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Prediction of the transport of pollutants in coastal areas is often performed with the
aid of a so-called particle model. These types of models are Lagrangian models based on
the advection-diffusion equation, either in three dimensions, or in a depth-averaged form.

Although these types of models have very distinct advantages when compared to deter-
ministic transport models based on a numerical approximation of the advection-diffusion
equation, there are some disadvantages. One of these is that because the model is stochas-
tic in nature, many particle tracks need to be simulated in order to make reliable predic-
tions. In order to address this problem several variance reduction methods are available.
With the aid of these methods it is possible to estimate an ensemble average of the
concentration using significantly less particles.

In this study the efficiency of the method of control variates is first investigated in a
one-dimensional particle transport problem. Because satisfactory results are obtained,
it is then applied to a two-dimensional situation. Although the problem becomes more
complicated, the concept remains the same. It is shown that such a variance reduction
method is an attractive way to decrease the number of computations in particle transport
problems, especially when accurate estimates are needed.

1. INTRODUCTION

In order for an environmental management system in a water area to be of any value,
insight into the transport and dispersion of pollutants within that area is essential. La-
grangian transport models are a versatile tool with respect to the modelling of dispersion
of pollutants in turbulent flow. Much research has been carried out for a great many dif-
ferent situations to calculate the Lagrangian trajectories of these particles. The behavior
of the ensemble average concentration of a passive tracer is quite well understood, and
the amount of knowledge about concentration fluctuations from two-particle (or more)
models has grown as well.

The transport of pollutants in coastal areas is often performed with the aid of a so-called
particle model. The concept of these types of models is quite simple: by representing the
pollutant parcels as particles it is possible to track these particles over time. This way
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the spreading of a cloud of pollutant can be monitored. There are many types of La-
grangian transport models, but those used in this application belong in the category of
random-walk models. These models are based on the advection-diffusion equation, and
they describe the behavior of a large number of particles, each representing a certain
amount of pollutant mass. By updating the positions of these particles an ensemble mean
concentration can be approximated. The movement of every particle is completely inde-
pendent from other particles, and consists of a deterministic part as well as a stochastic
part. The deterministic part represents the movement of the particle due to advection
(flow and wind for example), while the turbulent structure of the fluid is modelled by
the stochastic part (diffusion). When one thinks in terms of particles one must realize
that the probability density of particles at a certain location is in fact a description of the
concentration at that location. The concentration transport described by the advection-
diffusion is consistent with the probability density evolution described by the Kolmogorov
equations (see [1] for example). Following Einstein’s explanation of observed Brownian
motion during the first decade of the previous century, attempts were made by Langevin
and others to formulate the motions of particles in flow in terms of stochastic differential
equations.

2. THE CONCEPT OF VARIANCE REDUCTION

So far we have primarily looked at the simulation of many particles in order to make
a prediction as to where a certain amount of pollution might end up. We have used the
concept of an ensemble of particles to propagate the mean of the cloud. Suppose we are
investigating the results of a spill at a single location in our model. Think about a toxic
spill in a harbor area and suppose that we are only interested in the concentration of the
toxic material at a specific location away from the initial spill area. To this end, we make
use of a particle transport model that simulates the movement of the toxic pollutant. As
explained before, the concentration of a pollutant is connected to the particles’ positions
through their probability density function. The number of particles in our model that
ends up at our location of interest can be seen as a measure of the concentration at that
location. The question of how many particles we need to use is an important one. As long
as a significant number of particles ends up near the desired location, we can speak of a
statistically reliable answer to our question, typically in the order of hundreds of particles.
In the case described above, most likely only a few percent of all simulated trajectories
will end up in the target area. Since we are interested in the tracks that arrive in the
target area, almost all of our computation is wasted.

But what if we could ”steer” the trajectories of the particles in the right direction?
That way we would need less particles, since more particles would reach the target area.
On the other hand it means that we would change the original stochastic differential
equation (SDE) by which the particles are transported, since we would be adjusting the
particle paths. We would of course have to take this into account and correct the answer
in such a way that we would again obtain the sought-after concentration. The above
concept is based on a variance reduction technique called importance sampling ([3], and
[4]). With variance reduction we could use fewer particles to obtain the same result.
Another variance reduction technique is the method of control variates, which we will



focus on in this paper.

3. VARIANCE REDUCTION WITH CONTROL VARIATES

We define the positions of a group of n particles at time ¢ to be X,f’g(i), with 1 <i <n,
where the particles’ starting position at time 7 was equal to £. Consider next the following
SDE in the It6 sense, which describes the motion of the particles

dX, = f(t,Xy)dt + g(t, Xy) dp, (1)
X, = € 0<r<t<T

where X, is a stochastic variable, f and g are arbitrary functions and dg; = df(t) are
random increments. The process [3; is a Gaussian process with independent increments,
and is called Brownian motion, i.e. E{8;} = 0, and E{(8; — 3:)°} = (t —s) The
function f represents the deterministic or averaged drift term, and ¢ is the space-time
dependent intensity factor for the noisy, diffusive term. From now on, we also assume
that the starting time 7, the final time 7', and the starting location £ are fixed.

Suppose our interest is in the probability that the pollutant reaches a critical region in
space. For this region we define a certain indicator (reward) function ¢, which measures
the impact a particle has on the concentration in the region. The function ¢ depends only
on X;’g. If we assume that this function is symmetric with respect to its center, which is
our main point of interest, say vy, it takes on its highest value at this location. The further
away from this point a particle is at our time of interest 7', the less impact it will have on
the concentration at y. Point-spread functions are ideal functions for this (see [5]). The
probability that a pollutant will reach the area at a future time 7' is then given by

v(r€) = E{o(X79)} = E{é(Xr)| X: =&} (2)
In order to evaluate this expectation, several approaches are available. One possibility is
to simply use a forward Monte Carlo method to obtain an answer for the desired functional
(2). We are able to directly calculate the function v(7, ). Since we are only interested
in the expectation, higher-order numerical methods (especially the weak ones) for SDEs
can be used to evaluate the functional (2), or more specifically to evaluate the random
variable X;’é. We simulate n independent trajectories X;’S () forward in time from t = 7
tot =T and get the approximate solution:

= >N 3)

where ng(X}’g(i)) stands for the contribution of the i** realization.

The idea behind variance reduction is to replace the process X;’g by another process
X}"g with the same mean, but with significantly smaller variance. In the case of control
variates, this means that not the particle paths are changed, but only the functional
(2) itself. Therefore we do not need to change the SDE (1). We introduce a correction
process, which we shall call A;:

i = 30X, gl W

k=1

A = A (5)



The control function J is hereby chosen as

4. 0p
Te(t, X)) = Y
= 06

gir(t, X3) (6)
(tvxt)

where 0 is an approzimate solution to the backward Kolmogorov equation ([1] and [4]).
The method of control variates is now based on the observation that

E {¢(X}’5)} _ E {¢(X}’5) ~Art AT} (7)
= E{o(X]) = Ar} + E{Ar} (8)

and the fact that the process A; is a martingale. Therefore

B{o(xi)} = B{o(X7)—Ar} + A, 9)

Since the value of A, does not affect the variance, one can take this to be zero. Instead
of computing the left-hand side of expression (9), we calculate the right-hand side, which
has the same expectation, but significantly smaller variance.

3.1. A one-dimensional experiment

To make the concept of control variates more transparent, we will show an example
where we know the analytical solutions for both the forward and backward equations.
We will take a closer look at particles that only move due to diffusion from time ¢ = 0
to t = T. The driving motion is a simple Brownian motion process and the diffusion
coefficient D is kept constant:

dX, = V2D dg,, Xo=¢6=0 (10)

where D is a constant diffusion coefficient, and X; and (3, as before. We would like to
know the concentration at final time T at location y. As our "reward” function to estimate
this concentration, we choose a Gaussian function which is centered around our point of
interest y, with variance o

o(z) = e (11)

Our goal is to estimate the functional E{¢(X;")}. The forward Kolmogorov equation
that is consistent with this Lagrangian model is
oC 0*C
—L = p—/ (12)
ot Ox?

Starting with a d-peak at starting time 7 = 0 at £ = 0, the forward solution is known
completely in time and space, and is easily calculated. The backward Kolmogorov equa-
tion for this case is

aCy 0?Cy

o = Poe (13)




Practically speaking, the most critical part of variance reduction with control variates is
the fact that some backward solution is required to introduce corrections that reduce the
variance. In general this backward solution is not known exactly and we are required
to resort to numerical techniques. The complexity and computational efforts of methods
such as finite differences become high rather quickly. Deterministic methods require com-
putations in the entire domain, even though maybe only a small portion of the model is
of interest.

An alternative would be to use a particle model for the backward calculations. It is
similar to a forward particle model, but with different starting conditions and propagation
equation. The required probability density for variance reduction can be calculated with
the aid of point-spread functions (see [5]). For each time instant the variance-reduced for-
ward calculation requires information about the backward solution; a probability density
must be generated. Fortunately only a rough estimate of the probability density is needed,
although the variance reduction is much better when the simulated density is close to the
true one. To be more precise, it is the derivative of the backward solution that is required.
When the point-spread function for the evaluation of the backward solution is chosen to
be Gaussian, it is possible to directly generate this derivative. The more particles are
used to generate the backward trajectories, the more accurate the approximation of the
backward solution will be.

In our one-dimensional experiment the particles are traced backward from time 7 =T
(t=0) totime 7 =0 (¢t =7T). Figures (1) and (2) give a graphical representation of the
situation. The desired functional can be calculated through the particle model and then
be compared to the true value

1 =
Cy (T7 0) = e 4DT+202 (14)
VAr DT + 2702
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Note as well that

© 1 ey
E{o(X35)} /¢ ) Oy(t, ) de :/ We%:a,(m)) (15)

Now, for the variance reduction part we write down the following system of equations:
aX.|

] = L) )

with Xg =¢6 =0and Ag = A =0, and

J(t, Xt) == Vv 2D 8Cb
aé_ tXt

— V2D <_<Xt _ )) 1 eléﬁ@% (18)
2DT +0? ) \/Ar D1 + 27072

To gain some more insight in the behavior of the different equations and correction
processes, we carried out some computer experiments with the following choices for our
parameters: starting time 7 = 0, final time 7" = 1 and starting location Xy =& = 0. Our
point of interest, the location where we wish to evaluate the functional E{¢(X°)} was
set toy = % Finally we chose the diffusion coefficient D = %, and 02 = 110 in our function
¢. The number of time steps was varied as was the number of particles. The results
from the experiments are shown in table (1), together with the exact solution. Clearly
there is a large amount of gain in the accuracy of the results when using control variates.
Also note that this gain depends on the amount of time steps (i.e. the accuracy of the

numerical approximation) as well as the number of particles.

(17)

3.2. A two-dimensional experiment

Next, a similar experiment was performed in two dimensions. We take the same example
as the one-dimensional example in section 3.1, but we extend it to two dimensions. We
are again interested in the concentration at final time 7" at location y = (y1,y2). As our
"reward” function to estimate this concentration we choose a bi-variate Gaussian point-
spread function which is centered around our point of interest (yy,ys), with variance o%:

1 *((21*91)2+(22*y2)2)
21, 2 207 19
¢(21, 22) 5o (19)
Table 1
Results with control variates for the value of the functional E{¢(X3°)}.
Particles N, =10 N, =10 N, =100 N, =100
Time steps N; = 1000 N; = 10000 N; = 1000 N; = 10000
Exact 0.3395 0.3395 0.3395 0.3395

Plain Monte Carlo | 0.3547 £ 0.1385 | 0.2684 £ 0.1181 | 0.3500 £ 0.0422 | 0.3695 % 0.0446

Control variates 0.3468 £ 0.0091 | 0.3403 £ 0.0018 | 0.3373 £ 0.0025 | 0.3393 £ 0.0009




Notice that ffooo ffooo ¢(21,292) dz; dzg = 1. The particle tracks are generated according
to the following stochastic differential equations:

dX, = V2Ddj} (20)
dY, = V2Dds? (21)

where 3} and (32 are two independently Gaussian distributed random variables, and D
and X; as before. Our goal is to estimate the functional E{qb(X%O, Yﬁ’o)}. The forward
Kolmogorov equation that is consistent with this Lagrangian model is

oCy 0*Cy 0*Cy
ot D(ax2 N 0y? (22)

Starting with a d-peak at starting time 7 = 0 at (£, ) = (0,0) the forward solution is
known completely in time and space. The backward Kolmogorov equation for this case is
% _ D (8201, . 02C’b>

or 0&? on?

We apply the method of control variates that we used in the one-dimensional example
once more. There are various ways to improve on the efficiency of the calculations, but
these would be to extensive to discuss here. Several factors are of importance in the
experiments: the number of particles in the forward part of the calculations, the number
of particles in the backward part, the amount of CPU time for the plain Monte Carlo
method, the CPU time for the control variates, and the amount of variance reduction
that is obtained.

Because the problem is now two dimensional, we need more particles in the forward
simulation to obtain a certain amount of confidence in the estimation of the mean. With
100 particles in the forward simulation the plain Monte Carlo result in this specific example
will give a mean of around 0.112 and a variance of 0.027. Although the variance seems
small, this is still an error of about 25% with respect to the mean. With 1000 particles
this variance reduces to about 0.0089 (approximately 8%). Remember that in order to
decrease the size of the error with a certain factor with plain Monte Carlo, we must
increase the number of samples to the square of that factor. In the one-dimensional case
this number was much less (just 100 particles for an error of 12% and 1000 particles for an
error of 4%). It is obvious that in two-dimensional problems the number of particles for
both the forward and backward simulations must be larger to find a satisfactory variance.

(23)

4. CONCLUSIONS

When is a variance reduction method useful? Obviously the method itself requires
additional computations. Especially when the number of particles in a forward simulation
is relatively small, this becomes visible. In a specific scenario, control variates may take
many times longer to calculate. Fortunately, there is also a substantial reduction in
variance in that case. Most notable are three things. The first is that the computation
time for the plain Monte Carlo method scales linearly with the number of particles that
is used in the forward simulation. Two times more particles will double the simulation
time. The second observation is that the computation times for the control variates scale



roughly linearly with the number of particles in the backward simulation. Most important,
however, is that the reduction in variance remains approximately constant, independent of
the desired accuracy (number of samples in the forward simulation). The computational
cost for the generation of the derivative of the backward solution remains the same, no
matter how many particles are used in the forward model.

As it turns out, even with these additional calculations the variance reduction methods
are useful. A generic variance reduction method was developed which, instead of using
the more common methods of numerical approximations or an analytical solution, uses
a slight adaption of the forward particle model. This generic method uses a particle
method in combination with point-spread functions and was successfully applied in order
to generate the desired derivative of the solution of the backward problem, both in one
and two dimensions. The convergence rate of a plain Monte Carlo method is proportional
to the square root of the number of particles. The negative impact of the high initial
computation time for control variates becomes smaller as soon as more than a certain
number of particles is used in the forward computations. This means that in situations
where a certain amount of accuracy is required, it is beneficial to use a variance reduc-
tion technique. In case the simulated time in a scenario is long, these methods become
attractive as well. Long time spans mean that the resulting variances are large, requir-
ing large numbers of particles for a plain Monte Carlo method to reduce the variance.
Recent developments have shown that it is also possible to generalize variance reduction
methods to more arbitrary advection-diffusion type problems [2]. Generally speaking the
variance reduction methods are very attractive in scenarios with either a large variance
or in scenarios where an accurate estimate is needed. Another example where variance
reduction can be used is when determining a probability of exceedence. In the case that
the exceedence probability is small, many realizations of the process have to be generated
to obtain a reliable estimate (see [3], or [4]).
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