
STATISTICAL INFERENCE ON 

VARIANCE COMPONENTS 

CENTRALE UANDBOUWCATALOGUS 

0000 0212 8383 



Promotor: dr. P. van der Laan, hoogleraar in de Wiskundige Statistiek. 



vtocRïrt/'0*^ 

L. R. Verdooren 

STATISTICAL INFERENCE ON 

VARIANCE COMPONENTS 

Proefschrift 

ter verkrijging van de graad van 

doctor in de landbouwwetenschappen, 

op gezag van de rector magnificus, 

dr. C.C. Oosterlee, 

in het openbaar te verdedigen op 

woensdag 3 februari 1988, 

des namiddags te vier uur in de aula 

van de Landbouwuniversiteit te Wageningen. 

Sil ^bb 3oZ^ 



Aan Pieneke 

Voor Moes 



fvJrJO^^U M% 

STELLINGEN 

1. In de schattingstheorie moet van een schatter geëist worden dat deze 

behoort tot de klasse van toegelaten (Eng.-, "permissible") schatters. 

(Dit proefschrift.) 

2. Bij het rassenonderzoek van cultuurgewassen zijn voorspellingen van 

rascontrasten van meer nut dan de schattingen ervan. 

(Dit proefschrift.) 

3. Het gebruik van Satterthwaite's benadering bij het bepalen van de kans op 

negatieve schattingen van genetische varianties, zoals dat gebeurt in 

Bridges en Knapp (1987), is af te raden. 

(Bridges Jr., W.C. and Knapp, S.J. (1987). Probabilities of negative estima­

tes of genetic variances. Theor. Appl. Genet. 74, 269-274.) 

4. Bij de benadering van de variantie van de schatters voor de erfelijkheids-

graad h2, wordt in vele handboeken, o.a. Becker (1975), de covariantie van 

gemiddelde kwadraatsommen (Eng."Mean Squares") gelijk aan nul gesteld. Voor 

ongebalanceerde schema's is dit niet juist. 

(Becker, W.A. (1975). Manual of quantitative genetics, 3rd ed. Washington 

State University, Washington.) 

5. Het klakkeloos gebruiken van een schatter voor de genetische correlatie 

tussen identieke kenmerken, die gemeten zijn in verschillende milieus 

binnen eenzelfde niveau van een fokprogramma, kan leiden tot uitkomsten die 

groter zijn dan 1. 

(Merks, J.W.M. (1986). Genotype x Environment interactions in pig breeding 

programmes. I. Central test. Livestock Production Science 14, 365-381.) 

6. Bij het streven naar hogere gewasopbrengsten in ontwikkelingslanden liggen 

de beperkingen heden ten dage niet zozeer bij de mogelijkheden tot toele­

vering van verbeterde cultivars, doch vooral in de noodzaak om bij grote 



aantallen kleine producenten verbeteringen van teelttechnieken en van 

bodemvruchtbaarheid te realiseren. 

7. In de plantenveredeling kan men bij het selecteren uit een aantal lijnen in 

het algemeen beter de procedure van Gupta gebruiken dan de tot nu toe 

gebruikelijke "multiple comparisons" procedures. 

(Gupta, S.S.(1965). On some multiple decision (selection and ranking) 

rules. Technometrics 7, 225-245.) 

8. In het buitenland, en vooral in kustvlaktegebieden, neemt als gevolg van 

intensieve irrigatie de noodzaak tot drainage toe. Nu in Nederland het 

drainage uitvoeringsprogramma nagenoeg voltooid is, kunnen Nederlandse 

experts met hun uitrusting in dergelijke gebieden worden ingezet, dit tot 

voordeel van beide partijen. 

9. Bij vele Nederlandse projecten in het kader van ontwikkelingssamenwerking 

vindt toegepast onderzoek plaats. Het is dan ook uiterst wenselijk dat sta­

tistische begeleiding een vast onderdeel wordt van dergelijke projecten, 

zoals dat al gebruikelijk is bij de projecten van de Britse "Overseas 

Development Administration". 

10. Om de herkenbaarheid in het buitenland van afgestudeerden van de 

Landbouwuniversiteit te verbeteren, zou het gewenst zijn na het eerste tri­

mester doctoraal B een meetpunt in te stellen. Een succesvolle afsluiting 

van dit gedeelte van de studie kan dan gehonoreerd worden met een 

"B.Sc."-diploma. De daarop volgende vijf trimesters van de studie leiden 

dan tot een "M.Sc."-diploma. Bovendien kunnen abituriënten van het Hoger 

Agrarisch Onderwijs dan instromen in verwante "M.Sc."-opleidingen. 

11. De emancipatie van de vrouw kan wellicht bevorderd worden door in de 

veefokkerij de kruisingen niet als ó" x Q te noteren maar, zoals in de plan­

tenveredeling gebruikelijk is, als o x 6*. 

Proefschrift van L.R. Verdooren 

Statistical Inference on Variance Components 

Wageningen, 3 februari 1988 
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CHAPTER 1 

1. OUTLINE OF AUTHOR'S RESEARCH ON THE INFERENCE OF VARIANCE COMPONENTS 

The historical development of variance components estimation is 

described in chapter 2. 

Just as with the fixed effects model, the description of the 

models for variance components (random models and mixed models) was 

from 1947 onwards in terms of equations with subscripts. Sometimes the 

whole set of observations was described with matrices. The derivation 

of the interesting quantities, such as Sum of Squares (SS) in the 

Analysis of Variance Table (ANOVA-table), Expected Mean Squares (EMS) 

and distribution of ratio of Sums of Squares, was often done by manipu­

lating expressions with sums and squares of sums, where several sum­

mation symbols (Z 's) with different indices were needed. These clumsy 

notations obscured the insight into the derivation of the results. 

For the fixed effects model there were already some persons who 

made systematic use of vectors and vector spaces to describe it, see 

Kuiper (1952), Corsten (1958) and Scheffé (1959). In chapter 3 the 

representation of variance components models with vectors and vector 

spaces is described. This approach for random and mixed models has been 

adopted also in the lectures on Applied Statistics at the Agricultural 

University in Wageningen, since 1972. 

For the balanced nested designs exact tests about ratio of 

variance components and the calculation of their power, are well-known. 

For the unbalanced nested designs an exact test sometimes exists, but 

the calculation of the power was troublesome, or an exact test was 

unknown. 

In a seemingly unrelated problem field, that of economics, there 

is the problem to determine serial correlations in series 
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of data. The often used test statistic is that of Durbin and Watson. 

Another procedure is the use of the residuals with the best linear 

unbiased estimators with a scalar covariance matrix (BLUS). For the 

distribution function of these test statistics, the distribution func­

tion of a ratio of quadratic forms in normally distributed random 

variables is needed. For the calculation of this distribution function 

a computer program was available since 1969. Statisticians not working 

in economics were unaware of this. The author encountered this problem 

also in his investigation on exact tests for variance ratios in unba­

lanced three-stage nested designs. He recognized the similarity and 

used the program to calculate the distribution function of such a ratio 

of quadratic forms. These results of determining exact tests about 

ratio of variance components in unbalanced nested two and three-stage 

nested designs have been presented at the "8th International Biometrie 

Conference" at Constanta, Romania, in 1974 (see section 4.2). 

The related problem of an exact confidence interval for the ratio 

of variance components has also been tackled (see section 4.2). 

Because this confidence interval was very useful in practice, this 

part has again been presented at the second International Symposium of 

"Computational Statistics (COMPSTAT)" at West-Berlin in 1976 (see 

section 4.3). 

In the meantime many approximate and incorrect tests about ratio 

of variance components have been published. An overview and an exten­

sion of the work about exact tests and confidence intervals for ratio 

of variance components have been presented at the International 

Conference on the "Analysis of the Unbalanced Mixed Model" at 

Gainesville, Florida, U.S.A., in 1987 (see section 7.2). 

Using the possibility to compute the exact distribution of ratios 

of quadratic forms in normally distributed variables, the probability 



of negative outcomes of the ANOVA estimator for the balanced one-way 

classification has been computed (see chapter 6). 

The development of estimators of variance components was 

concentrated more and more on best quadratic unbiased estimators (Best 

= Minimum Variance). The author introduced the concept of a permissible 

estimator to find another and "better" estimator at the "Vl-th 

International Conference on Mathematical Statistics" at Wisla, Poland, 

in 1978. The unified least squares procedure has been used to find 

a non-negative, closest to unbiased, estimator for variance components 

(see section 5.2). 

These ideas about the unified least squares procedure for estima­

ting variance components and an overview over permissible estimators 

for variance components were also presented at the International 

Conference on the "Analysis of the Unbalanced Mixed Model" at 

Gainesville, Florida, U.S.A., in 1987 (see section 8.2). 

The use of variance components has extensively been applied in 

Animal Breeding, especially using the BLUP-procedure. In Plant Breeding 

no use has yet been made of variance components to get the best linear 

unbiased estimator for varietal contrasts and the best linear unbiased 

predictor for varietal contrasts. At the second International Seminar 

on "Statistical Methods in Variety Testing" at Slupia Wielka, Poland, 

in 1985, the author presented this application (see section 9.2). 
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CHAPTER 2 

2. HISTORICAL DEVELOPMENT OF VARIANCE COMPONENTS ESTIMATION 

2.1. Introduction 

For the history of model:; with random effects we rely on Scheffé 

(1956), Anderson (1979), Khun' and Sahai (1985) and Searle (1987). The 

historical development reflects the recognition of the importance of 

variance component models in practice. 

The struggle for good estimators of variance components is 

sketched. Our personal choice of a good estimator for a variance com­

ponent will be given in chapter 5. 

2.2. The first period from 1861 to 1947 

Estimation of fixed effects in linear models, in which the 

covariance matrix of the errors is known up to a scalar factor, essen­

tially began with Legendre (1806) and Gauss (1809). Independently from 

each other they invented the theory of least squares in books on astro­

nomical problems, so that it is with these problems that we must 

associate the origin of the fixed-effects models (see also Plackett 

(1972) and Stigler (1981)). 

What is even more interesting is that the first appearance of 

variance components is also in astronomy books by Airy (1861) and by 

Chauvenet (1863). A one-way random model was formulated by Airy (1861, 

especially part IV) and there is also a provision for unbalanced data, 

unequal numbers of telescopic observations from night to night on the 

same phenomenon of interest. Suppose that on I nights [Airy uses days 

(!)] observations are made with a telescope on the same phenomenon, J-j 

observations on the i-th night. Airy assumes the following structure 

for the j-th observation on the i-th night: 
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y-i j = ß + ci + eij (2.1) 

where u. is the general mean or "true" value, and the {ci} and {eij} are 

random effects with the following meanings: He calls Ci the "constant 

error", meaning it is constant on the i-th night; (we would call it the 

i-th night effect); it is caused by the "atmospheric and personal cir­

cumstances" peculiar to the i-th night. The {e^j} for fixed i we would 

call the errors about the (conditional) mean n + c-\ on the i-th night. 

It is implied by Airy's discussion that he assumes all the eij inde­

pendently and identically distributed, similarly for the Ci, that the 

{eij} are independent of the {ci}, and that all have zero means. Let us 

2 2 
denote the variances of the {eij} and the {cn-} by ae and ac. 

2 
To decide about his equivalent of the hypothesis a c = 0, Airy compares, 

as we would, a between-nights measure of variability with a within-

nights measure, but he uses different measures than we would. 

The second use of a random effects model appears to be Chauvenet 

(1863, Vol. II, Articles 163 and 164). Although he did not write model 

equations like (2.1) with all the subscripts, nevertheless he implied a 

one-way classification random model in which, using today's notation, 

I J - 2 2 
he derived the variance of y = E Z yij/(IJ) as var(y ) = (ac+ae/J)/I 

i=1j=1 
from (2.1). Chauvenet suggests that there is in his example little 

practical advantage in having J greater than 5, and refers to Bessel 

(1820, p. 166) for this idea. Chauvenet's reference to Bessel on this 

specific point (J = 5) is incorrect, but the page he cites does contain 

a formula for the probable error of a sum of independent random 

variables which could be the basis for such a conclusion. Probably 

Bessel made the remark elsewhere. (Probable error is an older measure 

of sampling variability and is equal to 0.6745a. The reason for this 

measure is that for a random variable x, which is normally distributed 

with mean u and variance a2, N(u,a2), P(-0.6745a < x - u < +0.6745a) = 0.5) 

- 6 



Chauvenet's contribution was not so much in his implicit use of a 

linear model, but was rather his demonstration of the utility of an a 

priori knowledge of the relative magnitudes of components of variance 

in the design of experiments. 

The more modern beginning of variance components is Fisher's 

(1918) paper on quantitative genetics in which he initiated (i) the 

use of the terms "variance" and "analysis of the variance"; (ii) an 

implicit employment of variance components models; and (iii) definitive 

ascription of percentages of a total variance to constituent causes, 

e.g. that dominance deviations accounted for 21 percent of the total 

variance in human stature wheras, prior to the study, dominance 

deviations were ascribed to be environmental effects. (The other two 

basic papers on quantitative genetics are from Wright (1921) and 

Haldane (1932)). 

In his book: Statistical Methods for Research Workers, section 40, 

Fisher (1925) made yet another major contribution to variance com­

ponent models. He initiated there what has come to be known as the 

analysis of variance (ANOVA) method of estimation: equate sums of 

squares from an analysis of variance to their expected values and 

thereby obtain a set of equations that are linear in the variance com­

ponents to be estimated. This idea arose from using an analysis of 

variance to estimate an intra-class correlation from balanced data per­

taining to a one-way random model. In to-day's notation for the one-way 

classification random model like (2.1), with balanced data, Fisher used 

1 J 2 
E(SSE) = E E E (yn-j - y-j.)2 = I(J-1)c7e 

i=1j=1 

1 J - Z - - 2 2 
and E(SSA) = E E E (yi.- y . . ) 2 = E E J(yi.- y . . ) 2 = (1-1)(Jac+ae)• 

i=1j=1 i=1 
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-2 
From these the estimation equations are taken as SSE = I(J-1)ae and 

SSA = (I-1)(Jc7c + a\) and so o\ = SSE/[I(J-1)] = MSE and 

âc = (MSA - MSE)/J where MSA = SSA/(I-1). 

Although Fisher's book extended the analysis of variance to the one-way 

model with unbalanced data (different J-j's) and to the two-way crossed 

classification model with interaction, his book did not treat the 

estimation if variance components. 

The analysis of variance method for unbiased estimation of 

variance components from balanced as well as unbalanced one-way random 

models was later elucidated by Tippett (1931, Table XXIV) who also, for 

the first time, extended the method to handle the two-way crossed 

classification random model without interaction, and displayed in the 

second edition of his book (in 1937) some explicit estimators. Tippett 

(1931) also considered the problem of selecting the optimal sampling 

designs for particular experimental situations for a one-way random 

model, as Chauvenet (1863) had done, and perhaps Bessel (1820). 

Yates and Zacopanay (1935) later dealt comprehensively with higher 

order sampling designs in several experiments. Neyman, Iwaszkiewicz and 

Kolodziejczyk (1935) considered the efficiency of randomized blocks 

and Latin Square designs, and in doing so made extensive use of linear 

models (including mixed models). 

Although Fisher (1935) used the term "components of variation" in 

an acrimonious review of Neyman et al. (1935), and they themselves had 

used the phrase "error components", the first apparent use of 

"components of variance" is by Daniels (1939). He also derived the 

sampling variances of the variance component estimators for complex 

models, such as three-way crossed classification random models con­

taining two-factor and three-factor interaction effects. 



The analysis of unbalanced data is much more complex. Cochran 

(1939) used the analysis of variance in selecting an optimal design in 

which the need for a method for estimating variance components arose. 

The analysis of variance (ANOVA) method for unbiased estimating of 

variance components in the one-way random model with unbalanced data 

has been given by Winsor and Clarke (1940). Yet, although Fisher (1925) 

has the idea of taking expected values, he had not there specifically 

formulated it using the E Operator (E = Expected value) as do Daniels 

(1939), and Winsor and Clarke (1940). The method was subsequently 

extended to k-stage nested classifications (k > 2) by Ganguli (1941), 

and to the two-way crossed classification random model with interaction 

by Crump (1946, 1947). 

Both Ganguli and Crump noted that the ANOVA method sometimes produced 

negative estimates and they suggested that such estimates be replaced 

by zero. 

While a mixed model is implied by Fisher's (1935, Sec. 65) 

discussion of varietal trials in a randomly selected set of locations, 

and by Yates' (1935) analysis of the split-plot design, the first 

explicit clear description of a mixed model is in a paper on mental 

tests by Jackson (1939), where the score y-jj of the j-th individual on 

the i-th trial of a test is assumed to have the structure 

y-ij = u + ai + bj + e-jj, where the trial effects {ai} are treated as 

fixed and the "individual" effects {bj} are treated as random. The 

{bj} have to be independently and identically distributed with zero 

means. The errors {en-j} are assumed to be independently distributed 

with zero means and equal variances and also independent of the {bj}. 

The systematic description of fixed effects models as "Model I", 

random effects models as "Model II" and mixed effects models as 

"Model III" is due to Eisenhart (1947). This is a landmark paper. 

Finally it can be remarked that the use of variance components in 
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animal breeding has been applied from 1923 onwards by J.L. Lush who 

in 1937 wrote his well-known book "Animal breeding plans". The theory 

of the selection index was developed by Smith (1936) and Hazel (1943). 

Estimating variance components is an integral aspect of animal and 

plant breeding for two reasons: (i) to identify sources of 

variation, principally genetic variation; and (ii) as an adjunct to the 

prediction of breeding values of candidates for selection. 

Use of components of variance in animal breeding probably started 

with simple between SS and within SS in one-way ANOVA, to get estimates 

of between-group variation and as a way to compute correlations and 

regressions when the same attributes were not measured on each 

individual. An example of the latter is when an estimate of repeatabi­

lity is wanted. Lush and Jones (1923) published the concept of 

repeatability. Dickerson (1942) estimated components of variance in 

order to design experiments for testing inbred lines of swine. For 

further interesting historical facts in animal breeding, we refer to 

Freeman (1973, 1979). 

Some early applications are contained in the papers of Lush, 

Hetzer and Culbertson (1934), Bywaters (1937), Stonaker and Lush 

(1942), Hetzer, Dickerson and Zeiler (1944), Knapp and Nordskog (1946) 

and Anderson (1947), to name just a few. 

2.3. The second period from 1947 to 1987 

Impetus for the fledgling method of variance component estimation 

came from a wide variety of practical problems, especially genetics. We 

already mentioned in animal breeding Lush (1937); another pioneer there 

is Lerner (1950). In plant breeding pioneers were Comstock and Robinson 

(1948), Mather (1949), Hayman (1954a, b), Jinks (1954), Griff ing 

(1956), Finlay and Wilkinson (1963). 
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The first comprehensive discussion in book form was pre­

sented by Anderson and Bancroft (1952), with its four chapters on 

variance components. 

The above mentioned papers dealt with balanced data or with unba­

lanced data in nested designs with random effects. Because it directed 

attention to the need for alternative methods of estimating, which 

would facilitate the handling of mixed models with unbalanced data, the 

study of Henderson (1948) represented a major contribution to variance 

component theory. For estimating variance components from unbalanced 

data the landmark paper is undoubtedly Henderson (1953). This contains 

three methods 1, 2 and 3 for unbiased estimation of variance com­

ponents. In that paper the ANOVA method of estimation, based on 

equating analysis of variance sums of squares to their expected values, 

was extended for unbalanced data, to equating a wide variety of quadra­

tic forms (not all of them sums of squares) to their expected values. 

Henderson's Method 1 may only be applied to random effects 

.models. For each effect an "analogous sum of squares" of the effect is 

calculated, with the same recipe as for the balanced case. (For a 

crossed classification the "analogous sums of squares" for interactions 

are not always non-negative definite!). 

The expected values of these "analogous sum of squares" are determined. 

The unbiased estimator for the variance components follows from 

equating the expected values of the "analogous sum of squares" to their 

outcomes. Notice that Henderson's Method 1 gives the correct unbiased 

estimators for nested designs. 

Henderson's Method 2 may only be applied to mixed effects models, 

which do not include either interaction effects between fixed and 

random factors or nesting of fixed and random factors within each 

other. The basic strategy of Henderson's Method 2 is to estimate the 

- 11 -



fixed effects in the model using least squares (computing as though 

the random effects were fixed), correct the data vector in accordance 

with these estimates, and then apply Henderson's Method 1 to the 

adjusted data vector. Accordingly, the computational simplicity of 

Method 1 is retained. 

Henderson's Method 3 utilizes reductions in sums of squares resul­

ting from fitting the linear model and sub-models thereof using the 

least squares procedures of fitting constants. The random effects are 

considered as constant effects for the least squares fitting procedure. 

For mixed models the reductions start with fitting the fixed effects 

and then the random effects. Equations leading to unbiased estimators 

of the variance components are then obtained by equating each such 

reduction to its expected value under the full model. 

The difficulty with Henderson's Method 3 was that even for the 

easiest crossed classification with two random factors A and B and 

unbalanced data, there was no unique estimator! The estimator depends 

on whether the reduction in sums of squares was calculated in the 

order of A and then B corrected for A, or in the order of B and then A 

corrected for B. Nevertheless this Method 3 has been used extensively 

in practice, because there soon were computer programs to handle it 

(e.g. Harvey's program (1960)). 

Then followed a period (from 1953 to 1970) of trying to evaluate 

those methods mostly through deriving expressions, under normality 

assumptions, for sampling variances of the resulting estimators. These 

results are compiled in Searle's (1971) book. In every case the results 

are, of course, quadratic functions of the unknown variance components; 

but the coefficients of the squares and products of those components are 

such hopelessly intractable functions of the numbers of observations in 

the cells of the data that it is impossible to make analytic comparisons 
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either between different estimation methods, or between the effects of 

different degrees of data unbalancedness on any one method of estima­

tion. This absence of tractable criteria on which judgement can be 

based as to which application of the ANOVA method has optimal features, 

thus became very frustrating. 

For balanced data an optimal criterion exists. Graybill (1954), 

Graybill and wortham (1956) and Graybill and Hultquist (1961) had 

established the properties of minimum variance for the unbiased quadra­

tic ANOVA estimators. 

But for unbalanced data the frustration of "no optimality cri­

terion" persisted. In contrast to the optimal properties of the ANOVA 

estimators for balanced data, the best estimators in the unbalanced 

cases of random models and mixed models are not known. Read (1961) 

showed that unbiased quadratic estimators with uniformly minimum 

variance do not exist if the design for the random model is not 

balanced. 

For unbalanced data Henderson's Method 3 was used, and among the 

several pieces of work which have dealt with this method only that of 

Harville (1967) seems to have been concerned with consistency of the 

equations leading to the estimators and to the existence of unbiased 

(quadratic) estimators under various conditions. Harville (1967), 

however, only treats a completely random two-way classification model 

with interaction. One other result which deals with existence of 

unbiased quadratic estimators in a completely random model is given by 

Graybill and Hultquist (1961). 

Seely (1970a, b; 1971; 1972; 1977) and Seely and Zyskind (1971) 

introduced a least squares approach for estimating variance components. 

Seely's method has the advantage of giving necessary and sufficient 

conditions for the existence of unbiased quadratic estimators, 
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which Henderson's Method 3 does not always supply. For a descrip­

tion of Seely's method we refer to chapter 5, section 5.2 and chapter 

8, section 8.2. 

In the meantime Rao (1970; 1971a, b; 1972) introduced a method 

equivalent to Seely's method for deriving estimators for variance 

components. Rao's minimum norm quadratic unbiased estimator 

(MINQUE) has become well-known. 

For joint normally distributed data LaMotte (1973) derived the 

minimum variance quadratic unbiased estimator (MIVQUE). This estimator 

is the same as Rao's MINQUE in the case of joint normally distributed 

data. For a description of Rao's MINQUE see chapter 5, section 5.2 and 

chapter 8, section 8.2. 

When we restrict ourselves to joint normally distributed data, the 

method of maximum likelihood to get estimators for the parameters has 

been applied for the unbalanced mixed model by Hartley and Rao (1967). 

Another modification of this method was the restricted maximum likeli­

hood (REML) estimation, initiated for balanced data by Anderson and 

Bancroft (1952) and Thompson (1962), and extended by Patterson and 

Thompson (1971, 1975) to block designs and thence to unbalanced data 

generally. For a description of this REML method see chapter 5, section 

5.2. 

Further desirable developments and recommendations in variance 

components estimation will be made in section 8.3. 
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CHAPTER 3 

3. REPRESENTATION OF VARIANCE COMPONENT MODELS 

3.1. Introduction 

For the balanced scheme the representation with vectors and vector 

spaces is described in the following article, given in section 3.2. 

In this article it was stated in the Introduction that for the 

more complicated mixed models with correlated random effects, the 

theory presented there was to be extended in a subsequent publication. 

The author later used the ideas developed here, together with the 

general mixed model equation y = Xj5 + Zu + e, where the stochastically 

independent random vectors u and e have zero mean vectors (Eu = 0 and 

Ee = 0), and dispersion matrices D(u) = E(üu') and D(e) = E(ee'), 

respectively. The correlated effects have been included in D(u) and 

D(e). Hence the expectation vector Ey = Xj3, and the dispersion matrix 

of y is D(y) = ZD(u)Z' + D(e). 

This representation has been used throughout in the following chapters 

and, especially for correlated random effects, in section 9.2. 

The projection of the observation vector y on a vector spa­

ce A is denoted as P/̂ y rather than YA. Here PA stands for the matrix 

of orthogonal projection on the vector space A. 
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3.2. Representation of ANOVA models with vectors and vector spaces 
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Representation of ANOVA models with vectors 
and vector spaces 

by L. R. VERDOOREN * 

Summary The use of vectors and vector spaces for the representation of the fixed-effects models 
for the analysis of variance (ANOVA) is well-known. This representation gives a clear 

understanding of the estimation and hypothesis testing problems. 
A similar representation can be used for the random-effects models and some mixed models. As a 
result the distribution and the expectation of the mean squares in the ANOVA table can easily be 
derived. 

1 Introduction 

The representation of the fixed-effects models for the analysis of variance (ANOVA) 
with vectors and vector spaces was developed in a systematic manner by KUIPER 

(1952) and CORSTEN (1958). Furthermore the distribution of the sums of squares in the 
ANOVA table can easily be found by interpreting such a sum of squares as the 
square of the orthogonal projection of a normal random vector on a subspace, 
compare KUIPER (1959, 1960). To recall the procedure a few examples are given in 
section 2. 

The vector representation can also be applied to the random-effects ANOVA 
models to elucidate there consequences. This was pointed out by KUIPER in his 1962 
lectures on mathematical statistics at the Landbouwhogeschool (Agricultural Univer­
sity) of Wageningen. A few examples are given to illustrate this technique in section 3. 

For some mixed-effects ANOVA models the theory can readily be applied as shown 
in section 4. For the more complicated mixed models with correlated random-
effects the theory presented here should be extended, and this will be done in a 
subsequent publication. 

2 Fixed-effects ANOVA models 

2.1 The one-way classification 

The one-way layout refers to the comparison of the means /?,• of the populations 
; (/ = 1,..., / ) which are normal, each with the same variance a2. From each popula­
tion there are nt independent random samples ytJ (j = 1,. . . , «,). The sample scheme 
is then : 

Populations or Classification A : 

yii,---,yin 

y H yin, 

* Institute for Research on Varieties of Field Crops (IVRO), Wageningen. 
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The model is: 

Xu = ßi+eij 

whereby {e^ a ax) are mutually stochastically independent (/ = 1 , . . . , / ; j = 1, 

Note that the standard normal random variable x is defined by 

P(Z<x)= J (2n)-*e-'2,1dt; 

two random variables x and y are called isomorous (x ~ y) when they have the same 
distribution function. 

The sample scheme is looked upon as a vector ƒ in a real vector space R" of dimen­
sion n with n = £]j = 1 «,-• Corresponding to the one-way classification A we define a 
vector subspace A c R", consisting of vectors with equal coordinates within each 
class of A. A basis of this vector subspace ofdimerision I is given by the class-charac­
teristic vectors slt..., sr, whereby s( has coordinates equal to one merely in the class 
i of A and zeros elsewhere. Hence the expectation vector Sy e A. Under the null 
hypothesis H0 : ßx = ß2 = ... = ß, the vector S y e L, the subspace of levels with 
the basisvector s0 consisting merely of ones. Obviously: s0 = Si+...+Sj, L c A. 

Let the orthogonal complement of L in A be A', then under H0 S y e L and the 
orthogonal projection of S y on A', {Sy)A,, is the null vector. Let the orthogonal com­
plement of A in R" be R, the space of residuals or the error space, then the dimension 
of R, dim R = r = n — I. Also {Sy)R = 0 whether H0 is true or not. 

The vector representation of this model is then y = Sy + au; S y e A, with u ~ £„, 
the normal random vector with mutually independent coordinates ut — % (' = 1> 
. . . ,«). 

Note that sometimes the model is given in the form y,7 = A +a, + e,j with the side 
condition ]T.= ̂ a,- = 0. The vector ây = j.ie A can be written as /i = fiL+nA' with 
fiL = te0 a n d ^ . =£' .1a j j1 . . 

For the ANOVA table we decompose y into orthogonal components y = j>t + J^ . + 
+yR and thus y2 = y\+y\>+yR with the corresponding dimension splitting 
#!= l + ( / - l ) + ( « - / ) . 

The Gauss-Markov estimator oi &y = ß is ^x. 
The expectation of ^ . is found as follows : 

¥*> = HA* + °UA; 

(¥A'-HA>)2 = °"2id. =* ff2^p 

with/) = dim A* = I— 1. 
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Therefore 

and 
S& = *[(2A.-liA.) + liA.']1 = 

= <? (yA. - tiA.)2 + IS {yA. - nA.)nA. + e A, 

= Ä- + Pa2. 

The distribution of y\. is derived as 

y A' = HA- + ™A., 

Ä ' = (HA' + OUA'? = ^(V'^A' + UA-)2 ~ 

a non-central chi-square variable with non-centrality parameter 

and /? degrees of freedom. 
Furthermore yR — auR and v* ^ <x2x2 w ' t n f = dim J? = n — I. Since 4̂* is ortho­

gonal to R, yA, is stochastically independent of y\ and thus the well-known test sta­
tistic for H0: /?[ = ... = ßj or "^/4. equals the null vector" is: 

V2//- cr2/2/r 
r > 

a non-central F variable with p and r degrees of freedom and non-centrality para­
meter y = o-""1^,)*. Under H0 is y = 0 and the test-statistic is a central ¥V

T variable. 

2.2 77îe two-way classification (additive model) 

The additive model for the connected two-way layout with a classification A of I 
classes and a classification B with 7 classes and nu observations per-subclass 
A; n 5 ; is: 

Jo* = <*'i + ß'j+eijk 
or 

Vyt = A + Cti + Pj + ëiji 

with the arbitrary side conditions 

L " ü a i = °. 'LjT'ijßj = Q 0 = 1,...,I; j=l,...J; k = 1,...,«0) 

whereby {efj-t ĉ  o-̂ } are mutually stochastically independent. 
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Let the vector spaces A and B correspond to the classifications A and B respectively. 
The space L is the intersection of A and B and for any connected two-way layout the 
dimension of L is 1. The residual space R is the orthogonal complement of D = A + B 

inÄ",«=LZ/v 
The vector representation is: y = Sy + ou with SyeD = A+B and u a %n. The 

Gauss-Markov estimator of S y is yD = yA + B-
Under e.g. H0l : a t = ... = a, = 0 the vector SyeD0 = B. Let D* be the ortho­

gonal complement of D0 in D. The test statistic for H0l is then 

Yv-\à' Fi*,y 

Mr - ~' 

with d' = dim D', y = a~l{p.l.)i and r — dim R. 
Because y can be decomposed as y = yD+yR with D and i? orthogonal, y1 == 

= yi+yi= y2A+B+y2R-
For an orthogonal design .4* is orthogonal to 5* (this is the case if and only if 

"U = (Zi"ij)(£;"•;)/")> t h u s yl + B = }i+y\'+y\' and >•£. = >•£-ƒ£„ = ; j . . 
For a non-orthogonal design let ^ B be the component of y in A + B orthogonal 

to B, then y2
A + B = yAla + yl = yl + yA±B + y2

B. and >>£. = ^ ± B . 
The vector yAlB can be found by an iterative procedure see CORSTEN (1958). 
In the ANOVA table the various sums of squares are given according to the de­

composition y2 = yl+yAlB+)'B' +)'R w ' t n the corresponding dimension splitting 
n = i + ( / _ i ) + ( / _ i ) + ( „ + i _ / _ y ) . 

Analogously one can test H0l : ßl = ... = ßj = 0. 

2.3 The two-way classification (interaction model) 

The model is in this case 

y Uk = l + <*i + ßj + yu + eijk 

with the arbitrary side conditions 

Z ntjcc, = 0, Y.nußi = °> E ^ u = °' I" .VVÜ = ° 
i J i J 

(( = 1, ...,ƒ; j = 1,...,J; fc = 1, ..-,«,v) 

whereby {e,7fc ^ 07} are mutually stochastically independent. 
We define the product-classification i x 5 as the classification according to the 

non-empty subclasses At n Bj. A vector in the corresponding vector space A x B has 
equal coordinates in each subclass At n B}. 

The vector representation for the interaction model is then : 

y = Sy + au 
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with 

?yeD = AxB,u=i<JXn (" = E I "u j 

Under H0: "ytJ = O, / = 1, ..., 7; j = 1, ..., 7 " the vector gy eD0 = A+B. The 
same procedure for testing H0 can be applied as described in section 2.2. For details 
see VERDOOREN (1967). 

3 Random-effects ANOVA models 

3.1 The one-way classification 

Let the classification A consist of I rows, with / experimental units per row. In the 
random-effects models we assume that there is a joint action of two random in­
fluences. Firstly there is a random variable at which attains a value in each row i. 
These at are isomorous and mutually stochastically independent with a,- ~ a„x-
Secondly there is another random variable eu which attains a value on each experi­
mental unit in a row. These eu are isomorous and mutually stochastically independent 
with etj =i }* + ax and moreover independent of a,. The model is thus 

'yu = A + af + <7U,y-

with the {ai c± aax} and {u;j ~ x] completely stochastically independent, (z = 1, 

With the same notations as in section 2.1 the first vector representation is 

y = I s 0 + X QiSt + OU 
i = l 

with U ~ Xn> n — H-
Let v — Xn a n d independent of u. Observe now on the one side that the orthogonal 

projection of y on A is 

i J 

VA = E Vißi with vL = £ vul J and yL =* J~*x-

On the other hand at ^ aax and we can write therefore af Ä J J<xayL, hence 

i 

Y.aisi-aoyJJVA-

The vector representation of the random model is then 

y a Xs0 + aay/JyA + au 
or 

y ~ gy + vaS]JyA + ou 

with g y e L. 
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Because R" — A + R with A and R orthogonal we can write u = uA-\-uR with uA 

independent of uR and 

y ~ Às0 + aaJjyA + auA + (TUR. 

Since for each component of the vectors u and v we have 

Oay/JVij + aUij ^ (a2
aJ + <j2fx, 

because vu ca x, tiij — X and yu independent of «;;, is 

Oay/Jn + OUA = MJs + <ru)A Ä (ffa
2J + <72)*[£,L - (ff2J + ff2)*»A 

while Ü =; %n. 
Hence 

Furthermore A = L + A' with L orthogonal to A', hence yA = yL + yA. with 

Finally we obtain 

y ~ [À + n ' ^ V + O ^ S o + ^ + ffV^. + ffMR. 

We can thus decompose y into the following independent components y = ^L + 

+ ^ « + 2'R w i t h 

i'L = i*o - il + n~i{aÏJ + $)ii~\sQ, y =YLXijln' 
> J 

XA'-tâJ + oVSA-
and 

¥R ^ ™il­

ia, the ANO VA table we calculate the sums of squares y\, yA. and y\ with the dimen­

sions 1, (7—1) and (n — I) respectively. 

'A-The distribution of y2,. is 

(a2J + cr2)y2
A,^(a2J + a2)x2

p 

with p = dim ,4* = I—I. The expectation of the mean square yA*/p is thus a2J+a2. 
Stochastically independent of yA, is yR a a2 xl with r = dim R = n — I. To test the 

hypothesis ƒ/<,: aa = 0 we use the test statistic 
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Ä'IP „ °U+°2 

Ei p 

Air a2 

and under H0 this is isomorous with Fr". 

3.2 The two-way classification 

For the two-way layout with a classification A of/classes and a classification B with J 
classes and an equal number m of observations per subclass At n Bj, the random-
effects model is 

y ijk = ^ + 3i + tj + eiJk, 

whereby all random variables 

{äi - o„z}, {hj-Obl) and {eijk ~ ax} 

are mutually stochastically independent, (/ = 1 , . . . , / ; j = 1,..., J; k = 1,..., m). 
With the same notations as in section 2.2 we can write 

; J 

y = /.s0+ X fl,-Sj+ X bjtj + mj 
. = i j = i 

whereby the class-characteristic vectors .y,, ..., sf and /,, ..., /j form a basis of /i and 
B respectively. 

Let u, y and w be independent normal random vectors x„ (n = ///w), then 

V ^ As0 + aa\jmJ yA + ab\' ml wB + au, 

and 
j ~ [ l + f \ ^ m J + (jk

2mJ + a J)1 /]s0 + ((i,2mJ + ff!)^ + ((rjffl/ + (r!) iw,. + iJ!ls. 

Hence 

v,,. = (a2mJ + a2)iyA, and 

j ^ , ~ ((T^my + c72)Xp with p = dim ,4* = I— 1, 

ƒ£, ca(<TlmI + 02)%Z with g = dim ß* = 7 - 1 , 

y« - o - V with r = dim.R = IJm + 1-I-J, 

whereby y\., y\, and y\ are mutually stochastically independent since A', B' and R 
are mutually orthogonal. 
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3.3 Hierar chai classifications 

A twofold nested classification with m observations per class has the following random 
model: 

y Uk = l + Qi + kij + eiJk 

whereby all random variables 

{ai-Oai), {bij-ffbx} and {eiJk ^ ax} 

are mutually stochastically independent, (i = \, ..., I; j = 1, ..., J; k = 1, ..., m). 
Let u, v and w be independent normal random vectors /„ with n — Urn. If the vec­

tor space B corresponds to the classification B and the vector space A to the classifi­
cation A then A <= B. Decompose B into mutually orthogonal subspaces as B — 
= L + A' + B', whereby B' is the orthogonal complement of A in B. Furthermore 
let the vector space R be the orthogonal complement of B in R". 

The vector representation of this model is then: 

v =i Xs0 + aa\lmJ yA + ab\lm wB + au 

or 

v =* Xs0 + aa\i mJ{vL + vA.) + ab\i m(wL+wA. + wB,) + a(uL + uA. + ijB. + uK) 

and 

y ~ [2 + n~i(o2mJ + a2m + a2)-x]s0 + (a2 m J + a2 m + a2)-yA. + (aim + a2)*wB. + auR. 

Thus 

vj. ^(almJ + alm + a2)xl with p = dirndl" = ƒ—1, 

fB. ~ (a2m + a2)x2 with 3 = dim B* = / ( J - l ) , 

y\ si a212 with r = dim R =IJ(m-Y), 

whereby y2
A., y2?. and y\ are mutually stochastically independent. 

4 Mixed-effects ANOVA models 

For mixed-effects models with uncorrelated random-effects the exposed theory can 
readily be applied. A few examples of hierarchal classifications will be presented here. 
In the more complicated mixed models there appear correlated random-effects. The 
theory presented here should then be extended and this will be done in a subsequent 
publication. 
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4.1 Mixed-effects hierar chai classifications 

Suppose a firm produces a material in different plants. If at denotes the effect of the 
z'-th plant, then this is a fixed effect since the plants do not change in a replication of 
the experiment. The material is processed in batches and let bii be the batch effect. 
Suppose that a sample of size m is taken from each of / batches and let eijk be the 
effect of the k-th. unit taken from the y-th batch. The observations yiJk on these units 
have the structure 

y Uk = l + Xi + hij + êijk, ][>,• = 0, {hi, Ä abx} and {eijk ^ 07} 
i 

are mutually stochastically independent (i = 1 , . . . , / ; j — I,..., J; k = 1,..., m). 
With the same notations as in section 3.3 the vector representation is 

y ~ £y + obsJmyB + au 

with Sye A or 

1 

y =* As0+ £ aisi + (Tb%/m(vL + vA. + vB.) + a(uL + uA. + uB. + uR). 
i = i 

Thus 
1 

v ̂  As0 + (o2m + a2)ivL + £ ^•,si + (fflm + (T2)iyA. + (cT2m + a2)iyB. + auR. 
i= 1 

We find 

VA- =* Z a ^ + CffpH + ff2)^. 

since ,Î0, L, .5* and R are orthogonal to /f* and these vector components vanish by 
projection on A'. 

Hence 

yA. ~(<T2m + cr2)xl'y with p = dimA' = I— 1 
and 

V = tôm + ff2)-*!!©*,*,)2]* = (ff2m + ff
2r*(m./2>2)*; 

i i 

^ B . ^(<T2m + c72)+yB. 

and 
y2

B.^(a2
bm + a2)X

2 

with 9 = dim B' = 7 (7 -1) ; 
^ ~ auR and ^j2. ~ o-2^2 with r = dim .K = IJ(m— 1), whereby y^., y\, and ̂ R are 
mutually stochastically independent. 

The test on H0l : a t = . .. = a, = 0 is equivalent to iJ0 l : y = 0. The test statistic 
is thus 
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Ä'/P „ Fp,y 

xUq " - ' 

and under H0i this is a central Fp
q variable. For the test on H0l: ab = 0 we must use 

l\'k _ (afm + a2) 

Air a2 ~ " 

4.2 A split-plot design 

In many agricultural or industrial experiments treatments of a factor A on I levels 
are given to whole plots in m blocks or replications. Other treatments of a factor B on 
/ levels are given to the split-plots in the whole plots. The model for such an experi­
ment is: 

Vijk = }- + ai + 8 k + ° ! Uik + ßj + Jij + <r2Vijk 

with 
X«, = o, lek = o, Ißj = o, Y.y,j = o, I>,7 = o, 

i * j ' j 

{»,* - l) and {vijk ^ x} 

are mutually stochastically independent (/' = 1, . . . , / ; j = 1,..., J; k = 1, ..., m). 
Let A and B be the vector spaces corresponding to the classifications of treatments 

A and B respectively, Ax B be the vector space corresponding to the product-classi­
fication of A and B, C be the vector space corresponding to the replications and P be 
the vector space corresponding to the subdivision of whole plots. The vector represen­
tation is then: 

v ^ <fy + <71N / ju^rOiü 

with Sv = / i e A x B + C ; u and y are independent normal random vectors /„ 
(n = Urn). 

Proceeding as before we derive 

with p = dim A' = I— 1 or 

with y = {a\j + a\)-Hii2A.)\ 

Let Rl be the orthogonal complement of A + C in P then 

fRi^{o\j + o2
2)x

2
ri 

witlij = dimi?! = (7- l ) (m-l ) . 

STATISTICA NEERLANDICA 23 (1969) NR. 1 62 

31 



Further 

with q = dim B*. 
Let {A x B)' be the orthogonal complement of A + B in Ax B and R2 be the ortho­

gonal complement of Ax B+C in R". Then 

(¥(A x B)« ~~ A'f/l x B)*) — "^Xs 

with 5 = dim 04 x B)' = (I-1)(7-1), and 

2 2 2 

with r2 = dim/?, = (m-1)7(7-1). 
To test H0l: txt = . .. = a, = 0 we use the test statistic 

^ • / P _ Fp.y 

with y = (crfy + o-l)-*(A*50* 

and to test H0l: "There is no interaction" we use the test statistic 

¥(A x B)'IS _ ps,3 

With S = <T2i(ßfAxB)')i-

5 Final remarks 

(i) For unbalanced designs the random-effects models give difficulties in hypotheses 
testing. The vector representation however gives an easy derivation for the expecta­
tion of the mean squares. Also the fact that the mean square of effects is not distri­
buted as chi-square can easily be derived. 

As an example we take the one-way classification with unequal observations per 
row. The random model is 

Yij = l + Qi + eij 

with {g; =± aax} and {eu st ay) mutually stochastically independent (i = 1,..., ƒ; 
j = 1,..., «,-). 

The vector model is 

i 

y = As0+ Y, SiSi + cry 

with U^Xn (Ji =£«( ) • 
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Let At be the space of dimension one with basis sh then A can be decomposed in 
mutual orthogonal subspaces as A = A1 + ... + A[. 

Hence 

y ~ Às0 + £ aJyifV^ + J j uA( + uRJ 

or 
/ 

i = l 

When we want to calculate Sy\. we need Sv\ and ^ f s ' n c e ^ï\* = &(XA — )!L)-
But >>£ is equal to 

Oo ) 2 /Wo) = (i-So)2/« and ^ = [As0+ £ töij + ff2)*^,]2. 
i = l 

Since 

vs0 ~ ;.« + £ ( f fa».+ f f 2)^^o 
i = l 

and 
J ^ o = y,.s.-(si +.. .+S,) = s,2u;. ~ nj(«,)_iX - nh 

we find 

X-I »i(a2n; + ff2) 

Since 

Thus 

and 

; 

I 

I 

ys0 ^ /M + 

Hence 

Syl = nA2 + n~ 1X nitó'i. + cr2). 

SA, - 'h £S„ £yA, = 1 

i = i 

^ = ^ A - ^ i = (/-l)<T2 + (n - In , 2 /«K 2 

i 

*"2
4./(/-l) = ff2 + («2-Z«f) [«(/-l)]-1^2. M* 

The distribution of ^ is a linear combination of independant non-central xl - vari­
ables with unequal coefficients and thus yA. is not distributed as a constant times a 
chi-square variable. 

(ii) The vector representation can be used to calculate the expectation of mean 
squares in the ANOVA tables even when we have not normal random vectors but 
only random vectors with uncorrelated components, each with the same variance. 
The crucial point is that if uu ^ v^ and utj is uncorrelated with vtJ, then the variance 
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of a linear combination of uu and v^ equals the sum of the square of the coefficients 
times the variance of the components. For the expectation of mean squares onlv 
this fact is necessary. 

(iii) The author wishes to acknowledge the helpful comments and suggestions 
during the preparation of the manuscript of Professor Dr. Ir. L. C. A. CORSTEN. 
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CHAPTER 4 

4. EXACT TESTS AND CONFIDENCE INTERVALS FOR VARIANCE-RATIOS IN NESTED 

DESIGNS 

PART I: ONSET 

4.1. Introduction 

Let us consider a three-stage nested design. From a population I 

samples are taken at random. From the i-th sample, J-j subsamples are 

taken at random. From the j-th subsample, drawn from the i-th sample, 

nij subsubsamples are drawn at random. Let *k(ij) be the observation 

made on the k-th such subsubsample (drawn from the j-th subsample, which 

has been drawn from the i-th sample). 

A model with random effects is the following: 

*k(ij) = X + §i + bj(i) + ek(ji) (4.1) 

where A is a general mean; the random variables {a-; J are independent 

2 
and identically distributed (i.i.d.), where a-j are N(0,aa); the random 

2 
variables b j ( -j ) are i.i.d. and N(0,(7b); the random variables £k(ji) 

2 
are i.i.d. and N(0,cre). The random variables {a-jj, (bj(i)} and {e j< ( j" i )} 

are mutually stochastically independent. 

For a rigorous derivation of a two-stage nested design (e.g. half-

sib design), see chapter 6. This derivation can easily be extended to a 

three-stage nested design (e.g. full-sib design). 

In animal breeding such a full-sib design has already been used 

before 1945 by Lush and his coworkers. In the first stage I sires have 

been drawn at random from a population, in the second stage dams are 

drawn at random and each sire has been mated to a different group of J-j 

dams. From the offspring n-jj animals are drawn at random. Interest lies 

in estimating variance components and heritabilities. 

In plant breeding propaganda has been made by Comstock and 
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Robinson (1948; 1952). From then on this design was called North 

Carolina mating design 1. 

The ANOVA-table reads (where Jn = E J-j] 
i = 1 

Source cf variation 

Correction term 

Between samples 

Within samples, 
between subsamples 

Within subsamples 
= Residual, or Error 

Uncorrected total 

df 

1 

1-1 

Jn-I 

n..-Jo 

n_ _ 

SS 

SSL 

SSA 

SSB 

SSR 

SST 

MS 

MSA 

MSB 

MSR 

E(MS) 

2 2 2 
(Je+K20b+Kiaa 

2 „ 2 

<re
 + K3CTb 

2 

I Ji n,j 
SSL = [ E E E xk(ij)] 2 / n ..-

i=1 j=i k=1 

where n 
I J, 
T. E nij; 

i=1 j=1 

I Ji nij 
SSA = E [ E E x|<(i j)]2/ni. - SSL, 

i=1 j=i k=1 

where ni = E nij; 
k=1 

I J, nij 
SSB = E E [ E X|<Hi)]2/nii - SSA - SSL; 

i=1 j=i k=1 

1 Ji "ij 
SST = E E I x k ( i j )

2 ; 

i=1 j=1 k=1 

SSR = SST - SSL - SSA - SSB. 

The column of the expected values of the Mean Squares, E(MS), in the 
2 2 2 

ANOVA-table is such that E(MSR) = ae; E(MSB) = <je + K3<7D with 

K3 = ( J o - D - 1 ï E nij(nîj - nil); E(MSA) = a\ + K2<7b + K ^ l , 
i=1 j=1 
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, I Ji 2 -1 -1 
where K2 = (1-1)_ 1 E I nij(ni - n ) and 

i=1 j=1 

KT = (I-1)-1 E ni.(ni1. - n')). 
i=1 

For the (totally) balanced case: J-j = J for all i and n-jj = m for 

all i and j, the E(MS) column reads: 

2 2 
E (MSB) = cre + iDCTb and 

2 2 2 
E (MSA) = <Je + mat, + Jm(7a. 

Furthermore in the balanced case, MSR, MSB and MSA are mutually 

2 2 stochastically independent; MSB is distributed as (ae+mab)[I(J-1)]_1 

times a chi-square variable with I(J-1) degrees of freedom, X2(I(J-1)); 

2 2 2 
MSA is distributed as (cre + m<7b + Jmaa)(1-1)~1 times a chi-square 

variable with (1-1) degrees of freedom, x2(I-1), and MSR is distributed 

as (7e[IJ(m-1 )]" 1 times a x2(U(m-1)) variable. 

2 
To test the null-hypothesis Hg2: ab = ° against the alternative 

2 2 2 
hypothesis Hi2 = <?b > 0< or equivalently Ho2 = fb/CTe = ° against 

2 2 
H-|2: "'b/^e > °; tne test statistic is MSB/MSR, which has, under H Q 2 , an 
F-distribution with I(J-1) and IJ(m-1) degrees of freedom. 

2 
To test the null-hypothesis Hoi: cra = 0 against the alternative 

2 2 2 
hypothesis H n : <7a > 0, or equivalently H01 : <7a/°e = ° against 

2 2 
Hii: aa/as > 0, the test statistic is MSA/MSB, which has, under H01, an 

F-distribution with (1-1) and I(J-1) degrees of freedom. 

For a derivation of the above mentioned facts, see section 7.2. 

2 2 2 
For t he unbalanced case we have E (MSR) = ae-, E (MSB) = <7e + K3<7D 

2 2 2 
and E(MSA) = ae + K2<7b + Ki<ra, where K3 i s seldom equal t o K2. 

2 

Under HQ2= <*b = ° we see tnat E (MSB) = E (MSR). Hence as the test sta­

tistic MSB/MSR should be taken, which indeed under H02 has an Re­

distribution with (Jo-I) and (n..-Jn) degrees of freedom. 
2 2 2 

Under H Q I : aa = 0 we see that E (MSA) = ae + K2<7b and 
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E (MSB) = cre + K3aD. 

To find a test statistic, an approximation of Satterthwaite (1946) 

is often used. Let MSh, h = 1, ..., H, be mutually stochastically 

2 
independent Mean Squares from an ANOVA table; each MSh has E(MSh)=Th 

o 
and is distributed as Th(i>h)~^ times a chi-square variable mith u n 

degrees of freedom, x2(i"h)-

H 

A linear combination E Ch(MSh) will be approximated by Ci>~1x2(v) such 
h=1 

that the expectation and variance are equal, hence 

H 
E[E ch(MSh)] = E[Ci>-1x2(f)] (4.2) 

h=1 

and 

H 
var[ Z ch(MSh)] = var[ Ci>-1x2(i>) ] (4.3) 

h=1 

From (4.1) it follows that 

H 
E chTh = C (4.4) 

h=1 

and from (4.2) that 

H 2 « -1 
E Ch Th 2 Vh = C2 2 y-1 (4.5) 

h=1 

From (4.4) and (4.5) Satterthwaite found 

H H 
V = [ I chTh]2/[ E C^Th/Vh] (4.6) 

h=1 h=1 

2 
As an estimate for T n he used MSh, hence the degrees of freedom v will 

be estimated as 

H H 
v = [ E ch(MSh)]2/t E Ch(MSh)2/vh] (4.7) 

h=1 h=1 

Tietjen and Moore (1968) used Satterthwaite's procedure to 

2 2 
construct an approximate F-test to test H01: as = 0 against H n : a a > 0. 
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They used as test statistic MSA/MSC where 

MSC = (K2/K3)MSB + (1-K2/K3)MSR, hence under H01: <J\ = 0, E(MSA) = E(MSC). 

They then approximated the distribution of MSC as E(MSÇ).K"1 times a 

chi-square variable with v degrees of freedom, where v is estimated by 

(4.7). They also provided, upon request, a computer program to perform 

this approximate F-test for all unbalanced nested designs! 

But Kruskal (1968) pointed out that, for the unbalanced case of a 

completely nested design, MSA and MSB are not independent. 

2 2 

How to find an exact test for Hoi : cra = 0 against Hi : aa > 0 is 

described in section 4.2. 

An extended version is given in section 7.2. 

Also an exact confidence interval for the ratio of variance com­

ponents is derived in sections 4.2 and 4.3. 

REFERENCES 

Comstock, R.E. and Robinson, H.F. (1948). The components of genetic 
variance in populations of biparental progenies and their use in 
estimating the average degree of dominance. Biometrics 4, 254-266. 

Comstock, R.E. and Robinson, H.F. (1952). Estimation of average domi­
nance of genes. In Heterosis, ed. J.W. Gowen, Iowa State College 
Press, Ames, Iowa, 494-516. 

Kruskal, W.H. (1968). Correction to Tietjen and Moore's note (in 
Biometrics 24, 423-429). Biometrics 24, 1025-1026. 

Satterthwaite, F.E. (1946). An approximate distribution of estimates of 
variance components. Biometrics 2, 110-114. 

Tietjen, G.L. and Moore, R.H. (1968). On testing significance of com­
ponents of variance in the unbalanced nested analysis of variance. 
Biometrics 24, 423-429. 

39 



4,2. Exact tests about variance ratios in unbalanced two- and three-

stage nested designs 

Contributed paper at the 8th International Biometrie Conference, 

Constanta, Romania, August 25-30, 1974. 

Delivered as hand-out to interested participants of the 8th 

International Biometrie Conference. 
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Contributed paper 8th International Biometrie Conference, Constanta, Romania, 

August 25 - 30, 1974. 

Exact tests about variance ratios in unbalanced 

two- anc three-stage nested designs. 

L.R. Verdooren 

Agricultural University, Wageningen. The Netherlands. 

Summary 

The first part deals with the problem of testing the hypothesis A = 0 

against A > 0 for nested designs, where A is the ratio of variance components. 

Even for the simplest random models, such as those for nested designs, exact 

tests of variance ratios and their power function are troublesome in the unba­

lanced case. For testing one needs the distribution of a linear combination of 

independent chi-square variables (with positive and negative coefficients). 

Such distributions are not tabulated. However, with an algorithm, suggested by 

Imhof (1961), the exact distribution can easily be calculated by means of a 

computer. Our numerical results with this procedure agree with that of 

SpjOtvoll (1968) for the case he was able to handle, viz. the unbalanced one-way 

lay-out with three classes. 

It is shown that for partially balanced three-stage nested designs (balanced 

per second stage), the sum of squares "Between" and "Within Samples" of the 

second stage are stochastically independent under the normality assumption. 

The second part deals with the construction of an exact confidence interval 

for A, concerning the last two stages of an unbalanced nested design. Wald 

(1940) indicated an iterative procedure to obtain an exact confidence interval 

for A in the case of the unbalanced one-way lay-out (two-stage nested design), 

but his procedure was never used in practice. With a computer this procedure can 

be applied easily. A similar problem for unbalanced three-stage nested designs 

can be handled by a generalization of Wald's procedure. 

Some examples are presented. 
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1. Notation 

1.1. Two-stage nested designs 

The model reads-. 

xj(i) = A + a,- + ej(i). j = 1,..., nn- for i = 1, ..., I, 

where X is a general mean, and independently and identically distributed 

(i.i.d.) a.j ~ N(0,aa), i.i.d. e.-/̂ j ~ N(0,cre). The random variables {a^} and 

{ej(i)} are mutually statistically independent. 

The design is said to be balanced if all n^ are the same; otherwise it is unba­

lanced. The ANOVA-table reads: 

Source 

Correction term (level) 

Between samples 

Within samples 

= Residual 

Uncorrected total 

df 

1 

1-1 

n-l 

n 

SS 

x'Lx 

x'Ax 

x'Rx 

x'x 

MS 

MSA 

MSR 

Variance ratio 

ƒ = MSA/MSR 

Remark that a sum of squares (SS) is a quadratic form in the observations. 

To test the null-hypothesis H0: A = 0 against the alternative h^: A > 0 

(A = (T2/a?) the usual test statistic is the variance ratio ƒ = MSA/MSR. 
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1.2. Three-stage nested designs 

The model reads 

xk(ij) À + a.,- + b j(i) + ek(ji)- k = 1, ..., n^j for 

j = 1, ..., J.,- and 

i = 1 , . . . , I 

where À is a general mean, and i.i.d. a,; ~ N(0,aa), b,-/^\ ~ N(0,a^), 
ek(ij) ~ N(0,a|) respectively. The random variables (a^j, {bj^-j} and {ek(.-.()} 

are mutually independent. 

The design is called (totally) balanced if Jn- = J for all i and n^ .• = m for 

all i and j. In the case where n̂ ,- = mn- for all j, the design is called par­

tially balanced. In the case where for at least one i, n-jj * n.,-,-', the design is 

called unbalanced. 

The ANOVA-table reads (where JQ = E J-j): 
i=1 

Source 

Correction term (level) 

Between samples 

Within samples. 

between subsamples 

Within subsamples 

= Residual 

Uncorrected total 

df 

1 

1-1 

J0-I 

fl..-Jo 

n 

SS 

x'Lx 

x'Ax 

x'Bx 

x'Rx 

x'x 

MS 

MSA 

MSB 

MSR 

Variance ratio 

ƒ•, = MSA/MSB 

ƒ 2 = MSB/MSR 
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- 4 

To test the null-hypothesis Hg2: A2 = 0 against H-j2 = A2 > 0 (A2 = a^/ae) t n e 

usual test statistic is the variance ratio /2 = MSB/MSR and for the test of 

H0i : A! = 0 against H-j -| r A-] > 0 (A-| = o\/o\) the usual test statistic is the 

variance ratio: f-\ = MSA/MSB. 

2. Distribution of a variance ratio (normal variables) 

2.1. General theory 

A variance ratio is the ratio of two sums of squares. This is a special case 

of the ratio of two quadratic forms x'Ax and x'Bx in normal variables, A and B 

being symmetric. Knowing the distribution of a quadratic form in normal 

variables we can derive the distribution of a ratio of two such quadratic forms. 

Let x = (x-|, — »xn)' b e a n o r m a l random vector with mean vector 

u = (u-|,... ,un) ', non-singular covariance matrix V = E(x-u) (x-u) ', and consider 

the quadratic form Q = x'Ax, with rank A = k. It can be shown that Q is distri-

m 
2 2 buted as Z AjXn.(ôj) where Xj are the distinct non-zero characteristic roots of 

j=1 J 

m 
AV, the hj the respective multiplicities with Z h.- = k, the 61 certain 

j=1 
2 2 •> 

linear combinations of u-,, ..., un and the Xh.(sj) a r e independent x^-variables 

2 

with hj degrees of freedom and non-centrality parameter 6;. 

Imhof (1961) discovered that the distribution function of Q can be obtained 

quite easily by straightforward numerical integration of the characteristic 

function of Q. 

A computer program in FORTRAN IV was given by Koerts and Abrahamse (1969), 

pp.159-160. On a CDC-3200 computer we applied this program to the examples given 

by Imhof (1961) and our results agreed with his results. With this program fast 

numerical calculation of the distribution function of a linear combination of 

independent (non-) central chi-square variables with positive and negative coef­

ficients is possible. 

For the case of an ANOVA variance ratio ƒ = MSA/MSB = cx'Ax/x'Bx, with 
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c = p/k, where k = rank A and p = rank B, the sum of squares x'Ax and x'Bx are 

independent and such that Au = B|i = 0 while the eigenvalues of AV and BV are 

k 
2 2 2 

non-negative. Hence the distribution of x'Ax is E ̂ -jS-j where Sn- is a x^-variable 

i = 1 

2 
and the S^ are independent, and X.j are the positive eigenvalues of AV, 

P , 2 

i = 1,...,k = rank A. Analogously the distribution of x'Bx is E X '̂  S,- with 

j=1 
P , -

p = rank B. Because Pr(x'Bx = 0) = Pr( E x'-Sj = 0) = 0, the distribution of 

j=l 

ƒ is as follows: 

k p 
v'Ax 2 i ? 

Pr-(f S t') = Pr(|rg| « t) = Pr( E X^s' - E tXjSJ « 0) and with Imhof's 

i=1 j=l 

algorithm we can calculate the distribution for each t > 0, t = kt'/p. 

2.2. Application to nested designs 

Let V be the van'ance-covariance matrix of the vector of observations. For 

the unbalanced two-stage nested designs, the sum of squares x'Ax and x'Rx are 

stochastically independent, because AVR = 0. For the test on A = G\/G\ = n 

the distribution of ƒ = MSA/MSR is needed. Now Pr(f ^ t') = Pr(x'Ax/x'Rx) « t) = 

I _ 1 2 2 
Pr( E X.jS.j - txn _j =$ 0 ) , where the random part consists of a linear combination 

i=1 

2 2 
of independent chi-square variables, Sn- is a x-pvariable, t _ (i-i)t'/(n_-I) and 
Xn- are the positive eigenvalues of AV/cr|.Under Hn: A = 0 the distribution of ƒ 

is an F-distribution with 1-1 and n_-I degrees of freedom. 

For the balanced three-stage nested designs the sums of squares x'Ax and x'Rx 

are stochastically independent and also x'Bx and x'Rx are independent. 
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We have proved the theorem: In a three-stage nested design the sums of 

squares x'Ax and x'Bx are stochastically independent if and only if for each 

i = !,...,!: n.jj = n-jj' (j, j' = 1,...,Jn-). Thus only for the partially balanced 

designs these sums of squares are independent. For the unbalanced designs x'Ax 

and x'Bx are dependent. 
2 ° 

For the test on A2 = <7b/crç = 0 the distribution of /2 = MSB/MSR is needed. 

J0-I 
Now F T ( / 2 « t') = Pr(x'Bx/x'Rx « t2) = Pr( E A^sf - t2Xn - j n « ° ) . where the 

random part consists of a linear combination of independent chi-square variables 

o 9 1 

with S^ a x-f-variable, t2 = (Jo - I)t2/'(ri.. " J o ) ' anc' *i a r e t n e positive 

eigenvalues of BV/a2. 
e 

2 2 
For the test on h-\ = ca/ae = 0 the distribution of ƒ•] = MSA/MSB is found as 

k 
Pr(f-| « t') = ?r(x'Ax/x'3x « ti) = Pr(x'(A-t-jBJx « 0) = Pr( I A^S? « 0) where 

1 i = 1 

t-j = (I-1)t-| / (Jn-I), S? are independent x?-variables and A.j are the non-zero 

2 
eigenvalues of (A-t-jB)V/cre. However, even under Hg: A-] = 0 the distribution of 
/•j depends on the value of A2. 

Remark 1 : The procedure of Satterthwaite (1946) to approximate the distribution 

of the variance ratio by an F-distribution, can not be used when the numerator 

and denominator are dependent. Also for the unbalanced three-stage nested design 

the distribution of fi can not be approximated with Satterthwaite's procedure. 

This has been overlooked by Tietjen and Moore (1968). 

Remark 2: The problem of testing the hypothesis A < An against A > AQ/ where 

2 2 
A = (7a/cre, for the unbalanced two-stage nested design has been treated by 

Spj0tvoll (1967). SpjDtvoll derives the most powerful invariant test for Hg: 
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A = A Q against an alternative A = A-j > A0. 

His test statistic reads: 

I I 

£ 9i0(xi _ x o ) 2 " z 9i1(xi " x l ) 2 

" ( A Q . A , ) = ! i = 1 _ f ^ 

E 9i0(Xi -*Q)2 + E E <xj(i) - xi ) 2 

i=1 i=1j=1 

I _ I 
where g ^ = n-j/fÂ n,- + 1), X|<= E 9ii<Xi / E gik f° r k = 0, 1 and 

i=1 i=1 
ni 

xi = E ><j(i)/ni-
j-1 

For the case A - » (test against large alternatives Ai) he used the test 

statistic: 

E 9i0(xi - x 0> 2 

T(A0) = -T-^ 

Z l \ x j ( i ) - xi ) 2 

i=1j=1 

which is the one used by Scheffé (1959) to test the hypothesis A0 = 0. 

The distributions of W and T consist of linear combinations of independent 

X2-variables with positive and negative coefficients. 

Spj0tvoll (1968) gives several examples of the exact power function calcula­

tions of the test statistics W and T for the hypothesis A = 0 against A = 0.1 at 

the 1% level for the special case he was able to handle, viz. the unbalanced 

one-way lay-out with three classes. We have checked these examples and our 

results agree with his results. However, we are now able to calculate the exact 

power function of unbalanced one-way lay-out with more than three classes. 
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Conclusion: The problem of exact tests concerning variance ratios and their 

power functions, for the unbalanced two- and three-stage nested designs, has 

been solved in practice. Copies of the program are available from the author 

upon request. 

3. An exact confidence interval for A 

3.1. Two-stage nested designs 

Wald (1940) and also SpjOtvoll (1967) indicated a procedure for an exact 

confidence interval for A = o\/a\ with confidence coefficient 1 - a. 

For the computation we need the expression of T(Ag), see remark 2 in section 

2.2. The lower confidence limit AL of A is given by the root of the equation in 

A, (n-I)T/(I-1 ) = f2, where f2 is the upper cc/2-point of the F-distribution 

with 1-1 and n - I degrees of freedom. The upper confidence coefficient Ay of A 

is given by the root of the equation in A: (n-I )T/(I-1 ) = fj, where f-| is the 

lower a/2-point of the F-distribution with 1-1 and n - I degrees of freedom. 

The construction of this exact confidence interval for A can be solved only 

iteratively, and perhaps for that reason it was not used in practice. With a 

computer, however, this procedure can readily be applied as we did with a 

FORTRAN IV program. 

3.2. Three-stage nested designs 

A generalization to the unbalanced three-stage nested design will be given 

here. Again Wald's procedure can be used for an exact confidence interval of the 

variance ratio A2 = °^a\ f o r t n e 1 a s t t w o stages. 

Let f-| and f2 be the lower and upper ct/2-point of the F-distribution with 

J0 - I and n - Jn degrees of freedom. 
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z z gijUij -xi. ) 2 

Define T(A0) = T ^ . ^ . with g^- = n^ j/(A0ni j+1 ) ; 

z * llJ<xk(ij) - *ij ) 2 

i=1j=1k=1 

nij =
 Ji _ Ji 

x^j = Z X|<(ij)/nij anc' x i . = *• aijxij / E gij- The lower confidence limit 
k=1 ' j=1 j=l 

A[_ of A is given by the root of the equation in A: (n _ - Jn'T/t'-'o " I) = ^2 anc' 

the upper confidence limit Ay of A is given by the root of the equation in 

A: (ng<-J0)T/(J0-I) = f v 

The generalization to the unbalanced k-stage nested design in order to 

obtain an exact confidence interval for the variance ratio A of the last two 

stages, is straightforward. 

Conclusion: The problem of exact confidence intervals for A, concerning the last 

two stages of an unbalanced nested design, has been solved in practice. Copies 

of the program are available from the author upon request. 

4. Numerical examples 

4.1. A two-stage nested design 

The first sample has been taken from Snedecor and Cochran (1967), example 

10.18.1, p. 290. In research on artificial insemination of cows, a series of 

semen samples from bulls is sent out and tested for its ability to produce 

conception. The percentages of conceptions from samples for six bulls are shown 

below. 
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Bull (i) 

1 

2 

3 

4 

5 

6 

Total 

46, 

70, 

52, 

47, 

42, 

35, 

xj(i) 

31, 37, 62, 30 

59 

44, 57, 40, 67, 

21, 70, 46, 14 

64, 50, 69, 77, 

68, 59, 38, 57, 

64, 70 

81, 87 

76, 57, 29, 60 

1876 

ni 

5 

2 

7 

5 

7 

9 

35 

*i 

41.20 

64.50 

56.29 

39.60 

67.14 

53.22 

ANOVA-table 

Source 

Correction term 

Between bulls 

Within bulls 

Uncorrected total 

df 

1 

5 

29 

35 

SS 

100553.60 

3322.06 

7200.34 

111076.00 

MS 

664.41 

248.29 

E(MS) 

2 2 
O"! + 5.669ffg 

4 

Variance 

ratio 

2.68 
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dl = 248.29; d\ = 73.40. 
2 2 

Test the hypothesis HQ: A = 0 against A = A-| > 0 with A = oa/<Je. 

Let y-| be the critical level for the W test statistic, y-| = Pr(W(0,A-|) > W ) , and 

ß-] be the corresponding power when y-| is taken as the significance level of the 

test. Let Y 0 be the critical level for the T test statistic, yg = Pr(T(0) > T ) , 

and ß0 be the corresponding power when yg is taken as the significance level of 

the test. Because for this example Pr(F(5,29) > 2.68) = 0.042, y0 is taken as 

0.042 throughout the calculation of ßg. 
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A1 

0 

.02 

.04 

.06 

.08 

.1 

.2 

.4 

.6 

.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2 

3 

4 

5 

yi 

.042 

.052 

.050 

.048 

.047 

.045 

.042 

.040 

.040 

.040 

.040 

.040 

.040 

.040 

.040 

.040 

.041 

.041 

.041 

01 

.042 

.078 

.102 

.129 

.156 

.184 

.324 

.545 

.685 

.775 

.833 

.872 

.900 

.920 

.935 

.946 

.976 

.987 

.992 

ßo 

•042 = y 0 

.061 

.084 

.109 

.136 

.165 

.30*9 

.539 

.684 

.775 

.834 

.873 

.901 

.921 

.936 

.947 

.976 

.987 

.992 

The exact confidence interval 

A|_ < A < Ay, for A with confidence co­

efficient 1-a is: 

1-a 

.70 

.80 

.90 

.95 

.99 

AL 

.09 

.05 

.01 

o*) 
o*) 

*U 

1.13 

1.46 

2.16 

3.08 

5.00 

' On the interval 0 < A < » there is no solution for the equation in A: 

I In,-
1-1 E g^Xi - x)d = ̂ Y f2 E E (Xj(i) - x^' 

i=1 i+ j 

When we allow negative values of A with the restriction that the weights 

g-j = n.j/(An.j + i) remain positive, we find for A|_: -0.02 for a = 0.05 and -0.06 

for o = 0.01. 
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4.2. A three-stage nested design 

The second example consists of fictitious data for a three-stage nested design. 

Total 

nij 

xij 

ni 

*i. 

A1 

B1(1) B2(1) 

7 7 

5 6 

7 6 

7 

19 26 

3 4 

6.33 6.5 

7 

6.43 

A2 

B1(2) B2(2) 

4 6 

4 5 

7 

6 

8 24 

2 4 

4.0 6.0 

6 

5.33 

*3 

B1(3) B2(3) B3(3) 

4 5 4 

6 3 4 

5 5 3 

5 

20 13 11 

4 3 3 

5.0 4.33 3.67 

10 

4.4 
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ANOVA-table 

Source 

Correction term 

Between A^ 

Between Bit,) 

Within Bj^i = 

Residual 

Uncorrected total 

df 

1 

2 

4 

16 

23 

SS 

636.565 

16.987 

8.448 

11.000 

673 

MS 

8.494 

2.112 

0.688 

E(MS) 1 

ai+3.435ag+7.478ai | 

<T|+3 .174og | 

4 I 

d2 = 0.688; d2. = 0.449; d2 = 0.838. 
e b a 

Test on H0 2: A2 = 0 against H-|2: A2 > 0 with A2 = ff2/ff2, f2 = MSB/MSR = 
b e 

2.112/0.688 = 3.072; the critical level y2 = Pr(f2 > 3.072 | A2 = 0) = 0.047. 

The power of this test for A2 with significance level y2 = 0.047 is 

ß2(A2) = Pr(/2 > 3.072 | A 2 ) . Some values for £2(A2) are given below. 

A2 

0 

0.1 

0.5 

1 

1.5 

2 

5 

10 

1000 

/32(A2) 

.047 = y2 

.100 

.353 

.580 

.712 

.792 

.944 

.983 

1.000 
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Test on HQ-\ : A1 = 0 against H ^ : A-| > 0 with A-j = °\/°\> given the value of A2, 

requires fj = MSA/MSB = 8.494/2.112 = 4.022. The critical level y.,(A2) = 

Pr(/i > 4.022 | A-] = 0, A 2 ) , and the power of this test for a certain value A2 

with significance level y-|(A2) is ß1(A1|A2) = Pr(/-| > 4.022 | A-j, A 2 ) . Some 

values for y-|(A2) = ß-j (Â  = 0, A2) and ß-\(h-\, A2) are given below. 

A2 

û1 

0 

.1 

.5 

1 

1.5 

2 

5 

0 

.111 

.217 

.439 

.653 

.737 

.788 

.903 

.1 

.114 

.195 

.432 

.591 

.681 

.739 

.876 

.5 

.117 

.160 

.307 

.439 

.530 

.597 

.783 

1 

.119 

.145 

.244 

.345 

.424 

.487 

.693 

1.5 

.119 

.138 

.212 

.293 

.360 

.417 

.624 

2 

.119 

.135 

.193 

.260 

.318 

.369 

.569 

5 

.120 

.127 

.153 

.185 

.215 

.244 

.386 

10 

.120 

.124 

.137 

.154 

.171 

.187 

.276 

1000 

.120 

.120 

.121 

.121 

.121 

.121 

.122 

Using Satterthwaite's procedure (which is incorrect, because MSA and MSB are 

dependent and MSA and MSB are not a multiple of a x2-variable, in this example), 

we need a linear combination MSC with E(MSC) = E(MSA). From the E(MS) column in 

the ANOVA-table »•> find MSC = (1-3.435/3.174)MSR + (3.435/3.174)MSB = 

-0.057 + 2.286 = 2.229, with corresponding 

df = (2.229)2/{(-0.057)2/16 + (2.286)2/4) = 3.80. Now Pr(MSA/MSC > 8.494/2.229) 

« Pr(F(2,3.8) > 3.81) = 0.124; Pr(F(2,4) > 3.81) = 0.118. 

An exact confidence interval AL < A2 < Ay for A2 with confidence coefficient 1-a 

is: 
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1-a 

.70 

.80 

.90 

.95 

.99 

AL 

.194 

.107 

.007 

o*) 
o*) 

Au 

2.80 

3.73 

5.82 

8.76 

21.15 

' On the interval O « A2 < •» there is no solution for the equation in A: 

I Ji 
l2 - Jo:1 

Z..\2 z i gij(xij - x i t ) ' = j^-rr- f2 £ E s(xk(1j) - x ^ ) ' . 
i j •• u i j k 

When we allow negative values of A2, with the restriction that the weights 

g,ij = nij/(&2ni\ * 1 ) remain positive, we find for AL: -0.059 for o = 0.05 and 

-0.151 for a = 0.01 respectively. 
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Exact Confidence Interval for the Variance Ratio in Nested Designs 

L. R. Verdooren, Wageningen 

Summary 
This paper deals with the construction of an exact confidence interval for 

the ratio A of variance components, concerning the last two stages of an 
unbalanced nested design. Wald (1940) indicated an iterative procedure to 
obtain an exact confidence interval for A in the case of the unbalanced one-way 
lay-out (two stage nested design), but the application of his procedure had 
to wait for computing facilities. With a computer this procedure can be applied 
easily. A similar problem for unbalanced three stage nested designs can be 
handled by a generalization of Wald's procedure. 

Some examples are presented. 

KEYWORDS: Variance components; variance ratio; nested designs 

1. Two stage nested designs 

We are concerned with data which are sampled from a population in two 

stages. In the first stage random samples A. (i=l,...,I) are drawn from the 

population. In the second stage we draw from each sample A. a random subsample 

of size n. (i=l,...,1 ). The observation on each element j of the subsample 

taken from sample A. will be denoted as x. .. 

The model reads: 

x. . 
3-1' 

A + a. + e. . , i !,...,!, j = 1,...,!^ 

where A is a general mean, identically and independently distributed (i.i.d.) 
2 2 

a. = M(0,o ), i.i.d. e. . N(0,a ). The random variables {a.} and {e. .} are 
l a ] .1 ' e l ] .1 

mutually stochastically independent. A design is said to be balanced if all n. 

are the same; otherwise it is unbalanced. The ANOVA-table reads (where 

n = E._,n.): 
l-l l 

Source 

Correction term (level) 

Between samples 

Within samples 

= Residual 

Total 

df 

1 

I - 1 

n - I-

n 

SS 

x'Lx 

x'Ax 

x'Rx 

x'x 

MS 

MSA 

MSR 

;> = MSA/MSR 
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Note that the sum of squares (SS) is a quadratic form in the vector x of 

observations. Often the interest of inference lies in the ratio of the 
2 2 2 2 

variance components o and a ; A = a la . To test the null-hypothesis 

H : A = 0 against the alternative H : A > 0, the usual test statistic is 

O*" = MSA/HSR. 

Let V be the variance-covariance matrix of the vector x of observations. 

For the unbalanced two stage nested designs, the sum of squares x'Ax and 

x'Rx are stochastically independent, while AVR = 0. At H ƒ has an F 

distribution with I - 1 and n - I degrees of freedom. 

The problem of testing the hypothesis A < A against A > A for the 

unbalanced two stage nested design has been treated by Spjtftvoll (1967). 

Spj^tvoll derives the most powerful invariant test for H : A = A against an 

alternative A - A > A . 

His test statistic reads: 

H,A . , _ ri=igio(xi - V * zi=igii(xi - xl> 
W(VV I * g . n ( x . - x n ) 2 + Ï* Z . ! . ( x . . - x . ) 2 

1 - 1 lO 1 0 1 = 1 3 = 1 j . i l 

where^ i k = n . /U k n . + 1), \ = ^ ^ V E J = l g i k for k = 0, 1 and 

V E j= l X j . i / n i -

For the case A •*• •> (test against large alternatives A) the limiting form 

of the test statistic W becomes, say, W'. Rejecting H when W' > constant is 

equivalent with rejecting H when T(A )•> constant, where 

ï- = lgiO^X' ~ x 0^ 
T(A„) = . This statistic T(A„) was also used by Scheffé 

0 I ni - 2 ° 
r..,r._.(x. . - x.) 

l-l 3-1 3.1 l 

(1959) to test the hypothesis AQ = 0. When A is the true variance ratio, 

(n - I)T(A)/(I - 1) has an F-distribution with (I - 1) and (n - I) degrees 

of freedom. 

Spjtftvoll (1968) gives several examples of the exact power function 

of the tests based on W and T when testing the hypothesis A - 0 against 

A = 0.1 at the 1% level for the special case of the unbalanced one-way lay-out 

with three classes. For the calculation of the exact power function of 

unbalanced one-way lay-out with other values of A and with more than three 

classes see Verdooren (1974). 
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Wald (19^0) and also SpjjStvoll (1967) indicated a procedure for an exact 
2 2 

confidence interval for A = a /a with prescribed confidence . For the 
a e 

computation we need the expression T(A), An exact (1 - a)-confidence interval 

for the variance ratio consists of all the values of A which are not 

rejected with the test statistic T at the significance level a. 

The lower confidence limit A of A is given by the root of the equation in A, 

(n - I)T(A)/(I - 1) = f , where f is the upper ct/2-point of the F-distribution 

with I - 1 and n - I degrees of freedom. The upper confidence limit A„ 

of A is given by the root of the equation in A: (n - I)T(A)/(I - 1) = f , 

where f is the lower a/2-point of the F-distribution with I - 1 and n - I 

degrees of freedom. 

The calculation of this exact confidence interval for'A can be done.only 

iteratively, and perhaps therefore it was not used in practice. With a 

computer, however, this procedure can readily be applied. Copies of the 

FORTRAN IV program list are available from the author upon request. 

2. Three stage nested designs. 

Now we are concerned with data which are sampled from a population in three 

stages. In the first stage random samples A. (i = 1, .... I) are drawn. In 

the second stage from a sample A. are drawn subsamples B. . (j = 1, ..., J.). 

In the third stage from B. . a sub-subsample of n.. elements is drawn. Let 

the observation made on the element k of the subsample B. . from A. be denoted 

»•3 

The model reads : 

1 

j 

k 

= 1 , . 

= 1 , . 

= 1 , . 

- , I 

• ' J i 
. , n . 

1] 

fay v i r 
idi 

x, . . = X + a. + b. . + e , .. 
K.i] l 3.1 k.13 

where \ is a general mean, and i.i.d. 

2 2 2 
a. = N(0,o ),i.i.d. b. . = N(0,a, ), i.i.d. e, .. = N(0,a ) respectively, 
l a 3.x b k.13 e r J 

The random variables {a.}, {b. .} and {e, ..} are mutually independent. The 
l 3.1 K. 13 

design is called balanced if J. = J for all i and n.. = m for all i and 
1 1 ] 

j. In the case where n.. = m. for all i, a design is called partially balanc­

ed. In the case where n.. f n.., for at least one i, the design is called 

unbalanced. 
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The ANOVA-table reads (where J„ E. , J. and n - Z E n. . ) : 
1=1 ]=1 J 

Source 
Correction term (level) 
Between samples 
Within samples, 
between subsamples 
Within subsamples 
= Residual 

df 
1 

I - 1 

V 1 

n - J0 

SS 
x'Lx 
x'Ax 
x'Bx 

x'Rx 

MS 

MSA 
MSB 

MSR 

C^ = MSB/MSR 

Total x'x 

Often the interest of inference lies in the ratio of the variance components 
2 2 2 2 a, and a : A. r a, /a . 
D e 2 b e 

In order to test the null hypothesis H : A = 0 against H : A > 0, 

the usual test statistic is U* = MSB/MSR. 

Note that for the unbalanced three stage nested designs the sum of squares 

x'Ax and x'Rx and also x'Bx and x'Rx are stochastically independent. For exact 
2 2 

tests about the variance ratio o /a see Verdooren (19 74). The complication 
a e 

arises from the theorem: In a three stage nested design the sum of 

squares x'Ax and x'Bx are stochastically independent if and only if for each 

i 

designs these sums of squares are independent. For the unbalanced designs x'Ax 

and x'Bx are dependent, hence MSA/MSB cannot be approximated by an Fdistribution 

!,...,!: n.. = n.., (j,j'rl,...,J.). Thus only for the partially balanced 

At H : A - 0 crhas an F-distribution with Jn"I and n-J degrees of free­

dom. 

A generalization of Wald's procedure can be used for the construction of 

an exact (l-a)-confidence interval of the variance ratio A„ 

last two stages. 
J 

,2 

2 2 
.,_ o, /o for the 2 D e 

Define T(A ) 

T J-
ï-.nî--, g--(x. .-x.)' 
1=1 ] = 1 Bi] IT l 

.1 
J. 

with g.. = n../(A n..+l); 
xDr ^ l ^ l W V i f i j ' 

ID ID ID 

n. . 
ID x.. = ï._,x, . ./n. . and x. - Z ._,g. .x. ./Z . „g... When A is the true variance 

ID k-lTc.13 l] l J-l6i] l] ]=lei] 

ratio, (n-J )T(A)/(J -I) has an F-distribution with J -I and n-J degrees 

of freedom. Let f1 and f. be the lower and upper a/2-pbint of the F-distribu­

tion with Jß-I and n-J degrees of freedom. 
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The lower confidence limit A. of A is given by the root of the equation in 

A : (n-J )T(A)/(J -I) = f and the upper confidence limit A„ of A is given by 

the root of the equation in A : (n-J )T(A)/(JQ-I) - f.-

The generalization to the unbalanced k-stage nested design in order to 

obtain an exact confidence interval for the variance ratio A of the last two 

stages, is straightforward. 

Copies of the program are available from the author upon request. 

3. Numerical examples 

3.1. A two stage nested design 

The first example has been taken from Snedecor and Cochran (1967), example 

10.18.1, p. 290. In research on artificial insemination of cows, series of 

semen samples from bulls are sent out and tested for their ability to produce 

conceptions. The percentages of conceptions from samples for six bulls are 

shown below. 

Bull (i) 

Tota l 

ANOVA-table 

l-i 

1 
2 
3 
4 
5 
6 

4 6 , 31-, 3 7 , 62 ,30 
70 ,59 
5 2 , 4 4 , 5 7 , 4 0 , 6 7 , 6 4 , 70 
4 7 , 2 1 , 7 0 , 4 6 , 1 4 
4 2 , 6 4 , 5 0 , 6 9 , 7 7 , 8 1 , 8 7 
3 5 , 6 8 , 5 9 , 3 8 , 5 7 , 7 6 , 5 7 , 2 9 , 6 0 

5 
2 
7 
5 
7 
9 

4 1 . 2 0 
6 4 . 5 0 
56 . 29 
39 .60 
6 7 . 1 4 
5 3 . 22 

1876 35 

S o u r c e 

C o r r e c t i o n t e r m 

Between b u l l s 

W i t h i n b u l l s 

T o t a l 

d f 

1 

5 

29 

35 

SS 

100553 .60 

3322 .06 

7 200 . 34 

111076 .00 

MS 

6 6 4 . 4 1 

2 4 8 . 2 9 

E(MS) 

2 2 
0 + 5 . 669o 

e „ a 
<; 

a 
e 

248.29; 52 

a 73.40. 

Test on HQ: A = 0 against A = A > 0 with A = a la ,J* = MSA/MSR = 2.68. 

Because Pr(F > 2.68) = 0.042, H is rejected at significance level a=0.05. 

The exact confidence interval A. < A < A,, for A for some confidence coefficient 
L u 
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l - o 

. 70 

. 80 

.90 

. 9 5 

.99 

. 995 

. 999 

AL 

. 093 

. 055 

.010 
0*) 
0* ) 
0*) 
0* ) 

*U 

1 .13 
1.46 
2 . 16 
3 . 08 
6 . 5 0 
8 .79 

17 .36 

*) On the interval 0 < A < » there was no solution for the equation in A: 

I ^ g . û . - K ) 2 = £ V ^ C x . ^ - x . ) 2 , narcely £ 1 T(A) = f,,. 

When we allow negative values of A with the restriction that the weights 

g. = n./(An.+l) remain positive, we find for A, : -0.021 for a = 0.05, 

-0.065 for a = 0.01, -0.077 for a = 0.005 and -0.096 for a = 0.001 respective­

ly-

3.2. A three stage nested design 

The second example consists of fictitious data for a three stage nested 

design. 

T o t a l 

n. . 

x. . 

n . 
l 

X . 
l 

B l . l 

7 

5 

7 

19 

3 

6 . 3 3 

\ 

B 2 . 1 

7 

6 

6 

7 

26 

4 

6 . 5 

7 

6 . 4 3 

A 2 

B 1 . 2 

4 

4 

8 

2 

4 . 0 

6 

5 . 

B 2 . 2 

6 

5 

7 

6 

24 

4 

6 . 0 

33 

B 1 . 3 

4 

6 

5 

5 

20 

4 

5 . 0 

A 3 

B 2 . 3 

5 

3 

5 

13 

3 

4 . 3 3 

10 

4 . 4 

B 3 . 3 

4 

4 

3 

11 

3 

3 . 67 

J. J. n.. 
n.. and x. = Z^X,1^ x, ../n. . 

i] l ]=1 k=l k.13 1 
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ANOVA-table 

Source 

Correc t ion term 

Between A. 
i 

Between B. . 

Within B. . = 
3 .1 

Res idual 

To ta l 

df 

1 

2 

4 

16 

23 

SS 

63fc.565 

16.9 87 

8.448 

11.000 

673 

MS 

8.494 

2.112 

0.688 

E(MS) 

a2+3.4350^+7.478o2 

e b a 
a 2+3.174a 2 

e b 

2 cr e 

ô2 = 0.6E 
e 

ô2 = 0.449; a2 = 0.838. 
b a 

2 2 > 
Test on H : A? = 0 against H : Aj > 0 with A2 = o^/e' J* = MSB/HSR = 

2.112/0.688 = 3.072. Because Pr.(F̂ g > 3.072) = 0.047, H is rejected at sig­

nificance level a = 0.05. 

An exact confidence interval A. < A„ < A„ for A. for some confidence coeffi-
L 2 U Z 

cient 1-a is: 

1-a 

.70 

.80 

.90 

. 9 5 

. 99 

AL 

.194 

.107 

.00 7 
0* ) 
0* ) 

*U 

2.80 
3.73 
5.82 
8.76 

21.15 

*) On the interval 0 < A„ < » there was no solution for the equation in A: 

,2 . V 1 n-J„ 
l.Z. g . . ( x . . - x . ) " = - V f T.Z.I, (x. ..-x. . ) 2 , namely -r—£ T(A) = f „ . 
i ] 6 i ] i ] l n-JQ 2 i ] k T c . i ] i ] ' J Q - I 2 

When we allow negative values of A„, with the restriction that the weights 

g.. = n../(A,n..+1) remain positive, we find for A.: -0.059 for a = 0.05, 

-0.151 for a = 0.01 respectively. 
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CHAPTER 5 

5. ESTIMATION OF VARIANCE COMPONENTS 

PART I: ONSET 

5.1. Introduction 

As described in chapter 2, the search for estimators of variance 

components till 1975 was concentrated on unbiased estimators with some 

optimality criterion. For several designs (nested or crossed) quadratic 

forms in the observations, y' Q y, were sought to get an unbiased esti­

mator of variance components. A nice feature of unbiased estimators 

-2 2 
2i = Y.'°-iY. f° r t n e variance components a\ (i = 1,...,k) respectively, 

k 2 

is that a linear combination of variance components E X-JCT-J will be 

unbiasedly estimated by 1 *i£i-
i=1 

As optimality criterion for an estimator of a variance component 

2 
CT-j, which consists of a quadratic form in the observations, an unbiased 

estimator was used which has minimum variance, the so called Best 

Quadratic Unbiased Estimator (BQUE) or Minimum Variance Unbiased 

Estimator (MIVQUE). 

A critique could however be made. Only the error variance com-

2 
ponent a\^ would be unbiasedly estimated by a quadratic form y'Q|<y, such 

that the estimates were always non-negative; otherwise stated Q^ is a 

2 

non-negative definite matrix. The other variance components CT-J 

(i = 1,...,k-1) were unbiasedly estimated by quadratic functions y'Qiy. 

such that the outcomes were not always non-negative; otherwise stated 
Qi is not a non-negative definite matrix. Because a variance component 

2 

a-j is by definition non-negative, it is amazing to see how much research 

has been done to find yet another type of unbiased 

estimator. It is the very requirement of unbiasedness that leads to 
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variance component estimators which give (some quite often) nega­

tive estimates, which makes no sense. Of course an unbiased non-
k 2 

negative estimator for Z A-ja-j is a desirable one, if such an estimator 
i = 1 

exists. 

To focus attention on estimators which do make sense, the author 

introduced the concept of a permissible estimator. The necessary con­

dition for an estimator must be that it is a permissible estimator, 

meaning an estimator which gives estimates that, with probability one, 

lie in the parameter space. Hence a permissible variance component esti­

mator is a non-negative estimator. 

In section 5.2 this basic idea of estimation is elucidated. (In 

chapter 6 the probabilities are given that the Best Quadratic Unbiased 

Estimator for the one-way balanced random model gives negative 

outcomes). 

Furthermore, the several types of estimators of variance com­

ponents in use around 1980 are described in section 5.2. Also a modi­

fication of a least squares estimator for a variance component is 

derived which is non-negative. Such a closest-to-unbiased non-negative 

estimator can be found by solving a quadratic programming problem. 
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5.2. On estimation of variance components 

Paper presented at the Vl-th International Conference on 

Mathematical Statistics at Wisla, Poland, in 1978. 

The content of this paper was also delivered as an invited lecture 

at the Fourth International Summer School on Problems of Model Choice 

and Parameter Estimation in Regression Analysis at Mühlhausen/Thuringia 

(GDR), in 1979. 

Published in: Statistica Neerlandica 34 (1980) no. 2, pp.83 - 106. 
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On estimation of variance components* 

by L.R. VERDOOREN** 

Summary In this survey paper the estimation of variance components is given. The least squares 
approach in variance component estimation is a unifying principle which includes the analysis of 
variance estimators and the M1NQUE. When normality is assumed the maximum likelihood estimators 
can be used. Many variance component estimators are not permissible because they are not non-negative. 
The development of non-negative variance component estimators is indicated. 

1 Introduction 
Let us first recall some basic ideas of estimation theory in section 1.1. Some criticism can 
be made on the usual estimation procedures. In section 1.2 we will focus our attention on 
the minimum variance unbiased estimation of a variance and variance components. 

1.1 BASIC IDEAS OF ESTIMATION 

The probabilistic model implies that the outcome y is observed of a random variable^ 
which assumes values in the "sample space" <& according to a probability distribution 
P which is known to belong to a given class & = {Pe ; 6 e © } of probability distribu­
tions. lfP = Pe then 6 is the true value of the underlying unknown parameter. We shall 
be interested in the estimation of a real valued parameter g: @ -* M , or equivalently 
of the corresponding true value y = g(d). We need an estimator d: °Jl -* JR with the 
interpretation that d(y) will be used as an estimate for y = g(d) if the outcome y e äJ/ of 
2 is obtained. 

Estimators will be compared by means of their mean squared error (or risk function 
if squared error loss is introduced): 

MSEe(d) = Ee (d(jj) -g(6))2 = vare d(Z) + (biase {d)f 

where 

biase(ûO = E ô ^ ) - g ( e ) . 

An estimator is said to be admissible if no estimator exists with uniformly (in 0) smaller 
MSE. Or, more precisely, d is admissible if no d' exist with MSE9 (d') < MSEfl (d) for 
all e e © and MSEe (d')< MSEe (d) for at least one 6. 

In practice estimators are often constructed by requiring unbiasedness: the estimator 
d for y = g(6) is said to be unbiased if bias9 (d) = 0 for all 6 e ® . Since estimators 
with uniformly minimum mean squared error rarely exist, a reasonable procedure is to 
restrict the class of estimators and to look for estimators with uniformly minimum MSE 
within that class. One such class which is used (too) often, is that of unbiased estimators. 

* An earlier version of this paper was presented at the Vl-th International Conference on Mathemat­
ical Statistics ar Wisla, Poland, 7-13 December 1978. 

** Department of Mathematics, Agricultural University, Wageningen. 
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An estimator within that class with minimum MSE is also an estimator with uniformly 
minimum variance among unbiased estimators (UMVUE). 

Sometimes there is a sufficient statistic t(x) for g(8), i.e. if the partition of the sample 
space generated by / is sufficient. (A partition sJ of the sample space is said to be sufficient 
for 8 (more precisely, for the family {Pe;8 e (g) » if for any A e .o/ and B e <W holds 
that Pe(x e B\^e A) does not depend on 8). Hence for the sufficient statistic t(x) the 
conditional distribution Pe (x e B\t(y) = t) on the sample space, for given t, does not 
depend on 8. The relevance of sufficiency to the question of minimum variance unbiased 
estimators is given by the RAO-BLACKWELL theorem: 

Let {Pe;8 e ® } be a family of distributions on a sample space °J/ and suppose that 
g\x) is an unbiased estimator of a real-valued function g of 8. Then if t(x) is a sufficient 
statistic for 8, Ea {g{y)\t} is also an unbiased estimator of g{8) and it has variance 
uniformly no larger than that of g(x)-

Before this theorem can be used to establish the existence of MVUE's we have to 
demand the existence of a sufficient statistic t with an additional property. Suppose that 
we are estimating g(8) and that there exists a sufficient statistic t with the property that 
there is a unique function of t, |(f)-say, which is an unbiased estimator of 8. Then|(r) is 
an MVUE of g(8). So another question arises. How can we ascertain whether a sufficient 
statistic has this additional property? Sometimes we can do so by using the notion of 
completeness of a family of distributions. Let {Pe;6 e © } be a family of distributions 
on the sample space iV. This family is said to be complete if Eg {fix)) = 0 for all 0 e ® 
implies/(y) = 0 almost everywhere. 

We can express now the usefulness of these notions in the following special case of 
the general LEHMANN-SCHEFFÉ theorem: 

Let X\> 2T.< • • • >In be a random sample from a distribution that has a probability 
density function f(y, 8), 8 e @ ; let rQ;, ,^2, . . . ,±n) be a sufficient statistic forg(0), 
and let the family {h(t, 8): 8 e ® } of probability density functions be complete. If 
there is a continuous function of t_ which is an unbiased statistic for g{8), then this 
function of t_ is the unique MVUE for#(0). 

Or loosely formulated: if a complete sufficient statistic exists, then every function of 
it is a uniformly MVUE of its expected value. 

A well known example to illustrate these ideas is the following. 

Let^i.i^î, • • • , Zn be a random sample from the normal distribution A'fju, a2). A com­

plete sufficient statistic for (ji, a2) is I z, 2 (Xi - Yf J w n e r e Z = 2 Ziln- The 

reason for using s} = (n - l)"1 2 (Xi ~ Z)2 a s a n estimator for a2 is that it is UMVUE 
<•= l 

by the Lehmann-Scheffé theorem. However the above-mentioned estimator s_2 for a2 

can be improved in the class of quadratic functions of the observations by using the 
n _ 

(biased) estimator (n + 1) 2 (ƒ,- - x) • So in the class of "quadratic estimators" 
<-=i 

(quadratic functions of the observations), the estimator £ 2 is inadmissible, but in the 
class of unbiased quadratic estimators it is admissible. 
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In our view it is also worthwhile to introduce the concept of permissible estimation. 
LetJfi. j?2. • • .if« be a random sample of a random variabley_ with probability distribu­
tion P e 0> = {Pa: 8 e © }. An est imator^ r(^,, v2, . . . , y^) for 0 is said to be 
permissible if t_ e ® holds with probability one. 

In some situations T = g( © )= {y; y =g(d) for some 8 e © } is an interval of the 
form [a, b] or [a, °°) or (-°°, b] or some other bounded set. If the estimator d: &-* JR as­
sumes values outside T with positive probability, (hence d is impermissible), then it can 
obviously be improved by truncating. This is seen immediately as follows. 

Let d: % -*• JR be any estimator for y = g(8) (it needs not be unbiased) such that 
r = g( © ) = [a, b] and Ps {d(x) i T} > 0 for at least one 8 e © . Let d' be the corre­
sponding truncated estimator: 

{ a if d(y)<a 
d(y) if a<d(y)<b 
b if d(y) > b 

then for any 6 e © we have g{6) e V and hence (d(y) ~g(8))2 > (d'(y) ~g(8))2 for all 
y e <&. Hence MSE9(tf) > MSEe(c?') for all 6 e © . For 8 with Pe{d(y) t T> > 0 we 
obviously have strict inequality and hence d is inadmissible. 

Remark 
The theorem can be extended to the case where y_ is a random vector and © is a 
closed convex set. Truncation here means that an estimate which falls outside this set 
© is replaced by the boundary point of © nearest to it. 

We conclude this section by mentioning some textbooks examples. Note that uncritical 
use of the restriction of unbiasedness may lead to anomalies. 

Example (i) KENDALL and STUART [19]. If the zero frequency of a Poisson distribu­
tion with parameter 8 cannot be observed, the distribution is called a Truncated Poisson 
distribution. From a single observation J? the only unbiased estimator of the probability 
of non-zero observations \-e~6 takes the values 0 when* is odd and 2 when* is even. 

Example (ii) FERGUSON [7, page 135]. Let xu . . . , xn be a random sample from the 
n 

normal distribution N(8, 1). The statistic t_ = 2 Xj is a complete sufficient statistic for 

8. Furthermore ^ = t_jn is an unbiased estimator of 8. Hence x_ is a minimum variance 
unbiased estimator (MVUE) of 8. On the other hand Ex2 = d2 + l/«,so that ~x2—l/n is 
MVUE of 82. But unbiasedness itself is not an optimum property. The MVUE of 82 is 
impermissible for it occasionally gives negative values for a parameter known to be 
positive. The (biased) estimator max(0, x2 - 1/«) has smaller mean squared error for all 
values of 8 hence the MVUE is inadmissible. 

Example (iii) FERGUSON [7, pag. 136], From a Poisson distribution with parameter 8, 
we wish to estimate e~26 as a function of x. The only unbiased estimator of e~26 is 
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t(x) = (—1)-. This ridiculous estimator is a MVUE, as the class of unbiased estimators 
has only one element. WASAN [49] looks for an unbiased estimator of e~36. The MVUE 
(—2)- is impermissible. 

1.2 M VUE OF A VARIANCE AND VARIANCE COMPONENTS 

Let us consider the usual linear regression model y_ =Xß + e_, where X is an n x p-matrix 
of rank p; y and e e M n, the parameter vector ß e JR p; E(e) = 0, var£= a2\ and £ has 
a multinormal distribution N{0, a21). The MVUE for a2 is given by the customary 
unbiased estimator s2 of a2 with n-p degrees of freedom. 

I2 =<Z'Z- v'X(X'X)-lX'v}/(n-p) 

The minimum mean squared error estimator for a2 is the biased estimator (n - p) x 
s2 l{n - p +2). Fora proof along the lines of section 1.1 see CORSTEN [6]. 

Another example to show that unbiased estimation is inadequate follows now. Con­
sider the balanced one-way random effects model: Letj^- = ß +_a,- +_ê , / = 1, . . . ,«i ; 
/ = 1, . . . , « 2 . The random variables a,- are /V(0,a, ) and are identically and independently 
distributed (i.i.d.); the random variables e,y arc/V(0, a l ) and also ii.d.;the a,- and etj are 
independent. From the model it follows that var(£,y) = o2 + a\ and these variances a2 

and a\ are called the variance components. 

The analysis of variance table reads: 

Source of variation 

General mean level 

Between groups 

Within groups, 
or error 

Total 

df 

1 

" , - 1 

'1 , (1 , -1) 

" i " i 

SS 

SSL 

SSA 

SSE 

SST 

MS 

MSL 

MSA 

MSE 

E(MS_) 

a\ + n,a] +n 

a\ + n7a] 

a\ 

" , M 2 

SST S Z yti, SSL = (r ,E>y ï)
J /(",«,), 

i'=i /'=i 

SSA = r ( E yuYln2-SSU SSE = SST-SSL-SSA. 
i = l ƒ=! 

An unbiased estimator for p is jf = 2 2 Zijl(nin2)>an unbiased estimator for o\ is öl = 
i i 

MSE, and an unbiased estimator for a\ is a\ = (MSA-MSE)/«2- The estimators a\ and 
J7? are called the analysis of variance estimators. The statistics y_, SSA and SSE are a set 
of independent minimal sufficient statistics and it can be shown that they are complete. 
Hence ]/, öl and a2 are uniformly minimum variance unbiased estimators for ju, al and 
a2 respectively. (GRAYBILL and WORTHAM [9] and GRAYBILL [10, page 342]. 
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Remark that àl is a permissible estimator for a\. A minimum MSE estimator for 
a\ is given by SSE/(/I ,(H2 - 1) + 2). 

However a\ is an impermissible estimator since there is a positive probability that 
a] takes negative values under the model assumed: 

P(o\ < 0) = P((MSA - MSE )/n2 < 0) = P(MSA/MSE < 1) = 

= ?(FP<(\+n2y)-1) 

where 7 = a\la\, p = nt — 1 and (7 = «!(«2 — 1). In the following table, values of 
100 ?(£% < (1 + « 2 T ) _ 1 )

 a r e given for several values of n2-y. 

Q 

1 
5 

10 
30 
50 

100 

P 

L 
50 
64 
66 
67 
68 
68 

5 

36 
50 
53 
57 
57 
58 

10 

34 
47 
50 
53 
54 
55 

n 

30 

33 
43 
47 
50 
51 
52 

7 = 0 

50 

32 
43 
46 
49 
50 
51 

too 

32 
42 
45 
48 
49 
50 

P 

1 

44 
55 
57 
58 
58 
58 

5 

28 
33 
34 
35 
35 
35 

10 

25 
27 
27 
25 
25 
25 

n 

30 50 

23 23 
22 21 
19 17 
14 10 
12 08 
10 05 

,7-0.5 

100 

23 
20 
15 
07 
04 
02 

P 

1 

33 
41 
42 
43 
43 
43 

5 

14 
13 
12 
11 
11 
11 

10 

11 
07 
05 
04 
03 
03 

30 

09 
03 
01 
00 
00 
00 

",7-2 

50 

09 
02 
00 
00 
00 
00 

100 

09 
01 
00 
00 
00 
00 

<i 

1 
5 

10 
30 
50 

100 

The biased estimator max(0, of) has smaller MSE than a] for all values of a\. 
In reading the literature on the estimation of variance components, one often gets 

the impression that unbiasedness is a desirable property. We have already seen that con­
cept of unbiasedness is only a mathematical tool. Perhaps one of the reasons for the many 
publications concerning unbiased estimators of variance components is that, in the re­
stricted class of quadratic functions of the observations, one often gets one solution for 
the uniformly minimum variance quadratic unbiased estimator (UMVQUE) or for the 
best quadratic unbiased estimator (BQUE). Some statisticians seem to argue that a 
sequence of averages of estimators is consistent if and only if the individual estimators 
are unbiased. But a research worker mostly does not lean on an average of several 
estimates; he is more interested in individually permissible estimators and he will be 
happy if these estimators are admissible too. 

It is not true that a negative estimate of a variance component gives strong evidence 
that the model does not apply. Under validity of the assumptions of the model there may 
be a positive (and sometimes considerable) probability that such unbiased estimators 
attain negative values, see V E R D O o REN [48]. 

If the frequency of negative values of unbiased variance components estimators is 
much larger than expected under the model we may ask ourselves whether the model is 
correct. Of course the testing of the adequacy of the model is another question and it 
does not depend only on the variance component estimators. 
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2 Unbiased variance component estimators 

2.1 ANAL YSIS OF VARIANCE ESTIMA TORS 

Let us consider in detail the variance components model: 

X=Xß+ I Uia; = Xß + Ua, 

with U = (Ui :U2 : . . . :Uk) andjz' = (a', :di : .. :ak), where2 is an «xl-vector of observa­
tions, X is an «xp-design matrix of known constants and of full rank (p < n), ß is a 
pxl-vector of fixed effects parameters, £/,- a known rtxwi,-matrix, a,- a m,xl vector of 
random effects such that 

(1) EGz,) = 0,(i = 1,2, ...,*) 

(2) the a,'s are uncorrelated: E(a,fly) = 0, i ¥=j 

(3) E(a,a;) = a?Im / 

The column space of (X, U) is supposed to be Rn. The assumptions imply VAR Cv) = 
SjOj'UjUj' = Zja? Vt where K, = UjU-. 

Let P0 = X{X'X)'X X be the orthogonal projection operator on the column space of X. 
Let Pj for i = 1, 2, . . . , k be the orthogonal projection operators on the column space of 
(X, Uu U2 Ut) for ƒ = 1, . . . , k respectively, hence Pk = I„. Let Nj=Pj - Phl for 
7=1,2 , . . . , £-1 and JVÄ = Pk - Pk.i • The projection operator TV,- denotes the orthogonal 
projection on the orthogonal complement of the columnspace of (X, Uu ..., Uj.i), (the 
columnspace o f^ in case/ = 1), in the columnspace of (X, Ux Uj) for/'= 1,.. . ,k-\ 
and Nk = Pk - Pk.1 = I„ - Pk.i is the orthogonal projection on the orthogonal comple­
ment of (X, Uu ..., £4 . /^HENDERSON'S [16] Method III can be described as follows. 

(1) Calculate/W^ for7= 1,2, . . . , £ a n d 

(2) Solve the system of linear equations o f sums of squares 

y'Np = I bf tiQf/V,) (for/ = 1, . . . , k). 

This procedure is the hierarchical set up of the Analysis of Variance table. HENDER­

SON'S method III is based on the following obvious decomposition of _y into orthogonal 
complements: 

X=PoZ+ 2 Nji 
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with the consequence that 

where P0j> can be used for estimating ß, Z^kl f ° r estimating the residual variance a\, 
while x'Nj£ for ƒ = 1, . . . , k-l can be used to give unbiased estimators for the variance 
components a\ , . . . , a\. t . Because NfX = 0, NjUi = 0 for /' </', 

Ete'Njjf) = ti(N, V)= Zoj tr(Nj V{) 
i=i 

for ƒ = 1, . . . , k, the estimators_â,- of 6] are unbiased. This estimation method depends 
however on the order of the Uj in the definition of the projection operators Pt. A further 
disadvantage of this method is that there is a positive probability for negative values of 
SU =2'AJZ when At is not non-negative definite. Thus all estimators aj (i=l, . . . , k-1) 
are impermissible. 

Example 1 
Let us consider the balanced one-way random effects model of section 1.2 with rii = 3 
classes and «2 = 2 observations per class, hence n = « i«2 = 6, and y' = (yn yt n2 

k 
y2\ yn n )• Written in the model y = Xß + 2 fja/ with * = 2, we have X is a 

6x1-matrix with X1 = (1,1,1,1,1,1), ß is equal to n; Ut is the 6x3-matrix given below, 
U2 = 1Ó. Po a n d -̂ l a r e given below, P2 = I6, JV] = P, - .P0 and-/V2 = I6 -Px are given 
below. 

tf,= 

N>-\ 

1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 

p =i 
* 0 6 

1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

1 
-1 
0 
0 
0 
0 

-1 
1 
0 
0 
0 
0 

0 
0 
1 

-1 
0 
0 

0 
0 

-1 
1 
0 
0 

0 
0 
0 
0 
1 

-1 

0 
0 
0 
0 

-1 
1 

1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 

0 
0 
1 
1 
0 
0 

0 
0 
1 
1 
0 
0 

0 
0 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 

. * , 

2 
2 
1 

— 1 

-1 
-1 
- 1 

2 -
2 -
1 

— 1 A 

-l ; 
-l -
-l -

-l 
-l 

! 2 
! 2 

-1 
-1 

- 1 
-1 

I 
— i 

-1 
2 
2 

-1 
-1 

1 
— 1 

-1 
2 
2 

In the analysis of variance table the degrees of freedom are the ranks of P0, Nt andiV2 

respectively and the sum of squares are SSL = y'P0y, SSA = y'Niy, SSE = y'N2y and 
SST = y 'y. VAR(j>) = a] U1 U[ + a\ U2 U'2 =a\Vl + a\ V2 where Vx is given below and 
V2=l6. 
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V, = 

1 1 0 0 0 0 
1 1 0 0 0 0 
0 0 1 1 0 0 
0 0 1 1 0 0 
0 0 0 0 1 1 
0 0 0 0 1 1 . 

G R A Y B I L L [8] showed that for the random effects model with balanced experimental 
design (i.e. equal numbers in the subclasses) the analysis of variance (ANOVA) estimators 
have uniformly minimum variance in the class of unbiased quadratic estimators, regardless 
the probability distributions of the components. R E A D [39] showed that unbiased 
quadratic estimators with uniformly minimum variance do not exist if the design for the 
random effects model is not balanced. K L E F F E [20] proves a similar result. G R A Y B I L L 
and W O R T H A M [9] showed that for a balanced design with normally distributed.random 
effects the ANOVA estimators are functions of independent minimal sufficient statistics, 
which are also complete, by which these estimators are uniformly minimum variance 
unbiased estimators. 

Despite these properties of the ANOVA estimators there are some drawbacks. 

Example 2 

Let us consider the following example of a mixed model with two missing observations 

y 22 and y 2 3 . 

A, 

A2 

5. 

y n 

yii 

B2 

y n 

Bi 

y a 

The model i s j^- = a,- + bj +j^ (i = 1, 2 ; / = 1 3) where the effects a,- are fixed, 
while the effects bj and_e^- are random: 

Ebj = 0, E§£ = 0, var bj = a\, vare^- = a\, cov(bf,bj') = 0 for/ =£/', 
cov[e,y,e,-y) = 0 f o r / ^ / ' o r /# / ' ; cov(o / -^ - ' ) = 0 for a l l / , / and / ' . 

The vector model with y' = ( y u , y n , y 13,721) is 

y_ - Xß + Ui Oj + U2 02 

with ß = (<*! ,a2)'ii?i = (^1^2,^3) ' anda 2 = {ené.i2,Li3é.ii)'> -^and Ul are given below, 
U2 = I4 , VARfjO = a] Ui U1! + a] U2 U\ =a\Vi+ a\ V2 where Vx is given below and V2=U. 
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1 0 
1 0 
1 0 
0 1 

;C/,= 

' l o o' 
0 1 0 
0 0 1 
1 0 0 

;V, = 

1 0 0 1 
0 1 0 0 
0 0 1 0 
1 0 0 1 

The analysis of variance table reads: 

Source of variation df SS 

General mean level 
Fixed A effects 
Random B effects 
Error 

1 
1 
2 
0 

y'Pooy 
y'Nay 
y'Nxy 
y'N2y 

} y'P„y 

Total y y 

The orthogonal projectors P0, P00 and TV, are given below whUe N0 = P0 - P00, Pi =P-t 
= I4 and N2 = 0. 

P,= 

1 1 1 0 
1 1 1 0 
1 1 1 0 
0 0 0 3 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

N = '-

2 - 1 - 1 0 
- 1 2 - 1 0 
- 1 - 1 2 0 

0 0 0 0 

Since no unique solution for the variance components from the EMS-column exists, 
ANOVA estimation fails here. In the following section 3 we discuss the least squares esti­
mators by SEELY which provide a solution. 

2.2 MIN QUE ESTIMATORS 

In this section we introduce first the MINQUE according to the its originator RAO. In sec­
tion 4 we will show that MINQUE is a generalized least squares estimator. 

RAO [34, 35, 36, 37] introduced the minimum norm quadratic unbiased estimator 
k 

(MINQUE) z'Al, A symmetric, for a linear combination q'6 = 2 q,-0i . For unbiased-
/= l 

ness we must have 

k 

E(z'Az) = tT(AV) + ß'X'AXß= 2 a]IT(AVt) + ß'X'AXß, 

so that necessary and sufficient conditions foix'A^ to be unbiased for q'd are that 

X'AX=0 

tr(AVi) = qi i = l * 

If we want an estimator which is invariant under translation of ß we consider ßd = ß — ß0, 
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and put Zd ~ Z - Xßo • Then the invariant estimator satisfies ZaÂXa -2-^2 f°r a^ j3o. 
which is equivalent to AX = 0. Thus invariance implies the first condition of unbiasedness. 
The conditions for an unbiased invariant estimator forq'd are: 

AX = 0 

\x(AVi) = q>, i=l,...,k 
(2) 

2 Let a,, . . . , ak be a priori (or approximate) values of CT, , . . . , ak. (If no a priori infor­
mation is available, then each af may be taken to be unity.) Then we can rewrite 

Z=Xß + Wlbl + . . . + WkbJc, Wi^UiUi, ai = aibi and 

VAR(z) = y] Tl + . . . + ykTk, Tt = Wt W, = a? Vit 

where yj = aj/af, the rescaled variance components to be estimated. If the hypothetical 
variables^,- were known, then a natural estimator of yf would beb'ibjlm,- and hence 

& = 2 qrib'èM =k'M (say), 

where A is a suitably defined diagonal matrix and o' = (b\: . .. :b'k). But the proposed es­
timator is y^Ay_ = b'WAWb since X'AX = 0 (unbiased) or AX = 0 (invariant), 
where W = (W1 ~ . . :Wk). The difference between b'W'AWb and b'Ab is b'(W'AW - A)b 
which can be made small, in some sense, by minimizing || W'AW — A ||, where the norm 
|| . || is suitably chosen. We shall use the Euclidean norm, i.e. || B ||2 = tr BB' = the sum of 
squares of all the elements of B. 

For the MINQUE (without invariance) the problem reduces to that of determining a 
symmetric A such that \r(ATAT) + 2tr(AXX'AT) is a minimum subject to the conditions 
(1), where 

k k 
T= 2 T;= 2 of Vi. 

i= l / = l 

For the invariant MINQUE the problem reduces to that of determining a symmetric A 
such that tr(ATAT) is a minimum subject to the conditions (2). PRINGLE [30] gives 
an explicit solution fox A in the MINQUE (without invariance)x'A^, i.e. 

k 
A = 2 XfAi, where 

A, = (T + XX'y1 (Vf - QT-1 VjT'1 Q)(T + XX'yl, 

Q = X(X'T-lX)-lX', 

and the X/ are determined from 
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Ar 

1 = 1 

RAO [35, 37] gives an explicit solution for/I in the invariant MINQUE: 

k 
A = Z XiRTiR, 

I = I 

where 

R = T-1 - T-lX{X'T-lX)-lX'T-1 

and X,- satisfies the equations 

2 \jtx{RTjRTi) = a fo , ƒ = 1 *. 
/=' 

When £ has an «-variate normal distribution, varQ^Uy) = 2ti(AVA V) + Aß'X'A K4A73 = 
2tr(/l VA V) since AX = 0. Thus if the true variance components are a\ j ... ,a\,ti(ATAT) 
is proportional to varf^'/l^) and the invariant MINQUE is the locally minimum variance 
unbiased quadratic estimator under normal distribution for j / . See also K L E F F E [21]. 

The question arises if MINQUEs are permissible estimators for q'6. LAMOTTE [23] 
proves that in variance components models the only individual variance component which 
can be estimated unbiasedly by a non-negative quadratic function,^Uy is o\, and even a\ 
is so estimable only if all Vit i = 1, . . . , k — 1 are singular. Further only for q with all qt 

non-negative, q'8 may be estimated unbiasedly by a non-negative quadraticx'A^. For the 
balanced one-way layout of example (iv), q1o] + q2a\ has an unbiased estimator y^Ay_ 
with A non-negative (definite) if and only if q2 > n^1q1 > 0. Clearlyo\ and a\ +n2a\ 
can be estimated unbiasedly by a non-negative quadratic, but a2 cannot. 

3 Least squares estimators 

For a non-singular linear model_^ = ̂ TjJ+je,where_y,eejR",Xisan«xp-matrixof rankp, 
the parameter vector ßeRp, E(e) = 0, VAR(e) = a2 Kand K positive definite, it is known 
that the least squares estimator for ß,][= (X'X)~lX'^, is unbiased or, if Kis known, the 
best linear unbiased estimator or Gauss-Markov estimator is£= (X'V~l X)~l X'V'1 y_. 

Focussing our attention on variance component estimation we have the linear model 
given above with 

a2V=a2(yiV1 + . . . +7k-iVk_1+In), 

with variance components aj = a2yiy i = 1, . . . , k - 1 and a2 = a\. 
The least squares approach to estimate variance components or linear combinations of 

variance components has been used by SEELY [40, 41]. Instead of quadratic functions of 
Y, SEELY utilizes linear functions of Z =yyî in .V , a vector space of symmetric nxn-
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matrices, with inner product of A,B e sJ defined by (A,B) = tr(AS). The linear estimator 
for variance components is (A,Z). The expected value equals. 

p p 
E(Z)= 2 2 ßißiBö+ 2 a] Vi, w i th i< / 

i = i i=i ' * i"=i 

where Bä = x,vcj- and Bg =xix'l+xpc'i forz</is symmetric and*,- is the/'-th column o(X, 
i.e. 

E(Z) = XVX' + 2 o] Vh 
i = i 

with * = ßß'. Hence E(Z) belongs to {span & 0 + span ^ !} with ^0={B^;l < / < /<p> 
and âS i = {Vu V2, . .., Vk}.To get rid of the nuisance parameter ^ we use the linear 
operator I — P where E is the identity mapping of ss/ to JS/ , P is the projection operator 
on 3S o- In this case E\A) = /MP, where ƒ• is the orthogonal projection on the column 
space of X,i.e.P = XÇX'X)-lX',u\à 

(I-P)(A)=A -PAP. 

The unbiased estimation of 2 X,a,- is possible if the equations 
<'=i 

(Vtlff-P^) ... (VxlI-F)Vk) 

(VkJLI-W) . . . (Vk,(l[-P)Vk) pk 

X. 

or (ti(Vi(Vj - PVjP)) p == X have a solution. The unbiased estimator for 2 \ta} is then 
given by 

2 p,((7 - F)Vi,Z). 
i = i 

SEELY uses the operator Tt{À) = \{{{1 - F)4 +A(1 -.P)} to get rid of ̂  and therefore we 
must solve the normal equation 

t r (F,( / -P)V l ) ... txiV^I-P)Vk) 

tt{Vk{I-P)V,) ...tr(Vk(I-P)Vk) 

Pi 

Pk 

* i 

\ 
k k 

and the unbiased estimator for 2 X,-0/ is given by 2 p,-(j?'(/ -P)Vj£). 
i= l i'= l 

Note that these estimators are completely analogous to the estimators in the linear 
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model^ = Xß+£, where X = {Xx ,X2 ) with X\ andX2 of full column rank and ß = (ß\,ß'2)' • 
If we wish to get rid of the nuisance parameters /3, to estimate |32 unbiasedly, we may 
write Ey = Xß in the form 

E^ = Xlß1 + X2ß2 =Xißt +PX2ß2 +(I-P)X2ß2 = 

= Xia + (I--P)X2ß2 

where P is the orthogonal projector on the column space of X,, P = Xt (X[Xi)~lX\. A 
linear combination (X,/32) of parameters in ß2 is identifiable if there is a p such that 
X2(I - P)X2p = X. From the normal equations we estimate ß2 as the solution of 

X'2(r-P)X2ß2=X2(I-P)y 

and the linear unbiased estimator for (\,ß2) = 2X,-02i is given by 

((/ - P)X2p,z) = 2p,((/ - -P)*2,-,Z) 

where X2t are the columns of X2 • 

Example 
Let us derive the least squares unbiased estimator for X, a] + X2a2 in exarrrplè 2 of sec­
tion 2.1. The orthogonal projector P = X{X'X)'lX' and the matrices (J - F ) K,- = V,•.- PVtP 
are given by 

1 1 1 0 
1 1 1 0 
1 1 1 0 
0 0 0 3 

• PV.P--

2 - 1 - 1 2 
- 1 2 - 1 - 1 
- 1 - 1 2 - 1 

2 - 1 - 1 0 

• ^ . ' = r 

2 - 1 - 1 0 
- 1 2 - 1 0 
- 1 - 1 2 0 

0 0 0 0 . 

Since (Yi,{I - F)Vj) = trF,(Ky - PVjP), we must solve the following set of equations in 
p, andp2: 

10/3 2 

. 2 2 . 

Pi 

P2. 
= 

V 
=» 

Pi 

P2 

_ 1 
4 

' 3 - 3 ' 

- 3 5 x2 

Because 

( ( / - P)VuZL) = Z ' ( ^ - ^ f c 

the unbiased estimator for Xj a\ + X2 a\ is 

95 

- 82 -



PiZ'(Vi -PViP)z + PiZ(V2 -PV2P)z = 

Pi<|(zîi + Zu +Zn -2 i iZi2 -lnli3 + QuZn "ZiaZw -Ü12Z21 -Zi3Z2i)> + 

+ Pa<!(jfïi + ^2 +^i3 "£11*12 -ZnZ 1 3 -JfiaJ?«»-

The unbiased estimator for a\ is 

ÇU = ïGifii2ai -J?uUai -Z13Z21) 

and the unbiased estimator for CTJ is: 

£2 = l (2üu +2Z?2 + 2j& -2zuZi2 ~22nZi3 - 6Z„22i - 2?nZi3 +3jf12jf21 +3jf13j;21). 

4 MINQUE, a generalised least squares estimator 

We give now the derivation of MINQUE as a generalised least squares estimator. If we 
have the idea that the variance-covariance matrix of z 

V= 2 o) V( 

is of the form 

T= 2 c$Vh 
1=1 

or, in other words, if a,- is the a priori (or approximate) value of 0}, then we may trans­
form z intoz = T~'TZwitn E£ = T~*Xß and VARy_ = 7"7 PTT- = 

k k 

2 olT~?ViT-*= 2 a] Vi. 
i= 1 1= 1 

When Tis given, the unbiased estimator for 2 Xjof is 
1=1 

2 Pi«n- p)Vi,Z) 
1=1 

where Z =_££', (J - P)(A) = A - PAP with P = X(X'X)-lX' and p is the solution of the 
matrix equation 

<(F,,(#-i ;)F /)}P=X. 

Using the properties of the trace operator ti(ABC) = ti(BCA) we find that the unbiased 
estimator for 

k 

2 \dj 

1=1 
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can be written as^U.^! where 

A. = 2 p,T-l(Vt-PTViPT)TLl, 
i= l 

in which PT = XiX'T^X)-1 X'T~* andp, , ...,pk satisfy 

k 

2 p,tr T"1 (F,- - PTVjP'T)T-1 Vj = X/ for/ = 1, . . . , k. 

This is the estimator which RAO [34, 35, 36,37] introduced as the minimum norm qua­
dratic unbiased estimator (MIN QUE) if we minimize tr(ATAT) only instead of tr(ATAT) 
+2 tr(AXX'AT). 

k 
If we want an estimator for 2 X,-a* which is invariant under translation of ß we Cott­

le l 
sider ßd = ß - ß0, and put £d = £ - Xß0. Then the invariant estimator satisfies 

ldAld = v'Aj> 

for all ß0, which is equivalent to AX = 0. From the derivation of the unbiased estimator 
x'Aj without invariance 

A' 

Ete'Ax) = tiAV + ß'X'AXß = 2 a] ix{A V,) + ß'X'AXß, 
i= 1 

k 

it follows that necessary and sufficient conditions for J_'XH to be unbiased for 2 X,-a* are 

X'AX=0 I 
ti(AV,) = A,, i = l , . . . , * J 

We thus see that invariance implies the first condition of unbiasedness. The conditions for 
k 

an unbiased invariant estimator^'^i' for 2 X,af are: 
i= l 

AX = 0 

ti(AVi) = Xi, i = l , . . . , * 

SEEL Y [44] shows that Q'^ is a maximal invariant statistic from R" to Rq, where Q is 
an wx^-matrix with q = n—rank X, column space of Q = null space of A1' and Q'Q = Jq, i.e. 
QQ' =1 -P, where Pis the orthogonal projector on the column space of X. Now E(ß'.y) = 

ß'Jff = 0 and VAR(Q'y) = Q'VQ = J , o\ Q' VtQ. 
k 

The set of normal equations for the least-squares estimator of 2 X,o* is now given by 
i = i 

.2 PKQ'ViQ.Q'izQ) 
i = i 

where the p,-'s satisfy the matrix equation 
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i{Q'ViQ,Q'ViQ)}p = \. 

Using the properties of trace operators we find that the invariant unbiased estimator for 
k 
2 X/af can be written as 

i"= l 

where k 

.4. = 2 ptQ-PWI-P) 

and p J, . . . ,pk satisfy 

k 

2 p,tr(7 - P) Vtf - P) Vj = X; for ƒ = 1, . . . , k. 
i= 1 

If we have the idea that Kis of the form T we first transform y_ to 

1 = T'^2 w i t h EZ = T~*Xß = Xß 
and Ä fc 

VAR(y)=2 a? r^F , r -5 -= 2 a? F,-. 
(=i J=I 

The invariant statistic now is Q £ where QQ' = ƒ - P and P = ̂ (X'À1)"1 Z ' . The invariant 
it 

unbiased estimator for 2 XjO* is then given by 
(= l 

£ ptävMR Q) 

where the p(.'s satisfy the matrix equations 

{{Q'ViQ,Q,VjQ)}p = X. 

triant 

z'A,z where 

The invariant unbiased estimator for 2 X,a?, given T = 2 a.? Vt can then be written as 
i= t i= l 

A. = 2 PiQ-P-^T-'ViT-'il-Pr). 

in whichpj, ... ,pk satisfy 

S p ^ - W ' ^ " ' ! / - ^ ) ^ ^ for / = 1 , . . . , * , 

and in which 

i ' r=^(A r '7 '-1X)-1jr '7 '-1 . 

This is RAO'S invariant MINQUE estimator. When_£ has an «-variate normal distribution, 
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varQ>UjO = 2tr(A VA V) + 4ß'X'A VAXß = 2tr(A VA V) since AX=Ü. Thus if the true vari­
ance components are a\, . . ., ak, tr{A TA T) is proportional to var^'/Ty) and the invari­
ant MINQUE is the locally minimum variance unbiased quadratic estimator under normal 
distribution forj;. See also K L E F F E [21]. 

Finally we remark that SEELY [43] proves that when_y is normally distributed, for 
the class of unbiased invariant estimators {thus AX = 0), the best quadratic unbiased esti-

k 

mator for Z \ta
2 is a function of Q'y if and only if 

^=span{ß'K Iö, ...,Q'VkQ} 

is a quadratic subspace of all real symmetric qxq matrices^. A subspace^? of j^with the 
property that B e J implies that B2 e SS is said to be a quadratic subspace of sf. SEELY 

[43, 44,45] used the notion of quadratic subspaces also in the derivation of completeness 
of certain statistics for a family of multivariate normal distributions. For a survey of in­
variant methods for estimating variance components, where the restriction of non-nega­
tivity of the quadratic estimator has not been taken into account, see KLEFFE [22]. 

5 Non-negative estimators 

(i) At the end of section 2 the question arises of MINQUE's are permissible estimators 
for q'd, where 6 = (a , , . . . , ak)'. The answer was that many variance components were esti­
mated by MINQUE which were not non-negative estimators. RAO [36] indicates a 
modification of MINQUE which would provide non-negative estimators, but the resulting 
estimators would generally be neither quadratic nor unbiased. BROWN [2] describes an 
iterative feedback procedure using residuals which ensures non-negative estimation of 
variance components. See also RAO and CHAUBEY [38]. 

(ii) For a linear model y = Xß + e, where y,e e. R", X is an «xp-matrix of rank p, the 
parameter vector ß e Rp, E(e) = 0, VAR(e) = o2 V and V positive definite, it is known 
that the least squares estimator for ß,ß = (X'X)~lX'i>, is unbiased or, if Fis known, the 
best linear unbiased estimator or Gauss-Markov estimator isj! = (X'V'1 X)'1 X'V'1 y. 

Sometimes order restrictions are imposed on the parameters ft- in ß = (ßx ßp)'. 
The estimation of ft- must e.g. be order preserving or isotonic. For permissible estimators 
of /?see BARLOW et al. [1]. 

In the case of variance component estimation we have the linear model given above 
with 

o*V=o2(7lV1+ . . . +yk.lVk.l+I„), 

with variance components a] = a2 j i t i = 1, . . . , k — 1 and a2 = o\. 
Isotonic variance components estimators are given for the balanced case byTHOMPSON 

[46] and THOMPSON and MOORE [47]. See also BARLOW etal. [1]. 
(iii) In the linear model^ = Xß + j? sometimes ß belongs to the positive orthant R^ of 

Rp. A permissible estimator j?of ß, better than the one found by truncation (i.e. replacing 
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negative estimates of ft- by zero), is provided by the solution of the quadratic programming 
problem: 

minimize || y - Xb ||, bj>0, (i=l,...,p), 

or, if Fis known, 

minimize || V'^y - V*Xb || b,>0, (i=l,...,p). 

If there are inequality constraints for some /?,-, ß must belong to a convex subset of Rp 

and we again have a quadratic programming problem. See e.g. JUDGE and TAKAYAMA 

[18], MANTEL [25], WATERMAN [50] and LIEW [24]. 

In the case of the variance components model we discussed in section 3 the least 
squares approach of SEEL Y to estimate the variance components olt ..., 0%. In his pro­
cedure SEELY has not taken into consideration the non-negativity of a\, . . . ,a\. Im­
posing this restriction on the parameters means that we may again use the quatlratic pro-

it 

gramming approach in order to ensure that the estimators for 2 X,a(- be non-negative. 
i = i 

The author developed independently of others the procedure to find non-negative 
variance components estimators just as in the case of a postive ß in the linear model 
y = Xß +£. For solving the related quadratic programming problem we use the algorithm 
of WATERMAN [50]. Consider Q'y, which is a maximal invariant statistic from R" to 
Rq, where Q is an nxq matrix with q =n — rank X, column space of Q = null space of X' 
and Q'Q = Iq, i.e. QQ' =I-P, whereP = X(X'X)-lX' is the orthogonal projector on the 

k 

column space of A". Let Z = (ö 'z)(ßü) '> t n e n EZ = 2 a,- Q' VtQ. Let the index set / range 
i = i 

over all 7k subsets of {1,2, . . . ,k}. For each such set we minimize \\Z - E(Z) || and ob­
tain the unrestricted solution. If all the estimates of the parameters of of belonging to a 
certain set J e I are non-negative, we obtain || Z - {E(Z) | corresponding to ./> ||. The 
minimum of these norms solves the problem for we then set all those parameters aj equal 
to zero which do not belong to the minimal set of E(Z). 

PUKELSHEIM [32, 33] investigated the unbiased estimation of variance components 
by means of non-negative quadratics, using convex programming. 

Another interesting development is the use of restricted generalized inverse operators 
such as given by HÄRTUNG [12]. He considers minimum bias estimators (as introduced 
by CHIPMAN [3] for estimating the mean value parameter j3), which are invariant under 
the group of translations of ß, where the minimum is taken over the appropriate class of 
positive semi-definite matrices after a reduction by invariance. These estimators always 
exist. They are of course non-negative and are unbiased if non-negative unbiased quadrat-

k 
ic estimation of 2 X,a,- is given. If these estimates are not unique, the one with mini-

I'-i 

mum norm has to be taken. The minimum norm minimum bias invariant positive semi-
definite estimator has been characterized by introducing a non-linear cone-restricted 

100 

87 -



pseudo inverse, for which HÄRTUNG gave a representation, allowing computation with­
out consideration of the boundary. 

6 Maximum likelihood estimators 

Another estimator which is always permissible is the proper maximum likelihood estima­
tor (MLE), which yields a point in the parameter set 0 at which the likelihood function 
attains an absolute maximum. It should be noted that in many situations the estimators 
obtained by merely solving the likelihood equations, i.e. setting first derivatives of the 
likelihood equal to zero, will be impermissible. Solving likelihood equations while taking 
into account the restrictions imposed by the parameter set 0 will give the proper MLE. 

For the general variance components model with normal vector y the likelihood is 
given by 

or 

/ = (27T)-fl/2(det(PO)^exp{-0 - Xft'V1 (y - Xß)/2} 

log / = L(8,ß,y) = -(«/2)log 2TT - | l o g det(F) - (y - Xß)'V~l (y - Xß)j2, 

defined for 6 = (a], . . . , a£)' and ß such that o\ > 0, a,- > 0, / = 1, . . . , k - 1. We 
write Kas 

V=olH=ol(7lV1+ . . . +7 f c . ,K f c .1 + /n) 

where 7,- = a]/o2
k, / = 1, ... ,k - 1. Hence 

WM = -W2)log 2TT - (*/2)log o\ - ±log det(tf) + 

-{y-Xß)'H'l{y~Xß-)\{2o\\ 

The likelihood equations are 

= a'k{X'H-ly - {X'H-xXß} = 0 dß 

fï=- 7V + A (y-Xß)'H-l(y-Xß) = 0 
óok 2ak 2ak 

w,-^"-^ > - à ° ' - w ! f <"-*> 
= - f trffT1 Vt).+ - ^ (V - XßYH-1 VtH-' (y-Xß) = 0 

2ak 

fori = l , ...,k-l. 
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We obtain 
$ = (X'H-lJC)-x(X'H-xy) 

and 
&l =y'R'H-lRy/n 

where 
R=I-X(X'H-iX)-lX'H-i. 

Inserting this in 91/37,- = 0 we get k - 1 equations for the k - 1 values of 7,-: 

y'R'H-1 VtH-xRyldl = t r(/T' K,) (i = 1 , . . . , * - 1 ) 

or, if we put Vj = £/,£//, 

^ , / t f ' / T 1 UiU'-Rylôl = t r ( îy / - ' £//). 

For the balanced one-way layout the ML estimators are given in explicit form by HER BACH 

[17]: 

bl = MSE 
I if(l -n~l

1)MSA>MSE 
a\ ={{\ - « - ^MSA-MSE} / ^ 

b\ = {(/j, - 1)MSA +n,(«2 - l)MSE}/(n,«2) j 
J> otherwise. 

ö] =0 J 

HARTLEY and RAO [13] gave an iterative procedure for solving the estimation equa­
tions above under the restriction 7,-> 0, i = 1, . . . , k — 1. For a simplification of the 
procedure see HEMMERLE and HARTLEY [15]. 

If one believes in unbiased estimators, then a criticism of the ML approach for esti­
mating 8 is that it does not take into account the loss in degrees of freedom due to esti­
mating ß. In the particular case }> = Xß + e_, i.e. with k - 1, V- a\In and a\ > 0, the ML 
estimator for the single variance component a] is 

o\=(j>-Xß)'{y_-Xl)ln 
where 

& = XÇC'X)-lX'z, E(ô\) = o](n-p)/n, 

hence the estimator à\ is biased downwards. 
The restricted maximum likelihood (REML) or modified maximum likelihood ap­

proach of PATTERSON and THOMPSON [28, 29] maximises the likelihood, not of the 
complete vector j ' , but of all error contrasts. Any linear combination u 'y_ of the observa­
tions such that E(i'.'x) = 0, i.e. such that u'X = 0 with u independent of 6 or ß is an error 
contrast. Each such vector belongs to the column space of the singular matrix S = 
I-X(X'X)-XX'. 
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Since SX is null, S^ is singular N{Q,o\SHS). The maximum possible number of linearly 
independent error contrasts is n - p. A particular set of« - p linearly independent error 
contrasts is given by Ty, where T is an (rt-p)x/z-matrix whose rows are any n - p linear­
ly independent rows of S, and TX = 0. Now the transformation 

zJ T W 11 ° ) (THT'°l ° )) 
- \X'H-lJ \\x'H-lXßf'\ 0 X'H-xXo\ll 

is non-singular, because both X' and T have full rank, while the rows of Tare linearly in­
dependent of those of X'. The log likelihoods of Ty and X'H'iy are respectively: 

Li = -H»~ P)l°ë(2*) - \{n - p)\og al - |log detÇTHT') + 

1 
y'T'(THT')- Ty 

2ak 

and 

L2 = - \p log(2ir) - i p log al - flog det(X'//-' AT) + 

- - \ O - Xß)'H-lX(X'H-lX)-lX'H-1 (y - Xj3). 
2a£ 

Differentiation of Z-i gives: 

az-i 1 , , 1 
T T = - 7 T ( » - P ) + T 4 y'T'CTHT')-1 Ty 
oak 2ak 2ak 

and 

«-* = - ïtî(U;T'(THT'yl TU,) + - ^ y'T'{THT')-1 TUiUlT'iTHT'Y1 Ty 

for ; = 1, . . . ,&— 1. 

Setting these derivatives equal to zero we get the restricted maximum likelihood (REML) 
estimators. An iterative procedure, starting with initial values for 7 = (71, . . . ,7^-1) , re­
quires solving a\ = y'T'(THT')~l Ty/(n - p) and calculating new 7,-values which bring 
dLylbji closer to zero. For the numerical procedure see CORBEIL and SEARLE [4]. 

PATTERSON and THOMPSON [29] mentioned that the MINQUE procedure is equi­
valent to a single iteration of REML. Further, for balanced variance components models 
the REML estimators are the usual analysis of variance estimators. They used these prop­
erties as a justification of their procedure. But these properties imply that the REML pro­
cedure of PATTERSON and THOMPSON gives impermissible estimators. The authors do 
not use a proper maximum likelihood procedure because they only set the likelihood 
derivatives dLx/dok and dLi/dyj /' = 1, . . . , k — 1 equal to zero, without taking into 
consideration the constraints 7,- > 0 (/ = 1, . . . , k — 1). 
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Also in the comparisons of variance components estimators of CORBEIL andSEARLE 
[4] they used the improper REML-procedure ignoring these non-negativity constraints. 
Therefore their results are questionable. 

For a thorough discussion of maximum likelihood approaches to variance component 
estimation see HAR VILLE [14], in which it is argued that the correct REML procedure 
makes sense. From the comment by J. N. K. RAO on HARVILLE'S article we mention 
the warning concerning the use of ML-procedures, bacause none of the proposed algo­
rithms guarantees a solution which is indeed ML. 

The behaviour of the likelihood as a function of the variance components appears to 
be complex; even for the simple unbalanced one-way layout, the likelihood equation may 
have multiple roots, or the ML-estimate may be a boundary point rather than a root. 

Another procedure to get maximum likelihood estimates for variance components is 
given by MILLER [27]. The asymptotic properties of these maximum likelihood esti­
mates are given by MILLER [26]. 
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CHAPTER 6 

6. HOW LARGE IS THE PROBABILITY FOR THE ESTIMATE OF A VARIANCE 
COMPONENT TO BE NEGATIVE? 
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How Large is the Probability for the Estimate of a 
Variance Component to be Negative ? 

L. R. VERDOOEEX 

Abstract 

For a balanced one-way classification, where the normally distributed observations obey a random 
model yij=ß + bi + Cfj with two variance components var (6£) =crf and var (c^)=«r|, the probability 
is given t ha t the analysis of variance estimate of crj will be negative. This probability depends 
on CTj/ffJ and the degrees of freedom in the ANOVA table. Tables for this probability are given. 
If the normally distributed observations obey an intra-elass correlation model, the probability 
t ha t the Mean Square between groups is smaller than the Mean Square within groups can also be 
evaluated from the given tables. 

Key ivords: Variance components, probability of 'negative estimates, balanced 
random model, balanced intra-class correlation model. 

1. Introduction 

Often there occur situations in statistical practice which can be described in the 
form of a linear model with random effects. The main interest is directed towards 
the magnitude of the variances of the several sources of variation. The use of the 
well-known analysis of variance (ANOVA) estimators for the variance components 
sometimes produces negative estimates. A first idea, and a good one, which comes 
to mind is to check the calculations. When no errors are found in the compu­
tation, a second idea is to consider (check) more carefully the assumptions implied 
by the model. 

In § 2 the assumptions of the simplest variance component model will be gene­
rated from the sampling procedure. We shall consider a balanced two-stage 
sampling procedure or a balanced two-stage nested design. 

In § 3 the ANOVA estimator for the variance components for such a design will 
be described. When the model assumptions fit the practical situation, then there 
will often be doubt about the normality of the observations. 

In § 4 it is shown tha t this doubt is not always justified, since there is a reason­
ably large probability for negative outcomes of the ANOVA estimator for a 
variance component. 
23* 
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340 L. R. VERDOOEEN 

In § 5 the intra-class correlation model will be described. This model can often 
be applied in situations where primarily a variance component model seemed 
appropriate. 

When all the assumptions of the variance component model are fullfilled then 
it follows that the ANOVA estimator is not a good estimation procedure for 
variance components. A permissible estimator for a non-negative parameter as a 
variance component should be non-negative. An example of such a non-negative 
estimator is proposed in § 6. 

2. The Construction of a Variance Component Model 

A variance component model is shown to be generated by the sampling procedure 
of the observations. Let us first consider the following example. From a large bulk 
of natural phosphatic fertilizers one wishes to determine the average content 
jU of P 20 3 . One uses a balanced two-stage sampling procedure. In the first stage «j 
samples (for example bales) are drawn at random from the bulk. In the second 
stage n-, subsamples are drawn from each sample. Chemical analysis of P j 0 3 is 
performed at each of the n ^ subsamples. The bulk of natural phosphatic fertilizer 
will not be completely homogeneous, hence the average content of P^O-, of samples 
will vary. The average content of the random samples from the bulk can be seen 
as random drawings from a probability distribution with variance a\. The chemical 
determination will not give completely reproducible analysis, hence the deter­
minations of subsamples from samples will vary. The V2Or> content found from 
the analysis can be seen as random drawings from a probability distribution with 
variance a\. The goal of this investigation is to estimate the interesting para­
meters /.i, a\ and a\. 

For a formal derivation of a random model for such a practical situation we 
consider a large population ( = bulk). Note that in practice small random samples 
without replacement are drawn from a large population. This type of sampling 
can be considered, without any harm, as sampling with replacement. In a balanced 
two-stage nested design the same number n2 of sub-samples is drawn in the second 
stage from each sample. 

An element chosen at random from the population according to a nested sam­
pling scheme in two stages has a composite subscript (i, j), where i refers to the 
first sampling step, j refers to the second sampling step. (We denote a random 
variable x by underlining the symbol x ; an observed value of this random variable 
is denoted by the symbol x without a bar below). 

Sampling starting from a specified element i in the first stage is denoted by 

(i, j). Conditional sampling oij given that i = i is identical to sampling (i,j). The 

observation at the element obtained at the last sampling stage is denoted by y{j. 

The random variable y^ has expectation Ti (y{j\i = i) =!£$$ = nit where ex-
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pectation has been taken over the second sampling stage, given the result of the 

first sampling stage. Define the random variable e^ — y^ — ̂ . The expectation of 

e,-,- is zero bv definition. Now assume that the variance of e,-,- is the same for all i. 

I t will be denoted as var,- (e^) = a\. 

Next define E4- (fit) = /j, and the random variable ei = fii — /i with expectation zero 

and variance a\. 
I t follows that 

Vir= V-i+^ij_= V + ti + eii 

where / ^ / x + ej . 

From E w (efy) =E,- [ E , ^ ) ] = E , foE,^)] = Ej ( M ) = 0 

it follows that e{ and e,-3- are uncorrelated. Note that this is a consequence of the 

accurate description of the sampling procedure and not an a priori assumption. 

I t also follows from the sampling scheme that eö and e,y, (j^j') are independent. 

So we have not only tha t var,-(/Xj) = crj according to the definition, but also 

vari;- (i/jj) — a\ + a\. The two variances a\ and a\ are called the variance compo­

nents of var^. (yj. 

So far we considered sampling of one element only from the population. An addi­
tional sampling in the first stage will be identical by definition while in the second 
stage it will be independent of the previous sampling result. Denote two resulting 
observations by y,j and yVy. In the following we mean by i = i' that both ob­
servations have the first sampling stage in common, and analogously for j =j'. 

In the expressions: 

and 
yi>J: = H + Ci. + eij: 

any two terms with the same number of subscripts are either identical or un­
correlated. If {i, j) = {i', j') then 

If i = i' but j^j' then only ei = ei, are identical while e,-,- and e,y are uncorrelated. 

Finally, if i=#i' then the two pairs (eit e^) and (eijt et,r) are uncorrelated. 

The following expressions for covariances are now immediate : 

cov {yijt yjT) = ô# [a\ + ô^al] 

cov(^,y, :,.,) = ^<5j^2. 

where the Kronecker delta notation is used 

<5fi.= l if i = V and da, = 0 if t#=i ' . 
The usual description of the model is : 

ya = fl + bi+Çi7 (i = i> • • •. » h ; i = 1 > • • • > n2), 
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where the subscripts i and jl refer to the samples rather than to the sampling proce­
dure. With this relabelling b{ plays the role of e; and ci;- tha t of e,;-. 
We summarize as follows: 

(1) with E5 t = 0 and cov (bit bi.) = ôii. a\ for i, i' = l nt; 

~Ec{j = 0, cov (Cfj, Cj.y) = ÔH-ôff a\ for i, i' = 1, . . . , ni ; 

j , j ' = 1, . . . , n2 and cov (bj, cjr) = 0 . 

Let y be the vector of all observations, y = (yiV . . ., y ln,, y2i y27h, . . . , «/„,„,)', 
then yeRn with n = nin2, b = (blr . . . , &„,)'€«"', c = (cn, . . . , cith, . . .", e»,,,)'€ Ä" . 

The model can now be written as 

y^nli+Uib + UzC 

wherein is a nX 1-column vector of ones, Uy is an nXnv design matrix related to 
the first sampling stage, hence the ith-column of Ul consists of 1 according to 
observations of the i-th sample and 0 elsewhere ; U2 is. the n Xn identity matrix. 

The covariance matrix of y can be written as V = a2
lUiU'1 + alU2U'2=afVi + alV2 

with Vl = I„iXJn, and V2 = In,n = n{n2, where the KRONECKER product AxB 
of the (2? Xgô-matrix A = {a{j} and the (rXs)-matrix B = {bkl) is the partitioned 
{prXqs)-ma,trix {a^B}. (For the properties and use of the KRONECKER product 
AxB see the Appendix). In is the nyXn^ unit matrix {ài}), and J„, is the n2Xn2-
matrix of ones, {1}. 

In the described model (1) there are no further assumptions about the prob­
ability distribution of the random effects. Often an additional assumption is 
suitable for practice. This assumption is tha t of normally distributed random 
effects. Note that uncorrelated random effects in the case of joint normally distri­
buted effects is equivalent to stochastic independence of the effects. In this case 
we formulate model (2) as : 

y=lnfx+Uib+U2c 
with 
(2) b=N(0, alIni),c=N(0, a\In), n = nxn2, 

and & and c are stochastically independent. 
Hence y has a multivariate normal distribution N(1„fj,, V). 

3. Estimation of the Variance Components 

The best estimator for the expectation Eyi;- = t̂ is y = 2 2 yijl{nini)- For model (1) 

this estimator y has minimum variance among all unbiased linear estimators. 

For model (2) this estimator y has minimum variance among all unbiased estimators. 

This follows from the fact that y is a minimal sufficient complete statistic of the 
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normally distributed observations with respect to fi. For the estimation of the 
variance components the analysis of variance table can be calculated : 

Source of variation degrees of 
freedom 
df 

Sum of 
Squares 
SS 

Mean 
Squares 
MS 

Expected 
Mean Squares 
E(MS) 

Between samples 
Within samples 

a = n,-l SSB MSB o\ + n2o\ 
e = ni(n2~l) SSW MSW a\ 

Corrected Total n^n-,— 1 SST 

where S S T = 2 2 y « - C with C = ( 2 2 y « ) 2 / ( » i » i ) ; SSB = 2 ( 2 y « ) 2 / n 2 - C ; 

SSW = SST -SSB ;MSB = SSB/o;MSW=SSW/ewitho = » 1 - l a n d e = n 1 ( n 2 - l ) . 
Well known is EMSB = ^ + n 2 ^ and EMSW = gj. 

Unbiased estimators for a\ and a\ are gjj = MSW and a\ = (MSB — MSW)/w2, 
respectively. These estimators are the so-called analysis of variance (ANOVA) 
estimators. 

Under model (1) these estimators have minimal variance in the class of un­
biased quadratic functions of the observations, GRAYBILL (1954); only for ba­
lanced designs. READ (1961). Under model (2) these estimators have minimal 
variance in the class of unbiased estimators. This follows from the fact that for a 
balanced design with normally distributed random effects the ANOVA estimators 
are functions of independent minimal sufficient complete statistics, with respect 
to the parameters p, a\ and a2 (GKAYBILL and WORTHAM (1956)). 

In practical applications the problem arises of negative outcomes for ât. 
(Remark that â? can be written as 2 2 (Va~&)'-'/(« i (n-2 — 1)) with y{= ^yij/n2, 
hence ff? can never be negative). * ? ? 

In that case one will often questions the validity of the model. But in § 4 the 
probability will be calculated for negative outcomes of a\ in the case of normally 
distributed observations (model (2)). 

4. Probability of Negative Outcomes of ôf 

Under the assumptions of model (2) SSW is distributed as alxl with e = Wi (ra2 —1), 
and SSB as (a2 + n2a]) %~a with a = nl~l. Furthermore SSW and SSB are stochasti­
cally independent. 

Let MSW=SSW/e and MSB = SSB/fl. The probability for a negative outcome 
of ój is P(ff7<0) = P ( (MSB-MSW)/w,<0) = P (MSB < MSW) = P (MSB/MSW 
<1) since P (MSW = 0) = 0. However MSB/MSW is distributed as 

(al + n2al) xl/a 
r r r ^ — = (1 + n2Y) F{a, e) 
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where y = a\la\ and F(a, e) has the .^-distribution with a and e degrees of freedom 
respectively. 

Hence P ( a ? < 0 ) = P ({l+n2y) F{a, e ) < l ) = P [F(a, e)< ) . Another ob-

jection against the assumption of normality may be that we may find a certain 
negative outcome — D (Z>=-0) whereas the probability is negligible for outcomes 
of a\ equal to or smaller than — D. To investigate this objection in more detail we 
express D in units of a\, i.e. D = <5cr:; with <5>0. Then 

P (£Ï=g -ô<r2) = P ( (MSB-MSW)/n ,g - fag) 

= P ((ffj + '»20'j) Ù(an-i) - °hl/(en2) = -àaV) 

= P 
(l+n2y 2 1 , \ , „ 

Xa Xe=-ô) with y = a\la2 

\ an2 - en2 - / 
This probability can be evaluated by numerical inversion of the characteristic 
function of a linear combination of independent chi-square variables, see IMHOF 
(1961). The special case (5 = 0 has been handled before. In Table 1 this probability 
multiplied by 1000 is presented for several combinations of nt, n-,, y and <5. If for a 
certain combination of y and ô this probability is less than 0.001 it has been 
omitted. 

I t should be noted that sometimes there are available separate estimators for 
a', and ai + mal fr'om different experiments. (For example in plant or animal 
breeding experiments). From one experiment one will obtain an unbiased esti­
mator SSW/g for a2, with q degrees of freedom and from another experiment an 
unbiased estimator SSfâ/p for a2 + mo], which is independent of SSW/g. Now we 
find P (ffj^ — ôo'l) = P ({l+my) x'plp — xV<I- -<5m) where y = a\la\. 

In Table 2 this probability multiplied by 1000 is presented for several combi­
nations of the degrees of freedom p and q and several values of y and ô. If for 
a certain combination of y and ô this probability is less than 0.001 it has been 
omitted. 

The use of these tables is hence to find the probability of falsely rejecting the 
assumption of normality. To use a value ô one must know the value of a\. 
An idea about the value of 'a\ can be obtained from an (1 — a)-confidence interval 
for a2: 

SSW/Z7<qg<SSW/£ 
with 

P ( ^ < i ) = a/2 and P ( ^ < U) = 1 - a / 2 . 

Table 1 
For given y = a\ja\ and stochastically independent .^ and %\ the probability 

multiplied by 1000 is given for a negative estimate of the variance component a\ : 

lOOOXP (aj< -ôa2) = 1000XP I + " - y %l %«= -à) , (5>0, 
~ \ an2 - en2 - / 
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with degrees of freedom a = ni — 1, e = nL (n2— 1) for 

ni = 2, 5, 10, 30, 50, 70 and n2 = 2, 3, 4, 5, 10, 15 . 

This probability has been computed for y = 0.0, 0.1, 0.5, 1.0, 2.0, 10.0 and for 
(5 = 0.0, 0.01, 0.05, 0.1 (0.1) 1.0, 1.5, 2.0. 

If for a certain combination of y and ô this probability is less than 0.001 it 
is not given. 

7 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

\<5 
\ 

nt = 

0.00 

578 
542 
447 
377 
301 
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2, »2 = 

0.01 

568 
532 
438 
370 
290 
149 

= 2;a = 

0.05 

522 
491 
405 
342 
273 
13S 

= l,e 

0.1 

473 
444 
366 
309 
247 
125 

= 2 

0.2 

3S7 
363 
300 
253 
202 
102 

0.3 

317 
298 
246 
208 
165 
84 

0.4 

259 
244 
201 
170 
136 
69 

0.5 

212 
200 
164 
139 
111 
5« 

0.6 

174 
163 
140 
114 
91 
46 

0.7 

142 
134 
122 
93 
74 
3S 

O.S 

116 
110 
103 
76 
61 
31 

0.9 

95 
90 
87 
62 
50 
25 

1.0 

78 
73 
60 
51 
41 
21 

1.5 

29 
27 
22 
19 
15 
S 

2.0 

11 
10 
8 
7 
0 
3 

0.0 
0.1 
0.5 
1.0 
2.0 

10.(1 

n,= 

625 
569 
438 
356 
275 
133 

2. 71, = 

614 
559 
429 
349 
269 
13(1 

= 3; a 
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512 
392 
318 
245 
119 

= l,e 

491 
446 
341 
276 
213 
103 

= 4 

350 
310 
241 
195 
150 
73 

237 
214 
162 
131 
101 
48 

154 
139 
105 

So 
GO 
32 

98 
88 
67 
54 
41 
20 

61 
5-"> 
42 
34 
20 
12 

38 
34 
20 
21 
16 
S 

23 
20 
10 
12 
l(i 

5 

14 
12 
9 
8 
(i 

3 

8 
7 
6 
4 
3 
2 

1 
0 
0 
0 
0 
(1 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

? i i = : 

644 
570 
415 
329 
250 
119 

«••J = 

631 
557 
405 
321 
243 
116 

4;n = 

568 
500 
361 
286 
210 
102 

= l,e = 

472 
413 
297 
235 
177 
84 

= 6 

274 
239 
171 
135 
102 
48 

138 
120 
85 
67 
50 
24 

62 
54 
38 
30 
23 
11 

27 
23 
16 
13 
9 
5 

11 
9 
6 
5 
4 
2 

4 
4 
2 
2 
2 
1 

o 

1 
1 
1 
0 
0 

1 
1 
0 
0 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

»i=2, iu = 

654 638 

563 548 

393 382 

306 298 
230 223 

108 105 

= 5; a 

562 
480 
331 
257 
192 
90 

= l,e = 

430 
370 
254 
197 
147 
69 

= 8 

190 
160 
108 
84 
62 
29 

61 
52 
35 
27 
20 

9 

17 
14 
9 
7 
5 
2 

4 
3 
2 
2 
1 
1 

1 
1 
1 
0 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

»1 = 

669 
511 
312 
234 
170 
78 

2, »2 = 

642 
487 
296 
221 
161 
74 

= 10; a 

477 
354 
211 
157 
114 
52 

= l,e 

167 
122 
72 
53 
39 
18 

= 18 

2 
2 
1 
1 
0 
0 
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\<5 
V \ 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

7lj = 2 , «2 = 

0.00 

674 
468 
266 
196 
141 
64 

0.01 

632 
434 
245 
180 
130 
59 

15; a 

0.05 

328 
216 
119 
87 
63 
28 

= 1, e 

0.1 

12 
8 
4 
3 
2 
1 

= 28 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

n1 = 

514 
442 
261 
155 
72 
6 

5, »2 = 

504 
433 
255 
151 
70 
6 

--2;a 

463 
396 
231 
136 
63 
5 

= 4, e--

413 
352 
203 
119 
55 
4 

= 5 

318 
269 
153 
88 
40 
3 

237 
200 
112 
64 
29 
2 

173 
145 
80 
46 
20 
o 

124 
103 
56 
32 
14 
1 

88 
73 
40 
22 
10 
1 

61 
51 
28 
16 
7 
0 

42 
35 
19 
11 
5 
0 

28 
23 
13 
7 
3 
0 

19 
16 
8 
5 
2 
0 

2 
2 
1 
1 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

7l| = 5 , #2 = 

548 532 
431 416 
195 188 
97 92 
38 36 
o 2 

= 3; a = 

466 
359 
157 
77 
30 
o 

= 4, e = 

380 
288 
123 
59 
23 
1 

= 10 

224 
166 
67 
32 
12 
1 

113 
82 
32 
15 
6 
0 

51 
37 
14 
6 
o 

0 

21 
15 
6 
3 
1 
0 

8 
6 
2 
1 
0 
0 

3 
2 
1 
0 
0 
0 

1 
1 
0 
0 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

7i[ = 5 , n-i = 

562 540 
405 386 
149 140 
66 62 
23 22 

1 1 

= 4;n 

448 
311 
108 
46 
16 
1 

= 4, e-

327 
220 
72 
31 
10 
1 

= 15 

128 
82 
25 
10 
4 
0 

34 
21 
6 
2 
1 
0 

7 
4 

1 
0 
0 
0 

1 
1 
0 
0 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

71, = 

569 
378 
116 
47 
16 
1 

5, n2 = 

542 
355 
108 
43 
14 
1 

-5; a-

423 
264 
75 
30 
10 
0 

= 4, e--

268 
159 
42 
16 
5 
0 

= 20 

57 
31 
8 
3 
1 
0 

5 
3 
1 
0 
0 
0 

0.0 
0.1 
0.5 
1.0 
2.0 

»1=5, n2 = 

582 526 
264 228 

46 38 
15 12 
4 4 

10; o=4, e = 45 

265 31 
97 10 
14 1 
4 0 
1 0 
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y 

0.0 
0.1 
0.5 
1.0 
2.0 

\ < 5 
\ 

Ml=5, n 2 = 15; a = 4 , e = 70 
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9 
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o 
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y 

0.0 
0.1 
0.5 

\ < 5 
\ 
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0 
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0 
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0.5 
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0 
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0.1 
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0.0 
0.1 

530 382 20 
14 6 0 

= 30,712 = 15; a = 29, e=420 
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0.1 
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0.1 
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500 472 361 238 
202 241 168 98 

8 7 4 2 
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0 
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0.1 
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47 31 4 0 
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V 

0.0 
0.1 
0.5 

\ < 5 
\ 

rat = 70, n2=2; a = 69, e = 70 

0.00 0.01 0.05 0.1 0.2 

500 467 337 200 48 
225 202 127 63 11 

2 2 1 0 0 

0.3 

7 
1 
0 

0.4 

1 
0 
0 

0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 

ra1=70, re2 = 3 ; a = 69, e = 140 

0.0 
0.1 

509 451 237 70 
112 89 30 5 

TO[=70, ra2 = 4 ; a = 69, e = 210 

0.0 
0.1 

513 431 152 16 
35 0 

i1 = 70, n2 = 5: « = 69, e = 280 

0.0 
0.1 

515 410 88 2 
23 13 1 0 

0.0 

n, =70 , «2 = 10; a =69 , e = 630 

519 299 1 

0.0 

/i i =70 , « j = 15; a = 69, e =980 

520 200 

Table 2 

For given y = a\la\ and stochastically independent fe and %t ^
n e probability 

multiplied by 1000 is given for a negative estimate of the variance component a\: 

1000XP(a^-óa,2) = 1000XPf -^^ ;^ x\^-bm\ 
\ p - q- } 

with degrees of freedom 
p and q = l, 5, 10, 30, 50, 100 and my = 0.0, 0.1, 0.5, 1.0, 2.0, 10.0 and <5>0, 
mó = 0.00, 0.01, 0.05, 0.1 (0.1) 1.0, 1.5, 2.0. If for a certain combination of my 
and mô this probability is less than 0.001 it is not given. 
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\mô 
my \ 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

y = l 

0.00 

500 
485 
436 
392 
333 
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5 = 1 

0.01 

490 
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428 
385 
328 
184 

0.05 
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448 
404 
363 
309 
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0.1 
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422 
380 
343 
292 
164 

0.2 

391 
382 
343 
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264 
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0.3 
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312 
282 
241 
136 

0.4 
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320 
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221 
125 

0.5 
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291 
264 
238 
204 
115 

0.6 
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244 
220 
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0.7 
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204 
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0.8 
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0.1 
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392 
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198 
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92 
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79 
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194 
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68 
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83 
73 
64 
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29 

34 
33 
29 
26 
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11 
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0.1 
0.5 
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p = l 
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9 = 10 
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429 
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383 
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426 
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206 
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92 
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75 
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154 
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60 

50 
48 
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37 
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16 

11 
10 
9 
8 
6 
3 

0.0 
0.1 
0.5 
1.0 
2.0 

10.0 

j» = l 
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579 
515 
432 
235 
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87 
22 

1 
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184 
65 
16 
1 

182 
142 
48 
11 
1 

140 
108 
36 
8 
0 

107 
81 
26 
6 
0 

80 
61 
19 
4 
0 

60 
45 
14 
3 
0 

44 
33 
10 
2 

0 

32 
24 
7 
1 
0 

6 
4 
1 
0 
0 

1 
1 
0 
0 
0 
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5. The Intra-Class Correlation Model 

In § 2 we have seen that the observations within the same sample are correlated, 
cov (t/ip !Jiy) = a\ for_ƒ=!=ƒ; hence.the correlation coefficient 0(1/^, y iy) = <y\l (c\ + o\). 
The observations from several samples are uncorrelated. In our variance compo­
nent model the correlation coefficient p is non-negative by definition. 

In several applications however, especially in plant breeding or animal breeding, 
one wants a model where the observations within the same sample may be 
negatively correlated. I t is frequently employed in studies about twins. The 
following intra-class correlation model has been proposed by R. A. F ISHER long 
before the variance component model. 

From a population n^ samples (groups) are drawn at random. From each group 
iu elements are drawn. Let y^ be the observation at the j-th. element drawn 
from the i-th group. Then the model (3) is now: 

i=l, . . ytf=i"+««7 • « 1 

where 

(3) Eei;.= 0, var (e,-,-)=ff2 

cov(e,-,.,eiT)=dii, eff2 for j*j'. 

The parameter q is called the intra-class correlation coefficient. 
Let 

and 

24* 

y'=(2/11.2/12. • 

e ' = ( e l l> e12> • 

. 2/jnj. 2/21. 

'In,' 

y»,J€Ä" 

«1«2 )€Rn 
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with n=nln2; In a column vector with coordinates of merely ones, then we have 
in vectorform: y=juln + e with non-singular covariance matrix of y: 

V = anniX{(i-Q)ITh + QJrh). 

From the requirement of positive-definiteness of V it follows that —l/(w2 — 1) -< 
< g < l . The proof is as follows. The positive definite matrix V has only positive 
eigenvalues. The eigenvalues of V are found as the product of the eigenvalues 
of a2I„t and those of {(1 — g) 7„2 + {?</»,}• The latter are to be found from |(1 — g) /„ , -f-
+ ^ - ^ 1 = 0 or 

(i-Â+(n,-i)e) (i-Q-xr-^=o. -. 
Hence those eigenvalues are ?.l=l + (n2 — 1) g and 22 = (l—o) with multiplicity 
n2 — 1- The eigenvalues of F are therefore a2 (1 + {n2 — 1) Q) with multiplicity 
n t and a2(i— Q) with multiplicity 7i1(w2 — !)• Since they must be positive it 
follows that — l/(ra2 — l ) < g < l . 

If we adopt the assumption of normally distributed observations, then we 
have the model: 

yij = P + ?H 

e{j are identical N(0, a2) for 

(4) i = l , . . . ,ny; j - 1 , . . . ,n2; 

cov (yijt yvy) = óti. g<T
2 for j *j' . 

The estimator of ,«, given by # = 2 2 !/a/{nin2) i s f ° r model (3) the minimum 
i j -

variance unbiased linear estimator. For model (4) this estimator y has minimum 
variance among all unbiased estimators. This follows from the fact that y is 

a minimal sufficient complete statistic of the normally distributed observations 
with respect to fx. 

For the estimation of the relevant parameters we use the same analysis of 
variance table as in § 3 but the expected mean squares are now 

E(MSB) = q ' ( l + ( n 2 - l ) e ) 
and 

E(MSW) = g 2 ( l - g ) 

respectively. 
Now SSW is distributed as a2 (1 -Q) xl and SSB as a2 (1 + (n2-1) Q) xl 
From E (MSB) = a2 ( 1 + (re, - 1 ) Q) and E (MSW) = a2 ( 1 - Q) it follows that 

E (MSB)<E (MSW), if and only if o<0 . 
The probability P (MSB < MSW) is equal to P (MSB/MSW<1) since 

P(MSW = 0) = 0, and MSB/MSW is distributed as {i+n2ql(i-Q)) F (a, e), hence 
P(MSB<MSW) = P(F(a, e) < 1/(1 + w,e/(l -Q)). Entering Table 1 with y = e / ( l -e) 
we may read this probability numerically. Note that P (MSB<MSW)^P (P ( a , e) < 
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<1) , if — l/(n2 — l )<g-<0, with equality if g = 0. We can also read from Table 1 
the probability P ( M S B - M S W < -ôn2o> (1 -Q)) = 

p(h±!W£-±fc-d), with «5>0 
\ n2d ~ n2e ~ I 

From the analysis of variance table it follows that (MSB— MSW) is an unbiased 
estimator f or n2go2, and (MSB + (w2 —1) MSW) for n2a

2. SNEDECOR and COCHKAN 

(1969) propose as an estimator for g: 

g1 = (MSB-MSW)/(MSB + ( n 2 - l )MSW) • 

Note tha t gt is not unbiased. 

Another estimator for g follows from the n2 (ra2 —1) ordered pairs of obser­
vations which can be formed in each group. The correlation coefficient between 
these pairs gives an estimate for g. When we take the sum over all groups we 
get another, but also biased, estimator for g: 

(w t - l JMSB-n jMSW 

g2 = ( n t - l ) MSB+w t ( n 2 - l ) MSW 

Since g2 differs only slightly from git gj is the usual estimator in practice. 

6. A Non-Negative Estimation for cj 

Finally we want to remark that even if all assumptions of model (1) or (2) are 
satisfied, the analysis of variance estimator is not a desirable estimator for a\. 
The variance component a\ is non-negative and one would prefer an estimator 
which can not give negative outcomes. The problem of negative outcomes of 
af stems from the demand of unbiasedness. In ' the theory of estimation, the 
estimators t of a parameter •& can be compared by the second moment with 
respect to •&. 

E (<-#)2 = Var (t) + (Et-#y>. 

If an estimator t is unbiased, then E£ = # and E (t— #)2 = Var (t). But there are 
many examples of estimators known, which have a smaller second moment 
than the minimum variance unbiased estimator. For example, the estimator 
SSW/e for a\ in model (2) has within the class of unbiased estimators minimal 
variance. Another estimator with smallest second moment with respect to a\ is 
SSW/(e + 2). (For model (1) we can only say that SSW/(e + 2) has smallest second 
moment within the class of all quadratic functions of the observations). 

For the variance component a\ an estimator with smaller second moment 
with respect to a\ than the analysis of variance estimator aj is the truncated 

*• * * -•» +u + • *u -*• 4. f (MSB-MSW)/n3 if MSB^MSW 
estimator of a\, t ha t is the estimator < \rQ-R AT<3W 
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This truncated estimator is a biased, but non-negative estimator for a\, which 
has smaller second moment than âj. 

Another non-negative estimator for a\, which is also biased, is given by the 
maximum likelihood estimator. This estimator. can only be calculated if the 
probability distributions of the random components in the model are completely 
specified, such as for example in model (2). The truncated ^-estimator can be 
used even in model (1). For another non-negative estimator see VEEDOOEEN 

(1980). 

A p p e n d i x : K r o n e c k e r P r o d u c t 

Let A = (atj) and B = (bti) be (m^mo) and (nLXn2) matrices, respectively. 
Then the KRONECKEE, product AxB = (atjB) is an (mpiLXm2n2) matrix ex­
pressible as a partitioned matrix with a^B as the (i,j)-th partition, i = 1, . . . , in^ 
and j = 1, . . . , m2. 

The following results are consequences of the definition (see e.g. NEUDECKER 

(1968) and RAO (1973)): 

a.) OxA=AxO=0 (0 = zero matrix) 
b) (Al + A-2)xB = (A1xB) + (A2xB) 
c) AX(Bl + B2) = (AxBi) + (AxB2) 
d) ciAxbB = abAxB 
e) (AiA2)X(BlB2) = (A1xB1) (A2xB2), if the matrix products AyA2 and BLB2 

exist. 
f) (AXB)' = A'XB' 

In case A and B are square of order (mXm) and (ra X n) respectively the follow­
ing results hold: 

(i) {AXB)-L = A-LXB-L, if the inverses exist. 
(ii) (AxB) (A-LxB-i)=ImxIn=Imn, if the inverses exist. 

(iii) Let A have eigenvalues a;, eigencolumnvectors ut and eigenrowvectors 
v'i(i = l, .'. . ,m): 
Let B have eigenvalues ßjt eigencolumnvectors iVj and eigenrowvectors 
z,'(i = l . • • • , « ) ; 
Then AxB has eigenvalues oc,̂ -, eigencolumnvectors u{XWj and eigenrow­
vectors v'iXz](i = l, . . . , m; j = l, . . . , n). 

Proof of (iii) 

Use result e) : 

(AXB) («<Xtoy) = (Aui)X(Bw0) = («Xi«,)X{ßjtv}) = oc$(«,X«;,) . 

(v'tXz)) (AXB)= (v\A)X(z'fB) = (a,*,')X(ß/j)=«ißj (»«'Xz-) . 
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(iv) \AxB\ = \A\n\B\m 

Proof of (iv) 

AxB has eigenvalues a,-/?,- (i = l, . . . , m;j=l, . . . , » ) . So 
m n ml n \ j m \ I n \ 

AXB= n n *iß,=n(«înß!\=[n <)\nßrh^mr• 
» - I j = i 1 = 1 \ j = i / \ t = i / \ j = i / 

(v) t r (AxB) = (tvA)(tv B) 

Proof of (v) 

tr (AXB)=Z2 *ißi = ( 2 «*) ( 2 ft) = ( t r A) (tr 5) 

(vi) o ( i x 5 ) = 5(^) • o{B) where «(.4) is the rank of .4. 

Proof of (vi) 

g(.4)=number of non-zero eigenvalues a,- of .4; o(.B) =number of non-zero 
eigenvalues ßf of B. Hence the number of non-zero eigenvalues a,-/?,- of 4 X B 
is e(.4) • o(B) . 

Summary 

Consider a balanced two-stage sampling scheme where the observations obey a random model. 
Under the assumption of normally distributed observations, the probability is given tha t the 
estimate of a variance component will lie negative. 

Zusammenfassung 

Es wurde eine balanzierte zwei-stufige Stichprobenerhebung betrachtet, wobei die Beobachtungen 
mittels eines stochastischen Modells beschrieben werden können. Vorausgesetzt, die Beobachtungen 
seien normal verteilt, so wird die Wahrscheinlichkeit gegeben, daß die Schätzung einer Varianz­
komponente negativ ist. 
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CHAPTER 7 

7. EXACT TESTS AND CONFIDENCE INTERVALS FOR VARIANCE RATIOS IN 
NESTED DESIGNS 

PART II: CONTINUATION 

7.1. Introduction 

In chapter 5 the onset of the author's research on exact tests in 

unbalanced two- and three-stage nested designs was given. A systematic 

derivation of the distribution of sums of squares in the Analysis of 

Variance table is given in section 7.2. For this derivation a fruitful 

use had been made of vectors, vector spaces and orthogonal projection 

of a vector on a vector space. The notions presented here are exten­

sions of the concepts introduced in chapter 3. 

Furthermore the author introduces, in section 7.2, a new exact 

test concerning the ratios of variance components in three-stage nested 

designs. For the three-stage nested design there are two interesting 

2 2 2 2 2 
ratios of variance components, p-\ = O^/OQ and p2 = ag/ae, where a^ and 

2 
<7ß are the variance components in the first and second stages respec-

2 
tivily, and cre is the error variance. The new test on Hn-|: p-\ = Pio 

against H-\-\: p-\ > p-|o depends on p2 and the author's approach is to 

test pi after fixing p2- In practice the researcher already has a 

priori knowledge about pj; a range of plausible p2 has already been 

estimated from previous experiments or can be found in the literature. 

The situation is the same in animal breeding, where the Best Linear 

Unbiased Prediction (BLUP) of breeding values depends on plausible 

values for ratios of variance components. These ratios are estimated 

(sometimes not so well) from previous experiments and are regularly 

updated. 

In section 7.3 an example is given in which the performance of the 

new exact test is demonstrated. 
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ABSTRACT 

For the unbalanced two-stage nested design an exact size a 

test for H0: p « pQ against H-p p > pg exists, where 

p = <Jp/a2 with <T^ the variance component in the first sampling 

2 
stage and ae the error variance in the second stage. Using Wald's 

procedure one can construct an exact (l-a)-confidence interval 

for the ratio p of the variance components. 

For the three-stage nested design there are two interesting 

2 2 2 2 
ratios of variance components p-] = a^/ae and ç>i = o^/aGi wnere 

(j2 and (j2 a r e the variance components in the first stage and 
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2 
second stage respectively, and a e is the error variance. The 

construction of exact size a tests and (1 -a)-confidence intervals 

for p2 is no problem using the same procedure as for the two-

stage nested design. In the balanced three-stage nested design an 

exact size a test is well known for Hg: P-\ = 0 against 

H-| : P-] > 0. A test for Hg: p-\ « Pin against H-| : p-j > p-jg exists 

but depends also on the parameter pj. In the unbalanced three-

stage nested design even the test for Hg: p-\ = 0 against 

H-|: p-| > 0 depends also on p-^. Also an exact (1-<x)-confidence 

interval for p-| irrespective of p2 is not possible. Many 

approximate solutions were proposed in the past. One way to over­

come this difficulty is to construct simultaneous confidence 

regions for p-] and P2- In this paper a different solution will be 

proposed, which produces exact tests and confidence intervals for 

Pi given a certain value of P2- The experimenter who is 

interested in a test or confidence interval for p-| decides 

beforehand in which range of p 2 he is interested in his experi­

ment to make decisions about p-j. Exact size a tests and 

(1-a)-confidence intervals for p-| given a value of p2 are pre­

sented here. 

1. INTRODUCTION 

1.1. Model and notations 

For a sampling procedure in two stages we consider a large 

population. In the first sampling stage b samples are drawn at 

random from the population. In the second sampling stage n,- sub-

samples are drawn at random from the i-th sample. 

In a balanced two-stage nested design the same number m of sub-

samples is drawn in the second stage from each sample, hence n^ = 

m for i = 1,2,...,b. Let the observation made on the k-th sub-

sample from the i-th sample be denoted by y-j^, k = 1,2,...,n.j for 

i = 1,2,...,b. A linear model for the random variable y ^ is then 

as follows: 
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yi k = ß + u, + e i k , k = 1,2 ,ni ; i = 1,2, b. (1) 

The u-j's and the e-jj's have zero means and are statistically inde­

pendent with var(un-) = a^ and var(eik) = a|. In the sequel we 

mai<e the assumption of normally distributed effects. Note that 

uncorrelated random effects in the case of joint normally 

distributed effects are equivalent to stochastic independence of 

the effects. A two-stage nested design is also called a one-way 

random model. 

Let y be the column vector of all observations 

y = ( y i i . - - - , y 1 r v y2 i v 2 n 2 yt>i y b n b ) ' < t h e n y e R f l* 
b 

with n. = E ni ( u = (u-,,... ,ub) ' e Rb, e = ( e n
 e b n J ' e """• 

i = 1 ~ 

The model can now be written as 

y = X/3 + Zu + e (2) 

where X is a n_x1-column vector of ones, ln #, Z is an n.xb design 

matrix related to the first sampling stage. Let 1n. be a column 

vector of nn- ones then Z can be described as diag(1 n , 1n ,..., 1n ), 

where diag means a diagonal block matrix. Let ID be the bxb iden­

tity matrix then u has a multivariate normal distribution 

N(0,aglb) and e is N(0,<7|ln>). The dispersion matrix of y (or co-

variance matrix of y ) , D(y) = E[ (y-Ey) (y-Ey) ' ] where Ey = l̂n ß 

can be written as 

D(y) = E[(Zu+e)(Zu+e)'] = a|zZ' + cTeIn. = ol(pZZ'+InJ = a\\l (3) 
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2 2 
with p = OQ/OÇ, the ratio of the variance components. Hence y has 

2 
a multivariate noma! distribution N(1n /3,aeV) with V depending 

on p. 

Analogously we derive a model for a three-stage nested 

sampling procedure by taking a random sample of size a in the 

first sampling stage, bn random subsamples from the h-th sample 

and nni- random subsubsamples in the third sampling stage from the 

i-th subsample of the h-th sample. Let yh-jk ° e t n e observation of 

the k-th subsubsample of the h-th subsample of the i-th sample 

(k = 1,2, ... ,nni-; i = 1,2,...,bn; h = 1,2,..., a ) , then the linear 

model is 

vhik = ß + u1h + u2hi + ehik (4) 

2 2 
with Eu1 h = Eu2hi = E e h i k = 0, var(u1h) = aA, var(u2hi) = <7B, 

var(ehi|<) = u2» a nd uncorrelated random effects u 1 n , u2hi, ^hik-

We again assume normally distributed random effects. 

Let y be the vector of observations in ordered form with last 

index running first. We have 

y = XjS + Z-|U-| + Z2u2 + e (5) 

a bn 

where X = 1n , n = Z Z nnn-; Z-| = diag(1n , ...,1 n ) of order 

~ •• " h=1i=1 ~ 1- ~ a-

bh 
n.xa, nh_ = E nn i; Z 2 = diag(1n , . .., 1n ) of order n. xb., 

i = 1 
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b_ = E bh. Now u-i is N(0,c^Ia), u 2 is N(0,a|Ib i), e is N(0,a|ln_ ) 
h=1 ~ 

and u-j, u 2 and e are independent. Hence y has a rrultivariate normal 

distribution N(1n /3,cr;V) with dispersion matrix 

D(y) = a|v = o2
e(p^z\ + p2Z2Z2 + ln__) (6) 

2 2 2 2 
and with p-j = o^/a^, p 2 = CTg/ae. 

A three-stage nested design is called balanced if b n = m-| for 

h = 1,2,...,a and nni = m2 for h = 1,2,...,a and i = 1,2, . . . , b^ . 

The design is called partially balanced if nni- = m^ for all i, 

but b n is not the same for all h = 1,2,...,a. 

When we look at the model (2) for a two-stage nested design 

and at model (5) for a three-stage nested design we see that 

these models are the simplest examples of a general mixed model 

y = Xj3 + Z-|U-] + ... + Ẑ Ufc + e 

with D(y) = cr-|ZiZ-j + ... + ff^Z^Z^ + c^n.. .. w n e r e <*i 1S t n e 

variance component belonging to the random effect vector u-j. 

1.2. Sum of Squares in the ANOVA-table 

For the description of tests and confidence intervals for the 

ratio of variance components we need an analysis of variance 

table. We will describe the calculation of the sum of squares as 

the squares of projections of the observation vector y on certain 
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subspaces. 

For the two-stage nested design we have the observation vec-

b 
tor y e Rn- with n. = Z nn. Let L be the column space of 1n and 

h=1 

B the column space of Z. The dimension of the subspace L, dim L, 

equals the rank of 1n - hence dim L = 1; also dim B = b, the rank 

of Z. Notice that L c B and define the subspace B* as the inter­

section BflL-1-, the orthogonal complement of L in B, with 

dim B* = b - 1. Let C be the orthogonal complement of B in Rn-

with dim C = n.- b. The space Rn- is now decomposed into 3 ortho-

gonal subspaces L, B and C. Let PL be the orthogonal projector of 

y on B, then PB = X(X'X)"1X' = n- 1 1 n - V = n"1Jn , where Jn is 

the n.xn. matrix with elements 1. Let PB be the orthogonal pro­

jector of y on B, then PB = Z(Z'Z)~1Z' = diag(B-, ,B2,... ,Bb) with 

Bi = nï1 jn-- T n e orthogonal projector of y on B* is now PB - PL. 

The orthogonal projector of y on C is 

PC = *n. - PB = diaga^-B-,, In2-B2, ..., I n b " B b ) . Remark that a 

projection matrix P is symmetric (P = P') and idempotent (P^=p). 

For a first-stage class, Bn- is also a projection matrix on the 

space with base 1n.. We can decompose the vector y e Rn" into three 

orthogonal components P y, P y and P^y and hence (Pythagorean 
L~ B*~ 

theorem) we have for the squared lengths of y and its projec­

tions: 
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y 'y = (p L y) ' (P| .y) + ( P D *y ) ' (p Q *y ) + ( p c y ) ' ( p c y ) 

= y'pLy + y'Pg*y + y'Pcv-

In the Analysis of Variance table (ANOVA table) this orthogo­

nal decomposition is used. A Sum of Squares (SS) is the square of 

the length of a projection on a subspace and the degrees of 

freedom (df) associated with such SS is the dimension of the 

subspace. 

The ANOVA-table for a two-stage nested design is 

Source of 

variation 

Between samples 

Within samples= 

Error 

Corrected total 

sub-

space 

B* 

C 

L̂  

dim 

df 

b-1 

n -b 

n-1 

Sum of Squares 

SS 

y,p
0*y = ssB 

~ D ~ 

y'Pcy = SSE 

y'y-y'Pi_y = S S T 

Mean Squares 

MS 

MSB = SSB/(b-1) 

MSE = SSE/(n_-b) 

b n.; 1 2 
Calculations-, y'y = E Z y ^ ; 

i=1k=1 

b n-j 
Correction term = CT = y'PLy = ( E T. y-ji<)2/n.; 

i=1k=1 

b n,-

ssB = y'P0*y = y'PBy - y,pi.y = E ( E yik) / ni - CT; 
i=1 k=1 
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SSE = y'Pcy = {y'y - y'PLy) - y'PD*y = y'y - y'PBy-

Analogously for the three-stage nested design we have the 

a b h 

observation vector y e R n - - with n__ = E E n^-j, with space 
h=1i=1 

L = column space of 1 n i i , A = column space of Z-j, B = column 

space of Z 2 . 

Notice that L c A c B and define A* = A n L1, B* = B O A 1 hence 

a 
dim L = 1, dim A* = a-1, dim B* = b_- a with b_ = E b n . Let C be 

h=1 

the orthogonal complement of B in R n " , hence dim C = n _ - b_. 

The matrices PL, P *, P * and P^ are the orthogonal projectors on 
. A. B 

the spaces L, A , B and C respectively. 
Because L, A , B* and C are orthogonal the following decomposition 

holds: 

l ' y . =
 I ' P L Ï

 + y , p A * ~ + ~'PB*~ + l'P°l' 

' 1 ' -1 
Furthermore P|_ = 1 n ,, (1 n, . 1 n ,, ) 1

n.. = n J n . , ' 

P A = Z-, (Z-, ' Z - , ) - ^ ^ = diag(A1,A2 A a ) 

where A n = nn_Jn is symmetric and idempotent; P * = PA - PL; 

PB = Z 2 ( Z 2 ' Z 2 r 1 Z 2 ' = d i a g ( B n B1t>1 B a 1 Ba b a> 

-1 
where Bnl- = nni-Jn is symmetric and idempotent; 

P
B* = pB - pA; P C = In.. - pB = d i a g d n - B ^ I a b a - B a b g ) . 
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The ANOVA table for a three-stage nested design is 

Source of 

variation 

Between first-

stage samples 

Between second-

stage within first-

stage samples 

Error 

Corrected total 

sub-

space 

A* 

B* 

C 

l> 

dim 

df 

a-1 

b-a 

n.."b. 

n_ -1 

Sum of Squares 

SS 

y'PA*y = SSA 

y'Pß*y = ssB 

y'Pcy = SSE 

y'y-y'P|_y = SST 

Mean 

Square 

MS 

MSA 

MSB 

MSE 

a bh nih 2 

Calculations: y'y = 1 1 E y n ik ; 

~ ~ h=1i=1 k=1 

a b h nih 
CT = y'PLy = ( E E E y h i k ) z / n _ ; 

h=1i=1 k=1 

SSA = y'PA*y = y'PAy - y'PLy = E (E E y h i k ) 2 / n n < - CT; 
~ h=1 i k 

SSB = y 'P D *y= y 'P B y - y 'P A y = E E(E y n i k ) 2 / n h i - y ' P A y ; 

~ B ~ ~ ~ ~ ~ h i k ~ ~ 

ssE = y ' P c y = ( y ' y - y ' P L y ) - y ' P A * y - y 'P D * y = y ' y - y'PBY-

1.3. Distribution of Sum of Squares 

For the derivation of the distribution of the test statistics 

we need the distribution of Sum of Squares in the ANOVA table. A 
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short review of the basic facts will be given now. For more 

details we refer to Searle (1971), Rao (1973) or Graybill (1976). 

Let y be N(0,a2In) and let the matrix A be a non-negative matrix, 

k 
9 2 

then the quadratic form y'Ay can be written as Z X-jff'Hi with z.j 
~ ~ i = i 

independent N(0,1) random variables and Xn- the k positive eigen-

k 
9 2 2 9 

values of A. Hence y'Ay = E X^CT^S^ where Sn- are independent x 
~ ~ i = 1 

random variables with 1 degree of freedom, x (!)• If P A ^ a P r o ~ 

' 2 jection matrix ( P A = P/\, P A = P A ) on a subspace A of R n with 

dim A = k, then P A has k eigenvalues equal to 1 and n-k eigen­

values equal to 0. The quadratic form y'PAY can now be written as 

k 
9 2 2 o 

a' T. Sj where S, are independent x O ) random variables, which is 

i=1 

a multiple of a x2-variable with k df. Let now y be N(X/3,a2V), 

ß e RP, where V is a nxn positive definite matrix, and let rank X 

be k < p, then y = X/3 + aV^x with x is N ( 0 , I n ) . (v5* is a non-

singular symmetric matrix such that (v3*) (V5*) = V; if HH'= H'H = I n 

and H'VH = A, A = diag(X-] ,X2, ... ,Xn) with Xn- > 0, then V3* = HA^H' 

with A3* = diag^X-,, / x 2 , ..., A n ) ) . 

Let A be the orthogonal complement of the column space of X then 

dim A = n-k. Let P A be the orthogonal projector on A, then 

PAX = 0 and PA = I n - X(X'X)~X', where (X'X)" is a generalized 

inverse of X'X such that (X'X)(X'X)_(X'X) = X'X. Now let us con-
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si'der the quadratic from 

y'PAy = (X/3 + (7V^x)'PA(Xß + CTV^X) = X'CT2V^PAV^X = I X^S^, 
n-k 2 

i=1 

2 o 

where S^ are independent x C ) variables and Xn- are the non-zero 

eigenvalues of V^PAV^. The set of positive eigenvalues of V^PAV^ 

is the same as that of VPA or PAV. 

In the ANOVA table for nested designs a Sum of Squares is of 
the form y'Ppy with PD a projection matrix such that PDX = 0, 

hence y'Ppy is distributed as a linear combination of d indepen­

dent chi-square variables with one degree uf freedom, where d is 

the rank of Pp or dim D = d. 

We also consider general quadratic forms y'Qy where 

QX = 0 with Q symmetric but not necessarily semi-positive defi-

q 
nite. The distribution of y'Qy is that of E X1-a2S? where K^ are 

~ ~ i = i 

the non-zero (positive and negative) eigenvalues of V^QV^ or 
equivalently of VQ or QV, S? are independent x2(1) random 

variables. 

1.4. Eigenvalues of the dispersion matrix D(y) 

The dispersion matrix D(y) for the two-stage nested design is 

given in (3): 

2 2 
D(y) = c7e(pZZ' + In) = aeV. But V = diag(V-,,V2,...,Vb) where 

Vi = P\ + In,- = Pn iB i + B i + 1ni " B i = d+Pn^Bi + (I^-B,-) 
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where B,- and In. -B-j are idempotent matrices with Bn- = n^ Jn. 

(i=1,...,b); and Bn-(In.-Bn-) = 0, the zero-matrix. 

Hence V., has one eigenvalue (1+pn.j) for eigenvector 1n. and n^-1 

eigenvalues 1 with eigenvectors belonging to the orthogonal com­

plement of the space spanned by 1n.. Hence V has in total b 

b 

eigenvalues 1 + pn-|,..., 1+pnD, and Z (n.j-1) eigenvalues 1. We 
i = l 

have now written V in the spectral form as: 

V = diag(V-|,V2 Vb) with Vn- = (l+pn^Bi + K ^ . - B , ) (7) 

hence V,- = (1 + p n - j ) ^ + •\^{In_-Bi) 

and V"1 = (1 + pn.-r^i + 1~1 (In .-B,-) • 
i i 

Finally V^ = diag (V^, ..., VJ*) and V"1 = diag(V"1, ..., V ' 1 ) . 

The dispersion matrix D(y) for the three-stage nested design 

is given in (6): D(y) = ^ ( p ^ Z ^ + P2Z2Z^ + In..) = <r|v-

But V = diag(V-|,V2,.. .,Va) where 

vh = PlJnh <
 + P2d i a9(Jnh 1 Jnh b )

 + x n n > 

= Plnh.Ah + P2diag(nh1Bhl n h b h B h b h ) + Inh_ 

with symmetric and idempotent matrices A^ = nf,Jn , 

Bhi = n hi J n h i ' M = 1.2,...,b; h = 1,2,...,a). 

(8) 
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For the balanced three-stage nested design nn^ = m2, b.j = m-p 

n h. = m1m2 a n d vh = Pi"Mm2A + p2m2diag(B, ..., B) + Im _ 

where A = (min^r^m.,!^' B = m2 Jm2' h e n c e 

Vn = (1+m2p2+mim2Pi)A + ( 1 + m 2 p 2 ) [ d i a g ( B , . . . , B ) - A] + 

n1 rn2~ 
[ I m i m ,-diag(B B)]. 

The three matrices in Vf, are symmetric and idempotent and the 

product of each two is zero. The coefficients of these three 

matrices are the eigenvalues of Vn where the eigenvalue 

(1 + m 2 p 2 + mirri2Pi ) has multiplicity 1, (1+m2p2) has multipli­

city m-|-1 and 1 has multiplicity m-|(m2-1). The matrix V has the 

same eigenvalues repeated a times. Hence in the balanced case we 

'1 * 1 k 
can easily find Vn or Vn and thus V or V^. 

This nice structure of D(y) in the nested design has also 

been used by e.g. Fuller and Battese (1973). See also LaMotte 

(1972) for a nice representation of V - 1 . 

2. TwO-STAGE NESTED DESIGNS 

2.1. Balanced case 

In the model (1) we have the situation 

y-jk = ß + u.j + e ^ with i = 1, 2,..., b; k = 1,2,...,m 

for each i. With the tools of chapter 1 we can readily derive 

SSB = y'PB*y and PB*V = (PB-PL) diag(V1# V2, ..., Vb) 
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with PB = diag(B-,, ..., Bb) = diag(B, B, ..., B ) , B = m"1Jm; 

Vi = (1+pm)B + (Im-B) = W for i = 1,2,...,b; PL = (bm)-1Jbm. 

In the balanced case we can use also the direct (or Kro-

necker) product x of two matrices. Properties of direct products 

can be found in Neudecker (1968), Rao (1973) or Khun' (1982). 

In our case PB = IDxB, V = IDxW thus 

(PB-PL)V = (1+pm)(PB-PL) = (1+pm)P *. Hence SSB = y'PB*y is 
B ~ ~ 

distributed as az(1+pm)x2(b-1). In the same way we derive 
e 

SSE = y'Pcy is distributed as o^ibim-l ) ) . Furthermore SSB and 

SSE are stochastically independent because 

PB*D<y)pC = <7ePB*VPC = ° < s e e Sear le ( 1971) ) . 

Hence MSB/MSE has a (1+pm)F-distribution with b-1 and b(m-1) df. 

2 2 
For the test of Hg: p = 0 against H-| : p > 0 (with p = tTB/ae) 

we calculate the test statistic MSB/MSE. We reject H Q at signifi­

cance level a if MSB/MSE > F(1-a; b-1, b(m-1)), the 

(l-a)-distribution point of F(b-1, b(m-1)). For the test of 

H Q : p i PQ against H-| : p > pg we must calculate the test sta­

tistic (l+p0m)"1MSB/MSE, which has under HQ again an 

F(b-1,b(m-1))-distribution. This test is UMP invariant with 

respect to a group of transformations generated by translations 

and scale transformations. Also the test is UMP unbiased of size 

a (see Lehmann (1959) or Herbach (1959)); for mixed models con­

taining random effects which are ordered hierarchically see 

Spj0tvoll (1966) and Roebruck (1982). 

For the sequel we notice that this test statistic 

(1+p0m)"1MSB/MSE is equivalent to MSB(p0)/MSE(p0) where 
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MS8(p0) = y'PD*[V(p0)r1PD*y/(b-l) and 

MSE(p0} = y'Pc[V(p0)]~1Pcy/(b(m-1)) and aeW{p0) is the dispersion 

matrix of y with p = p 0 or V(p0) = Ib x [(1+pnm)B + (Im-B)]. It 

follows readily that 

y'pB*£v(Po)r1PB*y = y'PB*y/n+Pom) 

and 

Ï ' P C L V Î P O ) ] " 1 ^ = y'Pcy-

An exact (l-ot)-confidence interval for p now follows from 

(1+pm)"1(MSB/MSE) which has an F(b-1 ,b(m-1 ) )-distn'bution. Let 

F-, = F(a/2; b-1, b(m-l)) and F2 = F(1-a/2; b-1, b(m-1)) be the 

a/2 and 1-a/2 points of the distribution function of 

F(b-1,b(m-1)) respectively. Then a (l-a)-confidence interval for 

p, which is uniformly most accurate invariant is given by: 

[F~'(MSB/MSE) - 1]/m < p < [F"1(MSB/MSE) - 1]/m . 

2.2. Unbalanced case 

Recall model (1) which is 

y ^ = ß + un- + e-jk with k = 1, 2, ..., n^ for i = 1, 2, ..., b. 

Lehmann (1959) already mentioned that for the unbalanced case 

there is no UMP invariant test. Spj0tvoll (1967) found that for 

the problem of testing HQ: p < PQ against H-p p = p-\ (p > Pn) 

the most powerful similar invariant test depends upon the value 

of p-|. His test statistic is 
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y'pB*cv(Po)]"1pB*y - y 'PB*[v(Pi)r1P8*y 
W(Po«Pi) = - — -

y'PB*[V(p0)]-1PB*y + y'Pcy 

where V(pg) and V(p-|) are the matrices pZZ'+ In_ with p = pQ and 

p = p-i respectively. This test has the property of maximizing the 

minimal power over the set of alternatives with p > p-|. To get a 

size a test a constant c must be determined such that 

P Q ( W ( P 0 , P - | ) > c) = a. For the case under H-p p-\ - <» (test against 

large p-]) the sum of squares is y'P *[V(p1)]_ 1P *y -* 0. To reject 
~ B B ~ 

the H Q when W(p0,oo) is large is the same as to reject H 0 when 

T(P0> = y'pB*[v(Po)]"1PB*y/y'Pcy > constant c' . 

Using the results of section 1.4 it can easily be derived 

that 

£ gio(yi.-vo) " l 9ii(yi.-yi)2 

i=1 i=1 
W(p0.Pl) 

b b ni 

E 9 i o (yi.-yo) 2 + z z (yik-yi.)2 

i=1 i=1k=1 

where g^j = ni/(pjni+1), y,- = E g -,- ,-y ̂  _ / E g,.- for j = 0 and 1, and 
i=1 ' i=1 

n^ b b ni 

yi. = z yik/ni; h e n c e T ( P O ) = z 9 i o ( y i . - y o ) 2 / E z ( y i k - y i . ) 2 -
k=1 i=1 i=1k=1 

To calculate P ( W ( P Q , P I ) > c) we note that W(po,Pi) > c is 

equivalent to 
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1 2 1 

y'[PB*((I-<=)[V(p0)r1 - [ v ^ n - i j P e * - cpc]y > o 

or y'Qy > 0 = y'Qy/c§ > 0. 

2 
The distribution of y'Qy/<re is that of a linear combination of 

independent x^(1) variables with positive and negative coef­

ficients, where the coefficients are the eigenvalues of QV(pn) 

under Hg (for calculating the P-value) and of QV(p-|) under H-\ 

(for calculating the power function). The distribution of T(p0) 

at p = pn is easily found. The numerator y'PB*[V(pn)]~1PB*y is 

2 « 
a linear combination of independent <re x C ) variables with 

coefficients the eigenvalues of P B * [ V ( P Q ) ] Pß*V(Pn)» which turns 

2 9 

out to be PB*; hence the numerator is a ae x (b-1) variable. 

Furthermore the numerator and denominator of T ( P Q ) are indepen­

dent under HQ because their covariance is zero, which follows 

from 

PB*[V(P0)"1JpB*V(Po)Pc = Pß*Pc = o. 

Hence (n,-b)T{pQ)/{b-'\ ) has under HQ an F(b-1,n#-b)-distribution. 

Note that 

y'Pctv(Po)]~1pcy = y,pcy and is a oéX2(n.~b) variable. 

We have again as test statistic MSB(pn)/MSE(pn) as in the balanced 

case. For the power calculations at p = p-\: P(T(pg) > c) = 

- 2 
P(y'[PB*[V(Po)] P B* - cPc3y > 0) = P(y'Qy > 0) = P(y'Qy/ae > 0), 
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2 q 2 2 
where y'Qy/cre has the distr ibution of Z A-jS ,̂ where Ŝ  are inde-

~ ~ i = l 

pendent x (1) variables and X^ are the positive and negative 

eigenvalues of QV'{p-|) and q = rank Q. 

Spj0tvoll (1968) gives several examples of the exact power 

function calculations of the test statistics W and T for the 

hypothesis p = 0 against p = 0.1 at the 1% level for the special 

case he was able to tackle, viz. the unbalanced two-stage design 

(one-way lay-out) with b = 3 classes only. 

Verdooren (1974) shows how the exact P-values and power func­

tion of unbalanced one-way lay-out in general (thus also for more 

than three classes) can be calculated. The calculation of 

P(y'Qy/<7^ > c) can be handled with the procedure of Imhof (1961). 

2 
He shows that the distribution function of y'Qy/cre can be 

obtained quite easily by straightforward numerical integration of 

the characteristic function of y'Qy/a2. A computer program in 

FORTRAN was given by Koerts and Abrahamse (1969). With this 

program fast numerical calculation of the distribution function 

of a linear combination of independent (non-)central chi-square 

variables with positive and negative coefficients is possible. 

Another good program in ALGOL is given by Davies (1980) and 

Farebrother (1980), (1984a). The Koerts and Abrahamse program can 

in most cases be used, see Farebrother (1984b). For examples of 

calculations see Verdooren (1974) and Verdooren (1982). 

Wald (1940, 1947) and also Spj0tvoll (1967) use T(p) for 

constructing an exact (l-a)-confidence interval for p. The lower 

confidence limit p|_ of p is given by the root of the following 

equation in p, 

(n -b)T/(b-1) = F(1-a/2; b-1, n.-b) 
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and the upper confidence limit py of p is given by the root of 

the equation in p: 

(n -b)T/(b-1) = F(a/2; b-1, n - b ) . 

The construction of this exact (1-a)-confidence interval for 

p can only be solved iteratively, which can easily be programmed, 

see Verdooren (1976). For an approximate (1-a)-confidence inter­

val for p based on an approximation of T(p) see Thomas and 

Hultquist (1978). At the present time however, the calculation 

for an exact (l-a)-confidence interval is so easy, that we would 

use the procedure of Thomas and Hultquist only as a starting 

point for the iterative calculation of an exact (l-ct)-confidence 

interval. 

The upper bound Pu can be negative which is contrary to the 

model assumptions. This happens when (n -b)T(0)/(b-1) is smaller 

than F(a/2; b-1,n-b). Seely and El-Bassiouni (1983) prove that 

the probability that p(j is negative is at most a/2 and goes to 

zero as p gets large. To avoid the possibility of negative end-

points, one can use an adjusted interval suggested by Thompson 

(1955). This confidence interval for p is [max(0,P|_), max(0,py)] 

which has confidence level 1-a for p > 0 and 1-a/2 for p = 0. 

A locally most powerful test for Hg: p = p 0 against 

H-p p = p g + A, where A is small, is given by Mostafa (1967). His 

power calculations are not exact but based on approximations. 

With Imhof's procedure exact results can be given. 

Recently, Seely and El-Bassiouni (1983) were able to obtain 

Wald's (1947) exact test via reductions in sums of squares for 

the random effects adjusted for the fixed effects in a general 

mixed model. They also gave necessary and sufficient conditions 

under Wald's test, which can be used in mixed models. Harville 

and Fenech (1985) outlined the computational aspects of Seely and 

El-Bassiouni's method in the context of a specific animal 

breeding application. 

A computational remark can however be made. By calculating Wald's 

exact test via reductions in sums of squares, our method given 
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here by calculating the sum of squares as squares of projections, 

gives a more rapid and lucidly interpr.j: ed result. Seely et al. 

(1983) and Harville et al. (1985) use a linear transformation of 

y which is not a projection operator. Their linear transfor­

mations can however be easily transformed to projection opera­

tors. 

3. THREE-STAGE NESTED DESIGN 

3.1. Balanced case 

In the model (4) we have the situation 

vhik = 0 + u1h + u2hi + ehik 

with h = 1,2,...,a; i = 1,2,...,m<| for each h and k = 1,2,..., 11)3 

for each h and i. With the tools of chapter 1 we readily derive 

the distribution of SSA = y'P *y, SSB = y'P *y and SSE = y'Pcv-
~ A ~ ~ B ~ ~ ~ 

In the balanced case we have seen in 1.4: PA = Ia x A, 

P
A* = pA - pL< PB = Iam1

 x B< P
B* = PB " *V PC = Iam1m2 "

 PB' 
where A and B are symmetric and idempotent matrices with 

-1 1 2 
A = (m-|m2) Jm m and B = m2 Jm • The dispersion matrix D(y) = aeV 

with V = Ia x W with W = P1J„,im2 + P2Im1
xJm2

+Im1m2-

For the distribution of SSA = y'P *y we need the eigenvalues of 

P *V = (m1m2Pi+m2P2+1)PA*-

Because P * is a projection operator on A it has rank 
A 
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PA* = dim À* = a-1. So a-1 eigenvalues are 1 and the other eigen­

values are 0. SSA has therefore the distribution o* 

<7e(m-|ni2p-|+m2P2 + 1 )X2(a-1 ) • 

Analogously we derive the eigenvalues of P *V = (m2p2+1)p *• 
*B B 

Because ? * is a projection operator on B it has rank 
P * = dim B = a(m.|-l). So a(m-|-1) eigenvalues are 1 and the 

B 
other eigenvalues are 0. SSB has therefore the distribution 
of a2(m2p2+1 )X2(a(m-,-l ) ). Also PCV = Pc. Hence SSE has a 

2 o 

creX (am-j (m2-1 ) (-distribution because rank Pc = dim C = am-i^-l)-

Because P *VP * = (m1m2Pi+m2'32+1'p *p * = 0, SSA and SSB are A B A B 
independent. Also P *VPC = (mim2Pi+m2p2+1 )P *pc = ° ancl 

P *VPC = ( m 2 P 2 + 1 ) p *pc = ° nence S S A> S3B ar •_ utually 
B B 

independent. Hence MSB/MSE has a ;<+m2P2)f:-ci"i;-*riDution with 

a(m-]-1) and ami(m2-1) degrees of freedom respectively. 

For the test of H Q : P 2 = 0 against H-| :p2 > 0 we reject HQ at 

significance level a if MSB/MSE > F(1-a; a(m-|-1), am-|(m2-1)). 

This was the special case p2o = °; now w e consider the general 

case. 

For the test of H Q : p 2 ^ P20 against H-| : P2 > P20 tne test 

statistic ( 1 + I D 2 P 2 O ) ~ 1 M S B / M S E is u s e d < which has under H Q again an 

F(a(m-|-1), am-] (m2"1 ) )-distribution. The argument for deriving 

this test is completely analogous to the argument used in section 

2.1, which shows that we have a UMP unbiased size a test. Notice 

again that we can use the information about P2 under H Q to calcu­

late 

y 'p * [ v (p 2 0 ) r 1 pp*y = (i+m2P2o)"1y,p *y 

and 

y , pc[v(P2o>r1pcy' = y'pcy-

The test statistic is hence equivalent to M S B ( P 2 Q ) / M S E ( P 2 O ) . 
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An exact (1-a)-confidence interval for p 2 now follows from 

(1+m2p2)~1 (MSB/MSE), which has an Ffajm.j-l), am-, (m2-1 )-distribu-

tion, just as in section 2.1. 

For the test of Hg: p-j = 0 against H-j: p^ > 0 we use the fact 

that MSA/MSB has the distribution of 

[ ( 1 +m2P2+mi '"2';'1 )/C+m2':>2' ]F(a _ 1 ' a(m-|-l ) ) , 

which has under H0 an F(a-1 ,a(m-|-1 ) ) distribution. 

For the test of Hg: p-j * p-jg against H-| : p-j > p 1 0 the test 

statistic MSA/MSB has the distribution of 

[l+miffl2Pio/(1+ni2P2) ] F ( a _ 1 »a(m-|-1 ) ) under H0. 

This distribution depends on the nuisance parameter P2! 

Let us use the information about the dispersion matrix D(y) 

for p-| = p-|0, 

D(y|p10) = aetp1 0Z1Z1+p2Z2Z2 + I g m ^ ] = CT1V(P10)• 

We calculate SSA(p10) = y'P *[V(pig) ]-1P *y which is equal to 

(1+m2P2+m1m2Pio)^1y'P *y. 

Also SSB(p10) = y'PQ*[V(p10)]-1P *y = (1+m2p2rVPD*y. 

If we use as a test statistic MSA(pi0)/MSB(pig) we get 

[1+m-]m2Pig/(1+m2p2)]"1MSA/MSB and this has an 

F(a-1 ,a(m-|-1 ) )-distribution. But the test statistic depends on 

the nuisance parameter p2. 

Also the construction of an exact (l-a)-confidence interval 

for pi depends on the value of p2. 

Several proposals are made to solve this problem from which 

we mention some interesting ones. Broemeling (1969) gives a 
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simultaneous confidence region for p-| and p 2 from which an upper 

bound and lower bound respectively can be found for p-\ and Po 

separately. By projecting on the p-| axis an upper ,.-,jnd and lower 

bound respectively for p-| can be found. These bounds are conser­

vative. How to find the exact confidence coefficients assoc-iated 

with Broemeling's confidence regions for (p-|,p2) is demonstrated 

by Sahai and Anderson (1973) in terms of the upper tail of the 

inverted Dirichlet distribution. A computer program for calcu­

lating the upper tail of the inverted Dirichlet distribution is 

given by Yassaee (1976). An extension of the results of Sahai and 

Anderson (1973) is given by Yassaee (1981). 

Broemeling (1978) proposed a confidence interval for p-| based 

on a two-sided version of the simultaneous confidence region of 

{p-\iP2)- Unfortunately this proposal was wrong, as Tong (1979) 

proved. 

Khun' (1981) presented a technique for the construction of 

simultaneous confidence intervals for the values of all con­

tinuous functions of the variance components for a general 

balanced random model. For the balanced three-stage nested design 

an approximate (l-a)-confidence interval for p-j is given by 

Graybill and Wang (1979) and Wang and Graybill (1981). 

Having mentioned the proposals in the literature we now pro­

pose a new procedure. Let us consider again the test of 

H Q : PI ^ p-|o against H-] : p-| > p-jg, with test statistic 

MSA(p10)/MSB(p10) = [1+m1m2pi0/(1+m2p2)]~1MSA/MSB = f-

This test statistic has an F(a-1 ,a(m-|-1 ) )-distribution for each 

p2. In an experiment we get an outcome f. Let us now calculate 

the P-value or critical level P(F(a-1 ,a(m-j-1 ) ) > f) for each 

possible p2- In practice we can calculate this for several 

p2-values such as p 2 = 0, 0.1, 0.5, 1, 1.5, 2, 4,8 etc. For a 

certain p-|g w e n o w have a set of P-values for the range of p 2 

values. The experimenter often knows which range of p 2 is of 
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interest to him. For each value of p 2 in this range we can decide 

at significance level a whether Hg: p-| $ p-|g must be rejected in 

favour of H-j: p^ > p-|g. If the experimenter has no previous 

knowledge about p 2 , an idea about the interesting range can be 

suggested from a confidence interval of p2. (A Bayesian approach 

would assume an a priori distribution for p 2 and derive the a 

posteriori set of not rejected p-^'s). 

The idea of calculating the P-values under the Hg: p-] = p-jg 

for several given values of p 2 can be used more fruitfully. If we 

use our knowledge about p 2 we see that, irrespective of the value 

of P10' y'PB*tv(PlO>r1pB*y = n+nt2P2rVPB*y = (1+m2P2)~1 SSB 

has a cr^x2(a(m1-l ))-distribution. But also y'Pc[V(Pig) 1 ~ 1 p c v = 

2 ? 
y'Pcy = SSE has a aex (am-| (m2-1 ) )-distribution. Furthermore SSB 

1 2 ? 

and SSE are independent, hence (1+m2p2) SSB + SSE has a vex 

distribution with a(m-|-1) + am-| (m2-1 ) = a(mlm2-1) degrees of 

freedom. Let us define SSD = [(1+m2p2)"1SSB + SSE] and MSD = SSD/d 

with d = a(m-]m2-1) then MSA(p-]g)/MSD = [1 + ^2P2 + mini2Pig]~1MSA/MSD 
has an F(a-1,d)-distribution (because SSA is independent of SSB 
and SSE, SSA is independent of SSD). 

By calculating for a range of p 2 values the P-values for a 

certain H0 with value p-|g, we can decide for which interesting p 2 

we reject Hg: p-j ̂  p-jg in favour of H-| : p-| > Pio-

Also an exact (l-o)-confidence interval for p-| can now be 

given if we use a given value of p2. For each p 2 we calculate 

MSA/MSD. Because [1+m2p2+mim2Pi]"1MSA/MSD for a given value of p 2 

has an F(a-1,d)-distribution, we get an exact (1-a)-confidence 

interval for 1 + m 2 p 2 + m-|m2pi: 

(MSA/MSD)/F(1-o/2; a-1,d) < 1+m2P2+mim2p1 < (MSA/MSD)/F(a/2; a-1,d) 
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and hence an exact (l-a)-confidence interval for p-j given the 

value of p 2 , is 

L < p-i < U with L = ([(MSA/MSD)/F(1-a/2; a-1,d)] - 1 - m2P2)/(m1m2) 

and U = ([(MSA/MSD)/F(a/2; a-1,d)] - 1 - m2P2)/(mim2). 

A conservative confidence interval for p1 is obtained by choosing 

lower bound = min(L), upper bound = max(U), 

P2 P2 

with p 2 varying in the range given by the experimenter. 

When a priori information about p 2 is not available a 

Bonferroni type approach could be used. First a (1-^a)-confidence 

interval is derived for p2, based on MSB/MSE. Second, the proce­

dure above is carried out with this interval as range for p2, and 

with L and U determined (for given p2) with confidence coef­

ficient \-\a (instead of 1-a). 

3.2. Unbalanced case 

Recall model (4) which is 

Yhik = ß + u1h + u2hi + ehik 

with h = 1,2,....a; i = 1,2,...,bn and k = 1 ,2, . . . ,nn-j. 

It can easily be shown that SSE = y'Pcy has a ex|x2(n #-b# )-

a b n a 
distribution with n _ = E E nnl- and b_ = E b n . SSB = y'Pe*y 

h=1i=1 h=1 ~ 

b -a 
2 - 2 

has a distribution of ae I Â S-j where \j are the eigenvalues 

i=1 

of P *V and S2 are independent x 2 C ) variables. 
B 
The test of Hg: P 2

 = ° against p 2 > 0 can be based on 
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y'P *y = SSB and y'Pcy = SSE. Under H 0 SSB has a a2X2('o _-a)-dis-
~ B ~ ~ ~ e * 

tribution. Furthermore SSB and SSE are independent while 

P *VPC = P *PC = 0. Hence MSB/MSE has under H 0 an 
B B 

F(b_-a,n_ -b_)-distri but ion. 

For the test of H Q : p2 ^ P20 against P2 > P20 w e u s e a n a n a ~ 

logous extension of the test statistic T(p) of the unbalanced 

two-stage nested design. 

Define T(p2u) = SSB(p20)/SSE 

a bh _ _ a bh nhi 

= ï r 9hi(yhi.-yh..)2/ r E E (Vhik-Yhi.)' 
h=1i=1 h=1i=1k=1 

Rhi 
with gh i = nh i/(p2onhi+ 1>' ynl\ = ̂  Yhik/nhi a n d 

k=1 

bh _ bh 
vh.. = E ShiVhi./ E 9hi-

i=1 i=1 

We can directly apply Wald's procedure to construct an exact 

(l-a)-confidence interval for p 2 using (n__-b_)T(p2)/(b -a) which 

has again an F(b-a,n_ -b_)-distribution. See Verdooren (1976). 

We now consider the test of HQ: p-] = 0 against Hy. p-| > 0. 

We can easily calculate the expected Mean Squares (EMS), using 

the fact that the expected value of a quadratic form y'Qy with 

Ey = Xß and D(y) = cr2V, 

E(y'Qy) = tr QCT2V + ß'X'QXß, 

with V given in (8) and where tr stands for trace of the square 

matrix. 

For a sum of squares in the ANOVA table Q is equal to P *, P * 
A B 

and PQ respectively, hence QX = 0. 

Furthermore we have 
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E(y'Pcy) = <4tr(PcV) = ff|(n..-b.) and 

E(y'PD*y) = a|tr(P *V) = (b.-a)4[1+k3P2L 

a bu 
n 2 -1 -1 

with k3 = E I nni(nhi " n h . ) ' 
h=1i=1 

E(y'PA*y) = agtr(PA*V) = (a-1)CTe[1+k2p2+k1pl] 

a bu a 
2 - 1 - 1 2 - 1 -1 

with k2 = E E nhi(nh. " n..) anc' ̂ i = E nh.(nh. ~ n..'' 
h=1i=1 • •• h=1 " -

In the past Tietjen and Moore (1968) advocated a quasi-F test 

by using a linear combination a-jMSB + f1-a-])MSE such that the 

expectation of this combination was equal to E(MSA) under 

HQ: pi = 0. The idea for the quasi-F test was the application of 

the procedure of Satterthwaite (1946). The idea of Satterthwaite 

was to approximate a linear combination of independent chi-square 

m 
variables I aix2(g1-) by cx2(g), such that the expectation and 

i = 1 

variance of these two random quantities are equal. Kruskal (1968) 

pointed out that for such an unbalanced nested design MSA and MSB 

are not independent (P *VP * is not equal to a null matrix). It 
A B 

can easily be shown that MSA and MSB are independent if the 

three-stage nested design is partially balanced (n̂ -j = mn for all 

i) or has last stage uniformity. Note that last stage uniformity 

requires nn. = m for all h and i. Even for partially 

balanced designs SSA and SSB are not always distributed as a chi-

square variable. And an expression as a linear combination of 

independent x2(1) variables is still needed. 
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Next Tietjen (1974) proposed the conventional F-test based on 

MSA/MSB for testing H0: p-j = 0, instead of Satterthwaite's proce­

dure which was earlier proposed by Tietjen and Moore in 1968. The 

P-value has been approximated by P(F(a-1,b_-a) > MSA/MSB). 

Tietjen (1974) based his proposal on several simulations, but 

this is only a crude approximate test. 

Cummings and Gaylor (1974) also give crude approximate P-

values for MSA/MSD with MSD = cMSB + (1-c)MSE if 

c = !<2/'l<3 < 1 / such that under H0: p-j = 0, E(MSA) = E(MSD), and 

for(dMSA + (1-d)MSE)/MSB if d = k3/k2 < 1, such that under 

H0: p., = 0, E(dMSA + (l-d)MSE) = E(MSB). Tan and Cheng (1984) com­

pare Tietjen's test statistic, Cummings and Gaylor's test sta­

tistic and their own test statistic (I^MSA+I^MSEJ/^MSB+I^MSE), 

such that under H0: p-, = 0, E(k3MSA+k2MSE) = E(k2MSB+k3MSE). Using 

a better approximation for the distribution of the test statistics, 

based on Laguerre polynomial expansions, they conclude that their 

test statistic is a preferable one. 

However Verdooren (1974) has shown how an exact P-value can 

be calculated. Let the actual outcome of MSA/MSB be f, then the 

exact P-value is 

P0(MSA/MSB > f, given that p-, = 0) = 

Pn((y'p
A*y/y'p

B*y) > (a-1)f/(b.-a)) 

Po(y'[Pft*-[(a-Df/(b.-a)JPp*]y > 0)=P0(y'Qy > 0)=P0(y'Oy/a* > 0). 

2 q 2 
The distribution under H0 of y'Qy/cre is equal to that of Z A-jS.,-, 

~ ~ i=i 

where q = rank Q, and Xn- are the non-zero eigenvalues of QV and S? 
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are independent x2(1) variables. This probability can easily be 

determined using a computer program such as that given by Koerts 

and Abrahamse (1969), see section 2.2, and an example is calcu­

lated by Verdooren (1974). In that way exact P-values and power 

calculations of the other test statistics can be found. 

Now we consider the test of HQ: p-| < P-JQ against H-p p-j > p^0. 

For a three-stage nested design Wald's procedure, as indicated by 

Seely and El-Bassiouni (1983), does not work because rank 

(X,Z-| ,Z2)-rank(X,Z-| ) = 0, for the column space of Z-| lies in the 

column space of Z2 (otherwise stated A c B ) . 

Neither can a suggestion by Pincus (1977) be applied in this 

situation because we can not find a subspace of dimension larger 

than zero which is orthogonal to the range of X and (Z2ZI), which 

could give information about o^. 

We therefore propose our approach of section 3.1. Calculate 

for a given P2: 

y'P *[V(p1 0)r1P *y = SSA(p1 0), y'PB*[V(p10)]~1PB*y = SSB(p10) 
~ A A ~ ~ D b ~ 

and use as a test statistic: MSA(pig)/MSB(pio). 

For each given value of p2 we can calculate the exact P-value 

given an outcome of an experiment of MSA(PIQ)/MSB(P-JQ) = f. 

This P-value is P ( M S A ( P I Q ) / M S B ( P I Q ) > f)- Using the computer 

program we can evaluate 

q 
P(y'Qy/4 > o) = P( 1 Aisf > o) 

~ ~ 1=1 

where Q = PA*[V(p10)]_1P *-[f(a-1)/(b.-a)]P_*[V(p10)]_1P *, q is 
A A D o 

the rank of Q and \j are the positive or negative eigenvalues of 

QV(Pio)' and s^ are independent x2(1) variables. We can calculate 

the P-value according to our Hg: p-] = p-|g and we can decide 

whether H0 must be rejected in favour of H-j: p-| > PIQ-
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A better use of the information from a given value of p 2 can 

be found in improving the estimator for a^-. The distribution of 

q 
-1 2 2 

y'PD*[V(Pio)3 p
D*y = y'Qy is that of <re Z XiSi where Sn- are 

~ B B ~ ~ ~ i=1 

independent x^('<) variables and Xn- are the positive eigenvalues of 

Q[V(Pio)], or equivalently [V(p-,0) ]^Q[V(p10) ]**, and q = b - a . Let 

{h^J be a complete set of orthonormal eigenvectors of 

[V(Pin)]~,*QLV(p10)]~!* = M(B*) corresponding to the positive 

eigenvalues of {A.j}. Note that p-|0 appears in V(p1 0) but not in 

M(B*) and consequently not in (hn-} and {\^\. 

q 1 • v 2 „ 

Now E y'[V(p10)]"^h:-hi[V(p10)]"^yAi = SS6 has a aexz(q)-distri-
i = 1~ 

bution for each given value of p2. But 3SE=y 'Pc'y=y 'Pctv(Pio) ]~1pcy 

has, irrespective of p 2 and p-jg, a a^X (n, -b_ )-distribution. 

Furthermore SSE and SSB are independent, hence SSD = SSB + SSE has 

2 o 
a aex (n__-'a)-distribution. For each given value of p 2 we can use 

MSA(p10)/MSD to test H0: p-| « p 1 0 . 

Also we can now use MSA(p-|Q)/MSO to get, after some iterations, a 

(1-a)-confidence interval for p-| for each given value of p2. Of 

course this procedure must be handled by computer. But in 

principle we have for each interesting value of p 2 an answer for 

the test of Hg: p-| < pig against Hy. p-\ > p-j g -
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7.3. An example of the performance of the new exact test 

We give an example of the performance of the exact tests about the 

variance ratios p2 = <Ja/ae anc' P1 - "A/"7 e f° r t n e three-stage nested 

design, as described in section 7.2 (subsection 3 ) . The data are taken 

from Gill (1981) in which age-adjusted milk production records (305 

days) are given, obtained in the same year and herd from cows whose 

sires and dams were considered randomly representative of a large 

population. Production records (in kg) are shown in table 7.3.1. 

Table 7.3.1. Milk Production Records, kg (305 days) 

Sire 

1 

2 
•^ 

3 

4 

Dam 

1 
2 
3 
4 
5 

6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 

Production 

4379 
5560 
4637 
5726 
4968 

5355 
4605 
4393 

5195 
6137 
6253 
5553 

6268 
7112 
5840 
6246 
5400 
7301 
5453 
7374 

of full-sib 

6560 
7733 
5639 
5576 
4574 

7057 
4180 
4530 

4748 

6026 

7575 

7316 
5595 
6440 
6615 

6693 

daughters 

7198 
8072 

7052 

7351 

6666 

7024 

6382 

6592 

The statistical model for this example may be written 

Yhik = M + s h + dhi + e_hik (7.3.1.) 

(k = 1,2,...,nni for i = 1,2,...,bh and h = 1,2,3,4), 

where u is the general population mean, sn, dn-j and eni-|< symbolize the 
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random effects of sires, dams, and progeny together with environment, 

respectively. 

The analysis of variance table is given in table 7.3.2.; for the 

recipe of calculation see section 4.1. 

Table 7.3.2. Analysis of Variance table for the data of Table 7.3.1. 

Source of 
Variation 

Between sires 

Between dams, 
within sires 

Error 

Corrected total 

df 

3 

16 

24 

43 

SS 

8298165.5 

18089233.5 

20639926.0 

47027325.0 

MS 

2766055.2 
(=MSS) 

1130577.1 
(=MSD) 

859996.9 
(=MSE) 

0-2 
e 

a2 
e 

a2 
e 

E(MS) 

+ K2o-2 + 

+ K3tr2 

K l a | 

The values are K3 = 2.135; K2 = 2.462 and Ki = 10.530. 

The AN0VA estimates for the variance components are: 

CT2 = 859996.9; 
e 

02 = (1130577.1 - 859996.9)/2.135 = 126735.5; 

â| = (2766055.2 - 2.462 x 126735.5)/10.530 = 151380.4. 

Outcomes of the biased estimators for p2 = CT|/ff| ancl Pi = ffr/ae 

are P2 = ai/a^ - 0-176 and p-] = cr2/"2 = 0.147 respectively. 

For the test of H02: P2 = ° against H12: P2 > 0, the test statis­

tic f = MSD/MSE is used. The outcome of f in this experiment is 1.315; 

the P-value or critical level y = P(f > 1.315 | p2 = 0) = 0.265. The 
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power of this test for P2 with significance level y = 0.265 is 

ß(P2) = P(f > 1.315| P2). 

Some values for ß(P2> are given below. 

P2 ß(P2) 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

0.265 = y 
0.419 
0.558 
0.821 
0.960 
0.997 
0.999 
1.000 

For the test of Ho2= P2 = P20 against H-|2= P2 > P20> t n e t e s t sta" 

tistic f = T(p20) x 24/16 is used with T(p20) = SSB(p2o)/ssE = 

4 bh _ 4 .bn nhi 
E Ï 9hi(Vhi. - y h . . ) 2 / E I E ( Y h i k - Y h i . ) 2 

h=1 i=1 h=1 i=1 k=1 

where 

nhi 
9hi = nhi/(P20 "hi + D ; Yhi. = £ yhik/"hi 

k=1 

and 
bh _ bh 

yhi. = E 9hi Yhi./ E 9hi-
i=1 i=1 

For some values of P20 and p2 are given 

the P-value or critical level 

r(P20) = P(f(P2) > f I P2 = P20) 

and some power values 

ß(P2) = P(f(P2) > f I P2 > P20)-
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P2 > P20 (Probabilities x 1000) 

P20 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

0 

265 

0.1 

419 
430 

0.2 

558 
567 
574 

0.5 

821 
826 
830 
836 

1 

960 
961 
962 
964 
965 

2 

997 
997 
997 
997 
997 
997 

2.5 

999 
999 
999 
999 
999 
999 
999 

3 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

For the test of Hoi: Pi = Pio against H ^ : p-\ > pio given the 

value of P2, the test statistic f = MSA(pio)/MSB(pio) is used where 

and 

MSA(p10) = y'PA* [V(P10>]"1 PA*y/3 

MSB(pio) = y'PB* [V(P10)]_1 Pß*y/16. 

For some values of PIO» P1 and P2 are given 

the P-value or critical level 

r(Pi0 I P2) = P(f(P10) > f I P10. P2) 

and some power values 

ßiPl I P2) = P(f(P1> > f I Pi > P10- P2). 

P2 = 0 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

PI > P10 

0 0.1 

101 343 
355 

Probabili 

0.2 

514 
525 
525 

ties x 1000) 

0.5 

756 
764 
764 
762 

1 

882 
887 
887 
886 
885 

2 

950 
952 
952 
952 
952 
952 

2.5 

963 
965 
965 
964 
964 
964 
964 

3 

971 
972 
972 
972 
972 
972 
972 
972 
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P2 = 0-1 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

P1 > P10 

0 0.1 

104 304 
316 

Probabil 

0.2 

460 
472 
472 

ities x 

0.5 

706 
716 
716 
714 

1000) 

1 

851 
857 
957 
856 
855 

2 

935 
938 
938 
937 
937 
937 

2.5 

951 
953 
954 
953 
953 
953 
953 

3 

962 
963 
964 
963 
963 
963 
963 
963 

P2 = 0.2 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

P1 * P10 

0 0.1 

106 278 
290 

Probabil 

0.2 

420 
431 
432 

ities x 

0.5 

664 
674 
674 
673 

1000) 

1 

822 
829 
829 
828 
827 

2 

920 
923 
923 
922 
922 
922 

2.5 

939 
942 
942 
942 
941 
941 
941 

3 

952 
954 
954 
954 
954 
954 
954 
954 

P2 = 0 .5 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

P1 > P10 

0 0.1 

113 233 
243 

[Probabil 

0.2 

342 
352 
355 

ities x 

0.5 

566 
576 
578 
577 

1000) 

1 

745 
753 
754 
753 
752 

2 

875 
880 
880 
880 
879 
878 

2.5 

904 
907 
908 
908 
907 
907 
906 

3 

923 
926 
926 
926 
926 
925 
925 
925 
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P2 1.0 

P1 > P10 (Probabilities x 1000) 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

0 

119 

0.1 

200 
208 

0.2 

278 
286 
289 

0.5 

463 
471 
474 
475 

1 

646 
653 
655 
656 
654 

2 

807 
812 
814 
814 
813 
812 

2.5 

847 
851 
853 
853 
852 
851 
851 

3 

875 
879 
880 
880 
879 
879 
878 
878 

p 2 = 2.0 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

P1 * Pio (Probabil 

0 0.1 0.2 

126 175 223 
181 230 

233 

ities x 

0.5 

354 
361 
364 
367 

1000) 

1 

515 
521 
524 
527 
526 

2 

695 
701 
703 
705 
705 
703 

2.5 

748 
753 
755 
757 
756 
755 
754 

3 

788 
792 
794 
795 
795 
793 
793 
792 

p 2 = 2.5 

P1 > P10 (Probabilities x 1000) 

P10 

0 
0.1 
0.2 
0.5 
1 
2 
2.5 
3 

0 

128 

0.1 

169 
174 

0.2 

210 
215 
218 

0.5 

323 
329 
332 
336 

1 

470 
476 
479 
483 
483 

2 

651 
656 
658 
661 
661 
659 

2.5 

706 
711 
714 
716 
716 
714 
713 

3 

749 
753 
756 
758 
756 
756 
755 
755 
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CHAPTER 8 

8. ESTIMATION OF VARIANCE COMPONENTS 

PART II: CONTINUATION 

8.1. Introduction 

In chapter 6 the onset of the author's research on estimation of 

variance components was given. 

Because many statisticians did not easily grasp the rationale 

of Rao's minimum norm derivation in the MINQUE, the unified least 

squares approach in the derivation of estimators for variance com­

ponents is given in section 8.2. 

Also recent developments in permissible (hence non-negative) esti­

mators for variance components are presented. 

In section 8.3 the connection between the calculation of Maximum 

Likelihood (ML) estimators, Restricted Maximum Likelihood (REML) esti­

mators and Iterative Minimum Norm Quadratic Unbiased Estimators 

(I-MINQUE) is elucidated. 

Furthermore some recommendations are made for the procedure of 

estimating variance components. 

Finally, no discussion of the Bayesian approach in variance com­

ponent estimation will be found here. Previous knowledge about variance 

components must of course be incorporated. This can be effected by 

using prior weights for ratios of variance components in the disper­

sion matrix, which is used in a non-negative modification of a least 

squares estimator (or MINQUE) for the variance components. 
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8.2. Least squares estimators and non-negative estimators 
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LEAST SQUARES ESTIMATORS AND NON-NEGATIVE ESTIMATORS 

OF VARIANCE COMPONENTS 

L.R. Verdooren 

Department of Mathematics 

Agricultural University Wageningen 

The Netherlands 

Key Words and Phrases: permissible estimators; MINQUE; MIVQUE; 

ML; REML; quadratic or convex programming. 

ABSTRACT 

Using the least squares method we have a unified procedure 

for the derivation of estimators for variance components in the 

linear model of ZZ', where Z is the residual vector from a simple 

least squares fit for X/3. These least squares estimators are 

unbiased but not always non-negative. The invariant and unbiased 

least squares estimators for variance components are the MINQUE 

estimators. For multivariate normally distributed variables the 

MINQUE is the same as the MIVQUE. 

Non-negative estimators of variance components are per­

missible estimators. Taking into account the constraints of non-

negativity of the variance components, a quadratic programming 

procedure is suggested. 

For multivariate normally distributed variables the ML method 

or REML method can be used. In practice many computer programs do 
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not take into account the non-negativity constraints on the para­

meter space. Henderson's iterative procedure using the mixed 

model equations guarantees a non-negative solution for REML. 

1 . INTRODUCTION 

The estimation of variance components for the analysis of 

variance models has a long history. A good expository review has 

been given by Khuri and Sahai (1985). Several times one can find 

remarks on negative estimates produced by certain estimators. 

Rao (1977) and Kleffe (1980) reviewed the estimation procedures 

based on the MINQUE-theory. However, leading principles in these 

papers are properties such as unbiasedness and minimum variance 

of the unbiased estimator. These properties are often not so 

relevant for the estimation procedures for variance components. 

We feel that the leading principle must be permissible estimation 

and, for the usually adopted quadratic loss function, the minimum 

mean squared error. 

We examine the least squares method for estimating variance 

components. This method gives for many situations a unified pro­

cedure, which can also be adapted to meet the non-negativity 

constraints for variance components. 

We introduce in section 2 the concept of permissible estima­

tion. In section 3 the least squares estimators are discussed in 

the linear model and in the dispersion-mean model. In section 4 a 

procedure has been given which can be adopted to produce non-

negative variance component estimators. In section 5 some remarks 

on non-negative ML and REML estimators for normally distributed 

variables are made. 

2. PERMISSIBLE ESTIMATION 

At the Vl-th International Conference on Mathematical 
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Statistics at Wisîa, Poland (7-13 December 1978), the concept of 

permissible estimation has been introduced, see Verdooren (1980). 

In our view this concept must be the first requirement for esti­

mating variance components. 

Consider a random variable y which assumes values in the sample 

space Y according to a probability distribution P which is known 

to belong to a given class {Pe,- 9 e 6} of probability distribu­

tions, and let y denote the observed value. If P = Pg, 9 is the 

true value of the underlying unknown parameter. We shall be 

interested in the estimation of a real valued parameter g: 9 -> R, 

or equivalently of the corresponding true value y = g(9). We need 

an estimator d: Y -* R with the interpretation that d(y) will be 

used as an estimate for y = g(9) if the outcome y e Y of y is 

observed. 

Estimators will be compared by means of their mean squared 

error (MSE) (or risk function if squared error loss is 

considered): 

MSEe(d) = Ee(d(y) - g(9))2 = vared(y) + (biase(d))2 

where biasg(d) = Egd(y) - g(9). 

An estimator is said to be admissible if no estimator exists 

with uniformly (in 9) smaller MSE. Or, more precisely, d is 

admissible if no d' exists with MSEe(d') « MSEe(d) for all 9 e 0 

and MSE9(d') < MSEg(d) for at least one 9. 

In our view it is worthwhile to introduce the concept of per­

missible estimation as a necessary condition. Let y-|, y2, •••# yn 

be a random sample of a random variable y with probability 

distribution P e {Pe; 9 e 9}. An estimator t = t(y-|, y2, ..., yn) 

for 9 is said to be permissible if t e 9 holds with probability 

one. In some situations r = (g(9)} = {y; y = g(9) for some 9 e 0} 

is an interval of the form [a,b] or [a,«») or (-°o,b] or some other 

bounded set. If the estimator d: Y - R takes on values outside r 

with positive probability, (and hence is not permissible), then it 
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can be improved by truncating. This is seen immediately as 

fol lows. 

Let d: Y - R be any estimator for y = g(8) (it need not be 

unbiased) such that r = {g(0;} = [a,b] and Pg{d(y) / r) > 0 for 

at least one 9 e 8. Let d' be the corresponding truncated estima­

tor: 

d'(y) = 

a if d(y) < a 

d(y) if a « d(y) « b 

b if d(y) > b. 

Now for any 9 e 9 we have g(8) e r and hence 

(d(y) - g(9))2 ? (d'(y) - g(9))2 for all y e Y. Hence 

MSEe(d) ? MSEe(d') for all 9 e 8. For 9 with Pe{d(y) 4 rl > °> w e 

obviously have strict inequality and hence d is inadmissible. 

Note that this result can be extended to the case where y is 

a random vector and 8 is a closed convex set. Truncation here 

means that an estimate which falls outside this set 8 is replaced 

by the boundary point of 0 nearest to it. 

Examples of not permissible estimators are probability esti­

mators with possible values outside [0,1]; and estimators for a 

parameter known to be positive, which may take occasionally nega­

tive values. 

For the sake of illustration, consider the balanced one-way 

random effects model : 

Yij = u + an- + e.jj, i = (1,2, , m ) ; j = (1,2,..., n). 

2 
The random variables a.,- are N(0,cr-|) and are identically and inde­
pendently distributed (i.i.d); the random variables e^j are 
NfO.ff2,) anc' a l s o i.i.d.; the a.,- and ê .- are assumed to be inde­

pendent. By calculating 
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m n ran 
CI = (E E yij)2/(mn); SSA = E ( E )Lij)

2/n - ÇJ, 
i=1j=1 1=1 j=1 

m n 

SSR = E E ¥? . - ÇT - §§A; MSA = SSA/(m-1), MSR = SSR/(m(n-1)) 
i=1j=1 1J 

2 2 
we have an unbiased estimator £ 2 = MSR for cr2'

 a n d a n unbiased 
estimator for a2 is 

d2 = (MSA-MSR)/n. 

Notice that 

m n 
5 2 = E E (Yij - ̂  )2/(m(n-l)) 

i=1j=1 

2 2 

is a permissible estimator for 02- However &-\ is nota permissi­

ble estimator since there is a positive probability that d2 

takes negative values under the model assumed! We have 

P(d2 « 0) = P((MSA - MSR)/n « 0) = P(MSA/MSR < 1) 
1 

= P(F(m-1),m(n-1)) « (1 + ny)_1) where y = <r2/<72. 

Verdooren (1982) gives extensive tables for this probability for 

several values of m, n and y. From this table it can be seen that 

negative estimates can occur frequently, in certain cases 25 % of 

the time. 
2 

It is possible to use the biased estimator max(0,d-|), which 
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2 2 2 
has smaller MSE than #1 for all values of (cr-],^)-

Another example is given by the estimators in the linear 

regression model with unequal variances. See Rao and Subrahmaniam 

(1971)., Hartley and Jayatillake (1973), Chaubey and Rao (1976) 

and Kleffe (1984). 

3. LEAST SQUARES ESTIMATORS 

3.1. The linear model 

Let us consider the linear model 

Y = Xß + e, 

where y,e e Rn, X is an nxp-matrix of full rank p, the parameter 

vector ß e R P ; E(e) = 0, dispersion matrix D(e) = D(y) = o-2In. It 

is known that the simple or ordinary least squares estimator for 

ß, ß_ = (X'X)~1X'y, is unbiased. Each linear combination c'ß (or 

written as inner product of c and ß: (c,/3)) has as an unbiased 

estimator 

c'£ = (c,|). 

Let X be partitioned as (Xi,X2) with X-| and X2 of full column 

rank PT and p2 respectively (p, + p 2 = p) and ß = (jä'./S*)'. If we 

wish to remove the nuisance parameters ß-| while estimating /32 

unbiasedly, we may write the expectation vector Ey = Xß in the form 

Ey = X-,01 + X 2 ß 2 = X-,/3-, + P-iX2ß2 + U n - p l) x 202 = x 1 a + «1*202 

where P-] is the orthogonal projector on the column space of X-|, 
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P-, = X.] (X̂ X-, )"1x:j and M-, = In-P-|, the orthogonal projector on the 

nul 1 space of X]. 

A linear combination A'/32 = (A,j32) °* parameters is iden­

tifiable if and only if there is a p such that 

X£M-|X2P = A. 

In this case of full rank, any linear combination of the para­

meters is identifiable. From the normal equations we estimate J32 

from 

X 2 M 1 X 2 ê 2 = X2
M1Y' 

and the linear unbiased estimator for 

P2 
(A,ß2) = *'02 = z *i02i 

i=1 

is given by 

P2 
( M ^ p . y ) = I Pi(M1x2i,y_), 

i = 1 

where x2l-, i = (1,2,...,p2) are the columns of X2. 

If the linear model y_ = X/3 + e has dispersion matrix 

D(e) = D(y) = <72V 

and V is symmetric and positive definite, it is known that the 

ordinary least squares estimator for ß, £ = X(X'X)~'X'y_, is 

unbiased. Let V be known, V = v^V5* with V3* symmetric. Now we 

transform the model by multiplying with V"5*, that is. 

\/-hy, = v-3*X/3 + V"^e. 
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or y = xß + ë with D(ê) =sD(y) = crzIn. 

In the Transformed linear model, we apply the ordinary least 

squares estimator for ß, which gives 

1 = (X'Xr1X'y. 

Substituting from the above transformation, the generalized least 

squares estimator is 

. Ji = (X'V""1xrlX,V-1y, 

which is the best linear unbiased estimator or Gauss-Markov esti­

mator for ß. 

The ordinary least squares estimator will be the same as the 

generalized least squares if and only if the range of VX is con­

tained in the range of X and rank of X = p. 

3.2. Variance Components model 

Let us consider the variance components model: 

y = Xß + U-,a-, + ... + Ukak, 

where y is an nx1-vector of observations, X is an nxp-design 

matrix of known constants and of full rank (p < n), ß is 

px1-vector of fixed effects parameters, U.j is a known nxm.j_ 

-matrix, a^ is an m.jx1-vector of random effects such that 

(1) Ed,-) = 0, 

(2) D d i ) = <72lm-' i = <1'2 k>-
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2 
Further, U^ = In and varta^) = <r̂  > 0. The column space of 

(X, U-], Ü2, ..-, U^) is Rn. These assumptions imply that 

k 
D(y) = E ffZu.u, = CT2Vi + a ^ 2 + ... + -a* Vk_, + ff2ln 

i = 1 

= cr2(y1v1 + r 2 v 2 + . . . + Yk-iVk-1 + x n > = a 2 v 

where the variance components a^ = <r2y.j for i = (1,2, . . . ,k-1 ), 

a? - T2, and D(y) is positive .. . inite. 

The least squares approach to estimate variance components or 

linear combinations of variance components has been used by Seely 

(1970 a,b) and Seely and Zyskind (1971). Instead of quadratic 

functions of y, Seely utilizes linear functions of Z = yy' in S, 

a vector space of symmetric nxn-matrices, with inner product of 

A, B e S defined by (A,B) = tr A'B = tr AB, where tr A means 

trace of A. The linear estimator for variance components is 

(A,Z). The expected value of Z is: 

p p k 

E(Z) = E E /3-i/SjB-ij + E afv, 
i=1j=1 i=1 

where B-j-j = X-JX} and B̂ ,- = x-jXj + x,-x.j for i < j are symmetric 

and Xj is the j-th column of X. Alternatively, 

k 
E(Z) = XYX' + E •a?V1- with 'V = ßß' . 

i = 1 

Hence E(Z) belongs to (span 3 0 + span B-|} with 

B0 = {B i j ; 1 « i « j « p} and B1 = {V-,, V2, . . . , Vk) . 

This model has a form similar to the one in section 3.1. 

The disperson matrix of Z consists of the product of the 
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second and fourth moments of y. Let vec A be the column vector 

obtained from writing the rows of the matrix A one behind the 

other and transposing the resulting row vector. Then the inner 

product of A and B is the ordinary inner product of vec A and 

vec B: (A,B) = (vec A)'.(vec B) = tr(A'B). 

2 2 2 
We have a nuisance parameter Y and parameters cr-|, (73, •••, o-k 

with the column vectors vec V-|, vec V2, ..., vec Vk, respectively. 

We apply the ordinary least squares method to this model after 

eliminating the nuisance parameter f. To remove the nuisance 

parameter Y we use the linear operator I - n where I is the iden­

tity mapping of S to S, I is the projection operator on B Q . In 

this case n(A) = PAP, where P is the orthogonal projection on the 

column space of X, i.e. 

P = X(X'X)"1X', and (I-n)(A) = A - PAP. 

The unbiased estimation of E A.a? is possible if the equations 
i i 

i = 1 

( v ^d -nxv , ) ) , . . . , (Vvd-nHVknUpJ fx,' 

(vk,(i-n)(v1)) (vk,(i-n)(vk)) lpk lxk 

or [tr{V.j(Vj - PVjP)}]p = X have a solutic 

The unbiased estimator of Z X.CT? is then given by 
i=1 

k k 

i P i td-nnvi j .z ) = E PXyXVi-PViPjy). 
i=1 i=1 
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Seely (1970b) uses the operator 

7T(A) = Ji{ (I-P)A + A(I-P)] 

to remove ? and obtained the normal equations 

t r ^ d - P l V , ) ... tr(V-|(I-P)Vk) 

Ltr(Vk(I-P)V-,) ... tr(Vk(I-P)Vk)J[pkJ l\k 

Pi 

The unbiased estimator of E X.cr? is given by 
i=1 

Ï P^y'd-PJViy) 
i = 1 

In Rao (1973) one finds that the conditions for an invariant 

k 

and unbiased estimator y'Ay of I X a* are: 
i i 

i = 1 

AX = 0 

tr(AVi) = Xi i = (1,2, ..., k)J 

Seely (1972) shows that Q'y is a maximal invariant statistic from 

Rn to R°l, where Q is a nxq-matrix with q = n-rank X, column space 

of Q = null space of X' and Q'Q = Iq, i.e. QQ' = I-P = M, where P 

is the orthogonal projector on the column space of X. Now we use 

QQ'y = My or the simple residuals as our invariant statistic. We 

have, since M = M', 
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k 
E(My) = MXß = O and D(My) = MD(y)M = Z a^^M. 

The set of normal equations for the least squares estimator of 

k 
Y X <?2 gives a solution 

i = 1 i i 

Z p.j(MV.jM, My y'M) 
i = 1 

where the p^'s satisfy the matrix equation {(MV^M, MV,M)}p = X. 

Using the properties of trace operators we find that the invariant 

k 
2 

and unbiased estimator of Z A^an- can be written as y'A*y where 
i = 1 

A* = Z piMV.jM and p-,, ..., p k satisfy Z p.jtr(MV.jMVj) = Aj for 
i=1 i=1 

j = (1, 2, .., k ) . 

k 

If we know that D(y) is of the form T = Z ct2V., or in other 
•*• i i 

i = 1 

2 2 
words, if <x.j is the a priori (or approximate) value of a^, 
we first transform y into y = T"^y with Ey = T"^Xß = Xß 

k k 
and D(y) = Z otT^V^'* = t a ? ^ . 

i=1 1 i=1 

The invariant statistic is now My with M = I-P and P = X(X'X)~1X' 
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k 
The invariant unbiased estimator of Z X.cr? is then given by 

1 1 

i = 1 

k 

Z Pi (MV-jM.Myy'M) where the p^'s satisfy the matrix equations 

i = 1 

{MV.jM,MVjM)}p = A. 

The invariant and unbiased estimator of Z A.CT?, given T = Z a?V., 
i i l i 

can then be written as y'A*y where 1=1 1_ 

k 
A* = Z pi(I-P|)T-1ViT-1(I-PT). 

i = 1 

The coefficients p-|, ..., p^ satisfy 

k 
Z Pi tr(I-P|)T-1ViT-1(I-PT)Vj = Aj for j = (1,2 k), 

i = 1 

where 

PT = X(X,T_1X)-1X,T-1. 

This is the invariant MINQUE (Minimum Norm Quadratic Unbiased 

Estimator) of Rao (1970, 1971, 1972, 1973). We have derived here 

these estimators using the well known least squares procedure. 

The rationale of Rao's minimum norm is not so easily understood 

by several statisticians. 

When y has a n-variate normal distribution, since Ax = 0, 

var(y'Ay) = 2tr (AD(y)AD(y) ) + 4ß'X,AD(y)AX/3 = 2tr(AD(y)AD(y) ) , 
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Thus, if the true variance components area?*, ...,, a?, tr(ATAT) 

is proportional to var(y'Ay) and the invariant MINQUE is the 

locally minimum variance unbiased quadratic estimator under 

multivariate normal distribution of y. 

Finally we remark that Seely (1971) shows that when y has a 

multivariate normal distribution, the best quadratic invariant and 

k 
unbiased estimator of Z \.a2. is a function of My if and only if 

i = 1 

B = span{MV-,M, ..., MV^M} is a quadratic subspace of all real 

symmetric matrices 3. A subspace B of S with the property that 
B-] e B implies B? e B is said to be a quadratic subspace of S, 

that is, the elements of B form a Jordan algebra with operator 

%[(A,B)+(B,A)]. Notice that in this case the ordinary least squares 

estimator of cr? is equal to the generalized least squares estimator. 

Seely (1972, 1977) used.the notion of quadratic subspaces 

also in the derivation of completeness of certain statistics for 

a family of multivariate normal distributions. 

The approach of looking at the quadratic estimators y'Ay as 

linear functions of yy' has been exploited by Pukelsheim (1976, 

1977). That the mean and dispersion share the same structure 

(dispersion-mean correspondence) has been elaborated by 

Pukelsheim (1977). See also Drygas {1977), Pukelsheim (1979) and 

Anderson, Henderson, Pukelsheim and Searle (1984) for overviews 

of this topic. 

If y has a multivariate normal distribution the least squares 

approach gives the MINQUE which is the same as the MIVQUE 

(Minimum Variance Quadratic Unbiased Estimator). See Swallow and 

Searle (1978) for the comparison of MIVQUE and ANOVA estimators. 
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4. NON-NEGATIVE ESTIMATION 

The question now arises whether the least squares solutions 

of the variance components in the dispersion-mean correspondence 

model approach, are permissible estimators. For balanced designs 

these estimators (thus also the MINQUE estimator) are the same as 

the ANOVA estimators. We saw already in section 2 that the ANOVA 

estimator is not permissible. For unbalanced designs with two or 

more classifications, there are no unique ANOVA estimators. For 

the one-way model with unequal variances several estimators for 

the mean and the variances are examined by Rao, Kaplan and 

Cochran(1981). Rao and Chaubey (1978) showed that for the model 

Yij = M,+ Êij' J = (1,2,...^) for i = (1,2,...,k), 

2 
with E(en-j) = 0, varfe,-.) = Oj and independent e-j.-'s, non-nega-

n 
2 — ? 

tiveness and unbiasedness result in §.,• = Z (y_i j-y.i. ) /(n.,-1) as 

j=1 
2 

the estimator for CT.J. 

LaMotte (1973) shows that for the variance components models 

the only individual variance component which can be estimated un-

biasedly by a non-negative quadratic function y'Ay is cr?, the last 

variance component; CT? can have a non-negative estimator only 

if all Vn-, i = (1,2,... ,k-1 ) are singular. (Note V^ = In is non-

k 

singular). Further E A CT2 with all X^ non-negative, may be estima-
i i 

i=1 

ted unbiasedly by a non-negative quadratic y'Ay. For the balanced 
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one-way lay-out of the example in section 2, X-,«?2 + X-CT? has an 

unbiased estimator y'Ay with A symmetric and non-negative definite 

if and only if X2 > n-1X-| > 0. Clearly 02 = E (MSR) and 02 + ncr-| = 

E(MSA) can be estimated by a non-negative quadratic. 

We shall now describe a procedure for obtaining non-negative 

estimators from the least squares residuals. Consider the model 

y = X/3 + E U^a,, 
i = 1 

with the positive definite dispersion matrix 

2 
0(¥) = (7k(l'lv1 + ••• + Yk-^k-l + * n ) ' (see t n e t o P °^ section 

3.2).Consider the residuals My, M = I - P with P = X(X'X)"1X' the 

orthogonal projector on the column space of X. My is a maximal 

invariant statistic in a subspace of dimension q = n - rank X. 

We now have the residual model 

k 

My with E(My) = 0 and D(My) = E CT2MV.JM. 

i=1 

2 2 2 
The natural parameter set for (er-), 02, ...» o^)' is 

2 2 2 k 
GM = {(s1f s2 s k ) ' e Rk| E s2MV:-M e s}, 

i=1 

k 
where E s?MViM is positive definite and S is the set of all real 

i=1 

symmetric non-negative definite nxn-matrices. 

Pukelsheim (1981 a,b) characterized non-negative estimabi1ity 
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2 
of a form Z \jOj by means of the natural parameter set in a resi­
dual model. This leads to the surprising alternative that in the 
presence of a quadratic subspace condition either the standard 

2 
unbiased estimators s.,, i = (1,2,...,k), provide an unbiased 

2 
non-negative definite quadratic estimator, I ^i§i/ or no such 
estimator exists. This is proved by Mathew (1984a). 

Mathew (1984b), Peddada (1984) and Massam and Muller (1985) 

extend Pukelsheim's results, but the checking of conditions of 

non-negative estimabi1ity is not easy if there is no quadratic 

subspace in the natural parameter set. In the linear model 

y = XjS + e 

with Ee = 0, D(e) = D(y) = a2V, V positive definite, sometimes ß 

belongs to the positive orthant Rp of RP. A permissible estimator 
+ 

ß_ of ß, better than the one found by truncation (i.e. replacing 

negative estimates of ßn- by zero), is provided by the solution of 

the quadratic programming problem: 

minimize lly-Xbll2, b^ » 0, i = (1,2, ..., p) 

or, if V is known, 

minimize HV'^y - V'^Xbll2, bn- ̂  0, i = (1,2, ..., p ) . 

If there are inequality constraints for some ßj, ß must belong to 
p 

a convex subset of R and we again have a quadratic or convex 

programming problem. See e.g. Judge and Takayama (1966), 

Mantel (1969), Waterman (1974), Liew (1976), and Bremner (1982). 
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In the case of the variance components modeT, we discussed in 

section 3 the least squares approach of Seely (or the MINQUE of 

Rao) to estimate the variance components a?,...,a?. In his proce­

dure Seely had not taken into consideration the non-negativity of 

2 2 
O],...,0^. Imposing this restriction on the parameters means that 

we may use again the quadratic programming approach in order to 

k 
assure that the estimators of Z k.cß. are non-negative. 

i = 1 

A solution of the related quadratic programming problem is 

found using the algorithm of Waterman (1974). Consider all 

possible 2^ subsets of (l, 2, ..., k}. For each such set, say J, 

we minimize HZ - E(Z)II and obtain the unrestricted solution. More 

precisely we project Z orthogonally on the space generated by 

(MV.jM; i e J}. If all the estimates of the parameters with index 

in J are non-negative, we retain these estimates and the 

corresponding norm IIZ - {E{Z) corresponding to J) II. The retained 

subset J which gives the minimum of these norms solves the 

original problem; those parameters a? for which i ̂  J 

are estimated by zero. These non-negative estimators are closest 

to the least squares estimators. 

Brown (1978) also started with the residual model and also 

used a quadratic programming technique to find a non-negative 

solution. But now he uses these estimated variance components to 

get a generalized least squares solution for ß. By this he gets 

an updated My and covariance matrix of Z = (My)(My)'. Using these 

D(Z) for the projection on the parameter space with as inner pro­

duct of 2 elements A, B e S: tr(A[D(y)]"1B) he stops after a cer­

tain number of iterations or after the convergence criterion has 

been met. Rich and Brown (1979) reported some experimental evi-
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dence for the usefulness of this procedure. 

For the special case with two variance components, non-

negative unbiased estimators are given 'by Saksalary and Moliftska 

(1984) and non-negative, admissible invariant estimators by Gnot, 

Kleffe and Zmyslony (1985). 

Another type of a non-negative estimating procedure is given 

by Rao and Chaubey (1978). They minimize the norm of the 

invariant MINQUE without restrictions of unbiasedness, and called 

this estimator MINQE. 

k 2 2 ^ 

For estimating E p-jcr-j their estimator is y_'Ay_; with an- are 

i=1 

2 k 2 
a prion' values of a-,-, hence D(y_) is the form T = I «i^i and 

i=1 
k 

A = I (pl-/n1-)ai(I-PT)'T"1V.;T"1(I-PT) where PT = X(X*T"1X) " V T - 1 . 

If : = T"1(I-PT)y then the MINQUE for o^ is given by 

? 4 
d* _ a^ z'Viî/n:- and is non-negative. 

Chaubey (1983) proposed a non-negative,estimator closest to 

MINQUE. Let the estimator o^ (for some i) be the MINQUE y\Ay, 

where A is not necessarily non-negative. Write A in its spectral 

n 

form A = E A-je-je-j where A.j are the eigenvalues of A and e-j is 
i=1 

the orthonormal eigenvector belonging to A.;. 

Skip the negative eigenvalues A-j (say n-r ones) and define 

r 

B'B = I Aieiei- The euclidean norm IIA-B'BII is minimal, or other-

j-1 

wise stated the A matrix is closest approximated by a non-

negative matrix B'B. The estimator y'B'By is a non-negative esti-
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2 
mator for Oj and can be seen as a truncated MINQUE, since it is 

obtained by taking the spectral decomposition of the matrix A. 

The estimator y'B'By remains within the class of invariant 

quadratic estimators but is not always unbiased any more. 

For a discussion of the properties of these non-negative 

estimators see Rao (1977), Rao, Kaplan and Cochran (1981), Rao 

and Sylvestre (1984) and Kleffe (1980). The comparison of these 

non-negative estimators is given by Chaubey (1984). 

For the balanced case Thompson (1962) and Thompson and Moore 

(1963) derive non-negative estimators such that linear com­

binations of variance components (e.g. CT? « al- + aV) are order 

preserving. Another type of non-negative estimator for variance 

components has been proposed by Härtung (1981), but his method is 

not order preserving for estimators of linear combinations of 

variance components! Therefore we do not discuss this estimator. 

Kleffe and Rao (1986) discussed the existence of asymp­

totically unbiased non-negative estimators. For finite n we al­

ways have a positive probability to get negative estimates. For 

infinite n this probability is zero. 

Simple conditions can be found from the expressions of the 

estimators in several cases. Secondly, adjustments to non-

negativeness result in the bias for the unbiased estimators like 

the ANOVA and the MINQUE. The variances of these adjusted biased 

estimators may not become small unless certain conditions are 

satisfied. Rao (1987) examined for two models the conditions for 

the biased and unbiased estimators of the variance components to 

become small in MSE. 

5. MAXIMUM LIKELIHOOD ESTIMATORS 

Another estimator which is always permissible is the proper 

maximum likelihood estimator (MLE), which yields a point in the 
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parameter set 6 at which the likelihood function attains an abso­

lute maximum. It should be noted that in many situations the 

estimators obtained by merely solving the likelihood equations, 

i.e. setting first derivatives of the likelihood equal to zero, 

will not be permissible. Solving likelihood equations while taking 

into account the restrictions imposed by the parameter set 0 will 

give the proper MLE. 

For the variance components model with multivariate normally 

distributed y_, Hartley and Rao (1967) give an iterative procedure 

for solving the likelihood equations under the restriction of 

non-negative variance components. 

The restricted maximum likelihood (REML) or modified maximum 

likelihood approach of Patterson and Thompson (1971, 1975) maxi­

mizes the likelihood, not of the complete vector y, but of all 

error contrasts. 

For a discussion of maximum likelihood approaches to variance 

component estimation see Harville (1977). J.N.K. Rao warned in 

his comment on Harville's article against the use of 

ML-procedures, because none of the proposed algorithms in that 

article guarantees a solution which is indeed ML. 

The behaviour of the likelihood as a function of the variance 

components appears to be complex,- even for the simple unbalanced 

one-way lay-out, the likelihood equation may have multiple roots, 

or the ML-estimate may be a boundary point rather than a root. 

A procedure which guarantees a non-negative solution is the 

iterative process of Henderson (1984) using the mixed model 

equations to get a REML solution. The comparison of ANOVA, 

MINQUE, REML and ML estimators for variance components in the 

unbalanced one-way classification has been done by Swallow and 

Monahan (1984). Conerly and Webster (1987) extended the com­

parison between the MSE of the MINQE and the estimators con­

sidered by Swallow and Monahan (1984). 
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8.3. Which estimation procedure to be used? 

For the variance components estimators we gave, in section 5.2 

subsection 2.1, the mixed model 

k 
y = X/3 + I Uia.i (8.3.1) 

i = 1 

2 
where a|< are the e r r o r e f f e c t s w i t h D(a|<) = a|< V|< w i t h V|< = I n . 

Let v s tand f o r the column vec to r o f va r iance components: 

2 2 2 2 
v ' = (CTI, a2, . . . , crk) = a k ( r i r 72 1) ( 8 . 3 . 2 ) 

To estimate v, at the present time four main options are 

available: ANOVA, Least Squares or MINQUE, ML and REML. 

For balanced designs ANOVA and MINQUE are the same. For unbalanced 

designs the absence of an optimality criterion for ANOVA estimators is 

a serious deficiency. With more than two variance components, 

Henderson's Method III estimators give no unique estimator either. 

Therefore our recommendation is to abandon the ANOVA method of esti­

mating variance components for unbalanced data. 

MINQUE, ML and REML are all to be preferred over ANOVA because 

they have built-in optimality properties. There are also computational 

connections between these three estimators. 

Let us first consider the invariant MINQUE as described in section 

5.2, subsection 4, (§ 5.2.4). The dispersion matrix of y is: 

D(y) = V = f a\ V-i (8.3.3) 
i = 1 

i 2 2 
where V-; = U-jU-j. If the a priori (or approximate) values of an- are a-j, 

then the variance components are estimated by calculating with the 

approximate dispersion matrix 
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k 2 
T = I ai Vi. 

As described in § 5.2.4 the invariant unbiased estimator for 

I X-i a-j = x'v, given T = \ a-jV-,, is 
i=1 i=1 

k 
I Piy'(i-PT)T-'lv-iT-i(l-PT)y 

1=1 

in which pi, ..., p|<; satisfy 

k 
Z Pi*r[(I-Pr)T-1 ViT-1(I-PT)Vj] = Xj 

for j = 1, 2, k, and in which PT = X(X'T"1X) -IX'T-1. 

We use the notation 

i-J='K i=k 
(aiiL -_i for a square matrix of order k and { b i j . , for a column 

•j i , j — i 1 —1 

2 
vector of order k. Let u be the column vector of a prion' values a-j, 

2 2 2 2 

which are used in place of a-\, w = (a-j, <X2, ••., a|<) '. 

Let Pu = T - 1 ( I - P T ) , then P U = P G / • 

Let p = (pi, p2, ..., Pk)'- t n e n t n e estimator of X'v is 

x ' i = p'{ y p u V i p w ï } }:) ( 8 _3_ 4 ) 

and X'v exists if 

{ f ( P u Vi Pw Vj)}i;j=^ = X . (8.3.5) 

Inserting (8.3.5) into (8.3.4) means that the estimation of the 

variance components vector v must satisfy the equations in matrix form 

{tr(Pw Vi Pu Vj)} J;ji* v = {y' PW Vi PU y}]J 

or, using the property of the trace operator tr(ABC) = tr(BCA) and 
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Vi = UiUif 

{trCUiU-PwUjUjP«)}]^^ y. = {y'PwUiUÎPwY) ] J . (8.3.6) 

A very natural extension is to use as a new u the outcomes 9 from 

(8.3.6) and solve the equation (8.3.6) with this new u. 

One iterates till the solution is sufficiently accurate. This is the 

Iterative MINQUE or I-MINQUE for the variance components. 

The ML estimator for the variance components is derived in section 

5.2, subsection 6, (§ 5.2.6). This estimator can only be used if we 

assume that the observations y have a multivariate normal 

distribution. This restriction is not needed for the MINQUE or I-MINQUE. 

The dispersion matrix D(y) = V of (8.3.4)- is also described as 

ü(y) = <7fcH = a* I yiVi (8.3.7) 
i = 1 

with yk =1. 

The ML estimators follow after iterating as the solutions of 

3 = (X'H-1X)-1(X,H-1y) (8.3.8) 

and 

âk = y'R'iHR y/n (8.3.9) 

where R = I - XJX'iHxj-lx-'iH, 

and 

tr(H-1Vi) = y' R' H"1 Vi fi-1 R y/â* (8.3.10) 

for i = 1,2, ..., k-1. 

Let us define 

P = H-1 R/âk = V"1 - V-1X(X'V-1X)-1X'V-1. (8.3.11) 
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k 
Because t r t f H v - j ) = t r ( H - 1 V-jfi-"1 H) = t r ( iHu- jU i f r 1 I r j U j U j ) = 

k i=1 
l t r (H-1u iU-H-' ,UjUj)âj /âk, 

j = 1 

we can wr i te equations (8.3.9) and (8.3.10) in matrix form, using 

\ H = fi-1/âk, as: 

{trtUiUlv-IUjUjV-l))];-?", 0 = {y'PUiU;-Py}i^ . (8.3.12) 

The equations (8.3.8) and (8.3.12) are iteratively solved for v. 

Notice that for each iteration cycle H and P must be adapted. A ML esti­

mator for the variance components is given by the solution of the set of 

equations (8.3.12) with the restriction that all a^ } 0. 

The REML estimator for the variance components is derived in sec­

tion 5.2, subsection 6, (§ 5.2.6). This estimator is found as the solu­

tion of ä k
2 = y'T'(THT')"1Ty/(n-p) (8.3.13) 

and 

tr(UÎT'(THT,)-1TUi) = y'T' (THT' T I T U ^ - T ' (THT' )"1Ty/â^ (8.3.14) 

for i = 1, 2, ..., k-1, 

where T is an (n-p)xn matrix of which the rows are any n-p linear inde­

pendent rows of S = I-X(X'X)~1X', and TX = 0. Because S can be written 

as QQ', where Q is a nx(n-p) matrix with Q'Q = In-p» it follows that 

T' = QF, where F is a non-singular matrix. 

Now T^THT'J-TT = Q F(F'Q'HQF)-1 F'Q' = QF[F'(Q'HQ)F]-1 F'Q' = 

QFF-1(Q'HQ)-1(F,)-1 F'Q' = Q ( Q ' H Q ) - 1 Q ' . 

2 

Furthermore the dispersion matrix of Sy_ is o^ SHS, where SHS is singu­

lar. 

Let the Moore-Penrose form of a generalised inverse of an non-null 

matrix B be B+, so that B+ is the unique solution of 
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(i) B B+ B = B , 

(ii) B+ B B+ = B+ , 

(iii) B B+ = (B B+)' , 

(iv) B+ B = (B+ B ) ' . 

It can be shown that the Moore-Penrose inverse of SHS is (SHS)+ = 

Q(Q'HQ)~1Q\ but also (SHS)+ = H-l-fHxfX'H-IX) "iX'H-1 = ?â\. 
At IV » O 

We have now proved that T'(THT')-1 T = Pai<, and the equations (8.3.13) 

and (8.3.14) can be written in matrix-form, using V 1 = H"Vff|<, as: 

{trfUiUÏPUjUjP)}]^ v = {y'PUiUÎPy} ] * (8.3.15) 

and solved by iteration for v. 

A REML estimator for the variance components is given by the solution 

of the set of equations (8.3.15) with the restriction that all a-j^O. 

We now see that the REML equations (8.3.15) differ from the ML 

equations (8.3.12) only in having the P-matrix where the ML equations 

have the V-1-matrix in the left-hand side. 

Further the MINQUE equations (8.3.6) are exactly the same as the 

REML equations (8.3.15), except that the P-matrix in REML is replaced 

by Pu for MINQUE. Thus a MINQUE = a first iterate of REML. This was 

first observed by Hocking and Kutner (1975). If the I-MINQUE gives 

positive estimates for the variance components it is the same as the 

REML. Only for normally distributed data do we have a REML; if there is 

no good foundation for the normality assumption, then using the REML 

procedure and calling the estimate I-MINQUE would be acceptable . 

Brown (1976) has shown that I-MINQUE has a limiting distribution that 

is normal. 

But a MINQUE is not a permissible estimator; MINQUE can produce 

negative estimates. Therefore a non-negative adapted MINQUE must be 

used. To get rid of the pre-assigned vector u of a priori values of 
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variance components, a non-negative I-MINQUE would be a preferable 

estimator. 

If the data are multivariate normally distributed, the choice is 

between ML or REML. Both estimators can only be found by iterativatily 

solving the equations (8.3.12) for ML or (8.3.15) for REML, and this 

raises a number of problems that are in the realm of numerical 

analysis. Searle (1987) posed the following questions. 

Does the choice of a starting value affect the attained value at con­

vergence? Does that attained value always correspond to a global maxi­

mum of the likelihood that is being maximized, or does it sometimes 

correspond to a local maximum? 

Since at each successive round of the iteration a numerical matrix 

is being used for V, how does one ensure that it is always positive-

definite? What are the consequences if an updated V is not positive-

-2 
definite? If, after some iteration, the numerical value <7j to be 

2 
given to aj is negative, what action is to be taken? Were that negative 

ffj the result from the last round of iteration then it would, according 

to the maximum likelihood principles, be changed to zero. The model 

would then be altered correspondingly, and the remaining variance com-

-2 
ponents re-estimated. But suppose aj < 0 occurs before convergence; 

and suppose it is changed to zero and the model altered, and iteration 

continues using that altered model. Is this a good procedure if, as a 

result of some numerical peculiarity of those data, continuing with 

~2 
that unchanged negative <Jj would have, at a subsequent round of 

~2 -2 

iteration, led to a positive oj ? Perhaps changing CJ to zero and 

altering the model is the wrong thing to do. 

Up to now no available computing package takes care of these 

difficulties. The research worker believes uncritically in the result 

given by the computer package. A test with different starting values is 

usually not made, because it is time consuming. However, if one gets the 
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same solution some confidence in this result would seem to be justified. 

So far we have sketched the difficulties and dangers inherent in 

using ML or REML procedures, but we have not answered the difficult 

question: ML or REML? One favoured characteristic of REML is that with 

balanced data the REML equations reduce to the same equations as are 

used by ANOVA estimators. We have seen in section 2.3 that ANOVA esti­

mators for balanced designs have the attractive minimum variance pro­

perty. But ANOVA estimators are not permissible, they can lead to nega­

tive estimates. The solutions of the REML equations (8.3.15) are not 

necessarily REML estimators; they only are if they are positive! 

Also REML gives no unbiased estimators even for balanced 

designs. It is true that the expected value of the right-hand side of 

the REML equations in (8.3.15) can be written in the same form as the 

left-hand side of those equations, but this does not imply 

unbiasedness. The non-negativity constraint of REML has to be taken 

into account. For unbalanced designs, after iteration, neither ML 

nor REML is unbiased. 

One of the merits of ML over REML is that the ML procedure inclu­

des providing an ML estimator for the fixed effects, namely Ê(y) = 

X(X'V"1X)"1 X' V_1y, where the ML solutions for the variance components 

are inserted into V. Kackar and Harville (1981, 1984) have shown that 

this ML estimator for E(y_) is unbiased, and that its sampling variance 

can be calculated, and hence we asymptotically have normality. 

The REML method provides no such estimator, although intuitively 

one would be inclined to use X(X,V~1X)-1 X'V"1y_ as an estimator for 

E(y_) as well, where the REML solutions for the variance components are 

inserted into V. 

It is difficult to be anyting but inconclusive about which of ML 

- 194 



and REML is the preferred method. ML has the merit of simultaneously pro­

viding estimators for both the fixed effects and the variance com­

ponents, and that is appealing. On the other hand, REML has the attrac­

tion of providing variance components estimators that are unaffected by 

the fixed effects. As already discussed before, for data where we do 

not want to assume normality, a REML procedure as given in most com­

puter packages, gives I-MINQUE results. One must be aware, however, 

that, in the case of negative results, one should repeat the calcula­

tions searching along the boundary of the parameter space (see section 

8.2, subsection 4). 
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CHAPTER 9 

9. PREDICTION OF RANDOM EFFECTS 

9.1. Introduction 

In the mixed model the estimation of fixed effects and prediction 

of the random effects are two other aspects that demand attention besi­

des the estimation of variance components. If the dispersion matrix 

D(y) = V is known, the generalized least squares estimator of E(y) = X/3 

is X(X*V-1x)-1X'V-1y. 

At the end of section 8.3 we have discussed the estimation of 

E(y). We now proceed to discuss the prediction of random effects. 

Any random effect that occurs in the data is not actually a random 

variable, but is a realization of a random variable. Nevertheless, it 

is usually unobservable, e.g. the genetic make-up of the dairy cow, 

whose annual milk yield has been recorded. Whilst we cannot measure 

these realizations we can think of predicting random effects. This has 

many applications in practice. The most far-reaching, on a world-wide 

scale, is in dairy cow breeding, where bulls used in artificial inse­

mination programs each have many offspring, half of whom have milk 

production records. These records can be used to calculate predictions 

of the bull's genetic merits. This leads to a ranking of bulls, and 

only the best few get continuing use in artificial insemination. It is 

this procedure that has, over the last 30 years, drastically increased 

the per-cow milk production in many countries around the world. The 

same principles have also been used in other contexts, such as meat, 

wool and egg production. In section 9.2 an application in variety 

testing of field crops is described. 

Let us consider again the mixed model, which is described in sec­

tion 5.2, subsection 2.1: 
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y = Xß + I Ui ai 
i=1 

(9.1.1.) 

where a|< are the error effects, with D(a|<) = a? V^ with V|< = In. 

Let U = (§1 ', §2',... ,aj<' ) ' then the dispersion matrix D(a) is 

D = diag(ff? Im..,...,cr£ Imi<) » a block diagonal matrix, with the blocks 

being the matrices ollm. for i = 1, 2, .... k. 

Furthermore, the dispersion matrix 

D(y) = Z UiUi' a? = V 
i=1 n 

(9.1.2.) 

and the covariance matrix of y and a is 

C = cov(y,a') = D Ui a?. 
i=1 n 

So the feature of interest is prediction of a, where y and a are 

jointly distributed: 

with E 

and disperion matrix D 
V C 

C' D 
(9.1.3.) 

Cochran (1951) or Rao (1973, section 4g.1) describe the best (i.e. 

minimum mean square) predictor for a as 

I = E(a | y). (9.1.4.) 

The best linear predictor, i.e. linear in elements of y, is 

i L = E(§) + C' V"1 (y - Xß). (9.1.5.) 
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These results a and § L hold for any distribution (satisfying the 

usual regularity conditions) having finite first and second moments. 

Furthermore, when that distribution is the multivariate normal distri­

bution, (9.1.4.) and (9.1.5.) give the same result, i.e. under normality 

1 = I L = E(a J Y) = E(a) + C'V^y - X0). (9.1.6.) 

An extension of (9.1.5.) is given by Henderson (1963) for the mixed 

model. He shows that the best linear predictor of 

w = T'X/3 + a 

is 

w = T'Xê + E(a) + C ' V - 1 ( Y - Xß) (9.1.7.) 

where 

X/3 = X(X'V-1X)X*V-1y. 

This is what animal breeders refer to as Best Linear Unbiased 

Prediction (BLUP). Again, it requires values of cr? for practical appli­

cation. A comprehensive compilation of the theory for BLUP and its 

application in animal breeding can be found in Henderson (1984). 
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THE BEST ESTIMATION OF VARIETAL CONTRASTS ACCORDING TO THE 
MODEL FROM COMBINED VARIETAL TRIALS 

1. INTRODUCTION 

One of the main objects of varietal trials is to estimate the differences in yielding capacity 
of varieties. The assumptions to derive a good estimation procedure are relatively simple 
and the observations do not need to be normally distributed. Although the principles of the 
best linear unbiased estimators (BLUE) for varietal contrasts are described in several 
mathematical statistical handbooks (e.g. Rao (1973), Searle (1971)), there seems to be 
no extensive use in the field of variety research. Our colleagues of animal breeding make 
much more use of these tools. Also the method of best linear unbiased prediction 
(BLUP) of varietal contrasts has not been used in variety research. 

In section 2 we give a review of the best linear unbiased estimator in linear models, 
demonstrated on a little numerical example. In section 3 the linear model of combined 
varietal trials is described. According to this model the BLUE can be applied. In section 4 
the method of best linear prediction is described. Often in varietal research the prediction 
of varietal contrasts is the relevant question and not the estimation. 

2. BEST LINEAR UNBIASED ESTIMATORS (BLUE) 

2.1. THE MODEL (y, X0, a2!,) 

Let us start with the following simple linear model. Consider uncorrelated observations* 
(ƒ!» ...,>•„) such that 

E(.yi) = xnßl + -+ximßl 
2 r i = l,2,...,n, (1) 

where (ßi,..., />'„,) and r/2 arc unknown parameters and (xu)=X is a n x w-matrix of known 
coefficients with n>m. If y = Q v •• .,ƒ„)' and ß = (/?i, ...,ßm)' stand for column vectors 
of the variables y{ and the parameters ßj, this fixed effects model (1) can be written in 

* Random variables and vectors (r. v.) are denoted by a letter which is underscored; outcomes of 
r. v. are denoted by the same letter which is not underscored. 
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136 L. R. Verdooren 

matrix notation: 
y = Xß + e, £(e) = 0, D(e) = a2In (2) 

where D stands for the dispersion-matrix (matrix of variances and covariances) and I„ for 
the unit matrix of order n; hence E(y) = Xß and Z>(y) = <72I„. We denote this linear model as 
(y, Xß, ff2I„). The problem is that of estimating the unknown parameters ßj on the basis of 
the observations y. Using the method of least squares for estimating ßj we must minimize 

n 

I (ƒ«-*«! *i - • ••-*(môm) 2=(y-Xb) ' (y-Xb), 

this is the ordinary least squares (OLS) method and the solution is found from the so-called 
normal equations 

X'Xb = X'y. (3) 

Often the linear model is denned with too much parameters ß, which is called over-pa-
rametrization. This means that the normal equations (3) may have more solutions b. 
An unbiased estimator as p'b for p'ß=/?i ßl + ...+pmß,„ needs not to be unique. The concept 
of an identifiable linear function of parameters p'ß is now needed. Now £'(y) = Xß = Xß* 
implies p'ß = p'ß*. Therefore p'ß is identifiable if p'b is unbiased and is unique for all solutions 
b of the normal equations (3) or equivalently peC(X') o p e C(X'X) or, equivalents there 
exists a linear function of y with expectation p'ß, [C(A) is the column-space of the matrix A]. 

Note that it is not sufficient to solve (3) and if for two solutions b^ and b 2 , p'bj = p'b2 , 
to say that p'ß is identifiable (which is sometimes done in practice) because it must be true 
for all solutions of (3). From the uniqueness of p'b for all solutions of the normal equations 
(3) in most books p'ß is called an estimable linear function of the parameters instead of an 
identifiable linear function. The Gauss-Markov theorem is now as follows: If p'ß is 
estimable, then p'b has minimum variance in the class of linear unbiased estimators of 
p'ß. The estimator p'b is called the best linear unbiased estimator (BLUE) for p'ß. 

Till now we did not solve the normal equation (3). If the rank of the n xm-matrix, 
R(X) = m, then R(X'X) = m and hence the normal equation has an unique solution 
b = (X'X)_1X'y and naturally p'b is unique for any given p. Hence all linear parametric 
functions are estimable, if and only if R(X) = m. If rank R(X)<m, then some parametric 
functions do not admit unbiased estimators. For such non-estimable or non-identifiable 
parametric functions nothing can be inferred. 

Let (X'X)~ be a generalised inverse of X'X, such that (X'X) (X'X)"(X'X)=X'X. It can 
than be shown that b = (X'X)~ X'y is a solution of the normal equations. There are two 
equivalent criterions to conclude that p'ß is estimable. 

(i) A necessary and sufficient condition that p'ß is estimable is that 

p ' [ I -(X'X)-(X'X)]=0 

or 
p'=p'(X'X)-(X'X). 

(ii) Letq, be basis vectors of the kernel or null space of X, orXq, = 0, i=l, ...,s, where 
s=m-R(X). Let Q' be the matrix (q i ,q 2 , .--.q*) or XQ' = 0. A necessary and 
sufficient condition that p'ß is estimable is that p 'Q' = 0' or Qp = 0. 
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The best estimation of varietal contrasts 137 

Because the null space X is often already needed for the construction of a generalised 
inverse of X'X criterion (ii) is easier to use to check the estimability of p'ß. A generalised 
inverse of X'X is found as (X'X + cQ'Q)"1 with c^O. 

Note that an easy check for estimability in experimental designs is that if p'ß can be 
expressed as a linear combination of expected cell means it is estimable. 

Let p'b and r'b be the least squares estimators of the estimable functions p'ß and r 'ß. 
Let (X'X) - be any generalized inverse of X'X, then 

J/(p'b) = o ' (X 'X ) "p , cov(p'b,r'b) = ö-2p'(X'X)"r, (4) 

so <r2(X'X)~ can be formally considered as the dispersion matrix of b as long as formulas 
(4) are applied to estimable parametric functions. 

When X'X is non-singular we have the well-known fact Z)(b) = cr2(X'X)_1. Note that 
the calculation of (X'X)- is not always necessary to find the variance of p'b. Suppose from 
the normal equations X'Xb = X'y we find that on multiplying by a vector c, c'(X'X)b= 
= c'(X'y) reduces to p'b = c'(X'y)7 Then c'(X'y) is the BLUE of p'ß and F(p'b)= K(c'X'y) = 
= o-2c'(X'X)c = cr2c'p. Similarly if c'(X'X)=p' and d'(X'X) = r', then c'(X'y) and d'(X'y) are 
the BLUE of p'ß and r'ß and cov(c'(X'y), d'(X'y)) = or2c'r=o'2d'p. 

Example 1. In a randomized (complete) block design two varieties At and A2 are 
tested in 3 blocks Blt B2, B3, each block consist of 2 plots. Unfortunately a tractor de­
stroyed the plot of A2 in block B3. The observations yu are as follows: 

S i Bi 

A\ 
A2 j - 2 l = 1 0 

y 1 2 = l l 
y 2 2 = 1 4 

^13 = 13 

One assumes that the fixed effects of factor A and B are additive, hence 

£(ƒ,;) = «. + /*; (*• = ! , 2; ; = 1, 2, 3). 

We can consider the observations to be uncorrelated with the same variance c2 . Hence we 
have the model (y, Xß, ff2l5) with y = (yu, yi2, yu, y21, y22)' and 

£(y) = Xß = 

"10 1 0 0" 
1 0 0 1 0 
1 0 0 0 1 
0 1 1 0 0 
0 1 0 1 0 

«1 

a2 

ßi 
ß2 
ß3 

The normal equations X'Xb = X'y are 

3 0 1 1 1 
0 2 1 1 0 
1 1 2 0 0 
1 1 0 2 t ) 
1 0 0 0 1 

«1 

a2 

h 
b2 

b3 

= 

34 
24 
20 
25 
13 

Note that for many varieties in incomplete blocks a solution of X'Xb=X'y is often found 
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by an iterative procedure. Remark that the columns xt of X are linearly dependent: xy + x2 = 
= x3 + xA + x5 or xl+x2-x3-x4.-xs = 0 hence Xq = 0 with q = (l, 1, - 1 , - 1 , - 1 ) ' , 
where q is the basis of the null space of X. The matrix Q' = (q). The rank of X is i?(X) = 
= 5 — 1=4 hence X'X is singular. 

A generalized inverse (X'X)~ = (X'X + cQ'Q)_1 with c^O. When we take c= 1 we get a 

(X 'X ) - = 

0.28 
-0.12 

0.02 
0.02 

-0.08 

-0.12 
0.48 

-0.08 
-0.08 

0.32 

0.02 
-0.08 

0.43 
-0.07 
-0.22 

0.02 
-0.08 
-0.07 

0.43 
-0.22 

-0.08 
0.32 

-0.22 
-0.22 

0.88 

With this generalized inverse we find a solution of the normal equations as 

"6.5 

=(X'X)"X 'y= 2.75 
5.25 
6.5 

a2 

b3 

Remark the varietal contrast a2—«i=p'P = (—1, 1, 0, 0, 0)ß is estimable because p'q = 0; 
(a1+a2)/2 = p'P = (i, i, 0, 0, 0)ß is not estimable because p'q= 1^0; <x2 + (ßi+ß2+ß3)/3 = 
=p'ß = (0, 1, $, $, | )ß is estimable because p'q = 0. E(y23) — x2 +ß3 is estimable with esti­
mate a2+b3 = 8 + 6.5= 14.5. 

Another generalised inverse of X'X can be found by stating one of the five parameters 
(of which only four parameters are independent) equal to e.g. 0. A solution is found by 

stating e.g. al=0. The relevant part of X'X is now 

"2 1 1 0 " 
1 2 0 0 
1 0 2 0 
0 0 0 1 

and this has an inverse 

4 - 2 - 2 0 
- 2 3 1 0 
-2 
0 

3 0 
0 4 

A generalised inverse of X'X is then J 

0 0 0' 
- 2 - 2 0 

3 1 0 
3 0 
0 4 

The 

solution of the normal equations are now 

Û1 

a2 

bt 
b2 

b3 

= 

~ 0 " 
1.5 
9.25 

11.75 
13 

The BLUE for a2 - OL^ is in both 

cases a2-ai with result 1.5= (8 —6.5) = (1.5—0). The BLUE for <xl + (ßl+ß2+ß3)[3 is 
11.333 and for <x2 + (fit+fi2+fi3)/3 is 12.833. Var (a 2 -a 1 )=c 2 (0 .28+0.48-2(-0 .12))= 
= er2(0+4-2(0))/4=lo-2. 
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2.2. THE MODEL (y, xp, V) 

We consider now the model where the n observations y can have unequal variances and 
correlated observations are possible. The linear model is 

y = Xp + e, with £(e) = 0 and Ö(e) = V = ff2W, Vis positive definite. 

This linear model is denoted as (y, Xß, V). By considering z = W~*y we have 

£(z) = W"*Xß=Uß 

ö(z) = <x2I„. 

The transformed model is z = Uß4-f with E(f) = 0 and D(f) = <r2(I). We can apply now the 
results of section 2.1 on (z, Uß, a11„). The least squares estimator for ß is found as the solu­
tion of the normal equations U'Ub = U'z or 

X ' W ' X b ^ X ' W ' y . (5) 

The BLUE for estimable parametric functions p'ß are given by p'b where b is a solution of (5) 
and such an estimator is called the generalised least squares (GLS) estimator of p'ß. The 
variance of an estimable p'b is 

F(p'b) = o-2p'(X'VV"1xrp. 

Remark: If we take in the model (y, Xß, V) as an estimator b the solution of X'Xb = X'y 
then we have for an estimable function p'ß a linear unbiased estimator p'b, but this estimator 
has in general no minimum variance in the class of linear unbiased estimators of p'ß. 
Sometimes are OLS and GLS estimators for p'ß. If and only if the column space C(VX)<= 
c:C(X), or X is invariant under V, then OLS is GLS. See also Baksalary and Kala 
(1981, 1983). 

Example 2. Let us take as an example 2 varieties A\ and A2 which are tested on 3 
random locations (places or sites) LI, LT., L7> drawn at random from a certain region. Due 
to an accident, the yield of variety A2 in place 53 was lost. Let the observations be the same 
as in example 1. 

X. 1 I 1 2 I £ 3 

Al y 3 1 = 10 

^.3=13 

From previous experiments in this region, which has the same climatic conditions everywhere, 
one can state that there is no interaction of variety and places. The statistical model for 
this mixed model is 

Yij=«( + «,- + £,•; (J' = 1 , 2; 7 = 1,2, 3) 

with E(uj)=0, cov(u,, uj.) = ôjrcl; E(eu)=0, cov(iu, ei,j.) = ôii.ôjj.(fl; cov(M,,e„)=0 
for all i and j ; where Su. = l if /= i ' and ôu.=0 if / # i'. 
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In matrix notation is 

y = Xß + Zu + e 

with D(\î) = a2
LI3; £>(e) = ofl5 , cov(u, e>=0, Xß = 

~1 
1 
1 
0 
0 

0" 
0 
0 
1 
1 

[::} Zu = 

"1 0 0" 
0 1 0 
0 0 1 
1 0 0 
0 1 0 

""l] 
«2 

-i'3. 

The expectation vector E(y) = Xp and the dispersion matrix of y is 

£ [ (y -Xß) (y-Xp) ' ] = ZD(u)Z' + fl(e) = <TiZI3Z' + <Te
2I5 

Hence D(y) = V=<72W = <72[yZZ' + I5] with y = <x2
Ll<j2 and 

W = 

1 0 0 1 0 " 
0 1 0 0 1 
0 0 1 0 0 
1 0 0 1 0 
0 1 0 0 1 

+ 

"10 0 0 0" 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

Let us assume that from previous experiments is known y=o-2/o-2 = 3. 

W = 

The normal equations are 

" 4 0 0 3 0 " 
0 4 0 0 3 
0 0 4 0 0 
3 0 0 4 0 
0 3 0 0 4 

and W" 
196 

112 0 
0 112 
0 0 

- 8 4 0 
0 - 8 4 

0 - 8 4 
0 0 

49 0 
0 112 

0" 
-84 

0 
0 

0 0 112 

p71~|_196_r224 168]_1_ F973] = _ J _ [3731841 ril.333"| 
|_a2J 32928 [168 273J196 L924J 329281_415716_|- [12.625J ' 

In the general mixed model situation 

y=Xß + Zu + e, with £(u) = 0, £(e) = 0; D(U) = CT2G, D(e) = ff2R 

and cov(u, e )=0 , 

we have D (y) = V = (ZGZ' + R) a\ = a\ W. 
The generalised least squares solution b for ß follows from the normal equations 

(X'V_ tX)b = X'V_1y or equivaiently (X'W_ 1X)b=X'W_ 1y. ^(6) 

In solving these equations one needs W~1 where W is a n x n-matrix. The difficulty with this 
method is that W is often a matrix so large that its inversion is very costly. An alternative 
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method is given by Henderson et al. (1959). The idea is that in the fixed model situation 

y=Xß + Zu + e = (X Z) 

the normal equations are 

(X Z)'R_1(X Z) 

+ e with D(e) = Rol=D(y), 

= (X Z)'R_1y 

or 

R_1(X Z) 

X'R_1X X'R_1Z 
Z'R_1X Z 'R _ 1Z 

X'R_1y 
Z'R_1y 

In the mixed model situation we have the same patterned matrix at the left-hand-side with 
the addition of the inverse of D(u)a~2 = G to Z 'R _ 1Z. The generalised least squares 
estimate b of ß is then found as a solution of 

~X'R -1X X'R_ 1Z ITb 
Z'R_1X Z ' R _ 1 Z + G _ 1 u 

= "x 'R _ 1yl 
_Z'R-1yJ-

(7) 

These equations (7) are called Henderson's Mixed Model Equations (MME). 
Because often R is a diagonal matrix the only difficulty is the inverse of G which is of a 

much smaller order than W. Another computational trick is the absorbing of e.g. the a 
equations in the b equations in (7). Let the MME in (7) be written as 

A B 
B' C 

then the absorbed equations are 

CA-BC _ 1 B] b = r i - B C _ 1 r 2 . (8) 

The proof that a solution of MME (7) is a solution of the GLS equations (6) is based on the 
identity 

W- 1 =(ZGZ ' + R )~ 1 =R" 1 -R _ 1 Z(Z 'R" 1 Z+G~ 1 ) ~ 1 Z 'R - 1 . 

From the second line of the MME (7) it follows 

û = ( Z 'R _ 1 Z+G" 1 ) " 1 [Z 'R - 1 y -Z 'R~ 1 Xb] . 

Inserting u in the first line of the MME (7) gives 

X ' [ R - 1 - R 1 Z ( Z ' R " 1 Z + G - 1 ) " 1 Z ' R " 1 ] X b = 

= X ' [ R " 1 - R - 1 Z ( Z ' R " 1 Z + G _ 1 ) - 1 Z ' R - 1 ] y 

and hence 
X'W - 1Xb = X'W~1y. 
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Example 2 (continuation). The Mixed Model Equations are w i thR=I 5=R \ G=3I 3 

hence G _ 1 = i l 3 

X X 

Z'X 

X'Z 

Z;Z+iï3 

'xy 
Z'y 

3 0 
0 2 

1 1 
1 1 
1 0 

1 1 1 
1 1 0 

l 0 0 
0 | 0 
0 0 | 

a l 

<*2 

« 1 

« 2 

% 

34 
24 

20 
25 
13 

Absorbing of the lij equations in the at equations gives 

"(3-1- ï) (o-f-f)-
( 0 - f - f ) ( 2 - f - f ) 

34-f20-f25-
24-|20-|25 

39 
- 2 4 

-24 
32 

|_a2J 672 _ 

•J13-" 

32 24 
24 39 

139 
132 

-ai-] = JT139] 
_Ö2J 28L132J 

_J_r7616"]=ril.333' 
_672[8484j_Ll2.625 

3. A MODEL FOR COMBINED VARIETAL TRIALS 

Let us now discuss the testing of / varieties (Ai,A2, . .., A^ in a region. Let us take a 
random sample of ƒ places (or sites)/'1, P,, ..., P} from this region. In each location we use 
a completely randomized design with //'plots for each variety. Let yUh be the yield of variety 
At on the /z-th plot in place Pj. A combined analysis is based on the cross-classification of 
varieties and places. 

At 

A, 

A, 

J ' u i 

P, 

,yim 

...Pj... Pj 

The mixed model is 
lu» = H + (*i+Pj + (op) ij + eUh (9) 

where p. is a general mean, a, is the fixed effect of variety At ( /=1, ..., /)and to get rid of the 

overparametrization we have chosen the a,'s such that £ at = 0;pj is the random effect of 

place Pj(j= 1 , . . . , / ) withE(pj)=0, V{pj) = a2
P andcov(pj,pr) = Oifj^j'; (qp)u is the random 

interaction effect of variety At at place Pj with E[(ap)u]=Q, V[(aptA = a'Ap f ° r a " ' and/ ; 
eUh is the residual random error or plot to plot variation with E(eiJh)=0, V(eUh) = ae for 
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all i,j and h\ the eiJh's are uncorrelated; furthermore covQ?y, (ap)u) = 0, cov(pj,euh) = 0, 
cov((^) i j ,£UJ = 0. 

If we calculate the analysis of variance (ANOVA) table, one will find in the literature 
two different Expected Mean Squares columns (i) and (ji): 

Source of Variation 

Varieties (fixed) 

Places (random) 

Interaction 

Error 
Corrected Total 

D.F. 
7 -1 

J-I 

(i-D(J-l) 

U(H-\) 

IJH-l 

M.S. 

MSA 

MSP 

MSAP 

MSE 

E.M.S. Ü) 
C\ + HG\P + JHK\ 

al + Ha\P + IHar 

cj) + Ha\P 

2 

a. 

E.M.S. (ii) 
OI + HO\P + JHK\ 

o]+ Wal 

al + HoAP 

el 

with K\= £ ( « , - « ) 2 / ( / - l )= X «ƒ/(/-1) while 5= X *«//=0. 
i = l i = l i = l 

At a first glance the difference in the E. M. S. column is in JTÇMSP) where the term 
HaAP is present in (i) and absent in (ii). In the statistical handbooks we find EMS (i) for 
example in Steel and Torr ie (1980) and Kirk (1968) and one finds EMS (ii) for example 
in Scheffé (1959), Snedecor and Cochran (1980) and Winer (1971). Inclusion of Ha\p. 
from .E(MSP) in (i) arise when the random effects (ap)u in (9) for the mixed model, are 
defined uncorrelated. Exclusion of Ha2

AP from £(MSP) in (ii) can arise when (ap),j in (9) 
i 

are defined such that £ (ap)tj = 0 for ally'. In this case there is a correlation between 

(ap)ij and (ap)ij {i¥=i';j=\, •••,•/)• Reasonable is to assume that cov[Qy>)u, (op)iV] = a> 
for all ./and /'#'"• Now is 

r [ I ( < V ) y > r ( 0 ) = 0 

but otherwise 

and hence 

f = l f = l i = l i ' = l 

to=-o2
AP!(I-\). 

I 

The limitation £(a/>)y=0 ^or &^J ' s 1 u ' t e reasonable when we adopt the mixed model 

derivation of S chef f é (1959). S earl e (1971) shows that the mixed model (i) can be rede­
fined to get mixed model (ii). 
Redefine 

/ i 

Pj=Pj+T,('V)ulI a n d (ap)*jMap)ij-Y.{qp)ijII. 

Now 

Vl(ap)tj] = <T2
AP + a2

APII-2aAF/I = aAP(I-l)II=aA
2
P, 

cov[ fap) J , ( S ) ? / |= - < # / ( / - ! ) for iVi'. 
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The variance components in EMS (ii) are a\P{ü) = c*p-f/(/-l) = o"jp, 

a | ( i i) = (Tp =aP + (TApjI; 

so o-p has in EMS(/) and EMS(/7) a different meaning! Furthermore there is no correlation 
between (ap)ij and (jap)t.j in mixed model (i) but there is a correlation in mixed model (ii). 

In matrix notation the mixed model can be written as 

y=Xß + Z 1 u 1 +Z 2 u 2 + e with ß =(jt, a , , a2, . .., a,)' 

»l=(Pl>P_2, •~,Pj) 

and u2 = ((op)tx, (ap)12, ..., (ap)u)' 

where X, Zi andZ, are the design matrices; the dispersion matrix of Uj is Z)(u1) = ccp 'AJt 

D(e) = cr2 I„ with n = IJH and for mixed model (i) 

Û(u2) = ^ p f / J 

and for mixed model (ii) 

ß ( H 2 ) = ^ / a - i ) C / x : i / - J / ] ® ' i , = [ ^ p / ( / - i ) ] ß , 

where Jr is /x/-matrix with all elements equal to 1 and the Kronecker product A®B is 
(a,;B). The dispersion matrix of y is for model (i): 

Z)(y)=K(0 = Z1(ap •TJ)Z'1 + Z2(a
2
4P .1„)Z2 + <72.JL.= 

= ( j ; [ ; . lZ 1Zi + ; . 2Z 2Z 2 + :.I„] = ae
2W(/) with Italia]; X2=a^P/al. 

The dispersion matrix of y is for model (ii): 

D(i)=V(iO = Z1(cl.AJ)Z[+Z2(c:iPl(I-l)Q)Z2 + a2
e:i„ = 

= a2
e [Ax Zx Zi +12 Z 2 ßZ 2 + M„] =a\ W(«i) 

with A ^ ^ K 2 ; ;.2 = ^p / [cr e
2 ( / - l )3 . 

For the estimation of varietal contrasts we can now use the BLUE such as already have been 
discussed in section 2. It turns out that for a balanced cross-classification the ordinary 
least squares estimator (OLS) for p'ß is the same as the generalised least squares estimators 
(GLS). This feature has to do with the fact that the column space of X is invariant with 
respect to the dispersion matrix V. But in the unbalanced case the OLS and the GLS esti­
mators give different outcomes. See for conditions that OLS is GLS Baksalary and 
Kala (1981, 1983). 

A more realistic example is the testing of / varieties on / random places, but in each 
location there is a need for blocking, for example there is a fertility gradient in the ex­
perimental field which can be accounted for by rectangular blocks with the long side 
perpendicular on the gradient, or the experimental field consits of homogeneous parts of 
different fertility. In each location we use a randomized block design with H complete 
blocks of / plots (such complete blocks are often called replications). Let ym be the yield 
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of variety At at place Pj in the A-th block BhJ of place PJt then the mixed model is 

ZiiH=V + Xi+Pj + ßHU)H<*P)iJ + tijh • ( 1 0 ) 
H 

For the fixed block effects fihU) we choose the condition £ ßh(J) = 0 for each j=\, . .., J to 
A = l 

get rid of the overparamctrization. The other effects are defined as in (9). The ANOVA-table 
i 

gives then according to model (i) — no limitation on (ap)u and model (ii) — X(a/>)ij = 0 
— ; = i 

for each./: 

Source of Variation D.F. M.S. E.M.S. (i) E.M.S. (ii) 
Varieties 

Places 

Blocks within places 

Interaction Ax P 

Error 

7 - 1 

J-\ 

J(H-l) 

( / - 1X7 -1 ) 

(I-l)J(H-l) 

MSA 

MSP 

MSB 

MSI 

MSE 

O] + HOAP + JHK\ 

a\ + Ha\e +I Hap 

ae +HOAP+IKB 

ac + Ha'A p 

2 

OI + HO2
AP + JHKA 

ae + I HaP 

al + IKB 

a] + HoAp 

2 

Corrected Total IJH-l 

with K*= I «?/(/-1) and K2
a=Z£ß*U)/[J(H-l)]. 

i=l j h 

In the balanced case with a completely randomized design [mixed model (9)] or a ran­
domized (complete) block design [mixed model (10)] we can also analyze the two-way 
table of varietal means 

H 

lu. = E luhlH • 
* = i 

The mixed model for yiJt is than for both cases (i) and (ii): 

Zij. = V + «i+Pj + (ap)ij+'êij., (H) 

with V{ejj}-a]\Hbut D [{ap)u\ is different in model (i) or (ii). 
If we have a different number of replications r} per place Pj, V(eij) = aljrj and D(e) is a 

diagonal matrix with diagonal elements a^frj. In the case of a randomized block design 
with missing values at a certain place or with an incomplete block design the best estimators 
for// + a, is not ; '0 . more and the BLUE of n + a, per place has a dispersion-matrix which is not 
diagonal any more! Also the use of a-designs of Pa t te rson et al. (1978) in varietal testing 
has the impact of a more complicated structure for the dispersion-matrix of the BLUE of 
// + «,. Till now in practice one neglects this and uses for the analysis of a two-way table of 
varieties and places with the estimates of// + «f per place an error dispersion-matrix which is 
a constant times the identity matrix. With the possibility now to use the computer it is 
wise to use the generalised least squares estimators with the correct dispersion matrix. 

From the generalised least squares method with use of the mixed model normal equations 
(7) one can see that if the ratio of the variance components a\\a2

e and <r\pl<r] are very large 
the generalised least squares method for a mixed model is about the same as the ordinary 
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least squares method for a fixed model where the effect of places are considered to be fixed. 
This means that if we take places at random from a country with different climatic and/or 
soil regions, we can expect a very large (jpjol. Often it is better to divide the country in 
strata ( = regions) according to the more homogeneous climatic or soil conditions and the 
ratio of <J\\G\ is then not so large. 

One can expect in our developed countries in Europe that the differences of yield that 
we may expect to put forward in varietal field experiments are about 5 percent of the mean 
yield. Just for such small differences in yielding capacity it is worthwile to use the more 
elaborated generalised least square method to find BLUE for varietal contrast! 

Over-year summaries can be obtained by assembling the BLUE of varietal means for 
each season in a varieties x years table. The same remarks we have made before can be 
used for analyzing such tables according to the correct model. Prior experiments give 
ideas for a\\a\ and a2

Af\a
2. 

4. BEST LINEAR UNBIASED PREDICTION 

A mixed linear model arises in combined variety trials and in many genetic applications 
and can be represented as we have seen in section 2 as 

y = Xß-i-Zu + e (12) 

where y is an nx 1-observation vector. X is a known' n x m-matrix, ß is an unknown fixed 
m x 1-vector and Z is a known n x Ar-matrix; u and e are nonobservable random vectors with 
£"(u) = 0 and E(e) = 0 and dispersion-matrix 

u 
e 

[~G O l 
0 R 

where a2 is a scalar, possibly unknown, and G and R are both nonsingular. Now, given a 
sample vector y, we wish now to do often 

1. Predict u or some linear function of u; 
2. Predict linear functions of ß and u jointly. 

The varietal advisory service and the practical 'breeder wish to do these predictions. 
C. R. Henderson has done much work to apply prediction in animal breeding, see e.g. 
Henderson (1973, 1975). It can be shown that if ß, G and R are known, the best linear 
predictor (BLP) of p'ß + q'u, is, 

p'ß + q ' cov(u ,y ' )V - 1 (y-Xß) , where cov(u, f)=GZ'a2
e, (13) 

D (y) = V = a\ [ZGZ' + R] = a; W. 

In the multivariate normal case, (13) is of course £(p'ß + q'u|y) and consequently is the best 
predictor. Whether or not normality is implied, (13) is the usual selection index used in 
animal and plant breeding. Now if ß is unknown, as is usually the case, the method (13) 
cannot be used. A modification involving unbiasedness can be employed, however. By 
unbiased it is mean ^(predictor) = £(p'ß + q'u)=p'ß. It can be shown (e.g. Henderson 

- 211 -



The best estimation of varietal contrast 147 

X'R~lX X ' R ' Z 
Z'R_1X Z ' R _ 1 Z + G _ 1 

V 
u 

rx'R 
Z'R 

(1973)) that the best linear unbiased predictor (BLUP) of p'ß + q'u, where p'ß is estimable, is: 

p'b + q 'GZ'W~ l(y-Xb) = p'b + q'u, (14) 

with G =GZ'W_ 1(y —Xb) and where b is any solution of the generalized least squares 
equations 

X'W_1Xb = X 'W - ! y . (15) 

In animal breeding programs, such as in the national sire evaluation programs the order of 
y may be in the millions, and V is not diagonal. Therefore (14) and (15) are not computation­
ally feasible. However, b and ù can Iv obtained from the solution of the mixed model 
equations, as we already seen in section 2.2.: 

(16) 

which can be solved either directly or by iterative methods when R is a diagonal or a 
patterned matrix. From the inverse of the coefficient matrix F(b) and K(u—u) can be 
obtained. 

In addition to unbiasedness and minimum prediction error variance, u from (16) has the 
following properties (Henderson 1973): 

(i) it maximizes the probability that elements of u are correctly ranked pairwise, in a 
multivariate setting; 

(ii) under normality, it is the maximum likelihood estimator of if(u|y); 
(iii) it is linearly invariant, i.e. BLUP (q'u) = q'u, where q is a vector of constants. 

In a Bayesian setting with normal prior and normal likelihood, u is the median of the 
posterior distribution. Hence, any function of u is estimated with minimum absolute error 
loss by the same function of u. In varietal testing literature the notion of BLUP is seldom 
(or never) mentioned. In my opinion many questions in varietal research is the prediction 
and not the estimation. Use of equation (14) can be fruitfully adopted for the prediction 
of the yielding capacity of varieties. 

" Example 3. Let us take as an example 2 varieties A\ and A2 which are tested on 3 
random places PI. P2, P2> drawn at random from a certain region. The experimental design 
used at each place was a randomized block design with four blocks. Due to a misunder­
standing in place P7> variety A2 was not sown but another variety. The varietal means 
y,j per place were 

Al 
A2 

PI PI PT, 

yu. = 10 j yl2. = 11 
/ 2 . . = 10 y2i. = 14 

yi3. = 13 

The mixed model for these varietal means is 

where we assume model (i) of section 3, uncorrelated random effects {ap)u in (9). We can 

10« 
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redefine the model as 

yij.=<*t+Pj+f>j. (18) 

with E(PJ) = 0, Var(pj) = aj, and uncorrelated pj and E(fu) = 0, Var (/u) = o-jp + 0^/4=a] 
with uncorrelated ƒ(,• and also/?,- and fu are uncorrelated. Let us further assume that from 
previous experiments we know y = <Tp/aj = 3. We wish to predict the varietal mean of A2 at 
place P3. Let 

y=iy 11.. ƒ 12.. ƒ13.. ƒ21.. ƒ22.)' 

then 

£y=Xß+ZU+f 

with u = (^ l 5^ 2 , />3y, and X, ß and Z as given in Example 2, section 2.2. The dispersion 

matrix #[«*] (!ƒ where C7 = yl3 and R = I 5 . 

The best linear unbiased predictor of p'ß+q'u with p' = (0, 1) and q' = (0, 0, 1) is 
according to (14) 

with 

p'b + q 'GZ'W_1(y-Xb) 

W=ZyI 3 Z '+ I 5 = 3ZZ' + I 5 . 

The inverse W 1 is given in example 2 and the solution of (15) of b is found there as 

-EHÏ 333 
625 

Inserting these results we get as BLUP for p'ß+q'u: 

"11.333 

(0,1) 
12.625 

+(0,0,1) 
-1.69629 

0.44657 
1.25025 

= 13.875. 
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NAJLEPSZA ESTYMACJA KONTRASTÓW OBIEKTOWYCH STOSOWANA DO 
ZLOZONYCH MODELI DOSWIADCZEN ODMIANOWYCH 

Jednym z glównych powodów prowadzenia doswiadczen odmianowych jest ocena mozliwosci 
plonowania odmian. Zalozenia stojace u podstaw poprawnych procedur etymacyjnych sa wzglednie 
proste i nie wymagajâ  normalnosci rozkladów. Chociaz zasady najlepszej liniovvej nieobciazonej esty-
macji BLUE dia kontrastów obiektowych sq opisane w wielu podrecznikach statystyki matematycznej 
(np. Rao 1973 lub Searle'a 1971), to wydaje sic, ze nie sâ  one rozpowszechnione w badaniach odmiano­
wych. Czesciej mozna je spotkac w badaniach hodowlanych zwierzat. Podobnie, metoda najlepszej 
liniowej nieobciazonej predykcji (BLUP) kontrastów nie jest stosowana w badaniach odmianowych. 

W pracy zaprezentowano zasady najlepszej liniowej nieobciazonej estymacji w modelach liniowych 
oraz zademonstrowano prosty przyklad numeryczny. Ponadto, przedstawiono model liniowy zlozo-
nego doswiadczenia odmianowego, w którym pokazano estymacje. BLU. Wreszcie, opisano metodç 
najlepszej liniowej predykcji, która w badaniach odmianowych jest czesciej stosowana niz postepo-
wanie estymacyjne. 
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SUMMARY 

In several sciences but especially in animal and plant breeding, 

the general mixed model with fixed and random effects plays a great 

role. Statistical inference on variance components means tests of 

hypotheses about variance components, constructing confidence intervals 

for them, estimating them, and using the variance components to get 

best estimates for fixed effects as well as to predict random effects. 

Many problems in the statistical inference of variance components 

already arise in even the most simple mixed model, describing nested 

designs; they are already present in the balanced nested designs, but 

become more pronounced in the unbalanced case. To find a guideline for 

solving the problems for the general mixed model, the study of the 

nested designs is worthwile. 

In chapter 1 the outline of the author's research on statistical 

inference of variance components is given. 

In chapter 2 the historical development of variance components 

estimation is described. More than 125 years ago the notion of 

variance components appears explicitly in astronomy. The expansion 

began with the development of quantitative genetics in 1918 after the 

first World War, but the tremendous increase in research in variance 

components dates from after the second World War. 

Just as in the fixed effects model, the notions of vectors, vector 

spaces and projections of vectors on vector spaces, can be fruitfully 

used for the mixed effects model. This approach is given in chapter 3. 

For balanced nested designs exact tests about ratios of variance 

components and the calculation of their power, are well-known. For the 

unbalanced three-stage nested designs an exact test exists about the 

variance component belonging to the second stage, but for the first 

stage variance component no exact test was available in practice before 
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1974. In chapter 4 the onset of the author's research on the testing 

problem is described. It was possible to calculate the critical level 

or P-value for the exact test. 

The estimation of variance components was directed towards 

finding, for several designs, the best quadratic unbiased estimators 

for the variance components. In chapter 5 the onset of author's 

research on the estimation problem is described. On introduction of the 

concept of a permissible estimator it becomes clear which approaches to 

estimate variance components are unsatisfactory. To use permissible 

estimators for variance components means to use estimators which give 

non-negative estimates. A solution for a non-negative estimator has 

been found using the least squares approach as a unified procedure in 

variance components estimation. 

To demonstrate the danger of the use of the best quadratic 

unbiased estimator in the simplest random model, the balanced one-way 

classification, the probabilities for negative estimates were calcu­

lated in chapter 6. 

In chapter 7 a new exact test about ratios of variance components 

in the unbalanced three-stage nested design is given. 

The description of the least squares method as a unified procedure 

for the estimation of variance components and for the derivation of per­

missible (non-negative) estimators of variance components is given in 

chapter 8. The use of the main estimation procedures such as iterated 

Least Squares (or I-MINQUE), Maximum Likelihood (ML) and Restricted 

Maximum Likelihood (REML) estimators, is also discussed there. 

Finally in chapter 9 the use of variance components in predicting 

the random effects is discussed. Best Linear Unbiased Prediction 

(BLUP), which is extensively used in animal breeding, has not so far 
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been applied on the same scale in plant breeding. How to use it is the 

subject of the last section 9.2. 
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SAMENVATTING 

In diverse wetenschapsgebieden, maar voornamelijk in de 

veefokkerij en de plantenveredeling, speelt het algemene gemengde model 

met vaste en stochastische effecten een grote rol. Statistische 

gevolgtrekkingen maken omtrent variantiecomponenten betekent: het toet­

sen van hypothesen over variantiecomponenten, het construeren van 

betrouwbaarheidsintervallen ervoor, het schatten ervan, en het gebruik 

ervan, zowel om de beste schattingen voor de vaste effecten te verkrij­

gen, alsook om de stochastische effecten te kunnen voorspellen. 

Veel problemen die zich voordoen bij het maken van statistische 

gevolgtrekkingen omtrent variantiecomponenten, komen reeds voor in het 

eenvoudigste gemengde model, dat de hiërarchische of geneste schema's 

beschrijft. Deze problemen zijn versluierd aanwezig bij de evenwichtige 

geneste schema's, maar komen zeer sterk naar voren bij de oneven­

wichtige schema's. Om een richtsnoer te vinden voor het oplossen van de 

problemen bij het algemene gemengde model, is de studie van 

hiërarchische schema's de moeite waard. 

In hoofdstuk 1 wordt een overzicht gegeven van het onderzoek van 

de auteur met betrekking tot het maken van statistische gevolgtrek­

kingen omtrent variantiecomponenten. 

In hoofdstuk 2 wordt de historische ontwikkeling van het schatten 

van variantiecomponenten beschreven. Reeds meer dan 125 jaar geleden 

kwam het begrip variantiecomponenten expliciet voor in de sterrenkunde. 

De verdere ontwikkeling begon met die van de kwantitatieve genetica in 

1918, na de eerste wereldoorlog, maar de enorme uitbreiding in het 

onderzoek naar variantiecomponenten dateert van na de tweede 

wereldoorlog. 
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Net als bij het model met vaste effecten, kunnen de begrippen vec­

tor, vectorruimte en projectie van vectoren op vectorruimten met vrucht 

gebruikt worden bij het model met gemengde effecten. Deze aanpak wordt 

in hoofdstuk 3 beschreven. 

Voor evenwichtige hiërarchische bemonsteringsschema's zijn exacte 

toetsen omtrent verhoudingen van variantiecomponenten algemeen bekend, 

evenals de berekening van het onderscheidingsvermogen. Voor het niet-

evenwichtige hiërarchische bemonsteringsschema in drie trappen bestaat 

er een exacte toets op de variantiecomponent die bij de tweede trap 

behoort. Maar voor de variantiecomponent die bij de eerste trap behoort 

was het voor 1969 practisch niet mogelijk om de kansverdeling van de 

toetsingsgrootheid te berekenen. In hoofdstuk 4 wordt het begin 

beschreven van het door de auteur verrichte onderzoek aangaande dit 

toetsingsprobleem. Het bleek mogelijk om de overschrijdingskans van de 

exacte toets te berekenen. 

Het schatten van variantiecomponenten was erop gericht om, voor 

verschillende schema's, de beste zuivere kwadratische schatters te 

vinden. In hoofdstuk 5 komt aan de orde het begin van het door de 

schrijver verrichte onderzoek betreffende het schattingsprobleem. Na 

invoering van het begrip van een toegestane ('permissible') schatter 

ziet men duidelijk of een bepaalde aanpak om variantiecomponenten te 

schatten tot onbevredigende resultaten leidt. Een toegestane schatter 

voor variantiecomponenten is een schatter die niet-negatieve uitkomsten 

levert. Hoe een niet-negatieve schatter door de schrijver gevonden is, 

door het toepassen van het kleinste kwadraten principe als unificerende 

schattingsprocedure, wordt ook beschreven in hoofdstuk 5. 

In hoofdstuk 6 wordt geïllustreerd hoe gevaarlijk het kan zijn om 

zelfs in het eenvoudigste model met enkel stochastische effecten, 

nameljk het evenwichtige bemonsteringsschema met één classificatie, 
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de beste zuivere kwadratische schatter te gebruiken. Hiertoe worden de 

kansen berekend dat zo'n schatter negatieve uitkomsten levert. 

In hoofdstuk 7 wordt een nieuwe exacte toets beschreven omtrent 

verhoudingen van variantiecomponenten in het niet-evenwichtige drie-

traps geneste bemonsteringsschema. 

Hoofdstuk 8 bevat de beschrijving van de methode van de kleinste 

kwadraten als unificerende procedure voor het schatten van varian­

tiecomponenten. Verder wordt de methode van kleinste kwadraten gebruikt 

om toegestane (niet-negatieve) schatters te vinden. 

Dit hoofdstuk besluit met een bespreking van het gebruik van de 

voornaamste schattingsprocedures, namelijk die yan de geïtereerde 

kleinste kwadraten (I-MINQUE), de methode van de grootste aan­

nemelijkheid (ML) en de methode van de grootste aannemelijkheid van de 

rest-contrasten (REML). 

Hoofdstuk 9 beschrijft het gebruik van variantiecomponenten bij het 

voorspellen van stochastische effecten. De in de veefokkerij op grote 

schaal gebruikte beste lineaire zuivere voorspeller (BLUP) van 

stochastische effecten, wordt in de plantenveredeling nog lang niet in 

die mate toegepast. Hoe deze methode kan worden gebruikt bij het 

rassenonderzoek wordt beschreven in de laatste paragraaf 9.2. 
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