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PROPOSITIONS 

1. The validity of the reciprocity relation between a direct light source 

and the reflected (or transmitted) radiance from vegetation is based on 

the reversibility of each radiation path contributing to the reflected 

(or transmitted) radiation vector. This reversibility is generally true 

for reflection whereas for transmission a vertically uniform canopy and 

a black soil surface are required. 

This dissertation, Chapter 2. 

2. The Kubelka-Munk equations in vector-matrix form can describe the 

directional transfer of radiation in a canopy with non-horizontal, 

non-Lambertian leaves, and the reflectance pattern of a canopy can be 

obtained from the analytical solution to these equations. 

This dissertation, Chapter 3. 

3. To study transpiration from a multi-layer canopy, flux densities of 

enthalpy and saturation heat are to be preferred to those of sensible 

and latent heat. 

This dissertation, Chapter 4. 

4. In term of flux densities of enthalpy and saturation heat, the well 

known Penman's formulae can be expressed in a unified form applicable to 

both single- and multi-layer crop canopies. 

This dissertation, Chapter 4. 

5. In Monteith's extrapolation method, the profile of dew-point 

temperature is to be preferred to that of vapour pressure. 

This dissertation, Chapter 6. 

6. Experiments have confirmed that the canopy resistance is approximately 

equal to a bulk stomatal resistance calculated as all component leaf 

stomatal resistances acting in parallel. This assertation is correct, 

however, only for a dense canopy with a dry soil surface. 

This dissertation, Chapter 7. 
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7. The conclusion of Idso that the stomatal conductance is proportional to 

the net radiation absorbed under conditions of potential evaporation is 

invalid, since in his argument he ignored the possibility that the 

stomatal resistance varies with the vapour pressure deficit. 

Idso, S.B., Agric. Meteorol., 29, 213-217 (1983). 

8. The concept of centripetal force should not be used in textbooks of 

physics in secondary schools, because it suggests that the centripetal 

force might be an additional force to the existing forces exerted on a 

moving object. The concept of centripetal acceleration suffices to 

characterize the curvilinear movement of an object. 

9. Feedback as a physical concept may be bypassed in mathematics to 

simplify solution procedures. 

10. Modern cybernetics will provide a good framework for further 

development of the traditional chinese theory of medicine, because both 

disciplines have similar basic ideas while the former is more 

systematic and better developed. 

11. It has been observed (Wang W., Institute of Health, Beijing, China) 

that tobacco smoke reduces considerably the basic metabolic rate in 

mice. Since this may positively affect longevity it should be 

investigated in a respiratory chamber whether this also holds for human 

beings. 

12. Chinese kitchen makes busy cooks and lazy eaters. 

Chen Jialin 

Wageningen, 26 September, 1984 
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1 In t roduct ion 

1.1 Improving models by us ing more adequate mathematical methods 

Crop micrometeorology has developed rapid ly over the last 35 y e a r s . 

Many measurements of the profiles of wind, r ad ia t ion , t empera tu re , humid­

i ty and carbon dioxide above and within crop canopies have been publ ished 

(Monsi and Saeki , 1953; Inoue , 1963; Lemon, 1963; Long et a l . , 1964; 

Begg et a l . , 1964; Brown and Covey, 1966; Denmead, 1969; Lemon and 

Wright, 1969; van Laar et a l . , 1977). In the meantime, var ious simulation 

models have been developed. Single layer models (Penman, 1948; Lemon, 

1960; Monteith, 1963) have been widely used because of t he i r simplicity; 

mult i- layer models (de Wit, 1965; Cowen, 1968; Waggoner and Rei fsnyder , 

1968; Goudriaan and Waggoner, 1972; P e r r i e r , 1976; Shut t lewor th , 1976; 

Goudriaan, 1977) a re p r e f e r r ed by crop micrometeorologists, because they 

simulate the profiles concerned . The mult i- layer models have become more 

and more complicated, as t he regime of r adia t ion, wind, t empera ture and 

humidity within crop canopies have been simulated in g r ea t e r detai l . 

The mult i- layer models a re fairly successful ; Goudriaan 's (1977) model 

is the ou ts tanding one . One of t he major p roblems, however , is t ha t t he 

model is not easily g raspable and the computation is tedious and time 

consuming. The re is a g rea t need for simple p rograms tha t can handle t he 

crop micrometeorology. The execution time of a simulation program can be 

r educed b y : (a) making more simplified assumptions about t he mechanism 

of the involved physical and physiological p roces se s ; (b) improving p r o ­

gramming t echn iques ; and (c) us ing more adequate mathematical methods . 

Usually, making more simplified assumptions r educes the applicability of 

the model, and improving programming t echniques can ha rd ly r educe the 

execution time by one o rde r of magni tude . Using more adequate mathemati­

cal methods , however , can great ly r educe the execution time bu t not t he 

applicability of t he model. In the mean t ime, the lucidity of t he models 

will be improved, which helps to deepen the unde r s t and ing of the behaviour 

of t he s tudied sys tems . This d i sser ta t ion p r e s en t s means of improving the 

model of t he radiat ion t r ans f e r in a c rop canopy and the model of t he 

sensible and la tent heat t r ans fe r from or to vegeta t ion , by applying more 

adequate mathematical methods . 



1.2 The outline of the work 

This dissertation contains three par ts . The first part , Chapters 2 and 3, 

is concerned with the radiation regime. For the transfer of the total down­

ward and upward short-wave radiation within a canopy with horizontal, Lamber-

tian leaves, the Kubelka-Munk equations have already been developed and sol­

ved. When leaves are non-horizontal, Kubelka-Munk equations can not be ap­

plied. Suits (1972) considered a simplified canopy with vertical and horizon­

tal leaves only, and found the analytical solution of the radiation profile 

within the canopy. Goudriaan (1977) specified the radiation with different 

inclinations, using nine intensities from nine contiguous zones spanning a 

whole hemisphere; this model allows any leaf inclination distribution, and 

thus is more realistic. Goudriaan derived a set of equations for the radia­

tion components at each level within the canopy and solved the equations by 

iteration. Chapters 2 and 3 will show that Goudriaan's equations can be ex­

pressed more lucidly in terms of vector-matrix notation. Then the reciproci­

ty relation is proven (Chapter 2) and the generalized Kubelka-Munk equations 

are derived (Chapter 3) . The bidirectional reflectance pattern of a canopy 

can be obtained in a greatly reduced execution time. 

The second part of this dissertation, Chapters 4 and 5, deals with the 

transfer of sensible and latent heat from or to a multi-layer canopy - a 

major problem of crop micrometeorology. Although many models have been 

successful in calculating sensible and latent heat flux densities from a 

canopy, most of them rely on a mainframe computer. For practical use, a 

simulation program which can be executed on a microcomputer is needed. 

This can be achieved by uncoupling the equations for sensible and latent 

heat flux densities in terms of enthalpy and saturation heat flux densities 

(Chapter 4) . A crop micrometeorology simulation program in BASIC is then 

developed (Chapter 5); this can be executed on a microcomputer. 

The third part of this dissertation discusses the relationship between 

single-layer and multi-layer models. The single-layer model is still widely 

used because of its simplicity, but the values of the two basic parameters, 

the canopy resistance and the excess resistance, are not easily obtainable. 

In Chapter 6, a new extrapolation method is developed, which shows the 

canopy resistance and excess resistance graphically. Chapter 7, discusses 

methods of determining these two resistances in terms of the parameters of 

a multi-layer model. 

- 2 -



2 The Reciprocity Relation for Reflection and Transmission of Radiation by 

Crops and Other Plane-Parallel Scattering Media 

(published in Remote Sensing of Environment 13: 475-486 (1983)) 

Abstract 

A mathematical proof of the reciprocity relation for reflection and t rans­

mission of radiation by plane-parallel scattering media like crop canopies is 

presented. First, the proof is based on Goudiaan's model for crop canopies, 

and then the proof is generalized. Matrix methods are used, leading to the 

tensors in the general case. The conditions for the validity of the recipro­

city relation are discussed. 

2.1 Introduction 

Using model calculations, Goudriaan (1977) discovered a reciprocity r e ­

lation for reflection and transmission by crop surfaces in which the radi­

ance of a scattering surface at inclination i ' , with direct light incident 

from i, is equal to the radiance at inclination i with direct light incident 

from i ' , provided that the flux densities at the horizontal plane through 

the reflector are the same in both cases. This result was obtained by com­

puter experimentation, but a mathematical proof was not found. The same 

result for reflection was obtained by Chance and Cantu (1975) and Chance 

and LeMaster (1977) for the Suits (1972) model, and an analytical proof 

was given for an infinite leaf area index. Bunnik (1978) proved this rela­

tion analytically for a one-layer Suits model with a definite leaf area index. 

Although the model of Suits yields a good approximation of the light climate 

of a crop canopy, it only distinguishes, in principle, horizontal and vertical 

leaf elements, while Goudriaan's model allows any leaf inclination distribution. 

For a mathematical proof of the relation, therefore, Goudriaan's model is more 

suitable. 

The reciprocity relation for reflection and transmission is a physical 

law, it claims an interchange property between a direct light source, the 

sun, for instance, and an airborne or spaceborne sensor, so that it is 

closely related to the remote sensing. In this Chapter a mathematical proof 

is presented, initially based on Goudriaan's model using matrix notation 

and then generalized using tensor notation. It will be seen in Chapter' 3 

that the tensor notation thus developed is a useful tool for describing 

radiation transfer in a scattering medium. 



2.2 Proof based on Goudriaan 's model 

2 . 2 .1 Reciprocity relation and the symmetry of the matrices 

In the AGR model (Allen, Gayle and R ichardson, 1970) and Suits model, 

radiat ion is d ivided into two k i nd s , d i rec t and diffuse. Each of t he t h r ee 

f luxes , d i r ec t , downward diffuse and upward diffuse, has a s epara te equa ­

tion to descr ibe i t s t r ans f e r and the boundary conditions a re given for 

each component. In con t r a s t , t h e r e is no special concern for d i rec t or 

diffuse f luxes in Goudriaan 's model. The radiat ion at any level in the 

canopy is d ivided into downward and upward f luxes , each being divided 

into nine in tens i t ies in nine cont iguous zones in a hemisphere . There fore , 

Goudriaan 's model p rovides more detailed information about radiat ion d i s ­

t r ibut ion within a canopy. 

The finite difference equat ions descr ib ing the t r ans f e r of radiat ion in 

t hese n ine d i rect ions were der ived by Goudriaan (1977): 

9 
x ( i ' , j + l ) = M ( i ' ) x ( i ' , j ) + 0 .5cB( i ' ) E M . ( i ) ( x ( i , j ) + y ( i , j + l ) ) , (2.1a) 

i=l 

9 
y ( i ' , j ) = M ( i ' ) y ( i ' , j + l ) + 0 . 5cB( i ' ) I M . ( i ) ( x ( i , j ) + y ( i , j + 1 ) ) , (2.1b) 

i = l 

where x ( i ' , j ) and y ( i ' , j ) a re the flux densi t ies of, r e spec t ive ly , t he down­

ward and upward radiation at l ayer j and c is t he sum of the reflection 

and t ransmission coefficients of the l eaves . M (i') and M. (i) a r e , r e s p ec t ­

ively , the probabil i t ies of pene t ra t ion and in tercept ion of t he radiat ion with 

inclination i ' (or i) when pass ing t h rough one l aye r . They are given by 

M t ( i ' ) = 1 - M . ( i ' ) , M.(i) = s O ( i ) / s i n ( i ) , (2.2) 

where s is the leaf a rea index of t he l ayer and 0 ( i ) is t he projection of 

the leaves onto inclination i: 

O( i ) = Z f ( i L ) o ( i , i L ) (2.2a) 
i L = 1 

in which f (u ) is the leaf inclination d i s t r ibut ion and o ( i ,L ) is the p ro jec t ­

ion onto inclination i of the leaves with inclination i. . B(i ' ) is the zonal 

d i s t r ibut ion of radiat ion s ca t t e red by the layer into direct ion i ' . If the 



leaves are assumed to be Lambertian scatterers, it can be determined from 

B( i ' ) = B ( i ' )M . ( i ' ) / s , (2.2b) 

where B (i1) is the zonal distribution of radiation reflected by a Lambertian 

reflector and is equal to 

B ( i1) = 2w.s in( i ' )cos( i ' ) (2.2c) 

in which w. is the interval of the inclination angle, being IT/18 in the model 

where a hemisphere is divided into nine zones. The canopy with LAI=1 is 

divided into n-1 layers, each with an LAI of s=l / (n -1 ) . 
c 

There are two boundary conditions. One is the nine incident radiation 

intensities from nine specified zones on the top of the canopy, and the 

other is the reflectance of the soil surface. The radiation intensities are 

denoted by the intensities at a horizontal plane. A pure direct light source 

is denoted thus by a set of nine figures of which eight are zero. Any 

combination of the direct light source and the sky light can be represented 

by different combinations of these nine figures. The soil surface is regar­

ded as a Lambertian reflector in the model, so that the distribution of the 

reflected radiation in nine zones can be described by B in Eq. (2.2c). 

When these two boundary conditions are given, an iteration method, devel­

oped by Goudriaan, gives all profiles of the downward and upward flux den­

sities in nine zones. 

By computer calculation, Goudriaan (1977) found the following results 

for the reciprocity relation under pure direct incoming radiation: 

1. It holds for reflected radiance at the top of the canopy with any r e ­

flection coefficient of the soil surface. 

2. It holds for transmitted radiance through the bottom of the canopy only 

when the reflection coefficient of the soil surface is zero. 

3. It cannot be invalidated by changing the leaf inclination distribution 

or the reflection or transmission coefficients of the leaves. 

The mathematical proof of these results and the essential features of the 

model leading to these results were not found. 

Goudriaan's model, however, can be represented equivalently and more 

lucidly, if the matrix notation is adopted. After some manipulations Eqs. 

(2.1a) and (2.1b) can be written as a set of vector equations: 



x ( j+ l ) = Tx(j) + Ry(j+1), y_(j) = Ty(j+1) + Rx ( j ) , (2.3) 

where vec to rs x and y a re called the downward and upward radiation 

v ec to r s , r e spec t ive ly , with thei r components x ( i ) and y( i ) being the flux 

densi t ies of t he cor responding radiat ion at a horizontal p lane; T and R a re 

the zonal t ransmit tance and ref lectance matrices of one l ayer with the 

components 

R ( i ' , i ) = 0 .5cB( i ' )M. ( i ) = c . s . ( i r /18)cos(i ' ) 0 ( i ' ) 0 ( i ) / s i n ( i ) , (2.4a) 

T ( i ' , i ) = M . ( i ' ) d . , . + R ( i 1 , i ) = ( l - s O ( i ' ) / s i n ( i ' ) ) d . , . + R ( i ' , i ) . (2.4b) 
t l l l ' l 

R(i ' , i ) and T ( i ' , i ) r ep r e sen t the bidirectional ref lectance and t ransmit tance 

of one layer with r e spec t to incident direction i and exi tant direction i ' , 

r e spec t ive ly , and d.,. is un i ty when i '=i, and zero o therwise . The bounda ry 

conditions can also be wr i t ten in a concise form: 

x ( l ) = d, y(n) = R gx(n) , (2.5) 

where d is a known incoming downward radiat ion vec tor and R the zonal 

ref lectance matrix of t he soil s u r face . If the soil surface is assumed to be 

Lambert ian, t he components of R depend only on the exi tant d i rect ion: 

R ( i ' , i ) = r B ( i ' ) = r ( i r /18)2sin(i ' ) cos ( i ' ) (2.4c) 
s s u s 

where r is t he hemispherical reflection coefficient of the soil su r face . 

Given the boundary condi t ions, Eq s . ( 2 . 3 ) can be solved so t ha t t he 

upward radiation vector ref lected by the canopy y_(l) and the downward 

radiat ion vec tor t ransmit ted t h rough the canopy to the soil su r face , x ( n ) , 

can be ob ta ined . The rad iance v e c t o r s , r and t , ref lected by and t r ansmi t ­

ted t h rough the canopy, a re given by 

r = Hy ( l ) , t = Hx(n), (2.6) 

where H is a diagonal matrix with diagonal components 

H ( i ' . i ' ) = l / ( 2Tr (T r /18 ) s in ( i ' ) co s ( i ' ) ) . (2.7) 

The vec tors r and t̂  can also be wr i t ten in forms d i rect ly re la ted to the 

known incoming radiat ion vec tor d: 
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r = Qd, t = Pd, (2.8) 

where Q and P can be called the zonal reflection and transmission radiance 

matrices of the canopy, respectively. 

The mathematical meaning of the reciprocity relation is easily seen using 

the matrix notation. Pure direct incident radiation is denoted, under vector 

notation, by a vector with only one non-zero component corresponding to the 

incident direction. For example, 

d = ( 0 , . . . , 0 , a , 0 , . . . , 0 ) t , (2.9) 

where a is the flux density at a horizontal plane from direction i and t 

denotes the transposition. The component of reflected radiance vector in 

direction i' is 

r ( i ' ) = Q ( i ' , i ) a . (2.10a) 

If direct incident light comes from direction i' with flux density b , the 

component of the reflected radiance vector in direction i is 

r ( i ) = Q ( i , i ' ) b . (2.10b) 

The reciprocity relation states that if a=b, then r(i)=r(i ') . It means, 

therefore, that the matrix Q should be a symmetrical one. Conversely, if Q 

is a symmetrical matrix, the reciprocity relation holds. The same argument 

can be followed for transmittance and the transmission radiance matrix P. 

Therefore, the zonal reflection and transmission radiance matrices of a 

canopy being symmetric is a sufficient and necessary condition for the 

reciprocity relation. To prove this relation, it must be proven that the 

zonal reflection and transmission radiance matrices are symmetric. 

2.2.2 Reversibility of the radiation paths through the canopy 

One way to prove Q and P are symmetric is to solve Eqs.(2.3) under 

the boundary conditions (Eqs.(2.5)) . There is an easier way to do it, 

however. As an illustration, a canopy with three layers and an underlying 

soil surface are shown in Fig. 2.1(a). The zonal transmittance and reflect­

ance matrices of the layer j are denoted by T. and R., respectively. In 

general, T. and R. can be different for different layers. 
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Suppose t ha t an inc ident l ight vec to r d falls upon t he f i rs t l aye r . After 

the in terac t ion with the f i rs t l a ye r , it is p a r t l y ref lected forming vec tor 

R , d , and p a r t l y t r ansmi t ted forming vec tor T . d . If t he whole canopy 

consis ts of only one l aye r , t he total re f lec ted radiat ion vec tor is R , d , and 

T . d is t he t r ansmi t ted one . But if more l aye r s a r e t aken in to account , R-d 

is only one component of t he ref lected radiat ion v ec to r , and T , d is not a 

component of t r ansmi t ted radia t ion y e t ; i t h a s to i n t e rac t with o the r l aye r s 

before i t emerges from the canopy , forming e i ther a component of t he 

ref lected radiat ion vec tor or of t he t r ansmi t ted one . 

Many p a t h s along which a ref lected component can be e s tab l i shed are 

poss ib le . In F i g . 2 . 1 ( a ) one of them, with a component ref lected radiat ion 

vec to r a, , is i l l u s t r a t ed . I t should b e no ted t h a t t h e a r r ows , r e p r e s en t i ng 

radiat ion v ec to r s in F ig . 2 . 1 ( a ) , a re not t he conventional v ec to r s in a 

th ree-dimensional s pace , so t ha t t he incl inations of t hese a r rows have no 

actual meaning. I t follows from F ig . 2 . 1 ( a ) t ha t 

*k = ( T lT2T3RsT3R2R3T2T l ) d - -

according to Eq s . ( 2 . 6 ) the 

I k = % = ( H r i T 2 T 3 R s T 3 R 2 R 3 T 2 T l ) d = \*' 

According to Eq s . ( 2 . 6 ) the co r responding r ad iance vec to r r , is 

(2.11) 

(2.12) 

\\°i 
d \ ; *:/r x 

layer 1 , T i , R i 
T'W Y / / 

layer 2, T;, R; 

layer 3, T3. R 3 

T \ \ 
%// 

(a ) 

V 
layer 1 T, , R , 

"Y./BV\ 
layer 2 T,,R2 

T,\ T,\ /R,\ 'Y W 
layer 3 T 3 ,R 3 

T,\ 
M i , 

^ffiîSŒ5 

( b ) 

F i g . 2 . 1 . (a) One possible p a th g iving one of t h e re f lec ted components a, 

(in solid l ines) and t he co r responding r e v e r s ed p a th g iving a. (in b roken 

l i n e s ) , (b) The pa i r of t he co r respond ing p a t h s for t r ansmiss ion . 
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It can be seen now tha t for each of these possible p a th s a r eve r s e pa th 

e x i s t s , along which another component is formed, denoted by a., and i l lus­

t r a t ed in F ig .2 .1 (a ) by the a r rows with the b roken l ines . The r esu l t ing 

radiance vec tor is 

r . = Ha. = (HT.T-R-R-T-RT.T-TJd = Q.d. (2.13) 
—1 —1 L C 5 < L S S 5 < L . L — 1— 

The sum of these two components is 

r . = r, + r . = (Q -K2. )d =Q.d. (2.14) 
- ] - k - l Tc l - ] -

It can be p roven now tha t Q. is a symmetrical mat r ix . I t follows from 

Eq s . ( 2 . 4 a , b and c) tha t t he matrices R, T , and R are asymmetric. 

However, by defining 

C = HR, D = HT, W = HR , (2.15) 
s 

it can be p roven tha t C, D, and W are symmetric, since the i r components 

a re 

C ( i ' , i ) = ( c s / 2 T r ) ( 0 ( i ' ) / s i n ( i , ) ) ( 0 ( i ) / s i n ( i ) ) = C ( i , i ' ) , (2.16a) 

D ( i ' , i ) = ( l - s O ( i l ) / s i n ( i , ) ) / ( 2 i r ( i T / 1 8 ) s i n ( i ' ) c o s ( i , ) ) d . , . + C ( i ' , i ) 

= D ( i , i ' ) (2.16b) 

W ( i ' , i ) = r /IT = W ( i , i ' ) . (2.16c) 
s 

The matrices Q, and Q. in Eqs . (2 .12) and (2.13) now can be r ewr i t t en as 

Ĉ. = T>p\ip\>p\M\)plC£f1C£f\>£f\>p~l, (2.17a) 

Q. = D 1 H ~ ^ ^ ~ 1 C 3 H ~ 1 C 2 H ~ ^ 3 H ~ W ' ^ 3 H ~ ^ ^ ~ 1 D H - 1 , (2.17b) 

where D.=HT., C.=HR. (i=l to 3 ) , and H is the i nve r se of H. H is sym-
J J J ] J y 

metric too, s ince H is a diagonal mat r ix . 

Although D., C , and H a re all symmetric, Q, and Q. a re not necessar i ly 
J J K 1 

symmetric, because the p roduc t of two symmetrical matrices is usual ly asym­

metr ic . But i t can be easily verified by us ing Eqs . (2.17a and b) t ha t t he 

t ransposi t ion of matrix Q, is equal to Q., and Q ^Q^.» consequen t ly . The 
sum of Q, and Q., Q., t he re fo re , is symmetric, s ince 

K i J 

Q j t = {Qk + °i)1; = °k + Q i t = Q i + °k = Q i ' ( 2 - 1 8 ) 
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The total ref lected radiance vector is composed of an infinite number of 

such pa i rs of vec to rs (divided by 2) . For each of them the t ransformation 

matrix Q. is symmetric, so tha t t he r esu l t ing zonal reflection radiance 

matrix of the canopy Q is also symmetric. 

For t ransmiss ion, the conditions unde r which the rec iproci ty relat ion is 

valid a re more r e s t r i c t ed . Goudriaan (1977) found tha t t he necessa ry con­

dition is t he "black" soil su r face , as p revious ly mentioned. But t h e r e is 

another r e s t r ic t ion tha t t he zonal t ransmit tance and ref lectance matrices of 

the different l a ye r s , T. and R., should all be the same. Under t hese two 

r e s t r i c t i ons , t he same reasoning can be followed to p rove tha t t he zonal 

t ransmission radiance matrix of t he canopy P is symmetric. The i l lustrat ion 

is shown in F ig . 2 . 1 ( b ) , while the a rgument is omitted. 

If t hese two r e s t r i c t ions a re removed, no cor responding " r eve r se" pa th 

can be found for each pa th along which a component t ransmission rad iance 

vector is e s tab l i shed . This a rgument , however , cannot s e rve as a mathemati­

cal proof t ha t t hese two r es t r i c t ions a re two necessa ry condi t ions . The 

reason is simple; t he sum of several asymmetrical matrices is not n eces ­

sari ly asymmetric. However, it can be shown tha t the reciproci ty relation 

for t ransmission fails for a simple canopy with two l ayers with different T 

and R, even though the soil surface is b lack . 

Suppose tha t the f i rs t l ayer is composed of black leaves with a spher ical 

leaf inclination d i s t r ibu t ion , while the second is composed of horizontal 

leaves with equal t ransmission and reflection coefficients. The leaf a rea 

indices of the two layers a re s . and s?, r e spec t ive ly , and s , is much smal­

ler t han un i ty while s -= l . T.., K-. , T?, and R ? can be obtained from Eqs . 

(2 .4a , b) , and (2 .2a , b , c) . Noting tha t O(i)=0.5 for the spher ical leaf 

inclination d i s t r ibut ion and 0 ( i )=s in ( i ) for horizontal l eaves , 

R ^ i ' . i ) = 0, (2.19) 

T ^ i ' . i ) = M t ( i ' , i ) d . , . = (1 - 0 . 5 S l / s i n ( i ' ) ) , (2.20) 

T 2 ( i ' , i ) = R 2 ( i ' , i ) = c ( i r / 1 8 ) c o s ( i ' ) s i n ( i ' ) . (2.21) 

Since R,=0, t h e r e is no mul t i -sca t ter ing between two l a ye r s , so t ha t t he 

zonal t ransmission radiance matrix of the canopy P simply equals HT ? T , : 

P ( i ' , i ) = (C /2TT)(1 - 0 . 5 S l / s i n ( i ) ) . (2.22) 

It can be seen tha t P is asymmetric . 
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2.3 Proof of the general case 

In Goudriaan's model only zonal intensities of radiation are treated. The 

variations in azimuthal direction were completely ignored, so that radiation 

could be represented by vectors and the transmission and reflection of a 

layer as well as the whole canopy could be represented by matrices. The 

reciprocity relation proven above thus should be called, more precisely, 

the zonal reciprocity relation. 

In the general case, the light incident, reflected or transmitted should 

be denoted by a tensor of order 2, x. ., its component x(i,j) represents 

the flux density at a horizontal plane in the direction ( i , j ) , where i de­

notes the inclination and j the azimuth of the light. The reflection and 

transmission of a layer as well as a canopy should be denoted by tensors 

of order 4, r.,.,.. and t.,.r.., respectively. The reciprocity relation now 

requires that the reflection radiance tensor q.,.,.. and the transmission 

radiance tensor p.,.,.. of the canopy be symmetric in the sense that i' is 

interchangeable with i and j ' with j . The reasoning for proving the recip­

rocity relation in this case is the same as that presented above, except 

that vectors and matrices are replaced by the corresponding tensors of 

order 2 or 4. 

It can be seen that according to the preceding arguments, the proof of 

the reciprocity relation for a canopy requires that the reflection and 

transmission radiance matrices, or tensors, of the single layer are sym­

metric. Furthermore, it can be assumed that the layers are so thin that 

the multiple scattering within one layer can be neglected, so that the 

reflectance and transmittance tensors of a layer can be considered as the 

sum of these tensors of the corresponding components. Therefore, what 

must be proven is that the reflection and transmission radiance tensors of 

a horizontal layer containing only one scattering element, for example, a 

leaf, are symmetric. 

Consider first a horizontal leaf element with a surface area s. Suppose 

that the leaf element is illuminated by a light source from direction ( i , j ) ; 

the flux density of the incoming light at the leaf surface is denoted by 

d(i,j) . The total flux reflected by the leaf is thus equal to d ( i , j ) rs . The 

distribution of the reflected radiation in different directions is determined 

by a so-called bidirectional reflection distribution function, which depends, 

generally speaking, not only on the exitant direction, but also on the direc-
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tion of the incident illuminating light. Under tensor notation, the bidirect­

ional reflection of the leaf can be fully described by the reflection radiance 

tensor of the leaf r . r î . . . A component of this tensor, rU1,]',!»]) represents 

the reflected radiance in the direction (i',j ') of incident radiation with unit 

flux density, from the direction (i,j) . Here i' and j ' denote the inclination 

and the azimuth of the exitant direction, respectively, and i and j denote 

those of the incident direction. The dimension of r ( i ' , j ' , i , j ) thus is sr 

The reflection radiance tensor of a given leaf can be determined by expe­

riments, while the components r ( i ' , j ' , i , j ) can be obtained by calculation for 

two extreme cases. For a Lambertian reflector, the reflected radiance is 

independent of the incident as well as the exitant direction, so that it can 

be readily obtained: 

r ( i ' , j ' , i , j ) = WTT. (2.23) 

For a pure specular reflector, such as a mirror, the radiance is zero in all 

directions except in the direction of the reflected radiation. Under tensor 

notation, the whole hemisphere is divided into a definite number of discre­

te solid angles, and the radiance in these single solid angles is assumed 

uniform, so that, even in the solid angle in which the reflected radiation 

from a point light source lies, the radiance still has a definite value: 

incident \ 
direction(ij) 

Fig. 2.2. The bidirectional reflected radiance of a layer containing one 

inclined leaf element. For meaning of symbols see the text. 
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r(i',j',i,j) = r/(cos(i' )w. ,w.,) when i'=i and |j'-j|=T, 

b(i',j\i,j) = O otherwise. (2.24) 

It can be seen tha t in both cases the reflection radiance t en so r s a re sym­

metr ic . This means the rec iproci ty relat ion ho lds . It is reasonable to 

assume t h a t , at least as a f i rs t approximation, a real leaf is a combination 

of Lambertian ref lector and specular re f lec tor , so t ha t t he reflection r a d i ­

ance t ensor of the leaf can be expected to be symmetric. The measurements 

of b idirect ional reflection for hea l thy green soybean and maize leaves 

(Breece and Holmes, 1971) showed tha t t he reflection rad iance t enso r s a re 

indeed symmetric. There fore , the rec iproci ty re lat ion is valid for a s ingle 

horizontal leaf element. The t ransmission radiance t ensor t...... of a leaf can 

be defined in the same way, and the exper iments done by Breece and Hol­

mes (1971) showed tha t i t is also symmetric. 

Now consider the general case shown in F ig . 2.2 in which a horizontal 

l ayer contains only one inclined leaf element. The inclination and the 

azimuth of t he leaf are denoted by i, and j . , r e spec t ive ly . The surface 

area of t he element, which has a re la t ive value with r e spec t to the uni t 

horizontal p lane AB, is denoted by s , and s is much smaller t han un i t y . 

The task is to p rove the reflection rad iance t ensor of the horizontal l ayer 

is symmetric. Denote again the flux densi ty of t he incident l ight at t he 

plane AB by d ( i , j ) . The flux dens i ty at t he leaf surface is t hen 

F = ( S l / s ) d ( i , j ) . (2.25) 

where s , is t he projection of s in the direction ( i , j ) onto the horizontal 

p lane AB, 

s, = s | c o s ( a ) / s i n ( i ) I , (2.25a) 

and a is t he angle between t he incident l ight and the normal to the leaf: 

cos(a) = c o s ( i ) co s ( j ) s i n ( i . ) c o s ( j . ) + c o s ( i ) s i n ( j ) s i n ( i T ) s i n ( j T ) 

+ s i n ( i ) c o s ( i . ) . (2.25b) 

The radiance of the points on the leaf surface in direction ( i ' , j ' ) is 

g ( i ' , j ' ) = e d j ' . j j ' . i j . j j ) | c o s ( a ) / s i n ( i ) | d ( i , j ) , (2.25c) 
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where g ( i ' , j ' ) is t he radiance of t he leaf surface in d irect ion ( i ' , j ' ) u nde r 

the illumination from direction ( i , j ) ; i , ' , j , 1 , i , , and j . a re the co r re spond­

ing inclination and azimuth of t he incident and ex i tant direction in the coor­

dinate system fixed on the leaf element, and e ( i , ' , ] , ' ,! . ,] . . ) is equal to 

r(i-,',]•,' »ii.ji) when cos (a )cos(a ' ) is l a rge r t han zero , and to t ( i , ' , j , ' , i , , j , ) , 

when cos (a) cos (a ') is smaller than or equal to ze ro . 

The average radiance over the horizontal layer should be calculated as a 

weighted sum of the rad iance in the area s , , shown in F i g . 2 . 2 , and tha t in 

the r e s t p a r t of t he plane AB, where s , is the projection of s from direction 

( i , j ) onto the plane AB, 

s 2 = s | c o s ( a ' ) / s i n ( i ' ) | (2.25d) 

in which a' is t he angle between the exi tant d irect ion and the normal to 

the leaf: 

c o s ( a ' ) = cos ( i ' ) cos( j ' ) s i n ( i . ) c o s ( j . ) + cos ( i ' ) s i n ( j ' ) s i n ( i . ) s i n ( j . ) 

+ s i n ( i ' ) c o s ( i L ) . (2.25e) 

Thus, 

n ( i ' , j ' ) = s 2 g ( i ' , j ' ) + ( l - s 2 ) . 0 

= s e ( i j ' , j j ' , i j , j j ) | c o s ( a ' ) / s i n ( i ' ) | | c o s ( a ) / s i n ( i ) | d ( i , j ) 

= q ( i ' , i ' , i , j ) d ( i , i ) , (2.25f) 

where n ( i ' , j ' ) is t he radiance of t he l ayer in direction ( i ' , j ' ) and 

q ( i ' , j ' , i , j ) is t he component of t he reflection rad iance t ensor of t he l aye r . 

The t ensor e in Eq . (2 .25f) is symmetric in the sense tha t i.' is i n t e rchangea ­

ble with i . , and j . ' with j . , b u t the two coordinate systems fixed on the 

leaf and on the horizontal p lane AB a re re la ted by 

i 1
, = u 1 ( i , , i , ) > i j = u 2 ( i , j ) , j 1

, = v 1 ( i , , j , ) 1 J 1 = v 2 ( i . j ) . (2.26) 

When the position of t he leaf element is de termined, the functions u , and 

v , a re the same as the function u-, and v~, r e spec t ive ly , so tha t t he 

t ensor e is symmetric also in the sense tha t i' is i n te rchangeable with i 

and j ' with j . I nspec t ing Eq . (2 .25f ) shows tha t t he reflection rad iance 

t ensor q.,.,.. of t he plane AB is symmetric . 

The same a rgument can be followed to p rove the t ransmission rad iance 

t ensor of a l ayer p . , . , . . is also symmetric. 
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2.4 Discussion and conclusions 

For bidirectional reflection and transmission problems, tensor analysis is 

a powerful tool. It can be applied to a single leaf as well as to a horizon­

tally homogeneous plane-parallel scattering medium, such as a crop canopy. 

In fact, in the continuous case, the upward and downward radiation are 

denoted by continuous functions of two variables, the inclination i and the 

azimuth j . The bidirectional reflectance and transmittance contain four 

variables, i ', j ' , i, and j . When the hemisphere is divided into a number of 

contiguous sectors, it is a natural development to represent the radiation 

by a tensor of order 2, and the bidirectional reflection and transmission 

by tensors of order 4. 

Using tensor representation, the equations describing radiation transfer 

within the scattering medium as well as the boundary conditions become 

much more concise and straightforward. Any combination of the direct 

solar radiation and the diffuse radiation under a clear or an overcast sky 

and their variations in the hemisphere are easily represented by a single 

known incoming radiation tensor. 

Under tensor notation, the meaning of the reciprocity relation becomes 

clearer. It is simply related to the symmetry of the reflection or t rans­

mission radiance tensors of the scattering medium. 

In this Chapter, for a horizontal homogeneous scattering medium, it is 

proven mathematically that: 

1. For reflection, a reciprocity relation holds for a pure direct light 

source, regardless of whether soil surface is black or not. 

2. For transmission, the reciprocity relation holds for a vertically uni­

form scattering medium with a black soil surface. 

The proof is given for any leaf inclination distribution function. The only 

assumption is that the reflection and transmission radiance tensors of the 

single leaves are symmetric. The reflection radiance tensors for both sides 

of the leaves are not necessarily the same. This requirement is a relaxa­

tion to the conditions for the reciprocity relation, because both the Suits 

model and Goudriaan's model assume that the leaves are Lambertian scatte-

r e r s . This relaxation is important in practice, because, for the leaves of 

many crops, the off-normal incident reflectance shows considerable specular 

contributions, as found experimentally for leaves of soybean and maize by 

Breece and Holmes (1971). Their data strongly supported the assumption 
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about the symmetry of the reflection and transmission radiance tensors of 

single leaves, but further confirmation is still needed for various kinds of 

crops. 

It was noticed by Chance and LeMaster (1977), Bunnik (1978), and Gou-

driaan (1977) that the reciprocity relation breaks down for a mixture of 

both direct and diffuse light. Using tensor notation, the failure can be 

easily explained. Diffuse sky light is denoted under tensor notation by a 

radiation tensor in which all components are usually non-zero. The r e ­

flected radiance in directions ( i , ' , ] , ' ) and (i-1,]-1) are calculated as 

n ( i l ' * j l ' } = l q ( i 1 ' . i 1 ' . i . i ) d ( i . J ) . (2.27a) 
i . j 

n ( i 2 ' , j 2 ' ) = E q ( i 2 \ j 2 ' , i , j ) d ( i , j ) , (2.27b) 
i . j 

where n ( i , ' , j , ' ) and nCi-'.j-1) are the reflected radiance in the corre­

sponding directions. The symmetry of the tensor q.,.,.. cannot ensure that 

q(i, ' , j , ' , i , j) and q(i~' , j ? ' , i , j) are the same, so that n( i 1
l , ] 1 ' ) is not equal 

to n(ip',j ') generally. 

When the incident radiation is a mixture of both direct and diffuse light, 

the resulting radiance is the sum of the direct and diffuse light radiances, 

because the radiation transfer is a linear process. It can be seen that the 

reciprocity relation fails in the case when the relative contribution of the 

diffuse sky light is not negligibly small. 

The reciprocity relation imposes a constraint on the radiance distribu­

tion of reflected radiation. This constraint can be used in remote sensing 

either to reduce the number of necessary measurements or to improve the 

accuracy of the results when the redundant measurements are done. 

A special application of the possibility to reduce the number of measu­

rements was given by Goudriaan (1977). It was proven that the dependence 

of the hemispherical reflection coefficient of a surface on the inclination of 

the incoming direct light is the same as the dependence of the radiance on 

the exitant inclination, under a uniformly overcast sky. Therefore, measu­

rement of one of them provides the information about the other. 
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3 Kubelka-Munk Equations in Vector-Matrix Forms and the Solution for 

Bidirectional Vegetative Canopy Reflectance 

(submitted to Applied Optics) 

Abstract 

The radiation from different directions can be specified by upward and 

downward radiation vectors, and the interactions of the radiation with a 

leaf or with a vegetative canopy can be specified by matrices. The Kubelka-

Munk (1931) equations, which are applicable only to a canopy with horizon­

tal and Lambertian leaves, can then be extended to describe the directional 

transfer of radiation in a canopy with non-horizontal, non-Lambertian 

leaves. In the extended Kubelka-Munk equations, variables are upward and 

downward radiation vectors, and the coefficients are matrices. The solu­

tions are found, from which the bidirectional vegetative canopy reflec­

tance, including azimuthal variations, can be obtained. Simplified and 

approximate methods are presented for a canopy with leaves without azimu­

thal preference in order to reduce the execution time. 

3.1 Introduction 

The transfer of radiation through a turbid medium, such as the atmos­

phere or clouds has been of interest for some time. Recent developments in 

remote sensing techniques require calculation of bidirectional reflectance 

patterns of various vegetative canopies. Although the integral equations of 

Chandrasekhar (1950) have been established for more than thirty years, 

the semi-analytic solution is possible only for the simplest phase functions 

such as that of Rayleigh scatter. For cases of Mie scatter, even numerical 

solution is difficult (Paltridge and Piatt, 1976) . 

The interaction of short-wave sun radiation with vegetative canopies has 

an additional complexity because the scattering elements are now mainly 

leaves, which are planar, so the bidirectional reflectance of a leaf depends 

not only on the angle between the incident and exitant directions but also 

on the orientation of the leaf. In the simplest case, all the leaves of a 

horizontally homogeneous canopy are assumed to be Lambertian scatterers 

and orientate horizontally, the directional distribution of radiation within 

and above the canopy is then a known function. The radiation transfer in 

such a canopy can therefore be fully described by the vertical variation of 
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the total downward and upward radiation intensities. The Kubelka-Munk 

equations address this situation. When two boundary conditions - incident 

radiation above the canopy and the reflectance of the underlying soil 

surface - are given, the Kubelka-Munk equations can be solved for profiles 

of the total downward and upward radiation intensities within the canopy, 

thus the reflectance of the canopy can also be obtained. 

If a canopy consists of non-horizontal leaves, it is no longer a Lam-

bertian reflector as a whole, even though all the leaves are Lambertian 

scatterers (Goudriaan, 1977). The simple form of the Kubelka-Munk equa­

tions cannot be applied, because the directional reflection and transmission 

of the radiation have to be taken into account. If azimuthal variations of 

the radiation is ignored and only the change of the radiation in zenith (or 

inclination) is considered, the radiation from all directions in a hemisphere 

can be specified by the radiation intensities from several discretized and 

contiguous zones which span the whole hemisphere (Goudriaan, 1977). Gou­

driaan (1977) further divided the whole canopy into several layers and 

derived a set of equations for these unknown upward and downward radia­

tion components. He solved these equations by iteration. Cooper et al. 

(1982) applied the adding method, developed by van de Hulst (1963) under 

vector-matrix notation, and solved the same transfer problem without refer­

ring to the equations. Neither method, however, is feasible for including 

the azimuthal variations, because of the prohibitively long execution time. 

It was shown in Chapter 2 that in vector-matrix notation, the equations 

for radiation transfer derived by Goudriaan (1977) can be written as dif­

ference equations in vector-matrix forms. In this Chapter it is shown that 

these difference equations can be derived directly under vector-matrix 

notation and transformed into differential equations, which are, in fact, 

extended Kubelka-Munk equations (where the variables are downward and 

upward radiation vectors and the coefficients are matrices) . These equa­

tions can then be solved using standard matrix algebra methods. The di­

rectional reflectance into different zones of a hemisphere can be directly 

obtained from the solutions. It is shown in this Chapter further that the 

equations and the solutions are also able to account for azimuthal varia­

tions, but although analytical solutions are available the resolution in 

azimuth is restricted by the execution time. A special method is then 

developed to reduce the execution time for leaf canopies without obvious 

azimuthal preference, which is the case for most crop canopies (de Wit, 
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1965) . A few i l lus t ra t ive examples a re p r e s en t ed to show t he feasibility of 

t he t h eo ry , while comparison of t he r e su l t s with experimental data is left 

for fu ture work . 

3.2 Vector-matr ix r ep resen ta t ion of radiat ion and i t s in terac t ion with a 

leaf or a canopy 

For the t r an s f e r of radiat ion in a horizontal ly homogeneous vege ta t ive 

canopy , i t is convenient to divide the radiat ion into downward and upward 

components x and y from and into an u ppe r - hemi sphe r e , r e spec t ive ly . The 

d irect ion from a hemisphere is de termined by two va r i ab le s , inclination i 

(or zenith) and azimuth j , so t ha t x and y a re cont inuous functions of i 

and j . If a whole hemisphere is subd iv ided into severa l cont iguous s ec to r s 

each with a solid angle cos(i)w.w., where w. and w. a r e , r e spec t ive ly , the 

inclination and azimuth widths of t he s ec to r , and if within each sector the 

r ad iance is assumed the same, x and y can be r e p r e s en t ed by t en so r s of 

o r de r two (ma t r i ces ) . The b idirect ional ref lectance and t r ansmi t tance of a 

leaf or a horizonally homogeneous canopy layer can be specified by t en so r s 

of o r de r four (Chap te r 2 ) . An i l lus t ra t ion is g iven in F i g . 3 . 1 . Two s e c ­

t o r s , A and A' with solid angles cos(i)w.w. and cos( i ' )w. ,w. , , r e spec t ive ly , 

a re shown. The radiat ion flux densi t ies from all s ec to r s in the hemisphere 

cons t i tu te a downward radiat ion t en so r . In F ig . 3.1 one component of the 

exitant direction Ii'J') 

incident direction (i,j) 

Fig. 3 . 1 . The vec to r -mat r ix r ep resen ta t ion of t he radiat ion and i t s i n t e rac ­

tion with a horizontal leaf. 
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downward radiation tensor from the direction specified by (i,j) is incident 

on a horizontal leaf. The leaf reflects radiation into all the sectors in the 

hemisphere, these reflected radiation components constitute an upward ra­

diation tensor. In the figure one of these components in the direction spe­

cified by (i',j') is shown. For these two fixed incident and exitant direc­

tions, the bidirectional reflectance of the leaf is denoted by r ( i ' , j ' , i , j ) . 

These bidirectional reflectance coefficients for all different values of i ' , j ' , 

i, and j , constitute the reflectance tensor of the leaf, which is of order four. 

If the azimuthal variation of the radiation is ignored, the sectors shown 

in Fig.3.1 with the same inclinations can be combined into horizontal zones, 

and the radiation intensities from the relevant sectors can be summed up to 

form a total intensity of the zones, then the downward and upward radiation 

can be specified by vectors (tensors of order one), and the bidirectional 

reflectance and transmittance by matrices (tensors of order two) . This situ­

ation will be examined first. The radiation flux densities in this Chapter, 

following Goudriaan's usage (1977), refer to those at a horizontal plane. 

3.3 The Kubelka-Munk equations in vector-matrix forms 

Divide a vegetative canopy into several layers, each having a leaf area 

index s. Denote the downward and upward radiation vectors above layer j 

by x- and y_., respectively (Fig.3.2). As a downward radiation vector, say 

x., interacts with the layer j , both upward and downward radiation vectors 

are generated. If there are no other layers above and below the layer j , 

the generated downward radiation vector x- . is Tx. and the upward one 

y_. is Rx., where T and R are, respectively, the transmittance and reflect­

ance matrices of the layer. If the leaf area index, s, of the layer is very 

small, the multiple scattering between the leaves within the layer can be 

ignored. The interception fractions of the radiation from different direc­

tions are determined by the projections of the total leaf area in the layer 

onto the relevant directions and can be denoted by sM, where M is the 

interception matrix and is diagonal. The penetration fraction then is I-sM, 

where I is the identity matrix. The radiation intercepted by the leaves will 

be scattered either back or forward, and this interaction can be specified 

by the back-scattering matrix B and the forward-scattering matrix F. The 

transmittance and reflectance matrices T and R then can be obtained as: 
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layer 1 

I" 
T, R 

«' 

layer j 

Xj+l 

layer j * 1 

I'i 
! 

jy j+ i 

T, R 

layer n-1 T , R 

I"- N 
itt/>tnwittr>tr/r.'t/ 

%Soil Surface , R % 

Fig . 3 .2 . Downward and upward radiat ion vec to r s at d ifferent l a y e r s . For 

meaning of symbols see the t e x t . 

T = I - sM + sF, R = sB. (3 .1) 

When t h e r e a re o the r l aye r s above and below the l ayer j , t he radiat ion 

ref lected by the l ayers j - 1 and j+1 have to be t aken into account . By 

r e f e r r ing to F ig . 3 .2 , t he following equat ions can be ob ta ined: 

x. , , = Tx. + Ry. , ., , Ty. n + Rx. 
-Z-l+l - i 

Subs t i tu t ing E q s . ( 3 J l ) in to (3 .2) and r e a r r a ng i ng g ives : 

( ï j + l ^ j ) / s = -(M-F)x. + B Z j + 1 , ( Z . + 1 - 2 . ) / s = (M-F) Z j + 1 - Bx. 

As s t ends to ze ro , E q s . ( 3 . 3 ) become differential equa t ions : 

dx /dl = -(M-F)x + By_, dy/dl = -Bx + (M-F)y_, 

(3 .2) 

(3 .3 ) 

( 3 .4 ) 

where 1 is t he cumulative leaf a rea index r eckoned from the top of the 

c anopy . The bounda ry condit ions a r e : 
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x(0) = x „ , y ( l ) = R x ( l ) , (3.5) 
— —U ^- c s— c 

where 1 is t he total leaf a rea index of the canopy, x« a known downward 

radiat ion vec tor on the top of the canopy, and R is the reflectance matrix 

of t he soil s u r f ace . 

Compared with the Kubelka-Munk equat ions (Allen and Richardson, 1968): 

dx/dl = - ( l - t ) x + r y , dy/dl = - r x + ( l - t ) y , (3.6) 

where t and r a r e , r e spec t ive ly , t he t ransmission and reflection coeffi­

cients of t he l eaves , i t can be seen tha t Eq s . ( 3 . 4 ) a re an ex tended 

vers ion of t he Kubelka-Munk equa t ions . The var iables a re now the 

downward and upward radiat ion v e c t o r s , and the coefficients a re the 

in tercept ion matrix M, forward sca t te r ing matrix F , and back sca t te r ing 

matrix B in place of t he sca lars 1, t , and r , r e spec t ive ly . 

By in t roducing two new var iables 

u ( l ) = x ( l ) + y ( l ) , v ( l ) = x ( l ) - y ( l ) , (3.7) 

Eq s . ( 3 . 4 ) can be wr i t ten a s : 

du/dl = -(M-F+B)v, dv/dl = -(M-F-B)u. (3.8) 

From Eqs . ( 3 . 8 ) : 

d 2 v / d l 2 = (M-F-B)(M-F+B)v = Qv. (3.9) 

To solve Eq . ( 3 . 9 ) the matrix Q must f i rs t be t ransformed into a diagonal 

mat r ix . Computation shows tha t Q can be diagonalized and is posit ive defi­

n i t e , so Q can be wr i t ten a s : 

PV 1 . Q = VFV , (3.10) 

where the matrices P and V can be obtained by us ing s t anda rd sof tware. In 

te rms of E q . ( 3 . 1 0 ) , Q and Q can be obtained as Q =V(P ) V and 
1/2 - 1 

Q =VPV . A matrix exponential function of t he i ndependent var iable 1, 
1/2 - 1 

exp(Q 1), can then be obtained as Vexp(Pl)V . Because P is a diagonal 

matr ix , t h e r e is no difficulty in calculating e x p ( P l ) . It can be verified by 

subs t i tu t ion tha t 
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V j d ) = Vexp(Pl)V 1 2c , v 2 ( l ) =Vexp(-Pl)V 12d, (3.11) 

a re two solutions of E q . ( 3 . 9 ) . The general solution can be obtained a s : 

v ( l ) = Vexp(Pl)V_12c + Vexp(-Pl)V_12d, (3.12) 

where c and d a re two a r b i t r a r y v e c t o r s , and u can be found from Eqs . ( 3 . 8 ) : 

u ( l ) = -(M-F-B)" lVPV -1(Vexp(Pl)V -12c - Vexp(-Pl)V _ 12d) . (3.13) 

Since VPV _ 1=(VP 2V _ 1 ) (VP _ 1 V - 1 ) = (M-F-B) (M-F+B)VP _ 1V - 1 , Eq . (3 .13) 

can be r ewr i t t en as 

u = -(M-F+B)VP_V1(Vexp(Pl)V~12c - Vexp(-Pl)V _ 12d) . (3.14) 

This p rocedure removes an inversion opera t ion, which is more t ime-consuming 

than multiplication, par t icu lar ly when the matrices a re l a rge . 

I t follows from Eqs . ( 3 . 7 ) , (3.12) and (3.14) t ha t 

x ( l ) = -R .E( l ) Jc + E ( - l ) J d , y_(l) = -E ( l ) J c + R .E ( - l ) Jd , (3.15) 

where 

R. = HJ _ 1 , H = (M-F+B)VP_1V-1 - I , J = (M-F+B)VP'V 1 + 1, (3.16) 

and E(l) is a matrix function of 1 defined as 

E( l ) = ( JV)exp(PD(JV)" 1 . (3.17) 

The two constant vec tors c and d can be determined by the boundary condi­

t ions ( Eq s . ( 3 . 5 ) ) a s : 

c = - J _ 1 ( I + C R . ) " 1 ^ , d = J - 1 ( I - R (I-KH ) - 1 C)x 0 , (3.18) 

where the matrix C is defined a s : 

C = E ( - l )GE(-1 ) w i th G = (R R. - I ) - 1 ( R . - R ) . (3.19) 

c c S I I S 
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Subs t i tu t ing Eqs . (3 .18) into (3.15) y ie lds : 

x ( l ) = (R.D(l) + A ( - l ) ) x n , 2 ( 1 ) = (D(l) + R . A ( - l ) ) x „ (3.20) 

where 

D(l) = E (1 ) ( I + CR.) 1C, A ( - l ) = E ( -1 ) ( I -R . (I+CR.) C ) . (3.21) 

The zonal t ransmit tance matr ix , T , and the zonal ref lectance matr ix , 
zon 

R , of the whole canopy can be obtained from Eqs . (3 .20) by subs t i tu t ing 

1 or zero , r e spec t ive ly , for 1: 

T = R.E(1 KI+CR. ) XC + E ( - l ) ( I -R. (I+CR. ) XQ zon l c l c l l 

R = R. + ( I-R.2)(I+CR. ) _ 1 C. zon l l l 

(3 .22) 

(3 .23) 

As 1 t ends to inf ini ty, E(- l ) and then C t end to zero , so R t ends to 
c c zon 

R.. R. is t hu s the zonal ref lectance matrix of a canopy with an infinite leaf 

a rea i ndex . 

3.4 Including azimuthal var ia t ions 

In the general case , if azimuthal var ia t ions of the radia t ions a re also 

of i n t e r e s t , radiat ion must be r e p r e s en t ed by a t ensor of o rde r two. But 

the radiat ion t ensor of o rde r two can be r e p r e s en t ed by an expended vec to r , 

if all t he components a re a r r anged in one column: 

£ ^X , , X - ~ , • • • • • . , X J , 
—1 —ù —m 

(3 .24) 

where x. (j=l to m) is the radiat ion vec tor for a fixed azimuth j , m is the 

total number of the i n te rva l s in the azimuth, and t denotes t r anspos i t ion . 

The forward sca t te r ing matrix F , for i n s t ance , should also be ex tended 

to form the matrix F* : 

F* 

F 1 1 F 1 2 

21 r 22 

ml m2 

Tlm 
' 2m 

(3.25) 
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where F.,. ( j , j '=l to m) is t he forward sca t te r ing matrix for t he incident 

radiat ion vec tor x. and the exi tant radiat ion vector x . . . The upward r ad i a -
- ] - J ' 

tion vec to r , y , and the matrices I , M, and B should also be ex tended in the 

same way. The Kubelka-Munk equat ions in vec tor -mat r ix forms ( E q s . ( 3 . 4 ) ) , 

t he solutions (Eqs . (3.20) ) , and the directional t ransmit tance and re f lec­

tance of t he whole canopy (Eqs . (3.22) and ( 3 . 23)) can then be used to 

determine the azimuthal va r ia t ions . 

3.5 Calculation of the matrices M*, F*, and B* and the normalization 

The coefficients in the general ized Kubelka-Munk equat ions (Eqs . ( 3 . 4 ) ) , 

the matrices M, F and B (or the i r ex tended forms M*, F*, and B*) must be 

de termined. These basic matrices can be obtained from those of the s ingle 

leaves and the leaf angular d i s t r ibu t ion . The back and forward sca t te r ing 

matrices of a horizontal layer containing only one Lambertian leaf with 

inclination iT and azimuth j T can be determined as (Chapter 2) : 

B * ( i ' , j ' , i , j ) = s (q / i r )cos( i ' )w. ,w. , | co s (a ' ) cos(a) | s i n ( i ) , (3.26) 

FT * ( i ' ,] ' , i , j ) = s (q ' / i r )cos( i ' )w. ,w. . | co s (a ' ) cos(a) | s i n ( i ) . (3.27) 

Here s is the leaf a rea i ndex , a is t he angle between the incident r ad ia ­

tion and the normal of the leaf, and a' is tha t for exi tant r ad ia t ion: 

cos(a) = c o s ( i ) co s ( j ) s i n ( i T ) cos( jT ) 

+ c o s ( i ) s i n ( j ) s i n ( i . ) s i n ( j . ) + s i n ( i ) co s ( i _ ) , (3.28) 

c o s ( a ' ) = c o s ( i ' ) c o s ( j ' ) s i n ( i T ) c o s ( j T ) 
hi Li 

+ cos( i ' ) s i n ( j ' ) s i n ( i . ) s i n ( j T ) + s i n ( i ' ) c o s ( i . ) , (3.29) 

and q=r , q '=t, when cos (a) cos (a') à0; q=t, q '=r , when cos (a )cos (a ' ) < 0. The 

notation of s in(i) and cos(i) means tha t t he s ine and cosine functions for 

the angle in terva l i a re calculated us ing a r ep re sen ta t ive angle , e . g . the 

value in the middle of t he i n t e rva l . 

Summing all t he back and forward sca t te r ing matrices of t he leaves with 

different o r ien ta t ions , weighted by angular d i s t r ibu t ion , yields the c o r r e ­

sponding matrices B* and F* . The diagonal components of t he in tercept ion 

matrix M* can be calculated a s : 
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M * ( i , j , i , j ) = 0 ( i , j ) / s i n ( i ) , (3.30) 

where 0 ( i , j ) is t he projection of t he leaves in a l ayer with a uni t leaf 

a rea index onto the direct ion ( i , j ) . 

Because of the discret izat ion the sum of the all components of F* and B* 

is usually not exactly equal to s ( t+r ) multiplied by the incident r ad i a ­

t ion. This means tha t t he conservat ion of the radiat ion ene rgy is v iolated. 

When the value of t+r is h i gh , the multiple s ca t te r ing between l ayers p lays 

an important r o le . The non-conservat ion of ene rgy in the matrices F* and B* 

will be g reat ly amplified in the end r e s u l t s . Thus the normalization p r o ce ­

du re is not t r iv ia l , as noticed by Goudriaan (1977). 

Denote the sum of F_ * and B_ * as S * . Now 

S. *( i ' , j ' , i , j ) = s( ( t+ r ) / i i ) cos ( i ' )w. ,w. . | c o s ( a ' ) co s ( a ) | s i n ( i ) . (3.31) 
u 1 i 

Consider the horizontal leaf f i r s t . According to Eqs . (3 .28 ) and ( 3 .29 ) , 

cos(a)=sin( i ) and cos(a ' )=s in( i ' ) in th is case , so Eq . (3 .31) becomes: 

S T * ( i \ j ' , i , j ) = s ( ( t + r ) / i r ) c o s ( i ' )w . ,w. . s i n ( i ' ) (3.32) 

The normalization condition r equ i r e s tha t the sum of ST * ( i l , j ' , i>j) » with 

r e spec t to i' and j ' over the whole uppe r -hemi sphe re , be exactly equal to 

s ( t + r ) . After summing S. * ( i ' , j ' i , j ) over the azimuth, th is r equi rement 

becomes tha t t he sum of 2s in( i ' )cos( i ' ) w., over all inclination in tervals 

should be exactly equal to u n i t y . This is t r u e , however , only as w., t ends 

to zero , when the summation becomes an in tegra l of 2 s i n ( t ) co s ( t ) d t from t=0 

to it 12. But if w., is replaced by sin(w.,) ( the difference between them 

t ends to zero as w., t ends z e ro ) , it can be p roven tha t t he normalization 

condition is fulfilled. In fact , t he in tegra l of 2 s i n ( t ) co s ( t ) d t from the 

lower bounda ry b , to the uppe r bounda ry b ? of t he in terva l w.,, is equal to 

2sin( ( b , +b ? ) / 2 ) co s ( ( b - .+b- ) /2 ) s in (b ; ) -b , ) . This express ion can be wr i t ten as 

2 s in ( i ' ) cos ( i ' ) s in (w. , ) , if the middle point of the in terva l w., is u sed to 

calculate s in( i ' ) and cos(i ' ) . Since the sum of 2s in( i ' )cos( i ' ) s in(w. , ) 

over the all i n te rva ls is t he in tegra l of 2 s i n ( t ) co s ( t ) d t from t=0 to TT/2, 

which equals un i t y , t he normalization condition will be fulfilled for a 

horizontal leaf, if w., in Eqs . (3 .26 ) and (3.27) is replaced by s i n (w . , ) . 

For an inclined leaf the normalization condition can be fulfilled by 

adjust ing cos(a ' ) according to the following equat ion: 
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n m 
( l / ir) Z £ cos( i ' ) s in(w. , )w. , | c o s ( a ' ) | = 1. (3.33) 

The value of cos(a ' ) t hu s obtained is u sed also for c o s ( a ) , which en ­

su re s the validity of t he rec iproci ty relat ion (Chapter 2 ) . 

3.6 Techniques of r educ ing execution time for a leaf canopy without azimu-

thal p re fe rence 

As the basic matrices M*, F* , B* . and the boundary condition R * have 
s 

been de termined, the bidirectional ref lectance p a t t e r n of a canopy can be 

calculated by the analytical solution E q . ( 3 . 2 3 ) . I t can be seen tha t multi­

plication, invers ion and similarity t ransformation of matrices a re invol­

ved . The execution time is approximately propor t ional to the cube of t he 

dimensions of t he mat r ices . If each inclination in terva l is t aken as 10 

d eg r e e s , t he matrices involved in calculating zonal ref lectance of t he 

canopy have dimensions 9 x 9 . For accounting for the azimuthal va r i a t ions , 

if the azimuth in terva l is also taken as 10 d eg r e e s , t he r e levant ex tended 

matrices will have dimensions of 324 x 324. The execution time for calcu­

lating the b idirect ional reflectance p a t t e r n s of t he canopy will be p roh ib i ­

tively long even though the analytical solution is available. It is des i rable , 

t he re fo re , to develop t echniques to r educe the execution t ime. This is 

possible for a leaf canopy without obvious azimuthal p r e f e r ence , as is t he 

case for most c rops (de Wit, 1965) . 

For such a canopy, because of the azimuthal symmetry the in tercept ion 

matrix M* is i ndependent of t he azimuth, and the azimuthal dependence of 

t he back and forward sca t te r ing matrices F* and B* is r e la ted only to the 

difference between the azimuths of incident and ex i tant d i rec t ions . T h e r e ­

fore , among the component matrices of an ex tended matrix only m matrices 

a re d i s t inc t . The matrix F* ( E q . ( 3 . 2 5 ) ) , e . g . has only m d is t inct matrices 

F . , . . Hence, Eq . (3 .25) becomes: 

F* = 

F
F1 

F 
m 

i 

*m-l 

F . . . . 
F 2 • • • • 
F 2 . . . . 

F . . . . 
m-2 

, , F 

• • ^ ^ 

• • •* ! 

(3.34) 
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where F, (k=l to m) equals F , ._. , , . , so tha t k=l means tha t t he azimuths k \i J | + i 

of the incident and ex i tant d irect ion a re coincident . Moreover, if m is 

t aken as an even number , and m/2 is denoted by m', only m'+l matrices among 

F, ' s a re d i s t inc t , because F , , 1 , , = F . . . , (k=l to m ' - l ) . Hence, t he matrix 
k m' + l+k m'+l-k 

F* can be r e p r e s en t ed a s : 

p* 

F V 
m'+l m' 

m' 

m'+l 

2 

m' 

F , 
m' 

F3 

-1 . . 

. . 

. F l 

• F 2 

F 
m'+l 

2 

F l 

Fm m ' - l 

m'+l (3 .35) 

When the matrices F . to F , , , a re known, the matrix F* is de termined, so 
1 m + 1 

F-. to F , i a re called e lementary matrices of F* . I t can be p roven tha t t he 

p roduc t of two such matrices A* and B* , C*, r e ta ins the same p r ope r t y as 

A* and B*, and the e lementary matrices of C*, C, , can be obtained d i rect ly 

from the e lementary matrices of A* and B*, A. and B . , b y : 

m' 
Z A.(B 

] = 2 k- j + 1 | + Bm'+l - |m '+2-k- j | J + Am'+lBm'+2-k 
(3.36) 

A diagram shown in F i g . 3 . 3 is des igned for m=6 to der ive E q . ( 3 . 3 6 ) . The 

e lementary matrices of A* and B* are a r r anged counterclockwise along two 

circles as A .A ?A,A 4 A , A ? and B 1 B ? B,B .B_B ; ) . The e lementary 

matrices of the p r oduc t , C, , a re the sum of the p roduc t s of A, and B, on 

the same posi t ions in the c i rc les . For C, , t he matrices A's and B's with the 

same s ubsc r i p t s jus t on the same pos i t ions . For C? t he A-circle is f ixed, 

while the B-circle is t u r ned clockwise one s t ep ; for C , , two s t eps and so 

on . I t is clear t ha t Eq . (3 .36) g rea t ly r educes s to rage as well as t he compu­

t ing t ime. 

Unfor tunate ly , no simple method is found to i nve r t such matrices d i r ec t ­

ly from the i r e lementary mat r ices . But t h e r e ex is ts a method to r educe the 

dimension by a factor of two. Inspect ing Eq . (3 .35) shows tha t the equ iva­

lent matrix F* contains only two different blocks P and Q a s : 
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Fig . 3 . 3 . The component matrices C. and C_ of the p roduc t of A and B . 

jr* 
P Q 

Q P 
(3 .37) 

so that the inverse can be determined by 

(F*) 
-1 S G 

G S 

where 

S = (P - QP _ 1 Q) _ 1 , G = - P-1QS. 

(3.38) 

(3.39) 

For similarity t ransformation of matrix Q* to a diagonal mat r ix , the 

same method can be appl ied. By denot ing Q* in t he block form 

A B 

B A 

Q* can be r ewr i t t en as 

(3.40) 

Q* 
I I 

- I I 

A-B 0 

0 A+B 

I - I 

I I 
(3.41) 

Computation shows tha t A-B and A+B can be t ransformed in to diagonal matr i ­

ces S and G: 
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\ d / a , /a /° 
1 laver 1 

\ / / 
1 layer 2 

T . R 1 

/V 
T . R 1 

V / 
1 layer 3 T . R 1 

\ / \ 
1 layer U 

\ 
1 laver 5 

. T . R 1 

\ / \ 
T . R 1 

\ b , \ b 2 \ b j 

^9iŒH°^ 
Fig. 3.4. Components of the reflected and transmitted radiation vectors with 
different paths. 

-1 -1 
A - B = VSV , A + B = UGU "\ 

Q* can thus be expressed as: 

( 3 . 4 2 ) 

Q*= | 
V U 

-V u 

S 0 

0 G 

v"1 -v"1 

u"1 u"1 ( 3 . 4 3 ) 

The validity of Eq.(3.43) can be verified directly by multiplications. 

3.7 Approximation method 

Although techniques have been developed to reduce the execution time, 

the resolution in azimuth is still restricted. It was shown in Chapter 2 

that the reflected and transmitted radiation vectors of a canopy are com­

posed of an infinite number of component vectors. An illustration is shown 

in Fig.3.4. A radiation vector d is incident upon the top of the canopy. 

The radiation vector a, is obtained by the interaction of d with layers 1 

and 2: a,=TRTd, as shown in the figure. The radiation vectors a? and a, 

can be obtained similarly. An infinite number of the component radiation 

vectors such as a , , a.,, and a, constitute a reflected radiation vector from 

the top of the canopy. The transmitted radiation vector through the bottom 

of the canopy is , similarly, composed of an infinite number of the compo-
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nent radiat ion vec to rs such as b , b ? , and b , . It can be seen from Fig . 3.4 

tha t for es tabl ishing e i ther a reflected or a t r ansmi t ted component radiat ion 

vec to r , t h e r e must be an odd number of reflections by t he l a ye r s . For a 

leaf canopy without azimuthal p r e fe rence , the back and forward sca t te r ing 

matrices a re composed of the e lementary matrices as mentioned above . The 

formula determining the p roduc t of two such k ind of matrices (Eq . (3 .36 ) ) 

e n su re s t ha t t he more the in teract ion of t he radiat ion vec tor with the 

l ayers t akes p lace, the more the var ia t ions of t he radiat ion in tens i ty with 

azimuth will be smoothed. In fact , l i t t le variat ion is left after th ree-fold 

i n t e rac t ions . For pract ical p u r po s e s , it is sufficient to consider only the 

s ingle reflection from different l ayers to find the contr ibut ion to the 

azimuthal var iat ion of the reflected radiat ion v e c t o r s . 

Consider an infinitesimal layer with leaf a rea index dl at t he dep th 1. 

Assume the azimuth of the incident radiat ion to be z e ro . The component r e ­

flectance mat r ix , dR*, formed by single reflection from the layer dl with 

no in teract ion with the o ther l ayers can be calculated a s : 

d R * ( i ' , j ' , i , 0 ) = e - M ( i ' ' i ' ) 1 e - M ( i ' i ) 1 B * ( i ' , j ' , i , 0 ) d l , (3.44) 

where M is t he e lementary matrix of the in tercept ion matrix M*. The total 

contr ibut ion of all t he l ayers can be obtained by in tegra t ion : 

R * ( i ' , j \ i , 0 ) = B * ( i ' , j < ( i , 0 ) ( l - e - ( M ( i ' ' i ' ) ^ ( i ' i ) ) 1 c ) 

/ ( M ( i ' , i ' ) 4 M ( i , i ) ) . (3.45) 

Meanwhile, t he total zonal ref lectance matrix R of the canopv can be 
zon ^ ' 

easily calculated us ing the analytical solution E q . ( 3 . 2 4 ) . The difference 
between R ( i ' , i ) and the sum of R* ( i ' , i ' , i , 0 ) ( i '=l to m) can be consid-zon J 

ered evenly d i s t r ibu ted over azimuth. The e lementary matrices of the r e ­

flectance matrix of the canopy t hu s can be obta ined: 

m 
R * ( i ' , i ' , i , 0 ) = R * ( i ' , j ' , i , 0 ) + ( R ( i ' , i ) - I R * ( i ' , i ' , i , 0 ) ) / m . (3.46) 

c zon . , -, 

The t ransmit tance matrix of the canopy can be t r ea ted similarly, except 

tha t a d i rect ly t ransmi t ted p a r t should be added: 

T * ( i ' , j ' , i , 0 ) = F * ( i ' , j ' , i , 0 ) ( e - M ( i ' ' i ' ) 1 c - e - M ( i , i ) 1 c ) 

/ ( M ( i , i ) - M ( i ' , i ' ) ) + d . , . e " M ( i , i ) 1 c (3.47) 
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Fig. 3.5. Azimuthai variations of reflection radiance from a canopy with 

spherical inclination distribution (S) and with vertical leaves (V). The 

inclination for incident and exitant directions are 25 degrees. 

where d.,. is equal to unity when i=i', and zero otherwise. The t rans-

mittance matrix of the canopy is: 

T * ( i ' , j ' , i , 0 ) = T* ( i ' , j ' , i , 0 )+ (T ( i ' . i ) - E T * ( i , . j ' , i , 0 ) ) / m (3.48) 
c zon i—i 

where T is the total zonal transmittance matrix, 
zon 

3.8 Some illustrative results 

It is not the purpose of this Chapter to calculate and discuss the 

reflectance and transmittance matrices for various kinds of crop canopies, 

although the method developed is aimed primarily at practical applications. 
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For total zonal reflectance and transmittance, the results are almost 

exactly the same as those obtained by Goudriaan (1977), while the execution 

time is greatly reduced (about 1 second on the computer DEC10) . The appro­

ximate method is used to calculate the detailed azimuthal variations of the 

reflected radiance, as shown in Fig.3.5. The results are given for vertical 

leaves and for the leaves with a spherical inclination distribution. The 

inclinations for incident and exitant directions are 25 degrees. The azi­

muthal angle interval is 10 degrees, so high resolution is ensured. The 

execution time is about 10 seconds. The azimuthal variations shown in 

Fig. 3.5 refer to a canopy with t=r=0.4. Because of the multiple scattering 

between the layers they are less variable than the results obtained by Ross 

(1981) for a 'mean leaf'. 

3.9 Discussion 

3.9.1 Non-Lambertian scatterers 

That leaves are Lambertian scatterers is an oversimplified assumption. 

It is adopted in this Chapter merely for convenience of explaining the 

method. Under vector-matrix notation, it is no longer a restriction. The 

reflectance and transmittance matrices of a given leaf can be measured 

experimentally (Breece and Holmes, 1971). The basic back and forward 

scattering matrices of a canopy can be calculated by the formulas given in 

Chapter 2, and the rest of the procedure remains the same. 

3.9.2 Applicability to the atmosphere and clouds 

Although the differential equations and the methods to solve the equa­

tions in this Chapter are developed with special attention to crop cano­

pies, it can be obviously applied to the radiation transfer through the 

atmosphere or through clouds. The only difference lies in the way of calcu­

lating the basic back and forward scattering matrices. In this case, they 

can be calculated from the phase function of the constituent scattering 

substances, such as gas molecules, particles or water droplets, and the 

knowledge of their size distribution functions. The cumulative leaf area 

index, of course, should be replaced by the optical depth used conven­

tionally . 
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3.9.3 Superposition of several heterogeneous layers 

Sometimes, the scattering medium cannot be represented by one layer 

with uniform properties. For instance, a mature rice or wheat crop canopy 

is better represented by two layers, one corresponding to the ears, and 

the other to the leaves. For remote sensing, between the crop canopy and 

the sensors, there is a layer of air, which also scatters radiation. This 

effect must be included if a more accurate result is demanded. The method 

developed in this Chapter can be readily adapted to these cases. The 

calculation should be started from the lowest layer, and the reflectance 

matrix of the underlying surface, the soil surface, say, is taken as the 

boundary condition. The solution of the reflectance matrix of the lowest 

layer thus obtained can be employed as the boundary condition for the 

second layer, and so on. 
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4 Uncoupled Multi-Layer Model for the Transfer of Sensible and Latent Heat 

Flux Densities from Vegetation 

(accepted by Boundary-Layer Meteorology) 

Abstract 

The sensible heat flux density C and the latent heat flux density XE 

are coupled in the case of a multi-layer model of vegetation. Therefore two 

linearly independent combinations of C and XE, the enthalpy flux density H 

and the saturation heat flux density J, are introduced. Two electrical 

analogues, for H and J, are designed. They are equivalent to the resistance 

scheme for C and XE, but uncoupled. Penman's formulas for C and XE, 

which are applicable only to single-layer models, can be expressed equiva-

lently in terms of H and J . This version of Penman's formulas can be 

extended easily to multi-layer canopies. 

4.1 Introduction 

Transpiration from a crop stand has been and is still being extensively 

studied, both experimentally and theoretically, because of its importance to 

agriculture as well as to meteorology. As to the theoretical work, there are 

two different approaches: single-layer models and multi-layer models. Both 

are well developed. For single-layer models, Penman's (1948) formulas are 

the most frequently used equations for determining sensible and latent heat 

flux densities from an evaporating surface, based on the energy balance 

approach. The energy balance method can also be used in the multilayer 

models. The unknown variables are the temperatures and humidities of 

each layer, and the sensible and latent heat flux densities at different 

levels within the canopy. Unfortunately, the equations for sensible and 

latent heat flux densities are coupled, so that explicit expressions for 

canopy latent and sensible heat flux densities have not been developed. 

Although single-layer models may not be adequate for many cases, they 

have been widely used because of their simplicity. Multi-layer models 

should be more useful if analytical solutions can be offered for their 

steady-state flux densities. Shuttleworth (1976) derived a so-called com­

bination equation in an attempt to obtain a unified model for single- and 

multi-layer ones. 
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In this Chapter the multi-layer model developed by Goudriaan and 

Waggoner (1972) is examined. Then two linearly independent combinations 

of sensible and latent heat flux densities are introduced. Using the enthal­

py flux density H and the saturation heat flux density J as two new 

variables, the equations are uncoupled. Two electrical analogues for H and 

J are designed. Based on the uncoupled electrical analogues, analytical 

solutions can be found. 

4.2 Coupled multi-layer model 

Agrometeorologists are interested not only in the sensible and latent 

heat flux densities above a crop canopy, but also in the profiles of tem­

perature and humidity within the canopy. To simulate these profiles, 

single-layer models are no longer applicable. One has to divide the whole 

canopy into several layers, and define the leaf temperature, air tempera­

ture and humidity, and the sensible and latent heat flux densities in each 

layer as state variables. 

Because the heat capacity of the air in the free space within the canopy 

and that of the leaves are rather small, for a mean state over a relatively 

long period, one hour say, the heat storage term can be ignored in the 

energy balance equation. For every layer, therefore, the net radiation 

absorbed can be considered to be equal to the sum of the sensible and 

latent heat flux densities. These energy balance equations together with 

the relationships between flux densities and relevant driving forces, using 

the analogy of the electrical circuit theory, constitute a closed set of 

equations for all unknown variables. This method was used by Waggoner et 

al. (1969) and Goudriaan and Waggoner (1972). The electrical analogue 

shown in Fig.4.1 is based on these two papers, but the notations for the 

variables and the symbols for the potential and current sources are adap­

ted to standard usage. 

The driving force (potential source) above the canopy for sensible heat 

flux density is p c T „, in which pc is the volumetric heat capacity of 

air, T . is the air temperature at the reference height. The driving force 

above the canopy for latent heat flux density is(pc ly)e „, where y is the 
p a, u 

psychrometric constant and e n is the water vapour pressure of the air at 

the reference height. In addition to these two potential sources, there is a 

current source for each layer. This is the net radiation absorbed within 
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(pcp/Y)e a 0 

4 

Fig . 4 . 1 . Electrical analogue for sensible and l a tent heat flux dens i t i e s . 

For meaning of symbols , see the t e x t . 

the l ayer , denoted as S., where i specifies the l ayer i ndex . The sensible 

and la tent heat flux densi t ies suppl ied by the l ayer i a re denoted by C.' 

a n dXE . ' , r e spec t ive ly . The co r responding r e s i s t ances a re specified by r H . 

and r , r . . The r e s i s t ances in the ver t ica l d i rect ion due to t u rbu l en t e x -
V , i 

change are r e p r e s en t ed by the R . ' s , which a re assumed to be the same for 

both the sensible and la tent heat t r a n s f e r s . Based on th i s e lectrical analo­

gue , t he following equat ions can be ob ta ined: 

C. ' + XE. ' 
l l 

S . , 

C. ' = pc (TT . - T . ) / r „ . , 
l p L , l a , l H, l 

XE ' = (pc / Y ) ( e ( T T ) - e . ) / r v , , 
l p S J J , I a , i V, l 

e (T. . ) = e (T . ) + A(T. . - T . ) . 
s L, l s a, l L, l a, l 

(4 .1) 

(4.2) 

(4.3) 

(4.4) 

Eq . ( 4 . 1 ) is t he e ne rgy balance equa t ion . E q s . ( 4 . 2 ) and (4.3) a re the 

analogues of t he Ohm's law for the sources of t he sensible and l a ten t hea t 

flux dens i t i e s . The sensible heat flux dens i ty o r ig inates from the leaf 
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su r faces , so t ha t t he leaf t empera ture T. . is i n t roduced . T . is the 
L,i a , i 

t empera ture of t he air s u r round ing the l eaves . r „ . consis ts of only the 

leaf bounda ry - l aye r r e s i s t ance for heat t r a n s f e r . The l a tent heat flux 

dens i ty or iginates from the substomatal cavi t ies . The air within the cavities 

is assumed to be s a tu r a t ed by water v apour , so t ha t t he vapour p r e s s u r e 

t h e r e can be determined as the s a tu r a t ed vapour p r e s s u r e at the c o r r e ­

sponding leaf t empera ture e (T . . ) . The var iable e . is t he vapour p r e s ­

su r e of t he air s u r round ing the l eaves . The r e s i s t ance for the vapour 

t r ans f e r from the substomatal cavities to the s u r round ing free space within 

the canopy, r v . , is composed of two p a r t s : t he stomatal r e s i s t ance and 

the leaf bounda ry - l aye r r e s i s t ance . 

Due to the different diffusion coefficients of v apour and heat in a i r , 

the leaf bounda ry - l aye r r e s i s tance for l a tent heat is s l ightly different from 
r . . . . I t is often convenient to define t he stomatal r e s i s t ance r as 

H,i s 

r s = r v - r H . (4.5) 

Eq . ( 4 . 4 ) is t he l inearized s a tu ra t ed vapour p r e s s u r e v e r s u s t empera ture 

c u r v e , which is in fact more or less exponent ia l , and A is i t s slope d e t e r ­

mined at a p rope r t empera tu re , T . To complete the system of equa t ions , 

Ohm's law can be applied in the ver t ical d i rect ion: 

l 

Z C . ' = pc (T . -, - T . ) /R. ( i = l to n) (4.6) 
] y p a , l - l a , i l 

I XE.' = (pc / Y ) ( e • , - e . ) /R. ( i= l t o n ) (4.7) 
j=n 3 P a , l - l a , i l 

where n specifies the total number of the l a y e r s . 

The d r iv ing forces in the ver t ical direction for sensible and la tent heat 

flux densi t ies a r e , r e spec t ive ly , t he d ifferences in pc T and pc e ly 
p a p a 

between l a y e r s . The flux densi t ies t h rough R. a re composed of all sources 

from l ayers i to n , so t he summation is car r ied out on the l e f t -hand s ides 

of Eq s . ( 4 . 6 ) and ( 4 . 7 ) . 

Eq s . ( 4 . 1 ) t h rough ( 4 . 4 ) , (4.6) and (4.7) const i tu te a closed set of 

equa t ions . Being coupled they have to be solved s imultaneously. A matrix 

method was developed by Waggoner et a l . (1969). Although sophist icated 

software for solving matr ix problems a r e avai lable, explici t analytical 
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Solutions a re needed to simplify the application of th is t heory and to 

p rovide a more d i rect physical ins ight into canopy behav iour . The idea is 

to make the equat ions uncoupled by in t roducing two l inearly independent 

combinations of C and XE. 

4 .3 Uncoupling 

One of the two r equ i r ed combinations of C and XE is s t r a igh t fo rward . I t 

follows from Eq . ( 4 . 1 ) t ha t if a new variable H, called the en thalpy flux 

dens i ty , is defined a s : 

H = C + XE. (4.8) 

The source for H from layer i , following E q . ( 4 . 1 ) , can be wr i t ten a s : 

H. ' = S . . (4.9) 
l l 

Because the ne t radiat ion absorbed within each l ayer is a known var iab le , 

H. can be obtained immediately. 

The d r iv ing force for the en tha lpy flux dens i ty in the ver t ical direction 

is t he difference in pc (T +e / Y ) between l a ye r s , a combination of t he 
p a a ' 

d r iv ing forces for sensible and la tent heat flux dens i t ies , following the 

definition of H. The term T +e h is often called the equivalent t empera­

t u r e of a i r , denoted by Te : 
' a 

Te = T + e / v . (4.10) 
a a a ' 

The problem is to find another combination. It follows from Eqs . ( 4 . 1 ) 

t h rough (4.4) t ha t C.' a ndXE. ' can be r ewr i t t en a s : 

C i ' = < * V , i S i - P c p D i ) / ( A r H . i + * r V . i ) ( 4 a i ) 

XE.' = (ArH > .S . + p c p D . ) / ( A r H ! . + Y r y > . ) (4.12) 

where D. is t he water vapour p r e s s u r e deficit of t he air in l ayer i: 

D. = e (T .) - e . . (4.13) 

l s a, l a, l 

To find the o ther combination, it can be noticed tha t Eqs . (4 .11 ) and 

(4.12) only contain one p r ope r t y of the air in the form of t he vapour 

p r e s s u r e deficit , D. . Therefore the flux dens i ty d r iven by the difference 
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in D between l aye r s , should be the des i red combination of t he sensible and 
la tent heat flux dens i t i e s . The s a tu r a t ed vapour p r e s s u r e at air t empera­
t u r e , e (T ) can be e xp re s sed a s : 

s a 

e (T ) = e (T ) + A(T - T ) (4.14) 
s a s p a p 

where T is t he p roper ly chosen t empera ture for evaluat ing A , as 

mentioned be fore . Eq . (4 .13) can be r ewr i t t en a s : 

D. = AT . - e . + e (T ) - AT . (4.15) 
l a, l a, l s p p 

By taking the difference of D. between l ayers i -1 and i , t he constant 

e (T )-AT in Eq . (4 .15) is eliminated. A s ubsequen t multiplication of both 

s ides with ( pc I à) IK. y i e lds : 
P ! 

(pc /A)(D. . - D.) /R. = pc (T . , - T . )/R. 
p l - l i l p a , l - l a , i l 

- ( Y / A ) ( P C / y ) ( e . , - e . )/R. (4.16) 
p a , l - l a , l l 

Referr ing to Eq s . ( 4 . 6 ) and (4.7) shows tha t t he r i gh t - h and side of 

Eq . (4 .16) can be wr i t ten as C.-(y/A)XE.. C. and XE. denote the cumulative 

sensible and l a tent heat flux densi t ies above layer i, which a re the sums 

of the r e levant sources from l ayers i t h rough n as e xp re s sed on the left-

hand side of Eq s . ( 4 . 6 ) and ( 4 . 7 ) . The l e f t -hand s ide of Eq . (4 .16) r e p r e ­

sen t s a new cumulative flux dens i ty denoted now by J. : 

i 
J . = E J . ' = (pc /AMD. , - D . ) / R . ( 4 . 1 7 ) 

l . i p l - l l i 
]=n ' ** 

where J.' is the source term from layer j. Therefore the desired combina­

tion of the sensible and latent heat flux densities is: 

J = C - (y/A)XE (4.18) 

which is valid for both J. and J . ' . 
l l 

It follows from E q s . ( 4 . 1 1 ) , (4.12) and (4.18) tha t the source J.' i s : 

- ( pc /A)D. S. 
J . ' = P 1 + , (4.19) 

( r „ . + ar .) ( 1 + r u . / a r . ) 
H, l s , l H,l s , l 
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Ri < H, 

R2^1H2 

R i ^ H, 

pCpTeO|0 

I l -

& 

€? 

& 

& 
Fig.4.2. Electrical analogue for enthalpy flux density H. 

where r is the stomatal resistance defined by Eq. (4 .5) , and cc is defined 

a = Y/(Y + A) 

4.4 Uncoupled electrical analogues for H and J 

(4 .20) 

For the required electrical analogue for H, a potential source above the 

canopy can be specified as Pc Te n , in which Te n is the equivalent 

temperature of the air at the reference height. The current sources are 

given by Eq.(4.9) for each layer. The electrical analogue is simple, as is 

shown in Fig. 4.2. The meaning of the symbols is the same as those in 

F ig .4 .1 . Now H. specifies the cumulative flux density above layer i, which 

is the sum of the sources H. from layers i through n . H. is positive upwards. 

The change of usage is necessary for obtaining a simpler form of solution 

later. It is obvious that the H.'s are determined only by the current 

sources and independent of the potential source. 

Similar to the electrical analogue for the enthalpy flux density H, a 

potential source above the canopy for J can be specified as (p c /A)Dn, in 

which D. is the vapour pressure deficit of the air at the reference height. 

The role of the current sources requires more consideration. First, a 

diagram can be designed for a single layer. Inspection of Eq.(4.19) indi-
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cates t ha t J. ' is composed of two p a r t s . The f i rs t term on the r i gh t - h and 

side of Eq . (4 .19) is due to the potential source ( pc / A ) D . . The diagram 

can be easily des igned , as is shown in F i g . 4 . 3 ( a ) . The second term on the 

r i gh t - h and side of Eq . (4 .19) is caused by the c u r r en t source S. (for the 

soil surface the heat flux into the soil G should be s ub t r ac t ed from S.) . 

The diagram obtained is shown in F i g . 4 . 3 ( b ) . 

The diagrams in F i g s .4 .3 ( a ) and 4 .3(b) can be combined, according to 

the superposi t ion theorem in electrical t h eo ry , as shown in F i g . 4 . 3 ( c ) . The 

electrical analogue for the whole canopy can be obta ined, based on tha t for 

the s ingle l ayers ( F i g . 4 . 4 ) . 

4.5 Solutions for t he total flux densi t ies tL and J , above a canopy 

The total flux dens i ty H. above the canopy is simply: 

n 
H = IS., (4.21) 

i=i ] 

while tha t of J , has to be determined from Fig . 4 .4 . For simplicity, only 

four l ayers a re assumed, bu t the solutions can be easily ex tended to the 

general c a se . Under the notat ions p re sen t ly u sed , J. is now cumulative to 

each layer i , hence J . '=J . -J . , and Eq . (4 .19) becomes: 

r . ( J . - J . ± . ) = - (pc /A)D. + a r .S . ( i= l to 4 ) , (4.22) 
1 1 l + l p 1 s , 1 1 

where J c is defined as to be ze ro , and r. is defined a s : 
b l 

r . = r „ . + or . . (4.23) 
l H,l s , l 

The o ther four equat ions can be obtained for each R. in the ver t ical d i r ec ­

t ion: 

R.J = (pc /A)(D - D ) ( i= l to 4 ) . (4.24) 

Eqs . (4 .22) and (4.24) r e p r e s en t e ight equat ions for e ight unknown 

var iab les : J. and D. (i=l to 4 ) , so t ha t th is is a closed sys tem. 

-42-



Il 

-Wr-

(PVA)D0 

I l — 

R ï J 

I WV-

( a ) (b) (c) 

Fig. 4.3. Electrical analogues for J for one layer, (a) For the potential 

source; (b) for the current source; (c) combined. 

Substituting Eq.(4.22) into Eq.(4.24) and rearranging gives four equa­

tions for the J. (i=l to 4) : 

( l+R1/r1)J1 - J2 

(R 1 / r 2 )J 1 + (l+Vr2)J2 - J3 

(R1 /r3)J1 + (R2/r3)J2 + ( l+Rj/r^Jj -

(KJr.)J, + (R , / r , ) J , + (R, / r . ) J , + ( l+R. / r J J V1'M •^"•Vl 3'*4>»2 v4' i4 /"4 

where 

b. = (-(pCp/A^ + a r ^ .S . ) / ! - . . 

(4.25a) 

(4.25b) 

(4.25c) 

(4.25d) 

(4.26) 

J, can be solved by using Cramer's rule: 

l+R,/r. 
R / r 2 

R l / r 4 

1+R2!r2 R^/r 
R > 4 

0 
-1 

1+Rj/r 

0 
0 

-1 
R3/r4 l+R4/r4 

l+R,/r9 

R 2 / r 3 

0 
-1 

l+R,/r_ 
R /r 

V 4 

0 
0 

-1 

•V'4 

(4 .27) 

By denoting the determinant in the denominator in Eq.(4.27) as A„, 

and defining the sub-determinants as: 

l+R2 / r2 

R 2 / r 3 

R 2 / r 4 

-1 

l+R 3 / r 3 

R 3 / r 4 

0 

- 1 

1 + R 4 / r 4 

(4 .28) 
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A -
' 2 

l+Rj / r j 

R 3 / r 4 

A3 = 1 + R 4 / r 4 

A 4 = l t 

-1 

1+Vr4 
(4 .29) 

(4.30) 

(4.31) 

Eq . (4 .27 ) can be wr i t ten in a concise form by unfolding the numera tor 

according to the column b . : 

J . = t (A./A„)b. = Ï (A . /A n ) ( - (pc /A)D. / r . + (ar . / r . ) S . ) . (4.32) 
1 j = 1 ] 0 ] ] 0 K p 0 ] s , ] ] ] 

A r e c u r r e n t relation for A. can be found. Unfolding A . , for i n s t ance , 

according to t he f i rs t column g ives : 

n 
Al = ( l+R 2 / r 2 )A 2 + ( R ^ r ^ A j + ( R ^ r ^ = P^ + B^ Z ( A . / r . ) . (4.33) 

j = 2 •* * 

It can be p roven tha t Eq . (4 .33 ) is valid for each A.: 

A. = A._,, + R . i n I ( A . / r . ) (i=0 to n -1 ) , 
l l + l i + l . _ . , , i l 

(4 .34) 

F i g . 4 . 4 . Electrical analogue for s a tu ra t ion heat flux dens i ty J . 
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The profiles of J can also be obta ined, as well as those of air t empera­

t u r e , vapour p r e s s u r e and leaf t empe ra tu r e . Because these profiles a re 

calculated from the explicit e xp res s ions , the computing time is g reat ly 

r e duced , so t ha t t he calculation can be executed on a microcomputer. This 

subject will be d i scussed in Chap te r 5. 

4.6 An equivalent express ion for Penman's formulas 

As mentioned above, t he Penman's formulas a re often u sed for calculating 

the sensible and la tent heat flux densi t ies from an evapora t ing su r face : 

Y*(S-G) - pc Dn/(R+rH) 
C = E J X- (4.35) 

A + Y* 

A(S-G) + pc Dn/(R+r ) 
XE = E J 5 _ (4.36) 

A + y* 

where G is t he heat flux dens i ty into the soil, Y * is the apparen t p s y ch ro -

metric cons tan t , defined a s : 

Y* = Y(R + r y ) / ( R + r H ) . (4.37) 

The problem is t ha t no equivalent express ions exist for C and X E in the 

mult i- layer model. By us ing the definitions of H and J , Eq s . ( 4 . 8 ) and 

( 4 . 17 ) , however , Penman's formulas can also be exp re s sed in terms of H 

and J : 

H = S - G (4.38) 

ar (S-G) - (pc /A)D. 
j = Ë E L . (4.39) 

R + rTT + ar 
H s 

These equivalent express ions for Penman's formulas a re in fact only special 

forms of Eqs . (4 .21 ) and (4.32) as can be seen as follows. 

For the s ingle- layer model, n= l , S. becomes S-G, A, becomes un i t y , 

and A„= l+R/ ( r H +a r ) , so tha t Eq . (4 .32) becomes the same as E q . ( 4 . 3 9 ) . 

In fact , C and XE can be e xp re s sed in terms of H and J : 
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C = oH + (1 - a ) J , (4.40) 

XE = (1 - a)(H - J ) . (4.41) 

The familiar Penman equat ions (4.35) and (4.36) a re obtained by s ub s t i t u t ­

ing Eqs . (4 .38) and (4.39) into (4.40) and (4.41) and simplifying. The 

equivalent Penman's formulas in terms of H and J , Eqs . (4 .38) and (4.39) 

a re p r e fe rab le , because for both s ing le- and mult i- layer models, t he same 

formulas can be u s ed . 

In fact, Eqs . (4 .21) and (4.32) p rovide a b r i dge between the s ingle­

and mult i- layer models, from which severa l conclusions, pa r t icu lar ly for 

the canopy r es i s tance r , can be d r awn . This subject will be d i scussed in 

Chap te r 7. 

4 .7 Physical s ignificance of J 

The flux densi t ies H and J were in t roduced dur ing the mathematical 

p rocess of uncoupl ing . But i t can be seen tha t t hey have clear physical 

meanings . The physical meaning of H is obvious , v i z . , t he total heat or 

en thalpy flux d ens i ty . On the c on t r a ry , t he physical meaning of J is not 

immediately clear and is exposed now. 

The Bowen ra t io ß is defined as the ra t io of sensible to la tent heat flux 

dens i t i e s . I t can be exp re s sed in terms of H and J : 

ß = C/XE = ( ( Y / A ) H + J ) / (H - J ) . (4.42) 

This equation shows a un ique re la t ionship ex is ts between 6 and J , as long 

as H is f ixed. The l a rge r the J , the l a rge r the Bowen ra t io will b e . I t can 

be seen tha t ß =y /A when J=0, ß < Y/A when J<0, and ß > Y/A when J>0, 

in which the value of y là is often called the critical value of the Bowen 

ra t io (Monteith, 1973). Likewise J=0 can also be called a critical va lue . 

According to the p reced ing der iva t ion , the flux dens i ty J is d r iven by 

the g radient of D. Therefore when J equals ze ro , the g rad ien t of vapour 

p r e s s u r e deficit is zero , and vice v e r s a . In th is case , XE is equal to 

( l - o )H or 

XE = (l-cO(S-G) (4.43) 

which is often called the equilibrium evaporat ion r a t e (Pr ies t ley and Taylor , 

1972). 
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In addition to the three classical flux densities of enthalpy, sensible 

heat and latent heat, it is proper to emphasize the role of J, as a fourth 

flux density. Together with the driving forces (gradients) they are: 

Driving force (gradient): Flux density: 

temperature T sensible heat C 

vapour pressure e latent heat X E 

equivalent temperature Te enthalpy H 

vapour pressure deficit D saturation heat J . 

Noting the important role of the vapour pressure deficit in évapotranspira­

tion and the clear physical meaning of the related flux density J, it can be 

realized that J is not merely a mathematical device. It seems proper to give 

it a name. Here J is called the saturation heat flux density. 

4.8 Discussion and conclusions 

The saturation heat flux density J is equivalent to ty?=- AC+yX E, derived 

by McNaughton (1976) in his two-dimensional and single-layer model for 

evaporation and advection. Perrier (1976) has also derived a second-order 

differential equation for the so-called saturation temperature deficit 

Y=T-Td, where Td is the dew-point temperature. Both their derivations 

are based on a continuous model in vertical direction rather than on a 

discrete multi-layer model. Because the resulting second order differential 

equation cannot be solved analytically and a numerical solution based on a 

difference method has to be used, it is more straightforward to derive the 

equations for J directly from a multi-layer model. Based on these equations 

for the discrete model, the electrical analogue, which gives a clearer 

picture, can be easily designed. 

In this Chapter, the quantity J is introduced based on the linearized 

saturated vapour pressure versus temperature curve. This is only an 

approximation. Inspection of the saturated vapour pressure curve shows 

that, within a 10 C temperature interval, the error caused by the linear­

ization is rather small. Calculations show that for the intervals of 10-20, 

20-30 and 30-40 C, the largest relative errors are, respectively, 4 .3, 3.0 

and 1.8%, A being evaluated at the mid-points of the intervals. For a 

larger interval of 15-35 C, however, the relative error reaches 13.5%. This 
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temperature interval is determined in practice by the difference between 

the highest leaf temperature and the lowest air temperature following 

Eq.(4.4) . Under most field conditions, this temperature difference is 

expected not to exceed 10 C, so that the linearization of the saturated 

vapour pressure curve is feasible. 

The substitution of D/A by the saturation temperature deficit Y extends 

unnecessarily the temperature interval. The lowest air temperature now iä 

replaced by the lowest dew-point temperature. The extension depends on 

the value of D, or more precisely, on the relative humidity h . Calculations 

show that as a rule of thumb, h=0.5 is equivalent to Y=10 C. Thus the 

substitution of D/A by Y introduces an additional error, which becomes 

substantial when h is small. 

The other basic assumption related to the substitution of H and J for C 

and AE, v iz . , the similarity between the exchange coefficients of heat and 

water vapour. This is a rather good approximation, the conditions for its 

validity having been extensively studied (Monteith, 1973). Obviously, it 

does not hold for the transfer process in the soil. When the substitution is 

applied to the canopy, the heat flux density into the soil at the soil sur­

face, G, should be known. If G is unknown and is an output of the simu­

lation program as in Goudriaan's model (1977), an iteration method has to 

be used. 

The treatment in this Chapter is different from that by Shuttleworth 

(1976). He derived his combination equation based on the redefinition of 

the relevant resistances, e .g . rH and r . . . The introduction of H and J 

retains all the resistances in an ordinary sense, and the electrical ana­

logues thus developed use the concepts of the potential and current sources 

in a standard way. 

Based on these considerations, the following conclusions can be drawn: 

a) To study transpiration from a canopy, flux densities of enthalpy H and 

saturation heat J are preferred to flux densities of sensible heat C and 

latent heat XE, because the resulting equations are uncoupled. 

b) The flux density J is uniquely related to the Bowen ratio at each value 

of H. The equilibrium evaporation rate occurs when J=0. 

c) The electrical analogues for H and J provide a method to calculate the 

flux densities; the method is applicable to both single- and multi-layer 

models. In the case of single-layer models, the derived formulas for H and 

J are another version of the familiar Penman formulas for C and X E. 
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5 A Crop Micrometeorology Simulation Program in BASIC on Microcomputers 

(submitted to Agricultural Meteorology) 

Abstract 

Based on two uncoupled electrical analogues for enthalpy and saturation 

heat flux densities H and J , and the appropriate recurrent formulas, a 

simulation program in BASIC is developed. The formulae needed for describ­

ing radiation characteristics, aerodynamic and plant-physiological resistan­

ces are taken from the simulation model MICROWEATHER (Goudriaan, 1977), 

so that the present program gives the same detailed description of the 

micrometeorological situation in the crop. It t reats direct and diffuse, 

visible and near-infrared radiation separately, distinguishes between sunlit 

and shaded leaves for calculating net photosynthesis rate, calculates sto-

matal resistance according to both irradiation and plant water s tatus, and 

gives profiles of air and leaf temperature, air humidity, sensible and latent 

heat flux densities. It can, however, be executed on a microcomputer, becau­

se of the steady-state approach based on uncoupled equations. The output 

of the program is compared with that of MICROWEATHER. 

5.1 Introduction 

During the past two decades, crop micrometeorologists have developed 

various simulation models to calculate the regime of wind, radiation, tempe­

rature and humidity within a crop canopy. Roughly speaking, two kinds of 

techniques have been used. One is to trace the time course of the relevant 

variables by integration (Goudriaan, 1977); the other is to calculate steady-

state values of these variables (Waggoner and Reifsnyder, 1968; Goudriaan 

and Waggoner, 1972; Perrier, 1976; Shuttleworth, 1976). Apparently, the 

former gives a more detailed description, while the latter needs less compu­

tation. Both approaches are fairly successful. The remaining problem is 

that they rely on mainframe computers because of their complexity and the 

lack of analytical solutions to the equations involved. The everincreasing 

popularization of microcomputers, however, demands a model which can 

handle the crop micrometeorology on a microcomputer. 

In terms of a mathematical uncoupling technique two uncoupled electrical 

analogues for enthalpy and saturation heat were developed in Chapter 4 to 

replace the coupled one for sensible and latent heat. The time-consuming 
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matrix inversion used in the coupled model (Waggoner et al. , 1969) is thus 

no longer necessary. The derived recurrent formula for solving the equa­

tions further simplifies the computation, so it has become possible to 

construct a simulation program which can be executed on a microcomputer. 

In this Chapter, the formulas required for calculating the profiles of 

potentials and fluxes are derived. A method of treating sunlit and shaded 

leaves separately is presented. A simulation program is written in BASIC 

and its output is compared with that of Goudriaan's model MICROWEATHER. 

5.2 Description of the simulation model 

5.2.1 Basic equations for profile calculation 

The definition of the enthalpy and saturation heat flux densities, H and 

J, are (Chapter 4): 

H = C + XE, J = C - (y/A)XE, (5.1) 

where y is the psychrometric constant, A the slope of the saturation vapour 

pressure curve, and C and X E are sensible and latent heat flux densities, 

respectively. The following equations are equivalent: 

C = ctH + (1 - a)J, XE = (1 - a)(H - J ) , (5.2) 

wheœe is defined as: 

a = y I (y + A). (5.3) 

Two uncoupled electrical analogues for H and J are presented, respec­

tively, in Figs. 5.1(a) and 5.1(b). The relevant profiles are calculated 

according to the following procedures. 

(a) H profile 

i 
H. = EH. ' (5.4) 

1 j = n ] 

where H. is the cumulative enthalpy flux density above layer i, and H.' is 

the enthalpy source for layer j . H.'=S.-F. for the canopy (j=l to n-1) and 

H '=S -G for the soil surface, in which S. and F. are the net radiation 
n n J J 

absorbed and net energy consumption rate by photosynthesis in layer j , G 
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Fig. 5 .1. Electrical analogues for (a) enthalpy and (b) saturation heat. 

the heat flux density penetrating into the soil surface, and n the total 

number of layers, including the soil surface. 

(b) J profile 

The total flux density above the canopy J, can be obtained first: 

Ji= . v w v 
3 = 1 J J 

(5.5) 

where A is defined as unity and the determinant A. (i=0 to n-1) is calcu­
li y J 

lated by the following recurrent formulae: 

A. = A.x l + R z (A . / r . ) . 
l l + l l + l . _ . . j i 

] = i + l J J 

(5 .6 ) 

Here R. is the turbulent resistance between layers i-1 and i (the reference 

height refers to i=0). The resistance r. is defined as: 

r . = rTT . + ar . , 
l H, l s , l 

(5 .7 ) 

in which r „ . is the leaf boundary-layer resistance of layer i to heat 

transfer, r . the stomatal resistance of layer i. The parameter b. in 

Eq.(5.5) is defined as: 
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b . = (ar .H. ' - pc DJ à) Ir.. (5 .8) 
3 s , j ] p O ] 

Here pc is t he volumetric heat capacity of a i r , and D„ the vapour 

p r e s s u r e deficit at t he r e ference he igh t . 

The source from layer i , J. ' is 

J . ' = (ar .H. ' - pc D . / A ) / r . , (5.9) 
l s , i i p i i 

where D. is t he vapour p r e s s u r e deficit of the air in l ayer i , and can be 

calculated from D„ and R.J. by us ing Ohm's law in the ver t ical d i rec t ion. 
0 3 3 

Eq . ( 5 . 9 ) can therefore be r ewr i t t en in te rms of b . as 

i 
J . ' = b . - ( £ R . J . ) / r . ( i= l t o n - 1 ) . (5.10) 

1 j = l J J ' 

Then the cumulative flux densi ty above l ayer j+1 can be obta ined: 

J . ^ , = J . - J . ' ( i= l to n - 1 ) . (5.11) 
i + l l i 

Eqs . (5 .1) to (5.9) were der ived in Chap te r 4. 

(c) C and XE profiles 

It follows from Eqs . (5 .2) tha t C. and AE. are readily obtained from H. 

and J. : 
l 

C. = ctH. + (1 - a ) J . , XE. = (1 - a)(H. - J . ) ( i = l to n - 1 ) . (5.12) 

(d) T and e profiles 

The profiles of v apour p r e s s u r e deficit D, air t empera tu re T and air 

vapour p r e s s u r e e a re obtained b y : 

D. = D. n + J .R . / ( p c /A) ( i= l to n ) , (5.13) 
l l - l l i p 

T. = T. . + C . R . / p c ( i= l t o n ) , (5.14) 
l l - l l i p 

e. = e . _ , + XE.R./(pc ly) ( i = l to n ) , (5.15) 

where D,., T- and e„ specify t he vapour p r e s s u r e deficit, t empera tu re and 

vapour p r e s s u r e , r e spec t ive ly , of air at t he r e ference he igh t . 
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(e) T profile 
Li 

The profile of leaf t empera ture T ( including the t empera ture of t he 
Li 

soil surface) is obtained b y : 

TT . = T. + (C. - C . ± 1 ) r u . / pc ( i= l to n ) , (5.16) 
L/f 1 1 1 1 + 1 r i , 1 p 

where C , , is defined as ze ro . 
n+1 

5 .2.2 Dist inguishing sunlit and shaded leaves 

So far , the model considers only the average radiation in tens i ty in each 

l aye r . This is acceptable for an overcas t s ky , bu t on sunny d ay s , sunli t 

and shaded leaves should be d i s t ingu ished , because they have different 

stomatal r e s i s tance p e r leaf a r ea . T h u s , in each l aye r , leaves with differ­

ent i r radiat ion levels have to be d i s t ingu i shed . This is equivalent to 

spl i t t ing each layer into several s ub l aye r s , t he t u rbu len t r e s i s tances 

between these sub laye r s being equal to zero . In F i g s .5 .2 ( a ) and 5 . 2 ( b ) , 

t he cor responding electrical analogues for H and J a re shown. Each of t he 

t h ree canopy l ayers is split he re into only two sub layers for i l lus t ra t ion . 

If 6 canopy layers and 6 i r radiat ion levels are assumed, the total number 

of l aye rs becomes 37, including the soil su r face . It is fairly t ime-consum­

ing to i nver t matrices of such a l a rge s ize, even on mainframe computers . 

This is one of t he main difficulties of t he coupled electrical analogue. With 

the uncoupled models shown in F ig s .5 .2 ( a ) and 5 . 2 ( b ) , however , this 

problem does not ex i s t . If t he layer index is denoted by i as before , and 

the i r radiat ion index by k , then for the canopy the r e s i s t ances r „ ., r 

and r. a re denoted by rIT . . , r . , and r. , , radiat ion absorbed by S. . 
l ' H , i , k s , i , k i ,k ' i , k 

and the pa rameters b . by b . . . For the H profi le, it is clear from in spec -
l i , i ^ 

tion of F ig .5 .2 (a ) tha t Eq . ( 5 . 4 ) can be modified to : 

i m 
H. = E E H. ' , (5.17) 

1 j=n k=0 J ' k 

where m denotes the total number of i r radiat ion levels for sunli t l eaves , 
and k=0 r e fe r s to shaded l eaves . Since the t u rbu len t r e s i s t ances between 
the sub layers a re zero , E q s . ( 5 . 5 ) , ( 5 . 6 ) , (5.10) and (5.11) for t he J p r o ­
file a re still valid if b . and r. a re defined a s : 

i i 
m m 

b . = E b . , l / r . = E ( l / r . ) , (5.18) 
1 k=0 1,k l k=0 1 , k 
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Fig. 5.2. Electrical analogues when sunlit and shaded leaves are distin­

guished: (a) for enthalpy and (b) for saturation heat. 

where b. , is defined as: 
i , k 

b i , k = ( a r s , i , k H i , k ' - P c p V A ) / r i . k - (5.19) 

The J profile i s , therefore, still readily obtainable. The profiles of sensi­

ble and latent heat flux densities, temperature, vapour pressure, vapour 

pressure deficit of air and averaged leaf temperature are obtained in the 

same way. 
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5.2 .3 Heat flux densi ty into the soil surface 

Unfor tunate ly , t he uncoupling p rocedure is invalid in soil because of 

different ver t ical t r ans fe r coefficients for sensible and l a tent h e a t . The 

hea t f lux dens i ty into t h e soil sur face G has to be known in t he uncoupled 

electrical analogues shown in F ig s .5 .2 (a ) and 5 . 2 ( b ) . In some cases G is 

not available and has to be simulated; in o ther cases the value measured 

by heat plate or der ived from measured soil t empera ture profile is not 

re l iable , so , in spi te of t hese measurements , G should still b e s imulated. 

On the o ther h and , when the time course of the soil t empera ture profile is 

included in a complete p rogram simulating crop micrometeorology, then G is 

no longer an input bu t an ou tpu t va r i ab le . 

Because t he above-ground and be low-ground p a r t s a re coupled with 

each o ther t h rough G, an i tera t ion method may be applied even if the soil 

t empera ture profile is known. A value for G is f i rs t guessed ; a more 

accura te value of G is determined as follows. 

The soi l -surface t empera ture can be obtained from the above-ground 

p a r t as T b y the method descr ibed above ( E q . ( 5 . 1 6 ) ) . But i t can also 

be found from the be low-ground p a r t as T : 

T = T n + ( d^ /k ' JG 0 , (5.20) 
s ,u s , 1 1 

where G is t he guessed heat flux dens i ty , d, t he d is tance between the 

soil surface and the cen te r of t he top soil l aye r , k ' the conduct ivi ty for 

heat in the soil, and T 1 t he t empera tu re of t he f irst soil l aye r . This 

t empera tu re is simulated by dividing t he soil into l ayers us ing G as an 

i nput (de Wit and van Keulen, 1972). The t empera tu res T and T a re 

now different , of c ou r se . The problem is to find an increment of G, deno­

ted as G', to make T and T about equal to each o the r , within a 
S f cl S ) U 

tolerable e r r o r . Denoting the cor responding soil t empera ture as T *, t he 

following equation can be obta ined: 

T * = T + (dT /dG)G\ T * = T + (dT /dG)G', (5.21) 
s s , a s , a s s ,u s ,u 

and eliminating T * y ie lds : 

G' = (T - T ) / (dT /dG - dT /dG). (5.22) 
s , a s , u s , u s , a 

dT /dG can be found from Eq . ( 5 . 20 ) : 

dT /dG = d . / k ' . (5.23) 
s , u 1 
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The value of dT /dG requires more consideration. It can be proven by 

using Eqs.(5.9) , (5.12), (5.13), and (5.14) that dT /dG is approxima­

tely: 

dT /dG = - (a/pc ) (R, + rTT ) (for a wet soil surface) 
s,a p t H,n 

= - (1/pc ) (R + r„ ) (for a dry soil surface), (5 .24) 

where R is the turbulent resistance between the reference height and the 

soil surface. The subsequent estimate of G is then: 

G1 = G° + G'. (5.25) 

With this method the convergence is very fast. Calculation shows that for 

a requirement of the relative error in T and T smaller than 1 per-
^ s,a s,u r 

cent, one iteration is enough for a wet soil surface and three or four for a 

dry soil surface. 

5.2.4 Parameter evaluation 

Before the relevant profiles can be calculated, the characteristics of S, 

R, r „ and r have to be determined. Goudriaan's (1977) study is one of 

the most detailed, so the relevant formulas used in this simulation program 

are taken mainly from his book. No attempt is made here to explain these 

formulas, readers being referred to the original book for more detailed 

information. 

Because the present steady-state approach is different from the dynamic 

approach used by Goudriaan, some changes are necessary. The maximum 

CO? assimilation rate and the dark respiration rate of leaves were given as 

known functions of leaf temperatures; Goudriaan could obtain these by 

using previous temperature values, since his model used a small time 

interval of about one second. In the steady-state approach unnecessary 

iterations are avoided by replacing the leaf temperatures by the air tempe­

rature at the reference height. This leads to only small e r rors . Moreover, 

the thermal radiation is assumed to be extinguished exponentially with 

depth into the canopy, with a coefficient that is different for day and 

night. 

The stomatal resistance, r , is defined as the difference between r , . 
s V 

and r „ , the former is the leaf resistance to vapour transfer and composed 

of the real stomatal resistance, r *, and the boundary-layer resistance to 
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vapour, r, v< Strictly speaking, r, =0.93r„ (Goudriaan, 1977, Eq . (3 .6)) , 

so the relationship between r and r * is: 
s s 

r = r,. - r „ = r * - 0.07ru. (5.26) 
s V H s ri 

This difference is significant only when the wind speed is low. 

5.3 Simulation program 

5.3.1 Some remarks 

(a) Stability correction 

The stability correction of the profiles of wind speed and turbulent r e ­

sistance is included only above the canopy under stable condition, because 

calculations show that this is the only case in which this correction is 

significant. The correction function is the same as that used by Goudriaan, 

but the Monin-Obukhov length L is taken as the criterion parameter rather 

than the Richardson number Ri. L is calculated directly from a so-called 

equivalent heat flux density above the canopy, defined as C+O.ly^E. The 
-3 -20 

minimum value of L is set equal to 10 rather than 10 as in MICRO-
WEATHER. This value is related to the maximum turbulent resistance 
between the reference height and the top of the canopy. According to 

_3 
Hiramatsu (1984), this value must be carefully chosen, and 10 is perhaps 
still too low. 

(b) Initialization 

There is no need of initialization for steady-state approach, because at 

any time equilibrium is assumed. But the temperature in the soil is never 

in equilibrium, integration has to be carried out to trace its variation in 

time. The temperature profile in the soil must therefore be initialized. This 

is done also for the heat flux density into the soil surface G, the Monin-

Obukhov length L and the water content of the canopy. 

(c) Size of the program and the execution time 

The program contains about 300 statements, occupying 10K memories. 

Because the soil temperature profile is simulated, the time step of integra­

tion is determined by the thickness of the thinnest soil layer. In this 

program it is 2 cm, so a time step of 1/8 hour is used. The execution time 
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Fig.5.3. Comparison with MICROWEATHER. The solid lines represent the 

outputs of MICROWEATHER, and the broken lines those of the present 

program: (a) total sensible heat flux density and (b) total latent heat 

flux density above the canopy; and temperature (T) and vapour pressure 

(e) profiles at 9h00 (c) and at 12h00 (d ) . 

for one time step is 6 seconds for night time and 12 seconds for day time 

(on a microcomputer Apple II) , so that it takes about 30 minutes to simulate 

a day. A list of the program and the symbols used in the program is given 

in Appendix A-l and A-2, respectively. 
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5.3.2 Results 

The comparison is made between the outputs of the present program 

and MICROWEATHER, using the data for a case study. The time course of 

the simulated total sensible and latent heat flux densities from the two 

programs are given in Figs.5.3(a) and 5.3(b). The profiles of air tempera­

ture and vapour pressure at 9h00 and 12h00 are presented in Figs.5.3(c) 

and 5.3(d). The agreement is very good, demonstrating the feasibility of 

the steady-state approach based on the uncoupled electrical analogues for 

enthalpy and saturation heat. 

No attempt is made here to test the model against independent experi­

mental data, this will be left for later work; but MICROWEATHER has been 

tested for Indian Corn (Zea mays L.) by Stigter et al. (1977) and for a 

rice crop by Hiramatsu et al. (1984). This gives indirect support to the 

present simulation program. 

5.4 Discussion 

The uncoupled electrical analogues shown in Figs.5.1(a) and 5.1(b) not 

only simplify calculations but also provide a clear picture of the transfer 

of sensible and latent heat between atmosphere and a multi-layer canopy. 

Enthalpy flux is influenced only by the energy supply, the resistances 

have no effect. To study the role of the relevant resistances we need only 

to examine the electrical analogue for saturation heat; this is certainly an 

advantage. It was shown in Chapter 4 that the relationship between the 

Bowen ratio 13 and H and J is: 

ß = ((Y/A)H + J)/(H - J), (5.27) 

or, better expressed, as: 

ß = (y/A + J/H)/(l - J/H). (5.28) 

Eq.(5.28) means that the Bowen ratio is uniquely determined by the ratio 

J/H. For illustration it will be shown now the influence of the relevant 

resistances on the total flux density J above the canopy. 
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(a) Stomatal r e s i s tance 

From Fig . 5 .1(b) i t can be seen tha t t he stomatal r e s i s tance r . , more 
s , l 

p recisely a r ., is a s hun t r es i s tance to the c u r r en t source H.1. This 
means the smaller the r ., the smaller the contr ibut ion of t he H.' to the 

s , i 1 
total flux dens i ty J will b e . Since th is contr ibut ion is posit ive (upward) 
du r ing day t ime, J will decline as r . d e c r ea se s . The o ther p a r t of J , 

s ,1 
caused by the potential source pc Dn/A is negat ive ( downward) . The 
absolute value of th is p a r t will increase as r . d ec reases , as can be seen 

r s , i 

from F i g . 5 . 1 ( b ) . Therefore when r . decreases both p a r t s of J will d ec r ea se . 

We can expect therefore tha t the stomatal r e s i s tance has a s t rong influence 

on J / H , and t hu s on t he Bowen r a t i o . 

(b) Surface bounda ry - l aye r r e s i s tance 

F ig . 5 .1(b) shows tha t if r . i s not equal to ze ro , t he contr ibut ion of 
s , 1 

t he c u r r en t source H.' to J is also influenced by rT, . . The smaller the l y H,i 
r , , . , t he l a rge r the fraction of t he c u r r en t source flowing t h rough r „ . . 

This effect is opposite to t ha t of r .. Since the downward p a r t caused by 
s , 1 

the potential source will also increase as r . . . d e c r ea se s , t hese two effects 

will pa r t ly compensate. We can expect t ha t t he influence of the surface 

bounda ry - l aye r r es i s tance will not be as s t rong as t ha t of the stomatal 

r e s i s t ance . 

(c) Tu rbu len t r es i s tance 

Each layer is s epara ted by a t u rbu len t r e s i s tance R. (Fig. 5 .1(a) ) . When 

R. d ec r ea se s , the downward p a r t as well as the upward p a r t of J will i n ­

c r ea se . Fu r the rmore , R. is usually smaller than r.T . and is much smaller 
l ' H,i 

t han r . . Thus the net effect can be expected to be r a t h e r small. 
s , i ^ 

In F ig . 5 .4(a) is p r e s en t ed the dependence of the ra t io J /H and the 

Bowen rat io ß on s tomatal, surface bounda ry - l aye r and t u rbu len t r e s i s t an ­

ces within the canopy obtained from the simulation model at 9h00. These 

r e su l t s confirm those of the quali tat ive ana lys is ; in p a r t i cu la r , t he d epen ­

dence of J /H on the t u rbu len t r e s i s tance is r emarkably small. This r e su l t 

can be u sed for obtaining a simplified model in which only the total flux 

densi t ies above the canopy a re of i n t e r e s t . 
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F ig . 5 .4 . (a) Dependence of J /H and the Bowen ra t io on the var ia t ions of 

the stomatal r e s i s t ance r , sur face b ounda ry - l aye r r e s i s t ance r „ and 

t u rbu l en t r e s i s t ance R within the canopy . The abscissa is t he multiplication 

factor for the r e s i s t ance s , (b) Tempera tu re profile for unchanged (solid 

line) and doubled t u rbu l en t r e s i s t ance (b roken line) . 

Al though the t u rbu l en t r e s i s t ance within the canopy has l i t t le effect on 

the total flux dens i ty above the canopy , t he profiles of t he potent ia ls such 

as t empera tu re and humidi ty , and in p a r t i cu l a r , t he amplitudes of 

va r i a t ions , a re s t rong ly influenced by t he value of R.. Th is is because 

they a re determined by the p roduc t of t he r e l evan t flux dens i ty and the 

t u rbu l en t r e s i s t ance . In F ig . 5 .4(b) the t empera tu re profiles a re given for 

unchanged and doubled t u rbu l en t r e s i s t ances within t he canopy . 

The pu rpose of including the detailed descr ip t ion of t he r equ i r ed p a r a ­

meters in th is simulation p rogram is to show t he ability of a microcomputer 

to t r e a t t he complex crop micrometeorological p rob lems , and also to p rov ide 

a p rogram for p ract ical u s e r a t h e r t han only for i l lus t ra t ion . Based on th is 

detailed p rogram some simplification can be made on l a t e r development , and 

the validity of t he simplification can be checked by comparing t he ou tpu t 

from the simplified p rogram with tha t from th is detai led one . 
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6 A Graphical Extrapolation Method to Determine Canopy Resistance 

(submitted to Agricultural Meteorology) 

Abstract 

The profile of vapour pressure in Monteith's extrapolation method is 

replaced by the profile of dew-point temperature. The canopy resistance 

can then be obtained directly by a graphical extrapolation method. The 

effect of choosing different excess resistances on the canopy resistance 

thus obtained is discussed. 

6.1 Introduction 

For studying the transfer of sensible and latent heat from a crop cano­

py, single-layer models are still widely used because of their simplicity. In 

these models a crop canopy is treated as a surface equivalent to a big leaf 

at a certain level above the ground. Analogous to the stomatal resistance 

for a single leaf, Monteith (1963) introduced a bulk resistance r , which is 

often called canopy resistance, and proposed an extrapolation method to 

obtain the surface values of temperature and vapour pressure. The value 

of the canopy resistance then can be calculated. Since then, there has 

been some discussion (Thorn, 1972, 1975; Monteith, 1973) about the dis­

crepancy between the locations of the equivalent surfaces for momentum 

absorption and for the transfer of sensible and latent heat. This discrep­

ancy is due to a so-called excess resistance to the sensible and latent heat 

transfer (Thorn, 1972). The extrapolation method is improved by including 

the excess resistance, but the canopy resistance is still obtained by calcu­

lation rather than by extrapolation itself. The reason is that, in Monteith's 

extrapolation method humidity is specified by the water vapour pressure e, 

so that two different abscissas for the vapour pressure e and the tempera­

ture T are required; and the horizontal distance between T and e profiles 

has no physical meaning. 

In this Chapter, the water vapour pressure e is replaced by the dew-

point temperature Td, so that one abscissa can be used for both tempera­

ture and humidity, the horizontal distance between T and Td profiles now 

being proportional to the vapour pressure deficit of the air. Moreover, T 

and Td profiles can be further extrapolated downward, so the canopy 

resistance can be obtained directly from the graph. Based on this 
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graphical representation, the effect of choosing different values of the 

excess resistance on the canopy resistance thus obtained can be clearly 

demonstrated. 

6.2 Monteith's extrapolation method 

Above a crop canopy the wind speed u, air temperature T and water 

vapour pressure e are measured at several heights. These profiles are 

regarded as logarithmic, so they are represented by straight lines in a 

graph with ln(z-d) as ordinate. The parameter d is called zero plane dis­

placement. 

First, the wind profile is extrapolated downward to intersect the ordi­

nate. The intersection point is ln(zn) (Fig.6.1), where z- is called rough­

ness length. This level at the height d+z.. is regarded as the location of 

the equivalent momentum sink of the crop canopy, because wind speed and 

momentum vanish there. Similarly the profiles of temperature and vapour 

pressure can be extrapolated to obtain the values of temperature and 

vapour pressure at some equivalent surface. The problem is: to which 

height should these profiles be extrapolated? 

Monteith (1963) extrapolated these profiles down to the level ln(z»), 

which implies that the location of the equivalent surface for sensible and 

latent heat sources is assumed the same as that for momemtum absorption. 

The surface values of temperature and vapour pressure thus obtained are 

denoted by T(0). and e(0) in F ig.6.1. 

There are, however, systematic vertical differences within a crop 

canopy in the distribution of sources and sinks for heat, water vapour and 

momentum. It is unlikely that the equivalent surface for sensible and latent 

heat sources is at the same height as that for momentum. Roughly speaking, 

compared with the heat and vapour transfer the absorption of momentum is 

enhanced by pressure forces normal to the leaf surfaces, so the resistance 

to heat and vapour transfer is higher than that to momentum transfer. The 

difference between them is called excess resistance, denoted as r (Thom, 
ex 

1972). 

According to the aerodynamic method (Monteith, 1973), the turbulent 

resistance between two levels z, and z ? , r , is: 
r = ( l /ku+)(ln(z2-d) - l n ( Z l -d ) ) , (6.1) 
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Fig.6.1 . Monteith's extrapolation method. 

where k is the von Karman's constant, and u+ the friction velocity. The 

parameters d, z., and u.,. can be obtained from the wind profile (Thom, 

1975). Eq.(6.1) means that, in a graph with ln(z-d) as ordinate, such as 

F ig .6 .1 , the vertical distance in the figure is in fact a measure of turbu­

lent resistances between relevant levels. The fact that heat and vapour 

experience an excess resistance compared with momentum means that the 

equivalent surface for heat and water vapour is below that for momentum, 

say at ln(z„) shown in F ig .6 .1 , ln(zH) being determined by, following 

Eq.(6.1) , the value of the excess resistance: 

ln(zn) - ln(z„) = ku*r (6.2) 
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To obtain representative surface values of temperature and vapour 

pressure, the profiles of temperature and vapour pressure should be 

extrapolated to the level ln(zH) as shown in F ig .6 .1 . The intersection 

points A? and B ? represent the surface temperature T(0) ? and vapour 

pressure e(0)_, respectively. 

When T(0) and e(0) are obtained by extrapolation (either as T(0). and 

e(0). or as T(0) ? and e (0) ? ) , the canopy resistance is calculated by: 

r = (pc /Y)(e (T(0)) - e(0))/xE, (6.3) 
c P s 

where pc is the volumetric heat capacity of air, y the psychrometric 
r 

constant and ^E the latent heat flux density above the canopy. 

6.3 Graphical extrapolation method to determine r 

Besides the water vapour pressure e the dew-point temperature Td can 

also be used to specify the humidity of the air. 

The saturated vapour pressure versus temperature curve is more or 

less exponential in nature, but as a first approximation, a segment of the 

curve can be replaced by a straight line with a slope A , evaluated at a 

selected temperature T . Thus, 

T - Td = (e (T) - e)/A, (6.4) 
s 

es(T) = es(Tp) + A(T - T ) , (6.5) 

and it follows from these two equations that 

Td = e/A + const, (6.6) 

where the constant is equal to T -e (T ) / A . Thus, the profile of Td is 

also logarithmic. The procedure for obtaining the locations of the equiva­

lent surfaces for momentum and heat, ln(z„) and l n ( z R ) , and the represen­

tative surface value of temperature is the same as in the Monteith's method. 

For illustration, the surface location 2 in Fig. 6.2 is taken as the location 

for the equivalent surface for heat and vapour. The surface temperature 

obtained by extrapolation is then determined by the intersection point A? 

as T (0 ) ? . Now extrapolate the profile of dew-point temperature Td, to 

intersect the surface location 2. The intersection point is B ? (Fig.6.2), 

which gives the surface value of the dew-point temperature Td(0)_. 
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The difference between th is method and Monteith's method is t ha t the 

Td profile can be ex t rapola ted f u r the r downward to r each the sur face 

t empera tu re T ( 0 ) ? . The in tersec t ion point is denoted by C.,, and the level 

is r e p r e s en t ed by ln (z ) . The l eng th of A.C., in t he g r aph is p ropor t ional 

to the canopy r e s i s t ance , which can be p roven as follows. 

Because the r e s i s t ances involved have dimension s m , t hey can be 

made dimensionless by multiplying with a ve loc i ty . The cha rac te r i s t i c 

velocity scale h e r e is obviously u + f so t ha t a dimensionless excess r e s i s ­

tance r *, which is often denoted as B , and a dimensionless canopy 

r e s i s t ance r * a re defined a s : c 

r * = B " 1 = u*r , (6 .7) 
ex * ex 

r * = u*r . (6 .8) 
c * c 
In(z-d) 

Td'lo), Td(o)2 Tlo), T(o)2 T(o)j u.TondTd 

F i g . 6 . 2 . Extrapolat ion method determining canopy r e s i s t ance g raphica l ly . 
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It follows from Eqs.(6.2) and (6.7) that the distance between the surface 

locations 1 and 2 equals kB , as shown in Fig. 6.2. 

According to the aerodynamic method, the latent heat flux density is 

calculated by: 

AE = -(pc /Y)ku+(z-d)de/dz = -(pc /Y)ku+de/dln(z-d). (6.9) 

Eq.(6.9) shows that the latent heat flux density is proportional to the 

slope of the e line in a coordinate system with ln(z-d) as ordinate. This 

slope can be replaced, following Eq.(6.6) , by that of Td line, denoted 

as s „ , . Then Eq.(6.9) can be written as: 

XE = - k u / ( P c /YÎSjy. (6.10) 

The canopy resistance r , following Eqs.(6.3) , (6.6) and (6.10), is now: 

r c = - ( l / m ( T ( 0 ) - Td(0))/sT d . (6.11) 

From Fig.6.2 it can be seen that T(0)-Td(0) is the length of B-A^.-and 

-(T(O)-Td(O) ) / s „ , is the length of A_C_. Hence, it has been proven that 

the length of AC. , , which is obtained by extrapolation is really propor­

tional to the canopy resistance r , or more precisely, it equals kr *, as 

shown in Fig.6.2. 

6.4 The effect of choosing different r on r 
° ex c 

It can be seen from the above presented argument that discarding Mon-

teith's assumption about the coincidence between the equivalent surfaces 

for heat and momentum introduced an uncertainty about how to choose the 

appropriate surface location. Although the excess resistance r and its 

dimensionless counterpart B were introduced, they cannot be determined 

a priori, or by the profiles of wind speed, temperature and vapour p res­

sure above the canopy. In fact, B is related to distributions of sinks 

and sources for momentum, heat and water vapour, so that it can only be 

simulated by a multi-layer model (Chapter 5), or measured experimentally 

(Chamberlain, 1966). Thom (1972) estimated that B is approximately 4 

for several crops. This subject will not be discussed here, since the aim is 

to examine the effect of choosing different values of excess resistance on 

the value of the canopy resistance obtained by extrapolation. In fact, this 
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effect can be clearly shown in the graph using the dew-point temperature 

extrapolation method. 

Because the air humidity is specified now by dew-point temperature Td 

rather than by vapour pressure e, the same abscissa for both T and Td 

can be used. Furthermore, the saturation temperature deficit, T-Td, which 

is proportional to the water vapour deficit, is immediately visible as the 

horizontal distance between the two lines for T and Td. 

When the Bowen ratio (C/XE) equals a critical value, XI £, the saturation 

heat flux density J=C-(y/A) XE equals zero. The driving force for J, the 

gradient of the vapour pressure deficit (Chapter 4) is then also zero. In 

this case, the Td line becomes parallel to that of T. It can be clearly seen 

from Fig.6.2 that the length of A?C? will be independent of the surface 

location for heat and vapour when T and Td lines are parallel. In other 

words, the canopy resistance r obtained by extrapolation is independent 

of the value chosen for the excess resistance, as mentioned by Thom 

(1975). 

When the Td line deviates from the parallel-to-T-line position to the 

r ight, as shown in Fig.6.2, i .e . J is smaller than zero or the evaporation 

rate is larger than the so-called equilibrium evaporation rate (Priestley and 

Taylor, 1972), as the chosen value of the excess resistance increases, the 

value of the canopy resistance declines. The minimum is zero, shown in 

Fig.6.2 as the surface location 3. This is the location of an equivalent wet 

surface giving the same sensible and latent heat flux densities as those 

above the real canopy. When the Td line deviates to left, increasing the 

chosen value of the excess resistance, increases the canopy resistance. In 

this case, equivalent wet surface is not below, but above the measured 

profiles. 

It can also be seen from this approach that the larger the deviation of 

the Bowen ratio from its critical value, the larger the effect of the differ­

ent values of the excess resistance on the value of the obtained canopy 

resistance will be . Only in these cases is it important to know the value of 

B in order to obtain a correct value of the canopy resistance. 
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6.5 Discussion 

The linearization of the saturated vapour pressure curve is an approxi­

mation, it is feasible only when the linearized region is not too large. This 

region is determined by the lowest dew-point temperature of the air and 

the surface temperature (Chapter 4) . In this Chapter the saturation vapour 

pressure curve in the whole region is replaced by a single straight line 

with a slope determined at a selected temperature, usually the mid- point 

temperature in the region. Because the surface temperature is unknown 

before extrapolation, iteration is needed. A ten-degree temperature dif­

ference is acceptable (Chapter 4). When the temperature difference is too 

large, the temperature interval to be linearized can be split into two parts 

in order to reduce the error. One represents the region between the 

lowest dew-point temperature of the air and the dew-point temperature of 

the surface; the other represents that between the dew-point temperature 

of the surface and the surface temperature. Then, two slopes A, and A-, 

are introduced, evaluated at the mid-point temperatures of these two 

regions. It can be shown that Eq.(6.11) for the canopy resistance r is 

modified by a multiplication factor A ? /A,, while the essential features of the 

graph do not change. 
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7 Canopy Resistance and Excess Resistance Derived from a Multi-Layer 

Micrometeorological Model 

(submitted to Boundary-Layer Meteorology) 

Abstract 

The equivalent Penman's formulas for enthalpy and saturation heat, 

unified for single- and multi-layer models (Chapter 4) , are used to ex­

press the canopy resistance r and the excess resistance r (or its 

dimensionless counterpart B defined as r u t ) of a single-layer model in 

terms of the parameters of a multi-layer model. Some approximation methods 

are developed to simplify the expressions. It is shown that under the 

condition of a dense canopy with a dry soil surface, r is a good represen­

tative of the bulk stomatal resistance of the canopy calculated as all the 

stomatal resistances of the leaves acting in parallel, and B equals 
1/2 c,+c7u,,. with c, and c-, being two constants obtainable from the para­

meters of the multi-layer model. For a sparse canopy with a wet soil 

surface, however, these conclusions cannot be drawn. The numerical 

results for r and B obtained from a simulation program (Chapter 5) 

ware also given. 

7.1 Introduction 

Since direct measurement of evapo-transpiration rate in the field is 

difficult, various estimation methods have been developed during the past 

three decades, as reviewed by Stewart (1983). A widely used formula is 

Penman's formula, which is fairly successful in estimating evaporation rate 

above a free water surface. Penman's formula has also been employed to 

estimate transpiration rate above vegetation. The canopy-soil surface 

system, which is essentially not a single source plane, is then treated as a 

big leaf located at a certain height above the ground. The physiological 

control of transpiration is characterized by a so-called canopy resistance 

r (Monteith, 1963, 1965); and the location of the leaf was thought initially 

to be at the same level as the equivalent sink for momentum (Monteith, 

1963), but has since been considered to be at a lower level, characterized 

by a so-called excess resistance r (Thom, 1972, 1975). ' ex 
It was argued (Cowen, 1968; Thom, 1975) that the canopy resistance 

contains both physiological and aerodynamic components. Measurements on 
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a range of crops such as barley, sorgum, soybean and sugar beet have 

shown, however, that the aerodynamic component of the canopy resistance 

is negligible (Monteith, 1981) and that r is close to a the 'bulk stomatal 

resistance' of a canopy r ™ , defined with all the component leaves treated 

as parallel resistors. Although the theoretical justification for regarding r 

as r „ T has been examined (Thorn, 1975; Shuttleworth, 1976), a satisfactory 

explanation is still lacking. The second parameter is the excess resistance, 

or its dimensionless counterpart B defined as r u+ in which u^ is the 

friction velocity. This has been measured using radioactive gases both in a 

wind tunnel (Chamberlain, 1966), and in the field (Chamberlain and Chad-
— 1 1 / n 

wick, 1965) . B was found proportional to u^ with n varying between 

2 and 3. Chamberlain (1966) and Thorn (1972) employed an electrical ana­

logue (essentially a single-layer model for a wet canopy) , and derived the 
-1 1/2 

formula B =c.,u+ , where c? is a constant that has to be determined by 

field experiments. Thom (1972) further argued that if the mean drag 

coefficient of a canopy is taken as a function of u+ , to account for the 
-1 1/3 

so-called shelter effect, B should be proportional to u* 

During the past two decades, along with the rapid developments in com­

puter science, sophisticated multi-layer micrometeorological simulation 

models have been developed. The behaviour of a crop canopy is simulated 

based on the physical and physiological properties of the canopy compo­

nents, mainly leaves, which can be measured under controlled conditions in 

laboratories. Compared with Penman's approach, which is often referred to 

as single-layer model, the multi-layer model is more realistic, and more 

easily adaptable to various circumstances. 

It can be seen that the two parameters r and r of the single-layer 

model can be, in principle, derived from the parameters of the multi-layer 

model. Unfortunately, however, most of the micrometeorological models are 

too complicated to yield an analytical solution to the total transpiration rate 

above the canopy. Although a so-called combination equation for the total 

latent heat density above a canopy was derived by Shuttleworth (1976, 

Eq.(56)), it contains unknown temperature and vapour pressure profiles 

within the canopy in the definitions of the equivalent resistance to heat, 

r „ , and to vapour, r . . , so that it is not, strictly speaking, a real analyt­

ical solution. 

In Chapter 4, two uncoupled electrical analogues for enthalpy and satu­

ration heat were developed to replace the coupled one for sensible and 
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la tent h ea t . Equivalent Penman's formulas were also found, which are 

applicable to both s ing le- and mult i- layer models, so a der ivat ion of r and 

r from the mult i- layer model can now be g iven . 

7.2 Formulas l inking r and r to the pa rameters in mult i- layer models 

In terms of the en tha lpy flux dens i ty , H=C+XE, and sa tura t ion heat flux 

dens i ty , J=C-(y/A)AE (where C is t he sensible and XE t he l a tent heat flux 

dens i ty , Y the psychrometr ic cons tan t , and A the slope of t he vapour s a t u ­

rat ion curve) Penman's formulas for a s ingle- layer model can also be ex ­

p r e s s ed as (Chapter 4 ) : 

H = S - G, (7.1) 

J = (ar (S-G) - pc DJ à) / (R+ru+ar ) . (7 .2) 
s p U H s 

Here , S is t he ne t radiat ion absorbed by the canopy-soil surface sys tem, 

G the heat flux dens i ty into the soil s u r face , D . the vapour p r e s s u r e 

deficit of t he air at t he r e ference he igh t , pc t he volumetric heat capacity 

of a i r , R the t u rbu len t r e s i s tance for heat t r ans fe r between the r e fe rence 

he ight and the equivalent surface for heat and v apour , r „ the surface 

bounda ry - l aye r r e s i s tance to heat t r an s f e r , r t he difference between the 

surface r e s i s t ance to vapour t r ans fe r and r „ , and a is defined as Y / ( Y + A ) . 

The electrical analogue for J is shown in F i g . 7 . 1 ( a ) . 

In Monteith's approach , however , r is denoted by the canopy r e s i s ­
tance r , and R+r.T by R +r , where R is t he t u rbu len t r e s i s tance to 

c H ' m ex m 

momentum t r ans fe r between the r e fe rence he ight and the equivalent surface 

for momentum absorp t ion , which is h igher in position than tha t for heat 

and v apou r . Eq . (7 . 2 ) can now be r ewr i t t en to include r and r explici t -

ly : 

J = (S-G)(or / ( R + r +ar )) - (pc D / A ) / ( R + r +ar ) . (7 .3) 
c m ex c p U m ex c 

The unified Penman's formulas for s ingle- and mult i- layer models are 

(Chapter 4) : 

n 
H = £ H . ' = S - G, (7.4) 

3=1 J 
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n n 
J = Z ( A . / A . ) b . = E ( A . / A n ) ( a r . 11 . ' - p c D _ / A ) / r . , ( 7 . 5 ) 

j = 1 J ° J j = 1 3 ° s-3 ] P ° ] 

where H.' is the enthalpy source from layer j , which is the net radiation 

absorbed in the layer S. for the canopy (neglecting the energy consump­

tion in photosynthesis), and S -G for the soil surface; r . is the stomatal 

resistance of layer j , n the total number of layers including the soil sur­

face, and r. and A. are calculated as: 

J 3 

r. = r„ . + ar . , 
J H.J s,j 

V V i + V ^ V V ' 

(7.6) 

(7.7) 

in which R. is the turbulent resistance between layer j-1 and j (the refer­

ence height refers to j=0), and A is defined as unity. The electrical 

analogue is shown in Fig.7.1(b). 

It follows from Eq.(7.1) and (7.4) that the enthalpy flux density for 

single- and multi-layer models are equal, provided S and G are the same 

for both models. This is always true if both models refer to the same 

canopy-soil surface system under the same weather conditions. Thus, to 

study the relationship between the parameters used in these two models 
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Fig.7.1. Electrical analogues of saturation heat: (a) for a single-layer 

model; and (b) for a multi-layer model. 
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only the sa tura t ion heat flux dens i ty above the canopy needs to be con­

s ide red . 

Defining the fraction of the e ne rgy gain in l ayer j , p . , a s : 

p . = H ' / ( S - G), (7.8) 

Eq.(7.5) can be rewritten as: 

n n 
J = (S-G) Z ((A./AJ(ar .p./r.)) - (pcD./â) l ( (A./A.) (1/r. ) ). (7.9) 

j = 1 ] ° S'J J ] P ° j=i ] ° J 

Both Eq . ( 7 . 3 ) and Eq . ( 7 . 9 ) contain two dr iv ing forces on the r i g h t -

hand s ide : t he c u r r en t source S-G and the potential source pc D„/A . As a 

f i rs t approximation, r . can be considered i ndependent of D_, so if J is 

to be the same unde r any values of D . for both models, t he following two 

equat ions should hold: 

r / ( R + r +ar ) = I ( ( A . / A J r . p . / r . ) , (7.10) 
c m ex c . = 1 j Ü s , ] r ] j 

n 
1 / (R+r +ar ) = £ ( ( A . / A J / r . ) . (7.11) 

m ex c ^ ] 0 ] 

These two equat ions form the r equ i r ed re lat ionship between the canopy 

r es i s tance r , t he excess r e s i s t ance r and the pa rameters used in the c ex r 

multi- layer models. 

7.3 Behaviour of the canopy r es i s tance r 

Eliminating R +r +ar from Eqs . (7 .10 ) and (7.11) y ie lds : 

n n 

r = I ( p . r . A . / r . ) / I ( A . / r . ) . (7.12) 
c j = 1 J s , ] ] j J = 1 j ] 

Since the summation in Eq . (7 .12) is ca r r ied out over all l aye rs including 

the soil su r face , r is influenced by both the canopy and t he soil s u r f ace . 

Because t he behav iours of r for t he canopy and the soil surface a re dif­

fe ren t , the numerator and the denominator of Eq . (7 .12) a re b e t t e r split 

into two p a r t s re la ted to the canopy and the soil s u r face , r e spec t ive ly : 
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n -1 n -1 
r = ( l ( p . r . A . / r . ) + p r / r ) / ( S (A . / r . ) + l / r ) , (7.13) 

c j = i ] s , 3 J 3 n s , n n j = l ] ] 

where the s ubsc r ip t n r e f e r s to the soil su r face . The canopy r es i s tance is 

likely to be a good r ep resen ta t ion of t he bulk stomatal r e s i s t ance of t he 

canopy only when t he influence of t he soil surface is r a t h e r small, i . e . t he 

second terms in both numerator and denominator should be negl igible . For 

a d r y soil su r face , t he 'stomatal ' r e s i s t ance of t he soil surface r is 
1 s , n 

v e ry l a rge , according to E q . ( 7 . 6 ) , 1/r in the denominator can be n eg ­

lected, and r / r in the numerator approaches un i t y . If t he canopy is 

d ense , t he ne t radiat ion absorbed by the soil surface S is small compared 

with S-G, and of comparable size to G, so p is r a t h e r small and the 

second term in the numerator can be neg lec ted . Under t hese two conditions 

Eq . (7 .13) becomes: 

n -1 n -1 
r = E ( p . r . A . / r . ) / Z ( A . / r . ) . (7.14) 

c j = 1 ] s , ] ] ] - = 1 ] ] 

Now a number of s i tuat ions will b e d i scussed where r is indeed equal 

to the bulk stomatal r e s i s t ance r „ _ . 

(a) When t he r e is no water s t r e s s , t he stomatal r e s i s tance of t he leaves 

is approximately inverse ly proport ional to the visible radiat ion abso rbed , 

the p roduc t p . r . is t hen unlikely to change much from layer to l aye r . 

The following equat ions then hold approximately: 

P l / ( l / r )= . . . - p ^ / d / r x> = V p / V < l / r > = p ^ , (7.15) 
3=1 J 3=1 J 

where r __ i s , following the usage of Thom (1975), t he bulk stomatal 

r e s i s tance of t he canopy, and p = l - p . If p . r . in Eq . (7 .14) is replaced 
c n j s ,] 

by p r c _ , th i s term can be moved out of t he summation opera t ion, so 
C b l 

Eq . (7 .14 ) becomes: 

r c = Pc rs r ( 7 - 1 6 ) 

(b) When t he r e ex is ts a s evere water s t r e s s , the openings of t he 

stomata a re small, r . becomes v e ry l a rge compared with r „ . and R., so 
s,J H,j ] 
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r. is approximately equal to «r . (Eq.(7.6)) and A. (j=l to n) approach 
J s > J j 

A =1 ( E q . ( 7 . 7 ) ) . I n t h i s c a s e E q . ( 7 . 1 4 ) b e c o m e s : 

n - 1 n - 1 
r = ( I p )/ Z (1/r ) = p r . 

4 = 1 J 4 = 1 * J 
(7.17) 

(c) When the canopy is completely wet, all r .'s equal zero, Eq.(7.14) 
s,J 

becomes : 

r = 0 = p rCT. 
c r c ST 

(7.18) 

For a dense canopy p is about equal to unity, so that in all these 

cases the canopy resistance r is approximately equal to the bulk stomatal 

resistance of the canopy *"„_,. This explains the experimental results 

mentioned above. Furthermore, the analysis also reveals the conditions 

under which this conclusion can be drawn: a dry soil surface and a dense 

canopy. The analysis also shows that even under these two conditions, r 

is only approximately equal to **„„. For practical purpose, however, this 

difference is not important. When the soil surface is wet, particularly 

under a sparse canopy, the influence of the soil surface can not be neg­

lected. It follows from Eq.(7.13) that r then consists of four resistances 
c 

connected as shown in Fig.7.2: 

l / d / t p ^ H l / ^ ) +l/(l/(pnrS(n) + l / r b ) ; ( 7 . 1 9 ) 

whe re 

n - 1 
I ( p . r . A . / r . ) / ( 1 / r ) , 

j = 1 I s , j ] ] n 
(7 .20) 

Pcr. 

~7 

Fig.7.2. Four components of 
the canopy resistance r . 

-76-



r, = (p r Ir ) I Y. ( A . / r . ) . 
b ' n s , n n ._n j j 

n - 1 
X I 

3=1 

( 7 . 2 1 ) 

If t h e soi l s u r f a c e i s d r y , p r a n d r a r e v e r y l a r g e c o m p a r e d w i t h 

r , a n d p r , r e s p e c t i v e l y , s o t h e s e c a n b e n e g l e c t e d , r t h e n e q u a l s a 

r e s i s t a n c e w i t h p r _ _ a n d r , i n s e r i e s . F o r a d e n s e c a n o p y p i s a b o u t 

z e r o , t h e n r , i s n e g l i g i b l e , t h i s i s t h e c a s e d i s c u s s e d a b o v e ( r = r q _ ) . F o r 

a s p a r s e c a n o p y , h o w e v e r , r , c o u l d b e l a r g e , so r may b e l a r g e r t h a n 

r „ „ . If t h e soi l s u r f a c e i s w e t , r = 0 , r e q u a l s a r e s i s t a n c e a s w i t h 
o l s , n c 

p r a n d r in p a r a l l e l , so r will a l w a y s b e s m a l l e r t h a n r c _ , a n d t h e 
c o l a c b l 

s p a r s e r t h e c a n o p y , t h e mo r e s i g n i f i c a n t t h e d i s c r e p a n c y will b e . 

T h e d a i l y c o u r s e of r ( c a l c u l a t e d b y E q . ( 7 . 1 2 ) ) a n d r S T o b t a i n e d f rom 

a s imu l a t i on p r o g r a m ( C h a p t e r 5) u s i n g t h e d a t a f o r a c a s e s t u d y t o a 

ma ize c a n o p y ( G o u d r i a a n , 1977) a r e s h o w n in F i g . 7 . 3 . F i g . 7 . 3 ( a ) i s f o r a 

d e n s e c a n o p y (LAI=3 .73 ) w i t h a d r y soi l s u r f a c e ( d o t t e d l i n e ) o r a w e t soi l 

s u r f a c e ( b r o k e n l i n e ) , r,,™ b e i n g g i v e n a l so ( s o l i d l i n e ) . F i g . 7 . 3 ( b ) i s f o r 

a s p a r s e c a n o p y ( L A I = 0 . 5 ) . T h e s a l i e n t f e a t u r e s d i s c u s s e d a b o v e c an b e 

s e e n c l e a r l y in t h e f i g u r e s . 
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(a) (b) 

F ig . 7 . 3 . Daily course of t he canopy r e s i s t ance r and the bulk stomatal 

r e s i s t ance r,™ obtained from the numerical simulation p rog ram. The dot ted 

l ines r e fe r s to a d r y soil s u r face , and the b roken l ines to a wet one : (a) 

for a dense canopy (LAI=3.73), and (b) for a s p a r s e canopy (LAI=0.5) 
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7.4 Behaviour of the excess resistance r 

It follows from Eq.(7.11) that 

r = R - R - ar , 
ex g m c 

(7 .22) 

where 

R = 1/ E ( (A. /Aj / r . ) , 
g j = 1 J 0 ] 

(7 .23) 

The physical significance of the resistance R can be explained as follows. 

Let H.' (j=l to n) in Eq.(7.5) all equal zero, Eq.(7.5) then becomes: 

J = - (pc D./A)/R . 
p 0 g 

(7.24) 

Since pc Dn/A is the potential source at the reference height as shown in 

Fig.7.1(b), and setting H.'=0 is equivalent to removing all the current 

sources in the figure, the physical meaning of R is clearly the actual load 

resistance seen by the potential source. 

The diagram in Fig. 7.1(b) after removing all the current sources is 

shown in Fig. 7.4 (a). R is the resistance seen from the two top terminals 

atKi. 

R, . 

a 2 R 2 

a 3 a 4 R 3 < 

a 2 a 3 a 4 R < ; 

-̂ wv-
-AW 

r2 

-W r3 

-w 
rU 

( a ) ( b ) (c) ( d ) 

Fig.7.4. Simplification of the resistance scheme shown in Fig.7.1(b) after 

removing all the current sources. 
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in the figure. R, shown in Fig.7.1(b) has been split into two par ts , R„ 

and R, , the former denotes now the turbulent resistance between the 

reference height and the top of the canopy, and the latter that between 

the top and the centre of the first layer. It follows from Eqs. (7 .6) , (7.7), 

and (7.23) that R depends on R., r . . . and r . in a complicated way. 

This can be seen also from Fig. 7.4 (a) , because the resistance scheme 

contains many networks which are difficult to handle. Therefore, the 

behaviour of the excess resistance r is also complicated. It can be 
ex _, r 

shown, however, that under certain conditions B is approximately equal 
1/2 to c-j+c-u.,. , and the two constants c, and c-, can be determined by the 

parameters of the multi-layer model. It is required then to obtain a sim­

plified expression for the resistance R . 

7.4.1 Estimation of R 
g 

The standard method of transforming a resistance scheme from one type 

to another does not help here to simplify the scheme shown in Fig.7.4(a) . 

An approximate method must therefore be developed. The idea is to find a 

simpler resistance scheme without networks to replace the original one. 

Hence, the diagram in Fig.7.4(a) is transformed into that shown in Fig. 

7 .4(b). It can be seen that one network consisting of R., r . and r . is 

replaced by a.R. in series with r , and r., which are now in parallel; a. is 

a parameter. In order to keep R unchanged, the resistance of the new 

system of R-, r , and r . has to be the same as that of the original net­

work , so 

a4R4 + r 3 r 4 / ( r 3 + r 4 ) = r 3 . ( r
4

+ R 4 ) / ( r 3 + r 4 + R 4 ) ' ( 7 - 2 5 ) 

from which a. can be determined as: 

a4 = l / ( ( l+ r 4 / r 3 ) ( l+ r 4 / r 3 +R 4 / r 3 ) ) . (7.26) 

Denoting g.=l/r. (i=l to n ) , under the condition of R. being much smaller 

than r , , a. can be approximated as: 

a4 = g 4
2 / (g 3+g 4 ) 2 . (7.27a) 

By transforming the resistance scheme further to that shown in Fig. 

7.4(c), and in Fig.7.4(d), the parameters a, and a-, are introduced and 

determined by: 
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a3 = ( g 3 + g 4 ) 2 / ( g 2 + g 3 + g 4 ) 2 ( w t e l R 3 + a 4 R 4 < < r 2 ) (7.27b) 
2 2 

a2 = ^g2+g3+g4^ ^gi+g2+g3+g4^ (when R ^ a ^ + a ^ R ^ r ^ (7.27c) 

and a. is defined as un i t y . By defining 

2 2 2 2 
q, = a, = 1 = G, /G, , q~ = a, a ? = C? /G, , (7.28a) 

2 2 2 2 
q , = a ^ a 2 a 3 = G3 ' G i ' q 4 = a 1 a 2 a , a 4 = G^ /G^ , (7.28b) 

where 

G. = E g . ( i= l to n , and n=4 h e r e ) , (7.29) 
j=i ] 

R can be exp re s sed a s : 

R = R„ + R + 1/G,, w i th (7.30) 
g 0 a 1 

n 
R = Z q .R . . (7.31) 

The physical meaning of the t h r ee components of R (Eq . (7 .30 ) ) must 

be expla ined. I t can be seen from F ig .7 .4 (a ) tha t if t he t u rbu len t r e s i s ­

tances within the canopy a re neglected by se t t ing all R. 's (j=l to n) equal 

to ze ro , all r . ' s will be connected with each o ther in parallel r e su l t ing in a 
J 

r e s i s tance 1/Gn ( the t h i rd component of R ) , and R then equals R n +1 /G , . 
1 g g 0 1 

When the R. 's a re not equal to zero , bu t a re small compared with r . ' s , 
t he i r contr ibut ion to R can be approximated by R , which is a weighted 

sum of the R . ' s . 
J 

The r e s i s t ance scheme shown in F ig . 7 .4(d) appea r s similar to tha t used 

by Thorn (1975, p . 6 5 ) , b u t he obtained h is scheme by assuming ad a rbi t r ium 

tha t t he t u rbu len t r e s i s tance must be calculated from the re ference he ight 

to a cer ta in level within the canopy: he did not explain why his scheme 

should replace the more realist ic one shown in F ig . 7 . 4 ( a ) . In con t r a s t , the 

r e s i s tance scheme shown in F i g . 7 . 4 (d ) is obtained t h rough ana lys i s , so the 

way how to calculate the r e s i s tance R is also determined ( E q . ( 7 . 3 1 ) ) . 

As n t ends to infini ty, g., G., q., and R. in Eqs . (7 .27 ) t h rough (7.31) 

become cont inuous functions of he ight z: g ( z ) , G ( z ) , q ( z ) , and dz/K ( z ) , 

where K (z) is t he t u rbu len t exchange coefficient for heat t r ans fe r within 
rl 
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2 2 

the canopy. Eq . (7 .28) becomes q(z)=G(z) /G(z ) , where z is t he crop 

h e igh t . Eqs . (7 .29 ) and (7.31) become an in tegra t ion of, r e spec t ive ly , 

g ( z )dz and ( q ( z ) / K H ( z ) )dz from z=0 to z . Assuming tha t both K„ ( z ) and 

g(z) a re i ndependen t of the he ight z and neglect ing the influence of t he 
2 

soil s u r face , q (z ) becomes ( z /z ) according to Eq s . ( 7 . 27 ) and ( 7 . 28 ) , 
K„ (z ) becomes K„ (z ) , and R can be found by in tegra t ion : 

R = (1/3)R . (7.32) 
a p 

Here , R is t he total t u rbu len t r e s i s tance between the top and the bottom 

of the canopy for t he cons tant K„ ( z ) profi le: 

R = z /K,(z ) = ( (z / k ) / ( z - d ) K - 1 . (7.33) 
p c H c c c * 

where k is the von Karman's cons tan t , d the zero plane displacement, and 

Ufc the friction veloci ty. 

7 .4 .2 Behaviour of r and B for a wet canopy 

In real i ty both K„ ( z ) and g(z) a re functions of he ight z . The l a t te r 

depends on the profiles of the surface bounda ry - l aye r r e s i s t ance as well as 

on the stomatal r es i s tance ( E q . ( 7 . 6 ) ) . For a wet canopy, however , t he 

stomatal r e s i s t ances a re all zero: e ( z ) , R , and r a re determined merely 
B g ex ' 

by the aerodynamic r e s i s t ance s . In o rde r to obtain an explici t express ion 

of r in terms of u^ , t he profiles of t he t u rbu l en t exchange coefficient 

and wind velocity within a canopy are needed . 

There a re two types of theoret ical K„ (z ) profiles within a canopy: 

e i ther constant and exponent ia l . Because the t u rbu len t r e s i s t ance within 

the canopy has l i t t le effect on the total flux densi t ies above the canopy 

(Chapter 5 ) , t he constant K„ ( z ) profile is p r e f e r r ed h e r e . Based on the 

assumption of a constant K (z) profi le , an analytical express ion for the 

wind velocity within the canopy was der ived by Landsberg and James 

(1971): 

u(z) = u(z ) ( 1 + m( l - z / z ) ) " 2 , (7.34) 
c c 

where u (z ) is t he wind velocity at t he top of t he canopy, and m is t he 

parameter determined b y : 

m = ( l / k ) ( c , z 1 l n ( (z - d ) / z „ ) / ( 6 ( z - d ) ) ) 1 / 2 . (7.35) 
d e c c U c 



Here , c , is t he mean d rag coefficient of t he l eaves , 1 t he leaf a rea index 

of t he whole canopy, and z„ t he r oughnes s l eng th . The leaf and soil 

sur face bounda ry - l aye r r e s i s tance r H ( z ) (per leaf a rea) and r , , can be 

calculated as (Goudriaan, 1977) : 

r H (z ) = 9 0 ( w L / u ( z ) ) 1 / 2 , (7.36) 

i „ - . ^ v w , ^ , ) l l Z = 180(l-hn)(kw / l n ( ( z - d ) / z n ) x l / 2 - - 1 / 2 

H,n s s c U r u _ = 180(w„ /u (0 ) ) 1 " ' = 180 (Hm)(kw. / l n ( ( z„ -d ) / z n ) ) ' u* ' , (7.37) 

where wT is t he mean leaf wid th , and w the mean diameter of t he soil Li s 
c lods . For a wet canopy with a uniform leaf a rea dens i ty profi le , the 

second component of R (Eq . (7 .30 ) ) defined by Eq . (7 .31) can be obtained 

from E q s . ( 7 . 2 9 ) , (7.34) t h rough (7.37) after some manipulat ions: 

R = c 'R , w i th (7.38a) 
a p 

c ' = (2+2b+2b2 - ( ln2(l-hn)+2(l+b)ln(l-tm))/m) / ( l n ( l - t a )+b) 2 , and (7.38b) 

b = (90m/1 ) (wT /u(z ) ) 1 / 2 / r . (7.38c) 
c L. c n 

For a d r y soil su r face , b becomes zero , and as m t ends to zero , wind 

veloci ty, and consequent ly g ( z ) , become constant within the canopy, c' 

t ends to 1/3 according to Eq. ( 7 . 38b ) . This is consis tent with the r e su l t 

obtained above . 

The t h i rd component of R ( E q . ( 7 . 3 0 ) ) , 1/G, , for a wet canopy is 

r u in parallel with r u r _ , which is called, similar to r , , - , , t he bulk leaf r i , n rl 1 b l 
sur face bounda ry - l aye r r e s i s t ance of t he canopy (calculated with all t he 

cor responding components act ing in parallel) . This r e s i s t ance can be 

obtained in the same way as for R : 
' a 

r H T = 1 /G(z c) = ( 9 0 m / l c ) ( w L / u ( z c ) ) 1 / 2 / l n ( l + m ) 

= (90m/(l l n ( l +m) ) ( kw T / l n ( ( z -d) / z j ) 1 / 2 u ~ 1 / 2 , (7.39) c JJ c U * 

then Eq . (7 .30) can be r ewr i t t en a s : 

R
g = R 0 + c ' R p + r H r r H , „ / ( r H r + r H , n ) - ( 7 - 4 0 ) 

From Eqs . (7 .22 ) and ( 7 .40 ) , r for a dense and wet canopy (r =0) , with 

a wet soil su r face can be obta ined: 

r = Rn + c 'R - R + r - j jv , / ( r , „ + r „ ) . (7.41) 
ex 0 p m HT H,n HT H,n 
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The r e s i s tances Rn and R can be determined by the aerodynamic 
0 m ' ' 

method (Monteith, 1973): 

RQ = ( 0 . 741n ( ( z r -d ) / ( z c -d ) ) / k )u H < " 1 (7.42) 

R m = Ü n U z ^ d J / z j j J / k K " 1 (7.43) 

where z is t he re ference h e igh t . Examining the terms on the r i gh t - h and 

side of Eq . (7 .41) shows tha t the f i rs t t h ree t e rms , R„, c'R , and R a re 
-1 ° C - l / 2 m 

proport ional to u+ , and the last term is p ropor t ional to u+ , so t ha t 
the re la t ionship between r , B , and u+ can be wr i t ten a s : 

- 1 - 1 /2 
r e x = CjU* + c2u* , (7.44) 

-1 117 
B = c : + c ^ ' (7.45) 

( c . and c-, a re two cons t an t s , the express ion for c . can be found from 

E q s . ( 7 . 4 2 ) , ( 7 .43) , ( 7 .38 ) , and (7.33) and tha t for c2 from Eqs . (7 .37) 

and ( 7 . 39 ) ) . There fore , c1 and c? can be determined by t he parameters 

used in the mult i- layer model. 

The dependence of B on u,,. for a wet canopy with a wet soil sur face 

was also obtained by means of the numerical simulation p rogram. The 

r e su l t s a re shown in F ig .7 .5 marked by dots or c r o s se s , t oge ther with the 

s t r a igh t l ines given by Eq . (7 .45) for a dense canopy (LAI=3.73) and for a 

s pa r se canopy (LAI=0.5). The overestimation by Eq . (7 .45) is caused by 

neglect ing the terms such as R 4 / r , in E q . ( 7 . 2 6 ) , bu t th is e r r o r is small. 

It confirms the approximate method for est imating R developed in s ub sec ­

tion 7 . 2 . 3 ( a ) . 

The square root of u+ in Eq . (7 .45) is re la ted to the assumption tha t 

the d rag coefficient c , is i ndependent of u^ . Thom (1972) pointed out t ha t 
-1 /2 -1 

because of t he she l ter effect, c , is p roport ional to u+ , and then B 
1/3 

is p roport ional to u^ . This subject will not be d i scussed h e r e . 

7 .4 .3 Behaviour of r and B for a d r y canopy 

When the canopy is not wet , the stomatal r e s i s tance has to be t aken 

into account . Eq . (7 .41) now becomes: 

r = R. + c 'R - R + 1/G, - ctr . (7.46) 
ex 0 p m 1 c 
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(a ) ( b ) 
- 1 1/2 

F i g . 7 . 5. The re la t ionship between B and u obtained from the numerical 

simulation p rograms is compared with the approximate analytical e x p r e s ­

sions (solid l i n e s ) : (a) for a wet canopy with a wet soil s u r f ace ; and (b) 

for a d r y canopy with a d r y soil s u r f ace . 

As p rev ious ly mentioned, because of E q . ( 7 . 6 ) , g (z ) now depends not only 

on t he profile of the su r face b ounda ry - l aye r r e s i s t ance r ( z ) , b u t also on 

tha t of t he stomatal r e s i s t ance r (z) . T h u s , c' also d epends on t h i s . Gn in 
s 1 

Eq . (7 .46 ) is composed of the contr ibut ion from t h e soil su r face ( 1 / r ) and 
n 

t ha t from the canopy ( the sum of 1/r., j=l to n-1) . In r ea l i ty , both r „ ( z ) 
3 H 

and r g ( z ) increase with the d ep th into t he c anopy , bu t usual ly at d ifferent 

r a t e s . As a f i rs t approximation, t he cont r ibut ion of t he canopy to G1 can 

be est imated by the bu lk leaf b ounda ry - l aye r r e s i s t ance r u „ and t he bu lk 
H 1 

stomatal r e s i s t ance r g T of t he c anopy . 1/G. is t h e n : 1 / G l = 1 / ( r H T + a V + 1 / V (7.47) 

For a d ry soil s u r face , t he second term can be neg lec ted . Eq . (7 .47) will 

be exact ly t r u e if r (z) and r (z) i nc rease at identical r a t e s . 
M S 

In the same sp i r i t , t he profile of t he weighting factor q (z ) (Eq . (7 .28 ) ) 

can still be approximated solely by r R ( z ) , so Eq s . (7.38b and c) can still 

b e u s ed to est imate c ' . Eq . (7 .46 ) can t hen be wr i t ten a s : 

r = R„ + c 'R ex 0 p 
R m + rm + a rsr (7 .48) 
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For a dense canopy with a dry soil surface, r is approximately equal 

to r^rp, so the last two terms in the right-hand side of Eq.(7.48) can be 

ignored. Eq.(7.48) is then equivalent to Eq.(7.41); thus, Eqs.(7.44) and 

(7.45) for r and B are still approximately valid. 

In Fig. 7.5(b) the result from the numerical simulation model is shown 

for a dense canopy with a dry soil surface (marked as crosses), together 

with the straight line from Eq.(7.45). It can be seen that they are still in 

fair agreement with each other, although not as good as in the case of a 

wet canopy shown in Fig. 7. 5 (a) . 

When the canopy is sparse and the soil surface is wet, r is different 

from r,,™ as discussed in Subsection 7.2.2, the last two terms in Eq.(7.48) 

do not cancel against each other, so the situation becomes complicated. No 

analytical expressions could be found for c, and c ? . 

The parameters used in the simulation program (Chapter 5) are typical 

for a maize stand. Fig.7.5(b) shows that the value of B is around 4, 

which is consistent with the value suggested by Thom (1972) based mainly 

on experiments in the fields. 

7.5 Discussion 

The two important Eqs.(7.10) and (7.11), linking r and r of the 

single-layer model with the parameters of the multi-layer model, were 

obtained under the assumption that the stomatal resistance is independent 

of the vapour pressure deficit at the reference height. There i s , however, 

some evidence that the stomatal resistance does depend on the vapour 

pressure deficit. In this case, mathematically speaking, only one equation 

can be obtained by equalizing J 'for both models, and r and r cannot be 

derived separately. From the physical point of view, however, Eq.(7.11) 

means that the actual load resistance in contact with the potential source 

pc D,./A is identical for both single- and multi-layer models. The physical 

meaning of Eq.(7.10) is that the contribution of the current source S-G to 

J in both models is the same. Therefore, these two equations are still 

physically sound, and can thus be used in practice. 

It has been shown in the present paper that both the canopy resistance 

r and the excess resistance r contain physiological and aerodynamic 

components. Under the condition of a dense canopy with a dry soil surface, 
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however, r contains only, approximately, the physiological part , and r 

the aerodynamic par t . This result is striking, it justifies the applicability 

of the single-layer model under the condition stated above. 

The separation of the physiological and aerodynamical parts is not 

possible for a sparse canopy with a wet soil surface. Since the influence of 

the soil surface cannot then be neglected, the single-layer model is no 

longer plausible. It is likely that a double-layer model - one layer repre­

senting the canopy and the other representing the soil surface - will give 

better results. By using a double-layer model, it will be possible to 'ex­

tract' the bulk stomatal resistance of the canopy from the value of the 

canopy resistance obtained from aerodynamic measurements above the 

canopy. 
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8 General discussion and suggestions 

Mathematical analysis has long been used and is well developed in 

physics and engineering, but in agricultural science its application has 

been much limited, because of the complexity of the natural systems in 

agriculture. Various factors interact with each other so it is difficult to 

formulate a simple mathematical description and to find analytical solutions 

to these equations. At the beginning, therefore, only much simplified 

mathematical models were used. The emergence of high-speed computers 

and the rapid development in the software enable modellers to construct 

more realistic simulation models. More and more factors are taken into 

account, and more and more parameters are introduced, with the conse­

quence that the complexity of the simulation model grows beyond the 

immediate grasp of the human mind. Simulation models may then become 

counterproductive because they block further communication between 

scientists. Therefore further theoretical research to find simplifying rela­

tionships on a higher level of understanding remains necessary, even 

though simulation models are available. 

This study shows that it is possible to find simpler relationships for 

highly complex, multi-parameter systems which not only deepen the under­

standing, but also result in much more efficient and lucid computer algo­

rithms . The vector-matrix representation of the radiation and its interac­

tion with a crop canopy used in Chapters 2 and 3, made the equations for 

radiation transfer more lucid and resulted in a clearer picture about the 

physical process of the transfer of the radiation in crop canopies. Under 

the vector-matrix notation, the meaning of the reciprocity relation became 

clearer: it is equivalent to the symmetry of the matrix representing the 

interaction of the radiation with the whole canopy. The radiation-path 

approach developed in Chapter 2 further deepened the understanding of 

the reciprocity relation: it is closely related to the reversibility of the 

radiation paths. The differential equations developed in Chapter 3 simpli­

fied the mathematical expression of directional transfer of the radiation in 

crop canopies; they turned out to be in the same form as the simple 

Kubelka-Munk equations, only the scalar being replaced by corresponding 

vectors and matrices. This development encouraged to find the analytical 

solutions to the profiles of the radiation intensities from all directions. The 

computation of the reflectance pattern of various crop canopies is thus 
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greatly simplified, which resulted in a computer algorithm to account for 

the azimuthal variations of the reflectance. The introduction of the 

enthalpy and saturation heat in Chapter 4 provided a new look to the old 

problems of the sensible and latent heat transfer. Formerly, the sensible 

and latent heat flux densities were treated separately and described by 

separate equations, as they are driven by different driving forces and 

experience different resistances. To satisfy the energy balance, however, 

the sum of the sensible and latent heat must be equal to the net radiation 

absorbed. This causes the transfer processes of the sensible and latent 

heat to depend on each other. The advantage of using instead enthalpy 

and saturation heat flux, is that they can be independently calculated. 

The enthalpy flux density is the sum of the sensible and latent heat flux 

densities, driven by the net radiation absorbed; and the saturation heat 

flux density is the weighted sum of the sensible and latent heat flux 

densities, driven by the gradient of the vapour pressure deficit. The 

stomatal resistances of leaves have no influence on the enthalpy but only 

on the saturation heat. Based on this approach the computation of the 

profiles of temperature and humidity is simplified to such an extent that a 

crop micrometeorological simulation program executable on microcomputers 

could be written. 

Because the time which was available to complete this dissertation is 

limited, the applications of the improvements to the crop micrometeorologi­

cal modelling have not been fully worked out. The Kubelka-Munk equations 

in vector-matrix forms established in Chapter 3 can account for the azi­

muthal variations of reflectance. The analytical and approximate solutions 

for the canopy bidirectional reflectance provide a means to calculate the 

reflectance pattern of various ,crop canopies with an acceptable execution 

time. Moreover, the possibility of calculating the azimuthal distribution of 

radiation enables to discard the assumption of the Lambertian property of 

the leaves and to use the measured data of bidirectional reflectance and 

transmittance of the single leaves. It is desirable to quantify the effects of 

the non-Lambertian property of the leaves and the azimuthal variations. 

Several data sets of bidirectional canopy reflectance for soybean, corn and 

wheat have been assembled by the Laboratory for Remote Sensing at the 

Purdue University, West-Lafayette, Indiana, U.S.A. These data sets may 

then be used to determine to what extent the observations can be 



explained by including the non-Lambertian property of the leaves and the 

azimuthal variations. This topic is definitely of interest for current r e ­

search. 

The simulation program in BASIC, executable on microcomputers devel­

oped in Chapter 5 is a generalized one for all kinds of crops. In particu­

lar, it can be applied to short grass, where Goudriaan's (1977) simulation 

model MICROWEATHER has difficulties with the small time coefficient. The 

program could also be further developed to simulate the evapo-transpira-

tion from a partly wet canopy after a rainfall by treating the wet leaves as 

having zero stomatal resistances. The simulation model in BASIC can be 

also incorporated into a pest development and plant disease model to simu­

late the profile of the leaf wetness, which is important to the development 

of some pests and plant diseases. Moreover, with the decreasing price of 

microcomputers, it is becoming more and more common to equip measuring 

instruments in the field with a microcomputer. The program in BASIC 

provides the required software to treat the data instantaneously. Then, 

the simulated transpiration rate, for instance, can be obtained immediately 

and used in optimization of irrigation. 

If only the total sensible and latent heat flux densities above a canopy 

are required, the multi-layer model for the sensible and latent heat t rans­

fer can be simplified to contain only two layers, one represents the whole 

canopy and the other represents the soil surface. The computation is then 

much easier. This version of the simulation program of crop micrometeoro-

logy can be included in a crop growth model such as BACROS (de Wit et 

a l . , 1978). It is likely to simplify the crop growth model to such an extent 

that it can also be executed on a microcomputer. It would then be possible 

to monitor the crop growth in the field, and thus to acquire information 

for control operations. 

Because of the complexity of the atmosphere-vegetation-soil system, 

simplifications must be made in simulation of the transfer of energy momen­

tum and mass in this system. One of the most frequently adopted simplify­

ing assumptions is horizontal homogeneity. This assumption reduces a 

three-dimensional transfer problem to an one-dimensional problem: only 

vertical variations of the variables such as radiation intensity, wind velo­

city ect. are studied. In practice, the vegetation is seldom horizontally 

homogeneous, because crops are often planted in rows; and the soil is 

often horizontal heterogeneous. Including this horizontal heterogeneity, 
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however, makes the mathematical analysis so complicated, that it is worthy 

to do it only for a few special cases. In most cases, the assumption of the 

horizontal homogeneity works fairly well, so this assumption is adopted 

throughout the dissertation. Therefore, the transfer model studied in this 

dissertation is essentially one-dimensional. At transitions in surface prop­

erties such as roughness, crop resistances, albedo, e t c . , advection may be 

important. In this case, a two-dimensional model is needed. If measurements 

are done directly above the crop surface, the micrometeorological model can 

be used for small fields. Clearly, the influence of adjacent fields increases 

when measurements are done at higher altitudes. Then considerable problems 

of extrapolation remain when only standard meteorological data from a 

weather station are available. There is still a major gap between crop 

micrometeorology and the planetary boundary-layer meteorology, concerning 

horizontal area scales of hundreds of square kilometers, and vertical scales 

up to 100 meters. 

This study confirms the validity of the concept of canopy resistance, 

and shows that it can be derived as the parallel circuiting of stomatal 

resistances for most practical purposes. Therefore the importance of the 

behaviour of stomatal resistance and its linkage with other processes such 

as photosynthesis, senescence, rooting is underlined. Further progress in 

understanding crop growth, and in optimization of the use of limited 

resources such as water and nutrients, will require an integration of more 

plant physiological knowledge in existing simulation models. Also the devel­

opment of new concepts in this area is needed to straighten out and unify 

the vast but incoherent knowledge in the fields of environmental crop 

physiology. 
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Appendix 

A-l List of the program (executable on an Apple II) 

1 REM CROP MICROMETEOROLOGY SIMULATION ON MICROCOMPUTERS (CMSM) 
3 REM SPHERICAL LEAF ANGLE DISTRIBUTION IS ASSUMED 
5 REM ABREVIATIONS. G:GOUDRIAAN J.(1977).CROP MICROMETEOROLOGY. 
6 REM P:PENNING DE VRIES F.W.T.& VAN LAAR H.H.(1982), 
7 REM SIMULATION OF PLANT GROWTH AND CROP PRODUCTION. 
8 REM C: PRESENT PAPER OF CHEN. 
9 REM THE NUMBER FOLLOWED IS THE EQUATION INDEX. 
20 DIM Z6(11),D6(11),T6(11),M4(13),S4(13),X(20),Y(20) 
36 N=4:M=5:L=10:Z6(1)=0.02:REM STRATIFICATION 
37 D6(l)=Z6(l)/2:FOR 1=2 TO L+1:Z6(I)=1.2*Z6(I-1) 
38 D6(I)=(Z6(I-1)+Z6(I))/2:NEXT:REM STRATIFICATION 

39 REM INPUT KNOWN OR MEASURED DATA 
40 READ P1,K5,G1,A1,A8,A9,L5,I3 
44 DATA 3.1415926,0.41,0.67,1240,2.2672E-7,10.8E6,2.5E9,0.5 
90 FOR 1=1 TO 9:READ Kl(I):NEXT:REM G:2.34 
94 DATA 5.737,1.932,1.183,0.872,0.707,0.610,0.552,0.518,0.502 
100 FOR 1=1 TO 9:READ B1(I):NEXT:REM G:P.9,BU(l-9) 
110 DATA 0.030,0.087,0.133,0.163,0.174,0.163,0.133,0.087,0.030 
120 FOR 1=1 TO 9:READ Q8(I):NEXT:REM P:P.105,(32) 
124 DATA 0.90,0.54,0.38,0.29,0.25,0.22,0.20,0.19,0.18 
126 FOR 1=1 TO 9:READ Q9(I):NEXT:REM P:P.105,(32) 
128 DATA 0.68,0.32,0.21,0.16,0.13,0.12,0.11,0.10,0.10 
130 FOR 1=0 TO M:READ Q1(I):NEXT 
134 DATA 0,0.1,0.3,0.5,0.7,0.9 
140 READ D3,L0,Z2:DATA 270,45,3:REM EXPERIMENT SPECIFICATION 
150 READ W6,L6,V6,W7:DATA 0 . 0 5 , 1 . 3 . 2 E 6 . - 0 . 1 : R E M SOIL DATA 
154 READ Z1 ,L1 ,W1,C0 ,S8 ,S9 ,E2 ,02 ,R7 ,G6 ,R8:REM PLANT DATA 
156 DATA 2 . 5 , 3 . 7 3 , 0 . 0 5 , 0 . 3 , 0 . 2 , 0 . 8 5 , 1 7 . 2 E - 9 , 1 2 0 , 2 E 3 , 3 . 5 E - 8 , 1 E 7 
158 FOR 1=0 TO 7:READ T3(I),W3(I):NEXT:REM G:P.87,FIG.17 
160 DATA 0.5,-50,0.7,-17,0.8,-14,0.84,-12.5,0.88,-10,0.9,-8.1,1,0,1.5,40.5 
162 FOR 1=0 TO 5:READ T5(I),C5(I):NEXT:REM G:P.87,FIG.18 
164 DATA 0,0.08,10,0.08,20,0.29,30,0.94,37,1,48,0.87 
166 FOR 1=0 TO 5:READ V6(I) ,R6(I):NEXT:REM G:P.87,FIG.17 
168 DATA 0.5,1E4,0.6,3E3,0.7,800,0.8,600,0.9,130,1.5,130 
170 FOR 1=0 TO 5:READ T2(I),F2(I):NEXT:REM G:P.76,FIG.16 
174 DATA 0,0,10,0,20,1.39E-6,25,1.67E-6,35,1.67E-6,40,0.56E-6 
176 REM PARABOLIC LAI PROFILE IS ASSUMED FOR N=4 AS FOLLOWS: 
177 Z(1)=0.387*Z1:Z(3)=Z(1):Z(2)=Z1-2*Z(1) 
178 01=330:A(N)=1:N1=N-1:E9=L1/N1 
194 FOR 1=1 TO L+1:READ T6(I):NEXT:REM INITIALIZATION 
196 DATA 12.2,12.9,13.6,14.3,15,15.5,15.7,15.7,15.4,15.2,15.2 

198 A2=A1/G1:L0=L0*P1/180:B6=D6(1)/L6 
200 X=-0.13*P1*COS(P1*(D3+10)/182.5):REM G:2.106 
204 Sl=SIN(L0)*SIN(X):Cl=COS(L0)*COS(X) 
224 A7=1.83E-6*(01-02)/1.66:REM G:3.10 
270 L3=SQR(4*W1*Z1/P1/L1)*I3:REM G:4.45 
280 C4=SQR(C0*Ll*Zl/2/L3):REM G:4.49 
284 D0=Z1-SQR(L3*Z1/C4)/K5:X=Z1-D0:REM G:4.61 
286 Y=Z2-D0:Z0=X*EXP(-Z1/C4/X):REM G:4.62 
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288 A4-LOG(X/Z0) :A5-LOG(Y/Z0) :A6-0 .37/L3 
290 V8-SQR(1-S8):V9-SQR(1-S9):REM G :2 .20 
294 X3=0:F0R 1-1 TO 9:X3-X3+B1(I )*EXP (-K1 ( I )*L1) 
296 NEXT:K7—L0G(X3)/L1 
300 X1-V8:G0SUB 1010 
330 K8=K9:F0R I-O TO 9 : P 8 ( I ) - P 9 ( 1 ) : NEXT 
350 X1-V9: GOSUB 1010: GOTO 1200 
1000 REM SUBROUTINE EXTIN.& REFL.COEFF. OF DIFFUSE RADIATION 
1010 X2 = (1-X1)/(1+X1):REM G:2.21 
1030 X=0:Yl=0.0353:Y2=0.94623*Xl:FOR 1=1 TO 9 
1040 Y=Y1+Y2*K1(I):X=X+B1(I)*EXP(-Y*L1):NEXT 
1060 K9=-L0G(X)/L1:REM G:2.41 
1090 P9(0)=0:X=-0.0111544:Y=1.117:FOR 1=1 TO 9 
1100 X4=1-EXP(-2*X2*K.1(I)/(1-HC1(I))):REM G:2.45 
1110 P9(I)=X+Y*X4:REM G:2.46 
1130 P9(0)=P9(0)+B1(I)*P9(I):NEXT 
1160 RETURN 

1190 REM INPUT OBSERVED WEATHER DATA 
1200 FOR 1=0 TO 13:READ M4(I),S4(I):NEXT 
1202 DATA 0,-40,6,-30,6.5,0,8.5,105,9.8,400,11.2,660,12.1,690,13.2,630,14.1,530 

15.1,380,16.1,200,17.1,14,18.1, -84,24, -40 
1210 FOR 1=0 TO 6:READ M7(I),T7(I):NEXT 
1212 DATA 0,13.5,6,12.9,10,16.5,14,20,16,20.6,18,14.1,24,13.5 
1220 FOR 1=0 TO 5:READ M8(I ) ,E8(I ):NEXT 
1222 DATA 0,13,6,12,8.5,13,13,11.2,18,15,24,13 
1230 FOR 1=0 TO 6:READ M9(I),U9(I):NEXT 
1232 DATA 0,0.7,8,0.7,9,2,11,3,16,1,17,0.7,24,0.7 
1240 R3(N)=0:N3=1 

1280 D4=1/8:M4=D4*3600 
1300 FOR D2=l TO 1:REM ENDS 5574 
1302 PRINT "DAY=";D2:PRINT 
1306 C7=0:E7=0:F7=0 
1307 L4=0. 01 : G=-30:W2=0 . 975 :W0=2. 5E-3*L1*W2 
1308 FOR 1=1 TO N1:D5(I)=0:W(I)=0:NEXT 
1310 FOR M2=0 TO 24 STEP D4:REM ENDS 5540 
1330 X=M2:FOR 1=0 TO 13:X(I)=M4(I): Y(I)=S4(I):NEXT 
1334 GOSUB 1370:S=Y 
1340 FOR 1=0 TO 6 :X( I ' )=M7( I ) :Y( I )=T7( I ) :NEXT 
1344 GOSUB 1370:T(0)^Y 
1350 FOR 1=0 TO 5 :X ( I )=M8( I ) :Y ( I )=E8 ( I ) :NEXT 
1354 GOSUB 1370:EO(0)=Y 
1360 FOR 1=0 TO 6 :X( I )=M9( I ) :Y ( I )=U9( I ) :NEXT 
1364 GOSUB 1370:U(0)=Y:GOTO 1400 
1370 REM SUBROUTINE INTERPOLATION 
1372 IF X=0 THEN Y=Y(0):GOTO 1380 
1374 FOR 1=0 TO 20 : IF X(I)>=X THEN K=I-1:G0T0 1378 
1376 NEXT I 
1378 Y=Y(K)+ (Y ( I ) -Y (K ) ) / (X ( I ) -X (K ) ) * (X -X (K) ) 
1380 RETURN 
1400 Xl=T(0)+239 
1404 X2=6.11*EXP(17.4*T(0) /X1):REM G :3 . 21 
1410 D1=X2*4158.6/X1/X1 
1414 A0=G1/(G1-H)1):B0=1-A0:REM C : ( 5 ) 
1416 A3=A1 /D1 :D(0)=X2-E0(0) :V0=A3*D(0) 
1420 GOSUB 5600:REM AERODYNAMICS 
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1428 REM RADIATION REGIME, RS(I) AND B(I). UP TO L.5440. 
1430 X1-T(0)+273.2:X2-1.2*T(0)-21:REM G:2.67 
1434 Y2=T(0)-2:Y3=Y2+273.2:X3=X2+273.2 
1440 X4 = (Xl+X3)/2:Y4=(Xl+Y3)/2 
1450 B2=A8*X4*X4*X4*(X1-X3):REM G:2.66 
1460 B3=A8*Y4*Y4*Y4*(X1-Y3) 
1470 R5=0 . 167E -6*EXP(0 . 07* (T (0 ) - 30 ) ) 
2000 H0=S1+C1*C0S(P1*(M2+12)/12):REM G:2.107 
2001 IF HOO.E-10 GOTO 5400:REM NIGHT 
2002 X0=ATN(H0/SQR(1-H0*H0))*180/P1 

2003 REM INTERPOLATION FOR SUN HEIGHT DEPENDENT PARAMETERS 
2004 IF X0<=5 THEN X=l :H0=0. 5 / K l ( l ) :GOTO 2018 
2005 IF X0>=85 THEN X=9:H0=0.5/Kl(9) :GOTO 2018 
2008 X=INT((X0+5) /10) :Xl=X+l 
2009 Yl = (X0-X*10+5) /10 :Y=l -Yl 
2011 Q8=Q8(X)*Y-K)8(X1)*Y1:Q9=Q9(X)*Y+Q9(X1)*Y1 
2013 P8=P8(X)*Y+P8(X1)*Y1:P9=P9(X)*Y+P9(X1)*Y1 
2016 GOTO 2040 
2018 Q8=Q8(X):Q9=Q9(X):P8=P8(X):P9=P9(X) 

2040 REM FRACTION OVERCAST AND INCOMING RADIATION 
2050 X1=1280*H0*EXP(-0.15/H0):REM P:P.103,(24) 
2060 Y1=X1/5:K1=0.5/H0 
2100 X2=Q8*P8(0)+(1-Q8)*P8:Y2=B2 
2110 X3=Q9*P9(0)+(1-Q9)*P9:Y3=B3 
2120 X4=l-(X2+X3)/2:Y4=l-O.6*P8(0)-0.4*P9(0) 
2130 IF N3=0 THEN Y2=0: Y3=0:X4=1 : Y4=l 
2140 F3=(X4*X1-S-Y2)/(X4*X1-Y2-Y4*Y1+Y3) 
2144 IF F3<0 THEN F3-0:X1-(S+Y2)/X4 
2146 IF F3>1 THEN F3-1:Y1-(S+Y3)/Y4 
2150 S6=X1*(1-F3)/2:S7=Y1*F3:X=0.0353:Y=0.94623 
2160 K3=X+Y*V8*K1:K4-X+Y*V9*K1:REM G:2.42 
2180 V4=S6*(1-Q8):V5=S6*Q8+S7*0.6 
2190 N4=S6*(1-Q9):N5=S6*Q9+S7*0.4 
2200 X7=V4*(1-P8):X8=V5*(1-P8(0)):V2=V4*(1-S8) 
2210 Y7=N4*(1-P9):Y8=N5*(1-P9(0)):N2=N4*(1-S9) 
2220 Y9=B2*(1-F3)+B3*F3 

2350 XI =1 : X2=l : X3=l : X4=l : X5=l : X6=l 
2390 FOR 1=1 TO N1:X0=E9*I 
2400 Y1=EXP(-K3*X0):Y2=EXP(-K4*X0):REM G:3.36 
2900 Y3=EXP(-K8*X0):Y4=EXP(-K9*X0):REM G:3.35 
3000 Y5=EXP(-K7*X0):Y6=EXP(-K1*X0):REM G:3.37 
3050 X9=X6-Y6:P(I)=X9/E9/K1:REM G:3.38 
3060 X=X7*(X1-Y1)+X8*(X3-Y3) 
3070 Y=Y7*(X2-Y2)+Y8*(X4-Y4)-Y9*(X5-Y5) 
3080 V3(I)=(X-V2*X9)/E9:REM G:3.40 
3090 S3 (I )= (Y-N2*X9)/E9+V3 (I ) :H(I )=X+Y 
3110 X1=Y1:X2=Y2:X3=Y3:X4=Y4:X5=Y5:X6=Y6:NEXT 
3130 H9=X7*Y1+Y7*Y2+X8*Y3+Y8*Y4-Y9*Y5 
3810 X=W2:F0R 1=0 TO 5:X(I)=V6(I):Y(I)=R6(I):NEXT I 
3814 GOSUB 1370:R6=Y 
3870 X=T(0):FOR 1=0 TO 5:X(I)=T2(I): Y(I)=F2(I):NEXT 
3874 GOSUB 1370:F5=Y+R5:E3=E2/Y 
3940 V2=V2/H0:S2=V2-m2/H0 
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4070 F0-O:F0R 1-1 TO N l : L 2 ( 0 ) - E 9 * ( l - P ( I ) ) 
4072 X-E9*P(I)/M:F0R K-l TO M:L2(K)=X:NEXT 
4120 X7=0:X8=0:X9=0:Y7=0:X=W(I):Y3=V3(I):Y4=S3(I) 
4130 Y5=R3(I) :Y2-1 /Y5:Y8=R2(I) 
4140 YO-1 / (R6+Y5) : Y9-1 / (R7+Y5) : Y1=0. 795*Y8 
4150 FOR K=0 TO M:Y=Q1(K):X1=Y3+Y*V2:REM G:3.34 
4164 Y6=F5*(1-EXP(-X1*E3))-R5:REM G:3.8 
4166 IF X<0 THEN X2=Y2:GOTO 4190 
4170 IF Y6<=0 THEN X2=Y9:GOTO 4190 
4180 X2=1/(A7/Y6-Y8):REM G:3.10&C: ( 3 2 ) 
4184 IF X2>Y0 THEN X2=Y0: Y6=A7/(R6+Y1):REM G:3.9 
4190 X5=L2(K):X9=X9+X2*X5:Y7=Y7+Y6*X5 
4210 X6=(Y8+A0/X2)/X5:REM C:9 
4214 X3=Y4+Y*S2-A9*Y6:REM C: (23 ) 
4220 X7=X7+1/X6:REM C:(22) 
4230 X8=X8+X3/X2/X6:NEXT K:REM C:(21)&(23) 
4270 R3(I)=E9/X9:R4(I)»1/X7:REM C:(22) 
4274 B(I)=AO*X8-VO*X7:REM C:(21)&(23) 
4280 H(I)=H(I)-A9*Y7:FO=FO+Y7:NEXT I 
4290 GOTO 5438 
5400 F0=-R5*L1:IF N3=0 THEN S=-B3 
5404 X1=1:F0R 1=1 TO NI:Y1=EXP(-0.2*E9*I) 
5408 H(I )=S*(X1-Y1 )+A9*R5*E9 : X1=Y1 
5410 IF W(I)=0 THEN R3(I)=R7+R3(I):REM C:25B 
5430 R4(I)=(R2(I)+A0*R3(I))/E9 
5434 B(I)=(A0*H(I)*R3(I)/E9-V0)/R4(I):NEXT 
5436 H9=S*X1 

5438 K=0:B5=(AO+(1-AO)*R3(N)/1E9)/A1*(R9+R2(N)) 
5439 REM ITERATION FOR G(ENDS 5478) 
5440 H(N)=H9-G:B(N)=(A0*R3(N)*H(N)-V0)/R4(N) 
5450 GOSUB 6000 
5472 K=K+1:X=T6(0)-T6(1)-B6*G:REM C:24&27 
5474 Y=X/(B6+B5):IF ABS(X/T6(0))<0.01 GOTO 5479 
5476 IF K>6 THEN PRINT "G=";G, "DG-";Y:GOTO 5479 
5478 G=G+Y:GOTO 5440:REM C:(31) 

5479 GOSUB 6400:IF M2-INT(M2)>0 GOTO 5530 
5490 PRINT "WEATHER CONDITIONS AT TIME=";M2;":" 
5492 PRINT "INCOM.RED."."TEMPERATURE","V.PRESSURE","WIND" 
5493 PRINT S,T(0) ,E0(0) ,U(0):PRINT 
5495 PRINT "MON.LENGTH","TUR.RES.R(0)","U STAR" ,"PHO. RATE" 
5496 PRINT L4,R(0) ,U0,F0: PRINT 
5498 PRINT "TOT.ENTH.","TOT.SA.HEAT","TOT.SE.HEAT","TOT.LA.HEAT" 
5499 PRINT H,J,C,E:PRINT 
5502 PRINT "SOIL NET RAD.","G","SOIL-SUR.TEMP.","REL.CAN.W.C." 
5503 PRINT H9,G,T6(0),W2:PRINT 
5520 IF M2/3-INT(M2/3)<lE-5 THEN GOSUB 7000 
5524 PRINT : PRINT"**************************************": PRINT 
5530 C7=C7+C:E7=E7+E:F7=F7+FO 
5540 NEXT M2 
5550 C7=C7*M4:E7=E7*M4:F7=F7*M4 
5551 PRINT "DAILY TOTALS" 
5552 PRINT "SEN.HEAT","LAT.HEAT"."WATER L0SS","C02 ASSIMIL." 
5554 PRINT C7,E7,E7/L5,F7:PRINT:PRINT"DEW" 
5556 FOR 1=1 TO N1:PRINT D5(I)/L5:NEXT:PRINT 

-94-



5570 PRINT "*********************************************":PRINT 
5574 NEXT D2 
5580 END 
5590 STOP 

5600 REM SUBROUTINE AERODYNAMICS 
5660 X=A5:X9=A4:Y=0.74*(A5-A4):IF L4<0 GOTO 5680 
5664 X0=Z0/L4:X1 = (Z1-D0)/L4:X2 = (Z2-D0)/L4 
5670 X=X+4.7*(X2-X0):REM G:4.33 
5674 X9=X9+4.7*(X1-X0):Y=Y+4.7*(X2-X1) 
5680 U0=K5*U(0)/X:REM G:4.33 
5810 U(1)=U0/K5*X9:R(0)=Y/K5/U0:REM G:4.29 
5840 X=Z(1):F0R 1=2 TO N:U(I)=U(I )*EXP(-C4*X/Z1):X=X+Z(I):NEXT 
5850 FOR 1=2 TO N1:R(I)«A6*(Z(I-1)+Z(I))/U(I):NEXT 
5870 R(1)=R(0)+A6*Z(1)/U(1):R(N)=A6*Z(N1)/U(N) 
5890 R9=0:F0R 1=1 TO N1:R9=R9+R(I) 
5910 R2(I)=92.5*SQR(W1*2/(U(I)+U(I+1))):REM G:3.2 
5920 R3(I)=-0.07*R2(I):NEXT:R9=R9+R(N) 
5930 R2(N)=185*SQR(W6/U(N)):R4(N)=R2(N)+A0*R3(N) 
5990 RETURN 

6000 REM SUBROUTINE FLUXES, J SOURCES, AIR & SOIL TEMPERATURE 
6010 X=0:H=0:J=0: FOR I=N TO 1 STEP -1 
6030 X=X+A(I)/R4(I):A(I-1)=A(I)+R(I)*X:REM C:(8) 
6050 J=J+B(I)*A(I):H»H-Hl(I):NEXT 
6080 J=J/A(0):REM C:(7) 
6090 C=A0*H+B0*J:E=B0*(H-J):REM C:(3)&(4) 
6110 C2=C+0.1*G1*E:REM G:4.1 
6120 L4—27.85*A1*U0*U0*U0/K5/C2:REM G:4.19 
6124 IF L4<lE-3 AND L4X> THEN L4=lE-3 
6210 X=H:Y=J:X3=0:F0R 1=1 TO N:X3=X3+R(I )*Y 
6220 X4=B(I)-X3/R4(I):J(I)=X4:REM C:(12) 
6230 X1=A0*X+B0*Y:REM C:(14) 
6240 T(I)=T(I-1)+X1*R(I)/A1:REM C:(17) 
6250 X=X-H(I):Y=Y-X4:NEXT 
6260 T6(0)=T(N)+X1*R2(N)/A1 
6290 RETURN 

6400 REM SUBROUTINE DEW AND SOIL TEMPERATURE INTEGRATION 
6410 FOR 1=1 TO N:X=BO*(H(I)-J(I)):REM C:(15) 
6420 Y=X*M4:W(I)=W(I)+Y:IF W(I)>0 THEN W(I)=0 
6430 IF X<0 THEN D5(I)=D5(I )-Y 
6440 E(I)=X:NEXT I 
6610 Y1=G:F0R 1=1 TO L:X6=Z6(I)*V6 
6620 Y2=(T6(I)-T6(I+1))*L6/D6(I+1) 
6630 Y3=Y1-Y2:T6(I)=T6(I)+Y3*M4/X6:Y1=Y2 
6640 NEXT:T6(L+1)=T6(L) 
6644 W2=W0/L1/2.5E-3:IF E<0 GOTO 6800 
6650 X=(T6(3)+T6(4)+T6(5))/3:FOR 1=0 TO 5:X(I)=T5(I) 
6654 Y(I)=C5(I):NEXT:GOSUB 1370:X5=1/Y/G6 
6690 X=W2:F0R 1=0 TO 7 :X ( I )=T3 ( I ) :Y ( I )=W3( I ) :NEXT I 
6694 GOSUB 1370:W0=W0+M4*((W7-Y)/(R8+X5)-E/L5) 
6800 RETURN 
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7000 REM SUBROUTINE PROFILE PRINT 
7130 PRINT "H SOURCE","J SOURCE","C SOURCE","E SOURCE" 
7140 FOR 1=1 TO N :C ( I )=A0*H( I )+B0* J ( I ) 
7150 PRINT H ( I ) , J ( I ) , C ( I ) , E ( I ) : N E X T : P R I N T 
7170 PRINT "TEMPERATURE"."VAPOR PRESSURE","VPD"."WIND VELOCITY" 
7180 X=E:Y=J:FOR 1=1 TO N 
7190 E0 ( I )=E0 ( I - 1 )+X*R( I ) /A2 :X=X-E( I ) :REM C : ( 1 8 ) 
7200 D ( I )=D( I - 1 )+Y*R( I ) /A3 :Y=Y-J ( I ) :REM C : ( 1 6 ) 
7240 PRINT T ( I ) - T ( 0 ) , E O ( I ) - E O ( 0 ) , D ( I ) - D ( 0 ) , U ( I ) : N E X T : P R I N T 
7300 PRINT "SOIL TEMP."."LEAF TEMP.","DEW"."WETNESS" 
7310 X=E9*A1:F0R 1=1 TO Nl 
7320 T 1 ( I ) = T ( I ) + C ( I ) * R 2 ( I ) / X : R E M C : ( 1 9 ) 
7330 PRINT T 6 ( I ) , T 1 ( I ) , D 5 ( I ) , W ( I ) : N E X T 
7340 FOR I=N TO L:PRINT T6 ( I ) : NEXT: PRINT 
7342 PRINT "TUR.RES.V'BOUN.RES." , "STOM. RES. "."LAYER RES." 
7344 FOR 1=1 TO N:PRINT R(I) ,R2(I ) ,R3(I) ,R4(I ):NEXT:PRINT 
7360 RETURN 
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A-2 List of the symbols in the program 
(the superscript c denotes constant, i input, and o output. 
MICROWEATHER are also included in the second column.) 

Symbols in 

Symbols 
program 

A(0 to 
AO 

C Al 
A2 
A3 

C A4 
C A5 

A6 
A7 
A8 

C A9 

B(l to 
BO 

in 

N) 

N) 

Bl(l to 9) 

Symbols 
in text 

A. 
a1 

Pc ,RHOCP 
PcP/Y 
PcP/A 

P 

BI 

BU 

Description 

determinants 
G1/CG1+D1) 
volumetric heat capacity of air 
Al/Gl 
Al/Dl 
LOG((Z1-D0)/Z0) 
LOG((Z2-D0)/Z0) 
0.74/2/L3 
1.82E-6*(01-02)/1.66 
four times Stefan-Bolzman constant 
10.8E6 

coefficients for calculating J. 
1-AO X 

zonal distribution of overcast sky 

Dimension 

_ 

J m -K 
J m .mbar . 
J m mbar 
-

~-l 
m 

~ -2 - 1 - 4 
J m s K 
J (kgC02)_i 

J m s 

-

B2 

B3 

LWRCI 

LWROI 

B6 
0 C 
° C(l to N) 
1 CO 

CI 
C2 

. C4 
1 C5(l to 5) 

SHFL1 

C , 
DRAG 
CCOS 

ALPHAK. 
TREDTB 

C7 

(0 to N) 
0 
1 

D. 
D 1 

SLOPE 

D2 
D3 

D4 

DAY 

D5(l to N-l) 
D6(l to L) DIST 

. E(l to N) 
1 E0(0) 
0 E0(1 to N) 
C E2 

LHFL1 
XE.' 

EFF 

radiation 
longwave radiation loss of the 
canopy under a clear sky 
longwave radiation loss of the 
canopy under an overcast sky 
(A0/A1)*(R9+R2(n)) 
D6(l)/L6 

sensible heat flux above the canopy 
sensible heat source 
mean drag coefficient of leaves 
intermediate variable 
equivalent heat flux: C+0.1*G1*E 
extinction coefficient for wind 
known reduction factor for root 
conductance 
daily total of sensible heat loss 

vapour pressure deficit profile 
zero plane displacement 
slope of saturated vapour pressure 
versus temperature curve 
loop index variable 
number of the day in the year 
reckoned from 1 January 
time step 
daily total of dew 
distance between the adjacent 
soil layers 

latent heat flux above the canopy 
latent heat source 
vapour pressure at reference height 
vapour pressure profile 
slope of photosynthesis-light 

J m s 

J m s 

T -2 "I 
* m-2s-l 
J m s 

T "2 -1 J m s 

J m 

mbar 
m 
mbar K 

hr 
mmH20 
m 

T "2 -1 

J m-2s-l 
J m s 
mbar 
mbar 
kgC02 J -1 
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E3 
° E7 
1 E8(l to 5) 

E9 

. FO 
1 F2(0 to 5) 

F3 
F7 

G 
Gl 
G6 

k4 

K5 
K7 

K8 

K9 

L3 

L4 
L5 
L6 

response curve at compensation point 
intermediate variable 
daily total of latent heat loss 

VPATB for input vapour pressure 
DL leaf area index per layer 

canopy C0„ assimilation rate 
AMTB maximum net CO„-assimilation rate 

at given temperatures 
FOV assumed fraction overcast 

daily total of CO- assimilation 

G heat flux density into soil surface 
PSCH psychrometric constant 
SCRS maximal root conductance 

-2 

H(l to N) 
HO 

I 
13 

J 

J(l to N) 

K 
Kl(l to 9) 

Kl 
K3 

H.' 
SÄHSS 

i ,IW 
w 

J.' 
l 

KB 

KDV 

LO 
LI 
L2(0) 
L2(l to M) 

LAT 
LAI 

J m 
mbar 

kgC02 mjs_j 
kgC02 m s 

-2 
kgC02 m 

2 - 1 
1 
- 2 

- 1 

J m s 
mbar K 
m j p o m 

b a r 
-2 1 

' " - 2 s - 1 
m s 

J m s 

T - 2 - 1 
J m s 

enthalpy flux above the canopy J 
enthalpy flux source J 
sine of the sun elevation -

loop index variable 
turbulent intensity in the canopy 

saturation heat flux above the 
canopy 
saturation heat source 

loop index variable 
extinction coefficient for direct 
radiation and black leaves with a 
spherical leaf angle distribution 
as above but for sun height h 
extinction coefficient for visible 
sun radiation at sun height h 

KDN the same as K3 but for near-
infrared sun radiation 

KARMAN von Karman's constant 
KBDF extinction coefficient for thermal 

radiation 
KDFV extinction coefficient for visible 

diffuse radiation 
KDFN extinction coefficient for near-

infrared diffuse radiation 

total number of soil layers 
latitude 
total leaf area index of canopy m„ m 
shaded leaf area index in layer i m„ m 
sunlit leaf area index in layer i m m 
for each group 
turbulent intensity times mixing m 
length within the canopy 

MONOBL Monin-Obukhov length m , 
LHVAP latent heat for water vaporization J (m^H201 
k'.LAMBDA thermal conductivity of the soil J m s 

total number of groups of sunlit 
leaves 

i|gre«j 

-1 
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M2 
M4 
MA(0 
M7(0 
M8(0 
M9(0 

N 
NI 
N2 
N3 

N4 

N5 

to 
to 
to 
to 

13) 
6) 
5) 
6) 

HOUR 

n.NUMLl 
NUMLL 

. 01 
X 0 2 

P(l to N-l) 

C PI 

P8(0) 

P8(l to 9) 

P8 
P9(0) 

P9(l to 9) 

P9 

C Ql(l to m) 

C Q8(l to 9) 

c Q 8 

Q9(l to 9) 

Q9 

R(0) 

R(l to N) 
R2(l to N) 

EC02C 
RC02I 

RFOVV 

RFV 

RFOVN 

RFN 

ABTURR 

R. 
rH,i 

R3(l to N-l) r 

R3(N) 

RA(1 tO N) r 
R5 
R6 

s,i 

RES S 

local time in hours 
time step in seconds 
for input radiation data 
for input temperature data 
for input vapour pressure data 
for input wind speed data 

total number of layers 
N-l 
N4*(l-S9) 
N3=0, input radiation is global, 
and N3=l, net radiation 
incoming near-infrared sun 
radiation 
incoming near-infrared diffuse 
radiation 

averaged external C0„ concentration 
assumed regulatory internal CO. 
concentration 

hr 
s 
hr 
hr 
hr 
hr 

T - 2 - 1 
J m s 

J m s 

T -2 "I J m s 

vpm 
vpm 

profile of the fraction of sunlit 
leaves 
ratio of the circumference of a -
circle to its diameter 
reflection coefficient of the canopy -
to visible sky radiation 
reflection coefficient of the canopy -
to visible sun radiation 
as above but for sun height h 
reflection coefficient of the canopy -
to near-infrared sky radiation 
reflection coefficient of the canopy -
to near-infrared sun radiation 
as above but for sun height h -

discretized cosine of the -
incident angles 
fraction diffuse in visible -
radiation 
as above but for sun height h -
fraction diffuse in near-infrared 
radiation 
as above but for sun height h 

turbulent resistance between the s m 
reference height and crop top 
profiles of turbulent resistance s m 
profile of leaf boundary layer s m 
resistance per leaf area 
profile of stomatal resistance per s m 
leaf area 
"stomatal" resistance of the soil s m 
surface 
profile of layer resistance s m 
dark respiration rate of leaves kgC02 
actual value of the resistance s m 
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* R6(l 
\ R7 
1 R8 

R9 
1 S 

SI 
S2 
S3(l 

1 SA(1 
S6 
S7 
S8 

to 

to 

to 

5) 

N) 

13) 

SRWTB 
RESCW 
WRESPL 
R 

t 
NRADM 
SSIN 

NRADTB 

SCV 

S9 SCN 

- T(0) 
T(l to N) 

. Tl(l 
X. T2(l 
X. T3(l 
1 T5(l 
° T6(l 
1 T7(l 

- U(0) 

to N) 
to 5) 
to 7) 
to 5) 
to 1+1) 
to 6) 

U(l to N) 
. UO 
1 U9(l 

VO 
V2 
V3(l 

VA 
. V5 
1 V6 

V6(l 
V8 
V9 

W(l 1 
. WO 
1 Wl 
. W2 
^ W3(l 
\ W6 
1 W7 

to 6) 

to N) 

to 5) 

:o N-l) 

to 7) 

X, XO to X9 

Y, YO to Y9 
1 Z(l 
. zo 
1 Zl 

to N-l) 

T 

T1. 
i 

TEMP 
TATB 

USTAR 
WINDRB 

VHCAP 

SQV 
SQNI 

WCCP 
WIDTH 
RWCP 
WSTTB 
HRES 
WSTSL 

DIK 
ZNOT 
CROPHT 

checked by water status 
known R6 values 
leaf cuticular resistance 
xylem resistance to water flow 
total turbulent resistance 

recorded incoming radiation 
intermediate variable 
(VA*(1-S8)+NA*(1-S9))/H0 
profile of absorbed net radiation 
per leaf area 
input radiation data 
derived incoming direct radiation 
derived incoming diffuse radiation 
scattering coefficient of leaves 
to visible radiation 
scattering coefficient of leaves 
to near-infrared radiation 

air temperature at reference height 
air temperature profile 
leaf temperature profile 
for known F2(l to 5) data 
for known W3(l to 7) data 
for known C5(l to 5) data 
soil temperature profile 
input temperature data 

wind velocity at reference height 
wind profile within the canopy 
friction velocity 
for input wind speed data 

A3*D(0) 
VA*(1-S8) or VA*(1-S8)/H0 
profile of absorbed visible diffuse 
radiation per leaf area 
incoming visible sun radiation 
incoming visible diffuse radiation 
soil volumetric heat capacity 
for known R6(l to 5) data 
square of (1-S8) 
square of (1-S9) 

leaf wetness 
canopy water content 
mean width of leaves 
canopy relative water content 
known canopy water potential 
mean diameter of soil clods 
soil water potential 

intermediate variable 

intermediate variable 

canopy layer thickness 
roughness length 
crop height 

"_1 
s m „ __ 
bar m s m 
s m 
T -2 -1 
J m s 

T " 2 - 1 
J m s 

T -2 "I 

J m os_i 

J m s 

1 
1 

-1 
-1 

•3 
•2 -

-2S-1 
m -3 S -1 J m K 

3 -2 
m H20 m 
m 

bar 
m 
bar 

m 
m 
m 
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"!" Z2 REFHT reference height m 
1 Z6(l to L) TCOM thickness of the soil layers m 
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Summary 

In crop micrometeorology the transfer of radiation, momentum, heat and 

mass to or from a crop canopy is studied. Simulation models for these 

processes do exist but are not easy to handle because of their complexity 

and the long computing time they need. Moreover, up to now such models 

can only be run on mainframe computers. This study aims at developing a 

more elegant mathematical analysis that both deepens the understanding of 

the processes involved, and enables the writing of more efficient computer 

programs. 

To model the radiation regime, Goudriaan (1977) divided the crop 

canopy into several layers. The radiation at each layer was classified into 

downward and upward flux densities, assigned to nine contiguous zones in 

a hemisphere. Then a set of equations was derived for these radiation 

components and an efficient iteration method was developed to solve them. 

The solutions gave a detailed description of the distribution of the radia­

tion in a canopy, from which the zonal reflectance from a canopy can also 

be obtained. In addition, by computer experimentation a so-called recipro­

city relation was found between a direct light source and the reflected 

radiance from vegetation. This relation has potential applications in remote 

sensing techniques. Remaining problems are: (a) the computation of the 

radiation profiles in a canopy needs much execution time; (b) azimuthal 

variations of bidirectional reflectance from a canopy cannot be simulated; 

and (c) the mathematical proof of the reciprocity relation was not found. 

In Chapters 2 and 3, the downward and upward radiation from all 

directions in a hemisphere are represented by radiation vectors and the 

interactions of the radiation with a horizontally homogeneous canopy layer 

are represented by reflectance and transmittance matrices. In Chapter 2, 

the physical process of the reflection and transmission of radiation by a 

multi-layer canopy is examined under vector-matrix notation. The radiation 

vector incident upon the top of a canopy, may be directly reflected from 

the first layer forming a component of the reflected radiation vector from 

the top of the canopy; or it may, for instance, be transmitted through the 

first layer, reflected from the second layer, and transmitted again through 

the first layer, forming another component of the reflected radiation vec­

tor. Not every reflection-transmission series, called a radiation path, 

results in a component of the reflected radiation vector but there is an 
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infinite number of such paths . It is proven in Chapter 2 that the recipro­

city relation holds if each radiation path contributing to the reflection 

vector can be reversed and also result in a component of the reflected 

radiation vector. It is shown that this reversibility of the radiation paths 

is generally true for reflection whereas for transmission a vertically uni­

form canopy and a black soil surface are required. 

In Chapter 3, the radiation equations are rewritten as a set of differ­

ence equations with vectors as variables and matrices as coefficients. Then 

two differential equations for downward and upward radiation vectors are 

derived, where the coefficients are interception, backward and forward 

scattering matrices, which are the three basic matrices characterizing the 

interactions of a horizontally homogeneous canopy with radiation vectors. 

These two differential equations are, in fact, the vector-matrix version of 

the Kubelka-Munk equations, which are two scalar differential equations 

for total downward and upward radiation intensities in a canopy with 

horizontal Lambertian leaves. The extended Kubelka-Munk equations can 

describe the directional transfer of radiation in a canopy with non-

Lambertian leaves and any leaf inclination distribution. This is more realis­

tic than Suits' (1972) model containing, principally, only vertical and 

horizontal leaves. The azimuthal variations are included by extending the 

corresponding vectors and matrices. The analytical solutions for profiles of 

the downward and upward radiation vectors are found by means of a 

standard matrix method and also the bidirectional reflectance from a canopy 

is thus obtained. In spite of the availability of the analytical solution to 

the bidirectional reflectance from a canopy, however, the azimuthal resolu­

tion is still restricted by the execution time. Thus, for leaf canopies 

without azimuthal preference a special method reducing the dimensions of 
s 

the relevant matrices, and an approximate method based on the radiation 

path method presented in Chapter 2 are developed. The approximate 

method allows the resolution of 10 degrees in azimuth as well as in inclina­

tion, and calculates the bidirectional reflectance from a canopy within an 

acceptable execution time. 

In Chapters 4 to 7, profiles of temperature, humidity, sensible and 

latent heat flux densities in a canopy are studied in detail. Because the 

derived equations for sensible and latent heat flux densities are coupled 

with each other, they must be solved simultaneously. This leads to the 

following problems: (a) it costs much execution time and space so the 
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program cannot be executed on a microcomputer; (b) distinction of sunlit 

and shaded leaves within each layer would require to split each layer into 

several sublayers according to different irradiation levels and thus increa­

se further the execution time and space; (c) the analytical expressions for 

total sensible and latent heat flux densities above a canopy are not avail­

able so that it is not possible to find relationships between the parameters 

used in the multi-layer model and those used in the single-layer model 

(Penman-Monteith approach), viz. the canopy resistance and the excess 

resistance. 

In Chapter 4, the sensible and latent heat flux densities are replaced 

by the enthalpy flux density H, which is the sum of the sensible and 

latent heat flux densities, and by the saturation heat flux density J, 

which is a weighted difference between the sensible heat flux density and 

the latent heat flux density. This weight is done in such a way that the 

resulting equations for H and J are now mutually independent, so that the 

computation of the relevant profiles is greatly simplified. Two uncoupled 

electrical analogues for H and J, respectively, are designed, which are the 

counterparts of the coupled electrical analogue for the sensible and latent 

heat. The computation of the J profile is further simplified by recurrent 

formulas. Moreover, in terms of H and J, the well known Penman's formulas 

are expressed in a unified form applicable to both single- and multi-layer 

models, which provides a bridge between these two models. 

In Chapter 5, a method to distinguish sunlit and shaded leaves is 

developed based on the two uncoupled electrical analogues for H and J and 

on the recurrent formulas developed in Chapter 4. Goudriaan's (1977) 

simulation program MICROWEATHER is then rewritten in BASIC. A complete 

list of the program and the symbols used in the program is given in the 

Appendix. This program in BASIC gives the same detailed description of 

the crop micrometeorology as MICROWEATHER does, while it can be executed 

on a microcomputer. The agreement between the results of these two 

programs is good. 

In Chapter 6, Monteith's (1963) extrapolation method to obtain repre­

sentative surface values of temperature and vapour pressure is extended 

by replacing the vapour pressure profile by the dew-point temperature 

profile. Thus, the canopy resistance can be obtained directly by graphical 

means. Two basic parameters of the single-layer model, the canopy resis­

tance and the excess resistance, are clearly presented in this Way. 
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In Chapter 7, the canopy resistance and the excess resistance are 

calculated from the parameters used in the multi-layer model by means of 

the unified Penman's formulas developed in Chapter 4. The formulas deri­

ved for these two resistances show that both of them contain aerodynamic 

and physiological components. It is shown that .however, for a dense 

canopy with a dry soil surface, the canopy resistance contains mainly 

physiological components and is approximately equal to the resistance value 

calculated as all stomatal resistances of the leaves connected in parallel; 

the excess resistance contains mainly aerodynamic components and is a 

simple function of the friction velocity. In this case, therefore, the canopy 

resistance and the excess resistance can be estimated easily in terms of 

the parameters used in the multi-layer model. 

In the discussion in Chapter 8, it is emphasized that the method to 

calculate bidirectional reflectance from a canopy developed in Chapter 3 

can have important applications in remote sensing of vegetation, because it 

allows to study the effects of different leaf inclination distributions and 

non-Lambertian leaves. The results should be compared with data sets on 

the bidirectional reflectance from various vegetation canopies to see the 

practical significance of these two factors. The simulation program for crop 

micrometeorology developed for microcomputers (Chapter 5) can be used 

for short grass, where Goudriaan's MICROWEATHER has difficulties with 

the execution time caused by the small time coefficient of the model. The 

model can be further developed to simulate the evapo-transpiration from a 

canopy wetted by rainfall, and it could be incorporated into a pest and 

plant disease model. The results obtained on the canopy resistance and 

excess resistance (Chapter 7) justify the applicability of the single-layer 

model for a dense canopy. But for a sparse canopy the influence of the 

soil surface cannot be neglected, and the double-layer model - one repre­

sents the canopy and the other represents the soil surface - should be 

used. This version of the micrometeorological simulation program may be 

included in a crop growth model such as BACROS (de Wit et a l . , 1978). 
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Samenvatting 

In de mikrometeorologie van gewassen wordt de overdracht van straling, 

moment, warmte en massa van en naar een gewasdek bestudeerd. Simulatie 

modellen voor deze processen bestaan reeds maar zijn slecht te hanteren 

door hun complexiteit en de lange rekentijd die zij vergen. Bovendien 

kunnen deze modellen tot nu toe alleen op een mainframe computer gedraaid 

worden. Deze studie tracht elegantere wiskundige analyses te ontwikkelen 

om enerzijds het inzicht in de betrokken processen te verdiepen, en ander­

zijds meer efficiënte computerprogramma's mogelijk te maken, die ook op 

mikrocomputers gedraaid kunnen worden. 

Om straling te modelleren verdeelde Goudriaan (1977) het gewas in 

verscheidene lagen. In iedere laag werd de straling in negen neerwaartse 

en negen opwaartse fluxdichtheden verdeeld, die aan negen aansluitende 

zones van elke hemisfeer werden toegekend. Vervolgens werd een stelsel 

vergelijkingen voor deze stralingscomponenten afgeleid, en een efficiënte 

iteratie methode om ze op te lossen ontwikkeld. De oplossingen verschaften 

een gedetailleerde beschrijving van de verdeling van de straling in een 

gewas, waaruit ook de zonale bidirektionele reflektie van een gewas ver­

kregen kan worden. Bovendien werd door computer-experimenten een 

zogenaamde reciprociteitsrelatie gevonden tussen een direkte lichtbron en 

gereflekteerde straling van een gewas. Deze relatie heeft potentiële toepas­

singen in remote sensingtechnieken. Resterende problemen zijn: (a) de 

berekening van de stralingsprofielen in een gewas kost veel rekentijd; (b) 

de azimuthale variatie van de bidirektionele reflektie van een gewas kan 

niet gesimuleerd worden; (c) het wiskundige bewijs van de 

reciprociteitsrelatie was niet gevonden. 

In Hoofdstuk 2 en 3 wordt de neerwaartse en opwaartse straling uit alle 

richtingen in een hemisfeer voorgesteld door stralingsvektoren en de 

interakties van de straling met een horizontaal homogene gewaslaag door 

reflektie en transmissiematrices. In Hoofdstuk 2 wordt het fysische proces 

van reflektie en transmissie van straling door een meerlagengewas onder 

vektor-matrix notatie beschouwd. De stralingsvektor die op een gewas valt 

kan rechtstreeks vanaf de eerste laag gereflekteerd worden en zo een 

komponent van de gereflekteerde stralingsvektor van de top van het gewas 

vormen; of hij kan bijvoorbeeld door de eerste laag worden doorgelaten, 

door de tweede gereflekteerd, en weer door de eerste worden doorgelaten 
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en zo nog eens tot de gereflekteerde stralingsvektor bijdragen. Niet elke 

reflektie-transmissiereeks, een zogenaamd stralingspad, resulteert in een 

komponent van de gereflekteerde stralingsvektor, maar er is een oneindig 

aantal van zulke paden, In Hoofdstuk 2 wordt bewezen dat de reciprociteits-

relatie geldt indien elk tot de reflektie bijdragend stralingspad ook omge­

keerd bewandeld kan worden en kan resulteren in een komponent van de 

gereflekteerde stralingsvektor. Aangetoond wordt dat deze omkeerbaarheid 

van de stralingspaden algemeen geldt voor reflektie, terwijl voor transmis­

sie een vertikaal uniform gewas en een zwart bodemoppervlak vereist i s . 

In Hoofdstuk 3 worden de stralingsvergelijkingen herschreven als een 

stelsel differentiaal-vergelijkingen met vektoren als variabelen en matrices 

en coëfficiënten. Dan worden twee differentiaal-vergelijkingen voor neer­

waartse en opwaartse stralingsvektoren afgeleid met als coëfficiënten de 

interceptie-, de terugwaartse en de voorwaartse verstrooiingsmatrices die 

de drie basismatrices vormen voor de interakties van een horizontaal 

homogeen gewas met de stralingsvektoren. Deze twee differentiaal-vergelij­

kingen zijn in feite de vektor-matrix versie van de Kubelka-Munk vergelij­

kingen, die twee scalaire differentiaal-vergelijkingen zijn voor totale neer­

waartse en opwaartse stralingsintensiteiten in een gewas met horizontale 

Lambertiaanse bladeren. De uitgebreide Kubelka-Munk vergelijkingen 

kunnen de richtingsgewijze stralingsoverdracht in een gewas met niet-

Lambertiaanse bladeren en elke bladhoekverdeling beschrijven. Dit is 

realistischer dan het modelgewas van Suits (1972) dat in principe alleen 

vertikale en horizontale bladeren bevat. De azimuthale variaties worden in 

acht genomen door de overeenkomstige vektoren en matrices uit te breiden. 

De analytische oplossingen voor de profielen van neerwaartse en opwaartse 

stralingsvektoren worden gevonden door middel van een standaard matrix 

methode en zo wordt ook de bidirektionele reflektie van een gewas verkre­

gen. Ondanks de beschikbaarheid van de analytische oplossing voor de bi­

direktionele reflektie van een gewas is de azimuthale resolutie nog beperkt 

door de rekentijd. Daarom is voor een bladerdek zonder azimuthale voorkeur 

een speciale methode ontwikkeld die de dimensies van de betrokken matrices 

reduceert en ook een benaderingsmethode die gebaseerd is op de stralingspad-

methode uit Hoofdstuk 2. De benaderingsmethode staat een resolutie toe 

van 10 graden zowel in azimuth als in inclinatie, en berekent de bidirek­

tionele reflektie van een gewas binnen aanvaardbare rekentijd. 
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In de Hoofdstukken 4 tot en met 7 worden de profielen van temperatuur, 

vocht, voelbare en latente warmtestroom-dichtheden in een gewas in detail 

bestudeerd. Omdat de afgeleide vergelijkingen voor voelbare en latente 

warmtestroom dichtheden met elkaar gekoppeld zijn, moeten ze simultaan 

worden opgelost. Dit leidt tot de volgende problemen: (a) het kost veel 

rekentijd zodat het programma niet op een microcomputer uitgevoerd kan 

worden; (b) onderscheid van zonverlichte en beschaduwde bladeren binnen 

elke laag zou de opsplitsing van elke laag in verscheidene sublagen vol­

gens verschillende instralingsnivo's eisen; (c) de analytische uitdrukkingen 

voor de totale voelbare en latente warmtestroom-dichtheden boven een 

gewas zijn niet beschikbaar, zodat het niet mogelijk is relaties te vinden 

tussen de parameters van meerlagenmodellen en de parameters die in het 

éénlaag model gebruikt worden (Penman-Monteith benadering), zoals de 

gewasweerstand en de excessweerstand. 

In Hoofdstuk 4 worden de voelbare en latente warmteflux-dichtheden 

zelf vervangen door de enthalpiestroomdichtheid H, die de som is van de 

voelbare en latente warmtestroom-dichtheden, en de verzadigingswarmteflux-

dichtheid J , die het verschil is tussen de voelbare warmteflux-dichtheid en 

de latente warmteflux-dichtheid maal een konstante. Deze konstante wordt 

zo gekozen dat de resulterende vergelijkingen voor H en J onderling 

onafhankelijk zijn, en de berekening van de relevante profielen veel een­

voudiger is geworden. Twee ontkoppelde elektrische analogonschema's voor 

resp. H en J zijn ontworpen, die de tegenhangers zijn van het ene gekop­

pelde schema voor de voelbare en latente warmte. De berekening van het J 

profiel is verder vereenvoudigd door recursieve formules. Bovendien 

worden de bekende Penman vergelijkingen in termen van H en J in een 

gemeenschappelijke vorm gebracht die toepasbaar is voor zowel één- als 

meerlagenmodellen en als brug tussen deze beide modellen fungeert. 

In Hoofdstuk 5 wordt een methode ontwikkeld om zonverlichte en be­

schaduwde bladeren te onderscheiden, gebaseerd op de twee ontkoppelde 

elektrische analogonschema's voor H en J en op de recursieve formules die 

in Hoofdstuk 4 ontwikkeld waren. Goudriaan's (1977) simulatieprogramma 

MICROWEATHER is daarna in BASIC herschreven. Een volledige listing van 

het programma en de symbolen die in het programma gebruikt zijn, zijn in 

de Appendix gegeven. Dit programma in BASIC geeft dezelfde gedetailleer­

de beschrijving van de gewasmikrometeorologie als MICROWEATHER, terwijl 
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het op een microcomputer uitgevoerd kan worden. De overeenstemming 

tussen de resultaten van beide programma's is goed. 

In Hoofdstuk 6 wordt Monteith's (1963) extrapolatiemethode om represen­

tatieve oppervlaktewaardes van temperatuur en dampdruk te verkrijgen 

uitgebreid door het dampdrukprofiel door het profiel van de dauwpuntstem-

peratuur te vervangen. Zo kan de gewasweerstand rechtstreeks grafisch 

verkregen worden. Twee basisparameters van het éénlaagmodel, de gewasweer­

stand en de excessweerstand, worden op deze manier duidelijk voorgesteld. 

In Hoofdstuk 7 worden de gewasweerstand en de excessweerstand 

berekend uit de parameters van het meerlagenmodel in termen van de 

gemeenschappelijke Penmanformules uit Hoofdstuk 4. De formules die voor 

deze twee weerstanden zijn afgeleid vertonen beide zowel aerodynamische 

als fysiologische komponenten. Aangetoond wordt echter dat voor een dicht 

gewas met een droog bodemoppervlak de gewasweerstand voornamelijk 

fysiologische komponenten bevat en ongeveer gelijk is aan de weerstands­

waarde berekend als de parallelschakeling van alle stomataire weerstanden 

van de bladeren; de excessweerstand bevat voornamelijk aerodynamische 

komponenten en is een eenvoudige funktie van de wrijvingssnelheid. Daarom 

kunnen in dit geval de gewasweerstand en de excessweerstand gemakkelijk 

worden geschat in termen van parameters die in het meerlagenmodel zijn 

gebruikt. 

In de discussie in Hoofdstuk 8 wordt benadrukt dat de methode om 

bidirektionele reflektie van een gewas te berekenen zoals die in Hoofdstuk 

3 ontwikkeld is belangrijke toepassingen in remote sensing van vegetatie 

kan hebben, omdat het in staat stelt de effekten van verschillende bladhoek-

verdelingen en niet-Lambertiaanse bladeren te bestuderen. De resultaten 

zouden vergeleken moeten wdrden met data sets voor de bidirektionele 

reflektie van verschillende gewasdekken om de praktische betekenis van 

deze twee faktoren te zien. Het simulatieprogramma voor gewasmikrometeoro-

logie ontwikkeld voor microcomputers (Hoofdstuk 5) kan voor kort gras 

gebruikt worden, waar Goudriaan's MICROWEATHER problemen heeft met 

de rekentijd wegens de kleine tijdcoëfficiënt in het model. Het model kan 

verder ontwikkeld worden om de evapo-transpiratie van een bladerdek nat 

geworden door een regenbui te simuleren, en het zou ook in een ziekte- en 

plagenmodel ingebouwd kunnen worden. De resultaten verkregen over de 

gewasweerstand en de excessweerstand (Hoofdstuk 7) rechtvaardigen de 

toepasbaarheid van een éénlaagmodel voor een dicht bladerdek. Maar voor 
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een open gewas kan de invloed van het bodemoppervlak niet verwaarloosd 

worden , en moet he t tweelagenmodel - één s te l t het gewas voor en de 

ander he t bodemoppervlak - gebru ik t worden . Deze vers ie van he t mikro­

meteorologische simulatiemodel kan in een model voor gewasgroei als BACROS 

(de Wit et a l . , 1978) ingebouwd worden . 
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