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1 Introduction 

1.1 SCOPE AND GOALS 

This study deals with the problems which arise when one tries to 

measure some of the components of the energy balance at the 

earth's surface. A simplified picture of what happens at the 

interface of the two distinctly different media air and earth is 

the following. The net amount of energy supplied to the earth's 

surface, after various physical processes (absorption, reflec

tion, scattering etc.) have taken place, is used to heat the 

ground and the atmosphere just above the surface and is also used 

to evaporate the water at or near the surface. In this simplifi

cation we have disregarded the energy absorbed by vegetation and 

other, usually small, terms of the energy balance. Thus energy is 

transported from the surface into the ground and the atmosphere. 

The transport of a quantity per unit area and unit time is also 

referred to as a flux density. Heating of the atmosphere and 

evaporation are called the sensible and latent vertical heat flux 

density, respectively. These flux densities can be directed up

wards (into the atmosphere) or downwards (to the earth), depen

ding on the stratification of the atmosphere just above the sur

face. These two fluxes are always accompanied by a vertical flux 

of horizontal momentum which is directed downwards. 

The assessment of the magnitude of either three, or all of these 

flux densities is of crucial importance to a number of practical 

questions in meteorology, agriculture, hydrology and related 

fields. In meteorology the energy supplied to the earth's sur

face is one of the main processes driving the atmosphere. Because 

of the large latent heat of vaporization of water, large amounts 

of energy can be redistributed through the atmosphere. At a much 

smaller scale the energy balance is an important boundary condi

tion for models of the atmospheric boundary layer for air pollu

tion models and studies of air-sea interaction. In hydrology the 
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fluxes of sensible and latent heat are important for the estima

tion of the water balance of inland lakes, the evaporation from 

vegetation systems etc.. For problems concerned with e.g. 

the water setup by wind in a network of channels the momentum 

flux must be known. Finally, in agriculture the estimation of 

the fluxes of momentum, latent and sensible heat are needed when 

one is interested in matters concerned with wind erosion, crop 

yield, plant diseases, pest control and the like. 

Proper measurement of the flux densities is beset with many dif

ficulties and uncertainties. It would of course be ideal if one 

is able to measure them directly at the surface using the con

servation of mass principle and other conservation equations. In

struments performing these tasks have indeed been designed (drag 

plates, heat flux plates, lysimeters) and are in use, but they 

are not easily installed and cumbersome to use. The only possi

bility left is the indirect measurement in the atmosphere and 

in the ground. Net radiation is relatively easily and accu

rately measured but the other terms of the energy balance still 

provide some severe difficulties. Measurement of the soil heat 

flux density is difficult because of the large spatial variation 

of specific heat, water content and thermal conductivity of the 

soil. Also destination processes and other latent heat fluxes 

in the soil are very difficult to assess quantitatively. Further

more, the complexities introduced by water transport through the 

roots of vegetation makes this approach to flux measurement 

unattractive, thus forcing us to look at the only other alterna

tive: flux measurements in the atmosphere. 

In the atmosphere we are dealing with a medium that is highly 

turbulent most of the time and which will produce large fluctu

ations of the value of quantities measured in it. The fluctua

ting output of instruments placed in the turbulent atmosphere 

introduces the necessity of determining an average of that out

put over a given space or time interval. After establishing this 

average, the instantaneous value of a quantity consists of 

its average value plus the fluctuating part. Estimation of the 



flux densities of momentum and those of sensible and latent heat 

can then roughly be divided into two methods. 

The first possibility is the measurement of profiles of the mean 

values of wind speed, temperature and humidity. Using the con

cept of molecular diffusion, where the flux density of a quanti

ty and its gradient are connected by means of a molecular diffu

sion coefficient, an analogy can be drawn between molecular and 

turbulent diffusion. Defining a so-called eddy diffusivity we 

relate the turbulent flux density of a quantity with the gradient 

of its mean value. This enables the estimation of the turbulent 

flux density, once we have a good approximation of both the eddy 

diffusivity distribution and the gradient of the mean value. 

The second possibility is the direct measurement of turbulent 

quantities. If the proper turbulent quantities are correlated 

with each other the turbulent flux can be determined directly 

(eddy correlation technique) or indirectly (dissipation techni

ques) . 

The advantage of the profile method over the correlation and 

dissipation methods is that averages are relatively easy to 

obtain, while it is much more difficult to measure the correla

tion of two fluctuating quantities. Its disadvantage is that an 

accurate distribution of the eddy diffusivity is not easy to es

tablish, or must be assumed, while it still remains questionable 

if gradient diffusion is a correct mechanism in all possible si

tuations that may occur in the atmospheric boundary layer (see 

Corrsin, 1974). Recent and current research reveals that turbu

lent transport is not a smooth continuous process. It is a process 

which consists of relatively large periods of' time with hardly 

any transport interspersed with relatively short periods of time 

with vigorous mixing and very large transport. Going down to 

molecular time and length scales we find that molecular diffu

sion is no continuous process either. We remedy this by consider

ing only time and length scales which are several orders of mag

nitude larger than the molecular scales, in this way ensuring the 

validity of the continuum hypothesis. Turbulent diffusion in the 
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atmosphere comprises time and length scales which are very much 

larger than the molecular ones. In fact they are large enough to 

make an analogy with molecular diffusion hazardous, especially 

when large spatial and/or time variations occur. 

The direct measurement of correlations of turbulent quantities 

avoids the use and the problems of the eddy diffusivity concept. 

But a serious disadvantage of this method is that the fluctuation 

measurement sensors require a fast response. Because all 

frequencies occurring in the spectrum of turbulence contribute 

to the turbulent flux, sensors have to be fast enough to register 

even the highest of those frequencies. This poses a very high 

demand on sensor performance, especially when installed close to 

the surface. Finally, a difficulty connected with both methods 

is the problem of defining a proper length of time over which 

the average values should be determined. 

All the above mentioned problems connected with the two methods 

have of course been studied extensively and considerable progress 

both in theoretical and technical respect has been made. But 

there are a few basic assumptions which form the corner

stone of both methods, and which also need careful consideration. 

These assumptions may all be condensed in the following crucial 

starting point of the theories underlying the two methods just 

described. We assume that the surface layer of the atmosphere is 

in equilibrium with the underlying surface. Equilibrium means 

that all the characteristic variables of the atmospheric surface 

layer will not change when the flow continues its course over 

the earth's surface. 

Amongst other things, which will be disregarded for the moment, 

equilibrium implies that fluxes will be constant with height in 

the atmospheric surface layer and are equal to the fluxes at the 

surface. This means that instruments may be placed at any height 

in this layer, excluding the demands on sensor performance from 

our consideration for the time being. Equilibrium also implies 

that a relationship between the vertical distribution of the 



average value of a quantity and its vertical flux density can be 

established, which means that the fluxes can be derived from 

measured profiles. Finally, equilibrium also implies that several 

terms in the equations for the second moments are small enough to 

be neglected, which implies that production and dissipation (or 

destruction) terms balance each other. This is a necessary con

dition for the application of the dissipation technique. 

It is obvious from the definition of equilibrium given above 

that true equilibrium will never occur in practice because ex

ternal conditions will change both in time and space. But in some 

cases a reasonable approximation of the state of equilibrium can 

be reached. This is possible if weather conditions do not change 

during the averaging period and if the measuring site is chosen 

in such a way to ensure a large upstream fetch of uniform 

terrain. It is not surprising therefore, that for the well-

known experiments performed in Kansas (Izumi, 1971) and Minnesota 

(Izumi and Caughey, 1976) great care was taken in choosing the 

location for measurements in order to avoid advection effects 

created by a non-uniform upstream fetch as much as possible. 

These are the experiments, amongst others, that have provided 

the data from which numerous empirical flux-profile relations 

have been determined and from which many empirical constants 

have been established in the theory of atmospheric turbulence. 

This means that existing formulae for the determination of tur

bulent fluxes are, strictly speaking, only valid in equilibrium 

situations. A proper choice of the measuring period and of the 

averaging time will ensure almost constant weather condi

tions, but extensive homogeneous terrains are for most practical 

situations not easily available. So the question arises: how 

large are the errors introduced in the flux determination, using 

standard methods, by the non-uniformity of the upstream terrain, 

and is there a possibility to make corrections for the deviations 

generated by the inhomogeneities? These questions form the start

ing point of all that the present study encompasses. 



1.2 METHODS 

Any problem in physics can, generally speaking, be approached in 

two distinctly different ways: theoretically and experimentally. 

The first option is often beset with serious mathematical diffi

culties. In the case of atmospheric physics and turbulence these 

are very severe and drastic simplifications have to be made in 

order to make the problem theoretically tractable. The question 

then arises if enough of the essential processes and characteris

tics of the system under consideration are preserved in order to 

get sensible and non-trivial solutions. The second option is 

beset with many practical difficulties such as the quality of 

equipment, weather conditions, choice of location etc. Further

more, it will lead to the setup of a measuring campaign which 

generally is no mean feat, even when measuring only average 

quantities, let alone turbulence quantities. 

A separate branch of the theoretical treatment of problems in 

science was developed with the introduction and large scale use 

of fast digital computers and the application of numerical mathe

matics in the fifties and early sixties. Modeling intricate phy

sical processes and interactions using these computers belongs, 

in principle, to the theoretical treatment option but is dis

tinctly different from it in some respects. But on the other 

hand it also has some characteristics which are typical features 

of the experimental treatment option. It does not altogether be

long to the theoretical analysis since the mathematical theory 

for solving nonlinear partial differential equations is still in

adequate and a complete solution of the Navier-Stokes equation 

which describes the dynamics of turbulence,is a very long way off 

indeed. The experimental character of the modeling option is gi

ven by the fact that every run of the model on a computer looks 

like the performance of a physical experiment. Thus modeling 

forms a synthesis of the traditional two options and it soon 

emerged as a powerful tool in solving problems in many fields in 

science. 



The advantages of this third option are obvious. No expensive 

measuring campaign is necessary, only a modern computer with its 

usual facilities is needed. With the theoretical analysis it 

shares the advantage of one being able to choose, within limits, 

parameters of, and variables in the atmospheric surface layer 

such as the Obukhov length, the wind direction, friction veloci

ty, surface roughness length, temperature and humidity profiles. 

In contrast, for experiments performed in the atmosphere these 

quantities depend on large scale weather systems, terrain loca

tion, time of the season etc. Finally, the degree of simplifica

tion of the governing equations will often be less than the one 

necessary to obtain analytical solutions. Thus one is able to 

tackle a whole range of problems with numerical modeling techni

ques, which are far from being treated with analytical mathema

tical methods. But the third option still shares a number of 

disadvantages of the first option. It is e.g. not always trivial 

to see if all physical processes and interactions are properly 

described by the set of equations in use. Also, these equations 

have to be simplified in order to arrive at a numerically sol

vable set. It is difficult to assess how much information is 

lost by these simplifications. The system of equations also must 

form a closed set, i.e. the number of equations must equal the 

number of unknowns. This creates an enormous problem in atmos

pheric turbulence, generating a whole new field of science devo

ted to this subject. 

There are also disadvantages typical, for the third option which 

are almost absent in the other two options. E.g. the lesser the 

degree of simplification the larger the number of equations and, 

consequently the larger the number of closure assumptions. These 

assumptions each introduce a number of constants which have to 

be determined one way or another. Also, there will always be 

processes on scales smaller than the computational grid but 

which do interact with the larger features of the flow. These 

subgrid-scale processes have to be taken into account somehow, 

but more often than not they are simply neglected. Also, a nume

rical solution will never be able to provide the physical insight 



into the problem as given by an analytical one, because it does 

not produce any functional relationship. This is the most impor

tant disadvantage. 

The above considerations must be kept in mind when choosing a 

way to treat the aforementioned questions. But also factors like 

feasability must be taken into account. It was decided that the 

best strategy for this study was formed by the possibilities 

inherent to the third option. 

Chapter 2 gives an analysis of the problem we are facing. It pre

sents an outline of the basic laws of physics which are of inte

rest here, as well as the simplifications which must be made. 

In Chapter 3 an account is given of the various models and 

methods which have been used in the past to study the effects 

created by a change in surface conditions, concentrating mainly 

on a change in surface roughness. In Chapter 4 a critical exami

nation is made of the numerical model employed in the present 

study. It contains a summary of all the restrictions and draw

backs inherent to the use of this specific model. In Chapter 5 

the standard flux profile methods are compared with flux profile 

relations derived from the modeled second moment equations for 

homogeneous situations. Chapter 6 treats the errors introduced 

by terrain inhomogeneities in the profile methods of flux deter

mination. Chapter 7, finally, contains the conclusions of the 

present study. In it recommendations are given for further study 

and possible treatment of the problem with an experiment which, 

as usual, will have to give an answer to the question if all that 

is stated in this study has any truth in it. 



2 Analysis of the problem 

2.1 GENERAL FEATURES AND RELEVANCE FOR FLUX DETERMINATION 

TECHNIQUES 

The thin layer of air (0.1 - 0.3% of the radius of the earth) 

that envelops the surface of our planet is called the atmosphere. 

It is kept in motion primarily by the differences in local hea

ting of the earth's surface by the sun. At or near the interface 

of the atmosphere and the surface of the earth a continuous in

teraction takes place. This interaction ranges from the large 

scales (oceans, continents, mountain ranges) to the very small 

scales (pebbles, leaves of grass, grains of sand), in fact down 

to the molecular scale. As a consequence, the atmospheric motions 

comprise a large spectrum of length and time scales (Figure 2.1). 

—»- Characteristic length scale, L ( m ) 
~ 108 106 104 IQ"2 10° 102 104 106 108 

7 104 

CO 

£ 2 10 

> 
010° 
O 

> 
£102 

« a 
l i e r 4 

r 
\ 

m\ \izr N 

\ 

\ 
\ 

^ v' .- \ 
\ 

V 

\ 
> 

\ y* 
• • ' \ 

\ 

\ 
fMfa 

|—^ , 
\ \ 

. 
N 

V 
y \ 

« y 
V 

•' \ 

\ 
N. 

^55*—7 

s 

s 

/ I ' * %*> < <. 
£ N<-> NO ^ Tj, 

o ^ ^* v o v V0 , 
v v <>p ^ 

"6 -& 

v-4' 

'S 

Figure 2.1 Classification of length and time scales of 

atmospheric motions 

The lowest layer of the atmosphere is affected directly by the 

nature and properties of the surface itself. In this part of the 

atmosphere which is called the atmospheric boundary layer (ABL) 

turbulence plays an important role. 



In the upper part of the ABL the Coriolis force contributes sub

stantially to the dynamics of it. The lowest part of the ABL is 

called the atmosphere surface layer (ASL) (Figure 2.2). Within 

this layer the turbulent fluxes do not change significantly with 

height if the surface of the earth is horizontally homogeneous. 
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Figure 2.2 Vertical structure of the atmospheric boundary 

layer (after: Huang and Nickerson, 1972) 

Within the ASL also the influence of the Coriolis force is negli

gible. For that reason the direction of the wind remains approxi

mately constant with height. This means that our analysis of the 

surface layer is a two-dimensional one. We align the horizontal 

axis of the coordinate system along the direction of the mean 

wind vector. 

In its course over the surface of the earth the ASL interacts, as 

was mentioned above, with the underlying surface of the earth. 

This interaction process is maintained by means of the turbulent 

fluxes of momentum, heat, water vapour and other, usually negli

gible, constituents of the atmosphere. If the surface is homo-
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geneous over a sufficiently large distance and if external 

weather conditions (e.g. the overall pressure gradient, the sta

tic stability etc.) are constant, a state of equilibrium in the 

ASL will be reached. Disregarding other possibilities, the state 

of equilibrium of the ASL will be defined here as that situation 

where mean turbulent fluxes are constant with height, or very 

nearly so, and the profiles of mean quantities such as tempera

ture do not change downstream (see also section 1.1). 

If an air mass in such an equilibrium encounters a stepwise 

change in surface conditions it will have to adjust to these new 

conditions. Eventually, under the same restrictions as mentioned 

before, the surface layer will reach a new state of equilibrium, 

determined by the new surface conditions. This problem belongs to 

a class of problems in turbulent shear flow theory, viz. that of 

relaxing flows. We state that a relaxing flow is one in which a 

turbulent shear flow changes from one state of equilibrium to an

other state of equilibrium by virtue of changes in external con

ditions. These changes in external conditions are represented by 

changes in boundary conditions of the theoretical models that 

describe the physics of the atmosphere subjected to these discon

tinuities. The change may be limited to a single quantity such as 

surface temperature (e.g. Johnson, 19 55; Vugts and Businger, 1977), 

surface humidity (Weisman, 19 75 ; McNaughton, 1976), surface heat 

flux (Antonia et al., 1977), surface roughness (Elliott, 1958 ; etc.) 

or surface topography (de Bray,1973; Bowen and Lindley, 1977; 

Dawkins and Davies,1981). But, usually two or more of these quan

tities will change simultaneously (Rider et al.,1963; Dyer and 

Crawford 1965; Tieleman and Derrington,19 77). 

The ASL which is subjected to a stepwise change in surface condi

tions will be transformed. As was pointed out in the previous 

chapter, this transformation need not be a smooth continuous pro

cess. In,fact, experiments show that turbulent transport for the 

greater part results from the action of turbulent structures. 

These turbulent structures represent elongated, spatially cohe

rent, organized flow motions (Schols, 1984). Keeping this in 

mind we merely hope that with the practice of using averages 

the effects of the individual turbulent structures will be 

11 



smoothed by the averaging procedure. On the average, the surface 

layer will start to adjust to the new surface conditions in 

its lowest layers close to the ground. Through turbulent trans

port the change in surface conditions will affect layers of in

creasing height as the air travels downstream. Thus at a given 

horizontal distance (x) downstream of the discontinuity this in

fluence will change the atmospheric surface layer up to a certain 

height (d(x)). This height increases with x. Above this height no 

change will be noticeable. The region of the atmospheric surface 

layer between z = O and z = d(x) is called the Internal Boundary 

Layer (IBL) (Figure 2.3). Below z = d(x) the profile of every 

Figure 2.3 Definition sketch of a change in surface conditions 

variable will deviate from its original equilibrium distribution. 

Above z = d(x) every profile remains unchanged. Of course, the 

definition of these layers is not rigorous for it results from 

the use of statistical methods. There are large eddies and turbu

lent structures in the ASL which momentarily are able to transport 

parcels of air already affected by the new surface to heights far 

greater than d. 

As the air travels further along, the lowest part of the IBL will 

become locally adapted to the new surface. This means that up to 

a certain height z = S (x) < d(x) fluxes will be constant with 

height though they are still changing with downstream distance. 

Thus no new equilibrium has yet been reached, but the local flux-
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es in the lowest part of the IBL are constant up to z = 6(x). We 

will call the region the Internal Adapted Layer (IAL) (Figure 2.3). 

Curve no 

1 

2 

3 

4 

5 

6 

7 

8 

9 

• x/zo 
7 . 0 -

1 .4-

2 . 9 -

6 . 0 -

1 . 4 -

2 . 9 -

6 . 0 . 

1 . 2 . 

1 . 5 -

10 

102 

10 ' 

1 0 ' 

1 0 ' 

10 : 

1 0 ' 

10< 

10< 

- 600 0.0 600 
—•- /3CpW0(W/m2) 

Figure 2.4 Profiles of the vertical heat flux 

after a change in surface conditions 

Figure 2.4 serves to illustrate the above. It presents the stream-

wise variation of the turbulent heat flux profile pc we(x,z) af

ter a change from a hot, dry, smooth surface to a cool, wet, rough 

surface as calculated with the model of Rao et al.(1974b).Starting 

from a surface layer which is completely in equilibrium with the 

underlying terrain, we see that in that case (indicated by the 

dashed line) the vertical turbulent heat flux is constant with 

height. The value of pc wë is positive, denoting an upward heat 
ir 

flux. The other curves represent the heat flux profile for va

rious distances downstream. Just after the step change the tem

perature of the surface drops, generating a downward, negative 
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heat flux. Only the lowest region of the surface layer is affec

ted up to e.g. point A of curve 1. This point A corresponds to 

the local height of the IBL. Gradually a region develops where 

pc we is constant with height (e.g. up to point B of curve 6) 
P 

though pc we still depends on the horizontal distance (x). 
ir 

Point B corresponds to the local height of the IAL. 

Figure 2.4 clearly shows that the magnitude of the vertical heat 

flux critically depends on the location. Thus the determination 

of flux densities above a non-homogeneous terrain is beset with 

many difficulties and uncertainties. Depending on the method one 

uses to determine those flux densities, this may lead to consi

derable errors. In practice, one is usually interested in the 

flux density from a given stretch of nearly homogeneous field ir

respective of the characteristics of the surrounding terrains. As 

the horizontal dimensions of the field of interest are always 

finite, problems often arise concerning the use of flux determi

nation formulae, interpretation of the results of measurements, 

sensor location etc. 

2.2 GOAL OF THE PRESENT STUDY 

In this study it is our intention to analyse the effects created 

by one, or more, changes in surface conditions on the structure 

of the atmospheric surface layer in order to: 

1. estimate the error introduced in the standard flux determina

tion techniques when they are applied in these conditions, and 

2. provide simple techniques for estimating these errors using 

a minimum number of data concerning sensor location, surroun

ding terrain(s) etc. 

To achieve these goals we use the data provided by the model des

cribed in Chapter 4, as if they were actually determined by expe

riment. We implicitly assume that the model represents the actual 

situation fairly well. Using the data from the model we are able 

to perform the above mentioned analyses and draw our conclusions 

on the performance of the standard flux determination techniques 

in non-homogeneous situations. 
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2.3 GOVERNING EQUATIONS 

Whatever happens to the air above the changing surface conditions, 

it will always have to obey the conservation equations of mass, 

momentum and specific entropy. These equations have been derived 

many times (e.g. Hinze, 1959; Lumley and Panofsky, 1964; Monin and 

Yaglom,1971; Tennekes and Lumley,19 72), hence we confine oursel

ves to the main lines. For details we refer to the textbooks men

tioned. Notice will be taken, however, of the approximations and 

assumptions involved in this derivation. 

We start with the conservation equations for an ideal, viscous, 

compressible, Newtonian fluid in a uniform gravitational field 

and in a rotating system 

3u± 3u. 3P 
PJTT

 + ?jaÏT> = - ïfr. 
3 3 

p g ± + 
3 

3x i' 
3u. 

, - i 
'3x . 

3 

3u_ 

Jx", 

2 3 X 
3 ^ 6 i j 2fi .e . ., u. p, 3 i;jk,.k_' 

(2.1) 

3p 3u. 3p 

Tt + ?3x. + ?i3x . 0, (2.2) 

T ,3S + 3 S , 3 ? i r , 3 ? i +
 3 ? j , 

3 3 L : i 

2 3 ? k . 3T 
+ i x - ( k ^ - ) ' ( 2 - 3 ) 

: 3 

P = pRdT (2.4) 

These equations represent the conservation equations of momentum, 

mass and specific entropy, respectively and the equation of state. 

S is specific entropy, p density, T temperature, u. velocity, 

y viscosity, k thermal conductivity, 6.. is Kronecker's delta and 

e... is the alternating tensor (Levi Civita). In addition 

Einstein's summation convention is used. We assume that the gra

dients of P, p and T are small enough to ensure that p and k are 

approximately constant throughout the fluid. We define a refer-
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ence state of the atmosphere, denoted by the subscript "r" such 

that the instantaneous value m of the variable m(m = p, T, P or 

u.) is decomposed in 

p = p + p , P = P + P , T = T + T, u. = u. + u. , (2.5) Î. r ' _ r ' _ r ' .. 1 x,r 1 

where m is a perturbation of this reference state. 

Following e.g. Dutton and Fichtl (1969) the equation of state is 

expanded around this reference state, this yields 

p. -pr ! - Pr ? - Tr p P T „ fi. 
— ^ — = - p T ° r — = P" - I" ' (2-6) 

pr r r yr r r 

where higher order derivatives are ignored. This is only permis

sible if the deviations p, T and P are small in comparison with 

their respective reference state value, 

hence | M < < 1 , |§-| << 1 and |J-| << 1. 
r r r 

If for the reference state,we assume that the effects of radia

tion, viscosity and heat conduction are not important and that 

the fluid is in steady motion, hence e.g. u. = U (z), the equa-
l, r T 

tions of motion (2.1) imply that 

3Pr 3Pr 8Pr 

+ 0 and —• = - p a (2.7) 
8x 3y 8z "r 

which, after some manipulation gives 

3T 3T 
—I. + _ 
3x 3y 

r + —L = o. (2.8) 

This means that the vertical variation of U (z), p (z) and 

T (z) is still free to choose, r 

In the reference state the atmosphere is supposed to have an 
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adiabatic temperature profile 

3T 

TT • - ̂ d = - rd • <2-9' 

Now, E q s . ( 2 . 7 ) a n d ( 2 . 9 ) t o g e t h e r w i t h t h e e q u a t i o n o f s t a t e 

P r = R d T r P r , ( 2 . 1 0 ) 

c o m p l e t e l y d e t e r m i n e t h e v e r t i c a l d i s t r i b u t i o n o f P ,T a n d p . 

The c o n t i n u i t y e q u a t i o n ( 2 . 2 ) may b e e x p a n d e d i n t h e f o rm 

3p ^ ,~3p~ j . - 3 p , ^ ~ 3p ^ - P r 1 , 3u ^ 3v . 1 3w / 0 . . . 

it + (U^ + V + *ri + "sir = - r ; ( ^ + ^ " ̂  ^ ' ( 2-11) 

where |P/P | << 1 has been used on the right hand side. Replacing 

all variables by a Fourier representation and estimating the or

ders of magnitude of all variables and their derivatives Dutton 

and Fichtl (1969) were able to show that in Eq. (2.11) only the 

terms on the right hand side remain, hence 

3u± 

^ = 0 , (2.12) 
l 

if the following conditions are met 

( i ) 

( i i ) 

( i i i ) 

( i v ) 

u2 << g / £ w , 

I << H , 
w a ' 
w a (2.13) 

Here u> is the frequency in the time dependent part of the Fourier 

representation I , I and I are length scales for the vertical 

and horizontal motion and the vertical variation of specific 

volume (a = p ) respectively. H is a scale height defined by 
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1 1 3 a 

H = — -r—^. Because (2.13) restricts the permissible vertical 
a a 3z 

scales tS heights much smaller than H this case is known as 
3 a 

"shallow convection". For shallow convection, this approximation 

allows the fluid to be treated as incompressible. 

Moreover, using condition (iii) of Eq. (2.13), it is possible to 

show that the pressure perturbation term in Eq. (2.6) can be ig

nored in the case of shallow convection, hence this equation re

duces to 

P - _ T 

pr - Tr • (2.14) 

Next we turn to the equations of motion (2.1). We divide (2.1) by 

p and substitute the perturbation forms (2.5). The nonviscous 

vertical component terms on the right hand side of (2.1) then read 

p 3z g pr 3z Pr 

where |—| << 1 has been used, except in the gravitation term, 

where r it cannot be ignored (Boussinesq approximation). The 

kinematic viscosity is defined by v = v = y/p . If we furthermore 

use (2.12) and (2.15) the equations of motion become 

3 U i - 3 u i _ 1 3P T 3 u i 
yr + uj^r:~"'p^i3rT + T^gi + v a x . a x . 2 f i j e i j k uk • (2 .15) 

The entropy equation (2.3) can be transformed in an equation in 

terms of the temperature (see Appendix 1): 

H + "jlT. = ̂ H^Tâx- ' ( 2 - 1 6 > 

where K„ = k/p c is the thermal diffusivity. n r p 

As the latent heat flux will also play an important role in the 
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present study we must supplement the above equations with one re

presenting the variation of specific humidity. To a good approxi

mation, water vapour can be considered as a passive contaminant. 

We find, analogous to (2.16) 

i| + i. _ââ = 
at : ax. v 3x.3x. 

3 3 3 

(2.17) 

where g is the specific humidity and K is the diffusivity of 

water vapour. To account for the effect of the variable water va

pour contents of the atmosphere on the density, we introduce the 

virtual temperature T which is defined by 

T = {1 + q(^f -1)}T ̂  (1 + 0.608q)T. (2.18) 
v e * 

This correction for moisture is of importance only in the buoyan

cy term in the equations of motion. In the reference state of the 

atmosphere we assume that no water vapour is present hence 

T = T + T = T + T . (2.19) 
_v vr v r v 

Finally, we introduce the potential temperature which will be 

used from now on instead of the real temperature 

0 = T(P /P) K , (2.20) 

5 
where P usually is taken equal to 1,0 . 10 Pa and 

K = R, (1 - 0.23 q)/c , which may be simplified to K = R<j/c
D(j-

We split 0 into 

0 = 0 +• 0 , (2.21) 
r ' 

where, according to (2.9) 30 /8z = 0. In the atmospheric surface 

layer we may assume to a good approximation (within 1% at sea 

level) 0 s T and ê = T. 
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The set of equations now consists of Eqs. (2.12), (2.17) and 

3u . 3Ù . . _Ä 0 3 2U. 
X - l _ J _ 3P v l _ 

3 t U j 3 x . " ~ p r 3x._ T r
 g i v 3 x . 3 x . " : £ i j k u k , ( 2 . 2 2 ) 

It + uj Ix" - K H Ï3T33T • (2-23) 

Next we assume that the air motions can be separated into a slow

ly varying mean flow and a rapidly varying turbulent component. 

Furthermore we assume that the flow is ergodic, which means that 

ensemble averages may be replaced by time averages. Thus we 

arrive at Reynolds' convention, 

Ù. = Ü. + u. , è = 0 + e , P = P + p , q = Q + q , (2.24a) 

where u. = 0 , p = 0 etc., u.G = 0U. + 8u. etc. and 

0u. = 0U. etc. (2.24b) 

Applying (2.24a) and (2.24b) to Eqs. (2.12), (2.17), (2.22) and 

(2.23) and averaging these equations (see Appendix 1) the equa

tions for the mean flow read 

3U. 

IT - ° ' (2-25) 

l 

IT 3 U i 1 3P + 'v 9 o n +
 a 2 Ui + 

u j TIT = - JZ ^F7 + g i T- " 2 î 2 j £ i j k u k + V ^T33T + 

3 r i r j j k k 

- ^ - ( u . u ) , ( 2 . 2 6 ) 
: 

U - I ^ - = K H T ^ I T ^ - ÏÛT ) , (2 .27) 
n 3x . H 3X, 3X, 3X . J ' 
J J k k 3 
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3Q 
3x . 'v 3xk3xk ^ T ( u : g ) (2.28) 

As long as the viscous sublayer that coates the surface is exclu

ded from our considerations, the molecular diffusion terms in 

(2.26)- (2.28) can be neglected. We furthermore consider the si

tuation where a fully turbulent steady air flow is at right 

angles to the surface discontinuity. This means that a restric

tion is made to a two-dimensional case. These simplifications of 

Eqs. (2.25)- (2.28) result in the following set of equations, 

1" + ™ = 0 
3x 3z 

(2.29) 

ui" + w|2 
3x 3z 

1 3P 
Pr 3x L 3x + 37 U W ] • (2.30) 

3x 3z 
1 3P 
Pr 3z 3x 

3 V | (2.31) 

3x 3Z 
fi_ ue + L - üël , 
|_ 3x 3z J ' 

(2.32) 

r73Q ^ r73Q r 3 3 1 
UJ^ + W"3t = "Lïî Uq + 3Ï W q J ' 

(2.33) 

where the terms containing the effect of the Coriolis force have 

been neglected. 

Careful consideration of the terms on the right hand side of 

(2.30)-(2.33) (Yeh and Brutsaert,1970; Plate,1971; Peterson, 1972) 

led to the conclusion that the first term between the brackets, 

as well as the pressure term in (2.30), are negligible in compa

rison with the second term between the brackets, at least for 

fetches larger than, say, 1 m. This implies that Eq. (2.31) can 

be omitted, while Eqs. (2.30) (2.32) and (2.33) reduce to 
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3x 

°ü 

•SS 

+ 

+ 

+ 

T T 3 " 

„ 3 6 

3z 

fi u w ' (2.34) 

|- we , (2.35) 
o Z 

-f^wq. (2.36) 

The four equations (2.29) and (2.34)- (2.36) contain seven 

unknowns: U, W, 0, Q, üw, wë and wq, hence they do not form a 

closed system and cannot be solved. This is the well-known 

closure problem. This problem can only be tackled if a closed 

system of equations is obtained. Two possibilities now arise: 

(i) decrease the number of unknowns by expressing the quantities 

on the right hand side of Eqs. (2.34)-(2.36) as a combina

tion of the other dependent variables on the left hand side. 

This is called first order modeling. 

(ii) increase the number of equations by introducing conservation 

equations for the quantities on the right hand side of 

Eqs. (2.34)-(2.36). This is called second order modeling. 

If the first possibility is used a relatively simple model will 

emerge which can often be treated analytically. If we use the 

second possibility the problems turn out to be aggravated. By de

vising additional equations for the variables on the right hand 

side new unknowns appear which make the difference between the 

number of equations and the number of unknowns even larger. So in 

this case one is again forced to use the first option: reducing 

the amount of unknowns. The modeling of the unknowns in the se

cond moment equations often cannot be done rigorously on sound 

physical grounds, and in that case it must be constructed rather 

artificially. 

In the next Chapter models will be encountered which have been 

constructed using either one of the two mentioned closure tech

niques. There, the benefits and drawbacks of both types of 

models will be analysed. 
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3 Models for the description of the internal boundary layer 

3.1 INTRODUCTION 

In this Chapter a review will be given of existing models con

cerned with turbulent shear flows adjusting to suddenly altered 

lower boundary conditions. In this review of theoretical models 

we will focus our attention primarily on models dealing with a 

change in surface roughness. 

Ever since 1958 (Elliott) and 1952 (Gandin) (for the English, 

respectively Russian literature) a lot of work has been dedica

ted to the problem under consideration. A tremendous number of 

articles concerning models of ever increasing sophistication has 

appeared. In some of these articles the growth rate of the IBL 

is predicted, while in others a more detailed description of the 

flow within this region is given. The results of the first group 

of articles can be applied directly to estimate the constraints 

posed upon the maximum height at which instruments may be loca

ted when measuring e.g. profile derived fluxes. The second group 

of papers allows the prediction of the velocity-and shear stress 

profiles within the IBL as well as the variation of the surface 

shear stress downstream of the discontinuity. Not until the more 

advanced second order models appeared in the late sixties was it 

possible to give a more complete description in terms of the be

haviour of other turbulent quantities which were neglected or 

parameterized in the older models. 

Apart from some early methods in which the roughness change pro

blem is treated as a diffusion problem (Philip, 1959; Dyer, 1963) 

the bulk of theoretical models will be divided into three classes 

of increasing order of complexity: 

1. First order closure (i) Integral models 

(ii) Models based on self preservation 

(iii) Numerical models 

2. "One and a half" order closure (also called k - e or turbulent 
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kinetic energy (TKE) models) 

3. Second order closure. 

In the following we will discuss these types of models. 

3.2 INTEGRAL MODELS 

3.2.1 Description 

One of the first attempts to treat the effect of a step change in 

roughness length theoretically was carried out by Elliott (1958). 

Elliott postulated that there is a region in which the changes 

of the flow occur and he called this the internal boundary 

layer (IBL). Within the IBL he assumed that the shear stress is 

independent of the height (z), while the surface shear stress is 

a function of the downstream distance (x). All other models in 

this class make the same assumptions but only differ in the as

sumed form of the shear stress profile within the IBL (Panofsky 

and Townsend 1964, Taylor 1969). 

To close the set of equations formed by (2.29) and (2.34), 

Elliott used the relationship between the turbulent flux of mo

mentum uw and the gradient of the mean wind U, which is valid in 

horizontally homogeneous situations, assuming that it also holds 

in advective situations: 

- ïïw = I2 (|^)2, (3.1) 

a Z 

or 

T = - p û w = p K — - , (3.2) 
m dz 

which means that 

m 
3U 
3z 

(3.3) 

where I is the mixing length, usually taken as 

I = kz . (3.4) 
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The equations (2.29), (2.34), (3.1) and (3.4) form a closed sys

tem which can be solved. In accordance with the von Kärman-Pohl-

hausen technique the equations are integrated over the height of 

the IBL resulting in an equation relating U, d and ui;). By inser

ting a prescribed velocity profile in that equation and combining 

it with the necessary condition of velocity continuity at 

z = d(x), Elliott obtained a differential equation which can be 

solved to give d(x). After this quantity has been established it 

is possible to obtain u*_(x), U(x,z) and uw(x,z) respectively by 

the scheme outlined in Appendix 2. 

After Elliott's publication a number of authors have sought to 

improve his model. Panofsky and Townsend (1964) removed the dis

continuity in shear stress in Elliott's model by assuming a 

linear variation of the shear stress with height within the IBL, 

instead of a constant stress. A few years later Taylor (1969) 

constructed a model in which even the shear stress gradient was 

continuous at the interface at z = d. For a comparison of these 

shear stress profiles the reader is referred to Taylor (1969). 

Both theories are refinements of the model of Elliott and their 

results consequently do not considerably differ from the original 

model. A somewhat deviating approach was presented by Plate and 

Hidy (196 7) who integrated the momentum equation between x = 0 

and a given value of x, while they also incorporated a streamline 

displacement in their model. The advantage of this model, as poin

ted out by Plate (1971), is the possibility of incorporating pres

sure gradients and a gradual change in roughness downstream of 

x = 0. Plate and Hidy developed this model to predict the beha

viour of a wind blowing from a smooth solid surface to a water 

surface with small waves of increasing waveheight. 

3.2.2 Results 

Because in the models of Elliott, Panofsky and Townsend and 

Taylor the shear stress- and velocity profiles are prescribed, 

their main merit lies in the prediction of the growth rate of 

the IBL height d(x). Elliott approximated this rate by 
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x Z 
d(x) = a.zno( )°" 8 , where a = 0.75 - 0.03 l n ( ^ ) (3.5a,b) 

0 2 z01 Z01 

O 8 The cKx " growth rate appears to be a very good estimate. 

Panofsky and Townsend (P&T) used a somewhat different definition 

of d resulting in d-values that are larger than those predicted 

by (3.5), but the growth rate is essentially the same. 

Note that in this type of model also the variation of the surface 

shear stress for x>0 can be computed. By equating the horizontal 

velocity at z=d, an equation is obtained that gives u4. as a 

function of x,z_2 and m, where 

m = z
0 1/zo2 a n d M = ln(m) (3.6a,b) 

This is not mentioned by the authors themselves. 

For both the Elliott and the Panofsky and Townsend models these 

curves are given in Figure 3.1 for rough-to-smooth(RS) as well as 

smooth-to-rough (SR) changes. A typical feature of these curves 

is the over(under)-shoot followed by a gradual return to a new 

equilibrium value. This behaviour of the surface shear stress 

was confirmed by experiments (e.g. Bradley, 1968). 

3.2.3 Discussion 

The main shortcoming of integral models is the a priori assump

tion of the profiles of velocity and shear stress within the IBL, 

which pose a severe restriction to the possible types of flow 

for x > 0. Just downstream of x = 0 the flow is developing to

wards a new equilibrium, hence it is very doubtful that an equi

librium logarithmic profile will exist there. 

Furthermore the concept of the mixing length is assumed, where 

only depends on local, averaged quantities. This assumption ig

nores all history of the turbulent flow upstream, which is not 

realistic. 
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Figure 3.1 Variation of surface shear stress with downstream 

distance for various models 

As was mentioned by Antonia and Luxton (1972) and also by Plate 

and Hidy (1967) the integral models require a limited depth of 

the disturbed boundary layer compared with the whole of the PBL. 

This means that integral models are only applicable within a 

limited distance downstream of x = 0. 

Finally, Peterson (1969) states that the prescribed form of the 

shear stress profile is only true if the nondimensional windshear 

27 



<t> = — -r— equals unity in the transition region in nonequili-

brium flow conditions, which is often not the case. The prescrip

tion of this profile is in fact a fourth equation which creates 

a model where the number of equations exceeds the number of un

knowns. It should be possible to calculate shear stress distri

butions by solving the horizontal equation of motion, given the 

velocity profile and the equation of continuity. But, as Taylor 

(1969) noticed, the variation of the wind profile downstream and 

the behaviour of the surface shear stress might be obtained 

without the use of the mixing length hypothesis. The vertical 

distribution of shear stress, however, can not be obtained 

without this hypothesis. 

3.3 MODELS BASED ON SELF PRESERVATION OF PROFILES 

3.3.1 Description 

The first and most important attempt to treat the problem of a 

step change in roughness based on arguments of self preservation 

was undertaken by Townsend (1965a,b; 1966). 

Assuming the profile of a given quantity to be "self preserving" 

is equivalent to saying that the functional form for the vertical 

distribution of this quantity is invariant with fetch and that 

the scale is a function of fetch only. 

Townsend assumed that upstream of the step the velocity is given 
k z 9 U by the usual logarithmic profile, i.e. — -r— = 1, while downstream 

of x = 0 he distinguished three regions: 

region I : only vertical displacement of streamlines 

region II : transition layer 

region III : velocity and shear stress locally adapted to the 

new roughness. 

The velocity within the IBL (region II and III) consists of three 

parts: 

1/ the original velocity profile for x < 0 

2/ a contribution due to flow acceleration 
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3/ the velocity change due to the vertical displacement of the 

streamlines. 

Using the condition of incompressibility, Townsend showed that 

the change in velocity due to the streamline displacement is 

smaller than the change due to the acceleration of the flow, so 

part 3/ was neglected within the IBL. For a change of roughness 

Townsend assumed self preservation of the shear stress and of the 

acceleration term of the velocity change: 

l/(z) = £°- f(|-) (3.7) 

2 .2 2 . „ .z ,2^, - J* + (u*2 - u ^ ) F(~ T.(Z) = u; + (U;2 - u^) F(j-) (3.8) 
o 

where 1/ is the contribution part 2/. 

I (x) is a length scale denoting the thickness of the 

accelerated region 

u (x) is the scale of the change in mean velocity 

f,F are universal functions, independent of x because of 

the assumed self preservation. 

Substituting these expressions in the equation of motion (2.34) 

gives a relation between f and F: 

- n<|£) = f- (3.9) 
dn dn 

where n = z/lQ 

A second relation between f and F is obtained by using the mixing 

length hypothesis (Eg.(3.2)): 

P = rT1F. (3.10) 
dn 

Solving (3.9) and (3.10) for f and F yields 

F(n) = e"n (3.11) 

-x 
f(n) = - ƒ ̂ -dx = Ei(-n) = - E^n) (3.12) 

Tl 
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To obtain expressions for u (x) and I (x) Townsend used the as

sumption that for small values of z the velocity profile within 

the IBL is adapted to the new roughness length and friction velo

city i.e. 

u*2 z U = -^lnt-S-) (3.13) 
K z02 

This is the so-called inner boundary condition. Together with the 

forms derived for f(n) and F(n), Townsend arrived at expressions 

for u (x) and £ (x). o o 

It was shown by Blom and Wartena (1969) that for small values of 

z the expression for u did not approach the inner boundary con

dition. They were able to remove this inconsistency of Townsend's 

theory, giving a slightly different expression fora (x). Blom 

and Wartena also applied Townsend's theory to two subsequent 

changes in surface roughness. They found expressions analogous to 

those calculated by Townsend. A consequence of multiple roughness 

changes, however, is an increasing number of layers generated by 

every new roughness change, which are all influenced by differ

ent regions of the upstream surface. The number of analytical 

solutions then grows rapidly and soon becomes unattractive. 

Self preservation of wind and shear stress profiles was used by 

Logan and Fichtl (1975) who assumed that the velocity defect and 

shear stress difference functions were self preserving. They de

rived analytical forms for these functions, which agree reason

ably well with the experimental results of Bradley (1968). 

The latest attempt, using arguments of self preservation of pro

files has been made by Mulhearn (1977), who considered the chan

ges in surface fluxes and mean profiles of velocity, temperature 

and concentration of a scalar quantity after a roughness change. 

Mulhearn notices that z is a quantity primarily connected with 

the flow and not with the underlying surface. Only in equilibrium 

flows can a connection be made between z and the surface boun-
o 

ding the flow. Thus near the transition we may not, strictly 
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speaking, use an equilibrium value of z to describe the flow. 

Mulhearn's model is very similar to the one of Townsend: he 

assumed that the velocity within the IBL consists of three parts 

identical to the expressions used by Townsend, hence he also used 

the relations (3.7) and (3.8). Mulhearn showed that self preser

vation is possible if a Q M £ ) a which leads to a relation between 

f and F resembling eq. (3.9): 

a f - n ( f ) = f (3.14) 

A second relation between f and F is derived from a perturbed 

form of the upstream mixing length equation, resulting in eq. 

(3.10). In practice 

, du , d£ ,. ~1 o „-1 o 
o dx o dx 

which implies that |a| << 1, then eq. (3.14) transforms to eq. 

(3.9) and the same solutions eqs. (3.11) and (3.12) are obtained. 

Mulhearn distinguished two regions in his analysis: 

1. the region just downstream of the roughness change, where z 

can not be used to specify the underlying surface 

2. the region where the fetch is large enough to use z . 

Using the argument of self preservation and imposing the 'law of 

the wall' on the velocity profile close to the surface, he was 

able to derive expressions for both the velocity and length 

scales u and SL in these regions. Finally, Mulhearn extended 

his analysis to changes in a scalar quantity (concentration of a 

passive contaminant or temperature) but excluded stability ef

fects. He obtained expressions for g and G which describe the 

change in scalar concentration and scalar flux respectively, and 

are identical to those for f and F. 

3.3.2 Results 

The self preserving profiles for the velocity and shear stress 

viz. eqs. (2.11) and(2.12) are identical in the theories of 
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Townsend, Blom and Wartena and Mulhearn, only Logan and Fichtl 

obtained different forms. 

A comparison of the velocity profiles of Blom and Wartena (1969) 

with the corresponding ones of Elliott (1958) and Panofsky and 

Townsend (1964) is presented in Figure 3.2. It shows that the dif

ferent models give very similar results as far as velocity chang

es are concerned, a fact already noticed by Taylor (1969). This 

means that the horizontal velocity U is not a proper quantity to 

distinguish between the performance of different models or to 

compare theoretical results with experimental data. Because the 

wind profile within the IBL is prescribed or subjected to severe 

restrictions, it is more useful to consider e.g. d(x) for which 

these models were originally devised. Nevertheless some authors 

1 : Revised Townsend profile 

(x = 15500 m) 

2: Elliott profile (x = 413 m) 

3: Panofsky & Townsend profile 

(x = 413 m) 

4 : Revised Townsend profile 

(x = 413 m) 

5: Revised Townsend profile 

(x = 26.9 m) 

6: Original equilibrium pro

file (x < 0) 

Figure 3.2 Velocity profiles after a change in surface 

roughness. (After Blom and Wartena, 1969). 

32 



(e.g. Panofsky and Townsend, 1964; Blackadar et al., 1967) do not 

use this quantity to examine the results of certain models with 

experiments. This is understandable because mean velocity mea

surements are relatively easy to make, while turbulent quantities 

such as shear stress are much harder to measure.As a consequence 

the number of mean velocity measurements after a change in sur

face roughness cited in the literature far exceeds that of all 

other quantities. 

modiîl 

In Figure 3.1 the 

stress from the 

variation predicted 

is a close agreemen 

in the surface shea: 

ger for the SR than 

ence decreases with 

ly for the SR case, 

difference. Both 

firstly, u^2 a; pproache 

:xn 

downstream variation of the surface shear 

of Blom and Wartena is compared with the 

by some integral models. Apparently there 

: between these sets of curves. The difference 

stress values of the various models is lar-

for the RS change. Furthermore this differ-

increasing downstream distance and, especial-

it also decreases with decreasing roughness 

phenomena are a consequence of the fact that 

s u^- when x ->• °°, though only theore-

itely deep boundary layer, and secondly, a 
J02-Z01 n a t u r a H y will cause a smaller distur-

tically for an infii 

smaller difference 

bance of the flow f. 

one of d predicted by Elliott, exponents ranging between 0.71 and 

0.88 for -3 < M < 3 

Leid. The growth rate of I is similar to the 

A puzzling fact remains the independence of I on the downstream 

surface roughness (p _) , which can be detected on inspecting 

Blom and Wartena's eq. (12), which can be written as 

l„ [In (-=?-) - 1 ] = 2k2x. 
° z01 

In Figure 3.3 shear stress profiles within the IBL of several mo

dels are compared. Figure 3. 3b uses the true vertical distance and 

hence it also shows the height of the IBL of the different models. 

If we nondimensionalize the vertical coordinate by means of the 

appropriate IBL height of the model Figure 3.3a is obtained. It 

shows that for the three models in question, the profiles of the 
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Figure 3.3 Shear stress profiles for various models for a 

smooth to rough transition (M = - 3). Elliott, 

•••• Panofsky and Townsend , Blom and Wartena. 

shear stress do not resemble each other, in contrast with the 

close agreement between the velocity profiles and the downstream 

variation of the surface shear stress. 

3.3.3 Discussion 

One of the main shortcomings of the self preservation models is 

the mixing length assumption (also discussed in 3.2.3) which they 

have in common with all other first order closure models. All 

self preservation models neglect the influence of the induced 

pressure field which makes the analysis only applicable to dis

tances relatively far from the step change i.e. d/z _ >> ^r 

(see e.g. Tani (1968) and Antonia and Luxton (1972)). 

The models of Townsend and Blom and Wartena result in a small 

value of the adapted layer height & s 0.1. I giving a height t< 

fetch ratio of 1/300. This is considerably smaller than predic

ted by other theories. 

Finally, another limitation of the self preservation models is 

that the prediction of the surface shear stress and the IBL 
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thickness is only justified for small changes of the rouqhness 

length. This limits their applicability. 

3.4 NUMERICAL MODELS WITH FIRST ORDER CLOSURE 

3.4.1 Description 

Further development in the analysis of the effects occurring af

ter a change in surface characteristics is made primarily with 

the aid of numerical models. After writing the governing equa

tions in a finite difference form and specifying the boundary 

conditions, the spatial distribution of each dependent variable 

can be computed. The set of equations always include the conti

nuity equation and the horizontal momentum equation. To these 

equations one may add one or more terms to incorporate additional 

effects e.g. buoyancy. Several authors include the vertical mo

mentum equation in their model, and hence are able to calculate 

the pressure field generated by the surface discontinuity. Also, 

other equations may be added to analyse more than one change in 

surface conditions simultaneously. 

All models mentioned in this section still use the mixing length 

assumption to close the set of equations, hence they all have the 

same deficiencies connected with this particular assumption. Most 

of them consider flows in neutral stability only. It is not ne

cessary to give a detailed description of each and every first 

order model ever constructed, rather a survey of the most impor

tant characteristics of them is worth mentioning. These details 

are summarized in Table 3.1. 

3.4.2 Results 

To present the results of every first order model would be rather 

exhaustive, so only the most interesting features are briefly 

reviewed here, and comparisons are made with the results of ear

lier models. 

The governing equations of Taylor's first model (1969a) are 
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identical with the ones used by Panofsky and Townsend (1964). It 

is therefore not surprising that the results of his numerical 

model show good agreement with their results. But where P&T 

assumed a linear variation of x*-u*1 with z/d, Taylor found the 

distributions given in Figure 3.4. This result indicates that (i) 

shear stress profiles are a much better quantity for comparing 

different models than the velocity profiles and (ii) these shear 

stress profiles are almost self preserving as assumed by Townsend 

(1965, 1966). On the other hand self preservation of shear stress 

profiles was not found by Wagner (1966), Onishi and Estoque 

(1968) and Huang and Nickerson (1974). The shear stress profiles 

of these last three models closely resemble each other, which 

for the latter two is not surprising since Huang and Nickerson's 

model comprises only a slight extension of Onishi and Estoque's 

model. The upstream effect of the roughness change, as a conse-
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quence of the introduction of a pressure term in the horizontal 

momentum equation, is clearly visible in the results of Onishi 

and Estoque (1968) and Huang and Nickerson (1974). It is absent 

in Wagner's results, although Wagner did detect a slight effect 

in the upstream horizontal velocity distribution. 

The inclusion of a pressure term and, consequently, the vertical 

momentum equation gives an opportunity to study the generated 

pressure field (Figure 3.5). As observed by Onishi and Estoque 
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Figure 3.5 Nondimensional pressure field (deviation from the 

hydrostatic pressure) for a smooth to rough transi

tion with M = -5. (After Huang and Nickerson, 1974a) 

this pressure field "... acts as if it were a smoothing function, 

causing the change in wind speed to occur over a larger horizon

tal distance". At larger downstream distances no net pressure 

effect is noticeable. The effect of the pressure is thus con

fined to a small distance before and after the roughness change. 

Here it also affects the distribution of the vertical velocity, 

shifting the place of maximum velocity and decreasing absolute 

values compared to the vertical velocity field obtained without 

the pressure term extension. 



There is a close agreement in the growth rate of the IBL height 

between the different models, all confirming Elliott's power law. 

However, the absolute value of the IBL height is just a matter of 

definition. Taylor (1969) defined it as the height where T'-U*.. 

has been reduced to 10% of its surface value of u^-u*-, whereas 

Wagner (1966) defines this height by a 0.2% change in horizontal 

velocity. A slight difference in the growth rate between the RS 

and SR changes was noticed by Huang and Nickerson (1974). They 
0 7 found the growth rate for a RS change to be approximately ^x 

0 8 
instead of 'hx . This was attributed to the fact that the ad
justment of the flow to the new z value is faster above a rela-
J o 

tively rough surface than above a smooth surface, a feature also 

noticed by Wagner (1966). 

The effects of stratification were incorporated in the models of 

Huang and Nickerson (1974) and Taylor (1970, 1971). The former 

authors also considered a change in surface temperature coinci

dent with a change in surface roughness. The presence of an un

stable upstream flow, they concluded, only results in small de

viations from the neutral upstream flow case. Unfortunately, the 

effects created by the instability of the upstream flow and those 

created by the change in surface temperature are difficult to 

distinguish. Taylor (1970, 1971), in an extension of his model 

of 1969, also considered the effect of a change in roughness with 

or without either a change in surface heat flux or temperature. 

When only a step change in surface temperature without a change 

in roughness was considered, solutions became unstable for large 

distances downstream. Taylor attributed this to the particular 

form used for the mixing length. In the case of a step change in 

heat flux similar problems arised. The extension of his model to 

include the stable case Taylor (1971) resulted in the peaking of 

the shear stress profiles near the outer edge of the IBL in the 

case of a step in surface heat flux. Taylor's model results indi

cate that roughness change effects are greatest near the leading 

edge, while further downstream thermal stability effects will 

play a dominant role. 

Finally, the effects of a roughness change in a deeper layer 
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than the constant flux layer were examined in the models by 

Taylor (1969b,c) and Wagner (1966). Both considered these changes 

in the Ekman layer at neutral stability. This extension could be 

made by incorporating the Coriolis force effect in the equations 

of motion. At the same time the length scale distribution has to 

be specified in the Ekman layer. 

Taylor was able to show that a roughness change has an effect on 

the wind direction noticeable up to a rather large value of 

x/z02=107. 

3.4.3 Discussion 

The first advantage of numerical models over analytical methods 

is the possibility of deriving the profiles of the velocity and 

the shear stress instead of prescribing them (integral models) or 

making restricting assumptions (self preservation models). Fur

thermore, numerical models do not need an a priori assumption 

about an internal boundary layer required for earlier models. The 

second advantage of numerical models is the relative ease with 

which they can be modified or extended to include various addi

tional terms in the governing equations to account for additional 

effects e.g. pressure, buoyancy etc. 

In general, the disadvantage of numerical models is that in order 

to get computationally stable solutions sometimes additional sim

plifications in the terms of the governing equations have to be 

introduced which may affect the final solutions. The effects of 

these simplifications are difficult to estimate. Moreover, any 

numerical model usually contains a large number of numerical con

stants, the values of which are subject to limitations posed by 

modeling assumptions. These values may range quite arbitrarily 

between those limits. A fundamental objection against the use of 

first order models (numerical as well as analytical) is, again, 

the closure using the mixing length hypothesis (Plate, 1971). 

Peterson (1969) points out that in some models the value of the 
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nondimensional wind shear is put equal to unity (e.g. Onishi and 

Estoque (1968)) while this is in disagreement with experimental 

data and the results of higher order models. This simplification, 

Peterson asserts, results in smooth velocity profiles without a 

point of inflection. Huang and Nickerson (1974b) notice that 

mixing length models do not contain advection and diffusion terms 

of the turbulent kinetic energy. This manifests itself in an 

overestimation of the surface shear stress in case of a SR chan

ge. The most essential difference, they maintain, is the much 

faster increase of the surface shear stress in higher order mo

dels after a RS change. As indicated by their results and those 

of others (Peterson, 1969) a mixing length model reasonably des

cribes the flow structure only when the production of turbulent 

kinetic energy (TKE) equals its dissipation, which is not the 

case in the non-equilibrium part of the flow just downstream of 

the surface roughness change, and in the transition region be

tween the adapted layer and the edge of the IBL. 

3.5 NUMERICAL MODELS WITH A HIGHER ORDER CLOSURE 

3.5.1 Description 

As was pointed out before, closing the horizontal momentum equa

tion by means of correlating the Reynolds stress with the gra

dient of the mean velocity is beset with many theoretical and 

practical objections. To overcome these objections, many other 

ways have been tried to model the Reynolds stress terms. Reviews 

of several methods to obtain the desired closure are presented 

e.g. by Launder and Spalding (1972), Mellor and Herring (1973), 

Harsha (1977), Rodi (1979) and Zeman (1981). For the roughness 

change problem,comparisons between higher order closure models 

and integral and first order closure models were presented by 

Taylor (1973) and Wood (1978). 

The models which use a higher order closure scheme to analyse 

the effects of a change of surface conditions can be devided 

into two groups: 
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(i) Turbulent kinetic energy models (one and a half order 

closure). 

This group contains the models of Bradshaw, Ferriss and Atwell 

(1967), Peterson (1969), Shir (1972)_and Huang and Nickerson 
2 (1974b). The basic assumption is: x^e , hence the Reynolds stress 

depends on the turbulent kinetic energy (TKE): 

2 <*> — 
k = e = u.u. . Hence a transport equation for e must be added. 

This type of model can be extended to include also a transport 

equation for the mixing length (k-e models). Although k-e models 

appear to be very promising for boundary layer analysis, little 

use of them for roughness change modelling has so far been made, 

only one attempt was briefly described by Wood (1978). 

(ii) Second order closure models. 

This group consists mainly of different versions of the model of 

Wyngaard, Coté and Rao (1974): viz. those of Rao et al. (1974a) 

for a change in surface roughness, Rao (1975) the same model but 

extended for diabatic situations, Rao et al. (1974b) for a change 

in surface roughness, temperature and humidity, and Wyngaard and 

Cote (1974) for the evolution of a convective planetary boundary 

layer. In 2nd order modeling an explicit transport equation is 

written for every second moment. For the two-dimensional case 
2 2 2 — 

this requires equations for: uw, u , v , w and e. For diabatic 
conditions those are completed with equations for: 0, we, u6 and 

2 

6 . Finally these can also be extended with equations for: 

Q, wq, uq and q if a change of surface humidity is coincident 

with the roughness change. However, the problem of closure is 

getting more difficult with every equation which is added to the 

list. 
ad (i) Kinetic energy models 

An attempt to model turbulence was undertaken in 196 7 by Bradshaw, 

Ferries and Atwell (1967). Apart from the equations (2.29) and 

2 
(*)Some authors define the TKE to be equal to J e . 
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(2.34) with the momentum equation modified with the boundary 

layer approximation to account for the pressure gradient force, 

an equation is added which accounts for the transport of TKE: 

~~2 ~2 
P (U-r—- + W r — ) - T ^— + T - ( p w + i p e w ) + p e = o ( 3 . 1 5 ) 

d X d Z d Z d Z 

where é = u.u. is the TKE 

_ 2 

e = v (3U./3JC.) is the viscous dissipation rate. 

Closure of this equation is obtained by defining: 

a1 = T/P e2 (3.16a) 

L = SlM (3.16b) 
e 

— -o- f i „ ,pw , , 2 . ,. max. T ,, ,, , 
G = (Ĵ - + i e w)/(— ) .- (3.16c) 

where x = T(z = Jd) max 

Bradshaw et al. used a.. = 0.15 and assumed that L and G are 

functions of z/d and depend on the shear stress profile. With 

the asumptions (3.16) Equation (3.15) is transformed into a 

transport equation for the Reynolds stress uw. After defining 

suitable boundary conditions,Bradshaw et al. (1967) were able 

to show that their model proved to be satisfactory in correlating 

model predictions with experimental results. However, the authors 

did not apply their model to the roughness change problem. This 

extension of their model was made by Schol s (1979) and Douwes 

(1980). 

Peterson (1969) and Shir (1972) also used an equation similar to 

Eq. (3.15) to close their set of equations, the latter making 

use of a vorticity equation instead of the usual horizontal mo

mentum equation. A slight modification to these Bradshaw-type 

models was introduced by Huang and Nickerson (1974b). Referring 
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to the experiments performed by Yeh and Nickerson (1970) the 
2 

relationship between x and e was transformed into: 

T = -ïïw = (I2)* iy || (3.17) 

The diffusion term and the dissipation term were approximated 

by respectively: 

^ + ^ = - K m l b < ^ > ' (3'18a) 

where Km = (e2)*-^ 

2 3/2 
and e = (|-) -f- (3.18b) 

e 

After deriving equations for the length scales I. and I , the 

TKE equation, the continuity equation and the two momentum equa

tions (including the pressure term) form a closed set. 

A discussion on the relative importance of the terms in the TKE 

equation and the momentum equation was given by Peterson (1972). 

He applied his analysis to a more extended TKE equation than the 

one used in his model of 1969. In his analysis he used the same 

approximations for the diffusion and dissipation terms as in his 

earlier model. With the given set of equations 7 different mo

dels are constructed depending on the inclusion or rejection of 

one or more terms of interest in the model and comparisons are 

made between the predictive qualities of each model. 

ad (ii) Second order closure models 

As is discussed e.g. by Zeman (1981) many attempts have been made 

in turbulence modeling by means of 2nd order closure techniques. 

But the application of these techniques to the roughness change 

problem is restricted to a small number of cases. 

The only models described so far,with explicit equations for the 

second moments are the ones developed by Rao, Wyngaard and Coté 

They were summarized at the beginning of this section. The horizon

tal momentum equation (2.30) was used without the pressure term. 
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The equation for the Reynolds stress tensor u.u. is derived from 

the Navier-Stokes equation resulting in: 

3U. 3U, 
u j i s r u i uk + ujuk WT + ujui w: = - 3 3 r ( u i u k u j ) + 

(u, |£- + u. |£-) - 2e -4^ (3.19) 
k 3x . l 3x, 3 

l k 

where 7 is the viscous dissipation rate of TKE, and the summation 

convention applies. The third order terms on the right hand side 

of Eq. (3.19) have to be modeled. To achieve this, use has been 

made of the closure techniques devised by Lumley and Khajeh-

Nouri (1974). This procedure is described by Wyngaard, Coté and 
2 2 2 — 

Rao (1974). The resulting equations for uw, u , v and w (uv = 
vw = 0) together with the modified Eq. (2.30), the continuity 
equation (2.29) and an equation for e: 

_2 

üj Ü T ^ ' V * " " 4 2̂ + 4 a I = (3-20) 

3 3 e e2 

where a = 0.5 and P is the production rate of TKE, form the basic 

set of equations. After modeling the third order terms in Eqs. 

(3.19) and (3.20) the problem is solved numerically. In Chapter 

4 we will give a more detailed description of the extended form of 

this model, which also contains temperature and humidity variables. 

3.5.2 Results 

It is interesting to know how much is gained by extending the 

numerical models with higher moment equations. Therefore we will 

concentrate our attention in this section on the differences 

in the results of 1st and higher order models. 

The velocity profile downstream of x = 0, which in 1st order 

theories was a monotonie function of ln(z) demonstrates 

a different behaviour in the higher order models. Peterson (1969) 

was the first to notice that velocity profiles within the IBL, as 
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predicted by a higher order model, contain a point of inflection 

both for the RS and SR changes i.e. a local minimum, respectively 

maximum of the velocity gradient. This observation was confirmed 

by the results of Shir's model (1972) as well as those of Huang 

and Nickerson (1974b) and Rao et al. (1974a). If the nondimen-

sional wind shear is defined by: 

m 
kz 
u *2 

_3U 
3z 

(3.21) 

then it follows from Eqs. (3.1)-(3.4) and 

T = PU, (3.22) 

that $ was taken equal to unity in all models which use the 

mixing length assumption. Figure 3.6 shows the variation of $ 

(< 1 ) , 
m 

1 in higher order models. It is clearly visible that 

for RS (SR) changes,over a major part of the IBL. For large 

0 0.4 0.8 1.2 1.6 2.0 
—k-nondimensional wind shear <p. 0 4 z HM 

u. <5z 

Figure 3.6 Comparative magnitudes of deviations of the nondimen-

sional wind shear from unity for various roughness 

changes. 

02 
For M < 0, x/z 

= + 1, 

= + 2, 

= + 3, 

(After Peterson, 1969) 

= 10' 

= 10' 

= io< 

= 10" 
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distances downstream the curves of * tend to unity, indicating 

that mixing length models will give more satisfactory results 

there. 

The shear stress profiles predicted by Peterson, Shir and Rao 

et al. do not agree with each other. Both Peterson and Shir found 

that, especially for the SR change, the shear stress profiles are 

not self preserving. For the RS change their profiles are only 

approximately self preserving. The model of Rao et al. on the 

other hand produced shear stress profiles that possess self pre

serving properties to a high degree, again especially for the RS 

change and to a slightly lesser extend for the SR change (see 

Figure 3.7). These last results agree very well with those of 

Taylor's numerical model (see 3.4.2). 
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Figure 3.7 Nondimensional shear stress profiles for a smooth 

to rough transition (left) and for a rough to smooth 

transition (right). (After Rao, Wyngaard and Coté, 

1974a). 

The gain in accuracy of the prediction of the surface shear 

stress variation as compared with 1st order and older models is 

practically zero. A slightly faster response to the new surface 

was detected by Huang and Nickerson (1974b), while Shir found a 
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peculiar behaviour in the SR change. Seemingly in agreement with 

the data of Bradley (1968) two oscillations occur close to x = 0 

before the surface shear stress levels off to its asymptotic 

value. This pattern was not discernible in the RS case nor in 

any other model. 

The prediction of the value of the height of the IBL is ambiguous

ly because of the different definitions of d(x). Shir and Peter

son introduce two IBL heights d and d , defined with regard to 

the shear stress and velocity profiles respectively. All authors 
0 8 

find, again, the same growth rate: d(x)i/X " , only Shir detects 

a small difference between the RS and SR changes. The influence 

of stratification on the growth rate was investigated by Rao 

(1975). He found that the growth rate exponent depends on the 

Obukhov length L but is approximately independent of M. He 

found that for neutral stability d^x " (both for RS and SR 

changes) while for unstable conditions exponents ranged from 0.9 

(near neutral) to 1.4 (strongly unstable). 

Finally, Rao et al. questioned the assumption of proportionality 

between shear stress and TKE as used by Bradshaw et al. (1967) 

and in other models in the nonequilibrium part of the flow. Ac

cording to Rao's model results,the value of a1 in Eq. (3.16a) 

varies considerably in this region. It approaches its equilibrium 

value only near the edge of the IBL. This is supported by the 

experimental results of Antonia and Luxton (1971). 

3.5.3 Discussion 

The need for second order models arose when "K-theory" or first 

order models appeared to fail in situations which are rapidly 

changing in space or time. The philosophy behind the application 

of second order models is: "if a crude assumption for second mo

ments predicts first moments adequately, perhaps a crude assump

tion for third moments will predict second moments adequately". 

One implicitly assumes that in the latter case also the predic

tion of the first moments will be improved. 
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Hence second order models should provide a better tool for des

cribing the effects after a change in surface conditions, in 

theory at least. In practice the results of second order models 

are only slightly better than the ones achieved by first order 

models as far as first moments are concerned. This is not sur

prising since there was hardly any room for improvement of the 

first moments anyway. The gain of second order models is largely 

confined to the description of the second moments, which are only 

crudely approximated by first order models or not at all. Unfor

tunately, measuring these second moments especially in the atmos

phere, is at least very difficult (Reynolds stress components, 

turbulent fluxes) or even almost impossible (pressure strain 

correlations), so comparisons between theory and experiment are 

difficult to make. Also, it is important to notice that the 

reliability of a second order model depends on the modeling of 

the third moments as well as on the specification of the boundary 

conditions. Since the physical basis for this is weak, it is 

sometimes called an art (Wyngaard, 1982). This art of devising 

correct models for the higher order moments is still evolving 

rapidly, but a general basis to do so has already been construc

ted. Rotta (1951) and Lumley and his co-workers (Lumley, 1979), 

have developed the general lines for the modeling of the higher 

order terms, but no general agreement has yet been established. 

This is one of the disadvantages of the use of a second order 

model. Another one is the large number of modeling assumptions 

needed to close the system of equations. This unavoidably will 

bring along a great number of numerical constants the values of 

which are difficult to determine. 

Second order models also have important advantages. First of all, 

they do not require the use of the mixing length assumption, 

which is the weak point of simpler models (Peterson, 1972; 

Huang and Nickerson, 19 74b). 

Finally , with higher order modelinq one can easily incorpo

rate advection and diffusion of TKE into the model as well as ma

ny other effects which can not be considered in first order models. 
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4 Examination of model performance 

In this Chapter we will subject the model employed in this study 

to a close examination. 

A physical model of nature helps us to understand the phenomena 

we are studying. It equips us with a framework of concepts and 

equations which will have to account for all the characteristics 

of the subject observed so far. With a model we should be able to 

interpret the information which experiments have given us, because 

it provides us with the interrelationships between the various 

properties of the observed phenomena. 

Naturally, for our own sake, we try to keep a model as simple as 

possible, elegance lying in a simple model explaining a myriad 

of properties and even predicting phenomena heretofore not ob

served or even guessed at. However, as science progresses and 

observations are refined and extended, new matters may be brought 

to light which do not fit into the existing framework. We then 

either have to abandon the model altogether, devising a new one, 

or we have to alter and improve the existing one to incorporate 

the new facts. 

An example of the latter course of science is the gradual sophis

tication of turbulence models presented in Chapter 3. But even 

the second order models mentioned there do possess a fair amount 

of simplifications and do neglect minor effects, just to keep 

things manageable. Some fundamental simplifications were already 

encountered in the derivation of Eqs. (2.26)-(2.28). The assump

tions mentioned in that Chapter are commonly accepted and need no 

bother us here. We will concentrate therefore to the specific 

simplifications incorporated in the present model, some of which 

were discussed already in Chapter 3. 

In section 4.1 a brief outline of the model is presented. By ta

king notice of the simplifications made beforehand one should be 
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able to appreciate the limitations inherent in the present model. 

In sections 4.2 and 4.3 the model's functioning will be analysed 

in homogeneous and inhomogeneous situations respectively. 

4.1 DESCRIPTION OF THE MODEL 

4.1.1 General 

As we mentioned in Chapter 3 the model of Wyngaard, Coté and 

Rao (1974) was first used in 1974 (Rao et al., 1974a) to describe 

the structure of the IBL after a sudden change in surface rough

ness without any simultaneous change in surface temperature, heat 

flux etc. In the same year (Rao et al., 1974b) the extension in 

order to include these simultaneous changes was made. Model results 

compared favourably with the measurements of Rider et al. (1963). 

With a further extension (Wyngaard and Coté, 19 74) comprising the 

whole of the ABL, results were obtained which agreed very well 

with the ones given by the 3-dimensional model of Deardorff 

(Deardorff, 1972). A detailed description of the model of Rao, 

Wyngaard and Coté was given by Wyngaard et al. (1974), who dis

cussed the techniques used to close the equations for the second 

moments (Lumley and Khajeh-Nouri, 19 74) as well as the boundary 

conditions and the numerical techniques. A brief summary of this 

model is presented in section 4.1.2. 

In order to apply a model to a particular situation one usually has 

to modify certain parts of it. It is of course possible to change 

the closure assumptions using recently introduced ideas, but this 

is beyond the scope of the present study. Furthermore, as 

there is still no general agreement on the modeling of all the 

third order and pressure-strain terms, the modeling expressions 

of the original model were not fundamentally changed. 

The only changes were some buoyancy corrections as well as some 

boundary conditions and the constants of the model which are de

termined by these boundary values. 
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4.1.2 Model equations 

Equations (2.29) and (2.34)- (2.36) are the equations of the 

steady state 2-dimensional mean field in the IBL. As '7as noticed 

in Chapter 2 they do not comprise a closed set of equations. In 

the second order modeling employed in the model of Wyngaard, 

Coté and Rao equations must be generated for the second moments: 

uw, we and wq. The procedure to obtain these equations has been 

presented many times (e.g. Monin and Yaglom,1971 ; Tennekes and 

Lumley,1972) and hence an abridged version of this derivation 

will be presented here. We refer to the above mentioned litera

ture for details. 

Equations (2.25)- (2.28) for the mean field variables U., 9 and Q 

were obtained after subjecting the respective equations for the 

corresponding, instantaneous variables u., § and q (2.12), (2.17), 

(2.22) and (2.23) to the Reynolds' decomposition and averaging. 

Now if (2.25)-(2.28) are subtracted from (2.12), (2.17), (2.22) 

and (2.23) the equations for the turbulent field variables u ^ 

e and q are obtained. We will not present these equations in this 

text for brevity, but they are derived and presented in Appendix 1 

The equation for the Reynolds' stress tensor ^u^. can be generated 

by multiplying the equation for u. with u, ,adding the equation 

for u, multiplied with u.,and averaging the result. This proce

dure is outlined in Appendix 1. The resulting equation for steady 

state conditions reads 

uj i in uiuk + ujuk IT: + ujui w: = ~ ̂ r ^ jV + 

I II II IV 

— (u. -IE- + u. -IE-) + i-(g. u, e + g, u . e ) - - | e ó . + p k 3x . l 3x, T ^l k v ^k l v 3 xk r l k r 
V III VI 

2flj(£ijl Y k + ekjl V V - ( 4 - 1 ) 

This equation can also be obtained by first generating the equa

tion for the instantaneous Reynolds' stress u.u, , subtracting 
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from it the equation for U.U. , and subsequently averaging the 

result (see Monin and Yaglom, 1971). 

The equation for u.8 can be derived by first multiplying the 

equation for 9 with u., then multiplying the equation for u. 

with 9, adding the two equations and averaging. Assuming station-

arity again we obtain (see Appendix 1) 

au. 
u. _i_ E7e + u~7u~ |6_ + ïïTë -r-i = - ̂ L(u.u.e) - — e|E- + 

: 3x . l l 3 3x . 3 3x . 3x. l ] Pr 3x . 

I II II IV V 

ee 
g. —=r- t -28.E... u.8 . (4.2) 
3 i Tr 3 13k k 

III 

An analogous procedure using the equation for q instead of 6 

yields the equation for u.q 
3 3Q 3 Ui 3 , . 1 3p ^ U. u.a + u.U. + u.q -r = - (u.u.q) - — q„r + u3 3Xj iy u i u : 3X j : q 3X j 3Xj* 1 :4' Pr

 43x± 

I II II IV V 

q9 
g. -=^ + -2«.e... u.q . (4.3) 
yi T 3 13k kM 

III 

Equations (4.2) and (4.3) contain the second moments 99 and q9 . 

Realizing that e = (1 + 0.608q)e in accordance with Eq. (2.18) 

we see that we need three additional equations viz. those for 
2 2 

the second moments 6 , q and qe (see Table 4.1). They can be 

derived from the equations for q and 8 (A1.12) and (A1.14) with 

the same method as employed before (see Appendix 1). 

uj^T e' + 2 V H - = --SF7(V2) - 2ee ' (4-4) 

3 J 3 3 J 

I II IV VI 

3 2 „ 30 3 . 2 . _- (4.5) 
uj w: « + 2 u j q w: = - ^ ( u j q » - 2 eq ' 

I II IV VI 
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se ^ TT-? 3Q u j ^ r : ^6 + u
j
<3 T T : + V ^~ = ~ "sir^6» - £

q9
 ( 4-6 ) 

I I I I I IV VI 

As was mentioned in the previous chapter new unknowns appear in 

Egs. (4.1)-(4.6) which prevent us from obtaining a closed system 

of equations. We will have to order all the terms of (4.1)—(4.6) 

systematically and devise modeling assumptions for those terms 

which contain unknown dependent variables. Inspection of (4.1)-

(4.6) shows that several corresponding terms can be distinguish

ed. They will be briefly discussed. 

Advection terms 

All terms in (4.1)-(4.6) denoted by I read 

where M is u.u, , u.6, u.q, 6 , q and q6 respectively. These 

terms represent the divergence of the transport U.M and thus the 

net increase or decrease of the quantity M per unit volume and 

unit time in stationary conditions for a fluid particle follow

ing the flow. In that case the substantial derivative reads 

dM = _3M 3M _ 3M 
dt 8t Uj 3x . j 3x. ' 

3 3 

because 3M/3t = 0 . 

Shear production terms 

In a manner analogous to the one we used to obtain (4.1)-(4.6) 

for u.u. , u.e etc. equations for u.u, , U.6 etc. can be derived 
l k ' l ^ l k ' l 

No derivation is given here, only the resulting equation for 

U.U, will be presented (see Monin and Yaglom, 1965) 
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ü. ̂ -U.U, + -T-̂ —[u, u.U. + U. u,u ] ïx. i k 3x . I k x 3 i k ; 
• 30± 3Uk 

u . u, + U.U. - — 
1 k 3x . i ï 3x. 

D D"1 

n il_ + u. IL. 
k 3x. 1 3x, 

1 k vr 
9i U k + 9kUi 2ü . 

3 
e . .VU,U, + ijk l k 

+ e, .,U, U. kjl 1 ï 
82 3U± 3U 

+ V^F7^T uiuk - ^ ä T ^ 
: 3 3 3 

(4.8) 

If the equations for u.U. and U.U. are compared we observe that 
1 X 1 K 

the terms 

U.U.3U./3X. + u . u . 3 U , / 3 x . : k i' j j l k' 3 

appear in both equations but with opposite signs. This leads to 

the conclusion that these terms describe the exchange of 

ù.u, between the mean and fluctuating motion. In a turbulent sur

face layer these terms usually represent a gain for the turbulent 

motion and consequently a loss for the mean motion. Hence they 

are called the shear production terms. For the remaining terms 

labelled II in the other equations,similar conclusions can be 

drawn. 

Buoyant production terms 

When the atmosphere is neutrally stratified the term in the 

u.-equation (A2.7) containing g. is equal to zero and hence the 

terms in (4.1)-(4.3) labelled III are equal to zero. When 

stratification is present however, these terms represent the 

production or destruction (depending on the sign of the stabili

ty) of a second moment. 

Turbulent transport terms 

Following e.g. Tennekes and Lumley (1972) we notice that the 

terms labelled IV in (4.1)-(4.6) all have the form 3Mu./3x., 

where M again is u.u, , u.6, u.q etc. Gauss' integral theorem 

states that 
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-^(MUjldV = (MMUj) . dS , 

where Mu. is a vector field. This implies that the turbulent 

transport terms disappear when they are integrated over a volume 

on which surface the third order moments Mu. are zero. Apparently 

these terms merely tend to redistribute the quantity M from one 

point inside the flow to another. 

Modeling these terms with the technique of Lumley and Khajeh-

Nouri (1974) would greatly complicate the present model, for 

Lumley's expressions relate several third order moments to each 

other. Hence we would be forced to calculate the third order 

terms, using a simple expression containing only second and lower 

order moments,and subsequently calculate all third order terms 

iteratively. To avoid an excessive growth of computer time only 

the original simple "ad hoc gradient diffusion" model as 

Wyngaard (1975) calls it was used i.e. 

Mu. = -a 3M/3x. u.u. T , (4.9) 
1 XL J 1 J 

where a is a constant and T = u.u./e is a turbulent relaxation 

time. For M = u.u, Eq. (4.9) is replaced by a more complex 

expression given in Appendix 3. 

Pressure terms 

Term V in (4.1) can be transformed as follows 

3u, 3u. 3p 3p 3 — 3 — , k i. .. -„. 

\ 3 Î T t u i â r = î E p \ + 3 r p u i - ( p 3 E + p a r 1 • ( 4 - 1 0 ) 

Its contribution to the turbulent kinetic energy budget can be 

obtained by letting i = k and summarizing. This yields 

3 — 3ui pressure term = 2 pu. - 2 p . 
oX . 1 dX . 

1 X 

The second term on the right hand side of the last relation 
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equals zero by virtue of (A1.3). The first term, like the turbu

lent transport terms, is the divergence of a vector field and 

hence only redistributes the turbulent kinetic energy. No kinetic 

energy can be generated or destroyed by this pressure terms and 

its contribution to the turbulent kinetic energy equation is not 

important. 
2 

Next however we turn to the separate components u. of the turbu
lent kinetic energy. Analysis of homogeneous two-dimensional 
flows shows that in that case the pressure terms tend to force 

2 
the u. - distributions towards isotropy and hence it plays an 

1 2 
important role in the u. - equations. Moreover it can be shown 
that the pressure terms destroy the off-diagonal components of 
the u.u. tensor (Hinze, 1959). We also have to consider the pres

sure terms in (4.2) and (4.3). Following Wyngaard (1982) (4.2) 

reduces to approximately 

in a horizontally homogeneous, near neutral surface layer in 

quasi steady state conditions. It shows that the pressure term 

must destroy the temperature flux at the same rate as it is pro

duced by the temperature gradient. A similar behaviour of the 

pressure term in (4.3) can be expected. 

The state of modeling the pressure terms in (4.1)-(4.3) is con

verging somewhat to generally accepted expressions, but no gene

ral agreement exists as yet. By the time the present model was 

developed no buoyancy and mean strain effects were incorpo

rated in the pressure term model. Realization that these effects 

are necessary, especially in moderate to strong diabatic bounda

ry layers ,soon emerged (Wyngaard and Cote, 1974; Wyngaard, 1975). 

The expressions used by Wyngaard (1975) are presented in 

Appendix 3 along with their forms used in the present model. 

Dissipation terms 

The dissipation terms labeled VI indicate the molecular smoothing 

of the structure of the turbulent correlations. Even in high-Re-
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number flow, we expect viscous dissipation to be the major loss 

term for turbulent kinetic energy. When the Reynolds number is 

large one may assume that these terms are independent of the mean 

flow geometry. In Appendix 1 it was demonstrated that the 
2 2 2 2 2 dissipation terms only affect the variances u , v , w , q and 8 

and also the covariance qe. The off-diagonal elements of the 

Reynolds stress tensor u.u, as well as the turbulent fluxes u.e 

and u.q are not affected at all. The dissipation terms play an 

important role in equations (4.1) and (4.4)-(4.6). 

In the atmospheric turbulent flow, the Re-number is always high 

enough to justify that the breakup rate of the large eddies 

should be independent of v. Hence it appears dimensionally cor

rect to have 

u . u. 
- _ i kf 
e " c- T ôik , (4.12) 

where the dissipation term is modeled as an isotropic term, be

cause the viscous dissipation process is an isotropic process. 

The corresponding models for the destruction terms e , z and 
7 q e a r e 

e 9 = b |-, e:q = b 3_, £ g = b 3 - , (4.13a,b,c) 

where b = 1.9. 

In the present model e is not approximated by (4.12) but it is 

calculated from a dynamic equation obtained by modeling its 

governing equation. We will omit the derivation of this equation 

(Lumley and Khajeh-Nouri, 1974) and simply present their equation 

üj ü- - - lix-'V' - 4 = ( I - a p ) ' ( 4-1 4 ) 

J J 1 J U.U. 

where P is the production rate of turbulent kinetic energy. 

The turbulent transport term in (4.14) is modeled by the approxi-
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mation given in equation (4.9). 

Summarizing, we can say that the present model consists of four 

mean flow equations (2.29) and (2.34)-(2.36), the equations for 

the second moments (4.1)-(4.6) and one equation for the dissipa

tion rate e viz. (4.14), with all the modeling assumptions men

tioned throughout the text. In all we have 16 coupled parabolic 

partial differential equations for the 16 dependent variables 
2 2 2 — — — 

(see also Table 4.1): U, W, 0, Q, u , v , w , uw, we, u6, wq, uq, 
2 2 — 

9 , q , q6 and e. These equations are numerically integrated 

using a Dufort-Frankel explicit finite-difference scheme (Dufort 

and Frankel, 1953), with forward marching in the x-direction. 

The model is divided in two parts. In part I the initial distri

bution of all variables in the surface layer upstream of the dis

continuity is calculated, using predetermined values of u^-, TA-, 

q#1, zQ1, 0Q 1, Q0 1 and z-£ (height of the ABL). 

In part II the final distributions of all variables as calculated 

in Part I are used as the initial values for the calculation of 

these distributions downstream of the discontinuity. In part II 

the surface value of every variable is a function of the down

stream distance (x) and the only restriction at the surface is 

imposed by the energy and water balance (see Appendix 3). Con

trary to this the surface value of every variable in Part I re

mains fixed. 

4.1.3 Drawbacks 

Because the present model contains a great number of equations 

which describe many variables in detail, it necessarily must con

tain a large number of modeling constants which are needed to 

produce 'the desired characteristics of turbulence is the ASL. 

The larger the number of constants in a given model the larger 

the amount of empirical input needed to determine the values 

of these "constants". This poses a limitation on the general 

applicability of the model i.e. the values of the constants 
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have to be tuned to any change in characteristics which the user 

of the model deems neccessary. Recently (Bradley, Antonia and 

Chambers, 1982) doubts arised for instance on the model constant 

involved in the approximation of the pressure term in the modeled 

u.e equation. Bradley et al. (1982) showed that the value of this 

constant depends on the stability parameter z/L. 

There are other simplifications in the present model which are 

not mentioned by the designers, but which are important. The 

first simplification incorporated in the model is that for a 

SR change the lowest level of the numerical grid is placed at 

the largest zQ-height. This means that the airflow below this 

level for x < 0 does not influence the calculations for x > 0. 

Consequently it implies that the momentum, energy and humidity 

contents between z. and zQ 2 are neglected for the downstream 

region. As the original model was applied to a SR change from 
-5 -3 

zQ1 =2-10 m to zQ 2 = 1.4-10 m, this approximation could 

easily be made, but it certainly limits the applicability of the 

model for roughness changes when zn2-zni is larger. 

The second simplification is the omission of the pressure gra

dient term in the equation of motion (2.34). This omission re

sults in an important numerical simplification for it turns an 

elliptical partial differential equation into a much easier to 

handle parabolic one. This was pointed out by Rao et al. (1974a) 

who based their decision to neglect the pressure field on results 

obtained by Onishi and Estoque (1968). They demonstrated that the 

omission of the pressure gradient term has no significant conse

quences for great downstream distances. Only in the immediate 
x 3 vicinity of the roughness change (— < 10 ) will it have any 

effect. For greater distances downstream no pressure effect is 

noticeable. 

The lower boundary condition after the step change assumes the 

independence of both the surface relative humidity RQ2 and the 

difference R -G (Eqs. (A3.27) and (A3.25) of downstream dis-
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tance. Rao et al. (1974a) commented on the latter assumption 

argueing that this simplification is only a crude approximation 

which in practice seems to be quite reasonable. They did not com

ment on the former assumption of the constant value of R~2 how -

ever. This parameter is, together with z02' t*le only externally 

imposed quantity which does not change after the step in surface 

conditions. The assumption of a constant value of Rn- can lead 

to a non-physical behaviour of the solution when a change occurs 

from a cold and humid surface to a warm and dry one, as will be 

shown in section 4.3.2. For the reverse change this problem does 

not arise (see also Appendix 4). 

Also, it should be mentioned that in order to define the mean 

horizontal wind speed throughout the entire flow it is necessary 

to impose the logarithmic wind profile condition down to z = z-, 

which is very doubtful to say the least. On the other hand, it is 

possible that this approximation will only give a minor deviation 

limited to the lowest layers near z = zn. 

With regard to the various modeling assumptions employed in the 

present model, we must realize that there is much that still has 

to be learned about the distribution and dynamics of the third 

moment-and pressure-strain terms. Until more insight is gained 

in this matter we must accept the sometimes drastic simplifica

tions and crude assumptions which need to be made in order to 

arrive at manageable expressions. However, the closure approxi

mation of the third moment (4.9) remains unsatisfactory. 

Wyngaard et al. (1974) use "a rather simpler, ad hoc gradient 

diffusion model", although Wyngaard (1975, 1982) does not fail 

to notice that in the unstable surface layer this approximation 

probably will fail. Even in Wyngaard's study of the convective 

PBL (Wyngaard and Coté, 19 74) and in a similar study of the sta

ble PBL (Wyngaard, 19 75) he stresses this obvious deficiency of 

the modeling approximation, but no attempt has been made to 

overcome this imperfection. 

Finally, the arguments that are used by Rao et al. to compute 
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the step in surface heat flux at x = 0 remain rather vague. The 

authors refer to a comment made by Sibbons (Rider et al., 1965) 

in which he proposes a method to calculate the surface heat flux 

just after x = 0. It is unfortunate that Sibbons also does not 

clearly point out how he calculated this value. However, calcu

lations made in the present study revealed that the value of the 

surface heat flux at x = 0 only determines a parameter which is 

used to nondimensionalize every variable. 

4.2 HOMOGENEOUS SITUATIONS 

Before applying the present model to inhomogeneous situations 

its capability to handle homogeneous situations should be 

tested. This means that results should be compared with experi

mental data and existing views on the structure of the atmosphe

ric surface layer above homogeneous terrain. Only if the model is 

able to handle such a less complex situation reasonably well, it 

will be possible to have any faith in its performance in inhomo

geneous situations. 

In this section the performance of the model in homogeneous 

situations will be analysed in two ways. First the equilibrium 

distribution of the variables calculated in Part I of the model 

will be checked with experimental data. Second the contribution 

of every term in the equations for the second moments will be 

calculated and compared with experimentally determined budgets 

of the second moment equations. 

4.2.1 Equilibrium distributions 

Numerous experiments have been conducted in the past to establish 

the distribution of first and second moments in the atmospheric 

surface layer above homogeneous terrain. In Chapter 1 we mention

ed the best efforts known today. These experiments provided the 

data which were needed to determine many of the constants in the 

formulae describing the equilibrium distributions in the Monin-
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Obukhov similarity framework (Businger et al., 1971; Yaglom, 

1977; Viswanadham, 1982). 

Through the years, experimental methods and instrumentation 

improved, and a gradual convergence to the range of values of 

the empirical constants accepted today has taken place. These 

values and formulae were used to define the lower and upper 

boundary conditions in the present model (see Appendix 3). When 

the values of all variables at the upper and lower boundaries 

are fixed, it is expected that the calculated equilibrium pro

files must agree with empirical curves. However, deviations from 

the empirical curves between the fixed boundary values might 

still occur. To avoid an exhaustive discussion of the equilibrium 

distribution of all the dependent variables in the present model, 

a restriction is made to those quantities which are commonly 

used to measure flux densities. 

In part I of the model the vertical turbulent flux densities of 

momentum, heat and water vapour are calculated. According to 

equation (A3.24) their dimensionless value at the surface equals 

-1, while the value at the upper boundary (A3.28) agrees with 

their linear decrease with height to zero at z (i.e. the height 

of the ABL). As is evident from Figure 4.1 the distributions of 

the three dimensionless flux densities are identical and indeed 

vary linearly with height to a very good degree. 

Figure 4.2 presents the variation of the dimensionless gradient 

k z 30 
of the horizontal wind speed ( — ) and the temperature U*1 °z 

k z 3 0 
(=— -r—) with height. The dimensionless gradient of the absolute 

l*1 dz 

kz humidity is omitted since it coincides with — — 90/3z. This can 
T*1 

be inferred from (A3.17) and (A3.19) and the equality of the 
89 /T*i an<^ 1® /c3*iT*i distributions. Figure 4.2 shows that in a 

moderately unstable atmosphere the curve of the dimensionless 

temperature gradient coincides with the empirical i -curve to a 

very good degree. The dimensionless gradient of the horizontal 
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Figure 4.1 Vertical equilibrium distribution of the 

nondimensional turbulent fluxes of momentum, 

sensible and latent heat. 

wind speed, however, deviates from the expected <|> -curve, espe

cially for large heights hence for large values of |z/L|. This 

deviation points to two possible causes. Firstly, it indicates 

that at least one of the modeling assumptions lacks a correction 

for buoyancy effects. Indeed, if we look at the modeling expres

sions used by Wyngaard and Coté (1974) and by Wyngaard (1975), 

for an unstable and stable atmosphere respectively, we see that 

they also had to add buoyancy and mean strain corrections in 

order to arrive at physically realistic results. Though their 

studies concentrated on the whole of the PBL, instead of only 

the atmospheric surface layer, a fair amount of their grid levels 

were situated in the latter layer because their vertical grid 

spacings increased logarithmically with height. Efforts in the 

present study to add similar corrections to the modeling expres

sions employed in the present model have not yet produced 
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entirely satisfactory results. 

The second possible cause is the definition of the upper boundary 

conditions. The model constants that appear as a factor in front 

of the dissipation and destruction terms have been determined 

by invoking the equality of both sides of the equations at the 

lower boundary. At the upper boundary, however, the equality of 

both sides of the equations need no longer be present, for the 

buoyancy terms are also important there. This inequality might 

force the gradient 3U/3z from its expected <|> (z/L) distribution. 

4.2.2 Assessment of budgets 

To transform the set of equations (2.34)-(2.36) and (4.1)-(4.6) 

and (4.14) to the homogeneous case, it will simply suffice to put 

3/3x = 0, and by virtue of the equation of continuity (2.29) also 

W = 0. As a result the equations (2.34)-(2.36) read 

3ÏÏW/8Z = 0, 3wë/3z = 0 and 3wq/3z = 0 . (4.15) 

This indicates the existence of a constant flux layer. Applying 

these conditions to Eqs. (4.1)-(4.6) and (4.14), or rather to the 

same equations after modeling, the equations for the second moments 

and for E in the homogeneous case are obtained. These equations 

are summarized in Appendix 3. Using the equilibrium profiles 

evaluated in the initialization program (Part I) we calculated 

the contribution of each term to the equation in which it is in

corporated, thus enabling us to analyse the budgets of Eqs. 

(4.1)-(4.6) and (4.14) in homogeneous situations. 

On inspecting (4.1)-(4.6) and (4.14) it appears that production, 

pressure- gradient interaction, dissipation and/or molecular des

truction terms are largest near the surface where all gradients 

are steepest and turbulent interaction is strongest. Going up

wards into the atmosphere, most terms quickly diminish in magni

tude as gradients are decreasing rapidly. This makes it difficult 
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to analyse them forthwith. When drawn on a linear height scale, 

it is next to impossible to gain any further information from the 

rapidly decreasing values of almost every term. To reveal the 

details of the budget also at higher levels, we multiply every 

term of a given equation with a properly chosen height dependent 

scale. We will adopt the approach of e.g. Wyngaard and Coté 

(1970), Wyngaard et al. (1971, 19 78) and Bradley et al. (1981) 

who used kz divided by the proper combination of u t , T* and q*. 

Experimental determination of the budget of second moment equa

tions is restricted to those of uw, we, u0 and e = 
2 2 2 u + v + w . This means that we can only examine the budgets of 

the corresponding equations from Eqs. (A2.19)-(A2.30). We will 

restrict ourselves to respectively: 6 ,ue 
2 ,, — î and uw. 

T'zmpzn.ixtu.Kz va.iA.ancz budgzt 
2 

Nondimensionalizing Eq. (A3.21) by multiplication with kz/u^T^ 

produces 

~2 ,._ 72 , kz 3 , 2 39", A kz , u . 
>m * * — 2 a t ^ ( W T Ti"* + — 7 2 b — = 0 . (4.16) 

1 : Production 

2 : Turbulent transport 

3: Dissipation 

Figure 4.3 Budget of the temperature variance equation. 
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In Figure 4.3 the magnitude of every term of this equation is 

given as a function of z/L. It is evident that there is an almost 

perfect balance between the production and dissipation term in 

moderately unstable and near neutral conditions. It means that 

the turbulent transport term is at least an order of magnitude 

smaller than both the production and the dissipation term. This 

agrees with experimental data from Bradley et al. (1981), 

Champagne et al. (1977) and Wyngaard and Coté (1971). If it has 

any significance at all, turbulent transport is a loss in near 

neutral situations and a gain in moderately unstable conditions. 

This was also noticed by Wyngaard and Coté (1971), although 

their data show much scatter and their observation might be con

sidered tentative. For moderately to strong unstable conditions 

(- z/L = 1) the ratio production/dissipation attains a value of 

0.8 which is in accordance with the data of Champagne et al. 

(1977) but not with the data of Bradley et al. (1981). 

Horizontal huât &lux budgtt 
2 

Equation (A3.16) is nondimensionalized with kz/u^T^ and reads 

*m + *m + TT at ̂ ( w T TT) + "IT" d1 — = ° • (4-17) 

vi*1* u*1 * 

Figure 4.4a shows the variation of every term of this equation 

with z/L. The turbulent transport is a small term representing 

a loss over the entire range of -z/L values considered here. This 

does not completely agree with the results of Bradley et al. 

(1981) and Wyngaard et al (1971). Although they also concluded 

that the turbulent transport term is very small in comparison 

with the remaining terms of the ue-equation, they found a differ

ent behaviour of this term with -z/L. According to Bradley et al. 

turbulent transport is a loss for near neutral conditions 

(-z/L < 0.1) while beyond this value it represents a gain. 

Wyngaard et al. found a value of -z/L = 0.3 for which this 

change in sign occurs. Figure 4.4 presents the u6-budget found 

by Wyngaard et al. (1971) by comparison. 
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Figure 4.4 Budget of the horizontal heat flux equation; 

a. present model, b. Wyngaard et al. (1971). 
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Adding Eqs. (A3.12)-(A3.14) and nondimensionalizing the result 

with kz/uA yields 

z , kz 3 . 2 3e . kz - n 
m T, 3 t 3z 3z 3 

(4.18) 

As a consequence of the modeling technique applied to the tur

bulent transport and pressure transport terms (see Appendix 3) 

it is not possible to separate the contribution of both terms to 

the TKE budget. This means that the third term in Equation (4.18) 
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represents the contribution of both terms. The dependence of all 

terms on z/L is given in Figure 4.5a. An experimental determina

tion of this budget was performed by Wyngaard and Coté (1971) and 

by Champagne et al. (1977). The results of Wyngaard and Coté are 

summarized in Figure 4.5b. To facilitate comparison, we have ad

ded the contributions of the imbalance term (= pressure transport 

term) and the turbulent transport term of their measurements. The 

sum of these contributions represents a gain for the given range 

of -z/L values. This implies that dissipation exceeds the total 

production in near neutral to moderately unstable situations. For 

increasing instability a balance between the total production and 

c 
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2 : Buoyancy production 

3 : Shear production 

4 : Turbulent transport 

5: Dissipation 

6 : Imbalance + Turbulent 

transport 

Figure 4.5 Budget of the turbulent kinetic energy equations; 

a. present model, b. Wyngaard and Coté (1971). 
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dissipation is approached for the total transport term diminishes 

in magnitude. This is consistent with the data from Wyngaard and 

Coté. Shear production deviates from <|> (z/L) by the reasons men

tioned before, while buoyancy production follows the expected 

-z/L behaviour very well. 

Shdati i>tnz£>i> budgut 
3 

Multiplication of Equation (A3.15) with kz/u4 yields 

2 vm we 
z — c k z — + uw ~ 
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Figure 4.6 Budget of the shear stress equation; 
a. present model, b. Wyngaard et al. (1971) 
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The first two terms represent shear production and buoyancy pro

duction respectively. The third term is the approximation for the 

pressure gradient interaction term, which always represents a 

loss in the atmospheric surface layer. Buoyancy production is a 

loss (gain) in stable (unstable) stratification. Shear production 

will always be a gain. Figure 4.6a presents the magnitude of 

these terms for unstable situations as calculated with the pre

sent model. It compares favourably with the experimental data 

obtained by Wyngaard et al. (1971) which are summarized in 

Figure 4.6b. The factor u6/w6 in the buoyancy production term 

reduces the importance of this term for increasing values of 

-z/L. Values of the factor u8/w8 were determined by Wyngaard 

et al. They found that the magnitude of this factor ranges from 

3.4 to 0.6 for -z/L ranging from 0 to 1.0. This agrees with the 

values calculated with the model viz. they range from 3.0 to 0.4 

for the same -z/L interval. 

2 2 The factor w /u^ in the shear production term is always greater 

than unity. This implies that the shear production rate of shear 

stress exceeds the shear production rate of energy (eq. 4.18) 
2 2 over the entire stability range. Moreover, as w /u4 increases 

with increasing instability, it is obvious that the importance 

of this production term will not diminish as -z/L increases. 

Wyngaard et al. actually found an increase of the shear produc

tion term for increasing instability, which does not agree with 

the results of our model, but this is a consequence, once again, 

of the deviations mentioned in 4.2.1. 

4.2.3 Conclusions 

The equilibrium profiles in the atmospheric surface layer gene

rated by the present model agree with experimentally determined 

distributions. This is not surprising since both the upper and 

lower boundary conditions are chosen to ensure this. However, 

deviations still occur in moderate to strong unstably stratified 

boundary layers, where non-monotonic curves appear. These devia

tions are ascribed to the exclusion of buoyancy corrections in 
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the closure approximations for the higher order moments and to 

the inequality of the model equations when the upper boundary 

conditions are substituted. 

The agreement of the budgets of the second moment equations with 

experimental data is satisfactory, although the scatter in some 

of the data is rather large and some terms are measured only in

directly. This makes several of our comparisons rather uncertain. 

4.3 ANALYSIS OF INHOMOGENEOUS SITUATIONS 

4.3.1 Single step in surface conditions 

In order to get an appreciation of the quality of performance of 

the present theoretical model in inhomogeneous situations, a com

parison should be made with experimentally obtained data. Model 

and experiment must of course be carefully tuned to each other. 

This means that external conditions (two-dimensionality, upstream 

and downstream roughness lengths, atmospheric stratification) 

should match as good as possible. 

Many comparisons between the theory of relaxing flows and first 

moments such as the mean horizontal wind speed or the mean tem

perature have already been made in the past. Thus many times the 

usefulness of existing models that predict first moments has 

been demonstrated. We will not repeat such an analysis for the 

present model, as this would merely lead to the same conclusions 

drawn by Rao et al. (1974a) and the remarks made in Chapter 3. 

Furthermore, the gain in accuracy achieved by a second order 

closure model instead of a less complex first order closure model 

is primarily to be found in the prediction of the behaviour of 

the second moments (turbulent fluxes and other covariances). The 

first moments are already predicted with good accuracy even by 

the first order closure models. 

The above considerations lead inevitably to the conclusion, 

74 



already made in section 3.5.3, that we must concentrate our 

attention on the second moments when analyzing the performance 

of the present model. In section 3.5.3 it was noticed that 

reliable measurements of second order properties of turbulence 

in the atmosphere above non-homogeneous terrain are very hard to 

come by. In fact, the only data of second moments published till 

today are the measurements performed by Peterson et al. (1979), 

H^jstrup (1981) and Lang et al. (1983). Figure 4.7 e.g. presents 

the variation of the horizontal wind variance profile after a 

SR change in surface roughness. The turbulent kinetic energy 

model of Peterson (1969) seems to predict the behaviour of 

°u = (u > 

reasonably well, but this is one of the very few examples where 

a direct comparison has ever been made. 
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Figure 4.7 Variation of the horizontal wind variance profile 

after a smooth to rough transition. 

Peterson's 1969 model. (After Peterson et al., 1979) 

Obviously, the scarcity of data of second moments in nonhomoge-

neous conditions, obtained by measurements in the atmosphere is 

such that the comparison with model results will not lead to a 
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definite qualification of the performance of 2nd order models. 

This is what Bradshaw (1972) called the "fact gap": too many com

puters chasing too few facts. 

This situation can partially be remedied by including windtunnel 

measurements in our consideration. The carefully designed experi

ments in a windtunnel often provide us with an abundance of mean 

and turbulence quantities suitable for model performance evalua

tion. But the difficulties and deficiencies inherent to the use 

of wind tunnel data for modeling atmospheric situations are not 

at all trivial, especially not when using these data for such 

goals as assessing the predictive qualities of numerical models 

designed for atmospheric situations. 

4.3.2 Consistency of the present model 

As experimental verification of the model results is not satis

factorily feasible and awaits the progress and development of 

experimental methods and instruments, we turn to another pre

requisite of any model: it should be consistent with itself. This 

means that if a given initial equilibrium state of the atmospher

ic surface layer is subjected to two consecutive changes in sur

face conditions: the first change to a new set of surface charac

teristics and the second change back to the original set of sur

face characteristics, the atmosphere should ultimately return to 

its original equilibrium. It means that if an equilibrium surface 

boundary layer encounters a temporary disturbance, the deviations 

generated by this disturbance should die out as the flow progres

ses across its original surface. 

To this end the distribution of every variable of the model was 

calculated when it was subjected to the set of boundary conditions 

presented in Figure 4.8. For x < 0 the equilibrium initial pro

files were calculated using the predetermined surface parameters 

as discussed in section 4.1. At x = 0 the airflow encounters a 

surface which is rougher, warmer and dryer than the surface for 

x < 0. After an arbitrary distance of 21 meters the surface con-
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x-21m z03-z01 

Figure 4.8 Definition sketch of two subsequent changes in 

surface conditions. 

ditions change for the second time and regain their original 

value. This applies to the surface roughness and the surface 

relative humidity, the other surface parameters depend on the 

downstream distance (x). 

Two questions are interesting in the given situation. Firstly, 

do the variable surface parameters (uA, T* and q*) return to the 

values they possessed at x < 0. And if so, how rapidly do these 

values return. Secondly, what happens to the disturbances intro

duced into the profile of every variable after the second step 

change? 

Figure 4.9a presents the variation of uA, T* and q* with the 

downstream distance (x) after the first step at x = 0 and after 

the second step at x = 21 m. Along the vertical axis the ratios 

u^xj/u^, T*(x)/TM and q*(x)/qM are plotted, where u ^ , T# 1 and 

qA1 are the original equilibrium values of the upstream surface 

(x < 0). The three variables u*, T* and q* determine the surface 

fluxes of momentum, sensible heat and latent heat respectively by 

virtue of 

T (x) = -p{uA(x)}' (4.20) 

HQ(x) = -pc u*(x)T*(x) (4.21) 
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AE0(x) -pX u4(x)qt(x) (4.22) 

Starting with u*(x)/u#1 = 1, T*(x)/T*.. = 1 and q*(x)/q*.. = 1 

at x = O, these variables are subjected to a change in surface 

conditions. After the first step at x = 0 the variables over(un

der) shoot after which they gradually approach a new equilibrium 

value, which is different from the original one. This new equi

librium value is not reached however, because at x = 21 m the 

second step generates a new over(under)shoot and the variables 

at the surface gradually adjust once again to the new surface. 

& 

T*<x)/TM 

q*U)/q M 

u*(x)/uM 

E 

o 6.0 

3.0 

0.0 

-3.0 
10u 

J I I ' i i i i i'"i 

10' 10' 10J 10" 

x / z 0 2 

Figure 4.9 Variation of surface parameters for two 

subsequent changes in surface conditions. 
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The present model is consistent with itself if, after the second 

step change the dimensionless surface variables approach their 

equilibrium value of unity again. This happens indeed as can be 

seen in Figure 4.9b for x > 21 m. The logarithmic scale corres

ponds with the second part of Figure 4.9a. 

The multitude of first and second moment variables in the current 

model makes a full description of every variable unattractive 

for reasons of brevity and readability. Therefore, a restriction 

is made in this section to the behaviour of the profiles of 

the mean temperature, absolute humidity and those of the vertical 

fluxes of humidity and heat. 

Figures 4.10 and 4.11 present the profiles of the above mentioned 

variables for (i): the relaxation after the first surface discon

tinuity and (ii): the relaxation after the second surface discon

tinuity and the approach of the original equilibrium situation. 

Figure 4.10 gives the variation of the absolute humidity and the 

humidity flux for the two different situations. After the first 

transition the absolute humidity profile adjusts itself in the 

manner as shown in Figure 4.10a. Especially in the lowest layers 

the absolute humidity drops because the surface flux of water 

vapour has suddenly been reduced by the less humid surface. This 

decrease in absolute humidity gradually affects layers of greater 

height, and for x/z0_ = 1.5.10 the change in surface humidity is 

noticeable up to a height of 0.8 m. At this downstream distance 

no new equilibrium has yet been reached. 

The last profile (curve no.8) in Figure 4.10a serves as the ini

tial profile in Figure 4.10b, which gives the absolute humidity 

profiles after the second surface transition. At the lowest 

layers the absolute humidity increases again because of the humid 

surface. Again this increase diffuses upwards, though not to the 

highest layers where the decrease due to the first transition is 

still continuing. No new equilibrium is reached at x/z02 = 3.10 

but the original profile is approached and the disturbance damps 
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out as x increases. 

From a physical point of view it is not possible to have a posi

tive value of 3Q/9Z, indicating a negative (i.e. downward) tur

bulent humidity flux adjacent to the surface. This would imply 

that water vapour is transported downwards and is absorbed at the 

surface. This is clearly impossible, for it means that condensa

tion is taking place at the surface, while at the same time the 

surface relative humidity remains unchanged at R_„ < 100%. This 

obvious model deficiency is attributed to the boundary conditions 

(A3.25) and (A3.27) and was also discussed in section 4.1.3. A 

more realistic boundary condition was suggested by McNaughton 

(1984) on the basis of the Penman-Monteith equation, discarding 

with Eq. (A3.27). This is discussed in Appendix 4. 

The features encountered in the profiles of the absolute humidity 

can also be understood in view of the profiles of the vertical 

humidity flux (Figures 4.10c,d). The factor u*..qA2 is used to 

nondimensionalize this flux. As q*2
 < 0 ar>d u*i > 0 t n e dimen

sional value of wq has a sign opposite from its dimensionless 

value. Just after the first transition wq decreases from its 

originally positive value to a negative, indicating a reversal 

of the direction of the flux in the atmosphere just above the 

surface, depleting these layers of water vapour. As wq increases 

monotonically with z,a decrease of the absolute humidity at every 

height occurs, in accordance with Figure 4.10a. After some dis

tance downstream the surface value of wq becomes positive again 

(curve no.8), which is reflected in the corresponding curve in 

Figure 4.10a, where the vertical gradient of the absolute humi

dity is negative at all heights. 

After the second transition the wq curve is no longer monotoni

cally increasing but exhibits a minimum value. The part of the 

curve under this minimum represents an upward flux which decrea

ses with height. At these levels the absolute humidity increases 

with x, in accordance with Figure 4.10b. The part of the curve 

above the minimum represents an upward flux which increases with 
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Figure 4.10 Profiles of the absolute humidity and the turbulent 

flux of water vapour after two subsequent changes in 

surface conditions for various distances downstream. 
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Figure 4.11 Profiles of the temperature and the turbulent flux 

of sensible heat after two subsequent changes in 

surface conditions for various distances downstream. 
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height. At these levels the absolute humidity is still decreasing 

due to the former dryer surface. Further downstream, the wq profile 

returns to its equilibrium distribution where it is constant with 

height. The disturbance gradually damps out. 

Observations, analogous to the ones just made on the absolute 

humidity and vertical humidity flux profiles can be made with 

respect to the mean temperature and vertical sensible heat flux 

profiles which are presented in Figure 4.11. We present this 

figure for completeness only and will not discuss it. 

4.4 SUMMARY 

Summarizing the results of the examination of the performance of 

the present model we can say that in its present state the model 

contains several imperfections which can be roughly divided into 

two classes: 

(i) imperfect modeling expressions and/or imperfect upper 

boundary conditions 

(ii) unrealistic lower boundary conditions after the step change. 

The flaws belonging to the first class betray their existence 

only in diabatic conditions when they produce deviations which 

are notably marked in the vertical gradient of the mean horizon

tal wind speed. Adjusting the modeling expressions for buoyancy 

and mean strain effects introduces a whole new set of numerical 

constants which must be tuned to obtain the desired results. 

The imperfection which solely comprises the whole of the second 

class is the rather unrealistic assumption of a constant surface 

relative humidity after x = 0. This assumption is able to gene

rate physically unrealistic results, and it certainly is subject 

to improvement. 
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5 Fluxes derived from the initial profiles 

5.1 INTRODUCTION 

Apart from the bulk methods the flux-profile methods, used to 

determine the surface flux densities, require the (relatively) 

least effort and (relatively) cheapest instruments. This was 

discussed in Chapter 1. It is therefore not surprising that this 

method, or rather this class of methods, has been used exten

sively and that it is still the most widely adopted method in 

many disciplines. It is for this reason that literature on this 

subject has proliferated enormously (for reviews see e.g. 

Brutsaert, 1982, de Bruin, 1982). 

In Chapter 2 it was demonstrated that this method may only be 

applied if the upstream terrain is homogeneous for a consider

able distance. In practice, this condition often is difficult 

to satisfy, which means that the flux-profile methods are often 

used in non-homogeneous situations. 

As this method has been, and still is, applied so often, it is 

justifiable to concentrate the main effort in this study on the 

behaviour of the flux-profile method in non-homogeneous situa

tions. 

However, before that analysis can be made it must be known if, 

in the homogeneous case, the fluxes determined with the various 

standard methods are consistent with each other. Hence the stan

dard flux-profile methods will be studied when they are applied 

to the equilibrium distributions of U, 0 and Q generated by 

Part I of the model. In section 5.2 a brief review of the stan

dard flux-profile relations is presented. Using the modeled 

equations for the turbulent fluxes uw, we and wq a set of so-

called "second order flux-profile relations" is derived in sec

tion 5.3. This new set of relations is needed for the analysis 

of the flux profile relations above non-homogeneous terrains, 
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performed in Chapter 6. The second order flux-profile relations 

are identical with the standard flux-profile relations if some 

specific conditions are met. This will be discussed in section 

5.4. In that section the results will be considered of the stan

dard flux profile relations when these are applied to the equi

librium profiles. 

5.2 SUMMARY AND COMPARISON OF THE FLUX-PROFILE RELATIONS 

Through the application of dimensional analysis, invoking 

similarity, Obukhov (1946, 1971) has shown that the vertical 

fluxes of momentum, sensible heat and water vapour are related 

to the profiles of windspeed, temperature and humidity by: 

I = - pku*z |^/$in(z/L) , (5.1) 

H = - pcpku*z ff/Vz/L) ' (5-2) 

E = - pku*z !fi/4,w(z/L) , (5.3) 

where $ , <(>, and 4 are the dimensionless gradients of U, 

0 and Q respectively: 

v z / L > = ! ! • § ' <5-5> 
v z /L> = !? • If • <5-6> 
These dimensionless gradients are universal functions of the 

stability parameter z/L, where the Obukhov length (L) is defined 

by: 

_ _ Tj. ^ 
L = gk • (-u*T* - 0.61 Tru*qJ • (5'7) 

The respective fluxes after substituting (5.4)-(5.6) into 
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(5.1)-(5.3) read: 

I = - pu* , (5.8) 

H = - pc u*T* , (5.9) 

E = - pu*q* . (5.10) 

Equations (5.4)-(5.6) are referred to as the Monin-Obukhov 

similarity theory. These equations form the starting point of 

every flux-profile method applicable in the atmospheric surface 

layer. Equations (5.4)-(5.6) may only by employed when consider

ing a horizontal, uniform surface under stationary conditions, 

and when we restrict ourselves to the atmospheric surface layer. 

As the functional form of the $'s is not predicted by the 

Monin-Obukhov similarity theory they have to be determined ex

perimentally. Any experiment performed to achieve this objective 

must necessarily fulfill the above mentioned conditions. Thus 

the best sets of data were gathered above extensive, flat, homo

geneous, featureless terrains (Kansas, Minnesota, Wangara). Many 

functional relationships were proposed during the last two 

decades, they were reviewed by Dyer (1974), Yaglom (1977) and 

Visnawadham (1982). In the present study the relations proposed 

by Dyer (1974) will be used: 

<t> = <t>h = (1 - 16 z/L)-*; for z/L < 0 (unstable case) (5.11) 

m 
|>h = 1 + 5 z/L ; for 0 < z/L < 1 (stable case) (5.12) 

<|> = <|>, ; for all z/L (5.13) 
W n 

where k = 0.41. 

If these relations are accepted, and 3U/3z, 80/8z and 3Q/8z are 

measured, Eqs. (5.4)-(5.6) constitute three coupled equations in 

three unknowns u*, T* and q*. Usually Eqs. (5.4)-(5.6) are 

solved iteratively in their integrated form (Brutsaert, 1982; 
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de Bruin, 1982) but we will not elaborate on this point. The 

three gradients are determined by measuring U, 0 and Q at at 

least two levels. Or either three at only one level, if respec

tively the surface roughness length, the surface temperature or 

the surface specific humidity is known. This standard flux 

profile method is also known as the Aerodynamic Method (see 

Table 5.1). 

Table 5.1. Summary of input parameters for the application of 

the various standard flux profile methods. 

Method 

1. Aerodynamic 

method 

2. Bowen ratio 

method 

3. Combination 

method 

R -G 
n 

-

+ 

+ 

+ 

+ 

+ 

U 

+ + 

-(+)-(+) 

+ + 

+ z o 

+ + 

+ z o 

0 

+ + 

+ + 

+ + 

+ + 

+ + 

Q 

+ + 

+ + 

+ + 

+ + 

+ + 

Remarks 

Iteratively; 

coupling by L 

If I wanted: add 

U measurements 

XE from energy 

balance 

(iteratively) 

H from energy 

balance 

(iteratively) 

*N.B. +(++) measurements at 1 (2) level(s) required. 

If the fluxes of heat and water vapour are coupled by means of 

the energy balance equation, other possibilities arise. In its 

simplest form (ignoring the smallest terms) the energy balance 

equation reads: 

H + AE + G (5.14) 

where X is the latent heat of vaporization. 

Eq. (5.14) states that the net flux density of incoming radia

tion energy (R ) is distributed over the soil heat flux 

density (G), the sensible heat flux density (H) and the latent 
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heat flux density (XE), counting all fluxes, except R , directed 

away from the surface positive. The quantities R and G are rea

dily measured, which means that Eqs. (5.4)-(5.6) and (5.14) con

stitute four equations in three unknowns. The three possibili

ties that are presented to us are the three combinations consis

ting of Eq. (5.14) and two out of three equations from (5.4)-

(5.6) . 

If Eq. (5.4) is excluded from the set of four equations we 

arrive at the "Bowen Ratio Method" (see Table 5.1). As 3U/3z is 

not determined no windspeed measurements need to be made. If the 

Bowen ratio is defined by 

(5.15) ft - M -
ß - XE ' 

and Eqs. (5.2) and (5.3) are substituted, we obtain 

where use has been made of Eq. (5.13). 

Eq. (5.16) shows that the Bowen ratio can be determined by mea

suring temperature and humidity at two levels. The fluxes follow 

from 

R - G 
*E = ? ^ 0 , (5.17) 

and 

R — G 
H = ß • -^-r-ë • (5.18) 

The advantage of the Bowen ratio method is that it is indepen

dent of the functional form of <j>h and $ , as long as Eq. (5.13) 

applies. This method is also independent of the value of k, ex

cept for the determination of u*, but it is not likely that u* 

will be determined this way. Another advantage of this method is 

that it is not necessary to measure the exact height of the sen-
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sors above the ground, as long as the two sets of sensors are 

mounted at the same heights. The disadvantage of the Bowen ratio 

method is that it does not apply when R-G = 0 (near sunrise and 

sunset) (Fuchs and Tanner, 1970; Sinclair et al., 1975; Revfeim 

and Jordan, 19 76). 

If either Eq. (5.5) or (5.6) is excluded from the set of equa

tions (5.4)-(5.6) and (5.14), we refrain from temperature or 

humidity measurements respectively. As humidity measurements in 

the atmosphere are more difficult to perform than temperature 

measurements Eq. (5.6) usually will be the one that is excluded 

(see Table 5.1). This method, known as the "Combination Method", 

shares with the aerodynamic method the inherent uncertainties 

connected with the definition of the c|> 's and the value of k. 

The advantage is that no humidity measurements are needed if 

Eq. (5.6) is excluded. 

For comparison with the flux profile relations which will be 

derived from the modeled second order transport equations in 

5.3 the flux densities are redefined in terms of eddy covarian-

ces: 

I = p üw , (5.19) 

H = pc wë , (5.20) 
p ' 

AE = pA wq . (5.21) 

If Eqs. (5.1)-(5.3) are substituted into (5.19)-(5.21) 

respectively, we obtain: 

ïïw= - k u , z | S / * m ( z / L ) = - K m | 5 , (5 .22) 

™ = - ku*z ü / v z / L ) = - Kh If - (5-23) 

** = - ku,z |S /*w (z /L) = - K w | f . (5.24) 
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The eddy diffusivity K of a property, introduced in these equa

tions, is defined as the ratio of the property flux density to 

its concentration gradient, viz. 

K m = " I / ( p fi] = kuW*m(z/L) ' ( 5 , 2 5 ) 

Kh = - H / ( p c p | | ) = k u * z / t h ( z / L ) , ( 5 . 2 6 ) 

Kw = - AE/(pX | S ) = k u Ä z / * w ( z / L ) . ( 5 . 2 7 ) 

5.3 FLUX PROFILE RELATIONS DERIVED FROM THE MODELED TRANSPORT 

EQUATIONS 

The modeled second order equations in the homogeneous case 

(A3.12)-(A3.23) provide us with another possibility of deriving 

flux profile relations. Rewriting the equations for the vertical 

turbulent fluxes (A3.15), (A3.17) and (A3.19) for üw, wë" and wq 

respectively, we find after neglecting the turbulent transport 

terms 

™ = -W^lTZ ' T " — > • (5-28) 

c 13 dz r \F 

—- W'T, 3 0 q_ V. /c ->a» 
w e = - dT(Ti - T • =r» ' (5-29) 

3 r w2 

where c.3 = d3 = 13.1 

These relations were already suggested by Deardorff (1966) and 

were briefly discussed by Wyngaard (1982). If the turbulent 

transport terms in Eqs. (A3.15), (A3.17) and (A3.19) are neglec

ted, the production (shear and buoyancy) of the turbulent fluxes 

is equal to the destruction. These counteracting processes do 

balance each other to a very good degree. This can be inferred 
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e.g. from Fig. 4.6 which displays the balance of the terms in 

the uw-equation. The balance of terms in the we and wq equation, 

although not shown here, also indicates that the turbulent trans

port terms in those equations may be neglected. 

5.4 COMPARISON IN HOMOGENEOUS SITUATIONS 

Next, we could proceed with a direct comparison of the fluxes 

calculated with the standard flux-profile relations with the 

fluxes generated with the model. However, a better understanding 

will be obtained if a comparison is made of the standard flux 

profile relations and the "second order flux profile relations" 

(5.28)-(5.30). In 5.1 it was demonstrated that this is allowed 

in homogeneous situations. 

5.4.1 Neutral stratification 

In order to compare the standard flux-profile relations derived 

in 5.2 with Eqs. (5.28)-(5.30) the relatively simple case of a 

neutral atmosphere will be considered first. Equations (5.22) 

and (5.28) then reduce to respectively 

üw = - ku+z -r— , (5.31) 

and 

™ = _ Zl . |2 . (5.32) 
C13 3 Z 

These equations suggest that the factor VP'T/C..., may be identi

fied with the eddy diffusivity K = ku^z. This can also be 

demonstrated by substituting the lower- and upper boundary con

ditions for w5" and T in VP'T/C.^. We obtain then respectively: 

— - = kuÄ-z01 at z = zQ1 (lower boundary) (5.33) 

and 
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W* T 
C13 

kut,2 (1 * 1 max 

Z01 ~1 

) at z=z (upper boundary) (5.34) max 

z - zn1 -1 
The factor (1 m a ^ — ) in equation (5.34) results from 

ZI 

the imposed linear decrease of - uw/uj- from unity near the sur

face (lower boundary) to zero at the PBL-height (z ). The value 
z ~ zoi 

of the factor (1 — — ) ranges from 0.95 to 0.99 for 

typical values of zT and z for a well developed PBL. The 
I_ max r 

small variation of uw/u* with height thus introduced, results 
:rom K_ k u * z in a gradually increasing deviation of W*T/C.., fi_... .. 

(Fig. 5.1). Similar remarks can be made on the water vapour 

flux density wq and the gradient 3Q/3z. In neutral conditions 

these yield essentially the same results regarding the eddy dif-

fusivity of water vapour. 

2 105 

z02 

1er F 

10 2 : 

10' 

kz ÓU 
"•1 ST • 
W 2 T SU 

c , 3 u ^ Sz 

0.94 0.96 0.98 1.00 1.02 
—•- shear stress cnondimensionaU 

Figure 5.1 Nondimensional gradient of the windspeed in the 

neutral case (7- = 0) . 
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5.4.2 (Un)stable stratification 

In the case of a diabatic atmosphere matters are more complica

ted. At first sight the term 2— JJg /^r (m = u, 6 or g) in 

Eqs. (5.28)-(5.30) seems to serve the same purpose as the inclu

sion of either A , <j>, or 4 in Eqs. ( 5 . 22) - ( 5 . 24 ) viz. a correc

tion term for buoyancy. Why this apparently straightforward 

observation is not correct can be seen by inspecting the boundary 

conditions for the "eddy diffusivity" V^T/C.,. At the lower 

boundary minor changes occur in comparison with the neutral case, 

because buoyancy effects are of no importance there. Thus 

Eq. (5.28) e.g. again reduces to 

— VFT 3U uw = - -— , C-3 3z 

which, after substituting the lower boundary conditions leads to 

(5.33). Analogous expressions apply for the we - and wq equation. 

At the upper boundary, however, buoyancy does have a noticeable 

effect. If the upper boundary conditions (A3.28) are substituted 

into w^/c.., it is at once obvious that the value of W 2 T / C . , at 

the upper boundary and hence, also the value of w't/c.., at lower 

heights is influenced by stability. This means that buoyancy 

effects enter Eqs. (5.28)-(5.30) in two ways: 

(i) through the generation of the term 2— me /w2 ( m = u, 8 

or q) and 

(ii) through the upper boundary conditions of W 2 T/C.,. 

The combination of these two effects should equal the buoyancy 

correction introduced with A , 6. and <t> in Eqs. (5.1)-(5.3). 
m n w 

To investigate this assumption two possibilities can be explored. 

The first possibility is to transform Eqs. (5.28)-(5.30), re

writing terms containing 2_ me /w2 as far as possible towards 
r 

Eqs. (5.22)-(5.24). In doing so, we are able to show that the 

two sets of equations are very similar indeed. The second possi

bility lies in using both methods on the profiles of U, 8 and 

Q generated with Part I of the model (homogeneous case). 
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The first possibility is explored in Appendix 5. The problem 

encountered there is the fact that the variables w*~ and T 

(T = u.u ./e) cannot be rewritten in terms of the first moments 

because calculation of the balance of the UP", v3" and w 7 equa

tions (A3.12)-(A3.14) shows that the turbulent transport terms 

occurring in those equations cannot be neglected. This deters 

us from obtaining a simple relation for ë"1" (U, 0). 

Figures (5.2) and (5.3) show the results of the calculations of 

the second possibility. Figures (5.2) and (5.3) represent the 

distribution of the momentum flux and the sensible heat flux, 

respectively. The latent heat flux curves are not presented as 

they coincide with the sensible heat flux curves if the horizon

tal axis is properly scaled. 

In Fig. 5.2 the three curves represent the momentum flux ob

tained from: the aerodynamic method (curve 1), equation (5.28) 

(curve 2) and the model (curve 3). Comparison of curves 2 and 3 

-0.2 -0.1 o 
—•• momentum flux Ckg m"'s~2) 

Figure 5.2 Profiles of the momentum flux calculated with: 

the aerodynamic method (curve 1), Eq. (5.28) 

(curve 2) and the present model (curve 3). 
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Figure 5.3 Profiles of the sensible heat flux calculated with: 

the aerodynamic method (curve 1), the Bowen ratio 

method (curve 2), Eq. (5.29) (curve 3) and the 

present model (curve 4). 

learns, once again, that the omission of the turbulent transport 

term in Eq. (5.28) has no significant effect on the flux calcu

lation. The deviation of curve 1 from the other two curves is of 

more concern. This will be discussed further on. 

The remarks made above, can be made on the curves in Fig. 5.3. 

Here the four curves represent the sensible heat flux obtained 

from: the aerodynamic method (curve 1), the Bowen ratio method 

(curve 2), Eq. (5.29) (curve 3) and the model (curve 4). For the 

sensible (and latent) heat flux the deviation of curve 1 from 

the other curves is caused (just as in Fig. 5.2) by a deficiency 

of the model. The problem in this case is the fact that Part I 

of the model is not capable to produce profiles of the gradients 

of U, 0 and Q that obey Eqs. (5.22)- (5.24) exactly. This defi

ciency of the model stems from the fact that the value of c1 3 

and d3 in Eqs. (A3.15), (A3.17) and (A3.19) for uw, wë and wq 

respectively, no longer suffices to ensure equality of both 

sides of these equations when the upper boundary conditions are 

substituted. This situation is notably prominent in very 
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(un) stable conditions when the buoyancy terms, which do not 

influence the lower boundary conditions, enter the upper bounda

ry conditions. Calculations show that in the uw-equation (A3.15) 

the discrepancy between both sides of the equation may be as 

large as 10%, while for the w6 and wq equations the discrepancy 

is about 5%. This decrepancy at the upper boundary forces the 

gradient 3U/3z to deviate from the expected $ (z/L) distribution, 

and likewise for the 30/3z and 3Q/3Z distributions. This phenom

enon is also visible in Fig. (4.2) . 

There is one other major assumption, though, in one of the 

standard flux-profile techniques which bypasses the model's 

deficiency mentioned above. This assumption, made in the Bowen 

ratio method is 

K. = K„ . (5.35) 
n w 

Using the definition of the various K's (5.25)-(5.27) this 

assumption reduces to Eq. (5.13): 

<(> = <h ; for all z/L. 

To verify the validity of this assumption in the present model 

we consider the correlation coefficient 

që 
r„ = (5.36) 

6q -T i - h 

It appears that in the equilibrium profiles this coefficient is 

exactly equal to 1 everywhere. This implies that 

0 = - cQ + d , (5.37) 

which gives 

6 = cq and If- = - c |fl- , (5.38) 
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where c and d are constants. If (5.37), (5.38) and the defini

tion of the K's (5.26 

is fulfilled exactly. 

tion of the K's (5.26)-(5.27) are used the condition K, = K 
h w 

An alternative is to define a Bowen ratio (ß*) in terms of the 

second order model flux profile relations (5.28)-(5.30) 

_ _ (5.39) 
ß * = pc we/pX wq . 

P 
Substitution from (5.28)-(5.30) yields 

r w2 r w2 

This expression is compared with the standard Bowen ratio 

formula 

ß = 

If 

M, 

c 
X 

the 

,3Q . 
3z 

30,3Q 
3zX3z * 

condition 

V 

qê 
(5.41) 

is fulfilled, the expressions for ß* and ß are identical. 

Note that in Eq. (5.40) we still assumed that the turbulent 

transport terms in Eqs. (5.28)- (5.30) can be ignored. But this 

is not a necessary assumption for Eq. (5.38) to apply. When the 

correlation coefficient r. is considered again and (5.37) 
eq 

and (5.38) are used in Eq. (5.41) this condition is fulfilled 

exactly. Even if the turbulent transport terms in Eqs. (5.28)-

(5.30) and hence also in Eq. (5.40) are retained we would still 

find that ß* and ß are identical. Thus if the equilibrium dis

tributions as generated by Part I of the model are substituted 

in (5.41) an equivalence of both sides is obtained. As a result 

of this equivalence, the fluxes of latent and sensible heat 

calculated with the standard Bowen ratio method (5.16) are al

most identical (within 5%) with the respective turbulent heat 

fluxes as generated by the model (see Fig. 5.3). The small 
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difference of 5% follows, again, from the linear decrease of 

wë and wq with height to zero at the PBL height. As B is calcu

lated by the ratio of these fluxes, the Bowen ratio method is 

not sensitive to this linear decrease and consequently yields 

heat fluxes which are essentially constant with height. 

Finally, Figs. 5.2, 5.3 and 5.4 also contain the fluxes calcu

lated with Eqs. (5.28)- (5.30). These fluxes do not deviate sig

nificantly from the fluxes generated by the model, by virtue of 

the good approximation of neglecting the very small turbulent 

transport terms. 

5.5 CONCLUSIONS 

In this chapter flux-profile relations were derived from 

(i) the "standard" or K-theory approach and (ii) the modeled 

transport equations of the turbulent fluxes in homogeneous 

situations. For both methods a number of approximations must 

be made. For the first class of relations (K-theory) these 

approximations are: (i) the profiles of U, 0 and Q above homo

geneous terrain exhibit the well-known Monin-Obukhov similarity 

behaviour expressed by Eqs. (5.4)-(5.6) (the Aerodynamic and 

Combination methods) (ii) K. = K or rather <$>, = <j> (the Bowen 

ratio method). For the second class of relations (2nd order model) 

there is only one major approximation viz. (iii) the turbulent 

transport terms in the second moment equations may be neglected. 

Of course there are other assumptions which are equally impor

tant e.g. the exact modeling expression for the pressure terms 

in the equations of the second moments, the assumption that 

k = 0.41 etc. The discussion of these assumptions lies beyond 

the scope of the present study. 

From the comparison of the two classes of methods, performed in 

section 5.4, the following conclusions can be made, (i) The 

present model is not capable of reproducing the distribution 
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of the dimensionless gradients <t> , t>, and i> exactly. This is 
3 m' Th w 2 

attributed to the discrepancy of the model equations where the 

upper boundary conditions are substituted. As a consequence, the 

results of the application of the aerodynamic method on the 

equilibrium profiles of U, 0 and Q show a large deviation from 

the fluxes calculated with the model. This deviation increases 

with |z/L|. (ii) An analytical treatment of the flux-profile 

relations from the second order transport equations (Appendix 5) 

in order to arrive at the standard flux-profile relations is 

only partly successful as the factor W 2 T / C . , in Eqs. (5.28)-

(5.30) cannot be rewritten in terms of the first moments (U, 0 

and Q). (iii) The assumption K, = K is valid, by virtue of 

r , defined in (5.36), equals 1. Thus in the equilibrium pro-
0 q 

files the application of the Bowen ratio method is allowed. It 

produces heat fluxes which are consistent with the heat fluxes 

generated by the model, (iv) The application of the Bowen ratio 

technique on the turbulent fluxes we and wq from Eqs. (5.29) and 

(5.30) leads to an excellent agreement (within 5%) with the heat 

fluxes calculated with the "standard" Bowen ratio method. There 

is also a good agreement with the turbulent heat fluxes as cal

culated with the model. 

Regarding (i) one must realize that in the example given in 

section 5.4 the instability was very strong (L = - 22 m). This, 

rather extreme, value of the Obukhov length was chosen delibera

tely to bring out the deviations of the two classes of methods 

more clearly. For moderate to weak unstable situations these 

deviations are smaller. The disadvantage of this choice of the 

Obukhov length is that it is questionable if the present and 

forthcoming analysis may be extended far beyond |z/L| = 1. 

Keeping this remark in mind, we may conclude that the analysis 

of the standard flux-profile methods in inhomogeneous situations 

with the aid of the second order model equations, which will be 

made in the next chapter, is very good feasible. 
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6 Flux-profile methods above inhomogeneous terrain 

6.1 INTRODUCTION 

From the moment the air flows over a different surface a relaxa

tion towards a new equilibrium will occur (Ch. 2). Obviously, 

the indiscriminate use of standard flux-profile methods in these 

circumstances may lead to results which are unrealistic or which 

contain large errors. Confining the measurement heights to the 

IAL will probably exclude these problems as good as possible. 

However, it cannot be taken for granted that every flux-profile 

method will yield correct results there. In this chapter an 

analysis is made of the errors in the standard flux-profile 

methods when they are applied within the IAL. 

In this chapter only one single change in surface conditions 

will be considered. Blom and Wartena (1969) showed that in the 

case of multiple changes in surface conditions a new IBL, and 

also a new IAL, will start to develop after every discontinuity 

of the surface. Thus the influence of former transitions in sur

face conditions will primarily influence the ASL above the newly 

developing IAL. This observation can also be inferred from the 

analysis of the double change in surface conditions in Ch. 4. 

This chapter will mainly concentrate on two standard flux-pro

file methods: the Bowen ratio method (section 6.2) and the 

Aerodynamic method (section 6.3). The remaining combination 

method (see 5.2) merely combines, as the name indicates, some 

of the assumptions of both methods and no new viewpoints are 

expected from its analysis. From the two methods just mentioned, 

the Bowen ratio method will get the major part of the attention, 

for it has proven to be very consistent with both the second 

order flux-profile relations and with the fluxes as generated 

with the model in the homogeneous case (Ch. 5). The deviation 

of the results of the Aerodynamic method from the equilibrium 

model fluxes, primarily for large |z/L| values, complicates the 
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application of this method in non-homogeneous conditions. 

The fluxes of both standard methods after the change in surface 

conditions (x > 0) will be compared with the fluxes calculated 

with the model. The deviations encountered in this comparison 

will be analyzed by considering the distribution of the terms in 

the turbulent flux equations as well as some other important para

meters of the ASL. 

6.2 THE BOWEN RATIO METHOD 

In the case which will be considered here, the air flows from a 

smooth, hot and dry terrain to a rougher, cooler humid surface. 

The upstream terrain is characterized by: z.. = 0.02 m, 0O1 = 

44.5°C, Q01 = 4.6 .10~3, HQ1 = 336 W/m2 and AEQ1 = 19 W/m2, 

resulting in L = -23 m. The parameters solely characterising the 

downstream surface are: zQ 2 = 0.06 m and R0_ = 100%, all other 

parameters are a function of the downstream distance (x). 

From the situation described above, the latent heat flux is 

expected to increase substantially just after the surface change, 

while the sensible heat flux must decrease accordingly. The 

dashed lines in Figs. 6.1 and 6.2 for the sensible and latent 

heat flux respectively, represent the profiles of these quanti

ties for various distances downstream of the surface change. 

These fluxes, calculated with the model, will be indicated by 

AEMD and H . As the air progresses over the humid surface its 

absolute humidity increases and the vapour pressure deficit and 

the latent heat flux near the surface decrease. For the sensible 

heat flux the opposite occurs. The drawn lines in Figs. 6.1 and 

6.2 represent the profiles of the sensible and latent heat flux 

calculated with the Bowen ratio method, using the local profiles 

of 0 and Q. These fluxes will be denoted AEDD and H_,_,. 

Several characteristic features can now be observed. For z > d 

the profiles of 0 and Q must, by definition, be unaffected by 
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Figure 6.2 Profiles of the latent heat flux density after a 

change in surface conditions for various distances 

downstream (curve numbers correspond to those of 

Fig. 6.1) . 
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the new surface. In this region the fluxes determined with the 

Bowen ratio method are equal to the respective fluxes calculated 

with the model. Only some small deviations, discussed in chap

ter 5, can be observed. For z << 6 the same observation can be 

made. In this region the ASL is in local equilibrium with the 

new surface and hence, the Bowen ratio method yields fluxes that 

deviate less than a few percent from the fluxes calculated with 

the model. Between these two layers the discrepancies are con

fined. 

Because the heat fluxes attain extremely high values just after 

the surface change,Figs. 6.1 and 6.2 tend to obscure the rela

tive differences between the fluxes of the two methods. Fig. 6.3 

therefore presents the ratio of the latent heat fluxes of the 

model and the Bowen ratio method (XEDD/AE„n). For the sensible 

heat flux this ratio can attain unrealistic values, because both 

HB_ and H„n change sign at different heights. The ratio H_R/HM_ 
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Figure 6.3 Ratio of the latent heat flux calculated with the 

Bowen ratio method (XED_) and the latent heat flux 

generated with the model (AEMn) for various distan

ces downstream. (Curve numbers correspond to those 

of Fig. 6.1). 
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will not be considered. From Fig. 6.3 it can be seen that the 

Bowen ratio method in the present case yields latent heat fluxes 

within the IAL which are larger than the latent heat fluxes cal

culated with the model. The error, however, nowhere exceeds 50%. 

For distances just after the surface change (curves 1 - 3) this 

error decreases with downstream distance, as expected. However, 

the error increases again further downstream (curves 4 - 6). 

This increase of the error can be explained as follows. As the 

IBL height increases with downstream distance, the profiles of G 

and Q are affected at increasing heights. At these heights the 

gradients of 0 and Q are very small and even a minute perturba

tion will cause a relatively large error in the flux-profile 
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Figure 6.4 Profiles of the latent heat flux density after a 

change in surface conditions for various distances 

downstream. 
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method. In the last two curves (5 and 6), where d > z (upper 
IÎ13.X 

grid level), the upper boundary conditions contaminate the solu

tion in the upper IBL. We disregard this region from now on. 

When a change takes place from a cool, humid terrain to a warm 

and dry surface the Bowen ratio method also yields heat fluxes 

which are larger than the heat fluxes produced by the model. 

This can be observed in Fig. 6.4 for \E. 

In order to analyse the causes of the errors in the Bowen ratio 

method, the equation for the second moments must be considered. 

The reason for this is that we demonstrated in the previous 

chapter that the method in which the Bowen ratio (ß*) was 

defined with the mean turbulent heat fluxes (w8 and wq) from the 

model equations (5.40) yields results which are identical with 

the results of the standard Bowen ratio method (5.16). This 

agreement occurred if one condition was fulfilled viz. r. = 1, 
eq 

which also implied the condition (5.41). Application of the com

plete model equations for wq and we in ß* = —° we/wq will natu-
À 

rally yield latent and sensible heat fluxes which are exactly 

equal to ^EM_ and HM_. After the change in surface conditions, 

however, two effects will cause the inequality of ß and ß*. 

First, r no longer equals 1. And, second, the equations for w9 

and wq contain two new terms for the inhomogeneous part of the 

flow. The second effect will be considered first. 
The modeled wq equation for x > 0 reads: 

„ 3wq r , 8wq —r 3Q g —r 3 ,TTT 3wq. , wq , c ... 
u j? + w TT + w .-ä T q 6v- a t ï i ( ^ T yr> = - d T ( 6-1 ) 

r 
I I I I I I 

A similar equation holds for wB. Two advection terms (I and II) 

are added in the inhomogeneous situation. Note that after the 

surface change the turbulent transport term (III) no longer can 

be neglected forthwith. An assessment of the relative importance 

of the advection and turbulent transport terms together can be 

obtained by considering the ratio of the pressure term and the 
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sum of the production terms (shear and buoyancy). The distribu

tion of this ratio is given in Fig. 6.5a. 

-2.0 -1.5 -1.0 -0.5 o 
—*• pressure/cshear+ buoyancy) production 

® _ 
Figure 6.5a Ratio of the pressure term of the wq equation 

(Eq. 6.1) and the sum of the buoyancy- and shear 

production terms of the same equation, for various 

distances downstream. (Curve numbers correspond to 

those of Fig. 6.1). 

Fig. 6.5a shows that just downstream of x = 0 there is no region 

adjacent to the surface where the production terms and the pres

sure covariance term balance each other (curves 1,2). Approxi

mately from curve 3 onwards (x = 2.5 m.) such a region does 

exist. Note that as the IBL increases in height downstream, the 

deviation of the ratio from the equilibrium value increases in 

the upper part of the IBL. The reason, again, is the relatively 

large sensitivity of the ratio for small perturbations in a 

region where every term of the equation has become very small. 

Calculation of the terms I, II and III learns that the vertical 

advection term W 3wq/8z (II) is much smaller than either of the 

other two terms. It amounts to approximately 15% of either term 
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Figure 6.5b Profiles of the turbulent transport term of the 

wq-equation (eq. 6.1) for various distances down

stream. (Curve numbers correspond to those of 

Fig. 6.1). 

Figure 6.5c Profiles of the horizontal advection term of the 

wq-equation (eq. 6.1) for various distances down

stream. (Curve numbers correspond to those of 

Fig. 6.1). 

I or III. This does not imply that this vertical advection term 

is always insignificant. Figs. 6.5b and 6.5c show that the tur

bulent transport term (III) and the horizontal advection term 

(I) nearly cancel each other. Hence the vertical advection term 

(II), in which the roughness change information is contained, 

may be very important after all. 
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The effect of the "inhomogeneity term" i.e. the sum of the ad-

vection terms and the turbulent transport term in the wq (and 

we) equations on the latent heat flux is presented in Figs. 6.6 

and 6.7. In Figure 6.6 the dashed curves represent the model 
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Figure 6.6 Profiles of the latent heat flux density after a 

change in surface conditions, for various distances 

downstream. (Curve numbers correspond to those of 

Fig. 6.1). 

flux AE , i.e. application of the full equation (6.1). The 

drawn curves in Fig. 6.6 represent the latent heat fluxes ob

tained by applying eq. (6.1) without the inhomogeneity term 

(I + II + III). This flux will be denoted by AE 
HM" 

The ratio 

XEHM/XEMD is given in Fig. 6.7. 

If Figure 6.6 is compared with Fig. 6.2 it can be seen that the 

errors in AE__, for the greater part can be attributed to the 

effects of the inhomogeneity term in the wq (and we) model 

equations. This observation only applies, however, within the 

IAL. Outside this layer, but well inside the IBL, the neglect 

of the "inhomogeneity term" causes the latent heat flux AERM to 
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Figure 6.7 Ratio of the latent heat flux calculated with 

eq. (5.30) (AE-,,,) and the latent heat flux gene-

rated with the model (AEMn) for various distances 

downstream. (Curve numbers correspond to those of 

Fig. 6.1). 

be smaller than AE.m. This underestimation does not occur when MD 
the standard Bowen ratio method is applied. As Fig. 6.5a indi

cates, the contribution of the inhomogeneity term to the wq-

equation in this part of the flow is reversed, hence it must be 

AE,._. Therefore we conclude that there is expected that AE, 

another effect wir 

contribution of the inhomogeneity term to eq. (6.1). 

HM MD 
another effect which counteracts the effects of the reversed 

The agreement within the IAL of AER„ and AE„M is demonstrated 

in Fig. 6.8. This figure presents the ratio AE /AE . Calcula

tions show that within the IAL both fluxes agree within 3%. From 

this figure it is immediately obvious, once more, that outside 

the IAL the two methods strongly disagree. 

Although the region above the IAL is of no direct concern for 

the present study, it is still interesting to discuss the cause 

of the above mentioned deviation. In chapter 5 it was shown that 
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Figure 6.8 Ratio of the latent heat flux calculated with the 

Bowen ratio method (XE,,,,) and the latent heat flux 

calculated with eq. (5.30) (AEHM) for various dis

tances downstream. (Curve numbers correspond to 

those of Fig. 6.1). 

XE_,_ = XE„„. and HnT, = H„u if condition (5.41) is fulfilled. In 
D K rlJM rSK nM 

Fig. 6.9 the ratio [ ( 30/3z)/(3Q/3z) ]/(68 /q6 ) is given for the 

same downstream distances as the curves in Fig. 6.8. Comparison 

of Figs. 6.8 and 6.9 learns that, especially for larger distan

ces downstream (curves 3 and 4), the heights where XE /XE„M 

showes a maximum coincide with the heights where the ratio of 

Fig. 6.9 has a minimum. This coincidence of heights is not pre

sent for small distances (curves 1 and 2). Hence, if distances 

just downstream of the surface change (x < 1.m) are disregarded, 

the disagreement of XE__ and XERM above the IAL can be attribu-BR HM 
ted to the differences in the transport of temperature and humi

dity of which the ratio [ (30/3z) / ( 3Q/3z) ]/(ë"ê /që ) is a measure. 

Finally, one is usually interested in the value of the fluxes at 

the surface (or at z = z ). The Bowen ratio method inside the 

IAL yields results which agree better with the surface flux than 
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(Curve numbers correspond to those of Fig. 6.1). 

the model flux. This can be inferred from Figs. 6.1 and 6.2. 

Thus as far as the surface fluxes are concerned, the Bowen ratio 

method may even be applied above the IAL. As the accuracy of 

present flux estimation techniques is approximately 10% (chap

ter 5) a height (h--) can be defined below which the deviation 

of AE,,_, and H__ is less than 10% of the respective surface 
Dl\ DK 

fluxes. The ratio h__/<5 is approximately constant with down-

stream distance and amounts to 1.5. 

Summarizing, in this section it was found that the Bowen ratio 

method, applied above a wet, cool surface downstream of a dry, 

hot terrain yields sensible- and latent heat fluxes in the IAL 

of which the absolute values are larger than the respective heat 

fluxes calculated with the model. If Bowen ratio measurements 

are made within the IAL, the deviation of HDri and AE__ from the 

fluxes calculated with the model (H,.,, and AE..,J does not exceed 
MD MD 

10%, except for x < 1.0 m. This deviation within the IAL can 

mainly be attributed to the neglect of the advection terms and 

the turbulent transport term in the wq and we equations. Outside 
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the IAL this neglect would result in latent heat fluxes which 

are up to 40% smaller than the model fluxes. In that part of the 

ASL, however, the differences in transport of water vapour and 

heat compensate for this underestimation. 

6.3 THE AERODYNAMIC METHOD 

Referring to the remarks made in sections 5.5 and 6.1 about the 

applicability of the Aerodynamic method, a quantitative discus

sion of this method cannot be made. Hence only a short qualita

tive review of the results of this method above non-homogeneous 

terrain is presented. 

First of all, note that the Monin-Obukhov similarity theory 

formally cannot be used for z <10 h (Tennekes, 1973) . Here h 

stands for the average height of the roughness elements and is 

related t o z b y z s 0.14 h . However, in the present model the o -1 o o 
calculations which use the Monin-Obukhov theory are performed 

down to z = z . We commented on this issue in section 4.1.3. For o 
analytical purposes, this violation of the Monin-Obukhov theory 

has no serious consequences. Hence the discussion in this sec

tion may be performed. For practical purposes, however, only the 

region z/z >100 must be considered. In the present situation 

z =100 zn_ just about coincides with the height of the region 

above which the fluxes resulting from the aerodynamic method 

applied to the equilibrium profiles start to deviate consider

ably from the model fluxes (see Fig. 5.2). The qualitative re

sults of the following, however, may be transposed to situations 

where those regions do not overlap. 

Figure 6.10 shows the latent heat flux from the application of 

the aerodynamic method to the same situation as in the preceding 

section. Fig. 6.10 may be compared with Fig. 6.2 (note the dif

ference in the scaling of the horizontal axes). From this com

parison it is clear that the latent heat fluxes which result 

from the application of the aerodynamic method (AE„„) show a 

112 



2000 4000 6000 8000 10000 
—*- AECW/m2) 

Figure 6.10 Profiles of the latent heat flux density after a 

change in surface conditions for various distances 

downstream. (Curve numbers correspond to those of 

Fig. 6.1). 

much larger deviation from the model fluxes AE„„„ than the fluxes 
MD 

XE„ . Apparently the aerodynamic method has a larger sensibility 

for surface inhomogeneities than the Bowen ratio method. This 

stems from the more stringent conditions which the aerodynamic 

method has to satisfy (see section 5.2). Fig. 6.11 shows the 

ratio *E
A E/X EMn- T h e u PP e r part of this figure (z/z.- > 30) for 

curves 1 - 4 complies with Fig. 5.3: It shows the incapability 

of the present model to reproduce the theoretical <j> (z/L) curves 
m 

exactly. The lower part of this figure shows that the aero

dynamic method yields latent heat fluxes within the IAL, which 

are larger than the model fluxes AE . The magnitude of the 

sensible heat flux is also overestimated by the aerodynamic 

method. 
Comparison of Figs. 6.11 and 6.3 learns that the deviations of 

AEAE from AE„_ are roughly 4 times as large as the deviations 

of AEß_ from AE . It also shows that the aerodynamic method 

yields latent heat fluxes which are considerably smaller than 
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Figure 6.11 Ratio of the latent heat flux calculated with the 

aerodynamic method (AE ) and the latent heat flux 

generated with the model (AE ) for various dis

tances downstream. (Curve numbers correspond to 

those of Fig. 6.1). 

AEWT, for larger distances downstream (curves 4 and 5) in the 
MD 

upper part of the IBL. This is partly attributed to the deterio

ration of the model results caused by the upper boundary condi

tions discussed hereafter. 

For very great distances downstream (x/z02 = 2000) the fluxes 

from the aerodynamic method within the IAL, however, do not 

converge towards the fluxes H and AE . This behaviour, which 

was not present in the Bowen ratio results, is attributed to a 

gradual deterioration of the quality of the model results as 

the calculation is performed beyond x = x
m a x - A t this distance 

downstream the IBL height d equals z = z (the upper calcula

tion level). Especially the shear stress profiles are affected 

by the errors which result from the application of the upper 

boundary conditions for x > x . These errors gradually diffuse 

downwards. The Bowen ratio method, by nature, is less suscep

tible to perturbations in the shear stress profile. But, indi-
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rectly, through the coupling of all the differential equations, 

also the Bowen ratio method is slightly in error in the upper 

part of the IBL (the last curve in Figs. 6.1 and 6.2). This is 

of no concern as yet. 
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7 Summary and conclusions 

In Chapter 1 the goals of the present study were presented. 

These goals are 

(i) the estimation and analysis of the errors introduced in the 

standard flux determination methods when they are applied 

above non-homogeneous terrain 

(ii) providing simple techniques for estimating these errors, 

using a minimum number of data concerning sensor location, 

surrounding terrain(s) etc. 

These goals suggested that a direct treatment of the flux-

profile methods above a non-homogeneous terrain, with the aid 

of a second order model, was feasible. In the course of this 

study, however, it turned out that a direct treatment was not 

immediately possible. First of all, the performance of the model 

had to be analyzed in order to tackle the posed problem. This 

analysis was needed for the correct interpretation and apprecia

tion of the results of the flux-profile methods above non-homo

geneous terrain. Hence, the conclusions in this final chapter 

can be separated in two groups: (i) those which concern the mo

del used in the present study, and (ii) those which concern the 

application of the model in order to study the flux-profile me

thods. 

In Chapter 2 the first simplifications were introduced. These 

simplifications referred to the initial conditions as well as 

the upper boundary conditions of the numerical model. E.g. the 

present model is restricted to the atmospheric surface layer, 

which in its initial state is supposed to be in equilibrium with 

the surface. Also, the upper boundary value of every variable 

(except W) remains fixed after the change in surface conditions. 

This led to the conclusion that the model is only applicable to 

a limited downstream distance (x ). As soon as the flow per-
max r 

turbations, induced by the new surface, reach the highest grid 

level (z ) the fixed upper boundary values start to contami

nate the solution. The deterioration of the solution subsequent-
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ly diffuses downwards as the downstream distance increases 

beyond x . To avoid this problem the model should be extended max r 

to comprise the whole of the atmospheric boundary layer. This 

has already been accomplished (e.g. Wyngaard, 1975). 

In Chapter 3 we concluded that second order models are superior 

to first order models, mainly when the second moments (fluxes 

and other (co)variances) are considered. However, the disadvan

tage of second order models is the difficulty related to the 

modeling of the third order terms and the pressure terms. Some

times, mean strain and buoyancy terms have to be incorporated 

in the approximation of the 3rd order and pressure terms, in 

order to get physically realistic results. At present, there is 

no general agreement on the modeling of these terms. Usually the 

"engineering approach" is used, where model constants are tuned 

to obtain the desired results. The third order models which have 

recently appeared, merely shift the problem to the modeling of 

the fourth order terms. Obviously, much has still to be learned 

here. 

The above conclusions hold for any 2nd order model. The present 

model was examined more closely in Chapter 4. It was found that 

flaws in the upper boundary conditions may be responsible for 

the deviation of the dimensionless gradients of U, 0 and Q from 

the expected universal ij>-curves in diabatic equilibrium condi

tions. Efforts to overcome these imperfections were only partly 

successful. A comparison of the budgets of several 2nd moment 

equations with experimental results showed that the present mo

del reproduces the equilibrium equation budgets quite accurate

ly. A more serious problem was encountered in the statement of 

the lower boundary conditions downstream of the step change in 

surface characteristics. It was found that the condition of a 

constant surface relative humidity after the surface transition 

causes an unphysical solution for the change from a cool and 

humid terrain to a hot and dry one. A possible solution for this 

problem has been presented. Another problem, possibly related to 

the lower boundary conditions, emerged when the experimental 
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results of e.g. Lang et al. (1983) became available. It appears 

that the model in its present state is not able to reproduce the 

inequality of K, and K in the IAL, found in the experiment. This 

problem remains to be solved. In the same chapter the model was 

modified and extended in order to be able to treat rough-to-

smooth transitions. It was then possible to demonstrate that, 

when the ASL is subjected to a temporary change of the lower 

boundary conditions, the solution will eventually approach its 

original equilibrium. 

The above results necessitated the analysis of the results of 

the application of the standard flux-profile methods on the 

equilibrium (or initial) profiles, generated with the initiali

sation part (part I) of the model. Chapter 5 is devoted to this 

subject. In Chapter 5 the so-called "second order flux-profile 

relations" were derived from the modeled 2nd order equations. 

This was done in order to be able to relate (in Chapter 6) the 

distribution of every term of the modeled 2nd order equations 

to the errors produced when applying the standard flux-profile 

relations in inhomogeneous conditions. We demonstrated that the 

2nd order flux-profile relations are identical with the standard 

flux-profile relations in homogeneous and neutral conditions. 

When the ASL above homogeneous terrain has a diabatic stratifi

cation, the interpretation of the structure of the 2nd order 

flux-profile relations is rather difficult. It was shown that 

buoyancy effects enter these relations in two ways: 

(i) through the generation of an additional term in the rela

tions, and 

(ii) through the modification of the factor in the relation which 

could be identified with the eddy diffusivity in neutral 

conditions. 

It was found that the aerodynamic method yields fluxes which 

deviate considerably from the fluxes generated with the model. 

This is attributed to the disagreement between the dimensionless 

profile of the wind shear (3U/3z) and the expected 4> -curve. 

This was discussed above and in Chapter 4. The Bowen ratio method 

is not sensible for the exact definition of <t>. and 4> as long as 
h w 
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these functions are equal. In Chapter 5 it was found that the 

dimensionless equilibrium profiles 30/3z and 3Q/3z are exactly 

equal. Hence, the application of the Bowen ratio method to the 

equilibrium profiles yields sensible- and latent heat fluxes 

which agree very well (within 5%) with the fluxes generated with 

the model. 

In Chapter 6, both the Bowen ratio method and the aerodynamic 

method were applied to the relaxation profiles of U, 0 and Q 

after the surface change. Both methods yield heat fluxes in the 

IAL which are larger than the heat fluxes calculated with the 

model (AE , H ). The difference of the Bowen ratio heat fluxes 

(AEnr), Hnri) and the model fluxes within the IAL is less than 10% 

if the region just downstream of the surface change (x < 1 m.) 

is disregarded. This difference decreases as the downstream dis

tance increases. The analysis of the various terms of the 

wq-equation downstream of the surface change, showed that the 

two advection terms (U -r—-* and W TT—-*) and the modeled turbulent 
3x 3z 

transport term are responsible for the differences mentioned. Of 

these three terms the horizontal advection term and the turbu

lent transport term nearly cancel each other. Hence, the rela

tively small vertical advection term is important in this res

pect. Above the IAL the difference in transport of water vapour 

and heat partly compensates the deviation caused by the three 

above mentioned terms. The results of the Bowen ratio method 

also indicate that the determination of the value of the heat 

fluxes at the surface is quite accurate (within 10%) even when 

this method is applied just above the IAL (z § 1.5 6). 

As was mentioned earlier (Chapter 4) the present model is not 

capable to reproduce the § -curve exactly. Because the applica

tion of the aerodynamic method critically depends on the shape 

of this curve, the analysis of the aerodynamic method is rather 

complicated and uncertain. Nevertheless, it was found that the 

difference of the heat fluxes produced by the aerodynamic method 

(AEB„, H,„) and the model fluxes within the IAL is larger than 
Ar* Arj 

the difference of iEon (H,,̂ ) and AE».̂ .̂.-,) . This is attributed 
rSK BK ML/ ML/ 
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to the more stringent conditions which the aerodynamic method 

has to satisfy. At x = x the IBL reaches the upper grid 2 max r r ^ 
level. Beyond x the upper boundary conditions contaminate 

the solution. Especially the aerodynamic method is susceptible 

to these errors, and a proper analysis cannot be made for these 

large downstream distances. 

The final conclusion is that the present state of the second 

order model used in this study is subject to improvement, both 

in the modeling of the pressure terms and in the lower boundary 

conditions. Until a substantial improvement has been achieved, 

the main merit of this (and similar) models lies primarily 

in the qualitative prediction of the structure of the ASL after 

a change in surface conditions. Used in this way, it is an 

excellent tool for the understanding of the various processes 

which take place above an inhomogeneous terrain. This possibility 

of the application of a 2nd order model has been explored in 

this thesis for one specific purpose: the analysis of flux-

profile relations in inhomogeneous conditions. The application 

of this model for quantitative purposes turned out to be quite 

hazardous. This is the sole reason why the second goal of this 

study has not been achieved. This application awaits the pro

gress in the modeling of the higher order- and pressure terms. 

The problems concerned with the definition of the lower boundary 

conditions must be approached experimentally. The performance of 

an experiment, designed for the precise measurement of the pro

cesses which take place near the lower boundary, logically is the 

next step to the ultimate solution of this problem. 
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Appendix 1 

DERIVATION OF GOVERNING EQUATIONS 

A1.1 Conservation of mass equation 

With the assumptions mentioned in Chapter 2 it was shown that the 

mass-conservation equation (2.2) transforms in 

3u. 

1 

which, after applying Reynolds' decomposition yields 

3U. 

^T = ° ' < A 1 - 2 > 
l 

and 

3u. 

JT: = ° (A1.3) 
1 

A1.2 The momentum equation 

We start with the equations of motion (2.22) 

2~ 
3u . 3u. . ~ 0Tr 3 U. 
__i + Ù i = - 1- 15_ + q. — + v- ^ - - 2fi.e . .. u, , (A1.4) 
3t U j 3x. p r 3x±

 y i T r SXjSXj 3 i]k k ' 
and introduce the Reynolds' decomposition (2.24a) into (A1.4) 
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au. au. au. au. au. au. 
TT + T T + u j alT + u j Ü5T + u j "air + u j ^ T = 

1 ,3P + iP_, + ,0v + V +
 a 2 u i + »S + - ( - + —s-—) + q . ( + ——) + v + v + 

P r
v a x i a x i ' y i l T r T r ' a x . a x . a x . a x . 

2 n j £ i j k u k - 2 f i j e i j k u k • ( A 1-5 ) 

Averaging (A1.5) and using (A1.3) the equation for the mean 

field is obtained 
2 

au. au. , 0 a u . 
i ^ rT i 1 ap ^ v 0 0 TT ^ !L_ 

+ U . -r = - - + q . •=— - 2U . E . ., U, + v-at j ax. p ax. ^ i T j ijk k ax. ax, J -\ r l r k k 

- ^ T ( u i u j ) • (A1-6> 

Subtracting (A1.6) from (A1.5) yields the equation for the 

turbulent field 

au. - , e 

inr + ix" ujüi + Vi + ujui - uiuj = - -T -Jt + g i T; + 

a2u. 
v- ri 2fl . e . .. u, , (A1 . 7) 

3 X k k 3 1 : k 

where (A1.2) and (A1.3) were used several times. Equation 

(A1.7) is needed for the derivation of the transport equa

tions of u.u. u.8 and u.q which will be done in section A 1 . 4 . 

A1.3 The entropy equation 

According to e.g. Lumley and Panofsky (1964) the following 

relation holds for the entropy (S) 

dS = (ff)pdT • <ff>TdP = / d T - ( | | ) p dP = / d T - R*§ . (AI.8) 
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Substituting this into (2.3) and using (A1.1) we arrive at 

2 
C 3T 3T R 3P 3P 3 T 

p? T^i t + uj str* - p(Tt + l?j ^r> = k^T3ïïr • 
3 J K K 

Starting with the decomposition (2.5), putting 3P/3t = 0 

and u. -g— = 0, using | T/T | << 1, |P/P | << 1 and finally 
j 

dividing by pc we obtain 

3T ~ 3T ~ 8^r ^ r 3^r 3̂ T 
Tt + u j ̂ 77 + u j ̂ TT ~ c"p- u j ̂ TT = K H ^73x7 • ( A K 9 ) 

If for 3Pr/3x. and 3Tr/3x. the relations (2.7) and (2.9) 

are substituted respectively and if also the equation of 

state (2.10) is applied,the third and fourth term in (A1.9) 

cancel each other. What remains is 

3T ~ 3T K 3 T 
3t j 3x . H 3x. xk ' 

which to a good approximation may be written as 

It + u j ̂ T7 = KH^x73x7 • ( A 1-1 0 ) 

J j k k 

The next step, again, is the application of Reynolds' con

vention (2.24) to equation (A1.10). Analogous to the deri

vation in section A1.2 we obtain 

2 
3 0 J. TT 3 Q 3 / ä\ 3 0 / 7 V 1 1 1 1 
Tt + u j ^77 = - l x - ( u j e ) + KH ^3773x7 ' ( A 1 - 1 1 ) 

J j 3 J k k 

and 

7? + -557 V + V + u j e - V " KH ?$c > < A 1 - 1 2 ) 

for the mean and turbulent field respectively. 

123 



A1.4 The specific humidity equation 

Without derivation the equations corresponding to (AI.11) 

and (A1.12) for the specific humidity are presented. These 

read for the mean and turbulent field respectively 

|fi + u . | S - = - - i - ( u ~ i ) + < a
3 ° , (A1.13) 

3 t ] 3 x . 3x . 3 ^ v 3x, 3x, ' J 3 3 k k 

I? + it V + »j* - u.Q - ÏÏTi = KV J L - L . (AI.14) 

A1.5 Derivation of the second moment equations 

A1.5.1 The Reynolds' stress equation 

Multiplying (A1.7) for u. with u, , adding (A1.7) for u, mul

tiplied with u. and averaging the result yields 

3 , 3Ui d \ + „ 3 
T t u i u k + ( u j u k I x " + u j u i ^TT» + u j 33T u i u k = 

: : : 

3 u . 3u, . i k . 1 , 3p 3p . ^ (u .U, + U .U. ) - — ( u , —*— + u . „ r ) + v 3 k 3 x . 3 1 3 x . ' p , 1 k 3x . x 3x ' J 3 J 3 K r l k 

2 2 
-, 8 u ± 3 u k 

+ T - ( g i u k 9 v + g k u i 6 v ) + ( v u k JSTJSr: + v u i 33T755T' + 

r 3 : : : 

2fi <e U l u k + e k j l u l U i ) , (A1.15) 

3 where terms like u, u.u. and u. u, u. are equal to 
k 3 x . i 3 i 3x . k 3 ^ 

: 3 
zero and can be omitted. Moreover, (A1.2) and (A1.3) were 

used several times. 

The viscous terms in (A1.15) can be transformed as follows 

,2 „2 
3 u. 3 u, 3u. 3u, 3u. 

v uk Tern i r + v u i T3T3X- = v ix"(uk itr* ~ v ( ^ r ^r» + 

3 3 3 3 3 3 3 3 
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3 , 3 V , 3 u i 3uk. 3 , ^ V V 3 , 3 uk. + 

D D D D D D D D 

3x . Ui 3x.' V 3x . 3x . 
D D D D 

T h i s y i e l d s 

2 2 2 
3 U. 3 u, 3 U.U. 3u . 3u. 

+ v u . ^ - = v - i - £ - 2v ^—i — - . (A1 .16 ) k 3 x . 3 x . i 3 x . 3 x . 3 x . 3 x . 3x . 3x . 
D D D D D D D D 

The first term on the right hand side of (A1.16) represents 

molecular diffusion of u.u, and can be neglected in high Re

number flows (Wyngaard, 1982; Hinze, 1959) . The second term 

on the right hand side of (A1.16) represents molecular des

truction and cannot be ignored. If isotropy of the small 

scale structure of turbulence is assumed then 

3u . 3u, „ 3u . 2 2 _ 
2v 1ÏT W 1 = - V^ 6ik = - 3 E 6 i k - < A 1 ' 1 7 > 

D D D 

This implies that molecular destruction only affects the 

normal components of the Reynolds' stress tensor i.e. the 

variances u.u. 
l l 

With this transformation of the viscous terms, (A1.15) reads 

3U. 3U, l , k, 
TT u.u, + (u.u, T — + U.U. - ) + U. T U.U. 
3t i k D k 3x . i i 3x . i 3x . l k 

D D D 

3 , . 1 . 3p 3p , 1 , — 
(u.u.u, ) - —(u. T*-— + u. Tr—) + T̂ — (g. u. 3x.'"i"j"k' p v"k 3x. i 3x, ' T ,yi "k v 

2 -+ % uiV - I E 6ik - 2fij(£ijl UlUk + £kjl U l U i ) ' (A1-18) 

where (A1.3) has been used once again to obtain the third 
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order term •g^-(u-iuiu]c) 
j 

A1.5.2 The turbulent flux equations 

The result of multiplying (A1.7) with e, (A1.12) with u i # 

adding and averaging is 

30 —, 3Ui> 
it uie + uj i t uie + (uiuj w: + u j e -sir1 = - ^ : ( u i u j e ) 

: 3 D : 

2 
., — ^ — ee a u . . 2 r 

I_ 6*E- + a. =_? + v e^_.A- + ... u. ^ g, 7^- + v 6- + K H u. py 3x. M T 3x.3x. H i 3x.3x. 
r i r : : : : 

2ß . e . ., 6u, 
3 i]k k 

The molecular terms can be written as 

( A 1 . 1 9 ) 

.2 „2 -
„ 3 U i 3 9 U i 3 , 51T. 36 3 U i , a 1 . . . 

v 9^x-^rr = v w^x- - v i x - ( u i ^r:> - v ir: TIT • (A1-20) 

3 D 3 3 : : D D 
a n d 

,2 
„ 3 6 l 3 .. i . 36 l / - «5-i \ 
KH U i 3X.3X. - KH 3X.3X. " KH I x - ' 6 ^ ' ~ KH "557 "sSTT * ( A - 2 1 ) 

3 3 3 D 3 D D D 

The first term on the right hand side of (A1.20) and 

(A1.21) represents molecular diffusion of u.6 and can be 

neglected in flows with a high Re and Pe number. According 

to Wyngaard (1982) the second term in both equations is ne

gligible also. Hence only the third term remains. However, 

if isotropy of the smallest scales is assumed, these terms, 

because of their odd number of indices, must also equal zero. 

This means that the molecular terms in (A1.19) disappear al-

toge ther. Thu s 

, 8Ü7Ï 3U. 

It V + uj TÏT- + (uiuj lx" + V UÎT1 • 
D D 3 
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1 „3p . _ v 
- ̂ T ( u i U j e ) - —r

 9 ^ T + *i T 7 - 2f2jEijk V , (AI.22) 

The derivation of the humidity flux transport equation is 

analogous to the derivation given above. 

A1.5.3 The other (co)variance equations 

The derivation of the 6 , q and qe equations is straight-

2 forward. For the e equation we multiply (A1.12) with 6 and 

average, this yields 

J 2 2 3 kk 

where the molecular term must be transformed. To this end 

we write 

32e - a (eai_, _ . <M-) 2 

H 3x, 3x, H Sx, 3x, H Sx, k k k k k 

,2„2 
= 1 K - O K (l^)2 . 

2 H 3x,3x, H 3xk 

The first term on the right hand side represents molecular 

diffusion again and can be neglected. The second term cannot 

be neglected, even when isotropy of the smallest scales is 

assumed. Thus 

,2, 
K e_?_J = _ K (!§_)2 = _ g . (A1.24) 

H Sx, Sx. HvSx, ' e v ' 
k k k 

Equation (A1.23) then reads 

,2 
|x e2 + u. -P_ + 2 u~ë |^- = - ̂ ( u . e 2 ) - 2 7 . (A1.25) 
3t l 3x, 1 3x . Sx . J 6 

: 3 3 
~~2 

For the q and qe equation we find accordingly 
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3t 
+ U . ia? 

3x . 
: 

+ 2 
U j q 

3Q = 
3x . 

3 

(u .q ) - 2 E 

3x. 1^ c 
(A1.26) 

and 

It"»*»:!!1 
U j q 

30 
3x . 

: 

+ u 
3Q = 

3x . 
: 

3 
3x 

(u^qe) 
'qe 

(A1.27) 

where 

K (i£L,2 
v 3 xk 

and - (K + 
v 'H'3xk 3xk 

(A1.28 

a,b) 
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Appendix 2 

SOLUTION PROCEDURE FOR INTEGRAL METHODS 

I f s q u a r e b r a c k e t s a r e u s e d t o d e n o t e a r e l a t i o n b e t w e e n t h e 

d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s p l a c e d w i t h i n t h e s e b r a c k e t s , 

t h e s o l u t i o n p r o c e d u r e u s e d i n i n t e g r a l m o d e l s c a n b e s umma r i z ed 

a s f o l l o w s : 

Equation of motion [ U , W , T , X , Z ] 

Equation of c on t i nu i t y [U,W,x,z] 

Momentum i n t e g r a l equat ion 

Wind p r o f i l e tu, u ^ , d, x , z ] 

(1)-| 

\—[ U,T, X, Z ] (3) 

(2)-l 

[ 
ƒ (3) dz [U, d, u*_, x ] (4) 
o 2 

(7) — 

Shear stress profile [x, u*2, d, x, z ] (5)-

Mixing length assumption [ T , U, z ] (6)-

Boundary condition: U continuous at z = d 

[d, x] 

[d, uA2, x] (8)-| 

[d, u^2, x] (9)-

(10)—' 

(9) 
Solution ( 10 ) — d (x) • u*2 (x) -

(7) 

(5) 

U(x,z) 

- * T ( X , Z ) J 
(2) 

(6) 
W(x,z) 

Using the equation of continuity ( 2 ) , it is possible to 

eliminate the vertical velocity W from the equation of motion 

( 1 ) , resulting in eq. ( 3 ) . If this equation is integrated over 

the depth d of the IBL, the shear stress at z = 0 (u*,) and the 
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IBL height enter the analysis in (4). When a prescribed form of 

the horizontal velocity U is used (7) we are able to eliminate 

U as a dependent variable from (4) resulting in (8). Finally, 

if the boundary condition of a continuous velocity at z = d (9) 

is used,two equations (9) and (8) with two unknowns (d and u*-) 

are obtained. Combining these equations will generate a differ

ential equation in d (10) which can be solved either analytical

ly or numerically, giving d as a function of x. 

Substituting backwards will result in the other dependent 

variables as shown in the bottom line diagram. 

We did not include the parameters z.., zn_ and u^. in these 

diagrams. The part of the diagram behind the dashed line indi

cates that the prescription of a shear stress profile within 

the IBL is, as Peterson (1969) notices, a fourth equation, which 

creates a system with more equations than unknowns. But as 

Taylor (1969) notices, the mixing length hypothesis is necessary 

to obtain the vertical distribution of the shear stress. 
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Appendix 3 

SUMMARY OF CLOSURE APPROXIMATIONS AND BOUNDARY CONDITIONS 

A3.1 Closure approximation and modeled equations 

Although a full description of the closure approximations in the 

present model is given by Rao et al. (1974b) they are summarized 

in this Appendix for completeness and easy reference. Some clo

sure approximations were modified in the course of this study 

and these modified expressions are also presented here. As 

k = 0.41 was used instead of k = 0.35 (Rao et al., 1974b), the 

value of various constants in the closure approximations is 

changed accordingly. 

Tu.nbu.tznt tftanipoit tzHmi, 
The turbulent transport terms are approximated by a gradient 

transport model (see Chapter 4): 

Mui = - a t i£ : u i u j T (A3-1) 

where M can be 6u., qu., 9 , q , q8 or e and T = U.U./E is a 

turbulent time scale. The third moment u.u.u. in the u.u, 
1 3 k 1 k 

equation is expressed as 

3(-u.u . ) 
J- 3 (u.u. + T-pó . . )u, = a. •*— u u. T (A3 . 2) 

1 j 3 r i] k t 3x m k m 

where a. in both equations is a transport constant. In the 

original model a. = 0.15 was used, except in the e -equation, 

where the surface layer constraints require a = (4-4a)/16.6 

(see Wyngaard et al., 1974a). 

Vn.zhau.Kz co v aKA.an.cz tzKmè 

Rao et al. (1974b) modeled the pressure covariance terms 

in Eqs. (4.1) — (4.3) respectively by 
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- ( u „ 3J2- + u, !?-) + 2 ^ - ( Ï Ï T 
& 

p ) 
ik 

k 3x . i 3x. 3x . j ^ 3 
ï k 2 J 

( u . u , - u . u . —T—) — i k x i 3 . T 

-*— eu. 
3P i 

5 i k . C i k (A3 .3 ) 

ax. d i ^ ( A 3 - 4 ) 

q u 

- q | £ - = - d . — i (A3 .5 ) ^3x . l x 
1 

whe r e t h e c o n s t a n t s c . . = 6 . 7 , c . , ( i * k ) = 1 3 . 1 , d- = 5 . 0 
ix ' ik ' 1 

and d.. = 13.1. In these modeling approximations no mean 

strain and buoyancy effects have been incorporated. The 

extension to account for these effects is given by Wyngaard 

(1975) and was added in a later version of the model in 

this study, hence 

- (u, | P - + u . | 2 - ) + 4 - r ^ - ( u . p ) 6 . , = A . . (A3 .6 ) 
k 3x . x 3x ' 3 3x . l j ^ ' i k i k 

l k j J 

w h e r e 

6
i k i . -, „ , 9 U ± ™ v 

A . , = - — ( u . u , - u . u . —5—) + -= C . u . u . ( - 5— + - — ) + 
i k T 1 k 1 1 3 2 1 1 1 °x , 3 x . 

k 1 

3U. 3U. , 3U . 
+ C _ ( u . u . -T— + u , u . - r — - -=• 6.. u u . - — - ) + 

2 1 1 3x . k -j 3x . 3 i k m 1 3x J 3 J 3 J m 

+ C 3 ( | i ^ + ^ ë ï ï T - | J i?ÏÏT 6.k) (A3.7) 
r r r J 

The C-term is identical to the right hand side of eq. (A3.3). 

The C. and C2 terms represent mean strain effects, while the 

C, term parameterizes the buoyancy effects. Applying the lower 

boundary neutral surface layer limit, these constants are re

lated by: 
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C = 6 .67 (1-C2) 

C1 = 0.23 (1-C2) (A3.8) 

Unfortunately, Wyngaard (1975) only presents values of the 

various C s for the stable surface layer. For the turbulent 

heat and humidity flux, the approximation read respectively: 

eu. g. au. 

6lf- = di -r + a i T ; e s v + a2 i^ e u j (A3-9) 

and 

—r— qu. g. 3U. 
qr2- = d. + a, ri qe + a0 ̂  qu . (A3.10) ^3x. I T 1 T ^ V 2 3x. ] l r : 

where (A3.9) has been slightly modified with respect to the 

expression given by Wyngaard (1975) to account for humidity. 

The a1 and a_ terms parameterize buoyancy and mean strain 

effects respectively. The value of d. is the same as in 

Eqs. (A3.4) and (A3.5), while a„ = - 0.5 was used as sug

gested by Launder (1975). The value,of a, is determined 

by the gradient Richardson number: 

a1 = 0.5 if R± < 0 

a. = 0.5 t 1,5 R.- E3
t if 0 < R. < 1 (A3.11) 

a1 = 1.0 if R. > 1 

where Ri = (g/T) (se/3z)/(3U/3z) 

Modzlzd tqixationi 
The modeling expressions originally given by Rao et al. 

(1974a) presented in this Appendix are now applied to Eqs. 

(4.1)-(4.6) and (4.14). If homogeneity is assumed i.e. 

3/3x = 0 and, by virtue of the equation of continuity, 

als W = 0, the following equations apply to the various 

turbulence quantities: 
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2 uw 
3U 3 , 2 3u . 

Ti = _ a t I^(W T TT] 
1/ 2 ^ 2 ^ 2. —(u + V + w ) '11 _ 2 -

T 3 
(A3.12) 

n 8 / 2 3V2, 
O = _ a t _ ( „ x _ ) 

2 1 / 2 _ 2 _,_ 2 . 
V - -~(u + V + w ) 

'22 2 
T 3 

(A3.13) 

n g —̂— 3 , 2 3w . 
2 T W8v = " a t 1JI(W T ai"1 -r 

2 1 , 2 ^ 2 ^ 2 , 
w - -^-(u + v + w ) 

'33 2 -
'J T 3 

(A3.14) 

2 3U g —— 
w ^ ^ - ^— u e 

3 z T v 
3 , 2 3uw. 

t 3 Z 3 z UW ( A 3 . 1 5 ) 

- r JU A 30 
we — + uw — 

3 Z 3 Z 
3 , 2 3 u 6 , 

a t i ^ ( W T a i"» u ^ 
T 

( A 3 . 1 6 ) 

w2 | ° - f i i 
3z T v 

r 

3 , 2 3w9 . 
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3 . 2 3q . 2 2 b ( A 3 . 2 2 ) 

- 4 e 

2 2 2 
u + V + w 

- ( e - a P ) = 
3 / 2 3 e . 

a t Ti{W T 3 Ï> 
( A 3 . 2 3 ) 

1 34 



A3.2 Summary of boundary conditions 

The lower boundary conditions used in the model of Rao et al. 

(1974b) were based on the equilibrium flux-profile relations 

defined by the Kansas experiment results (Businger et al., 

1971). In the present study modified expressions are used 

in accordance with k = 0.41 instead of k = 0.35. Thus: 

at z = z . (x < 0, upstream conditions: i = 1) 

U = W = 0, e = 0o , Q = Qo , 

k zoi dU =
 k zoi _30 =

 k zoi dQ 
u*i 3 z T*i 3 z 3*1 8 z 1 , 

.2 „ „ .2 ,..2 _ , „ __2 ,..2 _ ..2 ,..2 
ri 

uw/u*. = - 1.0 , u /u*, = 4.0 , v /u*. = w /u*. = 1.75 

we/u^T = wq/u q* = -1.0, ue/u, T = uq/u^.q*. = 4.0 ci 

]^z 

e2/T*± = q2/ql± = q ë / q ^ T ^ = 4.0 , ^ - 2 - 7 = 1.0 (A3.24) 

In part II of the model (x > 0, downstream conditions: 

i = 2) the value of u^.(x), T*2(x) and q*2(x) i s deter

mined by U(x,z), Q(x,z) and Q(x,z2) at the lowest two 

levels (z. and z?) where the lowest level z. coincides 

with the surface roughness height zn?. The value of 

U(x,z2), e(x,z_) and Q(x,z2) is calculated by the model 

using the finite difference computation scheme. But at 

z = z, = z„2 only U is known, as by definition U(x,z..) 

= 0. This allows the computation of u4»(x) by means of 

(5.4). The boundary value of the temperature and speci

fic humidity must somehow be obtained by inferring 

equations relating these quantities to others already 

known. Rao et al (1974b) used the energy balance equation 
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H02(x) + XE02(x) = Rn - G (A3.25) 

with a predetermined constant value of R - G. That the 

available energy is constant throughout the flow, 

(either for x < 0 and x > 0), seems questionable but appears 

to be a reasonable assumption. Experimental data (Lang, 

et al., 1983) indicate that this is, at least within some 

10% a good approximation. Using the equilibrium flux-

profile relations, (A3.25) can be expressed in terms of 

mean quantities 

**1 v"*1 ' c Vl*1 u ^ (T^ + — q_) 

(li) + i_(lQ) = — (A3.26) 
3 z z02 cp 3 Z z02 kZ02 U * 2 ( x ) 

3 U 
where u*0(x) = kz n o (—) and the gradients of Q and 0 

are approximated by finite differences: 

_ Q(x,z2) - Q(x,Zl) 

3z zQ 2 z2 - z1 

and 

<4§> 
e (x,z2) - e (x,z1) 

8 z z02 z2 " z1 

A second equation is necessary to solve (A3.26) for 

0(x,z ) and Q(x,z.). Rao et al. postulated that 

Q(x,Zl) = R02 . Qs(0(x,Zl)) (A3.27) 

where RQ2 is the surface relative humidity, which is 

assumed to be constant for x > 0. Q (0(x,z..)) is the 

saturation specific humidity for the temperature at 

z = z1 = zQ2. Solving (A3.26) and (A3.27) for 0(x,z..) 

and Q(x,z.) enables the calculation of T*2(x) and 

q*2(x) which, together with u*2(x) determine the lower 
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boundary condition for every variable by means of (A3.24). 

Instead of using (A3.27), an alternative method to close 

(A3.26) was suggested by McNaughton (1984) and is discussed 

in Appendix 4. 

The upper boundary conditions in Part I (x < 0, upstream 

situation) are also determined by the existing flux-profile 

relations and the predetermined height of the atmospheric 

boundary layer height (z ) . 
A t z = zp,ax (x < 0, upstream conditions: i = 1) 

k z max 
u * i 

k z max 
q * ± 

3U 
3z 

3Q 
3z 

, . max. max 3 6 , , max. 

w L 

u 2 / u ^ = o . 2 ( W 2 / u ^ , + 4 , 

- 2 ' " V = ° - 2<w*/u*i ) v / u l r = 0 . 2 ( v ^ / u ' ) + 1 .75 , 

- o o z 2 /3 2. . /. ~ . max. , .. -, r-w / u i > i = 2 ( — ) + 1 .75 

o z 

—r / ™ — / — / 2 max w e / U x . T ^ . = w q / u ^ . q * . = u w / u t . = 

u 9 / u v t i T j t i = u q / u A i q A i = 4 «m ^ 

» 2 / T 4 = q 2 / q 4 = që /qA iT # 1 = 4(1 - 8.3 ^ M ) 

UW I? + f w 9v (A3.28) 
r 
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In part II (x > 0, downstream conditions) the upper boundary 

value of every variable, except W, remains fixed, i.e. sta

tionary conditions aloft are assumed. Gradients are supposed 

to be very small hence the vertical windspeed W does not sub

stantially affect the upper boundary values. This implies that 

calculations cannot be extended beyond the value of x where the 

IBL coincides with the highest calculation level. 

138 



Appendix 4 

RECONSIDERATION OF THE LOWER BOUNDARY CONDITION 

In order to avoid the, rather unrealistic, assumption that 

R02 has a constant value for x > 0, and thus discarding 

Eq. (A3.27) McNaughton (1984) suggested the following pro

cedure. 

Use the Penman-Monteith equation to calculate the latent 

heat flux density 

(iT7,(Rn - G ) + iï? • ï-[Qs<e<*,z2)) - Q<X'Z2>J 
XE = - (A4.1) 

1 + (-*—) r /r 
XS+Y s' a 

where r is the aerodynamic resistance, 

r is the surface resistance, s 
s is the slope of the saturation specific humidity 

curve 

and y = c /A. 

S + Y 

Multiplying this equation by ( -) r yields 

(f)(R„ - G) r + pA[Q(0(x,z )) - Q(x,z )] 
XE = -I S » ^ s ^ 2. (A4.2) 

(1 + S/Y) r= + r a s 

The aerodynamic resistance r is obtained from the wind 
a 

profile by 

r = U(X,z0)/u*(x) (A4.3) 

This leaves r undetermined, and hence a new independent 

parameter is introduced. 
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The latent heat flux density at each step downstream is 

calculated by solving Eqs. (A4.2) and (A4.3), using an 

empirical function for Q (0) . The energy balance (A3.25) 

provides the accompanying sensible heat flux density. 

The value of Q(x,z.) and 0(x,z1) is obtained by using 

H = pcp(e(x,z1) - 0(x,z2))/ra (A4.4) 

and 

XE = pA(Q(x,z1) - Q(x,z2))/ra (A4.5) 

In daytime situations when R - G is positive, all variables 

in (A4.2) are positive and hence a negative value of the la

tent heat flux density XE is precluded. 

The boundary conditions (A4.2)-(A4.5) were inserted into the 
present model and the same upstream situation as discussed 
in Chapter 4 was used (Figs. 4.10 and 4.11). The value of 
the surface resistance r for the upstream terrain was cal
culated from the equilibrium profiles and amounted to 37 s/m. 
As the air moves over a warmer, dryer and rougher surface 
downstream, the latent heat flux and the aerodynamic resis
tance (r ) must decrease. According to (A4.2) the value of 

a 

r must be greater than 37 s/m. For this experiment r was 

set to 5000 s/m. 

The results, as far as the temperature and the absolute 

humidity are concerned, are presented in Figs. (A4.1) and 

(A4.2). Fig. (A4.1) clearly shows that the gradient of the 

absolute humidity is negative everywhere, hence the latent 

heat flux is directed upwards throughout the flow. The 

negative (i.e. downwards) latent heat flux in Fig. (4.10) 

releases latent heat at the surface which is physically 

unrealistic. Because of this additional input of energy at 

the surface, the surface temperature must increase substan

tially. This is visible in Fig. (4.11). In the present situ-
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ation no latent heat is released at the surface and hence the 

increase of the surface temperature after x = 0 will be much 

smaller. 

Though the problem of the negative latent heat flux has been 

effectively eliminated by the procedure outlined in this 

appendix, one problem still remains. Instead of using the 

assumption of a constant relative humidity at the surface 

it is now assumed that the surface resistance r remains un-
s 

changed. Although, on observing Eq. (A4.2), the solution is 

not very sensitive for this assumption, it remains in doubt. 

Furthermore, the application of equation (A4.2) implies that 

the surface is at saturation point. In this example the 

Penman-Monteith equation is used above a very dry surface, 

this seems contradictory. 

Finally, for a change from a dry, warm surface to a cool and 

humid one, the problem of a downwards latent heat flux will 

not arise. In that case the sensible heat flux will be direc

ted downwards, this is not an uncommon feature. 

0.007 0.009 0.011 0.013 0.015 
—^p v Ckg /m 3 ) 

Figure A4.1 Absolute humidity profiles after a change in surface 

conditions for various distances downstream. 
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Figure A4.2 Temperature profiles after a change in surface 

conditions for various distances downstream. 
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Appendix 5 

TRANSFORMATION OF THE SECOND ORDER FLUX-PROFILE RELATIONS 

We want to transform the flux profile relations, derived from 

the modeled transport equations of the second moments, into 

relations resembling the "standard" flux-profile relations 

(5. 22) - (5. 24) . The additional equations for Ü0, ï1" and që" 

(A3.16), (A3.21) and (A3.20) are then needed. 

The following two assumptions are made: 
me 

(i) the buoyancy terms 2— in (5.28)-(5-30) can be approxi-
r w2 

mated by ̂  — (m = u, 6 or q). Thus the influence of water 

vapour on the buoyancy term will be neglected. 

(ii) the turbulent transport term in the equation for ue, TT and 

q6 is negligibly small. This can be inferred from Figs. 4.3 and 

4.4 for e"5" and u¥, respectively. Calculations show that this also 

applies for the qe equation. 

Hence we start with the following equations: 

— w5-! , 3U g u6. ,,c ... 

u w = - ( _ ii_ , (A5.1) 
c13 àz 1r W 

^ - -ï^M-f-S» > (A5-2) 
a3 r W 

^--TT^-k^ > (A5"3) 

u e = x (we | 2 + uw|f) , (A5.4) 
1 

i(we ||) , (A5.5) 
b 3z' 
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*e • - k ( w * H + we I S > . (A5-6) 

where c.. -. = d, = c. 

Substitute IP" (A5.5) into (A5.2), this results in: 

r 

Substitute ue (A5.4) and subsequently w9 (A5.7) into (A5.1) 

This yields after rearranging: 

^ , _ 7 , ÎU ] - V ( 1 _ + P2> 
1 

u w = - — Ti m r , (A5.8) 

w h e r e P i = | _ £_ | | , 

«^2-fetlî-

Analogously we will find for wq after substituting q6 (A5.6) 

and wë (A5.7): 

W^T 8Q 1 - P 3 / ( 1 + P 2 ) 

^ = - V l ï — i + p. > ( A 5 - 9 ) 

W h e r e P3 = IEE T~x Ü 

Equations (A5.8) and (A5.9) can be reduced to simpler forms 

if P. << 1 (i = 1,2,3) is assumed. We then obtain: 

— V ^ T 3 U , , . , 2 T 2 g 3 0 . , - c i n . 
u w = - — 7 5 / ( 1 + d^c" Tr ï ï> ' ( A 5 - 1 0 ) 

and 
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^!?/<1 +£ ^ H ) (A5.11) W q c 3 z ' " ' bc T, 3z 

Note the similarity of the expressions for the fluxes of 

sensible- and latent heat (A5.7) and (A5.11). This is in 

accordance with eqs. (5.23) and (5.24) and the assumption 

(5.13). In the next step only the buoyancy correction factors 

in (5.22) and (A5.10) are considered. Hence it is assumed 

that the influence of buoyancy on V^T/C is small. Then we 

are left to show that: 

• . - ' • Ü 7 Ï - M <"-12> 
1 r 

Using eqs. (5.11) and (5.7), the left hand side of the 

above equation reads 

r u 4 

which after applying eq. (5.5) yields 

•»= 1 *4k'z' 3 _ _ ^ H (A5.13) 
r u* 

Finally, it is assumed that T = KZ/U^ . If eqs. (A5.13) 

and (A5.12) are substituted we obtain 

1 + 4 kill 2_ 11 = n + _?_ £l2l 3_ 11 
2 T 9z cd, 2 T 3z u * r 1 u* r 

(A5.14) 

The assumption of the distribution of x is óf course not 

rigorous, as part of the buoyancy effect is still contained 

within the VP'T/C term. Attempts to solve also for ë"5" and e 

are frustrated by the fact that the turbulent transport terms 

of ÏP", v2 and w7" are not negligible, compared to the produc

tion and dissipation terms. This renders the whole set of 

equations analytically untractable. 
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Samenvatting 

De bepaling van de verticale fluxdichtheden van impuls, voel

bare- en latente warmte aan het aardoppervlak is van groot 

belang in diverse wetenschappen zoals bijvoorbeeld meteorologie, 

landbouwkunde en hydrologie. De fluxdichtheid van een grootheid 

wordt gedefinieerd als het transport van die grootheid per een

heid van oppervlak en per tijdseenheid. 

Een directe meting van een fluxdichtheid aan het aardoppervlak 

is vaak lastig uit te voeren, daarom neemt men gewoonlijk z'n 

toevlucht tot metingen in de atmosfeer en in de bodem. Een veel 

toegepaste techniek is die welke gebruik maakt van zogenaamde 

"flux-profiel relaties". Deze relaties koppelen de verticale 

fluxdichtheid van bijvoorbeeld de voelbare warmte aan een verti

caal temperatuurprofiel. Bij zo'n methode kan dan volstaan wor

den met een relatief eenvoudige meting van de temperatuur op 2 

of meerdere hoogten. Echter, bij het gebruik van flux-profiel 

relaties gaat men er vanuit dat aan een aantal voorwaarden is 

voldaan. De belangrijkste voorwaarde is wel dat de fluxdichtheid 

onafhankelijk is van de hoogte, hetgeen alleen opgaat boven een 

uitgestrekt, homogeen terrein. Daar aan deze eis in de praktijk 

meestal niet (voldoende) voldaan is, rijst de vraag in hoeverre 

dit de meetresultaten beïnvloedt. Het doel van dit onderzoek is 

dan ook na te gaan hoe groot de fouten zijn die men maakt bij 

het gebruik van de standaard flux-profiel relaties boven een 

niet-homogeen terrein, en tevens na te gaan hoe die fouten 

samenhangen met de structuur van de atmosfeer boven een inhomo-

geen terrein. 

In hoofdstuk 1 wordt als inleiding de bovenstaande vraagstelling 

gepresenteerd. Er wordt in aangegeven dat het onderzoek uitge

voerd zal worden door gebruik te maken van een numeriek 2e orde 

model. De numerieke aanpak in het algemeen wordt vergeleken met 

de traditionele keuze: theoretisch of experimenteel. 
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Een nadere uitwerking van de probleemstelling wordt gegeven in 

hoofdstuk 2. Hierin wordt aangegeven dat de studie betrekking 

heeft op het onderste deel van de atmosfeer: de atmosferische 

oppervlakte laag (ASL) en op welke manier de ASL zich ruwweg 

aanpast aan een terreinovergang. Het doel van dit onderzoek 

wordt daarna in dit kader geplaatst. In het tweede deel van 

hoofdstuk 2 worden de voor het probleem relevante vergelijkingen 

behandeld. 

In hoofdstuk 3 wordt een indeling in diverse klassen gemaakt 

van de bestaande modellen die een beschrijving geven van het 

gedrag van de atmosferische oppervlaktelaag na een terreinover

gang. De voor- en nadelen van de diverse modelklassen worden 

besproken. Het blijkt dat voor het huidige onderzoek de nume

rieke modellen met een tweede orde sluiting, kortweg 2e orde 

modellen, de meeste mogelijkheden bieden en dat van dit soort 

modellen tevens de beste resultaten verwacht mogen worden. 

Het 2e orde model van Rao, Wyngaard en Coté (1974b) dat gebruikt 

zal worden, wordt in hoofdstuk 4 nader bekeken. Dit model be

staat uit een gedeelte (deel 1) dat de beginprofielen berekent 

van de diverse grootheden zoals windsnelheid, temperatuur, lucht

vochtigheid enz. (initialisatie). Het andere gedeelte (deel 2) 

van dit model berekent daarna het gedrag (= de verdeling) van de 

diverse grootheden na een terreinovergang. 

De beginprofielen en de balansen van diverse vergelijkingen, 

berekend met deel 1 worden vergeleken met experimenteel gevonden 

waarden en enige universele functies. Hieruit blijkt dat de 

randvoorwaarden aan de bovengrens van het model problemen ople

veren in een niet-neutrale atmosfeer. Tevens wordt duidelijk 

dat de modellering (= benadering) van met name de druktermen in 

de diverse vergelijkingen te wensen overlaat. Een en ander re

sulteert in beginprofielen, bijvoorbeeld van de verticale gra

diënt van de windsnelheid (3U/3z), die niet exact overeenkomen 

met de verwachte universele functies. In deel 2 van het model 

wordt als randvoorwaarde aan de ondergrens van het model o.a. 
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verondersteld dat de relatieve vochtigheid (Rn?) constant is. 

Deze aanname levert een niet-realistische oplossing bij een 

overgang van een nat en koel terrein, naar een droog en warm 

terrein. Een methode om dit te verbeteren wordt aangegeven. Het 

uitvoerig bespreken van deze zwakke punten wil natuurlijk niet 

zeggen dat het model daarom onbruikbaar is. Een positief punt is 

dat de oplossing stabiel blijkt te zijn bij een tijdelijke ver

storing van de evenwichtssituatie: alle variabelen keren weer 

terug naar hun oorspronkelijke toestand. 

In hoofdstuk 5 wordt een samenvatting gegeven van de bestaande 

flux-profiel methoden. De aannamen die aan elk van die methoden 

ten grondslag liggen worden kort besproken. In de homogene 

(evenwichts)situatie worden deze methoden vergeleken met elkaar 

en met de zogenaamde "2e orde flux-profiel relaties". Dit laats

te zijn flux-profiel relaties, welke afgeleid worden uit de 

transportvergelijkingen van het model. Het blijkt dat in een 

neutrale atmosfeer de fluxen, bepaald met beide soorten relaties, 

vrijwel identiek zijn. In een niet-neutrale atmosfeer is de 

interpretatie van de 2e orde relaties minder eenvoudig. Het 

blijkt dat stabiliteitseffecten op 2 manieren de 2e orde flux-

profiel relaties beïnvloeden: via een extra term in de relatie 

en via de verandering van de zogenaamde "2e orde eddy diffusie 

constanten". Op 2 manieren wordt vervolgens nagegaan in hoeverre 

de 2e orde relaties consistent zijn met de standaard flux-profiel 

relaties. Het blijkt dat fluxen, bepaald met de Bowen verhouding 

methode zeer goed (binnen 5%) overeenkomen met de fluxen bepaald 

met de 2e orde relaties. Daarentegen blijkt dat de fluxen 

bepaald met de aerodynamische methode een veel slechtere over

eenkomst vertonen. Dit laatste is een gevolg van de tekortkoming 

van het model, besproken in hoofdstuk 4. 

De Bowen verhouding methode en de aerodynamische methode worden 

in hoofdstuk 6 toegepast op de profielen van windsnelheid, tem

peratuur en luchtvochtigheid welke berekend zijn met deel 2 van 

het model. In deze inhomogene situatie blijkt dat de Bowen 

verhouding methode warmtefluxen geeft die in absolute waarde 
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groter zijn dan de fluxen berekend met het model. Tenminste, dit 

is het geval in de zogenaamde aangepaste grenslaag (IAL), waarin 

de modelfluxen vrijwel onafhankelijk van de hoogte zijn. Het 

blijkt dat het verschil voornamelijk veroorzaakt wordt door de 

bijdragen van de advectietermen en de turbulente transporttermen 

in de modelvergelijkingen. Met deze effecten wordt in de Bowen 

verhouding methode per definitie geen rekening gehouden. De ver

schillen zijn echter gering (< 10%) indien het gebied vlak ach

ter de terreinovergang (binnen 2 m.) buiten beschouwing wordt 

gelaten. Een bijzonder gunstige bijkomstigheid is overigens dat 

de Bowen verhouding methode zelfs een betere schatting van de 

warmtefluxen aan het aardoppervlak geeft dan de volledige model

vergelijkingen. Ver boven de IAL zijn de fluxen, bepaald met de 

Bowen verhouding methode, juist kleiner (in absolute zin) dan de 

fluxen bepaald met het model. Een mogelijke verklaring hiervoor 

wordt kort besproken. 

De analyse van de aerodynamische methode, tenslotte, is zoals 

in hoofdstuk 5 werd opgemerkt, minder goed mogelijk door de af

wijkingen in de beginprofielen. Hierdoor is de beschouwing van 

de resultaten van de aerodynamische methode beperkt en slechts 

kwalitatief. Het blijkt wel dat deze methode aanzienlijk grotere 

fouten geeft dan de Bowen verhouding methode. Dit wordt toege

schreven aan de grotere gevoeligheid van de aerodynamische 

methode voor de juiste hoogteverdeling van de diverse dimensie-

loze gradiënten. 

In hoofdstuk 7, tenslotte, worden de resultaten van dit onder

zoek samengevat, en wordt kort aangegeven wat in het algemeen 

de toepassingsmogelijkheden van het gebruikte model zijn. 
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