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NOTATIONS AND ABBREVIATIONS 

An estimate of a particular parameter is denoted by a caret above 

the parameter. Thus c^ is an estimate of ax. However, estimates of 

correlation coefficients (p) are denoted by r and estimates of the 
2 2 

variance (a ) are denoted by s . Stochastic variables are under­

lined. The expectation operator is denoted by E, and a frequency 

of, for instance, two events per year is written as 2 (# year ). 

Means of variables with two subscripts x. . are denoted by x. , 
l, j i • 

x ., or x , where a point indicates the suffix with respect to 

which the mean has been taken. 

Although notations are introduced as they are used, some symbols 

appear throughout this study, and are listed here for convenience. 

A area 

C symmetric N by N covariance matrix 

cc coefficient of covariation 

cv coefficient of variation 

D duration of rainfall 

Fö annual frequency of exceedance in summer (beginning of May to 

the end of September) of a certain threshold of daily rain­

fall depth H (mm), for instance F1 5 
w F. annual frequency of exceedance in winter (beginning of October 

to the end of April) of a certain threshold of daily rainfall 

depth £ (mm) 

h distance 

I intensity of rainfall 

i suffix indicating station number 

j suffix indicating year number 

K symmetric N by N generalized covariance matrix 

N number of sample points 

n length of record 

N(h) number of paired data in a particular distance class 

L dimension of a region V, in particular the maximum distance 

occurring between sample points 



g exceedance of a threshold or peak 

g,̂  peak guantile corresponding to a T-year return period 

R total annual rainfall 

r(h) estimate of the correlation coefficient p(h) 

s estimate of the standard deviation a 

s residual standard error r 
T test statistic 

T return period 

t time co-ordinate 

u spatial co-ordinate vector 

V region 

x variable, denoting mean areal rainfall 

x variable, denoting point rainfall at point S 

x guantile (eventually written as x. or x„ ) 
P "/P -5 / P 

Z(u) intrinsic random function located at u 
z(u) realization at u of an intrinsic random function Z(u) 

a significance level 

r symmetric N by N matrix of semi-variances y. . 

Y(h) semi-variance at distance h 

p(h) correlation coefficient at distance h 

a standard deviation 
2 

a_ sguared estimation error 
ov sguared kriging error 

Freguently used abbreviations 

ACN Aitken condensation nuclei 

ARF statistical areal reduction factor 

BLUP best linear unbiased predictor 

CCN cloud condensation nuclei 

cdf cumulative distribution function 

df degrees of freedom 

D14 data set consisting of 14 long-term daily rainfall records 

for the period 1906-1979 



D32 data set consisting of 32 daily rainfall records for the 

period 1932-1979 

D140 data set consisting of 140 daily rainfall records for the 

period 1951-1979 

edf empirical distribution function 

GMT Greenwich mean time 

H12 data set consisting of 12 hourly rainfall records 

IRF-k intrinsic random function of order k 

KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal 

Netherlands Meteorological Institute) 

LS least squares 

MM method of moments 

ML maximum likelihood 

ms mean of squares 

OLS ordinary least squares 

POT peaks-over-threshold 

pdf probability density function 

SRF storm-centred areal reduction factor 

UTC universal time co-ordinated 



1. INTRODUCTION 

The object of this study is to investigate heterogeneity of rain­

fall in time and space in the Netherlands. The length scale consid­

ered is several hundreds kilometres in Chapter 2, in which possible 

partitions of the Netherlands into regions on the basis of local 

differences in rainfall are investigated, and a few tenths of a 

kilometre in Chapter 3, in a study of spatial variability of time-

aggregated rainfall (over an hour or a day) at the basin scale. 

The time scale considered in Chapter 2 is a year, divided into a 

summer period (May to September) and a winter period (October to 

April). As alternatives to homogeneity in rainfall series, trends 

and jumps are considered in Chapter 2. 

The absence of homogeneity of rainfall may have relevance for hy-

drological design. For instance, the possible effects of urbaniza­

tion and industrialization on precipitation, may have design impli­

cations. Also, the question may be raised as to whether it would 

be preferable for a particular design to use rainfall data from 

a nearby site instead of rainfall data measured at the Royal 

Netherlands Meteorological Institute (KNMI) at De Bilt. In addi­

tion, because of rainfall variation in time and space, considera­

tion may be given to whether an areal reduction factor is applica­

ble in a design. Therefore, rainfalls with rather low return periods 

were studied. Because the object was to include as many rainfall 

records as possible, which were of good and even quality, the study 

was almost completely confined to rainfall data collected and pub­

lished by the KNMI. As the network of rainfall recorders in the 

Netherlands is very sparse, the study is concerned mainly with 

daily records, but some hourly rainfall records have also been 

used. 

Homogeneity of Dutch rainfall records is investigated in Chapter 2, 

and in Chapter 3 the statistical areal reduction factor (ARF) is 

estimated for daily and hourly rainfall. In the introduction to 

each chapter a number of issues is raised, which are dealt with 

in the subsequent sections. Conclusions are presented within each 

section and not in a separate section at the end of the chapter. 



All equations, tables and figures are numbered consecutively with­

in each chapter; equations and tables are to be found in the appro­

priate place in the text, and figures at the end of the relevant 

chapter. 

A survey of the rainfall data used in this study is given in the 

Appendices A.l and B.l. The geographical location of the rainfall 

stations and regions used throughout this study are given in Fig­

ure 1.1; and a list of all provinces and rainfall stations together 

with their KNMI code numbers is presented in Table 1.1. 



PROPOSITIONS 
1. The Netherlands may be assumed to be inhomogeneous with regard 

to daily rainfall level. A partition of the Netherlands based 

on the combined effects of friction, topography, differential 

heating, and urban precipitation enhancement, and a partition 

based on mean annual rainfall, show significant inhomogeneities. 

[This thesis] 

2. The effect of urbanization on heavy daily rainfall in summer 

increases with rainfall depth. 

[This thesis] 

3. Statistical areal reduction factors depend inter alia on climate 

and on season. 

[This thesis] 

4. Present theories about the causes of urban precipitation enhance­

ment stress the influence of thermodynamic and mechanical pro­

cesses rather than the influence of additional condensation 

and freezing nuclei from urban aerosols. This does not support 

the assumption of Petit-Renaud (1980) that there was an urban 

effect due to coal-based industrialization in northern France 

in the second half of the nineteenth century. 

[Petit-Renaud, G., 1980. Les principaux aspects de la variabi­

lité des précipitations dans le nord de la France. Récherches 

Géographiques à Strasbourg no. 13-14: 31-38] 

5. The areal reduction factors for discharge presented in the "Cul­

tuurtechnisch Vademecum" are unnecessarily high. 

6. The choice of a design rainfall intensity of 60-90 1-s -ha 

is partly a consequence of uncertainties about the actual per­

formance of a sewerage system. Thus firstly, evaluation of ac­

tual performance is necessary. 

Bi•>;;.!. VH :-.,•:iL 

LANDBOUW i KM HOOL 
"WAGEN INGfcN 



7. The method which is currently used for estimating the general­

ized covariance is ad hoc, and it is by no means certain that 

it provides asymptotically efficient parameter estimates. 

[Barendregt, L.G., 1983. Maximum-likelihood schatting van de 

gegeneraliseerde covariantie, in: Enkele kanttekeningen bij de 

stochastische interpolatiemethode 'kriging'. IWIS-TNO, 

's-Gravenhage] 

8. The sole criterion of a maximum overflow frequency is inappro­

priate for the design of centrally operated, regional sewage 

water transport systems. However, in order to include other 

criteria, certain technical, legal, and financial obstacles 

must be overcome. 

9. Strategies for the Third World, such as, 'small farmers approach' 

and 'intermediate technology' reflect, inter alia, too academic 

an attitude and paternalism. 

J.V. Witter. Heterogeneity of Dutch rainfall. Wageningen, 

12 December 1984. 



2. HOMOGENEITY OF DUTCH RAINFALL RECORDS 

2.1. INTRODUCTION 

Rainfall series can be seen as realizations of a process {x(u,t)}, 

where the co-ordinate vector of the sample points is denoted by u 

and time is denoted by t. Although such a process can be homogene­

ous in several ways, in this chapter, only two types of homogeneity 

are investigated: 

homogeneity in time: given a location U, the probability distri­

bution of the process {x(U,t)} is independent of time; 

homogeneity in space : given a time co-ordinate T, the probabil­

ity distribution of the process {x(u,T)} is independent of 

location. 

As rainfall series exhibit periodicities, the homogeneity of the 

following seven annual rainfall characteristics are investigated: 

total annual rainfall R; 

annual frequency of exceedance F of a certain threshold Z of 

daily rainfall depth, 

. in summer F , the summer being defined as the period from the 

beginning of May to the end of September 
w . in winter F , the winter being defined as the period from the 

beginning of October to the end of April 

. three thresholds were chosen for the annual frequency of ex­

ceedance, 1, 15, 25 mm. 

Total annual rainfall R, and annual frequency of exceedance of 
s w 

1 mm in summer (F. ) and in winter (F. ) give a general indication 

of rainfall level: its long-term mean value. Annual frequencies of 

exceedance of 15 and 25 mm, which are of more relevance to hydro-

logical practice, are also useful in investigating the effect of 

industrialization and urbanization on rainfall trend. Convective 

rather than frontal rainfall events are more susceptible to modi­

fication, and severe weather phenomena (thunderstorms) are likely 

to be affected in particular (Oke, 1980). 

The existence of regional differences in rainfall depths has been 

reported by various investigators, (e.g., Buishand and Velds, 1980), 

and also regional differences in rainfall trend have been reported 



(e.g., Kraijenhoff and Prak, 1979; Buishand, 1979). These differ­

ences in trend have been attributed to the anthropogenic effects 

of industrialization and urbanization. Therefore, it has been sug­

gested (Werkgroep Afvoerberekeningen, 1979) that more stringent 

design criteria should be used for urban than for rural areas. 

Earlier investigations of homogeneity in time of Dutch rainfall 

records have focused mainly on total monthly and annual rainfall, 

except Kraijenhoff and Prak (1979), who established the inhomoge-

neity in time of the annual frequency of daily rainfall exceeding 

30 mm in summer. Jumps in the mean seasonal and annual rainfall 

of Dutch rainfall series roughly for the period 1925-1970, have 

been studied by Buishand (1977a). Departures from homogeneity in 

24 Dutch long-term monthly and annual rainfall records were report­

ed by Buishand (1981), who also investigated departures from homo­

geneity in 264 Dutch records of annual rainfall for the period 

1950-1980 (Buishand, 1982a). In all three studies, strong indi­

cations of a change in the mean were found for large numbers of 

records. 

In this chapter the following issues are dealt with: 

. In Section 2.2, mean values of the rainfall characteristics 

defined above for the Netherlands are determined from daily 

rainfall records for the period 1951-1979 for 140 rainfall 

stations of the Royal Netherlands Meteorological Institute 

(KNMI). This data set is denoted as D140 (Appendix A.l). 

These mean values are compared with mean values determined 

from the long-term records for the period 1906-1979 for 

14 KNMI rainfall stations considered to be of good quality 

(Buishand, 1982b). This data set is referred to as D14 

(Appendix A.l). 

. In Section 2.3, time-inhomogeneity of rainfall in the 

Netherlands is considered. Use is made of data set D140 

for the period 1951-1979 and of data set D14 for the period 

1906-1979. 

. In Section 2.4, local differences in rainfall level and rain­

fall trend between Dutch rainfall stations are investigated. 

Use is made of data set D140. 



. In Section 2.5, consideration is given to whether such local 

differences in rainfall level and in rainfall trend justify 

a partition of the Netherlands on the basis of rainfall. Use 

is made of data sets D140, D14, and H12, that is hourly records 

of 12 KNMI rainfall stations (Appendix A.l). 

. In Section 2.6, statistical evidence for the effect of urbani­

zation and industrialization on rainfall in the most urbanized 

and industrialized part of the Netherlands, namely the Rand­

stad, is investigated. Use is made of data set D32, which con­

sists of daily rainfall records of 32 KNMI rainfall stations 

for the period 1932-1979 (Appendix A.l). 

The geographical location of all rainfall stations is shown on the 

map in Figure 2.1. 

2.2. RAINFALL LEVELS 

In this section, mean values of each of the seven rainfall charac­

teristics defined in the introduction to this chapter are deter­

mined. Let x. .be the value of one characteristic under investiga-

tion at station i (i= 1,..., 140) in year j (j= 1,..., 29), then 

the station means x. can be calculated. Their mean x , together 

with the unbiased estimate s of their standard deviation and the 

corresponding coefficient of variation cv are presented in Table 

2.1. 

As a check on the consistency of these results, x , s, and cv were 

also calculated for data set D14 (Table 2.2). Although in the longer 

series D14 all mean values are somewhat smaller, the values of the 

characteristics F and R differ considerably. 

Disregarding any correlation in the data between stations and 

between years, a first indication of the occurrence of inhomogene-

ities in mean total annual rainfall may be obtained from a compa­

rison of components in an analysis of variance and a cross classi­

fication of the factors years and stations (Table 2.3). The effects 

between years and between stations are considerable. 



Table 2.1. Mean x , standard deviation s, and coefficient of 

variation cv of rainfall characteristics for data set D140 

Rainfall 

character­ Mean 

istic Summer 

Exceedance 

frequency 

1 mm (F ) 

15 mm (F1 5) 

25 mm (F2 5) 

Total annual 

rainfall (R) 

52.4 

4.7 

1.15 

X 

Winter 

80.5 

3.5 

0.48 

775.8 (mm) 

Standard 

Summer 

2.6 

0.5 

0.25 

deviation s 

Winter 

36 

2.6 

0.6 

0.13 

.4 (mm) 

Coefficient of 

variati 

Summer 

4.9 

11.2 

21.9 

on cv (%) 

Winter 

3.2 

16.4 

27.4 

4.7 

Table 2.2. Mean x , standard deviation s, and coefficient of 

variation cv of rainfall characteristics for data set D14 

Rainfall 

character­ Mean 

istic Summer 

Exceedance 

frequency 

1 mm (F ) 

15 mm (F1 5) 

25 mm (F 2 5 ) 

Total annual 

rainfall (R) 

50.6 

4.2 

1.03 

X 

Winter 

78.1 

3.1 

0.45 

732.0 (mm) 

Standard deviation s 

Summer Winter 

3.2 3.0 

0.5 0.3 

0.14 0.07 

32.8 (mm) 

Coefficient of 

variât: 

Summer 

6.3 

11.6 

13.2 

ton cv (%) 

Winter 

3.9 

10.6 

16.8 

4.5 

Table 2.3. ANOVA table for between years and between stations 

effects for total annual rainfall 

Source of variation df ms(mm ) 

Between years 

Between stations 

Residual 

28 

139 

3892 

2.21*10 

3.83*104 

3.47*10] 

Total 4059 



In order to obtain a general impression of daily rainfall level at 

a Dutch rainfall station, peaks-over-threshold series (POT series) 

were extracted for each station in the D140 data set for summer, 

winter, and the total year, and with a mean annual number of thres­

hold exceedances of two. To assure independence of the exceedan-

ces, these had to be separated by at least one day without rain. 

Mean order statistics were obtained by taking the mean of peaks 

of equal ranking. It was assumed that both the POT series for an 

individual station, and the series of mean peaks q were exponen­

tially distributed. Thus, a probability density function was fitted 

according to 

f(q) = |exp[-(q-q0)/ß], (WQ) (2.1) 

where 

qn : parameter for location 

ß : parameter for scale. 

The maximum likelihood (ML) estimators of ß and q_, corrected for 

bias, are (NERC, 1975; Vol. 1) 

i = HTî<â-a,)- (2.2) 

and 

â0 = %-i/n' (2-3) 

n : sample size (58) 

3 : lowest peak in the sample 

2 : sample mean of peaks. 

Estimates of ß and q. are given in Table 2.4. 

where 



^0 

23 

20 

16 

(mm) 

1 

1 

8 

Table 2.4. Maximum likelihood estimates of ß and q. in Equation 

2.1 for POT series of daily rainfall in the Netherlands (mean an­

nual number of threshold exceedances: 2) 

Period ß (mm) 

Year 8.1 

Summer 8.5 

Winter 5.8 

These mean POT series have been plotted and are presented, together 

with the fitted exponential distributions in Figure 2.2. For the 

plotting position of the order statistics g. . . , with q,-,»!-•-iq, >, 

the following equation was used 

1 _i E(Y,H x) = * (n+l-j) x, (2.4) 
1 ' j=l 

where 

y,.. : order statistic of a standard-exponential variate 

with density f(y) = e~y (y^.0). 

The assumption of an exponential distribution was tested in the 

following way. Let the order statistics g.. ...<_.. .<_g. > be samples 

of a truncated exponential distribution, then the standardized 

increments 

±1 = ^ ( n - i + D - ^ n - i ) ) ' i = 1 n"! (2-5) 

are independent exponential variâtes. After eliminating the location 

parameter, the scale parameter is eliminated. Let 

n-1 
s = 1 L., (2.6) 

i=l x 

and 

i 
Z.H = * L./s. i = 1, ..., n-2 (2.7) 
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The series (z,,.., z _) is distributed as an ordered sample of 

size n-2 from a uniform distribution on (0,1) (Durbin, 1961). Thus, 

a test statistic T can be used, where 

n-2 
T = -2 I In z.. (2.8) 

i=l 1 

Under the null hypothesis of exponentially distributed peaks, T has 

a ̂ -distribution with parameter 2(n-2). As lack of fit with regard 

to the exponential distribution can lead to high as well as to low 

values of T, a two-sided test is used. Very long tails give low 

values of T, and very short tails high values. Realizations of T 

for the total year, summer, and winter for the POT series were 95.9, 

99.8, and 94.6, respectively. As these values are not significant 

(two-sided test, significance level a = 0.10), the exponential dis­

tribution fits the POT series reasonably well. 

2.3. TIME-INHOMOGENEITY OF RAINFALL 

In this section, time-inhomogeneity of mean values of the seven 

rainfall characteristics defined in the introduction to this chap­

ter is considered. Let x . be the mean value of a rainfall charac­

teristic for all rainfall stations considered in year j (j=l,..., 

n). For rainfall characteristics F and FW, the x . are means of 

transformed variâtes x. ., where the transformation is according to 
i, J 

P = VP+V(P+D, (2.9) 

the untransformed p being any positive integer. This transformation 

has a variance stabilizing and normalizing effect on Poisson vari­

âtes, resulting in that case in a variance of almost 1 (see Appen­

dix A.2). 

In this section, consideration is given only to a possible change 

in the expected mean x ., described by either a linear trend 

E(x.j) = Mj = M+Jô, (2.10) 
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j = 1,.. ., m 
E(x _;) = M.; =<! (2.11) 

j = m+1,..., n 3' "j 

that is, a jump at j = m+1 with m unknown. Under the null hypothesis 

H- of a homogeneous series, 

and for data set D14, n=74. 

H of a homogeneous series, 6 = 0 . Note that for data set D140, n=29 

When anthropogenic effects on rainfall are being studied, it is 

logical to look for a trend. However, since there are many factors 

affecting rainfall and rainfall measurements, including climatologie 

fluctuations or changes in methods of measuring rainfall, it is also 

necessary to consider jumps. Test statistics are needed which are 

powerful for the alternatives H (Equation 2.10) and H l b (Equation 

2.11), both with ô 7* 0 (the power of a test is defined as the prob­

ability of rejection of H. in favour of the alternative H 1 ) . 

The homogeneity of the series x . was tested by the three test 

statistics described below. 

Von Neumann ratio Q 

n _ 1 a , n , .2 
2 = 2 (x -j+1-x .:> / * (x ,-x 

j=l ° X ° j=l ° * 
r . (2.12) 

A monotonie trend or slow oscillations in level tend to produce low 

values of 2; and rapid oscillations in the mean may yield high 

values of Q. For the alternatives H, and H,., a left-sided criti-a la lb 
cal region of g seems adequate. An advantage of the statistic 2 is 

its sensitivity for a great variety of inhomogeneities. A table of 

percentage points of 2 f°r normally distributed samples is given by 

Abrahamse and Koerts (1969). 

Student's statistic T for a linear time trend 

r V(n-2) 
T = , (2.13) 

Vd-r2) 
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where 

r: the sample correlation coefficient between the variate 

x . and time. 

The statistic T is an adequate tool for testing homogeneity when 

H is the alternative. Under the null hypothesis T is a Student 

variate with n-2 degrees of freedom. The test is two-sided, since 

an increasing trend gives high positive values of T, and a decreas­

ing trend, high negative values. 

The maximum or minimum M of weighted rescaled adjusted partial sums 

For a series x . (j=l,..., n), the adjusted partial sum is defined 

S, = I (x .-x), k = 1,..., n-1 (2.14) 
k j=l -3 

and S. = S = 0 . The adjusted partial sums are rescaled to scale 

invariance by dividing S, by the sample standard deviation s 

S_k* = Sk/sx, k = 1,..., n-1. (2.15) 

The weighted rescaled adjusted partial sums S** are defined as 

S** = {k(n-k)}"i5 S*, k=l,..., n-1. (2.16) 

-i-

Because of the multiplication factor {k(n-k)} 2 

var(S**) = -^zr, , k=l,..., n-1 (2.17) 
—k ' n-1 

independent of k (Appendix A.3). The test statistic is 

M = max \it*\' (2.18) 
k=l, .. ., n-1 

A particular advantage of this test procedure is that it gives a 

value of k, say k*, which maximizes |S**|. In case of H-,, k* is 
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the maximum likelihood (ML) estimate of m (Buishand, 1981). Because 

there is a unique relationship between M and Worsley's W (Worsley, 

1979) 

W = (n-2)*5 M/U-M2)*5, (2.19) 

percentage points of W were used in the test, which is two-sided 

(Appendix A.3). 

The power of a test can be determined directly by solving the power 

function only in a few cases. Here, the power of the test statistics 

2/ T, and M for alternatives according to Equations 2.10 and 2.11 

was investigated by means of Monte Carlo methods with 2000 samples 

of 29 normal variâtes; for each sample the test statistics were 

calculated for 

a linear trend: 6 = 0 (r^) F5°' 

1 9 a jump : ô = 0 (gti) g0, and m = 7, 14. 

The simulated power functions of 2» ï< an<i M a r e presented for al­

ternative B1 in Figure 2.3A, for alternative H . (m=7) in Figure 

2.3B, and for alternative H . (m=14) in Figure 2.3C. 

Simulated powers of 2 an<^ H f°r Hiv. have been given by Buishand 

(1982a) for n = 30, a = 0.05 and m = 5, and 15; and those given in 

Figure 2.3B and 2.3C compare well with his results. It may be con­

cluded from Figure 2.3 that the statistic T has favourable charac­

teristics when trends or jumps according to Equation 2.10 or 2.11 

have to be detected. For other types of inhomogeneities, however, 

2 may be superior to both T and M. 

For data sets D140 and D14, values of the test statistics 2' Z a n d 

M, determined for the rainfall characteristics total annual rainfall 

R and annual exceedance frequencies for summer and winter F ' , 

are presented in Table 2.5. 
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Table 2.5. Realizations of the statistics £, T, and M and of the 

estimated jump point k* 

Rainfall 
characte ristic 

Exceedance 
frequency 
Summer 

1 mm 

15 mm 

25 mm 

Winter 

1 mm 

15 mm 

25 mm 

<F1> 

<F*s> 
<F?s> 

(Fj) 
(FW ) 1 15' 
(FW ) 1 25' 

Total annual 

rainfall (R) 

Q 

2 

1 

1 

2 

1 

1 

1 

Data set D140 

03 

74 

85 

03 

16°° 

18°° 

92 

T 

-1.29 

-1.93° 

-2.03° 

0.84 

0.68 

-0.34 

-0.55 

M 

0 

0 

0 

-0 

-0 

-0 

0 

35 

48° 

50° 

24 

40 

33 

30 

k* 

18 

24 

25 

14 

9 

9 

20 

Data set 
Q 

2.19 

1.81 

1.92 

1.90 

1.63 

1.65 

1.78 

T 

0.39 

0.45 

0.64 

0.87 

1.96° 

1.15 

1.62 

D14 
M 

0.16 

0.30 

0.30 

-0.20 

-0.33° 

-0.26 

-0.26 

k* 

69 

70 

67 

59 

19 

23 

44 

° Indicates values inside the critical region for a = 0.10. 
0 0 Indicates values inside the critical region for a = 0.05. 

The test statistics T and M lead to very similar conclusions. The 

Von Neumann ratio g, however, is very clearly sensitive to other 

types of inhomogeneities. The values of k* indicate a jump towards 

the end of the summer series during the period 1970-1975, while in 

the winter series the jump points are more evenly spread throughout. 

The positive trend of the D14 series is very likely to be affected 

by improvements in rainfall measurements, notably the introduction 

of standardized measurement practice at the beginning of this cen­

tury, and the lowering of the rain gauge from 150 to 40 cm above 

ground level in the period 1946-1950 (Deij, 1968). Buishand (1977a) 

concluded that this last improvement resulted in an increase in 

measured rainfall of about 10% for coastal rainfall stations (see 

also Braak, 1945), and an increase of about 2% for stations at a 

distance from the coast. 
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The hypothesis that improvements in rainfall measurements are the 

main reason for the positive trend of the D14 series is supported 

by the higher values of T for the winter. The lowering of the gauge 

has led to a reduction of the wind-field deformation around the 

gauge, which causes a loss of catch. This loss, however, is smallest 

in summer because raindrops are relatively large as a consequence 

of the rainfall intensity in this season. 

The observed inhomogeneities may also be affected by the general 

circulation pattern during the period of the records used. The cir­

culation pattern is described by distinct circulation types, the 

frequency of which is known to fluctuate. Each period is character­

ized by the predominance of certain circulation types (Barry and 

Perry, 1973), each having its own probability of rainfall. 

A record of daily circulation types for the Netherlands in the 

period 1881-1976 has been compiled by Hess (1977); data for 1977 

and 1978 have been supplied by KNMI. In addition, the rainfall pro­

bability, given the occurrence of a certain circulation type, has 

been worked out for five KNMI stations (Bijvoet and Schmidt, 1958, 

1960). The effect of circulation types on rainfall trend was inves­

tigated by calculating the expected annual number of days in a cer­

tain rainfall class, according to the above-mentioned rainfall pro­

babilities. In this study only the rainfall class in excess of 5 mm 

has been considered. The series of expected annual numbers of days 

was compared to the series of actual numbers of days in this rain­

fall class for the period 1956-1978, because the 1881-1955 data 

were used to calculate the rainfall probabilities. Both series are 

shown in Figure 2.4A (summer) and Figure 2.4B (winter) for the 

rainfall station Den Helder/De Kooy. 

From Figure 2.4 it can be concluded that there is some evidence of 

the effect of the general circulation on rainfall trend. This effect 

is illustrated by the high values of k* in Table 2.5 for most rain­

fall characteristics. This seems to be an immediate consequence of 

the wet sixties. This may also be concluded from Figure 2.5, where 

10-year moving averages and the weighted rescaled adjusted partial 

sums are shown for total annual rainfall R for data set D14. The 
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10-year moving average of summer rainfall for the period 1734-1960 

is given in Figure 2.5C (Wind, 1963). 

2.4. LOCAL DIFFERENCES IN RAINFALL LEVEL AND IN RAINFALL TREND 

In this section local differences in rainfall level and in rainfall 

trend are investigated as follows. Let x. . be the value in year j 

at station i of one of the rainfall characteristics: (i) exceedance 
s w 

frequency (in summer F , with 11=1, 15, or 25 mm; and in winter F , 

also with 11=1, 15, or 25 mm), (ii) total annual rainfall R. Local 

differences in rainfall level are studied by comparing the station 

means x. for each rainfall characteristic (Section 2.4.2), and 

local differences in rainfall trend by analysing the time series 

x. . for each particular rainfall station and each rainfall charac-

teristic (Section 2.4.3). Use is made of data set D140. To give an 

impression of the local differences, maps of the Netherlands, 

showing the geographical distribution of station means and trend 

statistics, are presented. These maps were derived by the kriging 

method, which is a best linear unbiased predictor (BLUP). 

Firstly, the kriging method is discussed in Section 2.4.1. 

2. 4. 1. Kriging method 

Let Z(u) be an intrinsic random function (IRF) which is defined in 

every point with co-ordinate vector u of a region V, and let z(u) 

be a realization of 2(u), known at the N sample points u.GV. For 

example, the set of station means x. for data set D140 is a real­

ization z(u), known at the 140 sample points. 

A best linear unbiased predictor (BLUP) z(uQ) of z(u) at some point 

u. is defined as 

N 
z(u ) = I \.z(u.), (2.20) 

i=l 

where : 

\. : coefficients to be determined. 
l 
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This BLUP z(u ) is in fact the kriging prediction of z(uQ). The 

kriging method holds, if the following intrinsic hypothesis is 

valid 

(E[Z(u)-Z(u+h)] = 0 (2.21a) 

Uar[2(u)-Z(u+h)] = 2y(h), (2.21b) 

where 

h: distance. 

The function y(h) in Equation 2.21b is called the population semi-

variogram. If Equation 2.21 holds, then Z(u) is an IRF of order 

zero (IRF-O). 

The condition for Equation 2.20 to be unbiased implies that the pre­

diction error z(u0)-z(u~) will be a contrast. The variance of this 

contrast, a , equals 

_ N N N 
at = 21 \.y(u,-un)- I I A,X.Y(U,-u.), (2.22) 

E i=l X X ° i=l j=l x 3 1 D 

and Equation 2.22 has to be minimized. This leads to the kriging 

equations (Matheron, 1971) which can be deduced from the minimum 

variance and unbiasedness condition of the BLUP z(uß) 

rr\+nl N = r (2.23a) 

lljJjA = 1, (2.23b) 

where r is a symmetric N by N matrix (y- . ) , v • J=Y (u--u. ), 

r^tYt^-UQ), Y ( U 2 - U Q ) , .. ., Y ( U N - U 0 ) ) , 1N=(1,1,..., 1), 

\'=(A.1,\_,..., ^N)# and p is a Lagrange multiplier. The resulting 

minimum variance av of the kriging prediction equals 

2 N 

or£ = I \iY(ui-U0)+M, (2.24) 
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which follows from inserting Equation 2.23a into Equation 2.22. As 

will become clear in the following chapter, point to area interpo­

lation requires some of the semi-variances in Equations 2.22, 2.23 

and 2.24 to be replaced by certain types of mean semi-variances. 

The weights A., in Equations 2.20 and 2.24 can be determined if the 

semi-variances are known. For an IRF-0 these semi-variances can be 

estimated by 

, N(h) 
* ( h ) = 2NThT .* [z(ui)-z(ui+h)]z, (2.25) 

where N(h) is the number of paired data points at mutual distance 

h, particularly suitable if sampling has been done according to a 

regular grid. For a random sample, paired data are grouped accor­

ding to distance classes and N(h) is the number of paired data in 

a particular class. Note that I,N(h)=N(N-l )/2. Because of Equation 

2.21a, v(h) is an unbiased estimator. 

A population semi-variogram \(h) may be fitted to y(h) according to 

a parametric model, for instance a linear model 

•y(h) = Cô+oijh, (2.26a) 

or an exponential model 

Y(h) = CÔ+a1(l-exp(-h/a2)), (2.26b) 

where 

C : a parameter for the nugget effect 

ô : 0 (h=0) or 1 (h^O) 

a1,a2: parameters. 

The nugget effect represents discontinuity of the semi-variogram at 

the origin, due to spatial variability at very small distances in 

relation to the working scale, resulting for example from measure­

ment errors and/or the physical characteristics of the spatial pro­

cess concerned. 
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The linear model described in Equation 2.26a corresponds to intrin­

sic random functions Z(u) of order zero, for which an a priori 

variance or a covariance need not exist. The exponential model 

described in Equation 2.26b exhibits a limit or a sill, equal to 

C+di, as h->°°. This sill is almost (for 95%) reached at a distance 

or range equal to 3a2• Models exhibiting a sill may correspond to 

second-order stationary random functions Z(u) with spatial corre­

lation. 

The fitted v(h) should not only resemble the sample function y(h), 
but should also satisfy the condition for the variance of a con­
trast I.A.Z(u.), with I.A. = 0, to be possible for all A. 

l l v î " i l r l 

var(I.A.Z(u.)) = -1.1 .A.A.y(u.-u.)>0, (2.27) 

v i i v i ' ' l j l j J v l ; j ' — x ' 

furthermore 

y(0) = 0, y(h) = y(-h)>0. (2.28) 

As the Equations 2.26 imply independence of y(h) of orientation, it 

should be verified that z(u) is isotropic. In case of anisotropy, 

additional modifications are possible, see Journel and Huijbregts 

(1978). 

If the assumption according to Equation 2.21a holds, then the in­

crease of a semi-variogram for h>>0 can be shown to be necessarily 
2 

slower than that of h , that is 

lim ̂ ( h ) = 0, (2.29) 
h-»°° h 

which can be deduced from Equation 2.27. Consequently, a sample 
2 

variogram which increases at least as rapidly as h for large dis­
tances h is incompatible with the intrinsic hypothesis, as stated 
in Equation 2.21. Such an increase very often indicates the presence 
of a drift defined as 
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E[Z(u)] = m(u). (2.30) 

Where only one realization z(u) of Z(u) is known, and Z(u) is 

only intrinsic, var[y(h)] becomes very large (Appendix A.4) for 

h>L/2, where L is the maximum distance between sample points in V. 

Therefore, only for distances h<L/2, v(h) is fitted to y(h). 

For a second-order stationary Z(u), Equation 2.23 can also be writ­

ten in terms of covariances instead of semi-variances. The advantage 

of using semi-variances is that assumptions can be weaker, for ex­

ample, the a priori variance var[Z(u)] need not exist. A disadvan­

tage is that calculation of the A. according to Equation 2.23 in­

volves inverting a (N+l) by (N+l) matrix with zeros at the main 

diagonal; some common inversion methods can not handle this. Thus 

in the actual calculations, the semi-variances v(h) in Equation 

2.23 are replaced by pseudo-covariances C(h)=A--y (h), where A is a 

constant, exceeding the maximum of semi-variances occurring in 

Equation 2.23. 

The kriging method developed by Matheron (1971) is very closely re­

lated to the method of optimum interpolation developed by Russian 

statisticians, such as Gandin (1965). This last method, however, is 

based on second-order stationary realizations z(u), and no use is 

made of the concept of intrinsic random functions. As a result, all 

equations, such as 2.22 and 2.23 are in terms of correlation coef­

ficients. For an application of this method, see De Bruin (1975). 

The connection between kriging and linear regression has been point­

ed out by Corsten (1982). The Equation 2.23 leads to 

z(u0) = 2T-1r-(zT-1lN)(l^r-1lN)"1(l^r"1r) + 

+ ( 1Nr"l lN)"1 ( z'r"l lN)- ( 2 - 3 1 ) 

Defining x T ~ y as an inner product of the vectors x and y. Equation 

2.31 becomes 

z(u0) = (z'r)-(z'lN)(lN'lN)-1(lN'r)+(lN'lN)-1(z'lN).(2.32) 
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The last term in Equation 2.32 can be interpreted as the estimate 

p of JJ=E[Z(U)]. The other terms in the right-hand side of Equation 

2.32 can then be written as (z-pl 'r)=rT~ (z-plN), where the r T ~ 

may be termed the best linear approximation coefficients for z(u) 

by z(u.)/ i=l,..., N. Working along the same lines, an alternative 

expression to Equation 2.24 is obtained for the kriging variance 

in Corsten (1982) 

a£ = rT"1r-(l-l^r"1r)(l^r"1lN)"1(l-l^r"1r). (2.33) 

The last term in Equation 2.33 is closely related to the variance 

of the estimate of the stationary expectation E[z(u-)], and the 

other term on the right-hand side is an estimate of the residual 

variance of z(u.) with regard to the best linear approximation. 

The IRF-k theory 

In the presence of drift as defined by Equation 2.30, use may be 

made of the IRF-k theory, (Delfiner, 1976; Kafritsas and Bras, 

1981). Basically, the drift is described as 

m(u) = 1 a g (u), (2.34) 
&=0 * * 

where g0(u) are known monomial functions (in the one-dimensional 
."• 2 

case with k=2: gQ(u)=l, g1(u)=u, g2(u)=u , and the a£(£=0,..., k) 
are coefficients which need not be estimated). 

For an intrinsic random function Z(u) of order k (IRF-k) the fol­

lowing now hold: 

- Any generalized increment of 2(u), that is l.k.Z(u) with coef­

ficient vector A not only perpendicular to 1 but to all columns 

of the matrix U=(u. ), where u. =g (u,), will have expectation 

zero. In other words, a generalized increment is a new process 

for which a drift according to Equation 2.34 is filtered out. 

Var(I.\JZ(U)) exists and equals \*K\, where K is a (symmetric) 

matrix of generalized covariances. Note that for k=0, K=-r. 
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The condition of unbiasedness of the estimator z(u0) in this case 

leads to k+1 constraints 

N 

.1 X i g £ ( u i ) " g A ( u O ) = °' Z=° ' k 

which, in matrix notation, may be represented as 

U'A = g. 

The modified form of Equation 2.23 is 

fKA+Up = k (2.35a) 

lu'\ = g, (2.35b) 

•v. • . 

where k = (K(u , u Q ) , . . . , K(u ,uQ)), and p is a vector of Lagrange 

multipliers. Alternative expressions for z(u ) and a , analogous 

to Equation 2.32 and Equation 2.33 for an IRF-k Z(u) are given in 

Corsten (1982). 

2.4.2. Local differences in rainfall level 

In order to analyze local differences in rainfall level, at each 

station i the station mean x, was calculated for each of the rain­

fall characteristics for data set D140. Values for the characteris­

tics F , F were not transformed, because the normality assumption 

is superfluous. To give a more complete picture of the rainfall 

differences between stations, the station means have been interpo­

lated to a dense and regular grid (7.5 x 7.5 km) by the kriging 

method. 

Semi-variances, estimated by Equation 2.25, for distance classes 

0-10, 10-20, 20-30,... km, are presented in Figure 2.6 for each 

rainfall characteristic. A tendency for anisotropy of the semi-

variograms was investigated by classifying paired data according 

to their orientation: in the NW-NE sector or in the NE-SE sector 

(see also Figure 2.6). These two particular sectors were chosen 
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because the spatial structure of rainfall has been shown to vary 

between directions either parallel or perpendicular to the coast 

(e.g., Boer and Feteris, 1969; Kruizinga and Yperlaan, 1976; 

Buishand and Velds, 1980). 

The sample variograms grow slowly to a sill value for distances 

exceeding 100 km. Thus the exponential variogram model (Equation 

2.26b) seems adequate, although for the exceedance frequency in 

summer of 1 mm (F^) and in winter of 25 mm (F„5) a linear and loga­

rithmic model, respectively, may also be acceptable. For large dis­

tances the sample variograms fluctuate considerably, as may be ex­

pected from the estimation variance of a sample variogram for a 

completely known realization (Appendix A.4). It may also be con­

cluded from Figure 2.6, that none of these rainfall characteristics 

exhibits a drift. 

When a rather large area, that is the whole Netherlands is consid­

ered, as is the case here, there may be some evidence for anisotro-

py, especially in the summer when local effects are more important 

(Boer and Feteris, 1969). For two rainfall characteristics, F and 
w F.. , the presence of anisotropy may be inferred from the semi-

variograms. However, because this is not very pertinent here, and 

in order to avoid arbitrary choices, isotropy has been assumed in 

the following. 

Exponential semi-variogram models were fitted to the sample vario­

grams. Because of the paucity of data at short mutual distance, 

C in Equation 2.26b was set equal to zero. As only one realization 

is known for only 140 sample points, y(h) was fitted to distance 

class means of y(h) f°r distances h < 162.4 km, which is half the 

largest inter-station distance occurring in the sample. The para­

meters ax and a2 were estimated by the Levenberg-Marquardt method, 

which is a gradient method of least squares optimization (Abdy and 

Dempster, 1974). The resulting ordinary least squares (OLS) esti­

mates âx and â2 are presented in Table 2.6. 
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Table 2.6. Ordinary least squares estimates âj (-) and â2 (km) 

in Equation 2.26b 

Rainfall characteristic Summer Winter 

Exceedance frequency 

1 mm (F1) 11.94 139.16 7.25 38.98 

15 mm (F15) 0.29 21.07 0.35 21.72 

25 mm (F ) 0.065 14.62 0.018 28.01 

Total annual rainfall1 (R) 1355.1 (=&1) 23.65 (=â2) 

1 For rainfall characteristic R, âx has dimension mm 2 

From a comparison of Table 2.6 with Table 2.1, it can be seen that 

the sill »! of the exponential semi-variogram model is of the same 
2 

order as s in Table 2.1. The usual vai 

the mean of the estimates v(h), because 

2 2 
order as s in Table 2.1. The usual variance estimator s equals 

N 
S2 = r^j 1 (Z(U.)-5(u))2 

1N"-L i = l x 

N 2 
I (z<u.)-z(u.)r N(N-l) ̂  v~v i' ~v j 

N ( N;1 ) 2 Y(h) = HhT- (2.36) 
N(N-l) 2 

As most estimated semi-variances have been calculated for pairs of 

sample points at large mutual distances, that is beyond the range, 
2 „ -

•y(h) = â , and because of Equation 2.36, s = à . 

The matrix Equation 2.23 was solved by using the fitted semi-

variograms. A fixed neighbourhood, the complete set of observations, 

has been applied because with a random design and a range of consid­

erable magnitude, as is the case here, it is simpler to invert the 

left-hand side of Equation 2.23 only once, and to solve the equa­

tion by this inverted matrix, each point u leading to a different 
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right-hand side (y (u..-u_), . . . , y(u -u. ),1)'. Application of a fixed 

neighbourhood implies assigning values to y(h) for h>L/2, that is 

for distances for which the semi-variogram model has not been fit­

ted to the data. From Table 2.6 it can be seen that for rainfall 

characteristic F. this casts doubts about semi-variances at large 

mutual distances. 

The resulting maps are shown in Figure 2.7. Figure 2.7G for rain­

fall characteristic R is in accordance with the regional differen­

ces in total annual rainfall within the Netherlands described by 

Buishand and Velds (1980). They also indicated the regions with 

most abundant annual rainfall as the Veluwe and the extreme south­

ern part of Limburg, followed by central Drenthe, the eastern part 

of Friesland, the hilly parts of Overijssel and Utrecht, and regions 

leeward of the dunes in Zuid-Holland and Noord-Holland. The driest 

parts of the Netherlands are the coast of Groningen, the islands of 

Zeeland and Zuid-Holland, narrow strips adjacent to the IJsselmeer, 

the eastern part of Noord-Brabant and the northern and central 

part of Limburg (for the location of these regions, see Figure 1.1). 

This regional distribution of annual rainfall is not only consis­

tent with that of Buishand and Velds (1980) based on 1941-1970 

data, but it is also, in close agreement with that of KNMI (1972) 

based on 1931-1960 rainfall records with some extended series. 

Thus, analysis of rainfall records for the three periods, 1931-1960, 

1941-1970, and 1951-1979, have yielded much the same regional dis­

tribution of total annual rainfall. 

The south-west to north-east oriented strip across the Netherlands 

with high frequencies of heavy daily rainfall in summer reported by 

Kraijenhoff and Prak (1979) for the period 1957-1975 is also visible 

in Figure 2.7B and 2.7C. 

The regional distribution of relatively heavy daily rainfall in 

summer and winter is distinguishable in Figure 2.7B and 2.7E. 

Seasonal rainfall differences have been found to occur in the fol­

lowing regions: 

Rotterdam-Dordrecht region, extending into the western part of 

Noord-Brabant; 
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Noord-Oost Polder; 

northern part of Noord-Holland; 

eastern parts of Overijssel and Groningen; 

a small area in the south-eastern part of Noord-Brabant. 

From Figure 2.7A and 2.7B, it can be concluded that in summer, the 

regional distribution of heavy daily rainfall differs greatly from 

that of rainfall in excess of a low threshold value, particularly 

in: 

- the Randstad and the north-western part of Noord-Brabant; 

- eastern parts of Groningen, Drenthe, Overijssel, and Gelder­

land. 

In the winter, these differences are considerably less (Figure 2.7D 

and 2.7E). Differences between Figure 2.7B and 2.7E, 2.7A and 2.7B, 

and 2.7D and 2.7E, may be of interest in studying the possible in­

fluences on rainfall by the processes of urbanization and industri­

alization. 

2. 4. 3. Local differences in rainfall trend 

As before, let x. .be the value in year j at station i of a cer-
1 ' J s w s 

tain rainfall characteristic (F , F or R). In the case of F and 
w F , the x. . were transformed variâtes, according to Equation 2.9. 
a i,J 

Local differences in rainfall trend for data set D140 were investi­

gated as follows. The time series {x. ., j=l,..., n} for each sta-
i1 3 

tion was reduced by the annual mean x . for each year 

y. . = x. .-x .. (2.37) 
•̂ l, 3 -1,3 -.3 

This reduction is useful because here the interest is in local 

rainfall trends with respect to the general rainfall trend over 

the whole of the Netherlands (Kraijenhoff and Prak, 1979). Further­

more, because of this reduction, var(y. . )<var(x. . ) , as there is 
1,3 1/3 

a high positive correlation between x. . and x . (Buishand, 1981). 

For each series y_. . (i=l,..., N) the test statistics £, T, M, and 
1/3 

k* defined in Section 2.3 were calculated and the results are pre­
sented in Appendix A.5. For each rainfall characteristic, the number 
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of series for which at least one of these statistics is significant 

(a = 0.10) is given in Table 2.7. For all rainfall characteristics, 

many series exhibit inhomogeneities. This is in accordance with the 

findings of Buishand (1982a) who tested homogeneity of annual rain­

fall series at 264 Dutch rainfall stations. 

Table 2.7. Number of series with at least one of the statistics 

to test homogeneity, 2' Ï' o r M, significant (a = 0.10; for 2 the 

test was one-sided, for T and M two-sided) 

Rainfall characteristic Number of series 

Summer 

44 

43 

35 

Winter 

50 

45 

29 

Exceedance frequency 

1 mm (F1) 

15 mm (F15) 

25 mm (F2g) 

Total annual rainfall (R) 72 

For those rainfall series having a significant M, a check was made 

whether there was a preferred location for the estimated jump point 

k*. For each rainfall characteristic, these values of k* were clas­

sified in intervals: 1951-1959; 1960-1969; and 1970-1979. From the 

results, which are presented in Table 2.8, there is no evidence of 

non-randomness. 

Table 2.8. Number of significant (a = 0.10) jump points (data set 

D140) in three periods: 1951-1959; 1960-1969; and 1970-1979 

Peric 

1951-

1960-

1970-

Sum 

3d 

-1959 

-1969 

-1979 

"! 

8 

11 

5 

24 

F15 

7 

7 

6 

20 

Rainfall 

Exceedance 

FS 

25 

0 

6 

2 

8 

characteristic 

frequency 

•Ï 
8 

9 

17 

34 

FW 

15 

15 

1 

10 

26 

FW 

*25 

6 

6 

6 

18 

Total 

annual 

rainfall 

10 

21 

12 

43 

Sum 

54 

61 

58 

173 
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In order to obtain an overall picture of the distribution of local 

rainfall trends, that is, of the reduced series (Equation 2.37), 

the calculated T statistics were interpolated by the kriging method 

(Figure 2.9). Sample semi-variograms were calculated according to 

Equation 2.25, and are depicted in Figure 2.8. Again, checks were 

made for indications of anisotropy in the sample semi-variograms, 

and again no evidence for anisotropy was found. Therefore, the pa­

rameters «j and a2 in Equation 2.26b were estimated by the proce­

dure outlined in Section 2.4.2, and the resulting OLS estimates âx 

and â2 are presented in Table 2.9. 

Table 2.9. Ordinary least squares estimates 51 (-) and â2 (km) in 

Equation 2.26b 

Rainfall characteristic Summer Winter 

Exceedance frequency 

1 mm (F ) 

15 mm (F15) 

25 mm (F25) 

Total annual rainfall (R) 

.62 

.73 

.41 

â, = 

17.07 

15.11 

25.11 

= 3.00 

2 

1 

1 

43 

60 

70 

« 2 

17.21 

32.63 

75.02 

= 31.86 

The ranges (= 3<x2 ) of t n e semi-variograms for local rainfall trends 

are rather limited and are of the same order as the ranges of semi-

variograms for rainfall levels (Table 2.6). 

From Table 2.9 a large variance of the T statistic can be implied. 

Under the null hypothesis var(T) = var(t _ ? ) , where t _ is a Stu­

dent variate with (n-2) degrees of freedom with var(t _)=(n-2)/ 

(n-4)=1.08. Thus, it may be concluded that T is a non-central Stu-
Ô. 

dent variate t , where v=n-2 and with non-centrality parameter ô. 
ô . 

at station i. For t 1, the following holds (Johnson and Kotz, 1970; 

p. 203, 204)) 

Eft/} = 6i(v/2)l5r(^i)/r(v/2), (2.38) 

ô . _ ô . 

varf^1) = ̂ ( l + ô f ) - ^ ^ 1 } ) 2 . (2.39) 
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6. 
If v=27, then E{t 1} s ô., and when inserted into Equation 2.39 this 

yields 

ôi 2 
var(t ) = 1.08 + 0.0214 6.. (2.40) 

From Figure 2.9, for winter rainfall series there seems to be a 

general positive trend along the coast and a negative trend along 

the eastern border of the Netherlands. For the summer series, the 
' s s 

picture is rather complicated. For the characteristics F-5 and F_5 

there are positive trends in the extreme north of Noord-Holland, 

in a north-south strip through the centre of the Netherlands, the 

Noord-Oost Polder, and parts of Zeeland. Negative trends occur along 

the eastern border, and in some parts of Friesland, Noord-Holland 

and Zeeland. 

For F^ and FW seasonal differences in rainfall trend occur in Gro­

ningen, Noord-Holland, Randstad, Utrecht, Noord-Brabant, and Zee­

land. (Figure 2.9A and 2.9D). With higher threshold values, char­

acteristics F^5 and F" (Figure 2.9B and 2.9E), these seasonal dif­

ferences occur only in Noord-Holland, Randstad, Utrecht, and Noord-

Brabant. Within-season differences are particularly pronounced in 

summer. 

The regional distribution of trends in total annual rainfall R cor­

responds rather well to the regional distributions of trends in the 

winter series, that is, a positive trend along the coast and a ne­

gative trend along the eastern border of the Netherlands (Figure 

2.9G). 

2.5. PARTITIONS OF THE NETHERLANDS BASED ON RAINFALL 

Figure 2.7 and Figure 2.9 suggest local rainfall differences. How­

ever, replacing the real data with correlated random variâtes and 

applying the same interpolation and plotting procedures as used for 

Figure 2.7 and 2.9 also results in maps suggesting local differen­

ces. To be sure that a partitioning of the Netherlands based on 

rainfall is realistic, the following two points are important: 
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the variation of a rainfall characteristic between regions 

should be significantly different to the variation within re­

gions ; 

a partition resulting from a statistical procedure should lead 

to physically interprétable regions. Such a partition should be 

valid for several rainfall characteristics. For design criteria 

in particular, the partition should be valid for the frequency 

of heavy rainfall of short duration, that is, of five minutes 

up to one hour. 

Such a partition has been devised for France, in which three re­

gions are distinguished (Ministère de l'Intérieur, 1977), and one 

is further subdivided into two regions (CTGREF, 1979). The United 

Kingdom has been divided into two regions, England and Wales, and 

Scotland and Northern Ireland (NERC, 1975, Vol. 2), which are not 

homogeneous with respect to rainfall. Thus, the recognition of 

local rainfall differences is not sufficient to justify a parti­

tion. 

The actual procedure for rainfall durations shorter than 48 hours 

used by NERC (1975; Vol. 2) is as follows: the threshold value of 

rainfall corresponding to a 5-year return period, q-, for the ap­

propriate duration and location is related to the two day g and 

the 60 minute g_ values; these last two values can be derived from 

detailed maps showing their geographical distribution. Then the q,. 

value for the appropriate rainfall duration is related to the two 

day and the 60 minute values by q,. = a/(l+bD)n, where q5 is in 

mm/hour, D is the rainfall duration expressed in hours and the 

parameters a, b, and n are related to the ratio of the two day and 

the 60 minute values of q^. This relationship coincides with a re­

lationship of these parameters to mean annual rainfall (see Section 

2.5.3). Once the q5 value is determined, the value of ô , for a 

T-year return period can also be determined by considering the 

growth factor : the ratio «Ip/q̂ • These growth factors which were 

found to vary slightly with geographical location, have been tab­

ulated for the two regions of the United Kingdom mentioned above. 
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In NERC (1975) it is also pointed out that for rainfall durations 

of at least 24 hours, guantile estimates of rainfall for a given 

return period and rainfall duration are proportional to mean annual 

rainfall. Without partitioning the country into regions, such pro­

portionality is mentioned for possible use in Belgium (Nonclerg, 

1982) and the Netherlands (Buishand and Velds, 1980). As a conse­

quence of the rainfall increase in urban areas, reported by Kraijen-

hoff and Prak (1979), it is suggested in Werkgroep Afvoerberekenin-

gen (1979) to divide the Netherlands into urban and rural regions. 

Possible partitions of the Netherlands based on rainfall are sug­

gested in Section 2.5.1 and tested statistically in Section 2.5.2. 

Finally, the implications of local differences for hydrological 

design are discussed in Section 2.5.3. 

2.5.1. Possible partitions 

When suggesting possible partitions with respect to rainfall of 

the Netherlands, it seems natural to start with a summary of the 

relevant publications of the Royal Netherlands Meteorological 

Institute (KNMI): Hartman (1913), Braak (1933), Timmerman (1963), 

Buishand and Velds (1980) and Buishand (1983); also maps showing 

the geographical distribution of certain rainfall characteristics 

can be found in KNMI (1972). 

Maps showing the geographical distribution of mean annual rainfall 

from Hartman (1913), Braak (1933), and Buishand and Velds (1980) 

are reproduced in Figure 2.10. The absence of a rainfall maximum 

in the southern part of Limburg in Figure 2.10A is due to the use 

made of the Maastricht and Ubachsberg records, which are of a 

rather questionable quality (Braak, 1933). The mean annual rainfall 

in Figure 2.10B ranged from 597 mm at Kampen to 862 mm at Vaals; in 

the present study (Figure 2.7G) the range is from 706 mm at Stavoren 

to 916 mm at Vaals. There is a general trend towards higher mean an­

nual rainfalls which can at least partially be ascribed to improved 

measurement practices (Buishand, 1977a). The local rainfall differ­

ences can be attributed mainly to the following (Timmerman, 1963): 
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Friction. Convergence of air masses reaching the coastline from 

south-west to north is induced by the increasing roughness. This 

results in an increase in rainfall levels and frequencies with 

increasing distance from the coast up to a maximum of about 

30-35 km from the coast. 

Topography. The forced ascent of the air leads to an increase 

in rainfall on the windward side of the hills of Utrecht, Over­

ijssel, the southern part of Limburg and the Veluwe. 

Differential heating. Temperature differences between sea and 

land lead to a relative increase in rainfall levels and frequen­

cies along the coast in the autumn, and a decrease in the spring 

and the early summer. 

The effects of urbanization on rainfall have been mentioned by 

Timmerman (1963), but not in relation to the geographical distri­

bution of rainfall in the Netherlands. Buishand and Velds (1980) 

have concluded that cities, such as Amsterdam and Rotterdam, may 

have an effect on rainfall. 

Four partitions of the Netherlands, based on rainfall, are proposed: 

- partition (i), based on rainfall differences from east to west, 

that is from inland to the coast, and from north to south 

(Figure 2.IIA); 

- partition (ii), based on the effects of friction, topography, 

and differential heating (Figure 2.IIB); 

- partition (iii), based on the effects of friction, topography, 

and differential heating, and on anomalies attributed to urban 

effects reported by Kraijenhoff and Prak (1979) (Figure 2.11C); 

- partition (iv), based on mean annual rainfall for the period 

1951-1979 (Figure 2.11D; the three isolated dry stations have 

been included in the group of normal stations). 

Each station in data set D140 has been assigned to one of the sub-

regions in each of the proposed partitions (see Appendix A.5). 

Each partition is to some extent a posteriori. Particularly par­

tition (iv), but the other partitions are also partly based on maps 

showing the geographical distribution of rainfall. 
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2.5.2. Testing the statistical significance of the partitions 

An indication of the existence of significant local differences in 

mean annual rainfall has already been given in Section 2.2. Here, 

the effect of spatial correlation is considered. The following 

three null hypotheses are considered: 

H : all the expectations of a certain rainfall characteristic in 

all rainfall stations considered in the Netherlands are equal. 

If this were true, then the Netherlands can be considered to 

be homogeneous with regard to rainfall; 

H_: after assigning the rainfall stations to regions, all result­

ing regions are homogeneous ; 

H_: differences between internal homogeneous regions vanish. 

The following rainfall characteristics are considered 

rainfall levels: R, FS , F ™ , ai 

relevant for hydrological design; 

rainfall trends: F and F?I-, bee 

of the importance of urban effects (see Section 2.6) 

- rainfall levels: R, Flc, F- _ , and F__ , because these are 
-Lb -Lb zb 
cal d€ 

s s 
- raxnfall trends: F.. _ and F?_, because these give an indication 

The following model is used to test spatial homogeneity (M.A.J. 

Van Montfort, pers. connu., 1981). Let z=(z,,..., z„)' be a vector 
1 N 

of measurements, and let z~N(Ç,C), that is a N-dimensional normal 
N 

distribution with expectation £=(£,..., £ )'eR , and a N by N co-
variance matrix C, where C is assumed to be known. Furthermore, 

N . 
R is the direct sum of two orthogonal subspaces 

N R = D+R, 

where D is the space of vectors £ for a given null hypothesis. Ob­

viously, C=£D+tR=4D. i 

D and R, respectively. 

viously, Ç=Ç_+Ç_=4_^, Ç and Ç are orthogonal projections of £ on 
D i\ D D ix. 

With respect to the subspace D, H is equivalent to D=<s> and 
N s=l , a vector in R consisting of merely ones. Hypothesis H. will 

be tested by the omnibus statistic T , where 
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ïl z'C^z 

-1 2 
(s'C Z) 

s,C~1s 

2 
H AN-1 

(2.41) 

H is equivalent to D =<e , , e,>, dim(D„)=d, and d is the number 
d z 

of regions into which the Netherlands is partitioned; the vector e. 

(j=l,..., d) indicates by one or zero whether or not a station be­

longs to region j. The hypothesis H_ is tested by T„, where 

T2 = z'C^z - proj2
 & 2 4 _ d , (2.42) 

and proj is the square of a special projection of z on D_, to be 

obtained by inserting the solution of the normal equations 

eiC-1e1 eiC-1ed 

edC"l ed 

e^C_1z 

eJLC_1z d — 

(2.43) 

into 1 S.e.C~ z. 
i=l X * -

H_ is equivalent to £GD _, where D_=<s>, and the alternative hypothe­

sis is H . The test statistic T is the difference of the squares 

of the special projections of z on D under H_ and under H_ 

2 2 2 T = z. - z ~ v ±3 2 D 2
 ZD H3 * d _ r 

(2.44) 

As the statistics T , T , and T tend to large values under the 

alternative, a right-hand sided critical region (a=0.05) is used. 

In the present application, standardized variables are used, so 

that in Equations 2.41, 2.42, and 2.44, £=0 and a =1. The Student 

variâtes used as trend characteristics (Section 2.3) have been 
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standardized by considering their ratio to the standard deviation, 

estimated as the square root of the sill value of the serai-variogram, 

that is V«i# where â1 is given in Table 2.9. Rainfall levels x. have 

been standardized by subtracting x , followed by dividing by -v/â x 

(Table 2.6). 

For rainfall levels, the normality assumption may be doubted, ex-
s w cept for mean annual rainfall. However, the frequencies F.-, F..-, 

F2 5 could follow a binomial distribution and it is only by virtue 

of the Central Limit Theorem that the standardized values may have 

a normal distribution. For the Student variâtes, the normality as­

sumption seems more plausible. 

The covariance matrix C=(c .) has been estimated as 

c, . = exp(-h/a2), (2.45) 

where a2 has already been estimated. In Table 2.10 the values of 

(*! and â2 are reproduced, together with the results of the tests. 

The test statistics are obviously functions of â2, but it has been 

verified that the conclusions to be drawn from Table 2.10 do not 

change within a reasonable range of â2 values. 

Table 2.10. The statistical significance of four partitions of the Netherlands (Figure 2.11); 

not significant values of T„, and significant values of T, and T_ support inhomogeneities 

PARTITION 

Rainfall (i) (ii) (Hi) (iv> 
characteristic â, â2 T1 T T T , T, T2 T3 T2 T3 

Trends F^5 1.73 15.11 128.4 124.1 1.2 124.1 2.4 127.6 0.4 127.9 0.3 

Fl* 1.41 25.11 193.1°° 187.2°° 1.1 192.3°° 0.3 192.1°° 0.4 191.8°° 0.5 

Levels of F̂ ,. 

rainfall F* 

0.29 

0.35 

0.065 

355.1 

21 

21 

14 

23 

07 

72 

62 

65 

142.2 

145.4 

135.3 

157.9 

138.5 

141.9 

133.4 

154.6 

0.9 

0.8 

0.5 

0.7 

131.7 

131 .0 

129.8 

143.8 

5.5 

7.5°° 

2.9 

6.7°° 

127 

135 

122 

141 

0 

4 

1 

0 

8.2°° 

5.1 

7.4°° 

8.2°° 

94 

107 

115 

89 

1 

1 

5 

8 

35 

24 

11 

52 

0 

3 

7 

0 

°° Indicates values inside the critical region for a = 0.05. 

With respect to the Student variâtes it could be argued that, in­

stead of standardizing on division by V«i/ division by the standard 

deviation of such Student variâtes under the null hypothesis is 

preferable. This, however, would lead to inconsistencies in the 

estimation of a2 in Equation 2.45. 
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Wi ith regard to trends, it can be seen from the T.. values in Table 

2.10 that only for rainfall characteristic F!L, the hypothesis of 

inhomogeneity in space has statistical support. This is not sur­

prising, as the alternative for hypothesis H.. is quite general. 

With regard to rainfall levels it can be seen from the T„ and T_ 

values in Table 2.10 that, in spite of an insignificant value of 

T , partitions (Hi) and especially (iv) are statistically signifi­

cant partitions of the Netherlands. Regional rainfall differences 

are to a certain extent the consequence of differences in time, 

for example, the distribution of rainfall over the seasons is dif­

ferent for inland and for coastal areas. Thus the attractive fea­

ture of partition (iv) is that it yields significant results for 

the year as a whole and for both winter and summer. 

The adequacy of the partitions for rainfall levels but not for 

rainfall trends can be explained by the large differences between 

Figure 2.7C and 2.9C for levels and trends respectively of rainfall 

characteristic F»_. As the partitions have been suggested from maps 

of rainfall levels, the adequacy of the partitions for rainfall 

trends could be expected to be less. 

2. 5. 3. The hydrological significance of the partitions 

Of the four partitions of the Netherlands proposed in Section 2.5.2, 

only one explains successfully regional differences in rainfall lev­

els, but none explains successfully regional differences in trends. 

It is difficult to draw conclusions of relevance to hydrological 

practice about regional differences in rainfall trend. A signifi­

cant trend for a particular series may very well reverse when the 

period of analysis is extended (Table 2.5 and Figure 2.5). This is 

the result of the pseudo fluctuations which many hydrological time 

series exhibit as a result of the infinite memory of hydrological 

processes, that is a small but not negligible autocorrelation of 

the process at very large time lags (Wallis and O'Connell, 1973). 

The physical cause of this infinite memory is the storage effect, 

which acts in many hydrological processes (Feller, 1951). Sample 

curves from such processes reveal seemingly periodic swings, and 


