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STELLINGEN 

1. Het is onwaarschijnlijk dat de resultaten, die in dit proefschrift zijn 

beschreven, zouden zijn bereikt zonder gebruik te maken van monoklonale 

antibodies. 

2. De bewering dat de lange fiber van fowl adenovirus type 1 is opgebouwd 

uit een octameer van polypeptide IV is waarschijnijk onjuist. 

Li, P., A.J.D. Bellett, en R. Parish. J. Gen. Virol. 65:1803-1815. 1984. 

3. Een recombinant hexon polypeptide van een adenovirus zal waarschijnlijk 

geen immuniteit induceren tegen een wild type virus infektie in de 

natuurlijke waard. 

4. De konklusie van Perrin et al. dat hemorrhagic enteritis virus in vitro 

repliceert in miltcellen van de kalkoen kan niet gemaakt worden op grond 

van hun experimentele resultaten. 

Perrin, G., C. Louzis, en D. Toquin. Bull. Acad. Vet. Fr. 54:231-235. 

1981. 

5. De specifieke selektie van monoklonale antibodies die reageren met 

virus-specifieke antigenen heeft de ontdekking en studie van 

gemeenschappelijke determinanten in virus en waard negatief beinvloed. 

6. Het gebruik van een gekontamineerde celkultuur, zoals RP19 cellen met 

Mareks virus, voor het produceren van vaccins zou niet moeten worden 

toegestaan. 

7. De bewering van Davenas et al. dat basofielen kunnen worden 

gedegranuleerd door anti-IgE antiserum dat 10 tot 10 keer verdund 

is, is voorbarig. 

Davenas, E., F. Beauvais, J. Amara, M. Oberbaum, B. Robinzon, A. 

Miadonna, A. Tedeschi, B. Pomeranz, P. Fortner, P. Belon, J. 

Sainte-Laudy, B. Poitevin, and J. Benveniste. Nature 333:816-818. 1988. 

8. De natuurlijke staat van het landschap in Canada wordt beschermd door de 

aanwezigheid van bloedzuigende insekten. 

9. Het tweetalig karakter van Canada bevat meer negatieve dan positieve 

kanten. 

10. De vervanging van de bison door het rund voor vleesproduktie in de 

prairie provincies van Canada is niet gebaseerd op ekonomische 

overwegingen. 

Jan V.J.M, van den Hurk 

Development of a vaccine for the prevention of hemorrhagic enteritis in turkeys 

Wageningen, 13 december 1988 
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CHAPTER 1 

GENERAL DfiKHJCTICN 

1.1 General characteristics of adenoviruses. 

Adenoviruses are able to infect man and a wide variety of animal species in 

which they may cause respiratory, ocular, gastrointestinal, and urinary infections. 

These viruses are classified into a single family based upon common physical, 

chemical, morphological, and structural properties (95,144). The members of this 

family all have a remarkable uniform morphology and size (70-90nm) when observed by 

electron microscopy. Adenoviruses have an icosahedral shell of 252 capsomers (71) 

and a nuclear core containing double-stranded DNA. The icosahedral shell comprises 

240 hexons, each surrounded by six neighbouring capsomers, and pentons each 

surrounded by five peripentonal hexons (61,142). The hexons are found at the 20 

triangular facets and 30 edges, and the pentons at the 12 vertices of the 

icosahedral capsid. A penton consists of two structural units: a penton base and 

single or double fibers protruding from the vertex (59,88,110,142). 

The family of the Adenoviridae is divided into the genera Mastadenovirus, 

consisting of 90 or more serotypes, and Aviadenovirus, consisting of 15 or more 

serotypes (144). This division is based upon the presence of a group-specific 

antigen in most mammalian adenoviruses which is absent in the avian adenoviruses 

(144). The adenoviruses have been classified into subgroups and types in various 

ways according to biological, chemical, immunological, or structural properties, 

including natural host, antigenic relationship, neutralization, and DNA sequence 

homology (144). The classification of the avian adenoviruses is less well defined 

than that of the mammalian adenoviruses, because the members of the former group 

have been less extensively studied and characterized, and have a wider host range 

than those of the latter group (83,144). A subdivision of the avian adenoviruses 

into two groups or types, group I avian adenovirus and group II avian adenovirus, 

has been tentatively proposed based upon an antigenic relationship within but not 

between the two groups and a difference in host-cell tropism (37,45,84). The group 

I avian adenoviruses includes twelve serotypes of the fowl adenoviruses (FAV-1 to 

FAV-12) and probably two serotypes of turkey adenoviruses which all share a 

group-specific antigen and replicate in homologous kidney cell cultures (33,99). 

Egg drop syndrome 1976 virus (EDS76V) might also be a member of the group I avian 

adenoviruses although serological crossreactivity between EDS76V and FAV serotypes 



was marginal (lb,8,100). The group II avian adenoviruses, consisting of hemorrhagic 

enteritis virus (HEV) of turkeys (22,80,138), marble spleen disease virus (MSDV) of 

pheasants (23,75,76,79), and splenomegaly virus (SV) of chickens (43,44,45) are 

antigenically related viruses (36,40,43,44,45,77), which do not replicate in 

(primary) kidney, liver or fibroblast cell cultures of homologous or heterologous 

hosts (77,79,148). The group II avian adenoviruses are able to infect turkeys, 

pheasants and chickens. However, they seem to be only pathogenic for their natural 

host (42,43,44,45,78). 

1.2 Virus-host interaction. 

1.2.1 General aspects. Adenoviruses can cause respiratory, ocular, 

gastrointestinal, liver, kidney, and urinary diseases in man and animals (83,131). 

In addition, they may cause persistent and latent infections in many species, as 

well as tumors in rodents (83,131). Transmission of adenoviruses occurs mostly 

horizontally, but fowl adenoviruses and EDS76V can be transmitted vertically through 

eggs (83,101,131). Major targets of an initial infection are mucous membranes of 

the oral and nasopharyngeal cavity, conjunctiva, cloaca, and regional lymphatic 

organs. Human adenoviruses establish productive infections in gastrointestinal, 

respiratory, or ocular epithelial cells (131). Adenoviruses might become 

transiently viremic and enter lymphatic organs where they multiply in 

reticuloendothelial cells and produce intranuclear inclusion bodies (83,131). 

Clearance of the infecting virus presumably requires cellular (macrophages, 

lymphocytes) and humoral (antibodies, complement, and lymphokines) immune reactions 

(52). Live virus vaccines containing adenovirus type 4 (Ad4) or Ad7 have been used 

successfully to immunize recruits against acute respiratory disease 

(25,32,131,139,140,141). 

1.2.2 Hemorrhagic enteritis in turkeys. Hemorrhagic enteritis (HE) in turkeys was 

first observed by Pomeroy and Fenstermacher in 1937 (122). HE is an acute disease 

caused by HEV (22,37,80,138). Clinical signs of illness include enteritis, 

splenomegaly and hemorrhages in various tissues, especially the intestine, and may 

lead to mortality in field outbreaks ranging from less than 1% to over 60% 

(37,38,69). HE is widespread and it is a disease of economical importance (37). 

Data from serological studies indicate that almost all adult turkeys have been 

infected with HEV (37,39). HE in turkeys usually occurs between 6 and 11 weeks of 



age and is most common in 7- to 9-week-old birds (37,122). Younger birds are 

usually refractory to the disease as a result of the presence of maternal antibodies 

(37). 

The natural hosts of group II avian adenoviruses, to which HEV belongs, are 

turkeys, pheasants, and chickens. Death only occurs in the natural host (37). 

Mortality, usually observed between 4 and 6 days after infection, may reach up to 

80% in turkeys experimentally infected with pathogenic strains of HEV (37). Gross 

lesions are distended intestines filled with red and brownish blood, and enlarged 

marbled spleens (22,68,69,81). Intranuclear inclusions containing HEV are present 

in reticuloendothelial cells of many organs especially the spleen (22,68,80,81,146). 

1.2.3 Prevention of hemorrhagic enteritis in turkeys by vaccination. 

1.2.3.1 Vaccine requirements. A vaccine should be safe and effective (1,1a). In 

this context, safety indicates the need to avoid harmful side effects following 

vaccination, and effectiveness indicates the need to induce a protective immune 

response in most recipients. Protective immune responses can be subdivided into 

three categories. The first is the induction of neutralizing antibodies (e.g. 

antibodies which prevents viral infection) which should be long lasting. The second 

is the induction of an appropriate form of cell-mediated immunity (CMI). The value 

of such a response is mostly to limit rather than to prevent an infection. 

Furthermore, the O H response is important because it is usually crossprotective 

between subtypes in contrast to serological response. The last is the induction of 

a non-specific immune response consisting of the activation of macrophages, NK 

cells, and increase in the production of cytokines. This immune response is 

important in the face of an epidemic. 

1.2.3.2 Hemorrhagic enteritis vaccines. Until recently, only two vaccines were 

available for prevention of HE in turkeys. The first one is a crude vaccine 

prepared from spleens of turkeys infected with avirulent HEV (HEV-A) (38,136). The 

second vaccine contains HEV-A grown in a lymphoblastoid cell line (RP19) derived 

from a Marek's disease virus (MDV)-induced tumor (49,50,104,105,106). Both are live 

virus vaccines administered in the drinking water and both vaccines elicit 

protective immunity in turkeys. However, the safety features of these vaccines have 

to be carefully evaluated. Spleen extract vaccines might contain extraneous 

pathogens due to the manner they are obtained from spleen without further 



purification, and to immunosuppression caused by HEV replicating in immune cells 

which lowers resistence against infectious agents. In addition, infectious MDV is 

present in RP19 cell cultures (104), and products from tumor cells, like RP19 cells, 

are only recenty allowed for vaccine production. 

It is evident from these data that the safety of these two vaccines leaves to be 

desired. Hence, there was a need for a safer vaccine to prevent HE in turkeys. 

Therefore, one of the major goals was to develop an appropriate cell 

culture-propagated live virus vaccine for the preparation of HE in turkeys. 

1.3 Virus-cell interaction. 

The interaction between adenovirus and host cell may result in a lytic, 

semipermissive or abortive infection. The outcome of the virus infection depends on 

the nature of the infecting virus and the type of host cell. 

1.3.1 Lytic infection. Lytic infections of cell cultures are convenient for virus 

propagation and characterization, and have been described for most mammalian and 

group I avian adenoviruses. Primary and continuous epithelial cell lines such as 

HEK, Hela, HEp-2, or KB cells are suitable for human adenovirus propagation 

(9,73,131). Characteristic cytopathic alterations include rounding and ballooning 

of the cells, cellular aggregation, and detachment of the cells from the surface 

(9,73,131). The first steps during infection are attachment and penetration of the 

virus into the cell. Two mechanisms for the internalization of Ad2 in cells have 

been described. The most likely mechanism is receptor-mediated endocytosis 

(53,63,134,135), but the mechanism of direct penetration can not be excluded 

(16,94,103). Receptor-mediated endocytosis of adenoviruses is a process in which 

virus-ligands (fibers at physiological pH) bind to cellular receptors 

(26,53,90,120,134,135). Subsequently, virus-receptor complexes enter coated pits by 

random diffusion, and become trapped in vesicles (endocytic vesicles or 

receptosomes) formed from the coated pits, which are then internalized in the cell. 

Attachment and endocytosis destabilizes the virions and renders them sensitive to 

DNase. Then the hydrophobic area of the penton base, alone or in combination with 

fiber and hexon, is thought to destabilize the receptosomes and cause virus release 

in the cytosol (114,127,128). Subsequent steps involve transfer to the nuclear 

membrane and uncoating of the virion resulting in a free nucleocapsid which 

penetrates into the nucleus (27,103). Final uncoating occurs in the nucleus when 



viral DNA is released for replication (94). Six to eight h after infection progeny 

DNA can be detected in the nuclei and after 24h 105 to 106 molecules of viral DNA 

are synthesized of which only 20% is packaged to form mature virions (65). 

1.3.2 Semipermissive and abortive infection. In semipermissive infections virus 

production is reduced (58,123). A number of factors may cause this reduction 

including virus type, virus mutant, slower uptake and uncoating of virus in the 

cell, a lower rate of viral DNA replication and a less efficient translation of 

viral proteins (64,70,72). In abortive infections the virions enter the cell but 

viral DNA replication does not take place. Abortive infections, which can be caused 

by many mammalian and group I avian adenoviruses, sometimes result in transformation 

(5,6,7,24,62,97,98). Only the left end of the genome of adenoviruses, including the 

El gene, is required for transformation. Whether HEV can give rise to semipermisive 

or abortive infections resulting in transformation is not known. 

1.3.3. Propagation of HEV. Group II avian adenoviruses replicate well in their 

hosts, but difficulties were encountered with the in vitro propagation of these 

viruses. In contrast, most mammalian and group I avian adenoviruses can be 

propagated easily in cell cultures. Attempts to propagate HEV in embryonated 

chicken and turkey eggs and in chicken and turkey embryo fibroblast cultures have 

all been unsuccessful (22,41). Furthermore, several attempts have been made to 

infect spleen cells of turkeys in vitro (51,115). Although infection has been 

reported, actual virus replication in these cells has not been demonstrated. 

Similar negative results have been reported for the propagation of MSDV in cell 

cultures of embryo fibroblasts and kidneys of chickens, pheasants, and turkeys, and 

in embryonated eggs of turkeys (77,79,148). The only cell lines in which HEV 

replicate are the MDV-transformed B lymphoblastoid cell lines RP16 and RP19 obtained 

from turkey tumors (104,105). However, the presence of MDV in these cell lines made 

them unattractive for HEV propagation and vaccine production. 

Therefore, a different approach had to be taken for the in vitro propagation of 

HEV. Instead of trying to grow HEV in epitheloid cells, attempts were made to 

propagate this virus in turkey leukocytes, a cell population which includes the 

natural target cells in HEV-infected turkeys. 

1.3.4 Adenovirus DNA. The size of the adenovirus genome varies from serotype to 

serotype with molecular weights ranging from 17 x 10 for simian adenoviruses to 30 



x 106 for FAV-1 (20,88). Basic features of the DNA shared by all adenoviruses 

including FAV-l are (57,83,85,133): 1) the linearity of the double strands; 

2) terminal proteins (IP's), covalently linked to the 5' ends of both DNA strands in 

the virions, which play a role in the initiation of DNA replication; 3) the presence 

of inverted terminal repetitions; 4) a DNA sequence homology of at least five base 

pairs extending from nucleotides 9-14; 

5) similar mechanisms for DNA replication; and 6) the production of a virus-specific 

DNA-binding protein (DBP) in the cell upon infection. 

the mode of adenovirus DNA replication is semi-conservative and asymmetrical 

(89). Models of the replication mechanism, based on in vitro and in vivo studies in 

which the function of virus-coded proteins [TP, precursor TP (pTP), DNA-polymerase 

(DNA-pol), and DBP] and host cell factors (nuclear factor I and II) required for 

initiation and prolongation of DNA synthesis, have been described for the human 

adenoviruses type 2 (Ad2), type 5 (Ad5), and type 12 (Adl2) (56). 

1.3.5 Transcription of Adenovirus DNA. The majority of the research on adenovirus 

transcription has been focussed on the replication cycle of Ad2 and Ad5. The 

adenovirus genes are subdivided into genes transcribed before the onset of viral DNA 

replication (early genes: regions Ela, Elb, E2a, E3, and E4), genes transcribed 

before and during viral DNA replication (intermediate genes: regions E2b and IVa2), 

and genes transcribed after the onset of viral DNA replication (late genes: regions 

Ll, L2, L3, L4, and L5) (10,28,29,129). The positions of promoters of Ad2 from 

which the mRNAs are transcribed during a lytic infection have been mapped 

(10,28,29). The adenovirus RNA's are capped at the 5' end and polyadenylated at the 

3' end (121). Regions Ela and Elb contain genes for transformation and regulation 

of transformation. Region E2a codes for the DBP, and region E2b for the pTP, and 

DNA-pol. Late transcription products from regions Ll, L2, L3, L4, and L5 are 

processed into groups of related mRNA's that share common 5' and 3' ends, but are 

differently processed from the precursor-RNA molecules (28,54,102). The following 

regions contain coding information for the structural proteins: Elb for IX, Ll for 

pilla, L2 for III (penton base), pVTII, and V, L3 for pVT and II (hexon), L4 for 

pVTII, and L5 for IV (fiber). 

1.3.6 Adenovirus proteins. A schematic view of the proteins in an adenovirus 

particle is illustrated in Fig. 1, and the properties of Ad2 and FAV-1 are 

summarized in Tables 1 and 2. 
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1.3.6.1 Hexen. Hexons are the major capsid proteins in the virion. They are 

localized at the 20 triangular facets and 30 edges of the icosahedral capsid. Four 

types of hexon polypeptides can be distinguished in adenovirus-infected cells: 

nascent hexon polypeptide (monomer), hexon protein (trimer), group of nine (GCN) 

hexons, and hexons in virions. The term hexon (protein) is used to indicate the 

trimer. In infected cells, free hexons are present in a 10 to 100-fold excess over 

hexons assembled in virions (145). Free and capsid hexons are identical proteins 

(19) and each hexon consists of three identical polypeptides (15,31,74,124). Each 

monomer consists of 967 amino acids and has a molecular weight of 109,000 (109k) 

(2). A model of the three-dimensional structure of Ad2 hexon, based on x-ray 

cristallography and electron microscopy, has been described (19,124). This model 

shows that the hexon consists of two parts: a triangular top containing three towers 

and a pseudo-hexogonal base. The pseudo-hexagonal base of the trimer facilitates 

hexon-hexon interaction within a hexagonal array in the virion. The heterologous 

regions of Ad2 and Ad5 (both members of subgroup C) are found at the top of the 

hexons, indicating that type-specific determinants are restricted to the outside of 

the capsid and that hexon-hexon interactions are conserved (19,124). The fact that 

in the intact virion the type-specific determinant (e ) lies on the outside of the 

capsid whereas the group-specific determinant ( a ) is inaccessible for antibodies 

are in consent with this model (112). 

1.3.6.2 Penton. Pentons, composed of a complex of penton base and fiber, are 

localized at the 12 vertices of the adenovirus icosahedron (Fig. 2) (61,142). 

Mammalian adenoviruses contain single fibers whereas most avian adenoviruses (fowl 

adenoviruses) contain double fibers with the exception of EDS76V which has single 

fibers (59,86,88). Pentons and fibers are also synthesized in excess in infected 

cells, and are present as soluble and capsid proteins (14,15). Fiber and penton 

base are joined by noncovalent bonds which can be dissociated by treatment with 

pyridine or deoxycholate (14,117). Penton base and fiber can associate in vitro 

into pentons which are indistinguishable from those present in the capsid (12). 

There is no consensus about the subunit conformation of the human adenovirus penton 

which is either trimeric or pentameric for the penton base (14,34,35,118,143), and 

dimeric or trimeric for the fiber (34,35,66,118,143). Each combination includes at 

least one mismatch in symmetry which occurs at the vertex. A solution might be 

that, based upon the observation of a pentameric penton base consisting of three 

shorter and two longer polypeptides, a trimeric fiber could bind to the three 
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shorter penton base polypeptides (143). How two fibers, probably coded by different 

genes, are associated with one penton base as described for the fowl adenoviruses is 

not known (92). It has been suggested that the penton base of FAV-1 exists as a 

trimer, the long fiber as an octomer, and the short fiber as a trimer (92). 

Fibers vary in length from 9 - 47nm (59,118), and in molecular weight from 35k 

(Ad3) to 67k (EDS76V) (130,137). A fiber consists of a knob, a shaft with a 

repeating motif of 15 residues (Ad2, Ad3), and a tail (66,108,130). The 15 residue 

motif is repeated 22 times in the longer Ad2 fiber (30nm), and six times in the 

shorter Ad3 fiber (10-llnm). The fiber is the only adenovirus protein that is 

glycosylated (82). Each polypeptide carries two molecules of N-acetylglucosamine. 

The fiber mediates the early recognition between virus and cell (120). Furthermore, 

it carries a species-specific determinant ( 7 ) in its knob which might interact with 

red blood cells causing hemagglutination (111,142). 

The penton can induce an early cytopathic effect on cells, including a rounded 

cell morphology and detachment of the cells from the surface (46,142). Although it 

has been definitely demonstrated that the penton base is responsible for this 

phenomenon the mechanism involved is still unclear (14,117,147). 

1.3.6.3 Protein Ilia. Protein Ilia is localized in the peripentonal region, might 

be accessible on the surface of the virion, and appears to connect the peripentonal 

Fig. 1. Architecture of adenovirus particle and hexon protein based on data from 

Nermut, Philipson, and Van Oostrum and Burnette (108,119,143). A. Schematic view of 

an Ad2 particle illustrating the architexture and apparent topography of the 

structural proteins in the virion. The viral capsid is made up of the hexon, penton 

base, fiber, Ilia, VI, VIII and IX proteins. Protein VIII is not shown because its 

location in the virion is not known. The viral core consists of a core shell 

(protein V ) , and a DNA-protein complex containing protein VII associated with dsENA 

and terminal proteins linked to both 5' ends of the genome. Insert shows an 

electron micrograph of HEV-A. B. Schematic view of an Ad2 hexon (protein) with 

pseudo-hexagonal base and triangular top. The three subunits of the hexon are more 

distinct at the base with little interpénétration of the polypeptide chains, in 

contrast to the triangular top in which each of the three towers is built up of all 

three polypeptide chains. C. Model of a group of nine (GCN) hexons. The GCN hexons 

is stabilized by protein IX. 
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Table 2. Composition and properties of fowl adenovirus type 1 (FAV-1) 

Polypeptide Location 

Molecular No. copies/ Subunit 

weight virion Composition 

II 

III 

rv 
V 

VI 

TP 

VII 

VIII 

IX 

X 

XI 

XII 

Hexon 

Penton base 

Long fiber 

c 

-

Core 

Short 

-

Core 

-

Core 

Core 

fiber 

100 

92 

65 

62 

55 

46 

44.5 

30 

20 

18 

12 

9.5 

720 

36 

96 

66 

30 

2 

36 

-

740 

1330 

910 

1910 

Trimer 

Trimer 

Octamer 

-

-

Monomer 

Trimer 

-

-

-

-

-

Data from Li et al. (91a,92) 
B Determined by SDS-PAGE 

Not known 

proteins to the core (143). This protein is produced in excess during the 

infectious cycle in the cells (90). It is phosphorylated (3,11), and cleaved 

during virus maturation from pilla into Ilia (13). There are approximately 60 

- 72 copies of monomeric Ilia per virion (13,35,143). No counterpart of the 

human Ilia protein has been described for avian adenoviruses. 

1.3.6.4 Core proteins. Viral DNA of Ad2 is associated with the core proteins V 

(48k) and VII (18.5k) (48,87,96) whereas the DNA of FAV-1 is associated with 

the core proteins IX (20k), XI (12k), and XII (9.5k) (92,93). Protein VII, 

derived by cleavage from pVll (4), is the major core protein (4,47). The minor 

core protein V is phosphorylated. It is less basic and not as strongly 

associated with the DNA as protein VII (17). A model for the human adenovirus 

core was proposed in which protein VII and viral DNA form a helical structure 

surrounded by a shell of protein V (17,107,108,127). 
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knob 

Fig. 2. Model of ein Ad2 penton. The penton of this virus consists of one fiber 

inserted in the penton base. The pentons are present at the five fold vertices of 

the icosahedron and each penton is surrounded by five hexons (peripentonal hexons). 

1.3.6.5 Proteins VI, VIII and IX. Less information is available about proteins VT, 

VIII and IX of Ad2. Protein VI (24K) (4,48,96), derived from pVl, is located inside 

the virion (47) and has affinity for DNA (125). Protein VIII (14.5K) (4,48,96) is 

weakly associated with the hexon protein, and is derived from pVTII during virus 

maturation (113). Protein IX (14k) is exposed at the outside of the virion, and, 

although it is not essential for virus assembly, it acts as a stabilizing agent for 

the GON hexons (30,116). Twelve copies of IX are associated with each GCN hexon 

(18,21). An analogue of IX might not exist for FAV-1 because no GCN hexons were 

found after dissociation of FAV-1 (88). 

1.3.7 Assemblage and maturation of adenoviruses. A model for the assemblage of Ad2 

based on biochemical data and electron microscopic observations has been described 

(119). During the late phase of an adenovirus infection host cell protein synthesis 

is shut off, viral mRNA is preferentially translated, and viral polypeptides are 

synthesized and transported to the nucleus. Empty capsids are assembled from GCN 

hexons, single hexons, penton base, fiber, pilla, pVI, pVIII, and IX. Then, the 

core proteins V and pVII, and DNA, left-hand end of the genome first, enter the 

empty capsid to form immature virions. Finally, the precursor proteins are cleaved 

to generate mature virions. 
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1.4 Objective and experimental approach. 

The specific aims of this investigation were: 1) the characterization of HEV and 

HEV proteins, 2) the development of a cell culture system for HEV propagation, and 

3) the use of avirulent HEV produced in this cell culture system to prevent HE in 

turkeys. 

First, sensitive and specific ELISAS were developed for the quantitation of HEV 

antigen and antibody (Chapter 2). The ELISA for the titration of antibodies was 

used to determine the presence and the decline of maternal antibody titers in young 

turkeys and to monitor seroconversion and protection in turkeys following 

immunization with HEV-A (Chapters 2 and 6). The ELISA for the titration of antigen 

was used in the potency assay to monitor protection following immunization with 

HEV-A and challenge with HEV-V (Chapter 6). 

Second, the generation of monoclonal antibodies, also required for the antigen 

ELISA, was the cornerstone for further research. They were used for the 

characterization of HEV proteins (Chapters 3 and 4). In addition, hexon-specific 

monoclonal antibodies were used in a fluorescent antibody (FA) test to identify 

HEV-infected cells. Finally, with this test different cell cultures were screened 

and selected for HEV susceptability and virus production (Chapter 5). 

Third, cell culture-produced HEV-A was analyzed for its potential to induce 

protection against HE in turkeys following immunization, initially in experimental 

trials at the Veterinary Infectious Disease Organization (VIDO) and subsequently in 

field trials on turkey farms (Chapter 6). 
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SUMMARY. Enzyme-linked immunosorbent assays (ELISAs) were developed to quantitate 
hemorrhagic enteritis virus (HEV) antibodies in turkey sera and HEV antigens in tissue extracts. 
These assays were more sensitive than the commonly used agar-gel precipitin tests in detecting 
antigen and antibody. The antibody-ELISA was used to monitor the presence and decline of 
passive antibodies in turkey poults and the seroconversion of turkeys infected with HEV. The 
antigen-ELISA was carried out using a monoclonal antibody; this test was used to quantitate 
HEV antigen in experimentally infected turkeys in a time-sequence experiment. Both ELISAs 
measured a strong antigenic relationship between an avirulent strain (HEV-A) and a virulent 
strain (HEV-V). 

RESUMEN. Cuantificación de antigeno y anticuerpos contra el virus de la enteritis hemo
rrâgica mediante pruebas de inmunoensayo con enzimas asociadas. 

Se desarrollaron pruebas de inmunoensayo con enzimas asociadas (ELISA) para cuantificar 
anticuerpos en sucro de pavos contra el virus de la enteritis hemorrâgica y para cuantificar la 
presencia de antigeno viral presente en extractos de tejidos. Estas pruebas resultaron mâs 
sensibles que las pruebas de precipitaciôn en agar para la detección de anticuerpos y de antigeno. 
La prueba ELISA para cuantificar anticuerpos fué utilizada para determinar la presencia y la 
disminución de anticuerpos pasivos en pavos jóvenes y la respuesta humoral de pavos infectados 
con el virus. La prueba ELISA para la detección de antigeno se realizó usando anticuerpos 
monoclonales y fué utilizada para la cuantificación de antigeno en pavos infectados experi-
mentalmcnte. Ambas pruebas ELISA encontraron una estrecha correlación entre una cepa 
avirulenta y otra virulenta del virus de la enteritis hemorrâgica. 

Group II avian adenoviruses, which cause acute tive immunity following vaccination is being 
infectious diseases, include the hemorrhagic en- studied; therefore, sensitive and specific assays 
teritis virus (HEV) of turkeys, the marble spleen are needed to study the rate of decline in passive 
disease virus (MSDV) of pheasants, and the antibody titers, to moni tor seroconversion after 
splenomegaly virus (SV) of chickens. These three infection or vaccination, and to detect viral an-
viruses have been tentatively classified as group tigen in tissues of infected birds. Enzyme-linked 
II avian adenoviruses, because there is a strong immunosorbent assays (ELISAs) were used to 
serologic relationship among them (4,5,10) and quantitate antibody and antigen levels in poults 
they do not show serological cross reactivity with experimentally infected with either an avirulent 
the group I avian adenoviruses (1,5,16). strain (HEV-A) or a virulent strain (HEV-V) of 

Agar-gel precipitin (AGP) tests have been used HEV; results are presented herein and compared 
commonly to detect HEV antibodies in sera and with results obtained with the corresponding AGP 
HEV antigens in tissue extracts of infected tur- test, 
keys (3). However, this method is rather insen
sitive and in some cases fails to detect low to 
medium levels of antibody (17). MATERIALS A N D METHODS 

The pathogenesis of HEV in experimentally 
infected turkeys and the development of protec- Turkeys. Day-old small white diamond hybrid poults 

(Chinook Belt Hatcheries, Calgary, Alberta, Canada) 
raised in isolation were used in all experiments. Poults 

Published with the permission of the Director of were bled at regular intervals to determine the rate of 
VIDO as Journal Series No. 42. decline in passive antibody titers. 
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ELISA for HEV antigen and antibody 

Hemorrhagic enteritis virus. HEV-A and HEV-V 
were both gifts from Dr. C. Domermuth, Blacksburg, 
Virginia. HEV-A was originally isolated from the en
larged spleen of a pheasant suspected of having marble 
spleen disease. HEV-V was isolated from the spleen of 
a turkey that died from hemorrhagic enteritis (HE). 
Both strains were propagated in 6-to-9-week-old tur
keys, initially by infecting the turkeys with crude spleen 
extracts, and subsequently by infecting them orally with 
300 to 1000 median turkey infective doses (TID50) of 
CsCl-purified HEV diluted in phosphate-buffered sa
line (PBS)( 140 mM NaCl, 3 mM KCl, 8 mM Na2HP04 , 
and 1.5 mM KH 2P0 4 ; pH 7.2). Turkeys were killed 5 
days postinfection, and their spleens were removed and 
stored at - 7 0 C. 

Crude spleen extract. Crude virus preparations were 
prepared by homogenizing the spleens of HEV-A- or 
HEV-V-infected turkeys using a polytron (Brinkman 
Instruments, Rexdale, Ontario, Canada). Spleens were 
suspended in 0.01 M Tris-HCl buffer, pH 8.1, at a ratio 
of 1:10 (w/v). The resulting suspensions were sonicated 
three times (Braun-sonic 1510, Braun Instruments, San 
Mateo, California) for 20 sec at 300-400 watts and 
then clarified by centrifugation for 5 min at 10,000 x 
g to pellet cellular debris. The virus-containing super
natant was collected and stored at - 7 0 C. Control 
extracts were prepared in the same way from spleens 
of turkeys that had not been exposed to HEV. All ma
nipulations were carried out at 0 to 4 C. The extracts 
were tested for the presence of HEV antigens with the 
ELISA and the AGP test. 

HEV antigen in crude spleen extracts used for eval
uation in the 3-step antibody-ELISA was further puri
fied and concentrated by an (NH4)2SC>4 precipitation 
at 50% saturation. The pellets obtained after a cen
trifugation of 10 min at 10,000 x g were resuspended 
in PBS at 0.1 x their original volume. 

Crude MDTC-RP19 cell extract. MDTC-P.P 19 cells 
(13), obtained from Dr. K. Nazerian (East Lansing, 
Michigan), were collected by centrifugation 2 days after 
they were infected with HEV. The cells were resus
pended in a small volume of 0.01 M Tris-HCl buffer, 
pH 8.1, and HEV was released from the cells by two 
freeze-thaw cycles followed by sonication for 15 sec-
ondsat 100 watts. Aftercentrifuging4 minat 10,000 x 
g, the virus-containing supernatant was collected and 
storedat - 7 0 C. 

ELISA for HEV antibody. An indirect ELISA for 
titrating HEV antibodies was developed, and the effects 
of several important conditions on its sensitivity were 
investigated. These included: (i) use of CsCl-purilied 
virus instead of crude spleen extracts for coating, (ii) 
treating purified virus with 2 M CaCl2 before coating, 
(iii) diluting serum samples in PBS (pH 7.4) containing 
0.05% Tween 20 (PBS-T), and (iv) diluting serum sam
ples in 10 x PBS-T (Table 1). 

After the results of tests using these variables were 
evaluated, the final procedure was carried out as fol
lows, (i) HEV used for coating microtiter plates was 

Table 1. Comparison of ELISA antibody titers us
ing various test conditions.A 

Scrum no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Purified 
HEV 

+ CaCl2 

+ 10x 
PBS-T 

30 
40 
40 
40 
80 

960 
1920 
3840 
3840 
5120 

Purified 
HEV 

- CaCl2 

+ 10x 
PBS-T 

30 
30 
30 
40 
60 

640 
1280 
1280 
1920 
1920 

Purified 
HEV 

+ CaCl2 

+ l x 
PBS-T 

40 
30 
40 
40 
40 

320 
640 
480 

1280 
1280 

Crude 
spleen 
extract 

+ CaCl2 

+ 10x 
PBS-T 

20 
40 
40 
20 
20 
60 
80 

120 
640 
160 

AHEV-A preparations were obtained by CsCl puri
fication or by (NH4)2S04 precipitation of crude spleen 
extracts from HEV-A-infectcd turkeys. CaCl2 was added 
to the preparations before coating the plates, and the 
sera were diluted in 10 x PBS-T or PBS-T. Sera with 
antibody titers greater than 40 were considered posi
tive. 

extracted from spleens of experimentally infected tur
keys and purified on CsCl gradients (van den Hurk, 
manuscript in preparation). The virus band having a 
density of 1.34 g/cm3 was treated with an equal volume 
of 2 M CaCl2 and incubated for 30 min at 37 C. There
after, 96-wcll polystyrene microtiter plates (Immulon 
TM2, Dynatech Laboratories, Alexandria, Virginia) 
were coated for 2 hr at 37 C with an optimum dilution 
of antigen (0.2 ml per well) in 0.05 M sodium bicar
bonate buffer, pH 9.6. After coating, the plates were 
washed three times with PBS-T, which was also used 
for all subsequent washes, (ii) Experimental sera, as 
well as positive and negative control sera, were diluted 
twofold in 10 x PBS-T containing 1% (v/v) newborn 
calf serum (GIBCO, Grand Island, New York), added 
to the wells (0.2 ml per well), and incubated for 2 hr 
at 37 C. (iii) After three washes with PBS-T, 0.2 ml 
peroxidase-conjugated rabbit anti-turkey IgG diluted 
1:1000 and containing 1% newborn calf serum was 
added to each well, and the plates were again incubated 
for 2 hr at 37 C. After three more washings with 
PBS-T, 0.2 ml of substrate solution containing 
5-aminosalicy!ic acid (0.08%, w/v) and H 2 0 2 (0.005%, 
v/v), pH 6.0, was added to each well. Absorbance (A) 
was measured after 30 min at room temperature with 
a micro-ELISA reader (MR 580, Dynatech Labora
tories, Oxnard, California) at 492 nm. All tests were 
done in duplicate, and average titers were calculated. 
Each assay included two positive control sera (with 
known titers) and two negative control sera. The same 
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concentrations (^278) of purified HEV-A and HEV-V 
were used for coating the plates. 

An alternative four-step ELISA for titrating HEV 
antibodies was also developed. In this method, the first 
step of the three-step ELISA described above was re
placed by two steps, (i) The plates were coated with 
monoclonal antibody from mouse ascites fluid (diluted 
1:3000 in 0.05 M sodium bicarbonate buffer), (ii) The 
plates were incubated with HEV-infected crude spleen 
extract or RP19 cell extract at optimum dilutions in 
PBS-T. The remainder of the assay was as described 
above. 

ELISA for HEV antigen. This assay was carried 
out in four steps, (i) Polyvinyl 96-well microtiter plates 
(Falcon 3912 MicroTest 111®, Falcon Plastics, Ox-
nard, California) were coated with 0.2 ml per well of 
the IgG fraction of pooled immune sera of turkeys 
infected with either HEV-A or HEV-V. The IgG frac
tion was purified by Na2SC»4 precipitation (14) and 
diluted to a concentration of 10 Mg/nil in 0.05 M so
dium bicarbonate buffer, pH 9.6. After incubation for 
2 hr at 37 C, and after each of the following incubation 
steps, the plates were washed three times with PBS-T. 
(ii) Twofold dilutions of crude spleen extracts in PBS-T 
were added to the plates, which were incubated over
night at 4 C. (iii) A 0.2-ml amount of monoclonal 
tissue-culture supernatant fluid diluted 1:10 with PBS-T 
was added to each well, and the plates were incubated 
for 2 hr at 37 C. (iv) A 0.2-ml amount of affinity-
purified peroxidase-linked goat anti-mouse IgG (Boeh-
ringer-Mannheim, Dorval, Quebec, Canada) diluted 
1:1000 was added to the wells, and the plates were 
incubated for 2 hr at 37 C. The A value was measured 
as described above. 

All tests were performed in duplicate and included 
extracts with known antigen titers and extracts of con
trol turkeys that had never been exposed to HEV. The 
HEV antigen tilers are given as the average of the du
plicates. The characteristics of the monoclonal anti
body used ( 15G4) will be described elsewhere (van den 
Hurk, manuscript in preparation). Briefly, it reacts spe
cifically with a major protein of HEV. It reacts equally 
well with HEV-A and HEV-V and also with field iso
lates from HEV-infected turkeys. It does not react with 
the Group I avian adenoviruses. 

AGP tests. Antibody and antigen titrations using 
the AGP test were performed as described by Do-
mermuth el al. (3). For the antibody test, pooled crude 
spleen extracts used had high antigen titers (> 160 in 
the AGP antigen test). For the antigen test, the same 
pooled IgG fraction used for coating in the antigen-
ELISA was used. All tests were performed in duplicate, 
and average titers were calculated. 

Conjugate. The IgG fraction of sera from rabbits 
immunized with turkey IgG purified by sodium sulfate 
precipitation (14) was obtained by affinity chromatog
raphy on DEAE Affi-Gel Blue (described by Bio-Rad 
Laboratories, Richmond, Calif). This purified IgG was 

linked to horseradish peroxidase type VI (Sigma, St. 
Louis, Missouri) according to the method of Nakane 
and Kawaoi (12) as modified by van den Hurk and 
Kurstak(18). 

Experimental design for application of the ELISAs. 
Decline in passive antibody titers. In an attempt to 
determine how rapidly passive antibody titers decline, 
poults raised in isolation were bled at various times 
from 2 days to 7 weeks of age. Antibody titers were 
measured by ELISA and AGP using both HEV-A and 
HEV-V as antigen. 

Seroconversion following exposure to HEV. Sero
conversion data were obtained from a group of 10 
turkeys orally infected with HEV-A when 15 weeks 
old. Blood samples of all turkeys were taken at the time 
of infection (day 0). After infection, the birds were 
divided into two groups of 5. Each group was bled 
alternately every other day until day 21. The antibody 
response of the birds was measured by ELISA. 

RESULTS 

ELISA for HEV antibody determination. As
say conditions. Sensitivity was greatest using 
CaCl2-treated, CsCI-purified virus for coating the 
plates and 10 x PBS-T as the serum diluent (Ta
ble 1). Consequently, these conditions were used 
in all further experiments. A linear relationship 
was obtained by plotting the logio of the recip
rocal of the serum dilution against the logio of 
the A 492 measured with the ELISA reader after 
subtracting the background absorption (i.e., wells 
in which turkey serum was replaced by PBS-T). 

Fifty-five sera from turkeys not exposed to HEV 
and 50 sera from turkeys experimentally infected 
with HEV-A or HEV-V were tested at various 
dilutions in 10 x PBS-T. The mean + 2 s tandard 
deviations of the /I492 of the negative sera was 
the criterion used to distinguish between anti
body-positive and antibody-negative sera. At a 
dilution of 1:40, the 55 sera from unexposed birds 
were all negative and the 50 sera from exposed 
birds were all positive (titers ranging from 200 
to 80,000) (Fig. 1). At a dilution of 1:20, two of 
the 55 samples from unexposed birds were pos
itive, and at a dilution of 1:10, three samples 
were positive. On the basis of these results, sera 
with tilers more than 40 were considered to be 
positive for antibodies to HEV, and sera with 
titers of 40 or less were considered negative. 

Decline in passive antibody titers. In an at
tempt to determine how rapidly passive antibody 
titers declined, poults raised in isolation were 
bled at various ages. Table 2 shows the propor-
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Fig. 1. Antibody ELISA of sera from 55 turkeys never exposed to HEV (D) and from 50 turkeys infected 

with HEV-A or HEV-V (•). Sera were collected 7-40 days postinfection. At each dilution, the mean (O) + 2x 
the standard deviation (•) of the absorbance (O.D.492) of sera from the unexposed birds is marked. At a dilution 
of 1:40 there was a clear separation between the two groups of birds. 

tion of birds that were seropositive and the geo
metric mean antibody titers at different ages. The 
ELISA was much more sensitive than the AGP 
test. Titers declined as the birds aged. When the 
ELISA was used, most birds remained seropos
itive until 3 weeks of age. At 5 weeks, most birds 
were seronegative (titer of 40 or less). In contrast, 
when the AGP test was used, low antibody titers 
were detected in some birds at 2 days of age, and 
most were negative by 1 week of age. 

The HEV-V and HEV-A antigens did not dif
fer significantly in reactivity in either test. The 
Pearson moment correlation (R) for the ELISA 
antigen titers was 0.97 (P < 0.01). The ELISA 
detected passive antibodies in all sera from ap
proximately 200 poults less than 3 weeks old 
purchased from poultry suppliers (data not 
shown). 

Seroconversion following exposure to HEV. 
Seroconversion data were obtained from a group 
of 10 turkeys orally infected with HEV-A. All 10 
birds were seronegative at the t ime of infection 
(Fig. 2). By days 3 and 4, three of the five birds 
in each group were positive; after this t ime all 
birds were positive. The titers peaked about 10 
days postexposure and remained at this level for 
the remainder of the trial. No significant differ
ence was found between plates coated with 
HEV-A and those coated with HEV-V (results 
not shown). 

Antibody titers in 28 sera of turkeys at various 
t imes after experimental infection with HEV-A 
or HEV-V were determined using homologous 
and heterologous antigen (Table 3). The corre
lation coefficient (r) in ELISA antibody titers 
between plates coated with homologous and het-
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Table 2. Comparison of passive antibody titers against HEV in poults at various ages using ELISA and agar-
gel precipitation (AGP). 

Age 

2 days 

1 week 

2 weeks 

3 weeks 

5 weeks 

7 weeks 

HEV-A 

Titer0 

2129 
(480-7680) 

745 
(240-1920) 

263 
(80-640) 

132 
(40-480) 

28 
(20-50) 

14 
(5-35) 

ELISAA 

No. 
posi
tive/ 
total 

10/10 

8/8 

5/5 

4/5 

1/5 

0/5 

HEV-V 

Titer 

2255 
(320-7680) 

745 
(160-1920) 

248 
(80-640) 

108 
(40-480) 

24 
(15-60) 

13 
(5-30) 

No. 
posi
tive/ 
total 

10/10 

8/8 

5/5 

4/5 

1/5 

0/5 

AGPB 

HEV-A 

Titer 

1 
(1-4) 

<1 
(< l -2) 

<1 

<1 

<1 

<1 

No. 
posi
tive/ 
total 

3/10 

1/8 

0/5 

0/5 

0/5 

0/5 

HEV-V 

Titer 

1 
(1-4) 

<1 
(0-2) 

<1 

<1 

<1 

<1 

No. 
posi
tive/ 
total 

3/10 

1/8 

0/5 

0/5 

0/5 

0/5 

AELISA antibody titers of poults were determined using plates coated with purified HEV-A or HEV-V. Titers 
greater than 40 were considered positive. 

UAGP antibody titers were determined against crude spleen extracts of turkeys infected with HEV-A or HEV-V. 
A titer of less than 1 means no reaction with undiluted serum. Titers of 1 or greater were considered positive. 

c Titers are presented as the geometric mean and the range in parentheses. 

erologous antigen was 0.98 for the sera from HEV-
A-infected turkeys and 0.97 for the sera from 
HEV-V-infccled turkeys. The ELISA was at least 
640 times more sensitive than the AGP test. There 
were no significant dinerences in tilers due to 
virulence of HEV strain. 

10 12 14 16 18 20 

DAYS AFTER INFECTION 
Fig. 2. Seroconversion of poults after infection with 

HEV-A. Ten 15-week-old turkeys were infected with 
HEV-A on day 0. The turkeys were split into two groups 
of 5, which were then bled on alternate days. The geo
metric mean of the ELISA titers, expressed as the re
ciprocal of the serum dilution, are shown for each day. 
Homologous virus was used as capture antigen in the 
ELISA. Bars represent the standard error. 

A four-step ELISA for antibody titration, in 
which crude virus extract from either turkey 
spleens or MDTC-RP19 cells was used instead 
of purified virus, was also developed. Selective 
binding of HEV antigen from these crude ex
tracts was obtained using microtiter plates coated 
with monoclonal antibody (15G4). The criteria 
for the evaluation of the four-step ELISA were 
the same as those for the three-step ELISA. The 
four-step ELISA was less sensitive than the three-
step ELISA (Table 4). HEV-infected spleens and 
MDTC-RP19 cells yielded similar antibody ti
ters. 

ELISA for HEV antigen titration. Test con
ditions. The absorbance of spleen extracts from 
50 turkeys not exposed to HEV and 50 turkeys 
exposed to HEV were compared. Plotting the 
logio of the reciprocal of the extract dilution 
against the logio of the absorbance resulted in a 
linear relationship. Extracts were tested at var
ious dilutions (Fig. 3). The mean + two t imes 
the standard deviation of the /I492 of extracts 
from the unexposed birds was taken as the point 
at which samples were considered positive. When 
this criterion was used, there was clear separation 
between the exposed and unexposed birds at di-
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Table 3. Comparison of HEV antibody titers determined by ELISA and agar-gel precipitin (AGP) in sera 
from turkeys infected with HEV-A or HEV-V. 

Serum no. 

1 
'2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Days post
infection 

3 
5 
7 
8 

10 
14 
14 
14 
14 
21 
14 
21 
14 
35 

4 
5 
6 
7 

14 
14 
14 
21 
14 
21 
14 
14 
35 
21 

Virus used for 
infection 

HEV-A 

HEV-V 

ELISA titersA 

HEV-A 
coating 

60 
80 

320 
640 
860 

1280 
1920 
2560 
2560 
2560 
5120 
7680 

10,240 
15,360 

120 
120 
160 
960 

2560 
2560 
2560 
3840 
3840 
7680 
7680 
7680 

15,360 
15,360 

HEV-V 
coating 

80 
80 

240 
640 
640 

1920 
1280 
1920 
1920 
2560 
5120 
5120 

10,240 
15,360 

160 
160 
640 
960 

3840 
3840 
3840 
5120 
7680 
7680 
7680 

10,240 
15,360 
15,360 

AGP titers3 

HEV-A 
extract 

<1 
<1 
<1 

1 
<1 
<1 

1 
1 
4 
4 
8 
8 
8 
8 

<1 
<I 
<1 
<1 

4 
8 
8 
4 
8 
8 
8 
8 
8 
6 

HEV-V 
extract 

<1 
<1 
<1 
<1 
<1 
<1 
<1 
<1 

2 
2 
4 
4 
4 
8 

<1 
<1 
<1 
<1 

4 
4 
4 
4 
4 
4 
8 
4 
8 
8 

AELISA antibody titers of poults were determined using plates coated with purified HEV-A or HEV-V. Titers 
are presented as the geometric mean. Titers greater than 40 were considered positive. 

BAGP antibody titers were determined against crude spleen extracts of turkeys infected with HEV-A or HEV-V. 
A titer of less than 1 means no reaction with undiluted sera. Titers of 1 or greater were considered positive. 

lutions of 1:100, 1:200, and 1:400. All 50 control 
extracts were negative (ELISA antigen titer 
<100), and all 50 spleen extracts of HEV-in-
fected turkeys were positive (ELISA antigen ti
ters > 100, ranging from 1200 to 100,000). Poly
vinyl plates yielded more consistent results than 
polystyrene plates. This was tested by comparing 
data obtained with polystyrene plates of three 
different manufacturers (data not shown). 

Appearance of HEV in spleen following infec
tion. Thirty-five turkeys were orally infected with 
500 TID50 of CsCl-purified HEV-A, and the sub
sequent appearance of HEV in their spleens was 
monitored. Using the ELISA, HEV antigen could 
be detected in spleen homogenates as early as 3 
days after oral infection (Table 5), and all birds 

were positive by 4 days. Using the AGP test, no 
positive samples were seen until 4 days postin
fection. Both tests demonstrated that the antigen 
titers were highest 5 days postinfection. No dif
ference in reactivity was observed between plates 
coated with homologous or heterologous serum. 

Antigen detection by ELISA and AGP. The 
presence of HEV antigen was quantitated in crude 
spleen extracts of 25 turkeys experimentally in
fected with HEV-A and in extracts of 29 turkeys 
experimentally infected with HEV-V. Both ho
mologous and heterologous antisera were used 
as the capture antibody. The antigen titers ob
tained with the ELISA were 200 times higher 
than those obtained with the corresponding AGP 
lest. The results of the tests conducted using 
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Table 4. Comparison of 3- and 4-step antibody-
ELISAs for HEV. 

Serum 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Days 
post
expo
sure^ 

0 
0 
3 
7 
7 
7 

14 
14 
14 
14 

ELISA antibody 

3-step 
method 

Purified 
HEV-A 

15 
30 
30 

480 
320 
480 

5120 
5120 

10,240 
40,960 

titers 

4-step method 

Spleen 
extract" 

<10 
10 
10 

240 
120 
240 

1280 
1920 
1920 
5120 

RP19 
extractc 

<10 
15 
10 

160 
80 

240 
1280 
1280 
1920 
5120 

ATurkeys were infected with 500 T1D50 HEV-A. 
"Crude spleen extract of HEV-A-infected turkeys. 
cExtract of MDTC-RP19 cells infected with HEV-A. 

HEV-A as the antigen and homologous anti
serum are shown in Fig. 4 and were not signifi
cantly different when HEV-V or heterologous 
antiserum was used. The correlation coefficient 
between the ELISA titers of HEV-A extracts de
termined with homologous and heterologous im
mune serum was 0.94 (Fig. 5). The correlation 
coefficient between the ELISA titers of the HEV-V 
extracts determined similarly was 0.95 (data not 
shown). 

DISCUSSION 

The standard three-step ELISA developed for 
the detection of HEV antibody was at least 300 

times more sensitive than the ant ibody-AGP test. 
The use of CsCl-gradient-purified HEV instead 
of spleen extract resulted in increased sensitivity 
of this assay. This was due to the elimination of 
the high background levels caused by nonspecific 
binding of serum proteins to crude antigen prep
arations present when HEV of lesser purity was 
used. This phenomenon has been observed by 
others (9,15). 

Both the ELISA and the AGP test were used 
to quantitate passive antibody titers in poults. 
The ELISA revealed that virtually all of more 
than 200 poults from commercial turkey sup
pliers had passive antibody titers at 2 days of 
age. In contrast, the A G P test detected titers in 
only about 30% of these poults. The ELISA 
showed that passive antibody titers declined 
slowly with t ime and that some birds were still 
positive at 5 weeks of age. Since the A G P test 
was much less sensitive, the results of that test 
erroneously indicated that all birds were negative 
by 2 weeks of age. The rate of decline of passive 
antibodies is important, because it determines 
which turkeys are susceptible to disease, and also 
the age at which they can be successfully vacci
nated against HE. Moreover, passive antibodies 
probably protect poults, because turkeys cannot 
be infected with HEV (8) when younger than 2 
weeks old. 

The AGP method appeared to be more reliable 
for detecting antibodies in convalescent sera than 
for detecting passive antibodies. Precipitins were 
detected in only a few of the serum samples from 
very young turkeys, but they were detected in 
nearly all convalescent sera. Malkinson et al.(ll) 
suggested that the antibodies in young turkeys 

Table 5. 
HEV-A. 

Detection of HEV antigen by ELISA and AGP in spleen extracts of turkeys infected orally with 

Days post
infection 

0 
1 
2 
3 
4 
5 
6 

Antigen 

HEV-A serum 

<100 
<100 
< 100 
<100 
1391 
5793 
1872 

ELISA 

titersA 

HEV-V serum 

<100 
<100 
<100 

105 
2433 
8006 
2531 

No 
no 

positive/ 
testedc 

0/5 
0/5 
0/5 
1/5 
5/5 
5/5 
5/5 

Antigen 

HEV-A serum 

<10 
<10 
<10 
<10 

53 
160 
23 

AGP 

titers0 

HEV-V serum 

<10 
<10 
<10 
<10 

53 
92 
20 

No positive/ 
no. tested 

0/5 
0/5 
0/5 
0/5 
4/5 
5/5 
2/5 

AGeometric mean titers. Titers less than 100 are considered negative. 
"Geometric mean titers. Titers less than 10 are considered negative. 
c The number of positive turkeys per group was the same using HEV-A and HEV-V immune serum. 
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ANTIGEN DILUTION 
Fig. 3. Antigen ELISA of spleen extracts from 50 turkeys never exposed to HEV (O) and from 50 turkeys 

infected with HEV-A or HEV-V collected 4-6 days postinfection (•). The mean (D) + 2 x the standard deviation 
(•) of the absorbance (O.D.492) of extracts from the unexposed birds is marked. At a dilution of 1:100 there 
was a clear separation between the two groups of birds. 

are mostly passively transferred IgG, whereas the 
precipitin reaction is preferentially caused by IgM 
antibodies. This might explain why passive an
tibodies are poorly detected by the AGP test. 
However, it does not explain the improved sen
sitivity of this procedure for convalescent sera 
collected several weeks after infection, when the 
IgM level would be expected to be low or insig
nificant. 

The appearance of antibodies 3 days after in

fection with HEV is consistent with data reported 
by Silim and Thorsen (15): the antibody titers 
were highest (5120) 12 days postinfection in the 
present study and highest (1000) 14 days postin
fection in the earlier study (15). The slight de
crease in antibody levels, which was sometimes 
followed by an increase 3 weeks after infection, 
might be caused by reinfection of birds with 
feces containing virus produced earlier during 
the acute phase of the disease. 
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Fig. 5. Correlation between the ELISA antigen liters 
obtained for 25 HEV-A spleen extracts using homol
ogous and heterologous immune sera as capture anti
body. 

The three-step ELISA was easier to use and 
more sensitive than the four-step method. How
ever, the latter can be used with crude viral an
tigen, which is more readily available. The four-
step method also worked using virus produced 
in MDTC-RP19 cells. This is in contrast to an 
earlier report of Ianconescu et al. (9), who found 
that MDTC-RP19-produced HEV was not suit
able in an ELISA. 

The antigen-ELISA was at least 10 t imes more 
sensitive than the AGP test. This ELISA has an 
advantage over the blocking assay developed by 
others (9), because it can quantify HEV antigen. 
This has been useful in studies on immuni ty to 
HEV and for the detection of low antigen con
centrations. 

Antigen was present in spleens 3 days postin
fection, and values peaked 5 days postinfection. 
These findings agree with results of investigators 
who used an immunofluorescent-antibody test 
(6), an immunoperoxidase technique (15), and 
AGP test (7). 
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The results of the ELIS As suggest that HEV-A 
and HEV-V are closely related antigenically. This 
conclusion is supported by (i) similarity of the 
HEV antibody titers in convalescent sera against 
homologous and heterologous HEV; and (ii) sim
ilarity of the HEV antigen titers in tissue extracts 
against homologous and heterologous antisera. 
This conclusion is also supported by studies in 
which vaccination of turkeys with HEV-A re
sulted in immunity against challenge with HEV-V 
(2). 

These ELISAs were unable to distinguish be
tween the two virus strains. However, this might 
be advantageous, because one antigen prepara
tion can be used to determine antibody titers of 
different strains, and similarly one antibody 
preparation can be used to determine viral an
tigens of different HEV strains. 

The development of the ELISAs for the de
tection of HEV antigen and antibody provides 
suitable diagnostic and serological techniques and 
will facilitate further studies of HEV. 
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Panel of Monoclonal Antibodies 

Jan V. van den Hurk and Sylvia van Drunen Littel-van den Hurk* 

ABSTRACT 

The interaction between a panel of 
ten monoclonal antibodies and 
hemorrhagic enteritis virus, a group II 
avian adenovirus, was determined. 
The monoclonal antibodies reacted 
with all nine isolates of group II avian 
adenoviruses, but not with any of five 
types of group I avian adenoviruses. 
All ten monoclonal antibodies recog
nized antigenic determinants on the 
hexon protein of hemorrhagic enteri
tis virus when analyzed by immuno-
precipitation and immunoblotting. 
They reacted only with the native 
hexon protein and not with protein 
denatured by sodium dodecyl sulfate 
or guanidine-HCl/urea treatment 
combined with reduction and carbox-
ymethylation. Based on the results of 
competitive binding assays, the panel 
of monoclonal antibodies could be 
subdivided into two groups, which 
recognized different antigenic 
domains of the hemorrhagic enteritis 
virus hexon protein. The monoclonal 
antibodies in group 1 neutralized 
hemorrhagic enteritis virus infectivity 
while the monoclonal antibodies of 
group 2 did not. Group 1 consisted of 
eight monoclonal antibodies which 
could be further subdivided into 
subgroups 1A, IB, 1C and ID. The 
subdivision of the monoclonal antibo
dies was based on the degree of 
blocking in the competitive binding 
assays and differences in their ability 
to induce enhancement. In general, the 

monoclonal antibodies had a higher 
avidity for the virulent isolate of 
hemorrhagic enteritis virus than for 
the avirulent hemorrhagic enteritis 
virus isolate. 

RESUME 

Cette expérience visait à déterminer 
l'interaction entre un groupe de dix 
anticorps monoclonaux et le virus de 
l'entérite hémorragique de la dinde, un 
des adenovirus aviaires du groupe II. 
Ces anticorps monoclonaux réagirent 
avec les neuf isolats des adenovirus 
aviaires du groupe II, mais non avec 
l'un ou l'autre des cinq types du groupe 
I. Les dix anticorps monoclonaux 
reconnurent les déterminants antigé-
niques de la protéine hexonique du 
virus de l'entérite hémorragique, par 
l'immunoprécipitation et l'immu-
noempreinte. Ils réagirent avec la 
protéine hexonique intacte, mais non 
après sa dénaturation par le dodécyle 
sulfate de sodium ou par le chlorhy
drate de guanidine et d'urée, combiné 
avec la réduction et la carboxyméthy-
lation. D'après les résultats d'essais 
d'union compétitive, on pourrait 
subdiviser le groupe d'anticorps 
monoclonaux en deux groupes qui 
reconnurent divers domaines antigéni-
ques de la protéine hexonique du virus 
de l'entérite hémorragique de la dinde. 
Les anticorps monoclonaux propres 
aux virus du groupe 1 neutralisèrent 
l'infectivité du virus précité, contraire

ment à ceux du groupe 2. Les 
anticorps monoclonaux du groupe 1 
en comptaient huit et il s'avéra 
possible d'en former les sous-groupes 
1A, IB, 1C et ID. Cette subdivision se 
basait sur le degré de blocage, lors des 
essais d'union compétitive, et les 
différences dans leur habileté à 
provoquer le renforcement de cette 
union. En général, les anticorps 
monoclonaux affichèrent plus d'avi
dité pour l'isolât virulent V du virus de 
l'entérite hémorragique de la dinde, 
que pour son isolât A, avirulent. 

INTRODUCTION 

Hemorrhagic enteritis virus (HEV) 
causes an economically important 
disease in susceptible young turkeys 
(1). Clinical signs of illness include 
enteritis, splenomegaly and hemor
rhages in various tissues, especially the 
intestine, and may lead to mortality in 
field outbreaks ranging from less than 
1% to over 60% (1,2). 

The serologically related viruses 
which cause hemorrhagic enteritis 
(HE) of turkeys, marble spleen disease 
(MSD) of pheasants, and splenome
galy of chickens are tentatively 
classifed as group II avian adenovir
uses (3-6). They do not appear to have 
an antigenic relationship with the 
group I avian adenoviruses which 
include 11 serotypes of fowl adenovi
rus (5,7-9). The fact that the group II 
viruses are classified as adenoviruses is 
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based on their biochemical, physical 
and biological charcteristics which are 
typical for adenoviruses (10-15). 

The purpose of the present study 
was to further investigate the serologi
cal relationship between avian adeno
viruses and to characterize the 
biological properties and epitopes of 
HEV. Therefore a panel of HEV-
specific monoclonal antibodies was 
produced and used to identify two 
major determinants on the hexon 
protein of which one was important 
for neutralization. These monoclonal 
antibodies were specific for common 
antigenic determinants of the group II 
avian adenoviruses but did not react 
with group I types. In addition these 
monoclonal antibodies proved very 
useful in developing tests for the 
detection of HEV antigen and antib
ody (16). 

MATERIALS AND METHODS 

VIRUSES 

Hemorrhagic enteritis virus-A 
(HEV-A) is an isolate of pheasant 
origin which is avirulent for turkeys. 
HEV-D, -I, -M„ -M2, -V, -Y, and -Y2 

are isolates from turkeys which died of 
HEV and they are all virulent for 
turkeys. Isolate SV is of chicken 
origin, which is avirulent for turkeys. 
The HEV-A, -I, -V and SV isolates 
were a gift from C.H. Domermuth, 
Blacksburg, Virginia, and the other 
isolates were obtained from field cases 
of HE in Canada. All of the above 
serologically related group II avian 
adenoviruses were propagated in 
turkeys. The fowl adenovirus types 1, 
2, 3, 4 and 8 were obtained from the 
American Type Culture collection and 
cultivated in chicken embryo 
fibroblasts. 

VIRUS PROPAGATION AND 
PURIFICATION 

Turkeys kept in isolation were 
infected orally with group II avian 
adenovirus when they were 6 to 10 wk 
old. Spleens of the sacrificed birds 
were collected four to five days after 
infection. Crude virus suspensions 
were prepared by homogenizing the 
spleens in 0.01 M Tris-HCl, pH8.1 
(ratio 1:10, w/w), and collecting the 
supernatants after a centrifugation of 
10 min at 10,000 x g. Further purifica

tion of the crude virus extracts was 
carried out by the method of Green 
and Pina (17). The virus band, (P of 
1.33-1.34 g/cm3) obtained after two 
CsCl purification steps was collected. 
Hemorrhagic enteritis virus was 
dialyzed against 0.01 M Tris-HCl, 
pH 8.1, containing 20% glycerin and 
stored at-70°C. 

PRODUCTION OF MONOCLONAL 
ANTIBODIES 

Balb/c mice were immunized by 
injecting 0.05 mL purified HEV-V 
(2mg/mL), emulsified in Freund's 
complete adjuvant, into each of two 
footpads. The primary injection was 
followed by a second footpad injection 
of HEV-V in Freund's incomplete 
adjuvant 2 wk later. Final boosts with 
0.1 mL HEV-V in phosphate-buffered 
saline (PBS) were given intravenously 
seven and three days prior to fusion. 
Mouse spleen cells were fused with 
NS-1 myeloma cells as described by 
Kennett et al ( 18). The supernatants of 
the hybridoma cells were initially 
screened for HEV-specific antibody 
production by an indirect immuno-
fluorescent antibody (FA) test using 
control and HEV-infected turkey 
spleen leukocytes. The hybridoma 
cells were subcloned in microtiter 
plates by the limiting dilution method. 
Ascites fluids were obtained from 
pristane- (2,6,10,14 — tetramethyl 
pentadecane; Aldrich Chemicals, 
Montreal, Quebec) primed Balb/c 
mice intraperitoneally injected with 
approximately 107 hybridoma cells. 

FLUORESCENT ANTIBODY (FA) TEST 

Turkey leukocytes were obtained 
from turkey blood by centrifugation 
through Ficoll-Paque (Pharmacia, 
Montreal, Quebec) for 15-20 min at 
800 x g. The leukocytes were washed 
twice in RPMI 1640 and resuspended 
in the same medium supplemented 
with 10% fetal bovine serum (Gibco, 
Grand Island, New York) at a 
concentration of 107 cells per mL. The 
primary leukocyte suspension cultures 
were infected with HEV-A or HEV-V 
and kept at 41°C. Cell smears were 
made with a cytocentrifuge two to 
three days postinfection. The cells 
were fixed either in methanol or 
acetone for 5 min. Hemorrhagic 
enteritis virus infected cells were 
incubated with hybridoma supernat

ant media for 1 h at 41° C followed by 
an incubation with affinity-purified 
fluorescein-labelled goat immunoglo
bulin prepared against mouse immu
noglobulins (diluted 1:100 with PBS; 
Boehringer Mannheim, Dorval, 
Quebec) for 1 h at 41 ° C. The cells were 
mounted with PBS-glycerin (1:1, v/v) 
and observed with a Zeiss IM35 
microscope equipped with epifluores-
cent illumination. Photographs were 
taken with a neofluar x 40 objective. 

ENZYME-LINKED IMMUNOSORBENT 
ASSAY (ELISA) 

To identify HEV specific monoclo
nal antibodies, an indirect ELISA was 
used as described previously (16). 
Briefly, polystyrene microtiter plates 
(Immunolon 2, Dynatech Laborato
ries, Alexandria, Virginia) were coated 
with CsCl-purified HEV (2 Mg/well). 
Hybridoma supernatant media or 
ascites fluids in serial dilutions were 
added to the wells, followed by affinity-
purified peroxidase-conjugated goat 
antimouse Ig (diluted 1:4000, Boehrin
ger Mannheim, Montreal, Quebec). 

A four-step indirect sandwich 
ELISA was used to determine the 
reactivity of the monoclonal antibo
dies with group I and group II avian 
adenoviruses present in crude cell or 
spleen extracts. Polyvinyl microtiter 
plates (Falcon microtest III, Becton 
and Dickinson, Oxnard, California) 
were coated with a mixture of an IgG 
fraction of turkey anti-HEV-A serum 
and anti-HEV-V serum, diluted in 
0.05 M NaHCO, /Na 2 CO, buffer 
pH 9.6 (0.2 mL/well, 10 Mg/mL), for 
1 h at 41°C. After three washes with 
the diluent, PBS-T (140 mM NaCl, 
3 mM KCl, 8 mM Na2HP04, 1.5 mM 
KH2P04, 0.05% Tween 20; pH 7.2), 
crude extracts (0.2 mL/well) at an 
appropriate dilution in PBS-T were 
added to the plates and incubated 
overnight at 4°C. The plates were 
washed with PBS-T, hybridoma 
culture media in tenfold dilutions were 
added to the wells (0.2 mL/well), and 
the plates were incubated for 1 h at 
41°C. After washing with PBS-T, 
affinity-purified peroxidase-conjug
ated goat antimouse Ig (1:4000 in 
PBS-T) was added to the wells. After 
three more washes with PBS-T, 
0.2 mL of substrate solution contain
ing 5-aminosalicylic acid (0.08%, w/v) 
and H20, (0.005%, v/v), pH 6.0 was 

40 



added to each well. The enzymatic acti
vity was measured after 30 min at room 
temperature using a micro-ELISA 
reader MR 580 (Dynatec, Oxnard, 
California) at 492 nm. All tests were 
done in duplicate. The titers were cal
culated from titration curves in which 
the absorbance at 492 nm was plotted 
versus log]0 of the dilution of the 
hybridoma culture medium that gave a 
reading of at least 0.1 over a control 
well without monoclonal antibody. 

The antigenic reactivity of HEV 
after various treatments was measured 
by antibody blocking in an enzyme 
immunoassay (EIA) system described 
by Heinz el al ( 19). Various concentra
tions of treated and control HEV-A or 
HEV-V were incubated in microtiter 
plates for I h at 41CC with an equal 
volume of monoclonal antibody at an 
appropriate dilution in PBS-T con
taining 2% newborn calf serum 
(Gibco, Grand Island, New York). 
Subsequently, antigen-antibody mix
tures were transferred to a plate coated 
with the homologous antigen and the 
antibody titers were determined as 
described for the indirect ELISA. The 
antigenic reactivity expressed as the 
percentage blocking was calculated 
from the formula 100 (C-D)/C, where 
C is the optical density (OD) in the 
absence of antigen and D is the OD in 
the presence of a given antigen 
concentration. 

ANTIBODY CLASS AND SUBCLASS 

Antibody class and subclass were 
determined in the indirect antibody 
ELISA, described above, by replacing 
the conjugate step with class and 
subclass specific rabbit antimouse 
antibodies (Miles Laboratories, Elk
hart, Indiana), followed by affinity-
purified peroxidase-conjugated goat 
antirabbit Ig(Boehringer Mannheim). 

VIRUS NEUTRALIZATION 

Serial tenfold dilutions of ascites 
fluids in RPMI 1640 were mixed with 
an equal volume (0.2 mL) of 1000 
TCID5(1 of HEV-A or HEV-V in 
RPMI 1640. After incubation for I h, 
0.1 mL samples were added in quadru
plicate to I07 primary turkey blood 
leukocytes cultured in 24 well plates at 
41°C. Cytocentrifuge cell smears were 
made two days postinfection and the 
percentage of the infected cells was 
determined by the FA test. 

IMMUNOPRF.CIPITATION OF 
R A D I O L A B E L E D HEV PROTEINS 

Purified HEV was disrupted by five 
or six repeated freeze-thaw cycles and 
ultrasonic treatment. Soluble HEV 
proteins were obtained from crude 
spleen extracts by freon extractions, 
and centrifugation of the aqueous 
phase onto a CsCl cushion, followed 
by (NH4)2SO„ precipitation (20). 
Disrupted HEV and soluble HEV 
protein preparations were labelled-
with l25I by the enzymobead method 
following the instructions of the 
manufacturer (BioRad, Mississauga, 
Ontario). The conditions for immuno-
precipitation of l25I labelled HEV 
antigen with hybridoma supernatant 
medium, addition of rabbit antimouse 
Ig, and precipitation of the immune 
complexes with protein A-Sepharose 
CL-4B (Pharmacia, Dorval, Quebec) 
have been described previously (21). 
The immune precipitates were resus-
pended in electrophoresis sample 
buffer (0.0625 M Tris-HCl [pH 6.8], 
1% sodium dodecyl sulfate [SDS], 
10% glycerol, 0.15 M 2-mercaptoetha-
nol, and 0.002% bromophenol blue) 
and dissociated by boiling for 4 min 
prior to electrophoresis. 

POLYACRYLAMIDE ( i l 'L 

ELECTROPHORESIS 

Purified HEV and immunoprecipi-
tates were dissociated in electrophore
sis sample buffer and analyzed in 10%: 
SDS-polyacrylamide gels (22). Elec
trophoresis under nondenaturing 
conditions of the hexon proteins was 
performed on 6% Polyacrylamide gels 
(23). 

IMMUNOBLOTT1NG 

A modification of the "Western" 
blotting technique described by 
Burnette (24) was used to analyze the 
interaction between the panel of 
monoclonal antibodies and HEV 
proteins. Hemorrhagic enteritis virus 
polypeptides were separated by SDS-
polyacrylamide gel electrophoresis 
(SDS-PAGE)inlO%slabgels(22),and 
HEV proteins were separated by 
PAGE in 6% slab gels (23). They were 
then transferred electrophoretically to 
nitrocellulose in a Bio-Rad transblot 
cell (Bio-Rad Laboratories, Missis
sauga, Ontario) at 32 V for 4 h in 
25 mM sodium phosphate buffer, 

pH 6.8. Subsequently, the immuno-
reaction was carried out as outlined in 
the instructions for the use of the Bio-
Rad immunoblot assay kit. Briefly, 
strips cut from the nitrocellulose sheet 
were incubated for 1 h in Tris-buffered 
saline (TBS: 0.02 M Tris-HCl, 0.5 M 
NaCl, pH 7.5) containing 3% gelatin. 
Thereafter, the strips were incubated 
for 3 h with hybridoma culture media 
diluted 1:5 in TBS containing 1% 
gelatin. After washing with TBS-T 
(TBS containing 0.05% Tween 20) the 
strips were incubated with affinity-
purified horseradish peroxidase-
conjugated goat antimouse Ig (Boeh-
ringer Mannheim, Dorval, Quebec) 
diluted in TBS (1:1000) containing !% 
gelatin. The strips were washed with 
TBS-T and bands were visualized by 
incubation with substrate (0.05% 
4-chloro-l-naphtol, 0.015% H202 in 
TBS) for 15-30 min. All incubation 
steps were carried out at room 
temperature on a rocking platform. 

PURIFICATION OF THE HEXON 

PROTEIN 

The IgG fraction of monoclonal 
antibody 15G4 was purified using 
protein A-Sepharose CL-4B (Pharma
cia. Montreal, Quebec) (25). Purified 
15G4-IgG, dialyzed against 0.1 M 
sodium carbonate buffer, pH 8.0, was 
linked to activated Affigel-10 (Bio-Rad 
Laboratories, Mississauga, Ontario) at 
5 mg/mL gel following the manufac
turer's instructions. The immunobeads 
were packed into a column, washed and 
equilibrated with TNE (0.01 M Tris-
HCl, 0.05 M NaCl, and 0.001 M Na2 

EDTA, pH 7.5). The soluble antigen 
fraction in TNF. obtained during virus 
purification (20), was recycled three 
times through the column. After 
washing of the column with TNE, 
hexon protein fractions were eluted 
with 0.05 M diethylamine, pH ! 1.5. 
During collection the protein fractions 
were neutralized with 1 M Tris-HCl, 
pH 6.8. The hexon-containing frac
tions were pooled and dialyzed against 
PBS. Hexon proteins were separated 
from larger complexes by centrifuga
tion on a 10 to 30% (w/v) linear 
sucrose gradient for 23 h at 
35,000 rpm in a Beekman SW 41 rotor 
at 4°C (26). The 12S hexon fractions 
were pooled, dialyzed against PBS 
containing 10% glycerol (v/v) and 
stored at-70°C. 
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ANTIGEN TREATMENTS 

The HEV treatments were essen
tially performed as described by Heinz 
et al( 19). For the guanidine-HCl/ urea 
treatment, HEV-A or HEV-V in 
0.02 M Tris-HCl containing 0.1 M 
NaCl, pH 8.0 (TN) was made 5 M 
with respect to guanidine-HCl and 
incubated for 1 h at 41° C. Subse
quently, the samples were dialyzed at 
4° C against 2 M urea in TN or against 
TN only. Control samples were 
incubated in TN only. For the 
reduction and carboxymethylation 
treatment, dithiothreitol (BioRad, 
Richmond, California) at a final 
concentration of 0.010 M in TN, was 
added to each HEV sample. After 
incubation at 41°C, iodoacetamide 
(BDH, Poole, England) at a final 
concentration of 0.05 M was added to 
each sample and the incubation was 
continued for 30 min at 41°C. An 
excess of 2-mercaptoethanol (25 ^L/ 
mL), was then added to each sample 
before dialysis against TN at 4°C. A 
combination of the guanidine-HCl/ 
urea and the reduction and carboxy
methylation treatments was also 
carried out. For the SDS treatment, 
SDS at a final concentration of 1% 
was added to the HEV samples in TN 
buffer. After boiling for 3 min the 
samples were dialyzed against TN at 
4°C. 

PREPARATION OF PEROX1DASE-

LABELLED MONOCLONAL 

ANTIBODIES 

Monoclonal antibodies obtained by 
(NH4)2S04 precipitation from ascites 
fluids were labelled with horseradish 
peroxidase (type VI, Sigma, St. Louis, 
Missouri) using the conjugation 
method of Nakane and Kawaoi (27) as 
modified by van den Hurk and Kurstak 
(28). 

COMPETITIVE ANTIBODY BINDING 

ASSAY (CBA) 

The CBA was performed by the 
method of Kimura-Kuroda and Yasui 
(29), modified by van Drunen Littel-
van den Hurk et al (30). Polystyrene 
microtiter plates were coated with 
HEV-A or HEV-V (4 Mg/well). After 
washing, the plates were incubated with 
competitor antibody in ascites fluids, 
serially diluted in PBS-T at concentra
tions ranging from 10 to 104 ELISA 
units. One ELISA unit is defined as the 

TABLE I. Properties of Monoclonal Antibodies Reactive with HEV 

Designation 

I1B6 

MC3 

I2B, 
12C, 
I4B, 
I4B,, 
I4E, 
14E, 
14F, 
I5GJ 

Isotypey 

lgG2a 
lgGl 
lgGI 
lgGl 
IgG2a 
IgA 
lgGl 
lgGl 
lgGl 
lgG2b 

FA 

HEV-A 

160 
100 
100 
320 
160 
100 
160 
100 
100 

1280 

Titerb 

HEV-V 

160 
100 
100 
320 
80 
80 

160 
100 
100 

1280 

ELISA Titer» 

HEV-A 

2560 
480 

1280 
1280 
160 

1280 
640 
640 
160 

5120 

HEV-V 

2560 
960 

1280 
1280 
320 

2560 
1280 
1280 
320 

10240 

"Immunoglobulin class and subclass were determined in an indirect ELISA using specific antisera for 
mouse IgA, IgM. IgGI. lgG2a. IgG2b and IgG3 

bTiters of hybridoma culture media were determined in an indirect FA test using HEV-A or HEV-V 
infected cells; FA titers are the averages of quadruplicate tests 

c Antibody titers of culture media were determined in an indirect ELISA using purified HEV-A or 
HEV-V as capture antigen 

highest dilution of an ascites fluid 
having an absorbance value at 492 nm 
of 0.1 OD above that of a control 
ascites. After washing, horseradish 
peroxidase-conjugated monoclonal 
antibodies were added to the plates at 
dilutions which gave an absorbance of 
1.0 OD at 492 nm without competitive 
antibody. After washing and addition 
of substrate solution as described 
earlier, the absorbance at 492 nm was 
measured in the presence or absence of 
competitor antibody. The calculation 
of the percentage of competition was as 
described by Kimura-Kuroda and 
Yasui (29) using the formula 
[ 100( A-n)]/ ( A-B), where A is the OD in 
the absence of competitor antibody, B 
the OD in the presence of 10" ELISA 
units of homologous antibody, and n is 
the OD in the presence of 104 ELISA 
units of competitor. 

RESULTS 

SCREENING AND REACTIVITY OF THE 

MONOCLONAL ANTIBODIES BY FA AND 

ELISA 

Hybridoma supernatant media were 
screened for their capacity to react with 
HEV-infected cells in the FA test. In 
this test, 18 of the supernatant culture 
fluids reacted specifically with HEV-
infected cells, but not with uninfected 
control cells. A panel of ten stable 
clones was selected for further charac
terization. Nine of the hybridomas 
secreted immunoglobulin G(IgG) and 
one secreted immunoglobulin A 
(IgA).The predominant isotype was 

IgGI, but IgG2a and lgG2b isotypes 
were also found (Table I). All monoclo
nal antibodies reacted with HEV-A and 
HEV-V infected cells in the FA test. 
Fluorescent staining was observed in 
both the nucleus and cytoplasm of cells 
fixed in either acetone or methanol 
(Fig. 1). The FA antibody titers of the 
monoclonal antibodies were similar for 
HEV-A and HEV-V, but the ELISA 
titers were generally higher against 
HEV-V than against HEV-A (Table I). 

SPECTRUM OF REACTIVITY OF THE 

MONOCLONAL ANTIBODIES 

The reactivity of the ten monoclonal 
antibodies with nine virus isolates 
belonging to avian adenovirus group II, 
and with five types of avian adenovirus 
group I was analyzed by a sandwich 
ELISA. This method was used because 
it allowed testing of a number of crude 
viral preparations of different origin 
without purification. The monoclonal 
antibodies reacted with each of the nine 
group II isolates, but they did not react 
with any of the group I types (Table II). 

ABILITY OF MONOCLONAL 

ANTIBODIES TO NEUTRALIZE VIRUS 

INFECTIV1TY 

Eight out of the ten mouse ascites 
fluids containing monoclonal antibo
dies strongly neutralized both HEV-A 
and HEV-V infectivity in cell culture. 
The remaining two monoclonal antibo
dies (14B3 and 15G4) either failed to 
neutralize the virus, or did so only 
weakly (Table III). In most cases higher 
neutralization titers were obtained for 
HEV-V than for HEV-A. 
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Fig. 1. Fluorescent antibody staining of turkey 
leukocytes infected with HEV-A (A) or HEV-V 
(B) with hybridoma supernatant medium of 
monoclonal antibody 15C4. The cells were fixed 
in methanol. Similar staining of cytoplasm and 
nucleus was obtained when cells were fixed in 
acetone. Magnification, 600x. 

HEXON-MONOCLONAL ANTIBODY 

INTERACTION 

The specific viral antigens that were 
recognized by the monoclonal antibo
dies were identified by immunoprecipi-
tation. Hemorrhagic enteritis virus 
antigen preparations obtained from 
either disrupted purified virus or from 
soluble viral protein preparations were 
radiolabelled with l25I. Analysis of the 
immunoprecipitates by Polyacrylamide 
gel electrophoresis revealed that all ten 
monoclonal antibodies reacted specifi
cally with the hexon, or major outer 
capsid protein, of both HEV-A and 
HEV-V. An example of immunopre-
cipitation of the hexon protein is shown 
in Fig. 2. 

Hexon proteins were purified from 
(NH4)2S04 precipitates of soluble 
spleen extract fractions by affinity 
chromatography and sucrose gradient 
centrifugation. The interactions 
between these purified hexons and 
monoclonal antibodies were analyzed 
by a direct sandwich ELISA using 
homologous or heterologous monoclo
nal antibodies as capture antibody and 
conjugate reagent for detection. All 
monoclonal antibodies reacted with the 
hexon proteins bound to the plates by 
homologous antibodies. Hence, all 

monoclonal antibodies reacted with 
more than one site on the hexon 
protein, although to varying degrees. 
Higher titers were obtained when the 
assay was carried out with heterologous 
antibodies which were not competing 
for the same site. Examples of 
homologous and heterologous titration 
curves are presented in Fig. 3. 

THE INFLUENCE OF CHEMICAL 

TREATMENTS ON ANTIGEN-ANTIBODY 

INTERACTION 

The effect of conformational or 
chemical changes on viral epitopes was 
investigated by immunoblotting and 
blocking enzyme immunoassays using 
monoclonal antibodies. 

None of the monoclonal antibodies 
reacted in immunoblots with any of the 
viral polypeptides separated by SDS-
PAGE. However, each of the ten 
monoclonal antibodies recognized the 
native hexon protein after electro
phoresis under nondenaturing condi
tions. An example of the immunoblot
ting reaction between monoclonal 
antibody 15G4 and the hexon protein of 
HEV-A and HEV-V is shown in Fig. 4. 

Denaturation with SDS or 
guanidine-HCl/urea treatment com
bined with reduction and carboxy-
methylation completely destroyed the 
recognition sites of all monoclonal 
antibodies of HEV-A as well as 
HEV-V. This loss of antigenicity after 
denaturation indicates that the monoc
lonal antibodies recognize conforma
tional sites on the hexon protein. 
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Fig. 2. Immunoprecipitation of l25I-labetled 
disrupted HEV-A (lanes B and C), HEV-V (lanes 
Fand G) and of soluble proteins of HEV-A (lane 
D) and HEV-V (lane H) with monoclonal 
antibody 6G )2 (lanes B and F) or monoclonal 
antibody 15G4 (lanes C,D,G and H). The 
immunoprecipitates were analyzed by SDS-
PAGE (10%). Monoclonal antibody 6GI2, which 
reacts specifically with bovine herpesvirus type 1, 
was used as a negative control (lanes B and F). 
HEV was prepared and immunoprecipitated as 
described in Materials and Methods. Lanes A 
and E show '25I-labelled polypeptides of HEV-A 
and HEV-V respectively. Molecular weight 
markers (xlO3) are shown in the left margin and 
the position of the hexon polypeptide (H) is 
marked in the right margin. 

TABLE II. Reactivity of Monoclonal Antibodies with Isolates of Avian Adenovirus Groups I and II 

Virusa 

HEV-A 
HEV-V 
HEV-I 
HEV-M, 
HEV-M, 
HEV-D, 
HEV-Y, 
HEV-Y, 
SV 

AAV-1,-2 
-3,-4,-8 

Group*1 

II 
II 
II 
II 
II 
II 
II 
II 
II 

I 

I IB , 

10" 
10' 
10' 
10" 
10" 
10' 
10s 

I04 

1 0 " 

<10 

1IC, 

10* 
irji 
10 
102 
10̂  
102 
102 
102 
102 

<10 

ELISA Titer 

I2B; 12C2 

10' 1 0 " 
10' 1 0 " 
102 |03 
I04 1 0 " 
10" 1 0 " 
10" 1 0 " 
I04 1 0 " 
I04 1 0 " 
102 1 0 " 

< ! 0 <10 

of Monoclonal Antibodies0 

14Bj 

102 
102 
10 
102 
102 

lu2 

102 
102 
10 

<10 

I4B„ 

10' 
10' 
102 
10' 
10' 
10' 
10' 
10' 
102 

<10 

I4E, 

10' 
10' 
10 
10' 

lu2 

10' 

lu2 

102 

102 

<10 

14E8 

10' 
10' 
10 
102 
102 
10' 
10' 
10' 

10^' 

<10 

14F7 

10 
10 
10 
10 
10 
10 
10 
10 
10 

<10 

15G„ 

I04 

10" 
I04 

104 

104 

104 

104 

104 

10' 

<10 

aVirus isolates of turkey spleens infected with HEV or SV and tissue culture cells infected with avian 
adenovirus group I virus 

bClassification of avian adenovirus group I and II according to Domermuth (1,3) 
eELISA antibody titers for the avian adenovirus group II isolates were determined by an indirect 
sandwich ELISA using spleen extracts from turkeys as antigen, and the ELISA antibody titers for the 
avian adenovirus group I types were determined by a direct sandwich ELISA using cell extracts as 
antigen 
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TABLE III. Neutalization of HEV Infectivity by 
HEV-specific Monoclonal Antibodies 

Designation 

MV 
I1B6 

ne, 
12B, 
I2C, 
14B, 
14B,, 
14E, 
14E, 
14FT 

15G4 

Neutralization Titera 

HEV-A 

< 10 
10s 

10* 
1 0 " 
io5-5 

10 
I0 5 5 

IO55 

10' 
IO45 

10 

HEV-V 

< 10 
IO55 

io«-5 

10« 
IO6 

< 10 
10' 
IO65 

io6-5 

IO45 

I02 

aNeutralization titers, determined for ascites 
fluids of each of the hybridomas. are expressed 
as the reciprocal of the highest dilution which 
caused a 50% reduction of fluorescent cells 

bControl clone reactive with bovine herpsvirus-1 

Reduction and methylation of HEV-A 
or HEV-V without denaturation had a 
minimal effect upon the antigenicity, 
whereas guanidine-HCl/urea treat
ment reduced the antigenicity of both 
HEV-A and HEV-V, though HEV-A 
appeared to be more sensitive. This last 
result was consistently observed with all 
ten monoclonal antibodies and showed 
a clear difference in stability of the two 
virus isolates. An example of the effect 
of various chemical treatments on the 
antigen-antibody interaction as deter
mined with blocking enzyme immu
noassays is shown in Fig. 5. 

TOPOGRAPHY OH EPITOPES ON EHE 

HEXON PROTEIN 

The spatial arrangement of epitopes 
on the hexon protein was investigated 
by using the panel of monoclonal 
antibodies in a CBA. Monoclonal 
antibodies can compete for binding to a 
protein when they react with the same 
antigenic site, or with a site in close 
proximity as a result of steric hin
drance. Alternatively, competition can 
occur as a result of conformational 
(allosteric) changes induced after 
binding of one monoclonal antibody 
which may then lead to reduced binding 
of another monoclonal antibody to a 
distant site. The CBA was carried out as 
described by Kimura-Kuroda and 
Yasui (29). In their assay competition of 
antibodies with lower as well as with 
higher avidity was measured by: 1) first 
incubating with the competitor, fol
lowed by incubation with the conju
gate, 2) basing their calculations on the 

competition of the homologous as well 
as the heterologous antibody and, 
3) using different competitor concen
trations based on ELISA units (101 to 
104), rather than on antibody 
concentrations. 

The antibody titers of the monoclo
nal antibodies in ascites fluids as 
measured by the direct and indirect 
ELISA are compared in Table IV. 
Although the antibody titers in the 
direct assay were lower than those in 
the indirect assay, their relative titers 
were similar with the exception of clone 
14B,|. This suggests that no significant 
changes occurred during peroxidase 
conjugation. The titers in direct and 
indirect assays of clone 14BM did not 
differ much, which might be ascribed to 
the fact that clone 14Bn belongs to the 
IgA class, while the others belong to the 
IgG class. 

On the basis of the percentage of 
competition, the monoclonal antibo
dies could be divided in two distinct 
groups, each reacting with a different 

E 
c 

CM 
O) 
TT 
0) 
Ü c « .a 
w 
O 

</> 
.û 

< 

1.2-

1.0-

0.8-

0.6-

0.4-

0.2-

o -

HEV-A 
HEXON 

i i i 

A 

antigenic domain of the hexon protein. 
A high level of competition was found 
between the antibodies in each group, 
and less competition was found 
between the monoclonal antibodies in 
different groups. Group l was com
prised of eight clones ( 11B6, 11C3, 12B2, 
12C2, 14B,,, 14E,, 14E8,and 14F7),and 
group 2 was comprised of two clones 
(14B3 and 15G„) (Table V and Fig. 6). 
The monoclonal antibodies in group 1 
consisted of a heterogeneous popula
tion which showed asymmetrical 
reciprocal competition. Therefore they 
were divided into four subgroups: 1A 
(IIB, and 14B,,), IB (11C,, 12B2 and 
12C2), IC (14E, and 14E8) and ID 
(14F7). The highest degree of competi
tion was found between monoclonal 
antibodies within subgroup 1A, which 
showed competition of nearly 100% 
with each other, as well as with the 
members of subgroups IB, ICand ID. 
The level of competition decreased for 
each subsequent subgroup so that 
subgroup ID competed strongly only 

10 102 103 104 105106 
1—i r 
10 102 103 10" 105 106 

Conjugate dilution 
Fig. 3. Titration curves of homologous and heterologous monoclonal antibody binding to HEV-A(A) 
or HEV-V(B) hexons. The hexon proteins (12S) were purified by affinity chromatography and sucrose 
gradients. The presence of binding sites on the hexon proteins captured by monoclonal antibodies 
bound to microtiter plates was analyzed using homologous or heterologous monoclonal antibody-
peroxidase conjugates. Symbols: • , 11B6 homologous curve; O, MB^and 15G4-peroxidase conjugate 
heterologous curve; A, 15G4 homologous curve; A, 15G4and l!B6-peroxidase conjugate heterologous 
curve. 
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Fig. 4. Immunoblot analysis of soluble antigen 
extracts of HEV-A (lane A) and HEV-V (lane 
B), and affinity-purified hexons of HEV-A (lane 
C) and HEV-V (lane D). Soluble antigen 
extracts were obtained from spleen homogen-
ates by freon extraction, centrifugation of the 
aqueous phase onto CsCI cushions, and 
concentration by (NH 4 ) 2S0 4 precipitation (20). 
Purified hexons »ere obtained by affinity 
purification of soluble antigen extracts on an 
Affigel-10-linked I5(i4 monoclonal antibody 
column. Proteins were separated by PAGE on 
6% Polyacrylamide gels under nondenaturing 
conditions and transferred to nitrocellulose. 
Strips were incubated successively with 
monoclonal antibody 15G4, peroxidase-linked 
goat antimouse Ig, and substrate to visualize the 
antigen-antibody complexes. 

group 2 in their ability to induce 
enhancement. Enhancement or nega
tive competition has been described as 
a phenomenon in which the reaction 
of an antigen with one monoclonal 
antibody increases the binding of a 
second antibody (31,34,35). Binding 
of the monoclonal antibodies 14B3 or 
15G4 at certain concentrations gener
ally enhanced binding of the antibo
dies in group 1. Monoclonal antibody 
14F7 of group 1 was the only one 
which enhanced binding of most of the 
conjugates of group 1 and 2, but was 
not enhanced by the other clones of 
group I (data not shown). This latter 
result supports the subdivision of 
group 1. Similar results were obtained 
in the CBA and enhancement experi
ments whether HEV-A or HEV-V 
were used. Examples of enhancement 
are presented in Table V and Fig. 6. 

DISCUSSION 

A panel of ten monoclonal antibo
dies was selected and characterized 
with respect to their interactions with 
HEV-A and HEV-V. All ten monoclo
nal antibodies reacted specifically with 
HEV-infected cells when analyzed 
with the FA test. Hemorrhagic 
enteritis virus antigen was observed in 
the cytoplasm as well as in the nucleus. 
In contrast, predominant nuclear 
(36,37) or cytoplasmic staining (38) 
has been reported for monoclonal 
antibodies reacting with the hexon 
protein of human adenovirus. The 
difference in fluorescent staining 

patterns might be caused by antibody-
recognition of specific forms in which 
the hexon is present in infected cells. 
For example, Cepko et al (36,37,39) 
described monoclonal antibodies that 
recognize group-reacting antigens on 
the hexon of human adenovirus and 
show nuclear staining in infected cells. 
These monoclonal antibodies react 
only with native hexons present in the 
nucleus of the cell. However, they do 
not react with the nascent hexon 
polypeptide chains present in the 
cytoplasm. The HEV-specific panel of 
monoclonal antibodies recognized 
native hexons (ELISA, immunoblot-
ting) and hexons in HE virions 
(ELISA, neutralization) which might 
explain the observed nuclear staining. 
The reason for the cytoplasmic 
staining might be that the panel of 
monoclonal antibodies also recog
nizes the nascent hexon polypeptide. 

The panel of monoclonal antibodies 
reacted with all the avian adenovirus 
group 11 virus isolates but with none of 
the avian adenovirus group I types 
when tested by FA and ELISA. This 
implies that they react with common 
antigenic determinants of the group II 
adenoviruses which are absent on the 
group I viruses. It also is further 
evidence that the original classifica
tion of these viruses into two groups, 
based on serological reaction (5,7-9), 
is justified. Analysis by immunopre-
cipitation or immunoblotting of HEV 
soluble protein preparations, or 
affinity-purified hexon protein, 
showed that all monoclonal antibo
dies recognized antigenic sites on the 

with itself. In contrast, all other 
monoclonal antibodies in subgroups 
1A, IB and 1C completely blocked 
binding of monoclonal antibody 14F7. 

Asymmetric reciprocal competition 
may be the result of differences in avid
ity between competing antibodies, or of 
differences in conformational changes 
due to binding of competing antibodies 
(31,32). Avidities of the monoclonal 
antibodies were determined from ab-
sorbance values (OD492) in the indirect 
ELISA at plateau level (33). No rela
tionship was found between the avidities 
of the monoclonal antibodies and the 
classification of the monoclonal antibo
dies in subgroups (data not shown). 

Most of the monoclonal antibodies 
of group 1 also differed from those of 

TABLE IV. Hemorrhagic Enteritis Virus Antibody Titers of Monoclonal Antibodies in Ascites 
Fluids Determined by ELISA 

Monoclone 
Designation 

IIB,, 
HC , 
I2B, 
I2C\ 
I4B, 

14B| 
HE, 
I4E* 
I4E-
I5G4 

ELISA Titers (x 10-') 

HEV-A 

Directb 

80 
5 

13 
12 
5 

80 
42 
42 

3 
1700 

Indirect 

1600 
30 

270 
380 
140 
140 
420 
250 
34 

30000 

HEV-V 

Direct 

160 
23 
25 
26 
15 

130 
210 
140 

7 
2500 

Indirect 

1900 
170 
640 
580 
160 
180 

1300 
1600 

84 
28000 

"Coating of the plates with purified HEV-A or HEV-V 
bDirecl assav using monoclonal antibodv-peroxidasc conjugates 
^Indirect assay using monoclonal antibodies and antimouse IgCi peroxidase conjugate 

45 



100 
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Fig. 5. The effect of chemically induced conformational changes on the antigenic activity of HEV-A 
(A) or HEV-V (B) was determined in a blocking enzyme immunoassay using monoclonal antibody 
11B6. Symbols: • , untreated HEV; A, reduced and carboxymethylated HEV; A, guanidine-HCI/ 
urea treated HEV; • , SDS treated HEV; • , guanidine- HCI/urea, reduced and carboxymethylated 
HEV. 

hexon protein. The hexon proteins 
consist of three identical polypeptide 
chains and therefore, might have three 
or less identical antibody-binding sites 
dependent on the orientation of the 
polypeptides in the hexon protein. The 
results of the sandwich ELISA showed 
that all monoclonal antibodies recog
nized more than one site on each 
hexon. Consequently, the antigenic 
domains which are recognized by the 
antibodies are probably preserved on 
each polypeptide. 

Eight of the ten monoclonal antibo
dies neutralized HEV infectivity in cell 
culture very effectively, whereas the 
other two did not. Hexon and fiber of 
mammalian adenoviruses have been 
reported to be the antigens responsible 
for virus neutralization (40-47). 
Monospecific antisera prepared 
against the human adenovirus type 2 
(Ad2) fiber or hexon neutralized Ad2 
virions in vitro, though the mecha
nisms of neutralization were found to 
be different. Virions neutralized by 
fiber-specific antisera were mostly 
present in aggregates and a strong 
reduction of virus-penetration was 
observed in the cells (47). However, 
when hexon-specific antisera were 
used, the majority of the virions were 
confined within vesicles (47). The 
mechanism(s) involved in HEV neu

tralization by monoclonal antibodies 
is presently under investigation. 

Hexons of most mammalian adeno
viruses contain a common group-

specific determinant (a) as well as a 
type-specific determinant (e; 48,49). 
The group-specific determinant is 
located at the inside, while the type-
specific determinant is located at the 
outside of the virion (44-46,48,49). 
Since the HEV-specific monoclonal 
antibodies recognized intact virions 
and since most of them neutralized 
viral infectivity, they appear to 
represent antibodies reacting with the 
type-specific determinant. However, 
their range of activity seems to be 
wider because they react with turkey 
isolates varying in pathogenicity and 
also with isolates of chicken and 
pheasant origin. 

The antigenicity of the sites that 
were recognized by the monoclonal 
antibodies was completely lost after 
denaturation of HEV-A and HEV-V 
with SDS or by guanidine-HCI/urea 
treatment combined with reduction 
and carboxymethylation. The sensi
tivity of the epitopes to denaturation 
suggests that the monoclonal antibo
dies recognize conformational anti
genic sites. The resistance to 
guanidine-HCl/urea treatment was 
lower in H F V-A than in H EV-V which 

TABLE V. Competitive Binding of Peroxidase-labelled Monoclonal Antibodies for HEV-A or 
HKV-V Epitopes 

Vr 
Isolate 

HEV-A 

HEV-V 

Peroxidase-
labelled 

Monoelonal 
Antibody 

IIB,, 
I4B|, 

IIC, 
I2B, 
I2C', 

14E, 
14E, 

14P, 

I4B, 
I5G4 

MB,, 
14B,, 

IIC, 
I2B, 
I2C, 

I4E, 
I4E„ 

14F7 

l4Bj 
15G4 

I IB,, 

100' 
94 

100 
100 
100 

100 
100 

100 

20 
21 

100 
86 

100 
100 
100 

100 
100 

100 

29 
34 

A 

14B,, 

100 
100 

100 
100 
100 

100 
100 

100 

39 
44 

100 
100 

100 
100 
100 

100 
100 

100 

47 
49 

IIC, 

77 
47 

100 
100 
87 

100 
100 

100 

30 
43 

77 
48 

100 
100 
100 

100 
100 

100 

36 
56 

IB 

I2B, 

70 
55 

100 
100 
84 

100 
100 

100 

27 
36 

71 
58 

100 
100 
88 

100 
100 

100 

31 
37 

Competitor1 

I2C, 

84 
63 

100 
100 
100 

100 
100 

100 

48 
31 

73 
60 

100 
100 
100 

100 
100 

100 

41 
22 

K 
I4E, 

66 
36 

82 
94 
80 

100 
92 

100 

0 
21 

70 
38 

88 
100 
99 

100 
100 

100 

4 
0 

14E, 

65 
34 

88 
91 
70 

90 
100 

100 

8 
20 

68 
30 

91 
100 
99 

100 
100 

100 

3 
7 

ID 

I4K-

40 
37 

54 
62 
69 

82 
77 

100 

0 
15 

54 
37 

70 
83 
75 

9 
76 

100 

22 
42 

2 

14B, 

10 
-21 

-13 
14 

-23 

-17 
25 

23 

100 
100 

10 
16 

-3 
15 
4 

19 
26 

32 

100 
96 

15G4 

-23b 

-17 

-54 
-5 

-26 

-81 
17 

-23 

83 
100 

-26 
-7 

-12 
-25 
-36 

-43 
8 

-1 

79 
100 

JThe percentage of competition of the monoclonal antibodies for antigenic sites on purified HEV-A 
or HEV-V was determined at a concentration of 104 ELISA units of competitor antibody (29) 
Negative competition values indicate enhancement of peroxidase-labelled antibody binding 

'Numbers in boldface indicate competition between homologous antibodies or antibodies of the 
same epitope specificity 
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Fig. 6. Competition of monoclonal antibodies for the reaction of peroxidase-conjugated 
monoclonal antibody 1IB6 (A), 14E, (B), and 15G4 (C) with HEV-A. The specific competitor 
antibodies were: • , I1B6, A , 12B2; O. 14B,; • , I 4B U ; A , 14E,; Ü, 15C4. 

may indicate that H E V-A is less stable 
than HEV-V. 

Based on the CBA data at least two 
topographically distinct antibody-
binding domains appear to exist on 
the HEV hexon protein. The first 
domain is important for virus neutrali
zation, whereas the second is not. 
Moreover, the monoclonal antibodies 
in the first group, with the exception of 
monoclonal antibody 14F7, did not 
enhance binding of group l 
antibodies. 

The further subdivision of group I 
monoclonal antibodies into four 
subgroups was based upon asymmetric 
blocking in the CBA. Asymmetric 
reciprocal competition may be the 
result of differences in avidities of 
competing antibodies which recognize 
overlapping antigenic sites or antigenic 
sites in close proximity to each other. 
Asymmetric competition is difficult to 
explain in this study, because the CBA 
was carried out so that differences in 
avidity of the monoclonal antibodies 

were minimized. Moreover, no rela
tionship was found between the 
avidities of the monoclonal antibodies 
and the classification of the monoclonal 
antibodies in subgroups. Alternatively, 
binding of an antibody to its epitope 
may allosterically affect the binding of 
another antibody at a topologically 
distant epitope. The monoclonal 
antibodies of the subgroups may differ 
in this capacity to induce conforma
tional changes and therefore, in the 
CBA's result in asymmetric reciprocal 
competition. That conformational 
changes may play a role was seen in the 
case of monoclonal antibody 14F7 as 
competitor, which enhanced the bind
ing of monoclonal antibodies of the 
subgroups IA, IB and IC under certain 
experimental conditions. A more 
precise identification of the epitope 
recognized by the monoclonal antibo
dies might be obtained from the 
investigation of the interaction pattern 
of the monoclonal antibodies with 
fragments of the hexon protein. 

Based on the results of the ELISA, 
the blocking enzyme immunoassay 
(EIA) after guanidine-HCl/urea 
treatment and the neutralization 
assays, the monoclonal antibodies in 
general seem to have a higher avidity 
for HEV-V than for HEV-A. This 
difference in avidity of the monoclonal 
antibodies might be caused by a 
possible conformational difference 
between the hexon protein of the two 
strains which effects binding effi
ciency. A higher avidity for HEV-V 
than HEV-A is then logical because 
the monoclonal antibodies were 
generated from mice immunized with 
HEV-V. 

In conclusion, this study describes 
the characteristics of a panel of ten 
monoclonal antibodies produced 
against HEV, and the use of these 
antibodies to identify a major neutral
izing determinant located on the 
hexon protein. In addition, these 
monoclonal antibodies proved very 
useful for the detection of group II 
avian adenovirus infection in cell 
cultures. The use of one of these 
monoclonal antibodies to titrate 
antigen and antibody with ELISA's is 
described elsewhere (16). Finally, the 
fact that some monoclonal antibodies 
enhanced each other was used to 
improve the sensitivity of the Ag-
ELISA and FA test by selecting an 
appropriate combination of these 
antibodies (J.V. van den Hurk, 
unpublished observations). 
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SUMMARY 

The structural proteins of hemorrhagic enteritis virus (HEV), a turkey 

adenovirus, were analysed by Polyacrylamide gel electrophoresis (PAGE) and 

Western blotting using polyspecific, monospecific and monoclonal antibodies 

for detection. In purified HEV preparations, eleven polypeptides with 

apparent molecular weights ranging from 96,000 to 9,500 (96k to 9.5k), were 

specifically recognized by convalescent turkey serum. Six of these 

polypeptides were further characterized by PAGE, Western blotting, ELISA, 

sucrose gradient centrifugation and electron microscopy. The 96k polypeptide 

was identified as the hexon polypeptide which is a monomer of the major outer 

capsid or hexon protein. The 51/52k and 29k polypeptides, identified as the 

penton base and fiber polypeptides respectively, were the components of the 

vertex or penton protein. The 57k polypeptide was identified as a homologue 

of the human adenovirus type 2 (Ad2) Ilia protein with which it shares a 

common epitope. The common antigenic site present in both viruses was cryptic 

in virions and was of a continuous nature. Two core proteins with molecular 

weights of 12.5 and 9.5k were present in purified HEV nucleoprotein cores. 

The proteins of two HEV isolates, one apathogenic (HEV-A) and one virulent 

(HEV-V), resembled each other in most respects. However, differences between 

HEV-A and HEV-V were found in electrophoretic migration of the penton base 

protein both in native and denatured condition, and in the electrophoretic 

migration of the 43/44k polypeptide. Moreover, homologous antiserum against 

the fiber protein reacted stronger than heterologous antiserum in an ELISA. 

Single fibers were detected by electron microscopy attached to the penton base 

proteins of HEV virions and in isolated pentons. In addition, only one fiber 

was detected in penton preparations purified by immunoaffinity chromatography. 

The feature of having single fibers is shared with the mammalian adenoviruses 

and the avian egg drop syndrome 1976 virus (EDS76V), but not with the fowl 

adenoviruses which have double fibers attached to their penton base proteins. 

The relative migration of HEV soluble proteins (penton, hexon, penton base, 

fiber, Ilia) after separation by PAGE under native conditions was distinct 

from that of the Ad2 soluble proteins (penton, fiber, penton base, hexon, 

Ilia). 
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INTRODUCTION 

The family Adenoviridae is divided into the mammalian adenoviruses (genus 

Mastadenovirus) and the avian adenoviruses (genus Aviadenovirus). This 

division is based upon a difference in host range and the absence of an 

antigenic relationship between mammalian and avian adenoviruses (Norrby et 

al., 1976). Within the genus Aviadenovirus there are two groups; the fowl 

adenoviruses (38) and a second group comprised of hemorrhagic enteritis virus 

(HEV) of turkeys (5,20,35), marble spleen disease virus (MSDV) of pheasants 

(18,19) and splenomegaly virus (SV) of chickens (11,12). It has been 

suggested that these be referred to as group I and group II avian adenovirus, 

respectively (8). A major difference between fowl adenoviruses and mammalian 

adenoviruses is the composition of the penton protein which consists of a 

penton base and two fibers in the case of fowl adenoviruses and a penton base 

and one fiber in the case of mammalian adenoviruses (15,25). The fowl 

adenoviruses are distantly related to the human adenoviruses with which they 

share a limited amount of DNA sequence homology (1). 

HEV causes an acute infectious disease in turkeys (9,17). It is 

classified as an adenovirus on the basis of its morphology, mode of 

replication, and physical-chemical properties (5,20,30,35). HEV, MSDV and SV 

are serologically identical viruses (8,9,10,19,36). To date, no serologic 

relationship has been found between these viruses and the fowl adenoviruses 

(11,12,21,33). However, the lack of a suitable cell culture system for HEV 

propagation has hampered a thorough investigation of its properties. 

The overall study of HEV involved developing a vaccine for turkeys and 

defining the role of viral components in eliciting protective immunity. 

Therefore, the identification and characterization of the structural proteins 

of HEV was required. Until recently, none of the structural proteins of HEV 

had been characterized. The best studied adenoviruses in both genera are the 

human adenoviruses type 2 (Ad2) and type 5 (Ad5), and chick embryo lethal 

orphan (CELO) virus (fowl adenovirus type 1, FAVl). These viruses have been 

shown to consist of outer capsid proteins (hexons and pentons), proteins 

associated with the capsid, and core proteins associated with double-stranded 

DNA. 

In the present study, the structural proteins of an apathogenic (HEV-A) 

and a virulent (HEV-V) strain of HEV were analyzed using Polyacrylamide gel 

electrophoresis (PAGE) under non-denaturing and denaturing conditions, and 



Western blotting using polyspecific, monospecific, and monoclonal antibodies. 

Furthermore, the hexon and penton proteins of both HEV strains were purified 

by immunoaffinity chromatography and characterized by sucrose gradient 

sedimentation, PAGE, Western blotting, and electron microscopy. The data 

presented in this report are discussed and compared with those of human and 

fowl adenoviruses. 

MATERIALS AND METHODS 

Viruses and virus propagation. The characteristics of HEV-A and HEV-V and 

their propagation in young turkeys are described elsewhere (36). Ad2 was 

obtained from the American Type Culture Collection and propagated in HEp-2 

cells. 

Virus purification. Spleens of HEV-A or HEV-V infected turkeys were 

homogenized in 0.01H Tris-HCl, pH 8.1, in the presence of 0.1% 

phenylmethylsulfonyl fluoride (Sigma) and the supernatants (crude spleen 

extracts) were collected after centrifugation for 10 min at 10,000c[ (36). 

Further purification was carried out by a modification of the method described 

by Green and Pina (16) in which the supernatants were repeatedly extracted by 

trichlorotrifluoroethane, whereafter the HEV present in the aqueous phase was 

concentrated by centrifugation onto a dense CsCl cushion (1.40g/cm3). The 

virus band was collected and further purified by CsCl density centrifugation, 

and the layer above the virus band (soluble protein fraction, 3) was used for 

the analysis of soluble viral proteins and for affinity chromatography. HEV 

was dialyzed against 0.01M Tris-HCl, pH 8.1 containing 20% glycerol and stored 

at -70°C. Ad2 was purified from infected HEp-2 cells in a similar way. 

Production and screening of monoclonal antibodies. Balb/c mice were 

immunized with 0.2 ml (2mg/ml) of purified HEV-A emulsified in Freund's 

complete adjuvant. The primary injection was followed by a second injection of 

HEV-A in Freund's incomplete adjuvant 2 weeks later. Final booster 

inoculations with 0.1 ml HEV-A in PBS were given intravenously 7 and 3 days 

prior to fusion. House spleen cells were fused with NS-1 myeloma cells as 

described by Kennett et al. (22). The supernatants of the hybridoma cells 

were initially screened for HEV-specific antibody production by an indirect 

immunofluorescent antibody (FA) test using control and HEV-infected turkey 

spleen leukocytes, and by an indirect ELISA using purified HEV-A or HEV-V to 
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coat the microtiter plates. The hybridoma cells were subcloned in microtiter 

plates by the limiting dilution method. Ascites fluids were obtained from 

pristane-(2,6,10,14 - tetramethyl pentadecane; Aldrich Chemicals) primed 

Balb/c mice intraperitoneally injected with approximately 10 hybridoma cells. 

Fluorescent antibody (FA) test. Leukocytes were obtained from turkey 

blood by centrifugation through Ficoll-Paque (Pharmacia). The leukocyte 

suspension cultures were infected with HEV-A or HEV-V and cell smears were 

made with a cytocentrifuge 2-3 days postinfection. HEp-2 cells, grown in 

Lab-Tek tissue culture chambers (Miles Laboratories), were infected with Ad2 

virus. The cells were fixed in either acetone or methanol for 5 min. Infected 

or control cells were incubated with hybridoma supernatant media for 1 h at 

41°C followed by an incubation with affinity-purified, fluorescein-labelled 

goat immunoglobulin prepared against mouse immunoglobulins (diluted 1:100 with 

PBS; Boehringer) for 1 h at 41°C. The cells were mounted with PBS-glycerine 

(1:1, v/v) and observed with a Zeiss IM35 microscope equiped with 

epifluorescent illumination. 

ELISA. Indirect ELISAS were used for analysis of HEV proteins using 

turkey, rabbit, or mouse antibodies as described previously (36, J.V. van den 

Hurk and S. van Drunen Littel-van den Hurk, Can J Vet Res, 1988, manuscript 

accepted). 

Polyacrylamide gel electrophoresis. Electrophoresis of the HEV proteins 

under native conditions was performed on 6% Polyacrylamide gels (2). Samples 

were applied in electrophoresis sample buffer (0.0625 M Tris-HCl [pH 6.8], 10% 

glycerol, and 0.002% bromophenol blue). Pentons were dissociated by heat 

treatment for 1 min at 56°C in the presence of 0.05% deoxycholate. For 

analysis under denaturing conditions purified HEV and HEV proteins were 

dissociated by boiling in electrophoresis sample buffer containing 1% sodium 

dodecyl sulfate [SDS], and 0.15M 2-mercaptoethanol) and analyzed on 10 or 13% 

SDS-polyacrylamide gels (24). 

Western blotting. A modification of the "Western" blotting technique 

described by Burnette (4) was used to analyse the interaction between HEV 

antibodies and HEV proteins. HEV proteins were separated by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in 10% or 13% slab gels and 

by PAGE in 6% slab gels under native conditions. They were then transferred 

electrophoretically to nitrocellulose in a Bio-Rad transblot cell (Bio-Rad 

Laboratories) at 32V for 4 h in 25mM sodium phosphate buffer, pH 6.8. 
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Subsequently, strips cut from the nitrocellulose sheets were either stained in 

amidoblack dye (0.6% amidoblack in 45% methanol, 10% acetic acid in H20) or 

processed for antigen detection following the instructions for the use of the 

Bio-Rad immunoblot assay kit. Briefly, strips were incubated for 1 h in 

Tris-buffered saline (TBS: 0.02 M Tris-HCl, 0.5 M NaCl, pH 7.5) containing 3% 

gelatin. Thereafter, the strips were incubated overnight with the first 

antibody solution of turkey, rabbit, or mouse origin containing 1% gelatin. 

After washing with TBS-T (TBS containing 0.05% Tween 20) the strips were 

incubated with the second antibody solution of rabbit anti-turkey IgG or 

rabbit anti-mouse IgG in TBS containing 1% gelatin where appropriate. 

Following washing, strips were incubated with horseradish 

peroxidase-conjugated protein A. Finally, after washing of the strips, bands 

were visualized by incubation with substrate (0.05% 4-chloro-l-naphtol, 0.015% 

H202 in TBS) for 15-30 min. All incubation steps were carried out at room 

temperature on a rocking platform. 

Immunoaffinity chromatography. The IgG fraction of monoclonal antibodies 

was purified from mouse ascites fluids using protein A-Sepharose CL-4B 

(Pharmacia) (14). Purified IgG, dialyzed against 0.1 M sodium carbonate 

buffer, pH 8.0, was linked to activated Affigel-10 (Bio-Rad Laboratories) at 5 

mg/ml gel following the manufacturer's instructions. The immunobeads were 

packed into a column, washed and equilibrated with TNE (0.01 M Tris-HCl, 0.5 M 

NaCl, and 0.001 M Na2 EDTA, pH 7.5). The soluble antigen fraction in TNE 

obtained during virus purification (3), was recycled three times through the 

column. After washing the column with TNE, protein fractions were eluted with 

0.05M diethylamine, pH 11.5. During collection the protein fractions were 

neutralized with IM Tris-HCl, pH 6.8. The HEV protein-containing fractions 

were pooled and dialyzed against PBS. Subsequently, HEV soluble proteins were 

separated by centrifugation on a 10 to 30% (w/v) linear sucrose gradient for 

23 h at 35,000 rpm in a Beekman SW 41 rotor at 4°C (6). After testing the 

fractions by ELISA, the appropriate fractions were pooled, dialyzed against 

PBS containing 10% glycerol (v/v) and stored at -70°C. 

Preparation of immune sera. Hexon and penton proteins were purified by 

immunoaffinity chromatography. Purified penton base and fiber proteins were 

obtained after immunoaffinity chromatography and preparative PAGE under native 

conditions, followed by electroelution of the proteins from the gels. Rabbits 

were immunized subcutaneously three times with 1 ml of purified penton, penton 
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base, or fiber protein of either HEV-A or HEV-V. Turkeys were immunized two 

times with 1 ml of purified hexon protein of HEV-A or HEV-V. The first 

immunization was given in complete Freund's adjuvant and the second and third 

ones (each 2 weeks apart) in incomplete Freund's adjuvant. 

Electron microscopy. Virus preparations for electron microscopy collected 

from CsCl gradients were applied on carbon coated grids, washed with H20 and 

stained with 1% uranyl acetate (15). Hexon, penton, penton base and fiber 

preparations were negatively stained with 1% uranyl acetate or 1% 

Na-silica-tungsten. The specimens were screened and photographs were taken at 

an initial magnification of 38,000 to 76,000 using a Philips 410 electron 

microscope at 80 kv. The size of the fibers on isolated pentons was measured 

on prints usually at a magnification of 200,000 with a micrometer graduated to 

0.1mm. The length of two hundred fibers was measured for each virus and the 

mean and standard deviation were calculated. 

RESULTS 

HE virus. To date there is no suitable cell culture system for HEV which 

will produce sufficient quantities of virus for structural protein 

characterization. Therefore, HE virus and soluble proteins were purified from 

the spleens of turkeys infected with HEV. After purification of HEV two virus 

bands (with densities of 1.30 and 1.34 g/cm ) were present in the CsCl 

gradients. The virus band with the lower density contained incomplete, 

non-infectious virions (data not shown), which is a common feature of 

adenoviruses. The virus band with the higher density contained complete, 

infectious virus. The diameter of both HEV-A and HEV-V particles was 72nm 

(Fig. 1). Groups of nine (GON) hexons were observed in disrupted virions of 

both HEV strains (Fig. 1). Virus with a density of 1.34 g/cm was used for 

the characterization of the structural proteins. 

HEV structural proteins. The HEV polypeptides were analysed by SDS-PAGE 

followed by Western blotting in order to differentiate HEV-specific 

polypeptides from potential host cell polypeptides. Following transfer the 

polypeptides of HEV-A, HEV-V, and Ad2 were visualized by amido black staining 

(Fig. 2). Eleven of the polypeptides found in stained blots were recognized 

specifically by antibodies present in convalescent sera from HEV infected 

turkeys (Fig. 2). The apparent molecular weights of the HEV polypeptides were 
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Fig. 1. Electron micrographs of CsCl purified HEV-A (a) and HEV-V (b) 

(̂ i=l.34 g/cm3 ). A value of 72 nm was estimated for the diameter of HEV 

particles. Insert shows a GON hexons of disrupted HEV-A. Negative staining 

with uranyl acetate. Bars represent 100 nm. 

calculated using Ad2 polypeptides as standards (Philipson, 1983). The 

molecular weights of the HEV-A polypeptides were estimated to be 96k, 57k, 

52k, 44k, 37k, 34k, 29k, 24k, 21k, 12.5k and 9.5k, and those of the HEV-V 

polypeptides 96k, 57k, 51k, 43k, 37k, 34k, 29k, 24k, 21k, 12.5k and 9.5k. The 

12.5k and 9.5k polypeptides migrated as one band on 10% Polyacrylamide gels 

but migrated as two bands on 13% gels; both were detected after Western 

blotting using convalescent turkey serum. 

The identification of the 96k polypeptide as the hexon protein, the 57k 

polypeptide as the Ilia protein, and the 51/52k and 29k polypeptides as 

components of the penton protein, using monoclonal or monospecific polyclonal 

antibodies (Fig. 2 ) , is based on data described in the following sections. 

HEV soluble proteins. The hexon, penton, and fiber proteins of human 

adenoviruses are produced in large excess during viral replication. These 

viral proteins occur in the soluble protein fraction of cell extracts. HEV 

soluble proteins were analyzed by ELISA, Western blotting, sucrose gradient 
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Fig. 2. Analysis of HEV polypeptides by SDS-PAGE and Western blotting. 

A. Polypeptides of HEV-A (lane 1) or HEV-V (lane 2 ) , separated by SDS-PAGE, 

were transferred onto nitrocellulose and visualized by amido black staining. 

The molecular weights of the HEV polypeptides, indicated in the lefthand 

margin, were estimated using the polypeptides of Ad2 (lane 3) as molecular 

weight standards (righthand margin) (polypeptide II, hexon, 108k; polypeptide 

III, penton base, 85k; polypeptide Ilia, 66k; polypeptide V, 48k; polypeptide 

VI, 24k; polypeptide VII, 18.5k). B. Polypeptides of HEV-A (lanes 1,3,5,7,9 

and 11) and HEV-V (lanes 2,4,6,8,10 and 12) separated as described under A 

were analyzed by Western blotting using preimmune (PI) serum of turkeys (lanes 

1 and 2 ) , turkey anti-HEV serum (lanes 3 and 4), monospecific turkey anti-HEV 

hexon protein (lanes 5 and 6 ) , monoclonal antibody 4B3-10D2 reactive with the 

HEV Ilia protein (lanes 7 and 8), monospecific rabbit anti-HEV penton protein 

(lanes 9 and 10), and monoclonal antibody 6C1, reactive with 24k protein 

(lanes 11 and 12). HEV molecular weights are indicated in the lefthand margin 

and identified polypeptides are indicated in the righthand margin (H, hexon; 

Pb, penton base; F, fiber). 
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centrifugation, and electron microscopy. Two HEV-specific protein bands were 

found after Western blotting when serum of infected turkeys was used for 

detection (Fig. 3). The faster moving protein band was identified as the 

hexon protein because it was recognized by monoclonal antibodies that were 

known to react with the hexon protein of HEV-A and HEV-V (J.V. van den Hurk 

and S. van Drunen Littel-van den Hurk, Can J Vet Res 1988, manuscript 

accepted). The slower moving protein was identified as the penton protein by 

electron microscopy after electroelution from the gel. Soluble protein 

suspensions were heat-treated in the presence of deoxycholate to dissociate 

penton proteins into penton base and fiber proteins. In addition to the 

penton two new protein bands, both migrating faster than the hexon protein, 

were detected after Western blotting using rabbit anti-penton protein serum 

for analysis (Fig. 3). Electron microscopic observation of these proteins 

obtained after electroelution, revealed that the slower migrating protein was 

the penton base protein while the faster migrating protein was the fiber 

protein. The HEV-A penton base protein migrated faster than the HEV-V penton 

base in 6% Polyacrylamide gels under non-denaturing conditions. Monoclonal 

antibodies, known to react with the penton protein, could now be divided into 

a group reacting with the fiber protein and a group reacting with the penton 

base protein (Fig. 3, Table 1). This specific recognition was confirmed by 

ELISA with electroeluted fiber or penton base protein, and by Western blotting 

of dissociated penton proteins (data not shown). Finally, the Ilia protein 

was detected in the soluble protein fraction using monoclonal antibody 

4B3-10D2 for identification. This protein migrated faster than the fiber 

protein (Fig. 3). The same electrophoretic pattern of the penton, hexon, 

penton base, fiber and Ilia protein was observed when these proteins were 

obtained from purified HEV dissociated by four freeze-thaw cycles followed by 

heat treatment for 1 min at 56° C in the presence of 0.05% deoxycholate (data 

not shown). 

The HEV soluble proteins were further analyzed and characterized by 

sucrose gradient centrifugation. The profiles of the HEV-A and HEV-V soluble 

proteins on the gradients are shown in Fig. 4. Western blot analysis of the 

proteins in the two peaks using monoclonal antibody 2D4 (specific for fiber 

protein, Table 1) showed that fractions 6-8 contained free fiber protein and 

fractions 14-15 contained penton proteins. The free fiber peak of HEV-A was 

always larger than that of HEV-V under comparable conditions, regardless of 
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Fig. 3. Analysis of HEV soluble proteins separated by PAGE (6%) under 

non-denaturing conditions and detected by Western blotting. A. Western blot 

analysis of HEV-A (lanes 1 and 3) or HEV-V (lanes 2 and 4) soluble proteins 

using turkey preimmune (PI) serum (lanes 1 and 2) or turkey anti-HEV serum 

(lanes 3 and 4) for detection. The position of the hexon (H) and penton(P) 

proteins are marked in the lefthand margin. B. Western blot analysis and 

identification of HEV-A (lanes 1,3,5,7 and 9) or HEV-V (lanes 2,4,6,8, and 10) 

soluble proteins after heat treatment in the presence of deoxycholate. The 

HEV hexon protein was detected using monoclonal antibody 15G4 (lanes 1 and 2). 

The penton (P), penton base (Pb) and fiber (F) proteins were detected using 

rabbit anti-HEV-A penton serum (lane 3), rabbit anti-HEV-V penton serum (lane 

4 ) , monoclonal antibody 4C3 reactive with the HEV penton base (lanes 5 and 6 ) , 

or monoclonal antibody 2D4 reactive with the HEV fiber protein (lanes 7 and 

8 ) . The Ilia polypeptide was detected using monoclonal antibody 4B3-10D2 

(lanes 9 and 10). 
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Fig. 4. Soluble protein fractions of HEV-A (A) and HEV-V (B) were centrifugea 

through linear sucrose gradients (10-30%, w/v) for 23 h at 38,000 rpm in a 

Beekman SW41 rotor at 4 C. Fractions were collected and analyzed by an 

indirect ELISA for the presence of fiber antigen (monoclonal antibody 2D4, O ) 

penton base antigen (monoclonal antibody 4C3, A ) and hexon protein (monoclonal 

antibody 15G4, A ). The positions of the fiber (F), penton base (Pb), 

penton(P), and hexon (H) proteins, obtained by affinity chromatography are 

indicated. 
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whether the antibody source for detection was monoclonal antibody recognizing 

the HEV fiber protein, rabbit serum against the penton protein of HEV-A or 

HEV-V, or convalescent serum from turkeys infected with HEV-A or HEV-V. These 

data suggest that the soluble protein fractions contain more free fiber protein 

of HEV-A than of HEV-V. The shoulder of the penton protein peak (fraction 13), 

analyzed by Western blotting using monoclonal antibody 4C3 (reacts with penton 

base protein, Table 1 ) , contained free penton base protein as well as penton 

protein. Sedimentation coefficients of the HEV soluble proteins were 

determined by centrifugation in sucrose gradients using Ad2 soluble proteins 

as standards (6,31). The following values were determined 

for both HEV strains: 12S for the hexon protein, 10S for the penton protein, 

9S for the penton base protein, 6S for the fiber protein, and 6S for the Ilia 

protein. 

Purified penton, penton base, and fiber proteins. Penton, penton base and 

fiber proteins were purified to: i) study their structure by electron 

microscopy; ii) immunize rabbits to generate specific antibodies for the 

identification of the penton base and fiber polypeptides of HEV after SDS-PAGE 

and Western blotting; and iii) compare the migration of purified and 

unpurified proteins of both HEV strains separated by PAGE and analyzed by 

Western blotting. Pentons of HEV-A and HEV-V were purified from soluble 

protein fractions by immunoaffinity chromatography using monoclonal antibody 

2D4 or 4C3 linked to Affi-Gel 10 followed by sucrose gradient centrifugation. 

The penton proteins of the sucrose gradient fractions were detected by ELISA 

(fractions reacting with monclonal antibody 2D4 and 4C3). The pentons were 

dissociated by heat treatment in the presence of deoxycholate and the 

resulting proteins were separated by PAGE on 6% gels. Two HEV protein bands 

were detected after Western blotting of which the slower migrating protein was 

identified as the penton base protein and the faster migrating one as the 

fiber protein. Again, the penton base protein of HEV-A migrated slightly 

faster than the penton base protein of HEV-V. The fiber protein of both HEV 

strains migrated at the same rate (Fig. 5). The penton base and fiber 

proteins were recovered by electroelution from 6% gels and analyzed by 

SDS-PAGE. The molecular weight of the penton base polypeptide was 52k for 

HEV-A and 51k for HEV-V, whereas the molecular weight of the fiber polypeptide 

was 29k for both HEV strains (Fig. 5) confirming the apparent molecular weight 

values obtained following Western blot analysis of HEV stuctural proteins. 
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Fig. 5. Western blot analysis of HEV penton proteins purified by affinity 

chromatography, sucrose gradient centrifugation, and preparative PAGE. A. 

Penton base and fiber proteins of HEV were obtained from penton proteins, 

purified by affinity chromatography and sucrose gradient centrifugation, 

dissociated by heat treatment in the presence of deoxycholate, and separated by 

preparative PAGE on 6% gels under non-denaturing conditions. Western blot 

analysis of the penton proteins of HEV-A (lane 1) and HEV-V (lane 2 ) , purified 

penton base proteins of HEV-A (lane 3) and HEV-V (lane 5), and purified fiber 

proteins of HEV-A (lane 4) and HEV-V (lane 6) was carried out after separation 

of the proteins by PAGE (6%) under non-denaturing conditions using monospecific 

rabbit anti-penton serum for detection. B. Western blot analysis of purified 

penton proteins (lanes 1 and 2), fiber proteins (lanes 3 and 5 ) , penton base 

proteins (lanes 4 and 6) of HEV-A (lanes 1,3 and 4) and HEV-V (lanes 2,5 and 6) 

separated by SDS-PAGE (13%) and detected by rabbit anti-penton serum. 
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The same molecular weights were obtained when affinity purified pentons were 

directly analyzed by SDS-PAGE and Western blotting (data not shown). However, 

sometimes fiber polypeptides with molecular weights of 27k (soluble protein 

fraction and purified HEV) and 20k (soluble protein fraction) were detected in 

addition to the 29k polypeptide after Western blotting using rabbit 

anti-penton, rabbit anti-fiber or turkey anti-HEV antibodies. These 

polypeptides are probably truncated forms of the 29k polypeptide because they 

all share a common antigenic site recognized by monoclonal antibody 2D4, when 

the PAGE and Western blot analysis were performed under conditions in which 

discontinuous epitopes can be recognized (7) (data not shown). 

Antisera from rabbits immunized with immunoaffinity-purified fiber 

protein of HEV-A or HEV-V reacted stronger in ELISA with the homologous than 

with the heterologous fiber protein (data not shown). This specificity was 

not found in antisera of rabbits immunized with purified penton or penton base 

protein. 

Purified penton proteins were observed with the electron microscope. One 

fiber protein per penton protein was found for both HEV strains (Fig. 6 ) . 

Virus particles and penton proteins of disrupted virions also showed single 

fiber proteins attached to their penton base proteins (Fig. 6 ) . Length 

measurements of the HEV fiber proteins were performed on free pentons using 

negatively stained preparations. A fiber length of 17 + 1.8 nm was measured 

for HEV-A and of 17 + 2.0 nm for HEV-V using negatively stained preparations 

of purified penton proteins. A value of 31 + 2.3 nm was measured for Ad2 

fiber proteins under the same conditions. 

Protein Ilia. Monoclonal antibody 4B3-10D2 reacted specifically with both 

HEV strains in ELISA's of dissociated HEV virions and HEV soluble proteins, 

and in FA tests of HEV infected cells (Table 1). In addition, this monoclonal 

antibody also reacted specifically with Ad2 in ELISA's of dissociated Ad2 

virions and soluble proteins, and in FA tests of Ad2 infected cells. Western 

blot analysis revealed that this monclonal antibody recognized the Ilia 

protein of Ad2 (Fig. 7). Consequently, the 57k HEV protein recognized after 

Western blotting by this monoclonal antibody could be identified as the Ilia 

protein of HEV. No differences in migration were observed between the Ilia 

protein of HEV-A and HEV-V on either 6% non-denaturing Polyacrylamide gels or 

on 10% and 13% denaturing Polyacrylamide gels after Western blot analysis 

using monoclonal antibody 4B3-10D2 for detection. 
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Fig. 6. Electron micrographs of CsCl purified HEV-A (a), HEV-V (b), and Ad2 

(c) virions showing single fibers protruding from the capsid (arrowheads). 

Single fibers were also observed on pentons of HEV-A (d) and HEV-V (e) purified 

by immunoaffinity chromatography and sucrose gradient centrifugations, and on 

pentons of HEV-A (f) and Ad2 (g) from disrupted virions. The fiber length 

measured from the pentons of HEV-A (d) and HEV-V (e) was estimated to be 17 ran. 

Pentons of HEV-A obtained by immunoaffinity chromatography (f) are compared 

with pentons of HEV-A (g) and pentons of Ad2 (h) from dissociated virions. 

Penton bases obtained from pentons after dissociation, separation by PAGE, and 

electroelution, and fibers obtained after immuno-affinity chromatography and 

sucrose gradient centrifugation are also shown (i) and (j). Note the knob and 

anchorage of the fiber in the pentons of HEV-A (f,j). Negative staining with 

uranyl acetate. Bars represent 25 nm. 
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Fig. 7. Analysis of the Ilia polypeptide of HEV-A (lanes 1, 2, and 5 ) , HEV-V 

(lanes 3, 4, and 5) and Ad2 (lanes 6 and 7) separated by SDS-PAGE on 13% gels 

and detected by Western blotting in the presence (lanes 2, 4, 5 and 7) or 

absence (lanes 1, 3, and 6) of monoclonal antibody 4B3-10D2. The positions of 

the Ilia polypeptide of HEV-A, HEV-V, and Ad2 are identical. The positions of 

the marker polypeptides of Ad2 are indicated by roman numerals. 

Protein 24k. The 24k protein was only detected by monoclonal antibody 6C1 

in HEV virions after dissociation with SDS or by repeated freezing and 

thawing, but it was not detected in the soluble protein fraction by ELISA 

(Table 1). Its counterpart in the human adenoviruses was not identified. 

Core proteins. HEV nucleoprotein cores obtained after disruption of 
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virions were separated from capsid components by centrifugation through a 

linear glycerol gradient (13). Two proteins with molecular weights of 12.5k 

and 9.5k were detected in the nucleoprotein fraction of both HEV strains after 

analysis on 13% SDS-polyacrylamide gels (Fig. 8). In stained gels, the 12.5k 

polypeptide band was more pronounced than the 9.5k polypeptide suggesting that 

the 9.5k protein is probably attached more strongly to the DNA than the 12.5k 

protein. 

HEV CORES 
A V A V Ad2 

i—VII 

-12.5k 

- 9 . 5 k 

5 

Fig. 8. Analysis of the core proteins of HEV-A (lane 3), HEV-V (lane 4 ) , and 

Ad2 (lane 5) present in purified nucleoprotein cores separated by SDS-PAGE in 

13% gels and stained with Coomassie brilliant blue R-250. The profiles of the 

HEV-A and HEV-V polypeptides are shown in lane 1 and 2, respectively. The 

positions of the HEV and the Ad2 (V and VII) core proteins are indicated in the 

righthand margin. 
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DISCUSSION 

In the present study we found that purified HEV consisted of at least 

eleven structural proteins. The polypeptide patterns of HEV-A and HEV-V were 

similar with the exception of two polypeptides with apparent molecular weights 

of 52k vs 51k and 44k vs 43k, of HEV-A and HEV-V, respectively. The 

electrophoretic migration pattern of the native HEV soluble proteins was 

different from the pattern of Ad2 proteins. The migration order of the 

penton, penton base, and Ilia proteins of HEV and Ad2 was similar, but it was 

inversed in the case of the hexon, and fiber proteins (2,26). Separation of 

proteins under non-denaturing conditions by PAGE depends on charge and size. 

Assuming that differences in size are more important than charge, an 

explanation as to why the HEV fiber and penton base proteins migrate faster 

than the HEV hexon protein might be the smaller size of these two proteins. 

This is in contrast to the larger size of the Ad2 fiber and penton base 

proteins relative to Ad2 hexon protein. However, the differences in migration 

rate might also be caused by differences in charge or a combination of both 

charge and size. 

The hexon protein was identified on the basis of quantitative analysis and 

morphological characteristics. It was the most prominent protein in the outer 

capsld and in the soluble protein fraction, it was the structural protein with 

the highest molecular weight, and its sedimentation coefficient was similar to 

that of the hexons of other adenoviruses (31). In addition, it is an 

important neutralizing antigen (J.V. van den Hurk and S. van Drunen Littel-van 

den Hurk, Can J Vet Res 1988, manuscript accepted). No differences were 

observed in electrophoretic mobility between the hexons of HEV-A and HEV-V in 

native or denatured conditions. Furthermore, the hexons of both strains had a 

high degree of antigenic homology because they could not be distinguished by 

homologous or heterologous antibodies from HEV-infected turkeys (van den Hurk, 

manuscript in preparation). 

The penton of HEV was identified on the basis of its characteristic shape 

observed by electron microscopy. Single fibers attached to penton bases were 

observed in preparations of purified virions and pentons. Hence, HEV, in 

common with the mammalian adenoviruses and the avian EDS76V (15,23) has 

pentons with single fibers, and this is in contrast to the double fibers 

present on penton bases of fowl adenoviruses (15,25,27). In addition, the 
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quality of one fiber was confirmed by Western blot analysis of purified HE 

virus and pentons in which only one fiber protein was detected. 

The observed difference in migration on Polyacrylamide gels of HEV-A and 

HEV-V penton bases under non-denaturing and denaturing conditions probably 

underlies a difference in the primary structure of these proteins. 

The fibers of both HEV strains shared the following characteristics: 

(i) the same electrophoretic mobility in native and denatured condition, 

(ii) the same electrophoretic mobility in crude and purified soluble protein 

fractions, as well as in purified virus preparations, and (iii) relatively 

short fibers of the same size (17nm). The molecular weight of 29k was lower 

than that found for the long fibers of Ad2 (62k), FAV-1 (65k), and EDS76V 

(67k) but resembled more closely those found for the shorter fibers of Ad3 

(34.8k), and FAV-1 (44.5k) (27,31,32,34). The observation of relatively short 

fibers with a low molecular weight is in agreement with the suggested 

relationship between the length of the native fiber protein and the size of 

the polypeptide (32). However, differences between the HEV-A and HEV-V fibers 

were observed in serological tests where higher titers were obtained with 

homologous than with heterologous antiserum. In addition, a difference in the 

recognition of fibers of both strains by monoclonal antibodies was observed 

(J.V. van den Hurk, manuscript in preparation). This difference in 

antigenicity between two HEV strains is in agreement with the concept that the 

fiber protein is the most variable adenovirus component, both in size and 

antigenicity (15,27,37). 

The identification of the 57k protein of HEV as the Ilia protein was based 

upon recognition by monoclonal antibody 4B3-10D2 which also reacted with the 

Ilia protein of Ad2. Similar results for HEV-A, HEV-V, and Ad2 were obtained 

by FA staining, ELISA of soluble proteins and purified virus, and Western 

blotting. Moreover, the recognition of the Ilia protein of HEV and Ad2 is the 

first evidence of a shared antigenic determinant found on a human and an avian 

adenovirus. The epitope shared by both viruses probably is a continuous 

epitope because it is still recognized after denaturation, and it is probably 

cryptic because it is only recognized by monoclonal antibody 4B3-10D2 after 

virus-dissociation. 

The identity of the 24k protein could not be determined with certainty 

from the present information. However, it might be an analogue of the 24k 

(VI, hexon associated) protein of Ad2 because it had the same molecular 
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weight, was not detected in either the soluble protein fraction or in the core 

protein fraction, and is probably located internally in the virion. No protein 

with a similar molecular weight was reported for FAV-1, but the 26k protein of 

EDS76V might also be analogous (34). 

The 12.5k and 9.5k proteins were identified as core proteins of HEV. They 

are smaller than those of Ad2 (48k and 18.5k) and more closely ressemble those 

of FAV-1 (20k, 12k, and 9.5k) (28,31). The 12k and 9.5k proteins of FAV-1 

might be the counterparts of the 12.5k and 9.5k proteins of HEV, respectively. 

A feature shared between HEV, FAV-1 and Ad2 is that the smallest core protein 

(9.5k, 9.5k, and 18.5k respectively) is more tightly attached to viral DNA 

than the larger one(s) (28,31). 

This report strengthens the arguments for the classification of HEV in the 

family of the Adenoviridae for two reasons: (i) the common properties of the 

structural proteins of HEV and other adenoviruses, and (ii) the homology in 

the Ilia protein of HEV and Ad2. In addition, the presence of single or 

double fibers respectively supports the division of the aviadenoviruses into 

group I (fowl adenoviruses) and group II (HEV, MSDV, SV). 
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SUMMARY. An avirulent hemorrhagic enteritis virus isolate (HEV-A) as well as 

a virulent HEV isolate (HEV-V), both belonging to the group II avian 

adenoviruses, were successfully propagated in turkey blood leukocyte cell 

cultures. HEV antigens were detected as early as 12 hr after infection of the 

cells, using HEV-specific monoclonal antibodies in a fluorescent antibody 

test, and virus particles were observed in the nuclei of infected cells at 18 

to 24 hr after infection. Light microscopy as well as electron microscopy 

revealed the presence of HEV in the nuclei of non-adherent as well as in 

adherent cells. The non-adherent infected cells had the characteristics of 

immature mononuclear leukocytes while the adherent cells had 

monocyte-macrophage characteristics. HEV produced in turkey leukocytes was 

mostly cell-associated, particularly with the non-adherent cells. HEV-A could 

be serially passed in turkey blood leukocyte cultures at least 7 times. 

Various methods employed to culture virus indicated that cells grown in 

spinner cultures were superior to stationary cultures. In contrast to the 

successful infection of HEV in turkey leukocytes, the infection of chicken 

leukocytes with either HEV or splenomegaly virus (SV) of chickens, or turkey 

leukocytes with SV, was poor. 

INTRODUCTION 

Hemorrhagic enteritis (HE) is an acute disease of turkeys caused by 

hemorrhagic enteritis virus (HEV). HE is characterized by depression, bloody 

droppings and death, and usually occurs in commercial turkey flocks in 6 - 12 

week old birds (4,5). HEV of turkeys, marble spleen disease virus (MSDV) of 

pheasants and splenomegaly virus (SV) of chickens are serologically closely 

related viruses which are tentatively classified as members of the group or 

type II avian adenoviruses (4,5,7,8,15). 

HE in turkeys can be and is prevented effectively by administration in the 

drinking water of a live virus vaccine propagated in turkeys (6,9,26). This 

vaccine is obtained by making a crude extract from spleens of turkeys orally 

infected with an avirulent HEV (HEV-A) isolate. This crude spleen vaccine is 

used locally by turkey producers because until recently no vaccine of higher 

quality and safety was commercially available. 

In contrast to most mammalian and fowl adenoviruses which can be 

propagated easily in epithelial cell cultures of their homologous hosts, 
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difficulties were encountered with the in vitro replication of HEV because 

this virus did not replicate in a simlar system (5,21). The first successful 

propagation of HEV in a cell line for vaccine production was reported by 

Nazerian and Fadly (21,22). They propagated HEV in Marek's disease virus 

(MDV)-transformed B lymphoblastoid cell lines obtained from turkey tumors 

(20). Although the virus replicates in these transformed cells, the use of 

such a vaccine is disputed and its safety features must be carefully evaluated 

because MDV is present in these cells (20). 

The goal of this investigation was to develop and test a cell culture 

system in which HEV can be propagated efficiently, and ultimately to use HEV-A 

produced in this cell culture system as a vaccine for HE in turkeys. Recently, 

I reported on the propagation of HEV in turkey leukocytes (30). In this paper 

the replication of both the HEV-A and the virulent HEV (HEV-V) isolates in 

cell culture is described. 

MATERIALS AND METHODS 

Turkeys. Day-old small white diamond hybrid poults (Chinook Belt 

Hatcheries, Calgary, Alberta, Canada) raised in isolation were used in all 

experiments. Poults were bled at regular intervals to determine passive 

antibody titers against HEV using an antibody-ELISA (31). 

Viruses. The HEV-A isolate (pheasant origin), the HEV-V isolate (turkey 

origin), and the SV isolate (chicken origin) were obtained as lyophilized 

crude spleen extracts from C.H. Domermuth, Virginia Polytechnic Institute, 

Blacksburg, Virginia. Both HEV isolates were passed in turkey poults by oral 

inoculation (31), first by crude spleen extract and then as CsCl-purified 

virus. Crude or purified virus preparations from spleens of the fifth or 

higher passage level in turkey poults were used for inoculation of the cell 

cultures. Crude spleen extract of SV passed once in chickens was used for 

inoculation of the cell cultures. All HEV preparations in PBS containing 15% 

glycerol were filter-sterilized through a 0.45 JJ filter and stored at -70 C. 

Cell culture. Turkey leukocytes were prepared from heparinized blood (50 

units/ml) collected from 8 to 20 week old turkeys which were sero-negative for 

HEV (ELISA titers <10). The leukocytes were isolated by two methods, (i) 

76 



Ficoll-Paque method: Whole blood was centrifuged through Ficoll-Paque 

(Pharmacia, Montreal, Quebec, Canada) for 15 to 20 min at 800 3 at room 

temperature. The mononuclear leukocytes, at the Ficoll-Paque interface, were 

collected for further processing and culturing virus, (ii) "Slow-spin" method 

(14): Blood was first centrifuged for 3 min at 150 3 followed by a further 10 

min at 35 3 at 4 C. Plasma and buffy coat cells were collected for further 

processing. Cells, obtained by both methods, were washed twice in RPMI 1640 

and resuspended at a concentration of 10 cells/ml in RPMI 1640 supplemented 

with 10% fetal bovine serum (FBS), Hepes buffer (25 ttiM), and gentamycin (50 

mg/1) (Gibco, Grand Island, New York). The leukocytes were grown either in 

stationary culture or in spinner cultures (Techne, Cambridge, UK) at 41 C in 

an atmosphere of 95% relative humidity and 5% C02. In general, leukocyte 

cultures were infected 1 to 3 hr after seeding with crude spleen extract, 

purified spleen extract or cell culture produced HEV at a concentration of 

5-20 tissue culture infectious doses 50 (TCID50)/ml culture medium. TCID50's 

were determined by titration of virus preparatins in stationary turkey 

leukocyte cultures (10 cells/ml). The percentage of infected cells in smears 

made three days post-infection, was determined by the fluorescent antibody 

(FA) test and the 50% value was calculated (10). Cell cultures were harvested 

2 to 3 days after infection and stored at -70 C. Chicken leukocytes were 

obtained from chicken blood isolated by the Ficoll-paque method and grown in 

stationary cultures as described for turkey leukocytes. Differential cell 

counts of cytocentrifuge cell preparations were determined after staining with 

a Diff-Quick set stain (American Scientific Products, McGaw, Illinois) (19). 

Immunofluorescence. Cell smears of the non-adherent cell population of 

HEV-infected and control cells were made with a cytocentrifuge on microscope 

slides. HEV-infected and control adherent cells were grown in Lab-Tek tissue 

culture chambers (Miles, Naperville, Illinois). The cells were fixed in 

methanol for 5 min. Subsequently, they were incubated with a monoclonal 

antibody (MAb) cocktail consisting of hybridoma supernatants of MAb's 11B6, 

14E1, and 15G4, all at a final concentration of 1:10 for 1 hr at 41 C. These 

MAb's react specifically with a wide range of group II avian adenovirus 

isolates (32). Thereafter, the cells were incubated with affinity-purified 

fluorescein-labelled goat-anti mouse IgG (Boehringer Mannheim, Dorval, Quebec) 

for 1 hr at 41 C. The cells were mounted with PBS-glycerine (1:1, v/v). The 
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presence of HEV antigen in the cells was observed with a Zeiss IH35 microscope 

equipped with epifluorescence illumination. The number of infected cells was 

estimated by counting fluorescent and total cells in several microscope fields 

(usually 500 to 1,000 cells). Only cells in which the nuclei exhibiting 

fluorescence were used to calculate the percentage of infected cells while the 

adherent cells showing fluorescent specks in the cytoplasm were not counted. 

Pictures were taken with a neofluar x 40 objective. 

Phagocytosis. Leukocytes were cultured in Lab-Tek culture dishes and 

infected with HEV. Twenty-four hours post-infection, phagocytosis using 

carbon particles (29) or latex beads (25) was determined. After incubation 

with the particles for 30 min at 41 C, cells were fixed, stained for HEV 

antigen by the indirect fluorescence antibody technique and examined with the 

Zeiss microscope for fluorescence and phagocytosis. 

Electron microscopy. Non-adherent cells taken from the culture dishes and 

adherent cells removed from the culture dishes by gentle scraping were 

collected separately and centrifuged. Cells were resuspended in PBS and 

washed twice. The cells were fixed in 3% glutaraldehyde in sodium cacodylate 

buffer for 2 hr at 0 C, washed in sodium cacodylate buffer, postfixed in 1% 

osmium tetroxide, dehydrated through graded ethanol and propylene oxide, and 

embedded in epoxy resin (Epon). Ultrathin sections were cut with a diamond 

knife, post-stained with 2% uranyl acetate and lead citrate, and examined with 

a Philips 410LS electron microscope. 

Virus distribution. Turkey leukocytes isolated from blood using the 

Ficoll-Paque method, were grown in stationary cultures. In experiment 1 the 

cells were infected with 10 TCID50 of HEV-A from crude spleen extracts and in 

experiment 2 with 5 TCID of purified HEV-A. Three days post-infection 

non-adherent cells and culture medium were removed from the flasks and 

separated by centrifugation. Adherent cells were scraped from the flasks. 

TCID were determined to evaluate the distribution of infectious virus in the 

two cell populations, after HEV was released from the cells by two freeze-thaw 

cycles and sonication, and in the cell culture medium. 

Passage and testing of HEV-A produced in turkey leukocytes. 
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Experiment 1. Leukocytes, isolated from blood by Ficoll-Paque centrifugation 

and cultivated in stationary cultures at 10 cells/ml, were infected with 20 

TCID50 of HEV-A from crude spleen extract. After three days in culture, cells 

and culture medium were collected and virus was released from the cells by two 

freeze-thaw cycles and sonication (passage one). This procedure was repeated 

six times using virus produced in the previous passage to infect the next cell 

culture. At each step 10% of the previous cell culture suspension was used to 

infect the leukocytes of the next culture. Culture conditions were the same 

as described before. 

Experiment 2. Leukocytes, isolated from blood by a "slow-spin" centrifugation 

and propagated in spinner culture at 10 cells/ml, were infected with 10 

TCID50 of CsCl-purifled HEV-A. Virus was released after 3 days in culture as 

described for experiment 1 (passage one) and used for infection of new 

leukocytes. Virus was passed four times in cultures using 2% of the previous 

cell culture suspension for infection of the next culture. TCID were 

determined to evaluate virus replication in both experiments. 

RESULTS 

Analysis of HEV-infected cells. Initially experiments were carried out 

using spleen cells because a relatively high number of these cells contain 

virus particles after infection of turkeys with HEV. After leukocytes were 

found to be the target cells in which HEV replicates, blood leukocytes were 

used since it was easier to process and isolate large quantities of leukocytes 

from blood than from spleens, and birds can be bled repeatedly. 

After purification by the Ficoll-Paque method, the isolated cell 

suspensions contained in addition to lymphocytes (30-40%), monocytes (3-9%), 

granulocytes (0-1%), and a high quantity of thrombocytes (50-65%). The cells 

were cultured in RPHI 1640 and 10% FBS, and then infected with HEV-A or HEV-V. 

After 18 to 24 hr smooth shiny cells were observed in leukocyte cultures 

infected with HEV-A (Fig. 1) or HEV-V (data not shown). These cells were 

larger than the average lymphocyte and were loosely attached to the plastic 

surface of the culture dish or flask, in which they were growing. Their 

numbers increased in time and they were often found in pairs or clusters after 

several days in culture. Similar cells were also observed in control cultures 

but they were present in much smaller numbers (Fig. 1 ) . The presence of 
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infected cells was analysed by a FA screening test using monoclonal antibodies 
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Fig. 1. Photographs of HEV-A infected (panel A) and control leukocytes (panel 

B) growing in cell culture. Note the large shiny cells (arrowheads) which are 

present in both panels. Photographs were taken 48 hr post infection. Bar 

represents 50 /un. 
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which react specifically with the hexon protein of the group II avian 

adenoviruses. Two to three days after infection a low percentage (1-5%) of the 

cells became infected with HEV (Fig. 2). Infected cells were mostly enlarged 

and 60 to 85% of the larger cells showed the presence of HEV when analysed by 

the FA test. The percentage of infected cells did not differ whether crude 

spleen extract or purified HEV was used as inoculum. The virus strain used did 
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Fig. 2. Location of HEV-A (panels A and B) or HEV-V (panels C and D) infected 

turkey leukocytes visualized by indirect immunofluorescent staining of the 

hexon protein using a cocktail of MAb's. Cell smears were made 48 hr post 

infection and were fixed in methanol. Panels A and C, fluorescence visualized 

by uv microscopy; panels B and D, cell morphology visualized by phase 

contrast. The bars in the panels represent 20 jum. 
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not affect this result either. No antigen was detected in uninfected control 

cells. 

When the leukocytes in the cultures were divided in to non-adherent and 

adherent cells, HEV-infected cells were detected in both groups (Fig. 3). 

Fig. 3. Detection of HEV-A infected cells in non-adherent (panels A through D) 

and adherent cell populations (panels E through L) visualized by indirect 

staining of the hexon protein using a cocktail of MAb's. Cell smears were 

made 48 hr post infection. Panels A,C,E,G,I, and K are photographs under uv 

illumination of the same fields shown in panels B,D,F,H,J, and L, 

respectively, taken under phase contrast. Note the typical smooth infected 

cells with small vacuoles in panels A,B,C and D, the granular infected cells 

with many large vacuoles in panels E,F,G, and H, and the cells with 

fluorescent speckles in panels I,J,K, and L (arrow heads). 
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The non-adherent infected cells were large smooth-looking immature cells when 

observed with the light and electron microscope. HEV particles were present 

in the nuclei of the infected non-adherent cells (Fig. 4). The HEV-infected 

cells in the adherent group resembled monocyte-macrophage cells. Sections of 

infected adherent cells showed HEV particles in the nuclei of these cells as 
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Fig. 4. Electron micrographs of HEV-A infected leukocytes 48 hr post 

infection. Panel A shows a typical smooth non-adherent cell with HEV in its 

nucleus, panel C shows a typical adherent cell with HEV in its nucleus, and 

panel E shows a cell with HEV particles in its cytoplasm. Panels B, D, and F 

are details of A, C, and E, respectively, at a higher magnification, clearly 

showing HEV particles. The bars in the panels represent 1 fm. 

well (Fig. 4). In addition, ingested virus particles were observed in the 

cytoplasm of some monocyte-macrophage cells (Fig. 4). 

The HEV target cell population was further characterized by investigating 

their phagocytic activity. Most of the infected adherent cells did ingest 

latex or carbon particles (Table 1, Fig. 5) and also had high non-specific 

esterase activity (data not shown). In contrast, only a low percentage of the 

infected non-adherent cells had ingested carbon or latex particles or stained 

for non-specific esterase activity. These data confirm that the adherent 

infected cells are probably monocyte-macrophage cells, but they are not 

conclusive about the nature of the non-adherent cells. 
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Fig. 5. Phagocytosis of latex particles by adherent cells infected with HEV-A. 

Panel A shows fluorescence visualized by uv microscopy and panel B shows cell 

morphology of the same field visualized by phase contrast. 

Table 1. Phagocytic activity of turkey blood leukocytes infected with HEV-A. 

Cell Population Infected Cells 

Infected phagocytic cells 

Carbon Latex 

Adherent cells 

Non-adherent cells 

1.3 

2.5 

89.0 

2.0 

94.0 

1.0 

Percentage infected cells determined by FA test. 

Percentage infected cells with phagocytic activity. 
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The various subfractions were also analyzed to determine whether 

infectious virus was mostly cell-associated or free in the medium, and whether 

it was associated with adherent or non-adherent cells. Table 2 demonstrates 

that most of the virus was cell-associated and predominantly present in the 

non-adherent cell population even though the infectivity of infected adherent 

and non-adherent cells was the same on a per cell basis. From this 

information it is evident that HEV-A is present in all subfractions and they 

should be kept together to obtain optimum virus yields. 

Table 2. Distribution of cell-associated and cell-free HEV-A produced in 

turkey leukocyte cultures. 

_TCID5o-

Exp.1 Exp.2 

Adherent cells 8 

Non-adherent cells 32 

Cell culture supernatant 3 

Two independant experiments; see Materials an Methods for details. 

In order to determine the kinetics of infection a time course experiment 

was conducted. Antigen could be detected within 12 hr post-infection in the 

non-adherent cells while in the adherent cells, antigen was not observed until 

20 hr post-infection (Fig. 6). Virions were observed in the nuclei of 

infected non-adherent cells at 18 to 24 hr after infection (not shown). 

Accumulated data from 30 experiments in which leukocytes were infected with 

HEV-A showed that the highest percentage of infected cells was found 2 to 3 

days post-infection with a range of 1 to 14% and an average of 4.3% (SD+3.2%). 

The large variation in percentage of infected cells was caused by a number of 
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factors including variation in susceptibility between cells of different 

birds, age of the birds, and different cell culture conditions. The peak of 

infectious HEV-A production was also found 2 to 3 days post-infection (data 

not shown). When cells were kept in culture for more than four to five days, 

the number of non-adherent cells decreased gradually and after 10 days 

virtually none were observed at all. The only surviving cells in culture were 

large adherent phagocytic cells which were sometimes multinuclear. HEV-A 

could still be detected in the cytoplasm of some of these cells by FA 

24 32 40 48 56 64 72 

HOURS POST INFECTION 

Fig. 6. Time course experiment of HEV infection in turkey leukocytes. 

Infection of the cells with crude spleen HEV-A was determined using the FA 

test. Symbols: percentage infected non-adherent cells/total non-adherent 

cells, • ; percentage infected non-adherent cells/total cells,O ; percentage 

infected adherent cells/total adherent cells, A ; percentage infected adherent 

cells/total cells, A . 
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Screening ten days post-infection but gradually all cells became negative for 

HEV-A antigen after three weeks (data not shown). A similar infection pattern 

was observed when turkey leukocytes were infected with HEV-V (data not shown). 

Attempts to establish cell lines from primary turkey leukocytes for HEV 

propagation were all unsuccessful. 

Virus passage in leukocytes. In order to investigate whether HEV-A was 

actually replicating in cell culture, resulting in the production of 

infectious virus, two experiments were carried out in which virus was passed 

seven or four times, respectively. The data in Table 3 demonstrate that 

infectious virus was produced in cell culture, because it could be passed and 

diluted and retained its infectivity. In addition, virus produced after 

several passages was even more infectious than after one passage (Table 3). 

Table 3. HEV-A production after several passages in turkey leukocyte cultures. 

Experiment 1 

Passage level TCID 

Experiment 2 

Passage level TCID 

47 

20 87 

Two independent experiments; see Materials and Methods for details. 

HEV-A production under various conditions. The effect of two variables on 

virus production, method of leukocyte isolation and culture condition, was 

investigated with the purpose to improve virus yield. The cell suspensions 

purified by the "slow-spin" method, contained in addition to lymphocytes 

(85-95%), monocytes (5-10%), granulocytes (1-2%), and thrombocytes (1-2%). The 



number of thrombocytes was much lower following the "slow spin" method than 

after the Ficoll-Paque method (50-60%). In general, higher and more 

consistent virus production was observed when the leukocytes were obtained 

with the "slow-spin" method than with the Ficoll-Paque method. Moreover, more 

infectious virus was generated when the cells were maintained in a spinner 

culture than in a stationary culture (Table 4). Another advantage of the 

spinner culture was that larger cell quantities (1 to 101) could be processed 

for HEV production requiring less work in handling of the cells than when 

cells were grown in flasks. 

Table 4. Comparison of HEV-A production by two different leukocyte isolation 

methods and culture conditions. 

Culture condition Leukocyte isolation method 

Ficoll-Paque Slow spin 

Stationary culture 11(4-20)A,B 28(27-29)c 

Spinner culture 27(23-31)c 73(23-135)B 

Average TCID50 and range in brackets 

Data from 4 experiments 

Data from 2 experiments 

Infection of chicken and turkey leukocytes with HEV-A and SV. In order to 

determine whether higher virus yields could be obtained using a different cell 

culture system, the potential of HEV and SV propagation in chicken leukocytes 

was investigated. The ability of SV to replicate in turkey cells was also 

analyzed. Table 5 shows that leukocytes of eight chickens were only infected 

at a low rate with both HEV-A and SV. In a comparable experiment conducted 

with turkey leukocytes a normal infection was obtained with HEV-A, 



whereas a poor infection was found with SV (Table 6). Fluorescent cells, 

detected only in infected and not in control cultures, were enlarged, had 

intranuclear inclusions, and belonged mostly to the non-adherent cell 

population in both experiments. 

Table 5. Infection of leukocytes from 8 different chickens with HEV-A or SV at 

3 and 4 days post-infection. 

Leukocytes from 3 days post-infection 4 days post-infection 

chicken number HEV-A SV HEV-A SV 

152 +" + + 

156 + + + 

158 + - + 

159 + - -

163 - + 

164 + - + 

169 + - -

170 + - -

Percentage of cells stained in the FA tests ranging from ++ to -: 

++, > 1.0%; +, 1 - 0.1%; +, 0.1% - 0.01%; -, < 0.01% 

DISCUSSION 

This report describes the propagation of HEV in a primary cell culture. 

After infection of turkey leukocytes in cell culture it was observed that 

viral antigen increased as detected by FA testing, HEV particles occurred in 

the nucleus, and the amount of infectious virus increased after inoculation. 

Moreover, HEV could be serially passed at least seven times in 
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turkey leukocytes. Previously, Perrin et al (24) inoculated spleen cells with 

HEV but they did not show that the recovered virus was other than the 

inoculum, by conducting titration experiments or passing HEV in cell culture. 

Fasina and Fabricant (12) were able to infect spleen lymphocytes with HEV as 

detected by immunofluorescence; however, all attempts to passage the virus in 

their cell cultures failed. The only successful continuous replication of HEV 

was reported by Nazerian and Fadly (21) using lymphoblastoid B cells derived 

from a Marek's disease tumor (20). 

TABLE 6. Infection of turkey leukocytes from 6 different turkeys with HEV-A 

or SV at 3 and 4 days post-infection. 

Leukocytes from 3 days post-infection 4 days post-infection 

turkey number HEV-A SV HEV-A SV 

101 ++A - ++ 

102 ++ + ++ 

103 ++ - ++ 

104 ++ - ++ 

107 ++ - ++ 

108 ++ + ++ 

Percentage of cells stained in the FA test ranging, from ++ to -: ++, > 

1.0%; +, 1 - 0.1%; + , 0.1 - 0.01%; -, < 0.01%. 

After infection, virus particles were found in three groups of cells, 

which probably belong to the mononuclear cell lineage at different stages of 

maturation. The largest group of infected cells consisted of apparently 

immature cells but they were difficult to identify. These cells were 

non-adherent, smooth, non-phagocytic cells containing many virus particles in 

their nuclei. They might be immature cells, which are normally present in 

avian blood (19), or they might look immature due to changes induced by virus 
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infection. Immature infected cells, resembling these non-adherent blood 

leukocytes, have been observed in the spleens and other organs of turkeys 

infected with HEV (16). However, it can not be ruled out that these cells are 

immature lymphocytes. Lymphocytes (12) and more specifically B lymphocytes 

(11,21) were thought to be the cells in which HEV could replicate. 

Identification of the cells susceptible to HEV will be possible when MAb's 

which will specifically recognize leukocyte subpopulations are available. The 

second group consisted of cells with the characteristics of 

monocyte-macrophage cells grown in vitro (1). These characteristics include 

rapid attachment to the surface, aggregation of the cells, sometimes resulting 

in the formation of large clumps and multinuclear cells, an increase in size, 

development of many phase-dense granules and phase-lucent vacuoles, and 

phagocytic features. HEV particles were found in the nuclei of these infected 

cells. These cells resembled the reticular cells with macrophage 

characteristics found in spleens of HEV-infected turkeys (16). The third 

group of cells had the same characteristics as the cells in the second group 

but virus particles were only present in the cytoplasm and not in the nuclei 

of the cells. Apparently, after internalization of HEV in these cells, the 

virus is not released from the receptosomes in the cytoplasm and transferred 

to the nucleus which is required for an adenovirus replication (23). This 

process is probably followed by transfer of the virions from the receptosomes 

into phagolysosomes in which they are degraded, because no HEV antigen was 

detected in these cells three weeks post-infection. Phagocyting cells with 

virus particles in cytoplasmic vacuoles were also observed in organs of 

HEV-infected turkeys (16,21). 

Most of the infectivity was cell-associated which could be expected of 

virus that replicates in the nucleus (3). However, after cell death and 

degeneration the amount of virus in the medium did not increase markedly. An 

explanation might be that virus either was not released from the cells or was 

ingested by macrophages and thus removed from the medium in the cell cultures. 

This last assumption is in agreement with the phagocytosis of HEV observed in 

macrophages by the FA test (fluorescent speckles in the cytoplasm) and by 

electron microscopy (HEV particles in the cytoplasm). Uptake of virus by 

phagocytes followed by inactivation might also provide an explanation for the 

higher virus yield obtained when cells were grown in spinner instead of 

stationary culture, because constant movement in the spinner culture may 
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decrease the ingestion of virus. 

Only a low percentage of the leukocytes was found to be infected with HEV. 

One reason for this observation might be that HEV infection and replication 

is restricted to a subpopulation of the cells which is susceptible to the 

virus. Another explanation might be retardation of the first infection steps 

as described for human adenovirus type 2 (Ad2) infection of human peripheral 

blood leukocytes (2,13,18). Although this virus attached to 26% of the 

lymphocytes, virus uncoating and virus DNA synthesis were slower, and the 

percentage of infected cells and infectious virus production were much lower 

than in susceptable HEp-2 cells (13). It was suggested that virus production 

in lymphoid cells required cells actively engaged in DNA and protein synthesis 

because higher virus yields were obtained in lymphocytes after stimulation 

with phytohemagglutinin and in several lymphoblastoid cell lines (13,18). A 

third possibility might be that after an initial infection and replication in 

some susceptible cells, spreading to and replication in other cells was 

inhibited by interferon. Although human adenoviruses are relatively resistant 

to interferon, mutants lacking the gene coding for virus-associated RNAI are 

known to be sensitive to interferon (17). Furthermore, Adl2, 13, and 31 are 

potent inducers of interferon in non-permissive chicken embryo fibroblast 

cells (27,28). 

The potential of HEV-A and SV propagation in chicken leukocytes, as an 

alternative for virus propagation in turkey leukocytes was investigated. 

However, chicken leukocytes were not very susceptible to either HEV or SV. 

This might be a feature of the chicken cells. In addition, infection of 

turkey leukocytes by SV was poor compared with a HEV-A infection. Although HEV 

and SV are serologically related (5) and are able to infect both chickens and 

turkeys causing spleen enlargement and serological response in these animals 

(6, and J.V. van den Hurk, unpublished data), this does not exclude the 

possibility that there might be differences between these viruses. Genotypic 

differences might be responsible for the difference in infectivity. 

In conclusion, this report shows that HEV replicates in turkey mononuclear 

blood leukocytes, predominantly in immature non-adherent cells, but also in 

adherent monocyte-macrophage type cells. The practical implications of this 

study for the development of an efficacious and safe vaccine for HEV will be 

discussed in the accompanying communication (J.V. van den Hurk, submitted for 

publication). 
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SUMMARY. Avirulent hemorrhagic enteritis virus (HEV-A) propagated in turkey 

leukocyte cell culture was tested as a vaccine to prevent hemorrhagic 

enteritis (HE) in turkeys in experimental and field trials. Immunization of 

turkeys with live HEV-A resulted in protection against a challenge with 

virulent HEV (HEV-V) as measured by the serological response and the absence 

of clinical disease and HEV antigen in spleens. In field trials, nineteen out 

of twenty flocks seroconverted within 21 days after vaccination with live 

HEV-A distributed in the drinking water. The overall immune response of the 

turkeys in these flocks was 961. Most importantly, neither clinical HE nor 

other adverse effects caused by HEV-A vaccination were observed in any of the 

vaccinated flocks. Since maternal antibodies can interfere with the immune 

response to the vaccine, the optimum time for vaccination was determined. 

Using an established half life value of 4.25 days, and knowing the ELISA titer 

of the maternal antibodies and age of the turkey, the time of vaccination 

could be calculated taking into account that maternal antibody titers should 

be lower than 40 to vaccinate the turkeys successfully and induce protection. 

In vivo tests with HEV-A preparations confirmed the replication of the virus 

in turkey leukocyte cultures and the potential to pass it in culture without 

loss of potency. Furthermore, the results of the in vivo analysis of virus 

obtained from non-adherent cells, adherent cells, and cell-free medium was 

similar to those obtained in the in vitro analysis. Both assays showed that 

most infectious virus was associated with preparations of the non-adherent 

cell population. The potency of HEV-A preparations was dependent on the 

production method and varied from an average 570 to 8,135 doses per ml. 

INTRODUCTION 

Hemorrhagic enteritis (HE) is an infectious disease of turkeys which is 

characterized by depression, intestinal bleeding, and death (5). This disease 

is caused by hemorrhagic enteritis virus (HEV) which is tentatively classified 

as a group II or type II avian adenovirus (3,5). HE usually occurs between 6 

and 11 weeks of age and is most common in 7 to 9 week-old birds (5). Younger 

birds are usually refractory to the disease as a result of the presence of 

maternal antibodies (3,10,13,20). 

Two vaccines have been used to prevent HE. The first is a crude spleen 

extract prepared from turkeys infected with avirulent HEV (HEV-A) (6,7,19). 



The second vaccine contains HEV-A grown in a lymphoblastoid cell line (RP19) 

derived from a Marek's disease virus (MDV)-induced tumor (8,9,14,15,16). 

Although both vaccines elicit protective immunity in turkeys, the safety 

features of these vaccines are disputed and have to be carefully evaluated. 

The overall goal of this study was to develop and test an efficacious 

vaccine for HE in turkeys, using HEV-A produced in turkey leukocytes as 

previously described (J.V. van den Hurk, manuscript submitted). Potency and 

safety testing was carried out and the vaccine was tested under experimental 

and field conditions. In addition, since high levels of maternal antibodies to 

HEV can interfere with vaccination, the rate of decline of these antibodies 

was studied so that the optimum age for vaccination could be determined. 

MATERIALS AND METHODS 

Virus and HEV-A preparations. The origin, characteristics and propagation 

of HEV-A and virulent HEV (HEV-V) have been described previously (20). The 

details of the propagation of HEV-A in turkey leukocytes have been described 

elsewhere (J.V. van den Hurk, manuscript submitted). 

Enzyme-linked immunosorbent assays (ELlSA's). HEV antibodies were 

determined in an indirect ELISA using CsCl-purified HEV for coating and rabbit 

anti-turkey IgG-peroxidase conjugate for detection of the antibodies (20). 

HEV antigen was determined in an indirect sandwich ELISA using turkey 

antibodies for capture, and a cocktail of monoclonal antibodies (MAb's 11B6, 

14E1, and 15G4), followed by goat anti-mouse IgG-peroxidase conjugate for 

detection of the antigen (17,20,21). 

Potency testing of HEV-A preparations. An assay was developed to measure 

the protection of poults against HE challenge after immunization with cell 

culture-produced HEV-A. The potency of HEV-A preparations was established in 

dose-challenge experiments in which the minimum dose necessary to protect 6 

week-old poults against a challenge with 100 effective doses 95 (ED ) of the 

HEV-V isolate was determined. The EDg5 was based upon the presence or absence 

of HEV antigen in the spleens five days post-infection, and was defined as the 

dose that produced antigen in the spleens in 95% of 6 week-old birds. An 

infection with 100 ED95 of HEV-V caused intestinal bleeding in an average of 
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60% (range 32-88%), death in 28% (range 12-50%), and HEV antigen in the 

spleens in 100% of unvaccinated turkeys. 

In the potency tests, six to seven week-old turkeys, which had been raised 

in isolation were placed in separate isolation rooms (8 turkeys per group). 

Poults were vaccinated orally with 1 ml of serial 10-fold dilutions of each 

batch of cell culture-produced HEV-A. Fourteen days after vaccination the 

turkeys were challenged with 100 ED9 of HEV-V, and 5 days post-challenge the 

survivors were killed and examined. Two criteria were used to establish the 

protective titers in turkeys five days following challenge. First, the HEV 

antigen titers were determined in the spleen extract of each poult. ELISA 

antigen titers < 100 indicated protection. Second, spleen enlargement, a 

characteristic of a HEV infection, was evaluated by calculating the 

spleen/body weight ratios, which were multiplied by 10 for reporting 

purposes. A ratio x 10 < 1.40 indicated protection except in birds that were 

bleeding intestinally. The Chi square (X2)test was performed to evaluate 

protection: i) dependency of antibody and antigen titers, and ii) dependency 

of antibody titer and spleen/bird weight ratio. The number of doses per ml 

cell culture harvest (potency) was calculated from the ED90 based upon 

protective antibody levels using the method of Reed and Muench. 

Potency of HEV-A propagated under different conditions. The potency of 

HEV-A propagated under different conditions was determined in dose-response 

challenge trials. First, the potency of HEV-A propagated in turkey leukocytes 

at passage levels one and seven (experiment 1 ) , or at passage levels one and 

four (experiment 2 ) , was determined. Second, turkey leukocytes were infected 

with either HEV-A from crude spleen extracts (experiment 1) or with purified 

HEV-A (experiment 2 ) . Three days post-infection the cell cultures were 

harvested and separated into non-adherent cells, adherent cells, and culture 

medium fractions, and the potency of each of the three fractions was 

determined. Third, the potency of HEV-A produced in leukocytes, isolated by 

the Ficoll-Paque or "slow-spin" method (12) and grown in stationary or spinner 

cultures, was determined. Details of the cell culture conditions, infection, 

and harvest of HEV-A preparations are described elsewhere (J.V. van den Hurk, 

manuscript submitted). 
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Maternal antibodies. In a first experiment the presence and decline of 

maternal antibody titers were determined in 42 groups of turkeys, all from 

different hatches with an average of 75 poults. All groups were housed at 

VIDO. Antibody titers were determined by ELISA in sera, obtained from five 

randomly selected poults that were bled when they were one day old in all 

groups and at weekly intervals in 16 groups thereafter. In the second 

experiment the decline of maternal antibodies was investigated in blood 

samples, collected from three groups of ten poults (three different hatches) 

when they were one day old and at 8 weekly intervals thereafter. Slopes and 

half life values were calculated from graphs in which the maternal antibody 

titers of individual birds (log,0 ELISA titers) were plotted against the age 

of the birds. 

Safety screening of HEV-A preparations. All HEV-A preparations were 

screened before inoculation into poults for the presence of bacteria including 

mycoplasma, fungi, and extraneous viruses. Only when all tests were negative 

were potency trials conducted in the birds. Moreover, HEV-A preparations used 

in the field trials were tested for side-effects by intramuscular and oral 

inoculation of 10 poults with a 100 to 1,000 times higher dose than was 

necessary for induction of a protective immune response. 

Field trials. Field trials were conducted using two different HEV-A 

preparations. The leukocytes of both cultures were isolated by the 

Ficoll-Paque method and the cells were grown in stationary cultures. The 

first preparation (A) was obtained from turkey leukocytes infected with HEV-A 

from a crude spleen extract and harvested two days post-infection and it had a 

potency of 1260 doses/ml. The second preparation (B) had a potency of 165 

doses/ml. It was obtained from a second passage of HEV-A in turkey leukocytes 

initially infected with CsCl-purified HEV-A, and it was harvested three days 

post-infection. In the first field trial two flocks were vaccinated with 

preparation A. The birds of flock 1 were 4 weeks old and those of flock 2 

were 6 weeks old at the time of vaccination.The second field trial was 

conducted in 20 flocks with an average of 6,000 birds using both preparations 

A and B. The birds in these flocks were four to seven weeks old. The selected 

flocks had been raised under confinement on premises where no HE vaccine had 

been used previously. After stimulation of thirst by withholding water for 2 
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hr, the first half of the vaccine solution, diluted in clean fresh water 

supplemented with powdered milk (250g/801) as stabilizer, was distributed 

evenly over the empty waterers at a concentration of 5,000 doses/801. As soon 

as the waterers were empty the second half of the required vaccine was 

prepared and the procedure repeated. Birds were encouraged to move around 

when the vaccine was distributed to increase the number of birds vaccinated as 

a result of drinking. Blood was collected at random from 25 birds at the time 

of vaccination and three weeks after vaccination from all flocks, and at 

slaughter from 4 flocks for serological testing. 

RESULTS 

Calculation of the protective antibody titer. The protective antibody 

titer was determined after vaccination of turkeys with HEV-A propagated in 

turkey leukocytes. A highly significant association (p< 0.001) was found 

between an antibody titer > 20 and protection as defined by the absence of 

antigen (titer < 100) in spleen extracts (Table 1). Under these conditions 

280/297 (94%) of the birds with an antibody titer > 20 were protected (antigen 

titer < 100), whereas only 47/241 (20%) of the birds with an antibody titer 

<20 were protected. A similar highly significant association (p < 0.001) was 

calculated between an antibody titer > 20 and protection based upon 

spleen/body weight ratio < 1.40 (Table 2). In this case 213/233 (92%) of the 

birds with an antibody titer > 20 were protected, whereas only 32/192 (16%) of 

the birds with an antibody titer <20 were protected. In addition, following 

vaccination with HEV-A and challenge with HEV-V no intestinal bleeding or 

death occurred in any of the birds with a HEV antigen titer <100 or a serum 

antibody titer >20. Based on these results an induction of a protective 

antibody titer >20 in turkeys following immunization with HEV-A was used to 

calculate the potency (no. doses/ml) of HEV-A preparations in dose-response 

experiments. Moreover, an induction of a protective antibody titer >20 

determined experimentally was used for the evaluation of a serological 

response in turkeys following vaccination with HEV-A in the field trials. 

Immunization of turkeys with cell culture-propagated HEV-A at various 

passage levels. HEV-A preparations at various passage levels were tested for 

their capacity to induce protection against HE in turkeys. Table 3 
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Table 1. Association between HEV antigen titer in spleen extracts and serum 

antibody titer of turkeys following vaccination with HEV-A and challenge with 

HEV-V. 

Antibody Spleen antigen titer Total 

titer <100 >100 poults 

<20 47 194 241 

>20 280 17 297 

X2 test. The association between an antibody titer >20 

and protection as defined by the absence of antigen 

(titers < 100) in spleen extracts was highly significant 

(p <0.001). 

Table 2. Association between spleen/body weight ratio and serum antibody 

titer of turkeys following vaccination with HEV-A and challenge with HEV-V. 

Antibody Spleen/body weight ratio Total 

titer <1.4 >1.4 poults 

<20 32 160 192 

>20 213 20 233 

X2 test. The association between an antibody titer >20 and 

protection as defined by a bird/weight spleen ratio xlO 

<1.4 was highly significant (p <0.001). 
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illustrates that immunization with HEV-A preparations, which were once or 

seven times subcultureel, resulted in an antibody response and protection 

against challenge with HEV-V in a dose-dependent manner. The potency of the 

HEV-A preparations varied from 282 to > 10,000 doses/ml. The results of these 

in vivo experiments confirmed that HEV-A replicated in cell cultures, and that 

after repeated passage HEV-A could still be used to induce protection in 

turkeys. In addition, a high association was found between the presence of 

antibodies (titers > 20), the absence of HEV antigen in the spleen (titers < 

100) and spleen/bird weight ratios (<1.40) in birds that were not bleeding 

intestinally. 

Comparison of HEV-A potency in cell culture sub-fractions. Previously, 

HEV-A propagated in turkey leukocytes has been found to be present in adherent 

cells, non-adherent cells, and culture medium (J.V. van den Hurk, manuscript 

submitted for publication). These culture fractions were analyzed for their 

capacity to induce protection in turkeys. The potency of these preparations 

was tested in dose-response challenge trials and expressed in ED90/ml. Table 

4 illustrates that in two independent experiments the highest potency was 

associated with the non-adherent cell fraction. Since HEV-A was present in 

each subfraction cells and culture media were kept together for maximalization 

of the vaccine production. 

Table 4. Potency of cell-associated and cell-free HEV-A propagated in turkey 

leukocyte cultures. 

D 

Cell culture fraction Potency ( % ) 

Experiment 1 Experiment 2 

Adherent cells 251 (7%) 116 (8%) 

Non-adherent cells 3,170 (89%) 1,260 (88%) 

Cell-free medium 145 (4%) 63 (4%) 

Potency of fraction/total potency 

Leukocytes were infected with crude spleen HEV-A 

Leukoyctes were infected with purified HEV-A 
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Potency analysis of HEV-A propagated in turkey leukocytes, isolated and 

cultured under various conditions. In an attempt to obtain optimum virus 

yields, a number of methods to propagate the virus were investigated. The 

highest yields were obtained with the combination of the "slow spin" method for 

isolation and spinner culture for maintenance of the cells (Table 5). 

Table 5. Comparison of HEV-A production in turkey leukocytes obtained by 

various isolation methods and cultured under various conditions. 

Culture Condition Leukocyte isolation method 

Ficoll-Paque Slow Spin 

Stationary culture 570 (60-1,445 ) A , B 2,035 (1,160-2,910)c 

Spinner culture 2,850 (2,000-3,700)c 8,135 (3,700-12,560)" 

Average potency (ED90/ml) and range in brackets 

Data from 4 HEV-A preparations 

Data from 2 HEV-A preparations 

Maternal antibodies versus immunization. Most turkeys have maternal 

antibodies against HEV when they hatch (5,10,13). This information agrees well 

with the observation that only one out of forty-two turkey groups (all from 

different hatches) used at VIDO lacked maternal antibodies. The antibody 

response after immunization was thought to be dependent on the level of 

maternal antibodies of the turkeys. 

Interference by maternal antibody with the serological response to 

immunization with HEV-A in a field trial is clearly shown in Table 6. When 

vaccination was performed at 4 weeks of age (flock 1) the mean pre-vaccination 

maternal antibody titer was 68 and only 11/25 (44%) poults seroconverted as 

defined by titers > 20 at 21 days after vaccination. In contrast, 24/25 (96%) 

poults seroconverted in the flock vaccinated at six weeks (flock 2) when 

maternal antibody titers had declined to a mean of 9. This difference in 

protective antibody response could also be expected from the number of birds 

with maternal antibody titers > 40 at the time of vaccination, which was 10/25 

in flock 1 and 0/25 in flock 2. 
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HEV Antibody Titer 

Age at Before 

vaccin- vaccin-

Flock ation ation 

After 

vaccin-
. . B 

ation 

No. with 

HA titers >40/ 

No. tested 

Table 6. Effect of maternal antibody (MA) level on the serological response 

after vaccination with HEV-A in turkey flocks at 4 and 6 weeks. 

No. responded/ Response 

No. tested0 (%) 

1 4 weeks 68 41 10/25 11/25 44 

2 6 weeks 9 360 0/25 24/25 96 

Geometric mean ELISA antibody titers at the day of vaccination. 

Geometric mean ELISA antibody titers three weeks post-vaccination. 

Tested at the day of vaccination. 

Ratio between the no. of turkeys which responded with an antibody titer >20 

and the no. of turkeys tested. 

In order to determine when a flock should be vaccinated, the decline of 

maternal antibodies in poults was studied. The rate of decline of maternal 

antibody levels of the ten individual poults in the three groups was nearly the 

same as is illustrated in Fig. 1 for the poults of group 1. Furthermore, an 

average value of 4.25 days for the half life and an average value of -0.072 for 

the slope were determined for the maternal antibodies of these groups (Table 

7). Using the half life value of 4.25 days, and knowing the ELISA titers at 

day one of the three groups of ten turkeys, it was found that calculated and 

actual maternal antibody titers corresponded very well (Table 7 ) . 

The decline of the maternal antibody titers was further investigated in 16 

groups of turkeys. Table 8 shows that the mean of the maternal antibody titers 

of these groups declined with age at a similar rate as that determined for the 

3 groups of 10 birds with slopes of -0.074 and -0.072 respectively. 

Furthermore, the level of the maternal antibodies declined to below 40 in the 

majority of the birds by 5 to 5 weeks of age. These results suggest that 75 to 

94 percent of these turkeys were expected to react with a protective antibody 

response after vaccination with HEV-A at 5 to 6 weeks using maternal antibody 
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10 20 30 

AGE IN DAYS 

40 

Fig. 1. Decline of HEV maternal antibody titers in the poults of group 1. The 

log10 of HEV maternal antibody titers, determined by ELISA when turkeys were 1, 

7, 14, 21, 28, 34, 41, and 47 days old, was plotted against age. A slope of 

-0.071 + 0.006 (Mean + SD) and a half life of 4.25 + 0.34 days (mean + SD) were 

calculated. Sera from turkey 2108: O , 2109: • , 2112: D , 2107: • , 

2104: A , 2105: • , 2106: O , 2103: * , 2111: • , 2110: O • 
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titers below 40 as a requirement for such a response. The wide range of 

maternal antibody titers within poults of the same age should be also noted. 

Under experimental conditions a highly significant association (p<0.0001) 

was found between maternal antibody titers <40 and a response (antibody titer 

>20) after immunization with HEV-A (Table 9 ) . Under these conditions 141/150 

(94%) of the turkeys with a maternal antibody titer <40 responded whereas only 

3/15 (20%) of the birds with a 40 < maternal antibody titers <80 showed an 

immune response. 

Table 7. Decline of maternal antibodies against HEV: determination of slopes, 

half lives, and correlation between measured and calculated maternal antibodies 

in three groups of ten turkeys. 

Group Slope Half Life (days) 

Correlation 

coefficient r) 

Mean 

-0.071 + 0.006 

-0.071 + 0.003 

-0.073 + 0.006 

-0.072 

4.25 + 0.34 

4.26 + 0.22 

4.23 + 0.38 

4.25 

0.95 

0.97 

0.95 

Arithmic mean + SD of 10 turkeys. 

The correlation between the number of days for maternal antibody titers to 

decline to 40 was determined as measured by ELISA and calculated from the 

ELISA titers at day 1 using a half life value of 4.25 days for the 

antibodies. Highly significant values were determined for the correlation 

coefficients (P<0.001). 
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Table 8. Decline of maternal antibodies against HEV in 16 turkey groups. 

Age 

Maternal antibody 

titerA (range) 

No. with MA titers <40/ 

No tested % with MA titers <40B 

1 day 

1 week 

2 weeks 

3 weeks 

4 weeks 

5 weeks 

6 weeks 

7 weeks 

and older <10 (<10 - 29) 

5,274 (280 - >100,000) 

2,022 (120 - 23,000) 

345 (<10 - 800) 

116 (<10 - 3,400) 

45 (<10 - 350) 

17 (<10 - 190) 

<10 (<10 - 45) 

0/80 

0/80 

5/80 

14/80 

37/80 

60/80 

75/80 

80/80 

0% 

0% 

6.3% 

17.5% 

46.3% 

75.0% 

93.8% 

100% 

Geometric mean maternal antibody (MA) titers of 16 different turkey groups 

determined by ELISA. A slope of -0.074 was calculated from the log10 of the 

maternal antibodies and the age of the birds. 

Percentage of the birds which is expected to respond with a protective antibody 

titer after vaccination with HEV-A using maternal antibody titers <40 as a 

requirement for such a response. 

Table 9. Effect of the occurrence of maternal antibodies on the serum 

antibody response after vaccination of turkeys with HEV-A. 

Maternal 

antibody 

titer 

Antibody titer after vaccination 

<20 >20 

Total 

poults 

<40 141 150 

>40 and <80 12 15 

X test. The association between maternal antibody titer <40 and a protective 

antibody response (antibody titer >20) after immunization with HEV-A was highly 

significant (p <0.001). 
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Field trials. Field trials were conducted in 20 flocks in Canada using two 

HEV-A preparations. No adverse effects in any of the birds were observed when 

these HEV-A preparations were tested by intramuscular or oral inoculation with 

a 100 to 1,000 times higher dose than was required for induction of a 

protective immune response. A very good serological response was obtained 

after vaccination with HEV-A in nineteen out of twenty flocks with an average 

response of 96% (Table 10). Only one flock (no 9) showed a lower response of 

46%. No significant difference in response was found between the flocks 

vaccinated with preparation A or B. In addition, no clinical HE or other 

adverse effects caused by vaccination were observed in any of the 20 flocks. 

All birds tested in the four flocks at slaughter had protective antibody titers 

against HEV. The ELISA titers (geometric mean titers) between these flocks 

varied from 6,823 to 11,274. In the 12 flocks that were vaccinated when they 

were 5 weeks old 254 out of 309 birds (82%) had maternal antibody titers <40 

(data not shown). This figure is in good agreement with the observation that 

275 out of 293 birds (94%) responded to the vaccination, resulting in a 

protective antibody titer 3 weeks post-vaccination. 

DISCUSSION 

A good correlation was found between an antibody titer > 20 against HEV and 

protection as defined by absence of HEV antigen in spleens and spleen/body 

weight ratios x 10 < 1.40. One reason that such low antibody titers were 

protective might be that during an early response IgM antibodies were measured 

which are known to be particularly effective against invading microorganisms 

(2,11,17). Antibodies are known to play a role in protection against HE, 

because administration of HEV antiserum to turkeys prevented occurrence of 

clinical disease upon HEV-V infection of these birds (4,5). Another 

possibility might be protection elicited by cell-mediated immune (CMI) 

reactions. CMI protection might also elucidate the appearance of a group of 

turkeys that showed no detectable serological response after vaccination and 

challenge, but was protected based on the absence of viral antigen in the 

spleens. The importance of CMI response for control and resolution of human 

adenovirus infections has been described (18). 

The successful propagation of HEV-A in turkey leukocytes has been reported 

ill 



Table 10. Serology data of turkey flocks vaccinated with HEV-A propagated in 

turkey leukocytes (Field trials) 

Flock 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

HEV-A 

preparation 

B 

B 

A 

B 

A 

A 

A 

B 

B 

A 

A 

B 

B 

B 

A 

A 

A 

A 

A 

A 

Prevaccination 

Age 

4 

4 

4 

6 

5 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

1/2 

1/2 

1/2 

NAD 

6 

5 

5 

1/2 

1/2 

TiterB 

41 

45 

26 

<10 

19 

52 

17 

32 

28 

36 

11 

13 

30 

16 

17 

18 

NA 

<10 

19 

34 

Post-vaccination 

Age 

7 1/2 

7 1/2 

7 

9 

8 

7 1/2 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

NA 

9 1/2 

8 

9 

Respon 

Titer8 No. positive/total 

4,607 

2,575 

1,023 

3,256 

1,773 

908 

1,153 

834 

87 

2,726 

1,260 

1,823 

706 

1,114 

1,878 

9,131 

5,274 

6,742 

1,581 

1,494 

25/25 

25/25 

22/22 

25/25 

20/21 

23/23 

21/21 

25/25 

11/24 

26/26 

25/25 

25/25 

22/25 

26/27 

27/27 

25/25 

24/24 

25/25 

22/22 

25/25 

se 
.c 
•6 

100 

100 

100 

100 

95 

100 

100 

100 

46 

100 

100 

100 

88 

96 

100 

100 

100 

100 

100 

100 

Average 5.0 25 8.0 2,497 469/487 96 

Age in weeks. 

The geometric mean titers as measured by ELISA. 

Percentage response = number of turkeys with ELISA titer > 20 three weeks 

after vaccination. 

Not available. 
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previously (J.V. van den Hurk, manuscript submitted). In this study, the 

usefulness of cell-culture produced HEV-A for the immunization of turkeys 

against HE was investigated. In the dose response challenge experiments it was 

found that HEV-A produced in cell culture induced protective immunity in 

turkeys. These in vivo experiments confirmed the replication of HEV-A in 

turkey leukocytes, the possibility to pass HEV-A in culture without loss of 

infectivity, and the distribution of HEV-A over adherent and non-adherent 

cells, and cell-free culture medium. Both in vitro and in vivo analyses showed 

that HEV was mostly cell-associated which is a common feature of adenoviruses 

(1). In addition, the highest potency in turkeys and the highest virus yield 

in cell culture were obtained when turkey leukocytes were isolated by the "slow 

spin" method and cultured in spinner flasks (J.V. van den Hurk, manuscript 

submitted). 

In general, there was a good correlation between the infectivity of HEV-A 

propagated in leukocytes determined in cell culture (TCID50) (J.V. van den 

Hurk, manuscript submitted) and in turkeys (ED ). However, the in vitro test 

was about 100 times less sensitive. These results are in contrast with those 

found for HEV produced in RP19 cells where the in vitro test was more sensitive 

(16). Possible reasons for the lower sensitivity of the in vitro 

HEV-infectivity test might be phagocytosis of HEV-A by phagocyting cells in 

which the virus does not replicate, and a possible production of interferon 

which might affect virus production in mixed turkey leukocyte cell cultures. 

The serological response in the field trials of the turkeys, that were 

immunized with HEV-A propagated in turkey leukocytes, was very good in 19 out 

of 20 flocks. The overall immune response of the turkeys in these 20 flocks 

was 96%. Such a good response probably resulted from replication and transfer 

of virus from one bird to another rather than from all 96% of the birds being 

vaccinated directly by drinking the HEV-A preparation. Horizontal transmission 

of HEV between birds after vaccination has also been observed by other 

investigators (8,19). The reason for the poor response (46%) in one flock is 

not known, but based on the consistency of seroconversion in the other flocks 

and in experimental trials, it was suspected that the vaccine was not properly 

administered to this flock. 

Seroconversion in the field trials was considered to be caused by 

vaccination rather than by infection with field strains on the basis of the 

following observations: i) no clinical disease was observed in any of the 20 
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flocks, while on some of the farms previous flocks had HE; and ii) an antibody 

response was detectable in 96% of the birds within 3 weeks after vaccination 

when they were 7.5 to 9.5 (average of 8) weeks old. This antibody response 

generally occurred earlier than that observed after an HEV infection in the 

field which is usually apparent when birds are 8 to 12 weeks old (based upon 

seroconversion 7 days after the peak of disease incidence when birds are 7 to 

11 weeks old; 5,20, J.V. van den Hurk, unpublished data). 

Most young turkeys have maternal antibodies against HEV which might 

interfere with a successful vaccination. Therefore, the decline of these 

maternal antibodies and the level at which they did not interfere with an HEV-A 

immunization were investigated. In general, based upon maternal antibody 

levels against HEV in poults housed at VIDO and maternal antibody levels and 

protective antibody response in poults in the field trials, an HE vaccination 

at five weeks of age is recommended. From the maternal antibody titers of a 

random sample of young turkeys tested at a known age, the appropriate time for 

immunization can now be determined using a half life value of 4.25 days and a 

maternal antibody titer <40. However, the timing of the vaccination might 

still be problematic when there is a wide variation in maternal antibody titer 

between individual birds. 

This HE vaccine shares the advantages of many live avirulent vaccines which 

usually require only one vaccination to induce a good and long-lasting 

immunity. Furthermore, the high yield in cell culture, ease of preparation, 

and oral administration in the drinking water made it economically attractive 

as a vaccine. Disadvantages of this vaccine are that it is propagated in a 

primary cell culture system involving the isolation of cells for the production 

of each new virus batch. In addition, since it is a live virus vaccine stress 

and immunosuppression may occur. An alternative would be a killed or subunit 

vaccine which would not have these disadvantages. However, such a vaccine 

would not be cost-effective, because the production and administration costs 

would be much higher than those of a live HEV-A based vaccine given in the 

drinking water. 

HEV-A produced in turkey leukocytes or RP19 cells can be successfully used 

as a vaccine for HE in turkeys. In the case of the RP19 cells HEV-A is 

propagated in turkey lymphoblastoid cells, which are derived from a tumor 

induced by MDV (14), while in this report HEV-A is propagated in primary turkey 

leukocytes, a mixed population of normal cells. HEV-A vaccine preparations 
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produced in RP19 cells were reported to be free of MDV, as long as they contain 

no cellular material (8,15). However, there is always the possibility that MDV 

is released simultaneously with HEV-A in culture medium from degenerating 

HEV-A-infected cells. 

In conclusion, immunization of turkeys with live avirulent HEV propagated 

in turkey leukocytes has been effective in experimental and field trials. 

Furthermore, HEV-A propagated in turkey leukocytes can probably be used for the 

immunization of pheasants against marble spleen disease caused by marble spleen 

disease virus, which is serologically related to HEV (5,6). The HE vaccine 

propagated in turkey leukocytes is licensed and commercially available since 

March 1986. 
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CHAPTER 7 

GENERAL DISCUSSION 

In cells infected with a human adenovirus about 40 virus-specific polypeptides are 

synthesized during a lytic infection (6). At least nine of these polypeptides form the 

structural units of which an adenovirus virion is built up. In addition to being 

important for the structure of the virion, the major outer capsid proteins, hexon, 

fiber, and penton base, play an important role in recognition, attachment and 

penetration of the virus into the host cell. They also elicit an immune response in 

the host species. 

Until recently, neither the HEV proteins had been studied and characterized, nor 

a suitable cell culture system for the propagation of HEV had been identified. HEV 

had to be purified from the spleens of infected turkeys, which was not the best 

source for the generation of pure and adequate virus preparations. Therefore, specific 

antibodies were required to identify the HEV polypeptides. Consequently, monoclonal, 

monospecific, and polyclonal antibodies were generated and used for i) 

characterization and identification of HEV polypeptides; ii) purification, 

characterization, and identification of HEV soluble proteins; iii) recognition of HEV 

target cells; iv) quantification of HEV antigen; v) in vitro quantification of HEV 

infectivity; and vi) investigation of protective antibody levels in turkeys after 

vaccination. 

After PAGE and Western blotting of CsCl-purified HEV preparations, eleven 

polypeptides were detected, which were specifically recognized by antibodies in 

convalescent turkey serum. The apparent molecular weights of the HEV-A 

polypeptides were estimated to be 96k, 57k, 52k, 44k, 37k, 34k, 29k, 24k, 21k, 12.5k, 

and 9.5k, and those for the HEV-V polypeptides 96k, 57k, 51k, 43k, 37k, 34k, 29k, 

24k, 21k, 12.5k, an 9.5k. Six of these polypeptides were further characterized by 

PAGE, Western blotting, ELISA, sucrose gradient centrifugation and electron 

microscopy. The identified HEV polypeptides were: 96k as hexon polypeptide, 57k as 

Ilia polypeptide, 51/52k as penton base polypeptide, 29k as fiber polypeptide, and 

12.5k and 9.5k as core polypeptides. 

The molecular weights of the major polypeptides of HEV-A, HEV-V, FAV-1, 

EDS76V, and Ad2 are compared in Table 1. This table shows similar molecular 

weights for the hexon and Ilia polypeptides, a difference in molecular weight of the 
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penton base and fiber, and similarity between the core polypeptides of HEV and the 

lower molecular weight core polypeptides of FAV-1. 

Table 1. Molecular weights of the major polypeptides of HEV, FAV-1, EDS76V, and Ad2. 

Polypeptide 

Hexon 

Penton base 

Fiber 

Ilia 

Core proteins 

HEV-A 

96 A 

52 

29 

57 

12.5 and 9.5 

HEV-

96 

51 

29 

57 

V 

12.5 and 9.5 

FAV-1B 

100 

92 

65 and 44.5 

62E 

20, 12 and 9.5 

EDS76VC 

126 

65 

67 
_F 

2 0 G 

Ad2D 

109 

85 

62 

66 

48 and 18.5 

Apparent molecular weights x 10 determined by PAGE 
B Li et a] (17) 
C Tod and McNulty (29) 
D Philipson (23) 

Similar molecular weight, not identified as Ilia 

Not known 

Similar molecular weight, not identified as a core protein 

The ten monoclonal antibodies that recognize the hexon protein of HEV probably 

all react with conformational epitopes because the antigenic sites were not recognized 

anymore after dissociation and denaturation of hexons in polypeptides. These 

monoclonal antibodies reacted with complete virions and eight of them neutralized the 

infectivity of HEV in cell culture. Based upon these results and taken into account 

that the hexon base is less accessible to antibodies, the monoconal antibodies probably 

react with the trimeric top part of the hexon. In addition, the monoclonal antibodies 

reacted with more than one site on each hexon suggesting that the HEV hexon 

probably exists of three identical polypeptides each of which has one identical 

antigenic site. In addition to recognizing the hexon in the virion, the monoclonal 

antibodies reacted with the free hexon (ELISA of purified hexons and detection by 

immunoblotting) and they might react with the nascent hexon polypeptide (cytoplasmic 

FA staining of HEV-infected cells). 
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An interesting result was the presence of a common epitope on the Ilia protein of 

HEV and Ad2. This is the first observation of a common antigenic site on a 

structural protein in avian and mammalian adenoviruses. This conserved site might 

have a function in the adenovirus architexture. Hypothetically conservation of this 

site might be important for linkage of the penton or peripentonal hexons to the core, 

since this function might be filled by the Ilia protein (31). The epitope shared by 

these viruses was not present on the surface of the capsid, but it was concealed in 

the virion which could be expected of a common epitope shared by viruses with such 

phylogenetically remote hosts. 

In contrast to the many properties shared by HEV-A and HEV-V, there are 

differences in pathogenicity, in migration of the penton base in Polyacrylamide gels, 

and in the amount of free fiber present in spleen extracts. Although speculative, 

there might be a relationship between pathogenicity caused in the turkey by the 

penton base of HEV-V and cytopathic effect caused by the penton (base) observed in 

vitro for human adenoviruses. The difference in pathogenicity of the two virus 

isolates might be caused by: 1) a qualitative difference in toxicity of the penton base; 

2) a quantitative difference in toxicity meaning a higher concentration or a more 

active HEV-V penton base than HEV-A penton base, and 3) a combination of 1 and 2. 

The presence of free pentons in peripheral blood of several fatal cases of adenovirus 

pneumonia in young children might be supportive for this hypothesis (15). 

The classification of HEV as an adenovirus has been based upon size, morphology, 

presence in the nucleus of infected cells, ether resistence, and density in CsCl of the 

virions (3,5,14,30). This classification is endorsed by: 1) common properties of the 

structural proteins of HEV and other adenoviruses, including the identification of 

hexon, penton, penton base, and fiber by electron microscopy, polypeptide profile of 

the structural proteins after PAGE, and sedimentation coefficient values of the major 

capsid proteins; and 2) homology of the Ilia protein of HEV and Ad2. 

HEV lacks the group-specific antigen shared by the fowl adenoviruses, and 

EDS76V (5). In addition, HEV and EDS76V carry single fibers at their vertices, in 

contrast to the fowl adenoviruses which carry double fibers. Finally, ten monoclonal 

antibodies reacted with nine isolates of the group II avian adenoviruses, whereas none 

of the five serotypes of the fowl adenoviruses were recognized. These data are in 

support for a subdivision of the avian adenoviruses in either subgroups (subgenera) or 

groups (genera). 
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After infection of turkey leukocytes with HEV, two types of infected 

mononucleated cells were detected by immunofluorescence and electron microscopy. 

The first type of infected cells consisted of immature cells, either of monoblast or 

lymphoblast parentage, which resembled immature HEV-infected cells in turkeys (14). 

Various investigators have suggested that lymphocytes are the target cells for HEV 

infection (7,8,22). However, the first group of investigators has not determined the 

true identity of the infected cells, which were observed in peripheral blood of HEV-

infected turkeys, and assumed that these cells were lymphocytes (8). The second 

group has demonstrated that the RP19 cells which they used for HEV infection 

experiments has B cell rather than T cell characteristics, but these RP19 cells are 

MDV-transformed cells and transformation might have changed their original 

properties (21,24). The second type of infected cells were monocyte-macrophage cells, 

which clearly had the characteristics of mononuclear phagocytes, and which resembled 

reticuloendothelial cells observed by electron microscopy in organs of HEV-infected 

turkeys. In addition to phagocytes in which HEV particles were observed in the 

nucleus, there were also cells in which virions only occurred in the cytoplasm. The 

conclusion can be drawn from the data available thus far is that the HEV target cells 

are monocytes. However, the possibility that lymphocytes also function as target cells 

can not be excluded. 

We demonstrated that HEV can infect turkey leukocytes and production of 

infectious virus in these cells was demonstrated by: i) appearance of nuclear HEV 

antigen; ii) appearance of HEV particles in the nucleus; and iii) retention of 

infectivity in vitro and in vivo after serial passage in cell culture. Thus, in 

conclusion, HEV replicates in vitro in lymphoblast or monoblast cells and monocyte-

macrophage cells, and infectious virus is generated in these cells. 

In contrast to the lytic infections of epithelial cells caused by mammalian and 

group I avian adenoviruses, only a low percentage of the total cell population of both 

adherent and non-adherent leukocytes became infected with HEV. This is not 

exceptional because limited infections of lymphocytes with human adenoviruses in vivo 

and in vitro have been reported (2,12,13,16,26). The limitation of HEV infection to a 

low percentage of cells might have been caused by various factors of which the most 

relevant ones are discussed . First, the number of susceptable cells may be limited to 

cells with HEV-receptors which might form a small portion of the total cell 

population. Second, a higher percentage of the cell population may initially become 

infected, but the infection may be abortive in most of them. This might happen in 
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the adherent cell population where virus replication takes place in some cells but not 

in others where virus transfer to the nucleus is "blocked" in the cytoplasm. HEV 

might be trapped in the receptosomes without being released into the cytoplasm, 

which is not unlike the fate of glutaraldehyde-fixed Ad2 virions, observed in 

cytoplasmic vesicles in HeLa cells (27). Alternatively, virions might be transferred 

from the receptosomes into phagolysozomes in which they are degraded, instead of 

released in the cytoplasm which is required for adenovirus replication. Third, HEV 

might only undergo a full replication cycle in actively metabolizing cells as suggested 

for human adenoviruses (12,16). After an HEV infection blast cells appear in cell 

culture of which many are infected with HEV. However, it is not clear whether these 

appear blast-like due to virus infection or whether they became first blast cells and 

were subsequently infected by HEV. 

HEV resembles the fastidious human adenovirus types 40 and 41 which cause 

intestinal infections in man (1,4,9,28). Ad40 and Ad41 replicate in intestinal cells and 

up to 10 virions are present per ml stool (9,25). Like HEV these viruses do not 

replicate in epithelial or epitheloid cell cultures commonly used for mammalian and 

group I avian adenoviruses. However, they can replicate in permissive 293 cells which 

are transformed by Ad5 and which contain the El gene of Ad5 (10,28). This leads to 

the question whether HEV and the fastidious adenoviruses may be replicating in 

different cells than the other adenoviruses. However, these cells have not been 

identified yet. In addition, when the reticuloendothelial cells of many organs in 

which HEV replicates are not the primary cells during an HEV-infection in the birds, 

the identity of the cells that are initially infected remains to be determined. 

Knowledge of these primary target cells might eventually lead to an improved cell 

culture system for HEV propagation. 

Pathogenic strains of HEV are able to infect young turkeys and cause disease, 

loss in production, and immunosuppression which may predispose the birds to other 

diseases (5,18-20). For the prevention of HE, the efficacy of a potential vaccine 

consisting of apathogenic HEV propagated in turkey leukocytes was tested. The 

immunization conditions were established experimentally at VIDO, and then trials were 

conducted to test the vaccine in turkeys under field conditions. 

First, since most turkeys possess maternal antibodies to HEV, it was determined 

that for the induction of a protective antibody response after immunization with 

HEV-A, maternal antibody titers in turkeys had to be <40. This level was reached in 

most turkeys when they were 5 to 6 weeks old. Furthermore, the time of vaccination 
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could be determined more accurately from the established half life value of 4.25 days 

and a maternal antibody titer <40 which does not interfere with a protective antibody 

response. Second, a potency test was developed to determine the number of doses in 

HEV-A preparations. In this test, the time of challenge after immunization and the 

time for antigen analysis in spleen extracts after challenge were based upon data 

described in Chapter 2. The potency was determined in dose-response challenge 

experiments. In addition, induction of an antibody titer >20 after immunization with 

HEV-A was shown to be protective. Third, the safety of all HEV-A preparations was 

determined by screening in vitro for the presence of contaminants before they were 

used in turkeys. The preparations used in the field trials were also tested for 

adverse effects in vivo. 

Table 2. Comparison of the properties of HE and human adenovirus vaccines. 

Vaccine preparations 

Propagation 

Stability 

Adjuvants 

Vaccine type 

Inoculation 

Vaccination(s) 

Costs 

Safety 

Response 

HEV-A from 

turkey 

leukocytes 

Primary cell 

culture 

+ + + A 

Not required 

Live apathogenic 

virus 

Oral 

Once 

+ 

+++ 

++++ 

HEV-A from 

RP19 cells 

Cell line 

+++ 

Not required 

Live apathogenic 

virus 

Oral 

Once 

+ 

++ 

+++ 

Hexon from 

turkey 

leukocytes 

Primary cell 

culture 

++++ 

Required 

Subunit 

Injection 

More than once 

+++ 

++++ 

+++ 

Ad4+7 from 

HEK cells 

Cell line 

+++ 

Not required 

Live attenuated 

virus 

Oral 

Once 

++ 

+++ 

+++ 

Range from low to very high: + low; ++ medium; +++ high; ++++ very high. 
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After immunization of turkeys with live HEV-A propagated in turkey leukocytes 

had been shown to be safe and efficacious under experimental conditions, field trials 

were conducted. Nineteen out of twenty flocks seroconverted within 21 days of 

vaccination with live HEV-A distributed in the drinking water. The overall immune 

response of the turkeys in the 20 flocks was 96%. In addition, neither clinical HE 

nor other adverse effects caused by HEV-A vaccination were observed in any of the 

vaccinated flocks. 

In Table 2 the properties of the HE vaccine produced in turkey leukocytes, the 

HE vaccine produced in RP19 cells, a subunit HE vaccine (J.V. van den Hurk, 

manuscript in preparation) consisting of the hexon protein, and the human adenovirus 

vaccine used to immunize recrutes for acute respiratory disease are shown. The 

propagation of HEV-A in primary turkey leukocytes instead of in an established cell 

line is a disadvantage of this vaccine. The RP19 cell line is not ideal for vaccine 

production either because it contains MDV and only cells at passage levels between 10 

and 20 are recommended for virus propagation (21,22). HEV-A itself, however, has a 

number of attractive qualities for use as a live virus vaccine because: i) it does not 

revert to a more pathogenic form; ii) it appears to be antigenically stable; and iii) it 

is able to induce long-lasting protection against wild-type virus (5,22, this 

dissertation). In contrast to the many positive points of the live adenovirus vaccines, 

safety will be a continuous concern. Factors of concern are: i) contaminating 

microorganisms in the vaccine preparations which might cause disease; ii) effect of 

incorporation of adenovirus gene(s) in host DNA as was observerd after infection of 

humans with adenoviruses (11); and iii) spreading of the virus from vaccinates to non-

vaccinates which might be a concern when the non-vaccinates are immunocompromised 

and therefore not able to react normally. Although a hexon subunit vaccine will be 

safer and more stable, the major disadvantage of such a vaccine is that it is 

expensive to produce and administer to turkeys. After the efficacy and safety of the 

HE vaccine propagated in turkey leukocytes had been demonstrated, this vaccine was 

licensed in April 1986 and it is now widely used. The HE vaccine propagated in 

RP19 cells is licensed since August, 1987. 
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SUMMARY 

Hemorrhagic enteritis (HE) in turkeys is an acute infectious disease 

characterized by depression, intestinal bleeding, and death. HE occurs 

worldwide affecting 6 to 12 week-old turkeys and lasting 4 to 6 days. This 

economically important disease is caused by hemorrhagic enteritis virus (HEV), 

a turkey adenovirus which is tentatively classified as a member of the group 

II avian adenoviruses. Serologically related HEV strains with marked 

differences in pathogenicity for turkeys have been described. Until recently, 

only 2 vaccines were available for the prevention of HE in turkeys. Both are 

live virus vaccines containing avirulent HEV (HEV-A) and both elicit 

protective immunity in turkeys. However, since the first vaccine is a crude 

extract prepared from spleens of turkeys infected with HEV-A, and the second 

vaccine is propagated in a transformed cell line contaminated with Marek's 

disease virus, their safety features are questionable. 

HEV is unique among the adenoviruses because it is not antigenically 

related with the mammalian or group I avian adenoviruses. Its classification 

as an adenovirus is based upon common physical, chemical, morphological and 

structural properties. An adenovirus is composed of 240 hexons and 12 

pentons, outer capsid proteins which give the virus its characteristic 

icosahedral shape, capsid associated proteins, and core proteins associated 

with the double-stranded linear DNA genome with a molecular weight of 17 - 30 

x 10 ' Until recently, HEV and its structural proteins had been poorly 

characterized due to the lack of a suitable in vitro system for virus 

propagation. In summary, there was a need for an improved vaccine for HE in 

turkeys, and the development of a such a vaccine would be facilitated by the 

discovery of a cell type suitable for HEV replication and by a more basic 

knowledge of the virus itself. 

The major goal of the research described in this dissertation was the 

development and testing of a safe and efficient vaccine for HE in turkeys. In 

order to achieve this goal, a cell culture system for virus propagation as 

well as methods to measure virus replication in vitro and protection in 
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immunized birds had to be developed. In addition, the knowledge of virus and 

viral components had to be expanded. 

The development and application of sensitive and specific enzyme-linked 

immunosorbent assays (ELISAS) for the quantitation of HEV antibodies in turkey 

sera and HEV antigen in tissue extracts is described in Chapter 2. The 

presence and decline of maternal antibody titers in sera of poults and 

seroconversion and induction of protective antibody titers in turkeys 

following immunization with HEV-A were determined by ELISA (Chapters 2 and 6 ) . 

The ELISA for the titration of antigen was used to monitor protection in 

turkeys following immunization with HEV-A and challenge with virulent HEV 

(HEV-V) (Chapter 6 ) . A strong antigenic relationship between HEV-A and HEV-V 

was measured with both ELISAS. 

The characterization of both HEV-A and HEV-V and their structural 

proteins, purified from spleens of infected turkeys is described in the 

Chapters 3 and 4. The electron microscopic data on the size (72nm) and 

structure of the virion and its density in CsCl (p = 1.34 g/cm ), as well as 

the profile of the viral polypeptides in Polyacrylamide gels showing molecular 

weights ranging from 96,000 to 9,500, justified the classification of HEV as 

an adenovirus. The major structural proteins were identified as hexon, 

penton, penton base, fiber, Ilia, and core proteins based on their structure 

observed by electron microscopy and/or recognition by specific antibodies. 

Free hexon and penton proteins, purified by immunoaffinity chromatography 

using monoclonal antibodies, had identical properties as their counterparts in 

the virus. The hexon was an important neutralizing antigen. The penton of 

HEV consisted of a single fiber attached to its penton base, a feature shared 

with the mammalian adenoviruses and the avian egg drop syndrome 1976 virus, 

but not with the fowl adenoviruses which have double fibers. In contrast to 

the many common properties of HEV-A and HEV-V, serological differences between 

the fibers of and differences in electrophoretic migration between the penton 

bases of both strains were observed. The ilia proteins of HEV and human 

adenovirus type 2 shared a common epitope. This is the first antigenic 

relationship detected between avian and mammalian adenoviruses. 

The propagation of HEV-A and HEV-V in turkey blood leukocyte cells is 
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described in Chapter 5. The presence of HEV in the nuclei of non-adherent as 

well as in adherent cells was revealed by electron microscopy and by light 

microscopy, using a fluorescent antibody test. The non-adherent infected cells 

had the characteristics of immature mononuclear leukocytes while the adherent 

cells had monocyte-macrophage characteristics. HEV-A could be serially passed 

in turkey leukokcytes at least seven times. Optimum conditions for virus 

propagation in turkey leukocyte cultures and harvest times were determined. 

HEV could not be produced in chicken leukocytes. 

HEV-A, propagated in turkey leukocyte cell cultures, was tested as a 

vaccine to prevent HE in turkeys in experimental and field trials (Chapter 6 ) . 

Immunization of turkeys with live HEV-A resulted in protection against a 

challenge with HEV-V as measured by the serological response and the absence 

of clinical disease and HEV antigen in spleens. In the field trials, 19 out 

of 20 flocks seroconverted within 21 days after vaccination with live HEV-A 

distributed in the drinking water. The overall immune response of the turkeys 

in these flocks was 96%. Most importantly, neither clinical nor other adverse 

effects caused by HEV-A vaccination were observed in any of the vaccinated 

turkeys in the experimental and field trials. The optimum time of the 

vaccination of poults was determined in relation to interference with maternal 

antibodies. 
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SAMENVATTING 

Hemorrhagic enteritis (HE) is een akute infektieuze ziekte in kalkoenen 

die gekenmerkt wordt door depressie, darmbloeding en mortaliteit. HE komt 

voor in de hele wereld, tast 6 tot 12 weken oude kalkoenen aan en duurt 4 tot 

6 dagen. Deze ekonomisch belangrijke ziekte wordt veroorzaakt door 

hemorrhagic enteritis virus (HEV), een kalkoene-adenovirus dat voorlopig 

geklassificeerd is als een group II avian adenovirus. Serologisch verwante 

HEV stammen met duidelijke verschillen in pathogeniteit zijn beschreven voor 

kalkoenen. Tot voor kort waren er slechts 2 vaccins beschikbaar ter 

voorkoming van HE in kalkoenen. Beide zijn levend virus vaccins die verzwakt 

HEV (HEV-A) bevatten en beide induceren immuniteit in kalkoenen. Aangezien 

het eerste vaccin echter bestaat uit een ongezuiverd extrakt, verkregen uit de 

milt van HEV-A-geinfekteerde kalkoenen, en het tweede wordt vermeerderd in een 

getransformeerde celkultuur die gekontamineerd is met Marekvirus, laat de 

kwaliteit van deze vaccins te wensen over. 

HEV is een uniek adenovirus omdat het geen antigene verwantschap vertoont 

met de mammalian of de group I avian adenoviruses. De klassifikatie van HEV 

is gebaseerd op het bezit van gemeeschappelijke fysische, chemische, 

morfologische en strukturele eigenschappen. Een adenovirus is opgebouwd uit 

240 hexons en 12 pentons, capsid eiwitten die de karakteristieke vorm aan het 

virus geven, eiwitten geassocieerd met de capsid, en core eiwitten 

geassocieerd met het dubbelstrengig lineair DNA genoom dat een molekuulgewicht 

heeft van 17 tot 30 x 10 . Sinds kort waren HE virus en strukturele eiwitten 

bijna niet gekarakterizeerd door het gebrek aan een passend in vitro systeem 

voor virus vermeerdering. Kortom, er was een behoefte aan een verbeterd 

vaccin voor HE in kalkoenen en de ontwikkeling van zo'n vaccin zou 

vergemakkelijkt worden door de ontdekking van een geschikte cel voor HEV 

vermeerdering en door een meer uitgebreide basiskennis van het virus. 

Het belangrijkste doel van het onderzoek beschreven in dit proefschrift 

was de ontwikkeling en analyse van een veilig en doelmatig vaccin tegen HE in 

kalkoenen. Om dit doel te bereiken moesten behalve een celkultuur voor virus 

vermeerdering bovendien methoden ter bepaling van de virus replikatie in vitro 

en bescherming van geimmuniseerde vogels ontwikkeld worden. 

De ontwikkeling en toepassing van gevoelige en betrouwbare enzyme-linked 

immunosorbent assays (ELISAS) voor het meten van HEV antilichamen in 
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kalkoene-sera en HEV antigeen in weefselextrakten wordt beschreven in 

Hoofdstuk 2. De aanwezigheid en afname van maternale antilichaamtiters in 

sera van jonge kalkoenen, en serumconversie en induktie van beschermende 

antilichaamtiters in kalkoenen na immunisering met HEV-A werden bepaald met de 

ELISA (Hoofdstukken 2 en 6). De ELISA voor de titratie van antigeen werd 

gebruikt om bescherming te verifiëren in kalkoenen na immunisatie met HEV-A en 

challenge met virulent HEV (HEV-V) (Hoofdstuk 6). Een sterke antigene 

verwantschap tussen HEV-A en HEV-V werd gemeten met beide ELISAS. 

De karakterisering van HEV-A, HEV-V en hun strukturele eiwitten, gezuiverd 

uit de milt van geinfekteerde kalkoenen, wordt beschreven in de Hoofdstukken 3 

en 4. De elektronenmikroskopische resultaten van de grootte (72 nm) en 

struktuur van het virus, de dichtheid van het virus in CsCl 

(p=1.34 g/cm ), zowel als het elektroforese patroon van de virale 

Polypeptiden in Polyacrylamide gels met molekuulgewichten variërend van 96.000 

tot 9.500 bevestigde de juistheid van de klassifikatie van HEV als een 

adenovirus. De identiteit van de voornaamste strukturele eiwitten kon worden 

vastgesteld als hexon, penton, penton base, fiber, Ilia, en core eiwitten op 

de basis van hun struktuur waargenomen met de elektronenmikroskoop en/of 

herkenning met behulp van specifieke antilichamen. Vrije hexon en penton 

eiwitten, die verkregen werden na zuivering met 

immunoaffiniteitschromatografie waarbij monoklonale antilichamen werden 

gebruikt, vertoonden dezelfde eigenschappen als de overeenkomstige eiwitten in 

het virus. De hexon was een belangrijk neutraliserend antigeen. De penton 

van HEV bestond uit een enkele fiber gehecht aan de penton base, een kenmerk 

dat HEV gemeen heeft met zoogdier-adenovirussen en het vogel-egg drop syndrome 

1976 virus, maar niet met de kippe-adenovirussen die dubbele fibers bezitten. 

In tegenstelling tot de vele eigenschappen die HEV-A en HEV-V gemeen hebben 

staan de serologische verschillen tussen de fibers en de verschillen in 

mobiliteit van de penton bases van beide stammen. De lila eiwitten van HEV en 

menselijk adenovirus type 2 bezitten een gemeenschappelijk epitoop. Dit is de 

eerste antigene verwantschap die gevonden is tussen vogel- en 

zoogdier-adenovirussen. 

De vermeerdering van HEV-A en HEV-V in witte bloedcellen van kalkoenen 

wordt beschreven in Hoofdstuk 5. Met behulp van elektronenmikroskopisch en 

lichtmikroscopisch onderzoek met een antilichaam-fluorescentietest werd de 

aanwezigheid van HEV zowel in de kernen van cellen die groeien in suspensie 
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als in cellen die groeien in een monolaag aangetoond. De geinfekteerde cellen 

die groeiden in suspensie hadden eigenschappen van onvolledig 

gedifferentieerde mononucléaire witte bloedcellen, terwijl de geinfekteerde 

cellen die in een monolaag groeiden kenmerken ten toon spreidden van monocyten 

en makrofagen. HEV-A kon minstens 7 keer in celkultuur gepasseerd worden. 

Optimale kondities voor virus vermeerdering in witte bloedcelkulturen van 

kalkoenen en oogsttijd werden bepaald. HEV kon niet worden vermeerderd in 

witte bloedcellen van kippen. 

HEV-A, vermeerderd in witte bloedcelkulturen van kalkoenen, werd getest 

als een vaccin ter voorkoming van HE in kalkoenen in experimentele en 

veldproeven. Immunisatie van kalkoenen met levend HEV-A resulteerde in 

bescherming tegen een challenge met HEV-V, wat geverifieerd werd met een 

stijging in antilichaamtiters alsook met de afwezigheid van klinische infektie 

en HEV antigeen in de milt. In de veldproeven vertoonden 19 van de 20 

groepen kalkoenen seroconversie binnen 21 dagen na vaccinatie met levend HEV-A 

toegevoegd aan het drinkwater. De gemiddelde immuunresponse van de kalkoenen 

in de groepen was 96%. Van groot belang was ook dat geen klinische infekties 

en geen andere schadelijke bijverschijnselen werden aangetroffen in de 

HEV-A-gevaccineerde kalkoenen tijdens de experimentele en veldproeven. De 

beste tijd om kalkoene-kuikens te immuniseren werd bepaald met inachtneming 

van mogelijke interferentie van maternale antilichamen. 
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