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1. 

Nagroei van bacteriën in drinkwater tijdens distributie en de daar

mee samenhangende kwaliteitsverslechtering van dit water kunnen 

worden beperkt door toepassing van een biologische filtratie als 

laatste behandelingsfase. 

Dit proefschrift 

2. 

Ten onrechte wordt door voorstanders van de continue cultuur gesteld 

dat selectie van micro-organismen door ophoping in batch-cultures 
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aanwezige organismen. 

E. Veldkamp, Adv. Microbial Eool. 1 
(1977): 59-94 
W. Harder en L. Dijkhuizen. 
Phil.Trans R. Soa. Lond. B 297 
(1982): 459-480 
Dit proefschrift 

3. 

De kinetiek van de groei van een micro-organisme op een groeibeper-

kend substraat kan met behulp van batch-cultures op een eenvoudige 

wijze worden vastgesteld, mits de groei van het organisme kan worden 

gemeten met behulp van koloniegetalbepalingen. 

Dit proefschrift 

Het is onwaarschijnlijk dat de substraatverzadigingsconstanten (K ) 

van bacteri'én die worden aangetroffen in drinkwater in het algemeen 

lager zijn dan die van bacteri'én in actief slib. 

5. 

Glijmiddelen die worden toegepast bij het koppelen van waterleiding

buizen dienen als zodanig bacteriedodend te zijn, terwijl lage con

centraties van deze middelen de vermeerdering van bacteriën in 

drinkwater niet mogen bevorderen. 

6. 

Berichtgevingen in de nieuwsmedia over onderwerpen waarvan de lezer 

gedetailleerde kennis heeft, doen vragen rijzen over de mate van 

betrouwbaarheid van het overige hem, of haar, aangeboden nieuws. 



7. 

Bij de bestrijding van Legionella pneumophila, de veroorzaker 

van de zogenaamde "veteranenziekte", in warmtapwatersystemen is het 

verhogen van de watertemperatuur niet de enige remedie. 

J.S. Colbourne, D.J. Pratt, 

M.G. Smith, S.P. Fischer-Hock, 

D. Harper. Lancet, (1984): 210-213 

8. 

Nieuwsmedia vormen een betere "voedingsbodem" voor de veroorzaker 

van de veteranenziekte dan de bij het onderzoek van drinkwater ge

bruikelijke voedingsmedia. 

9. 

De geconstateerde aanwezigheid van genotoxische biotische stoffen in 

een aantal natuurlijke voedingsmiddelen, noopt tot verschuiving in 

waardering van het begrip "puur natuur". 

R. Sijmons. Vrij Nederland 44 
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Indien bij filtratie van water door actieve kool een CO.-produktie 

optreedt die groter is dan overeenkomt met de verwijdering van orga

nische koolstof uit dit water, dan kan dit niet zonder meer als 

bewijs dienen voor het optreden van een bioregeneratie van de 

adsorptie-capaciteit van de actieve kool. 
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De beantwoording van de vraag welke toxicologische betekenis moet 

worden toegekend aan de aanwezigheid van individuele xenobiotische 

stoffen in drinkwater, wordt nagenoeg geheel bepaald door de geno

toxische eigenschappen van deze verbindingen. 
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Abstract 

Van der Kooij, D. (1984). The growth of bacteria on organic 

compounds in drinking water. 

Growth ("regrowth") of bacteria in drinking water distribution 

systems results in a deterioration of the water quality. Regrowth of 

chemoheterotrophic bacteria depends on the presence of organic 

compounds that serve as a nutrient source for 'these bacteria. 

A batch-culture technique was developed to study the growth of bac

teria in drinking water. The maximum colony counts of selected pure 

cultures of bacteria grown in drinking water were used as a measure 

for the concentration of easily assimilable organic carbon compounds 

(AOC). Three strains of bacteria isolated from drinking water were 

selected for AOC determinations: (1) Pseudomonas fluoresoens 
strain P17, an organism with a very great nutritional versatility, 

for general use; (2) a Flavobacterium sp. strain S12, to 

determine the concentration of maltose and starch-like compounds, 

and (3) a Spirillum sp. strain NOX to determine the concentra

tion of carboxylic acids, including oxalic acid. The properties of 

these bacteria were extensively studied in batch-culture experiments 

with drinking water supplemented with very low amounts of selected 

organic compounds. The obtained results prove that growth and growth 

kinetics of bacteria at concentrations between 1 and 1000 yg of C 

per liter can be determined in simple experiments using simple 

equipment. The strains mentioned above were well adapted to growth 

at concentrations of a few micrograms of substrate C per liter; 

their substrate saturation constants (K ) were below 1 pM for many 

compounds tested. K values below 0.1 pM were also obtained. Growth 

measurements with strain P17 in water sampled from various treatment 

stages revealed that the AOC concentrations in these water types 

usually varied between 10 and 100 yg of acetate C equivalents per 

liter. Ozonation caused a strong increase of the AOC concentration. 

Strain NOX was better suited for the determination of the AOC con

centration in ozonated water because of its ability to utilize 

oxalate. Filtration processes caused significant reductions of the 

AOC concentrations, at low AOC concentrations (< 25 yg of acetate C 

equivalents per liter) this reduction was less than 50 %. The use of 

starch-based coagulant aids in water treatment gave increased AOC 

concentrations as determined with Flavobaatevium strain S12. 

The concentration of these compounds was reduced to non-detectable 

levels ( < 1 yg of starch C equivalents per liter) by biological 



filtration processes. These findings demonstrate that biological 

filtration processes are effective in reducing ÀOC concentrations to 

levels where excessive regrowth is not possible. This conclusion is 

supported by the very poor growth of Pseudomonas aeruginosa in 

the filtrate of slow sand filters, and the inability of Aevomonas 
hydvophila to multiply in this water type. 



1. General introduction 

SIGNIFICANCE OF BACTERIA IN DRINKING WATER SUPPLY 

The removal of bacteria of faecal origin from the raw water, and 

the prevention of their introduction into drinking water during 

distribution are of paramount importance for a safe drinking water 

supply. Therefore, freshly prepared drinking water and drinking 

water in distribution systems are frequently investigated by 

selective techniques which enable the detection of faecal indicator 

bacteria (thermotolerant coliforms, faecal streptococci) in volumes 

up to a few hundreds ml of water. 

Nearly 100 years ago, Koch (36) observed that river water 

polluted with sewage did not cause disease when the number of bac

teria, cultivated on a non-selective nutrient-rich medium, had been 

reduced to less than 100 colony-forming units per ml by slow sand 

filtration. Based on this experience, the colony count of bacteria 

on a nutrient-rich medium has initially been used as an important 

water quality parameter. Gradually bacteriological techniques were 

developed for the selective cultivation of bacteria of faecal 

origin. At present, colony counts on a nutrient-rich medium have 

only a limited significance as a water quality parameter (3). 

Still, bacteria which contribute to these colony counts, and 

more generally those present in water, play a very important role in 

water supply. Such organisms are present in rivers, lakes and open 

storage reservoirs, but also in water during underground passage and 

various filtration processes, including rapid sand filtration, dry 

filtration, dual media filtration, granular activated-carbon 

filtration and slow sand filtration. A large variety of organic com

pounds are removed from the water by aerobic chemoheterotrophic 

aquatic bacteria utilizing these compounds as sources of carbon and 

energy for growth. In recent years, much attention has been paid to 

the microbial activities in granular activated-carbon filters, which 

are applied for the removal of recalcitrant organic compounds (15). 

The pollution of the aquatic environment with anthropogenic 

organic compounds, including organochlorine compounds, has evoked a 

growing interest in the capabilities of bacteria in removing these 

compounds (79). Also anaerobic chemoheterotrophic bacteria are able 

to utilize such compounds (9). Recently, there is also much interest 

in using bacteria for the removal of excess nitrate from water (23). 

Of great importance for water treatment are also the autotrophic 

nitrifying bacteria which remove ammonia from water by oxidizing it 

to nitrate. 



The occurrence In drinking water of large numbers of bacteria, 

grown on organic compounds in the raw water or during water 

treatment, may be prevented either by an appropriate sequence of 

treatment procedures or by the application of a disinfectant, of 

which chlorine is most widely used. The effect of chlorination on 

the taste of water, as well as the production of organochlorine 

compounds during chlorination of water (55), are limiting the use of 

chlorine in The Netherlands. 

ENUMERATION OF BACTERIA IN WATER 

Several techniques, including direct counting procedures, 

determination of most probable numbers by statistical interpretation 

of growth tests in various water volumes and the assessment of the 

number of colony forming units (CFU) per unit volume of water, are 

available for determining the numbers of bacteria in aquatic 

habitats. For enumeration of the viable chemoheterotrophic bacteria 

in drinking water, colony counts on nutrient-rich solid media are 

most generally used. The composition of the media and procedures 

used in routine, depend largely on legislation and standardization. 

Colony count standards for drinking water are based on the 

application of nutrient-rich media and short incubation periods (2-3 

days) at temperatures between 20-37 °C. With these techniques only 

those bacteria which can survive the great changes in environmental 

conditions (temperature, osmotic pressure, presence of nutrients) 

and multiply rapidly at a high substrate concentration, are enu

merated. These organisms, the copiotrophic bacteria (50), are better 

adapted to nutrient-rich environments than the slow-growing 

bacteria, or those bacteria which cannot survive such environmental 

changes viz. the oligotrophic bacteria. The presence in drinking 

water of large numbers of the former group indicates that either the 

water treatment does not function properly with regard to the 

removal of bacteria, or that the distribution system is not 

sufficiently clean (54). Determination of faecal pollution indicator 

bacteria is necessary to evaluate the hygienic risks of such 

situations. 

Longer incubation periods (47), a relatively low nutrient 

concentration (22, 65) and the use of the streak-plate method 

instead of the pour-plate method (14, 52) followed by incubation at 

20-30 °C which allows multiplication of most bacteria, results in 

much higher colony counts than those obtained by the procedure 
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described above. Thus large propertions of the chemoheterotrophic 

bacteria are not included in the colony counts determined by 

techniques standardized for routine investigations of drinking 

water. Colony count procedures modified as indicated above may 

therefore be better suited to assess the efficiency of water treat

ment for removal of bacteria and give a more complete information 

about the numbers of bacteria present in the distribution system. 

However the long duration of the incubation period (1-3 weeks) of 

the improved procedures excludes taking rapid measures when 

unexpectedly high colony counts are found. Hence, their application 

seems mainly limited to research. 

IDENTITY AND SIGNIFICANCE OF BACTERIA CONTRIBUTING TO COLONY COUNTS 

ON NON-SELECTIVE MEDIA 

At the end of the 19th century, numerous investigations were 

conducted to identify the bacteria observed in drinking water by 

cultivation on the gelatine-broth medium developed by Koch (21, 28 

34, 43, 73, 81). These investigations revealed that a great variety 

of bacteria were commonly present in drinking water. Moreover, the 

isolated bacteria appeared to be ordinary water bacteria, which were 

harmless for the consumer. These findings stimulated the development 

of methods for the selective isolation of bacteria of faecal origin. 

Systematic investigations on the identity of bacteria con

tributing to the colony counts of drinking water on non-selective, 

nutrient-rich media have also more recently been conducted (7, 37, 

45, 60, 71, 53). In addition, a great number of incidental obser

vations concerning bacteria present in drinking water contributed 

significantly to the knowledge of the composition of the aerobic 

chemoheterotrophic bacterial flora of drinking water. 

Genera and species of such bacteria which have frequently been 

isolated include: Achromobacter, Aainetobaater, Aevomonas 

hydrophila, Alcaligenes, Arthrobacter, Bacillus, Caulobacter, 

Corynebacterium, Cytophaga, Flavobaetevium, Moraxella, Pseudomonas 

alcaligenes, P.fluoresceins, P.putida, Spirillum, Streptomyces and 

Staphylococcus^ Species of coliform bacteria, e.g. Entero

bacter aerogenes, E.cloacae, Citrobacter spp. and Klebsiella 

spp. have also frequently been observed, particularly when selective 

media were used for cultivation (7,12). Representatives of chemo

heterotrophic microorganisms, which require specific media for iso

lation, e.g. methylotrophic bacteria (46, 58, 69), Sphaerotilus 



spp. (44, 74) and fungi (48) have also been observed in drinking 

water. These organisms do not contribute to the colony counts on 

routine media. The isolation of representatives of at least 31 

biotypes of P.fluovesaens and 14 biotypes of P.putida 

from various types of drinking water (72), in which these 

pseudomonads were only a small minority of the bacterial population 

(70), further demonstrates the great diversity of the bacterial 

flora of drinking water. 

The results obtained by identification of bacteria isolated on 

nutrient-rich media do not give a correct impression of the 

composition of the population of chemoheterotrophic bacteria in 

drinking water because, for reasons mentioned above, only a small 

part of the population, in particular the copiotrophic bacteria, is 

isolated by these media. Furthermore, the characterization and iden

tification of many bacteria are hampered for the following reasons: 

isolates do not always survive repeated inoculations required for 

cultivation (45); many "classical" characterization procedures are 

not suited for characterization of aquatic bacteria, and a large 

number of genera and species represented in drinking water, e.g. 

Flavobactevium, Pseudomonas, Spirillum are incompletely defined. 

A number of species of the microorganisms mentioned above are 

causing hygienic, aesthetic or technical problems in drinking water 

supply. Aevomona8 hydvopln.Ha may affect the coliform count 

when the membrane filtration technique is applied (38). Moreover, 

the organism may act as an opportunistic pathogen (77) or contribute 

to spoilage of food products (35). It has been suggested that 

Arthrobacter spp. are related to coloured-water problems (76). 

Bacillus aereus causes food spoilage and may subsequently act as 

a pathogen (20). Flavobactevium species also cause spoilage of 

food products (5). Hygienic problems related to the presence of 

specific Flavobactevium spp., e.g. F.meningoseptioum, in 
water have been reviewed by Herman (30). Fluorescent pseudomonads 

may contribute to slime problems in industrial processes (51) and to 

spoilage of food products at low temperatures (35). P.aeruginosa 

is an opportunistic pathogen (31). Stveptomyces species attack 

sealing rings of natural rubber (40, 41). Moreover, they produce 

compounds with earthy or musty smells such as geosmin and isoborneol 

(27) and may therefore contribute to taste and odour problems in 

stagnant water (11).The significance of specific groups of micro

organisms has resulted in the development of selective or semi-

8 
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selective isolation techniques for most of the bacteria mentioned 

above. 

Recently, a few types of aerobic chemoheterotrophic bacteria of 

pathogenic significance, that do not contribute to the colony counts 

on routine media, have been detected in drinking water, viz. 

Mycobacterium kaneasii (10, 33) and Legionella pneumophila 
(and related species). Mycobacterium kansasii seems to mul

tiply in drinking water pipes inside buildings (19). Legionella 

pneumophila, the causative agent of the legionnaires' disease has 

been observed in hot water systems, where water temperatures are 

below 60 °C (16, 63, 64, 66, 68, 78). The organism is able to 

multiply in water sampled from such systems (80). 

GROWTH OF BACTERIA IN DRINKING WATER DURING STORAGE AND DISTRIBUTION 

The colony count of drinking water during distribution is 

composed of bacteria which originate from (a) raw water, (b) water 

treatment, (c) growth ("regrowth") within the distribution system or 

(d) introduction into the distributed water during repair and 

construction activities. Introduction of large numbers of bacteria 

into the system by the freshly prepared drinking water, or by 

contamination during repair and construction activities indicate un

satisfactory situations from a hygienic point of view. They can be 

prevented by adequate water treatment and distribution procedures. 

Regrowth is usually involved when large numbers of bacteria are 

observed in drinking water sampled from distribution systems which 

were supplied with water containing only a few bacteria. A large 

number of reports deal with regrowth in distribution systems (1, 2, 

4, 6, 8, 25, 29, 32, 45, 49, 56, 75). The extent of this regrowth 

depends on (a) absence of a disinfectant residual, (b) the type and 

concentration of organic compounds which can be utilized as sources 

of carbon and energy for the growth of microorganisms, (c) the water 

temperature (d) the residence time of the water in the distribution 

system and (e) the presence of sediments in the system. Compounds 

serving as growth substrates may either originate from the raw 

water, may be introduced during treatment, e.g. by ozonation (17, 

56, 62, 67) or are released from construction and plumbing materials 

(10, 18, 24, 57, 59). 

Apart from the public health risks, aesthetic problems or 

technical problems evoked by the growth of specific groups of 

bacteria, the following additional negative aspects are connected 



with the massive growth of typical aquatic bacteria in distribution 

systems* 

(a) Oxygen consumption as a result of growth may cause anaerobic 

situations which give rise to increased corrosion of cast iron 

pipes followed by colour problems (29, 39, 49, 75). 

(b) Development of animals which utilize bacteria as a food source. 

Such a development can lead to complaints of consumers when 

animals visible with the naked eye, viz. Asellue aquatiaus 

are present (42, 61, 82). 

(c) Permanently high colony counts of water in distribution systems 

reduce the value of routine colony count estimations as a water 

quality parameter. 

(d) High colony counts seem to interfere with the detection of 

coliforms (26), but Clark (13) could not confirm this observa

tion. 

OBJECTIVES OF THE INVESTIGATIONS 

Water quality deterioration related to regrowth of bacteria in 

the distribution system is a practical problem. Research was 

conducted to enable the resolution of this problem by the removal of 

organic compounds, which might serve as growth substrates, from the 

water entering the system. The objectives of the here described 

study were: 

(a) The development of a bacteriological method for the estimation 

of the concentration of organic compounds that may be used as 

sources of carbon and energy for the growth of bacteria in drin

king water. 

(b) The assessment of the effects of water treatment procedures on 

the concentration of such compounds. 

(c) The determination of the ability of typical aquatic oligotrophic 

bacteria and of bacteria with hygienic, aesthetic or technical 

consequences, to multiply at very low concentrations of 

substrate in water. 
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2. Multiplication of fluorescent pseudomonads at low sub
strate concentrations in tap water 

D. VAN DER KOOIJ, A. VISSER AND J . P . ORANJE 

Antonie van Leeuwenhoek 48 ( 1982 ) : 229-243 

Abetvaat 
Two fluorescent pseudomonads, strains P17 and P500, belonging to 

different biotypes were tested for growth in tap water supplied with 

different concentrations of acetate and glutamate, low concentra

tions (10 and 20 yg of C per liter) of various other substrates and 

mixtures of related substrates, the latter being present each in 

amounts of 1 yg of C per liter. Amino acids appeared to be excellent 

substrates for both isolates, but also many other substrates were 

utilized at very low concentrations. Saturation constants (K ) for 
s 

P17 of acetate, arginine, aspartate, glutamate, lactate, succinate, 

malonate, p-hydroxybenzoate and glucose were all below 1 uM. 

The K values for P500 were about 5 times larger than those for P17. 
s 

Since especially P17 is able to use a large number of different 
substrates at low concentrations, assessment of maximum colony 

counts of this organism by growth experiments in various types of 

tap water may give information about the concentrations of easily 

assimilable organic carbon compounds. 

INTRODUCTION 

Despite their frequent isolation, fluorescent pseudomonads 

usually constitute small minorities (< 1 %) of the bacterial popula

tions of surface and tap water (Van der Kooij, 1977), silt deposits 

in drinking water service reservoirs (Windle Taylor, 1971-73), raw 

and treated sewage (Hankin and Sands, 1974) and soil (Rovira and 

Sands, 1971). Characterization of fluorescent pseudomonads obtained 

from surface water and various types of drinking water showed that 

these bacteria belonged to at least 45 different biotypes (Van der 

Kooij, 1979), many of which were similar to those defined by Stanier 

et al. (1966). This characterization study further revealed distinct 

relationships between the various water types and the occurrence of 

representatives of specific biotypes. Unfortunately, most characters 

suited for classification have no ecological significance, since 

they do not give information about the ability of the fluorescent 

pseudomonads to multiply with very low concentrations of substrates. 

The growth of representatives of two clearly different biotypes in 

tap water supplied with low concentrations of substrates was studied 
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to explain differences observed in the presence of these biotypes in 

various types of tap water as part of an investigation into the 

behaviour of bacteria in drinking water during distribution. 

MATERIALS AND METHODS 

Isolates 
The isolation of bacterial strains used in this study as well as 

their characterization have been described previously (Van der Kooij 

1977; 1979a). The following strains were used: Pseudomonas 

fluoresaens P17, originating from tap water prepared from dune 

infiltrated river water and belonging to biotype 7.2 which corres

ponds to biotype C (Stanier et al, 1966), and P.fluovesaens 

P500, obtained from tap water prepared from river water by physico-

chemical treatment and belonging to biotype 1.1, which corresponds 

to biotype G (Stanier et al, 1966). Both biotypes were generally 

observed in surface water and tap water prepared from surface water. 

Biotype 7.2 was also found in ground water. Both isolates are pro

teolytic and do not multiply at 37 °C. Isolate P17 is able to pro

duce gaseous nitrogen from nitrate under anaerobic conditions. 

Replica test 
Utilization of organic compounds as sources of carbon and energy 

for growth was tested by the replica technique using plates of basal 

salts agar with separately sterilized carbon compounds in a concen

tration of 1 yg per liter (Van der Kooij, 1979a). The carbon 

compounds tested are listed in Table 1. 

Growth experiments in liquid media 
The growth experiments were performed in 1-liter, calibrated, 

glass-stoppered Erlenmeyer flasks of Pyrex glass. These flasks were 

cleaned with a 10 % solution of K2 Cr2 O7 in concentrated H2SO4, 

followed by rinsing with hot tap water, with 10 % HNO3 and with hot 

tap water again. Thereafter, they were heated overnight at 250 -

300 °C. The pipettes (1 ml) were cleaned in the same way. The 

cleaned flasks were filled with 600 ml of tap water originating from 

the municipal Dune Waterworks of The Hague, where it is prepared 

from dune-infiltrated river water by the addition of powdered 

activated carbon, followed by rapid and slow sand filtration. This 

water contained 3.6 mg of dissolved organic carbon and 7.3 mg of 
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Table 1. Compounds serving as sources of carbon and energy for growth of the fluorescent pseudomonads 

PI7 and P500. 

Compounds utilized 

by PI7 and PSOO 

Amino acids 

(AA) 

L-alanlne, L-vallne 

L-*leuclne, L-isoleucine 

L-lysine, L-arginine 

L-sspartate, L-asparaglne 

L-glutamate, L-glutamlne 

Carboxylic acids 

(CA) 

acetate, propionate, 

DL-lactate, pyruvate, 

malonate, fumarate, 

succinate, citrate 

Carbohydrates and 

(poly)alcohols 

(CHA) 

D-glucose, 

O-manni tol, 

glycerol 

Aromatic 

acids 

(AR) 

p-hydroxy-

benzoate 

L-tyrosine, L-proline 

Conpounds utilized DL-serine, L~threonine adlpate 

by P17 only L-hlstldlne, DL~tryptophan 

Compounds utilized DL-pheaylalanlne 

by P500 only 

Not utilized glycine formate, glycolate, 

glyoxylate, oxalate, 

L~tartrate 

D-arabinoae 

benzoate 

anthranilate 

vanillate, 

phtalate, 

nicotlnata, 

DL-maadelate 

nitrate per liter; the pH was 7.6 (average values). 

For cultures in tap water, the water was not autoclaved but 

heated for 2 hours at 60 °C. This treatment was chosen to preserve 

the organic content of the water as much as possible in its original 

state. The counting plates done in the course of the experiments 

showed that bacteria originally present in the water were 

effectively removed by this treatment. Solutions of single organic 

compounds and of nitrogen compounds were also heated at 60 °C. 

Unless otherwise stated, NH4CI was added with the carbon compounds 

to obtain a C/N ratio similar to that of ammonium acetate. In a few 

experiments the water was supplied with mixtures of amino acids 

(AA), carboxylic acids (CA), carbohydrates and (poly)alcohols (CHA) 

and aromatic acids (AR), as listed in Table 1. Stock solutions of 

the 4 mixtures were prepared by dissolving the individual compounds 

in demineralized water in equal carbon concentrations, except 

glutamate which was used at twice this concentration. After 
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neutralization with a sodium hydroxide solution, the mixtures were 

sterilized (120 °C, 16 min) in Pyrex glass bottles containing a 

screw cap with a teflon shield. Addition of NH4CI was omitted in the 

experiments with the mixtures, as it had become clear from previous 

experiments that N was no limiting factor. 

Inoculation and determination of bacterial growth in liquid media. 
Turbid suspensions of 24-h slant cultures of the isolates were 

used for inoculation of 50 ml of autoclaved tap water contained in 

100 ml normally washed infusion bottles. The initial number of cells 

in the inoculated water amounted to about 100 to 500 colony-forming 

units (CFÜ) per ml. Incubation of the infusion bottles at 25 °C gave 

maximum colony counts (N ) varying from 10* to 2.10^ CFU/ml which 

were reached within one or two weeks. Hereafter, the colony counts 

decreased very slowly during a period of several months. These 

cultures were used for inoculating the experimental solutions to 

provide an initial cell density of 50 to 300 CFU/ml. 

Incubation was carried out at 15 + 0.5 °C. Growth curves were 

obtained by periodic determination of the number of viable cells 

(N , CFU/ml) in triplicate. This was done by spreading 0.05 ml of 

the culture either directly or from decimal dilutions on predried 

Lab-Lemco (Oxoid) agar plates. Counting was performed after 40-48 h 

of incubation at 25 °C. The doubling time (G in hours) of the 

cultures was calculated with the equation: 

G = log 2 (t*-t)/(log Nt'-log Nt) (1) 

where: t'-t = the incubation time (hours) in which N increased to 

N '. These calculations were performed for the period in which the 

growth curve was linear with time in a half-logarithmic plot and in 

which N ' <0.1 Nmax. All experiments were performed in duplicate, 

unless otherwise stated. 

RESULTS 

Utilization of organic compounds as sources of carbon and energy 
Table 1 shows that at a concentration of 1 g of substrate per 

liter, 24 of the tested compounds were utilized by both isolates, 8 

substrates only promoted the growth of P17 and two substrates were 

only utilized by P500. 
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Flg. 1 Growth curves of P.fluoveecens P500 at 15 °C + 0.5 °C 

with different concentrations of acetate added to tap water: •, 1 mg; 

•, 25 ug; A, 10 yg; O, 5 yg; A, 2.5 yg of acetate C per liter; -fr, 

blancs. Solid and broken lines indicate duplicate experiments. 

Utilization of acetate and glutamate at low concentrations 
At concentrations varying from 1 mg to 2.5 y g of C per liter 

acetate clearly enhanced the multiplication of P500 in tap water 

(Fig. 1). Similar observations were obtained for P500 with glutamate 

and for P17 with glutamate and acetate respectively (data not 

From the maximum colony counts (N ) obtained for the 
max 

applied substrate concentrations (Fig. 2) the following yield values 

shown) 

applied 

(Y) were calculated: Y (P500) = 4 x 109 CFU/mg acetate C and 4 x 109 
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Flg. 2 Maximum colony counts of P. fluovesaene P17 and P500 at 
different concentrations of acetate and glutamate added to tap 
water: •, P17 on acetate, O, P500 on acetate; A, P500 on glutamate. 

CFU/mg of glutamate C and Y (P17) - 4.2 x 109 CFU/mg of acetate C. 
N values for P17 with glutamate were not estimated. 
max 

Using these yield data and the N values in the blanks, the 
° J max 

natural substrate concentration (S ) available for the two 
n 

pseudomonads in the heated tap water may be expressed in equivalents 
of acetate C or glutamate C, giving S (P500) - 0.7 - 3.5 yg of 
acetate C or glutamate C equivalents per liter and S (P17) = 4.5 yg 
of acetate C equivalents per liter. These S values are only 0.1 % 
of the concentration of dissolved organic carbon. 

In Fig. 3, the doubling times of P17 and P500 (derived from 
Fig. 1) are plotted against the reciprocal values of the concentra
tions of added substrate. The linear part of the relationship is 
expressed by the following adapted Lineweaver-Burk equation: 
G = G , + G . .K /AS 

min min s (2) 

where G is the observed doubling time (in hours) at the concentra

tion of substrate added AS (in yg of C per liter); G 
min 

minimal G. 
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Fig. 3 Lineweaver-Burk p lo ts of the growth of P.fluovesaens 

P17 and P500 a t low concentrations of a ce ta te and glutamate added to 

tap water: • , P17 on a ce ta t e ; O, P500 on ace ta te ; A, P17 on g l u t a 

mate; A, P500 on glutamate. 

K , the s a tu ra t ion constant , i s the subs t ra te concentration a t which 

G = 2 G . . The n o n - l i n e a r i t y of the p r e sen ted curves may be 
min 

explained by concurrent utilization of the natural substrates, which 

obviously was important when AS < 10 pg of C/l, or when G according 

to eq.2 was above 20 - 30 % of G of the blanks. From the plots in 

Fig. 3, values for G and G x K were derived as presented in 
the equations listed in Table 2, which permitted calculations of K . 

s 
It appears from Table 2 that P17 is better adapted (lower K value) 

s 
to low concentrations of acetate than P500. 

Using the listed equations and the G values found in the blanks, 

estimations could be made of the maximum natural concentrations 

(S ) of either acetate or glutamate that might have been present 
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in the tap water used (Table 2). Comparison of the acetate C concen

trations . calculated from the G values of PI 7, with S obtained from 
n 

the N values indicates that acetate might have been at most 30 % 
max 

of the substrate available for isolate P17 in the tap water. 

Table 2. Growth constants of P.fluoresceins P17 and P.fluor-

esaens P500 with acetate and glutamate calculated from 

Fig. 3. 

Isolate Substrate Lineweaver-Burk K Growth in S 

a s max 
equation blanks 

yg C/l yM G(h) ygC/1 

P500 

P17 
P500 

P17 

glutamate 

glutamate 

acetate 

acetate 

G-3.7+130.2/ S 

G=3.3+97.6/ S 

G»5.2+118.3/ S 

G=5.5+21.8/ S 

34.8 

29.5 

22.8 

4.0 

0.58 

0.49 

0.95 

0.17 

86.3;60.5 

43.4;27.5 

48.5;45.1 

22.1;21.6 

1.6-2.3 

2.4-4.0 

2.7-3.0 

1.3-1.4 

a G =• G , + G . .K /AS 
b min min s 

maximum natural concentration of the substrate involved 

Utilization of various compounds at very low concentrations 
Experiments with a number of substrates, representing different 

types of naturally occurring organic compounds of low molecular 

weight, revealed that the rates of growth (G-1-) of P17 and P500 in 

tap water were increased by the addition of 20 yg of substrate C per 

liter of all compounds tested except fumarate (Fig. 4 ) . Fig. 5 

indicates that fumarate was used by P17 after the exhaustion of S . 
1 n 

P500 was unable to utilize fumarate when present in a concentration 

of 20 yg of C per liter. Strain P17 multiplied more rapidly with the 

compounds tested than isolate P500. A number of compounds promoted 

growth more clearly than others. The latter effect was even more 

pronounced at initial concentrations of 10 yg of C per liter (P17 

only). P17 multiplied more rapidly at 10 yg of arginine C per liter 

than at 20 y g of C per liter in the form of all the other substrates 

tested. 

The coefficients of the modified Lineweaver-Burk equations (2) 

for growth with the various substrates were calculated using the 

generation times at 1 mg of C per liter and those observed at 20 yg 
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Fig. 4 Growth rates (G-1) of P.fluovesoens P17 and P500 at 

1 5 + 0 . 5 °C with 20 and 10 yg C/l of different substrates added to 

tap water. 1 = L-aspartate; 2, succinate; 3, acetate; 4, DL-lactate; 

5, yeast extract; 6, malonate; 7, p-hydroxybenzoate; 8, D-

glucose; 9, fumarate; 10, L-arginine. — , G-1 observed for growth 

with the added substrate; G-^ observed without substrate added; 

observations in duplicate. For P500 with 20 y g of acetate C/l, G-1 

was calculated using the equation in Table 2. 

of substrate C per liter (Table 3). With arginine, the generation 

time at 10 pg of C was used. With a few compounds, especially 

malonate, p-hydroxybenzoate and glucose, natural substrates 

may have significantly affected the generation times at low 

substrate concentrations. In these cases calculations were made with 

the assumption of complete preferential uptake of the added 

substrates. The substrate affinities of P500 were calculated 

assuming that this isolate has generation times similar to those of 

isolate P17 at 1 mg of substrate C per liter. 
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log(CFU/ml) 

10 15 
days 

Flg. 5 Growth curves of P.fluovesaene P17 a t 15 + 0.5 °C in 
tap water supplied with a low concentrat ion of fumarate: • , tap 
water without subs t ra te added; O, tap water with 20 yg of fumarate C 
per l i t e r . Solid and broken l i nes i nd ica te dupl icate experiments. 

Table 3 . Mod i f i ed L i n e w e a v e r - B u r k e q u a t i o n s and K 
d i f fe ren t subs t ra tes for s t r a i n s P17 and P500. 

v a lues of 

Isolate 

PI 7 

P17 

P17 

P17 

P17 

P17 

PI 7 

P500 

P500 

P500 

P500 
a l n 
b G = 

all 

Substrate 

L-Arginine 

L-Aspartate 

Succinate 

DL-Lactate 

p-hydroxy-

benzoate 

D-Glucose 

Malonate 

L-Aspartate 

Succinate 

DL-Lactate 

D-Glucose 

G(h) at 

1 mg C/l 

3.8; 3.9 

3.1; 3.3 

3.1; 3.1 

3.5; 3.8 

4.4; 4.4 

4.8; 5.0 

11.6;14.6 

as PI 7 
" 
•• 

•• 

cases preferential uptake 

Gmin + Gmin.K /AS 
s 

Lineweaver-Burk 

equation 

G=3.9+11.0/AS 

G=3.1+51.0/AS 

G=3.0+68.4/AS 

G=3.6+77.3/AS 

G=4.1+264.3/AS 

G=4.6+264.3/AS 

G=13.0+74.4/AS 

G=2.9+274 /AS 

G=2.8+347 /AS 

G=3.2+464 /As 

G=3.6+1341 /AS 

K 
g 

dig C/l) 

2.8 

16.4 

22.8 

21.4 

64.4 

57.4 

7.5 

94 

124 

145 

372 

of the added substrate is 

(MM) 

0.04 

0.34 

0.48 

0.59 

0.76 

0.79 

0.16 

1.9 

2.6 

4.0 

5.2 

assumed 
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The K values obtained for P17 were all below 1 yM, and a few 
s 

were extremely low, e.g. 0.04 yM of arglnlne and 0.16 yM of malonate 

(Table 3 ) . The K of malonate C approximates the one of acetate 

(Table 2 ) . The K values for P500 were clearly above those for P17. 

The slopes of the Lineweaver-Burk equation for P500 on aspartate, 

aspartate, succinate, lactate and glucose were all about 5 times 

steeper than for isolate P17 on the same compounds. This factor 

which was also observed with acetate, but not with glutamate (Table 

2), appears to be a characteristic difference between the strains 

and possibly between the biotypes to which the isolates belong. 

cr'th"1) 
0.20 

0.18 

0.16-

0.14 

0.12 

0.10-1 

0.08 

0.06-1 

0.04 

0.02 ] 

0 

P17 

b 
1 2 3 4 5 6 

substrate 

P500 

ttfl 
1 2 3 4 5 6 

substrate 

Fig. 6 Growth rates (G--*-) of P.fluoresaene strains P17 and 

P500 at 1 5 + 0 . 5 °C in the presence of mixtures of substrates. The 

concentration of the individual compounds was 1 y g C per liter, 

except for glutamate of which the double amount was added. 1, total 

mixture (46 y g of C per liter); 2, amino acids, 19 y g of C per 

liter; 3, carboxylic acids, 14 y g of C per liter; 4, aromatic 

compounds, 7 yg of C per liter; 5, carbohydrates and (poly)-

alcohols, 6 yg of C per liter; 6, without substrates added; obser

vations in duplicate. 
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Utilization of mixtures of substrates at very low concentrations 
In natural habitats.including water, S is composed of low 

concentrations of a great variety of compounds. For this reason and 
to obtain rapid information about the ability of the isolates to 
utilize many different compounds at low concentration (1 yg of C per 
liter), growth experiments were performed in tap water supplied with 
the mixtures of 18 amino acids (AA), 6 carbohydrates and (poly) 
alcohols (CHA), 14 carboxylic acids (CA), 7 aromatic acids (AR) and 

the total mixture (TM). Fig. 6 shows that the growth rates (G-1) 
with the amino acid mixture equalled those with the total mixture, 
suggesting that amino acids were preferred substrates for strains 
P17 and P500. Furthermore it is shown that from the other mixtures 

growth was most rapid with the carboxylic acids. 
Using the N values observed and the numbers of compounds ° max 

which may serve as a source of carbon and energy for growth (Table 
1) , average yields, Y (CFU/mg of substrate C) were calculated 
(Table 4 ) . Most Y. values of P17 exceeded or approximated the yield 
observed with growth on acetate. This suggests that all substrates 
which served as a source of carbon and energy for growth of P17 when 
present in 2.5 g/1 were also utilized when present in 1 yg of C per 
liter. As compared with P17, P500 had relatively low average yields 
on the mixtures, which is clearly demonstrated with the total 
mixture of compounds. These differences might result from the 
inability of P500 to utilize a number of compounds at very low 
concentrations. Evidence for such a possibility is obtained by the 
inability of strain P500 to multiply in the presence of 20 y g of 
fumarate C per liter. 

DISCUSSION 

This study and previous ones (Van der Kooij et al, 1980, Chapter 
5; Van der Kooij and Hijnen, 1981, Chapter 6) reveal that simple 
growth experiments in batch cultures provide information about 
bacterial growth at low substrate concentrations. In such 

experiments colony counts are used as a parameter for biomass 
concentration. From the linear relationship between maximum colony 
counts (N ) and initial substrate concentrations as observed in 

max 
this study (Fig. 2) and those mentioned above, it is concluded that 
this procedure is justified in a number of cases. A decrease in 
yield at very low concentrations as observed with an Aeromonas 
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hydvophila isolate growing on glucose (Van der Kooij et al, 

1980, Chapter 5) was not found with the isolates P17 and P500 

growing on acetate or glutamate (Fig. 2), probably because of the 

presence of the natural substrates in the tap water used. The 

interpretation of the generation times observed at initial substrate 

Table 4. Maximum colony counts of the fluorescent pseudomonads P17 and P500 grown at IS *C In 
tap water supplied with mixtures of compounds. 

strain P17 strain PSOO 

Mixture Total Cone, of H ^ 1 Cone, of N a a x Ya 

added conc.b compounds (104CFu7ml) (109CF0/mg C) compounds (10*CFU/ml) (109CFU/mg C) 
(|ig C/l) used used 

(|lg C/l) (at C/l) 

None 

AA 
CA 
CUA 
AR 
TM 

-
19 
14 
6 
7 

46 

-
17 
9 
4 
3 

33 

2.3; 

15; 
4.6; 
4.1; 
3.5; 

22; 

2.3 
16 
S.8 
4.8 
4.2 
23 

-
7.8 
3.2 
5.4 
5.2 
6.1 

-
14 
8 
4 
1 
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2.9; 
4.8; 
3.8; 
2.5; 
2.2; 
6.2; 

5.0 

8.1 
6.9 
3.5 
2.2 
6.4 

_ 
3.0 
3.9 
2.0 

< 1 
1.5 

AA • smlno acids; CA * carboxyllc acids; CHA • carbohydrates and (poly)alcohols; 
AR • aromatic acids; TM • total mixture 
All compounds added In amounts of 1 yg of C per liter, except glutamate which was added In an 
amount of 2 yg of C per liter. 
Total concentration of compounds used as sources of carbon and energy for growth when present 
st 1 g/1 (cf. Table 1). 
Due to unre l iab le N values In the b lancs, Y of P S00 Is calculated using N with the 

max a ^ max 
AR mixture as reference values for growth on S . 

concentrations below 10 yg C per liter was also complicated by the 

utilization of S (Fig. 3 ) . These observations indicate that for 

growth experiments at extremely low substrate concentrations, the 

natural substrate concentration of the water is of critical 

importance. Drinking water prepared by biological treatment (e.g. 

slow sand filtration) seems to be most suited for this purpose. 

Fluorescent pseudomonads are able to utilize a wide variety of 

naturally occurring compounds as sources of carbon and energy 
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(Den Dooreii de Jong, 1926; Stanier et al, 1966; Table 1). Fumarate 

which was consumed at 2.5 g per liter could not be utilized by P500 

when present at 20 yg of C per liter. Previous investigations 

revealed that an Aevomonae hydvophila isolate did not grow 

with acetate, glutamate or succinate when these compounds were 

present in an amount of 10 Ug of C/l though these substrates were 

utilized at 1 mg of C per liter (Van der Kooij et al. 1980, Chapter 

5 ) . These findings stress the importance of investigating growth 

responses at concentrations of a few micrograms per liter. 

The significance of the naturally occurring amino acids as 

sources of carbon and energy for strains P17 and P500 was clearly 

demonstrated (Fig. 6; Table 4 ) . Amino acids are also suitable 

substrates for P. aeruginosa (Stanier et al, 1966), which 

organism possesses constitutive transport systems for the uptake of 

these compounds at very low concentrations (Kay and Gronlund, 1969; 

1971). Therefore utilization of low concentrations of amino acids 

seems a common character of the mesophilic and psychrotrophic 

fluorescent pseudomonads. This may explain why fluorescent 

pseudomonads occur in the bacterial populations on fresh plant 

debris and in rhizospheres in larger percentages than in soil itself 

(Rovira and Sands, 1971). Despite high-affinity uptake systems for 

amino acids, fluorescent pseudomonads appear to be unable to compete 

with many other bacteria, as may be concluded from the low 

percentage in which they are usually found in natural bacterial 

populations. Very low concentrations of dissolved free amino acids 

in natural environments (Burnison and Morita, 1974) combined with 

the presence of biodegradable compounds for which the fluorescent 

pseudomonads do not have saturation constants as low as other 

bacteria, e.g. carbohydrates which are utilized by flavobacteria 

(Van der Kooij and Hijnen, 1981, Chapter 6 ) , may explain these 

observations. 

The occurrence of representatives of specific biotypes of the 

fluorescent pseudomonads in specific environments as demonstrated by 

Sands and Rovira (1971) and Van der Kooij (1979) points to 

significant differences between the various psychrotrophic 

fluorescent pseudomonads. The distinct differences in substrate 

affinities as demonstrated in this study help explain that bacteria 

similar to strain P17 (biotype 7.2, Van der Kooij, 1979) were 

isolated more frequently from drinking water prepared from ground 

water than bacteria similar to strain P500 (biotype 1.1, 
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Van der Kooij, 1979). The relatively frequent occurrence of biotype 

7.2 in various waters may further be related to its ability of using 

nitrate as a hydrogen acceptor combined with a high affinity for 

acetate, a compound which occurs in oxygen-depleted environments. 

The frequent predomination of biotype 1.1 in surface water and in 

tap water derived from surface water (Van der Kooij, 1979) cannot be 

explained with the obtained K values, but the similarity of the 

growth rates of P17 and P500 with the amino acids mixture, which is 

in contrast with the differing saturation constants, may be 

important in this respect. 

Experiments with fluorescent pseudomonads, including 

P. aeruginosa, using labelled substrates have frequently revealed 

high affinity transport systems which are highly substrate specific, 

though groups of related compounds, e.g. dicarboxylic acids, 

aromatic amino acids or aliphatic amino acids, may be transported by 

one and the same system (Kay et al. 1969, 1971; Dubler et al. 1974, 

Stinson et al. 1976, Tsay et al. 1971, Eisenberg et al. 1974, Romano 

et al. 1980, Hoshino, 1979). Although transport constants (K , 

0 . 1 - 1 yM) resemble K values obtained for P17, it remains un-

certain whether K and K should have similar numerical values. Such 
s t 

a similarity would indicate that the transport of a substrate is the 
growth limiting step. The observed constant difference in K values 

of strains P17 and P500 for compounds requiring a number of totally 

different transport systems (Tables 2 and 3) suggests that a 

metabolic process was limiting the growth of P500 in the described 

experiments. Arguments in support of this suggestion have been given 

by Kay and Gronlund (1969, 1971), who observed that transport of 

amino acids into cells of P. aeruginosa rapidly declined after 

a few minutes as a result of saturation of the pool with the un

changed compounds. Further uptake was depending on incorporation of 

these amino acids from the pool into cellular proteins. The rate of 

C4~acid transport into cells of Escherichia coli also appeared 

to be determined by the rate at which these substrates were 

metabolized (Kay and Romberg, 1971). 

The experiments reported in this paper (Table 2) revealed that 

the N value of a pure culture in a specific water does provide 

information about the concentration of compounds available to the 

organism as a substrate. In addition, using the observed generation 

time, maximum possible concentrations of specific compounds for 

which the coefficients of the Lineweaver-Burk equations (Tables 2 
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and 3) are known, may be calculated. Since P17 is able to utilize a 

large variety of compounds at very low concentrations, growth 

experiments with this organism may be valuable for the assessment of 

the level of easily assimilable organic carbon (AOC) in water. In 

recent investigations, such growth experiments are being used to 

study the quality of various types of drinking water and for 

measuring the effects of water treatment procedures on biodegradable 

compounds in water (Van der Kooij, 1979a). 
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3. The effects of water treatment procedures on the con
centration of easily assimilable organic carbon (AOC) 
assessed by growth experiments with a fluorescent 
pseudomonad 
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Abstvact 
A strain of the species Pseudomonas fluoresceins was grown 

in water samples collected from the various treatment stages of 8 

treatment plants, in 7 of which drinking water was prepared from 

surface water. The concentrations of easily assimilable organic 

carbon (AOC) were calculated from the obtained maximum colony counts 

and the yield of the organism on acetate. AOC concentrations usually 

lay between 10 and 100 yg of acetate C equivalents per liter and 

were below 1 % of the DOC concentration in the waters examined. In 

water from open storage basins and in water after ozonation higher 

concentrations were observed. A linear relationship was obtained 

between AOC volume load and AOC uptake in rapid sand filters. 

Maximum AOC reductions of about 80 % were observed at influent AOC 

concentrations above 50 yg of C per liter. At AOC concentrations 

below 25 ug of C per liter, small reductions (< 50 %) were achieved 

by filtration processes. 

Keywords: water treatment, drinking water, easily assimilable 

organic carbon, Pseudomonas fluoresaens, ozonation, biological 

processes, filtration. 

NOMENCLATURE 

AOC = assimilable organic carbon, pg acetate C equivalents l-* 

A0C. = AOC concentration in influent of filter, mg.m-^ 

AOC = AOC concentration in effluent of filter, mg.m-^ 

AOC- = average AOC load, mg .m~3 filter bed.h-1-

AOC = average AOC uptake, mg .m-' filter bed.h-^-
i DOC = dissolved organic carbon, mg.l L 

G = generation time (mean doubling time), h 

G . = minimum generation time, h 
min ö ' . 

K = substrate-saturation constant, yg C.l-i 

s 1 
N = maximum colony count, colony-forming units (CFU).ml-i 

R = percent AOC reduction 

S = substrate concentration, pg C.I--'-

S = maximum apparent acetate concentration, y g C.l-^-

S /AOC = relative biodegradability factor 

Y = yield, CFU.rng"1 
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INTRODUCTION 

Most water treatment systems used for the preparation of 

drinking water include stages either with biological activity or 

with biological activity affected in a subsequent stage. The 

intensity of biological processes is depending on the concentration 

of organic and inorganic compounds in the water serving as sources 

of carbon and/or energy for the growth of microorganisms. Hence, the 

removal of such compounds by filtration through inert media is 

related to the biological activity in the filter. The concentration 

of biodegradable carbon in water is also affected by physical and 

chemical treatments, including coagulation/sedimentation and 

ozonation. 

Quantitative information about the effects of the various 

treatments is required to improve the removal of biodegradable 

organic compounds either in a specific treatment or in the whole 

purification system. Improvements may be necessary for the 

prevention of either excessive or insufficient biological activity 

during treatment as well as to produce water with a low concentra

tion of easily biodegradable organic carbon. Distribution of such 

water has been advised to prevent deterioration of drinking water 

quality during its transport in the distribution system as caused by 

regrowth of bacteria and animals (Hutchinson and Ridgway, 1977; 

Smalls and Greaves, 1968). 

No chemical technique is available for measuring the concentra

tion of biodegradable organic carbon. Furthermore, measurement of 

the biological oxygen demand is unreliable at values below a few 

mg/1. A bacteriological method, which is based on estimating the 

growth curve of a pure culture of Pseudomonas fluovesoens in 

the water, was therefore developed. This technique enables the 

assessment of the concentration of easily assimilable organic carbon 

(AOC) (Van der Kooij et al, 1982b). The effects of water treatments 

generally applied for the preparation of drinking water from surface 

water have been investigated with this method in a number of 

treatment plants in the Netherlands. 

MATERIALS AND METHODS 

AOC determination 
The AOC determination is based upon the estimation (in 
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duplicate) of the growth curve of Pseudomonas fluovesaens 

strain P17 in 600 ml of the water to be tested, contained in 

thoroughly cleaned glass-stoppered Pyrex-glass flasks of 1 liter 

capacity, after heating (1 h at 60°C) and incubation at 15°C 

(Van der Kooij et al, 1982b). A small volume (approximately 0.5 ml) 

of autoclaved tap water (filtrate of the slow sand filters of the 

Municipal Dune Waterworks of The Hague, cf. Table 2) in which the 

organism was grown, was used as inoculum. The initial colony counts 

were usually below 1000 CFU (colony-forming units) per ml. Growth 

curves of the organism were derived from periodic colony counts 

obtained after spreading 0.05 ml of the culture or of decimal 

dilutions on the surface of Lab-Lemco (Oxoid) agar plates (in 

triplicate) and incubation at 25°C. The AOC is calculated in 

micrograms of acetate carbon equivalents per liter using the maximum 

colony counts (N , CFU/ml) and the yield of strain P17 on acetate, 

i.e. Y(P17)= 4.1xl06 CFU/ug of acetate C (Van der Kooij et al. 

1982b). P. fluovesaens P17 was used for the AOC determinations 

because it was found that this organism is able to utilize a large 

number of easily assimilable organic compounds including most 

naturally occurring amino acids (Van der Kooij et al, 1982a, Chapter 

2). 

From the growth curves also generation times (G, hours) were 

calculated. These generation times are affected by the concentration 

and the biodegradability of the organic compounds utilized by the 

isolate. The relationship between G and the concentration of a 

biodegradable compound is given by the following adapted Lineweaver-

Burk expression: 

G = G , + G , .K /S (1) 
min min s 

in which: G . = minimum generation time: S = substrate concentra-
min ° ' 

tion in yg of C per liter and K , the substrate-saturation constant, 

equals S at wich G = 2 G . . The relationship between the generation 

time of PI 7 (at 15 °C) and the acetate concentration (S in y g of 
ac 

C/l) has been determined in a previous study (Van der Kooij et al. 
1982a, Chapter 2) and is given by: 

G - 5.5 +21.8/S (2) 
ac v ' 

The maximum apparent acetate concentration (S , yg of C/l) present 
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in the sampled water may be calculated with eq. 2 using the genera

tion time observed with P17 cultures on AOC. When S /AOC > 1, then 
ac 

compounds are present which are more easily utilized by isolate P17 
than acetate. The quotient S /AOC therefore is a relative measure 

n ac 
of the average biodegradability of the compounds contributing to the 
AOC present in the water. 

Measurement of dissolved organic aarbon 
The concentration of dissolved organic carbon (DOC) was assessed 

after filtration of water samples through membranes (pore size 

0.45 |Um) of cellulose acetate. For the analysis the Dohrmann DC-54 

ultra low level organic carbon analyzer system was used. 

Sampling and sampling location 
Water samples (600 ml) for the AOC determination were collected 

in the cleaned flasks described above. They were heated on the day 

of sampling, inoculated and incubated at 15°C. Most of the samples 

were taken in the period between October 1979 and May 1980. The 

investigation at Weesperkarspel was repeated in April 1983. The 

water treatment sequences of the investigated treatment plants are 

presented in Table 1. 

Table 1. Water treatment sequences at 8 treatment plants in the 

Netherlands. 

1. Leiduin (Amsterdam Waterworks). 

Source: river Rhine. 

Treatment: coagulation and sedimentation (1); rapid sand filtra

tion (2); transport chlorination (3); transportation; dune in

filtration; collecting in Oranjekom (basin); dosage of powdered 

activated carbon (PAC), pH correction, aeration; rapid sand 

filtration; slow sand filtration; post chlorination; distribu

tion. 

Treatments 1-3 and transportation by WRK (Water Transport 

Company "Rijn-Kennemerland"). 

2. Weesperkarspel (Amsterdam Waterworks). 

Sources: Water from Amsterdam Rhine Canal and water from Bethune 

Polder. 

Treatment: after coagulation, these waters are stored in a 
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reservoir (the Loenderveense Plas); rapid sand filtration; 

ozonation; pH correction, dosage of PAC, ferric chloride and 

Wisprofloc (coagulant aid); coagulation and sedimentation; 

rapid sand filtration, slow sand filtration; post chlorination; 

distribution. 

Baanhoek (Municipal Energy Works of Dordrecht). 

Source: river Rhine. 

Treatment: dosage of ferrous sulfate; storage in resevoir "Grote 

Rug"; breakpoint chlorination; dosage of ferrous sulfate, sodium 

hydroxide, lime and Wisprofloc ; coagulation; upflow filtration; 

downflow filtration; ozonation; mixing (see Oranjelaan). 

Ovanjelaan (Municipal Energy Works of Dordrecht). 

Source: ground water. 

Treatment: aeration; dosage of lime and Perfectamyl (coagulant 

aid); coagulation/sludge blanket filtration; dry filtration; 

rapid filtration; mixing; (with water from Baanhoek); 

chlorination; distribution. 

Saheveningen (Dune Water Works of The Hague). 

Source: river Meuse. 

Treatment: Storage in reservoir "Andelse Maas"; transport 

chlorination; transportation; rapid sand filtration; transport 

chlorination; transportation; dune infiltration; dosage of PAC 

and sedimentation; aeration; rapid sand filtration; slow sand 

filtration; distribution. Only dune infiltration etc. at 

Scheveningen. 

Andijk (Provincial Waterworks of North Holland). 

Source: water from lake IJssel. 

Treatment: storage in reservoir; microstraining; breakpoint 

chlorination; dosage of ferric chloride sulfate, lime and 

Wisprofloc ; coagulation and sedimentation; dosage of sodium 

sulphite; rapid sand filtration; GAC filtration (2 stages); 

post disinfection (Cl£ + CIO2); microstraining; pH correction 

with sodium hydroxide; distribution. 

Kvalingen (Rotterdam Waterworks). 

Source: river Meuse. 

39 



Treatment: storage in reservoirs ("Brabantse Biesbosch") (1) 

transport chlorination (2); transportation (3); dosage of ferric 

sulphate, sodium hydroxide and Perfectamyl ; coagulation and 

sedimentation; ozonation; dosage of sodium hydroxide and 

Perfectamyl ; dual media filtration; GAC filtration; post chlo

rination; distribution. 1-3 by the Water Storage Corporation 

Brabantse Biesbosch. 

8. Zevenbergen (Waterworks of North West Brabant). 

Source: river Meuse. 

Treatment: storage in reservoirs (see Kralingen); break

point chlorination; coagulation/flotation rapid sand filtration; 

GAC filtration, post chlorination; distribution. 

coagulant aid added only at low water temperatures (< 10 °C) 

coagulant aid added throughout the year 

RESULTS 

AOC-aonoentration profiles 
Water sampled from the various treatment stages of 8 treatment 

plants, of which 7 used surface water for the preparation of 

drinking water, was tested by performing growth experiments with 

P. fluorescens P17. The water treatment plants at Kralingen and 

Weesperkarspel were investigated twice. Water temperatures were 

relatively low (< 10 °C) at the time of sampling. The growth curves 

of one of the investigations demonstrate the similarity of the 

bacterial growth in duplicate samples as well as the effects of 

various treatment procedures (Fig. 1). The AOC concentrations as 

calculated from the average N values of P. fluorescens P17 
° max 

reveal that the AOC concentrations in the water types investigated 
were usually between 10 and 100 pg of acetate C equivalents per 

liter (Fig. 2). Moreover, the effects of the various treatments are 

clearly demonstrated. 

AOC and S concentrations, in water after open storage, after dune 
infiltration and in ground water 

The AOC concentration of water after storage in open basins lay 

between 25 and 500 yg of acetate C eq./l and was usually less than a 

few percents of DOC. The highest AOC concentration, observed in 
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Colony count (CFU/ml) 

days 

Fig. 1 Growth curves of P. fluoresceins P17 in water sampled 

from various stages of the treatment plant at Kralingen (Rotterdam 

Waterworks). •, after storage; O, after coagulation/sedimentation; 

A, after ozonation; A , after dual media filtration; •, after GAC 

filtration; ~k, after safety chlorination. The growth experiments 

were performed in duplicate (except-fc). 

water after storage at Andijk, amounted up to 8.5 % of the DOC con

centration (Table 2). Collection of dune-infiltrated river water in 

the Oranjekom basin at Leiduin resulted in a clear AOC increase 

(Fig. 2) which may be explained by the presence of algae in the 

basin. To which extent the AOC concentrations in the other 

situations either resulted from the AOC in water prior to storage or 

from AOC production during storage was not further investigated. 

The few observations on water after dune infiltration indicate 

that the AOC content may be low after underground storage in the 

dunes. The AOC of anaerobic ground water after aeration at 

Oranjelaan, however, was even lower and contributed to less than 
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Leiduin w y 
15-10-79: T. WC 

di si pac rf sf pC>2 

Weesperkarspel 
—14-11-79; T-6.5"C 
— 22-4-Î3: T-9.0"C 

I , 

tt rf O3 coa rf af pC>2 

Scheveningen 50-
22-10-79: T-9°C n 

di pac rf sf 

Oranjelaan 
7-1-'80:T.IO',C 

agw coa df rf 

o 100-1 Baanhoek 
7-1-'80:T-2°C 

st bC>2 coa udf O3 

st bC<2 rf gac gac PCI2 

Kralingen 
3-12-79: T.8°C 

T ! —tä-s-so^-g-c 

st coa O3 rf gac pC<2 

st bCl2 rf gac pC>2 

CIO2 • 
flo 

treatment processes • 

Fig. 2 AOC concentrations of water after various treatment in 8 

water treatment plants in the Netherlands; di = dune infiltration; 

st = open storage; agw = anaerobic ground water after aeration; 

bCl2 = breakpoint chlorination; PCI2 • post chlorination; pac = 

dosage of powdered activated carbon; coa = coagulation usually 

followed by sedimentation; flot = flotation; O3 = ozonation; rf = 

rapid filtration; df = downflow filtration; udf = upflow and down-

flow filtration; gac = granular activated carbon filtration; CIO2 

chlorine dioxide dosage; mix = mixture of ozonated water (Baanhoek) 

with rapid sand filtrate (Oranjelaan), after chlorination. The 

results shown are averages from duplicate experiments. 
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0.2 % of the DOC concentration. Table 2 shows that S varied from 
ac 

0.8 |jg of C (in ground water) to more than 50 yg of C/l (in river 
water after storage) . In a few cases S could not be calculated ° ac 
because G was less than 5.5 h, indicating that the biodegradable 
compounds which contributed to AOC were more rapidly utilized by 
strain PI7 than acetate. 

Table 2. DOC, AOC and S in ground water, in surface water after 
ac ° 

dune infiltration, and in surface water after storage in an 
open reservoir. 

Watertype AOC DOC AOC Gb S° S 
f. xl00% 

(ygC/1) (mgC/1) DOC (h) (ygC/1) AOC 

Ground water 

(Oranjelaan) 7;8 4.6 0.16 35.5;28.0 0.8 0.11 

Water after dune 
filtration 
Leiduin 
Scheveningen 

Water after storage 
in an open reservoir 
Leiduin (Oranjekom) 60;62 3.2 1.9 7.8;8.0 9.1 0.15 
Weesperkarspel 
(Loenerveense Plas) 48;45 7.4 0.63 5.8;6.0 54.5 1.17 
Baanhoek(Grote Rug) 31 3.8 0.81 5.1 -e >1.00 
Kralingen(B. Biesbosch) 24;29 3.6 0.74 12.8;12.8 3.0 0.11 
Kralingen(B. Biesbosch) 97;96 4.0 2.4 6.0;5.9 48.4 0.50 
Andijk(IJsselmeer) 450;500 5.6 8.5 5.2;5.4 -e >1.00 
Zevenbergen 
(B. Biesbosch) 23;26 3.9 0.63 6.3;5.9 37.0 1.51 

10;11 

19;24 

3 .0 

3 .0 

0 .35 

0 .72 

1 7 . 7 ; 18 . 7 

9 . 1 ; 8 . 9 

1.7 

6 .2 

0 .16 

0 .29 

In yg of acetate C equivalents per liter. 
Generation time of P17 at 15°C. 
Average value. 
Collecting reservoir, no storage. 
G < G . of P17 with acetate, min 
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Table 3. DOC, AOC and S in filtrates. 
ac 

AOC DOC AOC / ,.-„ G 
/ xl00% 

S S 
ac ac 

(ygC/1) (mgC/1) /DOC (h) (jigC/1) AOC 

Rapid sand 

filtration 

Leiduin 

Weesperkarspel 

(Loenen) 

Weesperkarspel 

Weesperkarspel 

Baanhoek 

Oranjelaan 

Scheveningen 

Andijk 

Kralingen 

Kralingen 

Zevenbergen 

Slow sand 

filtration 

Leiduin 

Weesperkarspelc 

Weesperkarspelc 

Scheveningen 

GAC filtration 

15;21 

15;15 

14;10 

26;31 

33; 33 

7 
6;8 

26; 24 

33;31 

33;36 

31;33 

10 
10;10 

15;19 

11;9 

3.0 

6.9 
5.9 
6.2 
4.0 
4.5 
3.1 
3.3 
2.6 
2.6 
3.3 

2.8 
5.6 
5.9 
3.0 

0.60 

0.22 

0.20 

0.46 

0.83 

0.16 

0.22 

0.76 

1.23 

1.32 

0.97 

0.36 

0.18 

0.30 

0.33 

6.8;6.8 

11.9;11.9 

22.9;21.3 

11.8;10.8 

9.2;8.1 

26.2 

35.2;24.5 

15.5;21.10 

7.9;11.0 

8.3;8.3 

22.3;19.8 

44.9 

29.2;26.0 

22.6;16.7 

13.8;22.2 

16.8 

3.4 
1.3 
3.8 

7.0 
1.1 
0.9 
1.8 
5.9 
7.8 
1.4 

0.6 
1.0 
1.6 
1.9 

0.93 

0.23 

0.11 

0.13 

0.21 

0.16 

0.13 

0.07 

0.18 

0.23 

0.04 

0.06 

0.10 

0.09 

0.19 

Andljk 1SC stage 11;13 3.0 0.40 22.2;19.9 1.4 0.12 

Andijk 2 n d stage 6;6 2.1 0.29 29.4;31.8 0.9 0.15 

Kralingen C 12;12 1.9 0.63 20.0;19.6 1.5 0.03 

Kralingen C 23;26 2.5 0.98 10.4;10.9 4.2 0.17 

Zevenbergen(old)d 8;7 2.3 0.33 19.5;23.7 1.4 0.19 

Zevenbergen(new)d 3.1;3.6 0.9 0.37 23.8;28.3 1.1 0.32 

In yg of acetate C equivalents per liter. 

Generation time of P17 at 15° C. 

Investigated at two different dates (cf. Fig. 2); on the second 

date TOC was assessed instead of DOC. 

Filters after different operation periods. 
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Effects of filtration 
The various types of filtration usually caused a definite AOC 

reduction (Fig. 2). With one exception, AOC in the filtrates was 
less than 1 % of DOC (Table 3). Most S values were less than 2 yg 

ac 
of C per liter and S /AOC values were between 0.04 and 0.32 with 

r ac 

the exception of the rapid sand filtrate at Leiduin where a value of 
0.93 was obtained. The average AOC volume load of the investigated 
filters (AOC in mg of aceta 
per hour) was calculated with: 

filters (AOC in mg of acetate C equivalents per m^ of filter bed 
Li 

A0CL =• A0C1 x 60/t (3) 

where AOC. = AOC concentration in the influent (mg/nr5) and t = empty 
bed contact time (in minutes). In addition, the average specific AOC 
reduction (AOC,,, in mg of acetate equivalents per m^ filter bed per 

R 
hour) was calculated from: 

A0C_ - (AOC. - AOC ) x 60/t (4) 

where AOC - AOC concentration in the effluent (mg/nH). The obtained 
AOC values varied from less than 1 mg per mJ of filter bed per hour 

Li 

for slow sand f i l t ra t ion to values above 800 mg for rapid f i l t ra t ion 
of ozonated water (Table 4 ) . Between A0CT and AOC for rapid 

L R 

filtration a linear relationship exists (Fig. 3). This relationship 

is calculated as: 
A0C_ = 0.83 A0CT - 15 (n - 10; r = 0.997) (5) 

R L 
Most observations on granular activated carbon (GAC) filtration were 
close to this relationship but AOC values observed with rapid 

R 
filtration of chlorinated water were less than could be expected 
from eq. 5. Obviously, chlorination is inhibiting the biological 
activity during filtration through media which do not inactivate 
free chlorine. AOC values for slow sand filtration also do not fit 

R 

into eq. 5, as is further demonstrated in Fig. 4, in which the 
percent AOC reduction (R), which equals: 

(AOC. - AOC )/A0C, x 100 % = (A0C_/A0CT) x 100 % (6) 
l e x R L 

is presented in relation to the average AOC volume load of the 
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Table 4. Average AOC volume loads (AOC,) and average specific AOC 
reductions (AOCR) with rapid sand filtration, GAC filtra
tion and slow sand filtration at various treatment plants. 

Rapid sand filtration 
Leiduin 
Weesperkarspel 
Weesperkarspel 
Weesperkarspel(Loenen) 
Baanhoek e 

Oranjelaan 
Scheveningen 
Scheveningen 
Andijk e 

Kraiingen 
Kraiingen 

f 
Kralingen 
Zevenbergen e 

(min) 
AOC1 AOC L AOCR AOCR/ xlOO % 

AOCT 

25.5 
16 
15.5 
31 
33.6 
22 
30 
30 
9.2 

12 
14.7 
12.2 
38.4 

41 
88 
18 
32 

9 
31 

3 
6 

14 
142 
69 

136 
1 

137 
397 
115 
90 
76 

104 
14 
25 

254 
854 
414 
839 

52 

96 
332 

70 
62 
17 
85 

7 
12 
91 

710 
284 
669 

1.6 

70 
84 
61 
69 
22 
81 
50 
48 
36 
83 
68 
80 

3 

Slow sand filtration 
Leiduin 315 8 3.4 1.5 45 
Weesperkarspel d 223 -6 4.7 -1.6 
Weesperkarspel 205 2 3.5 0.6 17 
Scheveningen d 273 0.5 0.8 0.1 14 
Scheveningen 207 -3 2.0-0.9 

GAC filtration 
Andijke lsc stage 
Andijk 2nd stage 
Kralingen 
Kralingen 
Kralingen 
Zevenbergen(old) 8 
Zevenbergen(new) ̂  

15.5 
15.5 
11.8 
11.1 
10.8 
7.2 
7.2 

11. 
6 

16. 
20 
10 
24. 
28. 

91 
46 

137 
173 
192 
267 
267 

44.5 
27 
84 

108 
56 

204 
242 

49 
50 
61 
62 
29 
76 
90 

a 
b 

c 
d 
e 
f 

Empty bed contact time in minutes. 
Reduction of AOC concentration in yg of acetate C equivalents per 
liter (average values). 
In mg acetate C equivalents per m? filter bed per hour. 
Data from a previous investigation (Van der Kooij et al. 
Water containing free chlorine. 
Investigated at two different dates (cf. Fig. 2). 
GAC filters after different operation periods. 

1982b). 
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Fig, 3 Average s p e c i f i c AOC reductions (AOC ) in r e l a t ion to the 
R average AOC volume loads (AOC ) during f i l t r a t i o n processes. RF = 

Li 

rapid filtration (including dual media filtration); RF + CI2 = rapid 

filtration of water after chlorination; GAC = granular activated 

carbon filtration; SF = slow sand filtration. The results shown are 

calculated using the average values of the AOC concentrations which 

had been assessed in duplicate. 

various filters. The GAC filter at Zevenbergen with an operation 

period of about 5000 bed volumes caused a much larger AOC reduction 

than the GAC filter with an operation period of 25000 bed volumes. 

This suggests that adsorption processes may enhance AOC reduction. 

On the other hand, relatively small AOC reductions as incidentaly 

obtained for GAC filtration (Fig. 4 ) , indicate that removal of 

easily biodegradable compounds by this treatment may sometimes be 
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©RF+CI2 
• GAC 

AOCL(mg AOC/m 3 f i l terbed x h ) 
W 

Fig. 4 AOC reduction (R) during filtration at different average AOC 

volume loads (AOC ) . For symbols see Fig. 3. 
Li 

a* 
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<D 
Ü 

5 
50 

a—°-

50 100 150 
AOCj (jug acetate C e q / I ) 

— i — « * 

200 

Fig. AOC reduction by filtration of water with different AOC 

concentrations in the influent (AOC.). For symbols see Fig. 3. 
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poorer than with rapid sand filtration. 
The obtained AOC reductions as observed for slow sand filtration 

are relatively small but greater than expected with eq. 5. It seems 
that a significant further reduction of AOC concentrations, which 
are below 10 to 15 yg of acetate C eq./l, is hard to achieve with 
biological processes during filtration through an inert material 
(Fig. 5). 

Effects of coagulation 
Coagulation and sedimentation in combination with breakpoint 

chlorination gave an AOC reduction of 92 % at Andijk (Fig. 2 ) . At 
Kralingen an AOC reduction of 50 % was observed after coagulation 
and sedimentation. The AOC concentration of ozonated water was 
reduced by 60 % after coagulation and sedimentation at Weesper-
karspel, but without ozone dosage this treatment caused a small AOC 
increase. Small increases were also observed in Baanhoek and Oranje
laan (Fig. 2 ) . In all cases studied, starch-based coagulant aids had 
been applied, which, if remaining in the treated water, as such do 
not influence AOC because isolate P17 is unable to utilize starch. 
Biodegradation of these compounds during the coagulation and 
sedimentation processes, might liberate low molecular weight 
compounds contributing to the AOC concentration. 

Effects of ozone, chlorine (and chlorine dioxide) 
Ozonation clearly increased the AOC concentration. The ozone 

installation at Weesperkarspel was out of operation on the first 
sampling date (Fig. 2 ) . The AOC concentrations of ozonated water 
usually were above 100 yg of ac C eq./l and were more than 5 % of 
DOC (Table 5 ) . Although AOC values had increased and relatively high 
S values were obtained, compounds produced by ozonation and 
contributing to AOC seem to be more difficult to utilize by P17 than 

acetate, so that usually S /AOC < 1. 
' ' ac 

Chlorination usually caused a doubling of the AOC concentration, 
but in most cases the average relative biodegradability was reduced 
(Table 6 ) . Moreover the decrease of S values as observed at 

ac 
Kralingen and Zevenbergen suggests that the biodegradability of 
compounds contributing to the AOC concentration is decreased by 
chlorination. Strain P17 did not multiply within a period of one 
month in the water at Andijk, sampled after dosage of chlorine and 
chlorine dioxide. Thereafter growth was observed with higher N 

° max 
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values than before disinfection. In chlorinated water, isolate P17 

always multiplied directly after inoculation. Chlorine dioxide or 

its reaction products seem very persistent and may therefore be 

effective in repressing regrowth in water during distribution-

Table 5. Effect of ozonation on AOC and S 
ac 

Site 

Weesperkarspel 

before O3 

after O3 

Baanhoek 

before O3 

after O3 

Kraiingen 

before O3 

after O3 

Kralingen 

before 03d 

after O3 

AOC 

(ygC/l)b 

14;16 

117.124 

33;33 

116;95 

12;12 

102;79 

_ 

167;174 

DOC 

(mgC/1) 

7.2 

7.1 

4.0 

3.8 

3.0 

2.9 

_ 

3.0 

k0C/ x 100 

/DOC 

0.21 

1.7 

0.83 

2.8 

0.40 

3.12 

_ 

5.7 

% G 

(h) 

9.5;9.9 

8.7;8.3 

9.2;8.1 

5.7;6.0 

13.1;12.3 

7.9;7.7 

_ 

5.8;6.1 

S 
ac 

(ygc/i) 

5.1 

7.2 

7.0 

61.6 

3.0 

9.5 

_ 

48.1 

S 
ac 

AOC 

0.34 

0.06 

0.21 

0.58 

0.25 

0.10 

_ 

0.28 

Applied ozone dosage between 2-3.5 tag of O3 per liter 

In pg of acetate C equivalents per liter. 
C Generation time of P17 at 15°C. 

Not sampled. 

DISCUSSION 

The concentration of easily assimilable organic carbon as 

defined in this paper is related to the characteristics of the 

micro-organism used in the growth experiments. Isolate P17 belongs 

to the species P. fluovesaens, which is known for its extreme 

versatility in substrate utilization (Stanier et al. 1966). Previous 

investigations have shown that P. fluovesaens P17 is able to 

utilize a great variety of substrates present at a level of a few 

micrograms per liter (Van der Kooij et al, 1982a, Chapter 2). Never

theless, a number of biodegradable compounds, including methane and 

starch, are not utilized by members of this species. Thus methane, 
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as may be present in anaerobic ground water, and starch or starch

like compounds, which are used as coagulant aids, do no directly 

contribute to the AOC concentration as measured by the technique 

used in this study. Still, these compounds may promote microbial 

growth during treatment and distribution of the water. At present, 

experiments with representatives of the genus Flavobaoterium 

are performed to assess the presence of starch-like compounds in 

water. These bacteria are effectively utilizing starch and 

maltodextrins at very low concentrations (Van der Kooij and Hijnen, 

1981, Chapter 6; Van der Kooij and Hijnen, 1983, Chapter 7 ) . Methane 

can be determined by a simple gaschromatograhic technique. 

Acetate is produced by the reaction of ozone with humic acids 

(Ahmed and Kinney, 1950). The low S /AOC quotients in ozonated 
J ac 

water (cf. Table 5) suggest that acetate is only partially res

ponsible for the AOC increase as caused by ozonation. The identity 

of most compounds which contributed to the observed AOC increases is 

not known. Ozonation also results in the production of oxalic, 

glyoxylic and formic acids (Ahmed and Kinney, 1950; Kuo at al. 

1977), which are not utilized by P17. Recent studies reveal that the 

presence of these acids in ozonated water may be demonstrated by 

growth experiments with oxalate-utilizing bacteria. 

AOC concentrations were usually less than 1 % and in a few cases 

even less than 0.3 % of the DOC concentration. Low molecular-weight 

compounds therefore constitute a very small part of the organic 

carbon content of the water. In many samples, the maximum apparent 

acetate concentration (S ) was only a small proportion of the AOC 

concentration. The real acetate concentrations are less than the S 
ac 

values and remain unknown, as well as the identity of the other 
compounds contributing to the AOC values. The presence of compounds 

not contributing to the AOC concentration (apart from those 

mentioned above), but which are biodegradable by other micro

organisms occurring in water, soil or filters, cannot be excluded. 

The small DOC reductions (usually less than 0.5 mg of C/l) observed 

with rapid sand filtration and slow sand filtration indicate that 

either biodégradation of compounds not contributing to the AOC 

concentration is a slow process or that these compounds also 

contribute for a very minor part to the DOC values. Unfortunately, 

DOC determinations are not sufficiently accurate to provide reliable 

information about changes of a few tenths of a milligram per liter. 

Many of the compounds utilized by P17 are excellent substrates 
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for a large variety of bacteria. Therefore, a low AOC concentration 

in water to be distributed is an important requirement for the 

prevention of bacterial regrowth. The AOC concentrations of the 

water produced by the various treatment plants varied with nearly 

one order of magnitude depending on the type of raw water and the 

applied treatments (Fig. 2; Tables 2 and 6). The observations are 

only incidental and it is not clear yet to which extent seasonal 

variations occur. Additional data on AOC concentrations are also 

required to establish the relationship between this parameter and 

the level of bacterial and animal growth in the water during 

distribution. Such a relationship, however, is sometimes complicated 

by the presence of chlorine (or chlorine dioxide) in practical 

situations. On the other hand, it may be reasoned that water whose 

AOC content may be reduced significantly by biological filtration is 

not suited for distribution. This argument would indicate that the 

AOC content of water for distribution should be equal or less than 

approximately 10 to 15 yg of acetate C eq. (Fig. 5). In most 

treatment plants AOC concentrations close to this value were 

obtained after one of the filtration steps with biological activity 

(Fig. 2). 

The use of materials which do not release biodegradable 

compounds is also important in the prevention of microbiological 

activity in distribution systems. A variety of microbiological 

methods to investigate materials for this property have been 

described and applied (Burman et al. 1977; Schoenen et al. 1978; 

Ellgas and Lee, 1980). Recent experiments revealed that materials 

may also be tested by performing AOC determinations in water 

containing samples of such materials (Van der Kooij et al. 1982b). 

The results presented in this paper demonstrate that assessment 

of AOC concentrations may be used to study individual water 

treatment processes in which biological processes are prevailing, 

e.g. filtration processes, and to quantify interrelations between 

physical, chemical and biological processes. Figure 3 and Table 3 

reveal that the average specific AOC loads (AOC ) of GAC filters and 

slow sand filters differ 10 to 100 times. This difference is 

reflected in the average specific AOC reductions (AOC,,) in these 

filters and explains the observations that numbers of microorganisms 

in the filtrates of GAC filters generally are much higher than those 

in slow sand filtrates (Van der Kooij, 1978). An indication is 

obtained that adsorption in a GAC filter may contribute to reduce 
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the AOC content. Further investigations regarding the effects of the 

operational period of GAC filters on AOC removal are needed to 

estimate the interactions between biological processes and 

adsorption. 

The effect of chlorine on the AOC concentration may be explained 

by its oxidative capacity. It seems that addition of low concentra

tions of chlorine results in an increased concentration of compounds 

which may be utilized by strain P17. These compounds seem less 

readily biodegradable than compounds contributing to the AOC before 

chlorination (Table 6). Reaction of chlorine with carboxylic acids, 

proteins and amino acids (Murphy et al. 1975, Larson and Rockwell, 

1979), which are excellent substrates for P. fluorescens P17 

(chapter 2), may be responsible for the longer generation times 

observed in water after chlorination. In practice, stimulation of 

regrowth by chlorination seems possible (Windle Taylor, 1970). 

However, the question regarding limitation of the use of chlorine 

for post disinfection should first of all be answered in view of the 

necessity of such disinfection and of the health significance of the 

produced chlorinated organic compounds (Rook, 1974). The alternative 

use of chlorine dioxide, which seems to inhibit effectively 

regrowth, should be further evaluated. 
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4. Growth of Pseudomonas aeruginosa in tap water in 
relation to utilization of substrates at concentrations of a 
few micrograms per liter 

D. VAN DER KOOIJ, J.P. ORANJE, W.A.M. HIJNEN 

Appl. Environ. Microbiol. 44 (1982): 1086-1095 

Abstract 
Five Pseudomonas aeruginosa strains were tested for the 

utilization of 47 low-molecular-weight compounds as sole sources of 

carbon and energy for growth at a concentration of 2.5 g per liter. 

Of these compounds 31 to 35 were consumed. Growth experiments in tap 

water at 15 °C were carried out with one particular strain (P1525), 

isolated from drinking water. This strain was tested for the 

utilization of 30 compounds supplied at a concentration of 25 y g of 

C per liter. The growth rate (number of generations per hour) of 

P1525 in this tap water was approximately 0.005 h- 1 and with 10 

compounds it was larger than 0.03 h~l. An average yield of 6.2 x 10' 

CFU per mg of C was obtained from the maximum colony counts 

(colony-forming units per milliliter). The average yield and the 

maximum colony count of P1525, grown in tap water supplied with a 

mixture of 45 compounds, each in an amount of 1 yg of C per liter, 

enabled us to calculate that 28 compounds were utilized. Growth 

rates of two P.aeruginosa strains (including P1525) in various 

types of water at 15 °C were half of those of a fluorescent 

pseudomonad. The concentrations of assimilable organic carbon 

calculated from maximum colony counts and average yield values 

amounted to 0.1 - 0.7 % of the total organic carbon concentrations 

in 5 types of tap water. The assimilable organic carbon percentages 

were about 10 times larger in river water and in water after 

ozonation. 

INTRODUCTION 

The presence of Pseudomonas aeruginosa in surface water is 

generally associated with faecal pollution with raw or treated 

domestic sewage (2,9,29). Much attention is paid to the occurrence 

of the organism in tap water because of its opportunistic-pathogenic 

character. P.aeruginosa is usually not present in 100 ml 

volumes of piped or stored drinking water (4,7,14,22,25,30). The 

organism has frequently been isolated from contaminated drinking 

water and from drinking water in hot climates (15,20,23) but quality 

standards have rarely been defined (10). The ability of 

P.aeruginosa to grow in water at low concentrations of organic 
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Substrates has been studied in relation with its presence in water 

used in hospitals (1,3,5,6). The present paper describes the effect 

of various low-molecular-weight compounds on the growth of 

P.aeruginosa in tap water supplied with very low amounts of these 

compounds. 

MATERIALS AND METHODS 

Isolates 
Five strains of P.aeruginosa isolated from different 

habitats and belonging to different serological, pyocine and phage 

types were tested (Table 1). For comparison, a representative strain 

Table 1. Type and origin of the P.aeruginosa strains. 

Strain Serotype Pyocine type 

active passive 

Reacting phages Origin 

P1525 

4A 

6A 

M14 

6324 

(5)C 

NT C 

6 

1 

L 

15C NT 21;44;73;119x;1214++ Tap water 

16;31+;F7;F8;F10. 

15C 34D 21;44;73;109;119x+ River Lek 

15C 24D 21-H-; 119x + River Lek 

NT NT NT River Lek 

15C 54A 21; 119x+; F8+ Wound pus 

NT • nontypable 

Serotyping, pyocine typing and phage reactions performed by 

J. Borst, National Institute of Public Health (RIV), Bilthoven, 

The Netherlands 

Supplied by A.H. Havelaar, RIV. 

NT, nontypable 

(P17) of P.fluoresoens, obtained from tap water and belonging 

to biotype 7.2 (26) was included in a number of experiments. A 

detailed description of this strain has been given previously (28). 

Replica test 
Colonies of the isolates grown on a peptone beef-extract agar 

(Lab-Lemco, Oxoid Ltd.) were replicated onto plates of mineral salts 

agar supplied with separately sterilized carbon compounds at a 

concentration of 2.5 g/1. A metal device with twelve inoculation 
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pins was used for replication. The mineral salts agar consisted of 

the basal salts solution (27), solidified with 12 g of agar per 

liter. The replica plates were examined for growth after 2 and 7 

days of incubation at 25°C. 

Growth in tap water 
Growth in tap water was tested in 600 ml samples contained in 

rigorously-cleaned glass-stoppered Erlenmeyer flasks of Pyrex glass 

of 1 liter capacity (27). Drinking water originating from the 

Municipal Dune Waterworks of The Hague was used for measuring the 

effect of low concentrations of added substrates on the growth of 

P.aeruginosa. This water had been prepared from dune-infiltrated 

river (Meuse) water by the addition of powdered activated carbon, 

followed by rapid and slow sand filtration. It contained 3.6 mg. of 

organic carbon (TOC) and 7.3 mg of nitrate per liter. The 

autochthonous bacteria were eliminated by heating the sampled water 

at 60 °C for 1 hour. Compounds to be tested as carbon sources were 

added from similarly treated, freshly prepared solutions in tap 

water. A nitrogen source was not added because the tap water 

contained sufficient nitrate. 

In a few experiments the water was supplied with mixtures of 

substrates. The amino acids (AA) mixture included glycine, 

L-alanine, L-valine, L-leucine, L-isoleucine, DL-serine, 

L-threonine, L-lysine, L-arginine, L-asparagine, L-aspartate, 

L-glutamine, L-glutamate, L-tyrosine, L-proline, DL-tryptophan, 

L-histidine and DL-phenylalanine. The aliphatic carboxylic acids 

(CA) mixture included sodium formate, acetate, glycolate, 

glyoxylate, oxalate, propionate, DL-lactate, pyruvate, malonate, 

fumarate, succinate, L-tartrate, citrate and adipate. The carbo

hydrate (CHA) mixture included L-arabinose, D-glucose, D-maltose and 

the (poly)alcohols ethanol, glycerol and D-mannitol. The aromatic-

acids (AR) mixture included sodium benzoate, p-hydroxybenzoate, 

anthranilate, vanillate, phtalate, nicotinate and DL-mandelate. 

Stock solutions of the mixtures were prepared by dissolving the 

individual compounds in tap water at a concentration of 15 mg of C/l 

except glutamate which was used in a double concentration. After 

neutralization, the mixtures were sterilized (120 °C, 16 min) in 

Pyrex-glass bottles. 

To prepare the inoculum, a small amount of cells from a 24-h 

slant culture on Lab-Lemco agar was suspended in 9 ml of sterile tap 
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water. A volume of 0.1 ml of a decimal dilution of this suspension 

was added to 100-ml infusion bottles containing 50 ml of autoclaved 

tap water with 1 mg of glucose C per liter. The initial number of 

cells was less than 103 colony-forming units (CFU) per ml. Maximum 

colony counts (N ) in the infusion bottles of 4 to 6 x 10° CFU/ml 
J max 

were reached within a few days of incubation at 25 °C. Thereafter, 

the colony counts decreased very slowly and during a period of 

several months these cultures were used to inoculate the Erlenmeyer 

flasks (initial colony counts < 103 CFU/ml). The growth of the 

bacteria in the experimental solutions was assessed by periodic 

colony counts in triplicate, using the spread plate technique on 

Lab-Lemco agar plates (27). The generation times (G, in hours) were 

calculated for the period in which growth was exponential. The 

growth experiments in water were conducted in duplicate at 15 °C + 

0.5 unless otherwise stated. 

RESULTS 

Utilization of substrates at a concentration of 2.5 g per liter 
Out of 47 compounds, 31 to 35 were utilized by the 

P.aeruginosa isolates and P.fluoresoens P17 when tested 
with the replica procedure (Table 2). Strain P17 and the strains of 

P.aeruginosa differed only in the utilization of a few of the 

substrates tested. Differences among the various P.aeruginosa 

isolates regarding the utilization of a number of aliphatic amino 

acids, as well as the production of fluorescent pigments and the 

appearance of the colonies (results not shown) confirmed the 

heterogeneity of the strains as revealed by serotyping, pyocine and 

phage typing (Table 1). 

Utilization of substrates at very low concentrations 
With the exception of strain 6324, the P.aeruginosa 

isolates did not grow in the tap water of the Municipal Dune 

Waterworks of The Hague. Strain 6324 gave a G value of approx. 60 h 

and an N value of approx. 2 x 10* CFU/ml. These values approached 

those of strain P17 (Table 3). Addition of a mixture of 45 different 

compounds (total concentration added amounted to 46 Ug of C per 

liter) enhanced growth of all strains, including strain P17. 

Further tests were done with strain P1525, isolated from 

drinking water (Table 1), and with strain P6324 because of its 
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Table 2. Utilization of substrates at a concentration of 2.5 g / l i t e r 
by f ive P .aeruginosa s t r a i n s and P .fluoré s a ens 
strain P17 determined with the replica test 

Substrate 

Amino acids 

Glycine 

L-Alanine 

L-Valine 

L-Isoleucine 

L-Leucine 

DL-Serine 

L-Threonine 

L-Lyslne 

L-Arg inine 

L-Aspartate 

L-Asparagine 

L-Glutamate 

L-Glutamine 

L-Proline 

L-Histidine 

L-Tyrosine 

DL-Phenylalanine 

DL-Tryptophan 

L-Citrulline 

L-Ornithine 

Carboxylic acids 

Formate 

Acetate 

Glycolate 

Glyoxylate 

Oxalate 

Propionate 

DL-Lactate 

Pyruvate 

Malonate 

Fumarate 

Succinate 

L-Tartrate 

PI 7 

-

+ 
+ 
+ 
+ 
+ 

(+) 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

-
+ 

-
-
-
+ 
+ 
+ 
+ 
+ 
+ 
-

Utilization 

P1525 

-

+ 
+ 
+ 
+ 
-
-

(+) 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 
"+ 

-
+ 

-
-
-
+ 
+ 
+ 
+ 
+ 

+ 
-

4A 

-

+ 
+ 
+ 

+ 
-
-

(+) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

-
+ 

-
-
-

+ 
+ 
+ 

+ 
+ 
+ 
-

by strain: 

6A 

-

+ 
(+) 
(+) 
-
-
-

(+) 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

-
+ 

-
-
-
+ 
+ 
+ 
+ 
+ 
+ 
-

Ml 4 

-

+ 
+ 
+ 
+ 
-
-
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

-
+ 

-
-
-
+ 

+ 
+ 

+ 
+ 

+ 
_ 

6324 

-

+ 
-
-
-
-
-
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

-
+ 
-
-
-
+ 
+ 
+ 
+ 
+ 

+ 
_ 
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Table 2. Continued 

Substrate 

Citrate 
Ad i pa te 
Carbohydrates and 
(poly)alcohols 
L-Arabinose 
D-Glucose 
D-Maltose 
Ethanol 
Glycerol 
D-Mannitol 
Aromatic acids 
Benzoate 
p-Hydroxybenzoate 
Anthranilate 
Vanillate 
Phtalate 
Nicotinate 
DL-Mandelate 

P17 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 

+ 
-
-
-
-

Utilizat 

P1525 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 

+ 
+ 
-
-
+ 

ion 
4A 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 
+ 
+ 
-
-
+ 

by strai 
6A 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 
+ 
+ 
-
-
+ 

n:â 

Ml 4 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 
+ 
+ 
-
-
+ 

6324 
+ 
+ 

-
+ 
-
+ 
+ 

(+) 

+ 
+ 

+ 
+ 
-
-
+ 

+, Good growth; (+), weak growth; - ,no growth. 

Table 3. Growth of 5 different P. aeruginosa strains and 
P.fluoresaens strain P17 at 15 °C in the filtrate of 
slow sand filters, without and with a mixture of 45 
substratesa 

Strain 

PI 7 

P1525 

4A 
6A 
M14 
6324 

N 

(CFU/ml) 

80 
170 
320 
180 
140 
180 

Growth 

No substrates added 

G(h) 
b 

42; 46 

342;264 

244;232 

188;1022 

192;113 

65;53 

Nmax(CFU/ml) 

2.4xl04;2.7xl04 

- d ;5.6xl0 2 

1.4xl03;6.3xl02 

8.2xl02;2.9xl02 

4.2xl03;8.2xl02 

1.7xl04;2.1xl04 

Substrates added 

6(h) 

* 9u< 9 

12.7;11.3 

19.1;18.9 

14.0;14.2 

21.5;20.8 

17.3;14.9 

N (CFU/ml) 
max ' 

2.4xl05;2.5xl05 

1.7xl05;2.0xl05 

1.4xl05;1.4xl05 

1.7xl05;1.8xl05 

1.3xl05;1.3xl05 

"" » "" 
The concentration of each individual substrate was 1 yg of C per 

liter; glutamate was present at twice this concentration. 

N , Initial colony count (inoculum). 

Both values of duplicate experiments are shown. 

-, Not determined. 
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G " 1 ( h " 1 ) 

0.08n 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

strain P1525 

-I ,5, ,?, ,9, ,11, , q ,15, ,17, ,19, ,21, ,23 25, ,27, fâ 

G ( h ) 

r12.5 

strain 6324 

20 

•-•25 

50 

100 

200 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 17 22 25 28 30 

substrates 

Fig. 1 Growth rates (G-1, h-1) of P.aeruginosa isolates P1525 

and 6324 at 15 °C in tap water supplied with 25 and 10 pg of 

substrate C per liter. 1, p-Hydroxybenzoate; 2, L-Threonine; 

3, L-Citrulline; 4, DL,-Tryptophan; 5, L-Leucine; 6, DL-Phenyl-

alanine; 7, L-Lysine; 8, DL-Serine; 9, L-Tyrosine; 10, L-Alanine; 

11, L-0rnithine; 12, Glycine; 13, L-Valine; 14, L-Isoleucine; 15, 

Propionate; 16, Fumarate; 17, D-Glucose; 18, Glycerol; 19, Malonate; 

20, Citrate; 21, Succinate; 22, Pyruvate; 23, L-Aspargine; 24, 

L-Proline; 25, L-Aspartate; 26, L-Glutamate; 27, L-Glutamine; 28, 

Acetate, 29, DL-Lactate; 30, L-Arginine. , 25 yg of C per liter; 

, 10 |jg of C per liter; , blanks. Experiments not in 

duplicate except in blanks, for which the average values of G--*- are 

shown. 
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relatively rapid growth in drinking water (Table 3). A total of 30 
different compounds of low-molecular-weight were tested as sources 
of carbon and energy for growth of strain P1525 at 25 *̂g of C per 
liter. The growth rate (G-1) of strain P1525 was greater than 0.03 
h- 1 with 10 of the compounds tested (Fig.l). These compounds were 
also tested at 10 yg of C per liter. At this concentration G- 1 was 
greater than 0.03 h--*- only with arginine. An average yield (Y ) of 
6.2 x 10' CFU/mg of C was calculated from the N values observed 

° max 

Table 4. N values of P.aeruginosa 
different substrates added to tap water 

P1525 grown at 15°C on 

N (CFU/ml)e 

max 

25 yg of C/l 10 yg of C/l 

Acetate 
Pyruvate 
DL-Lactate 
Succinate 
L-Aspartate 
L-Asparagine 
t,-Glutamate 
L-Glutamine 
L-Proline 
L-Arginine 

.lxlO5 

.3xl05 

.6xl05 

_b 

•3xl05 

.5xl05 

.8xl05 

.9xl05 

.7xl05 

1.6xl05 

,7xl04 

,4xl04 

,9xl04 

,7xl04 

,3xl04 

.9xl04 

6.9xl04 

9.7xl04 

6.6xl04 

Average yield (CFU/mgC) 6.2x10s 

a 
b 
c 

Single values. 
-, Not determined. 
N of the blanks was less than 10^ CFU/ml and was therefore 

max 
neglected in the calculation of the average yield (Y ) . 

with these 10 substrates (Table 4 ) . Strain P1525 grew at a very low 
rate in tap water supplied with amino acids (25 yg of C per liter) 
which were not utilized by the organism at a concentration of 2.5 g 
per liter (viz. glycine, serine, threonine; Table 2) and N values 
(< 4 x 10^ CFU/ml) did not exceed those of the blanks. However, very 
low rates of growth were also observed at 25 y g of C per liter with 
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a number of amino acids which were utilized at a concentration of 
2.5 g per liter. Moreover, the colony counts of strain P1525 in 
presence of these compounds did not exceed 1CP CFU/ml after 15 days 
of incubation at 15 °C. Very low rates of growth and low colony 
counts also were observed with propionate, fumarate, D-glucose, 
glycerol and malonate. 

Isolate 6324 was supplied with less compounds than P1525 (Fig. 
1). The more rapid growth of this strain as compared to P1525 at 10 
ug of C per liter may be explained by its ability to multiply in tap 
water without added substrate (Table 3). 

Table 5. Growth response of P.aeruginosa P1525 to mixtures of 
different substrates added to the filtrate of slow sand 

filter 

Mixture addec 

(no. compounds 
mixture) 

None 
AR(7) 
CHA(6) 
CA(14) 
AA(19) 
TM(46) 

Incubation 
b 

s. 

in 

tempe 

Amount of supplied 
assimilable carbon 

(pg of C/l)b 

-

5 
4 
9 

16 
34 

rature, 15 °C. 

G (h) 

401 ;236 
270 ;256 
125 ;144 

89 ; 77 
21.5;21.7 
16.1;18.0 

Growth0 

N (CFU/ml) max 

7.5xl02; 8.3xl03 

1.7xl03; 4.7xl03 

1.2xl03; 9.5xl02 

3.5xl03; 2.0xl04 

l.lxlO5; l.lxlO5 

1.8xl05; 1.7xl05 

Total concentration of the compounds utilized in the replica 
test (cf. Table 2 ) . 
Both values of duplicate measurements are shown. 

Generation times of P1525 with the AA mixture were nearly equal 
to those with the total mixture, indicating that the amino acids 
were particularly growth promoting (Table 5 ) . Of the other mixtures, 
only the carboxylic acids enhanced growth, but the rate of growth 
was very low and after 77 days N values were not yet reached. The 

' max ' 
N values shown in Table 5 reveal that compounds included in the 

max * 
CA, AR and CHA mixtures were more effectively utilized when 
incorporated in the total mixture than when present in separate 
mixtures. 65 



Utilization by strain P152S of aspartate and acetate supplied at 
different aonaentrations 

A linear relationship between the N values of P1525 and the 
max 

concentration of added substrate (AS) was obtained by growth of 
P1525 in tap water supplied with different amounts of either 

aspartate or acetate (Fig. 2). From these results, a Y value of 

Nm a xd04CFu/ml) 

0 10 20 30 40 50 60 70 80 90 100 

substrate added (/ugC/l ) 

Fig. 2 Maximum colony counts of P.aeruginosa P1525 in tap 

water supplied with different amounts (yg of C per liter) of either 

acetate (•) or aspartate (O)• 

5.3 x 10' CFU per mg of acetate C and of aspartate C, was cal

culated. Plotting G against AS~^ revealed different linear relation

ships between G and A S - 1 (Fig. 3 ) . Such relationships may be 

expressed by the following Lineweaver-Burk equation: 

G . + (G . 
min min 

K /AS) 
s (1) 
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i — ' — i — ' — i — r 
0.15 0.2 

AS-1(^igC/l ) _ 1 

Fig. 3 Generation times of P.aeruginosa P1525 in tap water in 

relation to the reciprocal values (yg of C per liter)--*- of different 

concentrations (AS) of added acetate (•) and aspartate (O)• 

in which G . is minimal G and K is the substrate saturation 
m m s 

constant, the substrate concentration at which G is equal to 2 G 

The equations for growth with aspartate and with 

presented in Table 6 together with the K values. 

min 
acetate are 
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Table 6. Kinetics of growth of P. aeruginosa P1525 with 

aspartate or acetate at 15°C. 

Substrate 

L-Aspartate 

Acetate 

Adapted Lineweaver-

equation 

G - 6.0+676/AS 

G - 11.7+328/AS 

Burk 

K 
s 

yg of c/1 

113 

28 

UM 

2.3 

1.2 

a G = G . + G . . K /AS. This equation is described in the text, 
min min s n 

Growth of P'.aeruginosa isolates P1S2S and 6324 and P.fluoré s eens PI? 
in various types of water 

Table 7 gives generation times and N values of strains P1525, 
max 

6324 and P17 in a few types of tap water, in ozonated water and in 
river water. In these water types, NO3 nitrogen was present in 

concentrations between 1.2 and 3.6 mg per liter and therefore was 

not growth limiting. From the average yield of strain P1525 on a 

number of substrates (cf. Table 4) and the N values presented it 
max r 

may be concluded that the concentration of assimilable organic 
carbon (AOC) available for P1525 varied from less than 0.1 yg of C 

per liter (tap water 2) to 150 yg of C per liter (ozonated water). 

For strain P17 a yield of 4.2 x lu" CFU/mg of acetate C has been 

obtained (28). Hence, the AOC available for strain P17 varied from 

1.4 (tap water 4) to 200 (ozonated water) y g of acetate C equi

valents per liter. 
In general, N values of strain P1525 and 6324 did not differ 

max 
much from those of strain P17 (cf. Tables 3 and 7) suggesting that 

the three organisms were utilizing similar substrates. This 

suggestion is supported by the observation that strain P17 did not 

grow in river water in which maximum numbers of strain P1525 had 

grown. Moreover, strain 6324 was unable to grow in river water in 

wich strain P17 had reached N (Fig. 4 ) . In all types of water 
max v e }V 

tested, strain P17 grew more rapidly than strains P1525 and 6324, 

the growth rate of these organisms being about half the growth rate 

of strain P17 (Fig. 5). Therefore, it is expected that at a 

temperature of 15 °C P.aeruginosa cannot attain large numbers 
68 



Table 7. Growth of P. aeruginosa P1525 and 6324 and 

P.fluovescene P17 at 15°C in four types of tap water, in 

ozonated water and in river water. 

Water source 

Tap water 1 

Tap water 2 

Tap water 3 

Tap water 4 

Ozonated water 

River water 

TOC 

(mg/D 

2.1 

2.8 

5.8 

2.3 

- 2.9 

3.4 

G(h) 

17.9 

14.6 

18.8 

19.5 

8.7 

9.9 
25.5 

24.2 

5.3 
5.1 
4.1 

4.2 

PI 7 

N 
max 

(CFU/ml) 

1.2xl05 

9.9xl04 

8.4xl04 

6.9xl04 

1.9xl05 

1.7xl05 

5.9xl03 

5.5xl03 

8.4xl05 

8.3xl05 

3.5xl05 

3.4xl05 

Growth of strain 

P1525 

G(h) 

47.8 

42.7 

388 
155 
15.9 

22.3 

33.3 

39.1 

7.8 
8.3 
9.3 
9.5 

N 
max 

(CFU/ml) 

9.3xl04 

9.1xl04 

3.7xl02 

5.7xl02 

l.lxlO5 

1.3xl05 

l.lxlO3 

9.7xl02 

9.7xl05 

9.5xl05 

2.7xl05 

3.1xl05 

: 

6324 

G(h) 

29.1 

22.1 

28.6 

35.9 

26.2 

22.5 

72.0 

60.1 
_g 

-

8.3 
6.8 

N 
max 

(CFU/ml) 

1.2xl05 

1.2x105 

9.7xl04 

7.1xl04 

1.5xl05 

1.4xl05 

4.7xl03 

6.7xl03 

-
-

4.9xl05 

4.8xl05 

Prepared from stored river (Meuse) water by coagulation/sedimen

tation, ozonation, dual-media filtration, activated-carbon 

filtration and chlorination. 

Prepared from pretreated and dune-infiltrated river (Lek) water by 

rapid sand filtration, slow sand filtration and chlorination. 

Prepared from polder water after précoagulation and storage in an 

open reservoir followed by rapid sand filtration, ozonation, 

coagulation/sedimentation, rapid sand filtration, slow sand 

filtration and chlorination. 

Prepared from anaerobic ground water by aeration and rapid 

filtration. 

Stored river (Meuse)water, ozonated after coagulation. 

From the river Lek which receives its water from the river Rhine. 

-, Not tested. 
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days 

Fig. 4 Growth curves of P.fluoveeoens PI 7 (•), P.aeruginosa 

P1525 (•) and 6324 (A) in pasteurized river (Lek)water at 15 °C. 

Growth curves of P.fluovesaens P17 (O) in river water in which 

strain P1525 had reached N and growth of strain 6324 (A) in river 
max ° 

Lek water in which strain P17 had reached N • Colony counts (IT) 
max ' t 

of strain P17 growing in the presence of strain P1525 were 
determined by incubation of the plates at 10 °C. Colony counts of 

strain 6324 growing in the presence of strain P17 were determined by 

incubation of the plates at 37 °C. Solid and dashed lines represent 

duplicate experiments. 

in water where bacteria such as strain P17 are present. 

Competition is further demonstrated by the effect of 

autochthonous bacteria, added to the heated tap water, on the growth 

of strain 6324. Even when the water had been supplied with the total 

mixture of substrates (46 y g of C per liter) growth of strain 6324 
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G-1 (h-1) P. aeruginosa 

Fig. 5 Growth rates (G-1, h-1) at 15 °C of P.aeruginosa P1525 

(O) and 6324 (•) in various types of water (cf. Table 7) in relation 

to the growth rates of P.fluorescens P17 in these waters. 

was effectively repressed, by the more rapidly developing 

autochthonous bacteria. Further incubation resulted in a pronounced 

decrease of the colony counts of strain 6324, whereas the 

autochthonous bacteria remained present in larger numbers (Fig. 6). 

The similarity of the duplicate experiments clearly demonstrates the 

reproducibility of the processes which determine the growth of the 

various groups of bacteria. 

The described experiments reveal that P.aeruginosa is able 

to grow at relatively low concentrations of substrates. In natural 

environments, however, the organism can not compete effectively with 

many aquatic bacteria, including fluorescent pseudomonads such as 

strain P17. 
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Fig. 6 Growth curves of P.aeruginosa strain 6324 in the 

presence of autochthonous bacteria in tap water and in tap water 

supplied with the total mixture of substrates (46 y g of C per 

liter); Symbols: (•) strain 6324 and (O) autochthonous bacteria in 

the tap water without substrates added; (A) strain 6324 and (A) 

autochthonous bacteria in the tap water supplied with substrates. 

Solid and dashed lines represent duplicate experiments. For colony 

counts (N ) of strain 6324 the Lab-Lemco agar plates were incubated 

at 37 °C; colonies of the plates at 25 °C for 10 days. 

DISCUSSION 

Utilization of amino acids at low concentrations by P.aeruginosa 
Utilization of substrates by P.aeruginosa at a concentra

tion of 2.5 g/1 (Table 2) gives no information about the utilization 

of these substrates at a very low concentration. Similar obser-
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vations have been reported for an Aeromonas hydrophila isolate 

(27). Arginine was found to be the most effective of the growth-

promoting compounds tested at 10 and 25 yg of C per liter with 

P1525. In this respect the organism resembles P.fluoresaens 

P17 (28). A preference of P.aeruginosa for arginine has also 

been reported by Kay and Gronlund (12), who found that this amino 

acid was rapidly taken up by the cells when present at a concentra

tion of 1 yM. Moreover, the greatest chemotactic responses of 

P.aeruginosa have been observed with amino acids of which 

arginine, with a threshold of 0.7 yM, was the best attractant 

(18,19). Citrulline and ornithine, intermediates of the degradation 

of arginine by the arginine-delminase pathway in P'.aeruginosa, 

did not favour growth of strain P1525 when present at a low concen

tration (Fig. 1). The arginine-decarboxylase pathway seems to be the 

main degradation route in aerobically grown cells of P.aeruginosa 

(16). Hence, no relation may be expected between growth on arginine 

on the one hand and on citrulline and ornithine on the other. 

The N values of strain P1525 obtained with the AA mixture 
max Q 

(Table 5) and the Y value of 6.2 x 10y CFU/mg of C (Table 4) 
a 

revealed that 18 y g of C, i.e. approximately all of the amino acids 
present in the mixture, were utilized. Obviously, many amino acids 

were more efficiently utilized at a concentration of 1 y g of C per 

liter when present in a mixture at a total concentration of 19 y g of 

C per liter than when present singly at a concentration of 25 yg of 

C per liter. The presence of constitutive transport systems in 

growing cells of P.aeruginosa for the uptake of most naturally 

occurring amino acids (12) may have been responsible for this 

phenomenon. Even amino acids which did not serve as the sole source 

of carbon and energy may have contributed to the production of 

biomass during growth with the amino acids mixture. 

Many substrate-saturation constants for amino acid transport 

(K ) by P.aeruginosa are below 1 yM (11 - 13). Assuming that 
G . of strain P1525 with arginine is similar to G . with 

min ° min 
aspartate, a K value of approximately 0.4 yM of arginine may be 

calculated using the growth rates of strain P1525 at 10 and 25 yg of 

arginine C per liter (Fig. 1 ) . For aspartate a clearly higher K 

value (2.3 yM) was obtained (Table 6 ) . To what extent K and K 
t s 

values are similar may be estimated with uptake experiments with 
radio-actively labeled substrates combined with growth experiments 
as described in this paper. The K values of strain P17 were 0.04 yM 
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and 0.34 pM for arglnine and aspartate, respectively (28). This 

organism seems much better adapted to growth at low concentrations 

of individual amino acids than strain P1525. 

Utilization of oavboxylia acids, carbohydrates, (poly)alcohols and 
aromatic acids at low concentrations by P.aeruginosa 

Low concentrations of lactate, pyruvate, succinate and 

particularly acetate clearly promoted growth of P.aeruginosa P1525 

and 6324 (Fig. 1). Yet the K value of strain P1525 for acetate (1.2 

pM) is high as compared to that of strain P17 (0.17 pM) for this 

substrate (28). Glucose and glycerol uptake by P.aeruginosa 

are dependent on inducible transport systems with a K value of 

about 8 pM (8,17,24). This value, which is 10 times above the K 

value of strain P17 for glucose (28), may explain the low growth 

rates of strain P1525 with glucose and glycerol each at a 

concentration of 25 pg of C per liter (Fig. 1). The aromatic acid 

p-hydroxybenzoate is an excellent substrate for P.aeruginosa 

(Table 2) and nearly all fluorescent pseudomonads (26) at a high 

concentration. At 25 pg of p-hydroxybenzoate C per liter, 

growth of strain P1525 is very slow (Fig. 1 ) . Therefore, the K 

value of strain P1525 for this compound seems to be higher than the 

one obtained for strain P17 (0.76 pM) (28). 

The poor growth of strain P1525 with the CA, CHA and AR mixtures 

(Table 5) seemed only partly due to a lack of sufficient suitable 

substrates in these mixtures. The difference between N values 
max 

observed with the total mixture and the AA mixture indicates that 

about 10 compounds other than amino acids were taken up at 1 pg of C 

per liter during growth with the total mixture. The identity of 

these compounds was not further determined, but the rapid growth 

with a number of carboxylic acids (Fig. 1) suggests that a least a 

few of these compounds were involved. However, half the number of 

potential substrates other than the amino acids were not utilized by 

cells of P.aeruginosa growing with amino acids (total mixture). 

Growth of P.aeruginosa in water without added substrates 
Despite the - ability of P.aeruginosa to utilize amino acids 

and a number of carboxylic acids at very low concentrations, the 

organism grew at a low rate in the types of tap water tested. The 

A0C concentration available for P.aeruginosa in these water 

types constituted only 0.1 - 0.7 % of the TOC concentration. The 
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identity of the utilized compounds remains unknown and it cannot be 
excluded that the P'.aeruginosa strains studied are able to 
grow with more compounds at low concentrations than those tested in 
this study (Fig. 1). Yet it is clear that dissolved free amino acids 
and carboxylic acids as used in the described experiments are a very 
minor part of the organic carbon in tap water. This may be the 
result of the various filtrations with biological activity, viz. 
rapid sand filtration, activated-carbon filtration, slow sand 
filtration (Table 7 ) . The AOC concentration in river water and 
ozonated water was 2.3 and 5.4 % of the TOC concentration, 
respectively. In ozonated water biodegradable low molecular weight 
compounds are present as a result of the effect of ozone on the 
large molecules of humic and fulvic acids. 

The N values for tap water, obtained in this study, are 10 to 
max 

100 times below those of P.aeruginosa strains grown in 
distilled water, in inorganic salt solutions and in tap water 
(1,3,6). The maximum colony counts reported in those papers 
(10° to 10^ CFU/ml) indicate that the waters examined were not 
really poor in organic substrates, because AOC concentrations 
calculated from these N values and Y = 6.2 x 109 CFU/mg C (Table 

max 
4) varied from 0.16 to 1.6 mg of C per liter. 

In most water types tested in this study, growth rates of 
P.ftuoresaens PI7 were about twice as high as those of the 
P.aeruginosa isolates (Fig. 5). G . values of strain P17 (28) 
were about half those of strain P1525 on acetate and aspartate at 
15 °C (Table 6 ) , possibly as a result of the mesophilic character of 
P.aeruginosa.' Therefore, differences between growth rates of 
strain P17 and those of the P.aeruginosa strains in the 
various types of water may be due mainly to differences in G . 

min 
values, suggesting that the average K values of strains P17 and 
P1525 with substrates present in water are similar. Such a 
similarity would be in contrast with the difference between K 

s 
values of strains P17 and P1525 as observed in this study for single 
substrates. This difference may be less pronounced when the 
organisms are growing with a number of substrates. 

A large variety of P.aeruginosa serotypes have been 
observed in aquatic environments (10). To what extent specific 
serotypes differ in their adaptation to low substrate concentrations 
is not clear, but the differences observed between strains P1525 and 
6324 (Fig. 1; Table 7) demonstrate some inhomogeneity of the species 
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in this respect. The presence of specific P.aeruginosa types 
in water may also be affected by other properties, e.g. slime pro
duction in chlorinated water (21). P.fluoresoens P17 resembles 
the P.aeruginosa isolates in respect of their nutritional 
versatility (Table 1) and their ability to denitrify (26). Yet 
fluorescent pseudomonads belonging to the same biotype as strain P17 
are found far more frequently in tapwater and in surface water than 

P.aeruginosa (26). The ability of strain P17 to grow more 
rapidly than P.aeruginosa in water at relatively low temper
atures while utilizing similar substrates (Fig. 4) explains this 
difference. At water temperatures where G . of P.aeruginosa 
is equal to or below G . of the psychrotrophic fluorescent ^ min r ' r 

pseudomonads, the latter organisms may become replaced by 
P.aeruginosa- Indications for such a temperature effect have 

been presented repeatedly (10,14,20,23). The minor contribution of 
fluorescent pseudomonads to the bacterial flora of water (25) 
suggest that in these situations P.aeruginosa will also be 
only a minor component of the bacterial flora. 
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5. Growth of Aeromonas hydrophila at low concentrations 
of substrates added to tap water 

D. VAN DER KOOIJ, A. VISSER AND W.A.M. HIJNEN 

Appl. Environ. Microbiol. 39 (1980): 1198-1204 

Abstract 
The ability of an Aeromonas hydrophila isolate obtained 

from sand filtered river water to grow at low substrate concentra

tions was studied in batch experiments with tap water supplied with 

low concentrations of substrates. Growth was assessed by colony 

count determinations. The isolate only multiplied in the used tap 

water (2 to 3 mg of dissolved organic carbon per liter) after the 

addition of a small amount of an assimilable carbon compound. D-

Glucose especially caused growth of the organism even at initial 

concentrations below 10 yg of C per liter. At initial glucose con

centrations below the K value (12 yg of C per liter), generation 

times and yield (colony-forming units per milligram of substrate C) 

were nonlinear with 1/initial glucose concentrations and initial 

glucose concentrations, respectively. From these observations, the 

maintenance coefficient m was calculated (m = 0.015 mg of glucose 

per mg dry wt per h at 12 °C). At initial concentrations below the 

K value of starch (73 g of C per liter), no growth was observed, 

but complete utilization of starch occurred in these situations 

after the addition of 10 y g of glucose C per liter. The results of 

this study show that information of ecological significance may be 

obtained by very simple batch experiments. Moreover, the isolate 

studied may be used in growth experiments to assess the maximum 

concentration of glucose which might be present in water, 

particularly tap water. 

INTRODUCTION 

Representatives of the species Aeromonas hydrophila have 

frequently been observed in dairy products (11), wastewater (2, 19), 

surface water (5, 8, 19), ground water (21), and tap water (2, 12, 

22, 25). The occurrence of A. hydrophila in surface water may 

result from pollution with wastewater, in which it multiplies (19), 

as well as from its predominant presence in the alimentary tract of 

fishes (23). The ability of the organism to act as a fish pathogen 

(7) may also be important in this respect. 

Von Wolzogen KUhr (28) demonstrated that Pseudomonas 

fermentans, which is identical to A . hydrophila, was 
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present in tap water as a result of contamination of this water by 

the faeces of chironomid larvae which were growing in a sand filter. 

In tap water, aeromonads usually constitute a minor part of the 

bacterial flora (25). However, the presence of these organisms is 

undesirable because they interfere with the determination of c o n 

form bacteria, producing false-positive reactions (12). Moreover, 

A. hydrophila is known to be an opportunistic pathogen for humans 

(10, 18, 20, 26). 

The aim of the present investigation was to obtain information 

about the growth of A. hydrophila at low substrate concentra

tions as part of an investigation on the behavior of different types 

of bacteria in tap water. 

MATERIALS AND METHODS 

Pure cultures 
An aerogenic A. hydrophila isolate, strain 315, was 

obtained from the filtrate of a rapid sand filter supplied with 

river water. The isolation and identification procedures have been 

described previously (25). Two additional aerogenic A. hydrophila 

isolates, strains 578 and 666, were obtained from two types of tap 

water prepared from surface water. 

Basal salts solution 
The solution contained, per liter of demineralized water, the 

following: NH4CI, 0.5 g; Na2HP04.12H20, 0.5 g; KH2PO4, 2.7 mg; 

K2HP04.3H20, 5.3 mg; MgS04.7H20, 50 mg; CaCl2.2H20, 50 mg; 

MnS04.H20, 5 mg; FeSÛ4.7H20, 3 mg; ZnS04.7H20, 0.1 mg; CuS04.5H20, 

0.1 mg; CoCl2.6H20, 0.05 mg. The pH was 6.8 after sterilization. 

Preparation of glassware and medium 
The experiments were performed in 1-liter, calibrated, conical, 

glass-stoppered Pyrex glass flasks. These flasks were cleaned with a 

10 % solution of K2Cr207 in concentrated H2SÛ4, followed by rinsing 

with hot tap water, a 10 % HNO3 solution, and hot tap water again. 

Thereafter, they were heated overnight at 250 to 300 °C. The 

pipettes (1 ml) were cleaned in the same way. The cleaned flasks 

were filled with 600 ml of tap water (deviation usually less than 

3.5 % ) . The tap water originated from the municipal Dune Waterworks 

of The Hague, where it is prepared from dune-infiltrated river water 
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by the addition of powdered activated carbon, followed by rapid and 

slow sand filtration, respectively. The final water contained 2 to 5 

mg of dissolved organic carbon per liter and 8 to 9 mg of N03~-N per 

liter and had a pH between 7.1 and 7.5. 

The vegetative cells of the bacteria present in the sampled tap 

water were killed by placing the flasks in a water bath at 60 °C for 

3 h. After cooling, NH4CI and Na2HPC>4.I2H2O, usually in concentra

tions of 1.16 mg of N per liter and 83 y g of P per liter, and 

organic compounds as sources of energy and growth, were added from 

separately heated solutions. The inorganic compounds were supplied 

to ascertain that only the organic compounds were growth limiting. 

Préparation of the inoculum 
After counting cell numbers in a Bürker-Türk counting chamber, a 

turbid suspension of a 24-h slant culture of strain 315 in sterile 

tap water was inoculated into a 100-ml infusion bottle containing 

50 ml of sterile tap water. This suspended culture that initially 

contained about 5 x 10^ colony-forming units (CFÜ) per ml was stored 

at 25 °C and repeatedly used for inoculating the test flasks. In 

some experiments strain 315 was pregrown in the basal salts solution 

containing D-glucose, acetate, starch, or glycerol at an initial 

concentration of 1 mg of substrate C per liter. Strains 578 and 666 

were only pregrown in the basal salts solution with 1 mg of acetate 

C per liter. Cells pregrown on an added carbon source were only 

inoculated into the test flasks when the stationary phase (usually 

2 x 106 to 3 x 106 CFU/ml at 1 mg of substrate C per liter) had been 

reached in the precultivation bottle. The initial concentration of 

cells in the test flasks usually ranged from 50 to 200 CFU/ml. 

Determination of growth 
After inoculation, the flasks containing 600 ml of tap water and 

the test compounds were incubated at 1 5 + 1 °C. The growth curves 

were obtained by a periodic determination of the colony counts (N , 

CFÜ per mililiter). For this purpose, the spread plate technique was 

applied by plating 0.05 ml in triplicate from decimal dilutions on 

predried Lab-Lemco (Oxoid) agar plates. The colonies of the 

aeromonads were clearly visible after an incubation period of 18 to 

20 h at 25 °C. The generation time G (in hours) of the colony-

forming cells under the experimental conditions was calculated with 

the equation G = log (t' - t)/(log N ' - log N ) , where t' - t = 
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the incubation time (in hours) during which N increased to N '. 

These calculations were performed for the period that the growth 

curve was found linear with time in a half-logarithmic plot. All 

experiments were performed in duplicate. 

RESULTS 

Growth of A. hydrophila strain SI5 on different aompounde at a con
centration of 1 mg of 8ubstrate-C per liter 

D-Glucose, DL-lactate, acetate, L-glutamate, and succinate were 

tested as substrates for growth (Table 1). The aeromonad grew 

Table 1. Growth of A. hydrophila strain 315 at 15 

presence of substrates added to tap water 

in the 

Substrate added 

(1 mg of C 

per liter) 

None 

Glucose 

Acetate 

Glutamate 

Succinate 

Lactate 

Gb 

No growth 

4.1 
12.2 

12.9 

63.9 

100 

(h) 

No growth 

3.9 
10.5 

11.5 

82.4 

100 

N (xlO6 CFU/ml) max 

No growth 

4.2 
3.8 
1.8 
_c 

-

No growth 

3.8 

2.9 
1.9 
-
-

3. i 

All flasks received 0.15 mg of NH^-N per liter. 

Data from duplicate flasks are presented in corresponding 

sequence. 

-, No data. 

immediately on 1 mg of glucose C per liter, whereas with acetate and 

glutamate, lag periods of 2 and 7 days were observed (Fig. 1). 

Growth on succinate and lactate was extremely slow; therefore, 

maximum colony counts (N ) were not estimated. In tap water 
' max r 

without added substrate no growth but a die-off of cells was 

observed, indicating that the organic carbon compounds originally 

present were not suitable substrates for the aeromonad. 
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log (cf.uVml) 

71-

Fig. 1 Growth of A. hydvophila strain 315 on different 

compounds added to tap water at a concentration of 1 mg of substrate 

C per liter. Symbols: O, glucose; A , acetate; G, glutamate; •, 

succinate; A, lactate; lines without symbols, blancs. Solid and 

broken lines indicate duplicate experiments. 

Table 2. Growth of A. hydvophila strain 315 at 
glucose added to tap water (series B ) a 

12 

Substrate added 

(pg of C 
per liter) 

None 
2.5 
5.0 

10.0 
25 

1,000 

No 

Gb 

g rowth 
72.4 
32.7 
14.9 
9.4 
6.9 

(h) 

No growth 
75.1 
33.4 
16.5 
12.0 
7.5 

W (CFU/ml) 

No growth 
4.7 x 103 

1.2 x 104 

3.5 x 104 

1.1 x 105 

3.3 x 106 

No growth 
4.7 x 103 

1.1 x 104 

3.6 x 104 

9.3 x 104 

3.3 x 106 

a Inoculum derived from a flask from series A initially containing 
100 pg of glucose C per liter. 
Data from duplicate flasks are presented in corresponding sequence 
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Utilization of glucose at low concentrations 
Two series of experiments (A and B) with glucose revealed that 

growth of the isolate was caused even by the addition of 2.5 pg of 
glucose C per liter of tap water (Table 2 ) . The relationship between 
N and initial glucose concentration (S) was linear when S was 

max ° 
5. 10 yg of glucose C per liter (Fig. 2 ) . From this linear relation
ship, a yield of 3.7 x 10' CFU/mg of glucose C was calculated. 
During the experiments of series B, the incubation temperature was 
12 °C, resulting in a prolonged G at S = 1 mg of glucose-C per 
liter, as compared with earlier results (Table 1) when the 
temperature was 15 ° C 

Nmax (c.fu./ml) 

10 10 
glucose-C (mg/l) 

Fig. 2 The observed N in relation to the amount of glucose added 
max e 

to tap water. Symbols: 0> series A; Q, series B. 
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As the utilization of glucose may have been influenced by the 

precultivation carbon source, an experiment on glucose (10 yg of C 

per liter) was conducted with cells of strain 315 pregrown in the 

basal salts solution with 1 mg of acetate C per liter. The organism 

was found to grow rapidly with a lag phase less than 24 h, 

suggesting that its glucose uptake is controlled by a constitutive 

enzyme system with a high substrate affinity. 

Two other representatives of A. hydrophila, strains 578 

and 666, obtained from tap water were tested for their ability to 

grow at low glucose concentrations. During an incubation period of 

11 days in tap water without glucose, N of both isolates decreased. 

The addition of 10 yg of glucose C resulted in distinct growth with 

N and Gs identical to those found with strain 315 in a similar 
max 

situation. 

Utilization of starch at low concentrations 
A. hydrophila may produce extracellular enzymes for the 

hydrolysis of proteins, blood cells, starch, chitin, and lipids. 

However, information is lacking about the effect of low 

concentrations of macromolecular compounds. Experiments with strain 

315 revealed that added starch only produced growth when S was 

£. 100 yg of starch C per liter of tap water. Still no increase of 

N was observed at initial concentrations of 10 and 25 yg of starch 

C per liter after an incubation period of 21 days. On day 21, the 

inoculum in the bottles without growth was raised with glucose-grown 

cells to about 1,600 CFU/ml. After another 15 days of incubation, no 

increase of cells was again observed. Then, 10 y g of glucose C per 

liter was added to the flasks, immediately resulting in growth. 

The results of this experiment (Table 3) show that a linear 

relationship existed between the observed N values and the 
max 

starch-C concentrations of 100 yg per liter and above. The obviously 
complete utilization of 100 y g of starch C per liter reveals that 

strain 315 is able to utilize this compounds at very low concentra

tions. This conclusion is supported by the N values of the 
max 

starch-containing bottles supplied with 10 y g of glucose, which 
approximated the sum of the values that could have been expected by 

the complete use of both starch and glucose. 
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Table 3. Growth of A. hydrophila strain 315 at 15 °C 

added to tap water 

on starch 

Substrate C added 

(per 

Starch 

None 

10 yg 

10 yg 

25 yg 

25 yg 

100 yg 

1 mg 

10 mg 

liter) 

Glucose 

None 

None 

10 yg 

None 

10 yg 

None 

None 

None 

No 
No 

No 

GC 

growth 

growth 

12.4 

growth 

9.8 
6.4 
3.3 
3.8 

(h) 

No 
No 

No 

growth 

growth 

13.9 

growth 

10.3 

6.1 
3.7 
3.3 

N C 

max 

No growth 

No growth 

6.1 x 104 

No growth 

1.4 x 105 

3.9 x 105 

3.0 x 106 

3.2 x 107 

(CFU/ml) 

No growth 

No growth 

6.1 x 104 

No growth 

1.4 x 105 

4.4 x 105 

3.5 x 106 

3.2 x 107 

Inoculum derived from a flask from series A initially containing 

100 yg of glucose C per liter. 

Glucose was added after an incubation period of 36 days. 

Data from duplicate flasks are presented in corresponding sequence 

Table 4. Growth of A, hydvophila strain 315 at 12 

acetate added to tap water 

Substrate added 

(mg of C 

per liter) 

None 

0.025 

0.1 

1.0 
10.0 

Gb 

No growth 

No growth 

21.7 

16.5 

14.8 

(h) 

No growth 

No growth 

21.9 

15.8 

16.5 

N (CFU/ml) 

No growth 

No growth 

3.5 x 105 

3.0 x 106 

2.9 x 107 

No growth 

No growth 

c 

2.8 x 106 

2.8 x 107 

Inoculum from infusion bottle 

Data from duplicate flasks are presented in corresponding sequence 

-, No data. 
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Utilization of acetate and some other compounds at low concentra
tions 

Strain 315 was able to use acetate C at concentrations of 100 yg 
of C per liter or above (Table 4). Maximum growth rate already 
occurred at 1 mg of acetate C per liter. The effect on the growth of 
the isolate was also tested with succinate, L-glutamate, yeast 
extract, L-arabinose, D-mannitol, D-glucosamine, and gluconate at 
initial concentrations below 1 mg of substrate C per liter of tap 
water. Neither succinate nor glutamate caused growth when added at 
an initial concentration of 10 yg of C per liter. An additional 
supply of 10 yg of glucose C per liter resulted in rapid growth, but 

the N values indicated that only glucose was utilized. 
max J ° 

Strain 315 also did not multiply with yeast extract, D-glucos
amine, and gluconate at concentrations of 10 yg of substrate C per 
liter. Growth occurred in the presence of glycerol C at a concentra
tion of 1 mg/liter, but not at concentrations of 10 and 20 yg/liter. 
On 10 y g of mannitol C per liter, no growth was observed within 14 
days, but slow and immediate multiplication (G = 68 h) occurred with 
20 yg. In an experiment with 10 y g, 20 yg, and 1 mg of arabinose-C 
per liter with cells from a flask with 20 yg of mannitol C per liter 
in which N had been reached, growth was observed after a lag 

max ° ° 
period of about 24 h. The G values were 6.1 at 1 mg of substrate C 
per liter, 27.3 h at 20 y g of substrate C per liter, and 36.4 h at 
10 yg of substrate C per liter. The results of these experiments 
indicate that only a few specific carbohydrates could produce growth 
of the aeromonad at initial substrate concentrations below 100 y g of 
C per liter. 
DISCUSSION 

In this study, N was used to determine the G value as well as 
to quantify the amount of biomass. From the linear relationship 
observed between S and N when S was >, 10 yg of glucose C per 

max 

liter and on starch and acetate when S was 5. 100 y g of substrate C 
per liter, it may be concluded that the use of N to quantify bio
mass and to estimate G in the described experiments is justified. 
With low numbers of cells ( < 100 CFU/ml) the applied method is not 
accurate, but this was not important in these cases. 

The G values of A . hydrophila strain 315 observed at 
different concentrations of a number of substrates may be used to 
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calculate the substrate concentration (K ) , which produces half the 
maximum growth rate. For this purpose a slightly adapted Lineweaver-
Burk modification of the Monod equation was used: 

Gmin+«W<Ks><1/S> (1) 

in which G is given in hours at substrate concentration S, and G . 
is equal to minimal G 

2 x G 
min 

K is the substrate concentration at which 
s 

The relationship between G and the reciprocal value of 

the S (Fig. 3) is linear at S above 10 yg/liter. Calculation of this 

function produced the equation: 

G = 7.17 + (0.086X1/S) (2) 

Fig. 3 Lineweaver-Burk plot for the growth of A . hydvophila 
strain 315 on glucose added to tap water. Symbols: — , observed 
relationship; , calculated linear relationship. 

According to equation (2), the K value of strain 315 equals 12 yg 
s 

of glucose C per liter. Similar calculations with the results of the 
experiments with starch, acetate, and arabinose gave K values of 
73, 40, and 38 ug of C per liter, respectively. At S below 10 yg of 
C per liter, nonlinear relationships were observed between N and 
S (Fig. 2) and between G and 1/S (Fig. 3). The differences between 

erved Gs (G , ) and thos« 
obs 

may be expressed by the equation: 
the observed Gs (G , ) and those following from equation 2 (G 1 ) 
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-1 -1 -1 
t = G , - G , (3) 
e cale obs 

in which t = the mean half-life assigned to endogenous metabolism. 
When S = 2.5 yg of glucose C per liter, G , = 41.4 h and t = 

K O ° r cale e 
95.7 h. When S = 5 yg of glucose C per liter, G = 24.3 h and 
t = 93.5 h. Obviously, the t values were similar at the two 

e e 

glucose concentrations, and strain 315 had a half-life of nearly 4 
days in these situations. 

From the t , the specific endogenous metabolism rate y may be 
calculated with y = 0.693/t . This produces y = 7.33 x 10~3 h- 1. 

Ke e e 

According to Pirt (17), the maintenance coefficient m (milligrams of 
substrate per milligram dry weight per h) can be calculated from m = 
y x Y-, (Y„ = yield corrected for endogenous use of substrate, grams 
dry weight per gram of substrate). Although Y_ cannot be estimated 
directly, it will not differ much from yields measured in batch 
cultures at high initial substrate concentrations. Previous 
experiments revealed that these yields varied between 0.43 to 0.53 g 
(dry wt)/g of glucose for some fluorescent pseudomonads and an 
aeromonad. The m of strain 315 therefore approximates 0.015 mg of 
glucose per mg (dry wt) per h. This value is lower than those 
reported by Pirt (17) for Aerobaeter aerogenes (m = 0.076 on 
glycerol at 37 °C) and Aevobaetev aloaaae (m = 0.094 on 
glucose at 37 °C) and those reported by Palumbo and Witter (16) for 

Pseudomonas fluoresceins (m = 0.20 on glucose at 20 °C). The 
difference with the values reported by Pirt (17) might be explained 
by the low temperature (12 °C instead of 37 °C) at which strain 315 
was grown on glucose. 

The experiments with glucose, arabinose, and mannitol revealed 
that strain 315 multiplied on these compounds even at initial 
substrate concentrations below K . On acetate and on starch no 

s 
growth occurred at corresponding concentrations. However, the 
observations presented in Tables 3 and 4 indicate that these 
compounds could be used at low concentrations once growth had 
started. Enzyme production probably was not induced in nongrowing 
cells at starch C concentrations below the K value but occurred at 

s 

such concentrations when the cells were multiplying as a result of 
added glucose. 

The determined K value of strain 315 on glucose is very low as 
compared with substrate saturation constants for transport or growth 
of other bacteria for this substrate, e.g., Pseudomonas 
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aeruginosa, 0.5 to 0.8 mg of glucose C per liter (3, 6, 14); 

P. fluorescens, 72 yg of glucose C per liter (13); and 

Escherichia coli, 72 y g of glucose C per liter (27). This 

suggests that the aeromonad may compete effectively with these 

bacteria if glucose would be growth limiting. As both drinking water 

isolates and strain 315, which was of surface-water origin, multi

plied at very low glucose concentrations, it is suggested that this 

property may be rather common among representatives of the species 

A. hydrophila. The minor contribution of the aeromonads to the 

bacterial populations of drinking water (22, 25) and surface water 

(5, 8, 19) in which glucose concentrations are in the range of a few 

micrograms per liter (29), may be explained by the presence of many 

other bacteria having glucose transport systems with higher affinity 

than the aeromonads (9, 15, 24) and the inability of the aeromonad 

studied to multiply at low concentrations of acetate, lactate, 

succinate, and glutamate. 

The organic carbon compounds originally present in the used tap 

water (dissolved organic carbon • 2 to 3 mg/liter) were not used as 

sources for carbon and energy of the A. hydrophila strains 

tested. With equation 2 the maximum glucose concentration at which 

strain 315 does not grow can be calculated. In this situation G . ô cale 
equals t , which is 94.6 h, and S =• 0.98 yg of glucose C per liter. 

Strain 315 was unable to maintain itself in the tap water used; 

therefore, the glucose concentration in this water was always below 

1 yg of C per liter. This calculation demonstrates that growth ex

periments as described may be used to measure the concentration of 

substrate available for a test strain in drinking water or in water 

from different treatment stages to assess treatment efficiency 

regarding substrate removal. For this purpose, representatives of 

specific species, particularly P. aeruginosa, which multiplies 

in clean water without a carbon source added (1, 4), may be used. 
With the N values the concentration of assimilable compounds 

max r 

originally present may be expressed in equivalents of a substrate on 

which the yield (CFU per milligram of substrate C) is known. In 

addition, G values may be used to calculate the maximum concentra

tion of certain substrates that might be present in water. For such 
calculations G . and K values should be known, 

min s 
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6. Utilization of low concentrations of starch by a Flavobac-
terium species isolated from tap water 

D. VAN DER KOOIJ AND W.A.M. HIJNEN 

Appl. Environ. Microbiol. 41 (1981): 216-221 

Abstvaat 
Experiments in well-cleaned glass flasks revealed that addition 

of starch in concentrations of 10 and 25 yg of substrate C per liter 

to the filtrate of slow sand filters stimulated the development of a 

yellow-pigmented bacterium which was identified as a 

Flavobaatevium species. The isolate was able to multiply in tap 

water without substrates added, but addition of starch and glucose 

in amounts as low as 1 yg of substrate C per liter clearly enhanced 

growth. The substrate affinities of the Flavobaatevium for 

these compounds were 3.9 yg of starch C and 3.3 yg of glucose C per 

liter. The results of this study indicate that microorganisms which 

rapidly utilize starch at a level of a few micrograms per liter 

commonly occur in water. 

INTRODUCTION 

The ability of bacteria of aquatic habitats to utilize organic 

compounds at concentrations of a few micrograms per liter has 

frequently been demonstrated, particularly with low-molecular-weight 

compounds, such as glucose (9, 13, 23, 24, 26, 29), acetate (1, 19, 

29), amino acids (5, 6, 8 ) , some other organic acids (16), and 

synthetic organic chemicals (4). However, the utilization of bio-

polymers , such as proteins and polysaccharides, that can be taken up 

only after hydrolysis by extracellular enzymes has hardly been 

studied at such low concentrations. 

Starch and starch-based compounds are being used as coagulant 

aids in water purification processes (15). Therefore, these 

compounds, when remaining at low concentrations in the final pro

duct, might contribute to the multiplication of microorganisms in 

tap water during distribution. For these reasons starch was selected 

to study the ability of bacteria to utilize high-molecular-weight 

compounds at the level of a few micrograms per liter. 

MATERIALS AND METHODS 

Glas suave 
The growth experiments were performed in calibrated, conical, 
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glass-stoppered, Pyrex glass bottles with a volume of 1 liter. These 

bottles as well as the pipettes used were thoroughly cleaned as 

described previously (26). 

Water 
The cleaned bottles were filled with 600 ml of tap water produ

ced by the Municipal Dune Waterworks of The Hague, The Netherlands. 

This tap water is prepared from dune-infiltrated river water by the 

successive steps of addition of powdered activated carbon, rapid 

sand filtration, and slow sand filtration. The dissolved organic 

carbon content of the final product was about 3.6 mg of C per liter; 

the pH was approximately 7.5. 

Growth experiments 
Growth experiments with the autochthonous bacterial population 

of the filtrate of the slow sand filters were performed by in

cubating the bottles at 1 5 + 0 . 5 °C directly after sampling. For 

pure culture studies, the vegetative cells of the autochthonous 

bacteria were killed by heating the bottles with sampled water in a 

water bath at 60 °C for 1 h followed by incubation at 60 °C for 2 h. 

After cooling, an organic compound from a freshly prepared, 

separately heated solution was added as a source of carbon and 

energy. Subsequently the bottles were inoculated with an initial 

number of cells varying from 100 to 500 colony-forming units (CFU) 

per ml from a starving culture grown in tap water supplied with an 

assimilable carbon compound. 

Growth of the autochthonous bacteria and of the pure culture was 

measured by colony counts. For this purpose, the spread plate 

technique was applied by inoculating (in triplicate) predried Lab-

Lemco (Oxoid) agar plates with 0.05 ml from decimal dilutions of the 

water. These plates were incubated at 25 °C until numbers of 

colonies on the plates no longer increased, i.e., 10 days for counts 

of autochtonous bacteria. With the obtained colony counts (N , in 

CFU per milliliter), the mean doubling times (G values, in hours) 

under the different experimental conditions were calculated by the 

equation: 

G = log 2 . t/(log Nt + A t - log Nt) (1) 

where At is the incubation period (hours) in which N increased to 
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N . . These calculations were only performed for that part of the 

growth curve during which the initial substrate concentration was 

not significantly reduced by the produced number of cells, i.e., 

when the colony counts were less than 10 % of the maxmimum colony 

count (N , in CFU per milliliter). 
max r 

Characterization procédures 
Isolates were characterized by the following tests-: Gram stain, 

oxidase test (12), oxidation-fermentation test with glucose (11), 

arginine deiminase test (22), test for N(>2_ or N2 production from 

NO3- (18), and urease activity (20). In addition, the isolates were 

tested for the ability to hydrolyze proteins (casein, gelatin), 

starch, chitin, and Tween-80, using a standard agar medium either 

made turbid with casein of chitin or containing 2.5 g of gelatin, 

starch, or Tween-80 per liter. The media and procedures used for 

these tests have been described previously (25). 

RESULTS 

Isolation and characterization of a bacterium utilizing starch at 
low concentrations 

Starch was added in concentrations (added substrate AS) of 10 

and 25 y g of C per liter to duplicate bottles containing 600 ml of 

freshly sampled filtrate from slow sand filters. Two bottles 

received no starch. The development of the bacteria in these 

bottles, stored at 15 °C, revealed that both N and G of the 
max 

bacteria present in the water were strongly influenced by the low 
amounts of starch added (Fig. 1). Moreover, it was observed that in 

the logarithmic as well as in the stationary phases of growth, the 

population of all four bottles with added starch consisted almost 

completely of bacteria that formed similar yellow-pigmented colonies 

requiring 72 h of incubation before being visible. The bottles 

without starch contained bacteria which formed nonpigmented, 

transparent colonies. 

Seven isolates of the yellow-pigmented bacteria of the starch-

supplied cultures were obtained. The characterization procedures 

confirmed that one type of organism had become dominant, and from 

the properties of the organism (Table 1) it was concluded that it 

belonged to the genus Flavobacterium-
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log colony counts/ml 

Fig. 1 Growth of bacteria present in the filtrate of slow and 

filters without added starch (*) or with 10 (O) or 25 (•) yg of 

starch C added per liter. Solid and broken lines indicate 

determinations. 

Growth on stavah 
To test the ability of the isolated organism to utilize starch 

at low concentrations, cells of one of the isolates (strain 166) 

grown on a Lab-Lemco agar slant were added (N = 600 CFU/ml) to a 

bottle with heated tap water supplied with 5 pg of starch C per 

liter and to two bottles containing this heated tap water without 

added substrate. Growth of the organism in the presence of starch 

(N = 1.1 x 10^ CFU/ml, G = approximately 8 h) was much stronger 

than in the bottles without substrate added (N 3.2 x 10" 

CFU/ml, G = 30 to 38 h ) . These observations confirmed that the 

organism was able to utilize starch at the level of micrograms per 

liter. 

Strain 166 was also grown in tap water supplied with starch at 

different concentrations (AS). The growth curves (Fig. 2) and the 
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Table 1. Some properties of the starch-utilizing Flavobaetevium 

sp. 

Property Isolate characteristic 

Shape of cells 

Gram stain 

Motility 

Pigment of colony 

Oxidase 

Acid from glucose: 

Oxidation 

Fermentation 

Arginine deiminase 

Urease 

N02~ from NO3-

N2 from Nuß" 

Casein hydrolysis 

Gelatin hydrolysis 

Starch hydrolysis 

Chitin hydrolysis 

Growth at 37 °C 

Rods 

Yellow 

+ 

+ 

+ 
+ 

calculated mean doubling times (Table 2) clearly demonstrate that 

even addition of starch at initial concentrations below 5 y g of C 

per liter stimulated growth remarkably. The relationship between the 

N values observed and the different initial concentrations of 
max 

starch (Fig. 3) revealed that at low concentrations of this 

substrate, the organism yielded 2.0 x 10 1 0 CFU/mg of starch C. Using 

this value and the N of the blank, the natural substrate concen-
max ' 

tration (S ) may be expressed in micrograms of starch C equivalents 

per liter. Thus, at an N of 2.7 x 104 CFU/ml, S = 1.4 ug of 
max n • 

starch C equivalents per liter. 

The survival ability of the isolate after exhaustion of the 

added substrate was studied by measuring the number of viable cells 

in bottles originally containing 100 y g of starch C per liter during 

prolonged incubation at 15 °C. From the results obtained (Fig. 4) it 

is clear that the colony counts decreased rapidly; i.e., a 99 % 

decrease was obtained after about 42 to 58 days of incubation. 
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log colony counts/ml 

Fig. 2 - Growth of Flavobactevium strain 166 in the filtrate 

of slow sand filters without added starch (*k) or with 1 (O), 3 (•), 

5 (A), 10 (A), or 100 (•) yg of starch C added per liter. Solid and 

broken lines indicate duplicate determinations. 
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Table 2. Growth (at 15 + 0.5 °C) of isolate 166 in tap water 
supplied with starch3 

Starch 
added Qjg 

of C/liter) 
100 
10 
5 
3 
1 
0 

Growth0 

G(h) N (CFU/ml) 

4.0 
5.3 
6.8 
9.9 

15.0 
27.5 

3.8 9.2 x 105 

4.9 2.3 x 105 

6.5 1.4 x 105 

9.5 8.4 x 104 

17.8 5.6 x 104 

12.3C 2.7 x 104 

9.1 x 105 

2.3 x 105 

1.4 x 105 

7.9 x 104 

4.7 x 104 

6.6 x 104 c 

Starving cells grown at an initial concentration of 5 yg of starch 
C per liter were used as inoculum. 
Data from duplicate flasks are presented in each pair of columns. 
Aberrant results, which were not used for calculations. 

maximum colony counts (10 c.f.u./ml) y 

y 

2 3 4 5 6 7 8 9 10 11 

added substrate ()jg C/l ) 

Fig. 3 Maximum colony counts of Flavobactevium strain 166 in 
relation to the amounts of starch C (O) and glucose C (•) added to 
the filtrate of slow sand filters. 
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Growth on glucose and some other substrates 
Growth of isolate 166 was assessed in bottles with tap water to 

which D-glucose had been added in different concentrations. The 

results of this experiment are shown in Table 3, whereas the 

relationship between the N and AS values is presented in Fig. 3. 
r max r 

Comparison of the observed mean doubling times at different glucose 

concentrations (Table 3) with those observed at different starch 

concentrations shows that the organism grew more rapidly in the 

presence of starch. The yield of strain 166 on glucose at low con

centrations (AS ^ 10 pg of glucose C per liter) was 1.6 x 101 0 

CFU/mg of glucose C; thus, S expressed in glucose C equivalents was 

2.0 yg of glucose C per liter. 

Table 3. Growth (at 15 + 0.5 

supplied with glucose 

'C) of isolate 166 in tap water 

Glucose 

added (yg of 

C/liter) 

100 
10.3 

5.4 

3.2 
1 
0 

G 

5.0 

6.1 
9.5 

11.2 

14.0 

28.2" 

(h) 

4.8 
6.5 
8.9 

11.7 

14.4 

30.5 

Growth 

N (CFU/ml) 
max v 

4.4 x 105 

1.9 x 105 

1.2 x 105 

8.7 x 104 

4.6 x 104 

3.2 x 104 

4.7 x 105 

1.9 x 105 

1.1 x 105 

6.1 x 104 

5.9 x 104 

3.3 x 104 

Starving cells grown at an initial concentration of 100 g of 

starch C per liter were used as inoculum. 

Data from duplicate flasks are presented in each pair of columns. 

As it is unlikely that glucose or starch contributed signifi

cantly to the S of the tap water used, a number of compounds with 

relatively low molecular weights which might have contributed to the 

S were tested at low concentrations for their growth-stimulating 

properties for strain 166. These compounds were: acetate, DL-

lactate, pyruvate, succinate, L-aspartate, L-glutamate, and L-

alanine. Glycerol, maltose, and yeast extract were also tested. 
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Growth of isolate 166 was stimulated strongly only by maltose and, 

to a much lesser extent, acetate (Table 4). The other substances 

tested did not affect the G or N values. 
max 

DISCUSSION 

The above described experiments reveal that biodégradation of 

certain compounds at levels of ecological significance, as well as 

the microorganisms responsible for this degradation, may be studied 

by very simple experiments, i.e., without the use of radioactive 

substrates and without laborious continuous culture experiments. 

However, such experiments cannot be performed with water in which 

the S enables the autochthonous microorganisms or the pure culture 
n 

to multiply to high colony counts or in which the N (autochtonous 
bacteria) is high as compared with the N that may be expected on 

a AS of a few micrograms. The application of the above-described 

method may also be limited by the presence or growth in the water of 

microorganisms which utilize the added substrate, but which do not 

grow on a solid medium. 

The experiments also showed that an organism, tentatively 

identified as a Flavobaatevium sp., utilized starch at low 

concentrations at least as rapidly as it did low concentrations of 

the monomer glucose. None of the species of the genera 

Flavobaatevium and Cytophaga described in Bergey's Manual 

(27) and by Hayes (10) were similar to the isolated bacterium. 

However, the ability to utilize starch as a source of carbon and 

energy seems to be a common property of bacteria belonging to these 

genera. Moreover, Flavobaatevium spp. have been found to 

dominate in activated sludge fed with starch (J.M.A. Janssen, 

Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands, 

1979). Therefore, the ability of the isolate studied to grow at 

concentrations of a few micrograms of either starch, glucose, or 

maltose per liter of water may contribute to explaining the 

widespread occurrence of bacteria that form yellow-pigmented 

colonies in surface water (2, 21), ground water (28), and tap water 

(3, 7, 14, 17). 

The yields (CFU per milligram of substrate C) of 

Flavobaatevium strain 166 on glucose and on starch, respectively, 

were approximately five times larger than the yields of an 

Aevomonas hydvophila strain on these compounds (26), suggesting 
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that cells of the Flavobactevium Isolate were five times 

smaller than those of the aeromonad. Calculation, based on the 

assumptions that 50 % of the substrate C is assimilated and that dry 

weight is 20 % of total weight, reveals that the volume of the 

Flavobactevium cells grown on starch and on glucose approximated 

0.25 to 0.3 ym3, which is very small. This small cell volume is 

expected to be advantageous at low substrate concentrations. 

log colony counts/ml 

Fig. 4 Colony counts of Flavobactevium strain 166 during 

prolonged incubation at 15 + 0.5 °C (values of duplicate flasks). 

The N values of isolate 166 observed in the experiments with 
max 

starch or glucose in tap water resulted from the utilization of both 

the added substrate and some unknown compounds present in the 

filtrate of slow sand filters (Fig. 3). These unknown compounds (S 

available to isolate 166) amounted only to a few micrograms of 

carbon per liter, which was about 0.1 % of the dissolved organic 

carbon content of the water. The nature of the unknown compounds 

utilized by the organism was not elucidated, although it may be 

concluded from Table 4 that alanine, aspartate, glutamate, lactate, 
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pyruvate, and succinate did not contribute to S . Nevertheless, 

these compounds may have been present in the filtrate used. 

The G values of isolate 166 observed in the experiments with 

different concentrations of starch and glucose may be used to obtain 

the substrate saturation constants (K , micrograms of C per liter) 

of the isolate for these compounds. For this purpose, the following 

Table 4. Growth (at 15 + 0.5 °C) of isolate 166 in tap water 

supplied with different organic carbon compounds 

Substrate added 

None 

None 

Glycerol 

Maltose 

L-Alanine 

L-Aspartate 

L,-Glutamate 

Yeast extract 

Acetate 

DL-Lactate 

Pyruvate 

Succinate 

Conen 

(Ug of 

C/liter) 

5.5 
5 
5 
5 
5 
4.2 
5 
8.2 

5 
5 

Lag pe

riod 

(days) 

8 
8 
2.5 
1.5 

10 

9 
9 
1.5 
3.5 
8 
9 

8.5 

G(h) 

29.6 

19.3 

22.5 

5.8 
25.9 

24.1 

24.0 

23.0 

21.3 

22.7 

23.9 

24.2 

N 
max 

(CFU/ml) 

4.9 
5.4 

4.3 
9.6 
5.2 
5.0 
5.4 

5.1 
1.4 
4.9 
6.8 
4.3 

x 10* 

x 10* 

x 10* 

x 10* 

x 10* 

x 10* 

x 10* 

x 10* 

x 105 

x 10* 

x 10* 

x 10* 

Starving cells grown at an initial concentration of 100 yg of 

starch C per liter were used as inoculum 

slightly adapted Lineweaver-Burk modification of the Monod equation 

was used: 

G . + (G . .K )(1/S) 
min min s (2) 

In this equation G and G . are the real and the minimum mean 
n min 

generation times (hours), respectively, S is the concentration of 

the growth-limiting substrate, and K is the substrate saturation 

constant. The use of equation 2 is complicated by the fact that in 
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the experiments described above, S is composed of a known amount of 

the added compound (A S) and unknown amounts of other utilized 

compounds (S ) • The pronounced and immediate stimulation of growth 

as observed after the addition of starch or glucose suggested that 

these compounds were utilized preferentially. Plotting the observed 

G values (cf. Tables 2 and 3) against the reciprocal values of AS 

shows that in the starch experiment the G values were linearly 

generation 

26i 
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14 
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8 
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/ / 
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/ / s 
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1/AS (Ixmg-1) 

Fig. 5 Lineweaver-Burk plots of Flavobaotevium strain 166 on 

starch (•) or glucose (O) added to the filtrate of slow sand 

filters. 

related with 1/AS when S was Ï 5 ug of starch C per liter (Fig. 5). 

Calculation of this relationship gave: 

G = 3.7 + (14.5)(1/AS) (3) 

thus, G was 3.7 h and K was 3.9 yg of starch C per liter. In the 
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experiment with glucose, deviating generation times were observed 
when AS was £ 5 yg of glucose C per liter. Calculation of the linear 
relationship shown in Fig. 5 gave: 

G = 4.7 + (15.5X1/AS) (4) 

thus, G . was 4.7 h and K was 3.3 yg of glucose C per liter. 
The calculated linear functions of equations 3 and 4 represent 

the kinetic behavior of isolate 166 towards starch and glucose when 
sequential uptake of substrates occurred (i.e., the added substrates 
were preferentially used) and when S did not contain significant 
amounts of either starch or glucose. The mechanisms responsible for 
the sequential uptake would have been most effective at the highest 
AS values. As the water used in the experiments was prepared without 
the addition of starch or starchlike compounds in any treatment 
stage and previous experiments with water from the same location 
revealed that the natural glucose concentration was extremely low 
(26), the contribution of naturally occurring starch and glucose to 
S is assumed to have been negligible, at least at the AS values 
used to calculate linear functions. Hence, equations 3 and 4 indeed 
represent the kinetic behavior of isolate 166 towards starch and 
glucose. 

The use of substrate for maintenance processes did not clearly 
influence the yield of the Flavobaeterium on the added 
substrates (cf. Fig. 3 ) , as was observed previously (26) for an 
A. hydvophila strain when S < K . The ability of isolate 166 to 

use natural substrates in addition to the added substrates is 
thought to be responsible for this difference in behavior. This 
uptake of natural substrates may also explain the positive 
deviations from the linear functions at a AS of 1.0 yg of C per 
liter (Fig. 5). 

K values as found in the present study have frequently been 
reported for glucose. By using radioactive substrates and pure 
cultures, transport constants (K ) of between 2 and 6 yg of glucose 
C per kiter were obtained by Wright and Hobbie (29) for a 
Pseudomonas sp. obtained from lake water; by Hamilton et al. (9) 
for gramnegative, oxidase-positive marine isolates; and by Vaccaro 
and Jannasch (24) for Aahvomobaatev aqucanarinus (Alaaligenes 
aquamarinus). However, these transport constants, which had been 
estimated at 5 to 6 °C, were all considerably higher at 15 °C. 
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Nevertheless, in nature many microorganisms must have very low K 

values for glucose, as may be concluded from the K + S values of 

glucose in various water types, including seawater and freshwaters, 

being usually as low as a few micrograms of glucose C per liter (13, 

23, 24, 29). 

A previous investigation (26) showed that growing cells of an 

A. hydrophila isolate were able to use starch at concentrations 

of a few micrograms per liter. However, bacteria with a low K for 

starch, as described herein, seem to be scarcely studied. Still, the 

presence of the described Flavobaetevium sp. in tap water, 

produced without the use of starch or starchlike compounds in any of 

the treatment stages, indicates that such bacteria are common 

components of the bacterial flora of water. 

ACKNOWLEDGMENTS 

This investigation was part of the research program of KIWA 

Ltd., assigned and financed by The Netherlands Waterworks 

Association. We are grateful to E.G. Mulder, M.H. Deinema, and 

C.J.E.A. Bulder for their criticism of the manuscript. 

LITERATURE CITED 

1. Allen, H.L. 1968. Acetate in fresh water: natural substrate 

concentrations determined by dilution bioassy. Ecology 49: 

346-349. 

2. Baker, J.H., and I.S. Farr. 1977. Origins, characterization and 

dynamics of suspended bacteria in two chalk streams. Arch. 

Hydrobiol. 80: 308-326. 

3. Berger, K. 1970. Über die Bakterienvermehrung im Leitungsnetz. 

Gas Wasser Abwasser 50: 363-364. 

4. Boethling, R.S., and M. Alexander. 1979. Effect of concentration 

of organic chemicals on their biodégradation by natural micro

bial communities. Appl. Environ. Microbiol. 37: 1211-1216. 

5. Burnison, B.K., and R.Y. Morita. 1974. Heterotrophic potential 

for amino acid uptake in a naturally eutrophic lake. Appl. 

Microbiol. 27: 488-495. 

6. Geesey, G.G., and R.Y. Morita. 1979. Capture of arginine at low 

concentration by a marine psychrophilic bacterium. Appl. 

Environ. Microbiol. 38: 1092-1097. 

110 



7. Geldreich, E.E., H.D. Nash, D.J. Reasoner, and R.H. Taylor. 

1975. The necessity of controlling bacterial populations in 

potable waters, bottled water and emergency water supplies. J. 

Am. Water Works Assoc. 67: 117-124. 

8. Griffiths, R.P., F.J. Hanus, and R.Y. Morita. 1974. The effects 

of various water-sample treatments on the apparent uptake of 

glutamic acid by natural marine microbial populations. Can. J. 

Microbiol. 20: 1261-1266. 

9. Hamilton, R.D., K.M. Morgan, and J.D.H. Strickland. 1966. The 

glucose-uptake kinetics of some marine bacteria. Can. J. Micro

biol. 12: 995-1003. 

10. Hayes, P.R. 1977. A taxonomie study of flavobacteria and related 

Gram-negative yellow-pigmented rods. J. Appl. Bacteriol. 43: 

345-367. 

11. Hugh, R., and E. Leifson. 1953. The taxonomie significance of 

fermentative versus oxidative metabolism of carbohydrates by 

various gram negative bacteria. J. Bacteriol. 66: 24-26. 

12. Kovacs, N. 1956. Identification of Pseudomonas pyocyanea 

by the oxidase reaction. Nature (London) 178: 703. 

13. Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 

144-167. 

14. Müller, G. 1972. Koloniezahlbestimmungen im Trinkwasser. Gas 

Wasserfach 113: 53-57. 

15. Packham, R.F. 1967. Polyelectrolytes in water clarification. 

Proc. Soc. Water Treat. Exam. 16: 88-111. 

16. Robinson, G.G.C., L.L. Hendzel, and D.C. Gillespie. 1973. A 

relationship between heterotrophic utilization of organic acids 

and bacterial populations in West Blue Lake, Manitoba. Limnol. 

Oceanogr. 18: 264-269. 

17. Schalekamp, M. 1969. Untersuchungen zur Abklärung des Phänomens 

der Wiederverkeimung in Rohrnetzen im Zusammenhang mit Ozonung. 

Gas Wasser Abwasser 49: 253-257. 

18. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The 

aerobic pseudomonads: a taxonomie study. J. Gen. Microbiol. 43: 

159-271. 

19. Stanley, P.M., and J.T. Staley. 1977. Acetate uptake by aquatic 

bacterial communities measured by autoradiography and filterable 

radioactivity. Limnol. Oceanogr. 22: 26-37. 

20. Stewart, D.J. 1965. The urease activity of fluorescent 

pseudomonads. J. Gen. Microbiol. 41: 169-174. 

Ill 



21. Tanaka, N. , Y. Ueda, M. Onizawa, and H. Kadota. 1977. Bacterial 

populations in water masses of different organic matter 

concentrations. Jpn. J. Limnol. 38: 41-47. 

22. Thornley, M.J. 1960. The differentiation of Pseudomonas 

from other Gram-negative bacteria on the basis of arginine 

metabolism. J. Appl. Bacteriol. 23: 37-52. 

23. Vaccaro, R.F., and H.W. Jannasch. 1969. The response of natural 

microbial populations in seawater to organic enrichment. Limnol. 

Oceanogr. 14: 726-735. 

24. Vaccaro, R.F., and H.W. Jannasch. 1966. Studies on heterotrophic 

activity in seawater based on glucose assimilation. Limnol. 

Oceanogr. 11: 596-607. 

25. Van der Kooij, D. 1977. The occurrence of Pseudomonas spp. 

in surface water and in tap water as determined on citrate 

media. Antonie van Leeuwenhoek J. Microbiol. 43: 187-197. 

26. Van der Kooij, D., A. Visser, and W.A.M. Hijnen, 1980. Growth 

of Aevomonas hydrophila at low concentrations of 

substrates added to tap water. Appl. Environ. Microbiol. 39: 

1198-1204 (Chapter 5). 

27. Weeks, O.B. 1974. Genus Flavobaoterium Bergey et al. 1923, 

p. 357-363. In R.E. Buchanan and N.E. Gibbons (ed), 

Bergey's manual of determinative bacteriology, 8th ed. The 

Williams & Wilkins Co., Baltimore. 

28. Wolters, N., and W. Schwartz. 1956. Untersuchungen über Vor

kommen und Verhalten von Microorganismen in reinen Grundwässern. 

Arch. Hydrobiol. 51: 500-541. 

29. Wright, R.T., and J.E. Hobbie. 1966. Use of glucose and acetate 

by bacteria and algae in aquatic ecosytems. Ecology. 47: 

447-463. 

112 



7. Nutritional versatility of a starch-utilizing Flavobac-
terium at low substrate concentrations 

D. VAN DER KOOIJ AND W.A.M. HIJNEN 

Appl. Environ. Microbiol. 45 (1983): 804-810 

Abetvaat 
A starch-utilizing yellow-pigmented bacterium, isolated from tap 

water, was tested for the utilization of 64 natural compounds at a 

concentration of 1 g/liter by measuring colony growth on agar media. 

Only 12 carbohydrates and glycerol promoted growth. Growth 

experiments with the organism in pasteurized tap water supplied with 

mixtures of substrates at concentrations of 1 or 10 yg of C of each 

substrate per liter, followed by separate experiments with a number 

of carbohydrates at 10 y g of C per liter showed that of these 64 

natural compounds only sucrose, maltose, raffinose, starch, and 

glycerol promoted growth at very low concentrations. Also 

maltotriose, -tetraose, -pentaose, -hexaose, and stachyose, which 

were not included in the mixtures, enhanced growth, and generation 

times of 3 to 5 h at 10 yg of C per liter were observed. The 

organism, which was tentatively identified as a Flavobaatevium 

species, thus appeared to be highly specialized in the utilization 

of glycerol and a number of oligo- and polysaccharides at very low 

concentrations. 

INTRODUCTION 

Yellow-pigmented bacteria, usually belonging to the genus 

Flavobaatevium, are commonly part of the bacterial flora of 

waters poor in organic substrates i.e. distilled water (7), ground 

water (23) and drinking water (2, 10, 15). Adaptation of these 

organisms to low concentrations of substrates is indicated by their 

multiplication in drinking water (1, 12, 14). More specific 

information has been presented by Van der Koolj and Hijnen (20) who 

isolated a Flavobaatevium species with very low substrate-

saturation constants for starch and glucose (3.9 and 3.3 yg of C, 

respectively) which predominated in samples of stored slow sand 

filtrate supplied with starch (10 and 25 yg of C per liter). In 

additional experiments with starch added in low concentrations to 

various types of drinking water, yellow-pigmented bacteria also 

predominated. The nutritional versatility of one of these bacteria 

was examined to clarify its dependence upon starch or starch-like 

compounds for growth as well as its taxonomie position. For this 
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purpose a large variety of naturally occurring amino acids (AA), 

carboxylic acids (CA), aromatic acids (AR) and carbohydrates and 

(poly)alcohols (CHA) were tested as sources of carbon and energy for 

growth, both at high (grams per liter) and very low concentrations 

(micrograms per liter). 

MATERIALS AND METHODS 

Bacterial strain 
The organism (strain S12) was isolated from tap water (Municipal 

Dune Waterworks of The Hague) prepared from pretreated dune-

infiltrated Meuse river water treated by addition of powdered 

activated carbon, rapid sand filtration and slow sand filtration. 

Treated water contained average concentrations of 3.6 mg of 

dissolved organic carbon per liter and 0.12 mmol of nitrate. After 

storage at 15 °C of 600 ml of this water supplied with 100 ug of 

starch C per liter, the predominating organism which formed small 

non-pigmented colonies on Lab Lemco (Oxoid Ltd.) agar (LLA) plates 

incubated at 25 °C was isolated. A similar procedure has been 

described previously (20). 

Media and substrates 
LLA contained 5 g of peptone, 3 g of Lab Lemco beef extract and 

12 g of agar (Oxoid nr. 3) in 1 liter of demineralized water. The 

final pH was 7.4. Mineral salts agar (MSA) consisted of 0.5 g NH4CI, 

0.5 g of Na2HP04.12H20 and 12 g of purified agar in 1 liter of 

demineralized water. The final pH was 6.9. 

Substrates tested as sources of carbon and energy for growth at 

1 g per liter included 18 AA, 18 CA, 11 AR and 18 CHA which are 

listed in Table 1. The compounds were present in sterile solutions 

of either 1 or 10 % (wt/vol). Moreover, with the listed compounds 

four different mixtures (i.e. the AA mixture, the CHA mixture, the 

CA mixture and the AR mixture) were prepared by dissolving equal 

amounts of carbon of the various substrates in demineralized water. 

After neutralization with 0.1 N NaOH, the mixtures were autoclaved. 

For use of individual substrates at low concentrations (micrograms 

per liter) small volumes of freshly prepared solutions, which were 

heated at 60 °C for 0.5 h, were added to the experimental bottles. 

Melibiose, melezitose, trehalose, stachyose, maltotriose, 

maltotetraose, maltopentaose and maltohexaose were only tested at a 
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low concentration. The latter three compounds were kindly supplied 

by H. Hokse of the Potato Processing Research Institute (TNO), 

Groningen (The Netherlands). 

Growth on agar media 
Low numbers (10 to 30) of viable cells grown in tap water 

supplied with a very low amount of substrate were spread on predried 

plates (9 cm) of either LLA or MSA with 1 g of substrate per liter. 

After inoculation, the plates were incubated at 25 °C and during a 

period of about 2 weeks diameters of 4 to 5 colonies on each plate 

(experiments done in duplicate) were measured periodically using a 

Wild M7S binocular microscope. 

Growth in water 
The technique applied to assess the growth of a pure culture in 

water supplied with various substrates at low concentrations has 

been described in previous communications (20, 21). The water used 

for the experiments described in this paper originated from the 

pumping station Tull and 't Waal (Midden-Nederland Waterworks), 

where it is prepared from anaerobic ground water by aeration and 

rapid sand filtration. The final product contained 2.3 mg of 

dissolved organic carbon per liter and 0.01 mmol of nitrate; the pH 

was 7.7 (after heat treatment). 

Characterization procedures 
The following tests were used to characterize the organism: Gram 

stain, oxidase test (6), oxidation-fermentation test with glucose 

(5), arginine-deiminase test (18),tests for NOJ or N2 production 

from N0§ (16) and urease activity (17). In addition, the isolate was 

tested for hydrolysis of proteins (casein, gelatin), starch, chitin 

and Tween-80, using a standard agar medium either made turbid with 

casein or chitin or containing 2.5 g of gelatin, starch or Tween-80 

per liter. All media were incubated at 25 °C. The media and 

procedures for these tests have been described previously (19). 

RESULTS 

Utilization of substrates present at a concentration of 1 g per 
liter 

Strain S12 multiplied slowly on LLA and after 48 hours of 
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Fig. 1 The increase of the diameter of colonies of strain S12 during 

growth at 25 °C on Lab-Lemco agar (A) and Mineral Salts Agar (B), 

supplied with glucose (O), maltose (A), starch (D), mannitol (A), 

succinate (•) and pyruvate (X) at a concentration of 1 g of 

substrate per liter; •, shows blanks. 

incubation, very small circular convex nonpigmented colonies became 

visible. Colony size increased upon further incubation but 

pigmentation did not appear. With 12 out of 18 CHA added to LLA, 

growth of the colonies was clearly enhanced (Fig. 1A; not all data 

shown). These colonies rapidly increasing in size, and those on the 

agars supplied with lactose and inositol, respectively, which did 

not promote growth, were brightly yellow coloured. On MSA similar 

growth-favoring effects were observed with CHA (Fig. IB). The radial 

growth rates of the colonies on LLA and MSA supplied with CHA had 

equal maximum values of 8-11 pm/h, but the colonies on MSA remained 

smaller (Fig. 1). The effects on the size (R^) of the colonies of 

all the substrates tested at 1 g per liter are presented in Table 1. 

From the presented results it can be concluded that AA, CA and AR 
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were either not utilized, growth retarding, or lethal when tested at 

a concentration of 1 g per liter. 

Utilization of substrates at low concentrations 
As compared with growth of the blanks, growth of strain S12 was 

Table 2. Growth of Flavobaaterium sp. strain S12 at 15 + 0.5°C 

in tap water supplied with mixtures of naturally occurring 

substrates in a concentration of 1 yg (A) and 10 yg (B) of 

C per liter. 

Mixture 

added 

None 1 

None 2d 

AA (1) 

AA (2) 

CA (1) 

CA (2) 

AR (1) 

AR (2) 

CHA (1) 

CHA (2) 

TM (1) 

TM (2) 

Total concentration of 

added substrate 

(yg of 

A 

-

-

18.1 

18.3 

18.9 

17.1 

10.2 

11.4 

17.7 

18.6 

63.7 

68.3 

C/lit er) 

B 

-

-

180 
179 
180 
186 
106 
111 
178 
174 

665 
634 

Generation 

(h) 

A 

36.7 

42.6 

55.6 

46.0 

46.0 

38.3 

48.8 

32.6 

10.0 

10.1 

11.8 

10.4 

time 

B6 

NG 
NG 
NG 
NG 
NG 
NG 
NG 
NG 
3.2 
3.4 

3.5 
3.5 

N (CFU/ml) 
max 

A 

1.5xl04 

l.OxlO4 

5.0xl03 

9.1xl03 

1.2xl04 

6.2xl03 

1.5xl04 

1.3xl04 

l.lxlO5 

7.3xl04 

6.5xl04 

8.8xl04 

8 
8 
9 
7 

Be 

350 
300 
140 
160 
110 
120 
100 
110 

.3xl05 

.8xl05 

.lxlO5 

.4xl05 

Starving cells grown at an initial concentration of 100 ug of 

starch C per liter were used as inoculum (110 to 150 CFU/ml). 

Total concentration after correction for the water volume 

deviating from 600 ml. 

Within an incubation period of 8 days; N values with CHA and TM 
r ' ' max 

were reached within 4 to 6 days. 

1 and 2; Duplicate flasks. 

NG; No growth (no systematic increase of the initial colony 

counts) within 8 days of incubation. 
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clearly enhanced by the addition of the CHA mixture, and by the 

addition of all mixtures together, i.e. the total mixture (TM) but 

not by the AA, CA and AR mixtures (Table 2). The maximum colony 

count (N ) values of the TM and CHA mixtures in experiment B were 
max r 

approximately 10 times higher than the N values of these mixtures 

in experiment A. Thus, increasing the concentration of substrate did 

not increase the ability of strain S12 to utilize substrates. More

over, the similarity of the N values of the TM and CHA mixtures 
max 

as observed in both experiments indicates that AA, CA and AR were 

not assimilated by the cells growing on the CHA. 

The components of the CHA mixture, which were utilized by strain 

S12 at a low concentration, were identified by separate tests at a 

concentration of 10 y g of C per liter of those compounds which 

favored growth at 1 g per liter. Only 5 substrates, namely sucrose, 

maltose, raffinose, starch, and glycerol, were utilized for growth. 

(Fig. 2; not all negative data shown). The N values of strain S12 

obtained for the utilized substrates varied from 1.1 x 10* CFU/ml 

(maltose) to 2.5 x 10* CFU/ml (sucrose) and the generation times (G) 

varied from 4.5 h (sucrose) to 12 h (maltose). These observations 
explain the N values presented in Table 2. In addition to the r max r 

sugars included in the CHA mixture, melibiose, melezitose, 

trehalose, stachyose, maltotriose, maltotetraose, maltopentaose and 

maltohexaose were tested at 10 yg of C per liter. Only with the five 

latter compounds was a rapid growth (generation time varied from 3 

to 5 h) observed, with N values of about 2 x 10*" CFU/ml. 
max 

Characterization of strain SI 2 
In addition to the substrates which could serve as sources of 

carbon and energy for growth of strain S12 several additional 

properties of this bacterium have been determined (Table 3). The 

organism was identified as a non-proteolytic Flavobaoterium 

species. In mineral salts medium (indentical to MSA without agar) 

containing 100 mg of starch C per liter, the maximum level of growth 

(measured as extinction at 450 nm) was not influenced by replacement 

of NH4-N with an equivalent amount of NO3-N. Therefore, both 

nitrogen compounds may serve as a source of nitrogen, and it is 

concluded that the organism does not require specific growth 

factors. 
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log.colony count/ml 
5.5 

days 

Fig. 2 Growth curves of strain S12 at 15 + 0.5 °C in tap water 

supplied with glucose ( A ) , maltose ( A ) , raffinose (•) , starch ( O ) , 

lactose (•), glycerol (G) , sucrose ( T ) or rhamnose (v) at a concen

tration of 10 i_ig of C per liter. These were all single growth 

experiments, except those with the blanks (ic), which were done in 

duplicate. 

DISCUSSION 

Significance of characterization -procédures 
Procedures to characterize bacteria usually include tests for 

the production of acids from carbohydrates in peptone media under 

aerobic and anaerobic conditions.The Flavobacterium sp. strain 

S12 studied in this paper and Flavobacterium sp. strain 166 

described previously (21) did not produce acids from glucose in the 

oxidation-fermentation test ( 5 ) . However, glucose as well as a 

number of other carbohydrates and polyalcohols appeared to be 

suitable substrates for growth (Table 1 ) , but the radial growth 
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rates of the colonies of strain S12 are very low as compared to 

those of Escherichia coli (8) and Pseudomonas fluovesaens 
(13) growing on MSA with glucose. Hence a technique more sensitive 

than simple replica plating had to be used to demonstrate the 

utilization of these and other substrates added to MSA. It is 

Table 3. Some additional properties of Flavobaatevium sp. 

strain S12 

Property Isolate characteristic 

Shape of cells Rods (1.5 - 2 x 0.5 y m ) a 

Motility 

Gram stain 

Oxidase + 

Acid from glucose: 

Oxidation 

Fermentation 

Arginine deiminase -

urease -

NO2 from NO3 

N2 from NO3 

Casein hydrolysis 

Gelatin hydrolysis -

Starch hydrolysis + 

Chitin hydrolysis 

Tween-80 hydrolysis -

Growth at 37 °C 

Cells grown at 25 °C in Mineral Salts Medium (without agar) with 1 

g of starch per liter. Cells on Lab-Lemco agar had similar 

dimensions but after prolonged incubation ( > 1 week) elongated 

forms (25 to 40 pm) without clearly visible septa were observed. 

possible that the substrate concentration of 1 g/1 is unfavourable 

for Flavobaatevium sp. , strain S12 which grows rapidly in 

water at very low concentrations of substrates. 

Isolate S12 fits well into the description of the genus 

Flavobaatevium as given by Holmes and Owen (1979) but none of the 
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species of this genus as described in Bergey's Manual of 

Determinative Bacteriology (22) includes a combination of properties 

as observed with Flavobacterium sp. strain S12, which is 

amylolytic and non-proteolytic (Table 3). The organism also does not 

resemble groups of Flavobacterium-like bacteria defined by 

McMeekin et al (9) or Hayes (3), in which the amylolytic bacteria 

were also proteolytic. These observations once more indicate the 

incomplete description of species belonging to the genus 

Flavobaatevium. Carbohydrates and (poly)alcohols are suitable 

substrates to differentiate between bacteria belonging to a specific 

genus (16, 19). Therefore it is suggested to differentiate between 

Flavobacterium species on the basis of utilization of these 

compounds and not on acid production. Additional significant infor

mation may be obtained from tests on the production of extra

cellular enzymes (proteases, amylases, etc.). 

The experiments described in this paper reveal that apart from a 

taxonomie value, tests for growth at high concentrations of carbo

hydrates and other substrates only have limited ecological 

significance. Compounds which were not utilized at high concentra

tions also did not stimulate growth at low concentrations (1 and 10 

pg of C/l). However, a number of compounds which clearly favoured 

growth at 1 g per liter gave negatieve results at low concentra

tions. Unfortunately, tests to measure growth with substrates 

present at low concentrations are time consuming. The results 

presented in this study demonstrate that this disadvantage may be 

minimized by combining tests at high concentrations with those with 

mixtures of substrates at low concentrations. 

Growth of strain SI 2 at very low substrate concentrations 
At concentrations equal to or below 10 pg of C per liter 

Flavobacterium sp. strain S12 only utilized a number of 

oligosaccharides, the polysaccharides included in starch (amylose 

and amylopectin), and glycerol. The monosaccharides of which these 

carbohydrates consisted (glucose, galactose and fructose), as well 

as arabinose, xylose, mannose and rhamnose, did not favor growth at 

these concentrations, although they were utilized at a concentration 

of 1 g per liter (Table 1). Obviously, the molecules of oligo- and 

polysaccharides were more efficiently transported into the cells at 

very low concentrations than those of the monosaccharides. This 

finding may reveal the specific character of Flavobacterium 
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sp. strain S12. Flavobacterium sp. strain 166 studied 

previously (20) was also found to grow more rapidly with starch than 

with glucose suggesting that this property is not uncommon amongst 

the amylolytic species of the genus Flavobacterium. Moreover, 

the isolation of yellow-pigmented bacteria from tap water enriched 

with very low concentrations of starch suggests that a high affinity 

for starch is typical for species of bacteria belonging to the genus 

Flavobacterium' 

Flavobacterium sp. strain S12 did not grow in the slow sand 

filtrate from which it had been isolated (data not shown) despite 

its high affinities for glycerol and a number of carbohydrates. 

Flavobacterium sp. strain 166, which was isolated from the same 

source, however multiplied in this water possibly as result of its 

ability to utilize carboxylic acids in addition to carbohydrates 

(20). Growth of strain S12 was occasionally observed in the tap 

water prepared from anaerobic groundwater as is demonstrated by the 

differences in growth of the blanks with water of the same source 

collected at different times (Table 2). 

The described properties of the isolate suggest that if growth 

occurs, it is the result of the presence of maltose- and starch-like 

compounds in the water. Generally, such compounds may originate from 

natural sources including glycogen and polysaccharides derived from 

bacteria and algae, but they may also have been introduced into the 

water during treatment. This applies particularly to starch-based 

compounds which are frequently used as coagulant aids in water 

treatment processes to prepare drinking water from surface water 

(11). The presence of small amounts of such compounds in drinking 

water may promote biological processes in the distribution system. 

Chemical methods for the assessment of these compounds occurring at 

low concentrations (< 1 mg/1) are lacking. For these reasons growth 

experiments with strain S12 may be used to obtain information about 

the presence of maltose- and starch-like compounds in tap water and 

in water at various treatment stages. 
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terium species 
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Abstract 
The growth kinetics of the Flavobactevium sp. strain S12, 

specialized in the utilization of glycerol and a number of ollgo-and 

polysaccharides (8) were determined in experiments at 15 °C in 

pasteurized tap water supplied with very low amounts of substrates. 

Substrate saturation constants (K ) for the growth on maltotriose, 

maltotetraose, maltopentaose and maltohexaose were 0.03 pM or less, 

and below those for glucose (1.7 yM) and maltose (0.17 yM) . K 

values for starch, amylose and amylopectine were 13.7, 31, and 

10.8 yg of C per liter, respectively. A yield of 2.3 x 10' colony-

forming units per yg of C on the oligo- and polysaccharides was 

calculated from the linear relationships observed between maximum 

colony counts in pasteurized tap water and the concentrations (all 

below 25 yg of C/l) of supplied compounds. The maximum colony counts 

of strain S12 grown in various types of raw water and tap water 

revealed that raw water contained only a few micrograms of maltose-

and starch-like compounds per liter; in tap water the concentrations 

were all below 1 yg of C, and usually below 0.1 yg of C per liter. 

The application of starch-based coagulant aids gave increased con

centrations of maltose- and starch-like compounds in the water 

during treatment, but these concentrations were greatly reduced by 

coagulation and sedimentation, rapid sand filtration and slow sand 

filtration. 

INTRODUCTION 

Polysaccharides consisting of glucose units with 1,4-aand 1,6-et 

linkages are normal constituents of animals, higher plants, algae 

and bacteria and are therefore present in surface water. Starch-

based polyelectrolytes are used as coagulant or filter aids and as 

sludge conditioners (1). Starch-like compounds either originating 

from the raw water source or from their use in treatment processes 

may remain present in drinking water, thus contributing to an 

undesirable growth of bacteria in distribution systems. 

Bacteria belonging to species of the genus Flavobacterium 

are able to utilize starch and a number of maltose-like oligo

saccharides at concentrations below 10 yg of C per liter (6, 8). The 
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growth constants of one particular strain were determined. Sub

sequently, growth of this organism was measured in water sampled 

from various treatment stages and in drinking water to determine the 

concentration of maltose- and starch-like (MSL) compounds in these 

water types. 

MATERIALS AND METHODS 

Organism 
Flavobaatevium sp. strain S12 had been isolated from tap 

water (slow sand filtrate) incubated at 15 °C after enrichment with 

100 yg of starch C/l. Of 28 carbohydrates tested the following were 

utilized as sole source of carbon and energy for growth when present 

at very low concentrations ( £ 10 yg of C/l): sucrose, maltose, 

raffinose, maltotriose, maltotetraose, maltopentaose, maltohexaose, 

stachyose, and the polysaccharides amylose and amylopectin as 

present in starch. None of 18 amino acids, 18 carboxylic acids and 

11 aromatic acids promoted growth when present either at very low 

concentrations or at a high concentration (2.5 g/1). Of the 4 

alcohols tested, only glycerol was used for growth. Simple nitrogen 

compounds (NH4+, NO3-) were suitable N sources and no vitamins are 

required for the growth of strain S12 (8). 

Groath experiments 
Growth experiments with strain S12 in various types of water, or 

in tap water supplied with very low amounts of carbon compounds, 

were conducted in heat-treated (0.5 h at 60 GC) samples of 600 ml in 

thoroughly cleaned Erlenmeyer flasks (1 1) of Pyrex glass. These 

flasks were incubated at 15 + 0.5 °C (no shaking). The cleaning 

procedure is described in a previous communication (6). Solutions of 

carbon compounds and NH4 CI were prepared in tap water contained in 

culture tubes and also heated at 60 °C for 0.5 h before their 

addition to the water samples. Ammonium N was supplied in a ratio to 

added C of 1 : 8. The water samples were inoculated with a low 

number of colony-forming units (CFU) of strain S12 per ml. For this 

purpose, the organism was grown in tap water supplied with a low 

amount ( ̂  0.1 mg of C/l) of a suitable carbon compound (usually 

maltose or maltotetraose). These cultures were used for inoculation 

when numbers of cells were declining as a result of starvation. The 

initial colony count (N ) usually was between 100 and 500 CFU/ml. 
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Growth curves of the organism under various experimental conditions 
were obtained by determination of the colony counts at regular 
intervals. The streak-plate technique on Lab-Lemco agar (Oxoid Ltd.) 
described previously (6) was used for this purpose. All growth 
experiments were done in duplicate unless otherwise stated. From the 
growth curves, values for the maximum colony counts (N , CFU/ml) 
° ' max 

and for the generation time (G, in hours) were obtained. The latter 
were calculated by linear regression analysis of the curve in the 
exponential phase of growth. 

The effect of very low concentrations of substrates on G and 
N of strain S12 was tested in drinking water originating from max ° o o 
pumping station Tull and 't Waal (Midden Nederland Waterworks). This 
TW water is prepared from anaerobic ground water by aeration 
followed by rapid sand filtration. The final product contained 2.3 
mg of dissolved organic carbon per liter and 0.01 mM of nitrate; the 
pH was 7.7 after heat treatment. 

Chemicals 
Maltotetraose, maltopentaose and maltohexaose were kindly 

supplied by H. Hokse, Potato Processing Research Institute (TNO), 
Groningen, The Netherlands. The starch-based coagulant aids 
Wisprofloc P (a cationogenic polymer), Wlsprofloc 20 (a non-
ionogenic polymer) and Perfectamyl (an anionogenic polymer) were 
obtained from waterworks using these compounds in water treatment. 
These aids were produced from potato starch by AVEBE, Veendam, The 
Netherlands. 

RESULTS 

Kineti.es of growth of strain SI 2 with very low concentrations of 
carbohydrates 

To assess the concentration of MSL compounds in water by growth 
experiments with Flavobacterium sp. strain S12, data were 
needed to determine the growth constants (yield, substrate satura
tion constant, minimum generation time) of the organism for a number 
of such compounds. Growth experiments with the organism in tap water 
supplied with various low amounts of selected carbohydrates were 
therefore conducted. Glucose added to TW water in various concentra
tions (AS; 0, 10, 25, 100, 250 y g of C per liter) clearly affected 
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iCFU/ml 

Fig. 1 Growth curves of strain S12 at 15 °C in pasteurized tap water 

(TW) without substrate added (•) and in the presence of glucose in 

concentrations of 10 (O) ; 25 (•); 100 (A) and 250 (A) fig of C per 

liter. Solid and dashed lines represent duplicate experiments. 

the rate of growth (G) and the maximum level of growth (N ) of 

strain SI2 (Fig. 1). N was reached after 8 days of incubation at 

max 
an initial concentration of 250 y g of C per liter. At a concentra
tion of 10 yg of C/l, growth was very slow (G = 97-131 h) and N 
(0.9-3.9 x 10^ CFU/ml) was only reached after about 45 days of 
incubation. The growth curves, shown in Fig. 1, demonstrate the 
reproducibility of the experiments. 

Strain S12 was also grown in the presence of various concentra

tions of maltose, maltotriose, maltotetraose, maltopentaose, malto-

hexaose, soluble starch, amylose and amylopectin. Fig. 2 shows the 
N values observed over the range of 0 to 25 yg of C/liter. The 

max ^ ^ s 

slopes of the linear parts of these curves were calculated and gave 
the yield values (Y, CFU/yg of C) of strain S12 for the various 

compounds. The Y value for glucose was calculated from N values r ° max 
obtained at 100 and 250 yg of C per liter (Fig. 1). Most Y values 
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Fig. 2 Maximum colony counts of strain S12 observed in pasteurized 

tap water (TW) incubated at 15 °C in relation to the concentrations 

of various added compounds. 

were equal to or close to 2.3 x 107 CFU/yg of C (Table 1). 

The G values of strain S12 calculated from the slopes of the 

growth curves in the exponential growth phase were plotted against 

the reciprocal values of AS for the various substrates (Figs. 3 and 

4 ) . The excellent applicability of the Lineweaver-Burk plot for the 

various experimental conditions is clearly demonstrated by these 
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Table 1. Growth constants of Flavobacterium sp. strain S12 as 

calculated from growth experiments at 15 °C in pasteurized 

tap water (TW) supplied with various substrates. 

Substrate 

Glucose 

Maltose 

Maltotriose 

Maltotetraose 

Maltopentaose 

Maltohexaose 

Amylose 

Amylopectin 

Starch 

Yield 

(CFU/pg 

1.8 x 

2.0 x 

2.3 x 

2.3 x 

2.3 x 

2.2 x 

2.1 x 

2.3 x 

2.0 x 

(Y) 
of C ) a 

10? 
10' 
10' 
10? 
10? 
10? 
10? 

10' 
10? 

min 
(h) 

6.2 
2.8 
2.5 
2.1 
2.2 
2.1 
1.7 

2.1 
2.2 

K 

(yg ofSC/l) 

121 
24 

5.5 
7.9 
6.2 
6.2 

31 
10.8 

13.7 

Substrate 

affinity 

(G . .K ) _ 1 
x min s 

1.3 x 10- 3 

1.5 x 10- 2 

7.2 x 10"2 

6.0 x 10- 2 

7.4 x 10- 2 

7.8 x 10 - 2 

1.7 x 10- 2 

4.4 x 10- 2 

3.3 x 10- 2 

a Calculated from the linear relationships between N and AS (see 
max 

Fig. 2) 

b Results based on data from growth measurements at concentrations 

between 100 and 250 ug of C/l. 

figures. The slopes and intercepts of the plots were obtained by 

linear regression analysis using the following equation: 

G = G . + G . 
min min 

K /As 
s 

i n wh i ch G i s o b s e r v e d g e n e r a t i o n t i m e ( h ) and G . i s minimum 
min 

g e n e r a t i o n t i m e ; K i s t h e s u b s t r a t e s a t u r a t i o n c o n s t a n t which 
s 

e q u a l s t h e s u b s t r a t e c o n c e n t r a t i o n (AS) a t which G = 2 G . . 
min 

The growth c o n s t a n t s f o r t h e v a r i o u s s u b s t r a t e s (Tab le 1) r e v e a l 
t h a t a t low c o n c e n t r a t i o n s , s t r a i n S12 i s p a r t i c u l a r l y adapted t o 

g r o w t h on m a l t o t r i o s e , m a l t o t e t r a o s e , m a l t o p e n t a o s e and 

ma l t ohexaose . For t h e s e s u b s t r a t e s t h e h i g h e s t s u b s t r a t e a f f i n i t i e s 
(G . x K ) _ 1 w e r e o b t a i n e d , v i z . 6 . 0 - 7 . 8 x 1 0 ~ 2 1 / h . y g C . m i n s 
Fu r t he rmore , s t r a i n S12 m u l t i p l i e d much more r a p i d l y a t low 

c o n c e n t r a t i o n s of p o l y s a c ch a r i d e s ( amylose , amylopec t in and s t a r c h ) 

t han a t low c o n c e n t r a t i o n s of g l u co se and m a l t o s e . The organism grew 

v e r y p o o r l y i n t h e b l a n k s ; t h e N v a l u e s we re a l w a y s b e l ow 
max ' 

132 



-0.1 0.1 02 0.3 0.4 0.5 
1/AS(/ugC/ir1 

Fig. 3 Lineweaver-Burk plots for strain S12 grown at 15 °C in 

pasteurized tap water (TW) supplied with various amounts of glucose 

(•) ; maltose (O) and starch (A); G = generation time; As = concen

tration of added substrate. 

1.7 x 10^ CFU/ml (occasionally below 103 CFU/ml) and G values above 

40 h (occasionally above 300 h). Plotting of these G values against 
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Fig. 4 Lineweaver-Burk plots for strain S12 grown at 15 °C in 

pasteurized tap water (TW) supplied with various amounts of oligo-

and polysaccharides; G = generation time; AS = concentration of 

added substrate. 
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Fig. 5 Relationship between the generation time (G) of strain S12 

and reciprocal values of the maximum colony counts (N ) as v J max 
obtained in growth experiments in tap water prepared from anaerobic 

ground water (TW). The lines for maltose, amylopectin and 

maltohexaose were calculated using the growth constants obtained for 

these compounds (see Table 1). 

the reciprocal values of the corresponding N gives a curve which 
r l- o m a x s 

is comparable with the Lineweaver-Burk plot. A clear relationship 
existed between values of G and N ~^ of the blanks (Fig. 5). To 

max a 

know what type of carbon compound is responsible for the growth of 

the organism in the blanks (TW), calculated lines for maltose, 

amylopectin and maltohexaose are given in Fig. 5. Most of the 
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Fig. 6 Kinetics of the growth of strain S12 at 15 °C in pasteurized 

tap water (TW) supplied with the starch-based coagulant aids 

Wisprofloc 20 (O) , Perfectamyl (•) and Wisprofloc P (A). 
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combinations of values for G and N "* observed in the tap water 
max 

without added carbon compounds were close to those obtained for 
amylopectin, suggesting that very low concentrations (< 1 yg of C/l) 

of compounds resembling amylopectin were present in the blanks. 

Kinetics of growth at low concentrations of starch-based coagulant 
aids 

Three starch-based coagulant aids were tested for their growth-

promoting effect on strain S12 at concentrations which were equal to 

or below 1000 yg of C/l. The N values of strain S12 observed with 
"* max 

identical concentrations of Wisprofloc 20 and Perfectamyl were quite 

similar but lower values were obtained for growth on Wisprofloc P. 

(Fig. 6 ) . The relationships between A S and N were non-linear at 

low AS values. Interpretation of the Lineweaver-Burk plots is 

complicated by their non-linearity at AS values below 25 yg of C per 

liter (Fig. 6). The substrate affinities of strain S12 for the 

starch-based coagulant aids (Table 2) were 5 to 10 times lower than 

those for amylopectin and amylose (Table 1). 

Table 2. Growth constants of Flavobacterium sp. strain S12 for 

three starch-based coagulant aids as determined by growth 

experiments at 15 °C in pasteurized tap water (TW). 

Compound Yield (Y)a G K Substrate 

(CFU/yg of C) (h) (yg of C/l) affinity 

(G , .K ) _ 1 

min s 

Perfectamyl 

Wisprofloc 20 

Wisprofloc P 

2.0 x 107 

2.0 x 107 

1.0 x 107 

3.2 
1.8 
1.4 

51 
133 
290 

6.2 x 10~3 

4.1 x 10- 3 

2.2 x 10- 3 

Calcu la t ed from the l i nea r part of the r e l a t ionsh ip between N 
max 

and S (see Fig. 6). 

Growth of strain SI 2 in water sampled from various stages of 
treatment systems 

The growth kinetics of strain S12 for maltose-and starch-like 

(MSL) compounds, in combination with its specialization in these 

compounds, indicate that the organism is suited for the estimation 

of low concentrations of these compounds in water. To obtain 
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information about the concentration of MSL compounds in various 

types of water, strain S12 was grown in (a) samples of drinking 

water prepared from dune-infiltrated river water (final treatment 

step was slow sand filtration); (b) samples of drinking water 

prepared from aerobic ground water without further treatment; (c) 

water (including drinking water) sampled from various treatment 

systems in the period that no starch-based coagulant aids were 

applied and (d) water sampled when starch-based coagulant aids were 

applied. Table 3 shows that strain S12 multiplied not at all or very 

Table 3. Growth of Flavobaaterium sp. strain S12 at 15 °C in 

various types of drinking water prepared without the use of 

starch-based coagulant aids 

Location 

1 
2 
3 
4 
5 

6 

Source 

River water 

River water 

Polder water 

River water 

Ground water 

Ground water 

Water Treatment 

B,C,J,C,A,F,E,J,K 

G,C,A,E,F,J,K 

G,B,J,D,G,J,K 

B,C,G,D,H,I 

Aerobic water, 

no treatment 

Aerobic water, 

no treatment 

Generation 

time 

G(h) 

N.G.b 

N.G. 

N.G. 

N.G. 

D.C 

D 

Maximum 

colony 

count 

(CFU/ml) 

500 
500 
500 
700 
D. 

D. 

A, underground storage (dunes); B, storage in open reservoirs; C, 

chlorination; D, ozonation; E, aeration; F, dosage of powdered 

activated carbon; G, coagulation and sedimentation; H, dual media 

filtration; I, granular activated carbon filtration; J, rapid sand 

filtration; K, slow sand filtration. 

N.G. = no growth; no doubling of the initial colony count within 

an incubation period of 2 to 3 weeks (G > 300-500 h ) . 

D = die-off (slowly). 

slowly in various types of drinking water (a, b ) . From the very low 

N values it is concluded that the concentrations of MSL compounds 
max 

were far below 1 yg of C/l. Even in samples of raw or partly treated 
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Fig. 7 The concentration of maltose- and starch-like (MSL) compounds 

as determined by growth experiments with strain S12 in water samples 

derived from various treatment stages of waterworks A and B in a 

summer period (I) and a winter period (II). During the winter 

Perfectamyl was dosed at waterworks A and Wisprofloc at waterworks 

B. Treatment stages of waterworks A: 1, river Meuse water after 

storage in open reservoirs; 2, coagulation and sedimentation 

(without a coagulant aid); 3, ozonation (2 mg/1); 4, dosage of 

Perfectamyl (0.2 mg/1) in winter; 5, dual media filtration; 6, 

granular activated carbon filtration. Waterworks B: 1, ground water 

after storage in an open reservoir and rapid sand filtration; 2, 

ozonation (2 mg/1); 3, dosage of Wisprofloc (3.0 mg/1) in winter; 4, 

coagulation and sedimentation 5, rapid sand filtration; 6, slow sand 

filtration. Average values and values of duplicate measurements are 

shown. 
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water, concentrations of such compounds usually do not seem to 

exceed a few yg of C/l (Figs. 7 AI and BI). Coagulation and 

sedimentation (A2, B4) caused clear reductions (60-70 %) of the 

concentration of the MSL compounds at locations A and B. The concen

tration of these compounds was clearly affected by a dosage of 

starch-based compounds causing the presence of such compounds (2 y g 

of C/l) in drinking water produced at location A (Fig. 7). A combi

nation of rapid and slow sand filtration as applied at location B 

(B5, B6) removed the MSL compounds to a non-detectable level (N < 

103 CFU/ml) in the slow sand filtrate BII.6. Ozonation (A3; B2) had 

a negligible effect on the concentration of the MSL compounds. 

The concentration of MSL compounds as determined with growth 

measurements of strain S12 in water sampled directly after the 

addition of starch-based compounds were only 5-6 % of the added 

amount of these compounds. In a laboratory experiment, in which 

practical conditions were simulated, also a very low recovery (6 %) 

was observed (data not shown). Chemicals as used in the coagulation 

process (FeClß, lime, powdered activated carbon), seem to bind a 

large part of the added starch-based compounds, preventing their 

utilization by strain S12 in the growth experiments. 

DISCUSSION 

Growth characteristics of strain SI 2 
The specific character of strain S12 regarding its utilization 

of a number of oligosaccharides as had been observed in a previous 

investigation (8), was clearly confirmed by the results of the ex

periments described in this paper. When expressed as yM, the K 

values of strain S12 for the maltodextrins (0.014-0.027 yM) were 

about 10 times below the K value observed for maltose (0.17 yM) 

which in turn was 10 times lower than K for glucose (1.7 yM). Com

parison of these values with either K values or substrate satura-
s 

' " I s 
tion constants for transport (K ) observed in other bacteria is 

limited by the few data available for maltodextrins. K values of 
t 

Escherichia coli for maltose (1 yM) and maltotriose (2 yM) as 

reported by Szmelcman et al. (4) are clearly higher than the K 

values found for strain S12, which is not astonishing. In contrast, 

the K value for growth of E.aoli on glucose, observed in 

batch experiments, varies between 0.3 yM (5) and 1 yM (10) and is 

clearly below the K of strain S12 for this substrate. For galac-
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tose, which did not promote growth of strain S12 when present at a 

concentration of 10 |ig of C per liter (8), E.aoli has a low 

K value (0.49 yM) (2). 

Strain S12 did not hydrolyse maltotriose before uptake as may be 

concluded from the large difference between K values for this 

compound and for glucose and maltose, respectively. For the same 

reason, it is likely that the other maltodextrins tested were also 

transported into the cells without extracellular hydrolysis. 

However, extracellular hydrolysis of the polysaccharides amylose and 

amylopectin is necessary to allow growth on these substrates. To 

attain this result, the enzymes can be excreted by the cells or they 

are attached in some way to the cell surface. The ability of strain 

S12 to excrete starch-hydrolyzing enzymes has been demonstrated by 

the clear zone appearing around colonies growing on starch-

containing agar plates (8). It is unkown if at low substrate concen

trations , the starch-decomposing enzymes function in a different way 

(J.M.A. Janssen, Ph.D. thesis, Agricultural University, Wageningen, 

The Netherlands, 1979). Growth kinetics of strain S12 obtained for 

amylose and amylopectin reveal that these compounds also were not 

hydrolysed into glucose and maltose before uptake, but most likely 

maltodextrins were formed. The more rapid growth of strain S12 with 

amylopectine than with amylose when present at low concentrations 

demonstrates an efficient adaptation to the hydrolysis of this 

branched polymer which is structurally related to glycogen. The 

latter compound is widespread in nature as a storage compound in 

bacteria, algae and plants. The mechanism for the rapid growth on 

this branched polymer was not elucidated. 

The starch-based coagulant aids were much less readily utilized 

by strain S12 than amylopectin and amylose. Structural changes in 

the polysaccharides contained in these compound, as induced by 

various chemical processes seem responsible for this difference. 

The K values and substrate affinities (G . x K ) - 1 of strain 
s min s 

S12 for maltotriose, maltotetraose, maltopentaose and maltohexaose 

have remarkably similar values when expressing concentrations in yg 

of C per liter. This similarity suggests that either the transport 

constants decrease proportionally with increasing size of the 

molecules or that a metabolic process is determining the observed 

substrate affinities. It is obvious that the low substrate 

affinities for glucose and maltose are not the result of a metabolic 

process, because the above-mentioned substrates also provide glucose 
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molecules as source of carbon and energy. An indication that a meta
bolic process may determine the rate of growth at very low concen
trations of substrates was obtained in a previous study by growth 
experiments with two different strains of "Pseudomonas 
fluovesoens- A constant difference in substrate affinities 
between these two strains was observed for a number of substrates 
requiring different transport systems (7). The highest (G , .K ) 
values observed for strain S12 (7.8 x 10 - 2 1/yg C.h) are very close 
to the highest substrate affinity obtained for P. fluovesaens 
strain P17 (approx. 9 x 10~2 l/pg c.h) for growth on arginine and 
the value observed in an other Flavobaatevium sp. (approx. 
6.5 x lO-2 1/yg C.h) for growth on glucose and starch. Further 
research is required to show if significantly higher substrate 
affinities for single substrates exist in nature. 

Plotting of G values against the reciprocals of N resembles 
the construction of the Lineweaver-Burk plot, and enables the 
characterization of the growth-promoting properties of a specific 
water sample for a specific organism without knowledge about the 
substrate concentration. Fig. 5 suggests that the water tested did 
not contain substrates which could promote growth more rapidly than 
maltohexaose. When mixtures of compounds are present in the water, 
no clear relationship is expected to exist between G values and 

reciprocals of N .In this situation, the generation time in the 
r max ' ° 

exponential phase of growth is particularly affected by compounds 
for which the organism has the greatest affinities, whereas N is 

° ° ' max 
the result of the utilization of all growth promoting compounds. For 
this reason, the relationship between G values and reciprocals of 
N cannot simply be used as a means to identify the compound max r ' j v 
responsible for growth. Still it is possible that glycogen-llke 
compounds were indeed responsible for the growth of 
Flavobaatevium strain S12 in a number of water samples. 

The shape of the curve representing the relationship between 
N and the applied substrate concentrations (Figs. 2 and 6) is max r r \ o / 
related to the type of compound applied. N values were lower than 
expected on a linear basis with concentrations of glucose and 
maltose below 20-30 % of K . This effect was not observed with 

s 
amylose but starch-based coagulant aids also gave lower N values 

max 
than expected. These deviations might either be due to (1) 
relatively great proportion of substrate being utilized for 
maintenance at very low growth rates, (2) inability to utilize the 
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compound at very low concentration, or (3) lesser viability of the 

cells at very low growth rates. The lower than expected N values 

at maltopentaose and maltohexaose concentrations above 10 p g of C 

per liter might be the result of a larger size of cells growing at a 

nearly maximum rate. 

Growth of strain S12 in various types of water 
The results presented in this paper show that growth 

measurements with a selected bacterium may give information about 

the concentration of a specific group of compounds in water. The 

concentrations of maltodextrins and starch-like compounds calculated 

from the N values of strain S12 are maximum values because growth 
max 

may also have been promoted by the presence of other substrates of 
unknown identity including glycerol. On the other hand, the real 

concentration of MSL compounds may significantly be above the 

calculated value when adsorption onto solids prevents their 

utilization by strain S12. Such an adsorption, however, was not 

observed in the experiments with tap water supplied with various 

compounds (Fig. 2). 

The growth experiments with a few types of water used for the 

preparation of drinking water revealed that the concentrations of 

MSL compounds were only a few micrograms of C per liter. In most of 

the tap water samples, these concentrations were far below 1 "|ig of 

C/l (Table 3 and Fig. 7). Ozonation, which is causing a clear 

increase of the concentration of carboxylic acids, including oxalic 

acid (9), hardly affected the concentration of MSL compounds. 

Coagulation and sedimentation processes (without a dosage of starch-

based compound), rapid sand filtration and slow sand filtration, 

resulted in a substantial decrease of these concentrations. Concen

trations of MSL compounds were increased by the addition of starch-

based products. Most of the coagulant aids seem to be removed in the 

coagulation and sedimentation process. 

MSL compounds introduced into water may promote biological ac

tivity in filters removing these substances. When they remain in the 

tap water, it results in bacterial regrowth in distribution systems. 

Under such situations, particularly growth of Flavobaeterium 

sp. may be enhanced. This genus includes bacteria which seem spe

cialized in growth at very low concentrations of oligo- and poly

saccharides consisting of glucose with l-4a- and 1-6 a -glucosidic 

linkages. However, the common occurrence of yellow pigmented 
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bacteria in water samples in various treatment stages and in 

drinking water (3), is not necessarily related to the use of starch-

based coagulant aids, since (i) these bacteria are able to grow on 

various other compounds and (ii) MSL compounds may be present in 

natural waters at higher levels than reported in this paper. 

LITERATURE CITED 

1. Packham, R.F. 1967. Polyelectrolytes in water clarification. 

Proc. Soc. Water Treat. Exam. 16: 88-111. 

2. Rotman, B. and J. Radojkovic, 1964. Galactose transport in 

Escherichia coli; the mechanism underlying the retention of 

intracellular galactose. J. Bacteriol. Chem. 239: 3153: 3156. 

3. Reasoner, D.J. and E.E. Geldreich, 1980. Significance of 

pigmented bacteria in water supplies, p. 187-196. Proceedings of 

the 7th American Water Works Association Water Quality 

Technology Conference. 

4. Szmelcman, S., M. Schwarz, J. Silhavy and W. Boos. 1976. Maltose 

transport in Escherichia coli K12. Eur. J. Biochem. 65: 

13-19. 

5. Shehata, T.E., and A.G. Marr. 1971. Effect of nutrient concen

tration on the growth of Escherichia coli. J. Bacteriol. 

107: 210-216. 

6. Van der Kooij, D. and W.A.M. Hijnen, 1981. Utilization of low 

concentrations of starch by a Flavobacterium species 

isolated from tap water. Appl. Environ. Microbiol. 41: 216-221 

(Chapter 6 ) . 

7. Van der Kooij, D., A. Visser and J.P. Oranje, 1982. Multipli

cation of fluorescent pseudomonads at low substrate concentra

tions in tap water. Antonie van Leeuwenhoek. J. Microbiol. 48: 

229-243 (Chapter 2). 

8. Van der Kooij, D. and W.A.M. Hijnen, 1983. Nutritional 

versatility of a starch-utilizing Flavobacterium at low 

substrate concentrations. Appl. Environ. Microbiol. 45: 804-810 

(Chapter 7 ) . 

9. Van der Kooij, D. and W.A.M. Hijnen, 1984. Substrate-utilization 

of oxalate-consuming Spirillum species in relation to its 

growth in ozonated water. Appl. Environ. Microbiol. 47: 551-559. 

(Chapter 9). 

144 



10. Von Meyenburg, K. 1971. Transport-limited growth rates in 

mutant of Escheviahia coli. J. Bacteriol. 107: 878-888. 

145 



9. Substrate utilization by an oxalate-consuming Spirillum 
species in relation to its growth in ozonated water 

D. VAN DER KOOIJ AND W.A.M. HIJNEN 
Appl . Env i ron . M i c r o b i o l . 47 ( 1984) : 551-559 

Abstract 
The nutritional versatility of a vibrio-shaped oxalate-utilizing 

isolate, strain NOX, obtained from tap water supplied with low con

centrations of formate, glyoxylate and oxalate, was determined by 

growth experiments with low-molecular-weight carbon compounds at 

high (grams per liter) and very low (micrograms per liter) concen

trations. The organism, which was identified as a Spirillum 

species, appeared to be specialized in the utilization of a number 

of carboxylic acids. Yields of 2.9 x 106 CFU)/pg of oxalate C and 

1.2 x 10' CFU/pg of acetate C were obtained from growth experiments 

in tap water supplied with various low amounts of either oxalate or 

acetate. A substrate saturation constant of 0.64 yM of oxalate C was 

calculated for strain NOX from the relationship between growth rate 

and concentration of added oxalate. Maximum colony counts of strain 

NOX grown in ozonated water (dosages of 2.0-3.2 mg of O3 per liter) 

were 15 to 20 times larger than the maximum colony counts of strain 

NOX grown in water prior to ozonation. Based on the nutritional 

requirements of strain NOX, it was concluded that carboxylic acids 

were produced by ozonation. Oxalate concentrations were calculated 

from the maximum colony counts of strain NOX grown in samples of 

ozonated water in which a non-oxalate utilizing strain of 

Pseudomonas fluoresoens had already reached maximum growth. 

The oxalate concentrations obtained by this procedure ranged from 

130 to 220 yg of C/l. 

INTRODUCTION 

Ozone is applied in water treatment for disinfection, as well as 

for the reduction of color, taste and odor, organic micropollutants 

and for reducing the content of organic matter of the water (13). 

Ozonation of water containing organic compounds, which are resistant 

to biodégradation, e.g. fulvic and humic acids, results in the 

formation of a number of easily biodegradable carboxylic acids, 

including formic, glyoxylic, oxalic, pyruvic and acetic acids (1, 5, 

11). Acetate and oxalate are particularly resistant to further 

oxidation by ozone (7). An increase in the concentration of 

biodegradable compounds caused by ozonation has also been demon-
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strated for the effluent of a wastewater treatment plant by long-

term BOD tests (14) and in the preparation of drinking water by 

growth experiments with a pure culture of Pseudomonas fluoresceins 

(22). When ozonation in water treatment is followed by rapid sand 

filtration, the biodegradable compounds formed are removed by 

bacterial activity in the filter (22). However, when ozonated water 

is distributed without further treatment, growth of bacteria may 

occur in the distribution system (3, 4, 15) resulting in 

deterioration of water quality. 

Measurement of the biodegradable compounds formed by ozonation 

by using chemical methods is not only complicated by the diversity 

and the nature of these compounds but also by their low concentra

tions. Therefore an attempt was made to develop a microbiological 

method to quantify the presence of the easily biodegradable 

carboxylic acids, including oxalic acid. The nutritional versatility 

of an oxalate-utilizing bacterium which was selected for this 

purpose was determined. Moreover, the growth of the organism in tap 

water supplied with very low amounts of oxalate and acetate and in 

ozonated water was studied. 

MATERIALS AND METHODS 

Strains 
Strain NOX was isolated from the filtrate of slow sand filters 

of the Municipal Dune Waterworks of The Hague. Six hundred milli

liters of this water was incubated at 15 °C after addition of a 

mixture of formate, glyoxylate and oxalate, each at a concentration 

of 25 ng of C per liter. The development of the bacterial flora was 

investigated by periodic colony counts on Lab-Lemco Agar (LLA) 

plates, and the organism which formed the predominating colony type 

was isolated. 

P. fluoresaens P17 was isolated from tap water prepared from 

dune-infiltrated river water. A detailed description of the organism 

has been given in a previous communication (23). 

Media 
Mineral salts agar (MSA) was prepared by adding 0.5 g of NH4CI, 

0.5 g of Na2HP04.12H20 and 12 g of purified agar per liter to the 

basal salts solution described previously (18). LLA consisted of 3 

g of Lab-Lemco (Oxoid Ltd.) beef extract, 5 g of peptone and 12 g of 
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agar (Oxoid no. 3) per liter of demineralized water. 

Characterization procédures 
The following tests were used for characterization of the iso

late: Gram stain, oxidase test (9), oxidation-fermentation test with 

glucose (6), arginine dihydrolase test (17), urease activity (16) 

and phosphatase activity (8). Production of NO2- and N2 from NO3 was 

tested in tap water supplied with 1 g of KNO3, 1 g of DL-lactate and 

5 g of yeast extract per liter. Media and procedures of tests for 

hydrolysis of proteins (casein, gelatin), starch, chitin, and Tween-

80 have been described previously (18). Cultivation was done at 

25 °C. 

Colony growth test 
This technique was used to determine the utilization of 

substrates as sources of carbon and energy for growth at a high 

concentration. The compounds tested were present in autoclaved 

solutions of either 1 or 10 % (wt/vol). About 100 colony-forming 

cells of the organism, cultivated at 25 UC in autoclaved tap water 

supplied with 1 mg of acetate C/liter, were spread over the surface 

of plates with MSA containing 1 g of the substrate to be tested per 

liter. The plates were incubated at 25 °C, and during a period of 

about 2 weeks the diameters of four or five randomly selected 

colonies on each plate were measured periodically with a Wild M7S 

binocular microscope. A previous study (19) revealed that when a 

substrate is utilized then R /R, > 2; R = radius of colony grown on 

agar containing the substrate, and R, = radius of colony grown on 

agar without substrate (blank). 

Growth at very low substrate aonoentrations 
The utilization of substrates at very low concentrations was 

tested by growth experiments in tap water from The Hague (TH) and 

tap water from Tull and 't Waal (TW). TH was prepared from dune-

infiltrated river Meuse water by the Municipal Waterworks of The 

Hague. Treatment of water abstracted from the dunes successively 

included dosage of powdered activated carbon, aeration, rapid sand 

filtration and slow sand filtration. TH contained 3.4 mg of organic 

carbon and 7.1 mg of NO3- per liter; the pH was 7.7. TW was prepared 

from anaerobic ground water using aeration followed by rapid sand 

filtration. It contained 2.3 mg of organic carbon and 0.6 mg of NO3-
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per liter; the pH was 7.7. 
Growth of a pure culture at very low substrate concentrations 

was investigated in tap water supplied either with mixtures of 
compounds or with the compound to be tested. The experiments were 
conducted in 600 ml of water contained in 1 liter-Pyrex glass 
flasks. These flasks and the pipettes that came in contact with tap 
water were thoroughly cleaned as previously described (29). Bacteria 
originally present in the tap water were eliminated by heating the 
water samples to 60 °C for 30 minutes. Solutions of individual 
substrates were freshly prepared in tap water and heated in the same 
way. Mixtures of substrates were added from stock solutions which 
had been prepared as previously described (20). The following 
mixtures, containing the compounds listed in Table 2, were present: 
a mixture of 18 amino acids (AA), a mixture of 14 carboxylic acids, 
a mixture of 6 carbohydrates and alcohols and a mixture of 7 
aromatic acids. 

The experimental solutions were inoculated with usually less 
than 10^ colony-forming units (CFU) per ml and subsequently 
incubated at 15 + 0.5 °C. These cells were either precultured in 
autoclaved tap water supplied with a low concentration (̂  1 mg of C 
per liter) of acetate or derived from an experimental culture in tap 
water. These cultures were only used when the maximum number of 
cells (N , CFU/ml) had been reached. Growth of the organism in 

max ' ° 
water was estimated by periodic colony counts on plates of LLA (in 
triplicate). The experiments were continued until the N values 

v r max 

were reached. The generation time (G, in hours) of the population in 
the exponential-growth phase, was calculated by linear regression 
analysis of the log values of the colony counts in this phase. 
Growth experiments were carried out in duplicate unless otherwise 
stated. N values obtained in duplicate growth experiments with 
strain NOX deviated 10 % or less from each other in 90 % of the 
experiments. 
Estimation of growth kinetics 

By analogy with Michaelis-Menten enzyme kinetics, the following 
relationship between growth rate (number of generations per hour, 
G--*-) and the concentration of the growth-limiting substrate (S) may 
be defined: 

1/G = (1/G , ) x S/(K + S) (1) 
min s 
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G and G . r e p r e s e n t the observed and minimum g ene r a t i on t ime , 
min r 

respec t ive ly , and K , the subs t ra te - sa tu ra t ion constant , i s equal to 
S when G = 2 G . Equation (1) may be rearranged in to the following 
form ( the Lineweaver-Burk p l o t ) : 

G = G . + (G . • K /S) (2) 
min min s • 

G is measured at various concentrations of substrate (AS) added to 
the tap water. If the concentration of natural substrates (S ) is r n 
very low, (no or no significant growth of the blank), then values 
for G . and K may be calculated using equation (2) in which S = 
AS. When significant growth occurs in the blanks, S in equation (2) 
is replaced by S = AS + S • In this situation, no linear relation
ship exists between 1/AS and G, unless the added substrate is 
preferentially utilized. When AS and S are utilized concurrently, 
values for G . , K and S may be obtained by measuring G values at 

min' s n ' J ° 
various concentrations of AS and calculation of the best fitting 
curve using equation (2) in which S = AS + S . In this case S , the 
apparent natural substrate concentration, is obtained as the amount 
of substrate equivalents of the added substrate. With concurrent 
utilization of AS and S ) however, another linear function may be 
derived from equation (2): 

Gmin I (G - Gmin) = <Sn ' V + (AS > V ( 3 ) 

The G . value may be obtained from experiments with a high concen
tration of AS, where G is very close to G . . A concurrent uptake of 

min 
S and AS is particularly expected when AS values are close to S n r J r n 
values. In this situation, the largest differences between G and 
G . are obtained, min 

RESULTS 

Nutritional and morphological oharaaterietios of strain NOX at high 
substrate concentrations 

Strain NOX gave negative reactions in most of the tests applied 
to determine its physiological characteristics (Table 1). From these 
results and the morphological properties of the organism, particu
larly its vibrio shape (Fig. 1), it is concluded that strain NOX re
presents a species of the genus Spirillum as described by Krieg 
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Fig. 1 Morphology of strain NOX, grown in yeast-extract (0.8 % 
(wt/vol)) medium. Cell length = 1.3 )jm. 

(10). 
Sixty-five low-molecular-weight compounds were tested as sole 

sources of carbon and energy for strain NOX by using the colony-
growth test. Only with 11 carboxylic acids and with the amino acids 
glycine and alanine were the size (R ; R is radius of colonies 
grown on MSA supplied with a substrate) of the colonies at least two 
times larger than the size ( R T ) of the colonies on MSA without 
substrate (Table 2). A number of aromatic acids were toxic for 
strain NOX under the conditions used. 

Nutritional versatility at very low concentrations of substrates 
Growth experiments in TH supplied with mixtures of various 

carbon compounds, each present at a concentration of 1 yg of C/l, 
were conducted for a rapid screening of the nutritional versatility 
of strain NOX at a very low concentration of substrates; the 

obtained N values and growth rates revealed that strain NOX was 
max ° 

specialized in the utilization of carboxylic acids (Fig. 2 ) . The 
utilization of carboxylic acids at very low concentrations was 
further investigated in separate tests by measuring the growth of 
strain NOX in tap water supplied with carboxylic acids, each at a 
concentration of 10 yg of C per liter. The obtained N values 

r max 

(Table 3) demonstrate that formate, glyoxylate, glycollate, 
propionate, pyruvate, lactate, malonate, malate, fumarate and suc
cinate clearly promoted growth (in addition to acetate and oxalate; 152 



Table 1. Nutritional and morphological characteristics of strain NOX 

Property 

Oxidase 

Àcid from glucose 

aerobic 

anaerobic 

Arginine dihydrolase 

NO2- from NO3 

N2 from NC>3~ 

Urease 

Phosphatase 

Hydrolysis of 

Growth at 37 

Cell sizea 

Motility3 

casein 

gelatin 

starch 

chitin 

Tween-80 

'C 

Flagella insertion(cf.Fig 

Pigmentation af colonies 

Isolât 

• 

1) 

1-

e characteristic 

+ 

-
-
-
-
-

-
-

-

-

-2x0.5 

+ 
polar 

-

m 

Cells grown in denitrification medium (cf. Materials and Methods 

Grown on LLA at 25 °C. 

see below). 

Based on the results shown in Table 2 and the growth on 

dicarboxylic acids, four amino acids were selected for the test at 

10 yg of C/l. Growth of strain NOX was most clearly promoted by 

aspartate, but the increase of N was much less than with the 
max 

dicarboxylic acids when present at this concentration (Table 3). 

Kinetics of the growth on oxalate and. acetate at very low concentra
tions 

Strain NOX was grown in tap water supplied with various concen

trations (As) of either oxalate or acetate to determine the rela-
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Blank Cfl RR RR CHfl TM 
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- 0.25 
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L 
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Fig. 2 Effect of various mixtures of substrates on the maximum 
colony count (N ) and the growth rate of strain NOX in tap water 
at 15 °C. The compounds in the mixtures (see Table 2) were each 
present at a concentration of 1 y g of C per liter, except glutamate 
which was present at twice this concentration. The total mixture 
(TM) included all compounds present in the other mixtures. The 
presented results are average values of duplicate experiments. 
Abbreviations: CA, carboxylic acids; AA, amino acids; AR, aromatic 
acids; CHA, carbohydrates and alcohols. 

tionship between AS and N values, and to determine the growth 
r max 

kinetics of the organism for these substrates which are main 
products of ozonation. The growth curves observed in TW supplied 
with oxalate demonstrated that the N values and the rate of 

max 

growth (slope of the curves) depended on AS (Fig. 3 ) . The growth 
curves observed in TW supplied with acetate also demonstrated an 
effect of S on N , but the initial rate of growth was not 

max ' ° 
promoted by the presence of acetate (Fig. A; not all growth curves 
are shown). The duplicate growth curves shown indicate that the 
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Fig. 3 Growth curves of strain NOX at 15 °C in tap water without 

added oxalate (D) and with 3 (O), 5 (A), 10 (+), 20 (x), 50 (O), 100 

(v) or 500 (H) iJg of oxalate C added per liter. Solid broken lines 

indicate duplicate experiments. 

applied technique gives highly reproducible results. 

The linear relationships observed between the N values of 
r max 

strain NOX and the various concentrations of oxalate and acetate 

added to the tap water (Fig. 5) demonstrate that these compounds (i) 

were growth limiting and (ii) were utilized at very low concen

trations. The relationships enabled calculation of the yield (Y) 

values expressed in CFU per microgram of added C. Y on acetate was 

about four times than on oxalate (Table 4 ) , which was due to the low 

nutritional value of oxalate. The natural substrate concentration 
S available for the organism can be calculated from the N values 

n max 

156 



7-1 

£ 

£ 5 
O 

O) 
O 

Z 4-

o 

3-

5 10 
Time (days) 

Fig. 4 Growth curves of strain NOX at 15 "C in tap water without 

added acetate (D) and with 100 (O) or 1000 (A) yg of acetate C added 

per liter. Solid and broken lines indicate duplicate experiments. 

of the blanks and the obtained Y values. The average N values of 
, , max 

the blanks were 2.4 x 104 CFU/ ml (TW) and 7.5 x 104 CFU/ml (TH) in 

the respective experiments. The S values thus were either 2 (in TW) 

or 6 (in TH) pg of acetate-C equivalents per liter or 8 (in TW) or 

26 (in TH) yg of oxalate-C equivalents per liter. 

A plot of the generation time (G) of strain NOX versus As--'- of 

oxalate (see equation 2) gave a non-linear function (Fig. 6). Growth 

of the blanks indicated that this nonlinearity was due to the utili

zation of substrates present in the tap water (S ) . A linear 
n 
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150-1 

0 50 100 

Subs t ra te added (pgC/U 

Fig. 5 Relationship between the concentrat ions of oxalate (A) or 

ace ta te (O) and the maximum colony counts (N ) of s t r a i n NOX grown 
max 

at 15 °C in tap water supplied with these compounds. 

relationship, however existed between G and AS-1 when AS was greater 

than or equal to 50 yg/1 (Fig. 6), and with these results values of 

G . and K for oxalate were calculated (Table 4). Using G at 1 mg min s \ • -o -o 
of oxalate C per liter (G = 4.1 h) as the G . value enabled 

r min 

linearization according to equation 3 (Fig. 7), an alternative 

calculation of K (17.8 yg of oxalate C/l) and the calculation of S 

(5.7 yg of oxalate-C equivalents per liter). Calculation of the 

best fitting curve (Fig. 6) with equation 2, in which S = As + S , 
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Fig. 6 Lineweaver-Burk plot of strain NOX for growth with oxalate. 

gave the following results: G .. » 4.3 h; K - 11.5 ug of oxalate C 
min s 

per liter and S = 2.6 yg of oxalate-C equivalents per liter. The S 

values obtained by the calculation of the growth kinetics are below 

the S value (8 yg of oxalate C equivalents per liter) calculated 
from N and Y. 

max 
The similarity between generation times in the presence of 

acetate and those of the blank made calculation of growth kinetics 

for acetate impossible. A G value of 17.6 h was calculated for 

strain NOX in the presence of 1 mg of acetate C per liter from the 
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Table 3. Maximum colony counts (N ) of strain NOX grown at 15 "C 
' max ° 

in tap water (TW) supplied with various carboxylic and 
amino acids at a concentration of 10 yg of C per liter 

Compound 
added 

N S 

max 
(CFU/ml) 

Compound 
added 

N max 
(CFU/ml) 

None 
Formate 
Glyoxylate 
Glycolate 
Propionate 
Pyruvate 
DL-lactate 
Malonate 
3-0H-butyrate 
L-Tartrate 
Fumarate 

3.9xl04 

1.9xl05 

1.3xl05 

l.lxlO5 

2.4xl05 

1.7xl05 

2.5xl05 

l.OxlO5 

6.6xl04 

4.2xl04 

1.9xl05 

Succinate 
Malate 
Maleate 

Valerate 
a-ketoglutarate 
Adipate 
Citrate 
Glycine 
L-Alanine 
L-Aspartate 
L-Glutamate 

2.0x10* 

9.2xl04 

4.3xl04 

4.4xl04 

6.0xl04 

4.8xl04 

4.5xl04 

4.4xl04 

4.2xl04 

7.5xl04 

5.0xl04 

Single v a l u e s , except for the blank which i s the average of 
duplicate experiments. 

slope of the growth curve a t colony counts above the N values 
° ' max 

observed for the blanks (Fig. 4) . 
Growth of strain NOX and P.fluoresaene strain PI 7 in ozonated water 

Increased N values and growth rates as caused by ozonation 
max ° J 

applied in the water treatment systems of the Rotterdam Waterworks 
(at Kralingen) and the Amsterdam Waterworks (at Weesperkarspel) and 
in a pilot plant demonstrated increases in the concentrations of 
substrates which can be utilized by strains NOX and P17 (Table 5 ) . 
From the N values of strain NOX grown in water sampled before and max ° v 

after ozonation, and the properties of this isolate, it is concluded 
that the concentration of carboxylic acids was increased 15 to 20 
times due to the effect of ozone on the organic carbon present in 
the water. Strain P17 is unable to utilize oxalate (20). The 
increases of N values for this organism therefore indicate that max ô 

ozonation also resulted in increased concentrations of other 
compounds. The concentrations of compounds which promoted growth of 
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Substrate added (fjgC/U 

Fig. 7 Linearization of the relationship between the generation time 

(G, h) of strain NOX and the concentration (AS) of oxalate added to 

tap water. S is the natural substrate concentration. 
n 

strains NOX and P17, the so-called easily assimilable organic carbon 

compounds (AOC), were calculated from the obtained N values and r v ' max 
the Y values for acetate. The AOC concentrations for both strains 

were expressed in amount of acetate-carbon equivalents to compare 

these concentrations with each other. In ozonated water AOC concen

trations available for strain NOX (AOC-NOX) were 1.4 to 1.8 times 

larger than A0C-P17 (Table 5). 

Growth of strain NOX in ozonated water, in which P.fluov-
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Table 4. Growth constants of strain NOX for oxalate and acetate at 
15 °C 

Substrate Y G . K 
min s 

(CFU/yg of C) (h) (yg of C/liter) 

Oxalate 2.9xl06 4.1 15.2a(17.8b, 11.5e) 
Acetate 1.2xl07 17.6d -e 

Calculated from equation 2 (see the text). 
Calculated from equation 3 (see the text). 
Calculated from equation 2 in which S = A S + Sn (see the text). 
G at 1 mg of acetate C/liter. 
-, Not determined. 

esaens P17 had already reached N values, revealed that strain 
max 

P17 did not utilize a significant amount of substrate that can be 
consumed by strain NOX. From the N values of strain NOX in 

max 
ozonated water in which strain P17 had already reached N values 

max 
and the yield of strain NOX with oxalate, it may be concluded that 
concentrations of about 130 (pilot plant) to 220 (Kralingen) yg of 
oxalate C per liter may have been present in the water after 
ozonation (Table 5). Assuming that the value of A0C-P17 expressed in 
acetate-C équivalants is close to the real concentration of carbon 
available for strain P17, then the total concentration of organic 
carbon (C ) available for strains NOX and P17 in ozonated water can 
be estimated from: 

C = A0C-P17 + oxalate C cone. (4) 

Table 5 reveals that C ranged from 190 y g of C/l (pilot plant) to 
315 yg of C/l (Kralingen) and varied between 4.2 % (Weesperkarspel) 
and 12.6 % (Kralingen) of the total organic carbon concentration. 

DISCUSSION 

'Properties of strain NOX 
Tests for the detection of extracellular enzymes (Table 1) and 
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the determination of the nutritional versatility of the organism at 

high and very low concentrations of substrates revealed that strain 

NOX is specialized in the utilization of a number of carboxylic 

acids with a low molecular weight. The results presented in this 

paper and those presented in a previous communication (19) 

demonstrated that experiments with mixtures of substrates are very 

useful for a rapid screening of the nutritional versatility of a 

bacterium at very low substrate concentrations. For more detailed 

information, separate growth experiments with low concentrations of 

selected substrates are required. The selection of substrates as 

used in the experiments described in this paper was based on the 

results of the colony growth test (Table 2). 

The colony growth test may be regarded as a variation of the 

replica plating technique. Typical aquatic bacteria, like 

Flavobaet&rium sp. strain S12 (19) and strain NOX, which have 

both been isolated from tap water after enrichment with a very low 

concentration of substrate, grew very slowly and gave relatively 

poor responses in the replica test. For this reason the colony 

growth test, which gives semiquantitative information about the 

growth response, was conducted with strain NOX. Moreover, the colony 

growth test allows detection of toxic effects, which may be revealed 

either by a retarded growth as compared with growth of the blanks or 

by failure of the organism to grow on the plates. 

Investigations at very low concentrations of individual sub

strates give essential information as is shown by the inability of 

strain NOX to grow with 10 yg of C of glycine and alanine, both of 

which promoted colony growth at a concentration of 1 g per liter. 

Growth at a high concentration but no growth at very low concentra

tions was also observed with a number of substrates for Aevomanas 

hydrophile/. (21), P .fluoresaens (23), P .aeruginosa 
(20) and Flavobacterium sp. strain S12 (19). Such observations 

may be explained by high substrate saturation constants of the 

organism for these compounds. The reverse situation, namely, the 

promotion of growth of strain NOX at 10 yg of C per liter, but no 

enhanced growth of the colonies at a concentration of 1 g per liter, 

as was observed with formate, glycolate and aspartate, needs further 

investigation. 

Strain NOX closely resembles the polarly flagellated vibrio-

shaped Vibrio oxalitiaus, isolated from garden soil and 

described by Bhat and Barker (2), sharing the following 
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physiological properties: growth with oxalate as sole source of 

carbon and energy, relatively slow growth with acetate, poor growth 

with amino acids and no reduction of nitrate. At present, the genus 

Vibrio includes only vibrio-shaped bacteria with a fermentative 

character. Therefore it is suggested to reclassify strain NOX and 

V. oxaliticus into a new species of Spirillum. The polarly 

flagellated vibrio-siiaped organism, Spirillum deliaatum, 

isolated from distilled water and described by Leifson (12), also 

resembles strain NOX. From the origin of S. deliaatum and from 

the results obtained with strain NOX it may be concluded that the 

genus Spirillum includes species which are adapted to very low 

substrate concentrations. 

Kinetics of growth on oxalate and acetate 
The nonlinear relationship between growth rate of strain NOX and 

reciprocal values of the concentrations of oxalate below 50 y g of 

C/l (Fig. 6) shows that oxalate and compounds contributing to S 

were utilized concurrently at very low concentrations. The linear 

relationship observed between G of this strain and the reciprocal 

values of AS when AS £. 50 y g of C/l (Fig. 6) may have been due 

either to preferential uptake of oxalate at these relatively high 

concentrations or to an insignificant contribution of S to these 

substrate concentrations. The K value (15.2 yg of oxalate C/l) 
s 

calculated from this linear plot is much lower than the AS values 
used in this calculation. The K value calculated with equation 3 

when AS ̂  50 yg of C per liter (Table 4) is very close to the one 

obtained with the Llneweaver-BurR plot. This result suggests that 

both models are adequate for the As values mentioned. Calculation of 

the best fitting curve seems unsatisfactory because the value of 

G . obtained in this way deviates from the observed values. More-
min ' 

over, the S value obtained in this way differs more from the value 
calculated from N and Y on oxalate than the one obtained by using 

max ' ^ 

equation 3. This unsatisfactory result indicates that the as

sumption of concurrent utilization of oxalate and S at all applied 

oxalate concentrations is not correct. 

The similarity between the initial growth rates of strain NOX in 

tap water supplied with acetate and the growth rate of the blanks 

suggests that, despite the low S value (6 yg of acetate C 

equivalents/1), natural substrates were preferently utilized. A 

generation time of 17.6 h in the presence of 1 mg of acetate C per 
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liter suggests that this compound is not rapidly utilized at very 

low concentrations. 

Effect of ozonation on the concentration of substrates available for 
strain NOX and P.fluoresaens strain PI 7 

The data presented in Table 5 clearly demonstrate that ozonation 

of water results in a pronounced increase of the concentration of 

easily biodegradable substrates, particularly carboxylic acids. The 

concentration of AOC expressed in acetate-C equivalents per liter in 

water prior to ozonation as calculated from the N values of the 
r max 

applied organisms and their Y values with acetate was only in one 

case clearly higher for strain P17 than for strain NOX. This 

difference may be explained by the large nutritional versatility of 

strain P17 as has been shown previously (23). The similarity between 

values of AOC-NOX and A0C-P17 in the two other samples of non-

ozonated water suggests that a large part of A0C-P17 consisted of 

carboxylic acids which were also available to strain NOX. The values 

of AOC-NOX (in acetate C équivalants) in ozonated water were much 

larger than the A0C-P17 values (Table 5). Hence, the specialized 

strain NOX seems better suited for the determination of the AOC 

concentration of ozonated water than strain P17. The use of strain 

NOX in combination with strain P17 may give information about the 

concentration of oxalate because this compound reacts much slower 

with ozone than glyoxylate and formate (7) which also do not serve 

as a source of carbon for strain P17 (23). This procedure thus 

enables a more precise assessment of the concentration of organic 

carbon available for strains NOX and P17 (C ) in ozonated water than 

the use of strain NOX alone, particularly because of the large 

difference between yields on acetate and oxalate. It is clear that 

the data on oxalate obtained by the technique described above should 

be verified by the application of an appropriate chemical analysis. 

Bacteria growing in large numbers in ozonated water, may cause 

considerable deterioration of drinking water quality in distribution 

systems, when this water is distributed without further treatment. 

Rapid sand filtration reduces the AOC concentration (22). Further 

investigations using the techniques described in this paper may give 

practical information about the ability of filtration procedures to 

minimize the concentration of biodegradable compounds formed by 

ozonation. 
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10. General discussion 

METHODOLOGY 

Knowledge about the activities and growth of microorganisms at 

very low substrate concentrations is important for drinking water 

supply, waste water treatment and for ecological studies of marine 

and fresh water environments. Specific techniques, which may be used 

either with pure cultures or natural populations, are required to 

obtain relevant data about the activities and growth of micro

organisms at very low substrate concentrations. Techniques usually 

applied for this purpose are (a) measurement of uptake kinetics of 

pure cultures or natural populations by using compounds with a 

radioactive label in batch experiments and (b) determination of 

growth kinetics and bacterial behaviour in continuous-culture 

experiments. 

Many data about transport constants (K , the substrate concen

tration at which the uptake rate is half of the maximum uptake rate) 

have been reported for a great diversity of bacteria and detailed 

studies have been conducted by using the first-mentioned technique. 

A selection of reported data is presented in Table 1. Also the het

erotrophic activity of natural populations at very low substrate 

concentrations has frequently been studied by using labelled com

pounds (3, 14, 33, 34, 38). Finally, this technique enables to study 

the uptake and biodégradation of anthropogenic compounds at 

extremely low concentrations (2). 

Even a copiotrophic bacterium as Esdhevidhia coli has K 

values below 1 yM for a number of substrates, but extremely low K 

values (< 0.1 PM) have in particular been observed for aquatic bac

teria (Table 1). Unfortunately, it is not clear to which extent 

these K values are similar to the substrate concentration (K ) at 
t s 

which these bacteria have half of their maximum growth rate. 

Several chemoheterotrophic bacteria have been selected and 

studied in continuous-culture experiments. Only in a few cases K 

values were determined (Table 1 ) . These K values are relatively 

high in comparison with the reported K values. Table 1 contains 

also data obtained in batch-culture experiments with E.aoli. 

The K values estimated in these studies are close to the K values 
s t 

observed in that organism. Nevertheless, batch-culture experiments 

are believed to be less suited than continuous culture experiments 

for determination of growth kinetics, or for selecting bacteria 

which are able to grow at very low concentrations of substrates (11, 

12, 36). 
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Table 1. A selection of transport constants (K..) and substrate 

saturation constants (K ) , as reported In literature. 

Organism Substrate Kt 
(yM) 

K 

(UM) 

Technique Tempera- Ref. 

ture 

<°C) 

E.aoli 

E.ooli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

E.aoli 

P.aeruginosa 

P.aeruginosa 

P.aeruginosa 

P.aeruginosa 

P.fluoresaens 

Pseudomonas sp. 

Pseudomonas sp. 

Spirillum sp. 

Spirillum sp. 

Heterotrophic 

bact. 

Astiaaaaaulis 

biprostheaum 

Unknown rod 

Aahromobaater 

aquamarinus 

glucose 

glucose 

glucose 

glucose 

glycerol 

galactose 

galactose 

maltose 

maltotriose 

succinate 

succinate 

amino acids 

1.3 

0.49 

4.0 

1 

2 

14 

30 

1-10 

amino acids 0.1-1 

0.38 

70b 

1.0 

44 

13 

0.9 

glycerol 

glucose 

glucose 

glucose 

lactate 

lactate 

lactate 

lactate 

glucose 

glucose 

glucose 

glucose 

b" 
7.8 

480 

8.0 

11.0 

1.0 

20 

5.8 

13 

1.8 

34b 

0.03 

0.04 

91 

23 

Batch cult. 

Batch cult. 

Cont.cult. 

Batch cult. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Cont. cult. 

Batch exp. 

Cont. cult. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

30 

30 

37 

20 

37 

25 

25 

25 

25 

25 

37 

37 

37 

37 

30 

30 

and 

5 

20 

(30) 

(30) 

(37) 

(16) 

(20) 

(13) 

(27) 

(27) 

(31) 

(31) 

(19) 

(21) 

(25) 

(15, 

18) 

(32) 

(32) 

(24) 

( 6) 

(22) 

(22) 

(23) 

(23) 

(23) 

(23) 

( 1) 

(26) 

(26) 

(14) 

(33) 
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Table 1. Continued. 

Organism 

Marine bacteria 

Vibrio sp. 
Vibrio sp. 
Natural pop. 

Natural marine 

population 

Substrate 

glucose 

arginine 

arginine 

glutamate 

toluene 

Kr 
(UM) 

0.03-

0.017 

4.5 

0.025 

0.03 

K 

(VM) 

-1.7;-

-
-

0.04; 

-

Technique Tempera-

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

Batch exp. 

ture 

(°C) 

5 
5 
5 

Ref. 

(10) 

( 9) 
( 9) 

( 3) 

( 5) 

-, Not determined 

Low affinity transport system. 

Information about the growth constants (K and minimum genera

tion time, G . ) of bacteria with hygienic, technical and ecological 

importance is very scarce. In the present study the batch-culture 

technique was applied to determine the growth (generation time and 

maximum colony counts) of such bacteria at very low substrate con

centrations. This technique was also selected for the determination 

of the growth constants, because (a) it requires very simple equip

ment, (b) is theoretically very simple, (c) only small amounts of 

sometimes expensive or scarce compounds are needed, (d) it seems 

less laborious than continuous-culture experiments and (e) extremely 

low substrate concentrations are easier to control in batches than 

in the continuous-culture vessel. 

The results presented in the preceding chapters clearly show 

that with batch-culture experiments it is very simple (a) to select 

bacteria which are able to grow on very low concentrations of a 

of a specific substrate and (b) to determine growth kinetics of pure 

cultures at extremely low substrate concentrations. The application 

of the technique is mainly limited to those bacteria which are able 

to form colonies on solid media. Most bacteria important in water 

supply and many other aquatic bacteria are able to do so. Also in 

continuous-culture experiments colony counts are used at very low 

substrate concentrations (16, 17). 

The amount of substrate naturally present in the water should be 

very low when it is applied for selection of bacteria growing at 
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very low concentrations of substrates or for growth experiments 

conducted to determine growth kinetics. Drinking water prepared by 

water treatment processes with biological activity, and in par

ticular by slow sand filtration, is suited for this purpose. Table 2 

summarizes the growth kinetics of bacteria determined in batch-

culture experiments as described in the preceding chapters. 

OLIGOTROPHY AND COPIOTROPHY 

Low subs t ra te -sa tura t ion constants for growth (K ) seem an im
portant property of so-called oligotrophic bacteria. This in con
trast to copiotrophic bacteria which require high substrate concen
t r a t i ons for rapid growth (26) . The K values shown in Table 2 
reveal large d ifferences between K values of a specific organism 
for various subs t ra tes and between K values of various organisms 

s 

for a specific substrate. These observations reveal, that desig

nation of an organism as an oligotrophic bacterium cannot solely be 

based on a few estimations of K values or, more correctly, a few 

substrate affinities ([G . .K - ] - 1 ). Unfortunately, comparison of the 

K values shown in Table 2, with K values of oligotrophic bacteria 
s s 

is difficult because of a notable lack of such data in the 

literature. 

The K values as reported for Astiaaaaaulis bipvostheaum, 
which is considered to be an oligotrophic bacterium (26), and for an 

oligotrophic marine bacterium (1) are not really low when compared 

to the K values presented in Table 2 for the Flavobaatevium 

s r 

strains. The lowest K values (0.02-0.04 pM) available in litera

ture, seem those reported for natural populations and a few, mostly 

unidentified organisms (Table 1 ) . The K values obtained for the 

Flavobaatevium strains and of Pseudomonas fluoreeaens P17 
growing on arginine are similar to these values. These observations 

suggest that oligotrophic bacteria have K and K values below 0.1 VM 

for compounds which are utilized as a sole source of carbon and 

energy. 

A limitation of using K values (or substrate affinities, for 

individual compounds to explain bacterial behaviour at low con

centrations of substrate is demonstrated by the small difference in 

growth rate between P.fluoresaens P17, and P.aeruginosa 

P1525 in drinking water (Chapter 4). This difference, which is much 

smaller than the observed differences between K values, may nearly 

completely be explained by the difference in G . values as caused 
min 
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by the effect of temperature on the growth of these organisms. Most 

likely, the presence of a mixture of substrates in water is 

responsible for this phenomenon. This suggestion is supported by the 

observation, that P.fluoré scene P17 and P500, had similar 

growth rates when growing on mixtures of compounds despite a five 

times difference in K values and similar G . values for a series 
s m m 

of individual compounds (Chapter 2). Therefore, growth constants 

obtained for individual substrates should be used with caution in 

explaining bacterial behaviour in natural situations. 
Apart from K and G . values, a number of other characteristics r s min 

such as maintenance requirements, attachment properties, storage of 
substrates and a high surface-volume ratio determine the oligo-
trophic or copiotrophic nature of a bacterium (23, 26). 

THRESHOLD SUBSTRATE CONCENTRATIONS 

The kinetic data as summarized in Table 2, and also in Table 1, 

demonstrate that the concentration of substrate in drinking water 

should be very low indeed for a complete prevention of multi

plication of bacteria. The substrate concentration, below which a 

bacterium is unable to multiply, the threshold concentration (S ) , 

is determined by the growth kinetics (G . , K ) and the maintenance 
° min s 

requirements of the organism, which in the absence of exogenous sub

strate results in a certain death rate. The mean half-life (t ) , the 
e 

period in which 50 % of the organisms died from s t a rva t ion , can be 

used to quantify t h i s death r a t e . No increase in numbers of bac ter ia 

occurs when t he g e n e r a t i o n time c a l c u l a t e d from G . , K and the 
° min' s 

s ubs t ra te concentrat ion S equals t , t hus : 
t = G = G , + (G , - K / S J (1) 
e min min s t 

a S Gmin K< Üe ( 2 ) 

S t = % - ^ (3) 
e 

Equat ion (3) shows t he dependency of S on G . , K and t . For 
r J t min ' s e 

Aeromonae hydrophila s t r a i n 315 a t value of 94 h was calculated 

(Chapter 5 ) ; s t a rva t ion experiments with Ftavobaatevium sp . 

s t r a i n S12 (unpublished data) gave a t value of 90 h . Minimum v a l -
e 

ues of G . x K observed for s t r a in S12, Ftavobaatevium sp . 
min s 

s t r a i n 166 and P.ftuovesaens P17 are about 13 to 15 pg C/ l .h 
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(Chapters 2, 6, 8 ) . Assuming that all these bacteria have a t of 

about 90 h, than S should be about 0.14 yg of C per liter. Larger 

S values can be calculated for bacteria with lower substrate 

affinities (larger values for G . .K ). Depending on the number of 
min s 

suitable substrates present in water, the concentration of 
individual substrates should be less than the S value. 

The described theoretical approach shows that only extremely low 

concentrations of easily assimilable organic compounds can be 

allowed in drinking water to prevent completely the regrowth of 

oligotrophic bacteria. Allowing a doubling of colony counts in 

drinking water during distribution (G = 24-72 hours) would require 

concentrations of about 0.18-0.54 y g of C per liter for bacteria 

with G . .K = 13 to 15 ug C/l.h. The maximum colony counts at these 
min s - J A 

concentrations can reach ÎO^-IO4 CFU/ml. 
The very low G . . K values have been obtained for specific 

' min s r 

substrates. The inability of Flavobacterium sp. strain S12 to 

multiply in slow sand filtered water (Chapters 7,8) reveals that 

biological treatment reduces the concentrations of substrates in 

which this strain is specialized to values below S . This reduction 

is most likely the result of the activities of bacteria resembling 

strain S12 and of other bacteria which are able to utilize also 

other substrates. Otherwise these bacteria would be unable to 

maintain themselves in the filter bed. In general compounds for 

which bacteria have the highest substrate affinities, possibly amino 

acids and carbohydrates, are removed to extremely low levels whereas 

other compounds for which bacteria have lower affinities remain 

present at higher concentrations. Further data on maximum substrate 

affinities (minimum values of G . .K ) and on t values for 
m in s e 

representative compounds and bacteria are needed for improved 
calculations of S values. 

EASILY ASSIMILABLE ORGANIC CARBON (AOC) 

The investigations reported in previous chapters, show that 

organic compounds which may be utilized as a source of carbon and 

energy for growth determine both the growth rate and the maximum 

colony count of bacteria in water. Ozonation of water favours 

bacterial growth whilst added specific compounds raise the maximum 

colony count of either the natural population (Chapter 6, Fig. 1), 

or that of isolated bacteria. This clearly demonstrates that the 

presence of so-called easily assimilable organic carbon (AOC) is 
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more important for the growth of bacteria than the total concen

tration of organic carbon (TOC). The AOC concentrations usually are 

very small fractions of the TOC concentrations (Chapters 2, 3, 4, 

9). Many compounds can be arranged into a category between easily 

assimilable and non-assimilable or recalcitrant compounds like humic 

and fulvic acids. AOC measurements are based on the growth of 

selected bacteria, which represent the natural flora of drinking 

water. It is likely that also a number of compounds which are less 

readily assimilable than simple amino acids, carbohydrates, and 

carboxylic acids are included in these determinations. In any case, 

easily assimilable compounds are included and, for simplication, 

growth (N values) of the test strains is regarded as a measure 
° max 

for the AOC concentration. 

Three types of bacteria that may be used to determine the 

following AOC categories in drinking water have been described in 

the previous chapters. 

(1) A very versatile fluorescent pseudomonad, strain P17 for 

determining the AOC concentration for general use in water types 

where oxalic acid, and maltose- and starch-like (MSL) compounds are 

not expected to be present in relatively large amounts; 

(2) A Flavobaatevium sp. strain S12 to determine the con

centration of MSL compounds when such compounds are expected to be 

present, in particular when starch-based coagulant aids have been 

applied in water treatment; 

(3) A Spirillum sp. strain NOX, to determine the concen

tration of carboxylic acids, including oxalic acid, in particular 

when ozonation is applied in water treatment. 

Next to the categories of compounds included in these 

determinations, other compounds which can be utilized rapidly by 

various chemoheterotrophic bacteria but not by the selected 

organisms, may be present in water. An example is methane, that is 

particularly present in anaerobic ground water, and may occur in 

drinking water. Determination of methane is achieved by a simple 

gas-chromatographic technique with a detection level of 0.01 mg/1. 

Drinking water prepared by water treatment, including stages 

with biological activity, in particular filtration, usually contains 

a low concentration of AOC utilizable for strain P17 (Chapter 3). 

In this case it is reasonable to expect that the natural bacterial 

population, either present in the water, in the ground or in the 

filterbeds, also removed those easily assimilable organic compounds 
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that could not be utilized by strain' P17. Therefore, in this 

situation the AOC concentration determined with strain P17 may serve 

as a more general indicator for the presence of easily assimilable 

organic compounds than only for those compounds utilized by the test 

organism. The situation is different if the AOC is affected by 

specific treatments (ozonation, addition of a starch-based coagulant 

aid) or by materials, which release biodegradable compounds into the 

water. 

The AOC concentrations (P17) reported in the preceding chapters, 

were very low in the effluents of filters with biological activity 

(Chapter 3) and in ground water (35). Aevomonas hydrophila did 

not multiply in the water prepared by slow sand filtration (Chapter 

5). The growth rate of P.aeruginosa in this water was low 

(Chapter 4) and Flavobacterium sp. strain S12, specialized in 

MSL compounds, was unable to multiply in such a filtrate (Chapters 

7, 8). Moreover, growth experiments with various coliform bacteria 

(species of Citrobacter, Klebsiella and Enterobacter) 
learned that these organisms were always unable to multiply in the 

effluent of slow sand filters (unpublished data). These observations 

indicate that in sand filtered water with AOC concentrations of 

about 10 g of acetate-C equivalents per liter, no significant 

growth of copiotrophic bacteria may occur. However further research 

is needed to define the effects of low AOC concentrations on the 

growth of oligotrophic bacteria, and on the development of animals 

in the distribution system. 

Already in the beginning of this century it was observed that 

non-metall-ic construction and plumbing materials, used in 

distribution systems, promoted the growth of bacteria in drinking 

water (8). A number of bacteriological techniques for determining 

the growth-promoting effect of non-metallic materials has recently 

been developed in various countries (4, 7, 28). Release of growth 

promoting compounds may also be assessed by AOC determinations (35). 

The presence and growth of Legionella species in hot water 

systems (see Chapter 1) which appears to be related to the release 

of growth-promoting compounds by non-metallic packings (40) show 

that such materials may have a significant effect on the water 

quality. The effects of non-metallic materials on the growth of 

bacteria in drinking water fall beyond the scope of this study and 

will therefore not be further discussed here. The subject has 

recently been reviewed by Schoenen and Schöler (29). 
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In conclusion, it can be stated that the techniques reported in 

the foregoing chapters have shown to be very valuable for the 

estimation of low concentrations of easily assimilable organic 

carbon in water. When using selected cultures and selected compounds 

detailed information can be obtained on either the growth kinetics 

of a specific organism at very low substrate concentrations or about 

the effects of low concentrations of a specific compound on the 

growth óf bacteria in water. Further application of the developed 

technique will therefore not only contribute to a further improve

ment of drinking water quality, but will also be useful in ecologi

cal studies, in particular on oligotrophic bacteria, and in studies 

on the growth of bacteria on very low concentrations of 

anthropogenic compounds. 

LITERATURE CITED 

1. Akagi, Y and N. Taga, 1980. Uptake of D-glucose and L-proline by 

oligotrophic and heterotrophic marine bacteria. Can. J. Micro

biol. 26: 454-459. 

2. Boethling, R.S. and M.A. Alexander, 1979. Effect of concentra

tion of organic chemicals on their biodegration by natural 

microbial communities. Appl. Environ. Microbiol. 37: 1211-1216. 

3. Burnison, B.K. and R.Y. Morita, 1974. Heterotrophic potential 

for amino acid uptake in a naturally eutrophic lake. Appl. 

Environ. Microbiol. 27: 488-495. 

4. Burman, N.P. and J.C. Colbourne, 1977. Techniques for the 

assessment of growth of microorganisms on plumbing materials 

used in contact with potable water supplies. J. Bacteriol. 43: 

137-144. 

5. Button, D.K.; B.R. Robertson and K.S. Craig, 1981. Dissolved 

hydrocarbons and related microflora in a fjordal seaport: 

sources, sinks, concentrations and kinetics. Appl. Environ. 

Microbiol. 708-719. 

6. Eagon, R.G. and P.V. Phibbs Jr., 1971. Kinetics of transport of 

glucose, fructose, and mannitol by Pseudomonas aeruginosa. 

Can. J. Biochem. 49: 1031-1041. 

7. Ellgas, W.M. and R. Lee, 1980. Reservoir coatings can support 

bacterial growth. J. Am. Water Works Assoc. 72: 693-695. 

8. Gärtner, W., 1912. Über Bakterienwachstum in Wasserreservoiren 

mit Innenschutzanstrichen. J. Gasbeleuchtung und Wasserver

sorgung 37: 907-908. 

180 



9. Geesey, G.G. and R.J. Morita. Capture of arginine at low 

concentrations by a marine psychrophilic bacterium. Appl. 

Environ. Microbiol. 38: 1092-1093. 

10. Hamilton, R.D.; K.M. Morgan and J.D.H. Strickland, 1966. The 

glucose uptake kinetics of some marine bacteria. Can. J. Micro

biol. 12: 995-1003. 

11. Harder, W. and L. Dijkhuizen, 1982. Strategies of mixed 

substrate utilization in microorganisms. Phil. Trans. R. Soc. 

Lond. B. 297: 459-480. 

12. Harder, W.; J.G. Kuenen and A. Matin, 1977. A review, microbial 

selection in continuous culture. J. Appl. Bacteriol. 43: 1-24. 

13. Hayashi, S. and E.C.C. Lin, 1965. Capture of glycerol by cells 

of Escherichia coli- Biochem. Biophys. Acta: 94: 479-487. 

14. Hobbie, J.E. and R.T. Wright, 1965. Bioassay with bacterial 

uptake kinetics: glucose in fresh water. Limnol. Oceanogr. 10: 

471-474. 

15. Hoshino, I., 1979. Transport systems for branched-chain amino 

acids in Pseudomonas aeruginosa- J. Bacteriol. 139: 705-712. 

16. Jannasch, H.W., 1968. Competitive elimination of Entero-

bacteriaceae from sea water. Appl. Microbiol. 16: 1616-1618. 

17. Jannasch, H.W., 1969. Estimations of bacterial growth rates in 

natural waters. J. Bacteriol. 99: 156-160. 

18. Kay, W.W. and A.F. Gronlind, 1969. Amino acid transport in 

Pseudomonas aeruginosa. J. Bacteriol. 97: 273-281. 

19. Kay, W.W. and H.L. Romberg, 1971. The uptake of C^dicarboxyllc 

acids by Escherichia coli. Eur. J. Biochem. 18: 274-281. 

20. Koch, A.L. and C.H. Wang, 1982. How close to the theoretical 

diffusion limit do bacterial uptake systems function. Arch. 

Microbiol. 131: 36-42. 

21. Lo, T.C.Y.; M.K. Rayman and B.D. Sanwal, 1972. Transport of 

succinate in Escherichia coli. J. Biol. Chem. 247: 6323-6331. 

22. Lynch, W.H. and M. Franklin, 1978. Effect of temperature on the 

uptake of glucose, gluconate, and 2-ketogluconate by 

Pseudomonas fluorescens. Can. J. Microbiol. 24: 56-62. 

23. Matin, A. and H. Veldkamp, 1978. Physiological basis of the 

selective advantage of a Spirillum sp. in a carbon-limited 

environment. J. Gen. Microbiol. 105: 187-197. 

24. Midgley, M. and E.A. Dawes, 1973. The regulation of transport of 

glucose and methyl- a-glucoslde in Pseudomonas aeruginosa. 

Biochem. J. 132: 141-154. 

181 



25. Piperno, J.K. and D.L. Oxender, 1968. Amino acid transport 

systems in Escherichia aoli K12. J. Biol. Chem. 243: 5914-5920. 

26. Poindexter, J.S., 1981. Oligotrophy, fast and famine existence. 

Adv. Microbial Ecol. 5: 63-89. 

27. Rotman, B. and J. Radojkovic, 1964. Galactose transport in 

Escherichia coli. J. Biol. Chem. 239: 3153-3156. 

28. Schoenen, D. ; E. Thofern und W. Dott, 1978. Anstrich- und 

Auskleidungsmaterialien im Trinkwasserbereich Gesundheits-

Ingenieur 99: 122-128. 

29. Schoenen, D.; H.F. Schöler, 1983. Trinkwasser und Werkstoffe. 

DVGW Schriftenreihe, Wasser 37. Fischer, Stuttgart/New York. 

30. Shehata, T.E. and A.G. Marr, 1971. Effect of nutrient concentra

tion on the growth of Escherichia coli. J. Bacteriol. 107: 

210-216. 

31. Szmelcman, S.; M. Schwarz; T.J. Silhavy and W. Boos 1976. 

Maltose transport in Escherichia coli K12. Eur. J. 

Biochem. 65: 13-19. 

32. Tsay, S.S.; K. K. Brown, and E.T. Gaudy, 1971. Transport of 

glycerol by 'Pseudomonas aeruginosa. J. Bacteriol. 108: 82-88. 

33. Vaccaro, R.F. and H.W. Jannasch, 1966. Studies on heterotrophic 

activity in sea water based on glucose assimilation. Limnol. 

Oceanogr. 11: 596-607. 

34. Vaccaro, R.F., 1969. The response of natural microbial popula

tions in sea water to organic enrichment. Limnol. Oceanography. 

14: 726-735. 

35. Van der Kooij, D.; A. Visser and W.A.M. Hijnen, 1982. 

Determining the concentration of easily assimilable organic 

carbon in drinking water. J. Am. Water Works Assoc. 74: 540-545. 

36. Veldkamp, H., 1977. Ecological studies with the chemostat. Adv. 

Microbial Ecol. 1: 59-94. 

37. Von Meyenburg, K., 1971. Transport-limited growth rates in a 

mutant of Escherichia coli. J. Bacteriol. 107: 878-888. 

38. Wright, R.T. and J.E. Hobbie, 1966. Use of glucose and acetate 

by bacteria and algae in aquatic ecosystems. Ecol. 47: 447-464. 

39. Wuhrman, K. , 1977. Grenzen der mikrobiellen Selbstreinigung der 

Oberfl'achengewässer und ihre Konsequenzen für die Trinkwasser

aufbereitung. Gas Wasser Abwasser 57: 184-193. 

40. Colbourne, J.S., D.J. Pratt, M.G. Smith, S.P. Fisher-Hoch and 

D. Harper, 1984. Water fittings as sources of Legionella 

pneumophila in a hospital plumbing system. Lancet, Jan. 210-213. 

182 



Summary 

Water, in particular surface water, used for the preparation of 

drinking water usually contains a large variety of bacteria, amongst 

others organisms directly originating from pollution, e.g. bacteria 

of faecal origin, and bacteria which have multiplied on organic 

compounds present in the water. The removal of faecal pollution by 

various treatments and protection of distributed water against 

pollution are main objectives in drinking water supply. 

Multiplication of chemoheterotrophic bacteria results in a 

reduction of the concentration of many natural and anthropogenic 

organic compounds in the raw water. Growth of bacteria also occurs 

during water treatment processes, and may even continue in drinking 

water during distribution when the water contains sufficient 

suitable substrates. 

Growth ("regrowth") of bacteria in drinking water distribution 

systems results in a deterioration of the water quality. The 

hygienic condition of the water is affected by the multiplication of 

bacteria with pathogenic properties. Bacteria which produce taste 

and odour compounds, and animals developing on bacteria grown in the 

system influence the aesthetic quality of drinking water. The 

activities of specific bacteria may enhance corrosion of piping 

materials, resulting in turbid or coloured water. 

Regrowth depends on the presence of compounds that serve as a 

nutrient source for bacteria. Such compounds present in drinking 

water either originate from (a) the raw water, (b) water treatment 

processes, or (c) construction and plumbing materials. 

The objectives of the present study were: (a) the development of 

a bacteriological method for the estimation of organic compounds 

that occur in low concentrations in water and are used as growth 

substrates for bacteria; (b) the determination of the effect of 

water treatments on the concentration of these compounds and (c) the 

determination of the ability of oligotrophic aquatic bacteria and 

bacteria of hygienic, aesthetic or technical significance, to 

multiply in drinking water at very low substrate concentrations. 

A batch-culture technique was developed to study the growth of 

bacteria in drinking water. The maximum colony counts of pure 

cultures of bacteria grown in water were used as a measure for the 

concentration of easily assimilable organic carbon (AOC). Three 

strains of bacteria were selected for the AOC determinations: 

(1) Pseudomonas fluovesaens strain P17, an organism with a 

great nutritional versatility, for general use. 
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(2) A Flavobaaterium sp. strain S12, to determine the concen

tration of maltose-and starch-like compounds. 

(3) A Spivillum sp. strain NOX to determine the concentration 

of carboxylic acids, including oxalic acid. 

The properties of these bacteria were extensively studied in batch-

culture experiments with drinking water supplemented with very low 

amounts of selected organic compounds. The obtained results prove 

that growth and growth kinetics of bacteria at very low concentra

tions can be determined in simple experiments using simple equip

ment. 

Chapter 2 contains a report of experiments with two fluorescent 

pseudomonads, strains F17 and P500. These isolates, belonging to 

different biotypes of P'.fluovesaens, were tested for growth in 

tap water supplied with different concentrations of acetate and 

glutamate, and low concentrations (10 and 20 y g of C per 1) of 

various other substrates and mixtures of related substrates, the 

latter being present in amounts corresponding to 1 yg of C per 1 

each. Amino acids appeared to be excellent substrates for both 

isolates, but many other substrates were utilized at very low 

concentrations as well. Saturation constants (K ) of strain P17 with 
s 

acetate, arginine, aspartate, glutamate, lactate, succinate, 

malonate, p-hydroxybenzoate and glucose were all below 1 y M. 

The K values of strain P500 were about 5 times higher than those of 
s 

P17. Since especially P17 is able to utilize a large number of 
different substrates at low concentrations, assessment of maximal 

colony counts of this organism by growth measurements in various 

types of tap water gives information on the concentrations of easily 

assimilable organic carbon (AOC). These concentrations may be calcu

lated from the maximum colony count (colony-forming units per ml) of 

the organism grown in the water to be tested and its yield on 

acetate (4.2xl09 CFU/mg of acetate C ) . 

Chapter 3 describes investigations conducted to determine the 

AOC concentration in water samples collected from the various 

treatment stages of 8 treatment plants. In 7 of these plants surface 

water was used as the raw water source. AOC concentrations usually 

lay between 10 and 100 pg of acetate-C equivalents per 1 and were 

below 1 % of the concentration of dissolved organic carbon in the 

waters examined. Higher concentrations were observed in open storage 

basins and in water treated by ozonation. Rapid sand filtration 

caused maximum AOC reductions of about 80 % at influent AOC concen-
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trations above 50 y g of C per 1. At AOC concentrations below 25 yg 

of C per 1, small reductions ( < 50 %) were achieved by sand 

filtration. 

Experiments with P.aeruginosa, an opportunistic pathogen, 

known for its ability to multiply at very low substrate concentra

tions, are described in Chapter 4. Five P.aeruginosa strains 

were tested for the utilization of 47 low-molecular-weight compounds 

as sole sources of carbon and energy for growth at a concentration 

of 2.5 g/1. Of these compounds, 31 to 35 were consumed. Growth 

experiments in tap water at 15 °C were carried out with one 

particular strain (P1525) isolated from drinking water. This strain 

was tested for the utilization of 30 compounds supplied at a concen

tration of 25 yg of C per 1. The growth rate (expressed as number of 

generations per hour) of strain P1525 in this tap water was 

approximately 0.005 h~l, and only with 10 individual compounds it 

was above 0.03 h~^. An average yield of 6.2x10' colony-forming units 

per ig of C was obtained from the maximum colony counts. The average 

yield and maximum colony count of strain P1525 grown in tap water 

supplied with a mixture of 45 compounds, each at a concentration of 

1 yg of C per 1, enabled to calculate that 28 compounds were 

utilized. Growth rates of two V.aeruginosa strains (including 

P1525) in various types of water at 15 °C were half of those of a 

fluorescent pseudomonad. The AOC concentrations calculated from 

maximum colony counts and average yield values amounted to 0.1 to 

0.7 % of the total organic carbon concentrations in five types of 

tap water. In river water and in ozonated water the percentages were 

about 10 times larger than in tap water. 

Aeromonas hydrophila is frequently observed in drinking 

water. The organism may affect the determination of coliform 

bacteria by causing false positive reactions. Moreover, it is 

considered as an opportunistic pathogen. An A.hydrophila 

isolate obtained from sand-filtered river water was studied in 

batch-culture experiments with drinking water supplied with low 

concentrations of substrate. The isolate multiplied in the used 

drinking water, which contained 2-3 mg of dissolved organic carbon 

per liter, only after the addition of an adequate amount of a 

suitable substrate. Of five compounds tested at a concentration of 1 

mg of C per 1 (glucose, acetate, glutamate, succinate and DL-lac-

tate), glucose promoted growth most strongly. Growth was not 

promoted by lactate and extremely slow growth was observed with 
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succinate. Glucose gave growth of the organism even at initial con

centrations below 10 y g of C per 1. At initial glucose concentra

tions below the K value (12 yg of C per 1 ) , generation times showed 

nonlinear relationships with 1/initial glucose concentrations. From 

these observations, the maintenance coefficient m was calculated 

(m = 0.015 mg of glucose per mg dry wt per h at 12 °C). At initial 

concentrations below the K value of starch (73 ug of C per 1 ) , no 

growth was observed, but complete use of starch occurred in these 

situations after the addition of 10 y g of glucose C per liter. 

The experiments in well-cleaned glass flasks as described in 

Chapter 6 revealed that addition of starch in concentrations of 10 

and 25 yg of substrate C per 1 to the filtrate of slow sand filters 

stimulated the development of a yellow-pigmented bacterium which was 

identified as a Flavobaetevium sp.. The isolate, strain 166, 

was able to multiply in tap water without substrates added, but 

addition of starch and glucose in amounts as low as 1 pg of 

substrate C per 1 clearly enhanced growth. The substrate saturation 

constants (K ) of the Flavobaetevium sp. for these compounds 

were 3.9 pg of starch C and 3.3 yg of glucose C per 1. The results 

of this study demonstrate that microorganisms rapidly utilizing 

starch at a level of a few micrograms per 1 commonly occur in water. 

Moreover, they show that isolation of a bacterium that utilizes a 

compound at a very low concentration is very simple by using batch-

culture experiments. 

Chapter 7 reports another investigation on a starch-utilizing 

yellow-pigmented bacterium. This organism, strain S12, isolated from 

tap water, was tested for the utilization of 64 natural compounds at 

a concentration of 1 g/1 by measuring colony growth on agar media. 

Only 12 carbohydrates and glycerol promoted growth. Experiments were 

carried out with pasteurized tap water supplied with mixtures of 

substrates at concentrations of 1 or 10 yg of C of each substrate 

per 1 and experiments with a number of separate carbohydrates at 10 

yg of C per liter. It was shown that of the 64 natural compounds 

tested only sucrose, maltose, raffinose, starch, and glycerol 

promoted growth at very low concentrations. Also maltotriose, 

-tetraose, -pentaose, -hexaose, and stachyose, which were not in

cluded in the mixtures, supported growth with generation times of 3 

to 5 h at 10 yg of C per 1. Strain S12, tentatively identified as a 

Flavobaetevium sp., thus appeared to be highly specialized in the 

utilization of glycerol and a number of oligo- and polysaccharides 
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at very low concentrations. 

The growth kinetics of Flavobaoteviwn sp. strain S12 were 

determined for a number of compounds at 15 °C in pasteurized tap 

water supplied with very low amounts of substrates (Chapter 8). 

Substrate saturation constants (K ) for the growth on maltotriose, 

maltotetraose, maltopentaose and maltohexaose were 0.1 y M or less, 

i.e. below those for glucose (1.7 yM) and maltose (0.17yM). K 

values for starch, amylose and amylopectine were 13.7, 31 and 10.8 

Mg of C per 1, respectively. A yield of 2.3 x 10' colony-forming 

units per yg of C of the oligo- and polysaccharides was calculated 

for strain S12 from the linear relationships between maximum colony 

counts in pasteurized tap water and the concentrations (all below 25 

yg of C/l) of supplied compounds. The maximum colony counts of 

strain S12 grown in various types of raw water and tap water 

revealed that the former contained only a few y g of maltose- and 

starch-like compounds per 1; in tap water the concentrations were 

below 1 yg, and usually below 0.1 y g of C per 1. The application of 

starch-based coagulant aids gave increased concentrations of 

maltose- and starch-like compounds in the water during treatment, 

but these concentrations were greatly reduced by coagulation and 

sedimentation, rapid sand filtration and slow sand filtration. 

Chapter 9 deals with the determination of the AOC concentration 

in ozonated water using an oxalate-utilizing organism (strain NOX). 

This vibrio-shaped organism was identified as a Spirillum sp.. 

Its nutritional versatility was determined by growth experiments 

with low-molecular-weight carbon compounds at high (g/1) and very 

low concentrations (yg/1). The organism appeared to be specialized 

in the utilization of a number of carboxylic acids. Yields of 

2.9xl06 colony-forming units (CFU)/yg of oxalate C and 1.2xl07 

CFU/yg of acetate C were obtained from growth experiments with tap 

water supplied with various low amounts of either oxalate or 

acetate. A substrate saturation constant of 0.64 y M oxalate was 

calculated from the relationship between growth rate and concen

tration of added oxalate. Maximum colony counts of strain NOX grown 

in ozonated water (dosages of 2.0-3.2 mg of O3 per 1) were 15 to 20 

times larger than the maximum colony counts of strain NOX grown in 

water prior to ozonation. Based on the nutritional requirements of 

strain NOX it was concluded that carboxylic acids were produced by 

ozonation. Oxalate concentrations were calculated from the maximum 

colony counts of strain NOX grown in samples of ozonated water in 
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which a non-oxalate-utilizing strain of P.fluovescens had al

ready reached maximum growth. The oxalate concentrations obtained by 

this procedure ranged from 130 to 220 y g of C/l. 

The above-described experiments reveal that the growth of 

bacteria at very low substrate concentrations may be studied by 

simple batch-culture experiments. The data obtained demonstrate that 

typical aquatic bacteria, as they may occur in drinking water, are 

able to multiply at very low concentrations of substrates. To 

prevent multiplication of such bacteria, the AOC concentrations of 

drinking water should be very low. AOC determinations performed with 

selected bacteria show that biological filtration processes in 

particular are very effective in reducing the concentrations of 

compounds which promote bacterial growth in drinking water. 
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Samenvatting 

Water, in het bijzonder oppervlaktewater waaruit drinkwater 

wordt bereid, bevat gewoonlijk een grote verscheidenheid van bac

teriën. De aanwezigheid van veel van deze micro-organismen, met name 

bacteriën van faecale oorsprong, is een rechtstreeks gevolg van ver

ontreinigingen met deze bacteriën. Tevens vermenigvuldigen veel bac

teriën zich door voeding met verbindingen die in het water aanwezig 

zijn. De verwijdering van verontreinigingen van faecale herkomst 

door middel van waterbehandelingsprocessen alsmede het voorkomen van 

verontreining van het water tijdens distributie, nemen een zeer be

langrijke plaats in bij de drinkwatervoorziening. 

Een vermeerdering van bacteriën heeft een daling tot gevolg van 

de concentratie van vele in het water aanwezige natuurlijke, en door 

menselijke activiteit geproduceerde stoffen. Het vermogen van bacte

riën om deze verbindingen uit het water te verwijderen speelt dan 

ook een belangrijke rol bij diverse zuiveringsprocessen. Indien in 

het drinkwater voldoende geschikte voedingsstoffen aanwezig zijn, 

kan vermeerdering van bacteriën tijdens het verblijf in het leiding

net optreden ("nagroei"). Verbindingen die nagroei veroorzaken kun

nen afkomstig zijn van het ruwe water, kunnen worden geïntroduceerd 

bij waterbehandelingsprocessen of door constructiematerialen worden 

afgegeven aan het water. Nagroei van bacteriën in drinkwaterdistri

butiesystemen leidt tot kwallteitsverslechtering van het water. De 

hygiënische gesteldheid van het water wordt beïnvloed door de ver

meerdering van bacteriën met ziekteverwekkende eigenschappen. Bac

teriën die reuk- en smaakstoffen produceren en hogere organismen die 

zich voeden met bacteriën zijn van invloed op de esthetische kwali

teit van het water. De activiteiten van bepaalde groepen van bacte

riën kunnen de aantasting van leidingen versnellen, waardoor troebel 

of bruingekleurd water ontstaat. 

De doelstellingen van het beschreven onderzoek waren: (a) de 

ontwikkeling van een bacteriologische methode voor de bepaling in 

water van organische verbindingen die als voeding voor bacteriën 

kunnen dienen; (b) de bepaling van de invloed van waterbehandelings

processen op de concentratie van deze verbindingen en (c) onderzoek 

naar het vermogen van oligotrofe bacteriën en van bacteriën van 

hygiënische, esthetische of technische betekenis, om zich in drink

water met lage substraatconcentraties te vermeerderen. 

Voor het onderzoek naar het voorkomen van verschillende organi

sche verbindingen in drinkwater werd gebruik gemaakt van geselec

teerde stammen van bepaalde bacteriesoorten die zich kenmerkten door 
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hun vermogen deze verbindingen in zeer lage concentraties te kunnen 

opnemen en gebruiken voor groei. Voor deze groeimetingen werd de 

toename bepaald van het aantal geënte specifieke bacteriën in een 

bepaalde hoeveelheid (600 ml) van het te onderzoeken gepasteuriseer

de water (zgn. "batch-cultures"). Deze batch-cultures werden bij 

15 °C geplaatst omdat deze temperatuur dicht bij de temperatuur van 

het water in het distributiesysteem ligt. Het verband tussen sub

straatconcentratie en de groei van de specifieke bacteriën werd 

vastgesteld in bovengenoemde cultures voorzien van verschillende 

zeer kleine hoeveelheden van de te testen substraten. Op deze wijze 

werden ijklijnen en opbrengstcoëfficiënten verkregen. De bacterie-

groei in de kolven met drinkwater werd gemeten door bepalingen van 

het aantal kolonievormende bacteriën (colony-forming units, aangege

ven als CFU-waarden in de tabellen en de figuren). Voor deze tel

lingen werden de juiste verdunningen van het drinkwater uitgestreken 

op geschikte voedingsbodems. Daar bij een vermeerdering van zeer 

lage aantallen bacteriën de substraatconcentratie in de culture 

aanvankelijk nauwelijks afneemt kan in batch-cultures ook de invloed 

van de substraatconcentratie op de groeisnelheid worden bepaald. 

Door gebruik te maken van de hier ontwikkelde werkwijze is men 

in staat op eenvoudige wijze gegevens te verzamelen over groeisnel

heid en groeiopbrengst bij zeer lage substraatconcentraties. Deze 

grootheden worden bij bacteriën die grotere hoeveelheden substraat 

consumeren vaak bepaald met zgn. continue cultures waar kwantitatie

ve gegevens worden verkregen door weging van de gevormde biomassa. 

Deze bepalingen zijn onuitvoerbaar wanneer het gaat om substraatcon

centraties zoals die in drinkwater voorkomen. Door in de voor bac-

teriegroei ontwikkelde wetmatigheden, celopbrengsten te vervangen 

door koloniegetallen, kan men de voor continue cultures geldende 

formules ook voor batch-cultures met zeer lage substraathoeveelheden 

gebruiken. 

Ook voor het selecteren en isoleren van bovenbedoelde specifieke 

bacteriestammen, die zijn aangepast aan de zeer lage concentraties 

van substraten in drinkwater, en die werden gebruikt voor het be

schreven onderzoek, werd gebruik gemaakt van batch-cultures. 

Voor de bepaling van de concentratie van gemakkelijk assimileer-

bare organische koolstofverbindingen (AOC) werden 3 bacteriestammen 

gebruikt, afkomstig uit drinkwater, namelijk: 

1. Pseudomonas fluoresaens stam P17; dit organisme kan een 

grote verscheidenheid van organische verbindingen benutten als 
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voedselbron. 

2. Een FlavobaatevCum sp. stam S12; dit organisme kan worden 

gebruikt voor de bepaling van maltose- en zetmeelachtige verbin

dingen. 

3. Een Spirillum sp., stam NOX; voor de bepaling van de con

centratie van carbonzuren, waaronder oxaalzuur. 

In hoofdstuk 2 worden een aantal proeven beschreven met uit 

drinkwater geïsoleerde biotypen van P. fluovesaene (de boven

genoemde stam P17 en stam P500). Beide stammen bezaten de voor deze 

soort karakteristieke eigenschap om een groot aantal verbindingen te 

benutten voor de groei. Om na te gaan of deze eigenschap ook bij 

lage substraatconcentraties nog tot uiting kwam werden groeiproeven 

met deze stammen uitgevoerd in drinkwater waaraan zeer geringe hoe

veelheden acetaat waren toegevoegd. Tevens werd het effect nagegaan 

van de toevoeging van kleine hoeveelheden (10 en 20 pg C per 1) van 

een aantal andere substraten en van mengsels hiervan (iedere verbin

ding in een concentratie van 1 |ig C per 1 ) . Aminozuren bleken uit

stekende voedingsstoffen voor beide stammen. Maar ook vele andere 

verbindingen werden bij zeer lage concentraties benut. De K waarden 

(substraatverzadigingsconstanten) van stam P17 voor acetaat, argi-

nine, aspartaat, glutamaat, lactaat, succinaat, malonaat, p-hydroxy-

benzoaat en glucose waren alle kleiner dan 1 uM. De K waarden van 
r s 

stam P500 waren ongeveer 5x hoger dan die van stam P17. Duidelijk 
komt hieruit naar voren dat stam P17 in staat is een groot aantal 

verschillende verbindingen nog bij zeer lage concentraties te benut

ten voor de groei. De bepaling van het maximum koloniegetal van dit 

organisme in water kan daarom als een maat voor de concentratie van 

gemakkelijk assimileerbare organische koolstof (AOC) worden ge

bruikt. Met behulp van de opbrengstco'éfficiënt van stam P17 voor 

acetaat (4.2 x 10' CFU/mg acetaat-C) kan dit maximum koloniegetal 

worden omgerekend in pg acetaat-C equivalenten per 1. 

In hoofdstuk 3 wordt melding gemaakt van een onderzoek naar de 

AOC-gehalten in water in diverse behandelingsstadia van 8 drinkwa

terbereiding ssystemen. Bij 7 ervan werd oppervlaktewater gebruikt 

voor de bereiding van drinkwater. De AOC-concentraties van de onder

zochte watertypen lagen gewoonlijk tussen 10 en 100 y g acetaat-C 

equivalenten per 1. Deze concentraties vormden minder dan 1 % van de 

concentraties aan opgeloste organische koolstof. Relatief hoge A0C-

concentraties werden waargenomen in water afkomstig uit spaarbekkens 
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en water na behandeling met ozon. Snelfiltratie van water zonder 

vrij chloor leidde tot duidelijke reducties van het AOC-gehalte. 

Deze reductie bedroeg maximaal 80 %, indien het AOC-gehalte van het 

aangevoerde water hoger dan 50 yg C per 1 was. Bij AOC-gehalten be

neden 25 y g C per 1 werden slechts geringe reducties (< 50 %) bij 

filtratie waargenomen. De AOC-concentraties in het afgeleverde 

drinkwater lagen tussen 10 en 85 yg acetaat-C equivalenten per 1. 

Pseudomonas aeruginosa is een facultatief-pathogeen organis

me, dat zich bij lage substraat concentraties kan vermeerderen in 

water. Laatstgenoemde eigenschap van deze bacteriën is nader onder

zocht (hoofdstuk 4 ) . Vijf stammen van P.aeruginosa werden 

allereerst onderzocht op hun vermogen een groot aantal organische 

verbindingen te benutten voor groei. Deze eigenschap werd onderzocht 

bij een hoge substraatconcentratie (2.5 g/l). Alle stammen bleken 31 

à 35 van de geteste verbindingen te kunnen benutten. Van één van de 

stammen, P1525, geïsoleerd uit drinkwater, werd met behulp van 

groeiproeven in drinkwater onderzocht, welke van een dertigtal ver

bindingen dit organisme kon benutten bij een concentratie van 25 yg 

C/l. Deze stam groeide bij 15 °C zeer traag in drinkwater; slechts 

in aanwezigheid van een tiental van de onderzochte verbindingen was 

de generatietijd korter dan circa 30 uur. Vervolgens werd de groei 

van P1525 gemeten in drinkwater waaraan mengsels van verbindingen 

waren toegevoegd. Per verbinding was 1 yg C per 1 aanwezig. Berekend 

kon worden dat van de in totaal 45 in het mengsel aanwezige verbin

dingen er 28 werden benut. Het gehalte aan organische verbindingen 

waarop deze P. aeruginosa zich kon vermeerderen in drinkwater 

was slechts 0.1 à 0.7 % van het totale gehalte aan opgeloste organi

sche koolstof. 

Aevomonas hydvophila wordt herhaaldelijk aangetroffen in 

drinkwater. Dit organisme kan storend werken bij de bepaling van 

bacteriën van de coligroep en bezit ziekteverwekkende eigenschappen. 

Om deze redenen werd A. hydrophila onderzocht om vast te stel

len in hoeverre dit organisme zich kan vermeerderen bij lage sub

straatconcentraties (hoofdstuk 5). In drinkwater bereid door middel 

van langzame zandfiltratie trad geen toename van het koloniegetal 

op. Van de 5 verschillende verbindingen (glucose, acetaat, gluta-

maat, succinaat en lactaat) die werden toegevoegd in een concentra

tie van 1 mg C per 1 was glucose het sterkst groeibevorderend. Lac

taat en succinaat werden bij deze concentratie niet of nauwelijks 

benut. Bij een concentratie van 10 y g glucose-C per 1 bedroeg de 
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generatietijd circa 15 uur. Bij glucose concentraties die duidelijk 

beneden de K waarde (12 pg C per 1) lagen, waren de generatietijden 

van het organisme langer dan op grond van de generatietijden bij ho

gere concentraties kon worden verwacht. Deze waarneming leidde tot 

de bepaling van de onderhoudscoëfficiënt van het organisme, die 

0.015 mg glucose per mg droge stof per uur bedroeg (bij 12 °C). 

Hierdoor was bij lage concentraties een relatief kleiner deel van 

het substraat beschikbaar voor groei dan bij hogere substraatconcen

traties. 

Om na te gaan in hoeverre ook hoog-moleculaire verbindingen in 

zeer lage concentraties door bacteriën kunnen worden benut, werden 

geringe hoeveelheden zetmeel (10 en 25 yg C/l) toegevoegd aan kolven 

met 600 ml van het filtraat van langzame zandfilters (hoofdstuk 6). 

De toevoeging van zetmeel gaf na incubatie van de watermonsters bij 

15 °C een sterke groei van een bacterie met geel-gepigmenteerde 

kolonies. Het organisme, stam 166, werd geisoleerd en bleek te beho

ren tot het geslacht Flavobaatevium. Nader onderzoek wees uit 

dat zelfs een toevoeging van 1 yg C per 1 in de vorm van zetmeel aan 

drinkwater nog een duidelijk sterkere groei van het organisme tot 

gevolg had. De substraat-verzadigingsconstanten van stam 166 voor 

zetmeel en glucose waren respectievelijk 3.9 en 3.3 yg C per 1. Uit 

deze experimenten komt naar voren dat bacteriën die zetmeel in zeer 

lage concentraties kunnen benutten algemeen voorkomen in water. Dui

delijk is gebleken dat bacteriën die zich vermeerderen bij zeer lage 

concentraties van bepaalde substraten op zeer eenvoudige wijze kun

nen worden geisoleerd met behulp van een groeiproef met een batch-

culture. 

In hoofdstuk 7 wordt een onderzoek beschreven met een andere 

zetmeelbenuttende geel-gepigmenteerde Ftavobaatevium sp. (stam 

S12), die op bovenbeschreven wijze was geïsoleerd uit drinkwater. 

Door middel van de koloniegroei op vaste voedingsbodems werd aange

toond dat stam S12 van de 64 verschillende verbindingen die werden 

getest slechts 12 suikers en glycerol kon benutten. Uit experimenten 

met dit organisme in drinkwater waaraan verschillende mengsels van 

verbindingen waren toegevoegd (iedere verbinding in hoeveelheden die 

overeen kwamen met 10 en 1 yg C per 1) kwam naar voren dat alleen in 

aanwezigheid van het mengsel van de koolhydraten groei optrad. Door 

middel van afzonderlijke groeiproeven met de in dit mengsel aanwezi

ge verbindingen bij een concentratie van 10 y g C per 1 werd vastge

steld dat van de 64 bij het onderzoek betrokken verbindingen er 
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slechts 5 bij zeer lage concentraties konden worden benut, namelijk 

sucrose, maltose, raffinose, zetmeel en glycerol. Ook maltotriose, 

maltotetraose, maltopentaose, maltohexaose en stachyose, die niet 

inbegrepen waren in de mengsels en de koloniegroeiproeven, werden 

benut bij een concentratie van 10 y g C per 1. Ftavobaatevtum 

stam S12 is dus gespecialiseerd in het benutten van Oligosacchariden 

en Polysacchariden waardoor dit organisme in aanmerking kwam voor de 

bepaling van zetmeelachtige verbindingen in water. 

Voor een aantal van de bovengenoemde verbindingen werden de vol

gende K waarden vastgesteld: glucose, 1.7 yM; maltose, 0.17 yM; 

maltotriose, maltotetraose, maltopentaose en maltohexaose lager dan 

0.03 yM (hoofdstuk 8). Voor zetmeel, amylose en amylopectine werden 

K waarden van 13.7; 31 en 10.8 Mg C per 1 vastgesteld. De groeiop-

brengst van stam S12 op de bovengenoemde verbindingen bedroeg 

2.3x10' kolonievormende eenheden per ug C. Op grond van de maximale 

koloniegetallen van het organisme in verschillende typen ongezuiverd 

water werd geconcludeerd dat maltose- en zetmeelachtige verbindingen 

hierin slechts in geringe hoeveelheden aanwezig waren (enkele yg C 

per 1). Stam S12 was niet of nauwelijks in staat zich te vermeerde

ren in een aantal drinkwatertypen; de concentratie van maltose- en 

zetmeelachtige verbindingen berekend uit de maximale koloniegetallen 

in deze watersoorten was lager dan 1 yg C per 1. Toepassing van zet-

meelderivaten bij het coagulatieproces had verhoogde concentraties 

van de genoemde substraten in diverse stadia van de zuivering tot 

gevolg. Snelfiltratie gevolgd door langzame zandfiltratie reduceer

den de concentraties van deze verbindingen zodanig dat stam S12 zich 

niet kon vermeerderen in het filtraat van de langzame zandfilters. 

Onder invloed van ozon wordt onder meer oxaalzuur gevormd uit 

bepaalde moeilijk afbreekbare verbindingen. Door middel van een 

batch-culture met drinkwater waaraan een zeer geringe hoeveelheid 

oxaalzuur was toegevoegd, werd een oxaalzuurbenuttende bacteriestam, 

(N0X), van het geslacht Spirillum geïsoleerd (hoofdstuk 9). 

Door middel van koloniegroeiproeven op vaste voedingsmedia en expe

rimenten in drinkwater waaraan een viertal verschillende mengsels 

van verbindingen (1 yg C per verbinding per 1) waren toegevoegd werd 

vastgesteld dat stam N0X was gespecialiseerd in het benutten van een 

aantal carbonzuren. Groeimetingen in drinkwater waaraan verschillen

de hoeveelheden acetaat en oxalaat waren toegevoegd wezen uit dat de 

opbrengst met acetaat (1.2xlO'CFU per yg C) circa 4 x hoger was dan 

de opbrengst met oxalaat (2.9x10^ CFU per yg C ) . De K waarde van 
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stam NOX voor oxalaat was 0.64 yM. De maximum koloniegetallen van 

stam NOX gegroeid in een drietal watertypen na ozonlsatie waren 15 à 

20 maal hoger dan de maximum koloniegetallen in deze watertypen 

vôôr ozonisatie. Op grond van de voedingsbehoefte van stam NOX 

werd hieruit geconcludeerd dat door ozonisatie een hoeveelheid car-

bonzuren waren gevormd. Stam NOX vermeerderde zich ook sterk in ge-

ozoniseerd water waarin P.fluoréeaene, stam P17, die geen 

oxaalzuur kan assimileren, reeds het groeimaximum had bereikt. Op 

basis van de groeimaxima van stam NOX gegroeid in aanwezigheid van 

stam P17 werd berekend dat de oxaalzuurconcentratie in het geozoni-

seerde water tussen 130 en 220 yg C per 1 lag. Het AOC-gehalte bere

kend als acetaat-C equivalenten per 1 uit de maximum koloniegetallen 

in geozoniseerd water was voor stam NOX 1.4 à 1.8 x hoger dan voor 

stam P17. Stam NOX is, door het vermogen om ook het gevormde oxaal

zuur .te benutten, dan ook beter geschikt voor AOC-metingen in geozo

niseerd water dan stam P17. 

Uit het bovenbeschreven onderzoek kan worden geconcludeerd dat 

de groeimogelijkheden van bacteriën bij zeer lage substraatconcen

traties kunnen worden onderzocht met behulp van eenvoudige groei-

proeven in batch-cultures. Naar voren komt dat bacteriën, zoals aan

wezig in drinkwater, zich bij zeer lage substraatconcentraties nog 

kunnen vermeerderen. Het AOC-gehalte van drinkwater dient dan ook 

zeer laag te zijn voor het verhinderen van nagroei. De AOC-bepalin-

gen, uitgevoerd met geselecteerde bacteriën, hebben aangetoond dat 

met name filtratieprocessen waarbij micro-organismen een rol spelen 

in staat zijn AOC-geha'ltes te verlagen tot een zeer laag niveau. 
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