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Preface 
 
 
One of the most challenging tasks for the world in the coming decades is to 
meet the increasing demand for food, feed, fuel and fibre. According to United 
Nations, the world population will reach 9.3 billion by 2050. To feed all these 
people, overall food production needs to be increased by at least 70%.  
 Special attention is being paid to Africa, where the potential to increase 
yields is high. Yields in Africa have been lagging behind the world average for 
decades. If Africa is to contribute to the challenge of feeding its people in 2050, 
yields must be increased substantially. 
 The question how to increase yields in Africa is not new and there have been 
many studies on this topic. This report aims to address the question where in 
Africa efforts to increase yields should be targeted by identifying 'hotspots' 
(clusters of areas with a large yield-gap) and 'coldspots' (clusters of areas with a 
small yield-gap) of agricultural performance. In addition, it explores factors that 
determine local comparative advantage by integrating biophysical and 
socioeconomic spatial data.  
 Not only does this approach produce new insights, it also opens up a new 
interdisciplinary research agenda, as combining large datasets from various 
disciplines is becoming increasingly feasible with developing computer power 
and open access data. This report shows that the methodology can also be 
used for a more specific application, such as the targeting and upscaling of 
weather index-based insurance, which is one of the tools that can be used to 
increase yields. 
 The authors would like to acknowledge the contribution made by Thom 
Kuhlman and Arnoud Schouten to this report. 
 
 
 
 
L.C. van Staalduinen MSc 
Managing Director LEI  
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Summary 
 
 

S.1 Key results 
 
The difference between the potential yield and the actual yield of maize (yield 
gap) shows great spatial differences in Africa. (See Paragraph 3.4) 
 On average in Africa, a small yield-gap is correlated with good market 
access as well as a high use of fertiliser. (See Paragraphs 5.2 and 5.3) 
 However, this result varies spatially when looking at more detailed spots. 
In many regions in Africa, large and small yield-gaps are correlated with good 
and deficient market access and/or high and low fertiliser use. The distinct 
regions are often demarcated by administrative boundaries, suggesting a 
political-institutional dimension with respect to the causes of yield gaps. 
 
 

S.2 Complementary findings 
 
The methodology of interdisciplinary spatial mapping can be used to target 
specific development aid interventions. Better targeting of interventions can 
increase the effectiveness and efficiency of policy and donor interventions.  
(See Chapter 8) 
 The methodology of interdisciplinary spatial mapping can also be used in 
specific applications, such as the targeting and upscaling of weather index-
based insurance. Targeting and upscaling such insurance schemes can be 
costly, yet mapping can be an effective tool in generating information and 
reducing costs. (See Chapter 7) 
 The relation between the yield gap and population density is not clear-cut. 
Our analysis shows that both high and low population density can be related to 
both large and small yield-gaps; no clear patterns emerge. This is consistent 
with the literature on this subject. (See Paragraph 5.4) 
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Figure S.1 Large yield-gaps (red areas) show where there is room for 
improvement 

 
 
 

S.3 Methodology 
 
This study was financed by the Netherlands Ministry of Economics, Agriculture 
and Innovation (EL&I). The section on weather index-based insurance is part of 
the two-year collaboration with IFAD and WFP. Agricultural productivity growth in 
Africa is an important issue in the dialogue on food security that has been going 
on for the last few years. Improving food security is one of the spearheads of 
the policy of the Ministry of Foreign Affairs, and the EL&I is involved in devel-
oping and implementing this policy. Weather index-based insurance is an im-
portant tool in achieving food security and can also lead to productivity growth. 
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 The study combines large, interdisciplinary datasets through exploratory 
spatial data analysis. This analysis is applied to: (1) identify hotspots and 
coldspots of yield gap correlation, (2) examine to what extent and how certain 
socioeconomic factors are related to these spots, and (3) show how mapping 
can help identify suitable areas for implementing weather index-based insurance 
in Mali, based on yield variability and socioeconomic factors. 
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Samenvatting 
 
 

S.1 Belangrijkste uitkomsten 
 
Het verschil tussen de potentiële opbrengst en de werkelijke opbrengst van 
maïs (yield gap) toont grote ruimtelijke verschillen in Afrika. 
 Over het algemeen is in Afrika een lage yield gap gecorreleerd met een 
goede markttoegang en een hoog gebruik van kunstmest. 
 Dit resultaat varieert echter ruimtelijk als de analyse inzoomt op kleinere 
gebieden. In veel regio's in Afrika geldt dan de omgekeerde relatie: een hoge 
(lage) yield gap is gecorreleerd met goede (gebrekkige) markttoegang en/of 
een hoog (laag) kunstmestgebruik. De soms duidelijke ruimtelijke markering 
door administratieve grenzen geeft aan dat politiek-institutionele dimensies een 
rol spelen bij het verklaren van de yield gap.  
 
 

S.2 Overige uitkomsten  
 
De interdisciplinaire en ruimtelijke afbeeldingstechniek kan worden gebruikt ter 
ondersteuning van specifieke interventies op het gebied van ontwikkelingssamen-
werking. Beter ruimtelijk afgestemde interventies kunnen de effectiviteit en 
efficiëntie van beleid en donorinterventies vergroten. 
 Deze methodologie kan ook worden gebruikt voor specifieke toepassingen 
zoals het afstemmen en opschalen van geïndexeerde weersverzekeringen. Het 
doelgericht inzetten en opschalen van dit soort verzekeringen kan kostbaar zijn 
en mapping kan een effectief instrument zijn om informatie te genereren over de 
situaties waarin een verzekering nuttig kan zijn en wat de effecten zijn van toe-
passing van zo'n verzekering. Daarmee kunnen kosten worden verlaagd.
 De relatie tussen de yield gap en de bevolkingsdichtheid is niet eenduidig. 
Onze analyse laat zien dat een hoge (lage) bevolkingsdichtheid zowel gerela-
teerd kan zijn aan een hoge als een lage yield gap; er is geen duidelijk patroon. 
Dit komt overeen met de literatuur over dit onderwerp. 
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Figuur S.1 Hoge yield gaps (rode gebieden) laten zien waar er ruimte voor 
verbetering is 

 

 
 

S.3 Methode 
 
Deze studie is gefinancierd door het ministerie van Economie, Landbouw en 
Innovatie (EL&I). Het deel over geïndexeerde weersverzekering maakt deel uit 
van de tweejarige samenwerking met het IFAD en het WFP. Productiviteitsgroei 
in de landbouw is een belangrijk onderwerp in de dialoog over voedselzekerheid 
die de laatste paar jaar is ontstaan. Het verbeteren van de voedselzekerheid is 
een speerpunt in het beleid van het ministerie van Buitenlandse Zaken, waarbij 
EL&I nauw is betrokken bij het ontwikkelen en implementeren van dit beleid. 
Weersverzekeringen zijn een belangrijk instrument in voedselzekerheid en 
kunnen ook leiden tot productiviteitsgroei.  
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 De studie combineert grote, interdisciplinaire databestanden via een verken-
nende ruimtelijke data-analyse. Deze analyse wordt toegepast op: (1) het iden-
tificeren van hot en cold spots van yield gap correlatie, (2) het bestuderen van 
de mate waarin en de zekerheid waarmee (socio-economische) factoren zijn 
gerelateerd aan deze hot en cold spots en (3) Mali om te laten zien hoe map-
ping kan helpen bij het identificeren van geschikte gebieden om geïndexeerde 
weersverzekering te implementeren, gebaseerd op de variabiliteit in de op-
brengst en socio-economische factoren. 
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1 Introduction 
 
 
One of the most challenging tasks for the world in the coming decades is to 
meet the increasing demand for food, feed, fuel and fibre. According to the 
United Nations, the world population will reach 9.3 billion by the middle of the 
century (United Nations, 2011). To feed all these people, the FAO (2009) has 
estimated that overall food production needs to be increased by at least 70%.  
 There are two potential ways to achieve this: expand the area of cropland or 
increase the yield (production per hectare) of existing cropland. As most of the 
remaining land suitable for crop production consists of tropical rain forest and 
conservation areas, it has been argued that the latter strategy would lead to a 
severe loss of biodiversity and is therefore not a sustainable option (United 
Nations, 2011). Crop expansion is also likely to lead to more conflicts in 
countries with poor systems of land tenure because of competing claims on 
land (FAO, 2009). It is therefore not surprising that policymakers 
and researchers have prioritised the need to improve agricultural yields.1 
Special attention is being paid to Africa, where the potential to increase yields is 
high. Yields in Africa have been lagging behind the world average for decades. If 
Africa is to contribute to the challenge of feeding its people in 2050, yields 
must be increased substantially. 
 The aim of this study is to analyse the yield gap of cereals, and in particular 
maize, in Africa. A yield gap is defined as the difference between the yield 
potential2 and the actual yield of a given location. It builds on earlier work (Rau, 
Kuhlman and Meijerink 2011; J.G. (Sjaak) Conijn, Querner et al., 2011). Yield 
gap is therefore an adequate indicator of the potential to expand crop 
production. We focus specifically on maize because it is one of the most 
important food crops cultivated and consumed throughout Africa. The harvested 
area of maize is about 14% of the total arable land in Africa (FAOSTAT, 2012a). 
In addition, maize has also become an important source for the production of 
biofuels. Although at the moment it is hardly grown and used for this purpose in 

                                                 
1 It must be noted however, that increasing crop productivity also might have negative effects on 
the environment due to the more intensive use of pesticides, fertiliser and irrigation. It is vital that 
approaches to increase yield are accompanied by measures that also preserve biodiversity and 
natural resources. 
2 The potential yield is the maximum achievable yield under the assumption of no bio-physical 
constraints and optimal management practices. The data for the yield gap is taken from Conijn et al. 
(2011) who combine data on global crop area and yields from Monfreda et al. (2008) with a geo-
spatial crop model to estimate the yield gap for maize at 5 arc min resolution in Africa. 
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Africa, closing the maize yield gap might free up potential resources to replace 
fossil fuels in the future. 
 There are at least three reasons why reducing the yield gap is important for 
Africa. First, according to the World Bank (2007) three of every four poor 
people in developing countries live in rural areas and most depend on agri-
culture for their livelihoods. Agriculture also accounts for, on average, 34% of 
GDP in Africa. Hence, closing the yield gap will have positive effects on a large 
part of the population and will contribute considerably to income generation and 
poverty reduction.  
 Second, Africa is the continent with the highest food insecurity: in nine 
African countries, over 34% of the population was undernourished in 2006-2008 
(FAOSTAT, 2012b). Many small African countries depend on the import of food 
commodities, which makes them very vulnerable to international food price 
fluctuations. According to the FAO (2010), these countries were particularly 
affected by the recent food price crisis, which resulted in an 8% increase in the 
number of undernourished people between 2007 and 2008. Increasing the 
productivity of food crops will protect African countries against international 
market dynamics and keep domestic food prices at acceptable levels.  
 Finally, the population of Africa is expected to increase by more than 
two billion by 2050, a growth rate that is considerably higher than that in other 
continents (United Nations, 2011). This implies a greater demand for food and 
probably also for feed, fibre and materials in the coming decades.  
 This study addresses three specific research questions: 
 
1. Is the yield gap of maize randomly distributed across Africa or is it spatially 

clustered? Research on 'development domains' (Ehui and Pender, 2005; 
Kruseman, Ruben and Tesfay, 2006) has shown that agricultural production 
is strongly associated with the comparative advantage of a certain location 
or region vis-à-vis neighbouring areas. Key contributors to comparative 
advantage are agricultural potential, population density and market access, 
which are highly spatial in nature. Agricultural potential is a measure of 
absolute comparative advantage and mainly summarises the physical 
production environment, including rainfall, altitude, soil type and topography, 
which means there is a strong link with yield potential. Following the concept 
of development domains, we expect that the yield gap is conditional on 
location specific factors and therefore will be spatially clustered.  
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2. Can we identify 'hotspots' (clusters of areas with a large yield-gap) and 
'coldspots' (clusters of areas with a small yield-gap) of agricultural 
performance? The existence of development domains indicates the need to 
develop context-specific policies that target locational constraints and 
exploit spatial opportunities. The identification of regions that are 
characterised by an exceptionally poor performance vis-à-vis neighbouring 
regions can be a first step in the formulation of local land use and 
development plans that guide the provision of public goods, such as 
infrastructure, extension services and property rights, to stimulate local 
agricultural development. Alternatively, the mapping of coldspots and the 
analysis of their features might provide important lessons for the design of 
rural development policies that can be applied to other regions.  

 
3. Is there a spatial relationship between observed yield-gap patterns and 

factors that determine local comparative advantage? In particular, we focus 
on market access, population density and fertiliser use, three key enabling 
factors for agricultural development. We use spatial analysis to map the link 
between market access (measured as the travel time to the nearest city or 
maritime port) and yield gap into four categories of large and small yield-gap 
and high and low market access, respectively. This information can help 
policy makers to guide the formulation of rural development strategies, as it 
identifies regions where it is not market access but other factors that are 
hampering the realisation of yield potential. Regression models can help 
establish causal relationships. 

 
 To tackle these questions we use exploratory spatial data analysis (ESDA). 
This is a collection of techniques to describe and visualise spatial distributions 
and identify atypical locations and discover patterns of spatial association, 
clusters or hotspots. ESDA has been used to analyse a variety of phenomena, 
including crime, mortality rates and regional growth (Luc Anselin, Sridharan and 
Gholston, 2006; Celebioglu and Dall'erba, 2009), but to the best of our 
knowledge, it has not yet been applied to examine yield-gap information.  
 Although there is a large body of research that estimates and investigates 
the yield gap for a number of crops and regions (see Lobell, Cassman and Field, 
2009 for an overview), the analysis of global yield-gap patterns is relatively new 
(Licker et al., 2010 and Neumann et al., 2010 are two recent studies). The 
rapid development of remote sensing and GIS has led to the emergence of new 
biophysical and socioeconomic datasets with information at very low levels of 
spatial aggregation. This has opened up new and interesting avenues for 
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research on agricultural performance, such as the yield gap and its deter-
minants. This paper is a first step in that direction. It does not aim to develop a 
theoretical framework to explain the causal relationships between yield, socio-
economic and biophysical factors and how they jointly evolve. Instead, it takes 
an empirical explorative approach. 
 This report shows that the methodology can also be used for a more 
specific application, such as the targeting and upscaling of weather index-based 
insurance (WIBI). WIBI is seen as a promising tool that can be used to increase 
yields because it reduces farming risk. In the face of weather related risks, farm 
households have developed a number of coping strategies. Diversification is 
one, whereby farm households crop part of their area with subsistence crops 
that are, for instance, drought resistant. Although this strategy contributes to 
the food security of the household, making it less vulnerable to the vagaries of 
the weather, it usually does not increase its yields, as these crops typically 
trade off large yields against yield reliability. It also reduces their capacity to 
earn income from cash crops. 
 The structure of this paper is as follows. After this introduction, we explain 
the different types of spatial data analysis (section 2). We explain the definitions 
and measurement of the yield gap in section 3 and how these data can be 
visualised in section 4. In section 5, we explore the correlations between yield 
gap, market access, population density and fertiliser use. In section 6, we take 
this analysis one step further by analysing spatial regression models for yield 
gap. Section 7 explains how such analysis can be useful in designing weather 
index-based insurance, focusing on Mali. Section 7 concludes. 
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2 Theory: spatial data analysis 
 
 

2.1 Introduction 
 
Spatial data analysis has become a wide field, serving various purposes and 
using a range of techniques and methodologies. In this chapter, we give an 
overview of the main areas that are of interest. The focus of this report is on 
how biophysical and socioeconomic characteristics of an area interact. A better 
understanding of the complex interactions between these characteristics can 
help decision makers at various policy levels to design and implement regionally 
adapted policy interventions (Müller and Zeller, 2004; Omamo et al., 2006). 
 Efficient decision-making in agricultural development usually requires 
considering many factors beyond the basic agroclimatic and edaphic conditions. 
Socioeconomic data, especially indicators of welfare or poverty, are often also 
major concerns. Data availability and quality in this thematic area can be 
problematic, although substantial progress is being made in both methodologies 
and coverage for mapping socioeconomic status (de Sherbinin et al., 2002). 
 Spatial data are an important source of scientific information. The 
development of high capacity and fast desk and laptop computers and the 
concomitant creation of geographic information systems has made it possible 
to explore georeferenced or mapped data as never before (Fischer and Getis, 
2010). Coupled with open access policies such as those of the World Bank, 
there is an increasing availability of data geo-coded data. 
 Spatial data is often obtained by remote sensing, which is the acquisition 
and analysis of data about an object or area acquired from a device that is not 
in contact with the object or area. Most remote sensor devices are placed in 
earth-observing satellites and both high- and low-flying aircraft. Much of the 
spatial analysis that is carried out on the data must take into account the usually 
very large number of observations, sometimes in the billions, and the size of the 
fundamental observations (the pixels). Spatial statistics has increasingly become 
an integral part of the remote sensing process. The main issues facing research-
ers are that results differ in spatial scale and that typical study regions (land-
scapes) vary appreciably, even over short distances (Richards and Jia, 2006). 
 Besides the disciplines represented in previous collections of papers, up-
and-coming areas that are making more extensive use of spatial analytical tools 
include transport and land use analysis, political and economic geography, and 
the analysis of population and health issues (Páez et al., 2010). Spatial data 
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analysis provides valuable insights into processes of land use change and their 
underlying causes. The application of geospatial tools, data and methods is 
becoming increasingly important as a means to assist in understanding and 
characterising such diverse and complex systems and environments (Hodson 
and White, 2007). Several types of spatial data analyses can be distinguished. 
We discuss a few types in the following sections. 
 
 

2.2 Spatial characterisation: development domains 
 
IFPRI has used spatial data as a specific tool to identify 'development domains' 
(Chamberlin, Pender and Yu, 2006; Omamo et al., 2006). By using geographic 
information systems methods, spatial similarities and differences are identified 
and depicted in the context of agriculture. Agricultural development domains are 
identified, representing particular realisations of agricultural potential, and 
access to markets and population density are used to help highlight differences 
and similarities in agricultural development priorities and options across the 
region. 
 Development domains also combine the theory of comparative advantage 
and location theory. The biophysical production potential represents the 
absolute advantage for an agricultural production system in a certain location, 
while access to markets and population density translate these production 
advantages into the comparative advantages of a particular agricultural 
production system. For example, a grid cell with a high potential for perishable 
vegetable production may be less suitable from a market point of view if 
markets are remote. Similarly, labour-intensive production systems may be 
favoured in areas with high population densities.  
 Improved agricultural performance will require investments that foster 
productivity growth, strengthen markets, improve rural linkages between the 
agricultural and non-agricultural sectors, and promote regional cooperation. Of 
particular interest is the identification of the most performance-enhancing 
commodity subsectors, in an economy-wide setting, and the agricultural 
development domain singled out as the most promising for targeted investment. 
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2.3 Exploratory spatial data analysis (ESDA) 
 
Exploratory spatial data analysis (ESDA) involves the identification and 
description of spatial patterns, such as outliers, clusters, hotspots, coldspots, 
trends and boundaries. It has two primary objectives (Jacquez, 2008): 
 
1. Pattern recognition using visualisation, spatial statistics and geostatistics 

to identify the locations, magnitudes and shapes of statistically significant 
pattern descriptors. 
 

2. Hypothesis generation to specify realistic and testable explanations for 
the geographic patterns found under (1). 

 
 Thus, ESDA represents a preliminary process whereby data and research 
results are viewed from many vantage points, one of which is the display of data 
on maps. The power of computers to summarise and visualise large sets of 
georeferenced data has helped to stimulate the creation of amazingly evocative 
procedures for data manipulation.  
 In a sense, ESDA represents a new wave of research methodology. The 
traditional six steps of hypothesis-guided inquiry (problem, hypothesis, sampling 
distribution, test, results, decision) have had a seventh step added to them: 
data exploration. However, instead of squeezing data exploration between two 
of the former steps, it is represented at nearly all stages of analysis. 
 
 

2.4 Spatial cluster analysis 
 
Spatial cluster analysis is part of ESDA and plays an important role in 
quantifying geographic variation patterns. It is commonly used in disease 
surveillance, spatial epidemiology, population genetics, landscape ecology, 
crime analysis and many other fields, but the underlying principles are the 
same. A cluster can be defined as a spatial pattern that differs in important 
respects from the geographic variation expected in the absence of the spatial 
processes that are being investigated: 'clustering' is always measured relative 
to a null expectation. It is a probabilistic assessment of how unlikely an 
observed spatial pattern is under the null hypothesis (e.g. uniform distribution) 
(Jacquez, 2008). 
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 There are numerous cluster statistics. Jacquez (2008) distinguishes global, 
local and focused tests: 
 
- Global cluster statistics are sensitive to spatial clustering, or departures 

from the null hypothesis that occur anywhere in the study area. While global 
statistics can identify whether spatial structure exists, they do not identify 
where the clusters are, nor do they quantify how spatial dependency varies 
from one place to another. 

 
- Local statistics quantify spatial autocorrelation and clustering within the 

small areas that together comprise the study area. Many local statistics 
have global counterparts that are often calculated as functions of local 
statistics. 

 
- Focused statistics quantify clustering around a specific location called a 

focus. These tests are particularly useful for exploring possible clusters of 
disease near potential sources of environmental pollutants. 

 
 

2.5 Spatial statistics 
 
Spatial statistics is part of ESDA, spatial econometrics, remote sensing analysis 
and, to a lesser extent, geostatistics. One might ask why we can model spatially 
varying phenomena without testing patterns on maps. The process of creating 
hypotheses and testing map patterns gives spatial statistics its raison d'être. As 
a field, spatial statistics is concerned with map-related problems. Geometrically, 
one can think of point, line and area patterns as well as mixtures of these three 
as the fundamental elements that are included in the use and study of spatial 
statistics. What is crucial, of course, is that these points, lines, and areas 
represent real world phenomena. How these phenomena pattern themselves 
and interact with one another has come to be an important element of scientific 
inquiry (Fischer and Getis, 2010). 
 

2.5.1 Spatial econometrics 
 
An interesting and crucial overlap between spatial statistics and spatial 
econometrics is the need to apply spatial statistical tests in order to check the 
validity of the assumption of spatial randomness among the residuals of spatial, 
and non-spatial diagnostic, models (Fischer and Getis, 2010).  
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2.5.2 Geostatistics 
 
Evolving differently from the previous schools of thought is the field of 
geostatistics. Primarily as a way to describe and explain physical phenomena in 
a continuous spatial data environment, geostatistics is the principal 
methodology of analysis. From its roots in the 1950s as a way to predict gold 
ore quality to its current widespread use for the study of all manner of physical 
phenomena, including petroleum reserve locations, soil quality, and patterns of 
weather and climate, geostatistics has become a mainstay of most earth 
science departments in both the academic and the business world. The field 
includes both spatial data descriptive routines and sophisticated modelling 
(Fischer and Getis, 2010). 
 

2.5.3 Spatial databases 
 
Large spatial databases are increasingly becoming publicly available, usually 
downloadable from the internet. We have compiled several of these (although 
we by no means assume them be complete) that may be useful in exploring 
questions such as those discussed in this report: 
 
1. Biodiversity Hotspots 
2. CODATA Catalog of Roads Data Sets, version 1 
3. Global Map of Irrigation Areas 
4. Global Economic Data (Yale G-Econ project) 
5. GEO data Portal population density 
6. Global Poverty Data 

a. Global Subnational Infant Mortality Rates 
b. Global Subnational Prevalence of Child Malnutrition dataset 

7. Infrastructure built-up data 
8. Market access and influence data 
9. Night-time lights 
10. Travel time to major cities 
11. Yield gap data 
12. Fertiliser use data. 
 
 The twelve datasets are described in appendix 1; maps and the download 
location are also provided. The only dataset that is not publicly available is the 
yield gap data, which belong to PRI, part of Wageningen UR. For this study, we 
have made use of datasets 5 (population density), 8 (market access), 11 (yield 
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gap data) and 12 (fertiliser use). The yield gap dataset incorporates information 
from dataset 3 (irrigation). The selection was based on the fact that market 
access, population density and fertiliser use are generally seen as important 
factors in explaining yields. See chapter 5 for a further discussion. 
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3 The yield gap: definitions, measurement 
and determinants 
 
 
In the literature, many definitions are used for yield gap, which sometimes 
makes it difficult to interpret and compare results. In particular, there is no 
consistent use of 'yield potential', one of the two key components that make up 
the yield gap. For clarification, this section reviews the concept of yield gap and 
yield potential. This will help in comparing the outcomes of this study with 
similar studies that might use a slightly different yield gap measure. This section 
also offers a brief discussion on the explanations that have been put forward to 
explain the yield gap.  
 
 

3.1 Definitions 
 
The yield gap is defined as the difference between the potential yield and the 
actual observed farmer's yield measured over a specified spatial and temporal 
scale of interest (Lobell, Cassman and Field, 2009). It is mostly expressed in 
tonnes per hectare, but sometimes a fraction is also used. In this study, we 
define yield potential as 'the yield of a cultivar when grown in environments to 
which it is adapted with nutrients and water non-limiting and with pests, 
diseases, weeds, lodging, and other stresses effectively controlled' (Evans and 
Fisher, 1999). Hence, it is an idealised state in which the growth and production 
of a crop variety or a hybrid is not restrained by any biophysical limitations other 
than a set of factors that cannot be controlled through management, including 
solar radiation, temperature and plant characteristics. Van Ittersum and 
Rabbinge (1997) refer to these as growth-defining factors. They also distinguish 
two other sets of factors that can be controlled through management. Growth-
limiting factors comprise water and nutrients, which are considered essential 
inputs for plant growth. If they are supplied in limited quantities, actual yield will 
decline from potential. Growth-reducing factors include pests, diseases, weeds, 
insects and pollutants. They will reduce crop growth and yield unless 
precautions are taken to prevent their impact (e.g. the use of pesticides, crop 
rotation and weed management). To achieve yield potential, perfect 
management of growth-limiting factors and growth-reducing factors is required. 
In reality, this level of perfection is impossible to attain under field conditions.  
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 In the literature several measures have been proposed to quantify yield 
potential (de Bie, 2000; Lobell, Cassman and Field, 2009; R. Fischer, Byerlee 
and Edmeades, 2009). First, crop models simulate phonological development 
by a set of equations that combine information on photothermal time, net 
assimilation, resource allocation to different organs, transpiration, precipitation 
and soil moisture conditions in a daily or hourly time step. Most crop models are 
able to estimate yield potential under both rain-fed and irrigation conditions. 
Nutrients and growth-limiting factors such as weeds and pests are normally not 
taken into account by the models because it is assumed that these factors do 
not hamper crop development under optimal conditions. A weakness of most 
models is that they tend to overestimate yield potential. This is because they 
often do not account for short-term fluctuations in weather conditions (e.g. one- 
or two-day periods with very high or very low temperatures) that tend to 
negatively affect early crop growth. To date, most crop models have been 
applied to estimate the yield potential of a specific field, region or country. This 
study is one of the first attempts to use a crop model to simulate yield potential 
at a very low level of aggregation for the African continent on the basis of 
geospatial data. 
 Apart from crop models that provide an indirect estimate of yield potential, 
one can also use data on yield that is directly observed in the field. The most 
common approach is to use information on yield potential that originates from 
field experiments and research stations. These offer a kind of laboratory setting 
in which growth-limiting factors are optimised (water and nutrients) and growth-
reducing factors are prevented (pest, diseases and weeds). Another option is to 
draw on information from yield contests in which the chance of winning a prize 
(e.g. equipment, free seeds or money) motivates farmers to reach the technical 
maximum yield. In practice, it is nearly impossible to achieve perfect growth 
conditions in field stations or by means of yield contests. Particularly when the 
plot size increases from a few m2 to several hectares, the use of equipment (as 
opposed to intensive manual management) and the introduction of slight 
variations in soil properties means that yield potential from field experiments 
and contests is often lower than that estimated by crop models.  
 Finally, yield potential can be approximated by collecting information on the 
maximum observed yield among a sizable group of farmers in a given region 
and over a certain period of time. For similar reasons as mentioned above, this 
best-practice measure will be lower than yield potential. It will also tend to be 
lower than the yield achieved at research stations or experimental farms 
because of the limitations on controlling the environment and the less intensive 
management. In addition, farmers tend to maximise profits (or minimise costs) 
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rather than not production, unless there are certain incentives such as winning a 
prize. In most situations, the market price of the crop and the costs of essential 
inputs such as fertiliser, irrigation, pesticides, machinery and labour are such 
that economic returns are highest at input levels that are below what is required 
to reach optimum production. This means that even if it is assumed that there 
are no constraints in the form of growth-limiting and growth-reducing factors, 
the economic maximum farm yield will be lower than the technical maximum 
farmer yield. Depending on market conditions, the motivation of farmers and 
environmental conditions, the maximum observed yield among a group of 
farmers will be close to the technical or economic maximum. The average 
observed farmer yield will usually be lower for a number of reasons, which will 
be discussed below.  
 Figure 3.1 illustrates the various yield potential measures discussed above 
in comparison with the average observed farmer yield.  
 
Figure 3.1 Comparison of yield measures 

 
Note: The height of the bars is indicative only. 

Source: Based on Lobell et al. (2009) and de Bie (2000). 
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3.2 Yield gap studies using geospatial data 
 
In this study we use geospatial information to estimate yield potential by means 
of a crop model for Africa. To our knowledge, there are only three other studies 
that report on the use of a spatial database to analyse the yield gap at the 
global or continental level. Hence, it is interesting to compare these 
researchers' approaches with the one taken in this study. 
 Licker and colleagues (2010) present global estimates for the yield gap of 
18 crops for project at a 5 arc min resolution. Similar to this study, their 
measure for crop yield and crop area is taken from Monfreda and colleagues 
(2008). Their main innovation lies in the estimation of the potential yield. Instead 
of using a crop model, they use an approach that is similar to the maximum 
observed farmer yield approach described above. Instead of equating potential 
yield with the farmer best-practice in a region, yield potential is defined as the 
highest observed yield in cells with similar climatic characteristics.  
 Two parameters that are regarded as key determinants of plant growth are 
used to distinguish 100 climate combinations: growing degree days (GDD) and 
a crop soil measure index. GDD is a measure of the potential heat a plant can 
accumulate, and is normally calculated on a daily basis. It is defined as the num-
ber of temperature degrees above a certain threshold base temperature below 
which the plant is unable to grow. The base temperature varies among crop 
species. Final GDDs are computed by aggregating daily values over one year.  
 The crop soil moisture index is defined the annual average ratio of actual 
evapotranspiration to potential evapotranspiration. Evapotranspiration is the 
sum of evaporation (the movement to the air of water from sources such as the 
soil, canopy interception and water bodies) and plant transpiration (the move-
ment to the air of water that vaporises from the leaves) from the Earth's land 
surface to the atmosphere.  
 GGD and the soil moisture index are each divided into 10 equal bins and 
combined to construct a 10 x 10 matrix that represent 100 climate zones. For 
each of these zones, maximum potential yield is defined as the 90 percentile of 
yield value for each climate zone. The cut-off point is introduced to avoid the 
use of outliers, which reflect potential erroneous data and might bias the 
results. The yield gap is eventually computed as the difference between the 
maximum yield potential by climate zone and the yield data from Monfreda and 
colleagues (2008).  
 The major difference between the yield gap measure of Licker and 
colleagues (2010) and this study is the estimation of the yield gap potential. 
Licker and colleagues adopt a best-practice methodology, while we use a 
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simulation approach. Analogous to Figure 3.1, the yield gap presented in this 
study will on average be higher than the yield gap based on maximum technical 
or economic farmer yields. Each approach has its advantages and 
disadvantages.  
 A simulation model based yield-gap estimate is an absolute indicator of the 
extent to which crop yield can be improved, and can easily be compared across 
crops and regions. The question remains, however, whether this potential can 
ever be achieved as it is based on theoretical models that assume perfect 
management and do not take into account economic circumstances. In this 
regard, yield-gap estimates that are based on the maximum farmer yield 
approach are more appropriate, as they reflect the best practice that is 
currently being achieved by farmers under a range of climatic conditions.  
 A drawback of the approach, as Licker and colleagues (2010) also point out, 
is that potential yields for some climate zones may be unrealistically low 
because farmers in certain climate zones suffer from limited access to high-
quality inputs - such as tractors, fertiliser and high-yielding seeds - or lack the 
capacity to carry out best management practices. This might be particularly 
relevant in the context of Africa.  
 Another potential problem is the inability of the method to distinguish 
between potential yield for irrigated and rain-fed systems. As the yield under 
irrigated systems is commonly higher than that under rain-fed conditions, the 
former will probably be selected as the best-practice reference for a given 
climate zone. This implies that, at least for some climate zones, the yield gap is 
computed as the difference between the potential yield under irrigated 
conditions and the actual yield under rain-fed conditions, which results in an 
overestimation of the yield gap. A final problem is that the number of 
observations for a certain climate zone can be low. In such cases, the observed 
maximum yield is probably an underestimate of the real maximum potential yield 
under these climate conditions, creating an upward bias in the yield gap.  
 It would be interesting to compare both measures to examine where they 
align and where they arrive at different outcomes. 
 
 

3.3 Explaining the yield gap 
 
The yield gap has two parts (Nin-Pratt et al., 2011). One part can never be 
closed because it represents the difference between a theoretical maximum 
(model simulation) or laboratory setting (research station and experimental 
fields) and the optimum that can be achieved in a non-perfect world. It is caused 
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by random and uncontrollable environmental conditions (for example, extreme 
weather events, unanticipated seasonal conditions or unexpected pests, as well 
as economic effects such as price volatility and crises) that occur in reality but 
are not captured by the models, and the impact of specialised technologies and 
intensive practices that can be found only at test facilities. In Figure 3.1 this is 
the difference between the modelled potential yield and the technical maximum 
farmer yield. According to the information in Lobell and colleagues (2009), who 
summarise the results of a large number of yield-gap studies for maize, wheat 
and rice throughout the world, average farmer yield can reach as much as 80% 
of potential. Although most studies use only one approach and therefore results 
are difficult to compare, they find no major differences between the model and 
the experimental approach to measure the yield gap.  
 The second part of the gap arises when farmers use practices and amounts 
of inputs that differ from what is needed to achieve the technical maximum 
farmer yield. In most cases, it is the direct reflection of a number of biophysical 
constraints (Table 3.1) that are caused by differences in management practices. 
Examples are less intensive use of fertiliser, lower quality seeds and suboptimal 
planting. The gap is measured by the difference between the technical 
maximum farmer yield and the actual farmer yield in Figure 3.1. Differences in 
management practices, in turn, are the consequence of a lack of knowledge of 
the production technology or a result of economic constraints. For example, as 
mentioned, the profit maximisation behaviour of farmers might lead to lower 
level of inputs than what would be used to reach the technical maximum yield. 
At a deeper level, market conditions and the diffusion of agricultural technology 
are determined by the interplay of a large number of socioeconomic factors that 
are mostly specific to the nation or region. Among others, these system-wide 
constraints include income, governance, market institutions, infrastructure and 
education. Conijn and colleagues (2011) provide an overview of these issues. 
 In this paper we will examine the link between yield gap and three socio-
economic indicators for which spatial data are available: market access, 
population density and fertiliser use. The importance of these factors has also 
been pointed out by the literature on development domains (Pender, Place and 
Ehui, 2006). Market access and infrastructure are critical determinants of 
regional comparative advantage. Areas with high market accessibility have 
better access to inputs such as fertiliser, pesticides and equipment as well as 
important services, mainly extension services and finance. Equally, market 
access and a high-quality road network will help farmers to link to value chains, 
facilitate exports, and reduce storage and transport costs. As all of this will 
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contribute to higher yield, we expect a negative association between yield gap 
and market access. 
 The relation between population density and yield (and hence the yield gap) 
is not clear (Pender, 1999). Population pressure can increase the supply of 
labour that is available for agriculture. This reduces the costs of labour as 
opposed to the costs of land, and lead to more labour-intensive and less land-
intensive agricultural production. Population pressure might also induce more 
capital-intensive production methods (e.g. the use of draft animals) and 
stimulate the adoption of more advanced technologies (e.g. improved seeds). 
Both would result in more production per hectare. On the other hand, population 
pressure might also lead to land degradation as a result of the cultivation of 
fragile lands, increased tillage and other forms of agricultural intensification, 
leading to lower yields. Pender (1999) found a negative relation between maize 
yield and population density in Honduras. 
 
Table 3.1 Determinants of the yield gap 

Biophysical constraints Socioeconomic constraints 

Insufficient water  Profit maximisation 

Insufficient nutrients Lack of knowledge of best practice 

management 

Suboptimal planting (timing or density) Risk avoidance strategies 

Soil problems (e.g. salinity) Inability to secure credit 

Extreme weather events (e.g. floods, 

frost, hail) 

Unpredictable prices of key inputs 

Weed pressures High transport costs 

Pests and diseases Distorted markets for fertiliser 

Insect damage Inefficiencies at harvest and storage problems 
Source: based on Lobell et al. (2009). 

 
 

3.4 Yield gap estimate for Africa 
 
Yield gaps for maize are determined per grid cell by combining actual yield 
levels for the year of 2000 with model-based estimates for yield potential. 
Actual yield levels are based on harvested maize areas and related maize yields 
provided by Monfreda and colleagues (2008). Yield potential for both irrigated 
and water-limited (rain-fed) maize areas were calculated using the crop model 
LINPAC. The model determines the suitability of each day of the year for crop 
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growth, which is a function of daily temperatures and soil moisture conditions. 
Crop yield (dry matter production) is calculated as the product of light 
interception and light-use efficiency, which is crop specific. Finally, the soil water 
availability for the crop is determined by calculating infiltration, 
evapotranspiration and percolation. It is assumed that nutrients (fertilisers) are 
sufficiently available. By combining the irrigation map of Siebert and colleagues 
(2005)1 and the cropland map of Ramankutty and colleagues (2008), the 
fraction of cropland equipped for irrigation was determined per grid cell at the 5 
min arc resolution. With this fraction a weighted average yield was calculated 
per grid cell using the simulated potential and water-limited yields for maize. All 
data refer to the year 2000. For more information on how potential yield is 
calculated, we refer to Conijn and colleagues (2011). 
 Maize yield and the yield gap - measured as the difference between yield 
potential and actual yield and expressed in tonnes of dry matter (DM) per 
hectare - for the African continent are illustrated in Figure 3.2. In many grid 
cells, the yield gap is large; it varies from around 2.5 to over 12.5 tonnes per 
hectare per harvest. For some cells (about 2.5%), the model underestimates the 
maximum yield potential, resulting in a negative value for the yield gap. As most 
of these values are near zero, it was decided to keep them for the analysis. 
Table 3.2 provides descriptive statistics for the actual maize yield and yield gap 
as well as grid-level data on fertiliser use, population density and market access 
that are used in the remainder of the paper.  
 
Table 3.2 Descriptive statistics 

 Actual yield 

(tonnes DM 

per ha) 

Yield gap 

(tonnes DM 

per ha) 

Fertiliser 

(kg N per ha) 

Market 

access 

Population 

density 

people/km2 

Average 1,089 5.84 7.08 0.10 55 

SD 0.75 2.56 26.45 0.19 163 

Max 7.56 16.09 529.9 1.00 11,717 

Min  0.02 -6.74 0 0 0 

 

                                                 
1 See the appendix for more information about grid-level irrigation data. 
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Figure 3.2 Average maize yield and (B) yield gap in tonnes of dry matter 
per hectare 

A 

 
B 

 
Source: Average maize yield based on information from Monfreda et al. (2008). Yield gap is calculated using the 

crop model LINPAC. See text for details. 
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4 Exploratory spatial data analysis of yield 
gap data 
 
 
Exploratory spatial data analysis (ESDA) consists of a number of techniques to 
explore spatial patterns in the data, including visualising spatial distribution, 
local indicators of spatial association and multivariate indicators of spatial 
association.  
 Exploratory spatial data analysis (ESDA) consists of a number of techniques 
to explore spatial patterns in the data, including visualising spatial association, 
local indicators of spatial association and multivariate indicators of spatial 
association. Moran's I statistic, based on the spatial weighting matrix selected, 
was calculated and hot and cold spots or clusters were identified based upon 
significant levels of spatial autocorrelation. These clusters are more similar to 
the neighbouring points than one would expect if the data were spatially 
random.  
 This section describes the use of ESDA to investigate the spatial distribution 
of the yield gap in Africa. In the following section we apply a similar approach in 
a bivariate setting to map the relationship between yield gap, market access 
and population density.  
 
 

4.1 Spatial weight matrix 
 
An essential step in ESDA is defining the spatial structure of the data by means 
of a spatial weight matrix. It is a tool to summarise the spatial proximity of the 
observations; in other words, which observations can be considered 'neigh-
bours'. In the matrix, neighbours are identified by a 1 and non-neighbours by 
a 0. There are two basic approaches for defining a neighbourhood structure: 
contiguity (shared borders) and distance. Within the contiguity-based weight 
matrices, a distinction is often made between 'queen' and 'rook' patterns. As in 
chess, all areas that share a common border as well as the areas with a corner 
point (vertices) are considered neighbours under the queen criterion. Under the 
rook criterion, the latter are excluded. Distance-based weight matrices use the 
Euclidian distance to identify neighbours. One option is to select a distance 
band so that all data points within the given distance are considered neighbours. 
Another option is to select the k nearest neighbours.  
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 For our analysis, we only use the k nearest neighbour approach. As 
explained above, our data are organised by grid cells of X by X degrees. Due to 
the symmetrical shape of the spatial locations in our database (similar to a 
chessboard with the datapoint in the middle of the grid cell), the contiguity and 
distance measures are nearly identical. For example, using a four nearest 
neighbours method will results in the same spatial weight matrix as the rook 
pattern, while a nine nearest neighbour criterion is identical to the queen-based 
matrix. Only when grid cells that contain yield gap data are surrounded by cells 
with missing data might the two approaches generate slightly different results.  
 
 

4.2 Global spatial autocorrelation 
 
A key element of ESDA is the analysis of spatial autocorrelation or spatial 
association, which is the correlation of a variable with itself in space. Positive 
values indicate the correlation of high values with high neighbouring values or 
the correlation of low values with low neighbouring values. Negative values refer 
to spatial outliers (high-low or low-high combinations).  
 Global spatial autocorrelation is a measure of overall clustering in the data. 
A popular measure to examine this is Moran's I, which can be formalised as 
follows (Luc Anselin 1995): 
 

𝑰 = � 𝒏
∑ ∑ 𝒘𝒊𝒋𝒋𝒊

�
∑ ∑ 𝑾𝒊𝒋𝒙𝒊𝒙𝒋𝒋𝒊

∑ 𝒙𝒊
𝟐

𝒊
 (1) 

 
where 𝑊𝑖𝑗 is spatial weight matrix with information about the spatial relationship 
between observations 𝑥𝑖 and 𝑥𝑗, 𝑥𝑖 is the yield gap in region i measured as a 
deviation from the mean and 𝑛 is the number of observations. Moran's I is 
similar to a standard correlation measure but with the incorporation of 'space' 
by means of the spatial weight matrix. The expected value of I 𝐸(𝐼) =
−1 (𝑛 − 1)⁄  is approximately zero in a dataset with a very large number of  
observations, such as ours. This is implies no spatial autocorrelation or spatial 
randomness. A value of -1 indicates perfect dispersion (comparable to a 
checkerboard pattern with dissimilar values), while a value of 1 is a sign of 
perfect correlation. The spatial structure of the data is assessed by using a test 
with a null hypothesis of random location. Rejection of this test indicates a 
spatial relationship in the data. Significance of the test is determined by a 
permutation approach to generate pseudo-significance levels. This is done by 
computing the I value for a large number of re-sampled datasets, which are 



 

35 

subsequently used to determine the empirical distribution function. This 
distribution is used as a basis to compare the observed Moran's I from the 
original database with the null hypothesis of no spatial autocorrelation. We use 
999 permutations to generate the statistics, which is the minimum number to 
generate reliable results (Anselin, 2003). 
 
Table 4.1 Moran's I for the yield gap by type of weight matrix 

Spatial weight matrix Moran's I p-value 

Nearest neighbour (k=4) 0.8480 0.001* 

Nearest neighbour (k=8) 0.8185 0.001* 
Note: number of permutations is 999; * significant at the 1% level. 

 
 Table 4.1 shows Moran's I and the test statistics for the null hypothesis of 
random spatial distribution for a spatial distance matrix based on k=4 and k=8 
nearest neighbours. With I values of 0.85 and 0.82, respectively, the variants 
give very similar results. The result are significant at both the 1% level and near 
zero, indicating strong and positive global spatial autocorrelation. This means 
that the agricultural performance as measured by yield gap is not randomly 
distributed in Africa. Instead, yield gap values exhibit spatial clustering; that is, 
yield gap measured in an area is positively related to yield gap observation in 
neighbouring locations. To save space we will only show the results for the k=8 
nearest neighbour matrix in the remainder of this paper.  
 A useful way to examine the nature of spatial autocorrelation is the Moran 
scatterplot. This diagram plots the value of each observation against the 
weighted average value of the same variable in the neighbouring locations, 
which is also referred to as the spatial lag of a variable. Both measures are 
expressed as deviation from mean, so the average is re-scaled to zero. 
Figure 4.1 depicts the Moran scatterplot for the yield gap. To facilitate the 
analysis, four quadrants are added to identify the different types of spatial 
autocorrelation, corresponding to spatial clusters and spatial outliers. 
Observations in the lower left quadrant (low-low) and the upper right quadrant 
(high-high) represent values that are surrounded by neighbours with a similar 
value, and therefore reflect possible spatial clusters. On the other hand, 
observations in the upper left (low-high) and lower right (high-low) are values 
that are surrounded by dissimilar neighbours and suggest spatial outliers. 
The Moran's I statistic can be visualised as the slope in the Moran scatterplot 
of the spatially lagged variable on the observed variable yield gap (see also 
Luc Anselin, 1995). 
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 The figure clearly confirms our finding of strong positive global spatial 
clustering as evidenced by the fact that most observations are located in the 
low-low and high-high quadrants and the line through the origin which has a 
slope of nearly 45 degrees (equal to a Moran's I of 1 and perfect 
autocorrelation). In our case, the low-low quadrant corresponds with clusters of 
areas with a small yield-gap (good performance), whereas the high-high 
quadrant reflect clusters of areas with a large yield-gap (poor performance).  
 
Figure 4.1 Moran Scatterplot for yield gap 

 

 
 

4.3 LISA statistics to identify yield gap hotspots and coldspots 
 
The Moran scatterplot provides visual information about the presence of 
potential spatial clusters of areas with a small or a large yield-gap, but does not 
indicate where these clusters or outliers are located or whether they are 
significant. To address this issue, we make use of local indicators of spatial 
association (LISA), which allow the identification and assessment of 'local' 
spatial patterns in the data. LISA statistics fulfil two conditions: (1) for each 
observation they give an indication of the extent of spatial similarity/dissimilarity 
with surrounding observations, and (2) the sum of LISAs for all observations is 
proportional to a global indicator of spatial association (Luc Anselin, 1995). 
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 In line with the above analysis, we use the local Moran's I statistic to analyse 
local spatial patterns, which can be formalised as follows:  
 
𝑰𝒊 = 𝒛𝒊 ∑ 𝑾𝒊𝒋𝒛𝒋𝒋   (2) 

 
where 𝑊𝑖𝑗 is the spatial weight matrix, and 𝑧𝑖 and 𝑧𝑗 are standardised variables 
(with the mean subtracted and divided by the standard deviation) for the yield 
gap at location i. The average of the local Moran's I values is proportional to the 
global Moran's I value. Similar to the test for global spatial autocorrelation, the 
local Moran's I can be used as the basis for a test on the null hypothesis of no 
local spatial autocorrelation. Also here, the significance levels are calculated by 
means of a permutation approach with 999 permutations.  
 The results are depicted in Figure 4.2, which shows the locations with 
significant local Moran statistics for p values of 5% and lower. This suggests 
there are a large number of areas in Africa, some of them very large, that 
exhibit highly significant (p<1%) local clustering of the yield gap. This finding is 
in line with the finding for the global Moran's I, which pointed towards strong 
positive global autocorrelation. Relevant clusters are found throughout all areas 
for which yield gap data are available (compare with Figure 4.2B).  
 The local Moran statistics can be combined with the four types of spatial 
autocorrelation depicted in the Moran scatterplot to identify significant spatial 
clusters (high-high or low-low) and local spatial outliers (high-low and low-high). 
Figure 4.2 plots the clusters of areas with a small yield-gap (coldspots) and the 
clusters of areas with a large yield-gap (hotspots). Only observations with a p-
value lower than 1% are selected. The figure therefore corresponds directly with 
the green area in Figure 4.2, except for a small number (# observations or % of 
the data) of datapoints that represent significant local spatial outliers (high-low 
or low-high). As these are barely visible on the map we decided not to include 
them in Figure 4.3. 
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Figure 4.2 Significance map of yield gap observations 

 
Source: Own calculations. 

 
 Although hotspots and coldspots are scattered across the entire African 
continent (for the areas where data is available), five zones seem to stand out. 
First, there is relatively large cluster of small yield-gap areas in West Africa that 
runs from east to west along the coast of Nigeria, Benin, Togo and Ghana into 
Cote d'Ivoire. A second coldspot is located in the heart of Sudan and seems to 
overlap with the fertile zone in that area. A third area of interest is a very large 
hotspot in Southern Africa that covers major parts of Angola, Zambia and 
Zimbabwe. Fourth, a large cluster of large yield-gap areas covers almost the 
entire cropland for maize in Madagascar. Finally, the map shows a cluster of 
small yield-gap areas in South Africa. However, in contrast to clusters in the 
other regions, the hotspots are rather patchy and do not form one large area 
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where the yield gap is small. The observed pattern is probably also due to the 
nature of the yield gap data for South Africa, as the data themselves exhibit a 
patchy structure. 
 In chapter 4 we discussed a range of factors that might influence the yield 
gap. One of the potential determinants of agricultural performance is national 
policies and institutions, such as subsidies for fertiliser, agricultural credit 
provision, national agricultural innovation systems and extension services. 
Although we lack the data to statistically test the effect of these factors on yield 
gap, we might learn something by visually inspecting Figure 4.3. If national 
policies and institutions are a crucial determinant of yield gap differences, we 
would expect the clusters to be located within and demarcated by national 
boundaries.  
 
Figure 4.3 Yield gap hotspots and coldspots  

 
Source: Own calculations. 



 

40 

5 Factors that influence the yield gap  
 
 

5.1 Multivariate spatial analysis 
 
To explore the relation between market access, population density and fertiliser 
use, we apply a multivariate version of the Moran statistic that was used in the 
previous section. Multivariate spatial autocorrelation investigates whether there 
exists a systematic spatial association between one variable (𝑧𝑘), observed at a 
given location, and another variable (𝑧𝑙) observed at neighbouring locations (Luc 
Anselin, Syabri and Smirnov, 2002). The multivariate global Moran I is defined 
as:  
 
𝑰𝒌𝒍 = 𝒛𝒌𝑾𝒊𝒋𝒛𝒍

𝒏
   (3) 

 
where 𝑊𝑖𝑗 is the spatial weight matrix, and 𝑧𝑘 and 𝑧𝑙 are standardised variables 
with mean zero and standard deviation equal to one. Similarly, there also exists 
a multivariate counterpart of LISA. This multivariate local Moran statistic 'gives 
an indication of the degree of linear association (positive or negative) between 
the value for one variable at a given location i and the average of another 
variable at neighbouring locations' (Luc Anselin, Syabri and Smirnov, 2002: 
p. 7). Positive values suggest a spatial similar cluster in two variables, while 
negative values indicate a local negative relationship between two variables 
against the null hypothesis of spatial randomness. It is defined as:  
 
𝑰𝒌𝒍𝒊 = 𝒛𝒌𝒊 𝑾𝒊𝒋𝒛𝒍

𝒋  (4) 

 
where 𝑊𝑖𝑗 is the spatial weight matrix, and 𝑧𝑘𝑖  and 𝑧𝑘𝑖  are standardised variables 
for region i and j, respectively. Similar to LISA, four types of multivariate spatial 
autocorrelation can be distinguished: two measure positive spatial 
autocorrelation or spatial clusters (high-high and low-low), and two reflect 
negative spatial autocorrelation or spatial outliers (high-low and low-high). The 
significance of the multivariate spatial statistics can be assessed in the usual 
fashion by means of a permutation approach (with 999 permutations). 
 
 



 

41 

5.2 Market access and the yield gap 
 
In this section we explore the spatial relationship between the yield gap and 
market access. Figure 5.1 shows market access in Africa. To measure market 
access, we use a high spatial resolution dataset on market access that was 
recently constructed by Verburg and colleagues (2011).1 It presents a market 
access index (zero to one) at the 5 arc min resolution that combines the travel 
time to large international markets (cities with more than 750,000 inhabitants), 
large maritime ports and smaller markets (cities with more than 50,000 
inhabitants) to proxy the access to national, international and local markets, 
respectively. Travel time is calculated using a uniform approach that accounts 
for differences in infrastructure (e.g. highways, tertiary roads, large rivers and 
off-road). All data refers to the period around 2000 and therefore is in line with 
our information on yield and the yield gap.  
 

                                                 
1 See the appendix for more information.  
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Figure 5.1 Market access in Africa 

 
Source: Verburg et al. (2011). 

 
 As elaborated upon above, we expect that overall market access is 
positively associated with agricultural performance and, thus, a small yield-gap. 
This implies a negative relationship between yield gap and market access. Our 
expectations are corroborated by the multivariate global Moran's I statistic of -
0.1345 with a p-value of 1% (k nearest neighbour). This global measure, 
however, hides substantial variation in yield gap and market access at the local 
(grid) level. This is illustrated by Figure 5.2, which shows the spatial cluster map 
of yield gap and market access, highlighting the four types of spatial 
autocorrelation. Only figures that are significant at the 1% level are depicted.  
 The map indicates that a large share of the regions with a small or relatively 
small yield-gap, including most of the coastal zone of West Africa and South 
Africa (compare with Figure 5.1), are characterised by high market access. This 
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corresponds with other research that found that access to markets has a 
positive effect on agricultural production and the adoption of high-yield 
technology (Dorosh et al., 2012). An exception is the wheat region in Sudan, 
which performs well (small yield-gap) despite low market-accessibility. This 
might be explained by the fact that yield potential is very low in this region and 
therefore, even with limited access to markets and inputs, yield is close to the 
potential maximum. 
 Another interesting finding is the identification of areas that exhibit a large 
yield-gap and high market-access that are mainly located in Burkina Faso, the 
north of Nigeria and parts of Ethiopia, Zambia, Zimbabwe and Madagascar. 
These regions have a high potential to close the yield gap in the future because 
they can benefit from relatively good infrastructure and access to markets, 
which are important elements for agricultural development. Other factors, such 
as technological capacity, access to finance and institutional problems, might 
be responsible for the small yield-gap. Additional research that takes a more in-
depth look at these issues in the specific regions is needed to provide further 
guidance. 
 Finally, the figure shows the areas with a large yield-gap and low market-
access. A major region is located in Angola; there are also some small areas in 
the Central African Republic, Zambia and Madagascar.  
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Figure 5.2 Bivariate spatial correlation of yield gap and market access 

 

Source: Own calculations. 

 
 

5.3 Fertiliser use and the yield gap 
 
In this section we explore the spatial relationship between the yield gap and 
fertiliser use. Figure 5.3 shows fertiliser use for Africa, expressed in kg of 
nitrogen per hectare. The data is taken from Potter and colleagues (2010), 
who present spatial data on the application of nitrogen (N) and phosphorus (P) 
at a grid level with 30x30 arc minutes resolution. Fertiliser use has been 
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recalculated and rescaled to a resolution of 5x5 arc minutes to match the data 
on yield and yield gap.  
 As elaborated upon above, we expect that overall fertiliser use is positively 
associated with agricultural performance and, thus, a small yield-gap. This 
implies a negative relationship between yield gap and fertiliser use. 
 
Figure 5.3 Fertiliser use (kg N per ha) in Africa 

 
Source: Potter et al. (2010). 
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Figure 5.4 Bivariate spatial correlation of yield gap and fertiliser use 

 
Source: Own calculations. 

 
 Our expectations are corroborated by the multivariate global Moran's I 
statistic of -0.108 with a p-value of 1% (k nearest neighbour). This global 
measure, however, hides substantial variation in yield gap and fertiliser use at 
the local (grid) level. This is illustrated by Figure 5.4, which shows the spatial 
cluster map of yield gap and fertiliser use, highlighting the four types of spatial 
autocorrelation. Only figures that are significant at the 1% level are depicted 
(grey values refer to non-significant values).  
 The map indicates that a large share of the regions with a small or relatively 
small yield-gap and a high fertiliser use (pale blue areas), including most of the 
coastal zone of West Africa and Southeast Africa (compare with Figure 5.3), are 
characterised by high fertiliser use. Some regions are characterised by the 
opposite situation, where a high yield-gap is linked to low fertiliser use (pink). 
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These regions are mainly located in Nigeria and the Central African Republic. It 
would seem that the yield gap in these regions could be decreased by 
improving access to and increasing the use of fertiliser.  
 There are also some areas that show a counterintuitive combination of large 
yield-gap and high fertiliser use (red) and a small yield-gap and low fertiliser use 
(dark blue). The red areas show up in most of Zimbabwe and parts of Zambia: 
despite high fertiliser use, the yield gap remains large. For Zimbabwe an 
explanation may lie in the fact that its agriculture is characterised by several 
large-scale farmers (who use a lot of fertiliser) and many small farmers (who 
have a large yield-gap) (Zikhali, 2008). Or it may be explained by another factor 
that is a constraining bottleneck. The southwest of Kenya and parts of Ethiopia 
also have red areas. The southwest of Kenya is considered one of the most 
productive areas in maize, as is central Ethiopia. Apparently, these areas are 
still nowhere near realising the potential, and other factors are hampering them 
from doing so. 
 Finally, most dark blue areas are found in the Democratic Republic of 
Congo, where despite a low fertiliser use, the yield gap is also small. We have 
no explanation for this and this clearly needs more research. 
 
 

5.4 Population density and the yield gap 
 
The relation between population density and agricultural productivity is not clear-
cut. The induced-innovation theory argues that the pressure of increasing 
density induces the adoption of more intensive techniques (Boserup, 1965). 
Vollrath (forthcoming) found a very strong link between measured agricultural 
total factor productivity and population density. On the other hand, population 
pressure can also lead to land degradation and hence lower average yields. We 
find a slightly negative Moran statistic (-0.0931), corroborating the complex 
relationship between the two variables. 
 Figure 5.5 shows the population density in Africa using data from CIESIN 
(see Appendix 2). The positive combination (small yield-gap and high population 
density) is depicted by a light blue colour in Figure 5.6. This relationship is quite 
widespread in West Africa and in North Africa. Regions characterised by a large 
yield-gap and low population density (pink) are much less common; they are 
mostly prevalent in southern Angola and parts of Central Africa and Zambia. 
 However, the reverse situation is also true for several regions. The 
combination of small yield-gap and low population density (dark blue) is not as 
widespread, but is scattered throughout Africa (also in West Africa), like the 
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combination large yield-gap and high population density (red) which shows up in 
West and North Africa, as well as scattered across East Africa. Ethiopia and 
Madagascar are especially notable in this respect.  
 Vollrath (ibid.) found not only that population density explains part of 
agricultural productivity, but also that the variation in agricultural productivity 
across countries is actually widening over time. Thus varying rates of population 
densities may be one element of an explanation for increasing divergence 
across countries. 
 
Figure 5.5 Population density in Africa (persons per km2) 

 
Source: CIESIN. 
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Figure 5.6 Yield gap and population density 

 
Source: Own calculations. 

 
 

5.5 Spatial regression model results 
 
We estimated the overall impact of fertiliser use, population density and 
marketing access on yield gap using various spatial regression models. The 
details are given in Appendix 1 (Spatial Regression Models). The various models 
provide different results, which means that there are still several specification 
issues to be solved.  
 We show only the final impact measures of the generalised method of 
moments (GMM) estimates of spatial error model here in Table 5.1. 
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Table 5.1 Impact measures (lag, trace) of GMM estimates of spatial 
error model 

 Direct  Indirect  Total 

Fertiliser use  -0.001 -0.037 -0.038 

Population density  0.000 0.005 0.005 

Marketing access  0.290 10.581 10.871 

 
 Fertiliser use has a negative impact on yield gap, as expected, although the 
coefficient is small. Population density is positively correlated (a higher 
population density leads to a larger yield-gap), although the impact is again 
close to zero, which means that the effect of population density is not clear. 
Marketing access was expected to be negatively correlated with yield gap 
(better market access should lead to a smaller yield gap), but the sign in the 
GMM estimate is positive, and the coefficient is quite large.  
 Outliers may explain these somewhat counterintuitive results. This points to 
a larger issue, namely that spatial differences in Africa are so large, and 
location specific, that spatial regression models may not be suited to capture 
such location-specific issues. Scale matters for policy research and 
interventions, and getting this right is crucial. Mapping hotspots can be 
extremely useful for this. This also points at avenues for further research. 
Spatial regression may need to be done at a more localised level. 
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6 Mapping as a tool in weather index-
based insurance: application for Mali 
 
 
Extreme weather events and natural disasters can trap rural households in 
poverty, impede development and drain a country's critical financial resources. 
Smallholders in developing countries are particularly vulnerable to such natural 
disasters. 
 The International Fund for Agricultural Development and the World Food 
Programme have joined forces in the Weather Risk Management Facility (WRMF) 
to improve the access of poor rural people to a range of financial services 
through the use of weather index-based insurance, a financial product based on 
local weather indices that are highly correlated with local crop yields. The WRMF 
focuses on four areas:  
 
- Building the capacity of local stakeholders for weather risk management by 

strengthening partnerships, offering technical assistance, and promoting 
knowledge exchange in the development and use of risk mitigation 
mechanisms, including weather index-based insurance (WII). 
 

- Improving weather services, infrastructure and data management for 
weather risk management, including the development of WII, national 
weather risk management, early warning systems and vulnerability analysis.  

 
- Supporting the development of an enabling environment by engaging with gov-

ernment partners and advocating national risk management frameworks and 
appropriate financial and weather risk-management strategies and policies.  

 
- Promoting inclusive financial systems for poor people in rural areas, 

including innovative delivery channels and client education, which lead to 
better planning for and coping with weather shocks. 

 
 Based on the analysis undertaken in the appraisal missions, the IFAD-WFP 
team has chosen Mali for implementation, taking a staged approach to the com-
mencement of activities. In order to prepare the ground for implementation, 
additional research was needed. Wageningen UR was involved in this research 
in 2010 and 2011. Specifically, Wageningen UR contributed by assessing 
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the feasibility for weather index-based insurance as a means of adaptation to 
climate change (Conijn et al., 2011; Meijerink and Shutes, 2011). 
 In this report the difference between potential yield and actual yield was 
used to identify areas that were characterised by their yield gaps. 
Socioeconomic factors (market access, fertiliser use and population density) 
were then mapped to specify to what extent they could explain the yield gap. 
Such information can also be useful when targeting areas for insurance or 
upscaling pilot projects. This will be explained in this chapter.  
 
Figure 6.1 Map of Mali 

 
Source: http://athaia.org/mali-map.html  

 

http://athaia.org/mali-map.html
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 An index-based insurance uses an index that applies to a certain region, 
such as rainfall. If rainfall drops below a certain threshold, it is assumed that all 
farmers in this region are affected and will therefore receive a pay-out. 
However, crop yields are not affected only by rainfall. Of course, other 
biophysical factors play a role, such as soil type or the availability of 
water/irrigation water. These are usually also factored in when calculating the 
expected yield under normal circumstances (i.e. sufficient rain). Socioeconomic 
information is usually collected (typically through household surveys) after a 
target region has been identified based on agro-ecological and biophysical 
information. Mapping of socioeconomic information, however, could play a role 
much earlier, namely when identifying regions that could benefit from insurance. 
 
Figure 6.2 Map with percentage of years with low yield, here defined 

as <40% of the 30-years average rain-fed yield per grid 
cell used for growing maize in southern Mali around the 
year 2000 

 
NB The total harvested maize area in Mali is estimated at 160,000 ha around the year 2000 (Monfreda et al., 

2008).1 

Source: Conijn et al. (2011). 

 
 Figure 6.2 can be seen as a spatial risk distribution for maize production. 
Based on the 40% threshold, this maize area might be suitable for weather 
index-based insurance: for instance, only those maize areas that face a 10-30% 
probability that yields will be 40% below the average yield in a grid cell, that is, 
the combination of the probability classes 10-20 and 20-30 in Figure 6.2 (both 
                                                 
1 National statistics from FAOSTAT report for the same period a harvested area of maize of circa 
275,000 ha, increasing towards circa 400,000 ha in recent years. The difference between FAOSTAT 
and Monfreda et al. (2008) is due to the use of different statistical databases. 
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light green). Only southern Mali is shown, because maize is hardly grown in the 
rest of Mali. 
 This can be combined with other spatial information, as described elsewhere 
in this report. One important question in targeting weather index-based insurance 
is whether yield is influenced by other factors than climate alone. It makes a big 
difference whether farmers apply fertiliser, for instance. Access to markets may 
also be important: to buy inputs farmers need access to markets, and if farmers 
can easily sell produce, they may invest more in them. Population density may 
be also important, as it determines labour availability. We will explore these 
factors with respect to Mali and focus on the light green areas identified in 
Figure 6.2. 
 
Figure 6.3 Yield gaps spatially correlated for southern Mali 

 
Note: Grey areas do not show any significant correlation between the yield gap and population density. 

 
 Figure 6.3 shows the hotspots and coldspots of large and small yield-gaps. 
There are very few hotspots (where areas with large yield-gaps are adjacent to 
other areas with large yield-gaps) and there are a few coldspots (where areas 
with small yield-gaps are adjacent to other others with small yield-gaps). 
Insurance should preferably be given in areas that are dark blue (small yield-gap 
areas). Figure 6.3 shows that most areas are mixed, though. 
 

High yield gap, high yield gap 
Low yield gap, low yield gap 
Low yield gap, yield gap 
High yield gap, low yield gap 
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Figure 6.4 Correlations between of yield gap and population density in 
southern Mali 

 
Note: Grey areas do not show any significant correlation between the yield gap and population density. 

 
 Figure 6.4 shows the correlations between yield gap and population density 
in Mali. If we compare the two light green areas with Figure 6.4, we see that 
these mostly overlap with the grey areas that do not show any correlation. 
Population density does not play a role in explaining yield gap in these regions.1  
 Figure 6.5 shows the correlation between yield gap and fertiliser use. 
About half the area is not statistically significant (grey), but the other half is 
characterised by a small yield-gap and high fertiliser use (pale blue). The light 
green area in Figure 6.2 only partly overlaps the pale blue in East Kayes (see 
for location Figure 6.1). 
 

                                                 
1 One noticeable area is the one characterised by low yield-gap and low population density and 90-
100% variability (dark blue in Figure 2). Figure 1 shows that this is in a hilly area, and this might 
explain the uniqueness of this relatively small area. The potential yield is probably low, as is the 
population density. Variability may be high because areas with steep slopes need just the right 
amount of rain to produce a high yield (too much rain will lead to erosion). 

High yield gap, high population density 
Low yield gap, low population density 
Low yield gap, high population density 
High yield gap, low population density 
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Figure 6.5 Correlations between yield gap and fertiliser use in 
southern Mali 

 
Note: Grey areas do not show any significant correlation between the yield gap and fertiliser use. 

 
 Not surprisingly, the pale blue in Figure 6.6 (small yield-gap and high market 
access) overlaps the pale blue in Figure 6.5 (small yield-gap and high fertiliser 
use): fertiliser use is partly determined by market access. There is again overlap 
with the light green area in Figure 6.2 (East Kayes).  
 Figure 6.6 has a few patches that are characterised by a seemingly 
contradictory combination of large yield-gap and high market access. They lie 
around Bamako, the capital city of Mali, which may explain both: good market 
access, but land use may not be geared towards growing maize. 
 
Figure 6.6 Correlations between yield gap and market access in Mali 

 
Note: Grey areas do not show any significant correlation between the yield gap and fertiliser use. 

 

High yield gap, high fertiliser use 
Low yield gap, low fertiliser use 
Low yield gap, high fertiliser use 
High yield gap, low fertiliser use 

High yield gap, high market access 
Low yield gap, low market access 
Low yield gap, high market access 
High yield gap, low market access 
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Figure 6.7 Areas suitable for weather index-based insurance 
(approximation) 

 

 
 When we distil the information from the previous pictures into Figure 6.7, 
we see that if we want to take into account market access and fertiliser use, 
a smaller area is suitable for weather index-based insurance (dark green) than 
a suitable range for yield variability (light green) would suggest. We did not take 
into account population density here, as it was too scattered. Please note that 
the dark green areas were added by hand and are therefore approximations.  
 This chapter has given a brief overview of how combining spatial 
socioeconomic data can be helpful in targeting weather index-based insurance, 
taking into account various factors rather than only weather variability. 
Depending on the available data, different factors can be taken into account.  
 Spatial socioeconomic data may be useful not only in targeting areas, but 
also in upscaling. If a pilot project has been running successfully in one area, it 
may be more easily upscaled to regions that have similar agro-ecological and 
socioeconomic characteristics. Upscaling of insurance projects is not easy: 
contracts are carefully designed to fit the needs of the target population, taking 
into account specific risk factors that are important in that region. Transferring 
a pilot project to another area may mean recalculating the risks involved and 
redesigning the contracts. Mapping may help in finding similar areas for quick 
upscaling. 
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7 Conclusions and policy recommendations 
 
 
Ever increasing computer speed and the availability of powerful (open access) 
software, in tandem with the spreading policy of open access databases, are 
increasingly enabling the field of analysing spatial disaggregated data. Although 
the availability of spatially disaggregated socioeconomic data is lagging behind 
spatially disaggregated biophysical and agro-ecological data, there are sufficient 
data to apply new methods to existing questions, opening up new research 
areas. 
 This report is an example of this. In it, we have analysed the persistence of 
existing yield gaps in Africa by spatial methods, combing agro-ecological data 
with socioeconomic data, limited for now to market access, fertiliser use and 
population density. However, in the near future, as more socioeconomic data 
become available and computer power increases, more advanced and refined 
analyses may be done.  
 Our study demonstrates that the difference between the potential yield and 
the actual yield of maize (yield gap) shows great differences in Africa. The yield 
gap, which is so persistently large in Africa, is by no means spread uniformly 
across the continent. Clear hotspots (with very large yield-gaps) and coldspots 
(with very small yield-gaps) have been identified.  
 Our study found that, in general, a small yield-gap is correlated with good 
market access as well as a high use of fertiliser. Again, this result varies 
spatially. Other combinations also show up. In many regions in Africa, the 
reverse relation also applies: large and small yield-gaps are correlated with 
good and deficient market access and/or high and low fertiliser use. The 
distinct regions are often demarcated by administrative boundaries, suggesting 
a political-institutional dimension with respect to the causes of the yield gap. We 
found that the relation between the yield gap and population density is not clear-
cut. 
 For policy, this result informs that a general objective of increasing fertiliser 
use or building better infrastructure will not be effective or even necessary in 
some regions. Better targeting can increase effectiveness and efficiency.  
 The methodology can therefore be used to target specific development aid 
interventions. Rural infrastructure, for instance, is high on the agenda of many 
donors. Combined mapping can select those areas where market access is 
hampering agricultural productivity. In a similar vein, the adoption of technology, 
such as fertiliser use, is high on the agenda. Again, combined mapping can 
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select areas where fertiliser use is correlated with a large yield-gap. We 
performed an overall analysis for Africa, but the methodology can easily be 
applied to countries and specific regions. This analysis would be greatly helped 
were the numerous household surveys that have been done by so many 
countries to become available in a spatially disaggregated format by adding 
georeferences. 
 The study shows that combining agro-ecological and socioeconomic 
mapping is a useful instrument to analyse existing questions in a new manner. 
It is also useful in specific applications, such as the targeting and upscaling of 
weather index-based insurance. Implementing weather index-based insurance is 
often very costly, as the data needs (data on weather, yields, farming practices 
etc.) are high. Combining agro-ecological and socioeconomic mapping can 
economise substantially on these costs when it is used to target suitable 
regions or to upscale pilot projects, as our application to Mali suggests. 
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Appendix 1 
Spatial Regression Models 
 
 
There are a number of approaches to the regression problem when one faces 
the problems associated with spatial autocorrelation. Detection of this problem 
is relatively simple. The Moran tests for a number of spatial specifications are 
possible with versions that are robust to spatial autocorrelation also reported. 
The data used are the yield gap data presented above. Estimation was 
performed using spdep in R. 
 Using an ordinary least squares (OLS) regression, residuals are retrieved 
and tested for spatial dependence. Thus the model is given by 
 

𝑌𝐺𝑖 =∝ +𝛽1𝐹𝑒𝑟𝑡𝑖 + 𝛽2𝑃𝑜𝑝𝑖 + 𝛽3𝑀𝑎𝑟𝑘𝑖 + 𝜖𝑖 
 
where the usual properties of the OLS regressions are assumed to hold. Using 
the regression residuals, a test is performed to assess the type of spatial 
dependence in the model. The possibilities are a simple error dependence 
model and a spatially lagged dependent model, or a combination of the two.  
 The error dependence model assumes that the error term has a spatial 
structure, such that it can be written as 
 

𝜖𝑖 = 𝜆𝑊𝜖 + 𝑢, 
 
where λ is the spatial error parameter and W the spatial weighting. The variance 
of the residual vector is given by: 
 

𝑉𝑎𝑟(𝜖) = 𝜎2(𝐼 − 𝜆𝑊)−1(𝐼 − 𝜆𝑊)−1 
 
 From this the usual likelihood function can be derived; however, the 
logarithm of the determinant of the matrix |𝐼 − 𝜆𝑊| is not easy to compute and 
may outweigh the sum of squares element of the likelihood function.  
 The alternative structure is that of an autoregressive lagged model of the 
form: 
 

𝑌𝐺𝑖 =∝ +𝛽1𝐹𝑒𝑟𝑡𝑖 + 𝛽2𝑃𝑜𝑝𝑖 + 𝛽3𝑀𝑎𝑟𝑘𝑖 + 𝜌𝑊𝑌𝐺𝑖 + 𝜖𝑖 
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where ρ is the spatial lag parameter. This specification is complicated by the 
fact that the ρ parameter feeds back into the system, making the interpretation 
more complex. 
 

 Basic linear regression 
 
We use a basic linear regression to regress fertiliser use, population density and 
market access, with dependent variable yield gap. The results are presented in 
Table A1.1 
 
Table A1.1 Basic linear regression for yield gap explained by fertiliser 

use, population density and market access 

 Estimate S.E. t-value 

Intercept 5.97 9.19*10-3 649.22 

Fert 2.57*10-3 3.33*10-4 7.74 

Pop -1.18*10-4 4.76*10-5 -2.48 

Mark -1.36 4.44*10-2 -30.68 

 
 Note that all coefficients are significantly different from 0 at 5%. The sign for 
fertiliser use is positive, which is counterintuitive. One would expect that more 
fertiliser use would lead to a smaller yield gap. The sign for population density is 
negative, which means that in highly populated areas, the yield gap tends to be 
smaller, which corroborates the induced innovation theory. Market access has a 
negative coefficient. With better market access, the yield gap tends to be 
smaller, which is to be expected. 
 

 Specification test 
 
Using the forms of the models above, it is possible to test the restrictions that 
either ρ or λ is zero, or both are zero. Note that if both of the individual tests 
are significant, the robust forms should be used to select or guide model 
specification. 
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Table A1.2 Residuals of basic linear regression 

 Test Statistic Df 

LM error 280.875 1 

LM lag 280.705 1 

RLM error 444.8 1 

RLM lag 274.7 1 

SARMA 28.1150 2 

 
 It is clear from these tests that the OLS approach is poorly specified; the 
error model or the SARMA model might be the best approach to the modelling 
problem. Both the error and the lagged model are run and their results 
reported. 
 

 The regression models 
 
Once the model is selected, the spatial correlation is estimated using an 
optimising algorithm with the regression following using a generalised least 
squares approach. One fundamental problem with spatial regressions is the size 
of the various matrices, especially the weighting matrix W. A direct approach is 
often not feasible. Therefore, either a LU or Monte Carlo is used on the matrix 
𝐼 − 𝜆𝑊. A GMM model is possible in some cases. 
 

 Spatial models 
 
The results of the spatial models are as follows. 
 The spatial error model assumes that the error carries the spatial 
dependence and thus estimates λ. 
 
Table A1.3 Spatial error model for yield gap explained by fertiliser use, 

population density and market access 

 Estimate S.E. z-value 

Intercept 5.66 4,7156*10-2 120.04 

Fert 5.76*10-3 8.01*10-4 7.19 

Pop 7.68*10-5 2.61*10-5 2.95 

Mark 0.12 4.86*10-2 2.43 

λ 0.92747   
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 The spatial lag model gives the following results. 
 
Table A1.4 Spatial lag model for yield gap explained by fertiliser use, 

population density and market access 

 Estimate S.E. z-value 

Intercept 4.29*10-1 7.89*10-3 54.34 

Fert 7.18*10-5 2.62*10-5 2.74 

Pop 3.09*10-5 7.09*10-6 4.36 

Mark -9.98*10-2 2.37*10-2 -4.21 

ρ 0.9265   

 
 It should be noted that due to the impacts on the regression of the ρ, the 
impacts need to be calculated and the coefficients are not interpreted in the 
same manner as those of OLS regressions. This is not the case in the spatial 
error model. Due to the matrix sizes, a Monte Carlo simulation was used to 
calculate these.  
 
Table A1.5 Impact measures (lag, trace) 

 Direct  Indirect  Total 

Fert  9.74*10-5  0,0008 0,0009 

Pop 4.20*10-5 0,0003  0,0004 

Mark  -0.14  -1.0846 -1.2200 

 
 The direct impact is the impact of changing the covariate on the dependent 
variable. The indirect effect accounts for the impact due to the neighbourhood 
effects. If the indirect impacts are large then there are significant spill-overs. In 
this case the indirect impacts are about 8 times larger than the direct; thus 
there are major spill-overs. There are possibly a number of reasons, for this but 
the most obvious one is that of externalities. 
 It is possible to estimate the lagged model using a form of two-stage least 
squares with spatially lagged X terms acting as instruments for the lagged 
dependent variable. This gives answers similar to those in the GMM estimation. 
 

 GMM models 
 
The generalised method of moments can be used to estimate the regressions. 
The models are parallels of the error and lag maximum likelihood methods. The 
results are given below.  
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Table A1.6 GMM estimates of spatial error model 

 Estimate S.E. z-value 

Intercept 5.70 3.69*10-2 154.71 

Fert 4.85*10-3 7.57*10-4 6.41 

Pop 7.33*10-5 2.64*10-5 2.77 

Mark 7.53*10-2 4.87*10-2 1.55 

λ 0.90515   

 
Table A1.7 GMM estimate of autoregressive model with spatially lagged 

dependent variable 

 Estimate S.E. z-value 

Intercept -4.57*10-1 9.02*10-2 -5.07 

Fert -3.68*10-4 1.11*10-4 -3.33 

Pop 5.21*10-5 1.68*10-5 3.09 

Mark 1.05*10-1 2.58*10-2 4.07 

ρ 1.0750 1.51*10-2  

λ -0.399   

 
 As with the maximum likelihood estimation, the coefficients need careful 
interpretation. The calculations are given below.  
 
Table A1.8 Impact measures (lag, trace) 

 Direct  Indirect  Total 

Fert  -0.001 -0.037 -0.038 

Pop  0.000 0.005 0.005 

Mark  0.290 10.581 10.871 
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Appendix 2 
Databases (in alphabetical order) 
 
 

 Map of Africa 
 

 
 

 Biodiversity hotspots 
 
This database is compiled by Conservation International. To qualify as a hotspot, 
a region must meet two strict criteria: it must contain at least 1500 species of 
vascular plants (> 0.5% of the world's total) as endemics, and it has to have lost 
at least 70% of its original habitat. 
 It contains an ArcView shapefile and metadata for the biodiversity hotspots 
(11.7 Mb zip file). The database is downloadable from 
http://www.biodiversityhotspots.org/xp/hotspots/resources/Pages/maps.aspx  

http://www.biodiversityhotspots.org/xp/hotspots/resources/Pages/maps.aspx


 

71 

 
 

 CODATA Catalog of Roads Data Sets, version 1 
 
The CODATA Catalog (Committee on Data for Science and Technology) of 
Roads Data Sets, Version 1 contains 367 entries describing national-level road 
network data sets for 147 countries and four entries describing global data 
sets. It was produced by the Columbia University Center for International Earth 
Science Information Network (CIESIN) under the supervision of the CODATA 
Global Roads Data Development Working Group, and as a contribution to the 
development of the Global Roads Open Access Data Set (gROADS). 
 This archive contains an Access database and a PDF with summary data 
from the Access database. 
 The data is downloadable from www.groads.org  
 

 Global Map of Irrigation Areas1 
 
The map shows the amount of area equipped for irrigation around the turn of 
the 20th century as a percentage of the total area on a raster with a resolution 
of 5 minutes. The area actually irrigated was smaller, but is unknown for most 
countries. A special note has to be made for Australia and India, where the map 
shows the total area actually irrigated. This is due to the fact that statistics 
collected in Australia and India refer to actually irrigated area as opposed to 

                                                 
1 'Stefan Siebert, Petra Döll, Sebastian Feick, Jippe Hoogeveen and Karen Frenken (2007) Global 
Map of Irrigation Areas version 4.0.1. Johann Wolfgang Goethe University, Frankfurt am Main,  
Germany/Food and Agriculture Organisation of the United Nations, Rome, Italy'. 

http://www.groads.org/
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statistics with area equipped for irrigation, which are collected in most other 
countries. 
 For the GIS users, the map is distributed in two formats: as a zipped ASCII-
grid that can be easily imported into most GIS software that support rasters or 
grids; and, to accommodate people who use GIS software that does not 
support rasters or grids, as a zipped ESRI shapefile. 
 The data is downloadable from 
http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm 
 

 
 

 Global economic data (Yale G-Econ project) 
 
The Yale G-Econ project (G-Econ stands for geographically based economic 
data) has developed a geophysically based data set on economic activity. The 
G-Econ data set calculates gross value added at a 1-degree longitude by 1-
degree latitude resolution at a global scale for all terrestrial cells. These data 
allow better integration of economic and environmental data to investigate 
environmental economics, the impact of global warming, and the role of 
geophysical factors in economic activity. 
 Data can be downloaded from http://gecon.sites.yale.edu/data-and-
documentation-g-econ-project. 

http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm


 

73 

 A description of the analysis and results of the earlier version is presented 
in William Nordhaus, Qazi Azam, David Corderi, Kyle Hood, Nadejda Makarova 
Victor, Mukhtar Mohammed, Alexandra Miltner and Jyldyz Weiss, 'The G-Econ 
database on Gridded Output: Methods and data' (Yale University, 12 May 2006). 
The suggested citation for the data is 'G-Econ Project, Yale University, New  
Haven, CT, USA, William D. Nordhaus, Project Director,' or to the paper listed 
above. 
 

 
 

 GEO Data Portal population density 
 
Gridded Population of the World, Version 3 (GPWv3) consists of estimates of 
human population for the years 1990, 1995 and 2000 by 2.5 arc-minute grid 
cells and associated datasets dated circa 2000. Population counts have been 
adjusted to match UN totals. 
 When using data from the UNEP GEO Data Portal, please use the following 
citation: 'Source: UNEP (2011): UNEP GEO Data Portal. United Nations Environ-
ment Programme. http://geodata.grid.unep.ch.' 

http://geodata.grid.unep.ch/
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 The data can be downloaded from http://geodata.grid.unep.ch. (Choose 
Data Set Type: geospatial datasets). 
 The data are also available from: Center for International Earth Science 
Information Network (CIESIN) of the Earth Institute at Columbia University, 
Socioeconomic Data and Applications Center (SEDAC). This has African 
countries, year 2000, with estimations for 2005, 2010 and 2015 (the latest 
available). 
 The data can be downloaded from 
http://sedac.ciesin.columbia.edu/gpw/index.jsp  
 

 Global poverty data 
 
SEDAC, the Socioeconomic Data and Applications Center has collected spatially 
explicit poverty data sets at subnational levels. These are available for selected 
proxy measures of poverty on global and national scales. The global data are of 
varying resolution, but primarily coarse; the national data sets are of 
considerably higher resolution. 
 Global data sets include two proxy poverty measurements: malnutrition 
(underweight children) and infant mortality rates and possible poverty 
determinants, all translated to a common quarter-degree grid. 
 
Global Subnational Infant Mortality Rates 
The Global Subnational Infant Mortality Rates consists of estimates of 
infant mortality rates for the year 2000. The infant mortality rate for a region or 
country is defined as the number of children who die before their first birthday 
for every 1000 live births. The data products include a shapefile (vector data) of 
rates, grids (raster data) of rates (per 10,000 live births in order to preserve 
precision in integer format), births (the rate denominator) and deaths (the rate 
numerator), and a tabular dataset of the same and associated data. Over 
10,000 national and subnational units are represented in the tabular and grid 
datasets, while the shapefile uses approximately 1000 units in order to protect 
the intellectual property of source datasets for Brazil, China, and Mexico. This 
dataset is produced by the Columbia University Center for International Earth 
Science Information Network (CIESIN). 
 
Global Subnational Prevalence of Child Malnutrition dataset 
The Global Subnational Prevalence of Child Malnutrition dataset consists 
of estimates of the percentage of children with weight-for-age z-scores that are 
more than two standard deviations below the median of the NCHS/CDC/WHO 

http://geodata.grid.unep.ch/
http://sedac.ciesin.columbia.edu/gpw/index.jsp
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International Reference Population. Data are reported for the most recent year 
with subnational information available at the time of development. The data 
products include a shapefile (vector data) of percentage rates, grids (raster  
data), rates (per 1000 in order to preserve precision in integer format), number 
of children under five (the rate denominator), number of underweight children 
under five (the rate numerator) and a tabular dataset of the same and 
associated data. This dataset is produced by the Columbia University Center for 
International Earth Science Information Network (CIESIN). 
 A quarter-degree grid cell is approximately 770 square kilometres (300 square 
miles) at the equator, and progressively less at higher latitudes. The global data 
sets include metadata files and data sets in the following formats: 
- Spatial data sets: available as a global shapefile for each variable. 
- Tabular data sets: available in MS Excel (xls) and comma separated value 

(csv). 
- Metadata: included as read_me text or Excel files on each data set. 
 
 The data are downloadable from 
http://sedac.ciesin.org/povmap/ds_global.jsp 
 

 Infrastructure built-up data 
 
This data set contains 6 layers: 5 land use layers and 1 layer on grazing 
suitability classes. The land use layers are represented by per cent-per-grid cell 
(the sum of all land use layers = 100%). The representation for grazing 
suitability classes is Boolean with classes ranging from 1 (best suitable class) to 
4 (least suitable class). Data do not include Greenland or Antarctica. Data are in 
geographic projection 'Lat Long' (WGS84). Raster cell size: 5 arc minutes. Total 
# of grid cells (incl. no data): 9,331,200.  
 

http://sedac.ciesin.org/povmap/ds_global.jsp
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 Market access and influence data 
Verburg and colleagues (2011) developed a high spatial resolution gridded 
dataset depicting market influence globally. The data indicate variations in both 
market strength and accessibility reflected by three market influence indices: 
(A) an index of access to national and international markets; (B) an index of 
market influence combining the national GDP data with the access to markets 
index, and (C) a market influence index that downscales national GDP using a 
measure of economic density.  
 The data can be downloaded from: 
http://www.ivm.vu.nl/en/Organisation/departments/spatial-analysis-decision-
support/Market_Influence_Data/index.asp 
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 Night-time lights 
 
The files are cloud-free composites made using all the available archived DMSP-
OLS smooth resolution data for calendar years. In addition to moonlit clouds, 
the OLS also detects lights from human settlements, fires, gas flares, heavily lit 
fishing boats, lightning and the aurora. By analysing the location, frequency, and 
appearance of lights observed in an image times series, it is possible to 
distinguish four primary types of lights present at the earth's surface: human 
settlements, fires, gas flares and fishing boats. 
 In cases where two satellites were collecting data, two composites were 
produced. The products are 30 arc second grids, spanning -180 to 180 
degrees longitude and -65 to 75 degrees latitude. A number of constraints are 
used to select the highest quality data for entry into the composites. Each 
composite set is labelled with the satellite and the year (F121995 is from DMSP 
satellite number F12 for the year 1995). Three image types are available as 
geotiffs for download from the version 4 composites: 
 
1. F1?YYYY_v4b_cf_cvg.tif: Cloud-free coverages tally the total number of 

observations that went into each 30 arc second grid cell. This image can be 
used to identify areas with low numbers of observations where the quality is 
reduced. In some years there are areas with zero cloud-free observations in 
certain locations. 
 

2. F1?YYYY_v4b_avg_vis.tif: Raw avg_vis contains the average of the visible 
band digital number values with no further filtering. Data values range from 
0-63. Areas with zero cloud-free observations are represented by the value 
255. 

 
3. F1?YYYY_v4b_stable_lights.avg_vis.tif: The cleaned-up avg_vis contains the 

lights from cities, towns and other sites with persistent lighting, including 
gas flares. Ephemeral events, such as fires, have been discarded. Then the 
background noise was identified and replaced with values of zero. Data 
values range from 1-63. Areas with zero cloud-free observations are 
represented by the value 255. 

 
 The data for Africa are from 1994-1995. The data for World: 2002 latest 
version (but original link seems more up to date). 
 The dataset is downloadable from 
http://www.ngdc.noaa.gov/dmsp/tar_zip.html  

http://www.ngdc.noaa.gov/dmsp/tar_zip.html
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 Whenever using or distributing DMSP data or derived images, use the 
following credit: 'Image and data processing by NOAA's National Geophysical 
Data Center. DMSP data collected by US Air Force Weather Agency.' 
 

 
 

 Travel time to major cities  
 
A global map of travel time to major cities (cities with 50,000 or more 
inhabitants in 2000). 
 A new map of Travel Time to Major Cities - developed by the European 
Commission and the World Bank - captures connectivity and the concentration 
of economic activity and also highlights that there is little wilderness left. The 
map shows how accessible some parts of the world have become whilst other 
regions have remained isolated.  
 The data are in geographic projection with a resolution of 30 arc seconds. 
The format is integer ESRI GRID format with pixel values representing minutes of 
land-based travel time to the nearest city with at least 50,000 inhabitants (in 
2000). 
 This map was made for the World Bank's World Development Report 2009 
Reshaping Economic Geography. The map is described further in: Nelson, A., 
2008. Accessibility Model and Population Estimates. Background paper for 
the World Bank's World Development Report 2009. Uchida, H. and Nelson, A. 
(accepted) Agglomeration Index: Towards a New Measure of Urban 
Concentration. In: Guha-Khasnobis, B. (ed.), Development in an Urban World, 
UNU-WIDER. 
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 Yield gap data 
 
These data were prepared by Conijn and colleagues (2011). It contains data 
on the difference between potential yield and actual yield of grain in Africa. 
Figure 3.2 (B) presents the yield gap, corrected for area equipped for irrigation 
(see above), in ton grain DM per ha per. 
 

 Fertiliser use 
 
Fertiliser data is provided by Potter and colleagues (2010). The dataset consists 
of spatial data on the application of nitrogen (N) and phosphorus (P) at a grid 
level with 30x30 arc minutes resolution. For our study, fertiliser use was 
recalculated and rescaled to a resolution of 5x5 arc minutes to match the data 
on yield and yield gap.  
 We refer to Figure 5.3 in chapter 5 (paragraph 3). This shows the fertiliser 
use data for Africa, expressed in kg Nitrogen per hectare. The dataset is 
available from: 
http://www.geog.mcgill.ca/landuse/pub/Data/Fertilizer_Manure/ 
 
 

http://www.geog.mcgill.ca/landuse/pub/Data/Fertilizer_Manure/
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