
Host odour recognition by the Colorado potato beetle 

CENTRALE LAN DBOU WC ATALOG US 

0000 0212 9589 ! i(0^cA 



Promotor: dr. L. M. Schoonhoven, 
hoogleraar in de entomologie, in het bijzonder 
de fysiologie der insekten 

Co-promotor: dr. J. H. Visser, 
hoofd afdeling fysiologie en resistentie van het 
instituut voor plantenziektenkundig onderzoek 



STELLINGEN 

1. Het is twijfelachtig op basis van elektroantennogrammen conclusies te trekken over taxo-
nomische verwantschap van insekten. 

2. De door Kramer beschreven precisie waarmee honingbijen geurconcentraties kunnen her­
kennen is mogelijk het gevolg van het gebruik van pure geurstoffen. 

Kramer, Physiol. Entomol., 1 (1976) 27-37 

3. Concentratie-effecten van geurstoffen op leerprestaties van bijen kunnen de experimenten 
van Getz en Smith sterk beïnvloed hebben. 

Getz & Smith, J. Comp. Physiol. A, 160 (1987) 239-245 

4. De op gevoeligheid voor twee feromooncomponenten te onderscheiden receptorcellen in een 
sensillum trichodeum van de vruchtbladroller hebben geen karakteristieke verhouding in 
aktiepotentiaal-amplitudo, in tegenstelling tot wat Den Otter veronderstelt. 

Den Otter, J. Comp. Physiol., 121 (1977) 205-222 

5. Het streven elektroantennogram-responsen te vertalen naar gedragsreakties is vooral geba­
seerd op optimisme. 

Tichenor & Seigier, J. Insect Physiol., 126 (1980) 309-314 
Dickens et al., J. Chem. Ecol., 9 (1983) 1383-1395 

6. Het dragen van een toga tijdens promoties is uit het oogpunt van brandveiligheid af te raden. 

7. Leptosomen hebben relatief de meeste ruggegraat. 

Stellingen behorende bij het proefschrift: 
"Host odour recognition by the Colorado potato beetle" door Ruurd de Jong. 

Wageningen, 6 april 1988. 



Ruurd de Jong 

Host odour recognition by the 
Colorado potato beetle 

Proefschrift 
ter verkrijging van de graad van 

doctor in de landbouwwetenschappen, 

op gezag van de rector magnificus, 

dr. C. C. Oosterlee, 

in het openbaar te verdedigen 

op woensdag 6 april 1988 

des namiddags te vier uur in de aula 

van de Landbouwuniversiteit te Wageningen 

BIBLIOTHEEK 
tANDBOUWUNIVERSITEIÏ 

.WAGENINGEN 



Omslag: Frederik von Planta 

Druk: Grafisch bedrijf Ponsen & Looijen, Wageningen 



VOORWOORD 

Het verschijnen van dit proefschrift biedt een goede gelegenheid om een 
aantal mensen speciaal te bedanken voor hun bijdrage hieraan. 
Mijn promotor, Louis Schoonhoven, dank ik hartelijk voor de belangstelling die 
hij voor het onderzoek toonde en voor de plezierige en nauwgezette wijze 
waarop hij de manuscripten van kommentaar voorzag. 
Hans Visser was verantwoordelijk voor de dagelijkse begeleiding van het 
onderzoek. Ik ben hem bijzonder dankbaar voor de grote zorgvuldigheid waarmee 
hij dat deed en voor de vrijheid die hij me gegeven heeft. 
Met veel plezier denk ik terug aan de samenwerking met Wim Frentz wiens inzet, 
improvisatie-talent en goede humeur onmisbaar waren. 
Frans Maes, Peter Roessingh en Huug Schooneveld dank ik voor hun kommentaar op 
enkele manuscripten. Ook de waardevolle discussies met Adriaan Guldemond, 
Taeke de Jong en Louise Vet mogen niet onvermeld blijven. I am grateful to 
Julian Keenlyside, Tom Mueller, Dan Papaj and Heske van der Vossen for 
linguistic corrections. Caroline Nijhof, Bas Pors, Hans Smid en Bep van Strien 
hebben in het kader van hun studie belangrijke experimentele bijdragen 
geleverd aan enkele hoofdstukken. De kweek van Coloradokevers was bij Frans 
van Aggelen en Leo Koopman in vertrouwde handen. De hulp van alle 
Gecombineerde Diensten van het Binnenhaven Complex was essentieel voor het 
onderzoek. Vooral Piet Kostense en Frederik von Planta van de Tekenafdeling, 
Gerrit van den Brink en Gerard Schuurman van de Instrumentmakerij, en de 
afdeling Fotografie hebben veel werk verricht. Ik dank Jan Schans voor de hulp 
bij het uitprinten van dit proefschrift. Tenslotte wil ik alle medewerkers van 
de vakgroep Entomologie bedanken voor de prima werksfeer. 





CONTENTS 

Chapter 1 Introduction - Host odour perception in the 

Colorado potato beetle 

Chapter 2 Integration of olfactory information in the 

Colorado poato beetle brain 

Brain Research (1988) in press 

Chapter 3 Specificity-related suppression of responses 23 

to binary mixtures in olfactory receptors of 

the Colorado potato beetle 

Brain Research (1988) in press 

Chapter 4 Suppression-related mixture perception in 37 

olfactory receptors 

Chapter 5 Effects of feeding experience on host odour 51 

perception in the Colorado potato beetle 

Samenvatting 62 

Curriculum vitae 65 



CHAPTER 1. INTRODUCTION - HOST ODOUR PERCEPTION IN THE COLORADO 

POTATO BEETLE 

R. DE JONG, J.H. VISSER, W.H. FRENTZ & H.M. SMID 

The importance of olfaction in the initial orientation phase 

in host selection by phytophagous insects is by now well-

appreciated (Visser, 1986). It has been reported for several 

insect species that the odour of a host plant influences 

orientation behaviour. In the Colorado potato beetle, 

Leptinotarsa decemlineata Say, the odour of potato plants elicits 

an upwind locomotory response (Visser, 1976; Visser & Nielsen, 

1977) . This odour-conditioned anemotaxis increases the 

probability of the beetle to encounter its host (Visser, 1988). 

The composition of most plant odours is very complex. Some 

phytophagous insects identify a host odour by the presence of a 

single specific compound. The flea beetle Phyllotreta cruciferae. 

for example, is attracted by allylisothiocyanate, a specific 

compound of its cruciferous host plants (Feeny et al., 1970). 

Other insects recognize host odours by the specific ratio of 

general odour components. Visser S Avé (1978) demonstrated that 

the so-called 'green odour' is important in the Colorado potato 

beetles' recognition of the odour of its host, potato. Green 

odour, which is composed of C-6 alcohols, aldehydes and the 

derivative acetate, forms a significant part of all leaf odour 

blends, but the proportions of its individual components show 

differences between plant species (Visser et al., 1979). 

THE OLFACTORY SYSTEM 

Insects receive olfactory information by activation of 

olfactory receptors. Most olfactory receptors are located in 

sensilla on the antennae. The number of receptors varies 

considerably between different insect species. The antennae of 

Manduca sexta and Periplaneta americana contain about 177,000 and 

195,000 olfactory receptors respectively (Sanes & Hildebrand, 

1976; Boeckh et al., 1984), while the antennal nerve of 



Drosophila melanoqaster is composed of 1800 axons (Venkatesh & 

Singh, 1984). 

Virtually all the olfactory sensilla of the Colorado potato 

beetle's antenna are concentrated on the 5 distal segments 

(Schanz, 1953). An ultrastructural study demonstrated that about 

430 olfactory sensilla are distributed over the third distal 

segment of the Colorado potato beetle's antenna (Boeckh & Selsam, 

unpublished data). This represents 28.5% of the whole population 

of the antennal olfactory sensilla (Schanz, 1953). Most of these 

sensilla, about 90%, showed 2 dendrites in cross section, while 

the remaining 10% showed 3 dendrites (Boeckh & Selsam, unpublised 

data). An estimate based on these data indicates that the 

Colorado potato beetle's antenna contains about 3200 olfactory 

receptors. 

Electroantennogram recordings showed that the antennal 

olfactory receptor system of the Colorado potato beetle is tuned 

to the perception of general green leaf volatiles (Visser, 1979). 

These recordings reflect the summed receptor potentials of 

stimulated olfactory receptors. Individual receptors react 

differentially to the applied stimuli and show a continuum in 

their response spectra (Ma & Visser, 1978; Visser, 1983). The 

sensitivity of the receptors to green leaf volatiles indicates an 

important role of these compounds in host odour recognition by 

the beetle. 

Information from the olfactory receptors is directly conducted 

to the brain via receptor axons. These axons terminate in 

glomeruli, spheroidal neuropile structures in the deutocerebrum, 

where synaptic contacts are made with interneurones. The number 

of glomeruli is usually invariable within species and sex 

(Rospars, 1983), and numbers have been reported varying from 19 

in female Drosophila melanoqaster (Stocker et al., 1983), to 

about 1000 in Locusta miaratoria (Ernst et al, 1977). 

Projection patterns of antennal receptors of female Colorado 

potato beetles, obtained by cobalt chloride fillings of antennal 

nerves, reveal the presence of about 25-30 glomeruli in the 

antennal lobe (Fig. l). 

Projection patterns of sensilla of Drosophila melanoaaster. 

predominantly reflect the type of sensillum rather than its 



Fig. 1 Diagram of the nervous system in the head of an adu l t 
Colorado po ta to b e e t l e ( l e f t ) , and s ec t ion through the deutocerebrum of a 
female Colorado po ta to b e e t l e ( r i g h t ) , showing the p ro j ec t i on a reas of sensory 
a f f é r en t s . Cut end of antenna was kept in a 1% coba l t ch lo r ide s o lu t i on for 1 
h, followed by t reatment with ammonium s u l f i d e , f i x a t i on in a l coho l ic Bouin's 
s o lu t i on and s i l v e r i n t e n s i f i c a t i o n (Timm's method). AN, antennal nerve; DC, 
deutocerebrum; G, glomerulus; OL, op t ic lobe; PC, protocerebrum; SOG, 
suboesophageal ganglion. Bar r ep resen t s 50 /jm. 

loca t ion on the f lagellum, suggesting t h a t individual glomeruli 
might r epresent functional u n i t s in the deutocerebrum (Stocker e t 
a l . , 1983). Interneurones which a re s t imulated as a r e s u l t of the 
percept ion of female sex pheromone components innervate the 
macroglomerulus, a deutocerebral neuropile s t r u c t u r e which i s 
found exclus ively in males. I t has been demonstrated for Manduca 
sexta t h a t a t r ans - sexua l ly grafted male antenna induces the 
formation of a deutocerebral s t r uc tu re resembling the 
macroglomerulus in a gynandromorphic female (Schneiderman e t a l . , 
1982). These gynandromorphic females show behavioural responses 
t o pheromones (Schneiderman e t a l . , 1986). 

A number of deutocerebral in terneurones , the so -ca l led output 
neurones, have t h e i r axons running t o the protocerebrum, where 
they terminate in 2 neuropile s t r u c t u r e s , i . e . in the mushroom 
bodies and in the lobus l a t e r a l i s p ro toce reb ra l i s (Boeckh e t a l . , 
1984; Matsumoto & Hildebrand, 1981). In these s t r uc tu r e s 
o l fac tory information i s i n tegra ted with other sensory input , 
l i k e v i s u a l , t a s t e and mechanosensory information (Erber & 
Menzel, 1977; Homberg, 1984; Schildberger, 1981). The number of 



deutocerebral output neurones is relatively small compared to the 

number of input antennal fibres. In the cockroach Periplaneta 

americana. for example, each antenna contains 195,000 olfactory 

receptors, and only 260 output neurones leave the deutocerebrum 

(Boeckh et al., 1984). The convergence of olfactory information 

causes an increase in the sensitivity of deutocerebral neurones, 

compared to the sensitivities of individual receptors. Boeckh & 

Selsam (1984) reported a 100-fold amplification of the signal in 

pheromone sensitive interneurones in the American cockroach. The 

number of output neurones in the Colorado potato beetle is still 

unknown, but the 100 to 1000-fold increase in sensitivity of 

deutocerebral neurones (De Jong & Visser, 1988) originates from 

the input convergence in its deutocerebrum. 

BEHAVIOURAL RESPONSE TO OLFACTORY STIMULATION 

Visser & Avé (1978) reported a disruption in the odour-

conditioned anemotaxis of Colorado potato beetles, when the 

ratios between components of the potato leaf odour were changed 

artificially. We extended these experiments with 5 green odour 

components, i.e. cis-3-hexen-l-ol, trans-2-hexenal, cis-3-hexenyl 

acetate, trans-2-hexen-l-ol and 1-hexanol, and recorded the 

beetle's response on a locomotion compensator in front of a wind 

tunnel. The experimental set-up has been described previously 

(Visser, 1976; Thiery & Visser, 1986), and a more detailed 

description of this equipment will be presented elsewhere (Visser 

& Thiery, in prep.). 

We used 2-day-old female beetles from our laboratory stock 

culture, which were fed for 2 h on potato foliage and then 

starved for at least 12 h prior to the experiments. Locomotory 

responses to wind (situation A ) , wind + potato leaf odour 

(situation B), and wind + potato leaf odour + 1 green odour 

component (situation C), were recorded for 4 min each. Green 

odour components were added by flowing air (1 1/min) over 1 ml of 

the test chemical, which was diluted in paraffin oil (10~3 v/v), 

and with a contact surface with the air of 1.23 cm2. The 

container with the test chemical was placed in the wind tunnel 

between the 6 potato plants standing in the dark upwind section 



Table 1. Orientation responses of female Colorado potato beetles to (A) wind, 
(B) wind + potato plant odour, and (C) wind + potato plant odour + 1 green 
odour component. Upwind orientation expressed as the quotient of upwind 
displacement and the total length of the walking track; data represent group 
means. 

Experiment A: Wind B: A + Host odour C: B + Compound 

N=35X 

N-34 
N-35 
N-35 
N-35 

0.611 a2 

0.496 a 
0.546 a 
0.562 a 
0.608 a 

0.792 b 
0 .787 b 
0 . 731 b 
0 . 794 b 
0 .862 b 

0.463 a cis-3-Hexen-l-ol 
0.484 a trans-2-Hexenal 
0.445 a cis-3-Hexenyl acetate 
0.382 a trans-2-Hexen-l-ol 
0.750 a 1-Hexanol 

Number of beetles. 
' Different letters on a line indicate statistical differences between 
treatments of an experiment at P < 0.02 (2-tailed, Wilcoxon matched-pairs 
signed-ranks test; Siegel, 1956). 

of the wind tunnel. The air flow leaving the wind tunnel was set 

at 80 cm/s (4320 1/min). Upwind orientation is expressed as the 

quotient of upwind displacement and the total length of the 

walking track. 

Addition of green odour components prevented the release of a 

positive anemotactic response of the beetle, demonstrating the 

importance of these 5 compounds in the recognition of host plant 

odour. No significant differences were observed between responses 

to situations A and C (Table 1). Thiery & Visser (1986) obtained 

similar results when odour of potato plants was combined with 

odour of wild tomatoes or cabbage. Towards the latter odour 

blends, the beetles did not show odour-conditioned anemotaxis, 

their responses were identical with those towards odourless wind. 

These results illustrate the specificity of the chemical message 

emanating from the .host plants. 

PRESENT ANALYSES 

The composition of plant odours is analyzed by the Colorado 

potato beetle's olfactory system. Behavioural evidence suggests 

that this system can distinguish the characteristic ratios of 



green odour components in po ta to p lan t odour from those in o ther 
p l an t odours. The study presented in t h i s t h e s i s was undertaken 
t o i nves t i ga t e the coding mechanism and c en t r a l processing 
underlying host odour recogni t ion in the Colorado po ta to b e e t l e . 
Responses of neurones t o s t imula t ion with v o l a t i l e s were recorded 
a t 2 l e v e l s . Chapter 2 descr ibes responses of deutocerebral 
neurones t o s t imula t ion of the antenna with 5 green odour 
components and the odour of a paraf f in o i l e x t r a c t of po ta to 
l eaves . Chapters 3 and 4 r epor t on e f f ec t s of odour mixtures on 
the o l fac tory r ecep to r s . The e f f ec t s of feeding experience on the 
percept ion of o l fac tory information i s described in Chapter 5. 
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CHAPTER 2 . INTEGRATION OF OLFACTORY INFORMATION I N THE COLORADO 

POTATO BEETLE BRAIN 

R. DE JONG & J . H . VISSER 

The p rocess ing of o l f ac to ry information in the Colorado po ta to b e e t l e , 
Lep t ino ta rsa decemlineata Say, was s tudied by recording responses of o l fac to ry 
neurones i n t r a c e l l u l a r l y in the deutocerebrum. Response c h a r a c t e r i s t i c s of 
neurones in t h i s f i r s t r e l ay s t a t i o n of the o l f ac to ry pathway were measured 
when the antennae were s t imula ted with 5 general green l ea f v o l a t i l e s , i . e . 
c i s - 3 - h exen - l - o l , t r ans -2-hexena l , c i s -3-hexenyl a c e t a t e , t r an s -2 -hexen - l - o l 
and 1-hexanol. These compounds a re p a r t of the s o - ca l l ed green odour of 
po t a to , whose defined composition i s e s s e n t i a l for the b e e t l e ' s hos t p l an t 
f inding . The response spec t ra of deutocerebra l neurones can be d ivided roughly 
i n to 2 c l a s s e s : one c l a s s conta in ing neurones which a re not very s pec i f i c for 
the t e s t e d compounds, and another c l a s s with h igh ly s pec i a l i z ed neurones. 
Their d i f f e r en t responses to a po ta to l eaf e x t r a c t suggest 2 channels for the 
p rocess ing of o l f ac to ry information in the antennal lobe: one channel for the 
d e t ec t ion of the presence of green l eaf odour components, and an o ther one for 
an eva lua t ion of the component r a t i o s . 

Anatomical s tud ies of the o l fac tory system in i n sec t s revealed 
t h a t axons of antennal r eceptors terminate in t he antennal lobe 
of t he deutocerebrum. This pa r t of the i nsec t b ra in i s the f i r s t 
r e lay s t a t i on in the o l factory pathway. Synaptic connections 
between receptor neurones and deutocerebral neurones are made in 
glomerular neuropi le regions in the deutocerebrum (Boeckh e t a l . , 
1976 and 1984; Ernst e t a l . , 1977; Stocker e t a l . , 1983). These 
glomeruli a re innervated by loca l interneurones and output 
neurones. Local interneurones remain with t h e i r processes within 
the deutocerebrum, while output neurones have an axon running t o 
the protocerebrum v ia the t r a c t u s o l f ac to r io g lobu la r i s (Boeckh 
e t a l . , 1976 and 1984; Ernst e t a l . , 1977; Matsumoto & 
Hildebrand, 1981). The axons of the output neurones te rminate in 
two neuropi le s t r uc tu r e s in the protocerebrum, i . e . in the 
calyces of the mushroom bodies and in the lobus l a t e r a l i s 
p ro toce reb ra l i s (Boeckh e t a l . , 1976 and 1984; Ernst e t a l . , 
1977) . 

An important p a r t of t he physiological research on t h i s 
o l fac tory system has been done with pheromones (Boeckh & Boeckh, 
1976; Boeckh & Selsam, 1984; Burrows e t a l . , 1982; Kanzaki & 



Shibuya, 1986; Olberg, 1984; Schaller-Selzer, 1984; Waldow, 

1977). Studies at the peripheral level of the nervous system 

showed that pheromone receptors are extremely narrowly tuned in 

their sensitivity to chemical compounds, and are specialized in 

the detection of certain pheromone components (Boeckh et al., 

1965). Information from these receptors seems to be processed 

separately from other olfactory information in several insect 

species. Deutocerebral neurones sensitive to pheromone components 

innervate a macroglomerulus (Boeckh & Boeckh, 1979; Boeckh et 

al., 1984; Burrows et al., 1982; Matsumoto & Hildebrand, 1981; 

Olberg, 1984), a neuropile structure which is found exclusively 

in males. 

The narrow tuning of pheromone receptors seems to be different 

from those of food odour receptors, which generally have broad 

and overlapping response spectra (Visser, 1986). A major problem 

in the investigation of the processing of food odours is that 

these stimuli usually have a very complex composition (Selzer, 

1981; Visser, 1986; Visser et al., 1979), and that it is not 

clear which of their components are relevant for their 

identification. Relatively few electrophysiological studies on 

food odour processing in the deutocerebrum have been undertaken 

(Boeckh, 1974; Matsumoto & Hildebrand, 1981; Selzer, 1979; 

Waldow, 1977; Yamada, 1971). These studies involved food odours 

with an undefined chemical composition, like odours of fruit, 

cheese and bread, and compounds which are sometimes known as 

potent stimuli for receptors but which have an unknown 

behavioural significance. 

The Colorado potato beetle, Leptinotarsa decemlineata Say, is 

an insect species with a very limited host plant range. Its most 

important host in Europe is potato, Solanum tuberosum L. The 

beetle can distinguish between a host plant and a non-host plant 

by differences in their odour composition (Visser & Nielsen, 

1977). In previous work the potato plant odour has been analyzed 

(Visser et al., 1979; Visser, 1983) and the beetles' antennae 

have been tested for their sensitivity to its pure components (Ma 

& Visser, 1978; Visser, 1979 and 1983). The olfactory receptors 

are sensitively tuned to the perception of green odour (Ma & 

Visser, 1978), which is composed of C-6 alcohols, aldehydes and 
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the derivative acetate (Visser, 1983). The upwind locomotory 

response of the beetle which is induced by potato leaf odour, is 

prevented by artificial changes in concentration ratios of these 

green odour volatiles in the potato leaf odour (Visser & Avé, 

1978). It was concluded, therefore, that the ratio of these C-6 

compounds in the plant odour is decisive in the beetle's host 

plant finding. 

In order to investigate the mechanism of potato leaf odour 

recognition in the beetle, physiological properties of neurones 

in the antennal lobe were studied. In this report, responses of 

deutocerebral neurones are described on stimulation with 5 

behaviourally important C-6 compounds, namely cis-3-hexen-l-ol, 

trans-2-hexenal, cis-3-hexenyl acetate, trans-2-hexen-l-ol and 

1-hexanol. Responses to the odour of an extract of potato leaves 

were also recorded. In some cases additional stimulations were 

performed with an artificial mixture consisting of the 5 C-6 

compounds. The results indicate that information concerning 

stimulus quantity and quality are processed separately. 

MATERIALS AND METHODS 

One-week-old female beetles from the department stock culture 

were used in the experiments. An individual beetle was mounted in 

a stainless steel holder and its antennae were immobilized by 

tape (Fig. 1). The brain was exposed by removing the part of the 

head capsule between the eyes. Mouthparts, muscles, fat and the 

anterior part of the gut were removed. The latter was replaced by 

a plug of paper tissue. An insect pin through the head capsule 

helped further to stabilize the brain. The brain's tracheal air 

supply was not interrupted. The brain was constantly immersed in 

saline solution and the head was surrounded by vaseline to 

prevent leaking of this solution. The composition of the saline 

has been described by Khan et al. (1982). The sheath of the brain 

was treated with a 2% (w/v) solution of pronase (8 DMC-U/mg, 

Serva) in saline solution for 20 minutes, in order to enable 

penetration of the recording electrode. Capillary microelectrodes 

were made of filament glass. The tip was filled with 5% Lucifer 

Yellow and the shank with 1% Lithium Chloride. The measured 
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Fig. 1 Stainless steel holder for mounting 
the beetles during intracellular recordings 
of deutocerebral neurones. BS, ball-and-
socket joint; CI, clamps; Ta, tape. 

5mm 

resistance was 120-180 Mfl. Recordings were made with the aid of a 

Winston Electronics amplifier (Model 1090, with a BR-1 Bridge). 

After finishing intracellular recording, dye was injected by a 

direct current of 0.3-1.0 nA. 

The animal was placed in a continuous and steady flow of air 

(40 cm/s, 30 ml/s) (Fig. 2). Antennal receptors were stimulated 

by injection of odour stimuli (1 ml/s for 2 s) into this 

airstream from pasteur pipettes. The time between 2 stimulations 

was 30-60 s. The delivery of an odour puff was controlled by an 

electromagnetic valve. This valve was operated through a timer 

which also provided a 50 Hz signal as a marker of stimulus 

application. The pasteur pipettes were loaded with 6.0 x 0.5 cm 

strips of filter paper on which a 25 /il paraffin oil solution of 

the test chemical was pipetted. Initially a dilution of 10"^ v/v 

was used, but this was substituted by a dilution of 10 - 5 v/v to 

prevent overstimulation. 

The test chemicals were obtained from commercial sources 

(Roth, Koch-Light) and were > 97% pure. Five C-6 components of 

the potato leaf odour complex were used: cis-3-hexen-l-ol, 

trans-2-hexenal, cis-3-hexenyl acetate, trans-2-hexen-l-ol and 

1-hexanol. In addition to these test chemicals, the cells were 

also stimulated with the odour of a paraffin oil extract of 
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trans-2-hexenal 
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trans-2-hexen-1-ol 

1-hexanol 
40cm/s 

Fig. 2 Schematic r ep re sen t a t i on of the experimental s e t - up . A, ampl i f i e r ; dc, 
deutocerebrum; FP, f i l t e r paper; IE, i nd i f f e r en t e l e c t rode ; 0, o sc i l l o scope ; 
P, probe; PP, pas teur p i p e t t e ; PR, paper r ecorder ; RE, recording e l ec t rode ; 
S, speaker; SF, suc t ion funnel; TR, tape r ecorder . 

pota to l eaves . This ex t r ac t was made by blending 40 g po ta to 
leaves in the presence of 3 0 ml water. The product was shaken in 
20 ml paraf f in o i l . The paraff in o i l was co l l ec ted a f t e r 
cen t r i fuga t ion (6000 rpm, 15 min) and s tored a t 8 °C. This 
e x t r a c t contained the pota to leaf odour components (Visser, 
unpub l . ) . Some neurones were add i t i ona l ly t e s t ed with an 
a r t i f i c i a l mixture cons i s t ing of the 5 t e s t components in an 
1 :1:1:1:1 r a t i o (a t a d i l u t i on of 1 0 - 5 v / v ) . Paraff in o i l was 
used as c on t ro l . The s e n s i t i v i t y of the neurones t o a mechanical 
s t imulus was t e s t ed by f l u t t e r i ng the a i r s t ream. 

The number of spikes in the f i r s t r eac t ion second (which 
corresponds with the s t imula t ion time period t = 0 .5-1.5 s) was 
counted and corrected for the spontaneous f i r i ng by sub t rac t ing 
the c e l l ' s average f i r i ng frequency in the 2 s p r i o r t o 
s t imula t ion . The main change in a c e l l ' s a c t i v i t y due to a 
chemical s t imula t ion was s e t on a 100%-level in order t o obtain 
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its relative reaction spectrum for the 5 general green leaf 

volatiles. Inhibition percentages were related to the mean 

spontaneous activity of the cell. 

RESULTS 

The activity of 22 neurones showing responses to the test 

odours used, was recorded from the deutocerebrum of the Colorado 

potato beetle. Most of these neurones had a background firing of 

3-8 spikes/s, but in some cases it was under that level or as 

high as 25 spikes/s. The amplitude of recorded spikes was 3-7 mV. 

Most of the cell recordings lasted for 10-15 min. This was too 

short a period for an additional Lucifer Yellow staining to 

reveal morphological details of a cell. However, since the cell 

somata were marked, it was possible to identify the recorded 

neurones as deutocerebral neurones. Two fillings seemed to be 

complete and showed details of cell innervations. The recordings 

of these cells lasted for about 45 min. 

The recorded neurones differed in their response specificity 

to the stimuli (Fig. 3). Some neurones were highly specific to 1 

of the tested components (Fig. 3A,C) while other neurones had a 

more broadly tuned sensitivity (Fig. 3B,D). We classified the 

neurones (numbers 1-22) in 4 groups, based on their relative 

response spectra for the 5 c-6 compounds (Fig. 4). 

Group I contains narrowly tuned neurones which were sensitive 

to cis-3-hexenyl acetate. They showed inhibition responses or 

relatively weak excitation responses to the other volatiles. The 

spontaneous spike frequency of those neurones hardly changed 

after a stimulation with the odour of the potato leaf extract. 

Mechanical stimulation of the antenna had no effect on these 

neurones. 

Neurones of group II were more broadly tuned. They responded 

in an excitatory manner to most of the volatiles. The tested 

alcohols elicited the strongest responses in these neurones. All 

group II neurones showed a clear and excitatory response to the 

potato leaf extract. Cell number 8 was the only cell in this 

group which responded (inhibitory) to a mechanical stimulation of 

the antenna. This cell was identified as an output neurone by 
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Fig. 3 Responses of 4 d i f f e r en t deutocerebra l neurones (A-D) to 5 l ea f odour 
components ( a t a d i l u t i on of 10"5 v /v) and to a p a ra f f in o i l e x t r a c t of po ta to 
l e aves . The s t imulus dura t ion (2 s) i s i nd ica ted by ba r . A-D correspond with 
s pec t r a number 2, 5, 13 and 21 in Fig. 4 . 
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Lucifer Yellow staining. 

Group III neurones were sensitive to 1-hexanol. The other 

tested leaf odour components, including the other alcohols, 

elicited relative weak responses. The cells placed in this group 

showed no reaction, or a weak one, to stimulation with the odour 

of the potato leaf extract. An exception in this respect was cell 

number 9 which showed a clear excitatory response to the extract. 

The cells number 10 and 14 showed an exitatory response after 

mechanical stimulation of the antenna. 

Neurones with an inhibition reaction as the most significant 

response were placed in group IV. The strongest reactions in 

group IV neurones were caused by stimulation with the alcohols. 

These cells showed a clear inhibitory response to stimulation 

with the odour of the potato leaf extract. Cell number 17 was the 

only neurone of this group which showed only a very weak 

inhibition to stimulation with the extract. Cell number 16 was 

identified as a local interneurone. 

The neurones number 4, 5, 6, 13, 16, 18, 19, 20 and 22 were 

additionally tested with the artificial mixture. The neurones 

number 4, 5 and 6 of group II showed an excitatory response at 

levels of 80%, 74% and 50% respectively when compared with the 

response to their 'best' compound. The neurones number 16, 18, 

19, 20 and 22 of group IV responded with a complete inhibition of 

their spontaneous activity. Neurone number 13 of group III showed 

an inhibition response to this mixture at a level of 24% when 

compared with the response to its 'best' compound. 

The Colorado potato beetle's deutocerebral neurones can be 

divided roughly into 2 physiological classes: one class of 

neurones which are narrowly tuned and do not respond clearly to 

the extract of potato leaves, and another class of more broadly 

tuned neurones which show an evident response to the potato leaf 

extract. 

DISCUSSION 

The Colorado potato beetle's receptor cells investigated by Ma 

and Visser (1978) and by De Jong and Visser (1988) have been 

stimulated with higher stimulus concentrations(than the neurones 
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Fig. 4 Re la t ive r e ac t ion spec t ra of 22 neurones of the Colorado po ta to 
b e e t l e s ' deutocerebrum for 5 po ta to l ea f odour components, a, 
c i s - 3 - h exen - l - o l ; b , t r ans -2-hexena l ; c, c i s -3-hexenyl a c e t a t e ; d, 
t r a n s -2 -hexen - l - o l ; e , 1-hexanol. At the s t imulus source f i l t e r papers 
contained the chemicals a t a d i l u t i on of 10"-1 v / v , except for s pec t ra number 
3, 9, 12, 14, 15 and 17, which were recorded with chemicals a t a d i l u t i o n of 
10"^ v / v . The broken l i n e i nd ica te s the r e l a t i v e l eve l of maximum i n h i b i t i o n 
( t o t a l i n h i b i t i on of spontaneous a c t i v i t y ) . Areas of c i r c l e s i nd i ca t e the 
average r e l a t i v e responses for each neurone group to a p a r a f f i n o i l e x t r a c t of 
po ta to l e aves . F i l l e d , open and broken c i r c l e s i nd i ca t e e x c i t a t i o n , i n h i b i t i o n 
and the 100%-level r e spec t i ve ly . 

a t the deutocerebral l evel in order t o e l i c i t c l e a r responses 
(102-103 t imes h ighe r ) . An increased s e n s i t i v i t y of deutocerebral 
neurones as compared t o receptor neurones i s a common fea ture in 
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insects (Boeckh & Boeckh, 1979; Boeckh et al., 1984; Olberg, 

1984) . This effect is due to convergence, caused by the 

connection of a large number of receptors with the same 

interneurone (Boeckh et al., 1984). 

Inhibitory responses in interneurones, like the responses of 

group IV neurones (Fig. 4), have been reported for other insect 

species as well (Boeckh, 1974; Matsumoto & Hildebrand, 1981; 

Yamada, 1971) . It has been suggested that inhibition responses in 

the olfactory circuitry will lead to a better signal-to-noise 

ratio in the processing of olfactory information (Boeckh, 1974; 

Harrow & Hildebrand, 1982; Masson, 1977). Improvement of the 

signal-to-noise ratio might be the function of the group IV 

neurones from which we recorded. Their response spectra are more 

or less the mirror image of those of group II. Both groups 

consist of more broadly tuned interneurones. Most of these 

neurones gave the strongest responses when there was stimulation 

with an alcohol, and were sensitive to stimulation with the 

potato leaf extract. 

Groups I and III (Fig. 4) contain neurones which were narrowly 

tuned to one of the potato leaf odour components. Neurones with 

similar response spectra as the interneurones of group I have 

been found recently at the periphery (De Jong & Visser, 1988). In 

lobsters highly specialized cells have been found at different 

neuronal levels (Derby et al., 1984). Narrow-spectrum 

interneurones in lobsters are thought to have an important 

function in coding, either by dominating the across-fibre pattern 

for that stimulus or by the formation of labelled lines (Derby & 

Ache, 1984; Derby et al., 1984). The highly specific responses of 

the Colorado potato beetle's group I and III interneurones 

suggest a similar role for these neurones. They might obtain 

information about the presence of a particular compound in a 

mixture. However, since there was no clear response to the potato 

leaf extract, such a role in the specific detection of components 

by these deutocerebral neurones is not very probable. Neurone 

number 13, a specialist for 1-hexanol (Figs. 3 and 4), did not 

show an excitatory response to the artificial mixture, but was 

stimulated by 1-hexanol in a pure form. Here the response of the 

cell to a single compound was apparently also inhibited in the 
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presence of other compounds. Mixture suppression therefore could 

be an important feature of these narrowly tuned interneurones. 

Since the level of excitation in the narrowly tuned neurones 

seems to depend not only on the presence of the stimulus to which 

they are tuned, but also'on the presence of other chemicals, 

these neurones might process information about the composition of 

an odour blend. 

Our results suggest a warning function for this class of 

narrowly tuned neurones in the Colorado potato beetle: there is a 

response if certain stimulus component ratios differ from those 

in potato leaf odour, and there is no response if these ratios 

are similar. 

A simplified hypothetical diagram for the mechanism of host 

plant odour recognition in the Colorado potato beetle is 

presented in Figure 5. The presence of a mixture of components 

can be detected by the antennal receptors. These receptors 

transfer information to the deutocerebrum where 2 classes of 

neurones are present: class A neurones which are narrowly tuned 

and whose response depends on the composition of the stimulus, 

and class B neurones which respond when certain components are 

present. There are 3 possible situations: 

I: Both neuron classes do not respond. In this case important 

leaf odour components are not present and there is no detection 

of plant odour. 

II: Only class B neurones respond. In this situation there is 

a stimulation with green odour components. Since the class A 

neurones do not respond, these components are in the correct 

ratio, and the beetle detects the presence of potato leaf odour. 

Ill: In situation III both classes respond to a stimulus. This 

stimulus therefore contains green odour components in a ratio 

which differs from the one in potato leaf odour. This is the 

situation when there is stimulation from a plant odour other than 

potato. 

Evidence from other insect species also demonstrates the 

existence of deutocerebral neurones with response levels that 

depend on the ratio of certain food odour components, rather than 

on the presence of one specific compound. In the hawk moth 

Manduca sexta and in the locust Locusta migratoria deutocerebral 
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Fig. 5 Hypothetical diagram for the mechanism of host plant odour recognition 
in the Colorado potato beetle. Channels A and B act independently and show a 
response (1) or no response (0). In this way information concerning stimulus 
quality (channel A) and stimulus quantity (channel B) is processed separately 
(see text for further explanation). 

neurones have been reported which responded to trans-2-hexenal, a 

common leaf-aldehyde, but not to the odour of tobacco leaf 

extract and grass, respectively (Boeckh, 1974; Matsumoto & 

Hildebrand, 1981). Furthermore, neurones have been found in the 

antennal lobe of the cockroach Periplaneta americana which were 

sensitive to hexanol, a constituent of lemon oil ,(Selzer, 1981), 

but not to lemon odour (Boeckh, 1974). 

Mixture interaction in insect neurones has been described 

previously (Kaissling, 1979; O'Connell, 1985; Olberg, 1984), and 

suppression of the response to one chemical by another has been 

demonstrated to exist at different neuronal levels in the lobster 

(Derby et al., 1985). Such evidence implies an important role of 

mixture interactions in the coding of chemical cues. The 

importance of mixture interaction in the Colorado potato beetle's 

coding mechanism, could lie in the formation of an information 

channel with a response level depending on the quality of the 

stimulus. A study of the antennal receptor responses indicates 

that this mechanism is also present at the peripheral level of 

the Colorado potato beetle's nervous system (De Jong & Visser, 

1988). 
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CHAPTER 3 . SPECIFICITY-RELATED SUPPRESSION OF RESPONSES TO BINARY 

MIXTURES IN OLFACTORY RECEPTORS OF THE COLORADO POTATO BEETLE 

R. DE JONG & J . H . V I S S E R 

Responses of antennal o l f ac to ry r ecep tors of the Colorado po ta to b e e t l e , 
Lep t ino ta rsa decemlineata Say, to s t imula t ion with 5 general green odour 
components, i . e . c i s - 3 -hexen - l - o l , t r ans -2-hexena l , c i s -3-hexenyl a c e t a t e , 
t r an s -2 -hexen - l - o l and 1-hexanol, were recorded e x t r a c e l l u l a r l y . Response 
s pec t r a der ived from these recordings can not be c l a s s i f i e d i n to d i s t i n c t 
r e ac t i on t ypes . The spec t ra overlap in t h e i r s e n s i t i v i t y to i nd iv idua l 
s t imu l i , bu t t he re a re d i f fe rences in t h e i r degree of s p e c i a l i z a t i on with a 
gradual conversion from g ene r a l i s t to s p e c i a l i s t r e c ep to r s . Moreover, 
s p e c i a l i z a t i o n i s found to d i f f e r en t s t imu l i . Receptor r e ac t i ons to 
s t imu la t ion with b inary mixtures of 3 of these compounds i nd ica ted t h a t 
suppress ion of t he response to one chemical by another i s very common i n 
o l f ac to ry r ecep tor c e l l s . The more a r eceptor i s s pec i a l i z ed , the s t ronger i s 
t h i s suppress ion. Suppression in narrowly tuned o l f ac to ry r ecep tor neurones, 
t h e r e fo re , i s expected to p lay a fundamental r o l e in the r ecogn i t ion of 
n a t u r a l odour b lends . 

The i n v e r t e b r a t e ' s coding mechanism for o l fac tory cues has 
been inves t iga ted by examining responses of neurones a t var ious 
l eve l s of the nervous system (Boeckh, 1974; Derby e t a l . , 1984; 
Se lzer , 1981). Responses of pe r iphera l o l fac tory neurones in 
d i f f e r en t i n sec t species t o var ious t e s t s t imul i have been 
s tudied in f a i r d e t a i l . They have been c l a s s i f i e d i n to r eac t ion 
groups on the bas i s of s i m i l a r i t i e s among the r eac t ion spec t ra 
(Boeckh, 1976; Kafka, 1970, Ma & Visser , 1978; Mustaparta, 1975; 
Se lzer , 1984; Vareschi, 1971). Receptors with d i f ferences in 
t h e i r degree of s p ec i f i c i t y and with s p ec i a l i z a t i on s t o d i f f e ren t 
s t imul i have been descr ibed. Examples of r eceptors which are 
extremely narrowly tuned t o only one or a few compounds have been 
given for pheromone receiving neurones in several species (Den 
Ot te r , 1977; Kaiss l ing, 1979; Mustaparta e t a l . , 1984; O'Connell, 
1985; Sass, 1983). Most food odour r ecep to r s , on the o ther hand, 
a re more broadly tuned in t h e i r perception of s t imul i (Boeckh e t 
a l . , 1965; Kafka, 1970; Selzer , 1981; Vareschi, 1971). 

Phytophagous i n sec t s exh ib i t spec i f i c behavioural responses 
e i t h e r t o a host odour spec i f i c component or t o t he mixture of 
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different non-specific host odour components (Visser, 1986). Flea 

beetles Phyllotreta cruciferae, for example, are attracted by 

allylisothiocyanate which is a specific component of their 

cruciferous host plants (Feeny et al., 1970). However, in the 

Colorado potato beetle, Leptinotarsa decemlineata. the ratio of 

several odour components is important for host odour recognition. 

'Green' odour, which forms a significant part of all leaf odour 

blends, is composed of C-6 alcohols, aldehydes and the derivative 

acetate (Visser, 1983). Different plant species may show 

different proportions of the individual components of the green 

odour complex. Distortion of the composition of the green odour 

of potato leaf, Solanum tuberosum, by addition of small amounts 

of its components to the odour of potato plants, prevented upwind 

orientation of Colorado potato beetles towards the plants (Visser 

& Avé, 1978). Furthermore, the odour of their host plant, potato, 

is masked for the beetles when it is mixed with other plant 

odours (Thiery & Visser, 1986). Nevertheless, a general problem 

in studies on olfactory coding is the lack of knowledge about the 

precise composition of food odour blends. Although most 

biologically relevant odours consist of complex mixtures, an 

analysis of olfactory coding, therefore, has been based on 

neuronal responses to individual odour components (Derby & Ache, 

1984; Selzer, 1981; Visser, 1986). 

The olfactory receptors in the antennae of Colorado potato 

beetles are sensitively tuned to C-6 compounds (Ma & Visser, 

1978; Visser, 1979). In previous work we used 5 green odour 

components, i.e. cis-3-hexen-l-ol, trans-2-hexenal, cis-3-hexenyl 

acetate, trans-2-hexen-l-ol and 1-hexanol, to study the responses 

of neurones in the deutocerebrum of the Colorado potato beetle 

(De Jong & Visser, 1988). In this first relay station, synaptic 

connections between receptor neurones and interneurones are 

formed. Characterization of deutocerebral neurones revealed the 

existence of 2 groups: one group (A) of neurones showed specific 

responses to individual leaf odour components, and another group 

(B) of less specific responding neurones. After stimulation with 

a potato leaf extract, group B neurones responded, while group A 

neurones hardly changed from their spontaneous firing activities. 
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Since the potato leaf extract is a mixture of odour components, 

the lack of response in group A to this mixture implies an 

important role of suppression as a mixture effect. A coding 

mechanism for the odour of potato leaf has been pi - _>osed on the 

basis of this suppression (De Jong & Visser, 1988). 

The present study was carried out to characterize the receptor 

responses to stimulation with the same 5 C-6 components. In order 

to examine if mixture interactions like those in specialized 

deutocerebral neurones also exist at the peripheral level, we 

additionally characterized the olfactory receptors by their 

responses to some artificial mixtures. 

MATERIALS AND METHODS 

Two-day-old female Colorado potato beetles were obtained from 

the laboratory stock culture and used for the experiments. 

Recordings from antennal olfactory receptor cells were made as 

described previously (Ma & Visser, 1978). We modified the method 

of stimulus delivery by placing the preparation in a continuous 

airflow (40 cm/s, 30 ml/s) in which odour stimuli were injected 

by flowing air through a pasteur pipette (1 ml/s, 2 s). The 

pasteur pipette contained a piece of filterpaper (6.0 x 0.5 cm) 

loaded with a stimulus solution (25 ßl). We used as stimuli 5 C-6 

components of the potato leaf odour, namely cis-3-hexen-l-ol, 

trans-2-hexenal, cis-3-hexenyl acetate, trans-2-hexen-l-ol and 

1-hexanol (at a dilution of 4 x 10~2 in paraffin oil, v/v). The 

test chemicals were obtained from commercial sources (Roth, Koch-

Light) and were > 97% pure. Paraffin oil alone was used as the 

control. An interstimulus time of at least 1.5 min was used. 

The receptors were recorded extracellularly. In most of the 

recordings, only one spike amplitude was visible. In a few cases 

we used recordings with two clearly distinguishable spike 

amplitudes. The number of spikes in the first reaction second was 

counted in order to obtain the response level to a stimulus. 

The relative response spectrum for each cell was obtained by 

setting its 'best' component on a 100%-level. The degree of 

specialization of a receptor cell (DS) was calculated by: 
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5 

500 - S R± 

DS 

R^ represents the cell's relative response to component i. This 

calculation expresses DS as a percentage which, theoretically, 

ranges between 0 for cells without any specialization, and 100 

for cells responding to only one of the 5 test stimuli. Once the 

degree of specialization of a cell was known, its responsiveness 

to mixtures was determined. This was done by measuring its 

reaction to three 1:1 binary mixtures, each at two dilutions of 

the total amount of volatiles (4 x 10- 2 and 8 x 10- 2, v/v). The 

components used in mixtures were trans-2-hexenal, cis-3-hexenyl 

acetate and 1-hexanol. Each mixture response was expressed as a 

percentage of the response to the 'best' component that was also 

present in the mixture, and from these 6 values an average 

mixture response (AMRg) was calculated for each cell. Stimulation 

sequences started with the lowest concentration stimuli. 

Variables were compared using the non-parametric Spearman rank 

correlation test (Siegel, 1956). 

RESULTS 

Thirty-nine receptor neurones on the antennae of Colorado 

potato beetles were recorded. Most of these neurones revealed a 

low background firing rate of 3 ± 4 spikes/s (mean ± sd) which 

increased to 26 ± 16 spikes in the first reaction second after 

stimulation with the cell's 'best' component. The response 

spectra of the receptors were classified in 5 groups, according 

to their 'best' stimulus (Fig. 1A-E). Some spectra (Fig. 1 nos. 

29, 30, 36) do not show a 'best' stimulus and, therefore, can be 

classified in more groups. Within a group the spectra were 

arranged according to their DS-values. The degree of 

specialization in one group increases from left to right. The 

degree of specialization of the receptors for the 5 stimuli 

ranges from DS-values of 19 to 94 (Fig. l, nos. 1 and 28 

respectively). We did not find a correlation between the 

sensitivity of cells to their 'best' component (in number of 
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spikes in the first reaction second) and the DS, nor between the 

background frequency and the DS. The response spectra in Figure 1 

show that there are no distinct receptor types to the 5 stimuli. 

The recorded population of olfactory receptors responded 

differentially to the set of stimuli and individual spectra show 

overlap. Nevertheless, considerable differences in receptor 

responses are found. Some receptors showed non-specific 

responses, while others were specialized to particular stimuli. 

In 13 cases out of 39 we were able to repeat the stimulation 

series demonstrating the consistent character of the spectra. 

Newly calculated DS values, then, did not differ significantly 

from previous values (Wilcoxon matched-pairs signed-ranks test) 

(ADS = 5.8) . 

The responses of the cells in Figure 1 to the binary mixtures 

are represented in Figure 2, and, in addition, are related to the 

response to the 'best' mixture component. The classification of 

these responses in groups corresponds with the one in Figure 1. 

In 63 of the 117 cases, one component alone elicited a stronger 

response than the mixture in which the same concentration of that 

component was present. On the other hand, only in 6 cases the sum 

of the responses to individual components was smaller than the 

responses to the corresponding mixtures. Suppression, therefore, 

is found to be the most common mixture effect. The strength of 

this suppression varied in the different receptors and was 

sometimes found to be very pronounced. Figure 3 shows a recording 

in which clear responses to trans-2-hexenal and 1-hexanol were 

strongly reduced in the presence of cis-3-hexenyl acetate. The 

response spectrum of this neurone is represented in Figure 2 no. 

2. 

The AMR6 values, which are used as indices for receptors' 

responses to mixtures, range between 35 and 170 and correlate 

significantly with receptor DS (rs = -0.52; N = 39; P < 0.001, 2-

tailed). Highly specialized cells show a considerably stronger 

suppression than the more broadly tuned cells. A scattergram for 

the AMR6 and the DS of the receptors is presented in Figure 4. 
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Fig. 3 Responses of one olfactory receptor cell in the Colorado potato 
beetles' antenna on stimulation with 3 compounds, and their 1:1 mixtures at 2 
concentrations. Bar indicates stimulation period (2 s). A, stimulation with 
trans-2-hexenal (4 x 10"' v/v); B, stimulation with cis-3-hexenyl acetate (4 x 
10~2 v/v); C, stimulation with 1-hexanol (4 x 10~2 v/v); D and E, stimulation 
with an 1:1 mixture of trans-2-hexenal and cis-3-hexenyl acetate, respectively 
at 4 x 10~2 and 8 x 10"2 v/v; F and G, stimulation with an 1:1 mixture of 
trans-2-hexenal and 1-hexanol, respectively at 4 x 10"2 and 8 x 10~2 v/v; H 
and I, stimulation with a 1:1 mixture of 1-hexanol and cis-3-hexenyl acetate, 
respectively at 4 x 10*2 and 8 x 10~2 v/v. 
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Fig. 4 Scatter diagram for degree 

of specialization (DS) and average 

mixture responses (AMRg) in 

olfactory receptor cells of the 

Colorado potato beetle. r s = -0.52; 

N = 39; P < 0.001, non-parametric 

Spearman rank correlation test, 2-

tailed (Siegel, 1956). 
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DISCUSSION 

Previous work on deutocerebral neurones indicated that mixture 

interaction is essential in the coding of olfactory information 

in the Colorado potato beetle. Here we studied response spectra 

of receptor neurones to pure compounds, and also examined the 

perception of more complex odours at the receptor level. 

Therefore, we additionally stimulated with simple 1:1 binary 

mixtures. These mixtures do not resemble natural food odour 

blends, but should be considered as a first step in the study of 

mixture effects. 

Qualitative responses as presented in spectra are thought to 

give more reliable information about neuronal reactions than 

quantitative responses (Kafka, 1970) and, therefore, are used for 

unraveling the coding of olfactory input. Grouping of responses 

according to spectra have been applied often to characterize an 

olfactory receptor population. However, since classification of 

receptors in this way is not only dependent on the treatment of 

electrophysiological data but also on the set of stimuli used in 

the experiments, this approach has its limitations (Selzer, 

1984). Within groups rather varied spectra can be present while 

each spectrum shows significant features. The response spectra of 

olfactory receptors of the Colorado potato beetle (Fig. 1) show 

varying degrees of receptor specialization and no clear 

separation in response types for the 5 stimuli. Our data reveal 

that suppression is an important feature of the response 

characteristics of receptor cells. The responses of receptors to 

the binary mixtures suggest a function of mixture effects in the 

perception of olfactory information. Such mixture interaction has 

been discussed previously for the processing of information in 

the antennal lobe of the Colorado potato beetle (De Jong & 

Visser, 1988). 

Olfactory coding is generally thought to be realized either by 

labelled lines, or by across-fibre patterns. The labelled line 

coding theory was proposed for insect pheromone receptors which 

possess narrow, non-overlapping chemosensitivities (Boeckh et 

al., 1965). Each behaviourally relevant compound is thought to 

have its own receptor type for the detection of its presence. In 
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Fig. 5 A schematic diagram 
representing a population of 4 
receptor cells. Receptor cells are 
thought to respond to compounds A 
and B applied singly, and the 1:1 
mixture of A and B. I: labelled 
line concept in a cell population 
with solely specialist receptors. 
II: across-fibre pattern concept in 
specialist and generalist 
receptors. Ill: as II, involving 
suppression. The arrow length 
stands for response intensity. 

this theory, the blend composition is determined by the 

activities in particular types of sensory neurones. A simplified 

illustration of this situation is presented in Fig. 5(1). 

Observations on food odour receptors, showing that most receptors 

have broad and overlapping response spectra (Boeckh et al., 1965; 

Visser, 1986) led to a second theory, the across-fibre pattern 

hypothesis. This concept holds that each perceptible odour is 

represented by a unique pattern of activity across the array of 

sensory neurones (Fig. 5(H)). 

Highly specialized chemoreceptors are supposed to serve as 

inputs for specific detection systems (Ache & Derby, 1985; Derby 

et al., 1984; Johnson et al., 1984). In the Colorado potato 

beetle, the negative correlation between DS and AMR6, however, 

shows that the level of excitation in narrowly tuned olfactory 

receptors in response to mixtures does not solely depend on the 

presence of their 'best' stimulus (Figs. 3 and 4). As suppression 

is correlated with the degree of specialization, other chemicals 

to which these cells do not show a pronounced reaction when 

applied singly, may contribute to the mixture response. 

Therefore, the activities of olfactory receptors depend on the 

total composition of a mixture, and the response pattern differs 

especially in narrowly tuned neurones from what is expected on 

the basis of their responses to single compounds (Fig. 5(111)). 

Similar observations have been made of olfactory receptor 

responses of other insect species and lobsters. 'Ionine' and 

'alcohol' receptor types of the cockroach Periplaneta americana 

showed a smaller response to odour of lemon oil than was expected 
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on the basis of summation of responses to odour of lemon oil 

fractions (Selzer, 1984). Responses of taurine-sensitive 

receptors on the antennules of the spiny lobster Panulirus argus 

were suppressed when taurine was presented in mixture with 

certain amino acids (Gleeson & Ache, 1985). Enhancement and 

suppression has been demonstrated in responses of narrowly tuned 

chemoreceptors in the American lobster, Homarus americanus 

(Johnson et al., 1985). Although pheromone receptors are 

generally believed to function as labelled lines, synergism and 

suppression have also been reported in responses of pheromone 

receptors in the red-banded leaf roller Aravrotaenia velutinana 

(O'Connell, 1971) and the cabbage looper Trichoplusia ni 

(O'Connell et al., 1986). Such mixture interactions could explain 

why sometimes certain behaviourally important compounds, when 

applied in a pure form, fail to elicit clear activity on any of 

the identified receptor neurones (O'Connell, 1975; O'Connell et 

al., 1983). 

The response levels in the group of highly specific neurones 

in the deutocerebrum of the Colorado potato beetle are thought to 

depend on the ratio of certain odour components, rather than on 

the presence of their 'best' component (De Jong & Visser, 1988). 

The other group containing less specific deutocerebral neurones 

did not show this sensitivity to different ratios. The reactions 

of receptors presented in this study suggest that peripheral 

responses are at least partially responsible for this effect. In 

general, specialized receptors and specialized deutocerebral 

neurones show suppression as a mixture effect, unlike the other 

receptors and deutocerebral neurones. The presumed separation of 

olfactory information by these groups is more obvious at the 

deutocerebral level than at the peripheral level. 
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CHAPTER 4 . SUPPRESSION-RELATED MIXTURE PERCEPTION IN OLFACTORY 

RECEPTORS 

R. DE JONG and J . H . VISSER 

I t i s known from psychophysical and e l e c t rophys io log i ca l r esearch on 
o l f a c t i on t h a t suppression i s a common e f fec t of mixture i n t e r a c t i o n . In a 
previous study on o l f ac to ry r ecep tors of the Colorado po ta to b e e t l e , a 
c o r r e l a t i on has been found between the s p e c i a l i z a t i on of a r ecep tor c e l l and 
the amount of suppression in i t s response to a mixture . Therefore, i t has been 
suggested t h a t suppression leads to a more qual i ty-dependent and l e s s 
quant i ty-dependent response in the r e cep to r s . Here, the e f f ec t s of suppression 
on the pe rcep t ion of mixtures in o l f ac to ry r ecep tors of the Colorado po ta to 
b e e t l e a re fu r the r descr ibed. I t i s demonstrated t h a t the amount of 
suppression in a r eceptor c e l l , which i s p o s i t i v e l y c o r r e l a t ed with i t s degree 
of s p e c i a l i z a t i o n , depends on the i nd iv idua l r ecep tor r a t h e r than the s pec i f i c 
s t imulus mixture . Angles between mixture components der ived from 2 
psychophysical models, the vec tor model and the U model, a re c h a r a c t e r i s t i c 
for r e cep to r s , and c o r r e l a t e with the r e c ep t o r s ' degree of s p e c i a l i z a t i o n . 
Suppression c o r r e l a t e s with a decreased s e n s i t i v i t y for a concen t ra t ion 
d i f f e rence , and, in theory, provides r eceptor responses with a buffer for some 
v a r i a t i o n s in s t imulus q u a l i t y . 

Most na tura l o l fac tory s t imul i cons i s t of complex mixtures . 
Odour percept ion, t he re fore , depends on the simultaneous 
recept ion of a v a r i e t y of components. However, most research 
concerning the ways the information about such s t imul i i s 
deciphered by an organism, has been r e s t r i c t e d t o t h e i r pure 
c on s t i t u en t s . The major problem in the i n t e r p r e t a t i on of these 
s t ud ie s i s t h a t mixtures are often perceived d i f f e r en t l y than one 
would expect from addi t ion of receptor responses t o t he 
individual components. 

In psychophysical experiments the perceived i n t e n s i t i e s of 
mixtures a re usual ly lower than would be p redic ted from summing 
responses t o the s ing le components. The p r i nc ip l e of odour 
i n t e r ac t i on a t the perceptual l eve l has been described by 
Berglund e t a l . (1973). They introduced the vector model t o 
descr ibe i n t en s i t y summation: 

^AB = J V>A2 + $ß2 + 2tfAtfBcosa ( 1 ) 

The perceived intensity of the binary mixture AB is represented 
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by V>AB' an(^ °f its P u r e constituents A and B by V̂ A an(^ ^B 

respectively. In this model, the angle a is thought to depend on 

the qualitative similarities between components of a mixture. The 

more similar these components are, the smaller is the angle a. 

This psychophysical model has been tested for humans for 

2-component mixtures by Cain & Drexler (1974), Cain (1975), 

Moskowitz & Barbe (1977), Laffort & Dravnieks (1982) and Laing & 

Willcox (1983). Although the vector model performs very well for 

binary mixtures, it has shortcomings when applied in an extended 

form for more complex mixtures. Such an extended vector model has 

been tested by Berglund (1974), Moskowitz & Barbe (1977) and 

Laffort & Dravnieks (1979), and may not be able to predict the 

odour intensities of 3-component and higher-order mixtures when 

using a's which are completely determined in binary mixture 

experiments (Moskowitz, 1979). 

The so-called 'U model' which has been proposed by Patte & 

Laffort (1979) does not suffer from problems for higher-order 

mixtures : 

V'AB = V'A + ^ B + 2yV>A^Bcosa ( 2 ) 

The U model has been tested in an extended form for ternary and 

quaternary mixtures by Laffort & Dravnieks (1982). Moreover, it 

fits the results for binary mixtures slightly better than the 

vector model, and includes cases where the perceived intensity of 

a mixture is stronger than that expected from simple additivity 

among the components (Laffort & Dravnieks, 1982). Suppression is, 

nevertheless, by far the most frequently encountered mixture 

effect in psychophysical studies. 

Central mechanisms seem to be involved in mixture suppression. 

Gillan (1983) reported suppression of perceived odour intensities 

in odour-taste mixtures. Odour-odour mixtures, however, produced 

greater suppression than did the odour-taste mixtures. 

Furthermore, Cain (1975) demonstrated that 2 substances presented 

separately to each nostril of humans at the same time, produced 

suppression, but to a lesser degree than the suppression when the 

2 substances were mixed in the vapour phase. This suggests that 

besides effects in the central nervous system, receptors also 
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contribute to mixture suppression. 

Such interactive effects in the perception of odour mixtures 

at the level of individual receptor neurones have been described 

for invertebrates. Gleeson & Ache (1985) recorded from taurine-

sensitive chemoreceptors on the antennule of the spiny lobster. 

They found suppression in the receptor responses to taurine when 

it was applied in combination with certain amino acids. In some 

cases these responses were even blocked completely. 

Suppression and enhancement in the responses of pheromone 

receptors of different insect species have been reported by 

O'Connell (1971) and O'Connell et al. (1986). Etcheto et al. 

(1982) applied psychophysical models to electroantennogram (EAG) 

recordings from honey bee workers. These recordings are thought 

to reflect summated responses of the population of olfactory 

receptors in an antenna. These authors also demonstrated synergy 

and suppression in the EAG responses to mixtures. De Jong & 

Visser (1988) described for the Colorado potato beetle a positive 

correlation in the degree of specialization of the olfactory 

receptors with the amount of suppression in their responses to 

binary mixtures. 

Electrophysiological experiments indicate that suppression is 

the most common mixture effect, and that some psychophysical 

effects originate from peripheral processes. Mayer et al. (1984) 

suggested that an insect's behavioural response to odour 

stimulation, reflects the intensity of olfactory sensation in the 

central nervous system, which in turn would be a measure for the 

summed responses of receptors. Psychophysical models, therefore, 

may be relevant to receptor responses by interpreting the psi in 

the models as the response magnitude. 

Little is known about the function of mixture suppression in 

the perception of olfactory information. Bartoshuk (1975) 

postulated that the mixture suppression observed in 

psychophysical taste experiments, plays an important role in 

encoding a potentially large stimulus concentration range into a 

much smaller psychological range. Such a mechanism which encodes 

a broad range of concentrations into a fairly small range of 

response intensities may be important for lobsters as well 

(Johnson et al., 1985; Carr & Derby, 1986). De Jong & Visser 
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(1988) proposed an important qualitative role of mixture 

suppression in the recognition of potato plant odour by the 

Colorado potato beetle. According to their hypothesis, the coding 

of olfactory information involves 2 separate channels. One 

channel contains neurones which are highly specialized in the 

perception of particular odour components, and at the same time 

show strong suppression in their responses to mixtures. The other 

channel consists of neurones which are more broadly tuned and 

respond to mixtures with less suppression. Broadly tuned 

receptors are supposed to detect the presence of compounds, while 

information about their ratios in a stimulus mixture is obtained 

by narrowly tuned receptors. The response level to mixtures in 

narrowly tuned receptors, therefore, is expected to be more 

quality-dependent and less quantity-dependent than in broadly 

tuned receptors. 

In this report we evaluate data obtained from single cell 

recordings of Colorado potato beetles' antennal neurones, in 

order to investigate whether the suppression in a receptor 

depends primarily upon certain mixture combinations or on 

receptor characteristics. Furthermore, the effects of a change in 

stimulus concentration on the responses of these receptors are 

studied. The role of suppression in narrowly tuned receptors, 

with respect to olfactory coding, is discussed with use of the 

psychophysical models (1) and (2). 

ELECTROPHYSIOLOGICAL DATA 

The data used in this report represent the responses of 39 

olfactory receptors of the Colorado potato beetle to different 

stimuli (De Jong & Visser, 1988). The degree of specialization 

(DS) of an olfactory receptor, was expressed as the 

specialization in the cell's responses to 5 pure compounds, i.e. 

cis-3-hexen-l-ol, trans-2-hexenal, cis-3-hexenyl acetate, 

trans-2-hexen-l-ol and 1-hexanol (at a source dilution of 4 x 

10- 2 in paraffin oil, v/v). These compounds are part of the 

so-called 'green odour' of potato leaves (Visser, 1983) , and are 

thought to be essential for plant odour recognition by the beetle 

(Visser & Avé, 1978). A receptor's relative response spectrum was 
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obtained by setting the cell's 'best' component on a 100%-level. 

DS was calculated by (De Jong & Visser, 1988): 

lOOn - S R± 

DS = 

R^ represents the cell's relative response to compound i. This 

calculation expresses DS as a percentage which ranges between 0 

for cells without any specialization, and 100 for cells 

responding to only one of the test compounds. The number (n) of 

different compounds that was tested is 5. 

The mixture effect was quantified as the average mixture 

response of a receptor (De Jong & Visser, 1988). This was done by 

measuring the cell's responses to three 1:1 binary mixtures, each 

at 2 dilutions of the total amount of volatiles (4 x 10- 2 and 8 x 

10- 2, v/v, at the source). Compounds used in the mixtures were: 

trans-2-hexenal, cis-3-hexenyl acetate and 1-hexanol. Each 

mixture response was expressed as a percentage of the response to 

the mixture's 'best' pure component (at a dilution of 4 x 10- 2, 

v/v, at the source). The average mixture response (AMR6) was 

calculated for each cell as the average of the 6 values. 

Variables were compared using the non-parametric spearman rank 

correlation test (Siegel, 1956). A negative correlation between 

AMRg and DS has been described previously (De Jong & Visser, 

1988). 

APPLICATION OF THE MODELS 

We evaluated the electrophysiological data with respect to the 

vector model (1), and were able to calculate an a for 82 of the 

117 cases (Fig. 1A-C). In 6 cases, the responses to mixtures were 

stronger than the summed responses of the corresponding 

components, and since the vector model can not handle cases of 

synergism, these a's could not be determined. In the remaining 29 

cases, the responses to mixtures showed stronger suppression than 

can be explained by the vector model. Using the U model (2), 106 

of the 117 a's could be calculated (Fig. 1D-E). No synergism was 
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Fig. 1 Distribution of calculated angles for binary mixtures using the vector 
model (A-C) and the U model (D-F). Angle values are represented by bars, and 
mean values by filled circles. A and D, mixtures of trans-2-hexenal and 
cis-3-hexenyl acetate; B and E, mixtures of trans-2-hexenal and 1-hexanol; C 
and F, mixtures of cis-3-hexenyl acetate and 1-hexanol. 

found to be too strong for this model. In 11 cases we calculated 

cosa values which were < -1. Besides a greater number of a's, the 

results of the U model show less variation in the a values. The 

mean values of the a's for the 3 mixtures and for both models do 

not differ very much (Fig. 1). 

Some a's could not be calculated because some mixtures showed 

stronger suppression than either model can handle. This may be 

due to the fact that most receptors showed a background firing 

rate which was too low to reveal possible inhibitory responses. 

As a result the magnitude of an inhibitory response could not be 

expressed as a decrease in frequency. Therefore, instead of 

expressing the receptor responses by their spike frequencies, the 

receptor potential might be a better response criterion, but this 

would require intracellular recordings. 

When the a-values for different pairs of mixture components 

are compared, it appears that a-values for the same receptor are 

correlated with each other. Receptors with a high or a low a-

value for one mixture combination subsequently showed high or low 

values for other mixture combinations. a-Values, therefore, are 

characteristic for these olfactory receptors. Table 1 gives for 

both models an overview of correlations between different pairs 

of a's for the same receptor population. For the u model we found 
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Table 1. Cor re la t ions between d i f f e r en t p a i r s of a ' s for the same r ecep tor 
popula t ion . Var iables were compared us ing the non-parametric Spearman rank 
c o r r e l a t i o n t e s t (S iege l , 1956). 

"ab1 v s 

«ab v s 

«ac v s 

Qac 

Qbc 

Qbc 

Vector model 

rs
2 = 0.72; N = 21; 

P < 0.001 

rs = -0.21; N = 23; 
P = 0.343 

rs = 0.29; N = 23; 
P = 0.180 

U model 

rs - 0.60; 
P < 0.001 

rs - 0.47; 
P < 0.010 

rs = 0.50; 
P < 0.005 

N 

N 

N 

- 33; 

- 33; 

= 34; 

a, t r ans-2-hexena l ; b , c i s -3-hexenyl a c e t a t e ; c , 1-hexanol. a a^ , a a c and ajjC 

stand for angles between a and b , a and c, and b and c , r e s pec t i v e l y . 
r s , c o r r e l a t i on c oe f f i c i en t ; N, number of data p a i r s ; P, p r obab i l i t y (2-

t a i l e d ) . 

s i gn i f i c an t c o r r e l a t i ons for a l l 3 combinations, while for the 
vector model t h i s was the case for only one combination. The 
l a t t e r r e s u l t may be due t o a smaller number of data p a i r s . 

The c o r r e l a t i ons between p a i r s of a ' s i nd ica te t h a t the 
c o r r e l a t i on between AMR6 and DS does not depend on the presence 
of one spec i f i c compound in the mixture, i . e . the most 
s t imula t ing compound. In o ther words, the amount of suppression 
in a r eceptor c e l l , which i s po s i t i ve ly co r re l a t ed with i t s 
degree of s p ec i a l i z a t i on , depends on receptor c e l l 
c h a r a c t e r i s t i c s , r a t he r than on the presence of one spec i f i c 
s t imulus . 

The co r r e l a t i on between AMRg and DS, t he re fo re , i s not due t o 
the presence of the c e l l ' s ' b e s t ' s t imulus in a mixture. Of the 
39 c e l l s t e s t ed , 31 showed the h ighest s e n s i t i v i t y t o 1 of the 3 
components used in the mixtures, and thus 4 of the 6 mixtures 
contained t h i s compound. When the AMR4 i s c a lcu la ted as the 
meanof these 4 mixtures containing the c e l l ' s ' b e s t ' compound, 
the c o r r e l a t i on between AMR4 and DS for these 31 c e l l s i s b e t t e r 
( r s = - 0 .70 ; N = 31 ; P < 0 .001, 2 - t a i l ed ; Fig. 2A) than t h a t for 
AMR6 and DS for the whole c e l l population ( r s = - 0 . 52 ; N = 39; P 
< 0 .001, 2 - t a i l e d ) . The AMR2s of the same 31 c e l l s , r e su l t i ng 
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Flg. 2 Scatterdiagram for the average mixture response (AMR) and the degree 
of specialization (DS) in olfactory receptors of the Colorado potato beetle. 
A, mixtures containing the cell's 'best' compound (AMR^) (rs = -0.70; N = 31; 
P < 0.001, 2-tailed); B, same cells, mixtures not containing their 'best' 
compound (AMR2) (rs - -0.48; N = 31 ; P < 0.01, 2-tailed). 

from the 2 mixtures not containing the receptor's 'best' 

component, still show a negative correlation with DS (rs = -0.48; 

N = 31; P < 0.01, 2-tailed; Fig. 2B), even though the accuracy of 

measurements is less than in the foregoing procedure. This 

decrease in accuracy is caused by the weaker responses to 

mixtures lacking the 'best' compound, particularly in the more 

specialized cells, and to the smaller number of mixtures used for 

calculating the cell's AMR. With both models (1) and (2), o's are 

correlated with the receptor's DS. Using the vector model we 

found: rs = 0.24; N = 82; P < 0.05 (2-tailed), and with the U 

model: rs = 0.31; N = 106; P < 0.001 (2-tailed). These analyses 

demonstrate that suppression in response to binary mixtures is 

correlated with the extent of specialization of the receptor 

cells, and that suppression does not depend on the presence of 

one specific compound, e.g. the 'best' stimulus. 

CONCENTRATION EFFECTS ON RESPONSES 

Concentration shifts lead to changes in receptor responses. A 

change in mixture concentration is proportional to the changes in 

concentrations of its components. Assuming that this would change 

^A and ̂ B by the same factor n to n</>A and n̂ s respectively, the 

44 



response >̂'AB to the new mixture concentration can be expressed 

for both models (1) and (2) as: 

*'ÄB = nV>AB (3) 

Since, according to (3) , ̂ 'AB/^AB = n' concentration shifts 

should lead to relatively similar changes in the responses of 

different receptors. However, the relative change in response to 

an increase in stimulus concentration (from 4 x 10- 2 to 8 x 10- 2, 

v/v, at the source), averaged for the 3 mixtures, is 

significantly correlated with AMR6: rs = 0.40; N = 39; P < 0.005, 

2-tailed, (Fig. 3). Thus, at strong suppression, the relative 

increase of receptor response caused by an increase in mixture 

concentration is small. 

Differences between receptors in their dose-response relations 

can explain this effect. Dose-response relations are 

characterized by sigmoid-shaped curves when plotted on 

semi-logarithmic scales. The response intensity levels off at 

high stimulus concentrations. Visser (1979a) found, using the EAG 

recording technique, sigmoid-shaped dose-response curves for the 

Colorado potato beetle's antenna to the 'green odour' components. 

EAG recordings reflect the responses of the complete receptor 

cell population and, therefore, do not reveal differences between 

the receptors within this population. When, for instance, 

specialized neurones are more sensitive than generalized 

neurones, test concentrations sometimes lie at the right 

asymptotic region of the dose-response curves for specialized 

neurones, and in the steep region for the generalized neurones. 

This would cause relatively smaller effects by concentration 

shifts in specialized receptors. Although we did not find a 

relation between the absolute response levels of receptors to 

their 'best' compound and their DS (or between absolute response 

levels to their 'best' compound and AMR6), this possibility 

cannot be excluded completely. 

Another explanation could be differences between the steepness 

of dose-response curves for cells with high and low AMR6 values. 

The steeper the curve, the smaller the concentration range in 

which the cell's response intensity is affected. A relationship 
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Fig. 3 Scatterdiagram for the 
relative change in receptor 
response to an increase in mixture 
concentration (V'AB a t 8 x 10" , 
v/v) related to responses to low 
mixture concentrations (̂ >AB a t ^ x 

10" , v/v) and the average mixture 
response (AMRg) . rs - -0.40; N = 
39; P < 0.005, 2-tailed. 

between the receptor's AMRg and the steepness of its 

dose-response curves, thus explains the observed correlation 

between AMRg and the relative change in response to a 

concentration increase (Fig. 3). Specialized receptors may have 

steeper curves than more generalized ones. This could cause 

synergy at low concentrations and suppression at high 

concentrations, and thus would reduce the concentration 

dependency of the responses. When the test concentrations fall in 

the steep region of their dose-response curves, the situation 

would be reversed of course, since steeper curves then show 

stronger effects. However, since the test concentrations used in 

our experiments, are relatively high compared with the EAG 

dose-response curves (Visser, 1979a), the latter possibility does 

not seem very likely. 

Concentration dependency of mixture interaction in receptor 

cells, has been described by Johnston et al. (1985) for some 

types of chemoreceptors in lobsters. These receptors showed 

synergy when mixtures were applied at low test concentrations, 

and suppression at high test concentrations. 

Nevertheless, in contrast to the assumption made earlier that 

V A/^' B = ^A/^B' the concentration shift may have changed VA anc* 

V>B in a dissimilar way. Since suppression may provide receptors 

with an additional buffer against small changes in the ratio of 

VA and VB, as is discussed later, the response levels of 
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specialized receptors then would be less influenced by 

concentration changes. This effect could have contributed to the 

observed correlation in Figure 3. 

QUALITY BUFFERED RESPONSES 

According to De Jong & Visser (1988), the response level in 

narrowly tuned receptors depends on odour quality. The chemical 

composition of a food odour, however, is not always exactly the 

same, e.g. due to differences in age of the food sources. 

Although the odour compositions of young and old potato plants 

differ in their ratios of components (Visser, 1979b), both odours 

are attractive to Colorado potato beetles (Visser, 1976). This 

indicates that some tolerance exists in the mechanism of odour 

quality coding. Potato leaf odour, however, loses its 

attractiveness to Colorado potato beetles when small quantities 

of its component odours are added artificially (Visser & Avé 

1978; De Jong & Visser, unpubl.), which demonstrates that this 

tolerance is limited. Nevertheless, a certain buffer capacity in 

the perception of quality might enable an organism to distinguish 

between biological important signals and background noise in 

olfaction. 

Fig. 4 illustrates for both the vector model (Fig. 4A) and the 

U model (Fig. 4B), the change in response level VM o f a n 

olfactory receptor to a stimulus M when stimulus C is added. 

Stimulus M alone elicits a response level VMo. The response 

levels elicited by stimulus C (4>c) and combinations of stimuli M 

and C (^M), are expressed relatively to VMO- T n e relation between 

^M and Vc i-s given for several angles between M and C. Simple 

addition of the response levels ^MO anc* ̂ C occurs at a = 0° with 

the vector model and at a = 90° with the U model. The response 

intensity V"M0
 c a n b e suppressed by stimulus C at high a-values. 

At a = 180°, for example, there can be a severe suppression of 

^M o. Cases where the response to a mixture is stronger than 

predicted from adding responses to the single components are only 

included in the U model and depend on the a-value (0°<a<90°). 

Both models show that within a certain range ^M c a n b e relatively 

unaffected on addition of stimulus C. With the vector model at a 
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Fig. 4 Response l eve l ^ of a r eceptor a f t e r add i t ion of a s t imulus C (with 
response l eve l I/>Q) to a s t imulus M with a response l e ve l V"M0-

 T ^ e r e l a t i ° n 

between ^ and ipç i s given for s evera l angles between C and M in the vec tor 
model (A) and the U model (B). See t ex t for fu r ther exp lana t ion . 

= 90°, for i ns tance , addi t ion of s t imulus C with a r e l a t i v e l y 
small response l eve l ^c does not a f fec t VMO s i gn i f i c an t l y . The 
capaci ty of t h i s buffer i s in both models determined by the 
p a r t i c u l a r angle between M and C, and by the r a t i o of response 
i n t e n s i t i e s ^c and VM0- Suppression, t he re fo re , in theory 
provides receptor responses with a buffer for some v a r i a t i on s in 
s t imulus qua l i t y . 
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CHAPTER 5 . EFFECTS OF FEEDING EXPERIENCE ON HOST ODOUR PERCEPTION 

I N THE COLORADO POTATO BEETLE 

R. DE JONG, J . H . VISSER, E .A . VAN STRIEN & C.M. NIJHOF 

Effects of feeding experience on o l f ac to ry o r i e n t a t i o n of the Colorado 
po ta to b e e t l e , Lept ino tarsa decemlineata Say, towards d i f f e r en t p l an t odours 
were s tud ied us ing a locomotion compensator in f ront of a wind tunne l . Non-
experienced b e e t l e s a re a t t r a c t e d s o l e ly by the odour of po ta to p l a n t s . Potato 
p l an t odour i s a t t r a c t i v e to the b e e t l e s r ega rd less of t h e i r feeding 
exper ience . Upwind o r i e n t a t i on towards the odour of b i t t e r swee t and tomato 
p l an t s i s not s i g n i f i c a n t l y enhanced by a feeding experience on these p l a n t s . 
The odour of b i t t e r swee t p l an t s however, i s a t t r a c t i v e to b e e t l e s with 
experience on tomato p l a n t s . Electroantennogram recordings demonstrate t h a t 
feeding experience a f f ec t s responses of o l fac to ry r ecep to r s in a q u an t i t a t i v e 
and q u a l i t a t i v e way. This p l a s t i c i t y in r eceptor responses may be p a r t l y 
r e spons ib l e , in add i t ion to the c en t r a l nervous system, for modif icat ions in 
the o l f ac to ry o r i e n t a t i on of the Colorado po ta to b e e t l e . 

The Colorado potato b e e t l e , Lept inotarsa decemlineata Say, has 
a l imi ted range of host p l an t s , a l l of which are solanaceous 
spec ies . The b ee t l e was o r i g i na l l y found in the eas te rn p a r t of 
the United S t a t e s where i t fed on buffalo bur, Solanum rostratum. 
Nowadays, the b ee t l e i s a s e r ious pes t of the United S t a t e s ' 
po ta to and tomato c rops. The bee t l e has a l so invaded con t inen ta l 
Europe where i t s most important host p l an t i s po t a to . 

Bongers (1970) conducted experiments t o t e s t the s u i t a b i l i t y 
of 5 d i f f e r en t Solanum species as hosts for Colorado po ta to 
b ee t l e s from the Wageningen laboratory stock c u l t u r e . 
B i t te rsweet , Solanum dulcamara. proved t o be a s u i t ab l e 
foodplant, although on t h i s p l an t species t he b e e t l e s ' mor ta l i ty 
was higher than on the bes t hos t , po ta to , Solanum tuberosum. On 
tomato p l a n t s , Lycopersicon esculentum. t he re was considerable 
mor t a l i t y , but s t i l l could be used as a food p l an t . The black 
n ight shade, Solanum nigrum, and the woolly n ight shade, Solanum 
luteum. were unsui tab le as h o s t s . 

S tudies on behavioural responses of Colorado po ta to b ee t l e s 
showed t h a t t he b ee t l e s can d i s t ingu i sh between odour of a host 
p l an t and of non-host p l an t s (Visser & Nielsen, 1977). Odour of 
po ta to p l an t s e l i c i t s upwind walking behaviour in the b ee t l e 
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(Visser, 1976; Visser & Nielsen, 1977; Thiery & Visser, 1986). 

The ratios of 'green odour' components in leaf odours play a key 

role in the beetle's olfactory discrimination (Visser & Avé, 

1978). 

Visser (1979) and Ma & Visser (1978) demonstrated that the 

Colorado potato beetle's antennal receptor system is sensitively 

tuned to the perception of green odour components. More detailed 

studies on the beetle's mechanism of olfactory coding have been 

conducted by De Jong & Visser (1988a and b). They recorded 

neuronal responses at the receptor level and at the deutocerebral 

level to stimulation of the antenna with green odour components. 

Visser & Thiery (1986) demonstrated that prior feeding 

experience on potato leaves enhances the upwind responses of 

Colorado potato beetles towards potato plant odour. The 

underlying mechanism of this phenomenon remained unknown, but it 

indicates that the beetle's response to a host odour is not 

fixed. 

EFFECTS OF FEEDING EXPERIENCE ON ORIENTATION 

It has been demonstrated for different species that adult 

insects are able to modify their responses to certain odour 

stimuli as a result of experience. Non-experienced females of the 

parasitoid Asobara rufescens. for example, are not responding to 

the odour of yeast. After experience with host larvae feeding in 

yeast, however, these wasps are attracted by yeast odour (Vet & 

Van Opzeeland, 1984). The present study was undertaken to see 

whether the orientation behaviour of Colorado potato beetles 

towards different plant odours is influenced by feeding 

experience. 

Newly-emerged female beetles were collected from the 

laboratory stock culture (reared under 10 h photophase), and kept 

isolated in petri dishes. Prior to the experiments, 1 group of 

beetles was starved for at least 12 h (non-experienced beetles), 

while the other beetles were fed for 4 h on 1 of 3 different food 

plants before being starved for at least 12 h. The plants used as 

food plants were: potato, bittersweet and tomato. Behavioural 

responses of the beetles to plant odours were studied using a 
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Table 1. Effects of feeding experience on the orientation responses of female 
Colorado potato beetles to wind and wind carrying plant odour. Upwind 
responses expressed as the quotient of upwind displacement and the total 
length of the walking track; data represent group means. 

Stimuli Non-experienced 
Beetles 

Beetles experienced on 

Potato Bittersweet Tomato 

Wind 
Wind + Potato odour 

Wind 
Wind + Bittersweet odour 

Wind 
Wind + Tomato odour 

0.671 a 
0.793 b 
(N=40)2 

0.563 a 
0.670 a 
(N-42) 

0.699 a 
0.653 a 
(N=40) 

1 0.613 a 
0.768 b 
(N=39) 

0.469 a 
0.652 a 
(N=39) 

0.623 a 
0.608 a 
(N=40) 

0.595 a 
0.809 b 
(N=42) 

0.596 a 
0.671 a 
(N=41) 

0.662 a 
0.659 a 
(N=40) 

0.592 a 
0.743 b 
(N-39) 

0.478 a 
0.700 b 
(N-41) 

0.523 a 
0.534 a 
(N-40) 

Data were compared in each p a i r of s t imul i and d i f f e r en t l e t t e r s i nd i ca t e 
s t a t i s t i c a l d i f fe rences a t P < 0.02 ( 2 - t a i l e d , Wilcoxon matched-pairs 
s igned-ranks t e s t ; S iege l , 1956). 
^ Groups of b e e t l e s were t e s t ed for only 1 p a i r of s t imu l i ; N i s number of 
b e e t l e s per group. 

locomotion compensator in f ront of a wind tunnel (Visser, 1976; 
Thiery & Visser , 1986). In t h i s way, walking t r acks were recorded 
for 4 min each, and responses of b ee t l e s t o wind 'were compared 
with responses t o wind carrying 1 t e s t p l an t odour. The t e s t 
p l a n t s , i . e . 6 po ta to , 6 b i t t e r swee t or 8-9 tomato p l a n t s , were 
s tanding in t he dark upwind sec t ion of the wind t unne l . The a i r 
flow leaving the wind tunnel was s e t a t 80 cm/s (4320 1/min). The 
quot ient of upwind displacement and the t o t a l length of the 
walking t r ack was used as the parameter t o descr ibe the i n t en s i t y 
of the b e e t l e s ' upwind response. 

The r e s u l t s presented in Table 1 show t h a t non-experienced 
b ee t l e s are a t t r a c t ed so le ly by the odour of po ta to p l a n t s . For 
these b e e t l e s , the odour of b i t t e r swee t p l an t s or tomato p l an t s 
did not e l i c i t a response d i f f e ren t from the response to wind. 
The r e s u l t s i nd ica te fur ther t h a t feeding experience did not 
change dramat ical ly the innate odour preference of Colorado 
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potato beetles: potato plant odour was attractive to the beetles, 

regardless of their feeding experience. Feeding experience on 

bittersweet or tomato plants, did not significantly enhance the 

upwind response of the beetles towards the odour of the plant 

species with which they were experienced. However, feeding 

experience on tomato plants did influence the beetle's 

orientation behaviour. The odour of bittersweet plants was 

attractive to beetles with experience on tomato plants and not to 

beetles with experience on other plants (Table 1). 

The results of the experiments conducted by Visser & Thiery 

(1986) show that potato plant odour recognition is enhanced by a 

2 h experience on potato leaves. Experience on other plants, 

then, may adjust the innate odour preference in the direction of 

that plant odour. The data in Table 1 show that this possible 

change of preference does not include attraction towards odour 

emanating from the plants on which the beetles obtained prior 

feeding experience. 

Visser & Nielsen (1977) analyzed behavioural responses of 

Colorado potato beetles on a walking plate to odour stimuli, by 

the division of walking tracks into 5 categories (criterion A) 

and by measuring the time required for the beetles to reach the 

upwind edge of the walking plate (criterion B). They found, using 

criterion A, that beetles fed with potato for 48 h and 

subsequently starved for 24 h showed similar responses to potato 

odour and bittersweet odour. With criterion B, however, responses 

were significantly different. Beetles fed on bittersweet 

responded to both odours equally by both criteria, indicating an 

effect of feeding experience on the beetle's behaviour. In our 

experiment, we did not observe significant differences between 

responses to wind and to wind carrying odour of bittersweet 

plants in beetles fed with potato or bittersweet (Table 1). The 

discrepancy between the results of Visser & Nielsen (1977) and 

our results may be due to certain limitations in the recording of 

behavioural responses on a walking plate. 

According to Bongers (1970), the potato plant is the most 

suitable host for the beetles, followed by bittersweet. Tomato is 

a far less suitable host. For the beetles, therefore, bittersweet 

may be more similar to potato than tomato, which also may be 
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Table 2. Orientation responses of non-experienced female Colorado potato 
beetles to wind and wind carrying plant odour. Upwind responses expressed as 
the quotient of upwind displacement and the total length of the walking track; 
data represent group means. 

Stimuli Non-experienced Beetles1 

Wind 
Wind + Bittersweet odour 
Wind + Tomato odour 

0.563 ab2 

0.670 b 
0.454 a 

One group of 42 beetles was tested. 
' Different letters indicate statistical differences at P < 0.02 (2-tailed, 
Wilcoxon matched-pairs signed-ranks test; Siegel, 1956). 

reflected in the respective plant odour qualities. Non-

experienced beetles indeed show a significant more intense upwind 

response to the odour of bittersweet plants than to the odour of 

tomato plants (Table 2). Assuming that the beetle's innate odour 

preference shifts towards the odour of the experienced plant, the 

experience on tomato, then, could change the beetle's preference 

more than the experience on bittersweet. When these changes are 

in the same direction, this may explain why the odour of 

bittersweet plants is attractive to beetles with experience on 

tomato plants (Table 1). 

EFFECTS OF FEEDING EXPERIENCE ON OLFACTORY RECEPTORS 

It is generally assumed that behavioural modifications are 

controlled by the central nervous system. Erber et al. (1980) 

demonstrated that in honey bees memory formation for odours can 

be disrupted by cooling the antennal lobes and the mushroom 

bodies in the protocerebrum. Coss et al. (1980) described changes-

in the morphology of interneurones in these mushroom bodies, 

which were associated with cumulative nursing and foraging 

experiences of the bees. 

There is, nevertheless, also evidence that the sensitivity of 

insect chemoreceptors is flexible. Food quantity and quality can 

affect the sensitivity of peripheral chemoreceptors involved in 

feeding behaviour (Blaney et al., 1986). Response levels in 
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Table 3. Correlations between relative EAGs of left and right antennae from 
the same newly-emerged beetles to green odour components. Data represent 
Spearman rank correlation coefficient rs and probability P (2-tailed, non-
parametric Spearman rank correlation test; Siegel, 1956). 

Compound1 Females^ Males^ Total 

cis-3-Hexen-l-ol 

trans - 2 -Hexenal 

P - 0.881 

P = 0.130 

cis-3-Hexenyl acetate rs = 0.68 
P - 0.029 

trans-2-Hexen-l-ol rs - 0.60 
P = 0.019 

rs = 0.02 
P = 0.928 

rs - 0.93 
P - 0.001 

rs - 0.73 
P - 0.017 

rs - -0.12 
P = 0.764 

rs = 0.13 
P = 0.578 

rs - 0.76 
P = 0.001 

rs - 0.71 
P = 0.001 

rs = 0.43 
P - 0.063 

1-Hexanol rs = 0.95 
P = 0.001 0.233 

rs = 0.70 
P = 0.001 

Compounds were at a dilution in paraffin oil of lO"1 (v/v), except 
standard which is cis-3-hexen-l-ol at a dilution of 10"-' (v/v). 

Groups of 10 female and 10 male beetles were tested. 

for the 

maxillary taste sensilla in Manduca sexta caterpillars, for 

example, depend on the diet (Schoonhoven, 1967 and 1969; Stadler 

& Hanson, 1976), and this may influence host discrimination 

(Schoonhoven, 1969; Stadler & Hanson, 1976). Little is known 

about the mechanism underlying this type of receptor modulation. 

It has been suggested that receptor sensitivity is controlled by 

one or several hormones, through effects on the ionic composition 

of the dendritic liquor, or by peripheral regulation of the spike 

generating process (Blaney et al., 1986). In order to examine 

whether the responses of olfactory receptors in the Colorado 

potato beetle are influenced by feeding experience, the following 

experiments were conducted. 

Electroantennogram (EAG) recordings were made from newly-

emerged female beetles which were collected from the laboratory 

stock culture (reared under 18 h photophase). The EAG method has 

been described by Visser (1979). We modified the method of 

stimulus delivery by using a 2 s stimulation time (1 ml/s). EAGs 
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of different antennae from 1 beetle tend to correlate to their 

relative sensitivities (Table 3). After the determination of EAG 

responses of 1 antenna of each beetle to a set of test chemicals, 

the beetles were numbered and kept isolated. For 2 days, these 

beetles were either starved, fed with leaves of 1 of the 

following plant species: potato, bittersweet, or tomato. 

Following this, EAGs of the beetles' other antennae were 

recorded. The test chemicals, i.e. cis-3-hexen-l-ol, trans-2-

hexen-1-ol, cis-2-hexen-l-ol, trans-3-hexen-l-ol, cis-3-hexenyl 

acetate, trans-2-hexenal, hexanal, 1-hexanol, 2-hexanol, 3-

hexanol and l-octen-3-ol (each at a dilution in paraffin oil of 

10- 1, v/v), are known to give clear EAG responses (Visser, 1979). 

These compounds are distributed in various plant species 

including solanaceous species, except for cis-2-hexen-l-ol, 

trans-3-hexen-l-ol, 2-hexanol and 3-hexanol, which are geometric 

isomers of plant compounds. The response to cis-3-hexen-l-ol was 

used as the standard response (equals 100%). 

Figure 1 shows the relative EAG spectra of the newly emerged 

female beetles. The effects of the different treatments on 

beetles• EAG responses are represented in Figure 2. The 

sensitivities of antennae are affected by prior feeding 

experience. The absolute EAG value for the standard was 

significantly increased for beetles fed on potato and on 

bittersweet. These sensitivity changes affect the responses to 

the other test chemicals in the same direction but in a 

disproportionate way (Fig. 2). Beetles which were starved showed 

a decrease in their relative EAG responses to trans-2-hexen-l-ol, 

cis-2-hexen-l-ol, hexanal, 1-hexanol, 2-hexanol and 3-hexanol, 

and an increase to cis-3-hexenyl acetate and trans-2-hexenal. 

Feeding experience on potato induced a decrease in relative EAG 

responses to cis-3-hexenyl acetate, trans-2-hexenal, hexenal, 2-

hexanol and 3-hexanol. Beetles fed with bittersweet and tomato 

showed decreased relative EAG responses to hexanal, 1-hexanol, 2-

hexanol and 3-hexanol, and to trans-3-hexen-l-ol, 2-hexanol and 

3-hexanol, respectively. 

Receptor sensitivities in a number of insect species have 

shown a direct relationship to age and feeding history (Rees, 

1970; Roelofs & Comeau, 1971; Davis & Takahashi, 1980). The 
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Fig. 1 Relative EAG spectra of 
newly-emerged non-experienced female 
Colorado potato beetles (N = 161). 
Chemicals were at a dilution of 10"L 

in paraffin oil (v/v). 
cis-3-Hexen-l-ol was used as the 
standard. Bars at top of columns 
indicate 99%-confidence intervals. 

responses of receptors can change at varying amounts of ingested 

food (Bernays & Chapman, 1972) as well as at differences in food 

quality (Schoonhoven, 1969). The observed changes in sensitivity 

in the Colorado potato beetle's olfactory receptors may be due to 

a combination of these factors. Our results demonstrate that 

relative EAG spectra change in all 4 groups of beetles and in 

each group differently (Fig. 2). The beetle's feeding history, 

therefore, affects the responses of the population of olfactory 

receptors both qualitatively and quantitatively. 

A few hours feeding experience can induce a change in the 

Colorado potato beetle's behavioural response (see above and 

Visser & Thiery, 1986). The observed effects on the olfactory 

receptors in the beetles were measured after a 2-day starvation 

period or a 2-day feeding experience, and demonstrate a certain 

plasticity in the antennal receptor system. It is unclear 

however, whether such peripheral changes can occur within a few 

hours. Moreover, it is unknown whether such changes are important 

for the modification of the beetle's behavioural response. Work 

on other insect species, however, indicates that even relatively 

small changes in receptor sensitivities affect behavioural 

performance significantly (Blaney et al., 1986). Changes at the 

peripheral level induced by feeding experience, therefore, may be 

partly responsible, in addition to the central nervous system, 

for modifications in the olfactory orientation of the Colorado 

potato beetle. 
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f emale Co lo rado p o t a t o b e e t l e s . S o l i d l i n e s r e p r e s e n t c h ange s i n mean r e l a t i v e 
EAG v a l u e s , b r o k e n l i n e s r e p r e s e n t c hanges i n mean a b s o l u t e EAG v a l u e s . I , 
s t a r v e d (N = 4 0 ) ; I I , f ed w i t h p o t a t o l e a v e s (N - 4 1 ) ; I I I , f e d w i t h 
b i t t e r s w e e t l e a v e s (N - 3 9 ) ; IV, f e d w i t h t omato l e a v e s (N - 4 1 ) . 
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t e s t ; S i e g e l , 1 956 ) . S t a t i s t i c a l d i f f e r e n c e s b e tween a b s o l u t e EAG v a l u e s of 
t h e s t a n d a r d b e f o r e and a f t e r t r e a t m e n t s a t P < 0 . 0 5 ( 2 - t a i l e d ) a r e i n d i c a t e d 
by +. 
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SAMENVATTING 

Dit proefschrift beschrijft de wijze waarop de Coloradokever 

een waardplantgeur kan herkennen. De geur van een waardplant wekt 

bij de Coloradokever een windopwaarts gericht loopgedrag op. 

Essentieel hierbij zijn de verhoudingen tussen een aantal 

algemene plantegeur-komponenten die samen de zogenaamde 'groene 

geur' van een plant vormen (Hoofdstuk 1). 

Geurreceptoren in de antenne van de Coloradokever vertonen 

graduele verschillen in de mate van specialisatie op bepaalde 

groene geurkomponenten. De receptorrespons op een geurkomponent 

kan onderdrukt worden door de aanwezigheid van een tweede 

geurkomponent (Hoofdstuk 3). Dit fenomeen, suppressie genaamd, 

manifesteert zich in een mate die eerder karakteristiek is voor 

een receptor dan voor bepaalde kombinaties van geurkomponenten 

(Hoofdstuk 4). Doordat suppressie sterker optreedt naarmate een 

receptor meer gespecialiseerd is, ontstaan er binnen de 

receptorpopulatie zekere verschillen in gevoeligheid voor de 

hoeveelheid en de samenstelling van een groene geur (Hoofdstukken 

3 en 4) . 

De scheiding van informatie betreffende geurkwantiteit en -

kwaliteit wordt in de antennale lob van de hersenen verder 

aangescherpt. Met deze twee informatiekanalen kan het centraal 

zenuwstelsel van de kever op een eenvoudige wijze de 

waardplantgeur köderen (Hoofdstuk 2; Fig.l). 

Een voedingservaring kan tot op zekere hoogte de waardering 

van de Coloradokever voor plantegeuren beïnvloeden. Dit 

verschijnsel is mogelijk voor een deel te verklaren uit een 

veranderde receptorgevoeligheid (Hoofdstuk 5). 
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DEUTOCEREBRUM 

Fig. 1 Schema van het hypothetische mechanisme waarmee een waardplantgeur 
door de Coloradokever wordt herkend. Olfactorische informatie wordt verwerkt 
via de kanalen A en B, die onafhankelijk van elkaar wel (1) of geen (0) 
respons kunnen vertonen. Er zijn 2 groepen neuronen in de antennale lob 
(deutocerebrum) van de hersenen betrokken bij het verwerken van olfactorische 
informatie: een groep gespecialiseerde neuronen (A) die geen respons vertoont 
op een stimulatie met de geur van een aardappelloof extract, en een andere 
groep niet-gespecialiseerde neuronen (B) die daarop wel reageert. De situatie 
waarbij alleen kanaal B reageert, wordt verondersteld karakteristiek te zijn 
voor een stimulatie met waardplantgeur (Hoofdstuk 2). Onderzoek aan de 
geurreceptoren in de antenne wijst erop dat er op receptornivo al een begin 
wordt gemaakt met de informatiescheiding via de kanalen A en B (Hoofdstuk 3). 
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