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Voor mijn ouders, 
Alfred, Dian, Ella en Mike. 



Voorwoord 

Eindelijk ben ik dan aangeland bij het laatste deel van mijn proefschrift. Een hele 

opluchting, ook voor allen die meegewerkt hebben aan de totstandkoming van dit 

geheel en vooral ook voor het ' thuisfront'. Het thuisfront, Alfred, Dian, Ella en Mike, 

zijn dan ook de eersten die ik wil bedanken voor hun steun (vooral van Alfred) en zelfs 

begrip (ook van Alfred) en in ieder geval veel afleiding (door alle vier). Deze afleiding 

heeft natuurlijk wel wat vertragend gewerkt op de afronding van dit boekje, zodat er 

steeds voorzichtiger werd gevraagd "Hoe is't met het boekje?" Het vorderde gestaag, 

en inderdaad, het is afgekomen. 

Toen ik in 1986 bij Veehouderij 'wat onderzoek ging doen aan de selectie-lijnen' was 

er geen sprake van een promotie-onderzoek. Echter, toen mijn eerste part-time contract 

na ruim 3 jaar afliep, zag Mevr. dr. ir. A .J . van der Zijpp, wel mogelijkheden om er op te 

promoveren. Nog een jaartje full-time onderzoek en dan moest het kunnen. Beste Akke, 

dat jaartje onderzoek is wel iets uitgelopen en full-time is het nooit geworden. Ik weet 

dat je eraan getwijfeld hebt of dit boekje er ooit wel zou komen en je was niet de enige. 

Zonder jouw hulp was het er ook nooit gekomen. De begeleiding die ik van je kreeg, 

met name tijdens het schrijven van mijn eerste artikelen zijn zeer belangrijk geweest 

voor mijn 'wetenschappelijke vorming'. Hiervoor, maar ook voor het voorwerk en het 

denkwerk dat je verricht hebt en de sturende discussies ben ik je bijzonder erkentelijk. 

Het is jammer dat je waarschijnlijk niet bij de verdediging van dit proefschrift aanwezig 

zal zijn, omdat je nieuwe baan in Ethiopië en Kenya dit onmogelijk maakt. Ik hoop 

echter dat je dit proefschrift met enige voldoening zal lezen. 

Toen eenmaal het idee van 'promoveren op de selectie-lijnen' geboren was, bleek 

een promotor snel gevonden: Professor dr. J.P.T.M. Noordhuizen. Beste Jos, onze 

gesprekken vonden zelden na afspraak plaats. De vragende wenkbrauw als je mij tegen 

kwam achter de pc op het secretariaat van Veehouderij, zorgde er meestal wel voor dat 

daar het een en ander betreffende het proefschrift, f inanciën, projectvoorstellen etc. 

besproken werd. Aan het einde van mijn pc-dag kon je dan meestal weer wat leesvoer 

in je postvak vinden. De snelheid waarmee je dat leesvoer corrigeerde en de 

berustendheid waarmee je de tijd zag verstrijken zonder dat de afronding van het 

proefschrift in zicht kwam bewonder ik. Maar ik ben blij dat je vertrouwen hield in een 

goede afloop. 

In Dr. ir. H.K. Parmentier, mijn co-promotor, had ik een zeer goede begeleider tijdens 

het laatste deel van mijn promotie-onderzoek en de schrijffase van dit boekje. Je 

begrijpelijke uitleg van de immunologische gebeurtenissen binnen een dier en je 

nieuwsgierigheid naar het 'hoe en wat in de kip' zijn kenmerken van de ware 

universitaire docent. Voor mijn onderzoek was je vooral belangrijk als praatpaal (of was 

het andersom?) en als iemand die verstand heeft van Immunologie. Henk, bedankt. 

Gelukkig was Henk niet de enige immunoloog die invloed heeft gehad op mijn 

schrijven. Ook dr. P. Joling heeft mijn immunologisch denken beïnvloed. Beste Piet, de 

discussies over dieren-immunologie en statistische hoofd- dan wel bijzaken waren 

zowel leerzaam als vermakelijk, hetgeen mijn vertrouwen op een goede afronding van 

het proefschrift ten goede kwam. Ik hoop dat wi j in de toekomst dergelijke discussies 



nog vaak zullen voeren. 

Mike Nieuwland was de enige vaste factor in mijn onderzoek. Moest er iets gebeuren 

met de kippen, Mike was er (na overleg was er altijd een ti jdstip dat ons beide 

ui tkwam). Je gulle lach is kenmerkend voor de goede sfeer op het lab. Deze sfeer was 

mogelijk een van de meest opbouwende factoren voor dit proefschrift. Beste Mike, ik 

wil jou graag bedanken omdat je me letterlijk met (immunologische) raad en daad hebt 

bijgestaan. Ik ben dan ook blij dat jij nu mijn paranimf bent. 

Er zijn heel wat mensen die bijgedragen hebben aan dit proefschrift. Daarvan zal ik er 

hier slechts een paar noemen. Ineke Puls, mijn kamergenoot op Zodiac, heeft als 

vertaler of thesaurus, dierenarts (praktisch zowel als theoretisch), koffiehaler (voor ons 

of bij ons) en gesprekspartner over de meest uiteenlopende onderwerpen een veelzijdige 

invloed op dit proefschrift gehad. Zonder de hulp van Nanette van Hapert en Truus 

Gijsbertse (de bewoners van het secretariaat) had dit proefschrift nog heel lang op zich 

laten wachten, want er zijn heel wat dingen die zij wel konden en ik niet (met name op 

het gebied van printers, papier en f loppy's). Naast collega's waren er ook nog 

studenten (met inbegrip van stagiaires) die een zeker stempel op dit proefschrift hebben 

gedrukt. Dankzij (soms ook ondanks) hun veelal praktische hulp bestaat dit proefschrift 

uit 8 hoofdstukken. Een van de studenten, Natasja Gianotten, wi l ik hier met name 

noemen. Met veel enthousiasme heeft zij zich op het onderzoek geworpen, uit de co­

auteurschappen mag wel blijken dat dit zeer gewaardeerd is. 

Het is natuurlijk niet zo dat alleen (ex-)medewerkers van de vakgroep Veehouderij 

positieve bijdragen hebben geleverd aan dit proefschrift. De discussies met Suzan 

Jeurissen en Guus Koch (ID-DLO) over 'kippen-immunologie' en onze lijnen waren zeer 

nutt ig. Tijdens deze discussies heb ik heel wat nieuwe ideeën over het bestuderen van 

' immunologische pathways' opgedaan en/of verworpen. Ook van mogelijke andere 

interpretaties van mijn onderzoeksresultaten heb ik dankbaar gebruik gemaakt. 

Om op de hoogte te blijven van relevant werk door anderen, heb ik heel wat 

bezoekjes aan de bibliotheek gebracht. Daar wist Annemarie Zijlmans altijd dat ene 

uiterst belangrijke artikel ergens vandaan te halen. En natuurlijk waren de ritjes in het 

karretje ook onvergetelijk. 

Op deze plaats wil ik ook nog even mijn 'onbezoldigd promovenda-schap' onder de 

aandacht brengen. Hoewel dit voor de promovenda niet 'gratis promoveren' betekent, 

heeft het mij wel recht op faciliteiten en steun gegeven die ik bij de afronding van het 

proefschrift goed kon gebruiken. 

Dan zij er nog twee mensen die ik zeker niet wil vergeten: Astrid Bon en Lian 

Onderstal. Zij hebben onze groeiende kinderschaar liefdevol verzorgd op de tijdstippen 

dat hun beide ouders aan het (al dan niet betaalde) arbeidsproces deelnamen. Het 

plezier waarmee de kinderen naar hun oppas gingen, en de flexibiliteit van Lian 

betreffende oppastijden, hebben 'het werken' heel wat makkelijker gemaakt. 

Nu rest mij slechts nog te vermelden dat het LEB-fonds een financiële bijdrage heeft 

geleverd aan de drukkosten van dit proefschrift. 
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Chapter 1 3 

INTRODUCTION 

The production of poultry meat and eggs has been intensified further in the last 

decennia, not in the least because of decreasing margins between costs and income. 

This has resulted in a high animal density, which has enlarged the risks of infectious 

diseases. Unfortunately, the currently used measures like increased hygiene and the 

programs for vaccination, medication and eradication, are not sufficient to prevent 

outbreaks of diseases, considering the cases of Marek's disease (MD) and Newcastle 

disease (NCD) in 1992 in the Netherlands. Attempts to improve genetic resistance to 

particular pathogens seem to be successful. However, it seems economically more 

favourable to simultaneously enhance the resistance to all major pathogens to reach 

'general disease resistance'. 

In the view of a producer, an animal is considered resistant to a particular disease 

when an invading pathogen has no negative effect on the production (i.e. growth, 

eggs, etc.). The immune system plays an important role in the resistance to infectious 

diseases. And if one aims for improved general disease resistance, it is important to 

understand the genetic aspects of immune responsiveness. These genetics can be 

studied by using inbred strains with known immune deficiencies or using so-called 

'marker genes', which are easy to detect (in contrast to 'resistance') and inherit in the 

same fashion as the resistance under selection (e.g. MHC). Another approach is the use 

of lines selected for high or low immune responsiveness. The advantage of the latter is 

that the phenotypic result (high or low immune responsiveness) is caused by 

accumulation of genes located at independent segregating loci and thus extremes of 

the naturally occurring populations can be studied (Mouton et al., 1988). 

Several research groups have selected lines of animals for immune responsiveness to 

investigate the possibilities of genetically increased disease resistance. These lines are 

widely used to study the genes regulating immune responses. But also the immune 

system itself is studied, as selection will alter the cascade of events that occur at the 

cell level. This cascade will finally result in the response selected for. Although much 

progress has been achieved in recent years, knowledge of how the immune system 

protects the body against pathogens is still elementary. The selection lines can be a 

great help in understanding how particular pathogens and the immune system can 

interact with each other. During selection, the alleles responsible for the response under 

selection will become fixed in the line. As a consequence of these fixed alleles, the 

selection line has only a limited repertoire of possible reactions to an antigen. These 

reactions (e.g. high or low antibody titer) will be controlled by several genes, all 

controlling a part of the cascade of cell reactions triggered by the entering of the 

antigen. When the complete cascade is disentangled in a selection line, one knows to a 

large extent how the immune system of this selection line will react on the pathogen. 
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as was demonstrated in selection lines of mice (Biozzi et al., , 1984). Comparison of 

mortality and morbidity between two divergently selected lines, which are 

immunologically characterized, will give clues on how the immune system can protect 

the organism against the pathogen it is challenged with. 

Selection for either high or low humoral immune response after immunization with 

sheep red blood cells (SRBC) has effects on cell interactions within the immune system. 

In this thesis, the effects are studied. SRBC are non-pathogenic antigens and because 

of their multiple antigenic sites, it is expected that a wide range of immune cells is 

stimulated after immunization with SRBC. Because SRBC are naturally derived, also 

parallels with determinants on pathogens might be expected. Therefore, effects of 

selection on disease resistance might be expected. 

The immune system of chickens and mammals are considerably homologous, 

although, there are some differences. In mammals as well as in aves, the body has 

developed sophisticated defense systems, which reactions depend specifically on the 

kind of antigen and on the route of entrance. The strategies followed by this antigen-

specific immune system to make the pathogen harmless are optimized and stored in so 

called 'memory cells'. This memory results in a faster and also more specific reaction at 

the next contact with the same antigen. In contrast, the innate immune system, or 

antigen non-specific immune system, has no memory and reacts, when triggered, 

always in the same fashion. However, often the pathogen is prevented from invading 

the body by the antigen non-specific system and thus a response of the antigen 

specific system is not necessary. The specific immune system traditionally, can be 

divided in two compartments, the humoral and the cellular immune response. However, 

both these specific responses work together to protect the body, although usually one 

of them is more profound. 

A brief summary of the avian immune system, the avian Major Histocompatibility 

Complex (MHC) and the cell interactions in the humoral response will be given in the 

next sections. This is followed by a review considering the effects of genetic selection 

for immune responsiveness, including the selection for disease resistance to particular 

pathogens in chickens. Special attention will be given to the differences in the cell 

interactions used by the chicken lines, which are supposed to be the result of the 

selection conducted. In mice, a bidirectional selection experiment was started by Biozzi 

and associates in the 50's. Their lines selected for antibody response to SRBC, have 

been extensively studied and the results have given great impulses to the studies in 

other species. Therefore, results of the Biozzi mice are also included. 
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THE AVIAN IMMUNE SYSTEM 

The Antigen Non-specific Immune System 

An antigen can only be harmful for the body when it has circumvented the body's 

' f irst line of defence'. This defence is antigen non-specific, and therefore independent 

of the type of antigen trying to enter. The structure of the skin and the low pH of the 

stomach are examples of this system. When an antigen has managed to enter the 

body, other non-specific immune reactions are triggered. For instance, certain types of 

bacteria can be destructed by lytic enzymes (i.e. lysozyme, phosphatase) found in the 

body f luids, or by the products of the complement cascade. Virally infected cells 

produce interferons, which induce a state of viral resistance in uninfected cells. 

In the chicken, macrophages, heterophils and thrombocytes are phagocytic. This 

means they are able to internalize and destruct antigens intracellular^ in a non-specific 

manner. During inflammation, chemotactic factors are released by damaged cells. 

These factors attract the heterophils and monocytes circulating in the blood. The 

monocytes differentiate into phagocytic macrophages when they arrive in tissue and, 

therefore, they are important in the destruction of pathogens at infection sites. The 

lungs are protected from antigens entering wi th inhalation by roaming macrophages. 

The phagocytic activity is also important in tissues wi th a special function in the 

clearance of the body, like the liver and spleen. In chickens, the capacity of heterophils 

and macrophages to clear the body from antigens was found to be under genetic 

control (Qureshi etal., 1993; Puzzi e ra / . , 1990""). 

The Cellular Immune System 

Lymphocytes are the cells responsible for the specific immune system. As in 

mammals, precursor lymphocytes mature and differentiate in the thymus and are 

therefore called ' thymus derived lymphocytic cells' or, in short, T cells. These T cells 

mediate the cellular immune responses. The avian T cell development, recently 

reviewed by Chen et al. (1994), is found to be very similar to the mammalian system. 

All chicken T cells can be identified by the expression of the CD3 molecule on their 

surface (Chen et al., 1986; Char et al., 1990), which is associated w i th one T cell 

receptor (TCR) for signal transduction. In the chicken, three types of TCR can be found: 

TCR1, TCR2 and TCR3, originally named in accordance w i th the ontogenetic order 

observed. The TCR1 is of the yló type and the TCR2 and TCR3 are t w o subtypes of 

the alß receptors. T cells can also be characterized by the presence of the accessory 

molecules CD4 and CD8. CD4+ T cells function as helper cells in immune responses, 

while the CD8 + phenotype is either a cytotoxic or a suppressor cell. The tissue 

distribution and function of the TCR/CD3, CD4 and CD8 molecules are very similar to 

their mammalian counterparts (Cooper et al., 1991). However, the chicken has, 



General Introduction 

compared to mammals, a relative large subset of yl6 TCR1 lymphocytes in circulation. 

TCR1 cells are found mostly in the splenic red pulp and intestinal epithelial area. 

Approximately two-third of these TCR1 cells express CD8 molecules on their surface 

(Bucy et al., 1988; Chen et al., 1988). The TCR1+CD8+ cells appear capable to 

suppress plasma cell-forming (Quere et al., 1990") and probably therefore, they are 

rarely found in the germinal centres of the spleen. TCR1 cells can exhibit cytotoxic 

activity (Chen et al., 1994), but lack the capacity to initiate Graft-versus-host (GVH) 

attack. This might be due to the lower association with the CD4 molecule, because 

GVH response appeared to depend more on CD4+ cells than on CD8+ cells. Also, the 

TCR1 cells show a low mitogen response in the absence of TCR2 and TCR3 cells 

(Arstila et al., 1993; Kasahara et al., 1993). This suggests that chicken yló cells 

depend on alß T cells for growth (Chen et al., 1994). 

TCR2 cells home to the periarteriolar lymphatic sheaths in the spleen, where they 

tend to form dense aggregates. Less TCR2 cells are present in the red pulp region, 

where mostly CD8+ cells are found regardless of their TCR type. In the intestines, 

TCR2 cells are located within the lamina propria, however, approximately 30 %, mainly 

CD8 + , can be found in the epithelial layer (Char et al., 1990). TCR2 cells proliferate to 

concanavalin A (ConA), phytohemagglutinin (PHA) and pokeweed mitogen (PWM) and 

are capable to initiate a GVH reaction, although the responses are found to differ 

between MHC class II alleles (Char et al., 1991). 

Like the TCR2 cells, TCR3 cells home in the periarteriolar sheaths of the spleen, 

where they tend to form large aggregates. But unlike TCR2 cells, it is often impossible 

to find TCR3 cells in the intestine (Char et al., 1990). According to Cooper et al. 

(1991), the in vitro mitogen response is similar to the response of TCR2 cells, but 

much higher than of TCR1 cells. 

The Humoral Immune System 

The humoral immune response is conducted by soluble proteins, called antibodies or 

immunoglobulins (Ig). An antibody is a tetramer consisting of two identical heavy (H) 

chains and two identical light (L) chains. Each chain consists of two principal regions: 

the variable (V) region and the constant (C) region. The V region of a H and a L chain 

forms the antigen binding site, whereas the C region, especially of the H chain has 

regulatory functions. The immunoglobulin structure resembles the Y, in which the arms 

of the Y are identical and each arm has the same antigen-binding site. As in mammals, 

there are genes coding for the C region and the genes coding for the variable parts. 

However, antibody diversity and thus the antigen-binding repertoire in poultry is 

reached differently from mammals (reviewed by Reynaud et al., 1987). Based on 

differences in the constant chain (Fe), Ig can be divided into classes. In the chicken, 

three classes are found and analogous to the mammalian system they are called IgG, 
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IgM, IgA, although only IgM resembles its mammalian counterpart. Moreover, because 

of differences in structure and characteristics, chicken IgG was initially called IgY, while 

the IgA-like found in chicken bile was also called IgB. There is evidence for the 

existence of chicken IgE and IgD (Chen era/., 1982; Faith and Clem, 1973). 

Antibody exhibits several functions in the defence of the body. It neutralizes the 

pathogenity of antigens, for instance by binding to the tissue-receptor of the antigen 

and thus preventing the antigen from attacking its target tissue. Antibody promotes 

phagocytosis by opsonisation, because also when antigen has bound to antibody, the 

constant region of antibodies (Fc) can bind to receptors (Fc-receptors) found on 

phagocytes. Phagocytosis of the antigen-antibody complex is greatly facilitated in this 

way. Furthermore, binding of antibodies to heterophils can trigger the release of 

cytotoxins by these cells, which results in extracellular killing of antigens (Antibody 

Dependent Cell Cytotoxicity). The classic complement cascade can also be started by 

binding of antigen to antibody. 

Antibodies are made when a special lymphocyte, the B cell, is activated and 

differentiates into a plasma cell, the actual producer of antibodies. B cells derive their 

name from the bursa of Fabricius. The function of the bursa in B cell development is 

comparable to that of the thymus in T cell development. However, the bursa is only 

found in birds and in mammals no single organ is found to have the same function. 

This central role in B cell development has been regarded to the bursa since 1956, 

when Glick and associates described the lack of antibody response in bursectomized 

chickens (Glick et al., 1956). However, birds bursectomized before the bursa starts to 

develop, are able to synthesize Ig (Jalkanen et al., 1983; Corbel et al., 1987). Despite 

the presence of Ig, properly bursectomized birds are not able to mount a specific 

immune response to many antigens (Ivanyi, 1975; Jalkanen et al., 1983; Corbel et al., 

1987). It is now believed that the bursal microenvironment is necessary for the 

activation of the so-called 'V-gene repertoire', the genes encoding for the V regions of 

the heavy and light chain of chicken Ig (Jalkanen et al., 1983) and thus determine the 

antigen binding site of the antibody. Therefore, the antibody repertoire is dependent on 

the bursa, but Ig gene rearrangement can occur at non-bursal sites. Further details on B 

cell development in the chicken can be found in the recent reviews of Paramithiotis and 

Ratcliffe (1994) and Masteller and Thompson (1994). 

Each mature B cell expresses surface Ig (slg), which serves as a receptor for antigen. 

Because each Ig has an unique binding site, it is restricted to only one antigenic 

determinant. For activation and maturation of B cells to Ig secreting plasma cells, the 

slg has to bind antigen. Luckily, the antigen has usually many antigenic determinants 

and can therefore trigger a response of several B cells. However, interaction with 

activated CD4+ T cells and presentation of an antigen fragment by specialized antigen 

presenting cells (APCs) is also necessary. The products of the MHC on the surface of 
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these cells have to match with the MHC of the B cells. Furthermore, all cells involved in 

the interaction can secrete soluble messenger proteins, so called 'cytokines'. To start 

differentiation and maturation of the B cell into an antibody forming plasma cell, the 

right profiles of cytokines have to be secreted by the APCs and T cells. 

The Avian MHC 

To trigger responses of immune cells, an APC has to present antigen(parts) 

associated with the products of the MHC genes to the immune competent cells. The 

MHC genes have a high polymorphism and many alleles per gene are known (Goto et 

al., 1988; Guillemot et al., 1986). The products of each allel differ and have a specific 

affinity for an antigenic determinant, which might mean that a specific allel might also 

favour a specific defence reaction. Each individual bird inherits a set of MHC alleles 

from both parents, resulting in a limited set of MHC-alleles. This set determines to a 

certain extent the specific immune responses. Below, the structure and function of the 

avian MHC is only briefly discussed, because recently reviews are published describing 

the molecular structure and the functions of the chicken Major Histocompatibility 

Complex (MHC) (Guillemot and Auffray, 1989; Dietert et al. 1991; Pinard et al., 

1993ab; Lunney and Grimm, 1994). 

In the chicken the MHC was first discovered as the blood group system B, hence the 

name ß-complex. As in mammals, the avian MHC comprises of Class I and Class II 

genes, called B-F and B-L, respectively. The chicken possesses also Class IV or B-G 

genes, of which no counterparts are found in mammals. On the other hand. Class III 

genes, which encode for complement components in mammals, have as yet, not been 

detected in the chicken MHC. In the chicken at least 30 B alleles have been defined 

(Briles et al., 1982; Dietert et al., 1991). So far, no recombinants between Class I and 

Class II genes have been found (Plachy et al., 1992; Lamont, 1993). However, recently 

a separate locus (VI containing Class I and Class II genes and segregating independent 

of B-G genes has been described (Briles et al., 1993). 

The ß-complex haplotypes are based on serological distinctions (anti-allotype 

antibodies) and the distinct haplotypes have each an superscript number (e.g. B2}). 

Approximately 30 haplotypes (set alleles at linked loci) are serologically defined (Briles 

et al., 1982). However, new technics determining differences in DNA might result in 

the identification of several subtypes of each haplotype (Chaussé et al., 1989). 

In the chicken. Class I, or B-F proteins are found on nearly all nucleated cells, including 

erythrocytes. Class II or B-L proteins are found on sub-populations of leucocytes 

including B cells, activated T cells, monocytes and macrophages (Chen and Cooper, 

1987). The Class I and II genes are highly polymorphic. The ß-haplotypes might differ 

in number of Class I and Class II genes (Kroemer era/., 1990; Chaussé et al., 1989). 

Within a single haplotype, multiple B-F genes can be expressed (Crone et al., 1985; 
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Guillemot et al., 1988). Class IV, the B-G proteins, is found on erythrocytes, but also 

on many immune system cells (Salomonsen e ra / . , 1991). 

The ß-complex influences the cooperation .between cells during an immune response. 

The CD8 + can only recognize antigen in the presence of B-F antigens, while activation 

of the CD4 + T cells needs presentation of the antigen in association w i th B-L antigens. 

In the humoral immune response, the B-L antigens are necessary for the cooperation 

between APC and CD4+ (Thrtp„) cells (Vainio et al., 1988) as well as between T-B cell 

interaction in antibody responses (Vainio et al., 1984). Therefore, it seems not 

surprising that effects of the S-complex have been found on the humoral response to 

several antigens (Benedict et al., 1975 ; Pevzner et al., 1975). The ß-complex also 

influences the classical cellular immunity, such as skin graft rejections (Schierman and 

Nordskog, 1961), mixed lymphocyte reaction (Miggiano et al., 1974) as well as 

macrophage inflammatory responses (Puzzi e ra / . , 1990a b) . 

Cell Interactions in the Humoral Response 

When the slg at the membrane of a B cell binds an antigen (the possibility depends 

on the specifity of the slgs variable part), the B cell can be triggered into an antibody 

response. However, for the majority of the antigens, the T cell-dependent antigens, 

help of CD4+ T cells (Vainio et al., 1984; Lassila et al., 1988) and APCs is needed to 

trigger the B cell. Some antigens, like in the chicken Brucella abortus and Salmonella H 

antigen, seem able to activate B cells more or less independently of T cells and APCs. 

They are therefore called T cell-independent antigens. Presumably they trigger B cells 

by cross linking several slg or slg w i th other receptors. 

For activation of B cells, probably both direct cellular interactions and cytokines are 

necessary. When the APC has internalized and processed antigen, it presents an 

antigen fragment at its surface in association w i th the MHC Class II products. If the 

MHC matches, CD4+ T cells can bind to the antigen-fragment w i th their TCR. The 

production of the cytokine interleukin-1 (IL-1) by the APC and IL-2 by the activated T 

cell, is necessary to further activate the CD4 + T cells. In mammals, it is known that the 

CD4 + T cells, can be divided into t w o distinct subsets, the Thelper1 (TH1) and the The,p„2 

(TH2) cells (Mosmann e r a / . , 1986). The TH1 cells produce cytokines like interferon-^ 

and IL-2 and assist cell-mediated immune responses. The TH2 cells, on the other hand 

produce IL-4, IL-5 and IL-10, and promote the humoral immune response (Abbas eta/., 

1991). It seems likely that the APC determines whether T helper cells wil l differentiate 

into TH1 or TH2 and thus promote a cell mediated or a humoral response, respectively 

(Scott, 1993). In mammals, naive T cells can be triggered into either TH1 or TH2 cells 

by respectively IL-12 (Hsieh et al., 1993) and IL-4 (Seder et al., 1992). What causes 

the APC (or other cells) to react w i th the production of IL-4 or IL-12 to an antigen is 

still under investigation. Whether the mechanism of TH1 and TH2 can also be applied to 
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the chicken is questionable. Avian homologues of IL-4, IL-10 or IL-12 are, as yet, not 

described. However, so far most mechanisms found in mammals also apply to 

chickens. Chicken CD4+ cells are found to play a crucial role in the humoral response 

(Vainio and Lassila, 1989; Arstila et al., 1994). IL-1 induces high levels of IL-2 

receptors and eventually IL-2 secretion on the T cells in chickens (Klasing, 1987). Avian 

IL-2 can be produced by CD4+ alß T cells at significant levels (Vainio et al., 1986), 

while crude IL-1 administered during an antibody response against SRBC, increased 

antibody titers in broilers (Klasing, 1987). In contrast to the enhancing effect of the 

CD4+ T cells on the humoral response, suppressive effects of CD8+ T cells on in vivo B 

cell responses have been reported (Quere et al., 1990ab), which is also in agreement 

with findings in mammals. 

SELECTION FOR IMMUNE RESPONSIVENESS 

Bursa weight 

Soon after the discovery of the bursa of Fabricius being the organ responsible for B 

lymphocyte development, experiments were started to study the relationship between 

the size of the bursa and antibody production. When Single Comb White Leghorn 

families were selected for a large bursa at hatch, higher antibody levels to Vibrio fetus 

were found than in the small bursae families (Sadler and Glick, 1962). However, 

selection for increased bursa weight in broilers (Temple and Jaap, 1961) did not affect 

mortality, growth depression or antibody titer after a challenge with Salmonella 

typhimurium, notwithstanding the increase in bursa weight of 92% compared with non-

selected chicks (Jaffe and Jaap, 1966). New Hampshires, several generations 

divergently selected for bursa size, did not differ in antibody production to Bovine 

Serum Albumin (BSA) (Glick and Dreesen, 1966), but titers to SRBC were higher in the 

large bursa line. Surgical bursectomy at hatch or at 3 weeks of age depressed the 

antibody production to SRBC more in the small than in the large bursa line (Landreth 

and Glick, 1973). Selection did not affect the total white-blood-cell counts and absolute 

counts of lymphocytes and of heterophils (Glick and Dreesen, 1967). No consistent 

differences were found in the weights of body, thymus and spleen (Glick and Dreesen, 

1967; Landreth and Glick, 1973), although adrenal weights were larger in 1 and 3 

week-old small bursa line chicks (Glick and Dreesen, 1967). Since antibody production 

is dependent on normal development of the bursa, the embryonal development of the 

bursae of these lines was investigated. Significant differences in bursa size from day 15 

of embryonic life onward and higher bursal cell counts in the large bursa line were 

found (Kulkarni et al., 1971). The bursa cells from one-week old large bursa line chicks 
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showed more in vitro cell growth than these cells of small bursa line contemporaries 

(Kulkarni et al., 1971). At hatch, the bursae of the large bursa line had densely 

populated bursa folds, while in the small bursa line nearly no active follicles were found 

(Landreth and Glick, 1973). Three weeks after hatch, histologic differences in follicular 

development had disappeared between the lines (Landreth and Glick, 1973). 

Thus, although selection for bursa size is possible and influences the embryonal 

development, it seems not to influence the antibody response to most antigens. 

Antibody production to SRBC 

The Biozzi Mice. In mice, Biozzi and associates have done extensive studies on the 

modifications of the immune system, induced by genetic selection for antibody 

responsiveness. Several lines were obtained using different antigens (i.e. heterologous 

erythrocytes. Salmonella species) and immunization protocols. Here, only the 

bidirectional selection for antibody response 5 days after intravenous immunization with 

SRBC (Selection I) will be discussed. In the high responder line of this selection, 

maternal antibodies were found to interfere with the response of their offspring after 6 

selection generations. Therefore, selection was continued by immunizing alternate 

generations with either SRBC or pigeon red blood cells. The decrease in the low 

responder line was faster than the increase in the high responder line, thus the respon­

se was asymmetrical. The estimated h2 were 0.24 to 0.26 in the H line and 0.30 to 

0.36 in the L line (Biozzi et al., 1975). After 18 generations the selection plateau was 

reached and the mice were considered homozygous for all loci determining the trait 

under selection. 

The following modifications of the immune system caused by the selection were 

found: 

a. Number, multiplication and differentiation rates of B lymphocytes were higher in 

the H than in the L line mice (Biozzi era/., 1972; Unanue era/., 1974). 

b. The potentialities of the T cells are similar in the H and L line (Biozzi era/., 1975). 

c. Catabolism of antigens occurs faster in L line than in H line mice (Biozzi et al., 

1975). 

d. Presentation of antigen fragments is prolonged in the H line (Wiener and Bandieri, 

1974). 

This resulted in a 200 fold interline difference for antibody levels and a lower threshold 

dose for both T cell-dependent and T cell-independent antigens in the H line (Biozzi et 

al., 1975). 

When disease resistance was considered in the lines, the results were in accordance 

with what was expected on basis of the immune characteristics of the lines. When 

antibody is the main defence mechanism, the H line is in advantage and even more 
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when memory is involved (Mouton et al., 1988). The L line, on the other hand, shows a 

greater resistance against intracellular parasites (Biozzi et al.. 1982). Although, these 

studies are of great importance, there is no control line, thus it is not possible to 

determine whether the modifications caused by selection were an increase in one line, 

or a decrease in the other, or both. 

In chickens, similarity was found in the kinetics of naturally occurring antibody 

responses and the haemagglutinins after immunization with SRBC (Seto and 

Henderson, 1968). This suggested that levels of haemagglutinins could be an indication 

for the immune potential of the developing chick. Also heritability of anti-SRBC 

antibody (anti-SRBC) titers was found to be high in chickens (Van der Zijpp et al., 

1983). Thus it was possible to genetically select lines of chickens with high or low 

antibody response to SRBC, aiming for a chicken with a more general disease 

resistance. 

Chicken Selection lines of Siegel and Gross. Siegel and Gross (1980) selected two 

lines of White Leghorns for persistence and non-persistence of antibody titer to SRBC 

after intravenous (IV) immunization with SRBC. The line selected for persistence was 

relatively more resistant to Mycoplasma gallisepticum, E. coli and feather mites 

compared with the non-persistent line (Gross et al., 1980). 

Two other lines of White Leghorns were divergently selected for high (HA) and low 

(LA) antibody titer 5 days after IV immunization with 5% SRBC in phosphate buffered 

saline (PBS) (Siegel and Gross, 1980). Not only differed the peak titer in height, but the 

LA line reached the peak titer usually later in response (Ubosi era/., 1985°). The IgM 

titers followed the total titers (IgG + IgM) (Ubosi et al., 1985a). Line differences in 

secondary response depended on the primary immunization dose (Ubosi era/., 1985°). 

The antibody titer to NCD (Gross et al., 1980), horse red blood cells (Siegel et al., 

1982) and swine red blood cells (Gross, 1986) were all higher in the HA line. However, 

when under stressful social conditions, lines did no longer differ in antibody response to 

SRBC and swine RBC, (Gross, 1986). Brucella abortus (BA), a T cell-independent 

antigen, which activates B cells with little or no help of T cells, but needs accessory 

cells for antibody response, induced line differences in antibody response similar to 

SRBC (Dunnington et al., 1992; Scott et al., 1994). The HA line was more resistant to 

infections with M. gallisepticum, Eimeria necatrix, feather mites and NCD, but less 

resistant to E. coli and Staphylococcus aureus than the LA line (Gross et al., 1980; 

Gross, 1986). The line difference in antibody response to E. coli, however, was 

dependent on the dose administered. LA line chicks were more susceptible to a natural 

exposure of MD virus and affected at a younger age than HA line chicks (Dunnington et 

al., 1986). In both lines males were more susceptible, but this sex difference was more 

pronounced in the H line (Dunnington et al, 1986). Mortality of adult hens was higher in 
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the LA line (Siegel et al., 1982). 

Body weight was in general lower in the HA line (Siegel et al., 1982). Interestingly, 

in lines divergently selected for body weight, peak anti-SRBC t iters were similar 

between the lines, but antibodies were more persistent in the low body weight line 

(Miller e ra / . , 1992). This suggests a functional relation between bodyweight and height 

of the antibody titer. In addition to the lower body weights in the HA line, higher 

relative bursa weights and lower relative thymus and spleen weights were found in the 

HA line (Ubosi et al., 1985b). Differences in allelic frequencies of several specific blood 

groups between the HA and LA line were reported (Dunnington et al.. 1984). In the HA 

line the majority of the chicks was B2' and in the LA line B'3 (Dunnington et al., 1984). 

The antibody response to SRBC seemed influenced by particular B haplotypes, as well 

as by the genetic background (Dunnington e ra / . , 1989). In vitro mitogen responses of 

peripheral lymphocytes to both ConA and PHA were higher in the HA line, but the 

responses were not influenced by the different B haplotypes (Scott et al., 1991). Thus, 

this divergent selection for anti-SRBC titer, also divergated the humoral response to 

several other T cell-dependent antigens, as well as to a T cell-independent antigen. 

Cellular responses were higher in the HA line. The influence of selection on disease 

resistance, depended on the disease, comparable w i th the results in the Biozzi mice. 

Selection had affected body weight and the lymphoid organs. However, structural 

differences were not studied. 

The Wageningen Selection Lines. A similar bidirectional selection experiment was 

started w i th ISA Brown medium heavy layers. Chicks were selected for high (H) or low 

(L) antibody titer 5 days after immunization w i th SRBC. However, chicks were 

intramuscularly (IM) injected w i th 2 5 % SRBC in PBS (Van der Zijpp and Nieuwland, 

1986). Additionally, a random bred control (C) line was maintained. This C line is a 

great advantage, because whenever comparison between the H and L line reveals an 

effect of selection, the C line can be used to decide whether the H line was affected or 

the L line in the opposite direction. 

Line differences after IV immunization were similar to the differences found after IM 

immunization, both in primary and secondary response (Donker, 1989). More anti-SRBC 

producing cells were found in the H line spleen and spleen weight, relative to body 

weight was higher, but relative bursa weight was lower in the H line (Donker, 1989). 

Body weight was generally higher in the L line (Nieuwland, 1990, pers. comm), as was 

also found in the lines of Siegel and Gross (Siegel et al., 1982). The levels of 

metabolism-associated hormones, like growth hormone, somatomedin and thyroxine, 

were similar between the lines (Donker, 1989), only a slightly higher level of 

triiodothyronine (T3) was found in the H line (Donker, 1989). Before immunization, the 

energy utilization of H line was better than of the L line, as concluded from the higher 

fat deposition in the H line while the metabolic energy intake was comparable between 
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the lines. After immunization, energy utilization was even less efficient in the L line 

(Donker, 1989). When the H and L line birds were exposed to acute heat stress, 

plasma corticosterone levels were increased, but similar in both lines and no effect on 

t i ters was found (Donker, 1989). Direct administration of corticosterone did also not 

affect antibody t iters in both lines (Donker and Beuving, 1989). 

When prior to SRBC immunization, chicks were injected w i th carrageenan or carbon, 

which both block the functions of the reticuloendothelial system (i.e. macrophages), 

antibody responses to SRBC were depressed in a dose dependent manner. The dose 

did, however, not affect the line difference (Van der Zijpp et al., 1988; 1989). Higher 

doses of carrageenan resulted also in depressed BA titers (Van der Zijpp et al., 1989), 

while carbon had no effect on the BA titers (Van der Zijpp et al., 1989). In 

contradiction w i th the results found in the lines of Siegel and Gross (Dunnington et al., 

1992; Scott et al., 1994), there was no line difference found in anti-BA t i ters (Van der 

Zijpp et al., 1988; 1989). 

Selection for antibody responsiveness to SRBC resulted in frequency changes in 

MHC-haplotypes. In the tenth selection generation, four B types were present in the C 

line, i.e. B14-like, B19-like, B21-like and B24-like. In the H line, the B21 was dominating and 

in the L line B14 (Pinard et al., 1993"). The change in frequency of MHC-haplotypes 

explained only a small part of the line difference in antibody response (Pinard et al., 

1993"; Pinard and Van der Zijpp, 1993). 

Chicks from the L line were more susceptible to challenges w i th MD virus and died 

earlier than the chicks from the H line and C line. Total mortality did not differ between 

the H and C line chicks, but mortality occurred later in the H line than in the C line 

(Pinard et al., 1993b). The MHC genotypes only contributed 3 ,5% of the total variance 

of mortality to Marek's disease (Pinard et al., 1993b). 

Selection had affected the weight of the lymphoid organs, but had no effect on the 

metabolism associated hormones, although energy utilisation was better in the H line. 

Blocking the functions of the RES, i.e. phagocytosis and antigen presentation, did not 

affect the antibody response of the lines differently. Although selection had affected 

the frequencies of the S-haplotypes, this had hardly any effect on the antibody t i ters. 

Thus, so far there is no evidence of line differences in the combined effect of 

phagocytic activity and antigen presentation. The selection effect was not general, at 

least one T cell-independent antigen did not differ in antibody response between the 

lines. 

Selection of Adult Hens. Another divergent selection experiment w i th SRBC was 

conducted by Genzel and Weigend (1989). Adult laying hens were selected for 

antibody titer after immunization w i th SRBC in Complete Freunds Adjuvant. The line 

wi th the highest increase in titer had also the lowest body weight. However, because 

no progress in selection could be reached after the first generations, the selection 
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experiment was ended (S. Weigend, pers. comm. 1994). 

As in mice, selection for anti-SRBC response was found to be easily assessable in 

chickens. However, as the comparable selection experiments with chickens do not 

always give similar results, it seems likely that the results found in mice can not be 

applied directly to chickens. 

Other humoral responses 

White Rock chickens were selected for serum immunoglobulin G (IgG) level by Okada 

and Yamamoto (1987). This selection did not affect the humoral responses to all 

antigens, because a higher antibody response to SRBC and to lipopolysaccharides from 

E. coli were found in the high IgG line, but not to BSA (Okada and Yamamoto 1987). 

The high IgG line had also a higher splenomegaly index in the GVH reaction (Okada and 

Yamamoto, 1987). Both morbidity and mortality after IM inoculation with MD virus 

were much higher in the high than in the low IgG-line (Okada and Yamamoto, 1987). 

The synthetic amino acid polymer, glutamic acid-alanine-tyrosine (GAT) is also 

widely used to measure humoral immune responses. Divergent selection for low and 

high humoral response to GAT was conducted within broilers and layers (Pevzner et al. 

(1989'"). The lines selected for high antibody response to GAT were more resistant to 

Rous sarcoma (RS), MD, and S. aureus than were the low GAT responders (Pevzner et 

al. (1989ab). 

White Leghorns, homozygous for either ß'ß1 or ß'9ß'9 were selected for high or low 

antibody response to GAT (ir-GAT) (Pevzner et al., 1978b). As in the 'at random B-

haplotype lines', both ß'ß' and ß'9ß19 high GAT responders showed lower mortality 

after inoculation with MD virus (Pevzner et al., 1981°). In vitro proliferation of GAT-

primed lymphocytes differed between the MHC types, the ß19ß19 having the higher 

response (Steadham and Lamont, 1993s). However, within the ß'sß19, proliferation was 

higher in the high ir-GAT type than in the low ir-GAT type. Within the ß'ß', there was 

no significant difference between ir-GAT types (Steadham and Lamont, 1993"). When 

the cultured cells were separated in CD4+ and CD8 + , within the ß'9ß'9 genotype, it 

was found that the low Ir-GAT chicks had more CD8+ than the chicks of the high Ir-

GAT type. This suggested an increased suppression of antibody response due to high 

levels of CD8+ cells in the low line. But, the effect was different in the ß'ß' chicks: 

the low Ir-GAT had more CD4+ cells (Steadham and Lamont, 1993"). Therefore, this 

can not be considered a general effect of selection for ir-GAT. Moreover, in vitro 

estimation of the ability of APC to process and present GAT indicated a higher ability in 

the low Ir-GAT chicks of the ß'ß', in the ß'sß19, the Ir-GAT effect was not significant 

(Steadham and Lamont, 1993"). These results indicate that in the two ß haplotypes 

different mechanisms are responsible for the high or low humoral response to GAT. 

Association studies, using F1 and F2 chicks, produced by backcross matings. 
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suggested that both MHC-linked and MHC-non-linked genes control the humoral 

response to GAT (Steadham and Lamont, 1993"). 

The ß-GAT lines (Pevzner et al., 1978") were further divided for progressive or 

regressive Rous sarcoma induced (RS) virus response. In these lines survival seemed to 

be positively associated with the high ir-GAT response (Kim et al., 1987). The anti-

SRBC antibody titers were found not to be associated with MHC type, ir-GAT or RS 

(Kim et al., 1987). Lamont (1986) first reported effects of selection for RS on the 

phagocytic activity, but later the RS-selection was found not to affect phagocytic 

activity (Cheng and Lamont, 1988). Effects of MHC haplotype and ir-GAT type on 

phagocytic activity were found only in males (Cheng and Lamont, 1988). The antibody 

responses to simultaneously injected P. multocida and M. gallisepticum vaccines were 

higher in the high ir-GAT lines, compared with the low ir-GAT lines, the correlations 

between the antibody responses to the vaccines were positive, but only significant in 

females (Cheng and Lamont, 1988). In vivo mitogen response to PHA (wingweb) was 

affected by MHC-type and selection for RS, in males, not in females. Also interactions 

with ir-GAT type were reported (Cheng and Lamont, 1988). The correlations between 

wingweb-response and the phagocytic activity were negative in females (Cheng and 

Lamont, 1988). 

Divergent selection for rabbit serum albumin (RSA) was carried out by Okabayashi 

and Okada (1989). The high RSA-line had higher antibody response to SRBC, 

Escherichia coli, Salmonella minnesota lipopolysaccharides and Dog Serum Albumin, 

but the lines did not differ in response to cattle erythrocytes and BSA (Okabayashi and 

Okada, 1989). Moreover, the RSA-lines did not differ in morbidity or mortality after a 

challenge with MD virus (Yamamoto eta/., 1991). 

T Cell responses 

In only a few experiments genetic selection for cell mediated immune responses was 

conducted. However, selection for GVH reaction competence of chickens has been 

studied in more detail (Ashikaga et al., 1984; Okada and Yamamoto, 1987). The lirves 

of Okada and Yamamoto (1987) did not differ in antibody response to either SRBC, 

BSA or lipopolysaccharide (LPS). Slightly higher resistance to MD was found in the low 

GVH-line compared with the high GVH-line (Ashikaga et al., 1984; Okada and 

Yamamoto, 1987). The difference in morbidity and mortality after a challenge with MD 

was influenced by the MHC genotype of the lines (Okada and Yamamoto, 1987). The 

low GVH BUBU line was significantly more resistance to MD than the high GVH ß''^11 

line. However, the line difference was reverse within the B9B3 lines. Tumour incidence 

and mortality after inoculation with MD virus associated lymphoblastoid cells was 

much higher in the high GVH lines than in the low GVH lines, independently of MHC-

type (Yamamoto era/., 1991). These results (Okada and Yamamoto, 1987; Yamamoto 
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et al., 1991) indicate that mortality after inoculation w i th lymphoblastoid cells does not 

necessarily represent mortality after a challenge w i th MD in all MHC genotypes. 

The GVH-lines were mated w i th a homozygous ß'2 and the F2 progeny was further 

selected for delayed watt le reaction (DWR) to BCG (attenuated Mycobacterium 

tuberculosis) (Afraz et al., 1994). Selection was quite successful, the realized 

heritability, averaged over 4 generations, was 0.7. There was a f requency shift in Bu-

haplotype, which increased in the high DWR line, but decreased in the low line. In vitro 

mitogen response to PHA and the capacity to clear carbon from the blood, as wel l as 

the antibody responses to a cocktail w i th SRBC, BSA, BA, dinitrophenyl (DNP) and 

Salmonella pullorum did not differ between the lines. However, disease incidence and 

mortality after an IM injection w i th MD virus was significantly higher in the high DWR-

line (Afraz e r a / . , 1994). The low DWR-line was heavier than the high line (Afraz e ra / . , 

1994). 

Multitrait selection 

Another approach to improve general disease resistance was the combined selection 

for 'h igh' or ' l ow ' responses to several immune traits as conducted by Cheng et al. 

1991), who selected simultaneously for carbon clearance, antibody responses to 

Pasteurella multocida and Mycoplasma gallisepticum and hypersensitivity to 

phytohemagglutinin (PHA). Although the genetic correlations among the immune traits 

were generally negative (Cheng et al., 1991), the multitrait selection elevated the level 

of the diverse immune traits (Kean et al., ,1994b). The frequencies of MHC haplotypes 

differed between the high and low multitrait line. However, also between the replicates 

of both high and low multitrait selection lines frequency differences were found. 

Therefore the linkage between MHC-type and multitrait-level could not be a functional 

one (Kean et al., 1994"). The replicates differed also in breeding values calculated from 

the multitrait-index (Kean et al., ,1994b). 

SELECTION FOR RESISTANCE TO SPECIFIC PATHOGENS 

Newcastle disease (NCD) 

Newcastle Disease is caused by a highly contagious paramyxovirus and causes high 

mortality. Af fected birds often show respiratory distress (wheezing and gurgling) or 

nervous signs (paralysis or twisted necks). There is no treatment for NCD and 

vaccination is thought to be the only control method, next to eradication procedures. 

Gordon et al. (1971) described an attempt to create a susceptible and a resistant line 

to NCD. Although a line difference in the average mortality was found in the first 

generation, they were unable to increase the line difference further. This was probably 
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due to the difficulties in standardisation of the NCD challenges. However, selection for 

antibody response to either inactivated or attenuated NCD virus was possible and 

correlated positively with resistance to NCD (Peleg et al.. 1976). Cahaner et al. (1986), 

selected White Rock broilers for either low or high antibody responses to E. coli and 

NCD vaccines at 18 days of age. It was found that this selection affected the 

development of the humoral response. In the high line peak antibody titers to NCD were 

higher and were reached earlier after immunization than in the low immune response 

line. Moreover, a larger portion of the low line failed to respond to the vaccinations 

(Pitcovski et al., 1987). Already after 2 selection generations, mortality due to non­

specific causes was higher in the low line (Cahaner era/., 1986; Pitcovski et al., 1987). 

After 3 selection generations, 18-day old chicks of both lines were challenged with live 

E. coli bacteria and 16 % more chicks died in the low immune response line (Cahaner et 

al., 1986). The high immune response line had higher antibody response to SRBC, more 

plaque forming spleen cells to E. coli, a higher level of total immunoglobulins and IgG, a 

higher in vivo wattle reaction to Mycobacterium tuberculosis and higher in vivo mitogen 

responses to PHA and ConA. Also, the high line showed a faster blood clearance of 

heat killed E. coli, both in immunized and non-immunized chicks (Pitcovski era/., 1989). 

Only the antibody response to BA did not differ between the lines (Pitcovski et al., 

1989). Finally, the lines differed in MHC-types (Heller era/., 1991). 

Marek's disease 

Marek's disease (MD) is a herpes virus-induced lymphoproliferative disease of 

poultry. Resistant and susceptible lines were developed by selection after exposure to 

pathogenic MD virus (Morris et al., 1970). Heritability of resistance to MD was 

estimated to be between 0.07 and 0.18 (Krosigk et al., 1972; Hartmann and Sanz, 

1974) and 0.40 in lines selected for antibody response to SRBC (Pinard et al., 1992). 

Involvement of the ß-complex in resistance to MD was first suggested by Hansen et 

al. (1967) and the association between ß-haplotypes and MD resistance was then 

intensively studied. Divergent selection for resistance or susceptibility to MD resulted in 

a 8-fold difference in MD resistance and in differences in the frequency of the S21 

(Briles et al., 1977). Selection for the fi-type resulted in line differences in resistance to 

MD comparable to the differences between lines directly selected for high or low MD 

resistance (Briles et al., 1976). However, other genes besides the MHC genes, must be 

associated with resistance to MD (Pazderka et al., 1975; Pinard et al., 1992). 

Resistance or susceptibility to MD was not associated with mixed lymphocyte reaction 

or mitogenic responses (Calnek era/., 1989; Gavora era/., 1990). 

Selection for reduced incidence of MD seemed possible without a negative effect on 

economically important traits (Friars et al., 1972; Krosigk et al., 1972; Flock et al., 

1975; Gavora et al., 1989). 
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Coccidiosis 

Coccidiosis is caused by intracellular protozoan parasites belonging to several 

different species of Eimeria, wh ich all have the intestinal epithelium as primary target 

t issue. Selection for resistance and susceptibility to acute caecal coccidiosis by Eimeria 

tenella has been carried out by Johnson and Edgar (1982). Relaxation of selection for 

resistance resulted in increased mortality, eventually equalizing the unselected control 

line. Males were more susceptible than females (Johnson and Edgar, 1982). 

Interestingly, the tissues affected in the resistant and susceptible lines dif fered, 

indicating that genes that determine the organ specificity, might also determine the 

response of the host to the acute coccidiosis (Johnson and Edgar, 1982). 

As in many diseases, MHC genes are found to influence the resistance to Eimeria 

tenella, although non-MHC genes are also important (Clare et al., 1985; Lillehoj et al., 

1989). Giambrone et al., (1984) found high phenotypic correlation between the ability 

of the chicken to develop a delayed hypersensitivity skin test and the ability to respond 

to E. tenella. 

Escherichia coli 

The bacteria Escherichia coli (E. coli) are often involved in yolk-sac infections and in 

the secondary bacterial infections after a viral respiratory infection. To study resistance 

to E. coli, t w o broiler lines were divergently selected for the antibody level 10 days 

post vaccination w i th E. coli. A special feature of this selection study is the replication 

of the selection, i.e. t w o high responder lines and t w o low responder lines were 

separately selected for the antibody response to E. coli vaccine out of the same base 

population. Moreover, a non-selected control line was maintained (Leitner et al., 1992). 

In the first 3 selection generations the response to the selection seemed to be 

symmetrical, although heritability estimates were higher in the low line (0.32) than in 

the high line (0.23) (Leitner et al., 1992). Challenge w i th pathogenic E. coli did not 

show any line difference in mortality or morbidity of non-vaccinated chicks of selection 

generations 1 and 2. Although the height of the antibody response 10 days post 

vaccination was positively correlated w i th resistance to E. coli in unselected chicks. 

However, when chicks were vaccinated prior to challenge, the high line was more 

resistant (Leitner etal., 1992). The high early antibody response to E. coli was , in both 

replicates, positively associated w i th a higher antibody response to NCD and SRBC, 

but not w i th the response to BSA (Heller et al., 1992). Clearance of carbon from the 

blood was faster in the high early response line and in vitro T cell proliferation response 

to E. coli and ConA, as well as B cell proliferation to pokeweed mitogen (PWM) was 

increased in the high early response line (Heller et al., 1992). The high and low early 

response lines differed in 6 of 10 MHC haplotypes, while their replicates differed only 

for one haplotype (Uni et al., 1993), suggesting no functional association between the 
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selection and the MHC of the selection lines. 

Salmonella pullorum 

The bacterium Salmonella pullorum causes in chicks typical whi te diarrhoea, w i th 

pasted cloacae and high mortality. Adult breeders show no clinical signs, but have 

internal lesions in the ovary. 

Divergent selection for antibody t iters to Salmonella pullorum in White Leghorn 

chickens homozygous for B\ affected total mortality and susceptibility to MD; both 

were higher in the high response line (Pevzner e ra / . , 1978 ' ; 1981"). 

SCOPE AND AIM OF THIS THESIS 

In the previous sections, effects of selection on several immune responses and 

resistance to specific pathogens are described. Sometimes, genetic selection for 

enhancement of a certain immune response, simultaneously enhanced a second 

immune response. However, selection for the second immune response did not always 

result in the enhancement of the first response (i.e. Okado and Yamamoto, 1987). 

Moreover, effects found in one selection experiment did not always agree w i th the 

results in a comparable selection experiment (Van der Zijpp et al., 1988; 1989; 

Dunnington et al., 1992; Scott et al., 1994). And effects of selection even differed 

between replicates of selection lines originating from the same base population (Uni et 

al., 1993). These results all strongly suggest that there are more genetic pathways to 

reach the same phenotypic result. The pathway used depends on the alleles of the 

genes available in the base population and which combination of alleles gave the most 

favourable response in the selection generations. However, when the selection-plateau 

is reached, the combination of alleles has become fixed in the population. This means 

that a given selection line preferably will react on an antigen w i th its 'genetically f ixed 

pathway' . However, in non of the selection lines has this pathway been revealed. 

In mice, Biozzi has shown that approximately 10 genes at independent segregating 

loci, were responsible for the anti-SRBC response. These genes affected B cell 

multiplication and differentiation, as well as antigen catabolism and presentation of the 

antigen. When specific diseases resistance was studied in the Biozzi mice, a large part 

of the difference in resistance between the high and low line could be attributed to the 

f ixed differences in the immune pathways used by the mice. 

As in mice, information of the fixed pathways used by chicken H and L lines, wil l 

extend the knowledge of how resistance to a particular disease can be reached. The 

studies presented in the next chapters of this thesis were conducted to determine 

which aspects of the immune system have been affected by divergent selection for 
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FIGURE 1.1. Cascade of events following IM immunization with SRBC leading to antibody 
production. 

Uptake of the antigen (SRBC) and intracellular destruction (phagocytosis) or 
processing of the antigen; Presenting part of the antigen on the surface of an 
Antigen Presenting Cell (APC) in association with a MHC antigen; Binding of the 
processed antigen to a T cell-receptor (TCR) on a T cell; Release of cytokines; 
Activation and differentiation of T cell populations; Binding of an antigen 
fragment to surface Ig (slg) on a B cell; Release of cytokines; Activation and 
differentiation of B cells in memory cells and plasma cells; Production of 
antibodies by the plasma cells. 
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antibody response to SRBC after IM immunization. A complex antigen like SRBC is 

probably able to affect many parts of the immune response. The difference in antibody 

t iters between the high and low anti-SRBC lines is the consequence of genetically 

defined line difference(s) in the cascade of cell interaction events operating to cope 

w i th the SRBC. The level of anti-SRBC antibodies measured in the blood is the final 

result of this cascade, which starts when the SRBC is injected in the muscles of the 

chick. 

In Figure 1 .1 , a rather simplified summary is given of the cascade of events 

fol lowing IM immunization w i th SRBC, resulting in antibody production. Each of the 

single factors comprising this cascade might differ between the lines. These line 

differences might be quantitative, for instance the number of phagocytes, T cells, B 

cells, or the amount of antibody produced per plasma cell. But also qualitative 

differences between the lines might exist, i.e. the MHC-type on the APC, the TCR-type 

on the T cells, the binding specifity of the TCR and of the slg on B cells, or the profiles 

in cytokines. The organization of the immune competent cells in the lymphoid organs 

might also differ between the lines, resulting in an approach favouring antibody 

response (the H line) or other ways to cope wi th the SRBC (the L line). 

In the fol lowing chapters of this thesis, parts of the cascade of events out lined in 

Figure 1 .1 , are investigated to assess differences between the lines selected for high or 

low levels of circulating antibody 5 days after IM immunization w i th SRBC. 

In the Chapters 2 and 3, differences in the phagocytic and catabolic act ivi ty of the 

t w o lines are studied. In Chapter 3, the effect of immunization on the phagocytosis of 

SRBC is discussed. In Chapter 4 , the effect of different doses SRBC on the humoral 

response in both lines is studied in an attempt to determine the threshold dose 

necessary to stimulate the antibody response in the lines. In the fol lowing Chapter (5), 

the humoral response to SRBC is manipulated by administration of the SRBC by 

different routes, or in combination wi th adjuvants. Line differences in the effects of 

these manipulations might indicate effects of selection at APC, B or T cell level. In this 

Chapter, also the response to one other T cell-dependent and t w o T cell-independent 

antigens is measured to study whether the effect was specific for only SRBC, or more 

general. In Chapter 6, cellular responses are studied, to gather information about the 

effect of selection on the T cell responses. In Chapter 7, the percentages of 

lymphocyte subpopulations are compared between the lines and it is estimated whether 

selection would affect the numbers of antibody producing cells. In the last chapter, 

Chapter 8, the results are discussed and, based on the differences and similarities 

found between the lines, hypotheses on what pathways are fol lowed to destruct SRBC 

in the H line and in the L line were formulated. 
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Phagocytic activity of two lines of chickens divergently selected for 

antibody production. 

M.B. Kreukniet. M.G.B. Nieuwland . and A.J. van der Zijpp 

ABSTRACT 

Differences in phagocytic capacity of two chicken lines selected for high (H) or low 
(L) antibody response against sheep red blood cells (SRBC) were studied in eight month 
old cocks of the seventh selection generation. The H line cocks had significantly higher 
agglutinin titers after immunization with SRBC than the L line. The total clearance 
capacity of the phagocytes, measured by the clearance of carbon particles from the 
blood, did not differ between the lines. The L line cocks had more circulating 
granulocytes. However, the granulocytes of the H line phagocytized more yeast cells 
than those of the L line. Neither in immunized nor in non-immunized cocks, were line 
differences found in the intracellular destruction of antigen by phagocytes, estimated as 
the superoxide production during phagocytosis and the plasma levels of lysozyme 
activity and acid phosphatase, before and after immunization. It was concluded that the 
line difference in antibody response was not due to measurable differences in 
phagocytic activity. 

INTRODUCTION 

To gain better understanding of the underlying mechanisms of immune defence in 

the chicken, selection for immunoperformance can be very important. In mice 

divergently selected for antibody response to sheep red blood cells, the line difference 

was partly explained by a higher phagocytic activity i.e. uptake and intracellular 

destruction of the SRBC in the low (L) antibody production line (Wiener and Bandieri, 

1974). Also, better accessory functions, i.e. longer presentation of processed SRBC on 

antigen presenting cells were found in the high (H) line (Biozzi et al., 1984). In our 

chicken lines, blocking the phagocytic and accessory functions of the 

reticuloendothelial system with either carrageenan or carbon (Van der Zijpp et al., 

1988; 1989) did not negate the line differences. Immunization with T cell-dependent 

antigens (BSA, KLH, TNP), but not with T cell-independent antigens (Bruce/la abortus, 

Salmonella H antigen) showed characteristic line differences (Kreukniet et al., 1992; 

Parmentier et al., 1993). Moreover, line differences diminished when SRBC was given 

with Freunds Complete Adjuvant. This indicates that the antigen handling preceding T 
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cell activation may account for the present selection. Therefore we extended our 

studies on the capacities of phagocytes in both lines. Some easy accessible 

experimental approaches were used to study the different phases of phagocytosis. The 

in vivo clearance of intravenously injected carbon and the in vitro uptake of yeast cells 

were used to obtain information on the uptake of particles by phagocytes. After 

internalization of antigens, destruction is accomplished by the lysosomal reservoir of 

hydrolytic enzymes and by the products of the respiratory burst (i.e. 0 2 " and H202). 

Hydrolytic enzymes, i.e. lysozyme and acid phosphatase, can be found in the plasma 

(Butler et al.. 1977; Di Luzio, 1979), as a result of the phagocytic act ivity. Their levels 

were measured before and at various days after immunization. Also, the release of 

superoxide during phagocytosis was measured. The results of these assays may 

provide information on the contribution of the intracellular destruction to the line 

differences in antibody responses to T cell-dependent antigens in our selection lines. 

MATERIALS AND METHODS 

Experimental animals and immunization 

Cockerels of t w o lines divergently selected during seven generations for agglutinin 

response to SRBC (Van der Zijpp and Nieuwland, 1986) were used; in total 35 cocks of 

the high response (H) line and 39 cocks of the low response (L) line. Lines were housed 

intermingled, in t w o floor pens (2x1.5 m2) covered w i th wood shavings and w i th free 

access to food and water. Vaccinations against Marek's disease, infectious bronchitis, 

infectious bursal disease, Newcastle disease (twice), infectious laryngotracheitis, egg 

drop syndrome, avian encephalomyelitis and fowl pox were carried out at the ages of 

0 , 1 , 15, 30 and 56 , 4 2 , 56 , 70 and 77 days, respectively. 

A t 192 days of age, cocks were primarily immunized w i th 1 ml 5 0 % SRBC in 

phosphate buffered saline (PBS) in the thigh muscle. Heparinized blood was collected at 

0 , 3, 5, 7, 10 and 13 days post immunization (p.i.) and total and 2-Mercaptoethanol-

resistant (2MEr) t iters were determined in plasma samples as described by Van der 

Zijpp and Leenstra (1980). 

Assays 

Carbon clearance assay. Pelikan Drawing Ink A (Pelikan A .G. , Hannover, Germany) 

was centrifuged (30 min 2000 x g), the supernatant (118 mg/ml) was mixed (1:1) w i th 

a 4 % gelatin-suspension in PBS. Cocks, 119 days of age, were intravenously 

(cutaneous ulnaris) injected w i th 2 ml carbon suspension (30°C) per kg body weight. 

From this vene, blood samples were taken 5, 10 and 15 min. after the carbon injection. 

One hundred //I blood was diluted in 3 ml PBS w i th 5000 lU/ml heparin (10:1), 

centrifuged (850 x g; 10 min.), and absorption values of the supernatant were 
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measured at 675 nm using a Perkin-Elmer Lambda 1 spectrophotometer (Oakbrook, IL, 

USA). One hour after the collection of the last blood sample, cocks were sacrificed and 

weights of bursa, spleen and liver were determined. Relative organ weights (organ 

weight/body weight x 100) were calculated. 

Yeast cell ingestion assay. Two g of active baker's yeast (Saccharomyces cerevisiae) 

was killed by boiling for 30 min. in 250 ml PBS. After washing 3 t imes in PBS (850 x 

g; 10 min), the pellet was resuspended in RPMI 1640 at a concentration of 2.5 x 109 

yeast cells per ml. Heparinized blood was collected from 126 days old cocks and one 

ml blood was incubated (41 °C) w i th 100 //I yeast suspension. Blood smears were 

prepared after 20 min. of incubation and stained w i th Giemsa (Merck, Darmstadt, 

Germany). The number of phagocytized yeast cells per 100 granulocytes was counted. 

Superoxide production assay. Heparinized blood was collected f rom 189 days old 

cocks, diluted 1:1 in RPMI 1640, layered on top of Nycodenz solution (Nyegaard & Co 

As, Norway; density: 1,086 g/ml) and centrifuged (20 min; 850 x g at 18°C). The buffy 

coat was collected and washed twice in PBS (10 min; 500 x g at 4°C) and brought at a 

concentration of 2.5 x10 6 granulocytes/ml RPMI 1640. Samples were tested for 

superoxide production during phagocytosis in quadruplicate, according to the method of 

(Pick et al., 1981) w i th some modifications. One hundred ml of each granulocyte 

suspension and 50 //I NBT grade III ( Sigma Chemical Co., St Louis, MO, USA; 1 mg 

NBT/ml PBS) were added to 8 wells of 96-well f lat-bottom microtiter plates (Omnilabo, 

Breda, Netherlands). Granulocytes in four wells were stimulated w i th 10 / / I opsonized 

Zymosan A (prepared from Saccharomyces cerevisiae. Sigma Chemical Co.; 1 mg 

Zymosan A per ml PBS and opsonized w i th pooled chicken plasma). To the other 4 

wells, 10/ / I PBS was added. Eight additional wells were used as blanks, containing 160 

fjl of PBS without granulocytes and eight wells were used as controls, containing 100 

//I PBS, 50 /J\ NBT and 10 JJ\ opsonized Zymosan A. After incubation (40 min.; 41 °C) 

the reaction was stopped by adding 100 //l HCl (1N), washed w i th PBS (850 x g; 10 

min), and the cells were resuspended in 1 50 p\ dimethylsulfoxide (max. 0.03 % water; 

Merck, Stutchardt, Germany) w i th 10 /vl NaOH (1N) to increase colour intensity. The 

colour was measured wi th Multiskan photometer (Flow, Irvine, U.K.) at 690 nm. Mean 

absorbance of the non-zymosan stimulated samples per animal were subtracted from 

the absorbance of the stimulated samples, as an indication of the superoxide 

production during antigen digestion. 

Determination of the number of granulocytes. The numbers of granulocytes in 

heparinized blood, diluted 1:51 in a staining solution (Natt and Herrick, 1952), were 

counted in a Bürkner chamber. 

Lysozyme activity assay. Lysozyme activity in plasma samples was estimated in 

duplicate according to the method of Lie (1980) w i th some modifications. Briefly, a 

standard dilution series was produced by dissolving crystalline lysozyme (grade I, Sigma 
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Chemical Co.) in a phosphate buffer (11.73 g/l Na2HP04 .H20, pH 6.2) to concentrations 

of 1.5, 2 .0 , 3 .0, 4 .0 en 6.0 / /g/ml. Of each concentration, 20 fA was added to t w o 

wells of a 96-well microtiterplate, to one well 200 //I phosphate buffer was added to 

the other 200 //I Micrococcus /ysodeikticus-so\ut\on (600 mg M. lysodeikticus (Sigma 

Chemical Co.) per litre phosphate buffer.) After 15, 30 , 45 and 60 min. at 41°C, the 

absorbance was determined w i th an eight-channel Titertek photometer at 560 nm. For 

each concentration, the regression coefficient (b) between absorbance (corrected for 

the absorbance of the controls) and t ime was calculated as a measure of the activity of 

the known quantity of lysozyme, causing lysis of M. lysodeikticus. A standard curve 

was produced by plotting b of each standard concentration against the quantity of 

lysozyme. Plasma of the experimental cockerels was treated similarly as the standard 

solutions. The b value for each plasma sample was calculated and f i t ted into the 

standard curve, thus estimating the lysozyme-activity of each sample. 

Acid phosphatase assay. Plasma was obtained from blood samples collected in glass 

tubes containing citrate solution (35 g Na2C6H607 .2H20; 2.5 g NaCI in 1000 ml distilled 

H 20, diluted 5:1). All plasma samples were tested for acid phosphatase levels in 

quadruplicate, according to the method of Fishman and Lerner (1953) w i th 

modifications. To 8 wel ls, 20/vl plasma was added and 100/yl substrate buffer (0.41 g 

C6H8O7.H20; 0.93 Na2C6H607 .2H20; 0 .204 g 4-Nitrophenylphosphate Disodium salt 

(Merck, Darmstadt, Germany) in 100 ml distilled H20 at Ph 4.8) was added to four 

wells, to the remaining four wells (reaction controls) 100 //I NaOH (0.2N) was added. 

After 30 min at 41 °C, 100 //I NaOH was added to the wells containing substrate buffer 

and 100 /J\ substrate buffer to the reaction controls. After an additional 30 min. , 

absorbance was measured at 4 1 0 nm using a Titertek Multiscan. Means of the four 

reaction controls per animal were subtracted from each of the four determinations per 

animal. Substrate buffer (120 //I) was used as a negative control. Pooled plasma was 

added to eight wells of each microtiterplate and treated as plasma of an individual, for 

statistical adjustment of differences between microtiterplates. 

Experimental Design and Statistical analyses 

In Table 2 . 1 , the number of cocks used per assay are given. Line differences were 

tested by analyses of (co)variance, using the GLM procedure w i th Line as main effect 

(SAS, 1989). In the models of the NBT reduction test, acid phosphatase assay and the 

lysozyme test, 'Titerplate' was also included as a main effect. In the carbon clearance 

test body weight was used as covariable. When titers of the lines were compared, the 

number of granulocytes, the decrease in granulocytes, lysozyme activity and increase in 

lysozyme activity during the antibody response were used as covariable in separate 

models. Additionally, partial Pearson correlations (correcting for lines) and Pearson 

correlations wi thin H and wi thin L line between antibody titers and lysozyme activities 
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TABLE 2 .1 . Experimental design: number (n) of cockerels of either the H 
or L line per assay and, when chicks werre immunized, the 
days post immunization (PI) the assay was conducted. 

ASSAY n COCKERELS 

NON IMMUNIZED 

carbon clearance 
yeast ingestion 
superoxide 

IMMUNIZED 

immunization 
agglutinin titers 
n granulocytes 
lysozyme activity 
acid phosphatase 

10 
25 
24 

23 
23 
20 
23 
23 

10 
29 
27 

27 
27 
26 
27 
27 

DAYS P.I. 

0; 3; 5; 7; 10; 13 
0; 5; 10 
0; 3; 5; 7; 10 
-3; 3 

at the various days and antibody titers and the in- or decrease in lysozyme activity 

during immune response were calculated, using the CORR procedure of SAS (SAS, 

1989). 

RESULTS 

Agglutinin titers 

On all days after the primary immunization w i th SRBC, the H line had significantly 

higher total and 2MEr t iters (the 2MEr titers at days 0 and 3 p.i. were not normally 

distributed) (Figure 2.1). In both lines maximum titers were found at day 10 p.i. 

Circulating granulocytes 

Before immunization and 5 and 10 days p.i., slightly more granulocytes were found 

in the L line then in the H line. However, these line differences were not significant. In 

both lines, the number of granulocytes had significantly decreased five days after 

immunization. However, although the decrease appeared greater in the H line, there 

was no significant difference between the lines. Moreover, the number of circulating 
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FIGURE 2 .1 . Mean TOTAL and 2MEr titers per line after primary intramuscular immunization 
with 1 ml 50% SRBC. 

granulocytes, nor the decrease in granulocytes during immune response affected the 

antibody response, as revealed by covariance analyses. 

Uptake and removal of particles by non-immunized cocks 

The total phagocytic capacity of the cocks in vivo was estimated using the carbon 

clearance assay. The speed by which the lines removed the injected carbon from the 

blood did not differ (data not shown). And, although the L line cockerels were slightly 

heavier (3.1 ± 0.1 kg) than their contemporaries of the H line (2.8 ± 0.2 kg) (P>0 .1 ) , 

the carbon clearance was not affected by the body weight. Also, (relative) organ 

weights did not affect the clearance of carbon, although the absolute liver weight was 

significantly (P<0.01) higher in the L line (42.5 ± 3.2 g) than in the H line (37.7 ± 

2.5 g). The relative liver weights did, however, not differ between the lines (2.1 ± 0.1 

vs 1.9 ± 0.1). And in addition, no differences were found in relative weights of bursa 

and spleen between the lines (data not shown). 

The in vitro uptake of yeast cells by granulocytes differed in number of phagocytized 

yeast cells per granulocyte (Table 2.2). The H line phagocytized more (P<0 .05) yeast 
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cells per granulocyte than the L line ( 3 9 6 ± 3 1 and 3 7 7 ± 2 5 per 100 granulocytes, 

respectively). However, similar numbers of granulocytes were phagocytic; in both lines 

over 9 8 % . 

TABLE 2.2. Percentage of H and L granulocytes having 
phagocytized various numbers (n) 
of yeast cells 

n YEAST 
CELLS 

0 
1 
2 
3 
4 
5 
6 
7 
> 8 

0.12 
2.96 
9.68 

25.04 
9.00 

20.96 
8.96 
2.44 
0.84 

H 

+ 
± 
± 
± 
± 
± 
± 
± 
± 

0.33' 
1.59 
2.94 
8.82 
5.32 
4.17 
4.57 
2.18 
1.25 

% GRANULOCYTES 

0.18 
4.30 

10.78 
26.33 
31.70 
18.15 

6.74 
1.44 
0.37 

L 

± 
± 
± 
± 
± 
± 
± 
± 

± 

0.56 
2.55 * 
3.85 
5.65 
4.08 * 
4.15 * 
3.22 * 
1.50 o 
0.74 0 

* mean ± standard deviation. 
o,*: lines differ (o: P < 0 . 1 ; *: P < 0.05) 

Intracellular destruction before and after immunization 

No line differences were found in the superoxide production during phagocytosis, 

and the levels of acid phosphatase and lysozyme activity in plasma of the non-

immunized cocks (data not shown). 

After immunization w i th SRBC, the acid phosphatase levels were similar to the levels 

before immunization and no line differences were found (data not shown). The 

lysozyme activity in plasma seemed to be slightly enhanced by immunization (P<0 .1 ) , 

in the H line from 3 . 0 ± 0 . 6 to a maximum 5 days p.i of 3.5 ± 0 . 9 and in the L line from 

2.9 + 0.9 to maximal 3.5 ± 1 . 1 at day 10 p.i.. In both lines lysozyme activity at day 7 

was the lowest measured. No line differences in lysozyme activity could be detected. 

Analyses of Covariance revealed that the 2MEr t iters were affected by the lysozyme 

activity. However, the line difference in antibody response could not be explained by 

the activity of lysozyme, because even after correction for lysozyme, still a significant 

line difference existed. The results of the correlations between the lysozyme activity at 
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TABLE 2.3. Partial Pearson correlations (corrected for line effect) calculated between 
the titers (Total and 2Mercaptoethanol resistant (2MEr)) and the lysozyme activity at 
various days post immunization (PI) and Pearson correlations within the H line, and 
within the L line. When not significant (P>0.05), only direction (+ or -) of the 
correlation is given, a 0 indicates a correlation less then 0 .1 . At day 3 p.i., the values 
of the 2MEr titers were not normally distributed, this is indicated with NN. 

PARTIAL CORRELATIONS OVER LINES 

day 

L 3 
Y 5 
S 7 
0 10 
Y 

V 

3 

-.33' 
-
-.34' 
- . 38 " 

TOTAL TITER 

5 

+ 
-
-

7 

. 
+ 
0 
0 

10 

+ .29' 
0 
0 

3 

- . 4 9 ' " 
- . 6 0 ' " 
-.27* 
- . 4 0 ' " 

CORRELATIONS WITHIN H LINE 

TOTAL TITER 2MEr TITER 

2MEr TITER 

5 

- . 3 1 ' 
0 
0 
-

7 

-.29' 
0 
-
-.28' 

10 

- . 39 " 
-
-.33' 
- . 43 " 

day 3 5 7 10 3 5 7 10 

A 3 - . 5 1 ' -
C 5 
T 7 - + 

V 1 0 - o 
I 
T, CORRELATIONS WITHIN L LINE 

0 
+ 
0 
+ 

0 
-
-
+ 

- . 8 3 ' " 
- . 7 8 ' " 
- .48' 
- . 7 8 " ' 

- .49' 
-
0 
- . 42 " 

- . 5 1 " 
-
-
- . 44 " 

-.80 
-.55 
-. 
-.67 

TOTAL TITER 2MEr TITER 

day 3 5 7 10 3 5 7 10 

3 
5 
7 
10 

-
0 
-
-.42' 

-
+ 
-
-

0 
+ 
-
-

-
+ 
0 
-

NN 
NN 
NN 
NN 

-
0 
0 
0 .17' 

P<0.05; * * : P< .01 ; * * * : P<0.001 
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the various days p.i, at one hand and the t iters (total and 2MEr) at the other, are 

presented in Table 2 .3. The correlations between t iters and the change in lysozyme 

activity during the immune response were very similar and therefore not presented. All 

correlations calculated between the lysozyme activity at day 0 and the t iters at various 

days were wi th in the range of -0.1 to + 0 . 1 . The partial correlations calculated over 

lines, corrected for the effect of lines were mostly negative, except for the correlation 

between the lysozyme activity at day 5 and the total t i ters at days 7 and 10 p.i. (Table 

2.3). The high negative correlations between 2MEr t iters and lysozyme were even more 

explicit if calculated only wi th in the H line. However, the results wi thin the L line were 

not consistent w i th the other correlations, i.e. correlations were small and often 

positive. 

DISCUSSION 

To determine the contribution of phagocytic processes to the line difference in 

antibody response, we studied diverse aspects of phagocytosis in our t w o lines of 

chickens genetically selected for high or low antibody response at an age of 42 days 

(Van der Zijpp and Nieuwland, 1986). The line differences in antibody t iters of the adult 

cocks used in the present study were of the same magnitude as those of 

contemporaries at the selection age (Pinard et al., 1992). 

Selection for high antibody production in mice had a negative effect on phagocytosis 

(Wiener and Bandieri, 1974). The present results do not give evidence for the same 

association in chickens. The in vivo clearance of carbon particles, which are filtered out 

predominantly by phagocytes in the liver, spleen and bone marrow (Chang and 

Hamilton, 1979) did not differ between the lines, despite differences in liver weight. 

This is conform the results of Lamont (1986), who found that selection for high or low 

antibody response to glutamic acidalanine-tyrosine (GAT) in White Leghorn chickens, 

had no effect on the clearance of carbon. However, in meat-type chickens divergently 

selected for antibody response to Escherichia coli vaccine, a positive association 

between antibody response and the clearance of carbon was found (Heller et al., 

1992). These contradicting findings in different studies, demonstrate that genetic 

differences in humoral immune response might not always be accomplished by the 

same immune mechanisms. Moreover, although often chosen to evaluate the effect of 

treatment or selection on the phagocytic function in chickens (Glick et al., 1964; Heller 

et al., 1992), the causal connection between antibody production and carbon clearance 

is questionable. The carbon clearance assay gives only an estimation of the removal of 

free particles from the blood. For resistance to pathogens, the intracellular destruction 

of antigens is of major importance. Therefore, superoxide production during in vitro 

phagocytosis and the release of acid phosphatase and lysozyme before and after 
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immunization were measured to evaluate the intracellular destruction of antigens (Butler 

et al., 1977; Di Luzio, 1979). However, no line differences were found in any of the 

tests, indicating that the lines do not differ in the intracellular destruction of antigens. 

The activity level of lysozyme in plasma was (still) increased 3 days p.i., although this 

might be to late for an effect of immunization on acid phosphatase level (Butler et a l , 

1977). Lysozyme is released into the blood when granulocytes die after intracellular 

destruction of antigen and by the degranulation of macrophages during phagocytosis 

(Lie, 1980). Consequently, high lysozyme activity in the blood is thus associated w i th a 

high destructive activity of phagocytes. The antibody t i ters, corrected for lines, were 

negatively correlated w i th the activity of lysozyme. Yet, wi thin the L line hardly any 

negative correlation was found, indicating that although intracellular destruction has a 

negative effect on antibody production, it is not the reason for the line difference in 

antibody production. 

In both lines the number of granulocytes were decreased after immunization. This 

might be explained by a mild inflammation occurring at the site of intramuscular 

immunization attracting circulating phagocytes. However, increasing numbers of 

circulating granulocytes were reported after intravenous immunization w i th Brucella 

abortus (Trout et al., 1988). The route of antigen adminstration (Donker et al., 1989) 

and type of antigen might have caused these contradicting results. 

We thus found that , although immunization did influence the number of circulating 

granulocytes and the activity of lysozyme in plasma, the effects were not different for 

the lines. Also, in non-immunized cocks overall uptake and digestion of antigen by 

phagocytes did not differ between the lines. We therefore conclude that the line 

difference in antibody response was not due to measurable differences in phagocytic 

activity. The lack of difference in phagocytic activity between the lines urges to study 

differences in other components of the T cell-dependent antibody response, i.e. antigen 

presentation, T cell subpopulations, and lymphokine profiles. 
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Effects of immunization on phagocytosis in chickens. 

M. B. Kreukniet, H. K. Parmentier, M. G. B. Nieuwland 

and P. Joling. 

ABSTRACT 

This study was conducted to investigate whether immunization affects phagocytic 
activity of peritoneal exudate cells (PECs). To study the possible effect of circulating 
antibody, t w o lines of chickens selected for either high or low antibody response to 
SRBC were used. Chicks were immunized w i th SRBC. Five days later, PECs were 
harvested and incubated w i th SRBC. The percentage of phagocytic PECs and the 
number of sheep red blood cells (SRBC) phagocytized by these PECs were determined 
to estimate phagocytic activity. 

In general, immunization enhanced the percentage of phagocytic PECs in both lines, 
while the level of circulating antibodies had no effect on phagocytic activity. 

Incubation of the SRBC used for the pagocytosis test w i th high, low or pooled high 
and low line sera, did not enhance phagocytosis compared w i th non-serum treated 
SRBC. However, less PECs were phagocytic when the SRBC were incubated w i th L line 
serum. 

It is concluded that immunization enhances pagocytic activity of PECs. This 
enhancement is probably not due to antibody. It was hypotized that the T cells 
sensitized by immunization, activate the PECs. Al though, the lines do not differ in 
phagocytic activity, the composition of the sera might differ between the t w o lines 
used. 

INTRODUCTION 

Immunization increases the level of circulating antibodies and therefore may elevate 

the amount of antigen-antibody complexes. These complexes easily bind to the Fc 

receptors on phagocytes, which greatly facilitates phagocytosis. Thus, immunization 

might enhance phagocytosis in an antibody dependent way. However, next to the 

effects of the circulating antibodies, immunization might cause the release of other 

factors which affect phagocytosis. 

Lymphocytes sensitized by immunization, selectively accumulate in inflammatory 

reactions (Koster and McGregor, 1970) and are able to activate the microbicidal 

capacity of macrophages non-specifically (Simon and Sheagren, 1972; Tompkins eta/., 

1970). Intraperitoneal exudate cells (PECs) are often used to investigate phagocytosis. 

In chickens, it is necessary to stimulate the peritoneal cavity w i th an irritant to recover 
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adequate amounts of PECs (Glick et al., 1964; Trembicki et al., 1984). This irritant 

causes an acute local inf lammatory reaction, which atracts also the sensitized 

lymphocytes. This implies that immunization might also alter the phagocytic capacity of 

the peritoneal phagocytes by lymphokines derived from activated lymphocytes, as wel l 

as by circulating antibodies. 

Present study was conducted to determine whether immunization affects phagocytic 

activity of PECs in chickens and whether such effect might be mediated by circulating 

antibodies. Two chicken lines genetically selected for either high (H) or low (L) antibody 

response to sheep red blood cells (SRBC; Van der Zijpp and Nieuwland, 1986) were 

used to achieve the necessary differences in antibody levels. These lines differ 

significantly in antibody response to SRBC (Kreukniet and Van der Zijpp, 1989). 

However, indirect measurements of the phagocytic and catabolic act ivity, indicated no 

difference in phagocytosis between these chicken lines (Kreukniet et al., 1994). 

Because the levels of anti-SRBC antibodies differ between the lines, the phagocytic 

activity might be affected differently between the lines. However, also other serum 

components might differ between the lines. To obtain some information about possible 

line differences in serum composit ion, SRBC used for the phagocytic tests were 

incubated wi th either H, L or pooled H and L line sera of non-immunized chicks and 

phagocytosis of these SRBC was compared wi th non-serum treated SRBC. The 

objectives of the study were 1 ) to study the effect of immunization on phagoctytosis; 

2) to investigate wether such an effect was mediated by circulating antibodies; 3) to 

detect whether the selection lines differ in phagocytosis of SRBC and 4) whether there 

are indications of line differences in serum components facilitating phagocytosis. 

MATERIALS AND METHODS 

Chicks 

Fourty chicks, of the tenth selection generation of lines selected for high (H) and low 

(L) antibody production (Van der Zijpp and Nieuwland, 1986) were used, equal numbers 

of both lines and sexes. After hatching, all chicks were vaccinated against Marek's 

disease, infectious bronchitis, infectious bursal disease and Newcastle disease at 0 , 1 , 

15 and 22 days of age, respectively. Chicks were housed in two-deck commercial 

battery cages, w i th a maximum bird density of 10 chicks per cage. Sexes were kept 

separately. Food and water were available ad libitum. 

Sheep red blood cells (SRBC) 

Blood was collected from Texel sheep in Alsever solution and washed three t imes in 

phosphate buffered saline (PBS). The packed cells were diluted to a concentration (v/v) 

of 2 5 % in PBS for immunization or 5% for phagocytosis in RPMI 1640 medium (Flow, 
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Irvine, U.K.). Samples of SRBC used for phagocytosis were treated w i th a 1 0 % (v/v) 

concentration of serum (30 min. ; room temperature). Either H line, L line or pooled 

serum, containing equal volumes of H and L line serum, was used. The sera were 

collected from non-immunized chicks, however, low antibody t i ters against SRBC were 

found (3.2 in the H line serum and 1.9 in the L line serum). 

Immunization 

At 38 days of age, twenty chicks, 5 of each line-sex combination, were 

intramuscularly immunized w i th 1 ml 2 5 % SRBC in PBS. Blood was collected before 

(day 0) and 5 days after immunization. Total and 2-mercaptoethanol resistant (2MEr) 

haemagglutinin titers were determined in plasma (Van der Zijpp and Leenstra, 1980). 

The total antibody titers five days after immunization were 9.3 ± 5.4 in the H line and 

4.5 ± 1.2 in L line, the difference between the lines being significant (P<0 .001) . 

Harvesting of Adherent Peritoneal Exudate cells (PECs) 

Four days after immunization, a single intraperitoneal injection w i th sterile 

Incomplete Freund's adjuvant (IFA) (Difco, Detroit, IL, USA) 1 ml , 1 0% (v/v) in sterile 

PBS was given to all 40 chicks. Approximately 24 hours after this injection, the birds 

were killed by decapitation and the PECs were harvested according to the method of 

Sijtsma et aL (1991). Briefly, 25 ml cold PBS, containing 10 IU heparin/ml was injected 

into the peritoneal cavity w i th a blunt needle. After massage of the abdomen, the 

peritoneal cavity was opened and the PBS was gently recovered, using a 20 ml syringe. 

The PECs containing fluid was washed twice in PBS (10 min, 400 x g, 4° C) and 

resuspended in RPMI-1640, supplemented w i th 100 fjg s treptomycin (Serva, 

Heidelberg, Germany) per ml , 100 IU penicillin (Serva) per ml and 2mM L-glutamine 

(Merck, Darmstadt, Germany) and brought at a final concentration of 1.0 x 106 viable 

cells/ml. 

Phagocytosis 

Phagocytosis by PECs was measured as described by Qureshi et al. (1986) w i th 

minor modifications. Briefly, fivehunderd p\ of each PECs suspension at a concentration 

of 1.0 x 106 PECs/ml was layered on glass coverslips (18 x 24 mm) in 8-fold, and 

incubated in petridishes at 41 °C wi th 5% C0 2 for 60 min. Subsequently the coverslips 

were washed w i th PBS (41 °C) to remove non-adherent cells. 

The coverslips were placed in a 6-chamber petridish, one per chamber. Into each 

chamber, 1 ml SRBC suspension, either not serum-treated or treated w i th H, L or 

pooled H and L line serum, was dispensed; all 4 SRBC-suspensions were tested in 

duplicate per chick. The cultures were incubated at 41 °C in a humidified atmosphere 

wi th 5% CO,. 
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After 45 min, the coverslips were washed with PBS to remove the not phagocytized 

SRBC. The cells were then fixed in methanol for 10 min, and stained with Hemacolor 

(Merck). Per coverslip, 500 PECs were counted and the number of phagocytic PECs 

and the total number of phagocytized SRBC were scored. 

Statistical analyses 

After tests for normality. Analyses of Covariance were performed by the GLM 

procedure (SAS, 1989). The percentage of phagocytic PECs and the mean number of 

phagocytized SRBC per phagocytic PECs were analyzed within 'serum treatment 

SRBC', with line, immunization and sex as main effects and either the titer at day 0 or 

at day 5 after immunization as covariable within immunization. The effects of sex and 

titers were not significant. Differences between line-immunization groups were tested 

with Tukey's honestly significant difference (HSD) test. 

The parameters were also analyzed with 'serum treatment SRBC' (H, L, H + L, not 

serum-treated) as repeated factor, contrasts between phagocytosis of serum treated 

SRBC and not serum-treated SRBC were estimated. 

Analyses of Variance were conducted on the total titers at Day 5 after immunization 

with line, sex, immunization and their interactions as effects. Immunization and line, 

their interaction as well as the interaction between line and sex affected the titer 

significantly. 

RESULTS 

Immunization and line effects when offered not serum-treated SRBC. 

A significant line-immunization interaction was found when the offered SRBC were 

not serum-treated (Table 3.1). No effect of immunization was found in the L line, while 

in the H line the percentage phagocytic PECs was enhanced by immunization. 

However, the percentages phagocytic PECs found in the non-immunized L line group 

were high, compared to the other L and H control groups. 

Immunization and line effects when offered serum-treated SRBC. 

A significant immunization effect was found within the H, L or pooled H and L line 

serum used to pre-treat the SRBC. In both lines, the percentages phagocytic PECs were 

higher after immunization than in the non-immunized control group (Table 3.1). The 

number of SRBC phagocytized per PECs was not affected by line or immunization 

within pre-treatment of the SRBC. Consequently, the results of total number of 

phagocytized SRBC mimicked the results of the percentage of phagocytic PECs. 
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TABLE 3 .1. Phagocytosis (x ± sd) by peritoneal exudate cells (PECs) recovered from 
two lines selected for high (H) or low (L) antibody response, 5 days after 
immunization and of their non-immunized controls. The SRBC offered to 
phagocytize were serum-treated with H, L or pooled H + L line serum, or 
not serum-treated (non). 

Percentage Phagocytic PECs 

H line 

serum-treat Immunized Control 
SRBC 

Non 

H 
L 
H + L 

Non 
H 

L 
H + L 

29.7' ±11.6 15.0" ± 7.4 
25.6s ±11.7 15.7* ± 7.3 

24.1" ±15.3 10.4b ± 3.6 
19.3' ± 5.4 17.9' ± 10.8 

number of SRBC Phagocytized per 

1.48 ± 0.29 1.52 ± 0.22 

1.54 ± 0.45 1.59 ± 0.45 
1.47 ± 0.30 1.27 ± 0.15 

1.40 ± 0.16 1.59 ± 0.54 

L line 

Immunized 

19.3,b ± 5.3 
20.0sb ± 9.7 

17.6,b ± 5.4 
27.5" ± 16.6 

Phagocytic PEC 

1.51 ± 0.20 
1.37 ± 0.19 

1.35 ± 0.28 
1.42 ± 0.24 

Control 

20.4'b 

12.7" 

13.0b 

15.7' 

1.50 
1.47 

1.38 
1.58 

± 

± 
± 
± 

± 

± 
± 
± 

9.5 

5.5 
5.9 
9.2 

0.29 

0.32 
0.14 

0.36 

*•": different superscripts within a line differ significantly (P<0.05; Tukey's HSD). 

Effects of serum-treatment of the SRBC. 

In the H line the percentages of phagocytic PECs offered serum-treated SRBC, were 

of the same magnitude as when the SRBC were not serum-treated. In the non-

immunized L line, serum-treatment decreased this percentage. In the statistical analysis 

using 'serum-treatment of the SRBC' (H, L, pooled H and L serum, or not serum-

treated) as a repeated factor, and line, immunization and the interactions as main 

effects, no significant line effect was found. Immunization and 'serum treatment of the 

SRBC' affected the percentage of phagocytic PECs and the total number of SRBC 

phagocytized. No interactions between line and serum-treatment or immunization and 

serum-treatment were found. Immunization enhanced the percentages of phagocytic 

PECs and the number of phagocytized SRBC. The effect of serum-treatment of the 

SRBC was due to a consistent difference between the phagocytized SRBC pre-treated 

wi th L line serum and the not pre-treated SRBC. After treatment w i th L line serum, 

lower percentages of phagocytic PECs, less SRBC per PEC and lower numbers of 
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phagocytized SRBC were found. The contrasts between the SRBC treated w i th H or 

pooled H and L sera and the not serum-treated SRBC were not significant. 

DISCUSSION 

The first objective of present study was to investigate wether immunization 

influences the in vitro phagocytic activity of PECs. These PECs were harvested after 

stimulation w i th an irritant, thus in an acivated state (Ruco and Smetlzer, 1978; 

Golemboski et al., 1989). It was found that in general, immunization increased the 

percentage of phagocytic PECs, in both selection lines. It is tempting to ascribe this 

increase to the antibodies elicited by the immunization, because passive immunization 

w i th antibodies enhanced phagocytosis in turkeys (Arp, 1982). However, no significant 

effect of circulating endogenous antibody on phagocytosis could be detected and, 

although lines differed significantly in antibody t i ters, phagocytic activity did not differ 

between the lines. No enhancement of phagocytosis was found when the SRBC were 

incubated w i th exogenous antibody and other serum factors. Therefore, it seems not 

likely that antibodies causing the enhancing effect of immunization. Because 

immunization activates T cells and activated T cells accumulate in inflammatory sites 

(Koster and McGregor, 1970) and are able to activate macrophages (Simon and 

Sheagren, 1972), it seems possible that the immunization effect is mediated by these T 

cells or factors released by the T cells. 

In the non-immunized lines, non-serum treated SRBC activated a slightly higher 

percentage of PECs from the L line compared w i th the H line. This makes it attractive 

to speculate that the PECs from the non-immunized L line have a higher phagocytic 

activity compared to the H line PECs, as in the Biozzi mice (Biozzi et al., 1984). 

However, this was not statistically proven and sofar, no line differences in 

phagocytosis were found, both in immunized and non-immunized chicks (Kreukniet et 

al., 1994). Therefore, line differences in phagocytic activity seem not likely. 

In other studies, pre-treatment of SRBC w i th sera containing subagglutinating levels 

of antibodies, enhanced the phagocytic activity of PECs (Qureshi et al., 1986; Chu and 

Dietert, 1988; Puzzi et al., 1990). In the present study, no enhancement was found. 

However, the sera used were obtained from non-immunized chicks and therefore 

contained only low amounts of anti-SRBC antibodies, which might explain the lack of 

enhancement. Moreover, L line serum seemed to contain factors reducing the 

percentage of phagocytic PECs when compared to SRBC not pre-treated w i th serum. 

On the nature of these factors can only be speculated. A difference between the lines 

in serum factors of the alternative complement pathway has been found (personal 

communication, F. Demey, Antwerpen, Belgium). However, complement factors are 
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known to facilitate phagocytosis and in present study non of the sera had a true 

opsonizing effect. 

In general, we can conclude that immunization enhanced phagocytosis of SR8C. No 

consistenty differences were found between the selection lines and line differences in 

circulating antibodies did not affect phagocytosis. Therefore, it seems not likely that 

enhancement of phagocytosis is mediated by circulating antibodies. Thus, although still 

speculative, the immunization effect might be contributed to activation of PECs by 

sensitized T cells. Compared w i th non-serum treated SRBC, the treatment of SRBC 

wi th serum had no facilitating effect on phagocytosis. However, this effect differed 

between serum originating f rom the H or L line. Therefore the composition of the sera 

might differ slightly between the lines. 
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Effects of different doses of sheep erythrocytes on the humoral 
immune response of chicken lines selected for high or low antibody 

production. 

M.B. Kreukniet and A.J. van der Zijpp 

ABSTRACT 

A study was conducted to determine the influence of dose of sheep red blood cells 
(SRBC) on humoral response of chicken lines selected for high (H) or low (L) antibody 
production to SRBC. Chicks were of the f i f th selection generation; both sexes„were 
used. The primary doses of SRBC used were 5x10 , 5x10 , 5x10 , 25x10 and 
5x10 ml packed cells, resuspended w i th PBS to 1 ml and injected intramuscularly 
(IM). All chicks were IM reimmunized wi th 5x10 ml packed cells in 0.5 ml PBS. 
Throughout the experiment, H line chicks had higher titers than L line chicks. Level of 
primary total and 2ME-resistant titers followed dose level. However, in total t i ters, 
interactions between line and dose were seen at days 3 and 5 p.i., this was caused by 
a deviation in the ranking of the doses in the L line. Moreover, the kinetics of the 
primary response differed between the lines. Generally, in H line peak t iters were 
reached earlier in response. The level sequence of the total t iters in secondary response 
in general, was inverse to the dose level. However, f rom day 7 of secondary response 
onwards, dose effects were influenced by line. In L line no effects of dose on 
responding titers were seen. The 2ME-resistant t iters fol lowed dose level in secondary 
response. Line differences in the reaction to the primary dose level wil l influence the 
effectiveness of vaccinations. This should be kept in mind when chickens are bred for 
disease resistance. 

INTRODUCTION 

In mice, bidirectional selective breeding studies have been carried out to gain a 

better understanding of the genetic variation in disease resistance (Biozzi et al., 1979; 

1984). Difference in antibody production in lines selected for high (H) or low (L) 

antibody production to sheep red blood cells (SRBC) could be contributed to a 

difference between these lines in antigen handling by macrophages (Biozzi et al., 1979; 

1984) and in the multiplication rate of B-lymphocytes (Biozzi et al., 1984). A higher 

catabolic rate in L line mice macrophages caused reduced effectiveness in triggering B 

cells to antibody response against SRBC. A larger threshold dose SRBC was required to 

give a detectable antibody response in L line mice, and differences in antibody response 
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between the lines were more pronounced at low doses (Biozzi eta/., 1984). 

In chicken lines selected for antibody production after intravenous (IV) immunization 

w i th SRBC, the largest differences between H and L lines were found when the lines 

were immunized w i th the selection-dosage (Ubosi et al., 1985; Gross, 1986). Thus, 

selection dose was also the optimal dose in these selection lines. However, when 

immunized w i th lower doses, differences between the lines were larger than after 

immunization w i th doses above the selection-dosage (Gross, 1986). Differences 

between the lines in the kinetics of the immune response were not determined (Ubosi 

etal., 1985; Gross, 1986). 

Injections of carrageenan or colloïdal carbon (Van der Zijpp et al., 1988; 1989) in 

chickens selected for anti-SRBC production after IM immunization, did not produce any 

difference between the lines in antigen handling by macrophages. However, more 

antibody produing cells were detected in the H line spleen (Donker, 1989). 

The present study is conducted to evaluate the influences of dose of SRBC on 

humoral responses of chicken lines selected for anti-SRBC production after IM admini­

stration of SRBC. In a previous study, using White Leghorn laying hens, a dose of 
-4 

5x10 ml SRBC did not invoke an immune response (Van der Zijpp, 1978). A dosage 
-4 -1 

SRBC ranging from 5x10 ml to 5x10 ml SRBC was used in this study to 

demonstrate line differences f rom threshold dose to doses inducing normal immune 

response. 

MATERIALS AND METHODS 

Experimental Chicks. 

One hundred chicks of the f i f th generation selected for high (H) or low (L) antibody 

production to sheep red blood cells (SRBC) (Van der Zijpp and Nieuwland, 1986) were 

used. Selection was performed on a basic population of ISA-Warren, medium heavy, 

brown egg layers. Selection criterion was total agglutination titer 5 days after IM 
-2 

immunization wi th 25x10 ml packed sheep red blood cells (SRBC), resuspended to 1 

ml in phosphate buffered saline (PBS) at 37 days of age. 

Lines and sexes were equally divided over the 5 dose-groups wi thout any replicates 

(n = 5 per dose-line-sex-group). After hatching, all chicks were vaccinated against 

Mareks disease, infectious bronchitis, infectious bursal disease and Newcastle disease 

at 0 , 1 , 15 and 22 days of age, respectively. Chicks were housed in two-deck battery 

cages, w i th a maximum bird density of 10 chicks per cage. Sexes were kept 

separately. Food and water were available ad libitum. 

SRBC Doses. 
-4 -3 -2 -2 -1 

Five doses of SRBC were used, 5x10 , 5x10 , 5x10 , 25x10 and 5x10 ml 
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packed cells, all resuspended to 1 ml w i th PBS. The SRBC were obtained in a heparin 

solution from f ive, unrelated, Texel sheep and washed three t imes in physiological 

saline (0 .9% NaCI). 

Immunization. 

At 31 days of age, chicks were bilaterally injected w i th t w o 0.5 ml portions of SRBC 

dose, into the Musculus pectoralis (breast muscles). Ten chicks per line, f ive cockerels 

and five pullets, were injected w i th each SRBC dose. A t 59 days of age, all 100 chicks 

were reimmur 

ml w i th PBS. 

were reimmunized IM w i th 5x10 ml packed cells, ml packed cells, resuspended to 1 

Preparation of Plasma Samples. 

All chicks were repeatedly bled from the wingvein at 0 , 3, 5, 7, 10 and 14 days p.i. 

and at 0 , 3, 5, 7, 10 and 13 days post reimmunization (p.r.). Af ter centrifugation 

(1200 x g) plasma was collected and stored at -20°C until assayed. 

Haemagglutination Assay. 

Antibody t i ters, both total and 2mercaptoethanol (2ME)-resistant antibody t i ters were 

determined, using a microtiter procedure (Van der Zijpp and Leenstra, 1980). Titers 

were expressed as the log2 of the highest plasma dilution giving total agglutination. 

Statistical Analysis. 

The t i ters were analysed using the GLM-procedure of SAS (SAS, 1985), w i th the 

Model 1 . Three final models were chosen to f i t the different variables. 

Yijkl = p + L, + D: + Sk + LxDij + LxS ik + DxSJk + LxDxS i jk + eilkl ( 1 ) 

Yilk = P + L, + D; + LxDij + eijk (2) 

Yijk = p + L, + Dj + LxDj + LxS ik + eijk (3) 

Yijk = p + L, + Dj + eijk (4) 

Yiik| = value of the l-th chick: primary or secondary titer 
(j = population mean 
Li = effect of the i-th line (i = H, L) 
D, = effect of the j - th dose 

(j = 5 x 1 0 " 4 , 5 x 1 0 " 3 , 5 x 1 0 " 2 , 2 5 x 1 0 " 2 and 5x10" 1 ml SRBC) 
Sk = effect of the k-th sex (k = male, female) 
LxDij = two-way interaction effect of the i-th line and j - th dose 

(LxS ik, DxSjk, LxS ik, DxS jk = as LxD^, but between other main effects) 
LxDxS i jk = as above, but three-way interaction 
eiik, = remainder. 
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Model 2 was the best f i t for primary total t i ters, model 3 for secondary total t i ters and 

model 4 for both primary and secondary 2ME-resistant t i ters. 

Variables not conforming to criteria of normality were omitted f rom further 

statistical analyses: primary 2ME resistent t iters at days 0 , 3 and 5 p.i., secondary total 

t i ters at day 0 p.i., secondary 2ME-resistant t iters at days 0 and 3 p.i. Differences 

between doses were tested w i th Tukey's studentized range (HSD) test. 

RESULTS 

Primary total titers. 

Differences between the lines in the kinetics of the responses were apparent 

(Figure 4.1). Responses were higher in the H line and peak t iters were generally 

reached sooner after immunization than in the L line. The height of the response was 

also influenced by the SRBC dose administered; a lower dose of SRBC was fol lowed by 

a smaller anti-SRBC response. However, within days, differences between H and L line 

tended to be smaller at low doses. At days 3 and 5 p.i., significant (Table 4.1) 

interactions between line and SRBC dose were found, caused by a deviation in the 

ranking of the L line. In H line a descending sequence of SRBC dose administered was 
-2 

fol lowed by a similar sequence in antibody level. But in L line chicks the 25x10 ml 

SRBC dose caused higher total t iters than the 5x10 ml SRBC dose (Figures 4.1 and 

4.2). 

TABLE 4 .1 . Analysis of variance for the primary total titers (sum of squares) of chicken 
lines selected for high or low antibody production immunized with different 
doses sheep red blood cells. 

Source of 
variation 

Line 
Dose SRBC 
Line * Dose 
Remainder 

df 

1 
4 
4 

90 

0 

1.0 
2.1 
2.9 

55.6 

3 

2 8 . 1 " * 
8 1 . 1 " ' 
1 6 . 1 " 
72.1 

DAYS p.i. 

5 

9 8 . 0 " ' 
4 0 1 . 1 " " 

22.1* 
190.1 

7 

136.9*" 
3 1 0 . 1 " ' 

8.9 
249.1 

10 

70 .6 " " 
8 1 . 6 ' " 

1.8 
235.8 

14 

17 .6" 
20.4' 
11.0 

182.0 

: P < 0.05; * * : P < 0 .01: * * * : P < 0.001. 
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DAYS p.i. 

FIGURE 4 .1 . The kinetics of the primary total antibody response in chicken lines selected for 
high (H) or low (L) response to SRBC after IM immunization with 5 different 
doses SRBC. 

Primary 2ME-resistant t i ters. 

No IgG-type antibodies were detected at days 0 and 3 p.i. A t day 5 p.i. only when 
-2 -1 

25x10 or 5x10 ml SRBC was injected very small amounts of IgG could be detected 

in only a few chicks (H < 1.8; L < 0.2). At days 7, 10 and 14 p.i., line and dose 

affected 2ME-resistant t i ters. Immunization wi th low doses of SRBC was fol lowed by a 

low IgG-type response (Table 4.2). The sequence in response fol lowed the order of 

SRBC doses. Except for consistently lower titers in L line chicks, no differences 

between lines were found in the responses to the different doses SRBC. 

Secondary total t i ters. 

A complex model was necesarry to f i t the results of the total t iters after reimmuniza-

t ion. Titers were affected by line, dose and sex at most days, as well as by the 

interactions line * sex, and line * dose (Table 4.3). In general, H line chicks had higher 

total t i ters, but H line pullets had a higher (0.2 - 2 titerpoints) response than the 

cockerels of this line, while the sexes in L line did not differ. 

Besides the differences in the height of the response, also differences in the kinetics 

between the lines were apparent. In general, H line peak t i ters were reached on day 5 
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p.r. and followed by a decrease in titer of 0.5. In L line titers on days 5 and 7 p.r. 

hardly differed from each other (Table 4.4). Furthermore, the height of the response in 

H line was affected by the primary SRBC dcoe administered; the response being more 

or less inverse to the primary dose level. In L line no relationship between titers and 

dose could be detected. 

O 

4 

3 

2 h 

1 

0 

DAY 5 p.i. 

c\i 
O 
O 
_ i 

DC 
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-

H LINE 
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DAY 7 p.i 

CM 

o 

rr 
LU 

O 

5x10 5x10 

ml SRBC 

5x10 2 25x10 2 5x10 1 

FIGURE 4.2. The primary total titers at days 5 and 7 p.i. of chicken lines selected for high (H) 
or low (L) response to SRBC after IM immunization with 5 different doses SRBC. 
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TABLE 4.2. Primary and secondary 2ME-resistant titers within high (H) or low (L) 
antibody production lines and dose SRBC (ml) (Mean ± standard 
deviations). 

DOSE 
SRBC 

5x10" 
5x103 

5x10 = 
25x10= 
5x10 ' 

5x10" 
5x103 

5x10 = 
25x10= 
5x10 ' 

5x10" 
5x103 

5x10 = 
25x10= 
5x10'' 

5x104 

5x103 

5x10 = 
25x10= 
5x10 ' 

Days post Primary immunization H I 

7 

0 .0±0 .0 ' 
0.2±0.4 ,K | 

0.9±0.7c d ' 
2.5 ±1.8*" 
3.5±1.5* 

10 

0.1 ±0.3" 
0.5±0.8cd 

1.6 ±1.0"" 
2.7 ± 1 . 6 * 
3.5 + 1.3' 

14 

0 .0±0.0d 

0.4±0.7cd 

0.8±0.8b<:d 

1.5 ± 1 . 3 * 
2 . 3 ± 1 . 1 ' 

ne 

Days post Primary immunization L line 

7 

o.o±o.oe 

0.0 ±0.0" 
0 .3±0.5d ' 
1.6±1.0"cd 

2.0±1.4"c 

10 

0.0±0.0d 

0.4±0.5cd 

0.8±0.9cd 

2.3 ±0.7 ' " 
2.6 ± 1 . 4 * 

14 

0.1 ±0.3d 

0.1 ±0.3" 
0 .2±0.4d 

1.3±0.7'b<: 

1.9±0.6' 

Days post Secondary immunization 

5 

2.2±11.3c 
2 .9±1.5* c 

3.6±1.3 , bc 

4.1 ±1.0'" 
4 .6±0 .7 ' 

7 

3.6 + 0 .8* 
4.0 ± 1 . 2 * 
4.7 ±1.5 ' " 
4.4 ± 1 . 2 * 
4 .8±0 .6 ' 

10 

2.8 ± 1 . 1 * 
3.3 ± 1 . 2 * 
3.7 ± 1 . 3 * 
3 .8±0.4 '" 
4.1 ±0.7* 

H line 

13 

2.1 ± 1.2" 
2.5 ± 1.3* 
2.7 ± 1.3* 
3 .0±10.9'b 

3.7 ± 0.5" 

Days post Secondary immunzation L line 

5 

2.0±1.2C 

2.5±1.6"c 

3.5±0.5*bc 

3.7±1.1 ' b c 

3.6±1.0 , b c 

7 

3 .2±1 .1 " 
3.2 ±1.5" 
4.4 ± 0 . 5 * 
4 .1+0.7 ' " 
3 .9±0.7 '" 

10 

2 .6±1 .1 b 

3.0±1.3 ' " 
3 .5±0.5 
3.3 ± 0 . 7 * 
3.5 ± 1 . 0 * 

13 

2.0 ±1.2" 
2.1 ±1.0" 
3.0±0.7a" 
3.0 + 0 .5* 
2 . 4 ± 1 . 1 * 

means within column having the same letter do not signifcantly differ (P<0.05) 
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TABLE 4.3. Analysis of variance for the secondary total titers (sum of squares) of 
chicken lines selected for high or low antibody production, immunized with 
different dose SRBC. 

Source of 
variation 

Line 
Dose SRBC 
Sex 
Line*Dose SRBC 
Line*Sexe 
Remainder 

df 

1 
4 
1 
4 
1 

88 

3 

37 .2 " * 
4.2 
0.1 
1.8 
2.3 

72.6 

5 

110.3"" 
30.4 ' 
18 .5 " 
12.4 
18 .5 " 

194.7 

DAYS p.i. 

7 

7 5 . 7 " ' 
39 .7"* 

3.6 
18.7* 
10 .9" 

136.2 

10 

59.3"* 
12.7 

7.3' 
18.3' 
7.3* 

132.1 

13 

13 .0"* 
4.5 

10 .2 " 
10.5' 
17 .6"* 
89.1 

*: P < 0.05; * * : P < 0 .01; * * * : P < 0.001 

Secondary 2ME-resistant titers. 

Effects of line and dose were found on secondary IgG t iters. Again, H line had higher 

t i ters. Dose effects were not consistent. In general, the highest primary dose of SRBC 

also gave the highest secondary IgG response (Table 4.2). No differences between the 

lines in response to the doses were detected. 

TABLE 4.4. Secondary total titers within high (H) or low (L) antibody production line and 
dose SRBC (Mean ± standard deviation). 

LINE 

DOSE 

5x10" 
5x10'3 

H 5x102 

25x102 

5x10" 

5x10" 
5x10'3 

L 5x102 

25x102 

5x10 ' 

0.5 
1.1 
0.9 
0.7 
1.2 

0.5 
0.7 
0.7 
1.3 
0.8 

0 

±0.5 
±0.6 
±0.7 
±0.7 
±0.8 

±0.5 
±1.3 
±0.5 
±0.7 
±0.9 

2.8 
3.1 
2.3 
2.5 
2.8 

1.8 
1.6 
1.3 
1.5 
1.2 

3 

±0.9*b 

±0.9' 
±1.2*bc 

±1.0"* 
±0.8"b 

±1.2"" 
±0.8bc 

±0.7C 

±0.7bc 

±0.8' 

7.5 
7.9 
6.6 
6.0 
5.5 

4.8 
4.9 
4.4 
4.6 
4.3 

DAYS P.I. 

5 

±2.4'b 

±2.0* 
±1.8""= 
+ 1 o «bed 

± 1 1 bed 

±1.7cd 

±1.9C<1 

±1.1e d 

±1.2cd 

±1.3" 

7.1 
7.9 
6.1 
5.5 
5.0 

4.8 
4.9 
4.4 
4.3 
4.5 

7 

±1.5 ,b 

±1.1" 
±2.2'bc 

±0.8*' 
±0.7C 

±1.3C 

±1.5C 

±0.8' 
±0.9C 

±1.3C 

5.8 
6.4 
5.1 
4.6 
4.4 

3.4 
3.8 
3.8 
3.5 
4.1 

10 

±1.5'b 

±2.3' 
±1.7"bc 

±0.7bc 

±0.5bc 

±1.1° 
±0.8° 
±0.6 ' 
±0.8 ' 
±1.4bc 

3.7 
4.2 
4.1 
3.0 
3.3 

2.7 
2.5 
3.2 
3.0 
3.3 

13 

±0.9""= 
±1.4" 
±1.2*" 
±1.3""= 
±1.3"* 

±1.1b c 

±1.3C 

±0.8*bc 

±0.8'bc 

±1.2'bc 

means within a column having the same letter do not significantly differ (P<.05) 
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DISCUSSION 

Objectives of this study were to evaluate line differences in antibody response to 

SRBC doses ranging from threshold dose to doses inducing normal immune response. 
-4 

Although White Leghorns did not respond to 5x10 ml SRBC, this dose did induce an 
-4 -1 

antibody response in our selection lines. And the dose range of 5x10 to 5x10 ml 

SRBC in present study did not include the threshold dose in neither line. When the 

height of the response, which was influenced by the dose level, was not considered, 

the kinetics of the antibody response to all doses SRBC were consistent w i th the 

normal observations in these selection lines (Van der Zijpp e ra / . , 1988, 1989; Donker 

et al., 1990). The IgG-type antibodies appeared relatively late, compared to the results 

of other investigators (Martin et al., 1988). However, when our selection lines were IV 

immunized IgG type antibodies could also be detected earlier in response (Donker er al., 

1990), indicating an immunization route effect. 

The higher t iters of the H line, within dose, agree w i th the usual observations on our 

selection lines (Van der Zijpp and Nieuwland, 1986; Donker et al., 1990; Van der Zijpp 

et al., 1988; 1989). In mice (Biozzi er al., 1984) and chickens (Ubosi et al., 1985; 

Gross, 1986) differences between selection lines were more pronounced when these 

lines were immunized w i th low doses of SRBC. Biozzi and associates (Biozzi et al., 

1984) contributed this to the higher catabolic rate of L line macrophages, leaving less 

SRBC's to trigger B cell response. This hypothesis is not supported by our study; the 

differences between primary antibody titers of our selection lines even tended to be 

smaller at low doses (Figure 4.2). Moreover, when macrophages of both lines were 

killed w i th carrageenan (Van der Zijpp et al., 1988), line differences were maintained. 

Also, no line differences in the activity of phagocytes could be determined (Kreukniet 

et al., 1994), giving strong evidence that other mechanisms than antigen handling by 

macrophages are responsible for the differences in our chicken lines. Moreover, a higher 

number of direct plaque forming cells in H line chicks was found (Donker, 1989). A t the 

moment FACS analyses are carried out to study the cell populations in the blood and 

the lymphoid organs in greater detail. 

In general, the primary immune response followed the level of SRBC dose, while the 

secondary response in the H line showed an inverse response sequence. In the L line no 

order in total antibody level could be detected. It is obvious that these wi th in line 

differences in relation to the primary dose level could have negative consequences on 

the effectiveness of vaccination. When chickens are bred for disease resistance these 

effects should be kept in mind. 



66 Dose effect humorale response 

ACKNOWLEDGEMENTS 

The authors thank Miss K. van Belzen and Mr. M.G.B. Nieuwland for their technical 

assistance, Mrs M.S.J, van der Wal and Mrs A .E.M.M. van Hapert for typing the 

manuscript. 

REFERENCES 

Biozzi, G., Mouton, D., Sant'Anna, O.A., Passos, H.C., Gennari, M., Reis, M.H., Ferreira, 
V.C.A., Heuman, A.M., Bouthillier, Y., Ibanez, O.M., Stiffel, C , and Siquera, M., 1979. 
Genetics of immunoresponsiveness to natural antigens in the mouse. Curr. Top. Microbiol. 
Immunol. 85: 31-98. 

Biozzi, G., Mouton, D., Stiffel, C , and Bouthillier, Y., 1984. A major role of macrophage in 
quantitative genetic regulation of immunoresponsiveness and antiinfectious immunity. Adv. 
Immunol. 36: 189-234. 

Donker, R.A., 1989. Thermal influences in chicken lines selected for immuneresponsiveness. 
PhD thesis, Wageningen, Netherlands. 

Donker, R.A., Nieuwland, M.G.B., and Van der Zijpp, A.J., 1990b. Heat-stress influences on 
antibody production in chicken lines selected for high and low immune responsiveness. 
Poultry Sei. 69:599-607. 

Gross, W.B., 1986. Effects of dose of antigen and social environment on antibody response of 
high and low antibody response chickens. Poultry Sc. 65: 687-692. 

Kreukniet, M.B., Nieuwland, M.G.B., and Van der Zijpp, A.J. 1994. Phagocytic activity of two 
lines of chickens divergently selected for antibody production. Vet Immunol. Immunopathol., 
44:377-387. 

Martin, A., McNabb, F.M.A., and Siegel, P.B., 1988. Thiouracil and antibody titers of chickens 
from lines divergently selected for antibody response to sheep erythrocytes. Devel. Comp. 
Immunol. 12: 611-619. 

SAS, 1985. SAS Institute Inc. SAS User's Guide: Statistics Version 5 Edition. Cary, N.C.: SAS 
Institute Inc. 956 pp. 

Ubosi, CO. , Dunnington, E.A., Gross, W.B., and Siegel, P.B, 1985. Divergent selection of 
chickens for antibody response to sheep erythrocytes: Kinetics of primary and secondary 
immunizations. Avian Diseases 29: 347-355. 

Van der Zijpp, A.J., 1978. The humoral immune response of the chicken. Jn Proc. Zodiac-Symp. 
Adaptation. Pudoc Wageningen p92-97. 

Van der Zijpp, A.J. and Leenstra, F.R., 1980. Genetic analysis of the humoral immune response 
of White Leghorn chicks. Poultry Sc. 59: 1363-1369. 

Van der Zijpp, A.J., and Nieuwland, M.G.B., 1986. Immunological characterisation of lines 
selected for high and low antibody production. Proc. 7th European Poultry Conference 1: 
211-215. 

Van der Zijpp, A.J., Scott, T.R., Glick, B., and Kreukniet, M.B., 1988. Interference with the 
humoral immune response in diverse genetic lines of chickens: I. the effect of carrageenan. 
Vet. Immunol. Immunopathol. 20: 53-60. 

Van der Zijpp, A.J., Scott, T.R., Glick, B., and Kreukniet, M.B., 1989. Interference with the 
humoral immune response in diverse genetic lines of chicken: II. the effect of colloïdal 
carbon. Vet. Immunol. Immunopathol. 23:187-194. 



chapter 

EFFECTS OF ROUTE OF IMMUNIZATION, 
ADJUVANT AND UNRELATED ANTIGENS ON 
THE HUMORAL IMMUNE RESPONSE IN LINES 

OF CHICKENS SELECTED FOR ANTIBODY 
PRODUCTION AGAINST SHEEP 

ERYTHROCYTES 

M. B. Kreukniet, A .J . van der Zijpp and M. G. B. Nieuwland 

published in: Vet. Immunol. Immunopathol. 33:115-127 (1992). 
reproduced with permission of Elsevier Science Publishers. 



Chapter 5 69 

Effects of route of immunization, adjuvant and unrelated antigens on 

the humoral immune response in lines of chickens selected for 

antibody production against sheep erythrocytes. 

M.B. Kreukniet, A.J. van der Zijpp and M.G.B. Nieuwland 

ABSTRACT 

Effects of intramuscular (IM), intravenous (IV) and intraperitoneal (IP) primary 
immunization w i th the T cell-dependent antigen sheep red blood cells (SRBC) was 
studied in t w o chicken lines selected for either high (H) or low (L) antibody response 
after IM immunization w i th SRBC. Line differences were affected by the primary route 
of immunization as was true for the memory induction. 

Intravenous immunization w i th the T cell-dependent antigen Bovine Serum Albumin 
(BSA) showed line differences similar to those found after IM or IV immunizations w i th 
SRBC. Immunizations wi th the T cell-independent antigens Brucella abortus (BA) or 
Salmonella H-antigen (SHA) both revealed an interaction between selection lines and 
sex of the chicks, although interaction effects were opposite. 

Immunization w i th SRBC in Incomplete Freund's Adjuvant (IFA) did not affect the 
line differences, whereas immunization wi th Complete Freund's Adjuvant (CFA) 
diminished the line differences. 

It is postulated that differences in antibody production between the selection lines 
might be contributed to differences in T cell activity. 

INTRODUCTION 

Two lines of chickens were divergently selected for antibody production to sheep red 

blood cells (SRBC), a T cell-dependent antigen (Van der Zijpp and Nieuwland, 1986). 

Chicks were selected for either high (H) or low (L) antibody production after an 

intramuscular (IM) immunization w i th SRBC. 

Since no evidence of differences between the selection lines in macrophage activity 

was found so far (Van der Zijpp x 1988, 1989). We further studied possible 

mechanisms responsible for the differences in antibody response between the 

genetically selected lines. These included: 

i) Routes of immunization. The route by which an antigen enters the body determines 

the lymphoid tissues involved in the immune response. After IV administration of 

antigen, the spleen will be a major source of antibodies (White et al., 1975). An IM 
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injection will cause a more local reaction, and the antigen may be transported via 

draining lymphatic ducts to regional lymphoid tissues. In these functionally lymph node­

like structures, antibody responses will be elicited. The spleen is also involved in this 

response (Donker et al., 1989). After an IP immunization, the lymphoid tissue around 

the intestine is probably the prime side for antibody production. 

ii) Adjuvant. Intramuscular immunization w i th antigen in either Incomplete or 

Complete Freund's Adjuvant (IFA and CFA, respectively) enhances and prolongs the 

antibody response in mammals. IFA and CFA both enhance humoral immunity, 

however, only CFA elicits cell-mediated immunity (Allison and Byars, 1986). The 

mycobacterial components in CFA stimulate T cells, among which T helper populations 

(Allison and Davies, 1 9 7 1 ; Waldman and Pope, 1977). Accessory cells are probably 

involved in this process by releasing factors, such as interleukine-1, stimulating the 

proliferation of helper T lymphocytes (Allison and Byars, 1986). 

iii) Unrelated antigens. Measuring the humoral response of H and L line chickens to 

1) a soluble T cell-dependent antigen like Bovine Serum Albumin (BSA), 2) a partially T 

cell-independent antigen like Brucella abortus (BA), or 3) an a-specifically acting T cell-

independent antigen, such as Salmonella H-antigen (SHA) will extend the knowledge of 

the effect of selection on T cell involvement in antibody response. 

MATERIALS AND METHODS 

Experimental Chicks 

A total of 160 chicks was used in six experiments. All chicks were of the 4 th 

generation of lines selected for either a high (H) or low (L) hemagglutination t i ter, 

measured 5 days after a primary immunization w i th 1 ml 2 5 % SRBC in phosphate 

buffered saline (PBS) injected in the musculus pectoralis at 37 days of age. Chicks 

were housed in rearing cages, lines intermingled, but sexes separated. Food and water 

were applied ad libitum 

Vaccinations against Marek's disease, infectious bronchitis, infectious bursal disease 

and Newcastle's disease were done at 1 , 2, 16 and 20 days of age, respectively. 

Antigens 

The SRBC were collected from Texel sheep. Blood was washed three t imes in PBS 

and packed cells were diluted to concentrations of either 5% or 2 5 % in PBS (v/v). 

Salmonella H Antigen A (SHA) (Salmonella enteritidis paratyphoid A) was obtained 

from Difco laboratories (Detroit, Michigan, USA). 

Brucella abortus (BA) (CVI, Lelystad, the Netherlands) containing approximately 

5 x 1 0 n bacteria/ml was diluted 1:10 in PBS. 

Bovine Serum Albumin (BSA) (Sigma, Chemical Company, St. Louis) was diluted to a 
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4% dilution in PBS (v/v). 

Experimental Design 

Route of Immunization. Three experimental groups of 20 chicks each, in which lines 

and sexes were represented equally, were formed. At 31 days of age groups were 

either injected intraperitoneally (IP) with 0.5 ml 5% SRBC, intravenously (IV) {vena 

cutanea) with 0.5 ml 5% SRBC, or intramuscularely (IM) with in total 1 ml 25% SRBC, 

one aliquot at each thigh (musculus pectoralis). On days 0, 3, 5, 7, 11 and 14 post 

immunization (p.i.) blood was collected of all chicks. The IM-group was also bled at 

days 20, 25, 28 and 33 p.i. Plasma was harvested and stored at -18° C until assayed. 

To investigate the effect of primary immunization route on memory induction, all 60 

chicks were IM reimmunized at 66 days of age. One ml 50% SRBC was injected in two 

aliquots, one in each thigh. Blood was collected at 0, 3, 5, 7, 10 and 12 days p.i. 

Plasma was stored at -18° C. In all plasma samples total and 2-Mercapthoethanol 

resistant (2MEr) antibodies were determined using the microtiter procedures (Delhanty 

and Solomon, 1966, McCorkle and Glick, 1980). Antibody titers were expressed as the 

log2 of the reciprocal of the highest plasma dilution giving complete agglutination. 

Adjuvants. Experimental groups consisted of 20 chicks, 5 of each line-sex-combina­

tion. Chicks were IM immunized with in total 1 ml containing 0.25 ml packed SRBC, 

0.25 ml PBS and either 0.5 ml Incomplete Freund's Adjuvant (IFA) or 0.5 ml Complete 

Freund's Adjuvant (CFA) (Difco Laboratories, Detroit, Michigan, USA), injected in two 

aliquots at 31 days of age. The IM-chicks of the route-experiment were used as 

controls. 

Blood was collected at 0, 3, 5, 7, 11, 14, 20, 25, 28 and 33 days p.i. Of the CFA-

group, blood samples were also taken at 35, 38, 42, 45 and 47 days p.i.. The IFA 

group was IM reimmunized (without IFA) at 66 days of age, 35 days p.i., with in total 

1 ml 50% SRBC injected in two aliquots. Blood was collected at days 0, 3, 5, 7, 10 

and 12 after reimmunization. Total and 2MEr antibody titers were determined. 

BSA-immunization. At 66 days of age, 20 chicks, 5 of each line-sex combination, 

were IV injected with a 4% BSA diluted in PBS (approximately 40 mg BSA per kg body 

weight; i.e. 1 ml for pullets and 1.1 ml for cockerels). Blood was collected at 0, 3, 5, 

7, 10 and 12 days p.i. and titers were determined in an enzyme-linked immunosorbent 

assay (ELISA) as described by Sijtsma e f al. (1989). 

BA-immunization. At 66 days of age, 5 chicks of each line-sex combination were IV 

immunized (vena cutanea) with 0.1 ml BA in the right wing. Blood was collected at 0, 

3, 5, 7, 10 and 12 days p.i. Both total and 2MEr titers were determined using the 

microtiter procedure. Dilution (1:1) series, were made with 50 ul serum in 50 ul PBS 

and 50 ul of a 10% BA solution in PBS was added to each cup. After 24 hours storage 

in a humid box (room temperature), titerplates were held vertical for 30 seconds and 
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titers were read as the log reciprocal of the highest dilution showing agglutination. 

SHA-immunization. A t 24 days of age, 5 chicks of each line-sex combination were 

IV (vena cutanea) injected w i th 0.1 ml SHA. Blood was collected on 0 , 3 , 5, 7, 10 and 

14 days p.i. Agglutination t i ters were determined using the (Dynatech) microtiter 

procedure. Dilution series (1:1) were made w i th 25 ul serum in 25 ul PBS. To each cup, 

25 ul 1:5 SHA in PBS was added. After shaking for 1 5 seconds, t iterplates were stored 

in a humidbox at room temperature for 4 days. Titers were measured as described for 

the BA-experiment. 

Statistical analysis. 

All normal distributed data were analyzed using the GLM-procedure of SAS (SAS, 

1985), w i th the appropriate full factorial design. Non significant factors were omitted 

from the final model. In total 8 models were found which f i t ted the data best. 
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= depending variable 

= population mean 

= line effect (i = H or L) 

= route effect (j = IM, IV or IP) 

= immunization method effect (j = IM or IFA or j = IM or CFA) 

= sex effect (k = male of female) 

= effect of line-route interaction 

= effect of line-immunization method interaction 

= effect of line-sex interaction 

= remainder. 

Model 1 fiited best for primary total t i ters in the route experiment; Model 2 for 

secondary total t i ters in the route experiment; Model 3 for both primary and secondary 

2MEr t iters in the route experiment; Model 4 for primary total and 2MEr t iters and 

secondary total t iters in the IFA-experiment; the 2MEr titers in the CFA-experiment; 

Model 5 for the total t iters in the CFA-experiment; Model 6 for the data of the 

secondary 2MEr titers in the IFA-experiment; Model 7 for the data of both the BA- and 
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SHA-experiments and Model 8 for the data of the BSA-experiment. 

Differences between the three immunization routes were tested with Bonferoni's test 

and the line differences within a route group with the F-test. The two adjuvant-

experiments were separately analyzed, with a full factorial design, including line, sex, 

immunization method (IM and IFA or CFA) and interactions. In both adjuvant experi­

ments the line effect within immunization method was tested with a F-test. 

RESULTS 

Route of Immunization. 

The kinetics of the immune response of the IM, IV, and IP primed groups are 

presented in Figures 5 .1, 5.2, and 5.3, respectively. After primary immunization, the IV 

group produced higher titers than both other groups. No Line*Route effects were 

found. However, in the primary response, line differences in total titers could be 

detected within the IM and the IV group, but not in the IP group. Independently of route 

of immunization, or line, titers peaked at 5 days p.i. The primary 2MEr titers generally 

followed the kinetics of the total titers. 

All chicks were IM reimmunized, and in all groups, total titers peaked at 5 days after 

reimmunization. Although the secondary 2MEr titers were generally higher than the 

primary, the secondary total titers were only higher than the primary in the IP group. 

The height of the secondary total antibody response was influenced by a Line*Route 

interaction. In the IM and the IP group lines differed (Figures 5.1 and 5.3). However, in 

the IV group no line differences were found. In the L line even a higher response was 

observed (Figure 5.2). 

IFA. 

A negative effect of IFA on the height of both total and 2MEr titers was found, when 

compared to the control IM group (Figures 5.1 and 5.4). The kinetics of the total 

antibody responses were comparable, but in the IFA group antibody titer peaked later 

than in the IM group (day 7 versus day 5 p.i.) The response in the IFA group consisted 

nearly completely of 2MEr antibodies from day 25 p.i. onwards (Figure 5.4). 

Also after reimmunization, antibodies in the IFA group were mainly of the 2MEr-type, 

which was in the IM group true to a lesser extend. Both total and 2MEr secondary 

responses were low, compared to the primary response and to the secondary response 

of the IM group. 

Within the IFA group, line differences were apparent in the primary response: the H 

line had the higher titers. The L line followed the response of the H line on a lower 

level. 
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FIGURE 5.1. The kinetics of the total and 2MEr antibody response in lines selected for high 
(H) or low (L) antibody response after IM immunization and IM reimmunization 
with SRBC. Line differences are indicated (F-test; NN: non normal distribution of 
values; -: p>0.1; 0: P<0.1; *: P<0.05; **: P<0.01; * * * : P<0.001). 
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FIGURE 5.2. The kinetics of the total and 2MEr antibody response in lines selected for high (H) 
or low (L) antibody response after IV immunization and IM reimmunization with 
SRBC. Line differences are indicated (F-test; NN: non normal distribution of values; -: 
p>0.1; 0: P<0.1; \ P-cO.05; **: P<0.01; • * * : P<0.001). 
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FIGURE 5.3. The kinetics of the total and 2MEr antibody response in lines selected for high (H) 
or low (U antibody response after IP immunization and IM reimmunization with 
SRBC. Line differences are indicated (F-test; NN: non normal distribution of values; -: 
p>0.1; 0: P<0.1; *: P<0.05; **: P<0.01; * * * : P<0.001). 

CFA. 

Striking differences between the CFA and the IM group were found (Figures 5.1 and 

5.5). In both groups t iters peaked at day 5 p.i. fol lowed by a decline, however, the 

level of antibodies rose in the CFA group wi thout reimmunization, to the level of the 

first peak. It remained on this level from day 25 untill the end of the experiment (day 

47 p.i.). In contrast to the IM group the antibodies elicited after CFA administration 

completely consisted of 2MEr antibodies (Figure 5.5). Also, CFA affected the line 

differences in antibody level significantly at several days. Within the CFA group line 

differences could only be detected at day 11 p.i. (Figure 5.5), where the H line had 

higher t i ters. This tended to be also the case at day 14 p.i. Throughout the rest of the 

response, no line differences could be detected, often the L line was even higher 

( p>0 .1 ) . 

BSA-immunization. 

Antibodies against BSA could already be detected in both lines at day 0 p.i. A t day 3 

p.i., however, t iters were lower than at day 0 p.i. (Figure 5.6). Line differences were 

apparent; the H line having the higher t i ters. 
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4. The kinetics of the total and 2MEr antibody response in lines selected for high (H) 

or low (L) antibody response after IM immunization with SRBC in Incomplete 

Freund's Adjuvant and IM reimmunization with SRBC. Line differences are 

indicated (F-test; NN: non normal distribution of values; -: p>0.1; 0: P<0.1; *: P<0.05; 

** : P<0.01; • * • : P<0.001). 
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FIGURE 5.5. The kinetics of the total and 2MEr antibody response in lines selected for high (H) 

or low (L) antibody response after intramuscular immunization with SRBC in 

Complete Freund's Adjuvant. Line differences are indicated (F-test; NN: non normal 

distribution of values; -: p>0.1; 0: P<0.1; *: P<0.05; **: P<0.01; * * * : P<0.001). 
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FIGURE 5.6. The kinetics of the antibody response to an IV imunization with Bovine Serum 

Albumin (BSA), of two lines selected for high (H) or low (L) antibody response. 

Line differences are indicated (F-test; NN: non normal distribution of values; -: 

p > 0 . 1 ; 0: P<0 .1 ; *: P<0.05; * * : P<0 .01 ; * * * : P<0.001). 
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FIGURE 5.7. The kinetics of the antibody response to an IV immunization with Brucella 
abortus, A: total titers and B: 2MEr titers of two lines selected for high (H) or low 
(L) antibody response. Results of an ANOVA with line, sex and their interaction 
are presented (NN: non normal distribution of values; -: P > , 1 ; 0: P < . 1 ; *: 
P<.05; * * : P< .01 ; * * * : P<.001). 
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FIGURE 5.8. The kinetics of the antibody response to an IV immunization with Salmonella H-
antigen (SHA) of two lines selected for high (H) or low (L) antibody response. 
Results of an ANOVA with line, sex and their interaction (NN: non normal 
distribution of values; -: p > 0 . 1 ; 0: P<0 .1 ; *: P<0.05; * * : P<0 .01 ; 
* * * :P<0.001) . 

BA-immunization. 

When chicks were immunized w i th BA; sexes interfered w i th line differences in both 

total and 2MEr t i ters (Figures 5.7A and B). In general, L line pullets had the highest 

total t i ters, fol lowed by H line cockerels, H line pullets, and L line cockerels in 

descending order. The 2MEr t iters showed more or less the same sequence (Figure 

5.7B). 

SHA-immunization. 

Low titers to SHA were already detected at day 0 p.i. (Figure 5.8). Until day 7 p.i., 

line and sex effects showed interactions. The H line pullets had the highest t i ters, 

followed in descending order by L line cockerels, L line pullets and H line cockerels. 

From day 7 p.i. onwards no significant effects of line or sex could be detected. On the 

other hand, the H line tended to have higher titers than the L line at day 14 p.i. 

DISCUSSION 

The antibody responses to SRBC elicited after IM and IP immunizations were lower 

than after IV immunization, confirming earlier findings of Seto and Henderson (1968) 



Chapter 5 79 

and Van der Zijpp et al. (1986). In present study, antibody levels peaked at day 5 p.i., 

independently of route of administration. Van der Zijpp era/. (1986) found differences 

in the timing of the peak titer between the routes (IV: day 5; IP and IM: day 7). 

The line differences were affected by the route of immunization, which indicates 

that in the different tissues the mode of action used to cope with SRBC was not altered 

to the same extend by the selection. In addition, memory induction diffères between 

the primary route groups, illustrated by the absence of the line differences in the 

secondary response only after IV immunization. 

In the H line, processes stimulating antibody response may be more efficient when 

SRBC enters the body. On the other hand, the H line may possess higher numbers of 

SRBC-specific B cells. Both may explain the higher number of plaque forming cells 

(Donker, 1989) and the higher antibody production in the H line than in the L line. 

However, the differences in antibody producing capacity can not be solely contributed 

to a larger number of B cells that can react to SRBC. This is illustrated by the responses 

followed after immunization with either IFA or CFA. In both experiments representative 

samples from both lines were taken, differences in B cell numbers between experiments 

within lines will therefore not be expected. Line differences disappeared after 

immunization with CFA, but were still found with IFA. CFA stimulates, besides humoral 

immunity also cell-mediated immunity (Allison and Byars, 1986). Additional T cell 

signals may result in an enhanced antibody production from day 14 p.i. onwards in 

both CFA immunized selection lines. This indicates that due to T cell help, enhanced by 

CFA, lines can produce antibodies equally well, independently of numbers of SRBC-

specific B cells. Moreover, similar line differences were found after immunization with 

SRBC and the protein BSA, another T cell-dependent antigen. In contrast, no line 

differences in antibody response were detected when the (partially) T cell-independent 

antigens BA or SHA were injected. This suggests that the differences in antibody 

producing capacity might be caused by differences in the T cell activity as a result of 

selection. 

When the adjuvant activity of IFA is based on an enhanced phagocytic activity, 

(Allison and Byars, 1986), the difference in antibody production between the lines can 

not be contributed to line differences in activity of phagocytes. However, after 

administration of IFA and CFA an enhancement of antibody response is expected. In 

the present study, IFA appeared to have a depressing effect on the peak titer in both 

lines, and moreover, the response was not sustained. The lack of stimulation may not 

be unusual in chickens, as Steinberg et al., (1970) found that in chickens IFA did not 

always enhance the antibody response. Antibody levels against human serum albumin 

(HSA) maintained on a higher level after the peak was reached (Steinberg et al., 1970). 

This sustained response to HSA was probably a result of the persisting stimulation 

caused by the depot of antigen formed by the water in oil emulsion, from which 
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continuously low doses of antigens were released. In the present study, this persisting 

stimulation of the immune system by a low dose of SRBC did not alter the line 

differences, as was expected, while line differences did not disappear even after low 

doses of free SRBC (Kreukniet and Van der Zijpp, 1990). The slow release of SRBC, 

resulting in lower effective doses SRBC to stimulate B cells, might also explain the 

lower and later peak, as was found when low doses of free SRBC were administered 

(Kreukniet and Van der Zijpp, 1990). Kinetics of the response after CFA and IFA were 

similar to the results of Steinberg et al. (1970) and French e ra / . , (1970). 

We concluded that results of the CFA, BA and SHA experiments give rise to the 

hypothesis that divergent selection for antibody production is based on indirect 

selection for T cell responsiveness. Studies are in progress to elucidate the differences 

between the selected chicken lines in the involvement of T cells in antigen processing. 
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In vitro T cell activity in two chicken lines divergently selected for 

antibody response to sheep erythrocytes. 

M. B. Kreukniet, N. Gianotten, M. G. B. Nieuwland, H. K. Parmentier. 

ABSTRACT 

Four experiments were conducted to determine possible differences in the in vitro 
concanavalin A (ConA) response between two lines selected either for high (H) or low 
(L) antibody response 5 days after intramuscular immunization w i th SRBC. In all four 
experiments, the cell proliferation after stimulation w i th ConA was higher, although not 
always significantly so, in the L line than in the H line, independently of dose of ConA 
and source of lymphocytes. It can be concluded that selection for anti-SRBC antibody 
response affected the cellular response in chickens. Previously reported results in other, 
chicken lines selected for humoral response to SRBC after intravenous immunization 
w i th SRBC, showed an opposite line difference in mitogen response. These opposite 
results point to the fact that comparable selection protocols for immunological 
parameters do not necessarily have a comparable influence on the diverse components 
of the immune response. 

INTRODUCTION 

Knowledge of how the avian immune system copes w i th entering antigens is 

important to understand the mechanisms of resistance and susceptibility. To clarify the 

immunological pathways used by chickens to cope w i th entering antigen, the various 

lines genetically altered for a specific immune response (Jeffers et al., 1969; Siegel and 

Gross, 1980; Pevzner et al., 1981a,b; Van der Zijpp and Nieuwland, 1986; Yamamoto 

et al., 1988; Tamaki et al., 1988) can be a great advantage. One of the immune 

responses most intensively studied is the selection for high or low antibody production 

against SRBC (Siegel and Gross, 1980; Van der Zijpp and Nieuwland, 1986). The latter 

two selection experiments differed wi th respect to the chicken strain used in the base 

population, the immunization route, and dose of SRBC administered. However, both 

selections resulted in large line differences in the humoral response to SRBC (Siegel and 

Gross, 1980; Pinard et al., 1992) and in a change of Ea-B haplotypes (Dunnington et 

al., 1984; Pinard et al., 1993). The lines of Siegel and Gross differed also in mitogen 

responses; their high antibody producing line showed a higher concanavalin A (ConA) 

and phytohemagglutinin-M (PHA) response than their low line (Scott et al., 1991). 
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Previous studies conducted with the selection lines used in present study (Van der Zijpp 

and Nieuwland, 1986) also indicated differences between the high (H) and low (L) 

antibody production lines in T cell help during antibody response (Kreukniet et al., 

1992). The present study was conducted to search for differences in in vitro ConA 

responses in these lines. 

MATERIALS AND METHODS 

Experimental Chicks. 

Four experiments (1 to 4) were conducted with chickens of the 11th generation of 

two lines selected for high (H) or low (L) antibody response to SRBC (Van der Zijpp and 

Nieuwland, 1986). In Experiment 1, the mitogen response of 9-mo-old hens was 

determined. Out of the mothers of the 12th selection generation, 10 H line hens with 

the highest antibody titers (mean titer of 12.9) and of 10 L line hens, all with titer of 0, 

were used. The hens were intramuscularly immunized with 1 ml of 25% SRBC at 37 

days of age, and 5 days later, antibody titers to SRBC were determined (Van der Zijpp 

and Leenstra, 1980). In Experiments 2 to 4, four to nine week-old pullets, genetically 

identical to the 11th selection generation were used. In Experiment 1, hens were a 

sample of the MHC class IV haplotypes in the lines, whereas in Experiment 2 to 4, all 

chicks were homozygous ß24 (Pinard et al.. 1993). All chickens were housed in battery 

cages with a maximum bird density of 13 chicks per cage and free access to feed and 

water. Adult hens were individually housed. Vaccinations were only carried out in the 

adult hens, to conform to the selection protocol (Pinard et al., 1992). The chicks in 

experiments 2 to 4 were not vaccinated. 

Immunizations. 

In Experiment 1, hens were immunized with SRBC according to the selection 

protocol, as mentioned above, at 37 days of age. The 9 H and 9 L line chicks used in 

Experiment 4 were not immunized. In both Experiments 2 and 3, 8 H and 8 L line 

pullets were immunized with BSA (Sigma Chemical Co., St Louis, MO, 63178-9916) 

conjugated with trinitrophenyl sulphonic acid (TNP; Sigma Chemical Co.) to a ratio of 

13 to 25 TNP molecules per molecule of BSA (molecular weight of BSA was set on 

67,000). All immunizations were done intramuscularly (breast muscle) in 2 aliquots of 

0.5 ml BSA-TNP (2 mg/ml). Immunizations with BSA-TNP were carried out, respectively 

30 (Experiment 3) and 37 days (Experiment 2) prior to the mitogen stimulation test. 

Cell Isolation. 

In Experiment 2, spleen lymphocytes were used. Pullets were killed by decapitation 
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and suspensions of spleens were made by teasing the organs through a stainless steel 

mesh. Peripheral blood lymphocytes (PBL) were used in all the other experiments and 

were obtained through venipuncture. Lymphocytes were prepared by passing the 

spleen suspensions and heparinized blood over Ficollpaque (Density 1.072; Pharmacia 

Nederland B.V., Woerden, The Netherlands). Spleen lymphocytes were brought to a 

concentration of 5 x 105 (Experiment 2) and PBL to a concentration of 1 x 106 (other 

experiments) cells per millilitre in RPMI 1640 containing 10% Nu-serum (Flow, Irvine, 

United Kingdom). 

Lymphocyte Stimulation Test. 

Aliquots of 200 //I containing either 5 x 105 or 1 x 106 lymphocytes and either 0 , 2 

or 10/ /g/ml ConA (Type IV; Sigma Chemical Co.) were cultured, in duplicate, in 96-wel l 

tissue culture plates for 48 to 84 h to evaluate a possible effect of culture t ime, in 5% 

C02-air humified atmosphere at 40°C. The last 12 hours before harvesting, cultures 

were pulsed w i th 20 //I 20 //Ci 3H-thymidine (Amersham International pic, Amersham, 

United Kingdom). After incubation, the cells were harvested and counts per minute 

were determined wi th a beta-scintillator counter (Beekman Liquid Scintillation System 

LS 1 7 0 1 , Beekman instruments, Fullerton, CA, 92634) . 

Statistical Analyses. 

In all experiments, the Stimulation Index (SI) was calculated as (counts per minute of 

mitogen treated cells) / (counts per minute of untreated cells) per observation. Means 

and standard deviations of the SI were calculated per line within experiment and Mests 

were performed to determine significant differences using SAS® software (SAS 

Institute, 1989). Also a two-way variance analyses w i th line and experiment as main 

effects on the combined data of all experiments was performed. 

RESULTS AND DISCUSSION 

In various studies w i th chickens, mitogen responses were associated w i th the MHC-

genes (Morrow and Abplanalp, 1 9 8 1 ; Scott et al., 1988; Knudtson et al., 1990). 

However, also non-MHC loci are involved in the responses to ConA (Pink and Miggiano, 

1977; Morrow and Abplanalp, 1 9 8 1 ; Fredericksen and Gilmour, 1983; Knudtson et al., 

1990). The lines used in the present study were found to differ in MHC-haplotypes. 

The ß21 haplotype was predominant in the H line in the form of ß2 ,ß2 ' genotype, 

whereas in the L line a ß'4 haplotype was most frequent in the form of ß14ß14 and 

ß14ß24 genotype (Pinard et al., 1993). The adult hens of the H and L line used in 

Experiment 1 , were a mixture of the genotypes available, and differed significantly in 

anti-SRBC response. Although not significantly so, the line difference in in vitro 
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response to ConA in this experiment was reverse to the antibody response: high in the 

L line, low in the H line (Table 6.1). To avoid possible influences of the MHC on the 

mitogen response, chicks used in Experiments 2 to 4 were all homozygous fl24. 

Nevertheless, the same trend in line differences in ConA response was found: the L line 

having always higher SI than the H line. This means that the ConA response in the 

present lines is not linked w i th the Ea-B loci of the MHC complex. The line difference 

was seen in all experiments, although not significant in each experiment, indicating that 

the line effect was not dependent on stimulation t ime, low or high doses ConA and 

source of lymphocytes. Moreover, Analyses of Variance over all data, showed a 

significant (P<0.05) effect of the lines on the SI, as well as an experiment-effect 

(P<0 .01) . 

TABLE 6 .1 . In vitro mitogen response of chicken lymphocytes to 
concanavalin A (ConA) in four different experiments. 

Exp.' 

1 

2 

3 

4 

LINE ConA 

H 
L 
H 
L 
H 
L 
H 
L 
H 
L 

//g/ml 

2 

2 

10 

10 

Stim. 
hour 

84 

84 

48 

72 

60 

2 ConA3 

CPMxIO3 

10.66± 
16.7 ± 

1.4 ± 
3.1 ± 

35.7 ± 
38.5 ± 
21.5 ± 
21.3 ± 
15.3 ± 
21.4 ± 

5.1 
14.3 
2.0 
2.6 

17.3 
12.8 
10.8 

6.0 
0.8 

12.8 

2.5 
2.8 
1.7 
1.5 
2.8 
1.9 
6.8 
4.1 
1.6 
1.2 

BC A 

CPMxIO2 

± 
± 
± 
+ 
± 
± 
± 
± 
± 
± 

0.6 
1.3 
0.9 
1.1 
0.6 
0 . 5 " 
5.4 
3.0 
0.8 
0.7 

46.1 
78.6 
14.6 
34.5 

127.5 
215.6 

46.8 
90.2 
11.1 
21.2 

SI6 

±30.3 
±83.1 
±26.5 
±48.3 
±60.4* 
±89.8 
±35.4 
±85.4 
± 7.4" 
±11.4 

' Experiment;2 hours of culturing the cells, including 12 Hours pulsing with 
0.5 uCi 3H-thymidine; 3 Counts per minute x 103 in the presence of ConA; 4 

counts per minute x 102 in the abscence of ConA; 6 Stimulation Index : 
CPM in the presence of ConA / CPM in the absence of ConA;6 mean ± 
standard deviation. 

* Lines differ P<0.05; * * lines differ P<0.01. 

Chicken lines genetically selected for antibody response to SRBC differed also 

significantly in in vitro mitogen response (see also Scott et al., 1991). Therefore, 

genetic selection in chickens for antibody response against SRBC, can result in 

differences in the cellular response. However, in the selection lines of Siegel and Gross, 

the mitogen responses of their high line to both ConA and PHA were higher than those 

of their low line (Scott et al., 1991). In the lines studied here the response to ConA 
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was higher in the L line. After stimulation w i th PHA, no line differences were found in 

these lines (preliminary data, not shown). In other studies wi th chickens, the mitogen 

responses to ConA and PHA were also not positively associated (Miggiano et al. 1976; 

Morrow and Abplanalp, 1 9 8 1 ; Pink and Miggiano, 1977). Moreover, the line difference 

in in vitro mitogen responses between the present lines were opposite to in vivo 

hypersensitivity responses to PHA and BSA in these lines (Parmentier et a l . , 1994). 

This might be caused by differences in the responding T lymphocyte subsets in in vitro 

and in vivo test, or by the mechanisms in vivo facilitating local lymphocyte 

proliferation. 

The reverse line differences for in vitro ConA response in the two selection 

experiments (Scott et al., 1 9 9 1 ; present study) indicate that the different T cell 

responses are not necessarily a functional consequence of the selection for antibody 

response, but might be merely a side effect of this selection. Similarly Steadham and 

Lamont (1993), reported that several in vitro T lymphocyte responses to Glutamic Acid-

Alanine-Tyrosine (GAT) did not mimic the difference in humoral response in lines 

selected for antibody response to GAT. However, antibody responses to several 

antigens, and in vitro mitogen responses were higher in chicken lines selected for early 

antibody production to Escherichia coli vaccine (Heller et al., 1992). In the present 

selection lines, the high T cell activity in the L line could just be a compensation 

mechanism for survival, because the antibody response to several T cell-dependent 

antigens has been severely reduced (Kreukniet et al., 1992; 1995). 

It is noteworthy that divergent selection for total antibody response to SRBC, either 

after an intramuscular immunization w i th 2 5 % SRBC (Van der Zijpp and Nieuwland, 

1986) or after intravenous immunization w i th 0 .5% SRBC (Scott et al, 1991), gives 

rise to diverse line differences in other types of immune responses. This might be 

caused by differences in immunization protocol or the different breeds used in the base 

population. Because genetic improvement of disease resistance is an important issue in 

the poultry industry, effects of selections should be taken in consideration w i th respect 

to vaccination protocols. Vaccination scheme used, might not always give rise to the 

desired immunity to a disease in all modern poultry populations. 
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The B cell compartment of two chicken lines divergently selected for 

antibody production: differences in structure and function 

M.B. Kreukniet, S.H.M. Jeurissen, M.G.B. Nieuwland, N. Gianotten, 

P. Joling and H.K. Parmentier. 

ABSTRACT 

In the present study differences in the B cell compartment of two chicken lines 
selected for either high (H) or low (L) antibody response to sheep red blood cells (SRBC) 
are investigated. In non-immunized chicks, f low cytometry revealed generally more 
circulating l g + leukocytes in the H line, while in the L line slightly more CD4+ and in 
week 5, more CD8+ cells were found. In the L line spleen more CD8+ were found and 
in the H line spleen more CD4 + cells. In week 6, half of the chicks were immunized. 
Both lines were similarly affected by immunization. Immunization reduced the 
percentages of the circulating T cell subpopulations, while l g + cells were enhanced, 
compared to non-immunized chicks. 

Histological determinations w i th specific mAb's on spleens of young, non-immunized 
chicks, showed large dense T cell areas in the L line, while in the H line more and larger 
germinal centres were found. In the H line, also more B cells were found in the peri-
ellipsoid lymphoid sheaths (PELS). No line differences in mononuclear phagocytes were 
found other than associated w i th line differences in numbers of PELS and germinal 
centres. 

After immunization wi th TNP-BSA, both higher numbers of TNP-specific antibody 
producing cells and higher levels of circulating antibody were found in the H line. 
Moreover, more TNP-specific plasma cells were found in non TNP-immunized H line 
chicks, than in the L line chicks. The H line had also higher ELISA-titers to KLH five 
days after immunization w i th KLH. 

Therefore it was concluded that selection for antibody response has affected the B 
cell compartment. The H line has relatively more B cells. Moreover, the splenic 
structure of the H line differs from the L line, in the H line probably resulting in a more 
optimal organization for antibody response to T cell dependent antigens. 

INTRODUCTION 

Several lines of chicken have been divergently selected for specific immune 

parameters to explore the possibilities of genetic improvement of disease resistance and 

immunoperformance (Jeffers et al., 1969; Siegel and Gross, 1980; Pevzner et al., 

1 9 8 1 a b ; Van der Zijpp and Nieuwland, 1986; Okada and Yamamoto, 1987; Pitcovski et 

al., 1987; Yamamoto et al., 1 9 9 1 ; Heller et al., 1992; Steadham and Lamont, 1993). 
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These selections must have affected the cascade of events following an invasion of 

antigen, resulting in the line differences in the immune response selected for. When the 

effects of selection are antigen non-specific, it might have consequences for disease 

resistance in these lines. Understanding the cellular events that cause the immune 

differences in the selected lines, wil l give more general clues on how resistance or 

susceptibility to a pathogen is achieved in chickens. In none of the selection lines, 

however, are these immune mechanisms completely disentangled. 

In the present study, the B cell compartment of t w o chicken lines genetically 

selected for either high (H) or low (L) antibody response to the T cell-dependent antigen 

sheep red blood cells (SRBC) (Van der Zijpp and Nieuwland, 1986), is studied in more 

detail. Previous investigations indicated that there were no detectable differences 

between the lines in the accessory and phagocytic functions (Van der Zijpp et al., 

1988; 1989; Kreukniet et al., 1994a). However, results of Donker (1989) demonstrated 

a higher number of antibody forming cells in the H line after immunization w i th SRBC. 

Whereas Siegel et al. (1992) and Parmentier et al. (1995) reported higher percentages 

B cells in blood and spleens of the H line. This indicated that differences in the number 

of B cells might correspond to the selection difference. In the present study, the 

postnatal development of circulating lymphocyte populations was fol lowed in both lines 

using f low cytometry. At the selection age, i.e. six weeks of age, percentages of 

lymphocyte populations were also determined in lymphoid organs and blood of both 

immunized and non-immunized chicks. In addition, possible differences between the 

lines in the in situ distribution of lymphoid and non-lymphoid cells in the spleen were 

investigated. To determine whether effects of selection were limited to SRBC and BSA, 

as previously described (Kreukniet et al., 1 992 ; Parmentier et al., 1994), the T cell 

dependent antibody responses to keyhole limpet haemocyanin (KLH) and trinitrophenyl 

(TNP) were determined, as well as the number of splenic cells producing TNP-specific 

antibody in both lines. 

MATERIALS AND METHODS. 

Experimental chicks. 

Experiments were carried out w i th chickens of two lines, genetically selected for 

either high (H) or low (L) antibody titers 5 days after intramuscular (i.m.) immunization 

w i th 1 ml of 2 5 % SRBC at 37 days of age (Van der Zijpp and Nieuwland, 1986). All 

chicks were housed in wire cages w i th a maximal bird density of 13 birds/cage. Birds 

had free access to food and water. 

Flow cytometry analyses were carried out on leukocytes of in total 65 H and 65 L 

line chicks, chosen at random of the 10th selection generation. Sexes were determined 

at 6 weeks of age. 
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Histological observations were conducted on spleens of 15 H and 1 5 L line pullets of 

41 days of age. All pullets were of the 11th selection generation and offspring of B-

G24 (Pinard et al., 1993) homozygous parents. These pullets were not immunized. 

Specific antibody responses were measured in 24 H and 24 L line B-G2A 

homozygous pullets, all of the 11th selection generation. Of each line 16 pullets were 

i.m. immunized w i th trinitrophenyl conjungated bovine serum albumin (TNP-BSA). The 

remaining 8 of each line were immunized w i th KLH. 

Immunizations. 

All antigens were intramuscularly injected as 2 aliquots of 0.5 ml , one aliquot in each 

t ight muscle. 

SRBC: 2 5 % SRBC in PBS (Van der Zijpp and Nieuwland, 1986); reimmunization w i th 

5 0 % SRBC. 

TNP-BSA: per ml PBS 2 mg Bovine serum albumin (BSA; Sigma Chemicals Co, St 

Louis, MO, USA) conjungated w i th 13-25 molecules trinitrophenyl (TNP; Pierce, 

Rockford, IL, USA) per molecule BSA. 

KLH: 2 mg Keyhole l impet hemocyanin (KLH; Pierce) per ml PBS. 

Histological observations. 

After decapitation of the pullets, the spleens were removed, frozen in liquid nitrogen 

and stored at -20°C. Cryostat sections of 8 //m thickness were picked up on slides and 

stored over silica gel. Slides were f ixed in pure acetone for 10 minutes, air-dried, and 

incubated for 1 hour w i th mAb's (Table 7.1) diluted in PBS containing 0 .6% BSA at the 

appropriate concentration. Slides were rinsed in 0.01 M PBS and covered for 30 

minutes w i th peroxidase-conjugated rabbit anti-mouse Immunoglobulin (Dakopatts, 

Glostrup, Denmark) diluted in PBS w i th 0 . 6% BSA. Peroxidase activity was developed 

wi th a solution of 0.5 mg 3,3'-diaminobenzidine-tetrahydrochloride (DAB, Sigma 

Chemical Co.) and 0.01 % H202 per ml Tris-HCI buffer (0.05 M; pH 7.6). The slides 

were counter stained w i th haematoxylin, dehydrated, and mounted in DePex (BDH, 

Poole, UK). Control slides were incubated as described above, except that the mAb's 

were omitted. 

Flow cytometry 

In weeks 2, 3, 4 , 5, 10, and 12, blood samples were taken of 25 H and 25 L line 

chicks to determine the frequencies of the lymphocyte subpopulations in the blood. 

Heparinized blood was passed over Ficoll Paque (d 1.072; Pharmacia, Upsala, Sweden) 

and brought on a concentration of 2x10 6 per ml w i th RPMI 1640 containing 2 % FCS 

and 0 . 1 % NaN3. The percentages of cells expressing the different markers (Table 7.1), 

were determined as described by Joling et al. (1994). At 44 days of age, 13 H and 12 
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L line chicks were immunized. And at 49 , 72 , 96 days of age (respectively week 6, 10 

and 12), blood samples were taken of these chicks and of the 12 non-immunized H 

line and 13 non-immunized L line chicks. The immunized chicks were i.m. reimmunized 

w i th SRBC at 96 days of age and blood samples were taken at 101 days of age (week 

13) to determine the lymphocyte percentages and hemagglutinin titers (Van der Zijpp 

and Leenstra, 1980). 

In week 6, an additional 40 H and 40 L line chicks were used to determine 

frequencies of lymphocyte subpopulations in bursa, thymus, spleen and blood. These 

chicks were randomly divided in 4 groups (Immunization Groups) of 10 H and 10 L line 

chicks. Of each group 5 chicks per line were immunized w i th SRBC; one Immunization 

Group at 37, at 38 , at 39 and one at 41 days of age. Exactly 5 days after immunization 

the 10 immunized and 10 non-immunized chicks of each Immunization Group were 

sacrificed and the frequencies of lymphocyte populations determined in blood and cell 

suspensions of the organs. 

TABLE 7.1. Monoclonals used in the flow cytometry and histological 
experiments with specifity and references. 

ASSAY ANTIBODY SPECIFITY 

Flow cytometry 2-61-2 CD4 
11-381-3 CD8y? 
RaChlgG(H + L)4 Ig 

Histology HIS-C15 B cells 
CVI-ChT-74.16 CD8 
CVI-ChNL-68.17 mononuclear phagocytes 
CVI-ChNL-68.28 ellipsoid associated reticulum cells 
CVI-ChNL-74.29 some macrophages 
CVI-ChNL-74.39 follicular dendritic cells 

1 Kindly donated by dr 0 . Vainio, Turku, Finland; 2Vainio et al., 1989; 3 

Ratcliffe et al., 1993; * Nordic, Tilburg, The Netherlands; 5 Jeurissen et al., 
1988s; 6 Noteborn ef al., 1991; F. Davison, Compton, UK, pers comm.; 7 

Jeurissen et a/., 1988b; 8 Jeurissen et al., 1989; 9 Jeurissen et al., 1992. 

Specific antibody responses. 

Sixteen H and 16 L line pullets were immunized w i th TNP-BSA at 25 days of age. An 

additional 8 H and 8 L line pullets were immunized w i th KLH; 4 of each line at an age 

of 25 days, the others at 39 days of age. Plasma samples were collected at days 0, 3, 

5 and 7 post immunization (p.i.) and of the chicks immunized at 25 days, also at 10, 

14 and 21 p.i. and were stored at -20° C till assayed for antibodies against KLH and TNP. 
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At 46 days of age, eight of the TNP-BSA immunized chicks per line and four of each 

KLH-immunized 'age' group per line were killed by decapitation. A t 53 days of age the 

remaining 16 TNP-BSA immunized chicks were killed. Single spleen cell suspensions 

were made and passed through Ficoll Paque (d 1.072; Pharmacia) and brought on a 

concentration of 1x107 cells/ml in RPMI-1640 + (RPMI-1640 supplemented w i th 1 0 % 

NU-serum (ICN Biomedicals, Costa Mesa, CA, USA), penicillin (100 I l l /m l ; Serva, 

Heidelberg, Germany), streptomycin (100/yg/ml ; Serva), 2-mercapthoethanol ( 5 x 1 0 5 

M), L-glutamine (2mM; Merck, Darmstadt, Germany) and 0.03 M sodium hydrogen car­

bonate). The spleen cell suspensions of the chicks immunized w i th TNP-BSA were 

directly used in the ELISpot assay, while those of the KLH immunized pullets were 

incubated for 2.5 hour w i th TNP-KLH (150 /yg/ml) prior to the ELISpot assay (500 /J\ 

suspension w i th 500 //I KLH-TNP; 41°C; 5% C02-humified conditions). 

ELISpot-assay: The number of antibody forming cells in the spleens was estimated 

as described by Bianchi et al. (1990) w i th some slight modifications. Briefly, after pre-

coating, microtiterplates were coated w i th 100/ /g /ml of TNP-OVA (Egg whi te albumin 

(Sigma Chemicals Co) conjugated w i th TNP to a ratio of 20 TNP molecules per 

molecule of OVA) in 0 .04 M PBS-13 at 4°C overnight. The non-specific binding-sites 

were blocked and 100 /J\ of either 5 x 10 ' , 1 x 107, or 5 x 106 leukocytes was added 

and incubated for 3-4 hours in a humified atmosphere at 37°C. After washing, 100 /J\ 

of 1:250 dilution of goat anti chicken lgG(H + L) alkalic phosphatase (Nordic) was added 

to each well and incubated overnight at 4°C. Spots were coloured and counted. 

ELISA's for TNP and KLH: Microtiterplates were coated wi th 100 /J\ 2.5 / /g/ml TNP-

OVA in carbonate buffer (1 L distilled water containing 28.6 g Na2CO3-10H2O; pH 9.6) 

per well for TNP-binding antibodies, or 100 //I 1.25 /i/g/ml KLH in the carbonate buffer 

for KLH-binding antibodies (17 h; 4°C). Remaining binding sites were blocked w i th 100 

fj\ PBS w i th 1 % BSA and 0 . 0 5 % Tween-20 per well (30 min.; 37°C). Per we l l , 100 //I 

plasma was added and two-fold dilution series were made w i th PBS (pH 7.2), 

containing 0.05 % Tween-20 and either 0 . 1 % OVA (for TNP) or 2 % FCS (for KLH). 

After incubation (1 h; 37°C), microtiterplates were washed and 100 //I of an optimal 

dilution of RaChlgG(H + L)PO (Nordic, Tilburg, The Netherlands) was added. After 30-60 

min. at 37°C, 100 fj\ substrate (100 ml orthophenylene diamine + 133 /vl H 20 2 in 

buffer made of 14.71 g C6H5Na307 -2H20; 17.8 g Na2HP04 .2H20 diluted in 800 ml 

distilled water, brought at pH 5 by adding HCl, and then brought to a volume of 1 L 

w i th distilled water) was added. After 30 min. at room temperature in the dark, the 

reaction was stopped by adding 50 //I 2.5 NH2S04 per wel l . Extinctions were measured 

at 450 nm w i th a Titertek Multiscan MCC (ICN Biomedicals). 

Statistical analysis. 

The data of the f low cytometry was, fol lowing tests of normality, analyzed w i th 
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analysis of variance (SAS, 1989) . A full factorial design was used, containing line, sex, 

and group (in which markers were determined during the test weeks). During the 

postnatal development in weeks 2 to 5, the data of the lymphocyte markers f i t ted best 

in Model 1 . 

In week 6, immunization (I) and immunization group (IG) and their interactions were 

included as main effects. The ratio's of lg + :CD4 + , lg + :CD8+ and CD4 + :CD8 + cells 

were calculated for spleen and blood at week 6 and tested w i th the same model. The 

non-significant effects were omitted from the final model, resulting in Model 2 for the 

data of organs and blood, except the ratio's of blood lymphocytes, for which Model 3 

f i t ted best. The data of weeks 10, 12 and 13, were best described by Model 4 . 

yjjk, = / / + Line, + Sex, + Groupk + eijk. Model 1 . 

Ysw = V + L'™, + SeXj + lk + IG, + eljk,m Model 2. 

yiklm = U + Line, + lk + IG, + eiklm Model 3. 

y„m = /j + Line, + e„ Model 4 . 

Symbols represent: 

Yiljklllm) 

Line, 

Se^ 

Groupk 

'k 

IG, 

e i l jk) l lml 

= depending variable 

= population mean 

= Line effect 

= Sex effect 

= Group effect 

= Immunization ef fect 

= Immunization Group effect 

= remainder 

(Partial) Pearson's correlations over lines and within lines, were calculated between 

the haemagglutinin titers five days after reimmunization and the percentages of CD4+ - , 

CD8+ - , and l g + - leukocytes. 

The data of the ELISpots were analyzed wi th ANOVA, w i th 'Line' and 'Repeat' 

(TNP-BSA-immunized group) or 'Line' and 'Age at Immunization' (KLH-immunized 

group) and the interaction. The antibody response to KLH was analyzed w i th the same 

ANOVA as used for the ELISpot. The line differences in antibody response to TNP were 

tested w i th a F-test. 
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RESULTS 

LYMPHOCYTE POPULATIONS 

Postnatal development in blood. 

In general, the H line had higher percentages l g + cells in the blood (Figure 7.1). On 

the other hand, after week 2 percentages of the T cell marker CD4 were higher in the L 

line. In week 5, CD8+ cells were also determined and percentages were higher 

(P<0.05) in the L line (11.5%), than in the H line (8.2%). 

FIGURE 7 .1 . LSmeans per line (n = 25) of the percentages CD4+ and lg+ peripheral leukocytes 
in the weeks post hatching, estimated with Model 1. Significant line effects in 
percentages of CD4+ and lg+ cells are indicated (0 :P<0.1 ; * :P<0.05; 
* * :P<0 .01 ; * ** :P<0.001) . 

After the selection age, at weeks 10 and 12, similar line differences in T and B cell 

profiles existed (data not shown). In week 13, 5 days after re-immunization, no line 

differences could be detected in percentages of T cell markers. The percentage lg+ 

leukocytes differed significant (P<0.01) between the lines: 75.8 % in the H line and 

54.0 % in the L line. Also haemagglutinin t iters differed (P<0.001) between the lines 

(4.9 in H and 2.3 in L line). 

In both lines, higher percentages of l g + (weeks 2, 3, 4 ; P<0 .05 ) and CD4 + (weeks 



102 The B cell compartment 

3, 4 , 5; P<0 .05 ) were found in cockerels than in pullets. In week 5, the percentage of 

CD8+ cells differed (P<0.05) also between the sexes (males: 11 .8%; females: 7 .9%). 
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FIGURE 7.2. LSmeans (Model 2) per line (n = 40) of percentages of CD4 + , CD8+ and lg + 

leukocytes in the thymus. Standard errors of the mean and significant line 
differences are indicated (**:P<0.01). 

Lymphoid organs 

Thymus. Only the percentage CD8 + d iffered between the lines, the H line having 

more CD8 + (Figure 7.2). 

Bursa. In the bursa, over 95 % of the cells was lg + , consequently percentages of 

CD4 + , and CD8+ were low. No line differences were detected. 

Spleen. In the spleen, more CD4 + cells were found in the H line, while in the L line 

more CD8 + cells were found (Figure 7.3). Moreover, the ratio CD4 + :CD8 + was 

significantly higher (P<0.05) in the H line. When the ratio's between l g + cells and T 

cells were considered, l g + :CD4 + was significantly higher (P<0.01) in the L line, while 

lg + :CD8+ was, although not significantly higher (P<0.1) in the H line (Figure 7.3). 
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Histological observations on the spleen corresponded well w i th the f low cytometry 

results. When spleens of H and L line chicks stained w i th mAb CVI-ChT-74.1 were 

compared, a striking difference was found. This mAb, specific for the CD8 a chain, 

was used to demarcate the T cell areas, as CD4+ cells are always located intermingled 

w i th CD8+ T cells. The T cell areas of the H line were small, whereas in the L line 

large, dense T cell areas were found (Figure 7.4A, C). 
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FIGURE 7.3. LSmeans (Model 2) per line (n = 40) of the percentages splenic leukocyte 
populations and the ratio's (x 10) at 6 weeks of age. Standard errors of the mean 
and significant line effects are indicated (O:P<0.1; * :P<0.05; * * :P<0.01). 

Clear differences between the lines were also found when mAb HIS-C1, specific for 

B cells, was used. The H line had many peri-ellipsoid lymphoid sheaths (PELS) of B 

cells, whereas this number was lower in the L line. In addition, both number and size of 

germinal centres was larger in the H line. Consistent w i th the results on B cells, H line 

spleens contained much more ellipsoids than the L line spleens (Figure 7.4B, D) as 

indicated by mAb CVI-ChNL-68.2, specific for ellipsoid-associated reticulum cells. As 

expected, after staining w i th mAb CVI-ChNL-74.2, which recognizes, besides red pulp 

macrophages, rings of macrophages around the PELS, more rings were found in the H 

line. The numbers of red pulp macrophages were, however, comparable between the 

lines. 

The mononuclear phagocytes (monocytes, interdigitating cells, and red pulp 

macrophages), specifically stained by mAb CVI-ChNL-68.1 showed no remarkable 
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FIGURE 7.4. Immunohistochemical staining of spleens of high (A,B) and low (C,D) line chickens 
with monoclonal antibodies CVI-ChT-74.1, specific for T lymphocytes (A,C) and 
CVI-ChNL-68.2, specific for ellipsoid-associated reticulum cells (B,D). 
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differences between the lines. Also after staining wi th the mAb CVI-ChNL-74.3, which 

is specific for follicular dendritic cells and their precursors, no remarkable differences 

were found between the H and L line other than those due to the higher number of 

germinal centres in the H line, consequently, the H line had also more follicular dendritic 

cells. 
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FIGURE 7.5. LSmeans of the percentages peripheral (A) and splenic (B) leukocyte populations 
(x 10') (Model 2) and the ratio's (x 10') (Model 3) of non-immunized and 
immunized chicks at 6 weeks of age. Standard errors of the mean and significant 
immunization effects are indicated (0 :P<0.1; * :P<0.05; * * :P<0.01). 

IMMUNIZATION EFFECT 

Blood. Immunization did not affect the percentages of lymphocyte populations 

differently between the lines. However, immunization significantly reduced the 

percentages of circulating T cells (Figure 7.5A), while the percentage of l g + cells was 

slightly enhanced (P<0.1) (Figure 7.5A). Therefore, the B cell:T cell ratio's were 

enhanced after immunization, but similar in the lines. 

In weeks 10 and 12, no effect of immunization on the percentages of circulating 
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lymphocytes were found (data not shown). 

In week 13, both the percentages of lymphocyte populations and the antibody titers 

were determined. Lines differed in percentages of l g + cells and in the antibody titer, 

however, no significant correlations between agglutinin t i ter and the percentages of 

CD4+ and CD8+ cells were found. Moreover, partial correlations, (corrected for line 

effect) were not significant. The correlation between the haemagglutinin t iter and 

percentage l g + leukocytes was positive, + . 36 (P<0 .10) . However, when corrected for 

line effect, the partial correlation was - .20, but not significant. Within the H line, also a 

negative (-.58) correlation was found (P<0.05) , while this correlation was positive 

( + .11) but not significant (P>0.10) in the L line. 

Thymus and bursa. In both lines slightly enhanced (P<0 .10) percentages of CD4 + 

cells were found in the thymus after immunization (immunized: LSmeans = 74 .0 , non-

immunized: LSmeans = 70.8). In the bursa no effects of immunization were found. 

Spleen. Immunization did not significantly affect the percentages lymphocytes, 

however, the splenic ratio's lg + :CD8+ and CD4 + :CD8 + were both enhanced by 

immunization (Figure 7.5B). 

SPECIFIC HUMORAL RESPONSES. 

Antibody producing cells. In the H line pullets immunized w i th TNP-BSA, always 

more spots were counted in the ELISpot-assay in both repeats and at all cell 

concentrations used (Table 7.2). 

TABLE 7.2. Number of ELISpots to TNP, counted in cell suspensions made of 
spleens of pullets 21 days (test 1) or 28 days (test 2) previously immunized 
with BSA-TNP (mean ± standard deviation). 

TEST 

1 

2 

CONCENTRATION 
of cells 

5x107 

1x107 

1x106 

5x107 

1x107 

1x106 

33.3 
19.8 

9.8 

31.1 
32.7 
24.3 

H 

± 10.9 
± 7.6 
± 4.2 

± 20.5 
± 14.9 
± 10.6 

19.6 
11.0 
4.1 

9.7 
8.8 
6.8 

L 

±13.4 
± 5.7 
± 2.1 

±13.0 
±12.3 
± 8.2 

P<* 

.04 

.02 

.004 

.03 

.004 

.002 

* Probability of line difference within cell concentration and test. 
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Also when pullets were only immunized w i th KLH and pulsed in vitro w i th KLH-TNP, 

significantly more (P<0.05) TNP-specific B cells were found in the H line spleen than in 

the L line (data not shown). Age at immunization had no effect on the number of spots. 

TABLE 7.3. ELISA titers of H and L line chickens immunized with KLH at 25 
or 39 days of age (mean ± standard deviation). 

DAY 

0 
3 
5 
7 
10 
14 
21 

0.1 
0.7 
3.0 
4.3 
3.2 
2.7 
2.6 

COMBINED AGES 

H L 

±0.3 
±0.8 
±1.8 
±2.2 
±1.4 
±1.2 
±1.0 

0.0 ±0.0 
0.4 ±0.6 
1.9 ±1 .0 * 
4.9 ±1.9 
3.9 ±1.7 
4.1 ±1.0 
3.3 ±0.6 

0.0 
0.2 
2.0 
3.2 
3.2 
2.7 
2.6 

25 DAYS OLD 

H 

±0.0 
±0.3 
±0.8 
±1.3 
±1.4 
±1.2 
±1.0 

L 

0.0 ±0.0 
0.1 ±0.1 
1.2 ±0 .7* 
3.5 ±1.4 
3.9 ±1.7 
4.1 ±1.0 
3.3 ±0.6 

0.1 
1.1 
4.0 
5.4 

39 DAYS OLD 

H 

±0.4 
±1.0 
±2.0 
±2.3 

L 

0.0 ±0 .0 
0.7 ±0.8 
2.6 ±1 .0 
6.3 ±1.1 

* lines differ P<0.05. 

Antibody response to KLH. The early KLH-immunized chicks had significantly lower 

(P<0.001) ELISA-titers than the late immunized chicks (Table 7.3). The KLH titers 

were higher in the H line, however only significant on day 5 p.i. From day 7 p.i. 

onwards, t iters of the L line were - not significantly - higher. 

TABLE 7.4. Elisa titers for TNP of 16 H line and 16 L 
line chicks immunized with TNP-BSA (mean 
standard deviation). 

DAY 

0 
3 
5 
7 
10 
14 
21 

H 

1.9 ± 1.2 
2.4 ± 1.1 
3.5 ± 0.9 
3.8 ± 0.8 
3.5 ± 0.7 
3.4 ± 0.9 
2.5 ± 0.9 

0.3 
0.6 
1.3 
1.6 
2.0 
1.9 
1.5 

L 

±0.5 
±0 .5 
±0 .5 
±0 .6 
±0 .8 
±1 .0 
±1.5 

# • * 

# * * 
* * * 
* * * 
* # * 
* * * 
# * * 

* * * : lines differ P<0.001 

The antibody response to TNP. A t all days after immunization, the H line had higher 

TNP titers than the L line (P<0 .001 ; Table 7.4). 
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DISCUSSION 

In the present study, several approaches were used to investigate differences in the 

B cell compartment between two chicken lines selected for high or low antibody 

response to SRBC. The results obtained wi th lgG(H + L) to identify l g + cells in present 

study were similar to those found wi th monoclonal AV20 , specific for B cells 

(Parmentier et al., 1995). The line difference in percentage of circulating lg + cells, 

previously found at 6 weeks of age (Siegel et al. 1992), the age on which selection for 

humoral response is conducted in these lines, was now found to exist already at 2 

weeks of age. Although in the present study lines did not significantly differ in 

percentage of splenic B cells, the ratio lg + :CD8+ cells was higher in the H line and 

lg + :CD4+ was higher in the L line. This indicates that the cellular organization of the 

spleen differs between the lines. Which agrees wi th the higher percentages of PELS 

and germinal centres found in the spleens of non-immunized H line chicks. Since the 

(relative) spleen weight is higher in the H line (Donker, 1989; Parmentier et al., 1995), 

it is reasonable to assume that the H line has also absolutely more antibody producing 

cells, PELS and germinal centres in the spleen. The higher number of PELS, the chicken 

equivalent of the marginal zone in mammalian spleen (Jeurissen et al., 1992) in the H 

line, indicates a constitutional difference between the lines, because the branching of 

arterioles is thought to be intrinsic and not influenced by antigenic challenges. The 

higher number of germinal centres in the H line should be considered as the result of 

previous contact w i th antigen. Nevertheless, because chickens of both lines were 

housed intermingled, it can be assumed that both lines were under the same antigenic 

pressure. Still the H line reacted wi th a higher number of germinal centres, 

demonstrating a functional difference between the immune systems of the lines. This 

difference is not SRBC-specific, because the chicks were not immunized. Moreover, 

early levels of antibodies to KLH, as well as TNP were higher in the H line, while also 

higher numbers of anti-TNP-producing cells were found in the spleen of non TNP 

immunized H line pullets. This emphasizes again the antigen non-specific effect of 

selection. The secondary antibody titers did not correlate w i th the percentage of 

circulating B cells in the H line. However, this is not surprising, because circulating 

antibodies are released by plasma cells as the result of a immune response in the 

peripheral lymphoid tissue (i.e. spleen). 

As in mammals, the antibody responses to SRBC, TNP and KLH, in chickens will also 

depend on the support of helper T cells, characterized by the CD4 antigen on their 

surface. In general, the percentages of circulating T cell subsets were higher in the L 

line. However, soon after immunization many T cells are trapped in the peripheral 

lymphoid tissues, to assist w i th the elimination of antigen. Siegel et al. (1992) 

described a larger increase of CD4+ cells in the spleens of the H line at 12 hours after 
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immunization, while in the L line the percentage of splenic CD8 + cells was increased. In 

the present study, no line difference in immunization effect was found. However, in the 

5 days fol lowing immunization the different reaction of the lines to immunization might 

have passed unseen. The line differences in T cell subsets were, however, similar to 

the results of Siegel er al. (1992) and Parmentier et al. (1995). The results found so 

far, implicate that the H line w i th a higher percentage of splenic CD4 + cells and B cells 

is better equipped for antibody response to a T cell dependent antigen than is the L line. 

Because T cells w i th CD8 antigen on their surface are probably suppressor or cytotoxic 

effector cells, the L line has presumably other mechanisms selected to deal w i th the 

entering antigen. This was also suggested by the higher mitogenic response to Con A 

in the L line (Kreukniet et al., 1994"). 

From present studies it seems valid to conclude that divergent selection for antibody 

response has resulted in a relatively higher number of B cells in the H line. Moreover, in 

the H line the organization of the spleen, and probably also other peripheral lymphoid 

organs, favours antibody response to T dependent antigens. However, selection has 

also affected the T cell subsets. To what extend the T cell populations contribute to the 

line differences found in the B cell compartment, is presently being studied. 
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GENERAL DISCUSSION 

Introduction 

In the last few decennia, the housing systems of l ivestock have dramatically 

changed. Intensification, thus more animals per m 2 , was found economically 

favourable. However, not only the profit increased, but also the risk on infectious 

diseases, diminishing the profits. Medication, vaccination and improved hygienic 

measures helped to prevent outbreak and spread of diseases, but are costly. These 

costs and the incomplete protection of these measures, initiated the search for other 

ways to protect l ivestock and this reactivated the research on genetic improvement of 

disease resistance. 

In 1980 a selection experiment was started to evaluate the possibilities of genetically 

improving general disease resistance in chickens by selection for either high (H) or low 

(L) antibody response to sheep red blood cells (SRBC; Kreukniet et al., 1994). In 

addition, a control (C) line was maintained. This C line originates f rom the same base 

population and was maintained under identical conditions as the selection lines, but 

mated at randomly. The differences in antibody level, measured as haemagglutinin 

t i ters, increased nearly each generation, both between the H and L line and between 

the selection lines and the control (C) line (Figure 8.1). 
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FIGURE 8 .1 . Mean titers in each selection generation of the H and L line relative to the mean of 

the C line. 
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Although selection for the phenotypic trait 'antibody production' was relatively easy, 

the knowledge of the cellular pathways used by each line to reach the selection goal is 

still l imited. To make meaningful use of selection lines, it is important to characterize 

the immunological pathways used by the lines to realize the trait under selection as 

much as possible. 

The genes responsible for the trait under selection become more f ixed each selection 

generation. Therefore, the selected lines can be used as an in vivo model to study 

protective immune responses to pathogens in chickens, but also to study the genes 

responsible for the antibody response. And, when fully characterized at cellular level, it 

is also possible to pinpoint the genes for all known steps of the pathways leading to 

this response. In addition, in immunologically characterized selection lines the genes 

indirectly affected by selection can be studied. For instance, body weight is found to be 

negatively associated w i th antibody response (Chapter 1). Thus the selection lines can 

be used to study the genetics of the underlying mechanisms like release of g rowth 

hormones. On the other hand, because continuous selection has f ixed several genes in 

both lines, particular immune responses will be impossible in the selection l ine, while 

others are obligate. To know how an individual from a selection line is bound to react 

(or is not able to react) upon an invading antigen, can give useful information on how 

resistance to pathogens can be reached in chickens. 

TABLE 1. Cascade of events following IM immunization with SRBC. 

1. Phagocytosis of the SRBC by phagocytes 
2. Processing of the antigen 
3. Presentation of antigen fragments by APC" to T and B cells 
4. Release of cytokines 
5. Proliferation and differentiation of T cell subpopulations 
6. Proliferation and differentiation of B cells 
7. Production of antibodies by plasma cells 

' Antigen Presenting Cells 

The main aim of the series of studies described in this thesis, was to investigate 

which pathways, at cell level, are used by the H line to produce high levels of antibody 

and which are used by the low (L) line for clearance of the SRBC. In Chapter 1 , a 

review of other ' immune trait ' selection lines was presented. It was found that non of 

the described selection lines were fully characterized. In Figure 1 .1 , (Chapter 1) a 

simplified scheme of the cascade of events activated after the intramuscular injection 

w i th SRBC, resulting in antibody production, is outlined. This figure is summarised in 
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Table 8 .1. The studies described in the Chapters 2 to 7 were conducted to define the 

differences in immune mediated clearance of SRBC between the two selected lines of 

chickens. In the present Chapter, the results will be discussed in relation with other 

studies to identify these parts of the cascade that differ between the lines and to 

speculate on how the high antibody response is reached in the H line and on how the L 

line copes with the SRBC. The cascade as described in Figure 1.1, pictures the events 

resulting in antibody production. This approach will probably not be the most 

favourable to identify the mechanisms used by the L line to clear the SRBC, because it 

is likely that low antibody production is not reached by the inverse mechanisms or 

reactions which enhanced antibody response in the H line. However, this approach is 

chosen because much more is known of activation than of suppression of antibody 

response. 

When the selection lines are found to differ for an immune parameter, it is not known 

whether the selection for high response has altered the immune parameter or that it has 

been altered in the opposite direction by selection for low response (or both). 

Fortunately, when differences were found, in several cases an additional study was 

conducted including the C line, which makes it possible to determine the direction of 

the selection effect. 

Phagocytosis 

The antigen non-specific or innate immune system is the body's first line of defence 

against invading antigens. In the case of an intramuscular (IM) injection, a large part of 

this defence is circumvented. Still, several a-specific responses i.e. phagocytes and 

several enzymes in the blood, will protect the body before the specific system is 

triggered. The cell damage caused by the IM injection induces the release of 

chemotactic factors which attract phagocytes. If the phagocytes are able to clear all 

the SRBC, there is no need for a specific response like antibody production. In mice 

divergently selected for antibody production against SRBC, the high phagocytic activity 

of the low line could explain a large part of the interline difference in antibody response 

(Wiener and Bandieri, 1974). 

In our chicken selection lines, high plasma levels of lysozyme released from 

phagocytes during destruction of the SRBC after immunization were negatively 

correlated with antibody level (Chapter 2). These results suggest a comparable 

mechanism as found in the Biozzi mice (Wiener and Bandieri, 1974). However, the lines 

did not differ in lysozyme activity. Moreover, no line differences could be detected in 

the other assays estimating uptake or destruction of antigen (Chapter 2). Also, the 

uptake of SRBC by peritoneal cells did not differ between the lines (Chapter 3). 

Because the assays described in Chapters 2 and 3 were mostly in vitro assays, results 

might not mimic the in vivo reaction. However, the lack of effect on the interline 
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difference of the low SRBC-doses (Chapter 4) , as well as the results of immunization 

w i th IFA (Chapter 5) further support the hypothesis that line differences in phagocytic 

activity do not cause the difference in antibody response to SRBC. When phagocytic 

activity is high, a very small dose of injected SRBC is likely to be destroyed before it is 

able to stimulate antibody response. Thus, a small dose of 0.5 x 1 0 3 ml packed SRBC, 

as well as the continuous release of small quantities of SRBC from the depot in IFA, are 

both likely to be cleared before the humoral response can be activated in the situation 

of high phagocytic activity. In both studies the interline differences were more or less 

of the same magnitude as after an injection w i th the normal dose (25 x 10 "2 ml) or 

higher doses of SRBC. Thus, line differences in phagocytic activity (uptake and 

destruction) were not eminent, and therefore line differences in antibody response can 

not be attributed to phagocytic activity 

Presentation of SRBC 

To trigger an antibody response to a T cell-dependent antigen, the antigen has to be 

internalized and processed wi th in an Antigen Presenting Cell (APC). Presentation of a 

part of the antigen at the surface of the APC to CD4 + T cells, can activate these CD4+ 

cells. These cells then respond w i th proliferation and the release of the cytokines, 

necessary to activate B cells. Activation of CD4 + cells is in chickens, as in mammals. 

Class II (B-L in chickens) restricted (Vainio et al., 1988). T cells wil l only respond to 

APC w i th corresponding B-L molecules at their surface. In chickens, associations w i th 

particular B-G haplotypes and Marek's disease are reported (see review Chapter 1). 

Because B-G genes and B-L and B-F genes are found to be rather t ightly l inked, it was 

hypothesized that particular ß-products are better in stimulating protective immune 

responses (Briles et al., 1977). Similarly, it can be hypothesized that particular B-L 

products might be better than others in stimulating CD4+ lymphocytes to certain 

antigens. That is, a particular antigen/ß-A combination might be recognized more 

effectively by a given T cell receptor (TCR) or alternatively, particular ß-complex 

products might associate better w i th this specific antigen and therefore are more 

effective in stimulating antibody responses. As the frequencies of fî-haplotypes differ 

between the lines (Pinard et al., 1993b), it is tempting to speculate on differences in 

presentation efficiency between the lines. The H line might be better equipped to 

stimulate T helper cells and B cells to respond to SRBC than the L line. However, the B-

genotypes explained only 3 .5% of the total variation in the antibody response 

estimated in the F2 population (produced by crossing the products of a cross f rom H 

and L line chickens; Pinard and Van der Zijpp, 1993). Therefore it is not likely that the 

line differences in ß-haplotypes are responsible for the difference in antibody 

production. On the other hand, the S-haplotypes measured are products of B-G genes, 
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which are not involved in the presentation of antigens and in generations of selection 

associations with B-G and B-F or B-L might have altered between the lines. 

To activate T cells, binding to the antigen fragment on the APC is essential, but also 

other co-stimulatory signals are necessary. One of these is the stabilizing surface 

molecule CD28, expressed on all CD4+ aß T cells in chickens (Young et al.. 1994). 

Binding to this CD28 molecule and to the antigen receptor, causes enhancement of 

cytokine production (Arstila et al., 1994). Recently the peripheral and splenic 

percentages of CD28 molecules were determined in the H and L line. However, 

differences were not consistent in time (Parmentier et al., 1995). And percentages 

splenic CD28+ cells were similar between the lines both in immunized and non-

immunized chicks (Kreukniet eta/., unpublished results). 

To summarize the information concerning presentation of antigen as yet known, the 

two aspects studied, i.e. the S-complex and the CD28 molecule, do not indicate any 

differences in antigen presentation between the selection lines. However, in chickens, 

the counter part of the CD28 molecule is not been determined and it is possible that 

this molecule, or other co-stimulating factors (i.e. cytokines) differ between the lines, 

resulting in CD4+ T cell activation favouring antibody production in the H line. 

Cytokines 

As stated before, not only the association of TCR and other accessory molecules on 

the surface of APC with their ligands is necessary, but also certain cytokines, i.e 

interleukines and interferon, are essential for the activation of B cells, lnterleukine-1 (IL-

1), produced by activated APCs, induces IL-2 receptors on T cells. After prolonged 

exposure to IL-1, chicken T cells will secrete IL-2 (Klasing, 1987). IL-1 and IL-2 are 

necessary to activate CD4+ cells. Differences between the lines in production of IL-1 or 

other interleukines will lead to differences in immune responses. The release of the 

certain cytokine profiles, is found to direct the differentiation of CD4+ into either TH1 or 

TH2 cells in mammals. TH1 cells function as helper cells in the cellular response and TH2 

cells in the humoral response (Mosmann era/., 1986; Abbas et al., 1991). However, as 

yet, no avian homologues of the interleukines inducing this differentiation (IL-4, IL-5, IL­

IO and IL-12) have been found. The existence of the TH1 and Th2 cells is therefore 

hypothetic in poultry. 

To study our selection lines in more detail, attempts have been made to measure IL-2 

and interferon y. Unfortunately, the assays used seemed poorly reproducible with our 

chickens. Therefore, no direct information about these cytokines is available. But, also 

in poultry seems T cell growth during in vitro mitogen response to depend on IL-2 

(Arstila et al., 1993). Therefore, the higher in vitro responses to the mitogen ConA in 

the L line (Chapter 6) might mean higher IL-2 production in the L line (Pink and Vainio, 

1983), produced either by T cells or APC. On the other hand, it is also possible that 



120 General Discussion 

ConA is better in stimulating growth of CD8 + cells. This would explain the higher 

response in the L line, because relatively more CD8+ cells are found in the L line 

(Chapter 7; Siegel et al., 1992; Parmentier et al., 1995). 

T cells 
In Chapter 5, it was found that interline differences diminished in the second 

(spontaneously appearing) peak after an IM injection of SRBC in Complete Freund's 

Adjuvant (CFA). This effect was attributed to the mycobacteria in CFA, because 

Freund's Adjuvant wi thout the mycobacteria (IFA) did not enhance the L line response 

to the H line level. Mycobacteria are believed to stimulate phagocytes and T cells. It is 

not known whether T cells are activated directly by the mycobacteria, or by cytokines 

released by phagocytes. However, the mycobacteria might have resulted in a profile of 

cytokines favouring differentiation of CD4+ T cells into TH2 cells stimulating antibody 

response. Hypothetically, the immune system of the H line might normally react w i th 

TH2 cells, while the L line usually reacts w i th differentiation into TH1 cells. The 

mycobacteria might shift the differentiation in the L line towards TH2 cells. This genetic 

predisposition to specific antigens has been described before in mice. Certain strains 

(Balb/C) are very susceptible to Leishmania and were found unable to respond w i th TH1 

cells, while the strains like C57 BL/6 responding w i th TH1 cells to this parasite survive 

(Bancherreau, 1991). In our chicken lines, both lines might react w i th TH2 cells, due to 

the mycobacteria, resulting in a high antibody response in both lines. However, this is 

rather hypothetic, because CFA is also found to stimulate cellular responses (Allison 

and Davies, 1 9 7 1 ; Allison and Byars, 1986). Possibly, the total number of activated 

TH1 and TH2 cells are elevated, enhancing both cellular and humoral response 

simultaneously. As yet, there is in chickens no prove that TH1 and TH2 cells exist, thus 

it is not possible to differentiate between these T cell populations in. 

In order to estimate the T cell activity of the lines, traditionally In vitro and in vivo T 

cell stimulation tests are conducted. In Chapter 6, in vitro T cell responses to ConA 

were described. In vivo T cell responses (wingweb) to PHA or the antigen BSA were 

estimated in the lines by Parmentier et al. (1993). However, the in vitro results were 

contradicting w i th the in vivo results. In vivo, higher T cell activity was found in the H 

line, while in vitro the responses were higher in the L line. These differences might be 

due to differences in T cell subpopulations stimulated. As reported, the lines differ in 

percentages of CD4 + and CD8+ cells (Chapter 7, Siegel et al., 1992; Parmentier et al., 

1995) and of TCR1 and TCR2 cells (Parmentier et al., 1995). Moreover, it is also not 

known how the different assays used to evaluate T cell activity correspond w i th the 

function of T cells in vivo. Therefore, it is very speculative to suggest relatively higher 

or better T cell activity in one of the lines based on these assays. The reverse order in 
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the lines comparing the mitogen responses in vitro and in vivo, might just reflect the 

line differences in T cell populations. Also, because antibodies mediate the reaction 

measured in the in vivo T cell response (Parmentier et al., 1993), line differences found 

might be the effect of differences in antibody production and not of T cell responses. 

Although the different assays conducted to estimate T cell activity in the lines do not 

show consistent results, line differences in the T cell compartment are indisputable. 

The percentages of the CD8 + and CD4 + cells (Chapter 7, Siegel et al., 1992; 

Parmentier et al., 1995) and of TCR1 and TCR2 (Parmentier et al., 1995) differ 

between the lines, while also structural differences in the T cell areas of the spleens are 

found (Chapter 7). The CD8 + cells are, at least in vitro, capable of suppressing the 

antibody response to SRBC (Quere et al., 1990a b) . It can be hypothesized that selection 

for low antibody response has favoured the CD8 + T cell populations. These cells might 

be able to suppress the antibody response. Although they might also reflect a more 

active cytotoxic defence in the L line, because it is not possible to differentiate 

between these functional types of CD8 + cells. In the H line selection might be based on 

high numbers of the CD4 + Th0|pe, cell phenotype. However, the difference in antibody 

response might also be the result of differences in cytokine profiles, causing higher 

numbers of H line CD4 + to differentiate into putative TH2 cells and L line CD4 + to 

differentiate into putative TH1 cells. These combined effects of selection might have 

resulted in the high and low anti-SRBC response lines. 

Proliferation and differentiation B cells 

Although, it is clear that differences in the T cell compartment between the lines 

exist (see above), there are also differences in the B cell compartment. It is noteworthy 

that both lines have an antibody peak at day 5 or 7 p.i. This shows that the L line is a 

true low responder to SRBC and not a delayed anti-SRBC responder, because the height 

of the response is the only line difference in the kinetics of the antibody response. The 

line differences in circulating antibodies reflect the line differences found in both total 

and IgG antibody forming spleen cells (AFC) after immunization w i th SRBC (Donker, 

1989). This might be the result of the higher number of B cells found in the H line 

compared w i th the L line and the C line (Chapter 7; Siegel et al., 1992; Parmentier et 

al., 1995), which thus allows more B cells to be activated. On the other hand, a higher 

proliferation rate of each activated B cell wil l also result in more AFC. 

For activation, binding of the antigen to the slg at the surface of the B cell is 

necessary. This means that only specific B cells can be activated. Higher antibody 

responses against BSA, KLH and TNP are found in the H line (Chapters 5 and 7; 

Parmentier et al., 1994), suggesting that the higher number of B cells in the H line is a 

general phenomenon. This general effect is emphasised by the higher number of TNP 

specific antibody producing cells in non TNP-immunized H line chicks (Chapter 7). 
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However, although the percentage of B cells and the anti-SRBC antibody levels differ 

between the H and C line, anti-BSA levels are comparable between these lines, but 

lower in the L line. Therefore the relatively higher number of B cells does not 

necessarily result in higher antibody production. Moreover, after SRBC immunization it 

was possible to elevate the L line to the H line level, by administering CFA. In addition, 

the antibody responses to SRBC and BSA do not correlate (Parmentier et al., 1994). 

Thus although there are in total more B cells which can be activated in the H line, also 

other mechanisms supporting antibody response must differ between the H and L line. 

The lack of difference in antibody responses against T cell-independent antigens 

(Chapter 5) indicates that T cells must also be involved and, as discussed above, the TH 

cell populations and thus the cytokine profiles are good options. 

Antibody repertoire 

If, among other signals, there is antigen bound to their slg, B cells can be activated, 

proliferate and differentiate into plasma cells. Each B cell has slg of only one specific 

antigenic determinant and can produce only this one specific Ig. However, the total B 

cell repertoire of an individual will cover most antigens. It might be possible that the 

low antibody response in the L line reflects a limited recognition of SRBC by B cells, 

due to a small B cell repertoire, resulting in only a few plasmacells. During 

differentiation of the B cells, slight modifications in the antibody specifity occur. As the 

chick is continuously under antigenic pressure, the antibody repertoire will change 

during life. However, despite the equal housing conditions, relatively more B cells, as 

well as a higher number of splenic germinal centres at 6 weeks of age, were found in 

the H line. Therefore, the H line might have created a larger antibody repertoire during 

embryonic life and the first weeks after hatch. The response to many antigens is higher 

in the H line and it is tempting to attribute this to the higher number of B cells in the H 

line, compared with the L and the C line (Parmentier et al., 1995). However, when the 

antibody response to BSA of H and L line chicks is compared with the C line, it was 

found that, although the response in the H line is higher than in the L line, the C and 

the H line do not significantly differ (Parmentier et al., 1994). Therefore it might be 

better to speak of genetic suppression of antibody responses in the L line instead of 

enhancement in the H line. However, as BSA and SRBC are different types of antigen, 

the intracellular processing of the soluble protein BSA by the APC, will probably differ 

from that of the particle SRBC. The differences between the L, C and H line in 

processing SRBC, might not exist for BSA. Processing of BSA (and possibly other 

soluble antigens) might differ between the C and L line, but not between the C and H 

line. 
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Hypothesis 

Although only a few facets the cascade of events following immunization with SRBC 

have been studied in both lines, a hypothesis can be based on these results. Firstly, 

both antigen clearance by phagocytes and antigen presentation by APC seem not to 

attribute to the differences in antibody response to SRBC between the lines. Thus, 

there is in this no parallel between present chicken lines and the Biozzi mice. However, 

selection seems to have altered the B cell compartment, because relatively more B cells 

are found in the H line than in the C and L line. The differences in percentage B cells 

might explain the difference in anti-SRBC antibodies, but can not be extended to all 

other T cell-dependent antigens, because the H line does not always differ from the C 

line (Parmentier et al., 1994). Higher percentages of CD4+ cells were also found in the 

H line. The CD4+ cells have helper functions in both cellular and humoral responses, 

therefore one can not contribute differences in antibody response directly to the relative 

line differences in helper cell populations. Which immune response is supported by the 

CD4+ cells - cellular or humoral - depends probably on the APC and the cytokines 

produced. This differentiation process seems to depend on the kind of antigen 

processed by the APC. The supposed genetic fixation of differentiation into putative 

TH2 cells in the H line only covers the response to SRBC. Although the suppression of 

antibody response is less dependent on the kind of T cell-dependent antigen (Chapters 

5 and 7; Parmentier et al., 1993; 1994). 

Line differences were found to depend on the route of immunization (Chapter 5). 

Selection has altered the splenic organization between the lines (Chapter 7). But, 

because the place of entrance of the antigen determines to a large extent in which 

lymphoid organ the immune response takes place, not all the other peripheral lymphoid 

organs are similarly affected. 

In addition to the differences in CD4+ cells, in the L line higher percentages CD8+ T 

cells are found. CD8+ cells are able to suppress antibody responses, at least in vitro. 

Thus selection for low antibody production might be reached by a relative high number 

of CD8+ cells. In contrast to the enhancement of antibody response in the H line, the 

suppression of antibody response in the L line seems also true for BSA. Thus genetic 

selection for suppressed antibody response might have caused general suppression 

against T cell-dependent antigens, while enhancement was antigen specific in our 

selection lines. 

Practical Implications 

Poultry breeders would have welcomed it hearty when selection for (high) antibody 

production would have increased general disease resistance. At the beginning of the 

selection experiment, this was one of the aims for the lines. The first challenge with 

Marek's disease was promising, indeed less mortality was found in the H line than in 
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the L line (Van der Zijpp and Nieuwland, 1986). However, comparison with the C line 

revealed that in fact the L line was more susceptible, while resistance in the H line was 

not enhanced (Pinard et al., 1993°). As discussed, selection for high antibody response 

was found not to enhance the total scope of antibody responses, while the opposite 

selection for low antibody responses seemed to be more a-specific. As susceptibility is 

obviously not an economically favourable trait, selection for antibody response to SRBC 

seems not to have a direct practical implication. However, these effects should not be 

generalized, as the defence against invading pathogens does not necessarily involve 

antibodies. Moreover, selection has enhanced the percentages of CD8+ cells in the L 

line. These CD8+ cells are believed to play a key role in the resistance to avian 

coccidiosis. Therefore present L line might be resistant to infectious oocysts. 

Although in mice, phagocytic activity could explain part of the difference in antibody 

response (Wiener and Bandieri, 1974), no such effect was found in our chicken lines. 

This warns us against direct projection of the results found in one species on other 

species. Furthermore, when studies with present selection lines are compared with 

other chicken lines selected for antibody response against SRBC, the differences in 

results are striking (Scott et al., 1991, Scott et al., 1994, Van der Zijpp et al., 1988, 

1989; Chapter 6). And it has also been reported that even replicated selection lines, 

selected from the same base population, differ in effects on the immune traits and B-

complex (Kean et al., 1994"b). Therefore, it should not be expected that results found 

in one selection line, will be repeated when the selection is repeated with other animals 

of the same strain. 

On the other hand, it also indicates that selection for a certain immune response to 

increase general (or specific) disease resistance, which might be highly correlated in 

parts of the breeding population, might not have the desired effect in the commercial -

hybrids - populations. 

Scientific Implications 

The immune system is very complex and, although working following the same rules 

within a species, the outcome differs between individuals as the immune pathways 

followed will differ. After selection for several generations, the genes responsible for 

the phenotypic trait (level of the anti-SRBC titer) will finally become fixed, resulting in a 

limited repertoire of immune pathways in a selection line. The two lines divergently 

selected for antibody response will thus finally result in two lines with fixed genes. The 

lines thus have to follow predictable immune pathways to reach the immune responses. 

If the pathways are antigen non-specific or specific for a defined group of antigens, the 

lines can be very useful as an in vivo model to study the immune responses in chickens 

and their effectiveness in resistance to different pathogens. 
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On the other hand, in the future, when the lines are at the selection plateau and the 

pathways are fully identified in the lines, they can be used to determine the genes 

responsible for each step of the pathway. This makes direct selection for the most 

favourable genotypes, instead of phenotype, possible. However, to be able to do this, 

first should be solved which genotype is the most favourable. 

A direct advantage of our selection lines is the existence of a C line. Although at 

present, the selection lines are not fully immunologically characterised, the C line can 

be used to determine whether the found selection effects are to be attributed to the H 

line or the L line. This makes it possible to directly use the information available. For 

example, of most pathogens the route by which pathogenicity is achieved is still under 

investigation. The known interline differences in, for instance, the percentages of 

lymphocyte subpopulations might be very useful in determining how susceptibility or 

resistance to a given pathogen is reached. So far, our selection lines have only been 

challenged with Marek's disease virus (MDV). Therefore we can use MDV as an 

illustration of the possibilities selection lines have to speed up progress in 

understanding the interactions between the Marek virus and host cells. In the challenge 

with MDV, the control line was included and it was found that the L line was more 

susceptible, while the H line and C line hardly differed in resistance to MDV (Pinard et 

al.. 1993s). MDV is a DNA herpes virus and it is believed that B cells are the primary 

lymphocytic targets of the early phase of the infection (Schat, 1991). T cells become 

activated, express B-L antigen and can be infected with MDV (Calnek, 1986). These 

latently infected T cells are thought to be responsible for the spread of MDV to other 

organs. Reactivation of the virus in these cells can lead to cytolitic infection in lymphoid 

organs, (see Calnek, 1986). The final stage of infection is often a neoplastic 

transformation of T lymphocytes (Nazerian et al., 1973). The target cells for MDV 

induced tumorgenesis appear to be mature T cells and cell activation may be a key 

element in the transformation process (Schat, 1991). Schat et al. (1991) reported that 

TCR1 cells are rarely the targets for MDV infection and transformation, although this 

might be attributed to other in vivo growth requirements of TCR1 cells. 

If TCR1 cells are less susceptible, it could be hypothesized that selection for antibody 

response has resulted in less TCR1 type T cells in the L line, which is contradicting 

with the findings in our lines (Parmentier et al., 1995). Although B cells might be the 

first cells infected by MD, this infection does not necessarily cause the pathogenic 

effect, as it would incline that the H line, having more B cells, should be more 

susceptible, which is not found. Therefore the key to resistance or susceptibility to 

Marek's disease might be the activation of T cells or the cytokine profile. 

Concluding remarks 

In this thesis a start is made with the characterisation of the immune pathways used 
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by the t w o selection lines. However, much research has to be done to complete this 

task. The C line was not included in the studies presented in this thesis, however, the 

use of this line was inevitable to be able to comment on the direction of the selection 

effects found. 

The lines are found to differ in both the B cell and T cell compartment of the immune 

system. Unfortunately, progress in characterisation of the lines has been hampered by 

the incomplete knowledge of the structure and function of the avian immune system. 

Therefore, similarities w i th the mammalian system have been assumed. Differences in 

cytokine profiles causing activation of CD4 + cells, either stimulating antibody response 

or cellular responses remain hypothetic in our chicken lines. 

Extension of both the knowledge of the immune repertoire of the selection lines and 

the resistance and susceptibility to other diseases is a necessity to make full use of the 

lines as in vivo models w i th f ixed immune responses. 
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SUMMARY 

Introduction 

The housing of large quantities of pigs or poultry on small areas has increased the 

risk on infectious diseases. One of the solutions to prevent diseases is keeping 

genetically resistant animals. Therefore, different research groups have started to study 

the possibilities of breeding animals with so called 'general disease resistance'. Several 

lines of chickens have been divergently selected for immunological traits or for 

resistance and susceptibility to a certain disease to study genetic disease resistance. 

These lines are reviewed in Chapter 1, after a brief overview of the immune system of 

chickens. In the following chapters 2 to 7, two chicken lines selected for either high (H) 

or low (L) antibody response to sheep red blood cells (SRBC) are studied. Both these 

lines were selected from the same base population of medium heavy brown egg layers 

(ISA Brown), in addition a random mated control (C) line was maintained from the same 

base population. 

In Chapter 1, it was concluded that of non of the selection lines the mechanisms 

underlying the immune response are known. However, when these selection lines are 

to be used to study the genetic aspects of those immune responses which protect 

against pathogens, this knowledge is necessary. After an antigen invades the body, a 

cascade of reactions is triggered and all the steps of this cascade together will 

eventually result in the immune response selected for. In each selection generation all 

the genes responsible for each step in the cascade become more fixed in the lines. 

Finally this will result in lines which genes can only produce a limited repertoire of 

reactions to SRBC and possibly also to other antigens. If the limitations of the lines and 

the antigen specifity are known, they can be of great use in studying the pathogenity 

of diseases and the possible useful defensive reactions of chickens. On the other hand, 

when all the steps of the cascade of reactions following the invasion of the antigen are 

known, the lines can be used to study the genes responsible for each step. 

Therefore studies were conducted to start the immunological characterisation of the 

H and L selection lines. In the Chapters 2 to 7, several steps of the cascade were 

studied to find differences between the H and L line. In Chapter 8, the results of these 

studies and additional studies, including the C line, are discussed to set up a hypothesis 

how high antibody response is established in the H line and how the SRBC is cleared in 

the L line. 

Phagocytic activity 

In Chapters 2 and 3, the approach of Biozzi was followed, because in the Biozzi mice 

selection for antibody response to SRBC affected the phagocytic activity and accessory 
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functions of macrophages. The mice L line phagocytized more antigen and the antigen 

was degraded faster. In the H line mice the retention time of antigen on the surface of 

macrophages was much higher. This lead to the postulate that differences in handling 

of the entering antigen was the cause of line difference in antibody production. Because 

when in the L line all entered antigen was trapped and destructed, other protective 

mechanisms, like antibody response are not necessary. Therefore first the phagocytic 

capacity of present chicken lines was investigated. 

Generally, no line differences were observed. However, more circulating 

granulocytes were found in the L line. On the other hand, in vitro phagocytosis of yeast 

cells was higher in the H line. Blood clearance of carbon was similar in the lines and no 

line differences were found in the destruction phase of phagocytosis (Chapter 2). In 

Chapter 3, intraperitoneal cells (PEC) were harvested from non-immunized chicks and of 

chicks intramuscularly immunized with SRBC five days previously. The lines did not 

differ in percentage of phagocytic PEC, nor in number of SRBC phagocytized. 

From these results it was concluded that the line difference in antibody production 

after immunization with SRBC was not caused by differences in phagocytic activity 

between the selection lines. This was confirmed by the studies described in Chapters 4 

and 5. When different doses SRBC were intramuscularly injected in young chicks, both 

lines still responded when only 5x10'4 packed SRBC were injected (Chapter 4). 

Moreover, line differences remained on the same level, independently of the dose given 

(Chapter 4). Small doses of free SRBC can also be established by immunizing with a 

depot-forming-adjuvant. Experiments were carried out with SRBC in Incomplete 

Freund's Adjuvant (IFA) (Chapter 5). The oil in this adjuvant causes a continuous 

release of very small amounts of SRBC to the surroundings, yet line differences still 

existed. 

T cell activity 

When Complete Freund's Adjuvant (CFA), which contains oil, but also mycobacteria, 

was used, the titers decrease only a little after the first peak was reached and then, 

without reimmunization, increased to remain, in both lines, at the peak level of the H 

line for several weeks (Chapter 5). Because this was not found after immunization with 

sole SRBC or IFA, it is believed that the mycobacteria, which are thought to stimulated 

T cells, caused the high antibody response in both lines. Therefore differences in T cell 

activity might be responsible for the line differences in antibody response to SRBC. 

Immunization with the T cell-dependent antigens BSA (Chapter 5), Keyhole limpet 

haemocyanin (KLH) and trinitrophenyl sulphonic acid (TNP; Chapter 7) resulted in 

divergent antibody responses similar to the responses to SRBC. Additional studies, 

including the C line (discussed in Chapter 8), showed that antibody response to BSA 

did not differ between the H and C lines. On the other hand, the antibody responses to 
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Brucella abortus (BA) and Salmonella H antigen, both considered T cell-independent, did 

not show the characteristic line differences. However, responses differed between 

sexes, pullets having a higher response in one line, the cockerels in the other (Chapter 

5). These differences in antibody response between immunization with a T cell-

dependent and a T cell-independent antigen indicate also line differences in T cell 

activity. 

Because of the suggested differences in T cell activity between the selection lines, in 

vitro T cell activity was studied in Chapter 6. The mitogen response to ConA were 

higher in the L line than in the H line, independently of dose ConA, or lymphocyte 

source (peripheral or splenic). However, in vivo hypersensitivity reactions, also a 

measure of T cell activity, showed higher response in the H line than in the L line. This 

might be attributed to the role of antibodies eliciting hypersensitivity in vivo. On the 

other hand, also differences in T cell populations stimulated in the assays applied or 

differences in activity state of T cells after immunization might account for the opposite 

results found. This is supported by the line differences in T cell populations. In the H 

line higher percentages CD4+ cells are found, while in the L line the percentages CD8 + 

cells are slightly higher (Chapter 7). 

B cell compartment 

Histological determinations with specific monoclonal antibodies on spleens of non-

immunized chicks, showed that the selection had affected the cellular organization of 

the spleen (Chapter 7). Large dense T cell areas were found in the L line, while in the H 

line more and larger germinal centres were found. In the H line, also more B cells were 

found in the peri-ellipsoid lymphoid sheaths (PELS). The higher number of PELS in the H 

line, indicates a constitutional difference between the lines, because the branching of 

arterioles is thought to be intrinsic and not influenced by antigenic challenges. The 

number of germinal centres should be considered as the result of previous contact with 

antigen. Nevertheless, because chickens of both lines were housed intermingled, it can 

be assumed that both lines were under the same antigenic pressure. Still the H line 

reacted with a higher number of germinal centres, demonstrating a functional difference 

between the immune systems of the lines. This difference seems not SRBC-specific, 

because the chicks were not immunized. 

In Chapter 7, also the percentages of lymphocyte subpopulations are studied in 

blood and lymphoid organs using flow cytometry. In spleens of non-immunized chicks, 

more CD8+ cells were found in the L line and in the H line spleen more CD4+ cells. 

Immunization had a similar effect in both lines (Chapter 7). In general more circulating 

lg+ leukocytes in the H line. Moreover, in non-TNP-immunized chicks, higher numbers 

of splenic anti-TNP antibody forming cells were found in the H line. 

From the studies described in Chapters 2 to 7 it seems valid to conclude that 
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divergent selection for antibody response has resulted in a relatively higher number of B 

cells in the H line. While in the H line also the organization of the spleen favours 

antibody response to T cell-dependent antigens. However, as the line difference 

depends on the route of immunization (Chapter 5) not all peripheral lymphoid organs 

might be affected to the same extend. 

Hypothesis 

Selection affected the B cell compartment differently in the two lines. A relative 

higher number of B cells was found in the H line, which might attribute to a higher 

antibody response in this line. The lines also differed in cellular organization of the 

spleen, which might favour antibody response in the H line. On the other hand, higher 

percentages CD8+ cells were found in the L line and these cells can suppress antibody 

response. Also the percentages of CD4+ cells differed between the lines. The CD4+ 

cells are able to stimulate immune responses. Which response is stimulated - cellular or 

humoral - depends on the cytokines released by the immune cells. It might be 

hypothized that in the H line more CD4+ cells differentiate in T helper cells favouring 

the antibody response. However, the cytokines responsible for the differentiation of 

CD4+ cells in mammals, have, as yet, not been discovered in chickens. 

The high antibody response is largely SRBC specific (when compared with the C 

line). This might be due to the processing of the antigen by Antigen Presenting Cells 

and the following release of cytokines. The low antibody response in the L line seems 

to be less antigen specific. 

Concluding remarks 

In this thesis a start is made with the characterisation of the immune pathways used 

by the selection lines, however much work has to be done to complete this task. 

Extension of both the knowledge of the immune repertoires, including the antigen 

specifity, of the selection lines and of the resistance and susceptibility to other diseases 

in the lines are a necessity to make full use of the lines as in vivo models with fixed 

immune responses. 

Comparison of present lines and other lines selected for antibody response to SRBC, 

and also other unrelated replicated selection experiments, show that replication of an 

selection experiment will not necessarily respond to the selection with the same 

immune pathways, although the same phenotypic result is reached. Thus, each line, 

even replications from the same base population should be immunologically 

characterized if to be used as an in vitro model. On the other hand, even when in parts 

of the breeding populations a certain immune trait is highly correlated with 'general' (or 

specific) disease resistance, selection for this immune trait might not give the desired 

result in the hybrids used in commercial practice. 
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Introductie 

Het houden van grote aantallen varkens en kippen op kleine oppervlakten heeft de 

kans op ziekten verhoogd. Een van de oplossingen om ziekten te voorkomen is het 

houden van genetisch resistente dieren. Daarom is men op verschillende plaatsen 

begonnen met onderzoek naar de mogelijkheden om dieren te fokken met 'algemene 

ziekte resistentie'. Er zijn onder andere verschillende divergente kippenlijnen 

geselecteerd op een hoge danwei lage immuunrespons, ofwel op resistentie danwei 

vatbaarheid voor een bepaalde ziekte. Een overzicht van deze divergente selectielijnen is 

gegeven in Hoofdstuk 1, hetgeen voorafgegaan wordt door een kort overzicht van het 

immuun-systeem van de kip. De hoofdstukken 2 tot en met 7 beschrijven twee 

kippenlijnen, die divergent geselecteerd zijn op antilichaamproduktie tegen schapen rode 

bloed cellen (SRBC). Beide lijnen werden geselecteerd uit dezelfde basispopulatie 

middelzware ISA Brown legkippen. Daarnaast werd ook een niet-geselecteerde lijn als 

controle (C) lijn aangehouden. 

Uit Hoofdstuk 1 bleek dat van geen van de selectielijnen bekend is welke 

mechanismen op cellulair niveau verantwoordelijk zijn voor de immuunrespons waarop 

geselecteerd is. Echter, indien men gebruik wil maken van deze selectielijnen om 

bijvoorbeeld die genetisch aspecten van immuunresponsen te onderzoeken die 

beschermen tegen pathogenen, dan is deze kennis noodzakelijk. Het immuunsysteem 

reageert immers met een cascade van reacties, die uiteindelijk leiden tot de 

immuunrespons waarop geselecteerd is. In iedere geselecteerde generatie komen er 

meer dieren waarvan de genen die verantwoordelijk zijn voor de deelstapjes van deze 

cascade aan elkaar gelijk zijn. Uiteindelijk zullen alle dieren van een selectielijn een 

vastliggend repertoire deelstapjes kunnen uitvoeren. Indien het vastliggende 

immuunrepertoire van een lijn bekend is en tevens bekend is voor welke antigenen dit 

geldt (de antigeenspecificiteit), dan kunnen deze lijnen een zeer zinvolle bijdrage leveren 

aan het onderzoek naar hoe ziekte tot stand komt en welke immuunreacties 

beschermend zijn bij de kip. Daarnaast kunnen, indien alle stappen van de cascade 

volgend op het binnendringen van het antigeen bekend zijn, ook de genen 

verantwoordelijk voor iedere stap bestudeerd worden. 

Daarom zijn in de volgende hoofdstukken experimenten beschreven die tot doel 

hadden de hoge (H) en lage (L) selectielijnen immunologisch te karakteriseren. In 

Hoofdstuk 2 tot en met 7 zijn verschillende stappen van de cascade bestudeerd om 

verschillen tussen de lijnen te vinden. In Hoofdstuk 8 zijn de resultaten van deze en 

aanvullende onderzoekingen (waarin ook de C-lijn) bediscussieerd, zodat hypotheses 

opgesteld konden worden over hoe de H-lijn een hoge antilichaamrespons bereikt en 

hoe de L-lijn tegen SRBC optreedt. 
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Fagocytose-activiteit 

In de Hoofdstukken 2 en 3, is de aanpak van Biozzi gevolgd. In Biozzi's muizen bleek 

de selectie op antilichaamrespons tegen SRBC de fagocytose-activiteit en de antigeen-

presenterende functies van macrofagen te hebben veranderd. De L-lijn muizen 

fagocyteerden meer antigeen en braken het antigeen ook sneller intracellulair af. Bij de 

H-lijn muizen daarentegen konden gedurende langere tijd stukjes antigeen op het 

celoppervlak van macrofagen gevonden worden. Hieruit werd afgeleid dat door 

verschillen in behandeling van het antigeen, verschillen in antilichaamproduktie werden 

veroorzaakt. Immers, indien in de L-lijn door fagocytose al het antigeen is vernietigd, 

worden andere beschermende mechanismen, bijvoorbeeld antilichaamproductie, niet 

meer geactiveerd. Daarom is eerst de fagocytose-activiteit in onze beide kippenlijnen 

bestudeerd. 

Over het algemeen zijn er geen verschillen tussen de lijnen gevonden. In het bloed 

van de L-lijn werden wel meer granulocyten gevonden, maar in de H-lijn was de in vitro 

fagocytose van gistcellen hoger. Koolstof werd in beide lijnen even snel uit het bloed 

verwijderd, terwij l ook geen verschillen tussen de lijnen werden gevonden in de 

vernietiging van antigeen (Hoofdstuk 2). In Hoofdstuk 3 werd de fagocytose van SRBC 

door intraperitoneale (buikholte) cellen (PEC) bestudeerd. De PEC waren afkomstig uit 

niet-geïmmuniseerde kippen en uit kippen die 5 dagen eerder waren geïmmuniseerd met 

SRBC. De lijnen verschilden niet, noch in het percentage fagocyterende PEC, noch in 

het aantal SRBC opgenomen per actieve PEC. 

Uit de resultaten van Hoofdstuk 2 en 3 kan worden geconcludeerd dat het lijnverschil 

in antilichaamproduktie na immunisatie met SRBC niet wordt veroorzaakt door 

verschillen in fagocytose-activiteit tussen de lijnen. Ook de resultaten van Hoofdstuk 4 

en 5 ondersteunen deze conclusie. De dosis SRBC geïnjecteerd in de spier had geen 

invloed op het lijnverschil in antilichaamtiter (Hoofdstuk 4). Beide lijnen reageerden zelfs 

nog met een antilichaamrespons na een dosis van slechts 5x104 SRBC (Hoofdstuk 4). 

Kleine hoeveelheden SRBC kunnen ook vrijkomen na immunisatie met SRBC in een 

depot-vormend-adjuvant. Experimenten werden uitgevoerd met SRBC in Incompleet 

Freund's Adjuvant (IFA) (Hoofdstuk 5). De olie in dit adjuvant zorgt ervoor dat continu 

een kleine hoeveelheid SRBC vrijkomt. Echter de lijnverschillen werden er niet door 

beïnvloed. 

T-cel-activiteit 

Indien werd geïmmuniseerd met Compleet Freund's Adjuvant, hetgeen naast olie ook 

mycobacteriën bevat, namen de antilichaamtiters slechts een beetje af na de eerste 

piek, daarna nam de titer toe, zonder reïmmunisatie, om weken lang, in beide lijnen op 

het niveau van de H-lijn te blijven (Hoofdstuk 5). Omdat dit niet gevonden werd na 

immunisatie met enkel SRBC, of SRBC in IFA, zijn waarschijnlijk de mycobacteriën 
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verantwoordelijk voor de hoge antilichaamrespons in beide lijnen. Aangenomen wordt 

dat mycobacteriën T-cellen stimuleren, daarom zijn mogelijk verschillen in T-cel-

activiteit de oorzaak van de verschillen in antilichaamrespons. 

Immunisatie met de T-cel-afhankelijke antigenen Bovine Serum Albumine (BSA) 

(Hoofdstuk 5), Keyhole Limpet Haemocyanine en Trinitrofenyl sulfer zuur (TNP) 

(Hoofdstuk 7) gaf lijnverschillen in antilichaamtiter vergelijkbaar met de verschillen na 

immunisatie met SRBC. Uit aanvullende experimenten (bediscussieerd in Hoofdstuk 8) 

bleek echter dat de antilichaamrespons tegen BSA niet verschilde tussen de H en de C-

lijn, maar wel tussen de C- en de L-lijn. De antilichaamrespons tegen Brucella abortus 

(BA) en Salmonella H antigeen, beide T-cel-onafhankelijk, vertoonde niet de 

karakteristieke lijnverschillen. Echter, de responsen verschilden tussen de sexen, 

waarbij in de ene lijn de hennen de hoogste antilichaamtiter hadden, en in de andere lijn 

de hanen (Hoofdstuk 5). De verschillen in antilichaamrespons na immunisatie met T-cel-

onafhankelijke antigenen en T-cel-afhankelijke antigenen zijn ook een indicatie voor 

verschillen in T-cel-activiteit. 

De verschillen in T-cel-activiteit werden in Hoofdstuk 6 verder bestudeerd met behulp 

van in vitro mitogeenresponsen tegen ConA. De T-cel-groei was groter in de L-lijn dan 

in de H-lijn, onafhankelijk van de dosis mitogeen die gebruikt was en of de T-cellen 

afkomstig waren uit bloed of milt. Echter, de in vivo overgevoeligheids-reacties, ook 

een maat voor T-cel-activiteit, bleken tegenovergestelde lijnverschillen te geven. De 

respons was hoger in de H-lijn dan in de L-lijn. Mogelijk kan men dit toeschrijven aan de 

antilichamen die een rol spelen in de overgevoeligheids-reacties. Maar ook verschillen in 

de T-cel-populaties die gestimuleerd worden in de toegepaste testen of verschillen in de 

activiteit van de T-cellen op het testmoment en na immunisatie zouden de verschillen in 

de volgorde van de lijnen tussen de in vivo en in vitro testen kunnen verklaren. Dit 

wordt ondersteund door de verschillen in T-cel-populaties tussen de lijnen. In de H-lijn 

zijn hogere percentages CD4+ T-cellen gevonden, terwijl in de L-lijn de percentages 

CD8+ T-cellen hoger zijn (Hoofdstuk 7). 

Het B-cel-compartiment 

Histologisch werk met monoclonale antilichamen specifiek voor bepaalde cellen, 

toonde aan dat in niet-geïmmuniseerde hennen, selectie de cellulaire organisatie van de 

milt had veranderd (Hoofdstuk 7). In de L-lijn werden grote, dicht bevolkte T-

celgebieden gevonden, terwijl in de H-lijn meer en grotere kiemcentra werden 

gevonden. Deze kiemcentra zijn een gevolg van een antilichaamrespons. In de H-lijn 

werden ook meer B-cellen gevonden in de 'peri-ellipsoid lymphoid sheaths'(PELS). Het 

grotere aantal PELS geeft aan dat er een wezenlijk verschil is tussen de lijnen, omdat de 

mate van vertakking van de haarvaatjes aangeboren is en niet afhankelijk is van de 

antigenen waarmee het dier in aanraking komt. Het aantal kiemcentra moet echter wel 
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gezien worden als het gevolg van contact met antigeen. Echter, omdat de beide lijnen 

onder identieke omstandigheden zijn gehuisvest, kan aangenomen worden dat zij beide 

aan eenzelfde hoeveelheid antigenen hebben blootgestaan. De H-lijn reageerde echter 

met meer kiemcentra, hetgeen aangeeft dat er een functioneel verschil is tussen de 

immuunsystemen van beide lijnen. Dit verschil lijkt niet SRBC afhankelijk, immers de 

hennen waren niet geïmmuniseerd. 

In Hoofdstuk 7 zijn met behulp van ' f low cytometry' de percentages van de 

lymfocyten subpopulaties gemeten in het bloed en lymfoïde organen. In niet-

geïmmuniseerde kippen werden in de milt van de L-lijn meer CD8+ T-cellen en in de H-

lijn milt meer CD4+ T-cellen gevonden. Immunisatie gaf in beide lijnen dezelfde 

veranderingen in lymfocyt-percentages. In het bloed van de H-lijn werden meer lg + 

cellen gevonden. Daarnaast werden in de milt van niet TNP-geïmmuniseerde H-lijn 

dieren ook meer Antilichaam-Vormende-Cellen tegen TNP gevonden dan in de L-lijn. 

Uit de experimenten beschreven in Hoofdstuk 7 kan geconcludeerd worden dat de 

selectie voor antilichaamrespons heeft geresulteerd in een relatief groter aantal B-cellen 

in de H-lijn. Daarnaast is de organisatie van de milt in de H-lijn zodanig dat op T-cel-

afhankelijke antigenen eerder met een antilichaamrespons wordt gereageerd. Echter, 

omdat het lijnverschil afhangt van de immunisatie-route (Hoofdstuk 5), is het niet 

waarschijnlijk dat de selectie alle secundaire lymfoïde organen in dezelfde mate heeft 

veranderd. 

Hypothese 

Het effect van de selectie op antilichaamrespons verschilde tussen de twee lijnen. 

Een relatief hoger aantal B-cellen werd gevonden in de H-lijn, wat mogelijk de hoge 

antilichaamrespons heeft veroorzaakt in deze lijn. Er werden ook verschillen tussen de 

lijnen gevonden in de cellulaire organisatie van de milt. Mogelijk is deze in de H-lijn 

zodanig veranderd dat een antilichaamrespons makkelijker plaatsvindt dan in de L-lijn. In 

de L-lijn werden echter hogere percentages CD8+ cellen gevonden, deze cellen kunnen 

een verlagend effect op de antilichaamrespons hebben. Ook de percentages CD4 + 

cellen verschillen tussen de lijnen. De CD4+ cellen zijn in staat een immuunrespons te 

stimuleren. Echter welke immuunrespons wordt geactiveerd - cellulaire of 

antilichaamrespons - hangt af van de cytokinen in de omgeving van deze T-cel. Mogelijk 

differentiëren er in de H-lijn meer CD4+ cellen in de richting van T-helper-cellen 

specifiek voor de antilichaamrespons. Echter, de cytokinen die in zoogdieren 

verantwoordelijk zijn voor de differentiatie van CD4+ T-cellen, zijn in de kip nog niet 

aangetoond. 

De hoge antilichaamrespons blijkt in de H-lijn (vergeleken met de C-lijn) SRBC-

specifiek te zijn. Dit kan mogelijk worden toegeschreven aan de verwerking van 

antigeen door de zogenaamde Antigeen-Presenterende-Cellen en de daarop volgende 
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cytokinenproduktie. De lage antilichaamrespons in de L-lijn blijkt daarentegen veel 

minder antigeen-specifiek. 

Afsluitende opmerkingen 

In deze dissertatie is een begin gemaakt met de immunologisch karakterisering van 

twee op antilichaamrespons geselecteerde kippenlijnen. Echter, er moet nog veel werk 

gedaan worden voordat deze karakterisering compleet is. 

Een volledige karakterisering van het repertoire aan immuunresponsen, inclusief 

antigeen-specifiteit, van beide selectie lijnen en, in mindere mate, van de resistentie of 

gevoeligheid voor pathogenen is noodzakelijk om goed gebruik te kunnen maken van 

deze lijnen als in vivo modellen met genetisch vaststaande immuunresponsen. 

Vergelijking van deze lijnen met andere kippenlijnen geselecteerd op antilichaam­

respons tegen SRBC en andere onafhankelijke herhaalde selectie-experimenten, tonen 

aan dat het herhalen van een selectie experiment niet noodzakelijkerwijs hoeft te leiden 

tot selectielijnen met hetzelfde repertoire aan immuunresponsen. Daarom moet iedere 

selectielijn die men wil gebruiken als 'in vivo' model opnieuw immunologisch 

gekarakteriseerd worden. Ook betekent dit dat selectie op een bepaalde immuunrespons 

in commerciële populaties (hybriden) niet tot verbeterde genetische resistentie hoeft te 

leiden, ook al is in delen van deze populaties aangetoond dat er een hoge correlatie is 

tussen deze imuunrespons en resistentie. 
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