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NOTATIONS AND ABBREVIATIONS 

An estimate of a particular parameter is denoted by a caret above 

the parameter. Thus c^ is an estimate of ax. However, estimates of 

correlation coefficients (p) are denoted by r and estimates of the 
2 2 

variance (a ) are denoted by s . Stochastic variables are under­

lined. The expectation operator is denoted by E, and a frequency 

of, for instance, two events per year is written as 2 (# year ). 

Means of variables with two subscripts x. . are denoted by x. , 
l, j i • 

x ., or x , where a point indicates the suffix with respect to 

which the mean has been taken. 

Although notations are introduced as they are used, some symbols 

appear throughout this study, and are listed here for convenience. 

A area 

C symmetric N by N covariance matrix 

cc coefficient of covariation 

cv coefficient of variation 

D duration of rainfall 

Fö annual frequency of exceedance in summer (beginning of May to 

the end of September) of a certain threshold of daily rain­

fall depth H (mm), for instance F1 5 
w F. annual frequency of exceedance in winter (beginning of October 

to the end of April) of a certain threshold of daily rainfall 

depth £ (mm) 

h distance 

I intensity of rainfall 

i suffix indicating station number 

j suffix indicating year number 

K symmetric N by N generalized covariance matrix 

N number of sample points 

n length of record 

N(h) number of paired data in a particular distance class 

L dimension of a region V, in particular the maximum distance 

occurring between sample points 



g exceedance of a threshold or peak 

g,̂  peak guantile corresponding to a T-year return period 

R total annual rainfall 

r(h) estimate of the correlation coefficient p(h) 

s estimate of the standard deviation a 

s residual standard error r 
T test statistic 

T return period 

t time co-ordinate 

u spatial co-ordinate vector 

V region 

x variable, denoting mean areal rainfall 

x variable, denoting point rainfall at point S 

x guantile (eventually written as x. or x„ ) 
P "/P -5 / P 

Z(u) intrinsic random function located at u 
z(u) realization at u of an intrinsic random function Z(u) 

a significance level 

r symmetric N by N matrix of semi-variances y. . 

Y(h) semi-variance at distance h 

p(h) correlation coefficient at distance h 

a standard deviation 
2 

a_ sguared estimation error 
ov sguared kriging error 

Freguently used abbreviations 

ACN Aitken condensation nuclei 

ARF statistical areal reduction factor 

BLUP best linear unbiased predictor 

CCN cloud condensation nuclei 

cdf cumulative distribution function 

df degrees of freedom 

D14 data set consisting of 14 long-term daily rainfall records 

for the period 1906-1979 



D32 data set consisting of 32 daily rainfall records for the 

period 1932-1979 

D140 data set consisting of 140 daily rainfall records for the 

period 1951-1979 

edf empirical distribution function 

GMT Greenwich mean time 

H12 data set consisting of 12 hourly rainfall records 

IRF-k intrinsic random function of order k 

KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal 

Netherlands Meteorological Institute) 

LS least squares 

MM method of moments 

ML maximum likelihood 

ms mean of squares 

OLS ordinary least squares 

POT peaks-over-threshold 

pdf probability density function 

SRF storm-centred areal reduction factor 

UTC universal time co-ordinated 



1. INTRODUCTION 

The object of this study is to investigate heterogeneity of rain­

fall in time and space in the Netherlands. The length scale consid­

ered is several hundreds kilometres in Chapter 2, in which possible 

partitions of the Netherlands into regions on the basis of local 

differences in rainfall are investigated, and a few tenths of a 

kilometre in Chapter 3, in a study of spatial variability of time-

aggregated rainfall (over an hour or a day) at the basin scale. 

The time scale considered in Chapter 2 is a year, divided into a 

summer period (May to September) and a winter period (October to 

April). As alternatives to homogeneity in rainfall series, trends 

and jumps are considered in Chapter 2. 

The absence of homogeneity of rainfall may have relevance for hy-

drological design. For instance, the possible effects of urbaniza­

tion and industrialization on precipitation, may have design impli­

cations. Also, the question may be raised as to whether it would 

be preferable for a particular design to use rainfall data from 

a nearby site instead of rainfall data measured at the Royal 

Netherlands Meteorological Institute (KNMI) at De Bilt. In addi­

tion, because of rainfall variation in time and space, considera­

tion may be given to whether an areal reduction factor is applica­

ble in a design. Therefore, rainfalls with rather low return periods 

were studied. Because the object was to include as many rainfall 

records as possible, which were of good and even quality, the study 

was almost completely confined to rainfall data collected and pub­

lished by the KNMI. As the network of rainfall recorders in the 

Netherlands is very sparse, the study is concerned mainly with 

daily records, but some hourly rainfall records have also been 

used. 

Homogeneity of Dutch rainfall records is investigated in Chapter 2, 

and in Chapter 3 the statistical areal reduction factor (ARF) is 

estimated for daily and hourly rainfall. In the introduction to 

each chapter a number of issues is raised, which are dealt with 

in the subsequent sections. Conclusions are presented within each 

section and not in a separate section at the end of the chapter. 



All equations, tables and figures are numbered consecutively with­

in each chapter; equations and tables are to be found in the appro­

priate place in the text, and figures at the end of the relevant 

chapter. 

A survey of the rainfall data used in this study is given in the 

Appendices A.l and B.l. The geographical location of the rainfall 

stations and regions used throughout this study are given in Fig­

ure 1.1; and a list of all provinces and rainfall stations together 

with their KNMI code numbers is presented in Table 1.1. 



PROPOSITIONS 
1. The Netherlands may be assumed to be inhomogeneous with regard 

to daily rainfall level. A partition of the Netherlands based 

on the combined effects of friction, topography, differential 

heating, and urban precipitation enhancement, and a partition 

based on mean annual rainfall, show significant inhomogeneities. 

[This thesis] 

2. The effect of urbanization on heavy daily rainfall in summer 

increases with rainfall depth. 

[This thesis] 

3. Statistical areal reduction factors depend inter alia on climate 

and on season. 

[This thesis] 

4. Present theories about the causes of urban precipitation enhance­

ment stress the influence of thermodynamic and mechanical pro­

cesses rather than the influence of additional condensation 

and freezing nuclei from urban aerosols. This does not support 

the assumption of Petit-Renaud (1980) that there was an urban 

effect due to coal-based industrialization in northern France 

in the second half of the nineteenth century. 

[Petit-Renaud, G., 1980. Les principaux aspects de la variabi­

lité des précipitations dans le nord de la France. Récherches 

Géographiques à Strasbourg no. 13-14: 31-38] 

5. The areal reduction factors for discharge presented in the "Cul­

tuurtechnisch Vademecum" are unnecessarily high. 

6. The choice of a design rainfall intensity of 60-90 1-s -ha 

is partly a consequence of uncertainties about the actual per­

formance of a sewerage system. Thus firstly, evaluation of ac­

tual performance is necessary. 

Bi•>;;.!. VH :-.,•:iL 
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7. The method which is currently used for estimating the general­

ized covariance is ad hoc, and it is by no means certain that 

it provides asymptotically efficient parameter estimates. 

[Barendregt, L.G., 1983. Maximum-likelihood schatting van de 

gegeneraliseerde covariantie, in: Enkele kanttekeningen bij de 

stochastische interpolatiemethode 'kriging'. IWIS-TNO, 

's-Gravenhage] 

8. The sole criterion of a maximum overflow frequency is inappro­

priate for the design of centrally operated, regional sewage 

water transport systems. However, in order to include other 

criteria, certain technical, legal, and financial obstacles 

must be overcome. 

9. Strategies for the Third World, such as, 'small farmers approach' 

and 'intermediate technology' reflect, inter alia, too academic 

an attitude and paternalism. 

J.V. Witter. Heterogeneity of Dutch rainfall. Wageningen, 

12 December 1984. 



2. HOMOGENEITY OF DUTCH RAINFALL RECORDS 

2.1. INTRODUCTION 

Rainfall series can be seen as realizations of a process {x(u,t)}, 

where the co-ordinate vector of the sample points is denoted by u 

and time is denoted by t. Although such a process can be homogene­

ous in several ways, in this chapter, only two types of homogeneity 

are investigated: 

homogeneity in time: given a location U, the probability distri­

bution of the process {x(U,t)} is independent of time; 

homogeneity in space : given a time co-ordinate T, the probabil­

ity distribution of the process {x(u,T)} is independent of 

location. 

As rainfall series exhibit periodicities, the homogeneity of the 

following seven annual rainfall characteristics are investigated: 

total annual rainfall R; 

annual frequency of exceedance F of a certain threshold Z of 

daily rainfall depth, 

. in summer F , the summer being defined as the period from the 

beginning of May to the end of September 
w . in winter F , the winter being defined as the period from the 

beginning of October to the end of April 

. three thresholds were chosen for the annual frequency of ex­

ceedance, 1, 15, 25 mm. 

Total annual rainfall R, and annual frequency of exceedance of 
s w 

1 mm in summer (F. ) and in winter (F. ) give a general indication 

of rainfall level: its long-term mean value. Annual frequencies of 

exceedance of 15 and 25 mm, which are of more relevance to hydro-

logical practice, are also useful in investigating the effect of 

industrialization and urbanization on rainfall trend. Convective 

rather than frontal rainfall events are more susceptible to modi­

fication, and severe weather phenomena (thunderstorms) are likely 

to be affected in particular (Oke, 1980). 

The existence of regional differences in rainfall depths has been 

reported by various investigators, (e.g., Buishand and Velds, 1980), 

and also regional differences in rainfall trend have been reported 



(e.g., Kraijenhoff and Prak, 1979; Buishand, 1979). These differ­

ences in trend have been attributed to the anthropogenic effects 

of industrialization and urbanization. Therefore, it has been sug­

gested (Werkgroep Afvoerberekeningen, 1979) that more stringent 

design criteria should be used for urban than for rural areas. 

Earlier investigations of homogeneity in time of Dutch rainfall 

records have focused mainly on total monthly and annual rainfall, 

except Kraijenhoff and Prak (1979), who established the inhomoge-

neity in time of the annual frequency of daily rainfall exceeding 

30 mm in summer. Jumps in the mean seasonal and annual rainfall 

of Dutch rainfall series roughly for the period 1925-1970, have 

been studied by Buishand (1977a). Departures from homogeneity in 

24 Dutch long-term monthly and annual rainfall records were report­

ed by Buishand (1981), who also investigated departures from homo­

geneity in 264 Dutch records of annual rainfall for the period 

1950-1980 (Buishand, 1982a). In all three studies, strong indi­

cations of a change in the mean were found for large numbers of 

records. 

In this chapter the following issues are dealt with: 

. In Section 2.2, mean values of the rainfall characteristics 

defined above for the Netherlands are determined from daily 

rainfall records for the period 1951-1979 for 140 rainfall 

stations of the Royal Netherlands Meteorological Institute 

(KNMI). This data set is denoted as D140 (Appendix A.l). 

These mean values are compared with mean values determined 

from the long-term records for the period 1906-1979 for 

14 KNMI rainfall stations considered to be of good quality 

(Buishand, 1982b). This data set is referred to as D14 

(Appendix A.l). 

. In Section 2.3, time-inhomogeneity of rainfall in the 

Netherlands is considered. Use is made of data set D140 

for the period 1951-1979 and of data set D14 for the period 

1906-1979. 

. In Section 2.4, local differences in rainfall level and rain­

fall trend between Dutch rainfall stations are investigated. 

Use is made of data set D140. 



. In Section 2.5, consideration is given to whether such local 

differences in rainfall level and in rainfall trend justify 

a partition of the Netherlands on the basis of rainfall. Use 

is made of data sets D140, D14, and H12, that is hourly records 

of 12 KNMI rainfall stations (Appendix A.l). 

. In Section 2.6, statistical evidence for the effect of urbani­

zation and industrialization on rainfall in the most urbanized 

and industrialized part of the Netherlands, namely the Rand­

stad, is investigated. Use is made of data set D32, which con­

sists of daily rainfall records of 32 KNMI rainfall stations 

for the period 1932-1979 (Appendix A.l). 

The geographical location of all rainfall stations is shown on the 

map in Figure 2.1. 

2.2. RAINFALL LEVELS 

In this section, mean values of each of the seven rainfall charac­

teristics defined in the introduction to this chapter are deter­

mined. Let x. .be the value of one characteristic under investiga-

tion at station i (i= 1,..., 140) in year j (j= 1,..., 29), then 

the station means x. can be calculated. Their mean x , together 

with the unbiased estimate s of their standard deviation and the 

corresponding coefficient of variation cv are presented in Table 

2.1. 

As a check on the consistency of these results, x , s, and cv were 

also calculated for data set D14 (Table 2.2). Although in the longer 

series D14 all mean values are somewhat smaller, the values of the 

characteristics F and R differ considerably. 

Disregarding any correlation in the data between stations and 

between years, a first indication of the occurrence of inhomogene-

ities in mean total annual rainfall may be obtained from a compa­

rison of components in an analysis of variance and a cross classi­

fication of the factors years and stations (Table 2.3). The effects 

between years and between stations are considerable. 



Table 2.1. Mean x , standard deviation s, and coefficient of 

variation cv of rainfall characteristics for data set D140 

Rainfall 

character­ Mean 

istic Summer 

Exceedance 

frequency 

1 mm (F ) 

15 mm (F1 5) 

25 mm (F2 5) 

Total annual 

rainfall (R) 

52.4 

4.7 

1.15 

X 

Winter 

80.5 

3.5 

0.48 

775.8 (mm) 

Standard 

Summer 

2.6 

0.5 

0.25 

deviation s 

Winter 

36 

2.6 

0.6 

0.13 

.4 (mm) 

Coefficient of 

variati 

Summer 

4.9 

11.2 

21.9 

on cv (%) 

Winter 

3.2 

16.4 

27.4 

4.7 

Table 2.2. Mean x , standard deviation s, and coefficient of 

variation cv of rainfall characteristics for data set D14 

Rainfall 

character­ Mean 

istic Summer 

Exceedance 

frequency 

1 mm (F ) 

15 mm (F1 5) 

25 mm (F 2 5 ) 

Total annual 

rainfall (R) 

50.6 

4.2 

1.03 

X 

Winter 

78.1 

3.1 

0.45 

732.0 (mm) 

Standard deviation s 

Summer Winter 

3.2 3.0 

0.5 0.3 

0.14 0.07 

32.8 (mm) 

Coefficient of 

variât: 

Summer 

6.3 

11.6 

13.2 

ton cv (%) 

Winter 

3.9 

10.6 

16.8 

4.5 

Table 2.3. ANOVA table for between years and between stations 

effects for total annual rainfall 

Source of variation df ms(mm ) 

Between years 

Between stations 

Residual 

28 

139 

3892 

2.21*10 

3.83*104 

3.47*10] 

Total 4059 



In order to obtain a general impression of daily rainfall level at 

a Dutch rainfall station, peaks-over-threshold series (POT series) 

were extracted for each station in the D140 data set for summer, 

winter, and the total year, and with a mean annual number of thres­

hold exceedances of two. To assure independence of the exceedan-

ces, these had to be separated by at least one day without rain. 

Mean order statistics were obtained by taking the mean of peaks 

of equal ranking. It was assumed that both the POT series for an 

individual station, and the series of mean peaks q were exponen­

tially distributed. Thus, a probability density function was fitted 

according to 

f(q) = |exp[-(q-q0)/ß], (WQ) (2.1) 

where 

qn : parameter for location 

ß : parameter for scale. 

The maximum likelihood (ML) estimators of ß and q_, corrected for 

bias, are (NERC, 1975; Vol. 1) 

i = HTî<â-a,)- (2.2) 

and 

â0 = %-i/n' (2-3) 

n : sample size (58) 

3 : lowest peak in the sample 

2 : sample mean of peaks. 

Estimates of ß and q. are given in Table 2.4. 

where 



^0 

23 

20 

16 

(mm) 

1 

1 

8 

Table 2.4. Maximum likelihood estimates of ß and q. in Equation 

2.1 for POT series of daily rainfall in the Netherlands (mean an­

nual number of threshold exceedances: 2) 

Period ß (mm) 

Year 8.1 

Summer 8.5 

Winter 5.8 

These mean POT series have been plotted and are presented, together 

with the fitted exponential distributions in Figure 2.2. For the 

plotting position of the order statistics g. . . , with q,-,»!-•-iq, >, 

the following equation was used 

1 _i E(Y,H x) = * (n+l-j) x, (2.4) 
1 ' j=l 

where 

y,.. : order statistic of a standard-exponential variate 

with density f(y) = e~y (y^.0). 

The assumption of an exponential distribution was tested in the 

following way. Let the order statistics g.. ...<_.. .<_g. > be samples 

of a truncated exponential distribution, then the standardized 

increments 

±1 = ^ ( n - i + D - ^ n - i ) ) ' i = 1 n"! (2-5) 

are independent exponential variâtes. After eliminating the location 

parameter, the scale parameter is eliminated. Let 

n-1 
s = 1 L., (2.6) 

i=l x 

and 

i 
Z.H = * L./s. i = 1, ..., n-2 (2.7) 
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The series (z,,.., z _) is distributed as an ordered sample of 

size n-2 from a uniform distribution on (0,1) (Durbin, 1961). Thus, 

a test statistic T can be used, where 

n-2 
T = -2 I In z.. (2.8) 

i=l 1 

Under the null hypothesis of exponentially distributed peaks, T has 

a ̂ -distribution with parameter 2(n-2). As lack of fit with regard 

to the exponential distribution can lead to high as well as to low 

values of T, a two-sided test is used. Very long tails give low 

values of T, and very short tails high values. Realizations of T 

for the total year, summer, and winter for the POT series were 95.9, 

99.8, and 94.6, respectively. As these values are not significant 

(two-sided test, significance level a = 0.10), the exponential dis­

tribution fits the POT series reasonably well. 

2.3. TIME-INHOMOGENEITY OF RAINFALL 

In this section, time-inhomogeneity of mean values of the seven 

rainfall characteristics defined in the introduction to this chap­

ter is considered. Let x . be the mean value of a rainfall charac­

teristic for all rainfall stations considered in year j (j=l,..., 

n). For rainfall characteristics F and FW, the x . are means of 

transformed variâtes x. ., where the transformation is according to 
i, J 

P = VP+V(P+D, (2.9) 

the untransformed p being any positive integer. This transformation 

has a variance stabilizing and normalizing effect on Poisson vari­

âtes, resulting in that case in a variance of almost 1 (see Appen­

dix A.2). 

In this section, consideration is given only to a possible change 

in the expected mean x ., described by either a linear trend 

E(x.j) = Mj = M+Jô, (2.10) 
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j = 1,.. ., m 
E(x _;) = M.; =<! (2.11) 

j = m+1,..., n 3' "j 

that is, a jump at j = m+1 with m unknown. Under the null hypothesis 

H- of a homogeneous series, 

and for data set D14, n=74. 

H of a homogeneous series, 6 = 0 . Note that for data set D140, n=29 

When anthropogenic effects on rainfall are being studied, it is 

logical to look for a trend. However, since there are many factors 

affecting rainfall and rainfall measurements, including climatologie 

fluctuations or changes in methods of measuring rainfall, it is also 

necessary to consider jumps. Test statistics are needed which are 

powerful for the alternatives H (Equation 2.10) and H l b (Equation 

2.11), both with ô 7* 0 (the power of a test is defined as the prob­

ability of rejection of H. in favour of the alternative H 1 ) . 

The homogeneity of the series x . was tested by the three test 

statistics described below. 

Von Neumann ratio Q 

n _ 1 a , n , .2 
2 = 2 (x -j+1-x .:> / * (x ,-x 

j=l ° X ° j=l ° * 
r . (2.12) 

A monotonie trend or slow oscillations in level tend to produce low 

values of 2; and rapid oscillations in the mean may yield high 

values of Q. For the alternatives H, and H,., a left-sided criti-a la lb 
cal region of g seems adequate. An advantage of the statistic 2 is 

its sensitivity for a great variety of inhomogeneities. A table of 

percentage points of 2 f°r normally distributed samples is given by 

Abrahamse and Koerts (1969). 

Student's statistic T for a linear time trend 

r V(n-2) 
T = , (2.13) 

Vd-r2) 
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where 

r: the sample correlation coefficient between the variate 

x . and time. 

The statistic T is an adequate tool for testing homogeneity when 

H is the alternative. Under the null hypothesis T is a Student 

variate with n-2 degrees of freedom. The test is two-sided, since 

an increasing trend gives high positive values of T, and a decreas­

ing trend, high negative values. 

The maximum or minimum M of weighted rescaled adjusted partial sums 

For a series x . (j=l,..., n), the adjusted partial sum is defined 

S, = I (x .-x), k = 1,..., n-1 (2.14) 
k j=l -3 

and S. = S = 0 . The adjusted partial sums are rescaled to scale 

invariance by dividing S, by the sample standard deviation s 

S_k* = Sk/sx, k = 1,..., n-1. (2.15) 

The weighted rescaled adjusted partial sums S** are defined as 

S** = {k(n-k)}"i5 S*, k=l,..., n-1. (2.16) 

-i-

Because of the multiplication factor {k(n-k)} 2 

var(S**) = -^zr, , k=l,..., n-1 (2.17) 
—k ' n-1 

independent of k (Appendix A.3). The test statistic is 

M = max \it*\' (2.18) 
k=l, .. ., n-1 

A particular advantage of this test procedure is that it gives a 

value of k, say k*, which maximizes |S**|. In case of H-,, k* is 
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the maximum likelihood (ML) estimate of m (Buishand, 1981). Because 

there is a unique relationship between M and Worsley's W (Worsley, 

1979) 

W = (n-2)*5 M/U-M2)*5, (2.19) 

percentage points of W were used in the test, which is two-sided 

(Appendix A.3). 

The power of a test can be determined directly by solving the power 

function only in a few cases. Here, the power of the test statistics 

2/ T, and M for alternatives according to Equations 2.10 and 2.11 

was investigated by means of Monte Carlo methods with 2000 samples 

of 29 normal variâtes; for each sample the test statistics were 

calculated for 

a linear trend: 6 = 0 (r^) F5°' 

1 9 a jump : ô = 0 (gti) g0, and m = 7, 14. 

The simulated power functions of 2» ï< an<i M a r e presented for al­

ternative B1 in Figure 2.3A, for alternative H . (m=7) in Figure 

2.3B, and for alternative H . (m=14) in Figure 2.3C. 

Simulated powers of 2 an<^ H f°r Hiv. have been given by Buishand 

(1982a) for n = 30, a = 0.05 and m = 5, and 15; and those given in 

Figure 2.3B and 2.3C compare well with his results. It may be con­

cluded from Figure 2.3 that the statistic T has favourable charac­

teristics when trends or jumps according to Equation 2.10 or 2.11 

have to be detected. For other types of inhomogeneities, however, 

2 may be superior to both T and M. 

For data sets D140 and D14, values of the test statistics 2' Z a n d 

M, determined for the rainfall characteristics total annual rainfall 

R and annual exceedance frequencies for summer and winter F ' , 

are presented in Table 2.5. 
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Table 2.5. Realizations of the statistics £, T, and M and of the 

estimated jump point k* 

Rainfall 
characte ristic 

Exceedance 
frequency 
Summer 

1 mm 

15 mm 

25 mm 

Winter 

1 mm 

15 mm 

25 mm 

<F1> 

<F*s> 
<F?s> 

(Fj) 
(FW ) 1 15' 
(FW ) 1 25' 

Total annual 

rainfall (R) 

Q 

2 

1 

1 

2 

1 

1 

1 

Data set D140 

03 

74 

85 

03 

16°° 

18°° 

92 

T 

-1.29 

-1.93° 

-2.03° 

0.84 

0.68 

-0.34 

-0.55 

M 

0 

0 

0 

-0 

-0 

-0 

0 

35 

48° 

50° 

24 

40 

33 

30 

k* 

18 

24 

25 

14 

9 

9 

20 

Data set 
Q 

2.19 

1.81 

1.92 

1.90 

1.63 

1.65 

1.78 

T 

0.39 

0.45 

0.64 

0.87 

1.96° 

1.15 

1.62 

D14 
M 

0.16 

0.30 

0.30 

-0.20 

-0.33° 

-0.26 

-0.26 

k* 

69 

70 

67 

59 

19 

23 

44 

° Indicates values inside the critical region for a = 0.10. 
0 0 Indicates values inside the critical region for a = 0.05. 

The test statistics T and M lead to very similar conclusions. The 

Von Neumann ratio g, however, is very clearly sensitive to other 

types of inhomogeneities. The values of k* indicate a jump towards 

the end of the summer series during the period 1970-1975, while in 

the winter series the jump points are more evenly spread throughout. 

The positive trend of the D14 series is very likely to be affected 

by improvements in rainfall measurements, notably the introduction 

of standardized measurement practice at the beginning of this cen­

tury, and the lowering of the rain gauge from 150 to 40 cm above 

ground level in the period 1946-1950 (Deij, 1968). Buishand (1977a) 

concluded that this last improvement resulted in an increase in 

measured rainfall of about 10% for coastal rainfall stations (see 

also Braak, 1945), and an increase of about 2% for stations at a 

distance from the coast. 
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The hypothesis that improvements in rainfall measurements are the 

main reason for the positive trend of the D14 series is supported 

by the higher values of T for the winter. The lowering of the gauge 

has led to a reduction of the wind-field deformation around the 

gauge, which causes a loss of catch. This loss, however, is smallest 

in summer because raindrops are relatively large as a consequence 

of the rainfall intensity in this season. 

The observed inhomogeneities may also be affected by the general 

circulation pattern during the period of the records used. The cir­

culation pattern is described by distinct circulation types, the 

frequency of which is known to fluctuate. Each period is character­

ized by the predominance of certain circulation types (Barry and 

Perry, 1973), each having its own probability of rainfall. 

A record of daily circulation types for the Netherlands in the 

period 1881-1976 has been compiled by Hess (1977); data for 1977 

and 1978 have been supplied by KNMI. In addition, the rainfall pro­

bability, given the occurrence of a certain circulation type, has 

been worked out for five KNMI stations (Bijvoet and Schmidt, 1958, 

1960). The effect of circulation types on rainfall trend was inves­

tigated by calculating the expected annual number of days in a cer­

tain rainfall class, according to the above-mentioned rainfall pro­

babilities. In this study only the rainfall class in excess of 5 mm 

has been considered. The series of expected annual numbers of days 

was compared to the series of actual numbers of days in this rain­

fall class for the period 1956-1978, because the 1881-1955 data 

were used to calculate the rainfall probabilities. Both series are 

shown in Figure 2.4A (summer) and Figure 2.4B (winter) for the 

rainfall station Den Helder/De Kooy. 

From Figure 2.4 it can be concluded that there is some evidence of 

the effect of the general circulation on rainfall trend. This effect 

is illustrated by the high values of k* in Table 2.5 for most rain­

fall characteristics. This seems to be an immediate consequence of 

the wet sixties. This may also be concluded from Figure 2.5, where 

10-year moving averages and the weighted rescaled adjusted partial 

sums are shown for total annual rainfall R for data set D14. The 
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10-year moving average of summer rainfall for the period 1734-1960 

is given in Figure 2.5C (Wind, 1963). 

2.4. LOCAL DIFFERENCES IN RAINFALL LEVEL AND IN RAINFALL TREND 

In this section local differences in rainfall level and in rainfall 

trend are investigated as follows. Let x. . be the value in year j 

at station i of one of the rainfall characteristics: (i) exceedance 
s w 

frequency (in summer F , with 11=1, 15, or 25 mm; and in winter F , 

also with 11=1, 15, or 25 mm), (ii) total annual rainfall R. Local 

differences in rainfall level are studied by comparing the station 

means x. for each rainfall characteristic (Section 2.4.2), and 

local differences in rainfall trend by analysing the time series 

x. . for each particular rainfall station and each rainfall charac-

teristic (Section 2.4.3). Use is made of data set D140. To give an 

impression of the local differences, maps of the Netherlands, 

showing the geographical distribution of station means and trend 

statistics, are presented. These maps were derived by the kriging 

method, which is a best linear unbiased predictor (BLUP). 

Firstly, the kriging method is discussed in Section 2.4.1. 

2. 4. 1. Kriging method 

Let Z(u) be an intrinsic random function (IRF) which is defined in 

every point with co-ordinate vector u of a region V, and let z(u) 

be a realization of 2(u), known at the N sample points u.GV. For 

example, the set of station means x. for data set D140 is a real­

ization z(u), known at the 140 sample points. 

A best linear unbiased predictor (BLUP) z(uQ) of z(u) at some point 

u. is defined as 

N 
z(u ) = I \.z(u.), (2.20) 

i=l 

where : 

\. : coefficients to be determined. 
l 
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This BLUP z(u ) is in fact the kriging prediction of z(uQ). The 

kriging method holds, if the following intrinsic hypothesis is 

valid 

(E[Z(u)-Z(u+h)] = 0 (2.21a) 

Uar[2(u)-Z(u+h)] = 2y(h), (2.21b) 

where 

h: distance. 

The function y(h) in Equation 2.21b is called the population semi-

variogram. If Equation 2.21 holds, then Z(u) is an IRF of order 

zero (IRF-O). 

The condition for Equation 2.20 to be unbiased implies that the pre­

diction error z(u0)-z(u~) will be a contrast. The variance of this 

contrast, a , equals 

_ N N N 
at = 21 \.y(u,-un)- I I A,X.Y(U,-u.), (2.22) 

E i=l X X ° i=l j=l x 3 1 D 

and Equation 2.22 has to be minimized. This leads to the kriging 

equations (Matheron, 1971) which can be deduced from the minimum 

variance and unbiasedness condition of the BLUP z(uß) 

rr\+nl N = r (2.23a) 

lljJjA = 1, (2.23b) 

where r is a symmetric N by N matrix (y- . ) , v • J=Y (u--u. ), 

r^tYt^-UQ), Y ( U 2 - U Q ) , .. ., Y ( U N - U 0 ) ) , 1N=(1,1,..., 1), 

\'=(A.1,\_,..., ^N)# and p is a Lagrange multiplier. The resulting 

minimum variance av of the kriging prediction equals 

2 N 

or£ = I \iY(ui-U0)+M, (2.24) 



18 

which follows from inserting Equation 2.23a into Equation 2.22. As 

will become clear in the following chapter, point to area interpo­

lation requires some of the semi-variances in Equations 2.22, 2.23 

and 2.24 to be replaced by certain types of mean semi-variances. 

The weights A., in Equations 2.20 and 2.24 can be determined if the 

semi-variances are known. For an IRF-0 these semi-variances can be 

estimated by 

, N(h) 
* ( h ) = 2NThT .* [z(ui)-z(ui+h)]z, (2.25) 

where N(h) is the number of paired data points at mutual distance 

h, particularly suitable if sampling has been done according to a 

regular grid. For a random sample, paired data are grouped accor­

ding to distance classes and N(h) is the number of paired data in 

a particular class. Note that I,N(h)=N(N-l )/2. Because of Equation 

2.21a, v(h) is an unbiased estimator. 

A population semi-variogram \(h) may be fitted to y(h) according to 

a parametric model, for instance a linear model 

•y(h) = Cô+oijh, (2.26a) 

or an exponential model 

Y(h) = CÔ+a1(l-exp(-h/a2)), (2.26b) 

where 

C : a parameter for the nugget effect 

ô : 0 (h=0) or 1 (h^O) 

a1,a2: parameters. 

The nugget effect represents discontinuity of the semi-variogram at 

the origin, due to spatial variability at very small distances in 

relation to the working scale, resulting for example from measure­

ment errors and/or the physical characteristics of the spatial pro­

cess concerned. 
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The linear model described in Equation 2.26a corresponds to intrin­

sic random functions Z(u) of order zero, for which an a priori 

variance or a covariance need not exist. The exponential model 

described in Equation 2.26b exhibits a limit or a sill, equal to 

C+di, as h->°°. This sill is almost (for 95%) reached at a distance 

or range equal to 3a2• Models exhibiting a sill may correspond to 

second-order stationary random functions Z(u) with spatial corre­

lation. 

The fitted v(h) should not only resemble the sample function y(h), 
but should also satisfy the condition for the variance of a con­
trast I.A.Z(u.), with I.A. = 0, to be possible for all A. 

l l v î " i l r l 

var(I.A.Z(u.)) = -1.1 .A.A.y(u.-u.)>0, (2.27) 

v i i v i ' ' l j l j J v l ; j ' — x ' 

furthermore 

y(0) = 0, y(h) = y(-h)>0. (2.28) 

As the Equations 2.26 imply independence of y(h) of orientation, it 

should be verified that z(u) is isotropic. In case of anisotropy, 

additional modifications are possible, see Journel and Huijbregts 

(1978). 

If the assumption according to Equation 2.21a holds, then the in­

crease of a semi-variogram for h>>0 can be shown to be necessarily 
2 

slower than that of h , that is 

lim ̂ ( h ) = 0, (2.29) 
h-»°° h 

which can be deduced from Equation 2.27. Consequently, a sample 
2 

variogram which increases at least as rapidly as h for large dis­
tances h is incompatible with the intrinsic hypothesis, as stated 
in Equation 2.21. Such an increase very often indicates the presence 
of a drift defined as 
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E[Z(u)] = m(u). (2.30) 

Where only one realization z(u) of Z(u) is known, and Z(u) is 

only intrinsic, var[y(h)] becomes very large (Appendix A.4) for 

h>L/2, where L is the maximum distance between sample points in V. 

Therefore, only for distances h<L/2, v(h) is fitted to y(h). 

For a second-order stationary Z(u), Equation 2.23 can also be writ­

ten in terms of covariances instead of semi-variances. The advantage 

of using semi-variances is that assumptions can be weaker, for ex­

ample, the a priori variance var[Z(u)] need not exist. A disadvan­

tage is that calculation of the A. according to Equation 2.23 in­

volves inverting a (N+l) by (N+l) matrix with zeros at the main 

diagonal; some common inversion methods can not handle this. Thus 

in the actual calculations, the semi-variances v(h) in Equation 

2.23 are replaced by pseudo-covariances C(h)=A--y (h), where A is a 

constant, exceeding the maximum of semi-variances occurring in 

Equation 2.23. 

The kriging method developed by Matheron (1971) is very closely re­

lated to the method of optimum interpolation developed by Russian 

statisticians, such as Gandin (1965). This last method, however, is 

based on second-order stationary realizations z(u), and no use is 

made of the concept of intrinsic random functions. As a result, all 

equations, such as 2.22 and 2.23 are in terms of correlation coef­

ficients. For an application of this method, see De Bruin (1975). 

The connection between kriging and linear regression has been point­

ed out by Corsten (1982). The Equation 2.23 leads to 

z(u0) = 2T-1r-(zT-1lN)(l^r-1lN)"1(l^r"1r) + 

+ ( 1Nr"l lN)"1 ( z'r"l lN)- ( 2 - 3 1 ) 

Defining x T ~ y as an inner product of the vectors x and y. Equation 

2.31 becomes 

z(u0) = (z'r)-(z'lN)(lN'lN)-1(lN'r)+(lN'lN)-1(z'lN).(2.32) 
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The last term in Equation 2.32 can be interpreted as the estimate 

p of JJ=E[Z(U)]. The other terms in the right-hand side of Equation 

2.32 can then be written as (z-pl 'r)=rT~ (z-plN), where the r T ~ 

may be termed the best linear approximation coefficients for z(u) 

by z(u.)/ i=l,..., N. Working along the same lines, an alternative 

expression to Equation 2.24 is obtained for the kriging variance 

in Corsten (1982) 

a£ = rT"1r-(l-l^r"1r)(l^r"1lN)"1(l-l^r"1r). (2.33) 

The last term in Equation 2.33 is closely related to the variance 

of the estimate of the stationary expectation E[z(u-)], and the 

other term on the right-hand side is an estimate of the residual 

variance of z(u.) with regard to the best linear approximation. 

The IRF-k theory 

In the presence of drift as defined by Equation 2.30, use may be 

made of the IRF-k theory, (Delfiner, 1976; Kafritsas and Bras, 

1981). Basically, the drift is described as 

m(u) = 1 a g (u), (2.34) 
&=0 * * 

where g0(u) are known monomial functions (in the one-dimensional 
."• 2 

case with k=2: gQ(u)=l, g1(u)=u, g2(u)=u , and the a£(£=0,..., k) 
are coefficients which need not be estimated). 

For an intrinsic random function Z(u) of order k (IRF-k) the fol­

lowing now hold: 

- Any generalized increment of 2(u), that is l.k.Z(u) with coef­

ficient vector A not only perpendicular to 1 but to all columns 

of the matrix U=(u. ), where u. =g (u,), will have expectation 

zero. In other words, a generalized increment is a new process 

for which a drift according to Equation 2.34 is filtered out. 

Var(I.\JZ(U)) exists and equals \*K\, where K is a (symmetric) 

matrix of generalized covariances. Note that for k=0, K=-r. 
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The condition of unbiasedness of the estimator z(u0) in this case 

leads to k+1 constraints 

N 

.1 X i g £ ( u i ) " g A ( u O ) = °' Z=° ' k 

which, in matrix notation, may be represented as 

U'A = g. 

The modified form of Equation 2.23 is 

fKA+Up = k (2.35a) 

lu'\ = g, (2.35b) 

•v. • . 

where k = (K(u , u Q ) , . . . , K(u ,uQ)), and p is a vector of Lagrange 

multipliers. Alternative expressions for z(u ) and a , analogous 

to Equation 2.32 and Equation 2.33 for an IRF-k Z(u) are given in 

Corsten (1982). 

2.4.2. Local differences in rainfall level 

In order to analyze local differences in rainfall level, at each 

station i the station mean x, was calculated for each of the rain­

fall characteristics for data set D140. Values for the characteris­

tics F , F were not transformed, because the normality assumption 

is superfluous. To give a more complete picture of the rainfall 

differences between stations, the station means have been interpo­

lated to a dense and regular grid (7.5 x 7.5 km) by the kriging 

method. 

Semi-variances, estimated by Equation 2.25, for distance classes 

0-10, 10-20, 20-30,... km, are presented in Figure 2.6 for each 

rainfall characteristic. A tendency for anisotropy of the semi-

variograms was investigated by classifying paired data according 

to their orientation: in the NW-NE sector or in the NE-SE sector 

(see also Figure 2.6). These two particular sectors were chosen 
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because the spatial structure of rainfall has been shown to vary 

between directions either parallel or perpendicular to the coast 

(e.g., Boer and Feteris, 1969; Kruizinga and Yperlaan, 1976; 

Buishand and Velds, 1980). 

The sample variograms grow slowly to a sill value for distances 

exceeding 100 km. Thus the exponential variogram model (Equation 

2.26b) seems adequate, although for the exceedance frequency in 

summer of 1 mm (F^) and in winter of 25 mm (F„5) a linear and loga­

rithmic model, respectively, may also be acceptable. For large dis­

tances the sample variograms fluctuate considerably, as may be ex­

pected from the estimation variance of a sample variogram for a 

completely known realization (Appendix A.4). It may also be con­

cluded from Figure 2.6, that none of these rainfall characteristics 

exhibits a drift. 

When a rather large area, that is the whole Netherlands is consid­

ered, as is the case here, there may be some evidence for anisotro-

py, especially in the summer when local effects are more important 

(Boer and Feteris, 1969). For two rainfall characteristics, F and 
w F.. , the presence of anisotropy may be inferred from the semi-

variograms. However, because this is not very pertinent here, and 

in order to avoid arbitrary choices, isotropy has been assumed in 

the following. 

Exponential semi-variogram models were fitted to the sample vario­

grams. Because of the paucity of data at short mutual distance, 

C in Equation 2.26b was set equal to zero. As only one realization 

is known for only 140 sample points, y(h) was fitted to distance 

class means of y(h) f°r distances h < 162.4 km, which is half the 

largest inter-station distance occurring in the sample. The para­

meters ax and a2 were estimated by the Levenberg-Marquardt method, 

which is a gradient method of least squares optimization (Abdy and 

Dempster, 1974). The resulting ordinary least squares (OLS) esti­

mates âx and â2 are presented in Table 2.6. 



24 

Table 2.6. Ordinary least squares estimates âj (-) and â2 (km) 

in Equation 2.26b 

Rainfall characteristic Summer Winter 

Exceedance frequency 

1 mm (F1) 11.94 139.16 7.25 38.98 

15 mm (F15) 0.29 21.07 0.35 21.72 

25 mm (F ) 0.065 14.62 0.018 28.01 

Total annual rainfall1 (R) 1355.1 (=&1) 23.65 (=â2) 

1 For rainfall characteristic R, âx has dimension mm 2 

From a comparison of Table 2.6 with Table 2.1, it can be seen that 

the sill »! of the exponential semi-variogram model is of the same 
2 

order as s in Table 2.1. The usual vai 

the mean of the estimates v(h), because 

2 2 
order as s in Table 2.1. The usual variance estimator s equals 

N 
S2 = r^j 1 (Z(U.)-5(u))2 

1N"-L i = l x 

N 2 
I (z<u.)-z(u.)r N(N-l) ̂  v~v i' ~v j 

N ( N;1 ) 2 Y(h) = HhT- (2.36) 
N(N-l) 2 

As most estimated semi-variances have been calculated for pairs of 

sample points at large mutual distances, that is beyond the range, 
2 „ -

•y(h) = â , and because of Equation 2.36, s = à . 

The matrix Equation 2.23 was solved by using the fitted semi-

variograms. A fixed neighbourhood, the complete set of observations, 

has been applied because with a random design and a range of consid­

erable magnitude, as is the case here, it is simpler to invert the 

left-hand side of Equation 2.23 only once, and to solve the equa­

tion by this inverted matrix, each point u leading to a different 
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right-hand side (y (u..-u_), . . . , y(u -u. ),1)'. Application of a fixed 

neighbourhood implies assigning values to y(h) for h>L/2, that is 

for distances for which the semi-variogram model has not been fit­

ted to the data. From Table 2.6 it can be seen that for rainfall 

characteristic F. this casts doubts about semi-variances at large 

mutual distances. 

The resulting maps are shown in Figure 2.7. Figure 2.7G for rain­

fall characteristic R is in accordance with the regional differen­

ces in total annual rainfall within the Netherlands described by 

Buishand and Velds (1980). They also indicated the regions with 

most abundant annual rainfall as the Veluwe and the extreme south­

ern part of Limburg, followed by central Drenthe, the eastern part 

of Friesland, the hilly parts of Overijssel and Utrecht, and regions 

leeward of the dunes in Zuid-Holland and Noord-Holland. The driest 

parts of the Netherlands are the coast of Groningen, the islands of 

Zeeland and Zuid-Holland, narrow strips adjacent to the IJsselmeer, 

the eastern part of Noord-Brabant and the northern and central 

part of Limburg (for the location of these regions, see Figure 1.1). 

This regional distribution of annual rainfall is not only consis­

tent with that of Buishand and Velds (1980) based on 1941-1970 

data, but it is also, in close agreement with that of KNMI (1972) 

based on 1931-1960 rainfall records with some extended series. 

Thus, analysis of rainfall records for the three periods, 1931-1960, 

1941-1970, and 1951-1979, have yielded much the same regional dis­

tribution of total annual rainfall. 

The south-west to north-east oriented strip across the Netherlands 

with high frequencies of heavy daily rainfall in summer reported by 

Kraijenhoff and Prak (1979) for the period 1957-1975 is also visible 

in Figure 2.7B and 2.7C. 

The regional distribution of relatively heavy daily rainfall in 

summer and winter is distinguishable in Figure 2.7B and 2.7E. 

Seasonal rainfall differences have been found to occur in the fol­

lowing regions: 

Rotterdam-Dordrecht region, extending into the western part of 

Noord-Brabant; 
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Noord-Oost Polder; 

northern part of Noord-Holland; 

eastern parts of Overijssel and Groningen; 

a small area in the south-eastern part of Noord-Brabant. 

From Figure 2.7A and 2.7B, it can be concluded that in summer, the 

regional distribution of heavy daily rainfall differs greatly from 

that of rainfall in excess of a low threshold value, particularly 

in: 

- the Randstad and the north-western part of Noord-Brabant; 

- eastern parts of Groningen, Drenthe, Overijssel, and Gelder­

land. 

In the winter, these differences are considerably less (Figure 2.7D 

and 2.7E). Differences between Figure 2.7B and 2.7E, 2.7A and 2.7B, 

and 2.7D and 2.7E, may be of interest in studying the possible in­

fluences on rainfall by the processes of urbanization and industri­

alization. 

2. 4. 3. Local differences in rainfall trend 

As before, let x. .be the value in year j at station i of a cer-
1 ' J s w s 

tain rainfall characteristic (F , F or R). In the case of F and 
w F , the x. . were transformed variâtes, according to Equation 2.9. 
a i,J 

Local differences in rainfall trend for data set D140 were investi­

gated as follows. The time series {x. ., j=l,..., n} for each sta-
i1 3 

tion was reduced by the annual mean x . for each year 

y. . = x. .-x .. (2.37) 
•̂ l, 3 -1,3 -.3 

This reduction is useful because here the interest is in local 

rainfall trends with respect to the general rainfall trend over 

the whole of the Netherlands (Kraijenhoff and Prak, 1979). Further­

more, because of this reduction, var(y. . )<var(x. . ) , as there is 
1,3 1/3 

a high positive correlation between x. . and x . (Buishand, 1981). 

For each series y_. . (i=l,..., N) the test statistics £, T, M, and 
1/3 

k* defined in Section 2.3 were calculated and the results are pre­
sented in Appendix A.5. For each rainfall characteristic, the number 
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of series for which at least one of these statistics is significant 

(a = 0.10) is given in Table 2.7. For all rainfall characteristics, 

many series exhibit inhomogeneities. This is in accordance with the 

findings of Buishand (1982a) who tested homogeneity of annual rain­

fall series at 264 Dutch rainfall stations. 

Table 2.7. Number of series with at least one of the statistics 

to test homogeneity, 2' Ï' o r M, significant (a = 0.10; for 2 the 

test was one-sided, for T and M two-sided) 

Rainfall characteristic Number of series 

Summer 

44 

43 

35 

Winter 

50 

45 

29 

Exceedance frequency 

1 mm (F1) 

15 mm (F15) 

25 mm (F2g) 

Total annual rainfall (R) 72 

For those rainfall series having a significant M, a check was made 

whether there was a preferred location for the estimated jump point 

k*. For each rainfall characteristic, these values of k* were clas­

sified in intervals: 1951-1959; 1960-1969; and 1970-1979. From the 

results, which are presented in Table 2.8, there is no evidence of 

non-randomness. 

Table 2.8. Number of significant (a = 0.10) jump points (data set 

D140) in three periods: 1951-1959; 1960-1969; and 1970-1979 

Peric 

1951-

1960-

1970-

Sum 

3d 

-1959 

-1969 

-1979 

"! 

8 

11 

5 

24 

F15 

7 

7 

6 

20 

Rainfall 

Exceedance 

FS 

25 

0 

6 

2 

8 

characteristic 

frequency 

•Ï 
8 

9 

17 

34 

FW 

15 

15 

1 

10 

26 

FW 

*25 

6 

6 

6 

18 

Total 

annual 

rainfall 

10 

21 

12 

43 

Sum 

54 

61 

58 

173 



28 

In order to obtain an overall picture of the distribution of local 

rainfall trends, that is, of the reduced series (Equation 2.37), 

the calculated T statistics were interpolated by the kriging method 

(Figure 2.9). Sample semi-variograms were calculated according to 

Equation 2.25, and are depicted in Figure 2.8. Again, checks were 

made for indications of anisotropy in the sample semi-variograms, 

and again no evidence for anisotropy was found. Therefore, the pa­

rameters «j and a2 in Equation 2.26b were estimated by the proce­

dure outlined in Section 2.4.2, and the resulting OLS estimates âx 

and â2 are presented in Table 2.9. 

Table 2.9. Ordinary least squares estimates 51 (-) and â2 (km) in 

Equation 2.26b 

Rainfall characteristic Summer Winter 

Exceedance frequency 

1 mm (F ) 

15 mm (F15) 

25 mm (F25) 

Total annual rainfall (R) 

.62 

.73 

.41 

â, = 

17.07 

15.11 

25.11 

= 3.00 

2 

1 

1 

43 

60 

70 

« 2 

17.21 

32.63 

75.02 

= 31.86 

The ranges (= 3<x2 ) of t n e semi-variograms for local rainfall trends 

are rather limited and are of the same order as the ranges of semi-

variograms for rainfall levels (Table 2.6). 

From Table 2.9 a large variance of the T statistic can be implied. 

Under the null hypothesis var(T) = var(t _ ? ) , where t _ is a Stu­

dent variate with (n-2) degrees of freedom with var(t _)=(n-2)/ 

(n-4)=1.08. Thus, it may be concluded that T is a non-central Stu-
Ô. 

dent variate t , where v=n-2 and with non-centrality parameter ô. 
ô . 

at station i. For t 1, the following holds (Johnson and Kotz, 1970; 

p. 203, 204)) 

Eft/} = 6i(v/2)l5r(^i)/r(v/2), (2.38) 

ô . _ ô . 

varf^1) = ̂ ( l + ô f ) - ^ ^ 1 } ) 2 . (2.39) 
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6. 
If v=27, then E{t 1} s ô., and when inserted into Equation 2.39 this 

yields 

ôi 2 
var(t ) = 1.08 + 0.0214 6.. (2.40) 

From Figure 2.9, for winter rainfall series there seems to be a 

general positive trend along the coast and a negative trend along 

the eastern border of the Netherlands. For the summer series, the 
' s s 

picture is rather complicated. For the characteristics F-5 and F_5 

there are positive trends in the extreme north of Noord-Holland, 

in a north-south strip through the centre of the Netherlands, the 

Noord-Oost Polder, and parts of Zeeland. Negative trends occur along 

the eastern border, and in some parts of Friesland, Noord-Holland 

and Zeeland. 

For F^ and FW seasonal differences in rainfall trend occur in Gro­

ningen, Noord-Holland, Randstad, Utrecht, Noord-Brabant, and Zee­

land. (Figure 2.9A and 2.9D). With higher threshold values, char­

acteristics F^5 and F" (Figure 2.9B and 2.9E), these seasonal dif­

ferences occur only in Noord-Holland, Randstad, Utrecht, and Noord-

Brabant. Within-season differences are particularly pronounced in 

summer. 

The regional distribution of trends in total annual rainfall R cor­

responds rather well to the regional distributions of trends in the 

winter series, that is, a positive trend along the coast and a ne­

gative trend along the eastern border of the Netherlands (Figure 

2.9G). 

2.5. PARTITIONS OF THE NETHERLANDS BASED ON RAINFALL 

Figure 2.7 and Figure 2.9 suggest local rainfall differences. How­

ever, replacing the real data with correlated random variâtes and 

applying the same interpolation and plotting procedures as used for 

Figure 2.7 and 2.9 also results in maps suggesting local differen­

ces. To be sure that a partitioning of the Netherlands based on 

rainfall is realistic, the following two points are important: 



30 

the variation of a rainfall characteristic between regions 

should be significantly different to the variation within re­

gions ; 

a partition resulting from a statistical procedure should lead 

to physically interprétable regions. Such a partition should be 

valid for several rainfall characteristics. For design criteria 

in particular, the partition should be valid for the frequency 

of heavy rainfall of short duration, that is, of five minutes 

up to one hour. 

Such a partition has been devised for France, in which three re­

gions are distinguished (Ministère de l'Intérieur, 1977), and one 

is further subdivided into two regions (CTGREF, 1979). The United 

Kingdom has been divided into two regions, England and Wales, and 

Scotland and Northern Ireland (NERC, 1975, Vol. 2), which are not 

homogeneous with respect to rainfall. Thus, the recognition of 

local rainfall differences is not sufficient to justify a parti­

tion. 

The actual procedure for rainfall durations shorter than 48 hours 

used by NERC (1975; Vol. 2) is as follows: the threshold value of 

rainfall corresponding to a 5-year return period, q-, for the ap­

propriate duration and location is related to the two day g and 

the 60 minute g_ values; these last two values can be derived from 

detailed maps showing their geographical distribution. Then the q,. 

value for the appropriate rainfall duration is related to the two 

day and the 60 minute values by q,. = a/(l+bD)n, where q5 is in 

mm/hour, D is the rainfall duration expressed in hours and the 

parameters a, b, and n are related to the ratio of the two day and 

the 60 minute values of q^. This relationship coincides with a re­

lationship of these parameters to mean annual rainfall (see Section 

2.5.3). Once the q5 value is determined, the value of ô , for a 

T-year return period can also be determined by considering the 

growth factor : the ratio «Ip/q̂ • These growth factors which were 

found to vary slightly with geographical location, have been tab­

ulated for the two regions of the United Kingdom mentioned above. 
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In NERC (1975) it is also pointed out that for rainfall durations 

of at least 24 hours, guantile estimates of rainfall for a given 

return period and rainfall duration are proportional to mean annual 

rainfall. Without partitioning the country into regions, such pro­

portionality is mentioned for possible use in Belgium (Nonclerg, 

1982) and the Netherlands (Buishand and Velds, 1980). As a conse­

quence of the rainfall increase in urban areas, reported by Kraijen-

hoff and Prak (1979), it is suggested in Werkgroep Afvoerberekenin-

gen (1979) to divide the Netherlands into urban and rural regions. 

Possible partitions of the Netherlands based on rainfall are sug­

gested in Section 2.5.1 and tested statistically in Section 2.5.2. 

Finally, the implications of local differences for hydrological 

design are discussed in Section 2.5.3. 

2.5.1. Possible partitions 

When suggesting possible partitions with respect to rainfall of 

the Netherlands, it seems natural to start with a summary of the 

relevant publications of the Royal Netherlands Meteorological 

Institute (KNMI): Hartman (1913), Braak (1933), Timmerman (1963), 

Buishand and Velds (1980) and Buishand (1983); also maps showing 

the geographical distribution of certain rainfall characteristics 

can be found in KNMI (1972). 

Maps showing the geographical distribution of mean annual rainfall 

from Hartman (1913), Braak (1933), and Buishand and Velds (1980) 

are reproduced in Figure 2.10. The absence of a rainfall maximum 

in the southern part of Limburg in Figure 2.10A is due to the use 

made of the Maastricht and Ubachsberg records, which are of a 

rather questionable quality (Braak, 1933). The mean annual rainfall 

in Figure 2.10B ranged from 597 mm at Kampen to 862 mm at Vaals; in 

the present study (Figure 2.7G) the range is from 706 mm at Stavoren 

to 916 mm at Vaals. There is a general trend towards higher mean an­

nual rainfalls which can at least partially be ascribed to improved 

measurement practices (Buishand, 1977a). The local rainfall differ­

ences can be attributed mainly to the following (Timmerman, 1963): 
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Friction. Convergence of air masses reaching the coastline from 

south-west to north is induced by the increasing roughness. This 

results in an increase in rainfall levels and frequencies with 

increasing distance from the coast up to a maximum of about 

30-35 km from the coast. 

Topography. The forced ascent of the air leads to an increase 

in rainfall on the windward side of the hills of Utrecht, Over­

ijssel, the southern part of Limburg and the Veluwe. 

Differential heating. Temperature differences between sea and 

land lead to a relative increase in rainfall levels and frequen­

cies along the coast in the autumn, and a decrease in the spring 

and the early summer. 

The effects of urbanization on rainfall have been mentioned by 

Timmerman (1963), but not in relation to the geographical distri­

bution of rainfall in the Netherlands. Buishand and Velds (1980) 

have concluded that cities, such as Amsterdam and Rotterdam, may 

have an effect on rainfall. 

Four partitions of the Netherlands, based on rainfall, are proposed: 

- partition (i), based on rainfall differences from east to west, 

that is from inland to the coast, and from north to south 

(Figure 2.IIA); 

- partition (ii), based on the effects of friction, topography, 

and differential heating (Figure 2.IIB); 

- partition (iii), based on the effects of friction, topography, 

and differential heating, and on anomalies attributed to urban 

effects reported by Kraijenhoff and Prak (1979) (Figure 2.11C); 

- partition (iv), based on mean annual rainfall for the period 

1951-1979 (Figure 2.11D; the three isolated dry stations have 

been included in the group of normal stations). 

Each station in data set D140 has been assigned to one of the sub-

regions in each of the proposed partitions (see Appendix A.5). 

Each partition is to some extent a posteriori. Particularly par­

tition (iv), but the other partitions are also partly based on maps 

showing the geographical distribution of rainfall. 
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2.5.2. Testing the statistical significance of the partitions 

An indication of the existence of significant local differences in 

mean annual rainfall has already been given in Section 2.2. Here, 

the effect of spatial correlation is considered. The following 

three null hypotheses are considered: 

H : all the expectations of a certain rainfall characteristic in 

all rainfall stations considered in the Netherlands are equal. 

If this were true, then the Netherlands can be considered to 

be homogeneous with regard to rainfall; 

H_: after assigning the rainfall stations to regions, all result­

ing regions are homogeneous ; 

H_: differences between internal homogeneous regions vanish. 

The following rainfall characteristics are considered 

rainfall levels: R, FS , F ™ , ai 

relevant for hydrological design; 

rainfall trends: F and F?I-, bee 

of the importance of urban effects (see Section 2.6) 

- rainfall levels: R, Flc, F- _ , and F__ , because these are 
-Lb -Lb zb 
cal d€ 

s s 
- raxnfall trends: F.. _ and F?_, because these give an indication 

The following model is used to test spatial homogeneity (M.A.J. 

Van Montfort, pers. connu., 1981). Let z=(z,,..., z„)' be a vector 
1 N 

of measurements, and let z~N(Ç,C), that is a N-dimensional normal 
N 

distribution with expectation £=(£,..., £ )'eR , and a N by N co-
variance matrix C, where C is assumed to be known. Furthermore, 

N . 
R is the direct sum of two orthogonal subspaces 

N R = D+R, 

where D is the space of vectors £ for a given null hypothesis. Ob­

viously, C=£D+tR=4D. i 

D and R, respectively. 

viously, Ç=Ç_+Ç_=4_^, Ç and Ç are orthogonal projections of £ on 
D i\ D D ix. 

With respect to the subspace D, H is equivalent to D=<s> and 
N s=l , a vector in R consisting of merely ones. Hypothesis H. will 

be tested by the omnibus statistic T , where 
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ïl z'C^z 

-1 2 
(s'C Z) 

s,C~1s 

2 
H AN-1 

(2.41) 

H is equivalent to D =<e , , e,>, dim(D„)=d, and d is the number 
d z 

of regions into which the Netherlands is partitioned; the vector e. 

(j=l,..., d) indicates by one or zero whether or not a station be­

longs to region j. The hypothesis H_ is tested by T„, where 

T2 = z'C^z - proj2
 & 2 4 _ d , (2.42) 

and proj is the square of a special projection of z on D_, to be 

obtained by inserting the solution of the normal equations 

eiC-1e1 eiC-1ed 

edC"l ed 

e^C_1z 

eJLC_1z d — 

(2.43) 

into 1 S.e.C~ z. 
i=l X * -

H_ is equivalent to £GD _, where D_=<s>, and the alternative hypothe­

sis is H . The test statistic T is the difference of the squares 

of the special projections of z on D under H_ and under H_ 

2 2 2 T = z. - z ~ v ±3 2 D 2
 ZD H3 * d _ r 

(2.44) 

As the statistics T , T , and T tend to large values under the 

alternative, a right-hand sided critical region (a=0.05) is used. 

In the present application, standardized variables are used, so 

that in Equations 2.41, 2.42, and 2.44, £=0 and a =1. The Student 

variâtes used as trend characteristics (Section 2.3) have been 
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standardized by considering their ratio to the standard deviation, 

estimated as the square root of the sill value of the serai-variogram, 

that is V«i# where â1 is given in Table 2.9. Rainfall levels x. have 

been standardized by subtracting x , followed by dividing by -v/â x 

(Table 2.6). 

For rainfall levels, the normality assumption may be doubted, ex-
s w cept for mean annual rainfall. However, the frequencies F.-, F..-, 

F2 5 could follow a binomial distribution and it is only by virtue 

of the Central Limit Theorem that the standardized values may have 

a normal distribution. For the Student variâtes, the normality as­

sumption seems more plausible. 

The covariance matrix C=(c .) has been estimated as 

c, . = exp(-h/a2), (2.45) 

where a2 has already been estimated. In Table 2.10 the values of 

(*! and â2 are reproduced, together with the results of the tests. 

The test statistics are obviously functions of â2, but it has been 

verified that the conclusions to be drawn from Table 2.10 do not 

change within a reasonable range of â2 values. 

Table 2.10. The statistical significance of four partitions of the Netherlands (Figure 2.11); 

not significant values of T„, and significant values of T, and T_ support inhomogeneities 

PARTITION 

Rainfall (i) (ii) (Hi) (iv> 
characteristic â, â2 T1 T T T , T, T2 T3 T2 T3 

Trends F^5 1.73 15.11 128.4 124.1 1.2 124.1 2.4 127.6 0.4 127.9 0.3 

Fl* 1.41 25.11 193.1°° 187.2°° 1.1 192.3°° 0.3 192.1°° 0.4 191.8°° 0.5 

Levels of F̂ ,. 

rainfall F* 

0.29 

0.35 

0.065 

355.1 

21 

21 

14 

23 

07 

72 

62 

65 

142.2 

145.4 

135.3 

157.9 

138.5 

141.9 

133.4 

154.6 

0.9 

0.8 

0.5 

0.7 

131.7 

131 .0 

129.8 

143.8 

5.5 

7.5°° 

2.9 

6.7°° 

127 

135 

122 

141 

0 

4 

1 

0 

8.2°° 

5.1 

7.4°° 

8.2°° 

94 

107 

115 

89 

1 

1 

5 

8 

35 

24 

11 

52 

0 

3 

7 

0 

°° Indicates values inside the critical region for a = 0.05. 

With respect to the Student variâtes it could be argued that, in­

stead of standardizing on division by V«i/ division by the standard 

deviation of such Student variâtes under the null hypothesis is 

preferable. This, however, would lead to inconsistencies in the 

estimation of a2 in Equation 2.45. 
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Wi ith regard to trends, it can be seen from the T.. values in Table 

2.10 that only for rainfall characteristic F!L, the hypothesis of 

inhomogeneity in space has statistical support. This is not sur­

prising, as the alternative for hypothesis H.. is quite general. 

With regard to rainfall levels it can be seen from the T„ and T_ 

values in Table 2.10 that, in spite of an insignificant value of 

T , partitions (Hi) and especially (iv) are statistically signifi­

cant partitions of the Netherlands. Regional rainfall differences 

are to a certain extent the consequence of differences in time, 

for example, the distribution of rainfall over the seasons is dif­

ferent for inland and for coastal areas. Thus the attractive fea­

ture of partition (iv) is that it yields significant results for 

the year as a whole and for both winter and summer. 

The adequacy of the partitions for rainfall levels but not for 

rainfall trends can be explained by the large differences between 

Figure 2.7C and 2.9C for levels and trends respectively of rainfall 

characteristic F»_. As the partitions have been suggested from maps 

of rainfall levels, the adequacy of the partitions for rainfall 

trends could be expected to be less. 

2. 5. 3. The hydrological significance of the partitions 

Of the four partitions of the Netherlands proposed in Section 2.5.2, 

only one explains successfully regional differences in rainfall lev­

els, but none explains successfully regional differences in trends. 

It is difficult to draw conclusions of relevance to hydrological 

practice about regional differences in rainfall trend. A signifi­

cant trend for a particular series may very well reverse when the 

period of analysis is extended (Table 2.5 and Figure 2.5). This is 

the result of the pseudo fluctuations which many hydrological time 

series exhibit as a result of the infinite memory of hydrological 

processes, that is a small but not negligible autocorrelation of 

the process at very large time lags (Wallis and O'Connell, 1973). 

The physical cause of this infinite memory is the storage effect, 

which acts in many hydrological processes (Feller, 1951). Sample 

curves from such processes reveal seemingly periodic swings, and 
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as pointed out by Mandelbrot and Wallis (1969): "... such cycles 

must be considered spurious. (...) Such cycles are useful in de­

scribing the past but have no predictive value for the future" 

(p. 231). Note that the moving averages considered in Figure 2.5B 

and 2.5C also cause pseudo fluctuations. 

On the other hand, the differences in trend are quite notable. 

For rainfall characteristic F?I-, the stations with highest and low­

est values of T (Section 2.3) are Medemblik and Vroomshoop, respec­

tively. If a simple linear regression line is fitted to the un-

transformed frequencies F-^ for these stations, the difference in 

slope is 0.06-(-0.07) = 0.13 # year" . For rainfall characteristic 

F15, the stations with highest and lowest values of T are Dordrecht 

and Leeuwarden, respectively, and the difference in slope of the 

regression lines is 0.06-(-0.16) = 0.22 # year 

These are extremes, and for a more general picture, a partition 

(v) of the Netherlands, suggested by Figures 2.9B and 2.9C, is 

presented in Figure 2.12 (see also Appendix A.5). Let x. . be the 

annual frequency F ,. at station i in year j, and x . the annual 

mean for year j, then for each rainfall station in D140, the esti­

mate B. of the slope parameter of the regression line of (x. .-x .) 

on j has been calculated. It has been verified by the test proce­

dures given in Section 2.5.2 that the partition was statistically 

sound. For each of the three subregions of the partition, the aver­

age slope parameter (5 has been estimated by Equation 2.43. The 

covariance matrix C of the B. in Equation 2.43 has been estimated 

from the semi-van ogr am of the B. . Results for F.. _ are 

0! = 0.041, ß2 = -0.037, ß3 = -0.002 (# year-1). 

s Application of this procedure to rainfall characteristic F?I- yields 

ß\ = 0.005, ß2 = -0.016, ß3 = 0.001 (# year-1). 

An indication of the homogeneity in time of the partition has been 

obtained by calculating the slope B. for the D14 series (1906-1979) 

for rainfall characteristics F^5 and F^. For data set D14, only 
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three rainfall stations were assigned to region 1 (Den Helder/De 

Kooy, Vlissingen, and Kerkwerve), and only two stations to region 

3 (West Terschelling and Heerde). Results for rainfall characteris-
g 

tic F1_ are 

ßx = -0.008, ß2 = 0.003, ß3 = -0.004 (# year"1), 

and for F-_ 

ßt = -0.003, ß2 = 0.002, ß3 = -0.005 (# year"1). 

These results were obtained as the mean B. value for a particular 

region. Note that this partition has been designed to give a posi­

tive ßx, a negative $2<
 an^ a n approximately vanishing ß3. Further­

more, values of ß for data set D14 are considerably smaller than 

those for data set D140, which reflects the fact that the trends 

studied here are not constant in time. Therefore, it can be con­

cluded that the partition with regard to trends is only valid for 

data set D140. 

Kraijenhoff et al. (1981) present a map of the Netherlands (their 

Figure 5), showing the geographical distribution of the change 

AF = £-.F-0 - I F ., where the symbol 2. refers to a summation over 

the period, 1933-1956 (excluding 1945) for i=l, and 1957-1979 for 
i=2. These changes AF were calculated as the means of such changes 

2 
for all stations within a moving, square grid area of 1000 km . 

The order of magnitude of the change AF in rainfall characteristic 

F_0, as reported in Kraijenhoff et al. (1981), corresponds to that 

for rainfall characteristic F|5 (data set D140) in the present 

study. However, the pattern of regions with positive and with nega­

tive trends is very distinct. In fact, the map in Kraijenhoff et 

al. (1981) suggests an effect of urbanization and industrialization 

on rainfall. 

With regard to regional differences in rainfall levels, the spatial 

distribution of annual frequencies of heavy rainfall seems, from 

a hydrological point of view, more interesting than that of mean 

annual rainfall. As an example, the estimated difference between 

rainfall levels for F^5 in the wet and the dry region of partition 
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(iv) (Section 2.5.1) is 1.14 times per year. As before, this dif­

ference has been estimated by Equation 2.43. 

Such local differences in frequency of heavy daily rainfall have 

been pointed out by Braak (1933) with a map of the Netherlands, 

showing the geographical distribution of deviations in the annual 

frequency of daily rainfall in excess of 20 mm. This map is repro­

duced here as Figure 2.13, together with an updated version, based 

on data set D140. Braak concluded that "local differences appear 

to be rather large" (p. 36), but continued that such maps should 

be interpreted with care. Above a certain rainfall level the rela­

tive change in the mean number of exceedances in a year is larger 

than the relative change in rainfall level itself, see also Figure 

2.14. As a consequence, rainfall levels for a given low frequency 

of exceedance will show less local differences than the frequencies 

of exceedance themselves. 

In statistical terms, it can be stated that confidence intervals 

for quantiles (x ) are relatively smaller than those for probabil­

ities (p). Consider for example, a level with number of exceedances 

k during the whole period of observation (29 years for data set 

D140). The number of exceedances has a binomial distribution with 

parameters n and p, and could be approximated by a Poisson distri­

bution with expectation \=np, for which confidence intervals can 

easily be constructed. In addition, distribution free confidence 

intervals for x given p can be constructed from an ordered sample 

of daily rainfalls. From the results given in Table 2.11, it can be 

seen that for levels which are exceeded rather frequently, confi­

dence intervals for x are narrow. This is not true for low values 
P 

of k . The level of 20 mm is attained or exceeded about 3.55 times 
e 

a year (data set D140). 



365*29*p 

58 

29 

6 

x (mm) 
P 

( 2 2 . 8 , 2 5 . 4 ) 

( 2 7 . 1 , 3 0 . 6 ) 

( 3 6 . 0 , 6 6 . 2 ) 
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Table 2.11. Confidence intervals for the expected number of exceed-

ances and for quantiles x at confidence level 0.90 

k Expected number of exceedances 

58 (45.5, 70.5)1 

29 (20.8, 39.6) 

6 ( 2.6, 11.9) 

1 Estimated by using the normal approximation. 

Maps of the Netherlands showing the geographical distribution of 

q5, q10/ and q for daily rainfall for the months, February, April, 

June, August, October, and December have been presented in KNMI 

(1972), where q,- denotes the estimated threshold value of rainfall 

of the appropriate duration and for a 5-year return period. Here, 

such maps are produced for q. ~ (that is, the event with a 0.5-year 

return period) and q for the summer (Figure 2.15), the winter 

period (Figure 2.16), and for the whole year (Figure 2.17). These 

were obtained by maximum likelihood estimation of q. - and q^ from 

data set D140, in particular the POT series of daily rainfall from 

Section 2.2 (for a particular series q_ . simply equals the estimate 

q0 of the location parameter). A test on the exponentiality of the 

individual series has been carried out. The hypothesis of an ex­

ponential distribution was rejected by the test outlined in Sec­

tion 2.2, at significance level 0.10, for 34 year series, for 27 

summer series, and for 39 winter series. For a relatively large 

number of series the test statistic is small, indicating too long 

a tail of the POT series. 

Although local differences in daily rainfall are important for 

drainage design for rural areas in the Netherlands, this is not 

necessarily so for urban areas: the order of magnitude of the time 

lag between the centres of the hyetograph and the hydrograph for 

an urban drainage system is about one hour. Thus, it should be ver­

ified that a partition also holds for this duration of rainfall. 

Buishand (1983) found that there are only small differences between 

the quantiles of the distribution of hourly rainfall for the series 
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Den Helder/De Kooy, Eelde, De Bilt, Vlissingen, and Beek. Further­

more, somewhat larger differences may very often be the result of 

seasonal effects on rainfall distribution. 

Consequences of differences in level of hourly rainfall have been 

investigated, by using the hourly rainfall data (data set H12) as 

input into a simulation model of urban runoff, STORM (HEC, 1977). 

This model operates as follows. The basin excess is calculated 

for each hourly interval as the sum of the dry weather flow and 

the net rainfall (evaporation and depression storage being taken 

into account) multiplied by a coefficient. The basin excess is 

routed to the outlet of the basin by the Soil Conservation Service 

triangular unit hydrograph. Storage, treatment, and overflow quan­

tities are calculated by means of a simple bookkeeping system. 

The model has been calibrated for a particular urban basin in the 

Netherlands (Leenen and Groot, 1980), and the resulting values of 

the input parameters of STORM have been used in the present study, 

together with the hourly rainfall of the twelve series of data 

set H12. The 12 stations have been assigned to each of the three 

regions within partition (iv) (Figure 2.11D). The mean annual num­

ber (N) and total quantity (Q) of overflows, calculated for the 

period 1975-1980, are presented in Table 2.12. This partition is 

not particularly convincing. This is partly due to the difficulty 

of deciding which of the three regions is most appropriate for a 

particular rainfall station, for example, Volkel. The proposition 

of a certain partition necessitates not only a dense network of 

rainfall stations but also meteorological insight. 

Furthermore, a partition based on the level of mean annual rain­

fall, and which also appeared to be valid for daily rainfall, 

may not be adequate for hourly rainfall. The reason for this is 

that the behaviour of quantiles of hourly and of daily rainfall 

with respect to mean annual rainfall may be different, as can be 

illustrated with results of NERC (1975). 
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Table 2.12. Mean annual number (N) and total quantity (Q) of over­

flows over the period 1975-1980, calculated with the STORM model 

(the partitioning into regions is in accordance with Figure 2.11D) 

Rainfall station N (# year ) Q (mm) 

Region 1 2.00 51.53 

Schiphol 1.50 11.23 

Rotterdam 2.50 91.82 

Region 2 2.00 53.16 

Vlissingen 1.67 59.32 

Volkel 2.33 46.99 

Region 3 1.96 39.01 

Soesterberg 2.17 43.34 

Den Helder/De Kooy 2.17 80.87 

Valkenburg 1.33 18.74 

Beek 2.00 53.83 

De Bilt 2.17 30.17 

Eelde 1.67 15.79 

Leeuwarden 2.67 37.60 

Twente 1.50 31.73 

A model for relating rainfall intensities of equal probability of 

exceedance to durations from some minutes to some days is 

(D+b)n 
(2.46) 

where 

I : intensity (mm/hour) 

D : duration (hour) 

a,b,n: parameters to be estimated. 
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Quantiles q for rainfall durations of one minute to 48 hours have 

been described by a somewhat different equation, I = a/(l+bD) in 

NERC (1975; Vol. 2). The approximate relation of the parameters a, 

b, and n to mean annual rainfall as presented in NERC (1975; Vol. 2, 

p. 26) was used to estimate q^ for rainfall durations of one and 

24 hours (Table 2.13). For a rainfall duration of one hour, q5 is 

rather insensitive to variations of mean annual rainfall, and as 

far as there is a relationship to mean annual rainfall, it is op­

posite to the relationship of qR for a rainfall duration of 24 hours 

to mean annual rainfall. 

Table 2.13. Quantiles q5 according to NERC (1975) for rainfall 

durations of 1 and 24 hours, as a function of mean annual rainfall 

Mean annual 

rainfall (mm) 

500 - 600 

600 - 800 

800 - 1000 

1000 - 1400 

1400 - 2000 

Define a depth-duration ratio as the ratio of two quantiles of 

rainfall of different duration, but with equal probability of 

exceedance. Such a ratio for durations D.. and D_ can be written as 

D D +b n 

—(—-—) 
D 2 D l + b " 

If local differences in these depth-duration ratios were totally 

absent, geographical variation in mean annual rainfall would be a 

perfect indicator of geographical variation of rainfall for all 

durations. However, Equation 2.46 is only valid for rainfall dura­

tions up to a few days, and for these durations, the total absence 

of local differences of depth-duration ratios also implies the ab­

sence of local differences of the coefficients b and n in Equation 

1 h o u r 

1 9 . 6 

2 0 . 6 

1 9 . 0 

1 8 . 6 

1 8 . 5 

% (mm) 

24 h o u r s 

4 1 . 3 

4 7 . 8 

5 0 . 9 

6 0 . 0 

6 7 . 1 
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2.46. But in fact, these have been found to vary locally with mean 

annual rainfall, as does the coefficient a in Equation 2.46, giving 

rise to the phenomenon illustrated in Table 2.13. Only for dura­

tions up to two hours, there is very little geographical variation 

in depth-duration ratios (Hershfield, 1961; Bell, 1969). 

On the other hand, the impression offered by Table 2.13 does not 

seem to be typical. This may be concluded from comparing the maps 

showing the geographical distribution of the one-hour and 24-hour 

rainfall of a T-year return period for the United States (Hershfield, 

1961). The one-hour maps in Hershfield (1961) have been extracted 

from the data of 200 US Weather Bureau first-order stations with a 

mean length of record of 48 years. Taking into consideration the 

reduced number of rainfall stations on which the one-hour rainfall 

maps are based in relation to the 24-hour rainfall maps, the pat­

terns of isolines in both maps can be considered to agree very well. 

For all of the H12 series, POT series have been extracted for du­

rations of one hour and 24 hours (daily rainfall for each 24-hour 

period ending at 8h UTC), with a mean annual number of threshold 

exceedances of two. To assure independence, peaks had to be sepa­

rated by a time gap of at least ten hours for rainfall durations 

of one hour (Buishand, 1983), and for daily rainfall by a dry 

period of 24 hours. Quantiles q_ ^ have been estimated as the lo­

cation parameter in Equation 2.3, for the summer, winter, and the 

whole year, and are plotted in Figure 2.18 as a function of mean 

seasonal or annual rainfall. 

Especially when the year is divided into seasons, there is a sig­

nificant positive correlation of quantiles of both hourly and daily 

rainfall and mean seasonal rainfall (one-sided t-test at signifi­

cance level 0.05). There is not a very pronounced difference in the 

behaviour of quantiles of hourly and daily rainfall with respect 

to mean annual rainfall, and such differences cannot explain com­

pletely the unconvincing results presented in Table 2.12 of the 

partition of the Netherlands. Further, the total number and quanti­

ty of overflows tend to correlate positively with mean annual rain­

fall, although not statistically significant (both correlation coef-
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ficients 0.16). A third explanation for the unconvincing results of 

the partition is, that only six of the 12 rainfall stations in the 

data set H12 have been used in designing the partition (iv), from 

which Twente has an atypically low mean annual rainfall for the 

period 1975-1980, as compared to the period 1951-1979 considered 

when designing the partition. Finally, the STORM model does not 

seem sensitive enough to yield large differences in overflow para­

meters, given the spatial differences in rainfall. 

Thus it can be concluded that the proposed partition of the 

Netherlands based on rainfall trend (Figure 2.12) is only valid 

for the most recent period (data set D140), and for the particular 

rainfall characteristic considered, that is, the exceedance frequen­

cy of heavy daily rainfall in summer. The partition based on rain­

fall levels (Figure 2.11D) has considerably more support. 

2.6. EFFECT OF URBANIZATION AND INDUSTRIALIZATION ON PRECIPITATION 

The effect of urbanization and industrialization on precipitation 

is an aspect of urban climatology, which requires an understanding 

of the whole urban climate because of the interaction between the 

climatic elements. This understanding, however, is far from com­

plete. For example, little is known about the physical mechanisms 

governing urban enhancement of precipitation. According to Oke 

(1980), the impact of cities upon precipitation is still a topic of 

some controversy, concerning both the proof that effects exist and 

the nature of the processes involved. The present concensus is that 

there is reasonable statistical and other support for the hypothe­

sis of precipitation enhancement by large cities but that proof 

including knowledge of the governing physical mechanisms remains 

to be demonstrated. According to this consensus, the maximum effect 

is usually about 20-40 kilometres downwind of the city, and con-

vective events are more susceptible to modification than frontal 

events. Effects increase with increasing intensity of rainfall, 

but this should not be interpreted as being restricted only to a 

few large rainstorms. Presumably such effects extend to rainstorms 

which, if unaffected, would be of rather modest size (Braham, 1978). 

It should be emphasized, however, that not everyone agrees with the 

above-mentioned consensus view (Hershfield, 1979). 
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The step from measurements to hypotheses about causal relationships 

is extremely complicated in urban climatology, because of the com­

plexity of the system. For example, in the spatial definition of 

the urban system, not only is the urban surface involved, but also 

a certain part of the atmosphere, as evidenced by city-induced 

changes in wind, temperature, precipitation, and also pollution. 

The vertical extension of this part of the atmosphere, usually di­

vided into an urban canopy layer, that is below roof level (UCL), 

and an urban boundary layer, that is above roof level (UBL), depends 

on meteorological conditions, for example, stability. To complicate 

matters further, a part of the soil is also involved, and there is 

considerable import to the system, including advected heat, im­

ported water, etc. 

Possible causes of urban enhancement of precipitation are suggested 

in two reports on urban climatology to the World Meteorological 

Organization by Oke (1974, 1979), and by Bornstein and Oke (1980) 

and Oke (1980); and methodology on statistical research into urban 

precipitation enhancement is suggested by Lowry (1977). These ref­

erences are used in this introduction. 

Thermodynamic and mechanical processes rather than the extra provi­

sion of condensation and freezing nuclei by urban aerosols and 

the extra supply of water vapour in the city due to combustion 

and cooling processes, lead to the urban enhancement of precipita­

tion. The uplift associated with the heat island, mass convergence 

due to frictional retardation of the airflow and to heat island 

induced circulations, the barrier effect of the physical presence 

of the city, and increased mechanical and thermal turbulence, could 

well be sufficient to permit urban clouds to penetrate stable layers 

in the mid-troposphere and to reach glaciation levels, or to produce 

greater instability in general, or to produce confluence zones of 

preferred activity (Oke, 1980). 

Two other processes sometimes mentioned as affecting urban precipi­

tation are urban emissions of condensation nuclei and the extra 

supply of water vapour in the city, but these are considered to 

be less important by Oke. With regard to the former, in the urban 

atmosphere, Aitken condensation nuclei (ACN, with radius 
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-3 r: 4*10 < r < 0.1 pm) and the larger cloud condensation nuclei 

(CCN) in the background atmosphere are added to greatly by urban 

emissions. These emissions are supplemented by gas-to-particle 

conversions, especially from pollutant gases, such as, SO- and NO . 

These conversions result in particles of ACN size, which can grow 

by further absorption to CCN sizes. This leads to urban clouds 

having much higher drop concentrations than non-urban clouds, so 

that urban clouds are characterized by a very large number of small 

droplets. 

Thus, if the mechanism responsible for precipitation is coalescence 

of cloud droplets rather than the formation and growth of ice par­

ticles, then there appears to be a negative urban microphysical 

effect on raindrop growth, and therefore on precipitation. The 

balance is at least partially redressed, however, with the discov­

ery that certain industrial sources produce ultra-giant nuclei 

and thus provide an appropriate distribution of droplets for drop­

let growth. But, even where the appropriate seeding of nuclei from 

urban-industrial sources is present, it is likely that more than 

microphysical modification of clouds will be necessary for signi­

ficant precipitation enhancement (Oke, 1980). 

In this context numerous observations made downwind of isolated 

power-generating plants have not revealed significant increases 

in convective rainfall (Huff and Vogel, 1979). Although precipita­

tion enhancement by cloud seeding has been accepted, seeding should 

take place under appropriate conditions, and even then the increase 

in rainfall is only modest (Rogers, 1979). In the case of power-

generating plants, continuous cloud seeding may very well lead to 

occasional suppression of rainfall. Apart from that, the cloud seed­

ing material emitted by these plants may not be very effective. 

With the exception of daytime values during summer, absolute humid­

ity in a city tends to be higher than in the surrounding rural area. 

In cloud physics, however, relative humidity is often a more impor­

tant factor than the actual moisture concentration. 
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The difficulty of discriminating between controlling factors and 

the natural variability in time and in space of the precipitation, 

has allowed widely used estimators of urban effects, such as urban-

rural and upwind-downwind rainfall differences, to become open to 

criticism (Lowry, 1977). Let x.. be the mean measured rainfall 

at location u on days within a period t given weather type i during 

those days, then the expectation of x. may be considered to be 

the sum of three components (Lowry, 1977) 

E{x.. } = E{c }+E{l. }+E{e.. }, (2.47) 
l—ltu' '-lu' '-lu' —ltu3 

where the component c refers to the background climate, 1 to the 

local landscape and e to local urbanization. The variables c and 

1 are assumed to be time-independent 

c . = c . = c. ; 1.. = 1-4. = 1. . (2.48) —lt.u —it, u — lu — it,u —it, u —1U 
J K J K 

Furthermore, it is assumed that prior to urbanization and industri­

alization, at period t=0, there is no urban effect: E{e. } = 0. 

As pointed out by Lowry (1977), estimators of the urban effect, 

E{e. . }, such as urban-rural and upwind-downwind differences are 

subject to doubt. Consider, for example, urban-rural differences, 

ô(C,R). The recognition of urban effects beyond the urban boundary 

motivates the specification of areas C (city), R (rural), and Z 

(zone of influence beyond the urban area) (Figure 2.19). Because 

the location of the boundary between R and Z is one of the objects 

of study, it is not certain whether or not the urban-rural differ­

ences refer in fact to differences between the urban area and 

area Z: ô(C,Z). However, even if this were not so, then 

<5(C,R) = (E{çic}-E{çir}) + (E{lic}-E{lir}) + E{ei t c}, (2.49) 

and it is by no means self-evident that the first two terms within 

brackets on the right-hand side of Equation 2.49 vanish. 

Instead of the afore-mentioned indicators of the urban effect in 

the space domain, Lowry (1977) advocates the use of indicators in 

the time domain: estimated differences, for one station or for a 
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network of stations, between observations from urban and pre-urban 

periods, stratified by synoptic weather type 

6.(t,0) = E{x.. }-E{x.„ }. (2.50) 
iv ' l—ltu —lOu' 

The estimate S.(t,0) = x. . -x._ is unbiased, because of the iv ' ltu lOu 
assumptions in Equation 2.48. 

Although the estimate S.(t,0) is an improvement on, for instance, 

urban-rural differences, the assumptions in Equation 2.48 remain 

questionable. There may be within-circulation type precipitation 

changes (Barry and Perry, 1973) and/or geographical shifts of cli­

matic zones. However, as already stated in Section 2.3, rainfall 

can be predicted to a certain degree from weather type. In addition, 

if the importance of these factors is stressed, then the urban 

effect is measured by the local differences in rainfall which have 

been considered in Section 2.4. 

Urban enhancement of precipitation in the Netherlands has been 

investigated by Yperlaan (1977), Buishand (1979), Kraijenhoff and 

Prak (1979), and Kraijenhoff et al. (1981). With some caution it 

may be concluded from these studies that cities, such as Rotterdam 

and Amsterdam, do have an effect. These effects are not only pre­

sent in summer but also in winter (Yperlaan, 1977; Buishand, 1979). 

In this section the effects of urbanization and industrialization 

on precipitation with regard to daily rainfall levels and frequen­

cies of heavy rainfall are investigated using the statistical pro­

cedure of Lowry (1977). 

2.6.1. Urban effects in the Netherlands 

As already stated, mechanical and thermal processes are considered 

to be the most effective agents in urban precipitation enhancement. 

In this context, the Rotterdam area must be considered to be the 

urban/industrial area par excellence in the Netherlands. Even though 

Amsterdam has a larger population than Rotterdam (CBS, 1980), the 
2 gross energy consumption of these cities m 1980 was 30 W/m and 
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2 
70 W/m respectively, and incoming solar radiation was estimated to 

be 109 W/m2 (Können, 1983). Not all of the gross energy consumption 

results in direct heat production, but say about 60%. Neither does 

all incoming solar radiation result in heat production. Only 50%-

65% is converted into net radiation, of which only 25% results in 
2 

direct heat production: about 18 W/m . Furthermore, both gross 

energy consumption and incoming solar radiation vary throughout 

the day and throughout the year. 

The high energy consumption in the Rotterdam area is undoubtedly 

the result of the concentration of industry and to a lesser extent 

of other activities, such as, commerce and transport. This may be 

inferred from Table 2.14, which gives the emissions of sulphur di­

oxide, carbon monoxide and hydrocarbons in the Amsterdam and Rot­

terdam areas. The emissions of sulphur dioxide give a good indica­

tion of the degree of industrialization, and emissions of carbon 

monoxide of transport activities. Gross energy consumption in the 

Netherlands for the period 1946-1979 is presented in Figure 2.20. 

The gross energy consumption is unknown for the period 1932-1946; 

available data on the production of electricity and gas suggest 

a very slight increase during this period (CBS, 1979). 

Table 2.14. Emissions of pollutants in the Rotterdam and in the Am­

sterdam area1 

Sulphur dioxide Carbon monoxide Hydrocarbons 

(103 t/y) (103 t/y) (103 t/y) 

Rotterdam (1974) 149 61 50 

Amsterdam (1975) 7 38 28 

1 Data: Ministerie van Volksgezondheid en Milieuhygiene, 1978, 

1980. The Rotterdam area corresponds to blocks F6, G6, H6, 16, 

J6, 17, and J7 of the 1978 publication, the Amsterdam area to 

blocks F4, G4, H4, F5, G5, H5, E6, and G6 of the 1980 publica­

tion. 
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As the urban effects are considered to be greater in summer, it 

is important that heat production, for example in industry and 

transport, occurs throughout the year in contrast to heat produc­

tion for the heating of buildings, which occurs mainly during the 

winter. Further, the heat produced by petro-chemical industries 

in and around Rotterdam is very often released from chimneys more 

than 100 m tall. Indeed, at these petro-chemical complexes, the 

combined effects of heat production, of its release at considerable 

heights, and of friction, create an important local circulation 

pattern over these areas : upward currents above its centres and 

downward movements in the immediate surroundings (Schmidt and Boer, 

1962). 

While the Rotterdam area is the most industrialized part of the 

Netherlands, it is by no means the only urban area in the country. 

In fact, the presence of several smaller urban industrial centres, 

the smallness of the country in relation to the scale of the meteo­

rological processes (wind at a velocity of 10 m/s crosses the coun­

try in three to eight hours), and the large quantities of pollutants 

from neighbouring countries (for instance, the Dutch contribution 

to the mean sulphur dioxide level over the Netherlands is only 30%, 

see also Figure 2.21, reproduced from KNMI/RIV, 1982), all indicate 

that most of the Netherlands belongs in varying degree to area Z 

of the classification presented in Figure 2.19. 

In order to provide information about the rainfall stations in 

data set D32 which has been used in this section, data on local 

emissions of pollutants together with the number of inhabitants 

in the municipality in which the station is located are given in 

Appendix A.6. The pollutant data have been extracted from publica­

tions of the Ministry of Public Health and Environmental Hygiene, 

which give total emissions over 5 x 5 km grid areas. Here, for each 

rainfall series the grid area in which the rainfall station is lo­

cated has been considered. 

In the application of Lowry's procedure, the weather type occur­

ring on a given day has been extracted from Hess (1977), and clas­

sified according to one of the ten "Grosswettertypen" (Types of 
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large-scale weather patterns) of Hess and referred to as circula­

tion types. 

The grouping of rainfall stations into urban affected and urban 

unaffected depends upon wind direction. In the classification of 

the circulation types, 500 mbar level maps have been used to re­

present the steering of tropospheric disturbances. An investigation 

into the relationship between prevailing wind direction at De Bilt 

at ground level and circulation type (Bijvoet and Schmidt, 1958) 

has shown that for a given circulation type, the pattern of flow 

remains characteristic at considerable heights. The most frequently 

occurring wind direction at ground level for each circulation type 

(Bijvoet and Schmidt, 1958) is given in Table 2.15. Wind direction 

at ground level for circulation types 4 and 5 is extremely variable. 

Circulation types 2, 3, 5, 7, 8 and 9 were not analysed statisti­

cally because they occurred rather unfreguently, being virtually 

absent in some years, or for short spells only (Table 2.15). The 

spell length is important because rainfall is measured in 24-hour 

intervals ending at 7.55 h UTC, whereas circulation types hold for 

calendar days. 

It is difficult to assign rainfall stations to the three areas, 

C, Z, and R, in Figure 2.19 mainly because of: 

difficulties in determining the predominant wind direction; 

uncertainties about the regional effect of various urban indus­

trial centres, especially the smaller centres; 

uncertainties about the urban industrial rainfall enhancement 

in general. 

Difficulties in determining the predominant wind direction include 

the frictional drag exerted by the earth surface. Wind direction 

in, say, the lowest 0.5 km of the atmosphere deviates from the 

dominant winds at the 500 mbar level by about 30° in a counter­

clockwise direction in the northern hemisphere (Mcintosh and Thorn, 

1978). For example, if for a certain circulation type the dominant 

wind direction at the 500 mbar level is west, the wind direction 

measured at ground level will tend to be west-southwest. Storms 

tend to move in correspondence with wind at the 700 mbar level, 
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instead of with that at the 500 mbar level or at ground level. Fur­

ther, there may be local circulations, which are quite different to 

the large-scale pattern. 

Table 2.15. Most frequently occurring wind direction at ground 

level at De Bilt measured at 13.40 GMT, period 1881-1955 (Bijvoet 

and Schmidt, 1958) 

Circulation 

type 

1. West (Zonal) 

2. South West 

3. North West 

4. High Middle 

Europe 

5. Low Middle 

Europe 

6. North "] 

7. North East 

8. East 

9. South East 

10. South 
j 

Unknown 

~\ 

ï\(Mixed) 

> 

>(Meridione 

Wind 

direction 

Ll) 

S-SW 

S-SW 

NW-W 
l 

l 

NW-NE 

NNE 

E-NE 

E-SE 

SE-SW 

Mean 

(# ye 

frequency 

ar 

Summer 

40.1 

6.5 

13.3 

24.3 

3.4 

24.4 

10.8 

12.3 

2.4 

13.9 

1.6 

- 1 ) 

Winter 

54.3 

13.3 

14.1 

33.9 

5.3 

33.9 

6.8 

18.4 

11.3 

19.3 

1.6 

Mean spell 

length 

Summer 

5.6 

4.0 

4.2 

4.1 

3.3 

4.5 

4.0 

4.5 

3.3 

3.8 

1.2 

(days) 

Winte 

6.0 

4.0 

3.7 

4.1 

3.6 

4.2 

2.8 

4.9 

4.2 

3.9 

1.0 

1 Highly variable wind directions. 

In full recognition of the difficulties, an attempt has been made 

to identify for each circulation type the stations or groups of 

stations with and without a potential urban effect. For these sta­

tions, differences between mean daily rainfall for the period 1956-

1979 and 1932-1955 for the given circulation type are presented in 

Table 2.16. In this table, stations have been classified as urban 

affected or urban unaffected, using information about the predom­

inant wind direction, once the circulation type is known. 
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Table 2.16. Differences (0.1 mm) in mean daily rainfall, given cir­

culation type and season, between the period 1956-1979 and 1932-1955, 

according to Equation 2.51 

Rainfall station Circulation types 

10 4 

Summer Winter Winter Summer Winter Summer Winter 

Urban affected Urban unaffected 

Delft, Bergschenhoek,+2.6 +5.9°° -2.8 -1.4 +0.6 +3.0 +1.9 
Boskoop, Leiden 

Den Helder, West +0.2 
Terschelling, Gronin­
gen, Ter Apel, Dwin-
gelo, Heerde, Dene-
kamp, Winterswijk, 
Arnhem, Vlissingen 

Urban unaffected 

+3.6°° -4.2°° -1.3 -0.3 +0.1 +0.8 

Sche11ingwoude 
Amsterdam 
IJsselmonde 

+1.2 
+1.8 
+5.7 

Urban affected 

+5.1°° +2.6 -1.7 -0.3 
+5.4°° +0.3 -2.7 -0.4 
+6.1°° -1.9 -2.4 +0.2 

+1.6 
+1.8 
+3.9 

+2.1 
+ 0.5 
+3.3 

Indicates values inside the critical region for a = 0.05; there 

are no differences significant at the 5-10% level. 

The differences 6!(0,t) in Table 2.16 have been calculated as 

i!(0,t) = X!;2-X!fl, (2.51) 

where 

-, _ _i 2 4 _ 
Xi,l " 24 t^itu 

1 4 8 -
i,2 24 t t 2 5 itu' 

Thus, x! _ is the arithmetic mean of the observations x.. for 
l,2 itu 

period II (1956-1979), while x! .. is the arithmetic mean for 
i, i 
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period I. Denote the standard deviation of the observations x.. 

by s., then realizations of a test statistic T can be calculated as 

x! _-x! n 1,2 1,1 

^<24+24)si 

(2.52) 

For samples from a normal distribution and for H- : M1-M2 = ° 

ï a ^48-2- ( 2 - 5 3 ) 

o 

For the normal distribution to be valid, the observations x. 

have been transformed according to Equation 2.9. 

Table 2.16 should be read in conjunction with Figure 2.22A-J, which 

shows differences in mean daily rainfall between the period 1956-

1979 and 1932-1955 for given circulation type and season for all 

rainfall stations. At this point a remark on the computations has 

to be made. A comparison of Table 2.16 and, for example. Figure 

2.22A, shows that there are small divergencies, because the differ­

ences S.(t,0) in Figure 2.22A-J are differences of weighted aver­

ages 

6.(t,0) = xi ( 2-xi j l ( (2.54) 

where 

1 2 4 

Xi,l = N^ t ^ i ^ i t u ( 2 - 5 5 ) 

24 
I 

t=l 
N, = 2! n.. 1 . ., it 

n..: frequency of occurrence of circulation type i in 

year t, 

and the weighted means x. , are defined analogously. The statisti-

cal significance of the differences S.(t,0) cannot be tested. 

As an estimate of 6.(t,0) in Equation 2.50, however, the estimate 

according to Equation 2.54 is preferable to the estimate according 
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to Equation 2.51. Figure 2.23 presents the differences in seasonal 

rainfall for the two periods considered. In accordance with the 

conclusions of Section 2.3, total summer and winter rainfall is 

higher for the more recent period for most rainfall stations in 

data set D32. 

Although the differences in Figure 2.22 should be interpreted with 

caution, some observations can be made. Firstly, there are large 

differences between some stations classified as urban unaffected. 

This may indicate either local within-circulation type climatic 

changes, or effects other than industrialization and urbanization. 

Any conclusions, however, should also be based on the station his­

tory of all selected rainfall records. 

Furthermore, Table 2.16 and Figure 2.22 suggest that there is an 

urban effect for circulation types 1, 6 and 10; but for circulation 

type 4, the results are not in accordance with an urban effect 

for summer and inconclusive for winter. Figure 2.22 shows that 

results for the remaining circulation types are somewhat inconclu­

sive. The results for circulation type 5 and 10 are of special 

relevance to the present study, because on summer days with these 

circulation types, relatively many heavy daily rainfalls occurred. 

In summary, for all circulation types, and including days with 

the circulation type not specified, it can be seen from Figure 

2.23 that for the entire Randstad area, there is an increase in 

total summer rainfall, with maximum increases for rainfall sta­

tions near Amsterdam and Rotterdam, and in Leiden. It is somewhat 

doubtful whether the increase for the Leiden rainfall station can 

be attributed to industrialization and urbanization only. There 

are also high rainfall increases at the rainfall stations Roermond 

and Axel. For winter, the situation is more or less the same, with 

increases in total winter rainfall for the Randstad area exceeding 

those for other parts of the Netherlands. Again, there are several 

maxima within the Randstad, for which it is doubtful whether they 

can be attributed to industrialization and urbanization only. 
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Figure 2.23 is useful for assessing the relative contribution of 

each circulation type to seasonal rainfall. The differences, A, 

presented in this figure, can be calculated as 

A = I i { S i ( t , 0 ) m i n ( n i l , n i / 2 ) + (n^-n^ ± )i.f k? , (2.56) 

where 

n. : mean annual frequency of circulation type i in period I 

n. _: mean annual frequency of circulation type i in period II 

x. .: the mean of x. (as in Equation 2.55 for period k, 

where k refers to the period with maximum N. (j=l,2) in 

Equation 2.55). 

The first term of the right-hand side of Equation 2.56 vanishes 

when either n. „ or n. .. is equal to zero, and the second term 1 , z 1 , x 
vanishes when n. , is equal to n. .. Equation 2.56 shows that com-

1 , A 1 , -L 

paring the differences A for a rural and an urban station is not 

particularly suitable for assessing urban effects on rainfall, 

because A is dependent on x. . through x. . . Recognition of this 

dependence must have been Lowry's starting point. 

An indication whether urban effects extend to rainfall which, if 

urban unaffected, would be rather moderate, has been obtained by 

registering the numbers of rainfalls in excess of 15 mm at each 

station for both periods, pre-urban (1932-1955) and urban (1956-

1979). Their differences, which are presented in Table 2.17, indi­

cate that for most circulation types, there are no consistent inter-

station differences, except for circulation types 1, 6, 8 (in sum­

m e r ) , and 10 where there are indications of an urban effect. 

For circulation type 4 (in summer) and 9 the results are not in 

accordance with the hypothesis of an urban effect. Furthermore, 

it can be seen from the last two columns of this table that during 

the period 1956-1979 stations in urbanized regions increased their 

effectivity in realizing an already potential heavy daily rainfall, 

in relation to stations in other regions. This is also concluded 

by Kraijenhoff et al. (1981) for daily summer rainfalls in excess 

of 30 mm. 
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In order to verify whether urban effects increase with increasing 

rainfall intensity, the following procedure could be followed. Reg­

ister daily rainfall at each station for those days only on which 

at least at one station rainfall exceeded 15 mm. Then the mean of 

these daily rainfalls should be compared for the two periods con­

sidered, the circulation type and the season taken into account, 

and the difference between the two means obtained. Especially for 

those circulation types not occurring frequently, this method of 

sampling leads to results which are very much affected by chance. 

This can also be inferred from the last two rows in Table 2.17, 

which give the number of occurrences during both periods of days 

with a certain circulation type and rainfall in excess of 15 mm, 

averaged over all stations in data set D32. 

Finally, in order to investigate whether urban effects result in 

a shift of the probability mass towards the right tail of the dis­

tribution, considered as the interval [15 mm, °°), each rainfall 

series of data set D140 has been analysed in the following way. 

The interval [15 mm, » ) has been divided into two subintervals, 

each with equal probability mass when averaged over the complete 

data set. The two subintervals were found to be [15 mm, 19.7 mm) 

and [19.7 mm, °° ) for the summer, and [15 mm, 18.4 mm) and [18.4 mm, 

°°) for the winter. The period of record of data set D140, 1951-1979, 

roughly coincides with the industrialized period 1956-1979, analysed 

above for data set D32. A weighted difference of the frequencies 

in both subintervals has been calculated according to 

-1 i"-2 i 
= — L L Ä — ^ i — # i = i,..., 140 (2.57) 

— l 
^ i , i + n

2 / i ) 

where 

n1 . : frequency in subinterval [15 mm, 19.7 mm) or [15 mm, 

18.4 mm) for station i 

n_ . : frequency in subinterval [19.7 mm, ») or 

[18.4 mm, ») for station i. 
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The choice of subintervals gives approximately 

z. & N(0,1), (2.58) 
- 1 H 0 

where HQ states that for each rainfall series, the probability 

mass is equally distributed over the two subintervals ("expectation 

of all z. zero"). 

The null hypothesis has been tested by the statistic T from Equa­

tion 2.41, where the covariance matrix C=(c. .) has been estimated 

as c. .=exp(-h/a2), according to Equation 2.45. Also, the statis-

tics T in Equation 2.42, and T in Equation 2.44 have been calcu­

lated, after partitioning the country into urban affected and urban 

unaffected regions (partition (vi) in Appendix A.5; see also, Figure 

2.24). For the summer, the tests indicated that the partition re­

flected the regional pattern of the z. (T and T not significant, 

T significant at the 5% level). Thus in summer, urban effects in­

crease with rainfall depth (see also Kraijenhoff et al. 1981). 

For the winter, however, the tests did not yield a positive result, 

although the level of z. was slightly lower in the affected regions 

than in the other parts of the Netherlands, indicating a shift of 

the probability mass towards the right tail of the distribution 

also for the winter. Figure 2.25 shows the distribution of the 

n1 ., n„ . and z. in Equation 2.57 over the Netherlands, for both 

the summer and the winter. 

Thus in conclusion, it can be stated that, when assessing the ef­

fects of urbanization and industrialization on precipitation, com­

parisons have to be made of differences between mean rainfall over 

two periods: an urbanized and a pre-urbanized period. To avoid 

biased estimates of the differences, caused by changes in frequency 

of occurrence of large-scale weather types over the two periods, 

the data should be stratified according to weather type (Lowry, 

1977). On the other hand, evaluating these time differences in 

mean rainfall at one site only could lead to erroneous conclusions, 

for example, because of all types of changes in measurement prac­

tices, and also because of within-circulation type changes, proces­

ses on a local scale other than urbanization and industrialization 
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affecting rainfall, and sample effects due to rainfall variability 

in time and space. In view of Equation 2.56, however, spatial analy­

sis of these differences should be carried out with caution. 

Thus with regard to statistical evidence for the effect of urban­

ization and industrialization on rainfall in the Randstad area, 

the following can be concluded: 

Although the results in the present study are sometimes incon­

clusive or even contrary to the hypothesis of an urban effect 

on rainfall, for the circulation types 1, 6, 10, and 8 (in sum­

mer only) there are indications of an urban effect. This sup­

ports the possibility of an urban effect on rainfall, already 

put forward by Yperlaan (1977), Buishand (1979), Kraijenhoff 

and Prak (1979) and Kraijenhoff et al. (1981). 

Urban effects are not only restricted to a few large rainstorms 

(Table 2.17). For the summer, urban effects seem to increase 

with rainfall depth (Figure 2.25C). 

A quantitative estimation of the urban effect on rainfall is 

given in Huff and Changnon (1973). In the Netherlands, this 

should be undertaken by using the statistical procedure suggested 

by Lowry (1977). This would require data over a sufficiently long 

period from groups of stations, preferably located in and near 

Rotterdam and to the north-east of Rotterdam, complemented with 

data on the local wind field. An additional complication to such 

an estimation is the effect of changes in measurement practices 

(Buishand, 1977a). 
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Legend: • (D140) 

O (014 I 
D (D32 

•::• (H12 ) 

Fig. 2.1. Geographical location of rainfall stations considered in Chapter 2. 
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Fig. 2.7 Regional distribution of the annual f re. 
quency of exceedance of 1,15 and 25 
mm in summer (AjB and C) and in win. 
ter (D,E and F) and of total annual rain­
fall (mm) ( G ) . 
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Fig. 2.8. Sample semi.variograms (averaged and for 
the sectors NW.NE, N E . S E ) ; trends. 
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Fig. 2.9. Regional distribution of trends in the 
annual frequency of exceedance of 1,15 
and 25 mm in summer (A,B and C ) 
and in winter (D.E and F ) and of trends 
in total annual rainfall (G). 
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Fig. 2.11. Partitions of the Netherlands. Figure A presents a partition based on distance 
from the coast and on north south differences. Figure B is based on the 
influence of frictional effects and topography. Figure C includes the effects 
of urbanization,as reported in Kraijenhoff and Prak (1979). 
Figure Dis based on average annual rainfall (in this figure "1"denotes a 
wet region, and "2"a dry region). 
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Fig. 2.12. A partition of the Netherlands with regard to trends 
in frequency of heavy summer rainfall : 
(1) positive trends 
(2) negative trends 
(3) no trend. 

Fig. 2.13. Deviations (%) of annual frequency of daily rainfall in excess of 20 mm according to 
Braak (19331(A) and according to data set DUO (B). 
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Fig. 2.14. Ratio of the relative decrease in no. otexceedances to the relative 
increase in rainfall level due to an increase of one millimetre in rain, 
fall level ,as a function of rainfall level (mm). 

Fig. 2.15. Geographical distribution of summer daily rainfall (mm) for a 0.5-year return period (A), 
and for a 5-year return period (B). 
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Fig. 2.16. Geographical distribution of winter daily rainfall (mm) for a 0.5-year return period (A) , 
and for a 5-year return period (B). 

Fig. 2.17. Geographical distribution of daily rainfall (mm) for a 0.5-year return period (A),and for a 
5 -year return period (B). 
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A. Weather type i B. Weather type j 

Fig. 2.19. Hypothetical relationships between area C (City), Z (Zone of influence) and 

R (Rural) during weather types i (A) and j (B). 
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Fig. 2.20. Gross energy consumption in the Netherlands (CBS ,1979) 
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All circulation types 
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Fig. 2.23. Differences (mm) between average summer /winter rainfall for periods land II (Average seasonal rainfall 
over both periods and over all stations : 334.5 mm (summer) and 432.7 mm (winter)). 

Fig. 2.24. Partition of the Netherlands with regard to the degree 
of influence of urbanization and industrialization : 
(1) affected, (2) unaffected. 
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Fig. 2.25 Geographical distribution of frequencies 
of occurrence in the right half (n2) and 
left half (rt)) of the right tail of the dis. 
tribution of daily rainfall,and weighted 
differences (2) of nj and n2,for summer 
(A,Band C), and winter (D,E and F). 



3. STATISTICAL AREAL REDUCTION FACTOR ARF 

3.1. INTRODUCTION 

In this chapter variability in space of hourly and daily rainfall 

is considered over a length scale of up to, say, 50 km. This length 

scale differs from that considered in Chapter 2, in which the dis­

tribution of rainfall over the whole of the Netherlands was con­

sidered. In this chapter discussion is confined to space varia­

bility in rainfall within periods of one hour and of one day by 

studying the quotient of the mean areal rainfall with a given low 

exceedance probability and the point rainfall with the same ex-

ceedance probability. This quotient is called the statistical areal 

reduction factor (ARF). 

The statistical ARF is a function of the size of the area A, the 

duration D of the time increment of rainfall recording and the re­

currence time T 

ARF(A,D,T) = xA(D,T)/xs(D,T), (3.1) 

where 

x (D,T): the rainfall amount at point S for duration D 

and with recurrence time T 

x (D,T): the areal rainfall amount, being the mean of 

x_(D,T) over all points S of a region V with 

area A. 

The recurrence time T is defined by a quantile x with F(x )=p as 

T = ïTïèry = ïV (3-2) 

where F(x) is the cdf of x- Obviously, ARF will decrease as A and 

T increase and as D decreases. In this study, A and T in Equation 

3.1 are dropped; in some cases D will remain as a suffix to ARF. 

Thus, ARF.. and ARF„. are hourly and daily values respectively. 
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Although for very low recurrence times, ARF will exceed one (Nguyen 

et al., 1981), ARF is usually less than one. Design dimensions of 

drainage networks serving large areas can be reduced, if a critical 

point rainfall is used as an input to the design. A critical rain­

fall is a rainfall event of a certain duration, exceeded by a given 

frequency. In general, a reduction in design because of the size 

of the drainage area cannot be made only on the basis of variabili­

ty in time and space of rainfall. Certain geomorphological and land 

use characteristics of the drainage area and of the orientation of 

the catchment with respect to prevailing winds must also be con­

sidered. In design of drainage networks, the following procedures 

are often used with respect to areal reduction. 

Rural drainage in the Netherlands 

In the Netherlands with its flat topography, the waterways draining 

the polders are dimensioned in such a way that excesses of water 

will have a low and predetermined frequency of occurrence. For rural 

areas, the first stage in the drainage process is the flow of 

groundwater towards the ditches surrounding small parcels of land. 

This flow is assumed to be constant, given a minimum allowable depth 

of the groundwater table. Under the assumption of stationary flow, 

critical flows have been determined for given depths of the ground­

water table and for various land uses and soil types, critical flow 

meaning such a flow that an excess of it is undesirable. The as­

sumption of stationary flow is probably not only adopted because 

of its simplicity, but also because winter rainfall is used in the 

design of rural drainage. Winter rainfall is to a large extent 

caused by the passage of fronts, which leads to rainfall of long 

duration. For arable land, an acceptable critical flow is 
3 -1 -2 0.08 m .s .km given a minimum depth of groundwater table of 

0.50 m; for pasture land, the same flow is considered acceptable 

but a minimum depth of groundwater table of 0.30 m is assumed (Werk­

groep Afvoerberekeningen, 1979). These are empirical values, how­

ever, corresponding to a daily rainfall of about 7 mm. As waterways 

should be able to convey the upstream flow, given certain allowable 

exceedances of the polder level, the dimensions of the waterways 

in all parts of the network can be determined. Thus critical rain­

fall is not used directly in the design of rural drainage. As a 
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consequence, reductions because of areal size are empirically veri­

fied reductions of the discharge to be conveyed by the drainage 

network. For example, an equation for the reduction factor f of 

the discharge if areal size exceeds 10 000 ha is (Cultuurtechnische 

Vereniging, 1971) 

f = 1.60-0.1510log A, (3.3) 

where 

A: areal size (ha). 

This purely empirical approach, which does not take into account 

the dynamic character of the runoff process, seems to satisfy re­

quirements in the flat parts of the Netherlands where storage in 

groundwater and surface water tends to suppress short-period fluc­

tuations in discharge. The design of drainage systems in glass-

covered horticultural and in sloping rural areas, however, requires 

a non-stationary approach in which the actual input of areal preci­

pitation should be considered. 

Urban drainage in the Netherlands 

In the design of urban drainage, a critical depth of rainfall is 

often used, and also a certain storm profile is assumed. Finally, 

the capacity of the drainage network to convey flow from the up­

stream area must be checked. A reduction in the rainfall input 

because of areal size is not applied. However, for larger areas 

such a reduction could be applied by multiplying the critical 

rainfall depth by ARF. 

In this chapter the following issues are dealt with: 

In Section 3.2 prediction of areal rainfall by means of kriging 

is discussed, in particular whether the IRF-0 theory is adequate 

for making kriging predictions of areal rainfall, and whether 

different predictors of areal rainfall produce different results. 



91 

In Section 3.3, ARF_. is estimated by various methods for each 
2 of three areas of about 1000 km in the Netherlands (Figure 3.1). 

Several estimators of ARF have been proposed, based on annual 

maxima series of both point and areal rainfall (e.g., USWB, 1957-

1960; and NERC, 1975, Vol. 2); on POT series of both point and 

areal rainfall (e.g.. Bell, 1976); and on the marginal distribu­

tion of point rainfall (e.g., Roche, 1963; Rodriquez-Iturbe and 

Mejia, 1974; Buishand, 1977b and c). The estimates by these 

three methods are compared, and also with earlier estimates of 

ARF„4 for the Netherlands (Kraijenhoff, 1963; Buishand, 1977c). 

In Section 3.3, attention is also paid to the dependence of ARF 

on location, on season, and on exceedance frequency of rainfall, 

particularly whether the three areas in the Netherlands vary 

with regard to ARF„., and whether these estimates of ARF_ differ 
Z4 £.** 

from those for other countries; whether ARF0„ differs between 

seasons, and whether annual maxima of both point and areal rain­

fall occur in the same season; and whether ARF depends on fre­

quency of exceedance. 

Section 3.4 deals with the dependence of ARF on duration of rain­

fall and on areal size, and in particular whether estimates of 

ARF1 for the Netherlands differ from those for other countries; 

and whether ARF calculated from the marginal distributions of 

rainfall varies with duration of rainfall at fixed return period 

and areal size. 

In Section 3.5, a variable related to ARF, the storm-centred 

areal reduction factor SRF, is discussed. This reduction factor 

SRF is defined as 

SRF = x./x , (3.4) 
A' max v ' 

where 

x : local maximum point rainfall over a certain time max r 

period (e.g., one specific day) 
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x : simultaneous areal rainfall over area A bounded by 

an isohyet. 

The relationship between ARF and SRF is discussed. 

The rainfall series used concerning the 29-year period 1951-1979 

are given in Appendix B.l and the location of the rainfall stations 

is shown in Figure 3.1. 

3.2. PREDICTION OF AREAL RAINFALL 

Most estimators of ARF require information on mean areal rainfall. 

Areal rainfall may be predicted from the arithmetic mean of point 

samples provided that these are approximately evenly distributed 

throughout the area, and there are no orographic effects (Buishand 

and Velds, 1980). Other predictors of areal rainfall include: 

the isohyet method; 

the Thiessen method; 

an extension of the method of optimum interpolation (De Bruin, 

1975); 

the Kalman filter method (Bras and Colon, 1978); 

- the kriging method (e.g., Journel and Huijbregts, 1978). 

The kriging method, the optimum interpolation method, and the 

Kalman filter method result in best linear unbiased predictors 

(BLUP), where 'best' is used in the sense that prediction variances 

are minimized (see Section 2.4.1). As the kriging predictor requires 

only a minimum set of assumptions (most notably the variance of 

the regionalized variable Z(u) need not exist), discussion in this 

section is confined to the kriging predictor. 

The adequacy of the IRF-0 theory for obtaining a kriging prediction 

of areal rainfall, is discussed in Section 3.2.1 and in Section 

3.2.2 the kriging predictor is compared with the commonly used 

arithmetic mean predictor and the Thiessen predictor. 

Throughout this section only daily rainfall series are used, as 

there is insufficient hourly rainfall data for the Hupsel catch­

ment area to obtain reliable estimates of the semi-variances or 
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generalized covariances. Discussion is restricted to monthly maxima 

of daily rainfall, occurring on days with maximum arithmetic mean 

of the available point samples. 

3.2.1. The order k and the estimation of the semi-variogram 

It has been assumed in the present application that the regionalized 

variable 2(u) is stationary in the mean. The mean summer and winter 

daily rainfall at each rainfall station in the three areas consid­

ered (Figure 3.1) on days with a monthly maximum of areal rainfall 

are given in Figure 3.2; the respective areas are approximated by 

rectangles. As no clearly defined drift is shown, an IRF-0 model 

seems to be adequate. 

For area 1, for each of the 29 available January and August rain­

fall maxima, the order k has been determined with the computer pro­

gramme AKRIP (Kafritsas and Bras, 1981) for IRF-k point and block 

kriging. As suggested by Delfiner (1976), in AKRIP the order k is 

determined by kriging the data points, on the assumption that in 

turn k = 0, 1, and using for both values of k the same neighbouring 

points for the kriging of a data point and the same generalized co-

variance function: K(h) = -h. In this chapter only intrinsic random 

functions of order one or zero are considered, because 12 data 

points are insufficient for the identification of higher order 

random functions. The order that results in the smallest kriging 

error at a data point should be given the grade 1, and the other 

the grade 2. The grades of both orders should be averaged over all 

points kriged and the order with the smallest average grade should 

be chosen. 

Quite contrary to what is generally accepted, in a substantial num­

ber of cases, the order k was estimated to be one (see Table 3.1). 

The estimate of the order k depends to some extent on the number 

of neighbouring data points used to krige each data point separately 

(see also Table 3.1). The kriging algorithm was applied to each 

data point, with all the remaining points as its neighbourhood. 
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Table 3.1. Number of years (29 in total) with order k for rainfall 

maxima in January and August (area 1), determined by the computer 

programme AKRIP (Kafritsas and Bras, 1981) 

Number of neighbouring Order k 

January: 

August : 

11 (all) 

6 

11 (all) 

6 

12 

19 

14 

14 

points k = 0 k = 1 ex aequo 

12 5 
7 3 

7 8 

9 6 

When the grades are equal the coefficients C, o1( and a3 

of the polynomial generalized covariance functions 

K(h ) = Cô+cfjh (C>_0, a i < 0 ) ( 3 . 5 a ) 

and 

K (h ) = Cô+cf jh+aah 3 , (C>0, or i<0, or3>0) ( 3 . 5 b ) 

for order k = 0 and 1, respectively, have to be determined. Because 

it is possible to equate one or more of the coefficients in Equation 

3.5a and Equation 3.5b to zero, the resulting number of possible 

choices for K(h) is three and seven, respectively. Given the order 

k, AKRIP creates generalized increments by kriging a data point T, 

using a generalized covariance function that is appropriate to any 

order k: K(h) = -h. The resulting kriging error can be directly ob-
2 served; denote its square for data point T to be kriged by s,. . 

The theoretical prediction variance, av = X.1-k.\.K(u.-u.) is 
A, T 1 J 1 J 1 J 

obtained by using the desired, more specific generalized covariance 

function according to Equation 3.5a or Equation 3.5b. 

On repeating the procedure for several data points, the sum of 

squares Q may be obtained of the differences between the squared 
2 2 kriging errors sT;r and the theoretical prediction variances av K , X n., I 
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The coefficients of K(h) can then be obtained by regression. The 

results can be used to create new generalized increments and to 

find new sets of coefficients (for each permissible model of K(h)), 

and so on, until the coefficients stabilize. From the generalized 

covariances thus determined, the one is selected that has the ratio 

r = T
 2*'T (3.7) 

V K,t 

closest to unity. This provides the ultimate choice of k, in case 

of equal grades: for each k the selected generalized covariance 

function is used to redetermine the grades. Because of Equation 

2.36, the ratio r is always equal to one, if k=0 and K(h)=C6. Thus, 

the procedure should be used cautiously, as K(h)=C6 is often se­

lected incorrectly, especially for August maxima. Therefore, where 

these grades were equal, the structure identification part of the 

programme was rerun, using as generalized covariance functions both 

K(h)=C6 and K(h)=-h. The final result was that k was equal to zero 

in 15 and 18 out of 29 cases for January and for August, respec­

tively. 

In the following, it is assumed that k is equal to zero. This is 

also in accordance with the work of Chua and Bras (1980), who for 
2 

a plain area of 550 km in the USA, assumed the IRF-0 theory to be 

adequate to predict daily areal rainfall from 10 point samples. In 

8 out of the 9 cases studied, this was also the case for a moun-
2 tainous area of 4400 km , ranging in height from 2350 to 3660 m, 

and sampled at 21 to 29 points. Moreover, the structure identifi­

cation in the IRF-k theory proceeds iteratively. Therefore, this 

theory is not particularly suitable for the routine calculations 

of mean areal rainfall, involved in the calculation of ARF. 

Further arguments in favour of the IRF-0 theory are provided by 

the sample semi-variograms as estimated by the multi-realization 

approach; these semi-variograms increase roughly linearly with 

the distance h (Figures 3.3, 3.4, and 3.5). It is known that 
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the IRF-0 theory is valid, for a regionalized variable Z(u) having 

a linear semi-variogram (Section 2.4.1). To the sample semi-

variograms, linear population semi-variograms y(h) have been fitted 

according to Equation 2.26a 

Y(h) = CO+öih, (3.8) 

where 

C, c^: non-negative coefficients 

ô : 0 (h=0) or 1 (h*0). 

In the single-realization approach, as opposed to the multi-

realization approach, for each event (monthly rainfall maximum in 

this case) separately, a sample semi-variogram is estimated ac­

cording to Equation 2.25. To this a population semi-variogram y(h) 

is fitted, which is used in the prediction of areal rainfall for 

that particular event. In the multi-realization approach, as applied 

here, monthly maxima for all years of record and one particular 

month are grouped together, and a mean sample semi-variogram is 

estimated. Subsequently, a function y(h) is fitted, which is used 

in the prediction of areal rainfall for all maxima within the group. 

An argument in favour of the multi-realization approach is that it 

does not seem unreasonable to group monthly maxima for one partic­

ular month of the year together for all years of record. In addi­

tion, the use of the multi-realization approach is almost unavoid­

able, because there are not enough sample points available to esti­

mate the semi-variogram for each event separately. Using the well-

known property (Kendall and Stuart, 1977; p. 258) of the variance 
2 estimator s 

var s2 s 2a4/n, (3.9) 

where n is the number of samples, it follows that N(h) in Equation 

2.25 should exceed 40, for the squared coefficient of variation of 

the estimator y(h) to be less than 5%. However, the use of Equation 

3.9 is rather restrictive. The regionalized variable Z(u) is assumed 

to be independent and normally distributed, and second order sta-
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tionary. Furthermore, the one realization z(u) which is sampled is 

thought of as to constitute the whole population, if only sampled 

exhaustively. This, in fact, is contrary to the concept of a sto­

chastic function Z(u). 

Similarly, Gandin (1965) presented the required minimum number of 

sample points to obtain a given accuracy, by considering the nor­

malized semi-variogram g(h) 

g(h) - Y(h)/a2, (3.10) 

2 
where a is the point variance var[z(u)]. With a second order sta­
tionary z(u), the variance of the estimator c[(n) equals 

vartâ(h)] =var[r(h)], (3.11) 

where r(h) is the estimate of the correlation coefficient p(h) at 

distance h. With normally distributed variables, this variance is 

approximately (Kendall and Stuart, 1977; p. 258) 

var[r(h)] = H ^ I M J - . (3.12) 

By using Equation 3.11 and Equation 3.12, N(h) can be presented as 

a function of var[â(h)] and of g(h), and from Equation 3.12 it can 

be seen that N(h) increases with h. 

With 12 sample points, there are 66 data pairs. As indicated by 

the semi-variograms, the realizations z(u) are not second order 

stationary, but intrinsic only. Thus clearly, a single-realization 

approach would not permit reliable estimation of the semi-variogram. 

This, in fact, is a further argument in favour of using the IRF-0 

theory, because the present IRF-k algorithms have been developed 

for the single-realization approach. Chua and Bras (1980) also con­

cluded that a multi-realization approach was necessary. For the 

plain area they analysed, in about half of the 35 events, the 

single-realization approach did not permit detection of the semi-

variogram structure. For the remaining events, the single-

realization semi-variograms were either spherical (ten events) or 
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linear (seven events). For one event both a spherical and a linear 

semi-variogram seemed to fit, and six events showed a nugget effect. 

The sample semi-variograms for monthly rainfall maxima stratified 

according to month are presented in Figures 3.3, 3.4, and 3.5. 

These have been calculated by using Equation 2.25 but adapted to 

the multi-realization approach, which means averaging over the 

29 years of record 

, 2 9 29 N(h) 

V(h) = sl.Z^.Ch) = 2 5 ^ 2 5 1 ^ [z<V-z(ui+h)]2, (3-13) 

where 

Y-(h): single-realization sample semi-variogram for monthly 

maximum in year j. 

Distance classes of 5 km up to 35 km have been considered. For area 

1 in Figure 3.1, the sample standard deviations of the values of 

the single-realization sample semi-variograms which were averaged, 

are presented in Figure 3.3. It has been verified whether less va­

riation between the single-realization sample semi-variograms for 

each particular month may result from further classification of 

monthly maxima according to rainfall depth, because it is known 

that with increasing areal rainfall the coefficient of variation 

decreases. This is confirmed by the results presented in Figure 3.6, 

in which the coefficient of variation is the ratio of the sample 

estimate of the standard deviation of point rainfall, and the es­

timated mean areal rainfall (equal to the arithmetic mean of the 

point rainfalls). 

Two classifications according to rainfall depth have been attempted: 

one on the basis of mean areal rainfall in exceedance of 15 mm or 

not; and the other on the basis of maximum point rainfall in ex­

ceedance of 20 mm or not (thus placing more emphasis on 'spottiness' 

of rainfall). However, these classifications did not result in any 

noteworthy reduction in variation between the single-realization 

•y.(h) to be averaged, and did not result in different limiting 

behaviour of the semi-variograms with regard to distance. 
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Therefore, classification according to rainfall depth has been 

omitted, and linear population semi-variograms have been fitted by 

ordinary regression under restriction of the observed semi-variances 

for all realizations on their distances h, for h<L/2, where L is 

the maximum distance between sample points. The choice of the linear 

semi-variogram model was based on visual inspection of Figures 

3.3, 3.4, and 3.5. The resulting OLS estimates of the coefficients 

C and dj in Equation 3.8 are presented in Table 3.2. The estimates 

of C/Oi are also presented because these ratios, and not C only, as 

suggested by Chua and Bras (1980), completely determine the kriging 

weights for a given configuration of sample points, when the semi-

variogram model according to Equation 3.8 is used. 

As may be expected, values of C and âj tend to be high in summer 

and low in winter. On the other hand, the annual pattern of para­

meter values is not particularly even. Thus, classifying months 

according to their respective values of C/â1 yields rather odd 

groups of months, which also differ for the three respective areas. 

This is probably caused by sample variability between single-

realization semi-variograms (Appendix A.4). 

2 2 -1 . 

Table 3.2. OLS estimates of C (mm ) and «j (mm .km ) in Equation 

3.8 and of the ratio C/ofj (km) for monthly maxima of daily rainfall 

for three areas in the Netherlands 
Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

C 

1.3 

1.4 

0.9 

0.2 

3.9 

1.3 

16.8 

19.7 

7.8 

2.6 

0.6 

5.2 

Area 

« i 

0.2 

0.2 

0.3 

0.5 

0.7 

1.3 

1.9 

6.3 

1.6 

1.0 

0.8 

0.3 

1 

e / â j 

6.0 

7.4 

2.9 

0.3 

5.8 

1.1 

8.9 

3.1 

4.9 

2.6 

0.8 

15.3 

C 

1.3 

2.7 

2.1 

0 

0.0 

11.9 

6.4 

44.7 

13.1 

4.6 

6.2 

9.1 

Area 

«i 

0.5 

0.1 

0.1 

0.4 

0.7 

0.7 

2.3 

0.7 

1.3 

1.3 

0.1 

0.0 

2 

c/â1 

2.6 

39.1 

25.8 

0 

0.0 

16.1 

2.8 

67.7 

10.1 

3.6 

68.7 

302.3 

C 

4.3 

1.5 

0.6 

3.9 

6.8 

13.5 

18.4 

18.9 

7.0 

2.9 

3.1 

7.6 

Area 

«i 

0.2 

0.3 

0.3 

0.4 

0.9 

1.3 

2.4 

2.3 

1.1 

0.7 

0.3 

0.1 

3 

e/«! 

17.2 

5.3 

1.9 

10.2 

7.1 

10.8 

7.8 

8.2 

6.4 

4.4 

11.1 

151.2 
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It is unlikely that these differences have been caused by anisotro-

py. For the Netherlands, anisotropy of the correlation function 

p(h) for 10-day and monthly rainfall has been demonstrated by Buis-

hand and Velds (1980). For the relatively small areas considered 

here, anisotropy of the semi-variograms for daily rainfall is not 

expected. Stol (1972), investigating p(h) for daily rainfall in an 
2 area of about 2000 km found no indications for anisotropy. 

Further, it is unlikely that differences between areas have been 

caused by differences in the quality of the measurements. Well-

scrutinized measurements from the Royal Netherlands Meteorological 

Institute (KNMI) obtained by means of one type of daily rainfall 

measuring device only have been used. Differences in quality of 

measurements will lead to systematic differences in estimated semi-

variograms for each area, as demonstrated by Gandin (1965). Con­

sider, for example, a random error e, according to 

If = h+^i' (3.14) 

where 

f* : measured rainfall at station i 

f. : actual rainfall at station i 

e. : random measurement and observational error with ex-
2 pectation zero and variance a at station l. 

Assume also that the errors are uncorrelated with actual rainfall, 

and uncorrelated with random errors at other stations, then such 
2 

errors lead to an increase in the nugget effect by a . 

If only systematic measurement and observational errors occur, ac­

cording to 

f* = ß ^ , (3.15) 
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where 

ß- : factor, indicating the systematic error at station i, 

and if ß± = ß^ = ß, then E[y*(h)] = ßy(h). 

Thus errors according to Equation 3.14 and Equation 3.15 would lead 

to systematic differences between the estimates of C and «j in Equa­

tion 3.8 for different areas. Such systematic differences do not 

seem to be apparent in Table 3.2, although C values for area 1 are 

rather low, and âx values for area 2 are low. These, however, seem 

to be caused by a pattern of sample points in area 1 relatively 

well suited to the estimation of C, and by the effect of wide tidal 

inlets in area 2. 

Another physical cause of differences between the three areas, which 

is reflected to some degree in Table 3.2, is the relatively frequent 

occurrence of convective rainfall during summer in the east and 

south-east of the Netherlands, as a result of high surface tempera­

tures. Along the coast, convective rainfall is suppressed during 

spring and early summer, because of relatively low sea temperatures. 

During autumn, however, the relatively warm sea enhances the devel­

opment of showers along the coast (Buishand and Velds, 1980). 

Thus, it cannot be conclusively stated that the IRF-0 theory is 

adequate to predict areal rainfall. As reported by Delhomme (1978) 

and by Chua and Bras (1980), the IRF-0 theory seems to be adequate 

to predict areal rainfall over climatologically homogeneous areas. 

Yet the results of this study are not in accordance with this. 

Apparently, the issue of structure identification requires further 

investigation, both statistical and physical. As k was set at zero, 

calculations were simple. Contrary to the IRF-k theory, where esti­

mation of the generalized covariance is carried out for each reali­

zation separately, the semi-variogram to be used in the IRF-0 theory 

can be estimated by the multi-realization approach. As only few 

data points were available, a more reliable estimation of the semi-

variogram was possible. On the other hand, variation both between 

months and between areas in the semi-variograms in the multi-

realization approach is large. 
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3.2.2. Comparison of the kriging, Thiessen, and arithmetic mean 
predictors 

The mean areal rainfall Z over a region V with area A, where 

Z = rj Z(u)du, can be predicted by a linear combination of the 

point samples 

N 
z = I X.z(u.), (3.16) 

i=l 

where 

À. : weighting factor 

N : total number of sample points u.£V. 

The unbiasedness and minimum variance conditions of the prediction 

obtained with Equation 3.16 lead to the kriging Equations 2.23 

rr\+MlN = r (3.17a) 

ll£\ = 1, (3.17b) 

where in the present application r' = (7(u1;V),..., y(u ;V)). 

Such mean semi-variances y(u.;V), where one of a pair of points 

remains fixed at location u., and the other point sweeps V, can be 

calculated numerically according to the method proposed by Bras 

and Rodriguez-Iturbe (1976). In this method, V is approximated by 

a rectangle V', which is then split into four subrectangles by axes 

passing through u. and parallel to the sides of V'; then 

1 4 Li 
* ( U i ; V ) A [.* o' * ( h ) f i ( h ) d h J ' (3.18) 

where 

L. : largest distance in subrectangle i 

f.(h): pdf of distance h between the fixed point u. and 

a random point in subrectangle i. 
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The single integral in Equation 3.18 can be easily calculated numer­

ically. 

Here auxiliary functions are used (Journel and Huijbregts, 1978). 

These are analytical functions which yield y(u;V) for certain sim­

ple geometric forms of the regions u and V, and given a certain 

semi-variogram model, for example, linear or exponential. Although 

there are several auxiliary functions, in this study, following 

the notation of Journel and Huijbregts (1978), use is made of 

H(a;b) = Y ( U ; V ) , where V is a rectangle with sides a and b and u 

is a point, that is one of V's vertices. The function H(a;b) is 

defined as (Journel and Huijbregts, 1978; p. 113) 

H(a;b) = f ( a2
+b2 )H+|!ln{ »+ < ^ >*} + f î l n ( b + < \ ^ >*} . (3.19) 

After approximating V by a rectangle V', V' is split into four sub-

rectangles, and for each of these H(a;b) is calculated. Weighted, 

by the area of the corresponding subrectangle, means of these yield 

y(u.;V), apart from the nugget effect C in Equation 3.8. Then this 

nugget effect, which is a constant value for all sample points in 

V, is added to the weighted mean H(a;b) to obtain y(u.;V). 

Solving Equations 3.17a and b yields the kriging weights, which 

are presented in Appendix B.2 for each of the three areas and for 

each month separately. All weights are positive. With all sample 

points inside V, negative weights are only to be expected in point 

interpolation if shadow effects occur. The kriging weights for 

January and for August, and the arithmetic mean weights and Thiessen 

weights are presented in Table 3.3. 

Kriging weights tend to correlate well with the area of the Thiessen 

polygons, especially when the nugget effect c of the semi-variogram 

is relatively unimportant. The kriging weights are equal to the 

arithmetic mean weights, if &t = 0. Differences in kriging weights 

for maxima of daily rainfall in different months are rather small. 
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Table 3.3. Kriging weights for predicting mean areal rainfall for 

monthly maxima of daily rainfall for three areas in the Netherlands1 

KNMI 
code 
no. 

223 

225 

226 

229 

230 

233 

435 

436 

437 

438 

441 

454 

Area 1 

Kriging 
Jan. 

.0904 

.0877 

.0750 

.0547 

.0735 

.0807 

.0751 

.0671 

.1143 

.1106 

.1082 

.0628 

Aug. 

.0833 

.0913 

.0751 

.0514 

.0719 

.0784 

.0689 

.0665 

.1187 

.1176 

.1114 

.0605 

Thies-
sen 

.0345 

.1171 

.0790 

.0458 

.0786 

.0950 

.0616 

.0228 

.1162 

.1406 

.1453 

.0636 

KNMI 
code 
no. 

733 

736 

743 

746 

749 

751 

752 

754 

755 

756 

758 

760 

Area 

Krig 
Jan. 

.0477 

.0709 

.0623 

.1064 

.0763 

.1515 

.1821 

.0376 

.0979 

.0658 

.0624 

.0391 

2 

ing 
Aug. 

.0714 

.0909 

.0820 

.0972 

.0737 

.1054 

.1160 

.0596 

.0838 

.0807 

.0751 

.0642 

Thies-
sen 

.0537 

.0471 

.0604 

.0684 

.0834 

.1750 

.1987 

.0386 

.1054 

.0652 

.0578 

.0464 

KNMI 
code 
no. 

542 

543 

558 

564 

565 

567 

570 

571 

573 

578 

579 

580 

Area 

Krig 
Jan. 

.0826 

.0934 

.0739 

.0904 

.0623 

.0983 

.1051 

.0933 

.0947 

.0955 

.0581 

.0524 

3 

ing 
Aug. 

.0842 

.0907 

.0766 

.0897 

.0573 

.1011 

.1119 

.0988 

.0936 

.1000 

.0522 

.0438 

Thies-
sen 

.1036 

.0804 

.0959 

.0634 

.0480 

.0937 

.1478 

.1065 

.0840 

.1166 

.0361 

.0241 

1 Arithmetic mean weights would be 0.0833 regardless of month or 

area. 

Mean areal rainfall predicted by each of the three methods can be 

compared by evaluating their prediction variances. When predicting 

mean values over an area, the prediction variance equals 

N N N 
a; = 2 I Y ( U . ; V ) - Y ( V ; V ) - 2 1 A,À,Y(u.-u. 

E i=l X i=l j=l 1 J X : 
(3.20) 

In comparing Equation 3.20 with Equation 2.22, it should be noted 

that for a point V, Y(V;V) vanishes. The resulting minimum variance 
2 a of the kriging prediction equals (see Equation 2.24) 

at = 1 AHY(u.;V)+M-Y(V;V), 
K i=l 1 1 

(3.21) 
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or in matrix notation, following Corsten (1982) 

a£ = -ï(V;V)+rT"1r-(l-l^r"1r)(l^r"1lN)"1(l-l^r"1r), (3.22) 

where (as in Equation 2.33) the last term is closely related to 

the variance of the estimate of the stationary expectation E[Z ], 

and the sum of the remaining terms on the right-hand side is an 

estimate of the residual variance of Z with regard to the best 

linear approximation. Note that r in Equation 3.22 is r from Equa­

tion 3.17: r=v(ui;V). 

2 2 To calculate a and a , use has been made of Equations 3.20 and 3.22, 
hi K 

respectively. The Y(U.;V) in Equation 3.20, denoted as r in Equation 

3.22, have been obtained previously. To calculate Y ( V ; V ) , the auxi­

liary function F(a;b) has been used (Journel and Huijbregts, 1978; 

p. 113) 

w = K! - /=2J.,2,V 1 1 a2 1 b 2 l.a3 b 3 , . 
F(a;b) - (a +b ) (rîf -j-j^ ^ ^ - J * ^ ) + 

b a b a 

2 2 
+ | |-ln{(b+(a2+b2)1'5)/a}+| |-ln{ (a+(a2+b2)**)/b} . (3.23) 

The results are presented in Table 3.4. In most cases the Thiessen 
2 2 . mean prediction variance a_ _ is less than a_ ., the arithmetic 
hj, x hi, A 

mean prediction variance. The arithmetic mean can be a very ineffi­

cient predictor, if a region is characterized by a few very large 

Thiessen polygons. If, however, there is virtually no spatial coher­

ence (high values of C/ä1 in Table 3.2), then areal rainfall is 

more efficiently predicted by the arithmetic mean than by the Thies­

sen method. 
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2 2 Table 3.4. Prediction variances o_ (mm ) and efficiencies (%) with respect to the minimum 
2 variance oK for three predictors of areal mean values for monthly maxima of daily rainfall 

for three areas in the Netherlands 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

Arithmetic 

mean 

2 
°E,A 

0.27 

0.25 

0.29 

0.40 

0.81 

1.02 

2.7S 

6.21 

1.79 

0.92 

0.65 

0.68 

eff. 

87 

89 

82 

75 

87 

77 

90 

83 

86 

82 

76 

94 

Area 1 

Thiessen 

2 
°E,T 

0.27 

0.25 

0.27 

0.34 

0.81 

0.90 

2.84 

5.85 

1.76 

0.85 

0.57 

0.73 

eff 

87 

87 

88 

87 

87 

87 

87 

88 

88 

88 

87 

87 

Kriging 

4 
0.23 

0.22 

0.23 

0.30 

0.71 

0.79 

2.48 

5.13 

1.54 

0.75 

0.50 

0.63 

Arithmetic 

mean 

2 
°E,A 

0.83 

0.33 

0.30 

0.65 

1.00 

2.08 

3.85 

4.69 

2.99 

2.26 

0.65 

0.79 

eff. 

49 

90 

83 

37 

37 

76 

49 

95 

68 

52 

95 

100 

Area 2 

Thiessen 

2 
°E,T 

0.43 

0.35 

0.28 

0.26 

0.39 

1.77 

2.03 

5.42 

2.23 

1.26 

0.75 

1.04 

eff 

94 

85 

88 

93 

93 

90 

94 

82 

92 

94 

82 

76 

Kriging 

2 
°K 

0.40 

0.30 

0.25 

0.24 

0.37 

1.59 

1.90 

4.45 

2.04 

1.18 

0.62 

0.79 

Arithmetic 

mean 

2 
°E,A 

0.53 

0.31 

0.27 

0.58 

1.20 

1.98 

3.14 

3.15 

1.32 

0.69 

0.45 

0.66 

eff. 

89 

75 

64 

83 

79 

84 

80 

80 

77 

72 

84 

99 

Area 3 

Thiessen 

2 
aE,T 

0.51 

0.25 

0.18 

0.51 

1.00 

1.77 

2.65 

2.69 

1.07 

0.52 

0.40 

0.75 

eff 

92 

95 

97 

94 

95 

94 

94 

94 

95 

96 

94 

88 

Kriging 

2 
°K 

0.47 

0.23 

0.17 

0.48 

0.95 

1.66 

2.51 

2.53 

1.02 

0.50 

0.38 

0.66 

Denote the kriging prediction of mean areal rainfall for a maximum 

in month i and year j by x ~K 
1,3 

T A 
and let x. . and x. .be the Thiessen 

1,3 i,3 
and arithmetic mean predictions, respectively. The latter two pre­

dictions have been compared with the kriging predictions by calcu­

lating differences V. . according to 

V. . 
i,3 

-K -T 
x. .-x. . , 

i,3 1,3 
(3.24a) 

1,3 
„K -A 
x . .-x . 

1,3 1,3 
(3.24b) 

respectively. The mean V. = I.V. ./n, where n is the number of years 

of record gives an indication of possible systematic differences 

between kriging predictions and the Thiessen and arithmetic mean 

predictions. The relative magnitude of such differences may be ob­

tained from, for example 

= M.' K. .-X. . /X. . } , 
1,3 1,3 1,3 

(3.25) 
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where 

n: number of years of record (n=29). 

The results are presented in Table 3.5. 

Table 3.5. Absolute differences V. (mm) and relative differences 

V! (%) between kriging predictions of mean monthly maximum rain­

fall, and Thiessen and arithmetic mean predictions for three areas 

in the Netherlands 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

Area 1 

Thiessen Arithmetic 

V i . 

-0.34 

-0.58 

-1.13 

-0.24 

-0.45 

0.66 

-1.90 

-3.10 

-0.34 

-0.57 

-1.59 

-0.60 

V! 

1.21 

1.38 

1.28 

1.28 

1.89 

1.57 

2.39 

2.54 

1.89 

2.19 

1.32 

1.14 

mean 

V. 
l . 

0.70 

0.74 

0.67 

0.74 

0.88 

2.46 

1.21 

3.95 

1.00 

0.49 

-0.59 

1.10 

V! 
l. 

1.14 

1.10 

1.81 

1.67 

1.58 

2.33 

2.94 

3.99 

2.18 

1.85 

1.22 

1.06 

Area 2 

Thiessen Arithmetic 

V. 
l . 

0.21 

-0.54 

-0.68 

-0.15 

-0.17 

-0.58 

-0.29 

-0.46 

0.98 

-0.42 

-1.32 

-0.46 

V! 
l. 

0.97 

1.53 

1.54 

0.76 

1.51 

2.15 

1.56 

3.53 

1.66 

1.27 

2.20 

2.93 

mean 

V i . 

0.68 

-0.31 

-0.02 

1.93 

1.78 

-2.04 

-3.21 

-1.25 

-1.20 

-2.06 

0.35 

-0.04 

V! 
l. 

3.03 

1.98 

1.90 

5.29 

7.41 

4.54 

7.80 

3.03 

4.00 

4.82 

1.20 

0.45 

Area 3 

Thiessen Arithmetic 

V i . 

-0.26 

-0.52 

-0.32 

-0.95 

-2.10 

-0.08 

-1.12 

0.10 

-0.02 

-0.32 

-0.76 

-1.52 

V! 
l. 

0.85 

0.85 

0.68 

1.66 

1.76 

1.78 

2.10 

1.58 

0.78 

1.26 

0.92 

1.59 

mean 

V. 
l. 

0.88 

0.83 

1.61 

1.17 

2.86 

-1.48 

-1.21 

2.58 

1.10 

1.39 

0.96 

0.61 

V! 
1 . 

1.09 

1.49 

1.91 

2.39 

2.89 

2.08 

2.26 

2.89 

1.95 

2.02 

1.13 

0.51 

Thus, as reported earlier by Delhomme (1978), the differences 

between kriging and Thiessen predictions of areal rainfall are 

rather small. Results of the arithmetic mean predictor are less 

satisfactory. In the present application, the Thiessen predictions 

tend to be higher than the respective kriging predictions, and the 

arithmetic mean predictions tend to be lower. 

Although in general the kriging predictions do not differ greatly 

from the Thiessen and arithmetic mean predictions (Table 3.5), 

the efficiency of the other two predictors can be quite low. In 
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August, when prediction variances are highest, the efficiency of 

the Thiessen predictor is 0.88, 0.82, and 0.94 for areas 1, 2, and 

3, respectively; and for the arithmetic mean predictor 0.83, 0.95, 

and 0.80 for areas 1, 2, and 3, respectively. The efficiency of the 

Thiessen predictor does not vary very much for the three areas, but 

that of the arithmetic mean predictor does. 

3.3. ARF FOR DAILY RAINFALL AND ITS DEPENDENCE ON LOCATION, 

SEASON, AND RETURN PERIOD 

In Section 3.3.1, methods to estimate ARF are presented and esti­

mates of ARF for three areas in the Netherlands are presented in 

Section 3.3.2. Finally, in Section 3.3.3 the variance of ARF24 is 

estimated, in order to determine whether the various methods for 

estimating ARF produce different estimates of ARF-.. This variance 

is also used in the discussion on the dependence of ARF on certain 

factors. 

As defined by Equation 3.1, ARF is 

ARF(A,D,T) = XA(D,T)/XS(D,T), 

implying that ARF is at least a function of duration of rainfall 

D, of return period T, and of areal size A. Other factors likely 

to effect ARF are location, season, and storm type. In this discus­

sion D is fixed at 24-hour intervals where observations were taken 

only at specified times, at 7.55 h UTC daily. Thus, attention is 

restricted to location, season, and return period, although the 

results also indicate that there is a decrease in ARF with areal 

size. 

The degree to which ARF depends on location is not certain. On the 

one hand, ARF values as determined for the United Kingdom (NERC, 

1975; Vol. 2) have been recommended for use in countries as far 

apart as the Netherlands (Buishand and Velds, 1980) and New Zealand 

(Tomlinson, 1980); and values determined for the USA (USWB, 1957-

1960) have been recommended for use in Australia (Pattison (ed.), 

1977). On the other hand, Bell (1976) has concluded that for the 
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United Kingdom, there may be a slight tendency for ARF„4 to increase 

with latitude. For the USA, Myers and Zehr (1980) suggest that 

ARF is dependent on location. Thus it would seem that there are 

substantial differences in ARF_. values for very distinct climatol-

ogical regions. This is supported by the comparatively low values 

of ARF_4 for several tropical African countries reported by Vuil-

laume (1974). The dependence of ARF24 on location is considered 

in Section 3.3.3 particularly with reference to three areas in 

the Netherlands of approximately equal areal size. Estimates of 

ARF„. are compared with those for other countries. 

The dependence of ARF on season has received little attention. From 

the effect of climate on ARF already mentioned, it may be inferred 

that there is a seasonal effect on ARF_„. In this section considèr­ent 
ation is given to whether ARF„. varies with season and whether annu-

al maxima of both point and areal rainfall occur in the same season. 

The effect of return period on ARF has been investigated by Bell 

(1976), using data for the United Kingdom. In Bell's study, which 

was a follow-up to NERC (1975) in which it was assumed that the 

dependence of ARF on return period was of no practical value, evi­

dence was found for a decrease in ARF with return period. Therefore, 

in the present study it was decided to investigate the dependence 

of ARF on frequency of exceedance. 

3.3.1. Methods to estimate ARF 

In this section, methods to estimate ARF are discussed which are 

based on annual maxima series of both point and areal rainfall, on 

POT series of both point and areal rainfall, and on the marginal 

distribution of point rainfall, respectively. Methods used to esti­

mate ARF in previous studies in the Netherlands are also discussed. 

a. Estimation of ARF from annual maxima series 

Two methods to estimate ARF from annual maxima series are described, 

the USWB (1957-1960) and the NERC (1975) method. Neither method 

uses the complete probability distributions of annual maxima, but 
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only their expectations and, consequently, the exceedance proba­

bilities of the expectations. If, for instance the annual maxima 

follow a Gumbel distribution, then the ARF values correspond to a 

2.33-year return period. In the following discussion on both meth­

ods, N is the total number of rainfall stations in a region, and n 

is the length of the period of record (year). 

In the first of these methods (USWB, 1957-1960), the maximum value 

x (j) in year j of mean areal rainfall of a given duration is de­

termined. The mean of the annual maxima of areal rainfall is denoted 

by x . For all rainfall stations i (i=l,..., N), the maximum value 

x j(j) in year j of point rainfall of this duration is determined. 
b , X 

The mean of the annual maxima of point rainfall at location i is 

denoted by x .. The areal mean of the annual maxima of point rain-
b , X 

fall is calculated as 

N 
x = I x ,/N. 

b- i=i S'1 

Thus, ARF is estimated as 

ARF = xA/xs . 

In the second method (NERC, 1975), for each year j, the maximum 

value x (j) of areal rainfall of a given duration is determined, 

and for all rainfall stations the simultaneous point rainfall is 

denoted by x' j(j) (i=l,..., N). For all rainfall stations i the 
b , 1 

maximum value x -(j) in year j of point rainfall of this dura-
b , X 

tion is determined. For each pair (i,j) the following ratio is cal­

culated 

g(i, j) = xs;i(i)AS)i(i). 

Thus, ARF is estimated as 

N n 
ARF = I I q(i,j)/(nN) 

i=l j=l 
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b. Estimation of ARF from peaks-over-threshold (POT) series 

Bell (1976) used the following method to estimate ARF from POT se­

ries. The frequency curves (rainfall versus return period) of peaks 

of point rainfall of a given duration for each rainfall station 

are determined. The point rainfall frequency curve is then derived 

by averaging these curves. Also, the areal rainfall frequency curve 

for this duration of rainfall is determined. The estimate of ARF 

for a given return period is the ratio of the ordinates of the areal 

and point rainfall frequency curve, respectively, corresponding to 

that return period. This method makes full use of the probability 

distribution of peaks. 

c. Estimation of ARF from the marginal distribution of point rain­

fall 

Estimation of ARF from the marginal distribution of point rainfall 

was first suggested by Roche (1963). In contrast to the methods 

described above, which require data from relatively dense, rainfall 

measuring networks in order to predict areal rainfall, this method 

and that of Rodriguez-Iturbe and Mejia (1974), only use point rain­

fall at paired sample points. However, Roche's method is rather 

complicated and in a subsequent publication Brunet-Moret and Roche 

(1966) have proposed another method which makes use of the marginal 

distribution of both point and areal rainfall. This method which 

has been used by Vuillaume (1974) and Le Barbe (1982), counts the 

number of occurrences of pairs of (x ,x„) values in certain classes 

of rainfall depth. This leads to a description of the empirical 

bivariate (x.,x_) frequency distribution. Adding up over x classes 

gives the empirical marginal frequency distribution of areal rain­

fall, and adding up over x classes gives the empirical marginal 

frequency distribution of point rainfall. 

As data sets which permit the calculation of areal rainfall are 

usually restricted in record length, but rather long records of 

point rainfall are likely to be available, Brunet-Moret and Roche 

recommend that the empirical marginal frequency distribution of 

point rainfall be corrected as follows. The longest rainfall record 
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available within the region should be used to fit a pdf of point 

rainfall according to a certain model, thus permitting the estima­

tion of guantiles of point rainfall: x . This pdf should then be 
b , P 

used to replace, for each class of point rainfall depth, the observed 

number of point rainfalls with the expected number. As a conse­

quence, the number of observed areal rainfalls is also corrected. 

Then the number of exceedances of a certain threshold value of x. 

can easily be determined by integrating the corrected bivariate 

frequency distribution. The number of exceedances of this particu­

lar threshold value of x is then transformed into a quantile esti­

mate: x . Thus ARF, is estimated as 
A, p 

ARF = x. /x_ 
A,p' S,p 

Another method for estimating ARF that uses essentially the margin­

al distribution of point rainfall is that used by Rodriguez-Iturbe 

and Mejia (1974), and Buishand (1977b,c). Rainfall at a point with 

co-ordinate vector u during period t is denoted by x (u,t). 

Rodriguez-Iturbe and Mejia assumed that the point rainfall process 
2 

{x (u,t)} has expectation u and variance a , and is stationary and 
o S o 

isotropic. The volume of rainfall h(t) over the region V with 

area A is 

h(t) = JyXgC^tJdu. 

Furthermore, 

E[h(t)] = MAA (with M A = E[xA]). 

Time-space covariance is 

cov[h(t),h(t+At)] = E[h(t)h(t+At)]-{E[h(t)]}2 

= E[ƒvxs(ux,t)du1Syxs(u2,t+At)du2]-MAA2 

= Jv/v{E[xs(u1,t)xs(u2,t+At)]-MA}du1du2. 

If At=0, 

cov[h(t),h(t)] = var[h(t)] = CJ2 = Jv/v{E[xs(u1( t)xs(u2, t)] -uj^du^d^ . 
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Because the rainfall process is stationary, p_ = pft. Consequently, 

CTh = /v^V?E[-S(Ul't)-S(u2't)"|JS5dUldU2 

2 
= asJvJvr(u1;u2)du1du2, (3.26) 

where 

r(u ;u ): spatial correlation coefficient between rainfall 

at points with co-ordinate vector u.. and u_, 

respectively. 

Consequently, 

and 

where 

a£ = A2agr(V;V), (3.27) 

var[xA] = a2
h = o*r(V;V), (3.28) 

r(V;V): mean of the correlation coefficient between rain­

fall at points, each independently sweeping the 

area V. 

If the point rainfall process is Gaussian, the areal process will 

also be Gaussian, and as implied in Equation 3.28, a reduction fac-

tor equal to [r(V;V)]^ will relate identical return periods. This 

reduction factor does not vary with return period. 

Unlike Rodriguez-Iturbe and Mejia, Buishand (1977c) assumed that 

both point and areal rainfall follow a gamma distribution with ex-
2 2 

pectation and variance (j„ and a„, and p. and a., respectively, and 
MA = Ms» (3.29a) 

o2
A = £a2

s. (3.29b) 

Furthermore, instead of f=r(V;V), Buishand (1977c) uses the approxi­

mation f=r(E[h]). 
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ARF is estimated by Buishand (1977c) by fitting for each month of 

the year, a Gumbel distribution to the monthly maxima series, and 

by determining the point rainfall x for the relevant rainfall 
b , P 

duration and return period. Then by using the gamma distribution 

fitted to the point rainfalls by the method of moments, 

Pr{xs<xSp} (3.30) 

is determined. The gamma distribution for areal rainfall, with pa­

rameters determined by Equation 3.29a and Equation 3.29b, is used 

to find x according to 
A, p 

Pr*XA<*A,p} = Pr*Xsi*S,p>-

Thus, ARF is estimated as 

ARF = x. /x„ 
A,p7 S,p 

Buishand's method is used in this study with the following minor 

modifications : 

use is made of POT series which are assumed tó be exponentially 

distributed; 

use is made of f = r(V;V), although in this case with a linear 

correlation-distance function r(h), both f = r(V;V) and f = 

r(E[h]) yield the same result; 

application of the ML estimation procedure of the parameters of 

the gamma distribution of point rainfalls, as given in Buishand 

(1977a). 

d. Methods used to estimate ARF in earlier studies in the Nether­
lands 

Statistical areal reduction factors for the Netherlands have been 

estimated from daily rainfall data over the 1932-1956 period by 

Kraijenhoff (1963). For a group of 30 rainfall stations evenly dis­

tributed throughout the Netherlands, areal rainfall has been pre­

dicted by the isohyet method for circular areas of 10, 50, 100, 
2 250, and 500 km around these stations for summer days with ram-
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fall in excess of 40 mm at least at one of the stations. For each 

areal size considered, areal rainfall was plotted as a function of 

the point rainfall of equal ranking on double logarithmic paper. 

By the method of least squares, straight lines were fitted (Figure 

3.7). Along each line in Figure 3.7, ARF decreases with increasing 

rainfall depth, and therefore with increasing return period. This 

method is somewhat similar to that of Bell (1976), described ear­

lier. 

3.3.2. Estimates of ARF„. for three areas of 1000 km2 in the 
24 

Netherlands 

a. ARF„. estimated from annual maximum series 
24 

For the areas 1, 2, and 3 indicated in Figure 3.1, ARF-. has been 

estimated by both the USWB (1957-1960) and the NERC (1975) method, 

for the summer, winter, and the complete year. The results are 

presented in Table 3.12. 

b. ARFn. estimated from POT series 

For the areas 1, 2 and 3 indicated in Figure 3.1, POT series have 

been extracted from the daily point and areal rainfall records, for 

summer, winter, and the complete year. Thresholds have been selected 

that resulted on average in two peaks per year or season. In order 

to assure independence of the peaks, these have to be separated by 

at least one day without rain in the area considered. The mean POT 

series of point rainfall for a given area were obtained from the 

means of peaks of equal ranking of all records of point rainfall 

for that area. Exponential probability distribution functions 

according to 

f(q) = iexp[-(q-q0)/ß], (3.31) 

where 
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qn,ß: positive parameters of location and scale, respec­

tively, 

were fitted to the POT series of areal rainfall and to the mean 

POT series of point rainfall. As in Section 2.2, ML estimates of 

ß and gQ in Equation 3.31 were calculated according to Equation 2.2 

and 2.3 and the fit of the exponential probability distribution 

functions was checked by calculating realizations of the test sta­

tistic T according to Equation 2.8. The realizations of T and the 

ML estimates ß and q„ are presented in Table 3.6. The exponential 

distribution seems to fit the POT series sufficiently well. Plots 

of the empirical distribution functions and the fitted distribution 

functions are presented in Figure 3.8. The plotting positions are 

according to Equation 2.4. 

Table 3.6. ML estimates ß (mm) and qn (mm) from Equation 3.31 and 

realizations of the test statistic T to assess the fit of the ex­

ponential distribution function to POT series of areal and point 

rainfall in three areas of the Netherlands 

Summer 

ß 

^0 
T 

Winter 

ß 

% 
T 

Year 

ß 

So 
T 

Areal rain 

1 

5.8 

18.4 

119.7 

6.2 

15.6 

87.6°° 

6.2 

21.2 

103.9 

Area 

2 

6.2 

17.6 

136.0 

6.3 

15.0 

135.7 

5.6 

21.5 

133.9 

fall 

3 

7.9 

18.0 

95.9 

5.2 

15.8 

94.5 

7.9 

20.6 

100.0 

Point rain 

1 

7.7 

19.4 

100.5 

6.5 

16.5 

89.4 

7.9 

22.6 

100.3 

Area 

3 

7.8 

19.6 

109.3 

6.9 

15.8 

105.5 

7.3 

23.2 

106.7 

fall 

3 

10.3 

19.3 

98.1 

5.5 

16.6 

95.0 

9.4 

22.6 

94.6 

Indicates values inside the critical region for a = 0.05. 
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ARF values can now be estimated from the frequency curves 

q = ßln(T/T0)+q0, (3.32) 

where 
1/T : mean annual number of threshold exceedances (=2) 

Given T, fi and q. being estimated, and 1/T- being fixed in advance, 

the peaks of areal and point rainfall, q. and q , respectively, can 

be estimated, and ARF is estimated as their ratio. In Table 3.12, 

ARF . estimates for a 1.78-year return period are presented, as 

return periods T for peak exceedances are related to return periods 

T for annual maxima by T s l/[l-exp(-1/T )] (Langbein, 1949). This 
ci cl p 

result is exact if the annual number of exceedances is Poisson dis­

tributed (Beran and Nozdryn-Plotnicki, 1977). ARF values corres­

ponding to various other return periods are presented in Table 3.7. 

In Table 3.7, ARF_ for T = °° has been estimated as the ratio of 

the parameter estimates ß in Equation 3.32 for areal and point 

rainfall, respectively. 

Table 3.7. ARF? estimated according to the method of Bell (1976) 

for three areas in the Netherlands for the summer, the winter and 

the complete year 

Return Summer Winter Year 

period » » 
r Area Area Area 

0 .5 0 .950 0.897 0 .933 0 .950 0 .953 0 .953 0 .938 0 .924 0.912 

1 0 .906 0 .876 0 .889 0 .951 0 .944 0 .949 0 .909 0.897 0 .895 

2 0 .877 0.862 0 .864 0 .951 0.939 0 .947 0 .889 0 .877 0 .884 

5 0 .852 0 .849 0 .844 0.952 0 .934 0 .944 0 .871 0 .859 0 .874 

10 0 .839 0 .843 0 .833 0.952 0.932 0 .943 0 .861 0 .849 0.869 

25 0 .826 0.836 0 .823 0.952 0 .929 0 .941 0 .851 0 .839 0 .864 

» 0 .747 0.797 0 .771 0 .954 0 .915 0.932 0 .787 0.769 0 .834 

c. ARF' estimated from the marginal distribution of point rainfall 

For each month of the year and for each area, the empirical distri­

bution functions of daily areal and point rainfall were determined. 
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Those of point rainfall were determined from all rainfall records 

within the area considered. Shifted rainfall amounts were not con­

sidered, although in many applications it is advisable to do so 

(Buishand, 1977a). But then, in view of the assumption made in 

Equation 3.29a, areal rainfall should have been calculated as a 

linear combination of shifted point rainfalls instead of, more 

logically, a shifted linear combination of point rainfalls. Rain­

fall is assumed to occur in the centre of the measurement inter­

vals. 

Areal rainfall was predicted by kriging with the IRF-0 theory. 

Sample semi-variances of daily point rainfall were determined for 

all days with at least 0.5 mm rainfall at one or more rainfall 

stations. The sample semi-variances and the fitted (H<L/2) linear 

semi-variance models for January and for August are presented in 

Figures 3.9 to 3.11. OLS estimates of C and ax in Equations 3.8 

are presented in Table 3.8. The resulting kriging weights are 

listed in Appendix B.3 for each of the three areas and for each 

month separately. 

2 2 - 1 

Table 3.8. OLS estimates c (mm ) and ô, (mm .km ) of the linear semi-variogram model, 

and ratio C/ô, (km) for all days with at least 0.5 mm of rainfall at one or more rainfall 

stations for three areas in the Netherlands; comparison between the mean point rainfall 

ps (mm) and the mean kriging predictions of areal rainfall p. (mm) 
Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

e 

0 

0 

0 

0 

0 

2 

3 

3 

2 

1 

0 

0 

55 

43 

48 

56 

89 

04 

01 

46 

69 

29 

82 

90 

« 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Area 1 

060 

070 

060 

078 

162 

263 

370 

736 

400 

238 

137 

085 

C/Ä, 

9.2 

6.2 

8.1 

7.3 

5.5 

7.7 

8.1 

4.7 

6.7 

5.4 

6.0 

10.6 

P S 

2.18 

1.74 

1.53 

1.58 

1.50 

1.78 

2.35 

2.86 

2.67 

2.57 

2.88 

2.55 

P A 

2.18 

1.75 

1.53 

1.59 

1.51 

1.81 

2.36 

2.88 

2.67 

2.58 

2.88 

2.56 

C 

0 

0 

0 

0 

0 

2 

4 

7 

2 

1 

0 

1 

55 

71 

51 

48 

77 

64 

03 

11 

52 

69 

82 

30 

a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Area 2 

056 

038 

046 

082 

132 

184 

331 

392 

378 

222 

115 

035 

C/â, 

9.8 

18.7 

11.2 

5.8 

5.8 

14.3 

12.2 

18.1 

6.7 

7.6 

7.1 

36.8 

^S 

1.96 

1.66 

1.46 

1.45 

1.44 

1.89 

2.20 

2.58 

2.34 

2.41 

2.66 

2.21 

^A 

1.97 

1.66 

1.46 

1.45 

1.44 

1.86 

2.16 

2.55 

2.35 

2.41 

2.69 

2.21 

C 

0 

0 

0 

0 

1 

3 

5 

4 

1 

1 

1 

1 

71 

63 

53 

79 

92 

66 

40 

31 

55 

49 

12 

28 

ô 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Area 3 

068 

062 

066 

132 

227 

328 

369 

443 

289 

090 

070 

058 

C/5, 

10.5 

10.0 

8.0 

6.0 

8.5 

11.2 

14.7 

9.7 

5.4 

16.5 

16.0 

22.0 

^S 

2.31 

1.88 

1.73 

1.90 

1.94 

2.29 

2.74 

2.96 

2.26 

2.11 

2.50 

2.65 

^A 

2.33 

1.89 

1.75 

1.91 

1.95 

2.30 

2.77 

2.98 

2.28 

2.12 

2.52 

2.66 
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A comparison of Tables 3.8 and 3.2 shows that both C and âx tend 

to be smaller in Table 3.8. As C/âi varies less between months in 

Table 3.8, the kriging weights in Appendix B.3 show less variation 

throughout the year than their counterparts in Appendix B.2 for 

monthly rainfall maxima. As there are no months with very low C/â1 

values, the variation between rainfall stations is also less, as 

shown in Appendix B.3. In months with similar C/ât values in 

Tables 3.2 and 3.8, the resulting kriging weights are also more 

or less the same (area 1: May, July; area 2: June; area 3: June). 

Prediction of the areal rainfall by kriging implies that & / p , 

even though the assumption in Equation 3.29a still holds. The dif­

ferences are negligible, however, see also Table 3.8. 

Gamma probability distribution functions have been fitted to the 

empirical distribution functions of point and areal rainfall ac­

cording to 

f(x) = A(Ax)V-1exp(-Ax)/T(v), (0<x<°°) (3.33) 

where 

F(.): the gamma function 

A,v : positive parameters of scale and shape, respectively. 

As a first approximation, the parameters A and v in Equation 3.33 

have been estimated according to the method of moments (MM) 

A=x/s2 , (3.34a) 

v=x2/s2, (3.34b) 

- 2 • • 

where x and s are the sample mean and variance, respectively. As 

MM estimators are very inefficient compared with ML estimators, Â 

and v have only been used as starting values in the calculation of 

ML estimates. 

If rainfall amounts not exceeding a certain threshold value are 

counted only, the likelihood L*(A,v) in accordance with Buishand 

(1977a) can be expressed as 

nv .. xmv m m .. 
L*(A,v)= — {r.;eexp(-Ax)xV_1dx}n— mexp(-A 1 x . ) H x^"X,(3.35) 

(T(v))n ° (T(v))m i=l X i=l X 
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x. (i=l,..., m): observations > e (e=0.95 mm) 

n : number of observations < e. 

The integral in Equation 3.35 can be approximated for small e by 

0Je exp(-\x)xV_1dx s 0Je(l-\x)xV_1dx = f - d - ^ f ) - (3.36) 

For e equal to 0.95 mm, the resulting relative error in the integral 

is about 0.1%. The ML estimates, K* and v*, were calculated by using 

the Newton-Raphson procedure, as given in Buishand (1977a). The re­

sults are presented in Table 3.10. 

Parameters of the pdf of areal rainfall were estimated by 

and 

*A = X S / f ' (3.37a) 

v* = v*/f, (3.37b) 

where f = r(V;V), as in Section 3.3.1. In calculating the reduction 

factor f, the parameters in the linear correlation-distance function 

r(h) = po+0h, (0<p0<l, 0<O) (3.38) 

were estimated for areas 1, 2, and 3. As only distances h less than 

about 40 km were considered, a linear correlation-distance function 

has been fitted (Van Montfort, 1968; De Bruin, 1975; Buishand, 

1977b). Table 3.9 gives the OLS estimates p and 0, r(V;V) (calcu­

lated with the auxiliary function F(a;b) according to Equation 3.23), 

and the residual standard deviation s . An exponential correlation-

distance function r(h) = p.exp(-eh) did not give a better fit. 

Plots of the estimated correlation coefficients and the fitted 

linear models for January and for August are shown in Figures 3.12, 

3.13, and 3.14. 

With the number of samples in this study, according to Equation 3.12 

the following should hold approximately: s = 0.006 (winter) and 

s = 0.015 (summer). The rather large values of s in Table 3.9 are 

probably caused by autocorrelation and non-normality of the obser­

vations. A cube root transformation of the observations resulted in 
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substantially lower values of s : s S 0.012 (winter) and sr s 0.014 

(summer). Probably because of autocorrelation, winter values of s 

remain high. 

Table 3.9. OLS estimates Pn(-) and 0 (km" ), mean correlation coefficients r(V;V) {-) ac­

cording to the linear correlation-distance function (Equation 3.38), and residual standard 

deviation s (-) for daily rainfall for three areas in the Netherlands 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

P0 

.965 

.962 

.963 

.957 

.920 

.922 

.907 

.868 

.916 

.960 

.957 

.956 

S 

-
-
-
-
-
-
-
-
-
-
-
-

Area 

.0026 

.0024 

.0030 

.0028 

.0045 

.0053 

0057 

0068 

0044 

0036 

0030 

0017 

1 

r(V;V) 

.922 

.922 

.913 

.911 

.846 

.835 

.813 

.756 

.843 

.900 

.907 

.928 

Sr 

.013 

.016 

.012 

.013 

.037 

.031 

.022 

.058 

.045 

.018 

.018 

.013 

P0 

.954 

.962 

.964 

.942 

.908 

.917 

.878 

.853 

.921 

.955 

.963 

.961 

0 

-
-
-
-
-
-
-
-
-
-
-
-

Area 

.0025 

.0028 

.0029 

.0029 

0057 

0031 

0046 

0067 

0056 

0036 

0033 

0028 

2 

r(V;V) 

.907 

.910 

.910 

.887 

.800 

.859 

.791 

.727 

.815 

.888 

.901 

.908 

Sr 

.014 

.015 

.013 

.027 

.045 

.024 

.046 

.039 

.028 

.017 

.013 

.019 

Po 

.967 

.962 

.959 

.957 

.875 

.916 

.910 

.876 

.933 

.966 

.958 

.970 

ê 

-
-
-
-
-
-
-
-
-
-
-
-

Area 

.0025 

.0023 

.0030 

.0053 

0037 

0057 

0064 

0067 

0053 

0031 

0027 

0020 

3 

r(V;V) 

.925 

.923 

.909 

.868 

.813 

.820 

.802 

.763 

.843 

.914 

.913 

.936 

Sr 

.015 

.013 

.015 

.019 

.039 

.037 

.048 

.027 

.027 

.025 

.022 

.014 

With f = r(V;V) from Table 3.9, the parameters of the pdfs of areal 

rainfall have been estimated by Equations 3.37a and 3.37b and the 

results are presented in Table 3.10. The adequacy of the estimates 

was checked by calculating realizations D of the Kolmogorov 

Smirnov test statistic for single observations > e 

D max{|F0(xA)-FN(xA) (3.39) 

where 

F0(XA): 

FN(XA>; 

the fitted gamma cdf 

the edf according to F (x )=k/N, where k is the 

number of observations < x (multiples of .1 mm), 

N=n+m, and n, m as defined in Equation 3.35. 

Realizations D of the test statistic are also presented in max r 

Table 3.10. Critical values of the test statistic for the exponen­

tial distribution were obtained from Pearson and Hartley (1972). 

This is not quite correct as critical values of the test statistic 

depend on v. In addition, the term 'test' is somewhat misleading 

here, as the fit was only assessed for x_>e. Nevertheless, Figures 

3.15 to 3.17 show, together with Table 3.10, that the fit of the 

gamma distribution function is satisfactory. 
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Table 3.10. ML parameter estimates v* (-) and X* (mm" ), and v* (-) and X* (mm" ), for the 

gamma distribution functions of daily point and daily areal rainfall respectively, and 

realizations D of the Kolmogorov Smirnov statis max 
areal rainfall for three areas in the Netherlands 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

*s 
.330 

.245 

.247 

.229 

.189 

.158 

.192 

.220 

.189 

.208 

.336 

.319 

Area 1 

*S 

.148 

.137 

.156 

.140 

.122 

.086 

.080 

.076 

.070 

.080 

.115 

.123 

*A 

.358 

.265 

.271 

.252 

.223 

.189 

.237 

.291 

.224 

.231 

.370 

.344 

*A 

.160 

.149 

.171 

.154 

.144 

.103 

.098 

.100 

.083 

.089 

.127 

.133 

max 

.017 

.023 

.027 

.018 

.017 

.031 

.037°° 

.029 

.030 

.030 

.032 

.026 

*S 
.330 

.265 

.254 

.229 

.229 

.147 

.179 

.196 

.185 

.191 

.312 

.301 

Area 2 

H 
.164 

.156 

.167 

.152 

.152 

.076 

.079 

.075 

.077 

.078 

.115 

.133 

*; 

.364 

.292 

.280 

.258 

.286 

.171 

.226 

.270 

.227 

.215 

.347 

.332 

*Â 

.181 

.171 

.184 

.171 

.190 

.088 

.100 

.103 

.094 

.088 

.128 

.146 

D 
max 

.017 

.015 

.016 

.009 

.021 

.023 

.014 

.027 

.026 

.020 

.031 

.030 

*S 

.327 

.252 

.268 

.257 

.230 

.185 

.220 

.242 

.201 

.201 

.315 

.286 

Area 3 

*S 
.138 

.131 

.149 

.131 

.116 

.079 

.079 

.080 

.087 

.094 

.123 

.107 

*Â 

.354 

.273 

.295 

.296 

.283 

.226 

.274 

.318 

.239 

.220 

.345 

.305 

max 

.149 

.142 

.164 

.151 

.143 

.096 

.099 

.105 

.103 

.103 

.135 

.114 

D 

.033° 

.024 

.030 

.028 

.021 

.031 

.022 

.027 

.030 

.020 

.018 

.022 

° Indicates values inside the critical region for a = 0.10. 

°° Indicates values inside the critical region for a = 0.05. 

The adequacy of the method for obtaining the pdf of areal rainfall 

having been assessed, ARF values representative for the whole of 

the Netherlands were determined by combining the point rainfall 

records from the three areas. Then, M L estimates v* and X* of the 

p d f according to Equation 3.33 of point rainfall were determined. 

Estimates p . and 5 of a mean correlation-distance function accordir 

to Equation 3.38 were determined as the arithmetic mean o f the p . 

and ê values in Table 3.9. As pointed out in Section 3.3.1, POT 

series of p o i n t rainfall are required for the determination of 

Pr{x <x } (Equation 3 . 3 0 ) . The POT series were assumed to have 
b b , P 

an exponential distribution. The m e a n number of peaks per month 

was chosen to be one. The parameters q~ and ß of the exponential 

distribution functions, and also their fit were assessed in the 

usual way. The results are presented in Table 3.11; for January 

and for August the POT series and the fitted exponential distribu­

tions are shown in Figure 3.18. 
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Table 3.11. Parameter values for estimating ARF.., realizations of 

the lack of fit statistic T with respect to the exponential distri­

bution 

Period 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

Summer 

Winter 

Year 

<-) 

0.328 

0.253 

0.256 

0.237 

0.214 

0.163 

0.197 

0.219 

0.191 

0.199 

0.321 

0.300 

0.194 

0.265 

0.232 

(mm ) 

0.149 

0.140 

0.157 

0.139 

0.128 

0.080 

0.079 

0.077 

0.077 

0.083 

0.117 

0.120 

0.084 

0.123 

0.105 

P 0 

(-) 

0.962 

0.962 

0.962 

0.952 

0.901 

0.918 

0.898 

0.866 

0.923 

0.960 

0.959 

0.962 

0.897 

0.960 

0.927 

ê 

(km"1) 

-0.0025 

-0.0025 

-0.0030 

-0.0037 

-0.0046 

-0.0047 

-0.0056 

-0.0067 

-0.0051 

-0.0034 

-0.0030 

-0.0022 

-0.0055 

-0.0029 

-0.0043 

^0 
(mm) 

10.3 

8.4 

8.4 

9.2 

9.2 

12.1 

13.8 

15.5 

13.1 

12.1 

11.3 

10.6 

20.11 

16. 81 

23.11 

ß 
(mm) 

4.3 

4.9 

4.2 

4.6 

5.4 

7.7 

9.1 

8.5 

7.9 

8.6 

6.5 

7.2 

8.51 

5.81 

8.11 

T 

49.8 

53.3 

59.5 

56.0 

51.3 

47.1 

47.3 

51.5 

51.8 

52.8 

62.6 

42.9 

99.8 

94.6 

95.9 

1 Corresponding to two threshold exceedances per period, on the 

average. 

The reduction factor was obtained as r(V;V) with the parameter es­

timates from Table 3.11, and estimates v* and X* were obtained by 

using Equations 3.37a and 3.37b. For each month separately, ARF_„ 
2 

was calculated for areas of 25, 100, 250, and 1000 km , and return 

periods of 1, 1.78, 5, 10, and 50 years. Figure 3.19 shows the re­

sulting eye-fitted curves for January and for August. Curves for 

the winter and summer are shown in Figure 3.20, and curves for the 

complete year including the 0.5-year return period ARF_. in Figure 

3.21. In Table 3.12, estimates of ARF from Figure 3.20 and 

Figure 3.21 are compared with ARF.. estimates according to other 

methods described previously. 
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Table 3.12. Four estimates of ARF~ corresponding to a 2.33-year 
2 return period for annual maxima, and to an area of about 1000 km 

Season Bell1 

(1976) 

NERC1 

(1975) 

USWB1 

(1957-1960) 

Marginal 

distribution 

Summer 

Winter 

Year 

0.871 

0.946 

0.886 

0.853 

0.943 

0.866 

0.860 

0.951 

0.871 

0.878 

0.946 

0.902 

1 Averaged over the three areas. 

3.3.3. Variance of ARF for daily rainfall 

Table 3.12 can only be interpreted if the variance of ARF_4 is 

known. Var(ARF_ ) was determined according to the method proposed 

by Bell (1976). If a peak quantile q is estimated by using Equation 

3.32, with parameter estimates by Equations 2.2 and 2.3, then the 

estimation variance can be shown (NERC, 1975; Vol. 1, p. 195) to 

be 

var(â) = i H 1 ^ ^ 2 } , (3.40) 

where 

G: ln(T/TQ), 

Equation 3.40 was used to estimate the variance of estimates of 

quantiles of point and areal rainfall, g and q , respectively, 

and 

var(ARF) = var(âA/âs) (3.41) 

The variance of this ratio is approximately equal to (Kendall and 

Stuart, 1977; Vol. 1, p. 247) 

where 

{E(gA)/E(3s)}2{cv2(3A)+cv2(âs)-2cc2(âA,2s)}, (3.42) 

E(g ), E(g ): expectation of g and g , respectively, for 

a given return period 
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cv: coefficient of variation 

cc: coefficient of covariation. 

A reasonable estimate of cov(gA»âc) in the coefficient of co­

variation appearing in Equation 3.42 is not available, because 

there are only three areas. Bell (1976), who estimated ARF 4 with 

data for nine areas, determined a correlation coefficient r 

r = cov(gA,§s)/(var(äA)var(as))*5, (3.43) 

where g stands for a 'standardized' peak according to 

ä = (â-âe)/âe' 

where 3 is the estimate of the 'true' or population value q for 

the given return period, as obtained from the frequency analysis 

carried out in NERC (1975). The correlation coefficient varied with 

return period, the minimum value being 0.76. Thus r=0.70 and r=0.80 

were inserted in Equation 3.42 and the standard deviation estimates 

obtained are given in Table 3.13. 

Table 3.13. Standard deviation of ARF.. according to Equation 3.42 

for different values of the return period T and of the correlation 

coefficient r in Equation 3.43 

r 

0.7 

0.8 

T 

1 

2 

5 

10 

25 

1 

2 

5 

10 

25 

Year 

0.017 

0.028 

0.038 

0.043 

0.049 

0.014 

0.023 

0.031 

0.035 

0.040 

Area 1 

Summer 

0.019 

0.030 

0.040 

0.045 

0.049 

0.016 

0.025 

0.033 

0.037 

0.040 

Winter 

0.021 

0.034 

0.046 

0.053 

0.059 

0.017 

0.028 

0.038 

0.043 

0.048 

Year 

0.015 

0.026 

0.035 

0.040 

0.046 

0.013 

0.021 

0.029 

0.033 

0.037 

Area 2 

Summer 

0.018 

0.030 

0.040 

0.046 

0.051 

0.015 

0.025 

0.033 

0.037 

0.042 

Winter 

0.022 

0.036 

0.047 

0.054 

0.060 

0.018 

0.029 

0.039 

0.044 

0.049 

Year 

0.020 

0.032 

0.043 

0.048 

0.054 

0.016 

0.026 

0.035 

0.040 

0.044 

Area 3 

Summer 

0.023 

0.036 

0.046 

0.050 

0.055 

0.019 

0.029 

0.037 

0.041 

0.045 

Winter 

0.018 

0.030 

0.042 

0.048 

0.054 

0.015 

0.025 

0.034 

0.039 

0.044 
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Table 3.13 suggests that the standard deviation of ARF24 is inde­

pendent of season, but varies with return period. For a return pe­

riod of 2 years, it may be safely assumed that the standard devia­

tion of ARF-. is 0.03, or about 3 to 3.5%. Thus from Table 3.12 it 

can be concluded that the various methods for estimating ARF„4 do 

not produce practically different results and that the three areas 

of about the same size do not vary with respect to ARF 24" Figure 

3.22 shows the estimates of ARF_4 in this study according to NERC 

(1975), and the USWB (1957-1960) and NERC (1975) estimates of ARF24 

as a function of areal size. The difference between the estimates 

in this study and those of NERC (1975), which stem from a similar 

climatic region and which were derived by the same method, are about 

one standard deviation. As can be seen from Table 3.14, differences 

with earlier estimates of ARF_. from Dutch rainfall records are 

moderately small for large areal sizes. 

Table 3.14. 

records 

Comparison of estimates of ARF_ from Dutch rainfall 

Investigator 

Rainfall 

Depth 

(mm) 

40 

40 

40 

19 

19 

32 

32 

Period 

Summer 

Summer 

Summer 

July 

July 

July 

July 

Area 

(km2) 

50 

250 

500 

100 

1000 

100 

1000 

A R F 2 4 

0.968 

0.928 

0.918 

0.926 

0.895 

0.900 

0.866 

ARF 

to 

and 

24 
Fi< 

3 

according 

jures 3.19 

20 

0.915 

0.898 

0.883 

0.942 

0.911 

0.919 

0.879 

Kraijenhoff (1963) 

Buishand (1977a) 

For small areas the estimates from Figure 3.20 differ considerably 

from those of Kraijenhoff (1963), see Figure 3.23. When the yearly 

values of ARF- from Figure 3.21 are compared with those of NERC 

(1975), differences are also found: for a 1.78-year return period 
2 

and an area of 25 km , according to NERC (1975), ARF,. = 0.966, but 
2 according to Figure 3.21, ARF,,. = 0.946; for areas of about 150 km 

Z4 

both estimates are the same, and for larger areas the estimates 

from Figure 3.21 exceed those of NERC (1975). 
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The low values of ARF?. in this study for small areas are probably 

due to the large discontinuity of the fitted correlation-distance 

functions at the origin. In a late stage in this study it was real­

ized that such a large discontinuity is not physically plausible. 

The correlation coefficients for daily rainfall for the three 

rainfall stations in the Hupsel catchment area, all about 1.5 km 

apart, are between 0.97 and 0.98. For the rainfall data used in the 

study of short distance variability of rainfall by Denkema (1970), 

correlation coefficients for distances of 4 m are about 0.999 (sum­

mer), 0.997 (winter), and 0.998 (year). 

Thus, it appears that the correlation-distance function should model 

a smoother decrease of the correlation coefficients at small dis­

tances . A possible correlation-distance function could be the mix­

ture of two exponential functions, r(h)=pQexp(-0 h)+(l-p.)exp(-92h) 

(see Rhenals-Figueredo et al., 1974; p. 133), to be referred to in 

the text as double exponential correlation-distance function. 

This double exponential correlation-distance function does ne c 

provide a much better fit (residual standard deviation for the 

summer season is 0.025, as against 0.027 for the linear model), 

but does result in higher ARF_. estimates for smaller areas. The 

resulting ARF_. values corresponding to a 1.78-year return period 

have been plotted in Figure 3.19, 3.20, and 3.21. 

These ARF_. values have also been plotted for a return period cor­

responding to a daily rainfall depth of 40 mm in summer in Figure 

3.23. For small areas they differ less from those of Kraijenhoff 

(1963) than the estimates derived under the assumption of a linear 

correlation-distance function. The higher values of ARF for all 

areal sizes in Kraijenhoff (19.63) may be due to the fact that areal 

rainfall was determined by the isohyet method, which implies an­

other way of smoothing. Moreover, his data covered the period 1932-

1956 whereas the present study is based on 1951-1979 data. Also, 

areal rainfall was considered for circular areas of 10, 50, 100, 
2 

250, and 500 km , centred around 30 rainfall stations evenly 

distributed throughout the Netherlands. In the present study, three 
2 

rectangular areas of 1000 km have been considered. 
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When comparing estimates of ARF_4 for different seasons and return 

periods, Table 3.7 and Figure 3.20 show, in conjuncton with Table 

3.13, that ARF„. does depend on season and return period. Winter 

values of ARF„4, however, appear to be independent of return period. 

Table 3.15 shows that annual maxima of both point and areal rain­

fall tend to occur in summer, and, averaged over the three areas, 

the maximum areal rainfall occurs in winter in only 33% of all 

years, and maxima of point and areal rainfall occur on the same 

day in 49% of all years. Although winter maxima are generally 

smaller than summer maxima. Figure 3.24 shows that if the annual 

maximum occurs in the winter, such maxima are not necessarily small. 

The differences shown in Figure 3.24 between the three areas may be 

explained by the fact that areas 1 and 2 are near the coast and 

area 3 is further inland and somewhat hilly. 

Table 3.15. Seasonal distribution (%) of annual maxima of daily 

point rainfall, given the season of occurrence of the areal maximum 

for the three areas 

Maximum of 

areal rainfall 

Maximum of 

point rainfall 

Area 

Summer Summer 

Winter 

89 

11 

89 

11 

90 

10 

Winter Winter 

Summer 

64 

36 

67 

33 

53 

47 

3.4. ARF FOR HOURLY RAINFALL 

Estimates of ARF̂ ^ are only available for the USA (USWB, 1957-1960) 

and the United Kingdom (NERC, 1975). It is not surprising that few 

studies have been carried out on ARF.. because in comparison with 

ARF_4, methods to estimate ARF1 require data from dense rainfall 

measuring networks. Few such networks exist. In the Netherlands 

during the period October 1969 to October 1974, three rainfall 

recorders were in operation in the Hupselse Beek experimental 
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2 
catchment area (5 km ). In the present study only the first 

four years of record have been used. With so few data, ARF. can 

only be estimated from the marginal distribution of hourly point 

rainfall, together with additional data from sources outside the 

network. The De Bilt series, 1906-1982, were used to obtain both 

the marginal distribution of hourly point rainfall and the distri­

bution of threshold exceedances, and the Soesterberg series, 1974-

1982, for additional data on the correlation-distance function. 

In this section, consideration is given to whether the pdf of areal 

rainfall can be obtained from the pdf of point rainfall by using 

Equations 3.29a and 3.29b which relate the first two moments of 

areal and point rainfall (Section 3.4.1). In Section 3.4.2, ARF. 

is estimated and consideration is given to whether estimates of 

ARF1 for the Netherlands differ from those for other countries, 

and whether ARF calculated from the marginal distributions of 

rainfall varies with duration of rainfall at fixed return period 

and areal size. 

3.4.1. The distribution of hourly areal rainfall 

In order to investigate whether the pdf of hourly areal rainfall 

can be obtained from the pdf of hourly point rainfall, firstly the 

edf of hourly point rainfall was obtained by combining the records 

of the three rainfall stations in the Hupselse Beek catchment area. 

To the edf, a gamma distribution function according to Equation 

3.33 was fitted, using the procedure set out in Section 3.3.2. As 

the recorders in the Hupselse Beek catchment area measure rainfall 

in 0.12 mm units, e in Equation 3.35 was taken to be 0.18 mm. Then, 

the relative error because of the approximation in Equation 3.36 

is about 0.01%. The ML estimates v* and K* of the parameters in 

Equation 3.33 are given in Table 3.16. 

The edf of areal rainfall, and also the edf of point rainfall were 

determined from only those hourly periods for which no data were 

missing. Areal rainfall was estimated by averaging point rainfalls. 

As the three rainfall stations are evenly distributed throughout 

the area so that the distance between stations is about the same 
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(1100 to 1700 m), all stations will receive about the same kriging 

weights, irrespective of the semi-variogram (but with equal weights 

in case of a pure nugget effect). Furthermore, a reliable estimate 

of the semi-variogram seems impossible with only three pairs of 

sample points, all about the same distance apart. The factor f in 

Equation 3.29b, relating the variance of areal and point rainfall, 

was estimated as the mean of the correlation coefficients between 

hourly rainfalls at the three stations. Table 3.16 gives f in 

Equation 3.29b and the resulting ML estimates v* and k* of the pa­

rameters in the pdf of hourly rainfall. Realizations D „ o f the 
c J max 

Kolmogorov Smirnov test statistic are also shown in Table 3.16. 

Figure 3.25 shows, together with Table 3.16, that the fit of the 

gamma distribution is satisfactory. 

Table 3.16. Estimates v*(-) and X*(mm~ ) of the parameters in 
A A 

the pdf of hourly areal rainfall, obtained from the ML point rain­

fall parameter estimates v*(-) and Ä*(mm~ ), and from the variance 

reduction factor f; Kolmogorov Smirnov test statistic D to 

assess the fit of the pdf of areal rainfall 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

*% 

0.0694 

0.0574 

0.0671 

0.0480 

0.0329 

0.0262 

0.0304 

0.0162 

0.0284 

0.0173 

0.0660 

0.0529 

*S 
1.240 

1.132 

0.983 

0.486 

0.400 

0.315 

0.293 

0.293 

0.389 

0.776 

0.719 

1.223 

f 

0.841 

0.898 

0.924 

0.922 

0.905 

0.889 

0.879 

0.823 

0.859 

0.904 

0.945 

0.927 

*i 
0.0825 

0.0639 

0.0727 

0.0521 

0.0363 

0.0295 

0.0346 

0.0197 

0.0331 

0.0191 

0.0699 

0.0571 

*Ä 
1.474 

1.261 

1.064 

0.527 

0.442 

0.355 

0.333 

0.356 

0.453 

0.859 

0.761 

1.319 

D 
max 

0.006 

0.004 

0.006 

0.010 

0.005 

0.007 

0.003 

0.006 

0.008 

0.002 

0.012 

0.006 

3.4.2. Estimates of ARF^ 

The parameters v and A. of the pdf of hourly point rainfall were 

estimated from the hourly rainfall records for De Bilt. In the ML 
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estimation procedure, e in Equation 3.35 was set at 0.45 mm. The 

ML estimates v* and K* are given in Table 3.17. A linear correla­

tion-distance function according to Equation 3.38 was fitted to 

the three correlation coefficients for the Hupselse Beek catchment 

and the correlation coefficient between hourly rainfalls at De Bilt 

and Soesterberg. The OLS estimates of p. and 0 in Equation 3.38 are 

also presented in Table 3.17, and also the ML estimates qn and ß 

of the exponential distribution function fitted to POT series of 

hourly rainfall extracted from the De Bilt records. 

Table 3.17. Parameter values used for estimating ARF.. ; realiza­

tions of the lack of fit statistic T to the exponential distribu­

tion 

Month 

Jan. 

Feb. 

March 

April 

May 

June 

July 

Aug. 

Sept. 

Oct. 

Nov. 

Dec. 

Summer 

Winter 

Year 

(-) 

.0667 

.0534 

.0519 

.0442 

.0324 

.0315 

.0321 

.0331 

.0390 

.0494 

.0650 

.0714 

.0332 

.0571 

.0452 

(mm ) 

.700 

.688 

.697 

.591 

.421 

.334 

.306 

.286 

.401 

.486 

.597 

.650 

.340 

.621 

.483 

Po 
(-) 

.873 

.940 

.946 

.970 

.932 

.978 

.940 

.883 

.914 

.937 

1.000 

.960 

.937 

.950 

.937 

0 

(km-1) 

-.022 

-.031 

-.015 

-.034 

-.018 

-.064 

-.043 

-.042 

-.038 

-.022 

-.042 

-.024 

-.042 

-.027 

-.035 

(mm) 

3.0 

2.8 

2.9 

3.2 

4.6 

5.8 

6.9 

6.8 

5.1 

4.2 

3.7 

3.3 

9.2 

4.9 

9.7 

ß 
(mm) 

1.0 

1.1 

1.0 

1.5 

3.1 

4.6 

3.7 

5.1 

2.4 

2.0 

1.3 

1.1 

4.6 

1.6 

4.3 

T 

(-) 

138.3 

134.6 

140.8 

125.9 

105.4°° 

92.6°° 

139.0 

168.0 

161.2 

98.9°° 

149.1 

169.5 

261.8° 

214.3°° 

249.1" 

Indicates values inside the critical region for a = 0.10. 

Indicates values inside the critical region for a = 0.05. 
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The mean number of threshold exceedances is one for each month, 

and two for each year or season, and peaks are separated by an 

interval of at least ten hours, as indicated in Section 2.5.3. The 

validity of the assumption of exponentially distributed peaks has 

been assessed by the test statistic T according to Equation 2.8. 

Table 3.17 also gives the realizations T. The winter, summer, and 

year series show poor fit. This could have been improved, had only 

one exceedance for each year been allowed which would have yielded 

for the winter series only a T critical at the 10% level. However, 

as interest is in low return period events, these results are ac­

cepted. Figure 3.26 shows the POT series of hourly point rainfall 

and also the fitted exponential distributions for January, August, 

summer, winter, and the complete year. 

2 
ARF1 has been estimated for areas of 10, 50, 100, and 250 km , and 

return periods of 1, 1.78, 5, and 10 years. Figure 3.27 shows ARFX 

for January and August as a function of area and return period, and 

Figure 3.28 shows ARFn for winter and summer. ARF.. and ARF». for 

the complete year are shown in Figure 3.21. ARFs corresponding to a 

0.5-year return period are shown in this figure, but ARF.. values 

corresponding to a 5- and 10-year return period are not shown, 

because these require the extreme right tail of the fitted distri­

butions, which is not accurately known. 

Figure 3.21 shows that ARF increases with rainfall duration. The 

ARF.. estimates in the present study for the Netherlands are some­

what lower than those reported in USWB (1957-1960) and NERC (1975) 

(see Table 3.18). Apart from different estimation methods, both 

the USWB (1957-1960) and NERC (1975) studies were based on more 

data obtained from dense rainfall measuring networks. Both USWB 

(1957-1960) and Bell (1976) show that there is a large variation 

in ARFj values derived from different areas. Lack of data rather 

than climatological differences could be the reason of the differ­

ences in ARF values shown in Table 3.18. 
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Table 3.18. Comparison of ARF. estimates in the present study for 

the Netherlands with those from USWB (1957-1960) for the USA and 

NERC (1975) for the United Kingdom 

Area ARF1 

(km2) 
Present study USWB (1957-1960) NERC (1975) 

100 0.76 0.83 0.79 

250 0.66 0.73 0.72 

3.5. STORM-CENTRED AREAL REDUCTION FACTOR SRF 

The storm-centred areal reduction factor SRF which is similar to 

the statistical areal reduction factor ARF is defined as (Equation 

3.4) 

where 

SRF = xA/x , A' max 

x : local maximum point rainfall over a certain time max ^ 
period (e.g., one specific day) 

x : simultaneous areal rainfall over area A bounded by 

an isohyet. 

SRF is used in the derivation of statistical estimates of probable 

maximum precipitation: theoretically, the greatest depth of pre­

cipitation that can occur in a particular drainage basin for a par­

ticular duration in a particular season. It may also be of use in 

simulation studies. But, as pointed out by Holland (1967), the re­

quirement to develop a relationship between point and areal rain­

fall is "... in the engineering context the need to match frequen­

cies or periods of return (p. 194)." 

While ARF relates point and areal rainfall of equal exceedance 

probability and without any assumption of simultaneousness, SRF 

relates point and areal rainfall over the same time span and con­

sequently with almost certainly different exceedance probabilities. 

ARF intrinsically refers to fixed areas, whereas SRF is quite often 

determined from isohyet patterns occurring within a larger area 

(referred to as moving target area SRF). 



134 

When a fixed area is considered, a densely-gauged experimental 

catchment may be selected. This may lead to accurate estimates of 

SRF, but also has the disadvantage that very often the point rain­

fall maximum occurs near the edge of the catchment, or even outside 

it, so that the presumed maximum is not the maximum at all. As SRF 

is often derived under the assumption of circular isohyets, it may 

be cumbersome both to verify this assumption, and to estimate x , 

when a fixed area is used. In principle, however, whether a moving 

target area or a fixed area is used is immaterial, but the possi­

bility with a fixed area that the true maximum is not recognized 

may have the consequence that different estimates of SRF are ob­

tained. 

In general, SRF is equal to or less than ARF, see also Figure 3.29 

(from Bell, 1976). The smaller the area and the shorter the period 

during which rainfall totals are considered (for example, SRF and 

ARF values for a particular month instead of the complete year), 

the closer the values of SRF and ARF will be. By extending both the 

period and the area, the probability of non-simultaneousness of 

point and areal maxima will increase. This will generally lead to 

ARF values which are high compared to SRF values, but this depends 

also on the criteria according to which the days are selected for 

estimating SRF. 

According to Eagleson (1970), the difference x -x in general 
III ci X A 

(i) increases with area; 

(ii) decreases with total rainfall depth (which causes an increase 

of the coefficient of variation with decrease of total rain­

fall depth (Figure 3.6); 

(iii) decreases with duration; 

(iv) is greater for convective and orographic precipitation than for 

cyclonic precipitation. 

Therefore, the ratio SRF of x and x will generally show oppo-
A max 

site behaviour. 

An insight into the dependence of SRF on A can be obtained from 

depth-area curves, "Curves showing, for a given duration, the rela­

tion of maximum average depth to size of area within a storm or 

storms" (USWB, 1947; p. 252), or from minimum-rainfall curves, 

which are similar to the depth-area curves, "... except that ordi-
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nates represent minimum instead of average depths within the areas" 

(USWB, 1947; p. 297). The equation representing a minimum-rainfall 

curve can be written so as to represent a depth-area curve. Such an 

equation gives x. as a function of A. When the equation is divided 

by x , the result is SRF as a function of A max Table 3.19 contains 

expressions for SRF derived from published equations representing 

depth-area and minimum-rainfall curves. 

Table 3.19. Expressions for the storm-centred areal reduction factor SRF, deduced from 

equations representing depth-area and minimum-rainfall curves 

Investigator SRF Duration General remarks 

Horton (1924) 1-OA'4+0.5C(2A-

Huff and Stout 1-oA^ 

(1952) 

Chow (1953, 1954) l-aA^+ßA-... 

Boyer (1957) l -aA l 5+0.41a 2A-

Kra i j enho f f (1958) 1-oA+ßA - . . . 

3 /5 Woolh i se r and 1-aA 

Schwalen (1959) 

Court (1961) l-aA+2/3a2A2-

Smith (1974) 1-aA 

2 Nicks and Igo 1-oA+oßA 

(1980) 

1 one day 

30 min-18 

hours 

not specified 

.2 6-48 hours 

3 one day 

one day 

4 not specified 

one day 

s up to 24 

hours 

heavy rainfall in the eastern USA; 

moving target area 

small, densely-gauged networks in 

Illinois (USA); thunderstorm rainfall 

applied to data from one of Huff and 

Stout's networks 

great storms over the central plains 

of the USA; moving target area 

heavy summer rainfall in the 

Netherlands; moving target area 

thunderstorm rainfall over a small, 

densely-gauged network in Arizona (USA) 

applied to convective rainfall of less 

than two hours duration over a small, 

densely-gauged network in southern 

Arizona (USA), by Fogel and Duckstein 

(1969) 

thunderstorm rainfall in southern 

Arizona (USA) 
2 

large (3885 km ), densely-gauged 

network in Oklahoma (USA); verified 

with other USA rainfall data 

Taylor expansion of SRF = exp(-aAp), with ß s 0.50. 

This expression follows from Boyer's SRF = 

j^|f{l-exp(-1.09(A/a1)^)(1.09(A/a')^+l)}, after a Taylor expan­

sion, followed by some simplifications, as noted by Chow (1958). 

Taylor expansion of SRF = 
X^-{l-exp(-A/a')? + (1~^')P'{l-exp(-A/ß')} • 
Taylor expansion of SRF = ̂ -{l-exp(-A/a')}. 

Their original expression is approximated as follows 

SRF = l-( 
,Y' 

a'+ß'A 
a ' 

1-a 
1+ßA 

= l-aA(l-ßA) 

1-aA+aßA ; D denotes the duration of rainfall. 
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None of the expressions in Table 3.19, except for that of Nicks and 

Igo (1980) which has duration as an independent variable, contains 

explicitly the following above-mentioned factors: total rainfall 

depth (ii); duration (Hi); and the nature of the precipitation 

(iv). Thus, they should be used only for those circumstances under 

which they have been derived. 

Many approximations have been used in Table 3.19, notably the 

Taylor expansions mentioned in the footnotes, and the replacement 

by x of all such quantities as the measured x , the 'true', max max 
that is interpolated, x , and the maximum areal rainfall at the ^ max 
eye of the storm over ten square miles. Close examination of these 

studies, and similar approximations used by Court (1961) indicate 

that the approximations in Table 3.19 are acceptable. Table 3.19 

shows that, basically, there are two expressions for SRF 

SRF = l-aA4^..., (3.44a) 

and 

SRF = l-aA+... . (3.44b) 

A general relationship between ARF and SRF can only be derived on 

the basis of many assumptions. Firstly, an equation for the depth-

area curve needs to be postulated, for example, one of the equa­

tions referred to in Table 3.19. As the coefficient a in Table 3.19 

may depend on x , this dependence also needs to be postulated. 

SRF can then be estimated, and for certain depth-area relationships, 

the correlation-distance function can be obtained from the work of 

Stol (1981a,b,c), on the assumptions that this relationship is the 

same for all storms and that storms occur randomly and are uniform­

ly distributed in space, with at most one storm occurring during 

one interval of precipitation measurement (for example, one day). 

Stol (1981a,b,c) has obtained the correlation-distance function 

as a space average over straight lines passing through the loca­

tion of maximum rainfall. By spatially averaging the correlation-

distance function, one finds f=r(V;V). Then, from the pdf of point 

rainfall, the pdf of areal rainfall can be obtained, and ARF esti­

mated. In such a comparison, SRF is compared with ARF corresponding 

to a certain return period. 
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A more general approach uses only the pdf of point rainfall, the 

pdf of maximum rainfall x , and the correlation-distance function c max 
as estimated, without assumptions on the depth-area relationship. 

Then, as seen before, ARF is determined completely, and SRF can 

be found as follows (Smith, 1974). A minimum-rainfall relationship 

gives the minimum rainfall x ( h ) along an isohyet at distance h 

from the rainfall maximum as a function of A. Its inverse gives 

A as a function of x (h). A dimensionless inverse may be written 

as AA(x*), which gives the dimensionless area AÄ=A/A. . (see 

Figure 3.30) as a function of the dimensionless rainfall depth 

x*=x (h)/x . Note that A.(0)=1, and A.(1)=0. As 0<x„.<l, l-A^x*) 

can be seen as the cdf of x^. 

Let the random variable x represent point rainfall depth at point 

S within an area, then the probability of the event {x<d} can be 

expressed as (see Figure 3.30) 

P{xs<d} = P{xmaxid} + P[{xmax>d}n{S:Xs<d}]. (3.45) 

The last event in Equation 3.45 indicates the possibility that, 

although x >d, S is so remote from the rainfall maximum as to 3 max 

cause x <d. Because l-AÄ(xÄ) is a cdf 

P{S:Xs<d} = 1-A*(d/Xmax). (3.46) 

Combining Equations 3.45 and 3.46 yields 

P{xs<d} = P{xmax£d} + ;;=d[l-A*(d/y)]dP{xmax<d}, 

P{x <d} = l-r,AÄ(d/y)p (y)dy, (3.47) 
s y a xmax 

where 

Px(-) : Pdf of x. 

According to Equation 3.47, the dimensionless depth-area relation­

ship A^(xA) can be determined from the pdfs of centre depth and 

point rainfall, and SRF can be determined from A„.(xÄ). 
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Also similar to ARF is the epicentre coefficient (Kraijenhoff, 

1963; Galea et al., 1983), the ratio of the maximum point rainfall 

over an area for a given return period and duration, and the quan-

tile estimate of point rainfall for that return period and duration. 

The epicentre coefficient is always at least one, and increases 

with area and return period, and decreases with duration. Estimates 

of epicentre coefficients also depend heavily on network density. 

Kraijenhoff (1963) related the minimum and maximum point rainfall 

depth to return period and to the point rainfall depth with the 

same return period for summer days with measured rainfall at a 

particular rainfall station in excess of 40 mm (see Figure 3.31). 

From this figure, epicentre coefficients and a related quantity 

with regard to minimum rainfall can easily be estimated. Because 

of the low density of the rainfall measuring network, estimates of 

the epicentre coefficients from Figure 3.31 will be rather lower 

than those from Galea et al. (1983) for France. For daily summer 
2 

rainfall, an area of 50 km , and a 10-year return period, according 

to Figure 3.31 the epicentre coefficient is 1.14, but according to 

Galea et al. (their Figure 3), it is 1.56. 
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Fig. 3.1. Location of rainfall stations and areas considered 
in Chapter 3. 
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Fig. 3.2. Thiessen polygons for the areas 
1,2 and 3 in Figure 3.1. 
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(006041 

w:i23 number, and the Thiessen 
s : 15.0 weights are given in brackets. 

w: mean winter monthly max­
imum (mm) 

s : mean summer monthly 
maxium (mm). 
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Fig. 3.20. ARF 2 4 for summer and winter as a function of areal size A and 

return period T. 
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Fig. 3.22. Estimates of ARF24(x) according to NERC (1975) for areas 1,2 and 3, 
and the USWB (1957-1960) and NERC (1975) estimates of ARF24. 
(corresponding to a 1.78-year return period for peak exceedances ). 
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F ig . 3.27. ARF, for January and August as a function of 
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Fig. a29. Comparison of A R F 2 4 and SRF values for the USA ( f rom Bett, 1976). 
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4. SUMMARY AND CONCLUSIONS 

Rainfall data for the Netherlands have been used in this study to 

investigate aspects of heterogeneity of rainfall, in particular 

local differences in rainfall levels, time trends in rainfall, and 

local differences in rainfall trend. The possible effect of ur­

banization and industrialization on the distribution of rainfall 

has also been studied. Consideration has been given to whether lo­

cal differences in rainfall justify a partition of the Netherlands 

into regions. Finally, the degree of areal reduction which 

is possible in hydrological design because of variation of rain­

fall in time and space has been investigated. 

A statistical analysis of these aspects is useful because they 

frequently appear in the hydrological literature. The statistical 

analysis presented in this thesis uses hydrological concepts, such 

as the statistical areal reduction factor, and attention is focused 

on moderately low return period events. Only rainfall levels and 

trends in rainfall have been investigated and not more complicated 

aspects, such as, trends in the variance of rainfall. Further, rain­

fall variations in time and space have been analysed separately. 

Estimates of the levels of the rainfall characteristics used in 

the investigation of homogeneity in time and space are given in 

Section 2.2. These are annual frequencies of exceedance during 

the summer or the winter period of a certain threshold value and 

the total annual rainfall (Tables 2.1 and 2.2). The expected daily 

rainfall has also been estimated for return periods in excess of 

half a year (Table 2.4, Figure 2.2). Time trends in rainfall aver­

aged over the Netherlands have been estimated. For the period 

1951-1979, the time trend is negative for the summer period; and 

for the period 1906-1979, the time trend is positive for the win­

ter period (Table 2.5). Time trends in rainfall series were found 

to be related to the occurrence of circulation types (Figure 2.4). 

In Section 2.4 local differences in these rainfall characteristics 

have been investigated using the kriging method that gives the 
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best linear unbiased predictor. As may be expected, there are local 

differences, both in rainfall level (Figure 2.7), and in time 

trends in the rainfall series which were reduced by the annual 

mean (Figure 2.9). Many of the rainfall series investigated exhib­

it inhomogeneities (Table 2.7). Two possible causes of these inho-

mogeneities, changes in the frequency of occurrence of circulation 

types and anthropogenic activities, such as urbanization and in­

dustrialization, are discussed in Section 2.6. 

A possible partition of the Netherlands into regions is investi­

gated by using rainfall data for the period 1951-1979. Earlier 

studies on the geographical distribution of certain rainfall char­

acteristics in the Netherlands are presented in Section 2.5.1. The 

model to test the statistical significance of the partitions used 

in this study is presented in Section 2.5.2. 

One of the proposed partitions, an a posteriori partition based on 

mean annual rainfall (Figure 2.11D), is in agreement with the re­

sulting spatial patterns of the levels of the rainfall character­

istics considered (Table 2.10). Also, the level of hourly rain­

fall was found to be related to mean annual rainfall (Figure 2.18A), 

but, with a simple urban runoff model with a time-step of one hour, 

no differences were found between the number and quantity of over­

flow for 12 rainfall stations, classified according to this parti­

tion (Section 2.5.3). 

These partitions into regions are not satisfactory for rainfall 

trends, except for an a posteriori partition based on time trends 

for the period 1951-1979 (Figure 2.12). But both the geographical 

distribution of trends and the degree of trend in some long-term 

rainfall records are not in agreement with this partition. Appar­

ently, the changes in rainfall pattern are recent. Because the 

partition is based on trends in reduced rainfall series (reduced 

by the annual mean), the changes are also local. Thus on the 

basis of data used in this study, it was not possible to devise 

a satisfactory partition of the Netherlands for rainfall trends. 

With regard to rainfall level it is suffice to assume that the de­

sign rainfall at a given location is proportionate to the mean sum-
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mer or winter rainfall; therefore, a partition of the Netherlands 

into regions is not necessary. This has already been suggested in 

Buishand and Velds (1980). 

The influence of urbanization and industrialization on precipita­

tion (urban effects) has been investigated by using the method of 

Lowry (1977), which allows for changes in frequency of occurrence 

of circulation types. In Section 2.6, this method is discussed and 

the findings of other studies on the occurrence, causes, and magni­

tude of urban effects are presented. In Section 2.6.1, the occur­

rence of urban effects is discussed, for instance, on the basis of 

changes in mean daily rainfall for 32 rainfall stations between the 

industrialized and urbanized period (1956-1979) and the non-indus-

triai..zed period (1932-1955), with a stratification of days accord­

ing to season and circulation type (according to Hess, 1977), see 

Figure 2.22. Although the results were sometimes inconclusive and 

not always in accordance with the hypothesis of an urban effect, 

there are indications of urban effects for the zonal circulation 

type and for three of the meridional circulation types (Tables 2.16 

and 2.17; Figure 2.22). Moderate rainfalls were also found to be 

affected (Table 2.17, where a threshold value for daily rainfall of 

15 mm has been considered), and urban effects in the summer period 

increase with rainfall depth. 

In Chapter 3 consideration is given to the degree of areal reduc­

tion which is possible in hydrological design because of varia­

tions of rainfall in time and space. Use has been made of the 

IRF-0 kriging theory, and semi-variograms were estimated by the 

multi-realization approach. The applicability of the IRF-0 theory 

to predict the mean areal rainfall is discussed in Section 3.2.1. 

Contrary to what had been expected, in a substantial number of 

cases the estimated order of the intrinsic random function dif­

fers from zero (Tabel 3.1). Further research is needed on the 

structure identification, both on the statistical aspects (esti­

mation of the order k of the intrinsic random function and of the 

coefficients of the generalized covariance model) and on the physi­

cal aspects (semi-variogram or generalized covariance model to be 
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expected under certain assumptions regarding rainfall). The varia­

tion in semi-variogram estimates for individual rainfall events 

was found to be large (Figure 3.3). In Section 3.2.2, the kriging 

predictor of areal rainfall is compared with the more commonly 

used arithmetic mean and Thiessen predictor. All three predictors 

yield similar results (Table 3.5), but the kriging predictor is 

more efficient (Table 3.4). 

Methods to estimate the statistical areal reduction factor (ARF) 

are presented in Section 3.3.1. With the methods proposed in 

USWB (1957-1960), NERC (1975), Bell (1976), and Rodriguez-Iturbe 

and Mejia (1974) and Buishand (1977c), the areal reduction factor 

for daily rainfall (ARF_.) has been estimated for three areas each 
2 of about 1000 km in the Netherlands, for the summer period, the 

winter period, and the complete year. In Section 3.3.3, the varian­

ce of ARF_ is estimated. All four estimators of ARF_4 were found 

to produce similar results (Tabel 3.12), and the three areas consid­

ered do not clearly differ with respect to ARF-.. These estimates 

of ARF_ are somewhat lower than those of USWB (1957-1960) for 

the United States and those of NERC (1975) for the United Kingdom 

(Figure 3.22), and they are in reasonable agreement with earlier 

estimates of ARF_ for the Netherlands (Table 3.14). For small 

areas, ARF„„ is underestimated by the method which uses the mar-

ginal distribution of point rainfall and the fitted correlation-

distance function. This is also evidenced by the higher ARF_„ 
Z4 

values in Kraijenhoff (1963). ARF-. depends heavily on season and 

return period (Table 3.7). Averaged over the three areas, the maxi­

mum areal rainfall occurs in the winter period in 33% of the years 

considered. 

In Section 3.4 ARF for hourly rainfall (ARF ) is estimated. As a 

function of areal size and return period, ARF. has been estimated 

for the summer and the winter period (Figure 3.28) and for the 

complete year (Figure 3.21). These ARF.. estimates are somewhat 

lower than those of USWB (1957-1960) and NERC (1975) (Table 3.18), 

probably because few hourly rainfall data were available for this 

study. Especially the correlation-distance function for hourly 

rainfalls could not be estimated very satisfactorily. 
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The storm-centred areal reduction factor (SRF) is discussed in 

Section 3.5. Models for SRF based on a literature survey of 

minimum-rainfall curves are presented in Table 3.19. For equal 

areal size, SRF values from network data are generally lower than 

ARF values (Figure 3.29). The smaller the areal size and the short­

er the period for which rainfall totals are considered, the closer 

SRF and ARF values. 

In this study, rainfall variations in time and space have been 

analysed separately. Because of this simplification of the pro­

blem, the results presented in Chapter 3 may be of less relevance 

to practical design issues related to areal rainfall. Areal re­

duction is partly caused by spatial differences in rainfall pat­

terns in time. This aspect of areal reduction is not taken into 

account, when time aggregates of rainfall over a measurement in­

terval are considered, and rainfall depths over consecutive inter­

vals are assumed to be independent. For this reason, the degree of 

areal reduction applicable to regional transport systems of sewer­

age water cannot be determined by using the statistical areal re­

duction factor. 

When rainfall variations in time and space are analysed as being 

interdependent, the need for knowledge and understanding of mete­

orology increases because the rainfall events described have first 

to be classified. Further, instead of the univariate statistical 

methods as used almost exclusively in this study, multivariate 

methods are required. However, at present, data from a dense net­

work of rainfall recorders, necessary for such an investigation, 

are not available for the Netherlands. 

Further research on the causes of homogeneities in rainfall series 

is necessary. Although this study of homogeneity has been restricted 

to rainfall records of good and even quality, many rainfall series 

are statistically inhomogeneous, and local differences in trend 

often seem inexplicable. To explain this, meteorological knowledge 

and knowledge of the station history of rainfall series used is 

essential. 



SAMENVATTING EN CONCLUSIES 

In deze studie zijn met behulp van Nederlandse neerslaggegevens 

aspecten van de heterogeniteit van de neerslag onderzocht, met 

name plaatselijke verschillen in het niveau van de neerslag, 

trends in het neerslagverloop en plaatselijke verschillen in 

trend. De mogelijke invloed van verstedelijking en industriali­

satie op de neerslagverdeling is eveneens bestudeerd. Aandacht is 

besteed aan de vraag of plaatselijke verschillen in neerslag een 

opsplitsing van Nederland in deelgebieden rechtvaardigen. Tenslot­

te is onderzocht de mate waarin gebiedsreductie mogelijk is in 

sommige ontwerpen als gevolg van de variatie van de neerslag naar 

tijd en plaats. 

De bovenvermelde aspecten komen geregeld ter sprake in de hydrolo­

gische literatuur, hetgeen een statistische behandeling ervan zin­

vol maakt. Deze statistische behandeling maakt gebruik van hydro­

logische begrippen zoals de statistische gebiedsreductiefactor, 

en vooral gebeurtenissen met een betrekkelijk korte herhalings­

tijd zijn beschouwd. Alleen het niveau van de neerslag en trends 

daarin zijn onderzocht, en niet gecompliceerdere aspecten, zoals 

trends in de variantie van de neerslag. Ook zijn de variaties naar 

tijd en plaats steeds afzonderlijk behandeld. 

In Paragraaf 2.2 is het niveau geschat van de neerslagkenmerken 

waarvan de homogeniteit naar tijd en plaats is onderzocht: jaar­

lijkse aantallen dagneerslagen groter dan een zekere drempelwaar­

de in de zomer- of winterperiode, en de jaarneerslag (Tabellen 2.1 

en 2.2). Ook is voor herhalingstijden langer dan een half jaar de 

verwachte dagneerslagsom geschat (Tabel 2.4, Figuur 2.2). Trends 

in het over Nederland gemiddelde neerslagverloop zijn bepaald. 

Voor de periode 1951-1979 is de trend voor de zomerperiode nega­

tief; voor de periode 1906-1979 is de trend voor de winterperiode 

positief (Tabel 2.5). Trends in het verloop van neerslagkenmerken 

blijken gerelateerd aan het optreden van circulatietypen (Figuur 

2.4). 
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In Paragraaf 2.4 zijn plaatselijke verschillen in deze neerslag-

kenmerken onderzocht, waarbij gebruik is gemaakt van de kriging 

methode, ter verkrijging van de beste lineaire zuivere voorspeller. 

Zoals te verwachten is, zijn er plaatselijke verschillen, zowel in 

het niveau van de neerslag (Figuur 2.7), als in trends in ver-

schilreeksen (Figuur 2.9); deze verschilreeksen ontstaan door af­

trekken van het jaargemiddelde. Veel van de onderzochte neerslag­

reeksen blijken statistisch niet homogeen te zijn (Tabel 2.7). 

Twee mogelijke verklaringen van de geconstateerde afwijkingen van 

homogeniteit, veranderingen in de frequentie van voorkomen van 

circulatietypen en antropogene activiteiten zoals verstedelijking 

en industrialisatie, zijn onderzocht in Paragraaf 2.6. 

Een mogelijke opdeling van Nederland in deelgebieden is onderzocht 

met behulp van neerslaggegevens voor de periode 1951-1979. Eerder 

onderzoek naar de geografische verdeling van bepaalde neerslagken-

merken in Nederland is vermeld in Paragraaf 2.5.1. Het hier ge­

bruikte toetsingsmodel is vermeld in Paragraaf 2.5.2. 

Een van de voorgestelde gebiedsindelingen, een a posteriori inde­

ling gebaseerd op gemiddelde jaarneerslag (Figuur 2.11D), is in 

overeenstemming met de ruimtelijke patronen van de niveaus van de 

beschouwde neerslagkenmerken (Tabel 2.10). Ook het niveau van uur-

neerslagsommen blijkt samen te hangen met de gemiddelde jaarneer­

slag (Figuur 2.18A), maar met behulp van een eenvoudig stedelijk 

afvoermodel met een tijdstap van een uur konden geen verschillen 

in aantallen en hoeveelheden van overstorten worden aangetoond 

tussen 12 volgens deze gebiedsindeling geklassificeerde neerslag­

stations (Paragraaf 2.5.3). 

Voor trends in het neerslagverloop voldoen deze gebiedsindelin­

gen niet, behalve een a posteriori indeling gebaseerd op trends 

voor de periode 1951-1979 (Figuur 2.12). Voor enkele langjarige 

reeksen blijken de geografische verdeling van trends en de mate 

van trend echter niet overeen te stemmen met deze gebiedsindeling. 

Blijkbaar gaat het om recente veranderingen in het neerslagpatroon. 

Aangezien de gebiedsindeling gebaseerd is op trends in verschil­

reeksen, gaat het hier om lokale veranderingen. Met behulp van de 
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in deze studie gebruikte gegevens kon de vraag naar een opdeling 

van Nederland in gebieden voor trends in het neerslagverloop dan 

ook niet worden beantwoord. Met betrekking tot het niveau van de 

neerslag is het voldoende om de ontwerpneerslag voor een bepaalde 

plaats evenredig te veronderstellen met de normaalwaarde van de 

seizoensneerslag en hoeft Nederland niet in gebieden te worden op­

gedeeld. Deze suggestie is al gedaan in Buishand en Velds (1980). 

De invloed van verstedelijking en industrialisatie op de neerslag 

(stedelijke effecten) is bestudeerd volgens de in Lowry (1977) ge­

presenteerde methode, waarbij wordt gecorrigeerd voor veranderin­

gen in frequentie van voorkomen van circulatietypen. In Paragraaf 

2.6 is Lowry's methode gepresenteerd, en is verslag gedaan van re­

sultaten van elders verricht onderzoek naar het voorkomen, de oor­

zaken en de omvang van stedelijke effecten. In Paragraaf 2.6.1 is 

het voorkomen van stedelijke effecten nagegaan, onder andere aan 

de hand van de verandering van de gemiddelde dagneerslag voor de 

geïndustrialiseerde en verstedelijkte periode (1956-1979) ten op­

zichte van de niet-geïndustrialiseerde periode (1932-1955) voor 

32 neerslagstations, waarbij onderscheid is gemaakt naar seizoen 

en circulatietype (volgens Hess, 1977), zie Figuur 2.22. Alhoewel 

de resultaten soms onduidelijk zijn en niet altijd in overeenstem­

ming met de hypothese van stedelijke effecten, zijn er voor het 

zonale hoofdcirculatietype en voor drie meridionale circulatie-

typen aanwijzingen voor het bestaan van stedelijke effecten (Ta­

bellen 2.16 en 2.17; Figuur 2.22). Alhoewel de effecten zich ook 

uitstrekken tot matige neerslagen (zie Tabel 2.17, waar is uitge­

gaan van een drempelwaarde voor de dagneerslag van 15 mm), nemen 

gedurende de zomerperiode de stedelijke effecten toe met de neer-

slaghoeveelheid. 

In Hoofdstuk 3 is aandacht geschonken aan de mate waarin gebieds­

reductie mogelijk is in sommige ontwerpen als gevolg van de vari­

atie van de neerslag naar tijd en plaats. Er is gebruik gemaakt 

van de IRF-0 kriging theorie, en semi-variogrammen zijn geschat 

met behulp van de meervoudige-realisatiebenadering. De toepas­

baarheid van de IRF-0 theorie voor het bepalen van gebiedsgemid-
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delden van de neerslag is nagegaan in Paragraaf 3.2.1. In tegen­

stelling tot wat verwacht werd, is in vrij veel van de onderzoch­

te gevallen de geschatte orde van de intrinsieke toevalsfunctie 

ongelijk nul (Tabel 3.1). Het verdient aanbeveling toekomstig on­

derzoek onder andere te richten op deze zogenaamde structuurver­

kenning, zowel op de statistische aspecten (het schatten van de 

orde k van de intrinsieke toevalsfunctie en van de coëfficiënten 

van het gegeneraliseerde covariantiemodel) als op de fysische as­

pecten (het te verwachten semi-variogram of gegeneraliseerd co­

variantiemodel onder zekere veronderstellingen met betrekking tot 

de neerslag). De variatie tussen semi-variogram schattingen voor 

afzonderlijke neerslaggebeurtenisen is groot (zie Figuur 3.3). In 

Paragraaf 3.2.2 is de voorspeller van het gebiedsgemiddelde door 

kriging vergeleken met twee gebruikelijke voorspellers van het 

gebiedsgemiddelde, het rekenkundig gemiddelde en het Thiessen 

gemiddelde. Toepassing van kriging leidt hier niet zozeer tot re­

sultaten die gemiddeld sterk verschillen ten opzichte van de re­

sultaten van andere methoden (Tabel 3.5), maar tot efficiëntere 

voorspellingen (Tabel 3.4). 

Enige schatters van de statistische gebiedsreductiefactor ARF zijn 

gepresenteerd in Paragraaf 3.3.1. Met behulp van de schatters vol­

gens USWB (1957-1960), NERC (1975), Bell (1976) en volgens Rodri-

guez-Iturbe en Mejia (1974) en Buishand (1977c) is in Paragraaf 
2 

3.3.2 voor een drietal gebieden in Nederland van ongeveer 1000 km 

ARF_-, de gebiedsreductiefactor voor dagsommen van de neerslag, 

geschat, zowel voor het gehele jaar, als voor de zomer- en winter­

periode afzonderlijk. In Paragraaf 3.3.3 is de variantie van 

ARF„. geschat. Alle vier genoemde schatters van ARF-. blijken 

praktisch dezelfde resultaten op te leveren (Tabel 3.12), en de 

drie beschouwde gebieden verschillen niet duidelijk met betrek­

king tot ARF . Deze schattingen van ARF zijn iets lager dan de 

schattingen in USWB (1957-1960) voor de Verenigde Staten en in 

NERC (1975) voor het Verenigd Koninkrijk (Figuur 3.22), en stem­

men redelijk overeen met eerdere schattingen van ARF_. voor Neder­

land (Tabel 3.14). Voor kleine gebiedsgrootten onderschat de me­

thode die gebruik maakt van de marginale kansverdeling van punt-

neerslagen en het aangepaste correlatieverloop ARF... Dit blijkt 
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ook uit de hogere ARF waarden in Kraijenhoff (1963). ARF is 

sterk afhankelijk van seizoen en herhalingstijd (Tabel 3.7). Ge­

middeld over de drie gebieden valt in 33% van de jaren het jaar-

maximum van de gebiedsneerslag gedurende de winterperiode. 

In Paragraaf 3.4 is ARF voor uurneerslagen (ARFX) geschat. Als 

functie van de gebiedsgrootte en de herhalingstijd is ARF1 weer­

gegeven in Figuur 3.21 voor het gehele jaar, en in Figuur 3.28 

voor de zomer- en winterperiode. De in deze studie geschatte ARF. 

waarden zijn lager dan die in NERC (1975) en USWB (1957-1960) 

(zie Tabel 3.18), waarschijnlijk als gevolg van de geringe hoeveel­

heid beschikbare uurneerslaggegevens voor deze studie. Vooral het 

ruimtelijk correlatieverloop van uurneerslagen kon niet erg bevre­

digend worden geschat. 

In Paragraaf 3.5 is aandacht besteed aan de bui-gecentreerde ge­

biedsreductiefactor (SRF). Enige modellen voor SRF, gebaseerd op 

in de literatuur vermelde modellen voor het neerslagverloop langs 

een isohyeet, als functie van de afstand van die isohyeet tot het 

neerslagcentrum, zijn vermeld in Tabel 3.19. Op metingen gebaseer­

de SRF waarden blijken in het algemeen lager te zijn dan ARF waar­

den (Figuur 3.29). SRF en ARF liggen dichter bij elkaar naarmate de 

gebiedsgrootte kleiner is en de periode waarbinnen neerslagsommen 

beschouwd worden, korter is. 

In deze studie zijn de variatie naar tijd en de variatie naar 

plaats steeds afzonderlijk behandeld. Vanwege deze vereenvoudiging 

kunnen de resultaten in Hoofdstuk 3 van minder belang zijn voor 

sommige met de gebiedsneerslag samenhangende ontwerpproblemen. 

Gebiedsreductie wordt gedeeltelijk veroorzaakt doordat het neer­

slagverloop in de tijd binnen een neerslaggebeurtenis van plaats 

tot plaats verschilt. Doordat de neerslag wordt gesommeerd over 

een waarnemingsinterval, en doordat er geen samenhang tussen in 

opeenvolgende waarnemingsintervallen gevallen neerslaghoeveelheden 

wordt verondersteld, blijft dit aspect van de gebiedsreductie bui­

ten beschouwing. Hierdoor kan de mogelijke gebiedsreductie voor 

regionale afvalwatertransportsystemen niet met de gebiedsreductie­

factor worden beantwoord. 
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Wanneer de variaties van de neerslag naar tijd en plaats in hun 

onderlinge samenhang worden behandeld, zal de noodzaak om meteoro­

logische kennis toe te passen toenemen, omdat dan neerslaggebeur­

tenissen worden beschreven, die eerst in klassen moeten worden in­

gedeeld. In plaats van de in deze studie bijna uitsluitend toege­

paste statistische methoden voor enkelvoudige kenmerken, zijn dan 

statistische methoden voor meervoudige kenmerken nodig. Op dit 

moment zijn in Nederland de voor een dergelijk onderzoek benodig­

de neerslaggegevens van een dicht netwerk van regenschrijvers 

overigens nog niet beschikbaar. 

Ook nader onderzoek naar de oorzaken van inhomogeniteiten in neer­

slagreeksen is noodzakelijk. Hoewel het hier verrichte homogeni-

teitsonderzoek zich beperkte tot een selectie van neerslagreeksen 

van goede en van gelijkmatige kwaliteit, zijn statistisch gezien 

veel neerslagreeksen inhomogeen, en lijken plaatselijke verschil­

len in trend vaak onverklaarbaar. Meteorologisch inzicht en kennis 

van de stationsgeschiedenis van de beschouwde neerslagstations zijn 

ook daarom eerste vereisten. 



APPENDIX A. DATA AND SUPPLEMENTARY RESULTS OF THE STUDY ON HOMO­

GENEITY 

A.l. DUTCH RAINFALL STATIONS USED IN THE STUDY OF HOMOGENEITY OF 

RAINFALL RECORDS 

In this appendix, the names are given of the rainfall stations in 

the data sets used in the study of homogeneity of rainfall records. 

The KNMI code number is given in brackets after the name of the 

station, and comments on missing data are presented as footnotes 

to the end of the appendix. 

A. 1.1. Data set 140: daily rainfall records (1951-1979) of 140 

KNMI rainfall stations distributed evenly throughout the Netherlands 

(data from KNMI magnetic tape REGEN). 

Hollum (10) 

Schiermonnikoog (12) 

Petten (16) 

Den Burg (17) 

Cocksdorp (19) 

Dokkum (67) 

Lemmer (Tacozijl) (74) 

Oldeholtpade (75) 

Kornwerderzand (76) 

Stavoren (80) 

Gorredijk (82) 

Ezumazijl (84) 

Leeuwarden (85) 

Groningen (139) 

Assen (140) 

Ter Apel1 (144) 

Zoutkamp (145) 

Sappemeer (148) 

Roodeschool (151) 

Winschoten (153) 

Eenrum2 (154) 

Vlagtwedde (156) 

Onnen (158) 

Eelde (161) 

Niekerk (162) 

Marum (166) 

Enkhuizen3 (221) 

Hoorn (222) 

Overveen (225) 

Schagen (228) 

Zaandijk (230) 

Bergen (234) 

Castricum (235) 

Medemblik (236) 

De Haukes (238) 

Den Oever (239) 

Kreileroord (240) 

Marken (246) 

Kolhorn (252) 

Wapenveld (329) 

Zwolle (330) 

Emmen (333) 

Rheezerveen (339) 

Zweelo (341) 

Vroomshoop (345) 

Kraggenburg (346) 

Urk (347) 

Emmeloord (348) 

Nagele (352) 

Blokzijl (353) 

Dedemsvaart (354) 

Kuinre (356) 

Lemmer (Buma)4 (359) 

Groot Ammers5 (434) 

Sassenheim (436) 

Lijnsden (437) 

Hoofddorp (438) 

Oude Wetering (439) 

Scheveningen (440) 

Amsterdam (441) 

Boskoop (442) 

Gouda (443) 

Katwijk aan de Rijn (444) 

Rotterdam (445) 

Delft6 (449) 

Numansdorp (450) 



174 

Bergschenhoek (453) 

Mookhoek7 (455) 

Oostvoorne (456) 

Aalsmeer (458) 

Dordrecht (459) 

Dirksland (462) 

Wassenaar (466) 

Poortugaal8 (467) 

Leiden (469) 

Ouddorp9 (471) 

Nijmegen (539) 

Arnhem10 (541) 

Apeldoorn (543) 

Nijkerk11 (547) 

De Bilt (550) 

Bussum (556) 

Lunteren (558) 

Tiel (562) 

Hulshorst (564) 

Harskamp12 (571) 

Beekbergen (573) 

Oosterbeek (578) 

Veenendaal (579) 

Geldermalsen (584) 

Hilversum (586) 

Almelo (664) 

Enschede (665) 

Winterswijk (666) 

Doetinchem (667) 

Hengelo (668) 

Borculo13 (669) 

Twente (670) 

Gendringen (673) 

Rekken (674) 

Oldenzaal (676) 

Deventer14 (677) 

Almen (678) 

Lettele15 (681) 

Vlissingen (733) 

Sint Kruis (740) 

Terneuzen (742) 

Axel (745) 

Krabbendijke16 (747) 

Vrouwenpolder (751) 

Haamstede17 (752) 

Middelburg (756) 

Sint Annaland (759) 

's-Heerenhoek (760) 

Cadzand (763) 

Tilburg (827) 

Oudenbosch (828) 

Herwijnen (830) 

Bergen op Zoom (832) 

Oosterhout (833) 

Chaam (834) 

Andel (835) 

Ginneken (838) 

Hoogerheide (839) 

Nieuwendijk (840) 

Gilze Rijen (843) 

Capelle18 (844) 

Helmond19 (896) 

Gemert (899) 

Nuland (901) 

Eindhoven (902) 

Megen20 (903) 

Deurne21 (908) 

Dinther (911) 

Leende (912) 

Eersel22 (915) 

Vaals (968) 

Stramproij (970) 

Beek (973) 

Buchten (974) 

A.1.2. Data set D14: long-term daily rainfall records (1906-1979) of 

14 KNMI rainfall stations distributed evenly throughout the Nether­

lands . 

Den Helder/De Kooy (9/25) Heerde (328) Kerkwerve24 (737/743/46 

West Terschelling (11) Denekamp23 (331) Axel (745) 

Groningen (139) Hoofddorp (438) Oudenbosch (828) 

Ter Apel (144) Winterswijk (666) Roermond25 (961) 

Hoorn (222) Vlissingen (733) 

Before 1951, data are from the KNMI magnetic tape CODE2X. For the 

period 1951-1979, data are from the KNMI magnetic tape REGEN. 

Records of the stations West Terschelling, Heerde and Kerkwerve 



175 

showed some gaps for the period 1951-1953. In these cases use was 

made of the C0DE2X tape for supplementary data. 

A.1.3. Data set D32: daily rainfall records (1932-1979) of 32 KNMI 

rainfall stations; 17 in the Rijnmond area, and 15 evenly distri­

buted throughout the rest of the Netherlands (data from magnetic 

tapes C0DE2X and REGEN, and from punch card lists). 

The data set includes all stations listed in Section A.1.2 plus 

the following stations: 

Schellingwoude26 (223) 

Zandvoort27 (229) 

Castricum (235) 

Dwingelo (327) 

Cruquius/Heemstede28 (435) 

Sassenheim (436) 

Oude Wetering (439) Lisse30 (454) 

Amsterdam (441) Mookhoek31 (455) 

Boskoop (442) Oostvoorne (456) 

Delft29 (449) Leiden (469) 

IJsselmonde (451) Zegveld32 (470) 

Bergschenhoek (453) Arnhem33 (541) 

A. 1.4. Data set H12: hourly rainfall records and the period of 

observation for 12 KNMI rainfall stations. 

De Bilt34 (260), 1906-1982 

Den Helder/De Kooy (235), 

1957-1980 

Beek (380), 1957-1980 

Vlissingen (310), 1 May 1958-1980 

Eelde (280), 1957-1980 

Valkenburg (210), 1 May 1972-1980 

Schiphol (240), 1971-1980 

Leeuwarden (270), 1 June 1974-1980 

Rotterdam (344), 1974-1980 

Soesterberg 3 5 (265), 1 June 

1974-1982 

Twente36 (290) 1 June 1974-1980 

Volkel (375), 1 June 1974-1980 

1 Missing: 
2 Missing: 
3 Missing: 
4 Missing: 
5 Missing: 
6 Missing: 
7 Missing: 
8 Missing: 
9 Missing: 

Aug. 1955, supplemented by Vlagtwedde. 

March 1964, supplemented by Ulrum. 

Feb. 1951, supplemented by Hoorn. 

Dec. 1958, supplemented by Lemmer (Tacozijl). 

Jan. 1953, supplemented by Oud Alblas. 

Feb. 1951, supplemented by Naaldwijk. 

Feb. 1953, supplemented by Numansdorp. 

June, July 1951, supplemented by IJsselmonde. 

Feb. 1953, supplemented by Brielle. 
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1 0 Missing: Sept. 1955, supplemented by Arnhem (data from yearbook). 
11 Missing: 11-28 Feb. 1955, supplemented by Lunteren. 
12 Missing: 21-28 Feb. 1955 and Dec. 1955 supplemented by Beekbergen. 
13 Missing: 14 May 1978, supplemented by Borculo (data from year­

book) . 
14 Missing: Dec. 1952, supplemented by Deventer (data from year­

book) . 
15 Missing: Oct. 1952, supplemented by Lettele (data from yearbook). 
16 Missing: 6-28 Feb. 1953, supplemented by Kapelle. 
17 Missing: Feb. 1953, supplemented by Vrouwenpolder. 
18 Missing: Jan., Feb. 1951, supplemented by Oosterhout. 
19 Missing: Aug. 1951, supplemented by Gemert. 
2 0 Missing: Feb. 1960, supplemented by Oss. 
2 1 Missing: July 1969, supplemented by Helmond. 
2 2 Missing: July 1952, supplemented by Eersel (data from yearbook). 
2 3 Missing: 211 days in 1956-1959, supplemented by Weerselo. 
2 4 Missing: Jan., Feb. 1954, supplemented by Noordgouwe. 
2 5 Missing: March, Nov. 1971, supplemented by Beesel. 
2 6 Missing: Jan. 1945, 1-10 March 1947 and Feb. 1957, supplemented 

by Marken. 
2 7 Missing: Aug. 1944, supplemented by Overveen. 
2 8 Missing: Nov., Dec. 1948, Dec. 1973 and Jan. 1974, supplemented 

by Lisse. 
2 9 Missing: Feb. 1951, supplemented by Naaldwijk. 
3 0 Missing: Dec. 1945, supplemented by Sassenheim. 
3 1 Missing: June 1945, supplemented by Oud Beijerland and Feb. 

1953, supplemented by Numansdorp. 
3 2 Missing: April 1945, Feb. 1956, supplemented by Gouda. 
3 3 Missing: Sept. 1955, supplemented by Arnhem (data from yearbook). 
3 4 Missing: Apr. 1945, not supplemented. 
3 5 Missing: 25 April-18 June 1981, not supplemented. 
3 6 Missing: 3-7 Jan. 1976, not supplemented. 
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A.2. PROPERTIES OF THE TRANSFORMATION ACCORDING TO EQUATION 2.9 

APPLIED TO POISSON VARIATES 

Consider a transformation 

x = VX+V(x+l). (A.2.1) 

Its variance stabilizing effect on Poisson variâtes can be easily 

verified by calculating the first and second moment of x by 

E(xK) = f - — — (Vx+V(x+1)), (A.2.2) 

where 

x=0 x! 

2 2 A = Ex; note varx = Ex -(Ex) 

The summation in Equation A.2.2 converges rapidly enough to make 

calculation by computer feasible. For values of A. ranging from 1 

to 50, the variance calculated with Equation A.2.2 ranges from 

0.940 to 1.001. 

As a secondary effect x tends to be normally distributed; this is 

particularly useful because the distribution of the statistics to 

test homogeneity of a series is usually derived for independent 

normally distributed variâtes. In Chapter 2, the independence of 

the variâtes is quite well satisfied. This tendency to a normal 

distribution of x has been verified by comparing the distribution 

functions of 

29 
X2=*s I ( x 2 k _ 1 - x 2 k ) 2 , (A.2.3) 

2 
and X.OQ' by calculating the Kolmogorov Smirnov statistic D, that is 

the maximum absolute value of the difference between the edf (Equa-
2 tion A.2.3) and the cdf of &oq' where the edf has been simulated 

by 1000 samples of 58 independent Poisson variâtes x. each. The 

results for different values of \ are given in Table A.2.1. The 
2 

expectation and variance of x.2g
 a r e 2 9 a n d 58< respectively. 
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Table A.2.1. The Kolmogorov Smirnov statistic D and the first two 
2 

moments of X for different values of A 

A. 

1 

5 

15 

50 

mean 

27.3 

29.1 

28.9 

29.1 

x2 

variance 

38.9 

68.1 

61.4 

61.5 

D 

0.10800 

0.045 

0.027 

0.024 

°° Inside the critical region for a = 0.05. 

Although for A = 1, D is rather large, for all values of A the edf 
2 

of X produces a virtually straight line when plotted on Gauss 

paper (see Figure A.2.1). Thus, for a Poisson variate x, it can be 

assumed that x is normally distributed. 

50 

40-

30 

20-

0* 
.01 .02 .05 .20 .30 .40 .50 .60 .70 .80 .90 .95 

—«-P 
98 99 

Fig.A.2.1 The edf of X2 for different values of X. The lines were fitted by eye. 
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A.3. PROPERTIES OF WEIGHTED RESCALED ADJUSTED PARTIAL SUMS 

In the notation in Section 2.3, it can be shown that under the null 

hypothesis ô = 0 in Equations 2.10 and 2.11 (Anis and Lloyd, 1976) 

(S**)2 -v £(4s,4sn-l), (A.3.1) 

from which it follows that var(S**) = ——r- (k=l,..., n-1), that is 

independent of k. 

It follows from Equation A.3.1 that under the null hypothesis 

(S**)2 (n-2)^(h,hn-l) 
(n-2) 5 ,, ,, t; . (A.3.2) 

l-(S**r l-i(*s,%n-l) 

Since Worsley's test statistic W is defined as maxIZ.I, with Z.̂ -t _ 

(Worsley, 1979), it may be concluded that under the null hypothesis 

W = (n-2)X'5M/(l-M2)15. (A.3.3) 
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A.4. VARIANCE OF THE SEMI-VARIANCE ESTIMATOR 

Let X = (X, ,X_,X_,X.) be simultaneously normally distributed 

with expectation vector 0 and covariance matrix Z = (a. . ) , then 

E(X1X2^3^4) = CT12°34+al3a24+al4CT23- (A.4.1) 

This may be proved by using characteristic functions (Anderson, 

1958; p. 38, 39), and as a consequence 

E[{Z(u1+h)-2(u1)}2{Z(u2+h)-Z(u2)}2] = 

= E[{Z(u1+h)-Z(u1)}{Z(u1+h)-Z(u1)}{Z(u2+h)-Z(u2)}{Z(u2+h)-Z(u2)}] = 

= Var[Z(u1+h)-Z(u1)]Var[Z(u2+h)-Z(u2)]+ 

+2Cov2[{Z(u1+h)-Z(u1)},{Z(u2+h)-Z(u2)}], (A.4.2) 

where Z(u) is an intrinsic random function, defined on a transect 

V of length L, and veR , and the increments {Z(u+h)-Z(u)} are 

normally distributed. 

General results are 

Cov[{Z(u1+h)-Z(u1)},{Z(u2+h)-Z(u2)}]=Cov[Z(u1+h),Z(u2+h)]-

-Cov[Z(u1+h),Z(u2)]-Cov[Z(u1),Z(u2+h)]+Cov[Z(u1),Z(u2)] = 

= -2v(u1-u2)+v(u1-u2+h)+-y(u1-u2-h), (A.4.3) 

and 

Var[{Z(u1+h)-Z(u1)}]=Var[{Z(u2+h)-Z(u2)}]=2v(h). (A.4.4) 

Inserting Equations A.4.3 and A.4.4 into Equation A.4.2 leads to 

E[{Z(u1+h)-Z(u1)}2{Z(u2+h)-Z(u2)}2]= 

= 4Y2(h)+2[v(u1-u2+h)+v(u1-u2-h)-2y(u1-u2)]2, (A.4.5) 
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4y2(h) = {E{2(u1+h)-Z(u1)}2}2. 

Cov[{Z(u1+h)-Z(u1)}2,{2(u2+h)-Z(u2)}2] = 

= 2[v(u1-u2+h)+Y(u1-u2-h)-2y(u1-u2)]2. (A.4.6) 

Let Vv(h) be the sample semi-variogram in case of complete infor­

mation on V of the realization z(u) of Z(u). Then, because of 

Equation A.4.6 

L-h L-h 
4E{Var[y (h)]} = -̂=- ƒ ƒ 2[y(u-u+h)+ V (L-hr ° 

+\(u1-u2-h)-2y(u1-u2)]2du1du2. 

If one assumes a linear population semi-variogram y(h)=ah, then 

1 L _ h u l 2 

Var[yv(h)] = i - j J ff [Y(u1-u2+h)+Y(u1-u2-h)-2Y(u1-u2)] zdu1du2 

(L-h) 
2 L-h u . An2 1 2 
o ƒ ƒ [ h - u + u ] V d u 

(L-h) z o s up(0 , (u 1 -h ) ) 

Thus for h<L/2 

Var[y (h)] = (i(j* )-!( h ))a2, (A.4.7) 
V 3 L-h 3 ( L_h)2 

and for h>L/2 

Var[Yv(h)] = (2h2+|(L-h)2-|h(L-h))a2. (A.4.8) 

? 4h 
Specifically, for h^O, Var[y (h)]/[y(h)] =§£, while for h=L/2 

Var[yv(h)]/[y(h)]2 = 1. 
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As a numerical illustration, a random walk 2(u) was considered, sim­

ulated on an interval [o,L), and starting at the origin 

Z ( u i ) = Y o + - - - + Y i ' i=0,l,..., N-l, (A.4.9) 

where the Y. are standard normal variâtes and the N points u. are 

equidistant at distance 1, thus 

r"E[2(u)-Z(U+h)] = 0 

lï(h) = |h, h=0,l N-l. 

For each of 500 realizations of random walks Z(u) on [0,140) 

the quantity Vv(h) as well as the ratio of the experimental vari­

ance of -yv(h) to [v(h)]2 for the first 2, the first 50, and all 

500 realizations have been calculated for h=l,10,70 and 139. These 

ratios are presented in Figure A.4.1. It may be concluded that for 
2 n=500 realizations, the ratios Var[y (h)]/[y(h)] are very close 

to the expected values, which are 0.0952 (h=10), 1 (h=70) and about 

2 (h=139). For a small number of realizations (n=2) the results are 

rather unpredictable. 

Thus, if only one realization out of the infinitely many possible 

is considered the possibility of statistical inference rapidly de­

creases with increasing h. When more realizations on V of the same 

process Z(u) are known, the situation is more favourable. Using the 

above simulation results, the ratio was calculated 

|vv(h)-Y(h)|/v(h), (A.4.10) 

where Vv(h) was calculated for the first realization or averaged 

over the first 2, the first 50, or all 500 realizations. From Fig­

ure A.4.2, it can be seen that for these mean 9 ( h ) , the ratio ac­

cording to Equation A.4.10 rapidly decreases with increasing n. 



1 8 3 

Var [Yv(h)]/[v(hl] 

Fig.A.4.1. Var[Yv(h)]/[Y(h)] as function of hand n. 

Ivylh)- ylh) 
7(h) 

n=2 

n = 50 

n = 500 
1 10 70 —»h 139 

Fig.A.4.2. I Y v < n ' - Y ( n ) l / Y ( n ) as function of h and n 
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A.5. RESULTS OF HOMOGENEITY TESTS AND CLASSIFICATION OF RAINFALL 

STATIONS IN DATA SET D140 

Table A.5.1 gives the results of homogeneity tests for rainfall 

characteristics for rainfall stations in data set D140. The Table 

should be read as follows: 

0: only R critical 

1: only T critical 

2: only M critical 

3 : both R and T, but not M critical 

4: both R and M, but not T critical 

5: both T and M, but not R critical 

6: all three statistics critical. 

The sign of these numbers in Table A.5.1 indicates the direction 

of the trend or jump. 

In addition, the classification of each station according to the 

six proposed partitions of the Netherlands on the basis of rainfall 

level and rainfall trend is also given in Table A.5.1. The six parti­

tions are as follows: 

- partitions (i), (ii), (iii), and (iv) on the basis of rainfall 

level, discussed in Section 2.5.1 and shown in Figure 2.11; 

- partition (v) on the basis of rainfall trend, discussed in 

Section 2.5.3 and shown in Figure 2.12; 

- partition (vi) on the basis of urbanization and industrializa­

tion, discussed in Section 6.1 and shown in Figure 2.24. 

Table A.5.1. Results of homogeneity tests on rainfall characteristics 

and classification of rainfall stations in data set D140 

Rainfall Results of homogeneity tests 

station on rainfall characteristic Partition 

code 

number F^ F ^ 5 F | 5 F W F W
5 F W

5 R (i) (ii) (Hi) (iv) (v) ( v i ) 

10 1 2 2 3 3 2 

12 - 1 - 2 1 2 2 3 3 2 

16 3 0 1 2 2 3 3 2 

17 0 1 2 2 3 1 2 
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Rainfall 

station 

code 

number 

19 

67 

74 

75 

76 

80 

82 

84 

85 

139 

140 

144 

145 

148 

151 

153 

154 

156 

158 

161 

162 

166 

221 

222 

225 

228 

230 

234 

235 

236 

238 

239 

Results of 

on rainfall 

F l F15 

-6 0 

0 

-4 

-1 -6 

-1 

0 

5 0 

5 

5 

0 

5 

-6 

-5 

0 

-1 

-1 

4s 

0 

-1 

-6 

0 

0 

6 

lomogeneity tests 

characteristic 

•Ï 

-6 

0 

-6 

0 

-6 

-6 

-5 

-6 

-5 

-5 

0 

0 

5 

0 

0 

4 

-5 

F W 
r15 

-1 

-1 

6 

2 

-6 

2 

-6 

0 

F W 

25 

-5 

-5 

-1 

-5 

-4 

1 

1 

R 

0 

-3 

4 

-6 

-4 

6 

0 

6 

-6 

0 

2 

5 

2 

4 

2 

6 

5 

(i) 

1 

2 

2 

3 

2 

2 

3 

2 

2 

3 

3 

5 

2 

3 

2 

3 

2 

5 

3 

3 

3 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

(H) 

2 

2 

3 

3 

2 

3 

3 

2 

3 

3 

3 

3 

2 

3 

2 

3 

2 

3 

3 

3 

3 

3 

3 

3 

2 

2 

1 

2 

2 

3 

2 

2 

Partition 

(Hi) 

2 

2 

3 

3 

2 

3 

3 

2 

3 

3 

2 

2 

2 

3 

2 

3 

2 

2 

2 

2 

3 

3 

3 

3 

2 

2 

1 

2 

2 

3 

2 

2 

(iv) 

3 

1 

3 

1 

2 

2 

1 

3 

3 

3 

3 

2 

3 

2 

2 

2 

3 

2 

2 

3 

3 

1 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

(v) 

3 

3 

2 

1 

2 

2 

3 

3 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

2 

2 

3 

3 

3 

2 

2 

3 

2 

2 

2 

1 

1 

1 

(vi) 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 
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Rainfall Results of homogeneity tests 

station on rainfall characteristic Partition 

number 

240 

246 

252 

329 

330 

333 

339 

341 

345 

346 

347 

348 

352 

353 

354 

356 

359 

434 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

449 

450 

453 

455 

Fï 

2 

-5 

1 

-5 

0 

-4 

-2 

*î5 

0 

-6 

0 

1 

1 

5 

0 

5 

FS 

25 

1 

0 

0 

0 

0 

-3 

-6 

1 

1 

0 

F I 

-1 

5 

-2 

-5 

5 

4 

-6 

6 

5 

5 

F W 
r 15 

1 

-6 

0 

-1 

-6 

-1 

-1 

2 

2 

2 

4 

-6 

6 

F W 
£25 

-5 

-1 

-4 

-1 

-1 

4 

5 

R 

5 

-1 

-5 

0 

-6 

-6 

-6 

-5 

0 

-6 

-6 

5 

-2 

5 

6 

5 

(i) 

1 

1 

1 

3 

3 

5 

5 

5 

5 

2 

2 

2 

2 

2 

3 

2 

2 

4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

(ii) 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

1 

1 

1 

1 

2 

1 

1 

1 

2 

1 

1 

2 

1 

3 

(Hi) 

3 

3 

3 

3 

1 

3 

3 

3 

3 

1 

3 

1 

3 

1 

3 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

2 

1 

1 

2 

1 

3 

(iv) 

3 

3 

3 

1 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

1 

1 

1 

1 

1 

1 

1 

3 

1 

1 

3 

1 

3 

(v) 

1 

3 

3 

3 

3 

2 

2 

2 

2 

3 

1 

1 

1 

1 

2 

1 

1 

1 

3 

2 

2 

2 

3 

3 

2 

1 

3 

3 

3 

1 

3 

1 

(vi) 

2 

2 

i 
2 
2 

2 

2 

2 

2 

2 

2 

4 
2 

2 

2 
2 

2 

1 

1 

1 

1 

1 

2 

1 

1 

1 

2 

1 

1 

2 

1 

1 
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Rainfall 

station 

code 

number 

456 

458 

459 

462 

466 

467 

469 

471 

539 

541 

543 

547 

550 

556 

558 

562 

564 

571 

573 

578 

579 

584 

586 

664 

665 

666 

667 

668 

669 

670 

673 

674 

Results 

on 

F ! 

i 

5 

2 

-1 

6 

-5 

0 

4 

-4 

2 

-5 

-1 

rain: 

*ls 

-6 

6 

0 

0 

1 

1 

4 

-4 

of ] 

fall 

F 25 

0 

0 

1 

6 

5 

-6 

-6 

homogeneity tests 

characteristic 

FI 

6 

1 

1 

6 

-2 

6 

6 

-6 

5 

2 

-1 

-2 

-6 

F W 

15 

1 

1 

0 

0 

0 

-6 

0 

2 

-6 

0 

-6 

-5 

FW 

25 

-6 

0 

-5 

-5 

-5 

-1 

-1 

R 

6 

1 

1 

1 

5 

-5 

-6 

-4 

0 

-6 

5 

0 

-1 

-5 

-6 

(i) 

1 

1 

1 

1 

1 

1 

1 

1 

5 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

(ii) 

2 

1 

3 

2 

2 

3 

1 

2 

3 

1 

1 

3 

3 

3 

3 

3 

3 

1 

1 

1 

3 

3 

3 

3 

1 

1 

3 

3 

3 

1 

3 

1 

Partition 

(Hi) 

2 

1 

1 

2 

2 

1 

1 

2 

3 

1 

1 

3 

3 

1 

3 

3 

3 

1 

1 

1 

3 

3 

1 

3 

1 

1 

3 

3 

3 

1 

3 

1 

(iv) 

3 

1 

3 

3 

1 

1 

1 

2 

3 

1 

1 

3 

3 

1 

1 

3 

3 

1 

1 

1 

3 

3 

1 

3 

3 

3 

3 

3 

3 

3 

2 

3 

(V) 

1 

2 

1 

1 

3 

3 

3 

1 

2 

1 

3 

3 

1 

3 

1 

1 

3 

3 

3 

1 

1 

1 

3 

2 

2 

2 

3 

2 

2 

2 

2 

2 

(vi) 

2 

1 

1 

2 

2 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
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Rainfall 

station 

code 

number 

676 

677 

678 

681 

733 

740 

742 

745 

747 

751 

752 

756 

759 

760 

763 

827 

828 

830 

832 

833 

834 

835 

838 

839 

840 

843 

844 

896 

899 

901 

902 

903 

Results 

on 

*l 
-5 

5 

0 

0 

0 

4 

0 

0 

5 

1 

of 

rainfall 

Fs 

15 

-2 

-6 

4 

0 

6 

1 

5 

4 

0 

2 

0 

1 

4 

F2S5 

-1 

0 

-1 

-1 

0 

0 

1 

0 

1 

ïomogeneity tests 

characteristic 

^ 

-2 

3 

0 

6 

0 

2 

1 

2 

F W 

15 

6 

1 

4 

4 

2 

1 

0 

0 

2 

F W 

25 

-5 

2 

4 

4 

5 

1 

2 

2 

R 

-1 

-1 

0 

3 

0 

0 

3 

0 

-6 

6 

-6 

4 

1 

1 

6 

2 

(i) 

5 

4 

5 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

4 

4 

4 

1 

4 

4 

4 

4 

1 

4 

4 

4 

5 

1 

4 

5 

4 

(ii) 

1 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

2 

3 

3 

3 

3 

2 

3 

3 

3 

3 

3 

3 

3 

3 

Partition 

(Hi) 

1 

3 

3 

3 

2 

2 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

3 

2 

3 

3 

3 

3 

2 

3 

3 

3 

3 

3 

3 

3 

3 

(IV) 

3 

3 

3 

3 

2 

3 

3 

3 

3 

2 

2 

2 

3 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2 

2 

3 

2 

3 

(v) 

2 

3 

3 

3 

1 

1 

2 

2 

2 

1 

1 

1 

1 

3 

1 

1 

2 

1 

2 

1 

1 

1 

3 

3 

1 

1 

1 

1 

1 

1 

1 

1 

(vi) 

2 

2 

2 

2 

2 

2 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
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Rainfall 

station 

code 

number 

908 

911 

912 

915 

968 

970 

973 

974 

Results 

on 

•1 
0 

0 

0 

-6 

of ] 

rainfall 

FS 

15 

-4 

1 

0 

-5 

"I5 

-3 

0 

-6 

homogeneity 

characteris 

FI FW 

15 

-2 

-5 

0 

FW 

25 

tests 

tic 

R 

0 

-1 

0 

-1 

-1 

-1 

-6 

(i) 

5 

4 

5 

5 

5 

5 

5 

5 

(ii) 

3 

3 

3 

3 

1 

3 

3 

3 

Partition 

(Hi) 

3 

3 

3 

3 

1 

3 

1 

3 

(iv) 

2 

3 

2 

3 

1 

2 

3 

2 

(v) 

2 

1 

3 

1 

2 

2 

2 

2 

(vi) 

2 

2 

2 

2 

1 

1 

1 

1 
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A.6. DEGREE OF INDUSTRIALIZATION AND URBANIZATION OF THE RAINFALL 

STATIONS IN DATA SET D32 

Table A.6.1. The degree of urbanization and industrialization of 

the rainfall stations in data set D32 

Rainfall station 

Amsterdam 

Arnhem 

Axel 

Bergschenhoek 

Boskoop 

Castricum 

Cruquius/Heemsted 

Delft 

Denekamp 

Pollution 

data avail­

able from 

year 

1975 

1977 

1978 

1974 

1974 

1975 

s. 1975 

1974 

1977 

Den Helder/De Kooy 1975 

Dwingelo 

Groningen 

Heerde 

Hoofddorp 

Hoorn 

Kerkwerve 

Leiden 

Lisse 

Mookhoek 

Oostvoorne 

Oudenbosch 

Oude Wetering 

Roermond 

Sassenheim 

S che11i ngwoude 

Ter Apel 

n.a.2 

n.a.2 

1977 

1975 

1975 

1978 

1974 

1974 

1974 

1974 

1978 

1974 

n.a.2 

1974 

1975 

n.a.2 

Grid 

area1 

G5 

N6 

13 

18 

KIO 

D9 

C4 

G9 

U7 

E18 

015 

D3 

111 

112 

112 

J14 

K3 

D7 

F10 

K13 

J14 

H5 

3 
Emissions (10 

Sulphur 

dioxide 

1.6 

2.0 

0.0 

0.1 

0.0 

0.1 

0.1 

1.4 

0.0 

0.1 

0.1 

0.1 

0.1 

0.0 

0.2 

0.0 

0.1 

5.8 

0.0 

0.0 

0.0 

0.1 

Carbon 

monox­

ide 

11.1 

3.2 

0.3 

2.9 

0.8 

1.9 

1.2 

4.6 

0.2 

1.0 

0.8 

2.0 

1.4 

0.1 

5.1 

1.7 

2.3 

8.6 

0.9 

1.5 

1.7 

0.5 

t/y) 

Hydro 

car­

bons 

3.7 

1.7 

0.2 

0.7 

0.4 

0.7 

1.0 

1.5 

0.3 

0.8 

0.6 

0.5 

0.5 

0.1 

3.9 

0.5 

0.4 

0.7 

0.3 

0.4 

0.5 

0.4 

Inhab 

itants 

(xlOOD) 

(CBS, 

718.6 

1980) 

127.0 

11.9 

6.7 

13.4 

22.8 

26.9 

83.7 

11.8 

61.3 

3.6 

160.6 

17.5 

76.0 

37.3 

2.4 

102.7 

19.2 

8.1 

7.0 

11.9 

12.7 

37.2 

12.5 

718.6 

16.5 
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Rainfall station Pollution Grid Emissions (10 t/y) Inhab-

data avail- area1 Sulphur Carbon Hydro itants 

able from dioxide monox- car- (xlOOO) 

year ide bons (CBS,1980) 

Vlissingen 1978 

West Terschelling n.a.2 

Winterswijk 1977 

IJsselmonde 1974 

Zandvoort 1975 

Zegveld 1975 

D7 

Y6 

J 6 

B5 

B5 

0 . 2 

0 . 1 

0 . 2 

0 . 0 

0 . 0 

1 .0 

0 . 7 

8 . 1 

0 . 7 

0 . 0 

0 . 6 

0 . 5 

1 .7 

0 . 4 

0 . 2 

44 .9 

4 . 6 
27 .4 

582.4 

16 .4 

1.8 

Map references: Emission registrations, published by the Ministry 

of Public Health and Environmental Hygiene (Ministerie van Volks­

gezondheid en Milieuhygiëne). These are issued for each province 

of the Netherlands. Those for the provinces Zuid-Holland and 

Noord-Holland are included in the references, 

n.a.: data not available. 
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APPENDIX B. DATA AND SUPPLEMENTARY RESULTS OF THE STUDY ON ARF 

B.l. RAINFALL RECORDS USED IN THE DETERMINATION OF ARF 

The following records were used to estimate ARF1: 

- data from three recording rainfall stations in the Hupsel catchment area; 

- hourly rainfall records from De Bilt (1906-1982) and Soesterberg (1974-1982). 

Records used to estimate ARF,. are presented in Table B.l.l. 

Table B.l.l. Records used to estimate ARF,. (period of observation: 1951-1979) 

Area Areal Name 
size1 rainfall 
(km2) station 

Code Days 
number without 
(KNMI) obser­

vations 

Periods of gap(s) 
(code no. of station 
supplying supplementary 
data) 

990 Schellingwoude 223 28 
Overveen 225 0 
Wijk aan Zee 226 31 
Zandvoort 229 0 
Zaandijk 230 0 
Zaandam 233 92 
Cruquius/Heemstede 435 61 
Sassenheim 436 0 
Lijnsden 437' 0 
Hoofddorp 438 '0 
Amsterdam 441 0 
Lisse 454 0 

Feb. 1957 (441) 

Jan. 1953 (225) 

June-Aug. 1958 (230) 
Dec. 1973-Jan. 1974 (438) 

1270 Vlissingen 
Brouwershaven 
Noordgouwe 
Westkapelle 
Wilhelminadorp 
vrouwenpolder 
Haamstede 
Ovezande 
Kortgene 
Middelburg 
wolphaartsdijk 
's-Heerenhoek 

733 
736 
743 
746 
749 
751 
752 
754 
755 
756 
758 
760 

0 
90 
59 

0 
0 
0 

28 
0 

90 
0 

31 
0 

Oct. 1952; Feb.-March 1953 (751) 
Feb.-March 1953 (751) 

Feb. 1953 (751) 

Jan.-March 1953 (751) 

Jan. 1951 (749) 

1360 Putten 
Apeldoorn 
Lunteren 
Hulshorst 
Voorthuizen 
Kootwijk 
Elspeet 
Harskamp 
Beekbergen 
Oosterbeek 
Veenendaal 
Barneveld 

542 
543 
558 
564 
565 
567 
570 
571 
573 
578 
579 
580 

0 
0 
0 
0 
0 

31 
0 

39 
0 
0 
0 

81 

Nov. 1953 (543) 

21-28 Feb. 1955; Dec. 1955 (573) 

Nov.-Dec•1955; 10-30 Sept•1956(565) 

Calculated according to USWB (1957-1960) as 
ber of rainfall records used) circles, each 
tance between rainfall stations. These mean 
using the Thiessen polygons from Figure 3.2. 

the total areal extent of 12 (num-
with radius equal to the mean dis-
distances have been established 
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B.2. KRIGING WEIGHTS FOR AREAL MEANS OF MONTHLY MAXIMA 

The kriging weights, multiplied by the number of stations (12), are given in 

Tables B.2.1 to B.2.3. 

Table B.2.1. Kriging weights for area 1 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Table 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Table 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

223 
1.08 
1.09 
1.06 
1.00 
1.08 
1.02 
1.10 
1.06 
1.08 
1.05 
1.02 
1.11 

B.2.2. 

733 
0.57 
0.80 
0.75 
0.55 
0.55 
0.70 
0.57 
0.86 
0.65 
0.58 
0.86 
0.96 

B.2.3. 

542 
0.99 
1.02 
1.05 
1.00 
1.01 
1.00 
1.01 
1.01 
1.02 
1.03 
1.00 
0.99 

225 
1.05 
1.04 
1.10 
1.20 
1.05 
1.16 
1.02 
1.10 
1.06 
1.11 
1.17 
1.00 

226 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 

Kriging we 

736 
0.85 
1.09 
1.06 
0.75 
0.75 
1.03 
0.86 
1.09 
0.98 
0.88 
1.09 
1.04 

743 
0.75 
0.95 
0.91 
0.72 
0.72 
0.87 
0.75 
0.98 
0.83 
0.76 
0.98 
1.01 

KNMI 

229 
0.66 
0.68 
0.61 
0.56 
0.66 
0.58 
0.69 
0.62 
0.64 
0.61 
0.57 
0.74 

ights 

KNMI 

746 
1.28 
1.21 
1.25 
1.25 
1.26 
1.27 
1.28 
1.17 
1.28 
1.28 
1.17 
1.05 

Kriging weights 

543 
1.12 
1.07 
1.03 
1.10 
1.08 
1.10 
1.09 
1.09 
1.08 
1.06 
1.10 
1.08 

558 
0.89 
0.95 
1.02 
0.91 
0.93 
0.90 
0.92 
0.92 
0.94 
0.96 
0.90 
0.93 

KNMI 

564 
1.08 
1.07 
1.04 
1.08 
1.07 
1.08 
1.08 
1.08 
1.07 
1.06 
1.08 
1.04 

code number 

230 
0.88 
0.89 
0.86 
0.85 
0.88 
0.85 
0.90 
0.86 
0.88 
0.86 
0.85 
0.93 

233 
0.97 
0.98 
0.94 
0.89 
0.97 
0.90 
0.99 
0.94 
0.96 
0.93 
0.90 
1.01 

for area 2 

code number 

749 
0.92 
0.86 
0.86 
0.95 
0.95 
0.86 
0.91 
0.88 
0.87 
0.91 
0.88 
0.96 

751 
1.82 
1.37 
1.46 
1.93 
1.93 
1.55 
1.81 
1.26 
1.64 
1.79 
1.27 
1.07 

for area 3 

code number 

565 
0.75 
0.66 
0.62 
0.70 
0.68 
0.71 
0.68 
0.69 
0.67 
0.65 
0.71 
0.92 

567 
1.18 
1.22 
1.23 
1.20 
1.22 
1.20 
1.21 
1.21 
.1.22 
1.23 
1.20 
1.06 

of rainfall 

435 
0.90 
0.93 
0.82 
0.63 
0.90 
0.71 
0.94 
0.83 
0.88 
0.81 
0.68 
0.97 

436 
0.81 
0.81 
0.80 
0.80 
0.81 
0.80 
0.81 
0.80 
0.80 
0.80 
0.80 
0.83 

of rainfall 

752 
2.19 
1.54 
1.68 
2.33 
2.33 
1.80 
2.18 
1.39 
1.93 
2.14 
1.40 
1.11 

754 
0.45 
0.63 
0.57 
0.45 
0.45 
0.52 
0.45 
0.72 
0.49 
0.45 
0.71 
0.91 

of rainfall 

570 
1.26 
1.39 
1.47 
1.32 
1.36 
1.31 
1.35 
1.34 
1.37 
1.41 
1.31 
1.08 

571 
1.12 
1.22 
1.28 
1.17 
1.20 
1.16 
1.19 
1.19 
1.21 
1.23 
1.16 
1.02 

station 

437 
1.37 
1.35 
1.43 
1.50 
1.37 
1.48 
1.33 
1.42 
1.39 
1.44 
1.48 
1.27 

438 
1.33 
1.29 
1.42 
1.59 
1.33 
1.53 
1.27 
1.41 
1.35 
1.43 
1.55 
1.20 

station 

755 
1.17 
1.02 
1.05 
1.22 
1.22 
1.08 
1.17 
1.01 
1.11 
1.16 
1.01 
1.00 

756 
0.79 
0.95 
0.93 
0.72 
0.72 
0.90 
0.79 
0.97 
0.87 
0.81 
0.97 
0.99 

station 

573 
1.14 
1.11 
1.09 
1.13 
1.12 
1.13 
1.12 
1.12 
1.12 
1.11 
1.13 
1.07 

578 
1.15 
1.23 
1.27 
1.19 
1.21 
1.18 
1.20 
1.20 
1.22 
1.24 
1.18 
1.03 

441 
1.30 
1.28 
1.34 
1.41 
1.30 
1.38 
1.27 
1.34 
1.31 
1.35 
1.39 
1.23 

758 
0.75 
0.87 
0.85 
0.69 
0.69 
0.83 
0.75 
0.90 
0.81 
0.76 
0.90 
0.97 

579 
0.70 
0.59 
0.52 
0.65 
0.61 
0.65 
0.62 
0.63 
0.60 
0.57 
0.66 
0.90 

454 
0.75 
0.77 
0.72 
0.68 
0.75 
0.69 
0.78 
0.73 
0.75 
0.72 
0.69 
0.81 

760 
0.47 
0.70 
0.64 
0.43 
0.43 
0.60 
0.47 
0.77 
0.55 
0.48 
0.77 
0.93 

580 
0.63 
0.47 
0.37 
0.56 
0.51 
0.56 
0.52 
0.53 
0.49 
0.45 
0.57 
0.89 
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B.3. KRIGING WEIGHTS FOR AREAL MEANS OF DAILY RAINFALL 

The kriging weights, multiplied by the number of stations (12), 

Tables B.3.1 to B.3.3. 

are gxven in 

Table 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Table 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Table 

Month 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
NOV. 
Dec. 

B.3.1. 

223 
1.10 
1.09 
1.10 
1.09 
1.08 
1.10 
1.10 
1.08 
1.09 
1.08 
1.09 
1.11 

B.3.2. 

733 
0.65 
0.72 
0.66 
0.61 
0.61 
0.69 
0.67 
0.71 
0.62 
0.63 
0.62 
0.79 

B.3.3. 

542 
1.00 
1.00 
1.01 
1.02 
1.01 
1.00 
0.99 
1.00 
1.02 
0.99 
0.99 
0.99 

Kriging weights 

225 
1.02 
1.05 
1.03 
1.04 
1.06 
1.03 
1.03 
1.07 
1.04 
1.06 
1.05 
1.02 

226 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 

Kriging we 

736 
0.98 
1.04 
0.99 
0.93 
0.93 
1.02 
1.00 
1.04 
0.94 
0.95 
0.95 
1.08 

743 
0.82 
0.88 
0.84 
0.78 
0.78 
0.86 
0.84 
0.88 
0.79 
0.80 
0.80 
0.95 

KNMI 

229 
0.69 
0.66 
0.68 
0.67 
0.65 
0.68 
0.68 
0.64 
0.67 
0.65 
0.66 
0.70 

ights 

KNMI 

746 
1.28 
1.26 
1.28 
1.28 
1.28 
1.27 
1.27 
1.26 
1.28 
1.28 
1.28 
1.22 

Kriging weights 

543 
1.10 
1.10 
1.09 
1.07 
1.09 
1.10 
1.11 
1.10 
1.07 
1.12 
1.12 
1.13 

558 
0.91 
0.91 
0.92 
0.94 
0.92 
0.90 
0.89 
0.91 
0.95 
0.89 
0.89 
0.88 

KNMI 

564 
1.08 
1.08 
1.08 
1.07 
1.08 
1.08 
1.08 
1.08 
1.07 
1.08 
1.08 
1.08 

for area 1 

code number 

230 
0.90 
0.88 
0.90 
0.89 
0.88 
0.89 
0.90 
0.87 
0.89 
0.88 
0.88 
0.91 

233 
0.99 
0.97 
0.98 
0.98 
0.96 
0.98 
0.98 
0.96 
0.97 
0.96 
0.97 
0.99 

for area 2 

code number 

749 
0.87 
0.86 
0.87 
0.89 
0.89 
0.86 
0.86 
0.86 
0.88 
0.88 
0.88 
0.86 

751 
1.64 
1.52 
1.62 
1.72 
1.72 
1.57 
1.60 
1.52 
1.70 
1.68 
1.69 
1.38 

for area 3 

code number 

565 
0.71 
0.70 
0.69 
0.67 
0.69 
0.71 
0.73 
0.70 
0.66 
0.74 
0.74 
0.77 

567 
1.20 
1.21 
1.21 
1.22 
1.21 
1.20 
1.19 
1.21 
1.22 
1.18 
1.18 
1.17 

of rainfall 

435 
0.94 
0.91 
0.93 
0.92 
0.89 
0.93 
0.93 
0.88 
0.91 
0.89 
0.90 
0.95 

436 
0.81 
0.81 
0.81 
0.81 
0.80 
0.81 
0.81 
0.80 
0.81 
0.80 
0.81 
0.82 

of rainfall 

752 
1.93 
1.76 
1.90 
2.05 
2.05 
1.83 
1.88 
1.77 
2.03 
2.00 
2.01 
1.56 

754 
0.49 
0.54 
0.49 
0.46 
0.46 
0.51 
0.50 
0.54 
0.47 
0.47 
0.47 
0.62 

of rainfall 

570 
1.32 
1.32 
1.35 
1.38 
1.34 
1.31 
1.28 
1.32 
1.39 
1.27 
1.27 
1.23 

571 
1.16 
1.17 
1.19 
1.21 
1.18 
1.16 
1.13 
1.17 
1.22 
1.12 
1.13 
1.10 

station 

437 
1.32 
1.37 
1.34 
1.35 
1.38 
1.34 
1.34 
1.39 
1.36 
1.38 
1.37 
1.31 

438 
1.27 
1.32 
1.28 
1.30 
1.34 
1.29 
1.28 
1.36 
1.31 
1.34-
1.32 
1.25 

station 

755 
1.11 
1.07 
1.10 
1.14 
1.14 
1.08 
1.09 
1.07 
1.13 
1.12 
1.13 
1.03 

756 
0.87 
0.91 
0.88 
0.84 
0.84 
0.90 
0.89 
0.91 
0.84 
0.85 
0.85 
0.95 

station 

573 
1.13 
1.13 
1.12 
1.12 
1.12 
1.13 
1.13 
1.13 
1.11 
1.14 
1.14 
1.14 

578 
1.18 
1.19 
1.20 
1.22 
1.20 
1.18 
1.16 
1.19 
1.23 
1.15 
1.15 
1.13 

441 
1.27 
1.29 
1.28 
1.28 
1.30 
1.28 
1.28 
1.31 
1.29 
1.30 
1.30 
1.26 

758 
0.81 
0.84 
0.82 
0.78 
0.79 
0.83 
0.82 
0.84 
0.79 
0.80 
0.80 
0.87 

579 
0.65 
0.65 
0.63 
0.60 
0.63 
0.66 
0.68 
0.64 
0.59 
0.69 
0.69 
0.72 

454 
0.78 
0.76 
0.77 
0.76 
0.75 
0.77 
0.77 
0.74 
0.76 
0.75 
0.75 
0.78 

760 
0.55 
0.61 
0.56 
0.51 
0.51 
0.58 
0.57 
0.61 
0.52 
0.53 
0.52 
0.69 

580 
0.56 
0.55 
0.52 
0.49 
0.53 
0.57 
0.61 
0.55 
0.47 
0.62 
0.62 
0.66 
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