxygen transfer. 
7" is the time constant (s), a the specific surface area (m'1), kls and kla the mass transfer 
coefficients in the stagnant layers, D, the effective diffusion coefficient in the gell and in 
the cell, r„ the radius of the biocatalyst beads, and rc the radius of the cells. 

STEP 

1 

2 

3 

4 

TIME CONSTANT (S) 

172 

35 

66 

10^ 

CALCULATED FROM 

r = ^ 

7 = ^ 

¥=01 

£§1-0.1 
't) 

REFERENCE 

Chang & Moo-Young 1988, 
Moser 1988; see also Appendix 

Sanger & Deckwer 1981, Moser 
1988; see also Appendix 

Furusaki 1989 

Furusaki 1989 

Also, the possibility of exhaustion of oxygen from the gas bubble has to be 

considered. As for our case, the residence time of the air bubbles (1.2 s) is 

much lower than the characteristic time for exhaustion (35 s; Appendix) oxygen 
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depletion is quite unlikely. With scale-up, however, the air bubble exhaustion 

might become considerable (Oosterhuis 1984). 

The diffusion of oxygen into the cells is fast in comparison to diffusion 

through the stagnant layers and in the solid phase. In our experimental set-up, 

the bulk concentration of substrate was kept constant. Therefore, in this study 

we do not consider mass transfer from the gas phase, and neglect diffusion 

within the cells. From table 1, it might be concluded that diffusion through the 

film layer can be neglected also, and the only limiting step would be diffusion 

within the solid phase. However, since the cells will grow in the outer shells of 

the bead, a biofilm develops, and the distance over which substrate is 

transported is smaller than the radius of the bead. Hence, the value for the 

radius used in table 1 should be decreased. If a radius of 100 urn, being a typical 

film thickness, is substituted, we find a characteristic time of 0.6 s. This indicates 

that, for our case, external diffusion limitation should be considered. 

Growth model 

Apart from the logistic growth model (Mulchandani et al. 1988), two models are 

often used to describe the growth of cells. The first model: 

rx = (ji-mYX8yx [2] 

is well-known as the Herbert model (Herbert, 1959), where rs is the consumption 

rate of substrate (mol.kg1.s1), (i the specific growth rate (s1), Yxs the yield 

coefficient (kg.mol"1), Xthe biomass concentration (mol.m3), rx the growth rate of 
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the biomass (kg.rrrV), and m the maintenance coefficient (mol.kg1.s1). The 

second model: 

rs = (^-X+m)X [3] 
' xs 

rx = \iX [4] 

is the often used Pirt model (Pirt, 1965). In both models the Monod equation is 

used : 

_ Umax S [5] 

^~ Ks + S 

where \x.max is the maximum specific growth rate (s"1), S the substrate 

concentration (mol.nr3), and Ks the Monod constant (mol.nr3). 

Both models, however, have some major drawbacks, as stated by Beeftink 

et al. (1990): the Herbert model i) features a maximum specific growth rate that 

cannot be measured directly and ii) directs that cells cover their maintenance 

requirements from biomass, even in the presence of excess substrate, whereas 

the Pirt model shows i) a growth rate that is always positive or zero, and 

ii) a non-zero substrate consumption even if no substrate is available. 

In the case of growing immobilized cells, substrate depletion near the 

centre of the biocatalyst bead may occur, whereas a high substrate 

concentration will be available near the surface. Hence, a growth model is 

needed that is capable of describing both situations, allowing a negative net 

growth at low substrate concentrations and an observable maximum growth rate 

at high substrate concentrations. As Pirt's extended model (Pirt, 1987) would 

introduce an extra variable, we use the growth model suggested by Beeftink 

et al. (1990): 
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iLy+mXY—ÎL— i [6] 

rx = H X - m Y x s X ( 1 - ^ - ^ ) N 

This is a combination of the models of Pirt and Herbert. At low substrate 

concentrations, this model will perform as the Herbert model, while at high 

substrate concentrations it acts as the Pirt model. 

The model is based on the consumption of one limiting substrate only. For 

our case, nitrification, both nitrite and oxygen are substrates. Andrews (1988) 

showed that the component with the lowest product of diffusion coefficient, yield 

factor and concentration in the liquid phase is rate limiting. For our case, oxygen 

is always rate limiting (Wijffels et al. 1991). 

Diffusion coefficient 

As stated before, many researchers proved that the effective diffusion 

coefficient is affected by the concentration of biomass in the support material. 

The theoretically most correct way of describing this phenomenon is by: 

De = Do ? t8] 

where T is the tortuosity (-), 0 is the porosity (-) of the gel matrix, and D0 is the 

diffusion coefficient in water (m2.s~1). This model, however, will introduce two, 

hardly determinable, variables. Therefore, a more convenient relation was 

proposed by Scott et al. (1989), using a simple second-order polynomial: 

De = DeigO+bf+cf2) [9] 
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where fis the volumetric fraction of the entrapped cells on a wet basis (-), Deg is 

the effective diffusion coefficient in the gel matrix without cells (m2.s1), and b 

and c are appropriate constants. A more fundamental approach is given by 

Wakao& Smith (1962): 

£ = M1-W [10] 

Do 

where k1 is the ratio of the diffusivities in the gel and in water (-), and k2 

corresponds to the specific cell volume (m3.kg1). This model is also referred to 

as the random-pore model. 

The latter two relations use the specific cell volume. Recent work of 

Stewart & Robertson (1989) and Karel & Robertson (1989) suggests that cells 

can grow under considerable pressure, thereby decreasing their specific cell 

volume. As in the support matrix the available space for growth will be limited, 

the specific cell volume may be altered, and therefore its accurate determination 

is troublesome. 

The determination of the effective diffusion coefficient at high biomass 

concentrations is also difficult: a homogeneous high biomass concentration can 

hardly be reached, and for a correct determination the cells must be intact, and 

therefore a non-consumable compound with the same physical properties as the 

substrate must be found, which is difficult. Alternatively, using oxygen as 

diffusing compound, the respiration of the cells must be stopped, and then the 

properties of the cells, and with that the effective diffusion coefficient, may be 

altered. Even if a suitable compound can be found, the relative error in the 

determination of the diffusion coefficient in biocatalyst beads is considerable 

(Itamunoala 1989). 
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In order to account for the dependency of the effective diffusion coefficient 

on the biomass concentration, we have implemented a relationship that 

generates an effective diffusion coefficient that varies linearly with the biomass 

concentration between the diffusion coefficient in the gel and zero. The effective 

diffusion coefficient will become zero when all available space in the gel matrix is 

occupied by biomass, and if no biomass is present, the effective diffusion 

coefficient becomes equal to the diffusion coefficient in the gel. Mathematically 

this leads to: 

De = D e , g (1 -3^- ) t11] 

where Xpmax is the maximum attainable biomass concentration, that would be 

reached if the cells could grow everywhere in the support matrix where space is 

not occupied by the gel material (kg.rrr3). 

Calculations 

From a differential mass balance over a biocatalyst bead in which simultaneous 

diffusion and consumption of substrate takes place, assuming that : 

i) there is only a radial concentration gradient, 

ii) no convective transport occurs, 

iii) the effective diffusion coefficient is constant within one time step and 

within one step in the integrating algorithm, 

the following equation can be found : 

n / 1 d ,J3. OS,.,. / , dS 
De(^â? ( /V ) ) = ^ + ^ [12] 
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where t is the time (s), r"s is the substrate consumption rate of the cells in the gel 

(mol.kg1.s1), and r is the distance from the centre of the bead (m). Boundary 

conditions for equation [12] are : 

S = SS atr=rb [13] 

^ = 0a f r=0or r= r> '141 

where S5 is the substrate concentration at the surface of the bead (mol.m3), and 

r, is the radial position where the substrate concentration approaches zero. 

For the set of equations [5-7] and [12] no analytical solution can be found. 

In order to facilitate a numerical solution, we treat the biomass growth and 

substrate consumption process separately. This is a valid approach as long as 

the time scale for growth is larger then the time scale for consumption 

(Gujer& Boiler 1989, Karel & Robertson 1989). For our case, the characteristic 

time for growth is 105 s (calculated from 1/nmax), and for substrate consumption 

66 s (from table 1; characteristic time for diffusion). Hence, if i) time is 

discretisized, ii) a pseudo-steady-state substrate distribution inside the support 

matrix is assumed within one time step, equation [12], after partial differentiation 

and substitution of equation [6] reduces to: 

d2S VLX(t)/Yxs + mX(f)(S/Ks + S) 2 dS [15] 
dr2 De r dr 

We have solved Equation [13] numerically using a second-order embedded 

Runge-Kutta algorithm (Hairer et al. 1986), with Newton's method to satisfy the 

boundary conditions. Starting with a small value for r, and S, this results in a 

substrate concentration profile in the bead and a computed substrate 

concentration S, and a dS/dr at r = rh. 

108 



Modelling immobilized growing cells 

In order to account for external mass transfer resistance, the latter can 

(optionally) be used for calculating a S's by means of the equation representing 

the film theory: 

S s = Sb - 7— 
DedS [16] 
ki,sdr r-_ 

'b 

with S„ the substrate concentration in the bulk of the solution (mol.rrr3). While 

varying either r, or Sr, equations [13] and [14] are solved iteratively until the Ss 

and S's match, after which the new biomass distribution is calculated according 

to equation [7], 

Calculate Substrate profile (Eq. 11,13 -16) 

tv = fixed 
Sf = variable 

• Iterate -

u = variable 
Sf = fixed 
• Iterate -

Calculate Biomass profile (Eq. 7, 17) 
Increase time 

Figure 2. Calculation of substrate and biomass concentration profiles in a biocataiyst 
bead. 
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The calculation scheme, including the procedure used if the substrate 

concentration becomes essentially zero before the centre of the support matrix is 

reached, as presented earlier (De Gooijer et al. 1989), is illustrated in figure 2. 

The software program incorporating the model presented here is written in 

Pascal on an HP vectra QS with 80387 mathematical coprocessor. An average 

run from time 0 to 1000 h requires about 4 minutes CPU time, which is more 

than thousand times faster than the program presented by Monbouquette 

(1990). This is probably caused by our much larger time steps, and the fact that 

we do not calculate biomass fluxes. 

Maximum biomass concentration 

A straightforward application of equation [7] would lead to infinitively high 

biomass concentrations near the surface of the bead. As this is impossible, a 

restriction is added to this equation: 

X<Xmax [17] 

where Xmax is the observable maximum biomass concentration inside the support 

matrix (which is not the same as Xpmax). This is, in a different notation, the same 

restriction as used by Toda and Sato (1985) and the same as used by 

Sayles & Ollis (1989) and Monbouquette et al. (1990). Nakasaki et al. (1989) did 

not explicitly consider this in their mathematical description, but mention the use 

°f Xmax in their text. As the substrate consumption does not decrease when X 

has reached the value of Xmax according to equation [1], the substrate uptake by 

the cells may be used for a waste metabolism as suggested by McLaren (1970) 

or the cells may continue to grow and leak out of the support matrix as described 
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by Monbouquette & Ollis (1988), Cheng & Huang (1988), Sayles & Ollis (1989), 

and Monbouquette et al. (1990). In the latter case, Shiraishi et al. (1989) stated 

that the substrate consumption of free cells may be neglected if the dilution rate 

in the reactor is much larger than the dilution rate at washout conditions, as in 

our case. This has been experimentally confirmed (Wijffels et al. 1991). 

RESULTS AND DISCUSSION 

General Model 

A typical result of the model is shown in figure 3. In the transient growth of 

immobilized cells, 4 phases can be recognized. 

representation of 
gel bead 

Figure 3. Typical model predictions for growth of immobilized cells. Substrate (a) and biomass 
concentrations (b) versus radial position r at various times. The external layer is represented 
byd. 

In phase 1, there is hardly any diffusion limitation, and homogeneous growth 

occurs. Phase 2 shows inhomogeneous growth, as in the centre of the sphere 

substrate depletion aggravates. In phase 3, the substrate hardly reaches the 

core of the sphere, so biomass decays, whereas at the outer shell the biomass 

concentration reaches its maximum. In phase 4 this process of growth and 
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decay continues and a distinct biomass film develops, whereas the substrate 

concentration in the centre of the sphere increases. At the end time of the 

simulation a distinct biomass film near the surface of the bead has developed, 

whereas the substrate concentration inside the bead corresponds to 

maintenance level of zero net growth, which is the same result as reported by 

Sayles & Ollis (1989). By substituting r(x) = 0 in equation [7], this value can be 

calculated from: 

s mYxsKs [18] 
Umax 

Figure 3 clearly shows the increasing importance of external diffusion limitation 

in time. At the end time of the simulation, the concentration of substrate at the 

surface of the bead is only half the bulk concentration. 

Model evaluation 

The model was verified with Nitrobacter agilis cells immobilized in 

K-carrageenan, as presented by Wijffels et al. (1991). Immobilized cells were 

kept in an air-lift loop reactor at sufficiently high nitrite concentrations and 

constant oxygen concentrations, so that oxygen was the limiting substrate. At 

three different oxygen concentrations the macroscopic oxygen consumption 

rates were determined in time by measuring the nitrite consumption rate, and 

compared to model predictions. Parameters used in the model are given in table 

2, and results are shown in figure 4. 
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3 »-1 Macroscopic oxygen consumption rate (mol.m s ) 

0 . 0 0 6 

0 . 0 0 4 

0 . 0 0 2 

4 0 5 0 
Time (d) 

Figure 4. Experimental evaluation of the model (Wijffels et al. 1991). Macroscopic 
consumption rates at three different oxygen concentrations versus time. Lines are model 
predictions, markers are experimental data. Experiments were performed at oxygen 
concentrations of 0.012 mol.nv5 (•), 0.038 mol.m3 ( • ) and 0.08 mol.m3 (•). 

As shown in figure 4, the curves predicted by the model presented here match 

the experimental results very well. 

Sensitivity analysis 

To establish the sensitivity of the model for the different parameters, a sensitivity 

analysis was made around the set point values used in the evaluation (table 2). 

Each parameter was varied in the range 0.5-1.5 times the setpoint value, 

keeping all other variables constant. The predicted macroscopic consumption 

rate (mol.m"3
bead.s

1) at steady state was used to compare the predictions, 
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Table 2. Parameters used in the model evaluation. 
Data are from Wijffels et al. (1991). Here, Af is the time step (s) for the growth process 
(equation [7]), and X0 is the initial biomass concentration (mol.nr3). 

PARAMETER 

* i . 
D. 

h 

Xo 
y 
yxp,max 

'end 

At 

Yxs 

M-max 

Ks 

m 
Y 
nmax 

sb 

VALUE 

3.7 10-5 

1.58 10"9 

1.02 10"3 

4.5 10"3 

950 

42 

1 

1.16 10-3 

1.0 10"5 

1.7 10"2 

1.1 10"3 

11 

0.012/0.038/0.08 

UNITS 

m.s1 

m2.s'1 

m 

kg.rrr3 

kg.nr3 

d 

d 

kg.mol"1 

S'1 

mol. m3 

mol.kg1.s'1 

kg.rrr3 

mol. m3 

realizing that other criteria can be used. Results are presented in figure 5. Figure 

5A clearly shows the high sensitivity of the model for the radius of the beads and 

the substrate bulk concentration. At other oxygen bulk concentrations the same 

model behaviour was found (results not shown). The model showed no response 

at changing the time step size over the same range, which indicates that the 

assumption that the substrate consumption process and growth may be treated 

separately, was valid. Varying the maximum attainable biomass concentration 
xp,max. which only appears in equation [3], did not result in a change in predicted 

substrate consumption rate, which can, for our case, be explained by the 

relatively low maximum biomass concentration Xmax. 

At all oxygen bulk concentrations, the model showed no response to a 

change in initial biomass concentration, indicating that at these set points, the 

model is capable of finding the steady state rather well. 

114 



Modelling immobilized growing cells 

Varying the end time of the simulation showed no response for the high 

bulk concentrations, whereas at the low oxygen concentration setpoint a 50 % 

Oxygen consumption rate (-) 
2 

Oxygen consumption rate (-) B 

0.6 0.8 1 1.2 1.4 

Parameter value (-) 

1.2 

1 

0.8 

\^S 

i ^ ^ ^ s ^ jS II.III.IV-

~*~ _ ^ l 

'^^^ s v 

0.6 0.8 1 1.2 1.4 

Parameter value (-) 

Oxygen consumption rate (-) 

1 1.2 1.4 

Parameter value (-) 

Oxygen consumption rate (-) 

1.2 

0.8 

0.6 

. , 

^ ^ ^ ^ ^ 

^ / ^ 

' ' ' — • 1 — 

0.6 0.8 1 1.2 1.4 

Parameter value (-) 

Figure 5. Sensitivity analysis of the model. The oxygen bulk concentration is 
3.8 102 mol.m"3 in (A) and (B) and 1.2 102 and 8.0 10~2 mol.m"3 in (C) and (D), respectively. 
(A-D) Oxygen flux is plotted versus the dimensionless parameter value. In (A) line 1 is the 
bulk concentration, line 2 is the radius, and the shaded area represents all other 
parameters (B-D) : I is the mass transfer coefficient in the film, II is the maximum specific 
growth rate, III is the diffusion coefficient, IV is the maximum biomass concentration in 
the gel, V is the yield coefficient, and VI is the Monod constant. 
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smaller flux was predicted at the lowest end time, and from the set point to a 

higher end time no change occurred, indicating that at low bulk concentrations, it 

takes longer to reach the steady state, probably due to the low growth rate. 

Varying the maintenance coefficient at high bulk concentrations influenced the 

substrate flux less than 1 %, whereas at a low bulk concentration the predicted 

flux decreased by 10 % at a 50 % higher maintenance coefficient. This is a 

result of the use of equation [6], where the second term will become more 

important compared with the first term at concentrations in the same magnitude 

as Ks, i.e., at the low oxygen bulk concentration. 

The similarity between figures 5B and 5D indicates that at higher substrate 

bulk concentrations, the entire process becomes diffusion controlled, whereas at 

low substrate bulk (figure 5C) concentrations the kinetics gain importance. From 

figure 5 it is clear that apart from the radius and the bulk concentration, the most 

important parameter is the mass transfer coefficient in the stagnant layer, which 

indicates the importance of external mass transfer resistance. 

The model was also tested without external diffusion limitation. 

Steady-state oxygen consumption rates are given in table 3 where it is clearly 

shown that for our case, external mass transfer resistance is not negligible. 

Table 3. Oxygen consumption rates with and without external diffusion limitation. 

Oxygen bulk concentration (mol.m3) 

Oxygen consumption rate with film theory 
(mol.m'3.s'1) 

Oxygen consumption rate without film 
theory (mol.nr3.s~1) 

Ratio (dimensionless) 

1.2 10"2 

8.1 10^ 

2.7 10"3 

3.3 

3.8 1er2 

2.8 10'3 

7.0 10-3 

2.5 

8.0 10'2 

5.6 10-3 

1.2 10"2 

2.1 

116 



Modelling immobilized growing cells 

CONCLUSIONS 

The modelling of immobilized Nitrobacter agilis cells was successfully carried 

out. Measured macroscopic oxygen consumption rates matched well with model 

predictions at three different oxygen concentrations. The model shows, at the 

values of the parameters used in this case, the highest sensitivity for the 

substrate bulk concentration, the radius of the biocatalyst beads, and the 

external mass transfer resistance coefficient. More research is under way to 

verify the model prediction of the substrate concentration profile as proposed by 

De Beer et al. (1988) and to extend the model to an overall reactor model. 

APPENDIX: CALCULATION OF THE CHARACTERISTIC TIMES 
FOR AIR BUBBLE EXHAUSTION AND OXYGEN TRANSFER 

As from our experiments the oxygen consumption rates are known at three 

different oxygen bulk concentrations, kß values for mass transfer from the gas 

bubbles can be calculated, since in steady state, the oxygen consumption rate 

must equal oxygen transfer: 

ra = k,.ga{Sb-Sb) I19l 

with: 

„ , - . £ ._§_ [2°] 
a ' ~ c / b 1 -s 

The characteristic time for oxygen transfer from the gas bubbles to the 

liquid phase can be calculated from (Oosterhuis 1984, Seki & Furusaki 1985): 
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I transfer = T ~~~ 
Kl,g3l 

The characteristic time for exhaustion of the gas bubble can be calculated 

from (Oosterhuis 1984, Seki & Furusaki 1985): 

' exhaustion = ~j~ ~ 

with: 

a _ 6_ [22] 

Characteristic times calculated from our experiments, using H = 40 m3.m"3, 

e = 0.5 %, and db = 0.5 mm are given in table 4. 

Table 4. Characteristic times for oxygen transfer and exhaustion at three different bulk 
concentrations. 

s6 

r, 

s\ 
' exhaustion 

' transfer 

1.2 102 

1.3 10" 

3.6 10"2 

37 

185 

3.8 10-2 

4.4 10" 

1.2 10-1 

37 

181 

8.0 10"2 

8.8 10" 

2.1 10-1 

30 

151 

mol.m3 

mol.m^.s'1 

mol.m3 

s 

s 

As can be seen from Table 4, the characteristic time for exhaustion of the 

gas bubbles can be estimated to be on average 35 s, and for oxygen transfer 

this is on average 172 s. These values lie well within the range of values that 

can be found using correlations for /c, reported in literature (Shah et al. 1982). 
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NOMENCLATURE 

a specific surface area of a sphere m"1 

ag specific surface area of the gas phase m"1 

a, specific surface area of the liquid phase nrr1 

b constant in equation [9] 

c constant in equation [9] 

db diameter of air bubbles m 

D0 diffusion coefficient in water m2.s"1 

De effective diffusion coefficient m2.s"1 

Deg effective diffusion coefficient in gel m2.s'1 

f volumetric cell fraction 

H Henry coefficient m3.m3 

k1 ratio of the diffusivities in gel and in water 

k2 specific cell volume m3.kg"1 

klg substrate mass transfer resistance coefficient in the film 

layer near the gas phase m.s"1 

kls substrate mass transfer resistance coefficient in the film 

layer near the solid phase m.s"1 

Ks Monod constant mol.nr3 

m maintenance coefficient mol.kg1.s"1 
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r d istance f rom the centre of the bead m 

rb radius of the bead m 

rc radius of the cell m 

r, d istance f rom the centre of the bead where substrate 

concentration is negligible m 

rs macroscopic consumption rate of substrate mol.m"3.s"1 

r"s substrate consumption rate in the gel mo l .m 3 . s 1 

rx b iomass growth rate kg.m"3.s"1 

S substrate concentration mol.m"3 

Sb substrate concentration in the bulk mol . m 3 

S'b saturation concentration (of oxygen) in the liquid mo l .m 3 

S, substrate concentration in the centre of the bead mo l .m 3 

Ss substrate concentration at the surface of the bead mol.m"3 

S'5 substrate concentration at the surface of the bead, when 

external diffusion limitation is accounted for mo l .m 3 

f t ime s 

tend end t ime of the simulation s 

X b iomass concentration kg.nr3 

X0 b iomass concentration at t = 0 kg.nr3 

Xmax observable maximum biomass concentration kg.nr3 

Xp m a xmaximum attainable biomass concentration kg .m 3 

Yxs yield coefficient kg.mol"1 

E gas hold-up 

H specific growth rate s 1 

\imax maximum specific growth rate 

0 porosity 

T tortuosity 

,-i 
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7" characteristic time s 

Af time step size for biomass growth (Equation [7]) s 
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CHAPTER 5 

GROWTH AND SUBSTRATE CONSUMPTION OF 
NITROBACTER AGILIS CELLS IMMOBILIZED IN 
CARRAGEENAN: PART 2. MODEL EVALUATION 

ABSTRACT 

A dynamic model, which predicts substrate and biomass concentration profiles 

across gel beads and from that the overall substrate consumption rate by the gel 

beads containing growing cells, was evaluated with immobilized Nitrobacter 

agilis cells in an air-lift loop reactor with oxygen as the limiting substrate. The 

model predictions agreed well with the observed oxygen consumption rates at 

three different liquid phase oxygen concentrations. 

Image analysis showed that 90 % of the immobilized cells after 42 days of 

cultivation was situated in the outer shells in a film of 140 ^m, while the bead 

radius was about 1 mm. The maximum biomass concentration in the outmost 

film of 56 \xm was 11 kg.nr3 gel. 
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INTRODUCTION 

Nitrification is a problematic process within waste water treatment due to the 

slow growth rate of the nitrifying organisms. The main species within this group 

are Nitrosomonas and Nitrobacter, which successively oxidize ammonia to nitrite 

and nitrate. 

In previous studies we have shown that nitrifying bacteria can be retained 

in continuous-flow bioreactors by immobilization in a gel with maintenance of 

their nitrifying capacities (Van Ginkel et al. 1983, Tramper et al. 1985, Tramper 

1985, Tramper & De Man 1986, Tramper & Grootjen 1986, Tramper 1987, 

Wijffels & Tramper 1989). It was demonstrated that diffusion limitation increased 

with increasing amounts of immobilized cells (Van Ginkel et al. 1983, 

Tramper & De Man 1986). It was also shown that both Nitrosomonas europaea 

(Wijffels & Tramper 1989) and Nitrobacter agilis (Tramper & Grootjen 1986) can 

grow within the gel. For immobilized Nitrosomonas europaea, the effect of 

diffusion limitation on growth was described qualitatively (Wijffels & Tramper 

1989). Initially, the cells were growing homogeneously across the beads, but as 

growth proceeded, a biomass density gradient developed, eventually resulting in 

a biofilm just below the surface of the gel beads. Accordingly, the reaction rate, 

which was originally limited by the kinetics of the cells, became diffusion limited. 

For non-growing systems, substrate profiles across the beads and 

substrate fluxes into the beads were modelled and validated by De Gooijer et al. 

(1989). A homogeneous distribution of enzyme across the beads was assumed. 

A differential mass balance with simultaneous diffusion and substrate 

consumption was made and integrated numerically across the biocatalyst bead. 

External mass transport was also incorporated by using the film theory. This 

model has been extended to growing systems by coupling substrate 

consumption to growth via a yield coefficient. A negative net growth was allowed 
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at low substrate concentrations and the local biomass concentration was limited 

to a maximum (De Gooijer et al. 1991). It predicts the overall substrate 

consumption rate in addition to biomass and substrate concentration profiles 

across the beads. 

This article describes the experimental evaluation of the latter model with 

immobilized Nitrobacter agilis. Immobilized cells were cultivated in 

continuous-flow air-lift loop reactors with oxygen as the limiting substrate. 

Andrews (1988) defined the limiting substrate as the component whose 

concentration reaches zero first; this is the component with the lowest value for 

the product of effective diffusion coefficient, yield factor and the pertinent 

component concentration. In our case this value was always lower for oxygen 

than for nitrite. For that, as the nitrification capacity of the system increased, the 

nitrite concentration of the influent was increased in such a way that nitrite in the 

reactor never was limiting. The oxygen concentration in the liquid phase was 

kept at a constant level. The oxygen consumption rates at various constant 

oxygen concentrations were determined and compared with model predictions. 

Biomass concentration profiles across the gel beads were determined by image 

analysis to estimate the local maximum immobilized biomass concentration. 

MATERIALS AND METHODS 

Organism and culture conditions 

Nitrobacter agilis (ATCC 14123) was cultivated in a 5-dm3 batch culture. The 

composition of the medium was based on studies on nutrient requirements 

(Aleem & Alexander 1960, Boon & Laudelot 1962, Van Droogenbroeck & 

Laudelot 1967, Painter 1970, Sharma & Ahlert 1970, Belser 1984). The medium 
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contained per m3 of demineralized water: 14.5 mol NaN02; 0.21 mol MgS04; 

5 mol KH2PO„; 5 mol Na2HP04; 1 mmol Na2Mo04; 0.015 mmol ZnS04; 

0.016 mmol CuS04 and 5 mmol CaCI2. Per mole nitrite 0.02 mol of NaHC03 was 

added. The pH was adjusted to 7.8 with 2 N KOH. The medium was inoculated 

with about 10% (v/v) of cell culture. Every 3 days 72.5 mmol of NaN02 was 

added to obtain dense cultures. After 9 days the culture was harvested. 

Cultivation was executed at 30°C in the dark to prevent light inhibition 

(Müller-Neuglück & Engel 1961, Bock 1965, Yoshioka & Saijo 1984). 

Immobilization procedure 

The cell suspension was centrifuged during 10 minutes at 16,300 g and 5 °C. 

The cells were washed with 15.4 mM NaCI solution. 

A 3% K-carrageenan solution (Genugel X0828, A/S Kobenhavns 

Pektinfabrik, DK Lille Skensved) was mixed gently with the washed suspension 

such that a 2.6 % carrageenan solution was obtained. The carrageenan solution 

and the cell suspension were kept at 35 °C. 

Immobilization was performed with a resonance nozzle (Hulst et al. 1985) 

at 35 °C. Drops were collected in 0.75 M KCl at 5 °C. To obtain perfect spheres 

a decane layer was brought upon the KCl solution as proposed by Buitelaar 

et al. (1989). The decane and the KCl solution were kept at 5 °C in order to 

initiate the gelation. Decane is non-toxic due to its high log P value (Laane et al. 

1987). 

The average bead diameter was 2.04 mm (± 0.22 mm) and the initial 

biomass concentration in the beads was 4.5 10"3 kg.m3. 
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Immobilized cell cultivation 

Immobilized cells were cultivated in continuous-flow air-lift loop reactors (two of 

3.40 dm3 and one of 2.35 dm3). The experimental set up is shown schematically 

in figure 1. 

Ö - medium in 

medium out 

probe 

— thermostat 

PLC mass flow airlift 
controllers 

Figure 1. Experimental set up of the immobilized cell cultivation. 

The reactors were coupled to a Programmable Logic Controller (PLC 

Melsec-G, Mitsubishi G62P). Communication with the PLC was accomplished 

via a personal computer. The oxygen concentration in each reactor was 

monitored (WTW Oxy 219/90R) and the signal sent to the PLC. Depending on 

the difference between the measured value and the set point, the PLC adjusted 

2 mass flow controllers (Brooks instruments 5850 TR); one for air and one for 

nitrogen. The total gas flow into the reactors was thus kept constant (5.8 cm3.s1 
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for the 3.4 dm3 reactors and 4.2 cm3.s"1 for the 2.35 dm3 reactor) in order to 

maintain constant mass transfer properties across the stagnant layer 

surrounding the beads. 

In three experiments, the bulk oxygen concentration was kept at 0.012 

(smallest reactor), 0.038 and 0.080 mol.m"3, respectively. The influent nitrite 

concentration was adjusted daily so as to keep the reactor concentration 

between 3 and 15 mol.m3. In this way oxygen is the limiting substrate and there 

are no toxicity problems of nitrite. 

The medium contained per m3 of demineralized water: a variable amount of 

KN02; 0.21 mol MgS04; 5 mol KH2P04; 5 mol K2HP04; 1 mmol Na2Mo04; 0.015 

mmol ZnS04; 0.16 mmol CuS04; 5 mmol CaCI2 and 5 mol of KCl. Per mole nitrite 

0.02 mol of KHC03 was added. The pH was adjusted to 7.8 with 2 N KOH. 

Cultivation was executed at 30°C in the dark to prevent effects of light inhibition. 

In the reactor operated at 0.012 mol 02.m3, the dilution rate was 4.6 10"5 s"1 

and the reactor gel load 25 % (v/v). For the reactors operated at 0.038 and 

0.080 mol 02.nr3, the dilution rate based on the liquid-phase volume was 4.0 

10"5 s1 and the reactor gel load was 15 % (v/v). In preliminary runs it appeared 

that the oxygen transfer rate from the gas phase to the liquid phase at a gel load 

of 25 % (v/v) was too low to keep the liquid phase oxygen concentration at 0.038 

and 0.080 mol.m"3, respectively, during the entire experiment. Therefore the gel 

load was lowered to 15 % (v/v) for these two cases. 

Oxygen consumption rate 

Nitrite oxidation by Nitrobacter requires stoichiometric amounts of oxygen 

(Lees & Simpson 1957, Aleem & Alexander 1958, Laudelot & Van Tichelen 
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1960, Silver 1961). Thus to estimate the oxygen consumption rate, the nitrite 

consumption rate per amount of gel was determined regularly. Reactor nitrite 

concentrations were determined at least 24 hours after increasing the influent 

nitrite concentration, such that refreshment of the medium had occurred four 

times and a nitrogen balance across the reactor could be made. 

Nitrite and nitrate concentrations in influent and effluent were determined 

(Greenberg et al. 1985) using a continuous-flow analysis system (Technicon 

Auto Analyser 2). For nitrate analysis the samples first passed through a 

copper-coated cadmium column in order to reduce the nitrate to nitrite. 

By addition of a-naphtylamide in acid medium, the nitrite forms a red diazo 

compound, that was measured at 550 nm. 

Biomass concentration 

Overall viable biomass estimates were made by activity assays in a biological 

oxygen monitor as described before (Van Ginkel et al. 1983). In a reaction 

cuvette 50-200 beads and 4 cm3 potassium phosphate buffer (0.1 mol.dm3, 

pH 7.8) were suspended and saturated with air. If the activity exceeded 

0.002 mol.m3gel.s"1, pure oxygen was used to prevent mass transfer limitations. 

Through a small opening a concentrated KN02 solution was injected to a final 

concentration of 20 mol.m"3 and the decrease in oxygen concentration at 30 °C 

was recorded. 

The activity per amount of gel was converted to a biomass dry weight 

concentration by dividing by the specific activity. The specific activity of 

Nitrobacter agilis is 7 10"3 mol.kg"1.s"1 at a nitrite concentration of 20 mol.m3 

(Boon & Laudelot 1962, Tramper & Grootjen 1986). 
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random there. In thin slices the areal density is equal to the volumetric density 

according to the principle of Delesse (Weibel 1979). 

As the observed areas are projections of the observed colonies situated in 

slices with a thickness L (m), it may be necessary to correct for over-estimations 

as more images are projected for thicker slices (the Holmes effect) and 

under-estimations as images can overlap (Hennig 1969, Underwood 1972, 

Weibel 1979, 1980). 

/ < • & 
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/ f a < • . \ . 
/ i f 1 • • • \ ' 

1 i • • \ 
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Rt 

Figure 2. Procedure for determination of the volumetric fraction of biomass: rol observed 
colony radius (m); R„ distance between centre of the colony and the centre of the bead 
(m); R, bead radius (m); R,, radius test line (m). 

As the slices are thin compared to the colony radii, overlap may be 

neglected (Weibel 1980). For the Holmes effect, the observed radii can be 

corrected by a factor C defined as (Weibel 1980): 
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C= KTT- W 
n + 2Urc 

As the observed colony radii are expectations of the colony radii (E(D)), the 

colony radii can be obtained from: 

E(D) = 2 r e
1 + 7 t r c / 2 L [2] 

K-} c1+2rc/L 

and the observed projections can be corrected individually. 

Starvation under oxygen depletion 

For determination of maintenance energy Nitrobacter agilis was cultivated batch 

wise in a stirred fermenter (at 450 rpm). Culture conditions were as described 

above. After one week of cultivation the oxygen supply was stopped and 

nitrogen gas was supplied instead. The decrease in potential activity was taken 

as a measure for the specific biomass degradation rate, as can be obtained 

directly from the relation of Herbert (1959) if the substrate concentration is zero: 

\n^ = -mYxst
 [3] 

with X, and X0 the biomass concentrations at time f (s) and time 0, respectively 

(mol.m3), m the maintenance coefficient (mol.kg"1.s"1), and Yxs the yield factor 

(kg.mol"1). 

Data for the molar substrate yield were obtained from the literature. 

Activity was determined as described before, except that it was directly 

measured in the culture medium. 
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RESULTS AND DISCUSSION 

Input parameters 

All input parameters used in the dynamic mathematical model were 

obtained from the literature or determined in separate experiments and are listed 

in table 1. 

Table 1. Input parameters (references are given in text). 

m'.s" 

m.s'1 

S"1 

molm'3 

kg.mol'1 

mol. kg'1, s-1 

kg. m3 

kg. m3 

kg.m'3 

Effective diffusion coefficient (Deg) 

The effective diffusion coefficient for oxygen in K-carrageenan beads was 

determined by Hulst et al. (1989). Up to a polymer concentration of 3 % a 

constant effective diffusivity of 1.58 109 m2.s1 was found. This value was used in 

the present work for a zero immobilized biomass concentration (Table 1), since a 

carrageenan concentration of 2.6 % was used. 
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Effective diffusion coefficient 

De,g 

Liquid-solid mass transfer coefficient 

Ks 
Kinetic parameters 

\^max 

Ks 

Y„ 
m 

Biomass concentrations 

*o 
y 

y 
^•p.max 

1.58 10'9 

3.7 10'5 

1.0 10'5 

0.02 

1.16 10'3 

1.1 10'3 

4.5 10'3 

11 
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The effective diffusion coefficient is affected by the concentration of 

biomass in the support material (Hiemstra et al. 1983, Monbouquette & Ollis 

1986, Chen & Huang 1988, Gosmann & Rehm 1988, Scott et al. 1989). As 

stated by De Gooijer et al. (1991), the effective diffusion coefficient will be zero if 

all pores in the gel are completely filled by bacterial cells, with no intercellular 

space left. At the gel concentration used, the available pore volume will be at 

least 95 % of the total gel volume and the pores will be completely filled if the 

biomass concentration is about 950 kg.m3. This value is defined as the 

maximum physically attainable biomass concentration Xpmax. 

Liquid-solid mass transfer coefficient (fc,s) 

From the Biot number it can be estimated whether external mass transfer has to 

be taken into consideration. If Bi approaches zero, all resistance is situated in 

the stagnant layer, and if it reaches infinite values the resistance across the 

stagnant layer may be neglected. The Biot number was estimated to be 25 in our 

case. The value will be much lower when only the active layer is considered. 

This means that external mass transfer certainly may not be neglected, such that 

kls is an important factor. 

For calculation of the liquid/solid mass transfer coefficient (/c/s) the relation 

of Ranz and Marshall (1952) was used: 

D/(2 + 0.6Sc1/3Re1/2) [41 
Kl.s = "J 

The Reynolds number was calculated from the Galileo number. Relations 

between Re and Ga can be derived easily for the Stokes, Newton and 

intermediate regimes (Aleem & Alexander 1958). It was assumed that the 
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particles move with the rate of free fall. Re thus calculated is 58, which means 

that Ranz and Marshall is applicable (Monbouquette & Ollis, 1981). Equation [4] 

gives with Re = 58 a mass-transfer coefficient of 3.7 105 m.s"1 (Table 1), which 

gives good predictions of the overall oxygen consumption rates in all 

experiments as will be discussed. 

In first instance the method of Kolmogoroff as used by Sänger & Deckwer 

(1981) for a bubble column and extended for an air-lift loop reactor by 

Wagner & Hempel (1988) seemed more appropriate to us. Kolmogoroff gave a 

relation between the energy dissipation and the Sherwood number. However, 

poor model predictions were obtained if those relations were used. This can be 

explained by differences in superficial gas velocities (ug), which were minimal 

double of what we used (0.0018 m.s1). When the energy dissipations are 

compared, the differences are even more substantial. They found an energy 

dissipation (s) between 0.25 and 0.52 m2.s3, while we calculated for our 

experiments 0.011 m2.s"3, which makes it inappropriate to apply their equations 

in our regime. 

Maximum specific growth rate (u.max) 

Literature data for maximum specific growth rates range from 0.98 10"5 to 

2.3 10"5 s"1 (Gould & Lees 1960, Rennie & Schmidt 1977, Gay & Corman 1981, 

Helder & De Vries 1983, Keen & Prasser 1987). In our experiments nmax was 

taken to be 1.0 10"5 s1, a value that was found by Tramper & Grootjen (1986), 

who used the same strain (Table 1). 
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Monod constant (Ks) 

Most kinetic studies with nitrifying bacteria were executed with the nitrogenous 

compound as the limiting substrate. The few data known for oxygen as limiting 

substrate were obtained from activity assays instead of growth experiments 

(Boon & Laudelot 1962, Peeters et al. 1969, O'Kelly et al. 1970, 

Williamson & McCarthy 1975, Stenstrom & Poduska 1980). An overview of the 

effect of the dissolved oxygen concentration on nitrification has been given by 

Stenstrom & Poduska (1980). The general range for Ks appears to be 

0.009-0.026 mol.m"3 (Müller-Neuglück & Engel 1961, Boon & Laudelot 1962, 

Williamson & McCarthy 1975). Sensitivity analysis demonstrated that within this 

range there was little effect on the predicted oxygen consumption rate 

(DeGooijer et al. 1991). Therefore, an average Ks-value of 0.017 mol.m3 was 

chosen (Table 1). 

Yield (Vxs) and maintenance (m) coefficients 

In the present model maintenance energy plays an important role, because this 

factor determines the negative growth of cells that live under oxygen depletion. 

Almost no values are available for maintenance coefficients (m). Apart from that, 

in studies where maintenance was determined, nitrite was taken as the limiting 

substrate. The same holds for the yield coefficients (Yxs). Available data were 

recalculated to oxygen yields and maintenance coefficients according to the 

reaction stoichiometry. As general composition formula for biomass the relation 

as given by Roels (1983) CH18O05N02, and the cell weight as given by 

Lees & Simpson (1957), 10"10 mg.cell"1, were used. 
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Keen & Prosser (1987) found yield coefficients of 19.6 10"3 and 

3.92 10"3 kg.mol"1 and maintenance coefficients of 5.6 10"4 and 11.0 10"4 

mol.kg"1.s"1. The differences in their results were caused by the fact that two 

different calculation procedures were used for the same set of data. The first 

values were calculated by an iterative procedure and the latter by linear 

regression analysis of the double reciprocal plot. There is doubt about their 

results obtained by iteration, because the product of this growth yield (Yxs) and 

maintenance coefficient (m), i.e., the specific biomass degradation rate as 

defined by Herbert (1959), is higher than the maximum specific growth rate, or in 

other words, even at a maximum specific growth rate the biomass decay rate 

was higher than the growth rate. 

Helder & De Vries (1983) and Belser (1984) found values for the yield 

coefficient of 0.98 10"3 and 1.16 10"3 kg.mol"1, respectively. As Belser (1984) 

studied in our opinion yield most extensively, this value has been taken as input 

parameter (Table 1). 

From the work of Chiang (1969) as reported by Belser (1984) 

a maintenance of 2.78 103 mol.kg1.s'1 can be estimated. When a yield factor of 

1.16 103 kg.mol"1 is assumed and with the maintenance coefficient given by 

Belser (1984), the specific biomass degradation rate is 32 % of the maximum 

specific growth rate. When the regression results of Keen & Prosser (1987) 

apply, this ratio is 12.8 %. Laudelout et al. (1968) found a very broad range 

between 11 and 53 %. Because no more values were found in the literature, this 

parameter has been estimated in a separate experiment. Our model (De Gooijer 

et al. 1991) involves a combination of the models of Pirt (1966) and Herbert 

(1959), as proposed by Beeftink et al. (1990). Determination of maintenance 

energy was done with the bacteria under oxygen depletion. In that region the 
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model of Herbert (1959) is applicable and the specific biomass degradation rate 

can directly be obtained from the observed decay rate (equation [3]). 

The decrease in activity under oxygen depletion is shown in figure 3. The 

observed specific degradation rate was 12.8 % of the maximum specific growth 

rate, which means that the maintenance coefficient of 1.1 10"3 mol.kgVs1 as 

given by Keen & Prosser (1987) is appropriate as input parameter (Table 1). 

With the chosen set of values model predictions were obtained which 

compared well to experimental results as will be shown. It was also shown that 

in the applied regimes the predicted oxygen consumption rates were relatively 

In (relative activity) 
o 

0 5 10 15 20 25 
Time (d) 

Figure 3. Activity decrease of Nitrobacter agilis under oxygen depletion. 

insensitive to changes in values of the yield and maintenance coefficients 

(De Gooijer et al. 1991). 
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Performance immobilized cell reactor 

Oxygen consumption rate 

In three separate experiments the cells were cultivated in continuous-flow air-lift 

loop reactors. Daily results of the experiment with the highest oxygen 

concentration (0.080 mol.m"3) are given in figure 4. 

The influent nitrite concentration was 4 mol.m"3 at start-up. After 4 days, the 

effluent nitrite concentration decreased, and the influent concentration was 

increased to 10 mol.m3. Subsequently, it was adjusted every day to keep the 

Concentration (mol. m -3) 

60 

40 -

20 

40 50 
Time (d) 

Figure 4. Influent nitrite (•) and effluent nitrite (•) and nitrate ( • ) concentrations in a 
continuous flow experiment at a liquid phase oxygen concentration of 0.08 mol.m"3. 

effluent nitrite concentration above 3 mol.m3. As shown, in only a few days this 

concentration was lower. The influent nitrite concentration was raised almost 

linearly until 17 days after start-up. From that day on the influent nitrite 
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concentration could be kept at 60 mol.m"3 as no further increase in substrate 

consumption was observed. 

Two additional experiments were executed with bulk oxygen concentrations 

of 0.012 and 0.038 mol.m"3, and a similar reactor performance was observed. At 

these oxygen concentrations the influent nitrite concentration could be kept 

constant after a while at levels of about 10 and 30 mol.m"3, respectively. 

From the influent and effluent nitrite concentrations, the dilution rate and 

the amount of gel, the overall nitrite consumption rates of the beads were 

calculated. 

Macroscopic oxygen consumption rate (mol.m'3.s"1) 

0 . 0 0 6 

0 . 0 0 4 

0 . 0 0 2 

4 0 5 0 
Time (d) 

Figure 5. Observed (markers) and predicted (lines) overall consumption rates in the 
biocatalyst beads at different liquid phase oxygen concentrations: ( • ) 0.012 mol.m"3, ( • ) 
0.038 mol.m3 and ( • ) 0.08 mol.m"3. 

With that, the overall oxygen consumption rate of the beads was estimated. 

These rates are given for the three experiments in figure 5, which shows that the 
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experimental results and the model predictions as described by De Gooijer et al. 

(1991) compare very well. 

It is also clearly shown that at higher oxygen concentrations the reactor 

capacity increased. 

Biomass profiles and maximum biomass concentration (Xmax) 

The overall viable biomass concentrations were estimated by activity assays. 

The development of the potential activity for all experiments is shown in figure 6. 

Maximum oxygen consumption rate (mol.rrï3.s"1) 
0.03 

0.02 

0.01 

40 50 
Time (d) 

Figure 6. Overall viable biomass concentration versus time in the air-lift loop reactors with 
bulk oxygen concentrations of 0.012 ( • ) , 0.038 ( • ) and 0.080 ( • ) mol.m3, measured as 
potential activity. 
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Beads obtained at the end of the experiment with the highest liquid phase 

oxygen concentration (0.080 mol.nr3) were used to determine the biomass 

profile and the maximum biomass concentration. The overall average biomass 

concentration in these beads at that time was 3.7 kg.nr3. 

Sections with a thickness of 3 and 4 u.m, respectively, were analyzed. 

Figure 7 shows one of the two results directly obtained from image analysis. The 

apparent colony radii are given as a function of the radial position within the 

bead. Those results were converted into relative biomass concentrations as 

shown in figure 8 for both samples. It is shown that 90 % of the immobilized 

biomass was situated in an outmost shell of about 140 urn. The maximum, with a 

thickness of about 20 urn, was reached between a relative radius of 0.94 and 

0.96. At a relative radius exceeding 0.96, the biomass concentration was 

- 6 
Radius micro-colony (10 m) 

20-

10-

0 ~^&&4mà$ 

•-
• 

.V 

Wtfè 
0 0.5 1 

Radial pos i t ion r/R (-) 

Figure 7. Measured colony radii as a function of radial position within the beads. 
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decreasing. This phenomenon was also observed by Salmon (1989). In the 

model (De Gooijer et al. 1991), however, we assumed that the biomass 

concentration in the outer shells reached a constant maximum. From the 

sections maximum biomass concentrations were calculated, which were used as 

an input parameter in our model (De Gooijer et al. 1991). The concentration 

under the peaks were 17.8 and 17.3 kg.m"3, respectively. When the 

concentration was averaged from the maximum to the bead surface (between a 

relative bead radius of 0.94 and 1.0), the biomass concentration was in both 

cases 11 kg.m"3 in a shell of 56 um. The latter value was used as input 

parameter, and gave acceptable model predictions of the oxygen consumption 

rates. This value compares well with model predictions of Gujer & Boiler (1989), 

who reported values up to 14 kg.m3. For the conversion of the apparent colony 

radii to a relative biomass concentration, the following remarks apply. 

Biomass concentration X/Xmax (-) 
1 

0.5 1 
Radial position r/R (-) 

Figure 8. Biomass profile as a function of radial position within the beads. 
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As the sections were not infinitely thin, the principle of Delesse was not directly 

applicable. Correction for the Holmes effect did lead to a 17 % lower volumetric 

fraction at a relative radius higher than 0.85. At a radius lower than 0.85, 

correction did lead to 44 % reduction. In the latter part of the bead however, only 

10 % of the biomass was situated. During preparation of the beads shrinkage 

occurred. The radius decreased 16-19 %. We have assumed that there was no 

difference in shrinkage between colonies and beads. No protrusions were 

formed as the result of the fact that gel shrinkage was higher than colony 

shrinkage. There were no non-filled holes observed from which colonies had 

disappeared due to the fact that colony shrinkage was higher than gel shrinkage. 

A possible explanation for a decreasing biomass concentration in the most 

outer shell can be given by the fact that the colonies will grow out of the gel 

beads. In the immobilization procedure the bacterial cells are distributed 

homogeneously across the gel and are closely surrounded by the polymer 

matrix. Because of growth, single cells will form expanding colonies. The formed 

micro-colonies thus provide for their own space in the gel, at the expense of 

pressure increase (Stewart & Robertson 1989). Near the gel surface colony 

discharge due to this pressure build-up may have contributed to the decrease in 

peripheral biomass concentration. In future research, the present model will be 

extended and a biomass release term will be included. 

Biomass release influences the reactor nitrite consumption. This effect has 

been considered for steady states (Venkatasubramanian et al. 1983, Black 

1986). At high dilution rates, however, the contribution of suspended biomass is 

negligible. This was checked in our experiments. The discharged effluent did not 

show activity. At lower dilution rates this effect can be considerable. This effect 

will also be added to the model in order to come to an overall dynamic reactor 

model for all regimes. 
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APPENDIX: DIMENSIONLESS NUMBERS 

Biot: 

Bi = 

Galileo : 

Ga--

Reynolds 

Re--

Schmidt : 

Sc = 

kiiS0.5dp 

De,g 

= dl9Pp~2
Pl 

piudp 

V 

'D, 

[5] 

[6] 

[7] 

[8] 
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NOMENCLATURE 

Bi Biot number 

c correction factor for the Holmes effect 

DL diffusion coefficient liquid m2.s"1 

De effective diffusion coefficient m2.s"1 

Deg effective diffusion coefficient in gel m2.s"1 

dp particle diameter m 

E(D) expectation of observed diameter m 

Ga Galileo number 

g gravitational acceleration m.s"2 

kts liquid-solid mass transfer coefficient m.s"1 

Ks Monod constant mol.m"3 

L section thickness m 

m maintenance coefficient mol.kg"1.s"1 

rc colony radius m 

r0 observed colony radius m 

R bead radius m 

Rc distance centre colony to centre of the bead m 

Rt radius test line m 

Re Reynolds number 

S,, substrate concentration in the bulk mol.m'3 

Sc Schmidt number 

/ time s 

ug superficial gas velocity m.s"1 

X biomass concentration kg.m"3 

X0 biomass concentration at t = 0 kg.m"3 
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Xmax maximum biomass concentration kg.m3 

Xpmaxmaximum physically attainable biomass concentration kg.m3 

X, biomass concentration at f = t kg.m~3 

Y„ molar substrate yield kg.mol"1 

e energy dissipation rate m2.s3 

Vmax maximum specific growth rate s1 

v kinematic viscosity m2.s1 

r| dynamic viscosity kg.m1.s 

Pi density liquid phase kg.m"3 

pp density particles kg.m3 
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CHAPTER 6 

A MODEL FOR BACULOVIRUS PRODUCTION 
WITH CONTINUOUS INSECT-CELL CULTURES 

ABSTRACT 

A model, suitable for reactor-design purposes, is presented for the infection 

process of insect cells with baculovirus in a continuous bioreactor system. The 

infection process can be described by a first-order reaction mechanism if the 

viable, non-infected, insect cells are regarded as substrate, and the resulting 

polyhedra as product. Experimental results from continuous systems, consisting 

of a series of mixed reactors in which growth of Spodoptera frugiperda cells 

takes place in the first reactor and infection with Autographa californica nuclear 

polyhedrosis virus in the other reactors in the series, show typical values for the 

reaction rate constant of 0.8 -1.1 105 s"1. 
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INTRODUCTION 

Baculoviruses, causative agents of fatal diseases in insects, are not only of 

interest because of their application as control agents of insect pests in 

agriculture (Martignoni 1984), but have increased importance since they are 

used as expression vectors for the production of heterologous proteins of pro-

and eukaryotic origin (Luckow et al. 1988). The latter include proteins of medical, 

pharmaceutical and veterinary importance, a HIV (AIDS) subunit vaccine being a 

prominent example. Production of genetically engineered proteins using a 

baculovirus expression vector requires a suitable and efficient insect-cell culture 

system, preferably in a continuous fashion, in order to obtain large quantities of 

proteins in a high concentration. Development of suitable bioreactors is therefore 

of prime importance. 

Usually, with mammalian cell systems, batch-type fermenters are used. 

The transient character of such systems imposes certain disadvantages, such 

as a more difficult process optimization and control, and batch-like downstream 

processing. Therefore, in our laboratory, we introduced continuous operated 

fermenters, both to grow insect cells and to perform infection with virus (Tramper 

et al. 1986, Kompier et al. 1988). Baculoviruses have a unique, bi-phasic 

replication cycle (Faulkner 1981, Kelly 1982), as illustrated in figure 1. After 

infection of insect cells, non-occluded virus (NOV) particles are produced and 

secreted into the medium by budding through the cell membrane (step 1). 

Later in the infection cycle this process switches to the occlusion of the 

virus particles in newly-synthesized polyhedra in the cell nucleus. Finally, the 

infected cell désintégrâtes, releasing the polyhedra (step 2). Polyhedra are 

infectious for insects, whereas NOVs are infectious for insect cells. In expression 

vectors the gene coding for polyhedrin, the major component of the polyhedra, 

has been replaced by the gene of choice (Luckow et al. 1988). 
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Polyhedra 

Figure 1. Replication cycle of baculovirus in insect cells. 

For a quantitative description of the infection process, needed for reactor 

design purposes, it is important to describe the effect of crucial reactor operation 

parameters, such as pH, temperature and growth medium (Vaughn 1976, Weiss 

et al. 1986), However, this process is yet poorly understood and experimental 

data on these parameters are scarce (Tramper et al. 1986). In this paper we 

present a model for the continuous viral infection process, abstracting from all 

possible influences imposed by reactor operating parameters, and using the 

well-known concept of mass balances. The model is validated with experimental 

data, using the Autographs californica nuclear polyhedrosis virus 

(AcNP\/)-Spodoptera frugiperda cell system (Kompier et al. 1988, Van Lier et al. 

1990). 
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THEORY 

Two products are generated in the viral infection process : NOVs and polyhedra. 

Experiments carried out in our laboratories showed the number of NOVs 

produced during one cycle of virus replication, as illustrated in figure 2. Here, 

anchored cells were inoculated with an initial multiplicity of infection (MOI, the 

number of NOVs per cell) of 20. The yield of infectious NOVs, expressed as 

TCID50units, was determined as described by Vlak (1979). From this figure it can 

be calculated that per insect cell, about 200 NOV particles are produced. 

If we regard the viable, non-infected, insect cells and NOVs as substrates, 

and both the NOVs and the polyhedra (P) as products resulting from the 

infection 'reaction', the following reaction equation can be derived : 

insect cell + 20 NOV - * 200 NOV + nP [1] 

In equation [1], the denominator 20 denotes the MOI. In our laboratory we found 

for n, the number of polyhedra released per insect cell, a value of 25, but this 

may vary with reactor operating parameters (Kompier et al. 1988). Equation [1] 

shows the large amount of NOVs produced in the infection process, relatively to 

the number of insect cells. This value, determined from anchored cell cultures 

(Figure 2), may differ under varying reaction conditions. 

In order to be able to obtain a mass balance for the viable, non-infected, 

insect cells for each mixed vessel in the infection reactor series, the next 

assumptions are made : 

i) The growth rate of the cells is constant both in time and place, 

ii) Cell growth is a first order process, 
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ii) The NOVs are, in steady state, available in excess and therefore equation 

[1] can be described by a first-order reaction rate with respect to the cell 

concentration. 

Log TCIDS0 

o 

20 40 60 
Time after infection (h) 

Figure 2. Production of AcNPV non-occluded virus per 5.10e anchored Spodoptera 
frugiperda cells (MOI = 20). 

Considering these assumptions, the following equations can be derived 

rs = krCj 

f g = KgCj 

[2] 

[3] 

Equation 2 shows the first-order infection rate (rs) with kr the reaction rate 

constant (s~1), and C, the concentration of viable, non-infected cells (cell.cm3). 

Equation 3 describes the growth of insect cells (rg) in any reactor, with kg the cell 
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growth-rate constant (s-1). The subscript j denotes the reactor number in the 

series, (/=1,2,3...), with C0the concentration in the growth vessel (Figure 3). 

A mass balance for viable, non-infected cells for they',h reactor in steady 

state gives: 

In- Out - Infection + Growth = 0 [4] 

or: 

<t> v(CH - Cj) - rs Vj + rg Vj = 0 [5] 

Here, V is the reactor volume (m3) and <j)v is the flow rate in the reactor series 

(m3.s1). Introducing the mean residence time x = V/$v (s), substituting equations 

[2] and [3] and rearranging gives : 

^ C H + ( * B T 7 - 1 ) C / 

or: 

Cj = 

CÏJ [6] 

CM 
1+Tjikr-kg) [7] 

A special case arises if the series of reactors contains one reactor for growth 

followed by one reactor for infection, with both volumes equal, so that t0 = x,. 

Then, since the growth rate of the cells adapts to the mean residence time in the 

growth vessel, i.e. kg = 1/x„, equation [6] reduces to: 

kr=
 C° 

C m [8] 

All values for the parameters in equations [6] to [8] can be measured easily, 

except for the reaction rate constant kr 
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MATERIALS AND METHODS 

Spodoptera frugiperda cells (Sf-AE-21) (Vaughn et al. 1977) were maintained on 

solid supports (Costar tissue culture flasks), containing TNM-FH medium (Hink 

1970) without egg ultrafiltrate and supplemented with 10% fetal calf serum. 

When cells were grown in suspension, 0.1% (w/v) methylcellulose was added to 

the medium. 

The virus used was the E2-strain of Autographa califomica nuclear 

polyhedrosis virus (Smith et al. 1978), and the infectivity of NOVs was measured 

using an end-point dilution assay (Vlak 1979). The stock solution contained 

approximately 108 TCID50 units per cm3 medium. 

For continuous cultivation of cells 1 dm3 round-bottomed and 2 dm3 

flat-bottomed fermenters (Applikon), equipped with marine impellers, were used. 

Air was passed through a 0.2 urn filter (Millipore) into the headspace of the 

reactors at about 10 dm3.h1. The mean residence time in a cell growth reactor 

and in the subsequent virus production system was set to 2.15 105 s. The 

temperature in the fermenters was kept at 28 °C. 

Both experimental, continuously-operated, reactor configurations are 

illustrated in figure 3. Configuration A consisted of one reactor where insect cells 

were grown, followed by two reactors in series where the infection process took 

place (Van Lier et al. 1990). 

A second experimental reactor configuration (B), also operated 

continuously, consisted of one reactor where the insect cells were grown, 

followed by only one equally sized vessel where infection took place (Kompier 

et al. 1988). 

The number of cells was measured microscopically using an Improved 

Neubauer Brightline hemocytometer. Cell viability was determined using the 
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Growth 
I 1 h 

Infection 

0 

LH3 

A,B:V 

w DiQ 

A:V/2, B:V A:V/2 

Reactor series A 

Reactor series B 

Figure 3. Experimental reactor configurations for the continuous production of insect 
cells and baculoviruses. 

trypan blue dye exclusion method. Cells were considered to be infected when 

polyhedra could be observed microscopically inside the cell nucleus. 

RESULTS AND DISCUSSION 

Both reactor series used in our experiments were operated continuously until a 

steady state was reached. At this point, both the number of viable, non-infected 

cells and the number of infected cells were determined at all reactor outlets in 

the series. 

For the reactor series with two infection vessels, the viable, non-infected 

cell concentration in the first infection vessel (Table 1 ) was used (equation [6]) to 

calculate the reaction rate constant in the first infection vessel. If the presented 
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first-order reaction kinetics model is valid, the same value for the reaction rate 

constant should apply for the second infection vessel, and therefore the viable 

cell concentration in the second infection vessel can be predicted (equation [7]). 

Moreover, using the same cell line and virus in the other reactor configuration, 

the observed reaction rate constant (equation [8]) has to be of the same range. 

Experimental results, taken from Kompier et al. (1988) and Van Lier et al. 

(1990), and calculated reaction rates are listed in table 1. 

Table 1. Results with two reactor configurations. A and B are referred to in text. Numbers 
between parenthesis denote the number of continuous operated infection vessels. 

PARAMETERS 

C0 Cell concentration at inlet of reactor 1 

C, Viable cell concentration in reactor 1 

T, Residence time in reactor 1 

/, Infected fraction in reactor 1 

kr Reaction rate constant 

C2f Predicted viable cell concentration in 

C2m Measured viable cell concentration in 

/, Infected fraction in reactor 2 

reactor 2 

reactor 2 

DIMENSION 

cell.cm3 

cell.cm3 

s 

% of cells 

s-' 

cell.cm"3 

cell.cm3 

% of cells 

A (2) 

8.1 10s 

4.9 105 

1.08 105 

31 

1.07 10-5 

3.0 105 

2.1 105 

59 

B(1) 

7.8 105 

4.2 105 

2.16 105 

55 

0.86 10-5 

-
-
. 

Due to the increase in residence time of the first infection vessel going from 

reactor series A to reactor series B, an increase in the infected fraction in the 

first reactor can be expected, as is clearly shown by our results in table 1. 

Moreover, as stated by Kompier et al. (1988), the infected rate in the second 

vessel of reactor series A should be higher than in the infection vessel of series 

B. We indeed could observe this effect, however not as strongly as theoretically 

could be expected. 

In reactor series A, one growth vessel followed by two infection vessels, 

the reaction rate constant in the first infection vessel is 0.93 105s1. With this 
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reaction rate, the concentration of viable, non-infected cells in the second 

infection vessel can be calculated to be 3.0105 cells.cnr3. The actual 

concentration observed was 2.1 105 cells.cnr3. For reactor series B, one growth 

vessel followed by one infection vessel, a value for the reaction rate constant of 

0.72 10"5 s1 can be calculated. 

The results match our theory rather well, considering that the infected 

fraction is determined by microscopically observing formed polyhedra in the cell 

nucleus only. This has two consequences for the observed reaction rate 

constant and the infected fraction. 

First, as we frequently observed free polyhedra in the medium, it can be 

concluded that a number of cells lysed. Therefore, the infected fraction must be 

higher than observed, and the reaction rate constant thus also must be higher. 

Given this, the predicted viable cell concentration in the second infection vessel 

becomes lower. This effect is even larger if we consider the effect of cell lysis on 

the infected fraction in the second vessel as well. Considering cell lysis in 

comparing the reaction rate constants of reactor series A and B, the fact that the 

reactor volume of the first infection vessel, and with that the mean residence 

time and thus the number of lysed cells, of series B is higher, imposes that the 

real reaction rate constant in series B will show a higher increase than in reactor 

series A. Therefore these values in reality will be even closer to each other. 

Second, an insect cell can be infected with virus, but will not yet show 

polyhedra in the cell nucleus (Figure 1). This effect also will lead to a higher 

infected fraction than observed, and, from that, a higher reaction rate constant. 

For reactor series A this will lead to a lower predicted viable cell concentration in 

the second infection vessel, resulting in an even better prediction. 

The high abstraction level of our model imposes some constraints on its 

practical use. First, the reproduction process of virus has a discrete character 
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(Figure 1), but is described as a (continuous) steady state. Therefore, a 

minimum mean residence time of the infected cells should be regarded. This 

residence time should not be smaller than the time needed for all virus to 

replicate. In our case (Figure 2) this minimum is about 24 hours. Second, 

reaction rate constants observed in a laboratory-scale experiment might differ 

from values found on a larger scale, due to different (bio-)chemical influences or 

possible physical damage to infected cells caused by higher shear stresses 

usually occurring as the reactor volume of stirred vessels increases (Katinger et 

al. 1985). This effect might not affect the 'substrate' consumption rate, but will 

probably have an impact on the product formation rate, i.e. a lower number of 

polyhedra per insect cell, due to premature cell disruption. 

CONCLUSIONS 

The predicted concentration of viable, non-infected cells in the second infection 

vessel matches well the experimentally obtained value. The observed reaction 

rate constants in both reactor configurations A and B do not differ significantly, 

considering cell-lysis effects and the fact that both cells and viruses present in 

reactor configuration A are of higher age. Yet, in order to completely validate our 

model, more research is under way. 

The influence of crucial reactor operation parameters on both growth and 

infection of insect cells are not incorporated in our model. Additional 

experimental data concerning these parameters, the virus concentration at 

reactor start up, and the importance of the age of both insect cells and viruses 

are needed to optimize design and operating time of these bioreactors. 
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NOMENCLATURE 

cells.cm3 

% of cells 

S"1 

II.cm 

cell.cm3.s"1 

m3 

c 
/ 

K 
K 
h 

r9 

V 

<t>v 

T 

j 

Cell Concentration 

Infected fraction 

First-order growth rate constant 

First-order infection rate constant 

Infection reaction rate 

Cell growth rate 

Reactor volume 

Volumetric flow rate 

Residence time 

Reactor number in a series 
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CHAPTER 7 

A STRUCTURED DYNAMIC MODEL FOR THE 
BACULOVIRUS INFECTION PROCESS IN 

INSECT-CELL REACTOR CONFIGURATIONS 

ABSTRACT 

A mathematical description of the infection of insect cells with baculovirus in a 

continuously-operated reactor configuration is presented. The reactor 

configuration consists of one bioreactor in which insect cells (Spodoptera 

frugiperda) are grown, followed by one (Kompier et al. 1988) or two (van Lier et 

al. 1990) bioreactors in which cells are infected by a baculovirus {Autographe 

californica nuclear polyhedrosis virus). It was demonstrated that the so-called 

passage effect is responsible for the observed difference in run time between a 

configuration with one or with two infection vessels. Furthermore, a model is 

presented based on the hypothesis that the limited run time of series of 
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continuously-operated bioreactors is associated with the occurrence of a virus 

particle (so-called virion) that is defective and has interfering properties (Kool 

et al. 1991). With the assumption that not all non-occluded virions are capable of 

establishing a correct infection leading to new virus production, infection levels in 

continuously-operated reactor configurations could be described well with the 

model. 

INTRODUCTION 

Baculoviruses are attractive biological agents for control of insect pests in 

agriculture. In addition, these viruses can be reprogrammed for the production of 

recombinant proteins by genetic engineering (Luckow & Summers, 1988; Vlak 

& Keus, 1989). To obtain commercially-attractive levels of productivity and at the 

same time meet regulatory requirements, the production of baculoviruses or 

recombinant proteins can best be achieved in insect-cell bioreactors, preferably 

operated in a continuous fashion (Tramper & Vlak, 1986). Two phenotypically 

different forms of a baculovirus exist. The occluded form (polyhedra) is infectious 

for insect larvae, whereas the non-occluded virus form (NOV) is infectious for 

insect cells in culture. Kompier et al. (1988) and Van Lier et al. (1990) showed 

that polyhedra of Autographa californica nuclear polyhedrosis virus (AcNPV) 

could be produced over long periods of time in a system consisting of an 

upstream bioreactor in which insect cells are cultured, followed by one or two 

bioreactors where infection with the non-occluded form of AcNPV takes place 

(Figure 1). The continuous production could be maintained up to about four 

weeks, after which production declined. The level of infection could be increased 

by increasing the number of infection reactors as shown by Van Lier et al. 

(1990) for reactor configuration A. However, the time that this system could be 
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Medium Growth Infection 

I 1 I 1 I 

Product 

D4] M 
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A,B:V A:V/2, B:V A:V/2 

h 
Reactor series A 

Reactor series B 

Figure 1. Schematic representation of the experimental continuously-operated reactor 
configurations as used by Van Lier et al. (1990) (series A) and Kompier et al. (1988) 
(series B). The total residence time in both configurations is the same. 

operated at this enhanced level of infection decreased significantly to less than 

three weeks (Figure 2). 

Kool et al. (1990, 1991) showed that the reduction in productivity was due 

to the occurrence of mutant virions present in the infection reactor(s) that 

interfered with the replication of intact virus and affected productivity. This 

defective interference phenomenon has been confirmed by Wickham et al. 

(1991). 

This paper presents a structured model for the infection of insect cells with 

NOV particles, capable of dynamically describing the infection process in 

continuous, batch and fed-batch bioreactors. This model forms the theoretical 

foundation explaining that the decrease in the levels of polyhedra-producing 

cells in continuously-operated vessels is the result of the so-called 
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Visibly infected cells (%) 
80 

60 

Time (d) 

Figure 2. Percentage of cells visibly containing polyhedra present in reactor 2 of 
configuration A ( • ) or in reactor 1 of configuration B (•) versus time. 
Pseudo-steady-state levels of infection in the continuously-operated infection vessels of 
about 68% and 26% were reached, respectively. 

passage effect, and that this decrease can be quantitatively explained by the 

occurrence of a high number of so-called defective interfering virions (D-NOV). 

THEORY 

The passage effect, as described by Faulkner (1981), manifests itself as a 

decrease in the production of polyhedra at higher passages of non-occluded 

baculovirus preparations. This effect is also reflected by a decrease in the 

number of infectious NOVs (l-NOVs) that is produced per insect cell. One 

passage is defined as the process of an l-NOV entering an insect cell, transport 

of the genetic information into the cell nucleus, production of new l-NOVs, 
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transport to and budding through the cell membrane, and secretion of the virions 

to the extracellular fluid. After completion of this process the passage number is 

increased by one. Schematically this is illustrated in figure 3. 

'<© 
24 •-

l-NOVn 

I Step 1 

/Ol _ *• 

o 
o Polyhedra 

Figure 3. Schematic representation of the replication cycle of baculoviruses in insect 
cells (adapted from de Gooijer et al. (1989)). p and p+1 denote passage numbers. See text 
for more details. 

Upon entry in the infection vessel, a cell will be infected with a virion of a 

certain passage p. After some time the cell will start to produce virions of 

passage p + 1 (Figure 3). These virions in turn will maintain the infection process 

in the continuously-operated infection vessels. Apart from this infectious l-NOV, 

two additional types of virions are introduced in our model. The first additional 

type of virion was described by Kool et al. (1990, 1991). They showed the 

existence and established some of the properties of a defective interfering virion, 

present in the medium of the reactor during continuous runs. This D-NOV lacked 
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about 44% of the viral genome, among which the polyhedrin gene and the gene 

coding for DNA-polymerase. Due to this deletion the D-NOV needs the 

intracellular presence of an intact l-NOV as a helper for multiplication. Since their 

genome is smaller, D-NOVs are likely to be reproduced faster than l-NOVs. 

For both reactor configurations the theoretical level of infection can be 

calculated from a residence-time distribution of the insect cells in the infection 

vessels. Considering the fact that cells were denoted as visibly infected when 

polyhedra were observed, only the cells with a residence time of more than 

24 hours in the bioreactor with infected cells are of interest (Figure 3). For our 

experiments, with a total residence time of 60 hours, it could be calculated that 

68% of the cells had a residence time of more than 24 hours and therefore 

should have been visibly infected in the case of one infection reactor, whereas 

this is 82% in the second reactor for two infection vessels with the same total 

residence time (Levenspiel, 1972) (Configurations B and A in figure 1, 

respectively). This theoretical value, however, could never be reached in our 

laboratory (Figure 2). As we also did not reach a 100% infection in batch cultures 

(this paper), we assume that a second additional virion type is present which is 

characterized by its inability to complete a replication cycle as discussed above. 

These virions are of normal size and for example may attach to the cell surface 

but fail to form an endosome, or may attach, form an endosome, but fail to leave 

the endosome (Seth et al. 1985). In these mechanisms no reproduction takes 

place, whilst cell receptors are being occupied. To handle this assumption 

mathematically, we therefore included a NOV leading to an abortive infection 

(A-NOV) in our model. An A-NOV does occupy an entry site, but will not lead to 

any reproduction. Volkman et al. (1976) reported a ratio l-NOV/A-NOV of less 

than 1% for AcNPV produced in Trichoplusia ni cells. In our laboratory, 

approximately 1 g of viral DNA could be isolated from a sample containing 108 
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median tissue culture infective dose (TCID60) units of extracellular AcNPV. With 

a molecular weight of the baculovirus of about 108 (g.mol1) and Avogadro's 

number of 6 1023 (molecules-mol-1) a ratio of 1 l-NOV to 60 A-NOVs could be 

calculated. 

Reactor model 

A general mass balance of virions or cells over one reactor vessel can be 

described as: 

~fll = yxjn ~~ ^x,out) + fx,prod ~ ^x,use 

where f is the time (h), x is a compound (number of cells or virions), rxln and rxout 

are the in and outgoing flows of x (h1), rxpmd is the production rate of the 

compound (h1), and rxuse is the consumption rate of x (h1). This mass balance 

was applied to virions and insect cells. 

Virions 

Within the general mass balance for virions a simple production term rxpmdcar\ be 

defined by the assumptions that enough virions are available to infect all insect 

cells, that all cells entering the infection reactor are infected immediately, and 

that after 16 hours the cells start to produce new virions. As we are interested in 

the passage effect this is done for each passage p. Hence, 

fx,prod,p = a / p - 1 , M 6 I2 l 
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with f being a fraction of l-NOV of a certain passage, that is the total amount of 

l-NOVp divided by the total amount of all l-NOV, t is the time (h), a is a production 

constant formed by the number of l-NOVs produced per cell, multiplied by the 

number of cells flowing into the reactor per unit of time (h1), and subscript p 

denotes the passage number. 

The fraction fp, of a certain passage at a certain time is determined not only 

by the fractions of the other passages at that time, but also by the fractions of 

the passages before that time. These passages determined how many insect 

cells are infected with a certain passage and with that how many virions of a 

higher passage will be produced 16 hours later. With increasing time, the 

number of passages increases, and with that the set of equations arising from 

equation [1] that has to be solved augments also. As with increasing time this 

exercise will become quite complicated, equation [1] is made discrete : 

Xt+At = Xt + ((rx,in- fx,out) + rx,prod~ /"x,use) At I31 

with At being one time step (h). 

Equation [3] can be applied to all types of NOV as well as insect cells. For 

the l-NOV this can be done for each virion passage. This leads to: 

Vi,m,p,t+At = (1 - DmA0(V/,m,p,f + Vijn,mj>,i) + (Ri,m,p - h,m,p)At [4] 

where D is the dilution rate in a reactor (h1), / is the virion consumption rate 

used for infection (h1), R is the rate of virion release by the cells (h~1), v is the 

amount of virions, subscript m denotes the reactor number in the series, and 

subscript ; denotes the infectious l-NOV. 

For D-NOVs and A-NOVs it is not necessary to calculate with separate 

passages, so equation [3] is simplified to : 
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V(dva),m,t+At = ( 1 - DmAf)(V(d va),m,t + V(d va),in,m,t) 

+(R(d va\m - l(d va),m)Af [5] 

where d denotes the defective interfering virion (D-NOV), and a denotes the 

virion leading to an abortive infection (A-NOV). 

The dilution rate Dm in reactor m will be zero as long as this reactor is in 

batch or fed-batch mode, which will be the case in the start-up phase of the 

reactor configuration. Due to the fact that in the cell growth vessel (m=0) in the 

series no virion production takes place, v0 is equal to zero for all NOV types. 

The total amount of l-NOV in vessel m can be calculated from: 

p=pmax 

Vi,m,tot,t+àt = lu Vi,m,p,t+M rei 
p=0 l J 

where pmax is the maximum number of passages at time f+Af, and subscript tof 

denotes the total number of l-NOVs. 

The amount of virion release by the insect cells is controlled by the number 

of infected cells some time before. As shown previously (de Gooijer et al. 1989), 

the virions are not released at once. Therefore, a time distribution of the l-NOV 

and A-NOV release is introduced in the model, as illustrated in table 1. 

Table 1. Distribution of virion release from infected insect cells (adapted from De Gooijer 
et al. (1989)). 

TIME (H) 

16 

18 

20 

22 

24 

26 

28 

177 

% RELEASE 

7 

13 

20 

26 

17 

15 

2 

% RELEASE (TOTAL) 

7 

20 

40 

66 

83 

98 

100 
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Kool et al. (1990, 1991) showed that D-NOVs have a 44% smaller genome 

than l-NOVs. If D-NOV DNA and l-NOV DNA are replicated at the same speed, 

the replication cycle of a D-NOV will be finished sooner. Since the process of 

transport to and from the cell nucleus may also be of importance, the D-NOVs 

are arbitrarily assumed to have the same time distribution but moved forward in 

time by two hours. 

To facilitate the calculation of the l-NOV balance for each passage, RIMIM 

is calculated in advance, that is as the number of virions that will be released by 

the cells after some time. Therefore the number of infected cells and //,m,pAf are 

evaluated in each time step. In the software these data are then stored in an 

array. Each time step the index of the array is increased, and in this way the 

virion amounts are available for calculation of R/mpAf at the appropriate time. 

Insect cells 

Equation [3] can also be applied to viable insect cells. With a similar derivation 

as for equation [4], for the first infection vessel in the series, equation [3] turns 

into: 

Cm,t+ M - (1 - Dm Af)(Cm,f + D „ M AtC^,,,) + kg(Cm,t - Gm)At [7] 

where C is the number of non-infected insect cells, G is the number of cells that 

are infected in one time step, and kg is the first-order cell growth constant (h'1). 

Note that C0 is the number of cells in the growth vessel. Cells that are not 

infected can grow in infection vessels, with the same speed as in the cell growth 

vessel. Infection of insect cells with baculovirus will annihilate cell division 

(Faulkner, 1981). 

178 



Modelling the baculovirus infection process 

Infection model 

With the three virion types (l-NOV, A-NOV, and D-NOV), three important modes 

of infection can be distinguished, as illustrated in figure 4. 

The first mode is formed by correct infections, being an insect cell infected 

with at least one l-NOV, and not infected by any D-NOV. Such cells will produce 

l-NOV, A-NOV, and a small amount of D-NOVs. The second mode consists of 

defective infections, where an insect cell is infected with at least one l-NOV and 

at least one D-NOV. Such an insect cell will produce l-NOV, A-NOV, and a large 

quantity of D-NOVs. The third mode is formed by an abortive infection, defined 

by an insect cell that is infected with an A-NOV and/or D-NOV, but without an 

infection with infectious l-NOV. Insect cells infected this way will not produce 

= l-NOV êS = D-NOV Q = A-NOV 

Figure 4. Schematic representation of three important modes of infection. See text for 
more details. 
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any virions. For both the first and second mode of infection the ratio of the 

numbers of virions produced is constant with time. 

To be able to calculate the fractions of each mode of infection, the following 

assumptions were made : 

i) Each insect cell has an equal amount of 'entry sites' for NOVs. This number 

is much less than the number of receptors. Wickham et al. (1990) reported 

a number of 105 AcNPV receptors per cell in the case of Spodoptera 

frugiperda cells. As production expressed as number of NOVs per cell is 

considerably less than this amount (this paper), it would be difficult to 

perform continuous runs if all NOVs would attach to cells and each virion -

receptor interaction leads to an infection. Moreover, it is most likely that the 

entry of 105 NOVs in an insect cell will lead to a considerable overload of 

the cellular machinery, or cause cytotoxic effects. 

ii) The number of entry sites is constant in time for one experimental run. 

iii) All entry sites are equal. 

iv) All NOVs have identical binding sites. Hence, the probability that an NOV 

attaches is the same for all types of NOV. 

v) Attachment of an NOV to a cell is irreversible. 

vi) The three NOV types cannot change into alternate types spontaneously. 

vii) Binding of NOVs to cells will take place within one time step. 

With these assumptions the fractions of the different modes of infection can be 

calculated, for each time step, if the probabilities for the different modes of 

infection are known. 

This problem, where a known number of three types of virions can occupy 

a known number of entry sites, is the same as the problem where red, white and 

blue balls are to be dispended over a number of small boxes. It is known from 

the latter that the probability of a box remaining empty has a Poisson 

180 



Modelling the baculovirus infection process 

distribution. Therefore, it is assumed that the probability (P0) of an entry site 

remaining empty is having a Poisson distribution : 

p0 = e-vMIBC [ 8 ] 

where B is the number of entry sites on a cell, and subscript tot denotes the total 

number of all virions. 

From that, the probability (P,) of an entry site being infected with an l-NOV is : 

p _ y;(1-Po) [9] 

and the probability (Pd) that an entry site is infected with a D-NOV : 

p VdQ-Po) [10] 

Pd= vM 

and finally the probability (Pa) that an entry site is infected with an A-NOV : 

p VaQ-Po) [11] 

The sum of these probabilities equals unity : 

P0 + P, + Pd + Pa = 1 [12] 

With these probabilities the fractions of the various modes of infection of 

the cells can be calculated. The fraction of the cells that are not infected (P0) 

then is : 

P0 = F ( ß a = 0 A ß , = 0 A ß d = 0) = Pg [13] 

The fraction of the cells that are abortively infected (Pa) then is : 
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a+ß+X=B _ . M 41 

Fa = F(e, = OA(Sa+Sd>0))= I - | L p - p g p * l J 

aao,(p+x)>o a\\i\V. 

where a is the number of entry sites per cell that are not occupied by any virion, 

ß is the number of entry sites per cell that are occupied by A-NOVs, and X is the 

number of entry sites per cell that are occupied by D-NOVs. 

The fraction of cells that have a correct infection (F,) is calculated from: 

a+ß + K=ß _ . M51 

Fi = F(Bi>0*Bd = O)= I -ML-KFiP* l J 

K>o,a,ß>oa!ß!ic! 

where K is the number of entry sites per cell that is occupied by l-NOVs. 

The fraction of cells with a defective infection (Fd) is calculated from : 

Fd = F(Bi>0ABd>0)= S -3nPôrtPdPT 

As the sum of all fractions is equal to one : 

Fo + F, + Fd + Fa = 1 [17] 

it is also possible to calculate Fd with equation [17]. The actual amounts of cells 

and virions, as required in the equations [4], [5], and [7] can easily be calculated 

from these fractions. Note that the implementation of equations [14], [15], and 

[16] also limit the theoretical number of entry sites that can be handled in the 

model for numerical reasons. The maximum number in our software is 1546. 

With the above equations the concentration in time for each of the virion types 

can be calculated. With these concentrations the decline in infection level in 

continuously-operated bioreactors can be described. 
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MATERIALS AND METHODS 

Cells and viruses 

Spodoptera frugiperda cells (Vaughn et al. 1977) were maintained in TNM-FH 

medium (Hink 1970) without egg ultrafiltrate, but supplemented with 10% fetal 

calf serum. For suspension cultures 0.1% (w/v) methylcellulose was added. The 

E2-strain of Autographa californica nuclear polyhedrosis virus (AcNPV) 

(Smith & Summers 1978) was used. The stock solution of the virus contained 

108 TCID50 units per cm3. 

Reactor configuration 

The continuously-operated reactor configuration with one infection vessel has 

been described by Kompier et al. (1988), and the configuration with two infection 

vessels by van Lier et al. (1990). 

Assays 

In order to determine the infectivity of the virus, 4-cm3 aliquots of the sample 

were centrifuged (1600 g for 15 min). The supernatant was filtered (0.45 urn), 

and the infectivity was measured using the end-point dilution method as 

described by Vlak (1979). The presence of polyhedra in the cell nucleus was 

determined using an inverted microscope (magnification 400x). The cell 

concentration was measured using a Neubauer hemocytometer. 
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Batch infection 

Cells from a continuous culture were pumped into a round-bottom bioreactor 

(working volume: 0.6 dm3, Applikon, Schiedam, the Netherlands). The cells were 

infected with 15 cm3 containing 108TCID50 units of third passage AcNPV per cm3, 

resulting in a multiplicity of infection of 2 and 3 TCID50 units per cell in two 

separate experiments. Samples were taken to assess the number of infected 

cells and the cell viability with time. 

Serial passages 

Cells were grown in 100 cm3 Erlenmeyer flasks in 20 cm3 of medium until the cell 

density exceeded 1.5x106 cells.cm3. To maintain the cells in an exponential 

growth phase, cells were diluted to a concentration of 5x10" cells.cm3 and 

further incubated at 27 °C. From these suspensions a volume equivalent to 

2x106 cells was taken and centrifuged (225 g, 5 min). A volume containing 

2x107TCID50 units of a single passage p was added to the cell pellet, thus 

resulting in a Multiplicity of Infection of 10. Medium was added to a volume of 

20 cm3 giving a cell concentration of 105 cells.cm3 and a multiplicity of infection 

of 10 TCID50 units per cell. The Erlenmeyer flask was then further incubated for 

three hours at 27 °C. The medium, and, with that, the non-bound l-NOVs were 

removed by centrifugation (225 g, 5 min). After resuspension in 20 cm3 fresh 

medium the cells were incubated for 21 hours at 27 °C. The extracellular fluid of 

this sample then contained almost exclusively l-NOVs of a higher passage p + 1. 

After centrifugation the infectivity of the supernatant was assayed as described 

before. Hereafter, a new experiment was started. 
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RESULTS AND DISCUSSION 

Passage-time distribution of l-NOVs 

With the model discussed above, the effects of different reactor configurations 

were studied. For one set of parameters, the total residence time in the series 

was kept constant by varying the reactor volumes for each reactor at a constant 

flow. The fractions of infectious NOV of each passage in time were calculated for 

reactor configurations with one, two and three infection reactors, with the 

infection reactor volume being 1.2x10"3, 0.6x103, and 0.4x103 m3, respectively. 

Results are shown in figure 5. This figure clearly shows that higher passages 

occur sooner if the number of vessels in the series of infection reactors is 

increased, i.e. if plug flow is more closely approximated. 

Fraction of l-NOV passage (-) 
1 

20 24 
Time (d) 
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Fraction of l-NOV passage (-) 

Fraction of l-NOV passage (-) 

24 
Time (d) 

Figure 5. Passage distribution of l-NOV, depicted as a fraction (l-NOV,/ l-NOVtot) occurring 
in time in the last vessel for three different continuously-operated reactor configurations 
with one, two and three infection vessels. The total residence time is kept constant for all 
configurations. 
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The model was used to test the hypothesis whether the passage effect is a 

viable explanation for the decrease in the number of cells producing polyhedra in 

the experiments with different reactor configurations as mentioned in the 

introduction section. Therefore, at the calculated time (tM) where the level of 

infection was only half of the pseudo-steady-state level as shown in figure 2, the 

distribution of the virion passages was calculated with the program. Results for 

the configurations with one and two infection vessels are shown in figure 6. 

Fraction l-NOV (-) 

11 13 1 5 17 

Passage number (-) 

Figure 6. Calculated passage distributions of l-NOV for two continuously-operated 
reactor configurations at the time the infection level is half of the pseudo-steady-state 
level. The l-NOV fraction of a certain passage (l-NOV^/l-NOVtot) versus the passage 
number p. The distribution for one infection reactor is in black, and for the second 
reactor of a series of two infection reactors the bars are white. 
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As both passage distributions in figure 6 showed a remarkably good 

resemblance, it can be concluded that the decline of polyhedra production after 

a certain time may indeed be attributed to the passage effect. 

To assess this in more detail, virions were serially passaged in two 

independent series of batch experiments and the amount of NOV produced in 

each passage was determined. The results are shown in figure 7. 

Log(l-NOVs/cell) (-) 

2.5 

1.5 

• 

*—*-r . \ 
• A 

V i 

1 1 1 1 É • L 

0.5 

10 12 14 
Passage Number (-) 

Figure 7. Prolonged passages of l-NOV : the logarithm of the averaged number of 
produced l-NOVs per cell as a function of the passage number. ( • , • ) are the results of 
two duplicate experimental series. 

At the ninth passage a sharp drop in the number of l-NOVs produced per 

cell was observed. At higher passages, a further decrease in the number of 

polyhedra per cell was found. Furthermore, the polyhedra showed morphological 

aberrations, which is a known consequence of the passage effect (Faulkner, 

1981). 
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The combination of figures 6 and 7 shows that at the time at which the 

infection level is half of the pseudo-steady-state level, the preponderance of the 

virions present in the two reactor configurations has a passage number higher 

than 8. Moreover, with virions of these passage numbers not enough virions is 

produced to maintain the continuous infection process at the 

pseudo-steady-state level. 

To further elucidate the phenomenon of the passage effect two other virion 

types A-NOV and D-NOV as described before were introduced into the infection 

model. 

Infection process 

Visibly Infected Cells (%} 
100 

80 

60 

40 

20 

• 

• • 

/ • 
/ • 

/ » ' 

/• 

I. « m*& 1 1 1 
4 5 

Time (d) 

Figure 8. Fit (line) of two batch infection runs ( • , • ) with the model. The percentage of 
visibly infected cells versus time. Parameters are as in table 2 under A. 
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The assumption of the A-NOV type facilitated the description of our data on 

batch infections, as shown in figure 8. Here, two independent runs were fitted by 

the model. The fit of the model was reached on the basis of visibly infected cells. 

We assumed that of the synchronously-infected cells, the first ones become 

visibly infected after 20 hours, and the last after 44 hours. Visibly infected cells 

remain visible for 60 hours, then they lyse. 

After including the three NOV types into the program all our experimental 

continuous runs could easily be described with the model. Input variables are 

given in table 2. 

Table 2. Input variables for the infection model. Values A E are used in figures 8-12, 
respectively. Values under D are also used in table 3. 

VARIABLE 

Reactor working volume 

Reactor startup volume 

Flow 

Number of l-NOVs at startup 

Number of A-NOVs at startup 

Number of D-NOVs at startup 

Cell concentration in growth 
vessel (C0) 

Time step (At) 

Number of entry sites 6 

Number of virions produced at 
a correct infection 

id., of which A-NOVs 

id., of which D-NOVs 

Number of virions produced at 
a defective infection 

id., of which A-NOVs 

id., of which D-NOVs 

A 

600 

600 

0 

1.5 109 

2.9 1010 

0 

1 106 

2 

33 

3,340 

95 

10-6 

1,600 

71 

25.5 

B 

800 

400 

1.33 10"2 

1.6 103 

6.2 104 

0 

9 105 

2 

33 

4,000 

97.5 

10-6 

1,600 

77 

22.9 

C 

2x600 

2x300 

2 10-2 

7.1 106 

1.1 108 

0 

9.5 105 

2 

40 

3,340 

94 

10"6 

1,600 

71 

25.5 

D 

2x600 

2x300 

2 10-2 

1.5 109 

2.9 10'° 

0 

1 106 

2 

33 

3,340 

95 

10-6 

2,000 

53 

46.95 

E 

800 

200 

8.3 10-" 

8 107 

1.3 109 

0 

8 105 

1 

33 

3,340 

94 

10-6 

1,600 

71 

25.5 

UNIT 

cm3 

cm3 

dnf.h'1 

-
-
-

cm"3 

h 

cell1 

cell1 

% 
% 

cell1 

% 
% 
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Parameters in table 2 that were either measured or set by experimental 

conditions were the reactor working and start-up volume, the flow through the 

series, the number of l-NOVs at start-up, the cell concentration in the growth 

vessel, the number of l-NOVs produced per cell, and the time step. Fitted 

parameters were the ratio between l-NOVs and A-NOVs both at start-up and 

with virion production, the number of entry sites, the D-NOV production rate at 

correct infections, and the number and ratio of virions produced at a defective 

infection. The ratio of l-NOV to A-NOV was in the same range as discussed 

earlier. 

Two examples of fits on the data of Kompier et al. (1988) and van Lier et al. 

(1990) are given in figures 9 and 10. 

Visibly infected cells (%) 
100, 

Concentration (107ml) 

- 140 

50 60 
Time (d) 

Figure 9. Fit of the model on the percentage of visibly infected cells in one 
continuously-operated infection reactor. Parameters are in table 2 under B. 
( • ) = experimental data, Line A is the model description of the percentage of visibly 
infected cells. Lines B and C are model descriptions of the l-NOV and D-NOV 
concentration, respectively, and line D is the A-NOV concentration divided by 10. 
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Visibly infected cells (%) 
10Q 

Concentration (10 /ml) 
250 

30 

Time (d) 

Figure 10. Fit of the model on the experimental ( • , • ) percentage of visibly infected cells 
in the first (line A) and second (line B) reactor of a series of two continuously-operated 
infection reactors with the model. Lines C and D are l-NOV and D-NOV concentrations in 
the second vessel, respectively. Line E is the A-NOV concentration divided by 10. 
Parameters are in table 2 under C. 

From these figures it can be seen that at the time at which the decrease in 

l-NOV concentration occurred, the number of D-NOVs increased. The model 

behaved this way with all experimental runs analyzed so far. Note that in figure 

10, the concentration of virions does not decrease to zero. This was 

experimentally observed, and can be predicted by the model assuming that the 

cells that are either infected with l-NOV and D-NOV and/or A-NOV will still 

produce some l-NOVs. 

Kool et al. (1990, 1991) showed with a recombinant virus that D-NOVs are 

generated during continuous runs at each point in time, with a clear increase at 

the end of the run. Apparently, after a period of low occurrence, D-NOVs are 

produced in large amounts due to their faster rate of synthesis. After the 
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exponential increase in the amount of D-NOVs, there are too few correct 

infections to produce enough l-NOVs to support D-NOV reproduction (helper 

function), and the infection process ceases. This seems a valid explanation for 

the passage effect. 

As reported by Von Magnus (1959), prolonging the serial passages will 

eventually result in an increase in the number of l-NOVs again. Since D-NOVs 

need l-NOV to be reproduced, the number of D-NOVs will drop when there is too 

little l-NOV. After this phase, at low multiplicities of infection of the three virion 

types the chance increases that correct infections will occur, thereby starting the 

l-NOV production again. In a continuous culture high passages occur soon, and 

eventually D-NOV production will decrease and subsequently the D-NOVs will 

be washed out of the reactor. Then, a low multiplicity of infection is reached and 

Concentration (10^ml) 
250f 

50 60 
Time (d) 

Figure 11. The von Magnus effect in a continuously-operated infection vessel as 
simulated by the model. The concentration of l-NOV (lines A) and D-NOV (lines B) versus 
time. Parameters are in table 2 under D. 
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if not all l-NOVs are washed out, l-NOV reproduction starts again since the 

chance that insect cells become correctly infected increases in that situation. 

This reactor behaviour could also be simulated with the model, as illustrated in 

figure 11. This phenomenon has been observed in our bioreactor system 

(Van Lier et al. 1992). 

Sensitivity analysis 

In order to assess the significance of each parameter a sensitivity analysis was 

made. Parameter values were varied along the settings as under D in table 2. 

The influence of parameter variations on the pseudo-steady-state infection level 

Table 3. Sensitivity analysis of the parameters. dUdP and dt,^dP are the effects of varying 
the parameter value on the pseudo-steady-state infection level (L) and on the time at which 
the infectionlevel is half the pseudo-steady-state level (f,„), respectively. The first and 
second sign denote the effect of a respectively smaller and larger parameter (P) value than 
given under D in table 2, under ceteris paribus conditions. + = d/dP is positive, o = there is 
hardly any influence, - = d/dP is negative. 

PARAMETER dUdP dtJdP 

Number of virions produced at a correct infection 

Number of virions produced at a defective infection 

Cell concentration 

Number of entry sites 

Number of l-NOVs at startup 

Number of A-NOVs at startup 

Number of D-NOVs at startup 

Time lapse between infection and l-NOV/A-NOV release 

Time lapse between infection and D-NOV release 

Fraction of A-NOVs produced at a correct infection 

Fraction of D-NOVs produced at a correct infection 

Fraction of A-NOVs produced at a defective infection 

Fraction of D-NOVs produced at a defective infection 
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Modelling the baculovirus Infection process 

L and on the time (t1/2) at which the infection level is only half the 

pseudo-steady-state level were investigated. Results are given in table 3. 

The sensitivity analysis presented in table 3 shows some interesting 

features. The time lap between infection and D-NOV release obviously only 

influences im. If this time lap is smaller the D-NOVs will occur sooner, and hence 

t1/2 will decrease. The influence of the time lap between infection and 

l-NOV/A-NOV release is much less pronounced. As the l-NOV/A-NOV ratio is 

not altered, the L will not be changed, and with a decreasing time lap l-NOVs 

and A-NOVs are produced sooner, and therefore D-NOVs have a smaller 

chance to infect cells. In that case the t1/2 will occur later. The parameters that 

describe the composition of the virion mixture at startup are hard to determine 

but have no influence on t1/2ar\d L This can be explained by the large amount of 

virions that will be produced in a continuous culture shortly after startup (Figures 

9 and 10). This also explains the greater importance of the amounts of the three 

virion types produced at a correct, and to a lesser extent, defective infection. 

These amounts control the numbers of virions produced in pseudo-steady state, 

and with that both L and t1/2- A higher number of entry sites per cell will lead to 

more virions infecting cells. At the pseudo-steady-state level of infection the 

majority of the infections will consist of correct and abortive infections. The NOV 

mixture then consists of mainly A-NOV with little l-NOV (figures 9 and 10), and if 

more virions can infect cells the chance that an l-NOV infects a cell increases. 

With that, an increase in the fraction of correctly infected cells can be expected. 
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Suggested mode of operation 

Figures 9 and 10 showed that a low concentration of D-NOVs is not detrimental 

to the infection process. This observation provides a key to a promising strategy 

for reactor operation, especially for semi-continuous cultures (Klöppinger et al. 

1990). Figure 12 depicts a simulation of a repeated batch. Cells are grown in a 

fed-batch-operated growth vessel, and the infection reactor is operated 

batchwise. After each cycle, the volume of the infection reactor was lowered to 

3%. The virions remaining in this volume will start the infection of new cells that 

are then pumped into the infection vessel from the cell growth vessel. 

From this figure it is clear that production of l-NOVs in this system is 

maintained significantly longer than in a continuous culture. This can easily be 

explained by the repeated dilution of the D-NOVs. With that, a very low 

Log(l-NOVs) (-) 

80 100 
Time (d) 

Figure 12. Simulation of a repeated batch infection process. The concentration of l-NOV 
versus time. Parameters as in table 2 under E. 
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multiplicity of infection will occur, and from that, the chance that cells are 

infected with both D-NOV and l-NOV will be very low. Hence, l-NOV will be 

produced before D-NOVs are available in significant quantities, and the infection 

process will continue for a longer period of time. 

In a repeated fed-batch mode of operation of the infection vessel, however, 

insect cells are continuously grown and pumped into the infection vessel in a 

fed-batch mode until the reactor is completely filled. Thereafter the medium 

volume of the infection reactor is decreased to 3%. The remaining cells and 

virions start the infection process again in the next run. In a repeated fed batch 

the repeated dilution will be less significant, as more passages occur during the 

run. The run time must therefore approach a fully continuous culture, which 

indeed can be simulated by the model. These alternative modes of operation of 

reactor configurations are now experimentally tested to validate the model. 

CONCLUSIONS 

In the case of a continuously-operated reactor configuration, an increased 

number of infection reactors with the same total residence time resulted in an 

increased pseudo-steady-state level of infection, but a decreased run time. The 

observed decrease in infection level in continuously-operated series of reactors 

may be attributed to the passage effect. With the concept of the defective 

interfering virion and the non-infectious non-occluded virion, experimental data 

from the bioreactors can be described well with the proposed dynamic model, 

thereby giving an accurate description of the passage effect. Our current 

research is focused on the determination of the actual numbers of the three 

types of NOVs occurring in the continuously-operated reactor series, in order to 

validate the model presented here. Furthermore, an experimental confirmation 
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of the suggested repeated batch operation of the infection vessel in the reactor 

series is under way. 
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NOMENCLATURE 

a product ion constant formed by the number of virions 

produced per cell, multiplied by the number of cells f lowing 

into the reactor per unit of t ime 

ß number of entry sites on a cell 

C number of non-infected insect cells 

D d i lution rate 

f f ract ion of vir ions 

F f ract ion of cells with a certain infection type 

G number of cells that are infected 

/ rate of vir ion use for infection purposes 

kg f i rst-order cell growth constant 

P propabil ity that an entry site is infected 

Pmaj, max imum number of passages 

R rate of virion release by the cells 

rxin ingoing flow of x 

h-1 

h1 

h"1 

Ir1 

h"1 

h'1 
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rxout outgoing flow of x h1 

rxpmd production rate of x h1 

rx,use consumption rate of x h~1 

f time h 

tm time at which the infection level in a continuous 

culture is half the pseudo-steady-state level h 

v amount of virions 

x number of cells or virions 

M time step h 

a the number of entry sites per cell that are not occupied by 

any virion 

ß the number of entry sites per cell that is occupied by A-NOVs 

X the number of entry sites per cell that is occupied by D-NOVs -

K the number of entry sites per cell that is occupied by l-NOVs 

Subscripts 

d defective interfering particle (D-NOV) 

/ infectious non-occluded virus (l-NOV) 

m reactor number in the series 

a NOV leading to an abortive infection (A-NOV) 

o not infected 

p passage number 

tot total 
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CHAPTER 8 

LONG-TERM SEMI-CONTINUOUS 
PRODUCTION OF RECOMBINANT 

BACULOVIRUS PROTEIN IN A REPEATED 
(FED-)BATCH TWO-STAGE 

REACTOR SYSTEM 

SUMMARY 

The baculovirus expression system is commonly used in the research and 

development area and in the production of diagnostics and vaccines. Because 

the infection of insect-cell cultures with a (recombinant) baculovirus is a lytic 

process the running time of an infected batch insect-cell reactor is limited. 

Another disadvantage of the system is the instability of the virus. In this study a 

two-stage reactor system was tested for its suitability for long-term 

semi-continuous operation. Three experimental set-ups were tested involving 

repeated infections in a reactor fed with cell suspension from a separate 

cell-growth reactor. As virus inoculum part of a previous infection was used. Best 
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performance with respect to long-term operation was obtained with a repeated 

batch system. Twelve consecutive productive runs, consisting of infections 

during five days, could be performed. The titers of infectious extra-cellular virus 

could be described well with an infection model previously developed in our 

laboratory. 

INTRODUCTION 

The baculovirus expression vector system has established itself as a powerful 

tool in the expression of foreign genes. The system is mainly used in research 

and development and for production of diagnostics and vaccines (Vlak 1990). 

The first steps towards clinical application have already been taken (Glaser 

1993). A major disadvantage of the system, however, is the lytic character of the 

infection process which limits the production time of a batch process. 

A continuous production process in a two-stage reactor system is possible 

by exploiting the typical bi-phasic infection cycle of the virus. During the first 

phase infected cells produce non-occluded viruses (NOVs) which are released 

into the medium and which are capable of infecting other insect cells. When 

infected with wild-type virus, the infected cells will produce virus particles packed 

in polyhedra during the second phase of the infection process. In a baculovirus 

expression vector usually the gene coding for the major late protein (polyhedrin) 

is replaced by a gene of choice and hence the infected cell will produce the 

desired protein during the second phase of virus infection (O' Reilly et al. 1992, 

King & Possee 1992). An alternative site for insertion is the locus of the p10 

gene which has, like the polyhedrin gene, a strong promoter and which is also 

highly expressed during the second phase of infection (Vlak et al. 1990). 

204 



A repeated (fed-)batch two-stage reactor system for baculovirus production 

For a continuous production process insect-cell culturing and infection of 

cells have to be physically separated. This can be achieved by using a reactor 

system consisting of two continuously operated reactors in series. In the first 

reactor the insect cells are cultured and the effluent is used as influent for the 

second reactor where the cells are infected. In such a reactor system wild-type 

Autographa californica nuclear polyhedrosis virus (AcNPV) (Kompier et al. 1988) 

and recombinant ß-galactosidase (Van Lier et al. 1992) have been successfully 

produced. In both studies, however, after four weeks of more or less stable 

production the productivity rapidly decreased. This decrease in production has 

been ascribed to interference of defective virus particles with intact virus (Kool 

et al. 1991). 

To make the continuous system suitable for large-scale production the level 

of defective NOVs (D-NOVs) should be held low. This implies that a low 

multiplicity of infection (m.o.i.; number of infectious viruses available per cell) 

should be maintained in the infection vessel. This can not be achieved in a 

continuous reactor system since NOV concentration gradually builds up (about 

200 NOVs are produced per cell). A batch infection has the disadvantage of long 

down times as a result of cleaning and sterilization of the reactor after each run. 

With a semi-continuous system based on repeated (fed-)batch infections the 

m.o.i. can be better controlled. By using a two-reactor setup the down time can 

be minimized (Van Lier et al. 1991, De Gooijer et al. 1992, Zhang et al. 1993). 

Hink and Strauss (Hink & Strauss 1980, Hink 1982) described a production 

system where Trichoplusia ni Tn368 cells were cultured in a stirred reactor. 

AcNPV was propagated in a series of four spinner flasks. Every 24 hours the 

content from each infection vessel was pumped to the next infection vessel and 

the first infection vessel was filled from the cell-growth reactor and inoculated 

with virus. Production of polyhedra stayed constant during four runs and then 
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declined. This decline was probably due to lack of nutrients or accumulation of 

waste metabolites since medium was re-used. Klöppinger et al. (1990) reported 

on semi-continuous production of polyhedra in a reactor system consisting of 

two bioreactors. Part of the cultured cells from the first reactor was pumped into 

a second reactor for infection, the remaining cells were used as inoculum for a 

new fed-batch culture of cells. When the virus propagation reactor was 

harvested, part of the contents stayed in the reactor to infect the next cell batch. 

Klöppinger et al. (1990) observed "a constant production for several weeks". In a 

third study on repeated batch production, Bombyx mon Bm5 cells were infected 

with a recombinant BmNPV expressing bacterial chloramphenicol 

acetyltransferase (Zhang et al. 1993). In that study, four consecutive runs were 

performed and production of the two-stage bioreactor system was constant for 

27 days. 

Especially for clinical applications it is important to get insight in the stability 

of the baculovirus expression vector. In our laboratory a model was developed 

describing the infection process in insect-cell reactor configurations (De Gooijer 

et al. 1992). It is assumed that each insect cell has a limited number of so-called 

"entry sites" where virus can enter the cell. Furthermore, three types of viruses 

are taken into account: infectious virus (l-NOV), defective virus (D-NOVS) and 

abortive virus (A-NOV). Most virus belongs to this last group that uses an 

entry-site but is incapable of a permissive infection. With this model continuous 

reactor runs could be well described. This model can also be used to describe a 

series of repeated batch runs. De Gooijer et al. (1992) did a model simulation for 

a system similar to the one described by Klöppinger et al. (1990) and Zhang 

et al. (1993). The model predicted that after about 12 consecutive batch runs the 

l-NOV concentration would decrease as a result of defective interference of 

D-NOVs. 
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In the present study it was investigated how many consecutive batch 

infections could be done before the production declined as a result of defective 

virus build up. Beside the repeated batch infection experiment, two other 

experiments were performed where infection was conducted in a fed-batch 

mode. The experimental data were used to evaluate the model of De Gooijer 

et al. (1992) in predicting the productivity decline. 

MATERIALS AND METHODS 

Cells, virus, medium 

The IPLB-Sf-21 cell line isolated from Spodoptera frugiperda by Vaughn et al. 

(1977) was used. The cells were grown in TNM-FH medium (Hink 1970) 

supplemented with 10% fetal calf serum. Cells were maintained in 25 cm2 tissue 

culture flasks (Greiner). For growth in suspension methyl cellulose with a final 

concentration of 0.1% (w/v) was added to the medium. The recombinant 

baculovirus was an Autographs californica multiple-capsid nuclear polyhedrosis 

virus (AcMNPV) containing the lacZ gene of Escherichia coli instead of the 

polyhedrin gene (Summers & Smith 1987). 

Bioreactor configuration 

The bioreactor system consisted of two 1 dm3 round-bottomed fermentors or two 

2 dm3 flat-bottomed fermentors (Applikon) in series. The reactors were equipped 

with marine impellers and maintained at 28 °C with an internal heating system 

connected to a waterbath with forced cooling. Air was introduced with a flow of 
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10 dm3.h"1 in the head space of the reactors through a 0.2 urn filter. Liquid was 

transported via silicone tubing by peristaltic pumps (Watson-Marlow). Infection of 

the cell-growth reactor by virus from the infection reactor was prevented with a 

drop former. 

The first experiment consisted of a series of batch infections. The reactors 

were operated as shown in figure 1A. The batch time was five days. To inoculate 

a batch of cells, 20 cm3 suspension of the previous run was left in the reactor. 

In the second experiment (Figure 1B) the infection reactor was filled with 

0.3 dm3 cell suspension. During two days cell suspension was added 

continuously to the infection reactor. Additionally, upon reaching the final 

working volume the reactor was operated batch-wise during 1 day. To inoculate 

a new infection cycle 20 cm3 of suspension was left in the reactor. The one day 

batch period served two purposes: it prolonged the residence time of cells in the 

infection reactor and it allowed for a cell suspension build-up in the cell-growth 

reactor needed for starting the next infection. 

The third experiment was performed analogous to the second experiment 

except that here a three day fed-batch period was used and that the reactor 

volumes differed (Figure 1C). 

During all operation schemes the cell-growth reactor was fed continuously 

with medium. During the first experiment the effluent of the cell-growth reactor 

was bleeded when the working volume was reached. The operation of the 

bioreactor systems was such that the residence time of the cells in the 

cell-growth reactors were similar. 

208 



A repeated (fed-)batch two-stage reactor system for baculovirus production 

Reactor volume (dm3) 

Time (dj 

Figure 1. Reactor volumes during the infection processes. I : infection reactor, 
II : cell-growth reactor. A : 5-day batch infections, B : 2 day fed-batch / 1 day batch 
infections, C : 3 day fed-batch / 1 day batch infections. 
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Hence physiological differences of the cells before infection between the three 

experiments were eliminated as much as possible. 

Bioreactor samples 

Samples from the bioreactor were forced into the sample flasks by pressurizing 

the reactor. The sample system was cleaned by blowing sterile air through the 

system. Samples were taken daily. The sample volumes were about 1 cm3 for 

the cell-growth reactor and about 5 cm3 for the infection reactor. In both samples 

the cell number was determined. 

Four cm3 of the samples from the infection reactor were centrifuged (1500g 

for 5 min). The cell pellet was resuspended in 4 cm3 phosphate buffered saline 

(PBS) and centrifuged again. The pellet was finally resuspended in 1 cm3 PBS. 

Both the cell suspension and the supernatant from the washing step were stored 

at -20 °C. The supernatant from the first centrifuge step was filtered through a 

0.45 urn filter and split into two aliquots of which one was stored at 4 °C for virus 

titer determination and the other at -20 °C for a ß-galactosidase assay. 

Cell counts 

Cells were counted in a bright-line Neubauer haemocytometer. To distinguish 

between viable and non-viable cells the trypan blue exclusion method was used. 

210 



A repeated (fed-)batch two-stage reactor system for baculovirus production 

ß-galactosidase assay 

The cell pellet stored at -20 °C was lysed by sonification (three cycles of 30 s 

with 30 s intervals), ß-galactosidase activity was determined in the lysed pellet 

and both supernatant fractions stored at -20 °C. 

The activity of ß-galactosidase was measured by following the hydrolysis of 

2-nitrophenyl-galactopyranoside (ONPG) spectrophotometrically at 420 nm. The 

assay was executed at 28 °C. The activity of ß-galactosidase was expressed as 

mol ONPG cleaved per minute. An extinction coefficient of 4.5 103 M"1.m'1 was 

used. 

Virus titer 

The titer of infectious virus was determined in the supernatant fraction stored at 

4 °C using an end point dilution method as described by Vlak (1979). To screen 

for wells containing infected cells 10 mm3 of a 0.4 g.dm'3 solution of 

5-bromo-4-chloro-3-indolyl-ß-galactopyranoside (X-gal) was added to each well. 

RESULTS AND DISCUSSION 

Viable-cell concentration in both the cell-growth and infection reactor at the start 

of each infection run was relatively constant during the repeated batch infection 

experiment (Figure 2A). Since the residence time of the cells was similar in all 

three reactor configurations, similar cell densities could be expected at the 

beginning of each infection. However, cell densities differed from about 

0.8 106 cells.cm"3(batch system) to about 1.6 106 cells.cm"3 (3 day fed-batch). 
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Figure 2. Viable cell density versus time. ( D ) : cell-growth reactor, ( O ) : infection 
reactor. A : 5-day batch infections, B : 2 day fed-batch / 1 day batch infections, C : 3 day 
fed-batch / 1 day batch infections. 

212 



A repeated (fed-)batch two-stage reactor system for baculovirus production 

During each infection the viable-cell concentration in the infection reactor 

decreased. Viable-cell concentrations during the two-day repeated fed-batch 

experiment showed a similar behaviour (Figure 2B). During the three-day 

repeated fed-batch experiment (Figure 1C), however, viable-cell density at the 

start of each infection run was not constant and the viable-cell density in the 

infection reactor did not decrease as distinctly as in the other two experiments 

(Figure 2C). 

During twelve consecutive infections in the infection reactor of the batch 

operated system (Figure 1A) ß-galactosidase production was reproducible and 

averaged 22 U.cm"3 (Figure 3A). After the twelfth run production of 

ß-galactosidase decreased and stayed at about 3 U.cm"3. A total of 

21 consecutive runs was performed (not all data shown). Production of 

ß-galactosidase during the two-day fed-batch operated infection experiment 

(Figure 1B) declined after the fifth consecutive infection (Figure 3B). During the 

first five infections the ß-galactosidase production was about 14 U.cm3, 

comparable to the ß-galactosidase activity in the batch operated system three 

days after start of infection. The ß-galactosidase activity in the infection reactor 

operated with the three-day fed-batch regime (Figure 1C) was considerably 

higher than in both other experiments. Here, production was on average 

35 U.cm"3 during the first seven runs with exception of the first infection 

(Figure 3C). 

The production time of the repeated batch configuration is by far the 

longest. This can be expected because batch operation diminishes the build-up 

of D-NOVs compared to fed-batch operated systems. In a fed-batch mode of 

infection more virus passages can occur due to the continuous supply of 

non-infected cells. The fed-batch infections, however, offer a tool for model 

evaluation. It should be noted that long-term operation is not per se an 
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ß-galactosidase activity (U/cm ) 
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Figure 3. ß-galactosidase activity versus time. A : 5-day batch infections, B : 2 day 
fed-batch / 1 day batch infections, C : 3 day fed-batch / 1 day batch infections. 
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optimization criterion. Practical reasons (maintenance, working hours) or 

regulatory affairs may limit the running time of a cultivation. 

The lacZ gene of E. coli is often used as a model gene for measuring 

baculovirus-mediated recombinant-protein expression. Caution must be taken, 

however, when data obtained with lacZ-AcMNPV vectors are compared. 

Differences in levels of ß-galactosidase expression can occur as a result of 

differences in cell density (resulting in different metabolic state of cell 

suspensions), differences in baculovirus vectors and differences in cell lines 

used (Wickham et al. 1992). Also differences in m.o.i. can influence 

ß-galactosidase production (Licari & Bailey 1991, Neutra et al. 1992). 

Furthermore, the experimental determination of ß-galactosidase activity 

(differences in temperature, extinction coefficient or pH) may introduce 

(seeming) discrepancies when different studies are compared. 

Nevertheless, in table 1 production data obtained with the reactor 

configurations described in this paper are compared with data from the 

literature. These literature data are comparable with respect to the 

ß-galactosidase activity assay conditions. In all cases the same extinction 

coefficient (4.5 103 M'Vnr1) was used. The productivity of the repeated batch 

system is low as compared to the literature data on single batches (data are all 

from day 5 post infection). However, using the same virus, cells, medium and 

culture conditions values of about 20 U.106 cells were found in our laboratory in 

batch cultures (Van Lier et al. 1992). Furthermore, since the bioreactors were 

only aerated through the head space, oxygen limitation could also be 

responsible for the lower yield. The productivities of the continuous system and 

the reactor configurations described in this study are in the same order of 

magnitude. The three-day fed-batch reactor system shows a somewhat higher 

productivity. This suggests that a fed-batch operated system can give rise to a 
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higher productivity. This is, however, unlikely since the average residence time 

of the cells in the infection reactor is less than in the batch operated infection 

reactor. The higher productivity can be attributed to the higher cell density. 

Table 1. Comparison of several reactor systems used to produce baculovirus-expressed 
ß-galactosidase. STR: stirred tank reactor, AR: airlift reactor. Literature: (1) Van Lier et al. 
1992, (2) Neutra et al. 1992, (3) Murhammer & Goochee 1988, (4) King et al. 1992. 

SYSTEM 

Continuous (STR) (1) 

Batch (shake flask) (2) 

Batch (AR) (3) 

Batch (AR) (4) 

Repeated batch 

Repeated fed-batch / 
batch (2/1 d) 

Repeated fed-batch / 
batch (3/1 d) 

ß-GALACTOSI­
DASE ACTIVITY 

IN HARVEST 
(U.cnrr3) 

10 

200 

50 

64 

22 

14 

35 

HARVEST 
VOLUME 
PER DAY 
(cnf.d"1) 

320 

8 

114 

1,560 

120 

300 

200 

PRODUCTIVITY 
(U.cnr3.d-1) 

4 
40 

10 

13 

4.4 

4.7 

8.8 

TOTAL 
RUNNING 
TIME (d) 

25 

5 

5 

5 

60 

15 

28 

In all three experiments performed, the decrease in ß-galactosidase 

production in the infection reactor coincided with a decrease in titer of infectious 

virus (Figure 4). This decrease is due to interference of defective rec-AcMNPV 

mutants which lack the ability to produce ß-galactosidase (Kool et al. 1991) or 

compete for replication factors (Kool et al. 1993). 

The kinetics of the mechanism of interference by defective AcMNPV was 

modeled by De Gooijer et al. (1992) for continuous systems. This model is 

capable of predicting the titer of NOVs and distinguishes between infectious 

NOVs (l-NOVs), defective NOVs (D-NOVs) and abortive NOVs (A-NOVs). For 

the repeated batch experiment as described in this study De Gooijer et al. 

(1992) calculated the virus titer profiles as shown in Figure 4A. The virus titer 

216 



A repeated (fed-)batch two-stage reactor system for baculovirus production 

profiles of both other experimental systems used in this study were calculated 

with the same system-independent parameters as used for the batch operated 

system (Table 2). 

Table 2. Input parameters for the baculovirus infection model (De Gooijer et al. 1992). 

VARIABLE 

Number of D-NOVs at startup 

Number of cell entry sites 

Number of virions produced at a correct infection 

of which A-NOVs 

of which D-NOVs 

Number of virions produced at a defective infection 

of which A-NOVs 

of which D-NOVs 

VALUE 

0 

33 

3,340 

94 

10-6 

1,600 

71 

25.5 

UNIT 

-
cell"' 

cell1 

% 
% 

ceir1 

% 
% 

The calculated NOV titers are given in Figure 4B and C. In case of the 

two-day fed-batch infection the calculated l-NOV declined somewhat later than 

the measured titer. The model predicts the measured data well with respect to 

the repeated batch infection and the three-day fed-batch infection experiment. 

Especially the time when the l-NOV titer dropped is well predicted. 

CONCLUSIONS 

The use of repeated infections, each starting with an inoculum from the previous 

infection, increased the running time of a two-stage reactor system as compared 

to a continuously operated two-stage reactor system. There is, however, a limit 

to the number of consecutive infections that can be performed without significant 

loss in productivity. This number depends on the mode of operation of the 
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log(NOV titer) 
10 

40 
Time (d) 

Figure 4. NOV titers. ( • ) : measured l-NOV titer, ( O ) : computed l-NOV titer, 
( D ) : computed A-NOV titer, ( A ) : computed D-NOV titer. A : S-day batch infections, 
B : 2 day fed-batch / 1 day batch infections, C : 3 day fed-batch / 1 day batch infections. 
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reactor system. From the three modes of operation tested, a scheme of 

consecutive 5 day batch infections performed best in terms of long-term 

operation. Repeated infections, where cells were supplied during three days to 

the infection reactors, followed by one day batch operation, performed best in 

terms of productivity. 

With the model developed to describe the infection process (De Gooijer 

et al. 1992) the number of consecutive infections that can be performed before 

defective baculoviruses become predominant in the infection reactor can be 

predicted well. 
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CHAPTER 9 

SUCROSE CONVERSION 
BY IMMOBILIZED INVERTASE 

IN A MULTIPLE AIR-LIFT LOOP 
BIOREACTOR 

ABSTRACT 

A new bioreactor series within one vessel, the Multiple Air-lift Loop reactor 

(MAL), is introduced. In the MAL a series of air-lift loop reactors is incorporated 

into one vessel. From residence time distribution studies it was shown that the 

three-compartment MAL behaves like a series of three ideal mixers. 

A continuously operated MAL, containing immobilized invertase as model 

biocatalyst, was evaluated. The advantage of approaching plug flow by using a 

bioreactor cascade could be shown by comparing substrate conversion in the 

three-compartment MAL to that in a single vessel at the same overall dilution 

rate. This was done for two sets of experimental conditions, which were chosen 

by using a previously developed model. Intrinsic kinetic parameters of the 
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immobilized enzyme, needed for the model calculations, were determined 

experimentally. Model calculations gave good approximations of the results. The 

model incorporates external mass-transfer resistance and diffusion and reaction 

in the biocatalyst beads. 

INTRODUCTION 

Cascades of continuously operated stirred-tank reactors can be flexible tools for 

the optimization of bioprocesses (Pirt, 1975, Luyben & Tramper, 1982, Shimizu 

& Matsubara, 1987, Hill & Robinson, 1989, Malcata & Cameron, 1992). The 

Multiple Air-lift Loop reactor (MAL) is a new type of bioreactor, consisting of 

a series of air-lift loop reactors (ALRs) within one vessel (De Gooijer, 1989). 

With a series of ideal mixers the behavior of a plug-flow reactor can be 

approximated (Levenspiel, 1972). On laboratory scale (V = 0.01 m3), and with a 

regular aspect ratio (H/D = 13), ALRs behave like nearly ideally mixed vessels 

(Chisti, 1989, Van 't Riet & Tramper, 1991). Therefore, as a whole, the MAL is an 

approximation of an aerated plug-flow bioreactor when sufficient ALRs (N > 20) 

are placed in series. Thus the advantages of both reactor types are combined in 

this reactor series: the possibility of improved substrate conversion in the 

plug-flow approximation, and suitable conditions for measurement and control in 

the nearly ideal mixers. The MAL can be used to study applications of reactor 

series in biotechnology. 

In 1982, Luyben & Tramper derived an analytical expression for the optimal 

design of a cascade of continuous stirred-tank reactors with the minimal overall 

reactor volume required for a specific substrate conversion as criterion. They 

limited their design to biocatalytic reactions with suspended enzymes following 
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Michaelis-Menten kinetics. This expression was extended to immobilized 

enzymes that obey intrinsic Michaelis-Menten kinetics, and validated 

experimentally by De Gooijer et al. (1989) for reactors in series. Further studies 

on reactor series containing suspended enzymes were made by Malcata (1988, 

Malcata & Cameron, 1992) for different kinetics, taking minimal capital 

investment as optimization criterion. The above authors (Luyben & Tramper, 

1982, Malcata, 1988, De Gooijer et al., 1989) observed that the decrease in 

required overall reactor volume for a desired conversion is the largest when 

going from one to two reactors in series. Only slight improvement is found when 

going from 2 to 3, and even more reactors in the cascade is economically not 

feasible (Malcata, 1988). From these observations it was chosen to use a MAL 

with three reactors in series incorporated in it for this study. 

Sucrose conversion by invertase was selected as a convenient and cheap 

biological model system to compare the performance of the MAL to that of a 

single vessel of the same volume. Obviously there can be all kinds of other 

arguments, like economical motives (not taken into account here), to select a 

different model system or to prefer the use of a single vessel. 

In the present contribution, a MAL was operated continuously with 

invertase immobilized in gel beads as a biological model system. The gel beads 

were moving freely and kept fluidized and well mixed in each MAL compartment. 

Substrate conversion in a three-compartment MAL was compared to that in a 

single vessel at the same overall dilution rate. This experimental comparison 

was not made by De Gooijer et al. (1989). Statistically significant improvement 

(based on the difference in steady-state concentrations with no overlay of their 

95% confidence intervals) of substrate conversion in the new bioreactor series 

over a single, nearly ideally mixed, vessel could be demonstrated. The 

theoretical development and the calculation procedures of De Gooijer et al. 
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(1989) were used as a tool to choose the experimental conditions, using intrinsic 

kinetic parameters that were determined experimentally. With this model the 

simultaneous diffusion and consumption of substrate in the biocatalyst bead is 

described, resulting in an estimation of the substrate concentration profile in the 

bead. The trend of the model estimations agreed with reality. 

The assumption that the MAL behaves like a cascade of three nearly ideal 

mixers was validated by residence time distribution (RTD) measurements. The 

RTD of a tracer was determined in the effluent for various influent and gas flow 

rates. In all cases the MAL could be described best as three mixers in series. 

The Multiple Air-lift Loop reactor 

The central MAL-compartment is a conventional internal-loop ALR with aeration 

in the annulus (Figure 1). Subsequent compartments in the MAL are concentric. 

The annular-shaped compartments have a circular baffle which splits them in a 

riser and downcomer section. 

Fresh medium is supplied to the central ALR; from there it flows into the 

downcomer of the next compartment. There it is mixed with the down-flowing 

stream. In this way medium travels through the cascade of ALRs. The MAL can 

be constructed in many configurations for various applications (De Gooijer, 

1989). By supplying different gasses to the subsequent compartments for 

example, aerobic and anaerobic processes can be carried out in series within 

one reactor vessel. 

Advantages of the MAL compared to single ALRs, or bubble columns, in 

series are that no extra pumps or hoses are needed. Also the reactor series can 

be sterilized as one reactor, and old reactor vessels can be reused and 

upgraded to a MAL. Disadvantages of the MAL in this comparison are that, on a 
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Figure 1. Three-compartment multiple air-lift loop reactor cross-sectional side and top 
view. Geometric data are given in table I. 

lab-scale, the compartments are narrow which makes cleaning difficult. Further, 

the gas distributor is relatively complex. 

Hydrodynamics and mixing are greatly influenced by reactor geometry, 

these subjects were investigated previously (Bakkeretal. 1993) in a MAL of a 
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Table I. Geometric data of the multiple air-lift loop reactor (MAL). 
* The working volume is the liquid volume corrected for gas holdup and foam formation 
during the experiments. b Outer diameters are given. Perspex wall thickness was 5 mm, 
except for the two tubes marked with (4), where it was 4 mm.c The distance between the 
baffles and the bottom (1.5 cm) is included in the baffle height. 

Liquid volume (103m3) 

Working volume3 (103m3) 

Liquid height (cm) 

Diameter6 (cm) 

Baffle diameter" (cm) 

Baffle height0 (cm) 

MAL 
COMPARTMENT 

1 

8.07 

7.71 

29.7 

19.9(4) 

11 

29.1 

MAL 
COMPARTMENT 2 

7.29 

6.97 

23.7 

30 

24 

23.1 

MAL 
COMPARTMENT 

3 

6.89 

6.57 

16.5 

40(4) 

34 

15.5 

larger scale (0.034 m3 per compartment) than the MAL used in the present 

study. In that previous study, the second compartment of a MAL was used as a 

model for the new internal-loop reactor geometry. Liquid velocities, gas holdup 

and mixing were comparable with those of conventional ALRs with an internal 

loop. Complete mixing was established within four liquid circulations (-cm < 54 s) 

for all gas flow rates applied. This implied that, also on this larger scale, the 

subsequent MAL compartments could be regarded as nearly ideally mixed. 

MATERIALS AND METHODS 

MAL 

The vessel used in this study was a 0.022 m3 three-compartment MAL made of 

transparent perspex (Figure 1). Geometric data are given in table 1. The three 

compartments were arbitrarily chosen to be of nearly equal volumes. The circular 

sparger rings were constructed of porous Accurel polypropylene membrane tube 
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(type V8/2, maximum pore size: 0.51 urn, a kind gift of AKZO, Obernburg, 

Germany). The spargers were positioned at the riser entrance to prevent 

entrainment of gas bubbles in the downcomer. Gas was distributed over the 

circular risers by the membrane spargers at a flowrate of 9.7 10"6 m3.s"1 for each 

MAL-compartment. The gas flow rate was kept low to prevent excessive foam 

formation. 

Enzyme immobilization 

Microgranular anion exchanger (DE32-cellulose), sodium alginate, and other 

chemicals were described previously (De Gooijer et al. 1989). The invertase 

(Maxinvert P) was a kind gift of Gist-brocades, Delft, The Netherlands. Invertase 

was coupled to DE32-cellulose before immobilization in alginate (De Gooijer 

etal. 1989). DE32-cellulose (50 kg.m3) was equilibrated for 48 h in 

sodium-phosphate buffer (10 mol.m"3, pH 7.0). Invertase was added (5 kg.m"3) 

and stirred with the DE-32 particles for 3 h at room temperature. Non-adsorbed 

invertase was then removed by washing three times with the equilibrating 

sodium-phosphate buffer and finally once with a sodium-acetate buffer 

(10 mol.m3, pH 4.6). The latter wash liquid did not show enzymatic activity 

anymore. The DE32-cellulose invertase then was added to a 2% (w/w) 

sodium-alginate solution in acetate buffer. In this way a 35 kg.m'3 gel load, based 

on dry-complex weight, was obtained in the beads resulting from immobilization. 

This immobilization was performed with a resonance nozzle (Hulst et al. 1985) at 

35 °C. Alginate drops were collected in 200 mol.m3 CaCI2 at 5 °C. To obtain 

perfect spheres, decane was layered on the CaCI2 solution (Wijffels et al. 1991). 

The decane-CaCI2 was kept at 5 °C in order to initiate the gelation. After 
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solidification for 2 h, the beads were kept in a 50 molm3 CaCI2 acetate buffer at 

4 °C. The Sauter mean bead diameter d32 was 1.74 mm. 

For the determination of intrinsic kinetic parameters, beads were prepared, 

in the same way as described above, with five different gel loads (9, 33, 69, 83 

and 100 kg of dry enzyme complex per cubic meter gel beads (kg.rrr3)). 

To obtain those gel loads the amount of DE32-cellulose invertase added to the 

sodium-alginate solution in acetate buffer was changed. The beads were used 

directly for activity assays to determine apparent kinetic constants (i.e. including 

transport limitation). 

Analyses 

Glucose and sucrose concentrations were determined with a D-glucose kit and a 

sucrose kit, respectively (Boehringer, Germany). Sucrose concentrations were 

measured in the influent stream. Sucrose was found to be converted 

stoichiometrically into glucose and fructose. Reactor sucrose concentrations 

thus could be calculated from glucose analysis. Samples (1.5 cm3) were heated 

for 5 minutes at 100 °C to inactivate the freely suspended 

enzyme-DE32-complex used for the determination of the kinetic parameters. 

Consequently this procedure was used for all samples to warrant uniform sample 

treatment. After heating, the samples were frozen at -20 °C until analysis to 

prevent microbial degradation of the sugars. 
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Activity assays 

For all determinations of kinetic parameters (intrinsic and for freely suspended 

ezyme complex), substrate conversion was measured as a function of time until 

sucrose was completely converted. The initial sucrose concentration was 

600 mol.nr3 and the batch-wise experiments were done in acetate buffer at 

30 °C in a stirred vessel. For the determination of a loss in enzyme activity with 

time, beads (gel load: 100 kg.nr3) were stored at 30 °C in acetate buffer between 

the determinations to obtain the same conditions as during the MAL-experiment. 

Parameters were estimated by fitting the integrated Michaelis-Menten equation 

to each set of experimental data with non-linear regression 

(Van 't Riet & Tramper 1991). The 95% confidence intervals of the kinetic 

parameters were calculated with the use of the Student t test value from one set 

of experimental data (i.e. substrate versus time) for the different measurements 

(Zwietering et al. 1990). 

MAL experiments 

The MAL was operated continuously twice at 30 °C for several days. The 

substrate was 630 mol.m"3 sucrose in acetate buffer. In the two MAL 

experiments the reactor gel holdup, 6.3% and 9.1% (v/v), respectively, was 

equal for each of the three MAL-compartments. Beads were kept in each 

compartment by a stainless steel sieve (hole diameter = 0.5 mm) at the 

overflows to the next compartment. After a change in substrate feed rate, 

steady-state conditions were established after four hydraulic residence times 

through the cascade of airlift reactors. Subsequently, during three MAL-volume 

changes, samples were taken regularly from all three MAL-compartments, and 
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thus the attainment of a steady-state was verified. Enzyme decay was assumed 

to be negligible during the short period (compared to the duration of the 

complete experiment) of a steady-state measurement. For the two MAL 

experiments at 6.3% and 9.1% gel holdup substrate was supplied at a constant 

rate of 2.65 10"6 and 2.4 10"6 m3.s1, respectively. 

The central compartment of the MAL was used as a single-vessel 

reference. To this end, it was operated at a different substrate feed rate 

(0.94 10"6 and 0.85 10-6 m3.s"1 for the two experiments at 6.3% and 9.1% gel 

holdup, respectively). Consequently, the overall residence time (2.2 and 2.5 h, 

respectively) in the comparison between the three-compartment MAL and the 

single compartment was equal. Here residence times were arbitrarily based on 

the liquid volume plus beads, that is without gas holdup and foam formation 

(Table I). 

Mixing in the MAL 

Macroscopic mixing in the MAL was investigated by measurement of the 

residence-time distribution (RTD). For that, the MAL was operated continuously 

under various conditions as explained in the Results and Discussion section. 

The effluent response of an inlet salt pulse (30 cm3 4000 mol.m3 NaCI) was 

measured with a conductivity electrode. 

The RTD-curves were characterized by the mean ( 0 ) and variance ( a2 ) of 

the distribution (Levenspiel, 1972). The distributions were normalized with 

respect to time (0 = time (s) / one hydraulic residence time (s)) and concentration 

(C = concentration (kg.m"3) / initial concentration (kg.m"3)) to make them 

comparable at different hydraulic residence times. The distribution curve was 

known at a number of discrete time values i from which the mean 0 and the 
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variance oe
2 were calculated as described by Levenspiel (1972). From this the 

theorethical number of equal-size ideal mixers N in the series could be derived 

from N = 1 / CT6
2. Finally, the area under the RTD-curve represented the fraction 

of tracer recovered. 

The conditions during the MAL experiments with the immobilized enzyme 

as described above, were within the applied range with respect to the gas 

flow-rate, and lower for the liquid flow-rate. 

Model parameter values 

Parameter values used for the model calculations were: maximum substrate 

consumption rate Vm (at t = 0) = 0.10 mol.kg1.s"1, Michaelis-constant 

Km = 310 mol.m"3, gel load = 35 kg.nr3, effective diffusion coefficient (De Gooijer 

et al. 1989) De = 3.85 10"10 m2.s\ Sauter mean bead diameter d32 = 1.74 mm, 

inlet substrate concentration = 630 mol.m3, substrate feed rate = 2.4 10~6 m3.s_1 

(MAL experiment) and 0.85 106m3.s1 (single-vessel experiment), reactor gel 

holdup = 9.1%, liquid/solid mass-transfer coefficient kls = 1 105 m.s"1, zero-order 

decay rate kd= 4.0 108 mol.kg1.s2. The first steady-state measurement was 

done after running the MAL continuously for 3.5 days (t = 3.5 d), therefore this 

time was used to make a correction for the ezyme decay in the model 

calculations. 
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RESULTS AND DISCUSSION 

Kinetic parameters 

Alginate beads with five different gel loads of enzyme complex 

(DE32-cellulose-invertase) immobilized therein were used to determine intrinsic 

kinetic parameters of the Michaelis-Menten equation: 

ts): 
V'S 

K'+S 'Km + S V-, vms 
[1] 

where r(s) is the specific reaction rate (mol.kg1.s1), S the substrate 

concentration (mol.rrr3), V'm and Vm the apparent and intrinsic maximum 

V m (mol.kg-!s-1) 
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Gel load (kg.rrf3) 

Figure 2. The apparent maximal substrate consumption rate V'm as a function of the gel 
load. Bars give 95% confidence intervals, when invisible overlayed by the datum points. 
Solid line: linear regression line for extrapolation to the intrinsic V„ at zero gel load. 
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substrate consumption rate (mol.kg1.s1), respectively, K'm and Km the apparent 

and intrinsic Michaelis-constant (mol.nrr3), respectively, and TI the efficiency 

factor (-). 

Extrapolation to zero gel load gives the diffusion free, intrinsic, kinetic 

constants Vm and Km (Van Ginkel et al. 1983, Van 't Riet & Tramper 1991). Here 

a linear relationship between the apparent kinetic constants V'm and K'm and gel 

load is assumed. The validity of this assumption was statistically assessed by 

using the Student t test (Table 2). 

Table 2. Statistical evaluation of the linear regression analysis of the kinetic parameters 
determined from immobilized enzyme complex with five different gel loads, and enzyme 
inactivation in time. Also in this table: intrinsic kinetic data obtained from the 
immobilized enzyme complex and from the freely suspended enzyme complex. 
* Boldface data indicate acceptance of the linear model with the t test. ° Means and 
confidence intervals for the freely suspended enzyme complex were calculated from six 
independent experiments. c Min and max are 95% confidence limits for the parameter 
values. 

LINEAR MODEL 
STATISTICS 

Enzyme complex 
immobilized in gel 
beads 

Freely suspended 
enzyme complex" 

TEST ON THE 
SLOPE 
COEFFICIENT 

^-statistic3 

f-table 

parameter 

unit 

value 

rnin' 

max0 

value 

minc 

max0 

FIGURE 2 

-7.43 

-3.18 

vm 
mol. kg-1 .s-1 

0.1 

0.08 

0.12 

0.1 

0.09 

0.11 

FIGURE 3 

1.95 

3.18 

K 
mol.nr3 

310 

205 

415 

FIGURE 4 

-8.72 

-4.3 

K, 
mol.kg1.s2 

4.0 10-8 

2.1 10-8 

6.0 10"8 
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For the intrinsic Vm (Figure 2) the slope coefficient was sufficiently different from 

zero to warrant a significant correlation (Table 2). The intrinsic Vm, i.e. the 

intercept of the linear regression line in figure 2, was 0.10 mol.kg1.s"1 (Table 2). 

No statistically reliable intrinsic Km could be determined in this way because the 

slope coefficient (Figure 3) was found not to differ significantly from zero 

(Table 2). Furthermore, the kinetic parameters Vm and Km were also determined 

by using freely suspended DE32-cellulose-invertase complex, assuming 

negligible diffusion limitation. The average Vm obtained from six independent 

determinations was 0.10 mol.kg1.s"1, and the Km 310 mol.m"3 (Table 2). This 

average Vm agrees very well with the above intrinsic parameter obtained from 

the beads with different gel loads (Table 2). Therefore no effect due to 

immobilization in alginate, like for example a change in conformation of the 

ezyme, on this kinetic parameter of the enzyme complex could be shown. The 

accuracy of the apparent constants K'm was limited as illustrated by the large 

95% confidence intervals (Figure 3), and the rejection of the linear model 

(Table 2). This limitation of accuracy is more often encountered in the 

determination of immobilized enzyme-kinetics (Hooijmans et al. 1992). It was 

assumed that Km was also left unaffected by the immobilization, and thus the 

average of 310 mol.m3 for the freely suspended enzyme complex represented 

the intrinsic Km. This Km was in the same order of magnitude as the earlier 

reported 198 mol.m"3 for a different batch of enzymes (De Gooijer et al. 1989), 

and other literature data. Typical values of Km, for different binding methods and 

different invertase preparations, are in the range 50 - 270 mol.m3 

(Johansen & Flink 1986, Mansfeld & Schellenberger 1987, Mansfeld et al. 1991). 

For all determinations of kinetic parameters, the initial substrate 

concentration was in the same range (600 mol.m3) as applied during the MAL 

experiments (630 mol.m3). For those concentrations possible effects of 
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Figure 3. The apparent Michaelis-constant for the rate limiting substrate K'm as a function 
of the gel load. Bars give 95% confidence intervals. 

substrate or product inhibition on the reaction rate (Combes & Monsan 1983, 

Mansfeld & Schellenberger 1987, Mansfeld et al. 1991) were found to be 

negligible because all experimental results could be described well with the 

Michaelis-Menten equation. 

To make a correction for the loss of enzyme activity in time, the inactivation 

rate was measured by determining v"m from the same beads for four days (gel 

load : 100 kg.rn3). Figure 4 shows a linear loss of enzyme activity in four days. 

The zero-order decay rate kd was 4.0 10s mol.kg1.s2. This slope coefficient kd 

was statistically significant different from zero (Table 2). The decay rate kd was 

comparable to the 29% activity loss reported for invertase coupled to 

DE-cellulose after 4 days at 30 °C (Suzuki et al. 1966). 
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Figure 4. The apparent maximal substrate consumption rate Vm as a function of time. Bars 
for the 95% confidence intervals are invisible because they are overlayed by the datum 
points. Solid line: linear regression line giving the inactivation rate. 

Mixing in the MAL 

A model assumption for the prediction of substrate conversion was that the 

continuously operated MAL behaved like a series of three ideal mixers. This was 

experimentally validated by RTD-measurements as illustrated in figure 5. 

The theoretical number of equal-size ideal mixers N was derived from the 

RTD-curves, and is given in table 3. Even under the extreme experimental 

conditions applied (low gas flow rates, and for biological systems relatively short 

residence times), the mixing in the MAL was like that in a series of three ideal 

mixers (N = 3, see table 3). To illustrate this, model calculations by 

mass-balance equations (at short time intervals of 0.1 s) for two, three and four 
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Normalized concentration (-) 

1.0 

3.0 4.0 

Normalized time (-) 

Figure 5. Normalized salt concentration C as a function of the normalized time 6, 
resulting in a typical residence time distribution (RTD) curve (experiment number 1 in 
table 3). Solid lines: model calculations for two, three and four ideal mixers in series. 

Table 3. Results of the mixing studies by residence time distribution measurements. 

JR. 

1 

2 

3 

4 

5 

OVERALL 
LIQUID 

RESIDENCE 
TIME (s) 

851 

851 

552 

556 

554 

GAS FLOWRATE 
PER MAL 

COMPARTMENT 
(lO-'nf.s-1) 

14 

42 

8.3 

14 

42 

MEAN 
(-) 

0.93 

0.96 

0.97 

0.97 

0.98 

VAR. (-) 

0.34 

0.33 

0.31 

0.32 

0.32 

N = 
1 / a 9

2 

(-) 

2.98 

3 

3.24 

3.09 

3.11 

NaCI 
RECOVERY 

(%) 

96 

97 

96 

97 

99 

ideal mixers in series in the MAL are given in figure 5. The model calculations for 

three ideal mixers in series were, as illustrated in figure 5, also found to be in 

good agreement with the RTD-curves obtained from the other experiments. 
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From these results it was concluded that the mixing in the MAL during the 

sucrose conversion experiments indeed could be described as that in a series of 

three ideal mixers. Residence times applied there were an order of magnitude 

larger than those for the mixing experiments, thus allowing sufficient time for 

complete mixing in the MAL-compartments. 

Mixing per MAL-compartment was also investigated during the MAL 

experiments with immobilized invertase. Samples were drawn at the same time 

at different places over the circle of each compartment. The low spread in the 

concentrations (Figure 6) indicated good mixing within the compartments. The 

aeration of the compartments resulted in such a hydrodynamic behavior that all 

alginate beads were kept fluidized and were circulating through the riser and the 

downcomer (visually observed) in the three well-mixed MAL-compartments. 

Sucrose conversion in the MAL 

Steady-state sucrose concentrations for the MAL and for a single vessel, both at 

9.1% gel holdup, together with model calculations are given in figure 6. For 

practical convenience the same beads were used for several days while 

substrate conversion in the MAL was compared to that in a single vessel. Figure 

6 clearly shows the advantage of using a MAL reactor series over a single 

vessel. Substrate conversion in the MAL improved to 83% compared to 73% in 

the single vessel. The difference in substrate concentrations was statistically 

shown to be significant (no overlay of the 95% confidence intervals). The single 

vessel experiment was conducted one day before and one day after the MAL 

experiment. Both steady-state sucrose concentrations for the single vessel were 

averaged to account for enzyme inactivation. 
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Figure 6. Results of the multiple air-lift loop reactor experiment per compartment, 
comparison with single vessel (white bars), line bars give 95% confidence intervals. 
Model estimates (grey bars), here the solid black bars give the range of model estimates 
using no film theory {k,, = °°)and k,, = 5 lO^m.s1. 

For the model calculations shown in figure 6 the working volumes of the 

MAL-compartments given in table 1 were used. A correction of the maximal 

substrate consumption rate Vm was made using the experimentally determined 

inactivation rate, taking into account the number of days between startup and 

steady-state measurement. The calculation procedures used were based on the 

work of De Gooijer et al. (1989) and incorporated internal diffusion and reaction 

in the beads and external mass transfer resistance. Parameter values used for 

the calculations are given in the Materials and Methods section. 

The contribution of the liquid/solid mass-transfer coefficient kls to the total 

mass-transfer resistance can be estimated from the Biot number, which is 

defined as the ratio of the mass transfer resistance in the stagnant layer around 
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the bead and in the bead (De Gooijer et al. 1989, Wijffels et al. 1991). The kls 

was very roughly estimated from the relation of Brian & Hales (1969), which was 

selected because the Reynolds number for the beads was estimated to be 20 

(based on the particles moving at the rate of free fall). The resulting Biot number 

(Bi = 26) indicated that external mass-transfer resistance was nearly negligible 

compared to internal mass-transfer resistance. Therefore, kls was chosen to be 

infinite (i.e. no stagnant layer present) and half the estimated value of 

kls =1 10"5 m.s"1 to give a range of model estimates (Figure 6). This range is in 

agreement with estimations made for kls using recent correlations for ALRs 

proposed by Mao et al. (1992): kls = 2 10"5 m.s1, and Kushalkar & Pangarkar 

(1994): k,s = 410"8 m.s1. All other model parameters were determined 

experimentally and the calculations agreed well with experimental results 

(Figure 6). 

Model calculations 

Model estimates of the sucrose conversion under various conditions were made 

to choose the experimental conditions, and thus the amount of experiments 

needed could be reduced. The residence time and the gel holdup were selected 

as variables that can easily be adapted. The inlet sucrose concentration was 

chosen such that large absolute differences in the steady-state concentrations 

between both reactor configurations could be expected. From the model, those 

differences were found to increase with increasing inlet sucrose concentration. 

On the other hand, the influent concentration was chosen not too extreme, 

such that substrate and product inhibition were negligible. The parameters gel 

load and bead diameter were chosen arbitrarily. In figure 7 model estimates are 
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Figure 7. Model estimates for the relative conversion of sucrose in the MAL compared to 
a single vessel as a function of gel holdup (percentages shown in the graph) and overall 
residence time. Experimental results for 6.3% gel holdup (O) and 9.1% gel holdup (D). 

given for the relative conversion as a function of the overall residence time and 

gel holdup. Other parameter values were as mentioned before. 

The same relative conversion optimum can be reached under different 

conditions. For example, lowering the gel holdup requires increasing residence 

times (Figure 7). In this example the sucrose conversion in both reactors is low. 

This means that the absolute differences between the steady-state 

concentrations will be small, and difficult to show experimentally. Figure 7 also 

shows the experimentally determined relative conversion at 6.3% and at 9.1% 

gel holdup. Both experimental results are in rather good agreement with the 

model estimates (Figure 7). 
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CONCLUSIONS 

The novel multiple air-lift loop reactor was evaluated with immobilized invertase 

as a biological model system. The conversion of sucrose in the MAL reactor 

series was higher than that in a single vessel with the same overall residence 

time. The difference was statistically significant. From RTD-measurements it was 

found that the three-compartment MAL could be described as three ideal mixers 

in series. Thus the MAL proved to be a suitable tool for the experimental 

evaluation of reactor series in biotechnology. 

No effect of the immobilization in alginate on the kinetics of the 

DE32-cellulose-invertase complex could be shown. Immobilized enzyme 

complex was observed to inactivate as a function of time with a decay rate that 

was not negligible with respect to the duration of the experiment. Therefore 

enzyme decay was incorporated in the model calculations. 

Model estimations for the sucrose conversion based on the work of 

De Gooijer et al. (1989), incorporating internal diffusion and reaction in the 

beads and external mass transfer resistance, were in good agreement with the 

experimental results. 
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NOMENCLATURE 

Bi Biot number 

C normalized salt concentration 

d32 Sauter mean bead diameter 

D diameter 

De effective diffusion coefficient 

H height 

kd zero-order decay rate 

k/s liquid/solid mass-transfer coefficient 

Km Michaelis-constant for the rate limiting substrate 

K'm apparent Michaelis-constant for the rate limiting substrate 

N theorethical number of equal-size ideal mixers 

S substrate concentration 

V volume 

Vm max ima l subst rate consumpt ion rate 

V'm apparent max imal substrate consumpt ion rate 

m 

m 

m2.s-1 

m 

mol .kg" \s"2 

m. s"1 

mol. m 3 

mol. m'3 

mol. m'3 

m3 

mol. kg-1, s'1 

mol. kg1, s 1 

Greek symbols: 

0 normalized time 

S mean normalized time 

oe
2 variance of the normalized distribution curve 

r\ effectiveness factor 
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CHAPTER 10 

GENERAL DISCUSSION 

The perspective of this thesis is best described by the paradigm of Herbert 

(1964) : "If one fermenter gives good results, two fermenters give better results 

and three fermenters better still. This is sometimes true, but often false." 

In chapter 1, a classification of bioprocesses in series of bioreactors is 

presented : a division is made between processes with constant and variable 

overall stoichiometry. For the first group, processes with constant overall 

stoichiometry, a further classification is made into enzymatic and autocatalytic 

bioprocesses. 

ENZYMATIC BIOPROCESSES 

For enzymatic processes chapter 1 shows that it can be worthwhile to use 

optimally designed series of CSTR's in almost all cases. However, if the cost of 
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capital investment is considered, it is unlikely that the use more than three 

bioreactors in series is economically feasible. Since a series of CSTR's 

approaches a plug-flow reactor, it is not surprising that many enzymatic 

processes in industry are reported to be executed in columns, usually of the 

packed-bed type (Tanaka et al. 1993). 

In chapter 2 the procedure is described to do the design of a series of 

bioreactors containing immobilized enzymes. Here, the effectiveness factor r\ 

was incorporated in the dimensionless residence time : 

Ti~ So m 

Subsequently, the design of the series was done as if the enzyme was dissolved 

(no diffusion limitation). 

Mathematically, the effectiveness factor is a function of the substrate 

concentration, and hence it would have been a more correct approach to 

incorporate this factor in the general equations for the optimum design : 

da, 

and 

= ° /=1,2,... (W-1) [2] 

( a n -a ; )(K + a,) 
T ' " mat [3] 

If subsequently a relation is fitted to the data points relating the effectiveness 

factor to the generalized Thiele modulus, the optimum design can be carried out. 

Although this remains to be worked out in detail, the case of only two bioreactors 

in series is easier to handle mathematically. Figure 1 was obtained by rather 
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Normalized dimensionless residence time 

0.4 0.6 0.8 1 
Dimensionless substrate concentration 

Figure 1 : The dimensionless total residence time of two CSTR's in series divided by the 
volume of a single vessel with the same substrate concentration at the exit versus the 
dimensionless substrate concentration {S/S0) in the first vessel. Parameter is the 
diffusion coefficient (m2.s1): A=10J, B=10* C=1010, D=8 10"12, E=5 10" , F=3.7 10" 

straightforwardly applying mass balances for substrate to both vessels, and 

calculating the volumes of both vessels with varying substrate concentrations in 

the first vessel. In this way, a minimum total residence time can be found. 

Thereby, the substrate concentration in the second vessel was kept constant, 

and the same values for all parameters were used as in chapter 2, except for the 

diffusion coefficient, which was varied. As shown in figure 1, the design 

procedure described in chapter 2 is correct for common ranges of the diffusion 

coefficient : the minimum of curves B and C in figure 1 is attained at the same 

dimensionless substrate concentration. Higher diffusion coefficients than 
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CONCLUSIONS 

This thesis presents a classification of bioprocesses carried out in continuously 

operated serial reactor configurations. Moreover, the theory of optimal design is 

worked out for a wide variety of processes. A logical continuation of this thesis is 

the physical characterization of the bioreactor device presented in chapter 9, 

after which, as has been shown in this thesis, the application thereof should be 

feasible. 

NOMENCLATURE 

a Dimensionless concentration (S/S0) 

s Gel holdup in reactor 

r| Overall effectiveness factor 

6 Residence t ime s 

K Dimensionless Michaelis-Menten constant (K„/S0) 

T Dimensionless residence t ime (8 Vmr\seXI S0 ) 

Km Michaelis-Menten constant mol.nv3 

N Number of reactors in series 

S0 Substrate concentration at the inlet of the first reactor mol.m"3 

Vm Maximum reaction rate mol.kg1.s~1 

X Gel load kg.nrr3 
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SUMMARY 

In this thesis a common phenomenon in bioprocess engineering^ is described : 

the execution of a certain bioprocess in more than one bioreactor. Chapter 1, 

a review, classifies bioprocesses by means of a number of characteristics : 

i) processes with a variable stoichiometry, 

ii) processes with a constant stoichiometry using biocatalysts, 

iii) processes with a constant stoichiometry that are autocatalytic. 

This chapter also offers a method to decide in which cases it can be worthwhile 

to use more than one bioreactor. The possible advantage is gained by a 

possible reduction in the total residence time needed to accomplish a certain 

degree of conversion. The shorter that residence time, the smaller the 

bioreactor(s) can be, and with that the capital investment reduces. The minimal 

residence time is attained if the bioreactors all have a different volume. 

In general the volume of each bioreactor decreases along the series. Moreover, 

the total volume of the series decreases if an increasing number of bioreactors 

are used in the series, although that decrease becomes increasingly less. The 

largest decrease in total residence time occurs by using two bioreactors in series 

instead of one single bioreactor, whereas the use of more than three bioreactors 

1 Words printed in italics are explained in the list at the end of the summary. 
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in series usually offers little advantage since the extra costs for pumps and 

similar additional parts is getting too high. 

Chapter 2 describes the optimum design of a series of bioreactors for the 

case that the biocatalysts are immobilized, and chapter 3 describes this for 

immobilized autocatalytic systems. In chapter 3 some rather straightforward 

assumptions are made for the behaviour of immobilized growing cells, which 

may not be true in reality. Chapters 4 and 5 show the dynamic behaviour of the 

cells, including an experimental evaluation of such a system. As a model system 

Nitrobacter agilis cells were used. These cells perform the conversion of nitrite in 

nitrate, which is of importance for waste-water treatment, more precisely the 

removal of ammonia. Hereby ammonia is first converted to nitrite, nitrite to 

nitrate, and nitrate finally is converted to nitrogen gas. The model that is derived 

in chapter 4 however, has a more general applicability. 

Chapters 6, 7 and 8 describe a system with a variable stoichiometry. In a 

first bioreactor insect cells are produced, which are infected with a baculovirus in 

one or two subsequent bioreactors. The infected cells then will produce 

polyhedra, which have a use as bioinsecticide. According to the current 

knowledge, insects cannot develop resistency against baculoviruses. Moreover, 

baculoviruses are extremely specific for an insect species, which means that 

useful insects are not affected. In these chapters it is shown that the production 

in continuously operated series of bioreactors is not unlimited in time, and that 

that is caused by the so-called passage effect : if the viruses have infected a cell 

a number of times, their infectivity decreases and the reaction stops. The model 

described in chapter 7 can predict what should be the optimal reactor 

configuration, and in chapter 8 this is experimentally shown : the cells must be 

grown in a bioreactor with a feed of medium, and if that bioreactor is filled part of 

its contents are pumped to a second bioreactor in which infection with 
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baculovirus occurs. During the time that the bioreactor in which the cells are 

grown is filled, the infected cells in the infection bioreactors produce polyhedra. 

After that the infection bioreactor is largely emptied, so that some virus remains 

in the reactor, and new cells are added, after which the infection proceeds, and 

so on. In this manner the time that the production process runs can prolongate 

fourfold as compared to a fully continuous process. 

The number of applications of series of bioreactors is limited. An important 

cause for this is that, in practice, the for most bioprocesses required sterility is 

not easily maintained if the process is executed in more than one bioreactor. 

Chapter 9 shows a possible solution to that problem : in the presented Multiple 

Air-Lift Loopreactor up to three air-lift loopreactors in series are incorporated into 

one bioreactor. 

List of explained words. 

Air-Lift Loopreactor A bioreactor without stirrer that consists of two 

compartments : a riser and a downcomer. Mixing and 

oxygen transfer are accomplished by sparging air at the 

bottom of the riser. 

Autocatalytic A reaction where the biocatalyst itself is produced. 

Baculovirus A rod-shaped virus occuring in insects. 

Biocatalysts Compounds, usually enzymes, that accelerate a 

reaction but do not take part in the reaction. 

Bioprocess Engineering The application-oriented science of the integration of 

one or more biological disciplines and process 

engineering. Chapter 7 is a good example of the 

integration of virology and process engineering. 
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Immobilized 

Insect cells 

Polyhedra 

Stoichiometry 

Residence time 

In this thesis this means the inclusion of cells in a 

carrier, to retain them in a bioreactor. 

Cells of an insect (in this case Spodoptera frugiperda), 

capable of growth in suspension. 

The form of baculoviruses occurring in nature. To 

protect the virions against environmental influences 

they are packed in protein matrices, the polyhedra. 

Once arrived in the gastro-intestinental tract, the 

polyhedra are dissolved and the virus particles are 

released, after which the insect is infected. 

The ratio, on a molar basis, between the substrate 

offered and the product formed. 

The average time spent in a bioreactor. 
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SAMENVATTING 

In dit proefschrift wordt een algemeen verschijnsel in de bioprocestechnologie* 

beschreven : het uitvoeren van een bepaald proces in meer dan één bioreactor. 

Hoofdstuk 1, een overzichtsartikel, deelt bioprocessen in aan de hand van een 

aantal karakteristieken : 

i) processen met een variabele stoichiomethe, 

ii) processen met een constante stoichiometrie die werken met 

biokatalysatoren, 

iii) processen met een constante stoichiometrie die autokatalytisch zijn. 

Dit hoofdstuk biedt tevens een leidraad om te kunnen beslissen in welke 

gevallen het voordelig kan zijn om met meer dan één bioreactor te werken. 

Dat voordeel schuilt in de totale verblijftijd die nodig is om een bepaalde 

omzettingsgraad te bewerkstelligen. Hoe korter die verblijftijd, hoe kleiner de 

bioreactor(en) kan of kunnen zijn, hoe lager de te plegen investering wordt. 

De minimale verblijftijd wordt bereikt in het geval dat de bioreactoren allemaal 

een verschillend volume hebben, en niet als meerdere bioreactoren met 

hetzelfde volume worden gebruikt. In het algemeen daalt het bioreactorvolume 

' Woorden die cursief zijn gedrukt worden verklaard in de woordenlijst aan het eind van de 

samenvatting. 
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verdergaand in de serie. Tevens daalt het totale volume van de serie naarmate 

er meer bioreactoren in de serie worden geplaatst, al wordt die daling steeds 

minder naarmate er meer bioreactoren in de srie worden geplaatst. De grootste 

daling treedt op door in plaats van één bioreactor, twee bioreactoren te 

gebruiken; meer dan drie bioreactoren heeft meestal weinig zin meer, doordat 

de extra kosten voor pompen en dergelijke dan te hoog worden. 

Deze indeling is terug te vinden in de overige hoofdstukken van het 

proefschrift. Hoofdstuk 2 beschrijft hoe een serie optimaal kan worden 

ontworpen als de biokatalysatoren geïmmobiliseerd zijn, en hoofdstuk 

3 beschrijft dit voor geïmmobiliseerde autokatalytische systemen. In hoofdstuk 3 

zijn een aantal ruwe aannames gedaan voor het gedrag van geïmmobiliseerde 

groeiende cellen, die in werkelijkheid kunnen afwijken. De hoofdstukken 4 en 

5 laten zien hoe het dynamische gedrag is van die geïmmobiliseerde groeiende 

cellen, inclusief een experimentele toetsing van het voor zo'n systeem 

opgestelde model. Als modelsysteem is daarbij gebruik gemaakt van Nitrobacter 

agilis cellen, die een omzetting uitvoeren die van belang is voor de 

afvalwaterreiniging : nitriet wordt omgezet in nitraat. Dit is een stap in het proces 

om ammonia te verwijderen, waarbij ammonia eerst wordt omgezet in nitriet, 

nitriet in nitraat, en nitraat in het onschuldige stikstofgas. Het in hoofdstuk 4 

ontwikkelde model heeft echter een meer algemene geldigheid. 

De hoofdstukken 6 tot en met 8 gaan over een systeem met variabele 

stoichiometrie. Hierbij worden in een eerste bioreactor insectecellen 

geproduceerd, die in een of twee volgende vaten worden geïnfecteerd met een 

baculovirus. De geïnfecteerde cellen gaan vervolgens polyeders produceren, die 

kunnen worden gebruikt als gewasbeschermingsmiddel. Insecten kunnen, 

voorzover bekend, geen resistentie tegen baculovirussen ontwikkelen. Tevens 

zijn baculovirussen extreem soortspecifiek, zodat de nuttige insecten intact 
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blijven. In deze hoofdstukken wordt aangetoond dat de produktie in continu 

bedreven bioreactoren niet ongelimiteerd is, en dat de oorzaak daarvan moet 

worden gezocht in het passage-effect : als de virussen een aantal malen een cel 

hebben geïnfecteerd, neemt hun infectiviteit af en stopt de reactie. Met het in 

hoofdstuk 7 ontwikkelde model kan worden voorspeld wat de optimale 

reactorconfiguratie zou moeten zijn, en in hoofdstuk 8 wordt dit experimenteel 

aangetoond. De cellen moeten worden gekweekt in een reactor met een toeloop 

van medium, en als de bioreactor vol zit wordt een gedeelte eruit gepompt naar 

een tweede bioreactor, waarin infectie met baculovirus optreedt. In de tijd dat de 

bioreactor waarin de insectecellen groeien volloopt, produceren de 

geïnfecteerde cellen in de infectiereactor polyeders. Daarna wordt de 

infectiereactor leeggepompt, er blijft een beetje virus achter, en er worden weer 

nieuwe cellen toegevoerd, waarna de infectie weer op gang komt, enzovoorts. 

Op deze manier is een vier maal zo lange produktie mogelijk als met een 

continu bedreven systeem. 

Het aantal toepassingen van series van reactoren is beperkt. Een 

belangrijke reden hiervoor is dat het in de praktijk niet eenvoudig is om de voor 

bioprocessen noodzakelijke steriliteit te handhaven als het proces zich afspeelt 

in meerdere bioreactoren. Hoofdstuk 9 laat daarvoor een mogelijke oplossing 

zien : in de gepresenteerde Meervoudige Air-Lift Loopreactor staan tot drie 

air-lift loopreactoren in serie, in een enkele bioreactor. 

Verklarende woordenlijst. 

Air-Lift Loopreactor Een bioreactor die geen roerder heeft, en uit twee 

compartimenten bestaat : een stijgbuis en een daalbuis. 

Menging en zuurstofoverdracht treden op door lucht 

onderin de stijgbuis te blazen. 
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Autokatalytisch 

Baculovirus 

Biokatalysatoren 

Bioprocestechnologie 

Geïmmobiliseerd 

Insectecellen 

Omzettingsgraad 

Polyeders 

Stoichiometrie 

Verblijftijd 

Een reactie waarbij de biokatalysator wordt gevormd. 

Een staafvormig virus dat voorkomt bij insecten. 

Stoffen, veelal enzymen, die een reactie versnellen 

maar er zelf niet aan deelnemen. 

Het wetenschapsgebied dat zich bezighoudt met de 

integratie van één of meerdere biologische 

basisdisciplines en de proceskunde, gericht op een 

bepaalde toepassing. Hoofdstuk 7 is een mooi 

voorbeeld van de integratie van de virologie en de 

proceskunde. 

In dit proefschrift is dat het insluiten van cellen in een 

dragermateriaal, zodat ze in de bioreactor blijven. 

Cellen van een insect (in dit geval Spodoptera 

frugiperda) die in suspensie kunnen groeien. 

De behaalde omzetting. 

De in de natuur voorkomende vorm van baculovirussen. 

Om de virusdeeltjes zelf te beschermen tegen de 

invloeden van het milieu zijn ze ingepakt in een 

eiwitmantel, de polyeder. Eenmaal in het 

spijsverteringskanaal van een insect beland lost de 

polyeder op en komen de virusdeeltjes vrij, waarna ze 

het insect infecteren. 

De verhouding, op molbasis, tussen de aangeboden 

grondstof en het produkt. 

De gemiddelde tijd die in een bioreactor wordt 

doorgebracht. 
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