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PROPOSITIONS

l.

The validity of the reciprocity relation between a direct light source

and the reflected (or transmitted) radiance from vegetation is based on
the reversibility of each radiation path contributing to the reflected

(or transmitted) radiation vector. This reversibility is generally true
for reflection whereas for transmisgion a vertically uniform canopy and
a black éoil surface are required.

This dissertation, Chapter 2.

. The Kubelka~Munk equations in vector-matrix form can describe the

directional transfer of radiation in a canopy with non-horizontal,
non-Lambertian leaves, and the reflectance pattern of a canopy can be
obtained from the analytical solution to these equations.

This dissertation, Chapter 3.

To study transpiration from a multi-laver canopy, flux densities of
enthalpy and saturation heat are to be preferred te those of sensible
and latent heat.

This dissertation, Chapter 4.

In term of flux densities of enthalpy and saturation heat, the well
known Penman's formulae can be expressed in a unified form applicable to
both single- and multi-layer crop cancopies,

This dissertation, Chapter 4.

In Monteith's extrapolation method, the profile of dew-point
temperature is to be preferred to that of vapour pressure.

This dissertation, Chapter 6.

Experiments have confirmed that the canopy resistance is approximately
equal to a bulk stomatal resistance calculated as all component leaf
stomatal resistances acting in parallel. This assertation is correct,
however, only for a dense canopy with a dry soil surface.

This dissertation, Chapter 7.
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The conclusion of Idso that the stomatal conductance is proportionral to
the net radiation absorbed under conditions of potential evaporation is
invalid, since in his argument he ignored the possibility that the
stomatal resistance varies with the vapour pressure deficit,

Idso, S.B., Agric. Meteoreol., 29, 213-217 (1983).

The concept of centripetal forece should not be used in textbooks of
physics in secondary schools, because it suggests that the centripetal
force might be an additionzl force to the existing forces exerted on a
moving object. The concept of centripetal acceleration suffices to

characterize the curvilinear movement of an object.

Feedback as a physical concept may be bypassed in mathematics te

simplify sclution procedures.

Modern cybernetics will provide a good framework for further
development of the traditional chinese theory of medicine, because both
disciplines have similar basic ideas while the former is more

systematic and better developed.

It has been observed (Wang W., Institute of Health, Beijing, China)
that tobacco smoke reduces considerably the basic metabolic rate in
mice. Since this may positively affect longevity it should be
investigated in a respiratory chamber whether this also helds for human

beings.

Chinese kitchen makes busy cooks and lazy eaters.

Chen Jialin

Wageningen, 26 September, 1984
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1 Introduction

1,1 Improving models by using more adequate mathematical methods

Crop micrometeorology has developed rapidly over the last 35 years.
Many measurements of the profiles of wind, radiation, temperature, humid-
ity and carbon dioxide above and within crop canopies have been published
(Monsi and Saeki, 1953; Inoue, 1963; Lemon, 1963; Long et al., 1964;
Begg et al., 1964; Brown and Covey, 1966; Denmead, 1969; Lemon and
Wright, 1969; van Laar et al., 1977)}). In the meantime, wvarious stmulation
models have been developed. Single layer models (Penman, 1948; Lemon,
1960; Monteith, 1963) have heen widely used because of their simplicity;
multi-layer models (de Wit, 1965; Cowen, 1968; Waggoner and Reifsnyder,
1968; Goudriaan and Waggoner, 1972; Perrier, 1976; Shuttleworth, 1976;
Goudriaan, 1977) are preferred by crop micrometeorologists, because they
simulate the profiles concerned. The multi-layer models have become more
and more complicated, as the regime of radiation, wind, temperature and
humidity within crop canopies have been simulated in greater detail,

The multi-layer models are fairly successful; Goudriaan's {(1977) model
is the outstanding one, One of the major problems, however, is that the
model is not easily graspable and the computation is tedious and time
consuming, There is a great need for simple programs that can handle the
crop micrometeorology. The execution time of a simulation program can be
reduced by: {a) making more simplified assumptions about the mechanism
of the involved physical and physiological processes; (b) improving pro-
gramming techniques; and (¢} using more adequate mathematical methods.
Usually, making more simplified assumptions reduces the applicability of
the model, and improving programming techniques can hardly reduce the
execution time by one order of magnitude. Using more adequate mathemati-
cal methods, however, can greatly reduce the execution time but not the
applicability of the model. In the mean time, the Iucidity of the models
will be improved, which helps to deepen the understanding of the behaviour
of the studied systems. This dissertation presents means of improving the
model of the radiation transfer in a crop canopy and the model of the
sensible and latent heat transfer from or to vegetation, by applying more

adequate mathematical methods.




1.2 The outline of the work

This dissertation contains three parts. The first part, Chapters 2 and 3,
is concerned with the radiation regime. For the transfer of the total down-
ward and upward short-wave radiation within a canopy with horizontal, Lamber-
tian leaves, the Kubelka-Munk eguations have already been developed and sol-
ved. When leaves are non-horizontal, Kubelka-Munk equations can not be ap-
plied. Suits (1972) considered a simplified canopy with vertical and horizon-
tal leaves only, and found the analytical solution of the radiation profile
within the canopy. Goudriaan (1977) specified the radiation with different
inclinations, using nine intensities from nine contiguous zones spanning a
whole hemisphere; this model allows any leaf inclination distribution, and
thus is more realistic, Goudriaan derived a set of equations for the radia-
tion components at each level within the canopy and solved the equations by
iteration. Chapters 2 and 3 will show that Goudriaan's equations can be ex-
pressed more lucidly in terms of vector-matrix notation. Then the reciproci-
ty relation is proven (Chapter 2) and the generalized Kubelka-Munk equations
are derived (Chapter 3). The bidirectional reflectance pattern of a canopy
can be obtained in a greatly reduced execution time.

The second part of this dissertation, Chapters 4 and 5, deals with the
transfer of sensible and latent heat from or to a multi-layer canopy - a
major problem of crop micrometeorology. Although many models have been
successful in calculating sensible and latent heat flux densities from a
canopy, most of them rely on a mainframe computer. For practical use, a
simulation program which can be executed on a microcomputer is needed.
This can be achieved by uncoupling the equations for sensible and latent
heat flux densities in terms of enthalpy and saturation heat flux densities
(Chapter 4). A crop micrometeorology simulation program in BASIC is then
developed {Chapter 5); this can be executed on a microcomputer.

The third part of this dissertation discusses the relationship between
single-layer and multi-layer models. The single-layer model is still widely
used because of its simplicity, but the values of the two basic parameters,
the canopy resistance and the excess resistance, are not easily obtainable,
In Chapter 6, a new extrapolation method is developed, which shows the
canopy resistance and excess resistance graphically, Chapter 7, discusses
methods of determining these two resistances in terms of the parameters of

a multi-layer model.




2 The Reciprocity Relation for Reflection and Transmission of Radiation by
Crops and Other Plane-Parallel Scattering Media
{published in Remote Sensing of Environment 13: 475-486 (1983))

Abstract

A mathematical proof of the reciprocity relation for reflection and trans-
mission of radiation by plane-parallel scattering media like crop canopies is
presented. First, the proof is based on Goudiaan's model for crop canopies,
and then the proof is generalized. Matrix methods are used, leading to the
tensors in the general case. The conditions for the validity of the recipro-

city relation are discussed.
2.1 Intreduction

Using model calculations, Goudriaan (1977) discovered a reciprocity re-
lation for reflection and transmission by crop surfaces in which the radi-
ance of a scattering surface at inclination i', with direct light incident
from i, is equal to the radiance at inclination i with direct light incident
from i', provided that the flux densities at the horizontal plane through
the reflector are the same in both cases, This result was obtained by com-
puter experimentation, but a mathematical proof was not found. The same
result for reflection was obtained by Chance and Cantu (1975) and Chance
and LeMaster (1977) for the Suits {(1972) model, and an analytical proof
was given for an infinite leaf area index. Bunnik (1978) proved this rela-
tion analytically for a one-layer Suits model with a definite leaf area index.
Although the model of Suits yields a good approximation of the light climate
of a crop canopy, it only distinguishes, in principle, horizontal and vertical
leaf elements, while Goudriaan's model allows any leaf inclination distribution.
For a mathematical proof of the relation, therefore, Goudriaan's model is more
suitable.

The reciprocity relation for reflection and transmission is a physical
law, it claims an interchange property between a direct light source, the
sun, for instance, and an airborne or spaceborne sensor, so that it is
closely related to the remote sensing. In this Chapter a mathematical proof
is presented, initially based on Goudriaan's model using matrix notation
and then generalized using tensor notation. It will be seen in Chapter 3
that the tensor notation thus developed is a useful tool for describing

radiation transfer in a scattering medium,




2.2 Proof based on Goudriaan's model

2.2.1 Reciprocity relation and the symmetry of the matrices

In the AGR model {Allen, Gayle and Richardson, 1970} and Suits model,
radiation is divided into two kinds, direct and diffuse. Each of the three
fluxes, direct, downward diffuse and upward diffuse, has a separate equa-
tion to describe its transfer and the boundary conditions are given for
each component. In contrast, there is no special concern for direct or
diffuse fluxes in Goudriaan's model. The radiation at any level in the
canopy is divided into downward and upward fluxes, each being divided
into nine intensities in nine contiguous zones in a hemisphere. Therefore,
Goudriaan's model provides more detailed information about radiation dis-
tribution within a canopy.

The finite difference equations describing the transfer of radiation in

these nine directions were derived by Goudriaan (1977):

9

x(i',3+1) = M (1)x(i',1) + 0.56B(1) © M (1) (x(i,])+y(1,5+1)), (2.1a)
i=1
9

y(i'hj) =M (i)y(",j+1) + 0.5eB(1") = M, (1) (x(i, )4y (i,j+1)), (2.1b)
i=1

where x(i',j) and y(i',j) are the flux densities of, respectively, the down-
ward and upward radiation at layer j and c¢ is the sum of the reflection
and transmission coefficients of the leaves. Mt(i') and Mi(i) are, respect-
ively, the probabilities of penetration and interception of the radiation with

inclination i' (or i} when passing through one layer. They are given by
Mt(i') =1 - Mi(i’), Mi(i) = g0(i)/sin(1), (2.2}

where s is the leaf area index of the layer and O(i) is the projection of

the leaves onto inclination i:

9
o(i) = ) i‘: f(iL)o(i,iL) (2.2a)
1L—1

in which f(iL) is the leaf inclination distribution and o(i,iL) is the project-
ion onto inclination i of the leaves with inclination iL. B(i') is the zonal

distribution of radiation scattered by the layer into direction i'. If the




leaves are assumed to be Lambertian scatterers, it can be determined from
B(i‘)'=Bu(i‘)Mi(i')/s, {(2.2b)

where Bu(i‘) is the zonal distribution of radiation reflected by a Lambertian

reflector and is equal to
Bu(i‘) = Zwisin(i')cos(i') (2.2¢)

in which W, is the interval of the inclination angle, being /18 in the model
where a hemisphere is divided into nine zones. The canopy with LAI=1C is
divided into n~l layers, each with an LAT of s=1cl(n-1) .

There are two boundary conditions. One is the nine incident radiation
intensities from nine specified zones on the top of the canopy, and the
other is the reflectance of the soil surface. The radiation intensities are
denoted by the intensities at a horizontal plane. A pure direct light source
is denoted thus by a set of nine figures of which eight are zero. Any
combination of the direct light source and the sky light can be represented
by different combinations of these nine figures. The soil surface is regar-
ded as a Lambertian reflector in the model, so that the distribution of the
reflected radiation in nine zones can be described by B, in Eq. (2.2¢).
When these two boundary conditions are given, an iteration method, devel-
oped by Goudriaan, gives all profiles of the downward and upward flux den-
sities in nine zones,

By computer calculation, Goudriaan (1977) found the following results
for the reciprocity relation under pure direct incoming radiation:

1. It holds for reflected radiance at the top of the canopy with any re-
flection coefficient of the soil surface.

2, It holds for transmitted radiance through the bottom of the canopy only
when the reflection coefficient of the soil surface is zero.

3. It cannot be invalidated by changing the leaf inclination distribution

or the reflection or transmission coefficients of the leaves.

The mathematical proof of these results and the essential features of the
model leading to these results were not found.

Goudriaan's model, however, can be represented equivalently and more
lucidly, if the matrix notation is adopted. After some manipulations Eqgs.

(2.1a) and (2.1lb) can be written as a set of vector equations:



x{(j+1) = Tx(j) + Ry(j+l), v(j) = Ty(i+l) + Rx(j), {2.3)

where vectors x and y are called the downward and upward radiation
vectors, respectively, with their components x(i} and v(i) being the flux
densities of the corresponding radiation at a horizontal plane; T and R are
the zonal transmittance and reflectance matrices of one layer with the

components

R{i',1)

0.5cB(i')Mi(i) = ¢c.5.{1/18)cos(i)O(iNO(i)/sin(i}, (2.4a)

T(i',1) =Mt(i‘)di|i+R(i',i) = (l—s()(i'))’sin(i'))diri + R(i',1i). (2.4b)

R(i',i) and T(i',i) represent the bidirectional reflectance and transmittance
of one layer with respect to incident direction i and exitant direction i',
respectively, and di'i is unity when i'=i, and zero otherwise. The boundary

conditions can also be written in a concise form:
x(1) = d, ¥(n) = R x(n), (2.5)

where d is a known incoming downward radiation vector and Rs the zonal
reflectance matrix of the soil surface. If the soil surface is assumed to be

Lambertian, the components of RS depend only on the exitant direction:
Croay = iy P -
Rs(l #1) rSBu(l ) rs[‘rr/18)251n(1 Jeos(i') (2.4c)

where T is the hemispherical reflection coefficient of the soil surface.
Given the boundary conditions, Eqgs.(2.3) can be solved so that the
upward radiation vector reflected by the canopy y(1) and the downward
radiation vector transmitted through the canopy to the soil surface, x(n),
can be obtained. The radiance vectors, r and t, reflected by and transmit-

ted through the canopy, are given by

r = Hy{(1), t = Hx{n), (2.6)
where H is a diagonal matrix with diagonal components

H(i',i') = 1/ (27(n/18)sin(i')ecos(i")}). (2.7}

The vectors r and t can also be written in forms directly related to the

known incoming radiation vector d:




r = {d, t=Pd, (2.8)

where ) and P can be called the zonal reflection and transmission radiance
matrices of the canopy, respectively.

The mathematical meaning of the reciprocity relation is easily seen using
the matrix notation. Pure direct incident radiation is dencted, under wvector
notation, by a vector with only one non-zero component corresponding to the

incident direction. For example,

t
d=(0,...,0,a,0,...,0) ", (2.9
where a is the flux density at a horizontal plane from direction i and t
denotes the transposition. The component of reflected radiance vector in

direction i' is
r{i'} = Q(i',1)a. (2.10a)

If direct incident light comes from direction i' with flux density b, . the

component of the reflected radiance vector in direction i is
r{i) = Q(i,i')b. (2.10b)

The reciprocity relation states that if a=b, then r(i)=r(i'}. It means,
therefore, that the matrix Q should be a symmetrical one. Conversely, if Q
is a symmetrical matrix, the reciprocity relation holds. The same argument
can be followed for transmittance and the transmission radiance matrix P.
Therefore, the zonal reflection and transmission radiance matrices of a
canopy being symmetric is a sufficient and necessary condition for the
reciprocity relation. To prove this relation, it must be proven that the

zonal reflection and transmission radiance matrices are symmetric,

2.2.2 Reversibility of the radiation paths through the canopy

One way to prove Q and P are symmetric is to solve Eqs.{2.3) under
the boundary conditions (Eqs.(2.5)}). There is an easier way to do it,
however. As an illustration, a canopy with three layers and an underlying
soil surface are shown in Fig.2.l(a). The zonal transmittance and reflect-
ance matrices of the layer j are denoted by T. and R],, respectively. In

general, Tj and Rj can be different for different layers.



Suppose that an incident light vector d falls upon the first layer. After
the interaction with the first layer, it is partly reflected forming vector
Rl_gl_, and partly transmitted forming wvector Tlg. If the whole canopy
consists of only one layer, the total reflected radiation vector is ng, and
Tlg is the transmitted one. But if more layers are taken into account, ng
is only one component of the reflected radiation vector, and T,d is not a
component of transmitted radiation yet; it has to interact with other layers
before it emerges from the canopy, forming either a component of the
reflected radiation vector or of the transmitted one.

Many paths along which a reflected component can be established are
possible. In Fig.2.1(a) one of them, with a component reflected radiation
vector 2 is illustrated. It should be noted that the arrows, representing
radiation vectors in Fig.2.1(a), are not the conventional vectors in a
three~dimensional space, so that the inclinations of these arrows have no
actual meaning. It follows from Fig.2.1(a) that

3 = (T1T2T3R5T3R2R3T2T1) d. (2.11)

According to Eqs,(2,6) the corresponding radiance vector I is

5 = Hy = I T,IRT,RR,T,T ) = Qd. (2.12)
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Fig.2.1. (a) One possible path giving one of the reflected components 2
(in solid lines) and the corresponding reversed path giving 3 (in broken

lines), (b) The pair of the corresponding paths for transmission.




It can be seen now that for each of these possible paths a reverse path
exists, along which another component is formed, denoted by 3 and illus-
trated in Fig.2.1(a) by the arrows with the broken lines. The resulting

radiance vector is
r; = = (HT T2R3R2T R T3T2Tl)d = Qig. (2.13)
The sum of these two components is

B =gty = Q +Q,)d =, d. (2,14}

It can be proven now that Qj is a symmetrical matrix. It follows from
Egs.{2,4a, b and c¢) that the matrices R, T, and Rs are asymmetric.

However, by defining
C = HR, D = HT, W=HRS, (2.15)

it can be proven that C, D, and W are symmetric, since their components

are
C(i',1) = (es/2x)(O(i')/sin(i'))(O(i}/sin(i)) = C(i,i')}, (2.16a)
D(i',i) = (l—sO(i')J'Sin(i'))f(Zﬂ(ﬂflS)Sin(i')cos(i'))di,i + C{i',i)

= D(i,i") (2.16b)
Wi, i) =r5/n=W(i,i'). (2.16¢)

The matrices Qk and Qi in Egs.(2.12) and (2.13) now can be rewritten as
- - -1 .- -1 .-1. .- - ~1

pH o H o e pH o H o D lDlH . (2.17a)
-1l -1 -1 -1 -1 -1 -1 -]

DlH ]DZH C3H C2H lD3H IV\H ]'DgH lDZH lDlH , (2.17b)

A

0O
Il

where Dj=HTj, C].=HR]. (j=1 to 3), and H™! is the inverse of H. H ! is sym-
metric too, since H is a diagonal matrix.

Although D].. Cj' and H_l are all symmetric, Qk and Qi are not necessarily
symmetric, because the product of two symmetrical matrices is usually asym-
metric. But it can be easily verified by using Eqs.{(Z.17a and b) that the
transposition of matrix Qk is equal to Qi’ and Qti=Qk, consequently, The

sum of Qk and Qi’ Q., therefore, is symmetric, since

=@ +0) =g+ =0 +q =¢. (2.18)




The total reflected radiance vector is composed of an infinite number of
such pairs of vectors (divided by 2). For each of them the transformation
matrix Q. is symmetric, so that the resulting =zonal reflection radiance
matrix of the canopy Q is also symmetric.

For transmission, the conditions under which the reciprocity relation is
valid are more restricted. Goudriaan (1977) found that the necessary con-
dition is the "black" soil surface, as previously mentioned. But there is
another restriction that the zonal transmittance and reflectance matrices of
the different layers, T]. and Rj’ should all be the same. Under these two
restrictions, the same reascning can be followed to prove that the zcnal
transmission radiance matrix of the canopy P is symmetric. The illustration
is shown in Fig.2.1(b}, while the argument is omitted,

If these two restrictions are removed, no corresponding "reverse” path
can be found for each path along which a component transmission radiance
vector is established. This argument, however, cannot serve as a mathemati-
cal proof that these two restrictions are two necessary conditions. The
reason is simple; the sum of several asymmetrical matrices is not neces-
sarily asymmetric. However, it can be shown that the reciprocity relation
for transmission fails for a simple canopy with two layers with different T
and R, even though the soil surface is black.

Suppose that the first layer is composed of black leaves with a spherical
leaf inclination distribution, while the second is composed of horizontal
leaves with equal transmission and reflection coefficients, The leaf areca
indices of the two layers are sy and Sy respectively, and ) is much smal-
ler than unity while sz=l. Tl’ Rl’ TZ’ and RZ can be obtained from Egs.
(2,4a, b), and (2.2a, b, c). Noting that O(i)=0,5 for the spherical leaf

inclination distribution and O{(i)=sin{i) for horizontal leaves,

Rl(i',i) =0, (2.19}
Tl(i',i) = Mt(i',i)di,.1 = (1 - 0.551/sin(i')), (2,20}
Tz(i',i) = Rz(i',i) = c{w/1l8)cos(i")sin(i"), (2.21)

Since R1=0, there is no multi-scattering between two layers, so that the

zonal transmission radiance matrix of the canopy P simply equals HTZTI:
P(i',i) = (e/2m) (1 - 0.5s;/sin{i)}. (2.22)

It can be seen that P is asymmetric.
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2.3 Proof of the general case

In Goudriaan's model only zonal intensities of radiation are treated. The
variations in azimuthal direction were completely ignored, so that radiation
could be represented by vectors and the transmission and reflection of a
layer as well as the whole canopy could be represented by matrices. The
reciprocity relation proven above thus should be called, more precisely,
the zonal reciprocity relation.

In the general case, the light incident, reflected or transmitted should
be denoted by a tensor of order 2, Xi.j’ its component x(i,j) represents
the flux density at a horizontal plane in the direction (i,j}, where i de-
notes the inclination and j the azimuth of the light. The reflection and
transmission of a layer as well as a canopy should be denoted by tensors
of order 4, ri'j'i' and ti'j'ij’ respectively. The reciprocity relation now
requires that the reflection radiance tensor qi'j‘ij and the transmission
radiance tensor pi'j'ij of the canopy be symmetric in the sense that 1’ is
interchangeable with i and j' with j. The reasoning for proving the recip-
rocity relation in this case is the same as that presented above, except
that vectors and matrices are replaced by the corresponding tensors of
order Z or 4,

It can be seen that according to the preceding arguments, the proof of
the reciprocity relation for a canopy requires that the reflection and
transmission radiance matrices, or tensors, of the single layer are sym-~
metric. Furthermore, it can be assumed that the layers are so thin that
the multiple scattering within one layer can be neglected, so that the
reflectance and transmittance tensors of a layer can be considered as the
sum of these tensors of the corresponding components. Therefore, what
must be proven is that the reflection and transmission radiance tensors of
a horizontal layer containing only one scattering element, for example, a
leaf, are symmetric.

Consider first a horizontal leaf element with a surface area s. Suppose
that the leaf element is illuminated by a light source from direction (i,j);
the flux density of the incoming light at the leaf surface is denoted by
d{i,j). The total flux reflected by the leaf is thus equal to d(i,j)rs. The
distribution of the reflected radiation in different directions is determined
by a so-called bidirectional reflection distribution function, which depends,

generally speaking, not only on the exitant direction, but also on the direc~
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tion of the incident illuminating light. Under tensor notation, the bidirect-
ional reflection of the leaf can be fully described by the reflection radiance
tensor of the leaf ri'j'ij'
the reflected radiance in the direction (i',i") of incident radiation with unit

A component of this tensor, r(i',j',i,j} represents

flux density, from the direction (i,j}. Here i' and j' denote the inclination
and the azimuth of the exitant direction, respectively, and i and j denote
those of the incident direction. The dimension of r(i',j',i,j) thus is sr_l.
The reflection radiance tensor of a given leaf can be determined by expe-
riments, while the components r({i',j',i,j) can be obtained by calculation for
two extreme cases. For a Lambertian reflector, the reflected radiance is
independent of the incident as well as the exitant direction, so that it can

be readily obtained:

r(i',j',i,j) = rlz. (2.23)

For a pure specular reflector, such as a mirror, the radiance is zero in all
directions except in the direction of the reflected radiation. Under tensor
notation, the whole hemisphere is divided into a definite number of discre-
te solid angles, and the radiance in these single solid angles is assumed
uniform, so that, even in the solid angle in which the reflected radiation

from a point light source lies, the radiance still has a definite value:

normal
to leaf (1, k}

exitant

direction {i',j")
incident
directian{i,j}

____________ 1
~ layer !
_____ |
/, I\\ ~
- o \\ \\
[ /(l nly i |
A s $ B

Fig.2.2. The bidirectional reflected radiance of a layer containing one

inclined leaf element. For meaning of symbols see the text.
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r{i',j',1,3) r/(cos(i')wi,wj,) when i'=i and |[j'-j]|=m,

0 otherwise. (2.24)

b{(i',j',1,j)

It can be seen that in both cases the reflection radiance tensors are sym-~
metric. This means the reciprocity relation holds. It is reasonable to
assume that, at least as a first approximation, a real leaf is a combination
of Lambertian reflector and specular reflector, so that the reflection radi-
ance tensor of the leaf can be expected to be symmetric. The measurements
of bidirectional reflection for healthy green soybean and maize leaves
{Breece and Holmes, 1971) showed that the reflection radiance tensors are
indeed symmetric. Therefore, the reciprocity relation is valid for a single
horizental leaf element, The transmission radiance tensor ti'j'i' of a leaf can
be defined in the same way, and the experiments done by Breece and Hol-
mes (1971) showed that it is also symmetric,

Now consider the general case shown in Fig.2.2 in which a horizontal
layer contains only one inclined leaf element. The inclination and the
azimuth of the leaf are denoted by i and jL’ respectively. The surface
area of the element, which has a relative value with respect to the unit
horizontal plane AB, is denoted by s, and s is much smaller than unity.
The task is to prove the reflection radiance tensor of the horizontal layer
is symmetric. Denote again the flux density of the incident light at the

plane AB by d{i,j). The flux density at the leaf surface is then
F = (s,/s)d(i,]), (2.25)

where sy is the projection of s in the direction (i,j) onto the horizontal

plane AB,
8y = s|cos(a)/sin(i) ], (2.25a)

and a is the angle between the incident light and the normal to the leaf:

cos{a) = cos(i)g:os(j)sin(iL)cos(jL) + cos(i)sin(j)sin(iL)sin(jL)

+ sin(i)cos(iL). (2.25b)
The radiance of the points on the leaf surface in direction (i',j') is

g(i',§") = e(i ".j,",i.],) [eosta)/sin(i) (4, ), (2.25¢)
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where g(i',j') is the radiance of the leafl surface in direction (i',j'} under

the illumination from direction (i,]); il‘, jll’ il’ and j1 are the correspond-

ing inclination and azimuth of the incident and exitant direction in the coor-
dinate system fixed on the leaf element, and e(i]’,jl',il,j]) is equal to

r(ill’jI."il'jl) when cos(a)cos(a') is larger than zero, and to t(ill’jl"il’jl)’

when cos{a}cos{a') is smaller than or equal to zero.

The average radiance over the horizontal layer should be calculated as a
weighted sum of the radiance in the area s,, shown in Fig.2.2, and that in
the rest part of the plane AB, where s, is the projection of s from direction
(i,j} onto the plane AB,

Sy = slcos(a‘)/sin{i‘)l (2.25d)

in which a' is the angle between the exitant direction and the normal to
the leaf:
cos(a') = cos(i‘)cos(j‘)sin(iL)cos(jL) + cos(i')sin(j‘)sin(iL)s'xn(jL)

+ sin(i')cos(iL}. (2.25e)

Thus,

i

n{i',j") szg(i',j') + (1-52).0

i

se(il',jl‘,il,jl) [cos{a'}/sin(i')||cos(a)/sin(i) |d(i,{)
=q(i',j',i,j)d(i,j), {2.251)

where nf(i',j') is the radiance of the layer in direction (i',j'} and
q(i',j',i,ij) is the component of the reflection radiance tensor of the layer,

The tensor e in Eq,{2.25f) is symmetric in the sense that i' is interchangea-

1
ble with il. and jl' with jl' but the two coordinate systems fixed on the

leaf and on the horizontal plane AB are related by
O THE A DI P LR PRI PR R RS AP P FEa YC RS O (2.26}

When the position of the leaf element is determined, the functions u; and
v, are the same as the function u, and Vs respectively, so¢ that the
tensor e is symmetric also in the sense that i' is interchangeable with i
and j' with j. Inspecting Eq.(2.25f) shows that the reflection radiance
tensor qi'j'ij of the plane AB is symmetric.

The same argument can be followed to prove the transmission radiance

tensor of a layer pi'j'ij is also symmetric.
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2.4 Discussion and conclusions

For bidirectional reflection and transmission problems, tensor analysis is
a powerful tool. It can be applied to a single leaf as well as to a horizon-
tally homogeneous plane-parallel scattering medium, such as a crop canopy.
In fact, in the continuous case, the upward and downward radiation are
denoted by continuous functions of two variables, the inclination i and the
azimuth j. The bidirectional reflectance and transmittance contain four
variables, i', j', i, and j. When the hemisphere is divided into a number of
contiguous sectors, it is a natural development to represent the radiation
by a tensor of order 2, and the bidirectional reflection and transmission
by tensors of order 4,

Using tensor representation, the equations describing radiation transfer
within the scattering medium as well as the boundary conditions become
much more concise and straightforward. Any combination of the direct
solar radiation and the diffuse radiation under a clear or an overcast sky
and their variations in the hemisphere are easily represented by a single
known incoming radiation tensor.

Under tensor notation, the meaning of the reciprocity relation becomes
clearer. It is simply related to the symmetry of the reflection or trans-
mission radiance tensors of the scattering medium.

In this Chapter, for a horizontal homogeneous scattering medium, it is
proven mathematically that;: '
1. For reflection, a reciprocity relation heolds for a pure direct light

source, regardless of whether soil surface is black or not.

2. For transmission, the reciprocity relation holds for a vertically uni-

form scattering medium with a black soil surface,

The proof is given for any leaf inclination distribution function. The only
assumption is that the reflection and transmission radiance tensors of the
single leaves are symmetric. The reflection radiance tensors for both sides
of the leaves are not necessarily the same, This requirement is a relaxa-
tion to the conditions for the reciprecity relation, because both the Suits
model and Goudriaan's model assume that the leaves are Lambertian scatte-
rers. This relaxation is important in practice, because, for the leaves of
many crops, the off-normal incident reflectance shows considerable specular
contributions, as found experimentally for leaves of soybean and maize by

Breece and Holmes (1971). Their data stirongly supported the assumption
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about the symmetry of the reflection and transmission radiance tensors of
single leaves, but further confirmation is still needed for various kinds of
crops.

It was noticed by Chance and LeMaster (1977}, Bunnik (1978), and Gou-
driaan (1977) that the reciprocity relation breaks down for a mixture of
both direct and diffuse light. Using tensor notation, the failure can be
easily explained. Diffuse sky light is denoted under tensor notation by a
radiation tensor in which zall components are usually non-zero. The re-

flected radiance in directions (il',jl') and (12',j2') are calculated as

n(il',jl') = i;jq(il"jll’i’j)d(i'j)’ (2.27a)
n(iz‘,jz') = .E_q(iz',jz'.i.j)d(i.j), (2.27b)

’
where n(il'.jl‘) and n(iz',jz') are the reflected radiance in the corre-
sponding directions. The symmetry of the tensor dji;ry; Cannot ensure that
Q(il',jl'.i,j) and q{iz'.jz’,i,j) are the same, so that n(il',jl') is not equal
to n(iz',jz') generally.

When the incident radiation is a mixture of both direct and diffuse light,
the resulting radiance is the sum of the direct and diffuse light radiances,
because the radiation transfer is a linear process. It can be seen that the
reciprocity relation fails in the case when the relative contribution of the
diffuse sky light is not negligibly small,

The reciprocity relation imposes a constraint on the radiance distribu-
tion of reflected radiation. This constraint can be used in remote sensing
either to reduce the number of necessary measurements or to improve the
accuracy of the results when the redundant measurements are done.

A special application of the possibility to reduce the number of measu-
rements was given by Goudriaan (1977). It was proven that the dependence
of the hemispherical reflection coefficient of a surface on the inclination of
the incoming direct light is the same as the dependence of the radiance on
the exitant inclination, under a uniformly overcast sky. Therefore, measu-

rement of one of them provides the information about the other.
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3 Kubelka-Munk Equations in Vector-Matrix Forms and the Solution for
Bidirectional Vegetative Canopy Reflectance

(submitted to Applied Optics)

Abstract

The radjation from different directions can be specified by upward and
downward radiation vectors, and the interactions of the radiation with a
leaf or with a vegetative canopy can be specified by matrices. The Kubelka-
Munk (1931) equations, which are applicable only to a canopy with horizon-
tal and Lambertian leaves, can then be extended to describe the directional
transfer of radiation in a canopy with non-horizontal, non-Lambertian
leaves. In the extended Kubelka-Munk equations, wvariables are upward and
downward radiation vectors, and the coefficients are matrices. The solu-
tions are found, from which the bidirectional vegetative canopy reflec-
tance, including azimuthal wvariations, can he obtained. Simplified and
approximate methods are presented for a canopy with leaves without azimu-

thal preference in order to reduce the execution time.

3.1 Introduction

The transfer of radiation through a turbid medium, such as the atmos-
phere or clouds has been of interest for some time. Recent developments in
remote sensing techniques require calculation of bidirectional reflectance
patterns of various vegetative canopies. Although the integral equations of
Chandrasekhar (1950) have been established for more than thirty years,
the semi-analytic solution is possible only for the simplest phase functions
such as that of Rayleigh scatter. For cases of Mie scatter, even numerical
solution is difficult {Paltridge and Platt, 1976),

The interaction of short-wave sun radiation with vepgetative canopies has
an additional complexity because the scattering elements are now mainly
leaves, which are planar, so the bidirectional reflectance of a leaf depends
not only on the angle between the incident and exitant directions but also
on the orientation of the leaf. In the simplest case, all the leaves of a
horizontally homogeneous canopy are assumed to be Lambertian scatterers
and orientate horizontally, the directional distribution of radiation within
and above the canopy is then a known function, The radiation transfer in

such a canopy can therefore be fully described by the vertical variation of
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the total downward and upward radiation intensities. The Kubelka-Munk
equations address this situation. When two boundary conditions - incident
radiation above the canopy and the reflectance of the underlying soil
surface - are given, the Kubelka-Munk equations can be solved for profiles
of the total downward and upward radiation intensities within the canopy,
thus the reflectance of the canopy can also be obtained.

If a canopy consists of non-horizontal leaves, it is no longer a Lam-
bertian reflector as a whole, even though all the leaves are Lambertian
scatterers (Goudriaan, 1977). The simple form of the Kubelka-Munk equa-
tions cannot be applied, because the directional reflection and transmission
of the radiation have to be taken into account. If azimuthal variations of
the radiation is ignored and only the change of the radiation in zenith (or
inclination) is considered, the radiation from all directions in a hemisphere
can be specified by the radiation intensities from several discretized and
contiguocus zones which span the whole hemisphere (Goudriaan, 1977). Gou-
driaan (1977) further divided the whole canopy into several lavers and
derived a set of equations for these unknown upward and downward radia-
tion components. He solved these equations by iteration. Cooper et al,
(1982) applied the adding method, developed by van de Hulst (1963) under
vector-matrix notation, and solved the same transfer problem without refer-
ring to the equations. Neither method, however, is feasible for including
the azimuthal variations, because of the prohibitively long execution time.

It was shown in Chapter 2 that in vector-matrix notation, the equations
for radiation transfer derived by Goudriaan (1977) can be written as dif-
ference equations in vector-matrix forms., In this Chapter it is shown that
these difference equations can be derived directly under wvector-matrix
notation and transformed into differential equations, which are, in fact,
extended Kubelka-Munk equations (where the variables are downward and
upward radiation vectors and the coefficients are matrices). These equa-
tions can then be solved using standard matrix algebra methods. The di-
rectional reflectance into different zones of a hemisphere can be directly
obtained from the solutions. It is shown in this Chapter further that the
equations and the solutions are also able to account for azimuthal waria-
tions, but although analytical solutions are available the resclution in
azimuth is restricted by the execution time, A special method is then
developed to reduce the execution time for leaf canopies without obvious

azimuthal preference, which is the case for most crop canopies (de Wit,
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1965). A few illustrative examples are presented to show the feasibility of
the theory, while comparison of the results with experimental data is left

for future work.

3.2 Vector-matrix representation of radiation and its interaction with a

leaf or a canopy

For the transfer of radiation in a horizontally homogeneous vegetative
canopy, it is convenient to divide the radiation into downward and upward
components x and y from and into an upper-hemisphere, respectively. The
direction from a hemisphere is determined by two variables, inclination i
(or zenith) and azimuth j, so that x and y are continuous functions of i
and j. If a whole hemisphere is subdivided intoe several contigucus sectors
each with a solid angle cos(i)wiwj, where wy and wj are, respectively, the
inclination and azimuth widths of the sector, and if within each sector the
radiance is assumed the same, x and y can be represented by tensors of
order two {matrices). The bidirectional reflectance and transmittance of a
leaf or a horizonally homogeneous canopy layer can be specified by tensors
of order four (Chapter 2}. An illustration is given in Fig.3.l. Two sec-
.1» respectively,

}
are shown. The radiation flux densities from all sectors in the hemisphere

tors, A and A' with solid angles cos(i)wiw. and cos(i‘)wi‘w

constitute a downward radiation tensor. In Fig.3.l one component of the

exttant direction(i’,j"

Fig.3.l. The vector-matrix representation of the radiation and its interac-

tion with a horizontal leaf.
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downward radiation tensor from the direction specified by (i,j} is incident
on a horizontal leaf. The leaf reflects radiation into all the sectors in the
hemisphere, these reflected radiation components constitute an upward ra-
diation tensor. In the figure one of these componenis in the direction spe-
cified by (i',j") is shown. For these two fixed incident and exitant direc-
tions, the bidirectional reflectance of the leaf is denoted by r(i',j',i,j).
These bidirectional reflectance coefficients for all different values of i', ',
i, and j, constitute the reflectance tensor of the leaf, which is of order four.
If the azimuthal variation of the radiation is ignored, the sectors shown
in Fig.3.1 with the same inclinations can be combined into horizental zones,
and the radiation intensities from the relevant sectors can be summed up to
form a total intensity of the zones, then the downward and upward radiation
can be specified by vectors (tensors of order one}, and the bidirectional
reflectance and transmittance by matrices (tensors of order two). This situ-
ation will be examined first. The radiation flux densities in this Chapter,

following Goudriaan's usage (1977), refer to those at a horizontal plane.
3.3 The Kubelka~Munk equations in vector-matrix forms

Divide a vegetative canopy into several layers, each having a leaf area
index s, Denote the downward and upward radiation vectors above layer j
by X and y., respectively (Fig.3.2). As a downward radiation vector, say
Ej' interacts with the layer j, both upward and downward radiation vectors
are generated. If there are no other layers above and below the layer j,
the generated downward radiation vector £j+l
y_j is R}gj, where T and R are, respectively, the transmittance and reflect-

is TEJ. and the upward one

ance matrices of the layer. If the leaf area index, s, of the layer is very
small, the multiple scattering between the leaves within the layer can be
ignored. The interception fractions of the radiation from different direc-
tions are determined by the projections of the total leaf area in the layer
onto the relevant directions and can be denoted by sM, where M is the
interception matrix and is diagonal. The penetration fraction then is I-sM,
where I is the identity matrix. The radiation intercepted by the leaves will
be scattered either back or forward, and this interaction can be specified
by the back-scattering matrix B and the forward-scattering matrix F. The

transmittance and reflectance matirices T and R then can be obtained as:
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r layer j+1 T.R ]

r layer n-t T.R ]
[ by,
T 50 Surtace R"SWA

Fig.3.2. Downward and upward radiation vectors at different layers. For

meaning of symbols see the text.
T=1- M+ sF, R = sB. (3.1

When there are other layers above and below the layer j» the radiation
reflected by the layers j-1 and j+! have to be taken into account. By

referring to Fig,3.2, the following equations can be obtained:

§j+l = sz + RX]‘+1’ Ij = sz'i-l + R§] . (3.2)
Substituting Egs.(3.1) into (3.2) and rearranging gives:

(§j+l-§j)/s = —(M—F)§j * By (Xj+1—}:j”5 = (M—F)X]._‘_1 - Bx,. (3.3)
As s tends to zero, Eqgs.(3.3) become differential equations:

dx/dl = -(M-F)x + By, dy/dl = -Bx + (M-F)y, (3.4)

where 1 is the cumulative leaf area index reckoned from the top of the

canopy. The boundary conditions are:
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E(O) = Eus I(IC) = RSE(IC)’ (3.5}

where lc is the total leaf area index of the canopy, X, @ known downward
radiation vector on the top of the canopy, and Rs is the reflectance matrix
of the soil surface.

Compared with the Kubelka-Munk equations {Allen and Richardson, 1968):

dxfdl = -~ (1-t)x + ry, dy/dl = -rx + (1-t}vy, (3.6}

where t and r are, respectively, the transmission and reflection coeffi-
cients of the leaves, it can be seen that Eqs.(3.4) are an extended
version of the Kubelka-Munk equations. The variables are now the
downward and upward radiation vectors, and the coefficients are the
interception matrix M, forward scattering matrix F, and back scattering
matrix B in place of the scalars 1, t, and r, respectively.

By introducing two new variables
u(1l) = =(1) + y(1), v(l) = x(1) - y(1), (3.7)
Egs.{3.4) can be written as:
du/dl = ~(M-F+B)v, dv/dl = -(M-F-B)u. (3.8)
From Eqs.(3.8):

2 2
d'v/dl” = (M-F-B) (M-T+B)v = Qu. (3.9)

To solve Eq.(3.9) the matrix Q must first be transformed into a diagonal
matrix. Computation shows that Q can be diagonalized and is positive defi-

nite, so 2 can be written as:
Q=wivl, (3.10)

where the matrices P and V can be obtained by using standard software. In

terms of Eq.(3.10), Q" and 0% can be obtained as Q"=v(P?)™v! and

Q1/2=VPV-1. A matrix exponential function of the independent variable 1,

exp(Qllzl), can then be obtained as Vexp(Pl)V—l. Because P is a diagonal
matrix, there is no difficulty in calculating exp(Pl). It can be verified by

substitution that
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v, (1) = Vexp(P1)V '2¢, v, (1) = Vexp(-PLIV ™24, (3.11)
are two solutions of Eq.(3.9). The general solution can be obtained as:
vil) = Vexp(Pl)V_IZE + Vexp(-P1)V T2d, (3.12)
where ¢ and d are two arbitrary vectors, and u can be found from Eqs.(3.8):

u(l) = —(M—F-B)_lVPV—l(Vexp(Pl)V—IZE - Vexp(~P1)v'lzg). (3.13)

1,,-1

Since VPV =(vPiv )y (vP v )=(M-F-B) (M-F+B)VE VY, Eq.(3.13)

can be rewritten as
_ 11 -1 -1
u = ~(M-F+B)VP (Vexp(P1)V "2¢ - Vexp(-P1 W 2d). (3.14)

This procedure removes an inversion operation, which is more time-consuming
than multiplication, particularly when the matrices are large.
It follows from Egs.(3.7), {3.12) and (3.14) that

x(1) = —RiE(l)JE + E(-1}0d, y(1) = -E(1}Jc + RiE(-l)Jg, (3.15)
where

R =W, H= (FBe V-1, T e Vi (3.6
and E(l) is a matrix function of 1 defined as

E(1) = (Wexp(P1) (V) "L, (3.17)

The two constant vectors ¢ and d can be determined by the boundary condi-

tions (Eqgs.(3.5)) as:

c= - s CRi)_ICEO, d= 7 - Ri(I+(‘R.1)-IC)§D, (3.18)
where the matrix C is defined as:

- - - H = - -1 -
C = E(-1 )GE{-1 ) with G= (RR, - D)7 (R, - R). (3.19)
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Substituting Eqs.(3.18) into (3,15) yields:

2(1) = ®RDO) + ACDIx,, y() = ®O) + RAGCD)x, (3.20)
where
D(1) = E(1)(1 + CR.I)_IC, A(-1) = E(—l)(I—Ri(I+CRi)_lC). £3.21)

The zonal transmittance matrix, Tzon' and the zonal reflectance matrix,

R oon’ of the whole canopy can be obtained from Egs.(3.20) by substituting

IC or zero, respectively, for 1:
_ -1 _ _ -1
— RiE(lc)(I+CRi) C + E( IC)(I Ri(I+CRi) C) (3.22)

=R, + (I—Riz)(I+CRi)_1C. (3.23)

ZOn

As lc tends to infinity, E(*lc) and then C tend to zero, so Rzon tends fo
Ri. Ri is thus the zonal reflectance matrix of a canopy with an infinite leaf

area index.
3.4 Including azimuthal variations

In the general case, if azimuthal wvariations of the radiations are also
of interest, radiation must be represented by a tensor of order two. But
the radiation tensor of order two can be represented by an ex*ended vector,

if all the components are arranged in one column:
x* = (%, ,x x )t (3.24)
X sXpseeren X )0, .

where x. (j=1 to m) is the radiation vector for a fixed azimuth j, m is the
total number of the intervals in the azimuth, and t denotes transposition.
The forward scattering matrix F, for instance, should also be extended

to form the matrix F*:

i glz glm
21 Faz o0 Fon
F* = Lo ol (3.25)

_24-




where F.. (j,j'=1 to m) is the forward scattering matrix for the incident
radiation vector x, and the exitant radiation vector x.,. The upward radia-
tion vector, y, and the matrices I, M, and B should also be extended in the
same way. The Kubelka-Munk equations in vector-matrix forms (Egs.(3.4)),
the solutions (Eqgs.(3.20)), and the directional transmittance and reflec-
tance of the whole canopy (Eqgs.(3.22) and (3. 23)) can then be used to

determine the azimuthal wvariations.
3.5 <Calculation of the matrices M*, F¥, and B* and the normalization

The coefficients in the generalized Kubelka-Munk equations (Egs.(3.4)),
the matrices M, F and B {or their extended forms M*, F*, and B*) must be
determined. These basic matrices can bhe obtained from those of the single
leaves and the leaf angular distribution. The back and forward scattering
matrices of a horizontal layer containing only one Lambertian leaf with

inclination i and azimuth j; can be determined as (Chapter 2}:

B A, 50,1,9)

F*G0,50100)

s{a/m)cos(i’)w, s fcos({a')cos(a) |sin_1(i) , (3.26)

s{q' /w)cos(i')wi 'Wi , |cos(at)cos(a) isin_l(i) . (3.27)

Here s is the leaf area index, a is the angle between the incident radia-

tion and the normal of the leaf, and a' is that for exitant radiation:

’cos(a) = cos(i)cos(j)sin(iL)cos(jL)
+ cos(i)sin(j)sin(iL)sin(jL} + sin(i)cos(iL). (3.28)
cos(a') = cos(i‘)cos(j')sin(iL)cos(jL)

+ cos(i‘)sin(j')sin(iL)sin(jL) + sin(i‘)cos(iL), (3.29)

and g=r, g'=t, when cos(a)cos(a')20; g=t, g'=r, when cos{a)cos{a'}<0. The
notation of sin(i) and cos(i) means that the sine and cosine functions for
the angle interval i are calculated using a representative angle, e.g. the
value in the middle of the interval.

Summing all the back and forward scattering matrices of the leaves with
different orientations, weighted by angular distribution, yields the corre-
sponding matrices B* and F*. The diagonal components of the interception

matrix M* can be calculated as:
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M*(i,i,i,j) = O(i,j)/sin(1), (3.30)

where O(i,j} is the projection of the leaves in a layer with a unit leaf
area index onto the direction (i,j).

Because of the discretization the sum of the all components of F* and B*
is usually not exactly equal te s(t+r) multiplied by the incident radia-
tion. This means that the conservation of the radiation energy is violated.
When the value of t+r is high, the multiple scattering between layers plays
an important role. The non-conservation of energy in the matrices F¥ and B*
will be greatly amplified in the end results. Thus the normalization proce-
dure is not trivial, as noticed by Goudriaan (1977).

* ¥ * N
Denote the sum of FL and BL as SL . Now

SL*(i',j',i,j) = s((t+r)/'ﬂ)cos(i')wi,w].,Icos(a')cos(a)isin_l(i). (3.31)

Consider the horizontal leaf first. According to Eqs,(3.28) and (3.29),

cos{a)=sin(i) and cos(a'})=sin{{') in this case, so Eq.(3.31) becomes:
grGit.yhi,y) = s((1:+r}J’rr)cos(i')Wi i ,sin(i") (3.32)

The normalization condition requires that the sum of SL*(i',j',i,j), with
respect to i' and j' over the whole upper-hemisphere, be exactly equal to
s(t+r). After summing SL*(i‘.j‘i,j) over the azimuth, this requirement
becomes that the sum of Zsin(i'}cos(i')wi, over all inclination interwvals
should be exactly egual to unity. This is true, however, only as Wi, tends
to zero, when the summation becomes an integral of 2sin(t)cos(t)dt from t=0
to /2. But if w,, is replaced by sin(w,,) (the difference hetween them
tends to zero as Wiy tends zero), it can be proven that the normalization
condition is fulfilled. In fact, the integral of 2sin(t)cos(t)dt from the
lower boundary b, to the upper boundary b, of the interval w,,, is equal to
Zsin({bl+b2)/2)cos((b1+b2)!2)sin(b2—b1). This expression can be written as
ZSin(i‘)cos(i')sin(w.I,), if the middle point of the interval w is used to
calculate sin(i') and cos(i'), Since the sum of Zsin(i')cos(i')sin(wi,)
over the all intervals is the integral of 2sin(t)cos(t)dt from t=0 to w/2,
which equals unity, the normalization condition will be fulfilled for a
horizontal leaf, if Wit in Eqs.(3.26) and (3.27) is replaced by sin(wi,).
For an inclined leaf the normalization condition can be fulfilled by

adjusting cos(a') according to the following equation:

-26-




m
T cos(i')sin(wi,)w.,Icos(a')l = L. (3.33)
it=1 j'=1 J

The wvalue of cos(a') thus cbtained is used also for cos(a), which en-

sures the validity of the reciprocity relation {Chapter 2).

3.6 Techniques of reducing execution time for a leaf canopy without azimu-

thal preference

As the basic matrices M*, F*, B*, and the boundary condition RS* have
been determined, the bidirectional reflectance pattern of a canopy can be
calculated by the analytical solution Eq.(3.23}. It can be seen that multi-
plication, inversion and similarity transformation of matrices are invol-
ved. The execution time is approximately proportional to the cube of the
dimensions of the matrices. If each inclination interval is taken as 10
degrees, the matrices invelved in calculating zonal reflectance of the
canopy have dimensions 9 x 9. For accounting for the azimuthal wvariations,
if the azimuth interval is also taken as 10 degrees, the relevant extended
matrices will have dimensions of 324 x 324. The execution time for calcu-
lating the bidirectional reflectance patterns of the canopy will be prohibi-
tively long even though the analytical solution is available. It is desirable,
therefore, to develop techniques to reduce the execution time. This is
possible for a leaf canopy without obvious azimuthal preference, as is the
case for most crops (de Wit, 1965),

For such a canopy, because of the azimuthal symmetry the interception
matrix M* is independent of the azimuth, and the azimuthal dependence of
the back and forward scattering matrices F*¥ and B* is related only to the
difference between the azimuths of incident and exitant directions. There-
fore, among the component matrices of an extended matrix only m matrices
are distinct. The matrix F* (Eq.(3.25)), e.g. has only m distinct matrices

F].,].. Hence, Egq.(3.25) becomes:

F, F, F, vieess F
F; Fi Fg 15‘“’1
Fg Fp F] .eeen E’“'z

Fr= 0, . JTE, (3.34)
F F e F
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where Fk (k=1 to m} equals Fh._j, [+17 so that k=1 means that the azimuths

of the incident and exitant direction are coincident. Moreover, if m is

taken as an even number, and m/2 is denoted by m', only m'+l matrices among
: ‘es - _ “ :

F,'s are distinct, because Fm’+1+k Fm‘+1—k (k=1 to m'-1). Hence, the matrix

F* can be represented as:

F,F, ... F, FE, . F. ..F
F, F, F, F, ... F,

F¥ = | D m-1,.. Fl 2 3 m'+1 . (3.35)
mal e e F2o B Ep e B
F, F, .o E o E, E,_ .. F

When the matrices F, to F are known, the matrix F* is determined, so

1 m'+1
F, to Fm'+1 are called elementary matrices of F*. It can be proven that the
product of two such matrices A* and B*, C*, retains the same property as
A* and B*, and the elementary matrices of C*, Cy» can be obtained directly

from the elementary matrices of A* and B¥, Aj and Bj’ by:

ml

G = A * jzzAj Bl 41| Borer-jmrezie-j ) T AnetBorazae G030

A diagram shown in Fig.3.3 is designed for m=6 to derive Eq.(3.36). The
elementary matrices of A* and B* are arranged counterclockwise along two
circies as A1A2A3A4A3A2 and B 1B2B3B4B3B2. The elementary
matrices of the product, Ck’ are the sum of the products of Ak and Bk on
the same positions in the circles. For Cl’ the matrices A's and B's with the
same subscripts just on the same positions. For <, the A-circle is fixed,
while the B-circle is turned clockwise one step; for C3. two steps and so
on. It is clear that Eg.(3.36) greatly reduces storage as well as the compu-
ting time.

Unfortunately, no simple method is found to invert such matrices direct-
ly from their elementary matrices. But there exists a method to reduce the
dimension by a factor of two. Inspecting Eq.(3.35) shows that the equiva-

lent matrix F* contzins only two different blocks P and R as:
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8, By

Fig.3.3. The component matrices C1 and C2 of the product of A and B.

P Q
F* = , {3.37)
QP
so that the inverse can be determined by
-1 S G
(F*) = = ' (3.38)
G S
where
-y -1 -1
S=(P-P Q) 7, G=-P 05 (3.39)

For similarity transformation of matrix Q* to a diagonal matrix, the

same method can be applied. By denoting * in the block form

A B
QF = s (3.40)
B A
Q* can be rewritten as
1 I I|{A-B © I -I
o* = 5 . (3.41)
-1 1 0 A+Bi|1 1

Computation shows that A-B and A+B can be transformed into diagonal matri-

ces 5 and G:
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Fig.3.4. Components of the reflected and transmitted radiation vectors with
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different paths.,

A-B=vsvl, A+B=uUL, (3.42)

0Q* can thus be expressed as:

vl oyl

vl oyt

vV U||S o

Q*:

(ST

. {3.43)

-V uffo G

The validity of Eq.(3.43) can be verified directly by multiplications,
3.7 Approximation method

Although techniques have been developed to reduce the execution time,
the resolution in azimuth is still restricted. It was shown in Chapler 2
that the reflected and transmitted radiation vectors of a canopy are com-
posed of an infinite number of component vectors. An illustration is shown
in Fig.3.4. A radiation vector d is incident upon the top of the canopy.
The radiation vector 2, is obtained by the interaction of d with layers 1
and 2: 31=TRT§, as shown in the figure. The radiation vectors 2, and a3
can be obtained similarly. An infinite number of the component radiation
vectors such as 2y 3y and a, constitute a reflected radiation vector from
the top of the canopy. The transmitted radiation vector through the bottom

of the canopy is, similarly, composed of an infinite number of the compo-
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nent radiation vectors such as El’ EZ' and b.. It can be seen from Fig,3.4

that for establishing either a reflected or a tsansmi‘tted component radiation
vector, there must be an odd number of reflections by the layers. For a
leaf canopy without azimuthal preference, the back and forward scattering
matrices are composed of the elementary matrices as mentioned above. The
formula determining the product of two such kind of matrices (Eq,{3.36)}
ensures that the more the interaction of the radiation vector with the
layers takes place, the more the wvariations of the radiation intensity with
azimuth will be smoothed. In fact, little variation is left after three-fold
interactions. For practical purposes, it is sufficient to consider only the
single reflection from different layers to find the contribution to the
azimuthal variation of the reflected radiation vectors.

Consider an infinitesimal layer with leaf area index dl at the depth 1.
Assume the azimuth of the incident radiation to be zero. The component re-
flectance matrix, dR*, formed by single reflection from the layer dl with

no interaction with the other layers can be calculated as:

e-M(i',i')le—M(i,i)l

dR*¥(i',j',1,0) = B*(i',j',i,0)dl, (3.44)

where M is the elementary matrix of the interception matrix M*. The total

contribution of all the layers can be obtained by integration:

S(MGE', 10 MG, 1001

R*(il5jl5i90) =B*(i'|j'5i'0)(1—e )

MG, 1) M{(1,1)). (3.45)

Meanwhile, the total zonal reflectance matrix Rzon of the canopy can be
easily calculated using the analytical solution Eg.(3.24). The difference
between Rzon(i',i) and the sum of R*{i',j',i,0) (j'=1 te m} can be consid-
ered evenly distributed over azimuth. The elementary matrices of the re-

flectance matrix of the canopy thus can be obtained:

m
Rc*(i"j"i'o) = R*(i'»J'"i’o)J'(Rzon(i"i)_j,EIR*“"J'"i'O))/m‘ (2,46)

The transmittance matrix of the canopy can be treated similarly, except
that a directly transmitted part should be added:

-] F1 o3t =] ]
M(i', 1 )lc - e M(l,l)lC

TH(i',j',1,00 = F*(i',j",i,0)(e )

—M(i,l)lc

(40,1 -MG i)+ d, e (3.47)
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Fig.3.5. Azimuthal wvariations of reflection radiance from a canopy with

spherical inclination distribution (S) and with vertical leaves (V). The

inclination for incident and exitant directions are 25 degrees.

where di'i is equal to unity when i=i', and zero otherwise, The trans-

mittance matrix of the canopy is:

m
T*(')'.1,0) = T"‘(i'.j',i.0)+(Tzon(i'.i)—jril'I'*(i',j‘,i,O))lm (3.48)

where Tzon is the total zonal transmittance matrix.

3.8 Some illustrative results

It is not the purpose of this Chapter to calculate and discuss the
reflectance and transmittance matrices for various kinds of crop canopies,

although the method developed is aimed primarily at practical applications.
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For total zonal reflectance and transmittance, the results are almost
exactly the same as those obtained by Goudriaan (1977), while the execution
time is greatly reduced (about 1 second on the computer DEC10), The appro-
ximate method is used to calculate the detailed azimuthal variations of the
reflected radiance, as shown in Fig.3.5. The results are given for vertical
leaves and for the leaves with a spherical inclination distribution, The
inclinations for incident and exitant directions are 25 degrees, The azi-
muthal angle interval is 10 degrees, sc high resolution is ensured. The
execution time is about 10 seconds. The azimuthal variations shown in
Fig.3.5% refer to a canopy with t=r=0.4. Because of the multiple scattering
between the layers they are less variable than the results obtained by Ross

(1981) for a 'mean leaf'.

3.9 Discussion

3.9.1 Non-Lambertian scatterers

That leaves are Lambertian scatterers is an oversimplified assumption.
It is adopted in this Chapter merely for convenience of explaining the
method. Under vector-matrix notation, it is no longer a restriction. The
reflectance and transmittance matrices of a given leaf can be measured
experimentally {Breece and Holmes, 1971). The basic back and forward
scattering matrices of a canopy can be calculated by the formulas given in

Chapter 2, and the rest of the procedure remains the same.

3.9.2 Applicability to the atmosphere and clouds

Although the differential equations and the methods to solve the equa-
tions in this Chapter are developed with special attention to crop cano-
pies, it can be obviously applied to the radiation transfer through the
atmosphere or through clouds. The only difference lies in the way of calcu-
lating the basic back and forward scattering matrices. In this case, they
can be calculated from the phase function of the constituent scattering
substances, such as gas molecules, particles or water droplets, and the
knowledge of their size distribution functions. The cumulative leaf area
index, of course, should be replaced by the optical depth used conven-

tionally.
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3.9.3 Superposition of several heterogeneous layers

Sometimes, the scattering medium cannot be represented by one layer
with uniform properties. For instance, a mature rice or wheat crop canopy
is better represented by two layers, one corresponding to the ears, and
the other to the leaves. For remote sensing, between the crop canopy and
the sensors, there is a layer of air, which also scatters radiation. This
effect must be included if a more accurate result is demanded., The method
developed in this Chapter can be readily adapted to these cases. The
calculation should be started from the lowest layer, and the reflectance
matrix of the underlying surface, the soil surface, say, is taken as the
boundary condition. The solution of the reflectance matrix of the lowest
layer thus obtained can be employed as the boundary condition for the

second layer, and so on,
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4 Uncaupled Multi-Layer Model for the Transfer of Sensible and Latent Heat
Flux Densities from Vegetation

(accepted by Boundary-Layer Meteorology)

Abstract

The sensible heat flux density C and the latent heat flux density AiE
are coupled in the case of a multi-layer model of vegetation. Therefore two
linearly independent combinations of C and AE, the enthalpy flux density H
and the saturation heat flux density J, are introduced. Two electrical
analogues, for H and J, are designed. They are equivalent to the resistance
scheme for C and 3E, but uncoupled. Penman's formulas for C and E,
which are applicable only to single-layer models, can be expressed equiva-
lently in terms of H and J. This version of Penman's formulas can be

extended easily to multi-layer canopies.

4.1 Introduction

Transpiration from a crop stand has been and is still being extensively
studied, both experimentally and theoretically, because of its importance to
agriculture as well as to meteorology. As to the theoretical work, there are
two different approaches: single-layer models and multi-layer models. Both
are well developed, For single-layver models, Penman's (1948) formulas are
the most frequently used equations for determining sensible and latent heat
flux densities from an evaporating surface, based on the energy balance
approach. The energy balance method can also be used in the multilayer
models. The unknown wvariables are the temperatures and humidities of
each layer, and the sensible and latent heat flux densities at different
levels within the canopy. Unfortunately, the equations for sensible and
latent heat flux densities are coupled, so that explicit expressions for
canopy latent and sensible heat flux densities have not been developed.

Although single-layer models may not be adeguate for many cases, they
have been widely used because of their simplicity. Multi-layer models
should be more useful if analytical solutions can be offered for their
steady-state flux densities, Shuttleworth (1976) derived a so-called com-
bination equation in an attempt to obtain a unified model for single- and

multi-layer ones.
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In this Chapter the multi-layer model developed by Goudriaan and
Waggoner (1972) is examined. Then two linearly independent combinations
of sensible and latent heat flux densities are introduced. Using the enthal-
py flux density H and the saturation heat flux density J as two new
variables, the equations are uncoupled, Two electrical analogues for H and
J are designed. Based on the uncoupled electrical analogues, analytical

solutions can be found.
4,2 Coupled multi-layer model

Agrometeorologists are interested not only in the sensible and latent
heat flux densities above a crop canopy, but also in the profiles of tem-
petrature and humidity within the canopy. To simulate these profiles,
single-layer models are no longer applicable. One has to divide the whole
canopy into several layers, and define the leaf temperature, air tempera-
ture and humidity, and the sensible and latent heat flux densities in each
layer as state variables,

Because the heat capacity of the air in the free space within the canopy
and that of the leaves are rather small, for a mean state over a relatively
long period, one hour say, the heat storage term can he ignored in the
energy balance equation, For every layer, therefore, the net radiation
absorbed can be considered to be equal to the sum of the sensible and
latent heat flux densities. These energy balance equations together with
the relationships between flux densities and relevant driving forces, using
the analogy of the electrical circuit theory, constitute a closed set of
equations for all unknown variables, This method was used by Waggoner et
al. (1969) and Goudriaan and Waggoner (1972)., The electrical analogue
shown in Fig.4.1 is based on these two papers, but the notations for the
variables and the symbols for the potential and current sources are adap-
ted to standard usage.

The driving force (potential source) above the canopy for sensible heat

flux density is pcpT in which pcp is the wvolumetric heat capacity of

a,f’

air, T is the air temperature at the reference height. The driving force

a,l

above the canopy for latent heat flux density is(pcp]y) e, o where y is the

, 0

psvchrometric constant and e is the water vapour pressure of the air at

a,l
the reference height. In addition to these twe potential sources, there is a

current source for each layer. This is the net radiation absorbed within
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Fig. 4.1. Electrical analogue for sensible and latent heat flux densities.

For meaning of symbols, see the text.

the layer, denoted as Si, where. i specifies the layer index. The sensible
and latent heat flux densities supplied by the layer i are denoted by Ci'
and J\Ei', respectively. The corresponding resistances are specified by T
and rV,i' The resistances in the wvertical direction due to turbulent ex-
change are represented by the Ri's, which are assumed to be the same for
both the sensible and latent heat transfers. Based on this electrical analo-

gue, the following equations can be obtained:

C,' +E' =8, (4.1)
' = .ocp(TL’.l - Ta’i)er,i, (4.2)
AE. T = (OCPIY)(eSITL_i) - ea,i)/rv'i_, (4.3)
es(TL,i) = es(Ta,i) + ;:,(TL.i - Ta_i), {4.4)

Eq.{4.1) is the energy balance equation. Eqs.(4.2) and (4.3) are the
analogues of the Ohm's law for the sources of the sensible and latent heat

flux densities. The sensible heat flux density originates from the leaf
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surfaces, so that the leaf temperature TL,i is introduced. Ta,i is the
temperature of the air surrounding the leaves. ™,i consists of only the
leaf boundary-layer resistance for heat transfer. The latent heat flux
density originates from the substomatal cavities. The air within the cavities
is assumed to be saturated by water vapour, so that the vapour pressure
there can be determined as the saturated vapour pressure at the corre-

sponding leaf temperature eS(T .). The wvariable e ; is the vapour pres-

sure of the air surrounding g-‘h,; leaves. The resis’tance for the vapour
transfer from the substomatal cavities to the surrounding free space within
the canopy, Tyt is composed of two parts: the stomatal resistance and
the leaf boundary-layer resistance.

Due to the different diffusion coefficients of vapour and heat in air,
the leaf boundary-layer resistance for latent heat is slightly different from
T It is often convenient to define the stomatal resistance r_as

T, Sy T T (4.5)

Eq.(4.4) is the linearized saturated vapour pressure versus temperature
curve, which is in fact more or less exponential, and A is its slope deter-
mined at a proper temperature, Tp' To complete the system of equations,

Ohm's law can be applied in the vertical direction:

i

PG = e (T, () - T, MR (i=1 to n) (4.6)
]'=n r ’

i

T J\Ej' = (pcpl'Y)(ea i-1 7 %, i).’Ri (i=1 to n} (4.7)
j:n 3 »

where n specifies the total number of the layers.

The driving forces in the vertical direction for sensible and latent heat
flux densities are, respectively, the differences in pc Ta and opc ealY
between layers. The flux densities through Ri are composed of all sources
from layers i to n, so the summation is carried out on the left-hand sides
of Egs.(4.6) and (4.7).

Eqs.(4.1) through (4.4), (4.6) and (4.7) constitute a closed set of
equations. Being coupled they have to be solved simultaneously., A matrix
method was developed by Waggoner et al. (1969). Although sophisticated

software for solving matrix problems are available, explicit analytical
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solutions are needed to simplify the application of this theory and to
provide a more direct physical insight into canopy behaviour. The idea is
to make the equations uncoupled by introducing two linearly independent

combinations of C and 2E.
4,3 Uncoupling

One of the two required combinations of C and ME is straightforward., It
foliows from Eq.(4.1) that if a new wariable H, called the enthalpy flux

density, is defined as:

H=C + jE. (4.8)
The source for H from layer i, following Eq.{4.1), can be written as:
H'=S5., (4.9)

Because the net radiation absorbed within each layer is a known variable,
H, can be obtained immediately.

The driving force for the enthalpy flux density in the vertical direction
is the difference in pcp(Ta+ea."-r) between layers, a combination of the
driving forces for sensible and latent heat flux densities, following the
definition of H. The term Ta+ea/*( is often called the equivalent tempera-

ture of air, denoted by Tea:
Te =T + eal'y. (4.10)

The problem is to find another combination. It follows from Egqgs.(4.1)

through (4.4) that C.l' and AE;' can be rewritten as:

1= -
Ci {Yrv, .Si DCpDi)/(ArH,i + YrV,i) {(4.11)

I =
)\E.l (ArH,iS + OCpDi)”ArH,i + YrV,i) (4.12)

i
where Di is the water vapour pressure deficit of the air in layer i:

Di = es(Ta,i) T (4.13)

To find the other combination, it can be noticed that Egs.{4.11) and
(4.12) only contain one property of the air in the form of the vapour

pressure deficit, Di' Therefore the flux density driven by the difference
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in D between layers, should be the desired combination of the sensible and
latent heat flux densities. The saturated vapour pressure at air tempera-

ture, eS(Ta) can be expressed as:
e T ) = es(Tp} + o(T - Tp) (4.14)

where T_ is the properly chosen temperature for evaluating 4 , as

mentioned before. Eq.(4.13) can be rewritten as:

i a,i a,i

D, = AT . - .+ T ) - AT . 4,15
ey * o (T) - AT (4.15)

By taking the difference of Di between layers i-1 and i, the constant
eS{T )-4T  in Eq.(4.15) is e¢liminated, A subsequent multiplication of both
sides with (pcp."A)/Ri vields:

(p(:p/'A.)(Di_1 - Di)lRi = pcp(Ta.i-l -T .)J’Ri

2,1

- e .).'fRi (4.16)

- (B ee e, i) - e,

Referring to Eqs.(4.6) and (4.7) shows that the right-hand side of
Eq.(4.16) can be written as Ci—(Y/.ﬁ)AEi. Ci and )\Ei denote the cumulative
sensible and latent heat flux densities above layer i, which are the sums
of the relevant sources from layers i through n as expressed on the left-
hand side of Eqgs.{4.6) and (4.7}. The left-hand side of Eq.(4.16} repre-

sents a new cumulative flux density denoted now by Ji:

i

- | = -

I, = T30 (e /D) - D)IR, (4.17)
j=n

where Jj' is the source term from layer j. Therefore the desired coenbina-

tion of the sensible and latent heat flux densities is:

J=C - (y/AE (4,18)

which is valid for both Ji and Ji"
It follows from Egs.(4.11), (4.12) and (4.18) that the scurce Ji‘ is:

={pc_/A)D, 5.
J.' = P E R ! , (4.19)

(ry,; +oorg ;) (I +ry jlorg o)

T
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Fig.4.2. Electrical analogue for enthalpy flux density H.

where r_ is the stomatal resistance defined by Eq.(4.5), and a is defined

as:
a = yl(y + 4) (4.20)

4.4 Uncoupled electrical analogues for H and J

For the required electrical analogue for H, a potential source above the
canopy can be specified as pc Tea,O’ in which Tea,O is the equivalent
temperature of the air at the reference height. The current sources are
given by Eq.(4.9) for each layer. The electrical analogue is simple, as is
shown in Fig.4.2. The meaning of the symbols is the same as those in
Fig.4.1. Now Hi specifies the cumulative flux density above layer i, which
is the sum of the sources Hi from layers i through n. I-li is positive upwards.
The change of usage is necessary for obtaining a simpler form of solution
later. It is obvious that the Hi's are determined only by the current
sources and independent of the potential source.

Similar to the electrical analogue for the enthalpy flux density H, a
potential source above the canopy for J can be specified as (p cp.’A)Do, in
which D{] is the vapour pressure deficit of the air at the reference height.

The role of the current sources requires more consideration. First, a

diagram can be designed for a single layer. Inspection of Eq.(4.19) indi-
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cates that Ji' is composed of two parts. The first term on the right-hand
side of Eq.(4.19) is due to the potential source {pc /A)Di. The diagram
can be easily designed, as is shown in Fig.4.3{a). The second term on the
right-hand side of Eq.(4.19) is caused by the current source 5 (for the
soil surface the heat flux into the soil G should be subtracted from Si).
The diagram obtained is shown in Fig.4.3(b).

The diagrams in Figs.4.,3(a) and 4.3(b) can be combined, according to
the superposition theorem in electrical theory, as shown in Fig.4.3(¢). The
electrical analogue for the whole canopy can be obtained, based on that for
the single layers (Fig.4.4).
and J

4.5 Solutions for the total flux densities H above a canopy

1 1

The total flux density H1 above the canopy is simply:

n
H = 5, (4.21)

while that of J1 has to be determined from Fig.4.4. For simplicity, only
four layers are assumed, but the solutions can be ecasily extended to the
general case. Under the notations presently used, .'J.1 is now cumulative to
each layer i, hence Ji'=Ji—Ji+1, and Eq.(4.19) becomes:

ri(J. -J

i i+1) = "(DCP/A)Di +ar_ isi (i=1 to 4), (4.22)

where J5 is defined as to be zero, and T is defined as:

ar . (4.23)

r. =r, .+ .
i H,1i 5,1

The other four equations can be obtained for each Ri in the vertical direc-

tion:

RJ, = (pcp/A)(Di -D, ) (i=1 to 4). (4.24)

Eqs,.(4.22) and (4.24) represent eight equations for eight unknown

variables: Ji and Di (i=1 to 4), so that this is a closed system,
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Fig.4,3, Electrical analogues for J for one layer. {a) For the potential

source; {b) for the current source; (c} combined.

Substituting Eq.(4.22) into Eq.{4.24) and rearranging gives four equa-
tions for the Ji (i=1 to 4}):

(1+R1/r1}.]1 - JZ = bl (4.25a)
(Ry/r )5y + (MR, /r )T, - L0y = b, (4.250)
(Rll'r3)J1 + (R2/r3)J2 + (1+R3J’1:'3)J3 - J4 = b3 (4.25¢)
(Rllr4).I1 + (R2/r4)J2 + (R3/r4)J3 + (1+R4)’r4).1'4 = b4 (4.25d)

where

b, = (—(pcp/A)DO *oarg (SiMr;. (4.26)

J, can be solved by using Cramer's rule:

bl -1 0 [
b 4R, /1 -1 0
bi %/rg 1+R3I'r3 -1
‘b4 R21r4 R3/r4 l-l-R41’1~4
1, = , (4.27)
1+R1.v’rl -1 0 0
Rllrz 1+RZJ"r2 -1 ]
R1/r3 Rzi'r3 1+R3;’r3 -1
R1/r4 R2/r4 R3fr4 1+R4/r4

By denoting the determinant in the denominator in Eq.(4.27) as AO’

and defining the sub-determinants as:

1+R2fr2 =1 0
Al = R2/r3 1+R3/r3 -1 (4.28)
R2/r4 R:_,’h:"l 1+R4/r4
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1+R,/r -1
P

5 (4.29)
R:,)!r'4 1+R4lr4

A3 =]+ R4/r4 (4.30)

A4 =1, (4,31)

Eq.(4.27) can be written in a concise form by unfolding the numerator
according to the column bi:

n n
J,. = (A /AL, = ¢ (A /A Y(-{pc IA)D. /¥r, + (axr ,/r,)S.). (4.32)
1j=1101j=110°p U s»f T30
A recurrent relation for Ai can be found. Unfolding Al, for instance,
according to the first column gives:

n
Ay = (1+R2:’1~2)A2 + (R2/r3)A3 + (R2/r4)A4 = A2 + szEZ(Ajlr].).

It can be proven that Eq.{4.33) is valid for each L
n
Ay A LL TR T (A fr.)

(i=0 to n-1),
j=i+l

{pG/ )0,
|

Fig.4.4. Electrical analogue for saturation heat flux density J.

-44-




The profiles of J can also be obtained, as well as those of air tempera-
ture, vapour pressure and leaf temperature. Because these profiles are
calculated from the explicit expressions, the computing time is greatly
reduced, so that the calculation can be executed on a microcomputer., This

subject will be discussed in Chapter 5,
4.6 An equivalent expression for Penman's formulas

As mentioned above, the Penman's formulas are often used for calculating

the sensible and latent heat flux densities from an evaporating surface:

Y*(5-G) - ochol (R+rH)

C = (4.35)
& + y¥
A(S-G) + pc D,/ (R+r,,)
)E = po "~ H (4.36)
A+ v¥ :

where G is the heat flux density into the soil, v* is the apparent psychro-

metric constant, defined as:
¥ =
¥ v{R + rVJ/(R + rH) . {4.37})

The problem is that no equivalent expressions exist for C and AE in the
multi-layer model. By using the definitions of H and J, Egs.{4.8) and
{4.17), however, Penman's formulas can also be expressed in terms of H
and J:

H=S-G (4.38)

ar_{5-G) - (ec_/A)D
J = g P 0 . (4.39)

R+r + oar
H ]

These equivalent expressions for Penman's formulas are in fact only special
forms of Egs.{4.21) and (4.32) as can be seen as follows.

For the single-layer model, n=1, 5. becomes 5S-G, A1 becomes unity,
and A0=1+R!(rH+urs), so that Eg.(4.32) hbecomes the same as Eq.(4.39}.

In fact, © and A*E can be expressed in terms of H and J:
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C=oH+ {1 - a)J, (4.40)

AE = (1 - o) (H - J), (4.41)

The familiar Penman equations (4.35) and (4.36) are ohtained by substitut-
ing Fgs.(4.38) and (4.39) inte (4.40) and (4.41)} and simplifying. The
equivalent Penman's formulas in terms of H and J, Eqs.(4.38) and (4.39)
are preferable, because for both single- and multi-layer models, the same
formulas can be used.

In fact, Egs.{(4.21} and (4.32) provide a hridge between the single-
and multi-layer models, from which several conclusions, particularly for
the canopy resistance r, can be drawn. This subject will be discussed in
Chapter 7.

4,7 Physical significance of J

The flux densities H and J were introduced during the mathematical
process of uncoupling. But it can be seen that they have clear physical
meanings, The physical meaning of H is obvious, viz., the total heat or
enthalpy flux density. On the contrary, the physical meaning of J is not
immediately clear and is exposed now.

The Bowen ratio B is defined as the ratio of sensible to latent heat flux

densities. It can be expressed in terms of I and I:
B =C/aE = ({y/AM)H + I)/{H - J}. (4.42)

This equation shows a unique relationship exists between 8 and J, as long
as H is fixed., The larger the J, the larger the Bowen ratio will be. It can
be seen that R =y /A when J=0, B < v/& when J<0, and 8 > v/A when J>0,
in which the value of v/A is often called the critical value of the Bowen
ratio (Monteith, 1973). Likewise J=0 can also be called a critical value.

According to the preceding derivation, the flux density J is driven by
the gradient of D. Therefore when J equals zero, the gradient of vapour
pressure deficit is zero, and vice versa. In this case, AE is equal to
{l-0)H or

AE = (l-a} (S-G) (4.43)

which is often called the equilibrium evaporation rate {Priestley and Taylor,
1972},
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In addition to the three classical flux densities of enthalpy, sensible
heat and latent heat, it is proper to emphasize the role of J, as a fourth

flux density. Together with the driving forces (gradients) they are:

Driving forece (gradient): Flux density:
temperature T sensible heat C
vapour pressure e latent heat A E
equivalent temperature Te enthalpy H
vapour pressure deficit D saturation heat J.

Noting the important role of the vapour pressure deficit in evapotranspira-
tion and the clear physical meaning of the related flux density J, it can be
realized that J is not merely a mathematical device. It seems proper to give

it a name, Here J is called the saturation heat flux density.
4,8 Discussion and conclusions

The saturation heat flux density J is equivalent to b=-2CHAE, derived
by McNaughton (1976) in his two-dimensional and single-layer model for
evaporation and advection. Perrier (1976) has alse derived a second-order
differential equation for the so-called saturation temperature deficit
Y=T-Td, where Td is the dew-point temperature. Both their derivations
are based on a continuous model in vertical direction rather than on a
discrete multi-layer model. Because the resulting second order differential
equation cannot be solved analytically and a numerical solution based on a
difference method has to be used, it is more straightforward to derive the
equations for J directly from a multi~layer model. Based on these equations
for the discrete model, the electrical analogue, which gives a clearer
picture, can be easily designed.

In this Chapter, the quantity J is introduced based on the linearized
saturated vapour ptressure versus temperature curve. This is only an
approximation. Inspection of the saturated vapour pressure curve shows
that, within a 10°C temperature interval, the error caused by the linear-
ization is rather small, Calculations show that for the interwvals of 10-20,
20-30 and 30—40°C, the largest relative errors are, respectively, 4.3, 3.0
and 1,8%, A being evaluated at the mid-points of the intervals., For a

larger interval of 15-350C, however, the relative error reaches 13.5%. This
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temperature interval is determined in practice by the difference between
the highest leaf temperature and the lowest air temperature following
Fq.(4.4). Under most field conditions, this temperature difference is
expected not to exceed lUOC, so that the linearization of the saturated
vapour pressure curve is feasible.

The substitution of D/4 by the saturation temperature deficit Y extends
unnecessarily the temperature interval. The lowest air temperature now is

replaced by the lowest dew-point temperature, The extension depends on

the value of D, or more precisely, on the relative humidity h. Calculations
show that as a rule of thumb, h=0,5 is equivalent teo ¥=10°C. Thus the

substitution of D/A by Y introduces an additional error, which becomes
substantial when h is small,

The other basic assumption related to the substitution of H and J for C
and AE, viz., the similarity between the exchange coefficients of heat and
water vapour. This is a rather good approximation, the conditions for its
validity having been extensively studied (Monteith, 1973). Obviously, it
does not hold for the transfer process in the soil. When the substitution is
applied to the canopy, the heat flux density into the soil at the soil sur-
face, G, should be known, If G is unknown and is an output of the simu-
lation program as in Goudriaan's model (1977}, an iteration method has to
be used.

The treatment in this Chapter is different from that by Shuttleworth
(1976). He derived his combination equation based on the redefinition of
the relevant resistances, e.g. ry and Ty The introduction of H and J
retains all the resistances in an ordinary sense, and the electrical ana-
logues thus developed use the concepts of the potential and current sources
in a standard way.

Based on these considerations, the following conclusions can be drawn:
a} To study transpiration from a canopy, flux densities of enthalpy H and
saturation heat J are preferred to flux densities of sensible heat C and
latent heat AE, because the resulting equations are uncoupled.

b) The flux density J is uniquely related to the Bowen ratio at each wvalue
of H. The equilibrium evaporation rate occurs when J=0,

¢} The electrical analogues for H and J provide a method to calculate the
flux densities; the method is applicable te both single- and multi-layer
models. In the case of single-layer models, the derived formulas for H and

J are another version of the familiar Penman formulas for C and A E.




5 A Crop Micrometeorology Simulation Program in BASIC on Microcomputers

{submitted to Agricultural Meteorology)

Abstract

Based on two uncoupled electrical analogues for enthalpy and saturation
heat flux densities H and J, and the appropriate recurrent formulas, a
simulation program in BASIC is developed. The formulae needed for describ-
ing radiation characteristics, aerodynamic and plant-physiological resistan-
ces are taken from the simulation model MICROWEATHER {(Goudriaan, 1977),
so that the present program gives the same detailed description of the
micrometecrological situation in the crop. It treats direct and diffuse,
visible and near-infrared radiation separately, distinguishes between sunlit
and shaded leaves for calculating net photosynthesis rate, calculates sto-
matal resistance according to both irradiation and plant water status, and
gives profiles of air and leaf temperature, air humidity, sensible and latent
heat flux densities. It can, however, be executed on a microcomputer, becau-
se of the steady-state approach based on uncoupled equations. The output
of the program is compared with that of MICROWEATHER,

5.1 Introduction

During the past two decades, crop micrometeorologists have developed
varjious simulation models to calculate the regime of wind, radiation, tempe-
rature and humidity within a crop canopy. Roughly speaking, two kinds of
technigues have been used. One is to trace the time course of the relevant
variables by integration {Goudriaan, 1977); the other is to calculate steady-
state values of these variables (Waggoner and Reifsnyder, 1968; Goudriaan
and Waggoner, 1972; Perrier, 1976; Shuttleworth, 1976). Apparently, the
former gives a more detailed description, while the latter needs less compu-
tation, Both approaches are fairly successful. The remaining problem is
that they rely on mainframe computers because of their complexity and the
lack of analytical solutions to the equations involved, The everincreasing
popularization of microcomputers, however, demands a model which can
handle the crop micrometeorology on a microcomputer,

In terms of a mathematical uncoupling technique two uncoupled electrical
analogues for enthalpy and saturation heat were developed in Chapter 4 to

replace the coupled one for sensible and latent heat. The time-consuming
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matrix inversion used in the coupled model (Waggoner et al., 1969) is thus
ho longer necessary. The derived recurrent formula for solving the equa-
tions further simplifies the computation, se¢ it has become possible to
construct a simulation program which can be executed on a microcomputer.

In this Chapter, the formulas required for calculating the profiles of
potentials and fluxes are derived. A method of treating sunlit and shaded
leaves separately is presented. A simulation program is written in BASIC
and its output is compared with that of Goudriaan's model MICROWEATHER.

5.2 Description of the simulation model

5.2.1 Basic equations for profile calculation
The definition of the enthalpy and saturation heat flux densities, H and
J, are {Chapter 4):

H=2C+ ik, J =C - {y/2)iE, (5.1)

where yis the psychrometric constant, 4 the slope of the saturation vapour
pressure curve, and C and A E are sensible and latent heat flux densities,

respectively. The following equations are equivalent:

C=ol+ (1 - 0)J, AE = (1 - a)(H - I}, (5.2)
whexe is defined as:

a=vl (v+a). (5.3)

Two uncoupled electrical analogues for H and J are presented, respec-
tively, in Figs.5.1(a) and 5.1(b). The relevant profiles are calculated

according to the following procedures.

(a) H profile

H. = £H!' (5.4)
where Hi is the cumulative enthalpy flux density above layer i, and H.' is
the enthalpy source for layer j. H.'=Sj—F]. for the canopy (3=1 to n-1) and

Hn'=Sn—G for the soil surface, in which S]. and F. are the net radiation

absorbed and net energy consumption rate by photosynthesis in layer j, G
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Fig.5.1. Electrical analogues for (a) enthalpy and (b) saturation heat.

the heat flux density penetrating into the scil surface, and n the total

number of layers, including the soil surface.
(b} J profile
The total flux density above the canopy Jl can be obtained first:

J1=

e 3

l(Aj ."AO)bj , {5.5)

3
where An is defined as unity and the determinant A], (j=0 to n-1} is calcu-
lated by the following recurrent formulae:
n
Ay = Ay TRy I A, (5.6)
j=i+l
Here Ri is the turbulent resistance between layers i-1 and i (the reference

height refers to i=0). The resistance ri is defined as:

r + ar_ ., {(5.7)

, — T .
i H,i 5,1

in which YHo is the leaf boundary-layer resistance of layer i to heat
transfer, vy the stomatal resistance of layer i, The parameter bj in
Eq.(5.5) is defined as:
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b]. = (ars,].Hj' - pchD/A)/rj. {5.8)

Here pcp is the volumetric heat capacity of air, and DO the vapour
pressure deficit at the reference height,

The source from laver i, Ji’ is
t = (-
Ji (mrs’il—li pchilA)lri, {(5.9)

where Di is the wvapour pressure deficit of the air in layer i, and can be

calculated from D, and R.J. by using Ohm's law in the vertical direction.

¢
Eq.{5.9) can therefore be rewritten in terms of bi as
i
' o= - j= -
T, b (jlejJ].)/ri (i=1 to n-1}. {5.10)

Then the cumulative flux density above layer j+l can be obtained:

T =9 - 75! (i=1 to n-1). (5.11)

Egs. (5.1) to (5.9) were derived in Chapter 4.

{c) C and AE prefiles
It follows from Egs.(5.2) that Ci and }\Ei are readily obtained from H,
and Ji:

C; = o, +(1-a),, IE =(1-aH -J) (=1 torn-1), (5.12)

(d) T and e profiles
The profiles of vapour pressure deficit D, air temperature T and air

vapour pressure e are obtained by:

Di = Di-—l + JiRi/(pcp/{'_\) (i=1 to n), (5.13)
Ti = Ti-l + Ci}?\i.l'pcp (i=1 to m), (5.14)
e, =e; g ¢ AEiRi;’(pcply) {i=1 to n), (5.15)

where DO' TU and €, specify the vapour pressure deficit, temperature and

vapour pressure, respectively, of air at the reference height.
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(e) T profile

The profile of leaf temperature TL (including the temperature of the
soil surface) is obtained by:

TL,i =T, + (C, - Ci+1)rH,i/pcp (i=1 to n), (5.16)

where Cn+l is defined as zero.
5.2.2 Distinguishing sunlit and shaded leaves

So far, the model considers only the average radiation intensity in each
layer. This is acceptable for an overcast sky, but on sunny days, sunlit
and shaded leaves should be distinguished, because they have different
stomatal resistance per leaf area. Thus, in each laver, leaves with differ-
ent irradiation levels have to be distinguished. This is equivalent to
splitting each layer into several sublayers, the turbulent resistances
between these sublayers being equal to zero, In Figs.5.2{(a) and 5.2(b),
the corresponding electrical analogues for H and J are shown. Each of the
three cancpy layers is split here into only two sublayers for illustration.
If &6 canopy layers and 6 irradiation levels are assumed, the total number
of layers becomes 37, including the soil surface. It is fairly time~consum-
ing to invert matrices of such a large size, even on mainframe computers.
This is one of the main difficulties of the coupled electrical analogue. With
the uncoupled models shown in Figs.5.2{(a) and 5.2(b), however, this
problem does not exist. If the layer index is denoted by i as before, and
the irradiation index by k, then for the canopy the resistances i Ts,i
H,i,k’ rs,i,k and ri,k’ radiation absorbed by Si,k
and the parameters bi by bi,k' For the H profile, it is clear from inspec-
tion of Fig.5.2{(a) that Eq.(5.4) can be modified to:

and r, are denoted by r

i m
H = £ IH ' (5.17)
Do k=0 0K

where m denotes the total number of irradiation levels for sunlit leaves,
and k=0 refers to shaded leaves. Since the turbulent resistances between
the sublayers are zero, Egs.({5.5), (5.6), (5.10) and (5.11) for the J pro-
file are still valid if bi and r, are defined as:

m
b, = b
k=0

m
lfri = I (I/r (5.18)

o TR

i,k’
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Fig.5.2. Electrical analogues when sunlit and shaded leaves are distin-

guished: (a) for enthalpy and (b) for saturation heat.

where b, is defined as:
i,k

. = (q (5.19)

ik T - pcPDDIA)/ri'

Ts,i,k Di Lk k'
The J profile is, therefore, still readily obtainable, The profiles of sensi-
ble and latent heat flux densities, temperature, vapour pressure, vapour
pressure deficit of air and averaged leaf temperature are obtained in the

same way.
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5.2.3 Heat flux density into the soil surface

Unfortunately, the uncoupling procedure is invalid in soil because of
different vertical transfer coefficients for sensible and latent heat. The
heat flux density into the soil surface G has to be known in the uncoupled
electrical analogues shown in Figs.5.2(a) and 5.2(b). In some cases G is
not available and has to be simulated; in other cases the value measured
by heat plate or derived from measured soil temperature profile is not
reliable, so, in spite of these measurements, G should still be simulated.
On the other hand, when the time course of the soil temperature profile is
included in a complete program simulating crop micrometeorclogy, then G is
no longer an inp‘ut but an output variable.

Because the above-ground and below-ground parts are coupled with
each other through G, an iteration method may be applied even if the soil
temperature profile is known. A value for G is first guessed; a more
accurate value of G is determined as follows.

The soil-surface temperature can be obtained from the above-ground
part as Ts,a by the method described above (Eg.(5.16}). But it can also

be found from the below-ground part as TS o

_ 0
Ts,u = Ts,l + (dllk')G , (5.20)

where G0 is the guessed heat flux density, d, the distance between the
soil surface and the center of the top soil layer, k' the conductivity for

heat in the scil, and T5 | the temperature of the first soil layer. This

’
temperature is simulated by dividing the soil into layers using G as an

input {(de Wit and van Keﬁlén, 1972). The temperatures TS 2

and T are
s,u

now different, of course. The problem is to find an increment of G, deno-

ted as G', to make T
s,a

and TS a about equal to each other, within a

tolerable error. Denoting the corresponding soil temperature as TS*, the

following equation can be obtained:

T*=T + (dT_ _/dG)G!, T*=T + (dT_ _/dG)G!', (5.21)
s s,a 5,a s s,u s,u
and eliminating TS* yields:
I = — -
G' = (Ts,a Ts’u)f(dI'S!uldG dTS’aIdG) . (5.22)
dT_ u/dG can be found from Eq.(5.20):
- 1
drs,uldG = d/k'. {5.23)
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The value of de aJ"dG requires more consideration. It can be proven by
E)
using Eqgs.(5.%), (5.12), (5.13), and (5,14} that de a/dG is approxima-

L]

tely:

dr  jdG = - (a/ocp) (Rt + )] {for a wet soil surface)

b o
s5,a H,n

= - (lfpcp) (R, + rH’n) (for a dry soil surface}, (5.24)

where Rt is the turbulent resistance between the reference height and the

soil surface. The subsequent estimate of G is then:

¢t =c® +ar. (5.25)

With this method the convergence is very fast. Calculation shows that for

a requirement of the relative error in T5 a and Ts u smaller than 1 per-
+ ¥

cent, one iteration is enough for a wet soil surface and three or four for a

dry soil surface.

5.2.4 Parameter evaluation
Before the relevant profiles can be calculated, the characteristics of S,
R, H

the most detailed, so the relevant formulas used in this simulation program

and T have to be determined. Goudriaan's (1977) study is one of

are taken mainly from his book., No attempt is made here to explain these
formulas, readers being referred to the original book for more detailed
information.

Because the present steady-state approach is different from the dynamic
approach used by Goudriaan, some changes are necessary. The maximum
CO2 assimilation rate and the dark respiration rate of leaves were given as
known functions of leaf temperatures; Goudriaan could obtain these by
using previous temperature values, since his model used a small time
interval of about one second. In the steady-state approach unnecessary
iterations are avoided by replacing the leaf temperatures by the air tempe-
rature at the reference height. This leads to only small errors. Moreover,
the thermal radiation is assumed te be extinguished exponentially with
depth into the canopy, with a coefficient that is different for day and
night.

The stomatal resistance, ros is defined as the difference between ry
and Ty the former is the leaf resistance to vapour transfer and composed

of the real stomatal resistance, rs*, and the boundary-layer resistance to

G




vapour, ry . Strictly speaking, Ty V=0.93rH (Goudriaan, 1977, Eq.(3.6)},
L 1]
50 the relationship between T and rs* is:

r =T,

_ -y % o
< v TS Y 0.071"H. (5.26)

This difference is significant only when the wind speed is low,
5.3 Simulation program
5.3.1 Some remarks

{a) Stability correction

The stability correction of the profiles of wind speed and turbulent re-
sistance is included only above the canopy under stable condition, because
calculations show that this is the only case in which this correction is
stgnificant. The correction function is the same as that used by Goudriaan,
but the Monin-Obukhov length L is taken as the criterion parameter rather
than the Richardson number Ri. L is calculated directly from a so-called
equivalent heat flux density above the canopy, defined as C+0.,1YAE. The
minimum value of L is set equal to 10_3 rather than 10_20 as in MICRO-
WEATHER. This value is related to the maximum turbulent resistance
between the reference height and the top of the canopy. According to
Hiramatsu (1984}, this value must be carefully chosen, and 1073 is perhaps

still too low.

(b) Initialization

There is no need of initialization for steady-state approach, because at
any time equilibrium is assumed. But the temperature in the soil is never
in equilibrium, integration has to be carried out to trace its wvariation in
time. The temperature profile in the soil must therefore be initialized. This
is done also for the heat flux density into the soil surface G, the Monin-

Obukhov length L and the water content of the canopy.

{c) Size of the program and the execution time

The program contains about 300 statements, occupying 10K memories.
Because the soil temperature profile is simulated, the time step of integra-
tion is determined by the thickness of the thinnest soil layer. In this

program it is 2 cm, so a time step of 1/8 hour is used, The execution time
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Fig.5.3. Comparison with MICROWEATHER. The solid lines represent the
cutputs of MICROWEATHER,
program:
flux density above the canopy; and temperature (T) and vapour pressure
(e) profiles at 9h00 (c) and at 12h00 (d).

for one time step is 6 seconds for night time and 12 seconds for day time
(on a microcomputer Apple 1I), so that it takes about 30 minutes to simulate

a day. A list of the program and the symbols used in the program is given

-h8-

{c)

(a)} total sensible heat flux density and (b) total latent heat

in Appendix A-1 and A-2, respectively.

and the broken lines those of the present

(d)




5.3.2 Results

The comparison is made between the outputs of the present program
and MICROWEATHER, using the data for a case study. The time course of
the simulated total sensible and latent heat flux densities from the two
programs are given in Figs.5.3(a) and 5.3(b). The profiles of air tempera-
ture and vapour pressure at 9h00 and 12h00 are presented in Figs.5.3(c)
and 5.3(d). The agreement is very good, demonstrating the feasibility of
the steady-state approach based on the uncoupled electrical analogues for
enthalpy and saturation heat.

No attempt is made here to test the model against independent experi-
mental data, this will be left for later work; but MICROWEATHER has been
tested for Indian Corn (Zea mays L.} by Stigter et al. (1977) and for a
rice crop by Hiramatsu et al. (1984). This gives indirect support to the

present simulation program.

5.4 Discussion

The uncoupled electrical analogues shown in Figs.5.1(a} and 5.1(b) not
only simplify calculations but also provide a clear picture of the transfer
of sensible and latent heat between atmosphere and a multi-layer canopy.
Enthalpy flux is influenced only by the energy supply, the resistances
have no effect. To study the role of the relevant resistances we need only
to examine the electrical analogue for saturation heat; this is certainly an
advantage., It was shown in Chapter 4 that the relationship between the

Bowen ratio 8 and H and J is:

g = ((y/a)H + N/(H - T}, (5.27)
or, better expressed, as:

B = (v/&a +J/H)/(1 - J/H). (5.28)

Eq.(5.28) means that the Bowen ratio is uniquely determined by the ratio
J/H. For illustration it will be shown now the influence of the relevant

resistances on the total flux density J above the canopy.
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{a) Stomatal resistance

From Fig,5.1(b} it can be seen that the stomatal resistance r_ s, more
’
precisely ocrS i’ is a shunt resistance to the current source Hi‘. This
’
means the smaller the T, the smaller the contribution of the Hi' to the
H]

total flux density J will be, Since this contribution is positive (upward)

during day time, J will decline as ros decreases. The other part of T,
13

caused by the potential source pcPDO."A is negative (downward). The

absolute value of this part will increase as T decreases, as can be seen
£

from Fig.5.1(b). Therefore when ro. decreases both parts of J will decrease.

¥
We can expect therefore that the stomatal resistance has a strong influence

on J/H, and thus on the Bowen ratio.

(b) Surface boundary-layer resistance

Fig.5.1(b) shows that if L is not equal to zero, the contribution of
the current source Hi' to J is alse influenced by Wit The smaller the
LITRE the larger the fraction of the current source flowing through T
This effect is opposite to that of ro g Since the downward part caused by

>

the potential source will also increase as r i decreases, these two effects

H,
will partly compensate. We can expect that the influence of the surface
boundary-layer resistance will not be as strong as that of the stomatal

resistance.

(¢} Turbulent resistance

Each layer is separated by a turbulent resistance R, (Fig.5.1(a}), When
Ri decreases, the downward part as well as the upward part of J will in-
crease. Furthermore, Ri is ufually smaller than T4, and is much smaller
than rs,i' Thus the net effect can be expected to be rather small,

In Fig.5.4(a) is presented the dependence of the ratio J/H and the
Bowen ratio p on stomatal, surface boundary-layer and turbulent resistan-
ces within the canopy obtained from the simulation model at 9h00, These
results confirm those of the qualitative analysis; in particular, the depen-
dence of J/H on the turbulent resistance is remarkably small. This result
can be used for obtaining a simplified model in which only the total flux

densities above the canopy are of interest.
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Fig.5.4. (a} Dependence of J/H and the Bowen ratic on the variations of
the stomatal resistance T surface boundary-layer resistance Y and
turbulent resistance R within the canopy. The abscissa is the multiplication
factor for the resistances. (b) Temperature profile for unchanged (solid

line} and doubled turbulent resistance (broken line).

Although the turbulent resistance within the canopy has little effect on
the total flux density above the canopy, the profiles of the potentials such
as temperature and humidity, and in particular, the amplitudes of
variations, are strongly influenced by the value of Ri' This is because
they are determined by the product of the relevant flux density and the
turbulent resistance. In Fig.5.4(b) the temperature profiles are given for
unchanged and doubled turbulent resistances within the canopy.

The purpose of including the detailed description of the required para-
meters in this simulation program is to show the ability of a microcomputer
to treat the complex crop micrometeorological problems, and alse to provide
a program for practical use rather than only for illustration. Based on this
detailed program some simplification can be made on later development, and
the wvalidity of the simplification can be checked by comparing the output
from the simplified program with that from this detailed one,
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6 A Graphical Extrapolation Method to Determine Canopy Resistance
{submitted to Agricultural Meteorology)

Abstract

The profile of wvapour pressure in Monteith's extrapolation method is
replaced by the profile of dew-point temperature, The canopy resistance
can then be obtained directly by a graphical extrapolation method, The
effect of choosing different excess resistances on the canopy resistance

thus obtained is discussed,
6.1 Introduction

For studying the transfer of sensible and latent heat from a crop cano-
Py, single-layer models are still widely used because of their simplicity. In
these models a crop canopy is treated as a surface equivalent to a big leaf
at a certain level above the ground. Analogous to the stomatal resistance
for a single leaf, Monteith (1963) introduced a bulk resistance ro which is
often called canopy resistance, and proposed an extrapolation method to
obtain the surface wvalues of temperature and vapour pressure., The value
of the canopy resistance then can be calculated. Since then, there has
been some discussion (Thom, 1972, 1975; Monteith, 1973) about the dis-
crepancy between the locations of the equivalent surfaces for momentum
absorption and for the transfer of sensible and latent heat, This discrep-
ancy is due to a so-called excess resistance to the sensible and latent heat
transfer {Thom, 1972). The extrapolation method is improved by including
the excess resistance, but the canopy resistance is still obtained by calcu-
lation rather than by extrapolation itself. The reason is that, in Monteith's
extrapolation method humidity is specified by the water vapour pressure e,
so that two different abscissas for the vapour pressure e and the tempera-
ture T are required; and the horizontal distance between T and e profiles
has no physical meaning.

In this Chapter, the water vapour pressure e is replaced by the dew-
point temperature Td, so that one abscissa can be used for both tempera-
ture and humidity, the horizental distance between T and Td profiles now
being proportional to the vapour pressure deficit of the air. Moreover, T
and Td profiles can be further extrapolated downward, so the canopy

resistance can be obtained directly from the graph. Based on this
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graphical representation, the effect of choosing different wvalues of the
excess resistance on the canopy resistance thus obtained can be clearly

demonstrated.
6.2 Monteith's extrapolation method

Ahove a crop canopy the wind speed u, air temperature T and water
vapour pressure e are measured at several heights, These profiles are
regarded as logarithmic, so they are represented by straight lines in a
graph with In(z-d) as ordinate. The parameter d is called zero plane dis-
placement.

First, the wind profile is extrapclated downward to intersect the ordi-
nate. The intersection point is ln{zo) (Fig.6.1), where z, is called rough-
ness length, This level at the height d+z0 is regarded as the location of
the equivalent momentum sink of the crop canopy, because wind speed and
momentum vanish there, Similarly the profiles of temperature and vapour
pressure can be extrapolated to obtain the values of temperature and
vapour pressure at some equivalent surface. The problem is: to which
height should these profiles be extrapolated?

Monteith (1963) extrapolated these profiles down to the level ln(zo),
which implies that the location of the equivalent surface for sensible and
latent heat sources is assumed the same as that for momemtum abscrption.
The surface values of temperature and vapour pressure thus obtained are
denoted by T(O)l and e(CI)1 in Fig.6.1.

There are, however, systematic vertical differences within a crop
canopy in the distribution of sources and sinks for heat, water vapour and
momentum. It is unlikely that the equivalent surface for sensible and latent
heat sources is at the same height as that for momentum. Roughly speaking,
compared with the heat and vapour transfer the absorption of momentum is
enhanced by pressure forces normal to the leaf surfaces, so the resistance
to heat and vapour transfer is higher than that to momentum transfer. The
difference between them is called excess resistance, denofed as rex {Thom,
1972) .

According to the aerodynamic method (Monteith, 1973), the turbulent

resistance between two levels 2 and Ty, T, is:

r = {l/kuy)(In{z,~d) - In(z;-d)), (6.1)
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Fig.6.1. Monteith's extrapolation method.

where k is the von Karman's constant, and u, the friction velocity. The
parameters d, Zg and u, can be obtained from the wind profile (Thom,
1975). Eq.(6.1) means that, in a2 graph with In{z-d) as ordinate, such as
Fig.6,1, the vertical distance in the figure is in fact a measure of turbu-
lent resistances between relevant levels., The fact that heat and wvapour
experience an excess resistance compared with momentum means that the
equivalent surface for heat and water vapour is below that for momentum,
say at ln(zH) shown in Fig.6.1, ln(zH) being determined by, following

Eq.{6.1), the value of the excess resistance:

ln(zo) - ln(zH) = ku*rex. (6.2}
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To obtain representative surface values of temperature and wvapour
pressure, the profiles of temperature and wvapour pressure should be
extrapolated to the level 1n(zH) as shown in Fig.6.1. The intersection
points AZ and B, represent the surface temperature T(O)2 and vapour
pressure e(O)z, respectively.

When T(0) and e{0) are obiained by extrapolation (either as T(O)l and
e(O)l or as ']’.'(0)2 and e(0)2), the canopy resistance is calculated by:

r. = (pcply)(es(T(O)) - e(0))/AE, (6.3)

where pc_ is the volumetric heat capacity of air, y the psychrometric

constant and AE the latent heat flux density above the canopy.
6.3 Graphical extrapclation method to determine r,

Besides the water vapour pressure e the dew-point temperature Td can
also be used to specify the humidity of the air.

The saturated vapour pressure versus temperature curve is more or
less exponential in nature, but as a first approximation, a segment of the
curve can be replaced by a straight line with a slope A, evaluated at a

selected temperature Tp' Thus,

T - Td = (e (T) - e)/a, (6.4)

e (T) = es(Tp} + A(T - Tp), (6.5)
and it follows from these two equations that
Td = efs + const, (6.6}

where the constant is equal to TP—es(Tp).’A. Thus, the profile of Td is
also logarithmic. The procedure for obtaining the locations of the equiva-
lent surfaces for momentum and heat, ln(zo) and ln(zH), and the represen-
tative surface value of temperature is the same as in the Monteith's method.
For illustration, the surface location 2 in Fig.6.2 is taken as the location
for the equivalent surface for heat and vapour. The surface temperature
obtained by extrapolation is then determined by the intersection point A,
as T(D)z. Now extrapolate the profile of dew-point temperature Td, to
, (Fig.6.2),

which gives the surface value of the dew-point temperature Td(O)z.

intersect the surface location 2, The intersection point is B
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The difference between this method and Monteith's method is that the
Td profile can be extrapolated further downward to reach the surface
temperature T(O)z. The intersection point is denoted by CZ’ and the level
is represented by ln(zs). The length of AZCZ in the graph is proportional
to the canopy resistance, which can be proven as follows.

Because the resistances involved have dimension s mwl, they can be
made dimensionless by multiplying with a velocity. The characteristic
velocity scale here is obviously u,, so that a dimensionless excess resis-

1

tance rex*, which is often denoted as B ~, and a dimensionless canopy

resistance rc* are defined as:

-1
* = =
T B UyT (6.7)
* =
T u,r . (6.8)
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Td T u
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Fig.6.2. Extrapolation method determining canopy resistance graphically.
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It follows from Egs,(6,2) and (6.7) that the distance between the surface
locations 1 and 2 equals kB_l. as shown in Fig.6.2,
According to the aerodynamic method, the latent heat flux density is

calculated by:
AE = -(pcp/Y)ku*(z-d)de/dz = "(pcp/Y)ku*de/dln(zwd). (6.9)

Eq.{6.9) shows that the latent heat flux density is proportional to the
slope of the e line in a coordinate system with In{z-d} as ordinate, This
slope can be replaced, following Eq.(6.6), by that of Td line, denoted

as sq ;. Then Eq.{(6.9) can be written as:

AE = —ku*&(Dcpr)s,I.d. (6.10)
The canopy resistance T following Eqs.(6.3), (6.6} and (6.10), is now:
r = ~(1/ku,) (T(0) - TA(9)) /sy, (6.11)

From Fig.6.2 it can be seen that T(0}-Td(0) is the length of B,A,, and
—(T(O)—Td(O))/sTd is the length of AZCZ' Hence, it has been proven that
the length of Azcz, which is obtained by extrapolation is really propor-
tional to the canopy resistance r., Or more precisely, it equals krc*, as

shown in Fig.6.2,

6.4 The effect of choosing different T, O T,

It can be seen from the above presented argument that discarding Mon-
teith's assumption about the coincidence between the equivalent surfaces
for heat and momentum introduced an uncertainty about how to choose the
appropriate surface location. Although the excess resistance L and its
dimensionless counterpart B! were introduced, they cannot be determined
a priori, or by the profiles of wind speed, temperature and vapour pres-
sure above the canopy. In faect, B_l is related to distributions of sinks
and sources for momentum, heat and water vapour, so that it can only be
simulated by a multi-layer model (Chapter 5), or measured experimentally
(Chamberlain, 1966)., Thom (1972) estimated that B! is approximately 4
for several crops. This subject will not be discussed here, since the aim is
to examine the effect of choosing different values of excess resistance on

the value of the canopy resistance obtained by extrapolation. In fact, this
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effect can be clearly shown in the graph using the dew-point temperature
extrapolation method.

Because the air humidity is specified now by dew-point temperature Td
rather than by wvapour pressure e, the same zbscissa for both T and Td
can be used, Furthermore, the saturation temperature deficit, T-Td, which
is proportional to the water vapour deficit, is immediately visible as the
horizontal distance between the two lines for T and Td. '

When the Bowen ratio (C/3E) equals a critical value, A/ & the saturation
heat flux density J=C-{y/A) }E equals zero. The driving force for J, the
gradient of the wvapour pressure deficit (Chapter 4) is then also zero. In
this case, the Td line becomes parallel to that of T. It can be clearly seen

from Fig.6,2 that the length of AZC will be independent of the surface

location for heat and vapour when Tz and Td lines are parallel. In other
words, the canopy resistance £ obtained by extrapolation is independent
of the wvalue chosen for the excess resistance, as mentioned by Thom
(1975).

When the Td line deviates from the parallel-to-T-line position to the
right, as shown in Fig.6.2, i.e. J is smaller than zero or the evaporation
rate is larger than the so-called equilibrium evaporation rate (Priestley and
Taylor, 1972), as the chosen value of the excess resistance increases, the
value of the canopy resistance declines. The minimum is zero, shown in
Fig.6.2 as the surface location 3. This is the location of an equivalent wet
surface giving the same sensible and latent heat flux densities as those
above the real canopy. When the Td line deviates to left, increasing the
chosen value of the excess resistance, increases the canopy resistance. In
this case, equivalent wet surface is not below, but above the measured
profiles.

It can also bhe seen from this approach that the larger the deviation of
the Bowen ratio from its critical value, the larger the effect of the differ-
ent values of the excess resistance on the value of the obtained canopy
resistance will be. Only in these cases is it important to know the value of

-1, . :
B © in order to obtain a correct value of the canopy resistance.

-68-




6.5 Discussion

The linearization of the saturated vapour pressure curve is an approxi-
mation, it is feasible only when the linearized region is not too large, This
region is determined by the lowest dew-point temperature of the air and
the surface temperature (Chapter 4). In this Chapter the saturation vapour
pressure curve in the whole region is replaced by a single straight line
with a slope determined at a selected temperature, usually the mid- peint
temperature in the region. Because the surface temperature is unknown
before extrapolation, iteration is needed. A ten-degree temperature dif-
ference is acceptable (Chapter 4). When the temperature difference is too
large, the temperature interval to be linearized can be split into two parts
in order to reduce the error., One represents the region between the
lowest dew-point temperature of the air and the dew-point temperature of
the surface; the other represents that between the dew-point temperature
of the surface and the surface temperature. Then, two slopes Ay and 4,

are introduced, evaluated at the mid-point temperatures of these two

regions, It can be shown that Eq.(6.11} for the canopy resistance T, is

modified by a multiplication factor AZ/A 1’ while the essential features of the

graph do not change,




7 Canopy Resistance and Excess Resistance Derived from a Multi-Layer
Micrometeorological Model

(submitted to Boundary~Layer Metecrology)

Abstract

The equivalent Penman's formulas for enthalpy and saturation heat,
unified for single- and multi-layer models (Chapter 4), are used to ex-
press the canecpy resistance r. and the excess resistance ¥eox (or its
dimensionless counterpart B! defined as rexu*) of a single-layer model in
terms of the parameters of a multi~layer model. Some approximation methods
are developed to simplify the expressions. It is shown that under the
condition of a dense canopy with a dry soil surface, r is a good represen-
tative of the bulk stomatal resistance of the canopy calculated as all the
stomatal resistances of the leaves acting in parallel, and B-:l equals
<:1+<:2u*]‘/2 with ¢, and ¢, being two constants obtainable from the para-
meters of the multi-layer model. For a sparse canopy with a wet soil
surface, however, these conclusions cannot be drawn. The numerical
results for r and B_:l obtained from a simulation program (Chapter 5)

ware alse given.
7.1 Introduction

Since direct measurement of evapo-transpiration rate in the field is
difficult, various estimation methods have been developed during the past
three decades, as reviewed by Stewart (1983). A widely used formula is
Penman's formula, which is fairly successful in estimating evaporation rate
above a free water surface. Penman's formula has also been employed to
estimate transpiration rate above vegetation. The canopy-scil surface
system, which is essentially not a single source plane, is then treated as a
big leaf located at a certain height above the ground. The physiclogical
control of transpiration is characterized by a so-called canopy resistance
r, (Monteith, 1963, 1965); and the location of the leaf was thought initially
to be at the same level as the equivalent sink for momentum {Monteith,
1963), but has since been considered to be at a lower level, characterized
by a so-called excess resistance Tox (Thom, 1972, 197%).

It was argued {Cowen, 1%968; Thom, 1975) that the canopy resistance

contains both physiological and aerodynamic components. Measurements on
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a range of crops such as barley, sorgum, soybean and sugar beet have
shown, however, that the aerodynamic component of the canopy resistance
is negligible (Monteith, 1981} and that ¥ is close to a the 'bulk stomatal
resistance' of a canopy tgrr defined with all the component leaves treated
as parallel resistors. Although the theoretical justification for regarding r,

as r has been examined (Thom, 1975; Shuttleworth, 1976}, a satisfactory

explggation is still lacking., The second parameter is the excess resistance,
or its dimensionless counterpart Bn1 defined as r L U in which u, is the
friction velocity. This has been measured using radioactive gases both in a
wind tunnel {Chamberlain, 1966}, and in the field {(Chamberlain and Chad-
wick, 1965). B—I was found proportional to u*”n with n varying between
2 and 3. Chamberlain (1966} and Thom (1972) employed an electrical ana-
logue (essentially a single-layer model for a wet canopy), and derived the

1/2

formula B_1=<:2u,|= , where c, is a constant that has to be determined by

field experiments. Thom (19'?2) further argued that if the mean drag
coefficient of a canopy is taken as a function of u,, to account for the
so-called shelter effect, B“1 should be proportional to u*lf?’.

During the past two decades, along with the rapid developments in com-
puter science, sophisticated multi-layer micrometeorclogical simulation
models have been developed. The behaviour of a crop canopy is simulated
based on the physical and physiological properties of the canopy compo-
nents, mainly leaves, which can be measured under controlled conditions in
laboratories, Compared with Penman's approach, which is often referred to
as single-layer model, the multi-layer model is more realistic, and more
easily adaptable to various circumstances.

It can be seen that the two parameters r, and oy of the single-layer
model can be, in principle, derived from the parameters of the multi-layer
model. Unfortunately, however, most of the micrometeorological models are
too complicated to yield an analytical solution to the total transpiration rate
above the cancpy. Although a so-called combination equation for the total
latent heat density above a canopy was derived by Shuttleworth (1976,
Eg.(56)), it contains unknown temperature and vapour pressure profiles
within the canopy in the definitions of the equivalent resistance to heat,
Ty and to vapour, rys SO that it is not, strictly speaking, a real analyt-
ical solution.

In Chapter 4, two uncoupled electrical analogues for enthalpy and satu-

ration heat were developed to replace the coupled one for sensible and
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latent heat., Equivalent Penman's formulas were also fbund, which are
applicable to both single- and multi-layer models, so a derivation of T, and

L from the multi-layer model can now be given,
7.2 Formulas linking r, and L to the parameters in multi-layer models

In terms of the enthalpy flux density, H=C+AE, and saturation heat flux
density, J=C-(y/A)AE (where C is the sensible and AE the latent heat flux
density, v the psychrometric constant, and 4 the slope of the vapour satu-
ration curve}) Penman's formulas for a single-layer model can also be ex-

pressed as (Chapter 4):

H=5-G, (7.1)

J = (och(S—G} - pchOM)f(R+rH+chs). (7.2)

Here, S is the net radiation absorbed by the canopy-soil surface system,
G the heat flux density into the soil surface, D0 the wvapour pressure
deficit of the air at the reference height, pc_ the volumetric heat capacity
of air, R the turbulent resistance for heat transfer between the reference

height and the equivalent surface for heat and wvapour, r,; the surface

boundary-layer resistance to heat transfer, T, the c:'iif'ferencPeI between the
surface resistance to vapour transfer and o and o is defined as v/{y+a}.
The electrical analogue for J is shown in Fig.7.1(a).

In Monteith's approach, however, rg is denoted by the canopy resis-
tance r _, and R+rH by Rm+rex, where Rm is the turbulent resistance teo
momentum transfer between the reference height and the equivalent surface
for momentum absorption, which is higher in position than that for heat
and vapour. Eq.(7.2) can now be rewritten to include r and Tox explicit-

ly:
J = (5G) lar /(R #r_ +ar ) - (pchUIA)/(Rm+rex+arc). (7.3)

The unified Penman's formulas for single- and multi-layer models are
(Chapter 4):

n
H= tH'=5-gG, (7.4)
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J =

II.MU

(A A )b, =
p 30y

nes3

HoY - D . 7.5
(Aj IAD)(arS!]H] pcp OIA)/r] (7.5)

j 1

where H.' is the enthalpy source from layer j, which is the net radiation
absorbed in the layer S, for the canopy (neglecting the energy consump-
tion in photosynthesis), and S -G for the soil surface; L is the stomatal
resistance of layer j, n the total number of layers including the soil sur-

face, and r:.I and Aj are calculated as:

r]. = rH']. + ars’j, (7.6)
n
Aj = Aj+l + Rj+ :_':.j(Aklrk)’ (7.7

in which R, is the turbulent resistance between layer j-1 and j (the refer-
ence height refers to j=0), and An is defined as unity. The electrical
analogue is shown in Fig.7.1l(b).

It follows from Eq.(7.1) and (7.4) that the enthalpy flux density for
single- and multi-layer models are equal, provided S and G are the same
for both models. This is always true if both models refer to the same
canopy-soil surface system under the same weather conditions. Thus, to

study the relationship between the parameters used in these two models

{peprbdn,

H

el

(PCp/B)ID,

{a) (b)
Fig.7.1l. Electrical analogues of saturation heat: (a) for a single-layer

model; and (b) for a multi-layer model.
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only the saturation heat flux density above the canopy needs to be con-
sidered.

Defining the fraction of the energy gain in layer j, pj, as:

P = H,'/(S - O, (7.8)
Eq.(7.5) can be rewritten as:

n n
= . p.ir.)) - . /e, }). (7.
(501 3 (i) axg jpy1x))) = (oo Do/a) T (A1) /e (1.9)

Both Eq.(7.3) and Eq.(7.9) contain two driving forces on the right-
hand side: the current source 5S-G and the potential source pchofA . As a

first approximation, r, . can be considered independent of D so if J is

0’
to be the same under any values of D0 for both models, the following two

equations should hoeld:

rcl (Rm+rex+°‘rc)

e

((A /A )r p]./r].). {7.10)

j=1

n
lf(Rm+reX+arC) = jil((Aj /Ao)lrj}. (7.11)

These two equations form the required relationship between the canopy
resistance L the excess resistance LI and the parameters used in the

multi-layer models,

7.3 Behaviour of the canopy resistance T,

Eliminating R +r  tor, irom Eqs.(7.10) and (7.11) yields:

n n
= AL Alr.). 7.12
T, ]E {p] 653 ]/r]) ! JEI( ]lrJ) { )

Since the summation in Eq.({(7.12} is carried out over all layers including
the soil surface, r. is influenced by both the canopy and the soil surface.
Because the behaviours of re for the canopy and the soil surface are dif-
ferent, the numerator and the denominator of Eg.(7.12) are better split

inte two parts related to the canopy and the scil surface, respectively:
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n-1 n-1

ro= (1 (p]rs’]A]/r } +prg - N e (Aj/rj) + r ), (7.13)

i= j=1
where the subscript n refers to the so0il surface. The canopy resistance is
likely to be a good representation of the bulk stomatal resistance of the
canopy only when the influence of the soil surface is rather small, i.e. the
second terms in both numerator and denominator should be negligible. For
a dry soil surface, the 'stomatal' resistance of the soil surface Ten is
very large, according to Eq.(7.6}, llrn in the denominator can be neg-
lected, and rs,n/rn in the numerator approaches unity. If the canopy is
dense, the net radiation absorbed by the soil surface Sn is small compared
with 5-G, and of comparable size to G, so Py is rather small and the
second term in the numerator can be neglected. Under these two conditions

Eq.(7.13) becomes:

n-1 n-1 .
= L {p.r_ A fr) ! E(Allr). 7.14
Te j=1(plrs,1 j'ry) j=1( i’ (7.14)

Now a number of situations will be discussed where r. is indeed equal
to the bulk stomatal resistance Yoo
{a) When there is no water stress, the stomatal resistance of the leaves
is approximately inversely proportional to the visible radiation absorbed,
the product pjrs,j is then unlikely to change much from layer to layer.

The following equations then hold approximately:

n-1 n-1
)= 2 pj/ T (llrs ].} = P Igr (7.15)

pll(lfrs,1)= =pn-1/(1/r =1 i=1 '

s,n-1

where rgp is. following the wusage of Thom (1975}, the bulk stomatal
resistance of the canopy, and pc=l—-pn. If pjrs i in Eq.(7.14) is replaced
by P this term can be moved out of the summation operation, so
Eq.{7.14) becomes:
¢~ PJSs (7.16)

{(b) When there exists a severe water stress, the openings of the

stomata are small, r_ i becomes very large compared with M5 and R]., so
’ »
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r, is approximately equal to ar_ . (Eq.{(7.6}} and Aj (=1 to n) approach
An=l (Eq.(7.7))., In this case Eq.(7.14) becomes:

n-1 n-1

=(Lp)f I {lflr )= . T.17
e (jzlpl) j=1( rs-]) Pt ( )

(¢} When the canopy is completely wet, all r ].'s equal zero, Eq.(7.14)

3
hecomes:

ryr =0 (7.18)

c = Pelore

For a dense canopy P, is about equal to unity, so that in all these
cases the canopy resistance r_ is approximately equal to the bulk stomatal
resistance of the canopy Fom: This explains the experimental results
mentioned above. Furthermore, the analysis also reveals the conditions
under which this conclusion can be drawn: a dry soil surface and a dense
canopy. The analysis also shows that even under these two conditions, r.
is only approximately equal to Top: For practical purpose, however, this
difference is not important. When the soil surface is wet, particularly
under a sparse canopy, the influence of the soil surface can not be neg-
lected. It follows from Eq.(7.13} that r. then consists of four resistances

connected as shown in Fig.7.2:

v, = l/(l/(pcrsr)ﬂlra) + lf(lf(pnrs,n)ﬂ/rb), (7.19)
where

n-1
r = jil(l;;jrs,jAj/r].) ! (l/rn), (7.20)

Pe f5y T
rcT» i
Prlzn b

Fig.7.2. Four components of
the canopy resistance L
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n-]
fr }y [
n n o

r = {pr
b n j=1

s, (/\jlr].). (7.21)

If the soil surface is dry, P¥e n and r_ are very large compared with
»

LEN and P Trgpe respectively, so these can be neglected, r, then equals a
resistance with P.YgT and 2% in series. For a dense canopy P, is about
zero, then ry is negligible, this is the case discussed above (rc=rST). For
a sparse canopy, however, T, could be large, so r, may be larger than

» If the soil surface is wet, r_ =0, ¥ equals a resistance as with
ST s,n [

P gy and r_ in parallel, so r. will always be smaller than Toro and the

r

sparser the canopy, the more significant the discrepancy will be,

The daily course of r, {calculated by Eq.(7.12)) and rop obtained from
a simulation program ({(Chapter 5) using the data for a case study to a
maize canopy (Goudriaan, 1977) are shown in Fig.7.3. Fig.7.3{(a) is for a
dense canopy (LAI=3.73) with a dry soil surface {dotted line) or a wet soil

surface (broken line}, being given also {solid line). Fig.7.3(b) is for

r
ST
a sparse canopy (LAI=0.53). The salient features discussed above can be

seen clearly in the figures.

sm-!
100C
sm! K
400 I 80O
for dense canopy sparse canropy
300 600 + .
200 400+
100 200
- Te
ol 1 ! ] i 5 oL v il it i Slntedadiir Rt |
8 10 12 14 16 8 10 12 14 16
hr hr
(a) (b}

Fig.7.3. Daily course of the canopy resistance r. and the bulk stomatal
resistance rgp. obtained from the numerical simulation program. The dotted
lines refers to a dry soil surface, and the broken lines to a wet one: (a)

for a dense canopy (LAI=3.73), and (b) for a sparse canopy (LAI=0.,5)
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7.4 Behaviour of the excess resistance rcx

It follows from Eq.{(7.11} that

r

where

R
g

The physical significance of the resistance R

g

I

- R
m

n
L
j:

1

- ar_,

c

((A]. /Ao)lrj).

{7.22)

{7.23)

can be explained as follows.

Let Hj' (j=1 to n) in Eq.(7.5) all equal zero, Eq.(7.5) then hecomes:

T = - (ec Dy/8)IR .

(7.24)

Since pc DOIA is the potential source at the reference height as shown in
Fig.7.1{(b),

sources in the figure, the physical meaning of Rg

resistance seen by the potential source,

and setting H,'=0 is equivalent to removing all the current

is clearly the actual load

The diagram in Fig.7.1(b) after removing all the current sources is

shown in Fig.7.4{a). Rg

Ro
Ry
1
— A
Ry T
r2
R3 =
r3
R,
ré
(a)

Fig.7.4. Simplification of the resistance

Ry
R
|
RyE
r2
My
Ry
a4Rys
r3
ri
—M—
(b)

removing all the current sources.
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is the resistance seen from the two top terminals
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Ry
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33233, Rz
ri
W
w2
mrh
(a)

scheme shown in Fig.7.1(b) after




in the figure. R shown in Fig.7.1(b) has been split into two parts, R0

and Rl’ the former denotes now the turbulent resistance between the
reference height and the top of the canopy, and the latter that between
the top and the centre of the first layer. It follows from Eqgs.(7.6), (7.7},
and (7.23) that R depends on R, rH]. and L in a complicated way.
This can be seen also from Fig.7.4(a}, because the resistance scheme
contains many networks which are difficult to handle. Therefore, the
behaviour of the excess resistance Tox is also_lcomplicated. It can be
shown, however, that under certain conditions B ~ is approximately equal
to cl+<:2 1/2, and the two constants €y and ¢, can be determined by the
parameters of the multi-layer model. It is required then to obtain a sim-

plified expression for the resistance Rg

7.4,1 Estimation of R

The standard method of transforming a resistance scheme from one type
to another does not help here to simplify the scheme shown in Fig.7.4(a).
An approximate method must therefore be developed. The idea is to find a
simpler resistance scheme without networks to replace the original one,
Hence, the diagram in Fig,7.4(a) is transformed into that shown in Fig,
7.4(b). It can be seen that one network consisting of Ry, s and r, is
replaced by 614R4 in series with ra and Ty which are now in parallel; a, is
a parameter. In order to keep Rg unchanged, the resistance of the new
system of Ryr 3 and r, has to be the same as that of the original net-
work, so

a4R4 +r 3T /(r 4) = r3'(r4+R4)/(r3+r4+R4), (7.25)

from which a, can be determined as:

4

a, = ll((l+r4lr3)(l+r4lr3+R4fr3)). (7.26)
Denoting gi=”ri (i=1 to n), under the condition of R, being much smaller

than Tas @, can be approximated as:

4
m o 2 gtg )’ (7.27a)
34 T By T\B3TEy/ - -cfa

By transforming the resistance scheme further to that shown in Fig.

7.4(¢), and in Fig.7.4(d)}, the parameters a., and a. are introduced and

3 2
determined by:
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2 2
ay = (gytgy)} [ (gytg 1) (when Rst+a,R,<<r,) {7.2Th)
2 2
ay = (g2+g3+g4) /(g1+g2+g3+g4) (when R2+a3R3+a3a4R4<<r1) (7.27c)
and a) is defined as unity. By defining
q =2 = 1= GIZ/GlZ, qQ = aja, = GZZ/GlZ, {7.28a)
Qy = aj2,a5 = G32/G12, Gy = 3j3ya33, = G42/Glz, (7.28b)
where
n
G, = g, (i=1 to n, and n=4 here)}, (7.29)
by
R _ can be expressed as:
Rg =Ry + Ra + llGl, with (7.30)
n
R. = Ig.R.. (7.31)
a j=1 j

The physical meaning of the three components of R (Eq.(7.30)) must
be explained. It can be seen from Fig.7.4(a) that if the turbulent resis-
tances within the canopy are neglected by setting all R.,'s {j=1 to n) equal
to zero, all r.'s will be connected with each other in parallel resulting in a
resistance l."G1 (the third component of Rg)' and Rg then equals R0+1/G1.
When the R.'s are not equal to zero, but are small compared with r.'s,
their contribution to Rg can be approximated by Ra’ which is a weighted
sum of the R)'s,

The resistance scheme shown in Fig.7.4{d) appears similar to that used
by Thom (1975, p.65), but he obtained his scheme by assuming ad arbitrium
that the turbulent resistance must be calculated from the reference height
to a certain level within the canopy: he did neot explain why his scheme
should replace the more realistic one shown in Fig,7.4(a}. In contrast, the
resistance scheme shown in Fig,7.4(d) is obtained through analysis, so the
way how to calculate the resistance Ra is also determined (Eq.(7.31)).

As n tends to infinity, gj. Gj’ q]., and Rj in Egs.(7.27) through (7.31)
become continucus functions of height z: g{(z), G(z), g(z), and dz/KH{z),

where KH(z) is the turbulent exchange coefficient for heat transfer within
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the canopy. Eg.(7.28) becomes q(z)=G(z)Z/G(zc)2, where z_ is the crop
height. Egs.{7.29) and (7.31) become an integration of, respectively,
gl{z)dz and (q(z)/KH(z))dz from z=0 to z_. Assuming that both KH(z) and
g{z) are independent of the height z and neglecting the influence of the
soil surface, g(z) becomes (z;’z‘__);3 according to Egs,.{7.27) and (7.28),
KH(z) becomes KH(zC), and Ra can be found by integration:

R = (1/3)Rp. (7.32)

Here, R_ is the total turbulent resistance between the top and the bottom

of the canopy for the constant KH(z) profile:
- - _ -1
Rp = zC/KH(zc) = ((chk)/(zc d) ), . (7.33)

where k is the von Karman's constant, d the zero plane displacement, and

u, the friction velocity.

7.4.2 Behaviour of L and B-1 for a wet canopy

In reality both KH(z) and g(z) are functions of height z. The latter
depends on the profiles of the surface boundary-layer resistance as well as
on the stomatal resistance {(Eqg.(7.6))., For a wet canopy, however, the
stomatal resistances are all zero: g(z), R_, and Yoy 2Te determined merely
by the aerodynamic resistances. In order to obtain an explicit expression
of r_ in terms of u,, the profiles of the turbulent exchange coefficient
and wind velocity within a canopy are needed.

There are twe types of theoretical KH(Z) profiles within a canopy:
either constant and exponential. Because the turbulent resistance within
the canopy has little effect on the total flux densities above the canopy
(Chapter 5), the constant KH(z) profile i1z preferred here. Based on the
assumption of a constant KH(z) profile, an analytical expression for the
wind welocity within the canopy was derived by Landsberg and James
(1971):

u(z) = ulz) (1 + m(l-z/z ) 7, (7.34)

where u(zc) is the wind veloeity at the top of the canopy, and m is the

parameter determined by:

m= (lfk)(cdzclcln((zc—d)/zo)/(6(zc—d)))1,2. (7.35)
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Here, cq is the mean drag coefficient of the leaves, lc the leaf area index

of the whole canopy, and z, the roughness length, The leaf and soil

0
surface boundary-layer resistance rH(z} (per leaf area) and ry ., cen be
calculated as {Goudriaan, 1977):
r () = 900w futz)) /2, (7.36)

= 180(w_a(0)) "% = 180(14m) (o /(2 -a) 12 P, TVE (757

Y,

H,n

where W, is the mean leaf width, and w_ the mean diameter of the soil
clods. For a wet canopy with a uniform leaf area density profile, the
second component of R_ {Eq.(7.30)) defined by Eq.{7.31) can be obtained
from Eqs.(7.29), (7.34) through (7.37} after some manipulations:

Ra. = c‘Rp, with (7.38a)
el = (242b+2b% - (In®(14m)+2(1+b) In{14m)) /m) / (In(14m)+b)2, and (7.38b)
b= (90mflc)(wL/u(zc))1"2frn. (7.38¢)

For a dry soil surface, b becomes zero, and as m tends to zero, wind
velocity, and consequently g(z), become constant within the canopy, c'
tends to 1/3 according to Eq.(7.38h), This is consistent with the result
obtained above.

The third component of Rg (Eq.(7.30)), llGi, for a wet canopy is

r in parallel with TyT* which is called, similar to Yoo the bulk leaf

H,n
surface boundary-layer resistance of the canopy (calculated with all the
corresponding components acting in parallel). This resistance can be

obtained in the same way as for R :

r

bp = UGG = (9om/1C)(wL/u(zC))Uznn(lm) _

= (90m/ (1 In (1+m)) (kw, /In((z_-d) 1zg1) '/ u, 2 (7,39

then Eq.(7.30) can be rewritten as:
= '
Rg Ry + ¢ RP + rI—II‘rH,n[(rI-II'+rH,n)° (7.40)

From Eqs.(7.22) and (7.40), T for a dense and wet canopy (rc=0). with

a wet soil surface can be obtained:

= 1 -
T R0 +c Rp Rm + r}IErH,nl(rHI‘+rH,n)' (7.41)
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The resistances RO and Rm can be determined by the aerodynamic
method (Monteith, 1973):

Ro

R

m

(0.741n((z_~d) / (2 _~d)) fl)w, | (7.42)

1 (7.43)

(In((z_-d) /2g) fku,~

where z, is the reference height. Examining the terms on the right-hand

side of Eq.(7.41) shows that the first three terms, RU’ c'Rc, and Rm are

proportional to u*—l, and the last term is proportional to u*_”z, so that
the relationship between L B_l, and u, can be written as:
-1 -1/2
T = St couy , (7.44})
-1 _ 1/2
B =cy+ e (7.45)

(cl and ¢, are two constants, the expression for ¢ can be found from
Eqgs.(7.42), (7.43), (7.38), and (7.33) and that for <, from Eqs.(7.37}
and (7.39)). Therefore, ) can be determined by the parameters

used in the multi-layer model.

and <,

The dependence of B_1 on u, for a wet canopy with a wet scil surface
was also obtained by means of the numerical simulation program. The
results are shown in Fig.7.5 marked by dots or crosses, together with the
straight lines given by Eq.(7.45) for a dense canopy (LAI=3,73) and for a
sparse canopy (LAI=0.5). The overestimation by Eq.(7.45) is caused by
neglecting the terms such as R4/r3 in Eq.(7.26), but this error is small.
It confirms the approximate method for estimating Rg developed in subsec-
tion 7.2.3{(a).

The square root of u, in Eq.(7.45) is related to the assumption that
the drag ceefficient €4 is independent of u,. Thom (1972) pointed out that
”2. and then B*l

. This subject will not be discussed here.

because of the shelter effect, cq is proportional to u,

is proportional to u,,:”3

7.4.3 Behaviour of o and B_l for a dry canopy
When the canopy is not wet, the stomatal resistance has to be taken

into account. Eq.(7.41) now becomes:

LI RO + c'Rp - Rm + ].]G1 - or . (7.46)
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Fig.7.5. The relationship between B and u obtained from the numerical
simulation programs is compared with the approximate analytical expres-
sions (solid lines): (a) for a wet canopy with a wet soil surface; and (b)

for a dry canopy with a dry soil surface.

As previously mentioned, because of Eq.(7.6), g{z) now depends not only
on the profile of the surface houndary-layer resistance ry{z), but also on
that of the stomatal resistance rs(z). Thus, ¢' also depends on this. Gl in
Eq.(7.46) is composed of the contribution from the soil surface (llrn) and
that from the canopy (the sum of 1/r,, j=1 to n-1). In reality, both rH(z)
and rs(z) increase with the depth into the canopy, but usually at different
rates. As a first approximation, the contribution of the canopy to Gl can
be estimated by the bulk leaf boundary-layer resistance ryr and the bulk
stomatal resistance rg.. of the canopy. l/Gl is then:

llGl = l.r'(rHT + arSI.) + Ilrn. (7.47)

For a dry soil surface, the second term can be neglected. Eq.(7.47) will
be exactly true if rH(z) and rs(z) increase at identical rates,

In the same spirit, the profile of the weighting factor g(z) (Eq.(7.28))
can still be approximated solely by rH(z), so Egs.(7.38b and ¢) can still

be used to estimate c¢'. Eq.{(7.46) can then be written as:

T = R0 + c'Rp - Rm + Tyr + argp - ar . {7.48)
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For a dense canopy with a dry soil surface, r is approximately equal
to rgrn, SO the last two terms in the right-hand side of Eq.(7.48) can be
ignored. Eq.(7.48) is then equivalent to Eq.{7.41); thus, Egs.(7.44) and
{7.45) for L and B! are still approximately wvalid.

In Fig.7.5(b) the result from the numerical simulation model is shown
for a dense canopy with a dry soil surface (marked as crosses}, together
with the straight line from Eq.(7.45). It can be seen that they are still in
fair agreement with each other, although not as good as in the case of a
wet canopy shown in Fig.7.5(a}).

When the canopy is sparse and the soil surface is wet, r. is different
from Ygp as discusséd in Subsection 7.2.2, the last two terms in Eqg.(7.48)
do not cancel against each other, so the situation becomes complicated. No
analytical expressions could be found for ¢y and Cye

The parameters used in the simulation program (Chapter 5) are typical
for a maize stand. Fig.7.5(b) shows that the value of B ~ is around 4,
which is consistent with the value suggested by Thom (1972) based mainly

on experiments in the fields.
7.5 Discussion

The two important Egs.(7.10) and (7.1l), linking T, and LI of the
single-layer medel with the parameters of the multi-layer model, were
obtained under the assumption that the stomatal resistance is independent
of the vapour pressure deficit at the reference height., There is, however,
some evidence that the stomatal resistance does depend on the vapour
pressure deficit, In this case, mathematically speaking, only one equation
can be obtained by equalizing J*for both models, and r. and r . cannot be
derived separately. From the physical point of view, however, Eq.(7.11)
means that the actual load resistance in contact with the potential source
pchO." A is identical for both single- and multi-layer models. The physical
meaning of Eq.{7.10} is that the contribution of the current source 5-G to
J in both models is the same., Therefore, these two egquations are still
physically sound, and can thus be used in practice.

It has been shown in the present paper that both the canopy resistance
r, and the excess resistance r,, contain physiological and aerodynamic

components., Under the condition of a dense canopy with a dry soil surface,
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however, r contains only, approximately, the physiological part, and Yo
the aerodynamic part. This result is striking, it justifies the applicability
of the single-layer model under the condition stated above.

The separation of the physiological and aerodynamical parts is not
possible for a sparse canopy with a wet soil surface. Since the influence of
the soil surface cannot then be neglected, the single-layer model is no
longer plausible. It is likely that a double-layer model - one layer repre-
senting the canopy and the other representing the soil surface - will give
better results, By using a double-layer model, it will be possible to 'ex-
tract' the bulk stomatal resistance of the canopy from the wvalue of the
canopy resistance obtained from aerodynamic measurements above the

canopy.
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8 General discussion and suggestions

Mathematical analysis has long been used and is well developed in
physics and engineering, but in agricultural science its application has
been much limited, because of the complexity of the natural systems in
agriculture, Various factors interact with each other so it is difficult to
formulate a simple mathematical description and to find analytical solutions
to these equations, At the beginning, therefore, only much simplified
mathematical models were used. The emergence of high-speed computers
and the rapid development in the software enable modellers to construct
more realistic simulation models. More and more factors are taken into
account, and more and more parameters are introduced, with the conse-
quence that the complexity of the simulation model grows beyond the
immediate grasp of the human mind. Simulation models may then become
counterproductive hbhecause they block further communication between
scientists. Therefore further theoretical research to find simplifying rela-
tionships on a higher level of understanding remains necessary, even
though simulation models are available.

This study shows that it is possible to find simpler relationships for
highly complex, multi-parameter systems which not only deepen the under-
standing, but also result in much more efficient and lucid computer algo-
rithms. The vector-matrix representation of the radiation and its interac-
tion with a crop canopy used in Chapters 2 and 3, made the equations for
radiation transfer more lucid and resulted in a clearer picture about the
physical process of the transfer of the radiation in crop canopies. Under
the vector-matrix notation, the meaning of the reciprocity relation became
clearer: it is equivalent to the symmetry of the matrix representing the
interaction of the radiation with the whole canopy. The radiation-path
approach developed in Chapter 2 further deepened the understanding of
the reciprocity relation: it is closely related to the reversibility of the
radiation paths., The differential equations developed in Chapter 3 simpli-
fied the mathematical expression of directional transfer of the radiation in
crop canopies; they turned out fo be in the same form as the simple
Kubelka-Munk equations, only the scalar being replaced by corresponding
vectors and matrices. This development encouraged to find the analytical
solutions to the profiles of the radiation intensities from all directions. The

computation of the reflectance pattern of various crop canopies is thus
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greatly simplified, which resulted in a computer algorithm to account for
the azimuthal wvariations of the reflectance. The introduction of the
enthalpy and saturation heat in Chapter 4 provided a new look to the old
problems of the sensible and latent heat transfer. Formerly, the sensible
and latent heat flux densities were treated separately and described by
separate equations, as they are driven by different driving forces and
experience different resistances. To satisfy the energy balance, however,
the sum of the sensihle and latent heat must be equal to the net radiation
absorbed. This causes the transfer processes of the sensible and latent
heat to depend on each other. The advantage of using instead enthalpy
and saturation heat flux, is that they can be independently calculated.
The enthalpy flux density is the sum of the sensible and latent heat flux
densities, driven by the net radiation absorbed; and the saturation heat
flux density is the weighted sum of the sensible and latent heat flux
densities, driven by the gradient of the vapour pressure deficit. The
stomatal resistances of leaves have no influence on the enthalpy but only
on the saturation heat, Based on this approach the computation of the
profiles of temperature and humidity is simplified to such an extent that a
crop micrometeorological simulation program executable on microcomputers
could be written.

Because the time which was available to complete this dissertation is
limited, the applications of the improvements to the crop micrometecrologi-
cal modelling have not been fully worked out. The Kubelka-Munk equations
in vector-matrix forms established in Chapter 3 can account for the azi-
muthal variations of reflectance. The analytical and approximate solutions
for the canopy hidirectional reflectance provide a means to calculate the
reflectance pattern of various ,crop canopies with an acceptable execution
time. Moreover, the possibility of calculating the azimuthal distribution of
radiation enables to discard the assumption of the Lambertian property of
the leaves and to use the measured data of bidirectional reflectance and
transmittance of the single leaves. It is desirable to quantify the effects of
the non-Lambertian property of the leaves and the azimuthal variations.
Several data sets of bidirectional canopy reflectance for soybean, corn and
wheat have been assembled by the Laboratory for Remote Sensing at the
Purdue University, West-Lafayette, Indiana, U.S,A. These data sets may

then be used to determine to what extent the observations can be
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explained by including the non-Lambertian property of the leaves and the
azimuthal variations. This tepic is definitely of interest for current re-
search.

The simulation program in BASIC, executable on microcomputers devel-
oped in Chapter 5 is a generalized one for all kinds of crops. In particu-
lar, it can be applied to short grass, where Goudriaan's (1977) simulation
model MICROWEATHER has difficulties with the small time coefficient. The
program could also be further developed to simulate the evapo-transpira-
tion from a partly wet canopy after a rainfall by treating the wet leaves as
having zero stomatal resistances. The simulation model in BASIC can be
also incorperated inte a pest development and plant disease model to simu-
late the profile of the leaf wetness, which is important to the development
of some pests and plant diseases, Moreover, with the decreasing price of
microcomputers, it is becoming more and more common to equip measuring
instruments in the field with a microcomputer. The program in BASIC
provides the required software to treat the data instantaneously. Then,
the simulated transpiration rate, for instance, can be obtained immediately
and used in optimization of irrigation.

If only the total sensible and latent heat flux densities above a canopy
are required, the multi-layer model for the sensible and latent heat trans-
fer can be simplified to contain only two layers, one represents the whole
canopy and the other represents the soil surface. The computation is then
much easier. This version of the simulation pregram of crop micrometeoro-
logy can be included in a crop growth medel such as BACROS {de Wit et
al., 1978}. It is likely to simplify the crop growth moadel to such an extent
that it can also be executed on a microcomputer. It would then be possible
to monitor the crop growth in the field, and thus to acquire information
for control operations.

Because of the complexity of the atmosphere-vegetation-soil system,
simplifications must be made in simulation of the transfer of energy momen-
tum and mass in this system. One of the most frequently adopted simplify-
ing assumptions is horizontal homogeneity. This assumption reduces a
three-dimensional transfer problem to an one-dimensional problem: only
vertical variations of the variables such as radiation intensity, wind wvelo-
city ect. are studied. In practice, the vegetation is seldom horizontally
homogeneous, because crops are often planted in rows; and the soil is

often horizontal heterogeneous. Including this horizontal heterogeneity,
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however, makes the mathematical analysis so complicated, that it is worthy

to do it only for a few special cases. In most cases, the assumption of the

horizontal homogeneity works fairly well, so this assumption is adopted

throughout the dissertation. Therefore, the transfer model studied in this

dissertation is essentially one-dimensional. At transitions in surface prop-

erties such as roughness, crop resistances, albedo, etc., advection may be

important. In this case, a two-dimensional model is needed. If measurements
are done directly above the crop surface, the micrometeorological model can

be used for small fields. Clearly, the influence of adjacent fields increases

when measurements are done at higher altitudes. Then considerable problems
of extrapolation remain when only standard meteorological data from a

weather station are available. There is still a major gap between crop

micrometeorology and the planetary boundary-layer meteorology, concerning

horizontal area scales of hundreds of square kilometers, and wvertical scales

up to 100 meters.

This study confirms the wvalidity of the concept of canopy resistance,
and shows that it can be derived as the parallel circuiting of stomatal
resistances for most practical purposes. Therefore the importance of the
behaviour of stomatal resistance and its linkage with other processes such
as photosynthesis, senescence, rooting is underlined. Further progress in
understanding c¢rop growth, and in optimization of the use of limited
resources such as water and nutrients, will require an integration of more
plant physiological knowledge in existing simulation models. Also the devel-
opment of new concepts in this area is needed to straighten out and unify

the wvast but incoherent knowledge in the fields of environmental crop

physioclogy.
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Appendix

196

198
200
204
224
270
280
284
286

List of the program (executable on an Apple IT)

REM CROP MICROMETEOROLOGY SIMULATION ON MICROCOMPUTERS (CMSM)
REM SPHERICAL LEAF ANGLE DISTRIBUTION IS ASSUMED

REM ABREVIATIONS. G:GOUDRIAAN J.(1977),CROP MICROMETEOROLOGY.
REM P:PENNING DE VRIES F.W.T.& VAN LAAR H.H.(1982),

REM SIMULATION OF PLANT GROWTH AND CROP PRODUCTION.

REM C:PRESENT PAPER OF CHEN.

REM THE NUMBER FOLLOWED IS THE EQUATION INDEX.

DIM z6(11),D6(11),T6{11),M4(13),54(13),X(20),Y(20)
N=4:M=5:L=10:Z6(1 )=0.02:REM STRATIFICATION

D6(1)=26(1)/2:FOR I=2 TO L+1:2Z6(I)=1.2%Z6(I-1)

D6(I )= (26 (I-1)+26 (1)) /2:NEXT:REM STRATIFICATION

REM INPUT KNOWN OR MEASURED DATA
READ P1,K5,G1,AL,A8,A9,L5,13

DATA 3.1415926,0.41,0.67,1240,2.2672E~7,10.8E6,2.5E9,0.5
FOR I=1 TC 9:READ K1(L}:NEXT:REM G:2.34

DATA 5.737,1.932,1.183,0.872,0.707,0.610,0.552,0.518,0.502
FOR I=1 TO 9:READ B1(I):NEXT:REM G:P.9,BU(1-9)

DATA 0.030,0.087,0.133,0.163,0.174,0.163,0.133,0.087,0.030
FOR I=1 TO 9:READ Q8(I):NEXT:REM P:P.105,(32)

DATA 0.90,0.54,0.38,0.29,0.25,0.22,0.20,0.19,0.18

FOR I=1 TO 9:READ Q9(I):NEXT:REM P:P.105,(32)

DATA 0.68,0.32,0.21,0.16,0.13,0,12,0.11,0.10,0.10

FOR I=0 TO M:READ QL(I):NEXT

DATA 0,0.1,0.3,0.5,0.7,0.9

READ D3,L0,Z2:DATA 270,45,3:REM EXPERIMENT SPECIFICATION
READ W6,L6,V6,W7:DATA 0.05,1.3,2E6,-0.1:REM SOTL DATA
READ Z1,L1,W1,C0,58,59,E2,02,R7,G6,R8:REM PLANT DATA

DATA 2.5,3.73,0.05,0.3,0.2,0.85,17.2E-9,120,2E3, 3. 5E-8, 1E7
FOR I=0 TO 7:READ T3(I),W3(I):NEXT:REM G:P.87,FIG.17

DATA 0.5,-50,0.7,-17,0.8,-14,0.8,-12.5,0.88,-10,0.9,~8.1,1,0,1.5,40.5
FOR I=0 TO 5:READ T5({I),C5(I):NEXT:REM G:P.B7,FIC.18

DATA 0,0.08,10,0.08,20,0.29,30,0.9,37,1,48,0.87

FOR I=0 TO 5:READ V6(1),R6(I):NEXT:REM G:P.87,FIG.17

DATA 0.5,1E4,0.6,3E3,0.7,800,0.8,600,0.9,130,1.5,130

FOR I=0 TO 5:READ T2(I},F2(I):NEXT:REM G:P.76,FIG.16

DATA 0,0,10,0,20,1.39E-6,25,1.67E—6,35,1.67E~6,40,0.56E=6
REM PARABOLIC LAI PROFILE IS ASSUMED FOR N=4 AS FOLLOWS:
Z(1)=0.387%Z1:Z{3)=2(1):2(2)=21-2%Z(1)
01=330:A(N)=1:N1=N-1:E9=L1/N1

FOR I=l TO L+1:READ T6(I):NEXT:REM INITIALIZATION

DATA 12.2,12.9,13.6,14.3,15,15.5,15.7,15.7,15.4,15.2,15.2

A2=A1/G1:LO=LO*P1/180:B6=D6(1)/L6
X=-0.13*P1*C0S(PL*(D3+10)/182.5):REM G:2.106
S1=SIN(LO)*SIN(X):C1=COS (LOY*COS (X)
A7=1.83E-6%(01-02)/1.66:REM G:3.10
L3=SQR(4*W1*Z1/P1/L1)*13:REM G:4.45

C4=SQR (COXL1*Z1/2 /L3):REM G:4.49
DO=Z1-SQR(L3*Z1/C4)/K5: X=Z1-DO:REM G:4.61
Y=22-D0:Z0=X*EXP (~21 /C4 /X):REM G:4.62
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288

294
296
300
330
350
1000
1010
1030
1040
1060
1090
1100
1110
1130
1160

1190
1200
1202

1210
1212
1220
1222
1230
1232
1240

1280
1300
1302
1306
1307
1308
1310
1330
1334
1340
1344
1350
1354
1360
1364
1370
1372
1374
1376
1378
1380
1400
1404
1410
1414
1416
1420
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VB=SQR{1~58):V9=SQR(1L-S9):REM G:2.20

X3=0:FOR I=1 TO 9:X3=X3+B1(I1)*EXP(-K1(I)*L1)

NEXT : K7=-LOG (X3) /L1

X1=V8§:GOSUB 1010

K8=K9:FOR I=0 TU 9:PB(I)=P9(I1):NEXT |
X1=V9;GOSUB 1010:GOTC 1200 |
REM SUBROUTINE EXTIN.& REFL.CCEFF. OF DIFFUSE RADIATION
X2=(1-X1)/(1+X1):REM G:2.21

X=0:Y1=0.0353:Y2=0.94623*X1:FOR I=1 TO 9

Y=Y14Y2*K1 (I):X=X+B1 (I )*EXP (-Y*L1):NEXT

K9=-LOG(X)}/L1:REM G:2.41

P9(0)y=0:X==0.0111544:¥=1.117:FOR I=1 TO 9

X4=1-EXP (-2#*X2*K1({I)/(14K1(¢I1))):REM G:2.45

PI(I)=X+Y*X4:REM G:2.46

P9¢0)=P9{0)+B1 (1)*PI(I }:NEXT

RETURN

|
A4mLOG (X /20): AS=LOG (Y /20):A6=0.37 /L3

REM INPUT OBSERVED WEATHER DATA

FOR I=0 TO 13:READ M4(I),54(I):NEXT

DATA 0,-40,6,-30,6.5,0,8.5,105,9.8,400,11.2,660,12.1,690,13.2,630,14.1,530
15.1,380,16.1,200,17.1,14,18.1,-84,24 ,-40

FOR I=0 TO 6:READ M7(L),T7(I):NEXT

DATA 0,13.5,6,12.9,10,16.5,14,20,16,20.6,18,14.1,24,13.5

FOR I=C TO 5:READ M8(I),E8(I):NEXT

DATA 0,13,6,12,8.5,13,13,11.2,18,15,24,13

FOR I=0 TO 6:READ M9(I),U9(I):NEXT

DATA 0,0.7,8,0.7,9,2,11,3,16,1,17,0.7,24,0.7

R3(N)=0:N3=1

Dé4=1 /8 :M4=D4*3600

FOR D2=1 TO 1:REM ENDS 5574

PRINT "DAY=";D2:PRINT

C7=0:E7=0:F7=0
L4=0.01:G=-30:W2=0.975:W0=2. SE-3*L1*W2
FOR I=l TO N1:DS(I)=0:W(I)=0:NEXT

FOR M2=0 TO 24 STEP D4:REM ENDS 5540
X=M2:FOR I=0 TO 13:X(I)=Mé4(L):Y(I)=54(1):NEXT
GOSUB 1370:S=Y

FOR I=0 TO 6:X(I)=M7(I):Y(L)=T7(L):NEXT
GOSUB 1370:T(0)=Y

FOR I=0 TG 5:X{I)=MB(I):Y(I)=E8(I):NEXT
GOSUB 1370:E0(0)=Y

FOR I=0 TO 6:X(I)=M9(I):Y(I)=U9(T):NEXT
GOSUB 1370:U(¢0)=Y:GOTO 1400

REM SUBROUTINE INTERPOLATION

IF X=0 THEN Y=Y(0):GOTO 1380

FOR I=0 TO 20:IF X(I)>=X THEN K=I-1:G0T0O 1378
NEXT 1

Y=Y (K)+ (Y (L)-Y(K) )}/ (X (13X KI*(X-XXK))
RETURN

X1=T(0)+239

%226, 11*EXP (17.4*T (0)/X1):REM G:3.21
D1=X2*4158.6/X1 /X1

AO=G1 /(G1+D1):BO=1~A0:REM C:(5)
A3=A1/D1:D(0)=X2-EQ(Q):VO=A3*D(0)
GOSUB 5600:REM AERODYNAMICS



1428
1430
1434
1440
1450
1460
1470
2000
2001
2002

2003
2004
2005
2008
2009
2011
2013
2016
2018

2040
2050
2060
2100
2110
2120
2130
2140
2144
2146
2150
2160
2180
21%0
2200
2210
2220

2350
2390
2400
2900
3000
3050
3660
3070
3080
3090
3110
3130
3810
814
3870
3874
3940

REM RADIATION REGIME, RS(I) AND B(I). UP TO L.5440.
XL=T(0)273.2:X2=1,2*T(0)-21:REM G:2.67
Y2=T(0)=-2:Y3=Y24273.2: X3=X2+273.2

X4=(X1+X3)/2: Ya=(X1+¥3)/2
B2=A8*X4*X4*X4*(X1-X3):REM G:2.66

B3mASKY 4XYARY4*(X1~Y3)
R5=0.167E-6*EXP (0.07*(T (0)-30))

HO=51+C1*COS (P1*(M2+12)/12):REM G:2,107

IF HO<1E-10 GOTO 5400:REM NIGHT
XO=ATK(HO/SQR(1-HO*HO0})*180/P1

REM INTERPOLATION FOR SUN HEIGHT DEPENDENT PARAMETERS
IF X0<=5 THEN X=1:HO=0,5/K1{1):G0OTQ 2018

IF X0>=85 THEN X=9:H0=0.5/K1(9):G0T0 2018

X=INT ({X0+5)/10): XL>X+1

Y1=(X0-X*L045)/10:Y=1-Y1

Q8=Q8 (X )*YHQB(X1)*Y1: §9=Q9 (X )*YHQI (X1 )*Y1

P8=P8(X )*Y+PB(XL)*Y1: P9=P9(X )*¥Y+P9(X1)*Y1

GOTO 2040

Q8=08(X):Q9=Q9(X):P8=P8(X):P9=PI(X)

REM FRACTION OVERCAST AND INCOMING RADIATION
X1=1280*%HO*EXP (-0.15/HO):REM P:P.103,(24)
Y1=X1/5:K1=0,5/H0
X2=Q8*PB(0)+(1-Q8)*P8: Y2=B2

X3=Q9*P9(0 H(1-Q9)*P9: Y3=B3
X4=1-(X24X3)/2:¥4=1~0.6*P8(0)-0.4*%P9(0)

IF N3=0 THEN Y2=0:Y3=0:X4=1:Y4=1
F3=(X4*X1-8-Y2)/(X4*X1-Y2-Y4*Y1+Y3)

IF F3<0 THEN F3=0:X1=~(S+Y2)/X4

IF F3>1 THEN F3=l:Yl=(S+Y3)/Y4
S6=X1*(1-F3)/2:87=Y1*F3:X=0.0353:Y=0.94623
KI=X+Y %V 8*K1 : Kb =X+Y MW I*K1 :REM G:2.42
V4=56*(1—Q8):V5=86*Q8+ST*0. 6

B4=S6*(1=09): K5=S6*QHST*0. 4
X7=V4*(L-PB):X8=V5*(1-P8{0)): V2=V4*(1~38)
Y7=N4*(1-P9): YB=N5*(1-P9(0)) :N2=N4*{1-59)
Y9=B2*(1-F3 )+B3*F3

Xl=1:X2=1:X3=l:X4m1:X5m1:X6ul
FOR I=1 TO N1:XO=E9*I

Y1=EXP (-K3*X0): Y2=EXP (-K4*X0):REM G:3.36
Y3=EXP (—K8*X0 ): Y4=EXP (-K9*X0):REM G:3.35
Y5=EXP (~K7*X0): Y6=EXP (-K1 *X0):REM G:3.37
X9=X6-Y6: P(I )=X9/ES/K1:REM G:3.38
X=X7*(X1-Y1)+X8*(X3-Y3)

Y=Y 7#(X2-Y2 )+Y 8*(X4—Y4)-Y 9*(X5-Y5)
¥3(I)=(X-V2*X9)/E9:REM G:3.40
S3(I)=(Y-N2*X9)/EH+VI (1 ):H(I )=X+Y
Xl=Y1:X2=Y2:X3=Y3:X4=Y4:X5=Y5:X6=Y 6:NEXT
HO=X7#Y 1Y 7RY 24XB*Y 3+Y BRY4—YO#Y5

X=W2:FOR I=0 TO 5:X(I)=V6(I):Y(I)=R6(I):NEXT I
GOSUB 1370:R6=Y

X=T(0):FOR I=0 TO 5:X(L1)=T2(I):Y(I)=F2(I):NEXT
GOSUR 1370;F5=Y+R5:E3=E2/Y

V2=V2 /HO: S2=V2+N 2 /HO

o e
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4070
4072
4120
4130
4140
4150
4164
4166
4170
4180
4184
4190
4210
4214
4220
4230
4270
4274
4280
4290
5400
5404
5408
5410
5430
5434
5436

3438
5439
5440
5450
5472
5474
5476
5478

5479
5490
5492
5493
5495
5496
5498
5499
5502
5503
5520
5524
5530
5540
5550
5551
5552
5554
3556

~94-

FO=0:FOR I=1 TO N1:L2(0)=E9*(1-P(1))
X=E9*P (1)/M:FOR K=l TO M:L2(K)=X:NEXT
X7=0:X8=0:X9=0:Y7=0: X=W(I): Y3=V3(1):Y4=53(I)
YS5=R3(L):Y¥Y2=1/Y5:Y8=R2(I)

YOsl /(R64Y5): Y9m1 /(RT+YS): Y10, 795+Y8

FOR K=0 TO M:Y=Ql(K):X1=Y3+Y*2:REM G:3.34
YE=F5%(1-EXP (—-X1*E3))=-R5:REM G:3.8

IF X<0 THEN X2=Y2:GOTO 4190

IF Y6<=0 THEN X2=Y9:GOTO 4190

X2=1 /(A7 /Y6~-Y8):REM G:3.10&C:(32)

IF X2>Y(Q THEN X2=YO:Y6=A7/(R6+Y1):REM G:3.9
X5=L2(K): X9=X0+X2*X5: Y7=Y 7+Y6*X5
X6=(YB+AO/X2) /X5:REM C:9
XInY44Y*S2-A9%Y6: REM C:(23)

X7=X7+1 /X6;:REM C:(22)

XB8=XB+X3 /X2 /X6:NEXT K:REM C:{(21)&(23)
R3(I)=E9/X9:R4 (I)=1/X7:REM C:(22)
B(1)=AC*X8-VO*X7:REM C:(21)&(23)
H{I)=H(1)-A9%¥7:FO=FO+Y7:NEXT I

GOTO 5438

FO=—R53*L1:IF N3=0 THEN $=-B3

X1=1:;FOR I=1 TO N1:Y1=EXP{(-0.2%E9*1)
H(L)=S*(X1-Y1 )}+A9*R5¥EY; X1=Y1

IF W(I)=0 THEN R3{I)=R7+R3(I):REM C:25B

R&(I)=

(R2 (I HAQO*RI(L))/E9

B(I)=(AO*H (L Y*R3(1)/E9-VO)/R4(T ): REXT
HO9=8*X1

K=0:B5=(A0+(1-A0)*R3(N)/1E9)/AL*(RHR2Z(N))
REM ITERATION FOR G(ENDS 5478)
H(N)=H9-G : B(N )= (AO*R3 (N Y*H (N )=VO} /R4 (N)

GOSUB

K=K+1:

6000
X=T6(0)-T6(1 )-B6*G:REM C:24427

¥=X/(B6+B5): IF ABS(X/T6(0))<0.01 GOTC 5479
IF K>6 THEN PRINT "G=";G,"DG=";Y:GOTO 5479

G=G+Y:

GOSUB
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

GOTO 5440:REM C:(31)

6400: IF M2~INT(M2)>0 GOTO 5530

“WEATHER CONDITIONS AT TIME=";M2;":"

“INCOM.RED. ", "TEMPERATURE" ,"V.PRESSURE", "WIND"
S,T(0),E0{0),U(0): PRINT

“MON.LENGTH" ,"TUR.RES.R(0)","U STAR","PHO.RATE"
L4,R(0),U0,FO: PRINT

"TOT.ENTH." ,"TOT.SA.HEAT" ,"TOT.SE. HEAT" ,“TOT. LA. HEAT"
H,J,C,E:PRINT

"50IL NET RAD.","G","SOIL-SUR.TEMP.","REL.CAN.W.C."
H9,G,T6(0),W2: PRINT

IF M2/3-INT(M2/3)<1E-5 THEN GOSUB 7000

PRINT

s PRINT"*hkhhkhhhiharihrhhrhhrrrhhkrihhkikkhkk " PRINT

C7=C7+C:E7=E7+E:F7=F7+F0
NEXT M2
C7=C7*M4:E7=E7*M4:F7=F7*Mb

PRINT
PRINT
PRINT

"DAILY TOTALS"
“SEN.HEAT", "LAT.HEAT" ,"WATER LOSS","(02 ASSIMIL."
¢7,E7,E7/L5,F7: PRINT: BRINT"DEW™

FOR I=1 TO N1:PRINT D5(I)/L5:NEXT:PRINT



5570
5574
5580
5590

5600
5660
5664
5670
5674
5680
5810
5840
5850
5870
5890
5910
5920
5930
599¢

6000
601¢C
6030
6050
6080
6090
6110
6120
6124
6210
6220
6230
6240
6250
6260
6290

6400
6410
6420
6430
6440
6610
6620
6630
6640
6644
6650
6654
6690
6694
6800

PRINT "hAkddhhhshhkhhhihhhhihhthhrrhihkrihkkihkiikhrr " pPRINT
NEXT D2

END

STOP

REM SUBROUTINE AERODYNAMICS
X=A5:X9=A4:Y=0.74%(A5-A4): IF L4<0 GOTO 5680

X0=Zz0/L&: X1=(2z1-DO)/L4:X2=(Z2-D0) /L4

X=X+ . 7*(X2-X0) :REM G:4.33

X9=XO+4 , T*(X1=X0): Y=Y+4 . 7*(X2-X1)

UO=K5*U (0)/X:REM G:4.33

U(1)=U0/K5%K9:R(0)=Y /K5/U0:REM G:4.29

X=Z(1):FOR I=2 TO N:U(L)=U(1l)*EXP (~C4*X/Z1):X=X+Z(L):NEXT
FOR 1=2 TO N1:R(I)=A6*(Z(I-1)+Z(1))/U(1):NEXT
R(L)=R(D)+A6*Z(1)/U(1):R(N)=A6*Z(NL)/U(N)

R9=0:FOR T=1 TO N1:R9=RH+R(I)
R2(I)=92.5%SQR(WL*2 /(U (I )+U(I+1))):REM G:3.2
R3(I)=-0.07*R2(I):NEXT :R9=R+R (N)
R2(N)=185%SQR (W6 /U (N)) : R4 (N )=R2 (N HAO*RI(N)

RETURN

REM SUBROUTINE FLUXES, J SOURCES, AIR & SOIL TEMPERATURE
X=0:H=0:J=0:FOR I=N TO 1 STEP -1
X=X+A(I)/RE(I):A(T-1)=A(I HR(I)*X:REM C:(8)
JmJ4+B(L)*A(L): H=H+i (1): NEXT

J=J /A(O):REM C:(7)

C=AO*H+BO*J :E=BOX(H~-J)}:REM C:(3)&(4)
C2=C+0.1*G1*E:REM G:4.1

Lb=~27 . 85%AL*U0*U0*UO/KS/C2:REM G:4.19

IF L4<1E-3 AND L4>0 THEN L4=1E-3
X=H:¥=J:X3=0:FOR I=1 TO N:X3=X3+R(I)*Y
X4=B(I)-X3/R4(1):J(I)=X4:REM C:(12)
X1=A0*X+BO*Y :REM C:(l4)
T(I)y=T(I-1)+X1*R(I)/AL:REM C:(17)

X=X-H (I):Y=Y-X4:NEXT

T6(0)=T (N )H+X1*R2(N)/AL

RETURN

REM SUBROUTINE DEW AND SOIL TEMPERATURE INTEGRATION
FOR I=l1 TO N:X=BOX(H(I)~J(I)}):REM C:(15)

YeX M4 W y=W(I MY :IF W(I)>0 THEN W(I)=0

IF X<0 THEN D5(I)=D5(I)-Y

E(I)=X:NEXT I

Y1=G;FOR I=1 TQ L:X6=Z6(L)*Vé
¥2=(T6(L)-T6(I+L))*L6/D6(I+1)
Y3=Y1-Y2:T6 (I )=T6(L)+Y3%M4 /X6:Y1=Y2
NEXT:T6(L+1)=T6(L)

W2=W0,/L1/2.5E-3:IF E<0 COTO 6800
X=(T6(3)+T6 (4 MT6(5))/3:FOR I=0 TO 5:X(1)=T5(I)
Y(I)=C5(I):NEXT:COSUB 1370:X5=1/¥/G6

X=W2:FOR I=0 TO 7:X(I)=T3(I):Y(I)=W3(I):NEXT I
GOSUB 1370:WO=WO+M&*( (W7-Y ) /(R8+X5)-E/L5)
RETURN

LT



7000
7130
7140
7150
7170
7180
7190
7200
7240
7300
7310
7320
7330
7340

. 7342

7344
7360
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REM SUBROUTINE PROFILE PRINT

PRINT "H SOURCE","J SOURCE","C SOURCE","E SOURCE"
FOR I=1 TO N:C(I)=AO*H(I)+BO*J(I)

PRINT H(1),J(1),C(1),E(I):NEXT:PRINT

PRINT “TEMPERATURE","VAPOR PRESSURE™,"VPD","WIND VELOCITY"
X=E:Y=J:FOR I=1 TO N
EQ(I)=EO(I-1)X*R(I)/A2:X=X-E(I):REM C:(18)
D(I)=D(I-1)+Y*R(1}/A3;Y=Y-J(1):REM C:(16)

PRINT T(I)~T(0),EQ(I)-E0(0),D(I1)-D(0),U(I):NEXT:PRINT
PRINT "SOIL TEMP.","LEAF TEMP.","DEW","WETNESS"
¥=E9%A1:FOR I=1 TO N1

TL{I)=T(IHC(IY*R2(I)/X:REM C:{19)

PRINT T6(1),T1(I),D5(1),W(I):NEXT

FOR I=N TO L:PRINT T6(I):NEXT:PRINT

PRINT "TUR.RES.","BOUN.RES.","STOM.RES.","LAYER RES."
FOR I=1 TO N:PRINT R(I),R2(I),R3(1),R4(I):NEXT:PRINT
RETURN



A=2 List of the symbols in the program
{the superscript ¢ denotes constant, i input, and o output, Symbols in
MICROWEATHER are also included in the second column,)

Symbols in
program

A(D to N)
A0
Al
A2
A3
A4
AS
A6
A7
A8
A9

B{l to N)
BO
Bl(l to 9)

B2
B3

BS
B6

[

C({l to N)
co

Cl

C2

C4

C5(1 to 5)

=]

c7

D(0 to N)
[H4}
Dl

D2
D3

D4
D5(L to N-1)
D6(1 to L)

=]

E

E(1l to N)
EO(Q)

EO(l to N)
E2

[ =T = I =

Symbols
in text

A
ol

pc_,RHOCP
peP/y
Ocp/A

P

BI

LWRCI

LWROI

SHFL1
C.:
DKAG
CCos

ALPHAK
TREDTE

SLOPE

DAY

DIST

LHFL1
AE,'

o]

ElF

Description

determinants

Gl/(G14D1)

volumetric heat capacity of air
Al/Gl

Al/pl

LOG((21-D0)/20)

LOG((22-DC)/Z0)

0.74/2/13

1.82E-6%(01-02}/1.66

four times Stefan-Bolzman constant
10, 8E6

coefficients for calculating J
1-AQ

zonal distribution of overcast sky
radiation

longwave radiation loss of the
canopy under a clear sky

longwave radiation loss of the
canopy under an overcast sky
(A0/A1)*(R9+R2(n))

D6(1)/16

sensible heat flux above the canopy
sensible heat source

mean drag coefficient of leaves
intermediate variable

equivalent heat flux: C+0.1*Gl1*E
extinction coefficient for wind
known reduction factor for root
conductance

daily total of semnsible heat loss

1

vapour pressure deficit profile
zero plane displacement

slope of saturated vapour pressure
versus temperature curve

loop index variable

number of the day in the year
reckoned from 1 January

time step

daily total of dew

distance between the adjacent
soil layers

latent heat flux above the canopy
latent heat scurce

vapour pressure at reference height
vapour pressure profile

slope of photosynthesis-light

Dimension

m

o LG g

3w g7l

J m_zs_l

hr
mmHZ0

J m:is:}
Jm s
mbar
mbar

kgC02 I

(RS |
H 8
2
o
o
B

-2 =1 -
s

(kgC02}~
-2 -1
m ]

1

-G7-



E3
E7
E8(1 to 5)
E9

FO
F2(0 to 5)
F3
F7

G
Gl
G6

H
H(l to N)
HO

1
I3

TJ

J{l to N)

K
K1(1l to 9)

K1
K3
k4

K5
K7

K8

K9

L

Lo

L1

L2(m

L2{l to M)

e

L3

L4
L5
L6

M

-G8—

VPATB
DL

AMTB

Fov

PSCH
SCRS

H 1
SﬁHSS

KARMAN
KBDF

KDFN

LAT
LAT

MONOEL
LHVAP
k' ,LAMBDA

response curve at compensation point

intermediate variable

daily total of latent heat loss
for input vapour pressure

leaf area index per layer

canopy €O, assimilation rate
maximum net CO,-assimilation rate
at given tempefFatures

assumed fraction overcast

daily total of CO2 agssimilation

heat flux density into soil surface
psychrometric constant
maximal root conductance

enthalpy flux above the canopy
enthalpy flux source
sine of the sun elevation

loop index variable
turbulent intensity in the canopy

saturation heat flux above the
cancpy
saturation heat source

loop index variable

extinction coefficient for direct
radiation and black leaves with a
spherical leaf angle distribution
as above but for sun height h
extinction coefficient for visible
sun radiation at sun height h

the same as K3 but for near-
infrared sun radiation

von Karman's constant

extinction coefficient for thermal
radiation

extinction coefficient for visible
diffuse radiation

extinction coefficient for near-
infrared diffuse radiation

total number of soil layers
latitude

total leaf area index of canopy
shaded leaf area index 1n layer i
sunlit leaf area index in layer i
for each group

turbulent intensity times mixing
length within the canopy
Monin-0Obukhov length

latent heat for water vaporization
thermal conductivity of the soil

total number of groups of sunlit
leaves

-2 -1
m s

-2 -1
m s



M&(0 to 13)
M7(0 to &)
M8(0 to 5)
M9(0 to 6)

N5

- 01

02

P(l to N-1)
Pl

P8 (0)

P8(1 to 9)

P8
P9{(0)

P9(1 to 9)

P9
QL{1 to m)

Q8(1 to 9)

Q8
Q9(1 to 9)

Q9
R(D)

R{l to N)
R2(1l to N)

R3(1 to N-1)
L R3(N)
RE(L €0 M)

R5
R6

HOUR

n,NUML1
NUMLL

EC02C
RCOZ1

RFOVV

RFV

RFOVN

RFN

ABTURR

local time in hours

time step in seconds

for input radiation data

for input temperature data

for input vapour pressure data
for input wind speed data

total number of layers

N-1

N4*(1-59)

N3=0, input radiation is global,
and N3=1, net radiation
incoming near-infrared sun
radiation

incoming near-infrared diffuse
radiation

averaged external CO, concentration
assumed regulatory internal 002
concentration

profile of the fraction of sunlit
leaves

ratio of the circumference of a
circle to its diameter

reflection coefficient of the canopy

to visible sky radiation

reflection coefficient of the canopy

to visible sun radiation
as above but for sun height h

reflection coefficient of the canopy

te near-infrared sky radiation

reflection coefficient of the canopy

to near-infrared sun radiation
as above but for sun height h

discretized cosine of the
incident angles

fraction diffuse in wvisible
radiation

as above but for sun height h
fragtion diffuse In near-infrared
radiation

as above but for sun height h

turbulent resistance between the
reference height and crop top
profiles of turbulent resistance
profile of leaf boundary layer
resistance per leaf area

profile of stomatal resistance per
leaf area

"stomatal" resistance of the soil
surface

profile of layer resistance

dark respiration rate of leaves
actual value of the resistance

hr
hr
hr

hr
hr

-2 -1
m s

-2 -1
s

-2 -1
m s

vpm
vpm
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(SRS

R7
R8
R9

5
Sl
52

R6(1 to 5)

53(1 to N)

56
57
58

59

T(0)

T1(1
T2(1
T3(1
75 (1
T6 (1
T7(1

(o)

O He H O e HOQ Qe

to
to
to
to
to
to

S4(1 to 13)

T(l to N)

U(l to N)

uo

U9(l to 6)

vo
V2

V3(1 to N)

va
v5
V6

Ve(l to 5)

Vs
V9

W{il to N-1)

w0
Wl
W2

[N

wé
W7

W3{l te 7)

X, X0 to X9
¥, YO to Y9

20
zl

-100-

Z(1 to N-1)

SRWTB
RESCW
WRESPL

Ry

NRADM
SSIN

NRADTB

SCV

S5CN

-1

TEMP
TATB

USTAR
WINDRB

VHCAP

sqQv
SQNT

WCCP
WIDTH
RWCP
WSTTB
HRES
WSTSL

DIK
ZNOT
CROPHT

checked by water status

known R6 values

leaf cuticular resistance
xylem resistance to water flow
total turbulent reslstance

recorded incoming radiation
intermediate varilable

(V4% (1-58)+N4% (1-59) ) /HO

profile of absorbed net radiation
per leaf area

input radiation data

derived incoming direct radiation
derived incoming diffuse radiation
scattering coefficient of leaves
to visible radiation

scattering coefficient of leaves
to near—infrared radiation

air temperature at reference height
air temperature profile

leaf temperature profile

for known F2(1 to 5) data

for known W3(l to 7) data

for known C5(1 to 5) data

soil temperature profile

input temperature data

wind velocity at reference height
wind profile within the canopy
friction velocity

for input wind speed data

A3%D(0)

V4*(1-58) or V4*(1-58)/HO

profile of absorbed visible diffuse
radiation per leaf area

incoming wisible sun radiation
incoming visible diffuse radiation
soil volumetric heat capacity

for known R6(1 to 5) data

square of (1-58)

square of (1-89)

leaf wetness

cancpy water content

mean width of leaves

canopy relative water content
known canopy water potential
mean diameter of soil clods
soil water potential

intermediate variable
intermediate variable

canopy layer thickness
roughness length
crop height

-1
o
2
bar s m
s m-III
J "25_1
J _25-1
J m"25_1
-2"=1
J m_25_1
JIm's
oc
OC
C
°c
gc
oC
C
-1
ms_)
ms_;
ms
m
J m-3
-2 -1
J m_zs_1
Jm s
J m_25_1
-2"-1
J Mm_aS 4
Jn K
m3H20 m-z
m
bar
m
bar
m
m
m




i Z2 REFHT reference height m
261 to L) TCOM thickness of the soil layers m
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Summary

In crop micrometeorclogy the transfer of radiation, momentum, heat and
mass to or from a crop cancpy is studied. Simulation models for these
processes do exist but are not easy to handle because of their complexity
and the long computing time they need. Moreover, up to now such models
can only be run on mainframe computers. This study aims at developing a
more elegant mathematical analysis that both deepens the understanding of
the processes involved, and enables the writing of more efficient computer
programs.

To model the radiation regime, Goudriaan (1977) divided the crop
canopy into several layers, The radiation at each layer was classified into
downward and upward flux densities, assigned to nine contiguous zones in
a hemisphere. Then a set of equations was derived for these radiation
components and an efficient iteration method was developed to solve them.
The solutions gave a detailed description of the distribution of the radia-
tion in a canopy, from which the zonal reflectance from a canopy can also
be obtained. In addition, by computer experimentation a so-called recipro-
city relation was found between a direct light source and the reflected
radiance from vegetation. This relation has potential applications in remote
sensing techniques., Remaining problems are: (a) the computation of the
radiation profiles in a canopy needs much execution time; (b} azimuthal
variations of bidirectional reflectance from a canopy cannot be simulated;
and {c) the mathematical proof of the reciprocity relation was not found.

In Chapters 2 and 3, the downward and upward radiation from all
directions in a hemisphere are represented by radiation vectors and the
interactions of the radiation with a horizontally homogeneous canopy layer
are represented by reflectance and transmittance matrices. In Chapter 2,
the physical process of the reflection and transmission of radiation by a
multi~layer canopy is examined under vector-matrix notation. The radiation
vector incident upon the top of a canopy, may be directly reflected from
the first layer forming a component of the reflected radiation vector from
the top of the canopy; or it may, for instance, be transmitted through the
first layer, reflected from the second layer, and transmitted again through
the first layer, forming another component of the reflected radiation vec-
tor. Not every reflection-transmission series, called a radiation path,

results in a component of the reflected radiation vector but there is an
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infinite number of such paths. It is proven in Chapter 2 that the recipro-
city relation holds if each radiation path contributing to the reflection
vector can be reversed and also result in a component of the reflected
radiation wvector. It is shown that this reversibility of the radiation paths
is generally true for reflection whereas for transmission a vertically uni-
form canopy and a black soil surface are required,

In Chapter 3, the radiation equations are rewritten as a set of differ-
ence equations with vectors as variahles and matrices as coefficients., Then
two differential equations for downward and upward radiation vectors are
derived, where the coefficients are interception, backward and forward
scattering matrices, which are the three basic matrices characterizing the
interactions of a horizontally homogeneous canopy with radiation vectors.
These two differential equations are, in fact, the vector-matrix version of
the Kubelka-Munk equations, which are two scalar differential equations
for total downward and upward radiation intensities in a canopy with
horizontal Lambertian leaves. The extended Kubelka-Munk equations can
describe the directional transfer of radiation in a canopy with mnon-
Lambertian leaves and any leaf inclination distribution. This is more realis—
tic than Suits' (1972) model containing, principally, only wvertical and
horizontal leaves. The azimuthal variations are included by extending the
corresponding vectors and matrices. The analytical solutions for profiles of
the downward and upward radiation vectors are found by means of a
standard matrix method and also the bidirectional reflectance from a canopy
is thus obtained. In spite of the availability of the analytical solution to
the bidirectional reflectance from a canopy, however, the azimuthal resolu-
tion is still restricted by the execution time. Thus, for leaf canopies
without azimuthal preference a special method reducing the dimensions of
the relevant matrices, and an approximate method based on the radiation
path method presented in Chapter 2 are developed, The approximate
methad allows the resolution of 10 degrees in azimuth as well as in inclina-
tion, and calculates the bidirectional reflectance from a canopy within an
acceptable execution time.

In Chapters 4 to 7, profiles of temperature, humidity, sensible and
latent heat flux densities in a canopy are studied in detail. Because the
derived equations for sensible and latent heat flux densities are coupled
with each other, they must be solved simultaneously. This leads to the

following problems: (a) it costs much execution time and space so the
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program cannot be executed on a microcomputer; (b) distinction of sunlit
and shaded leaves within each layer would require to split each layer into
several sublayers according to different irradiation levels and thus increa-
se further the execution time and space; (¢) the analytical expressions for
total sensible and latent heat flux densities above a canopy are not avail-
able so that it is not possible to find relationships between the parameters
used in the multi-layer model and those used in the single-layer model
(Penman-Monteith approach}, viz. the canopy resistance and the excess
resistance,

In Chapter 4, the sensible and latent heat flux densities are replaced
by the enthalpy flux density H, which is the sum of the sensible and
latent heat flux densities, and by the saturation heat flux density T,
which is a2 weighted difference between the sensible heat flux density and
the latent heat flux density. This weight is done in such a way that the
resulting equations for H and J are now mutually independent, so that the
computation of the relevant profiles is greatly simplified. Two uncoupled
electrical anaiogues for H and J, respectively, are designed, which are the
counterparts of the coupled electrical analogue for the sensible and latent
heat, The computation of the J profile is further simplified by recurrent
formulas, Moreover, in terms of H and J, the well known Penman's formulas
are expressed in a unified form applicable to both single- and multi-layer
models, which provides a bridge between these two models.

In Chapter 5, a method to distinguish sunlit and shaded leaves is
developed based on the two uncoupled electrical analogues for H and J and
on the recurrent formulas developed in Chapter 4. Goudriaan's (1977)
simulation program MICROWEATHER is then rewritten in BASIC, A complete
list of the program and the symbols used in the program is given in the
Appendix. This program in BASIC gives the same detailed description of
the crop micrometeorology as MICROWEATHER does, while it can be executed
on a microcomputer, The agreement between the results of these two
programs is good.

In Chapter 6, Monteith's (1963) extrapolation method to obtain repre-
sentative surface values of temperature and wvapour pressure is extended
by replacing the vapour pressure profile by the dew-point temperature
profile. Thus, the canopy resistance can be obtained directly by graphical
means. Two basic parameters of the single-layer model, the canopy resis-

tance and the excess resistance, are clearly presented in this way.
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In Chapter 7, the canopy resistance and the excess resistance are
calculated from the parameters used in the multi-layer model by means of
the unified Penman's formulas developed in Chapter 4. The formulas deri-
ved for these two resistances show that both of them contain aerodynamic
and physiclogical components. It is shown that ,however, for a dense
canopy with a dry soil surface, the canopy resistance contains mainly
physiological components and is approximately equal to the resistance value
calculated as all stomatal resistances of the leaves connected in parallel;
the excess resistance contains mainly aerodynamic components and is a
simple function of the friction velocity. In this case, therefore, the canopy
resistance and the excess resistance can be estimated easily in terms of
the parameters used in the multi-layer model.

In the discussion in Chapter 8, it is emphasized that the method to
calculate bidirectional reflectance from a canopy developed in Chapter 3
can have important applications in remote sensing of vegetation, because it
allows to study the effects of different leaf inclination distributions and
non-Lambertian leaves, The results should be compared with data sets on
the bidirectional reflectance from wvarious vegetation canopies to see the
practical significance of these two factors, The simulation program for crop
micrometeorology developed for microcomputers (Chapter 5) can be used
for short grass, where Goudriaan's MICROWEATHER has difficulties with
the execution time caused by the small time coefficient of the model. The
model can be further developed to simulate the evapo-transpiration from a
canopy wetted by rainfall, and it could be incorporated into a pest and
plant disease model. The results obtained on the canopy resistance and
excess resistance (Chapter 7) justify the applicability of the single-layer
model for a dense canopy. But for a sparse canopy the influence of the
soil surface cannot be neglected, and the double-layer model - one repre-
sents the canopy and the other represents the scil surface - should he
used. This wversion of the micrometeorological simulation program may be
included in a crop growth model such as BACROS (de Wit et al,, 1978),
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Samenvatting

In de mikrometeorclogie van gewassen wordt de overdracht van straling,
moment, warmte en massa van en naar een pewasdek bestudeerd. Simulatie
modellen voor deze processen bestaan reeds taar zijn slecht te hanteren
door hun complexiteit en de lange rekentijd die zij vergen. Bovendien
kunnen deze modellen tot nu toe alleen op een mainframe computer gedraaid
worden. Deze studie tracht elegantere wiskundige analyses te ontwikkelen
om enerzijds het inzicht in de betrokken processen te verdiepen, en ander-
zijds meer efficiénte computerprogramma'’s mogelijk te maken, die ook op
mikrocomputers gedraaid kunnen worden,

Om straling te modelleren verdeelde Goudriaan (1977) het gewas in
verscheidene lagen. In iedere laag werd de straling in negen neerwaartse
en negen opwaartse fluxdichtheden wverdeeld, die aan negen aansluitende
zones van elke hemisfeer werden toegekend. Vervolgens werd een stelsel
vergelijkingen voor deze stralingscomponenten afgeleid, en een efficiénte
iteratie methode om ze op te lossen ontwikkeld. De oplossingen verschaften
een gedetailleerde beschrijving van de verdeling van de straling in een
gewas, waaruit ook de zonale bidirektionele reflektie van een gewas ver-
kregen kan worden. Bovendien werd door computer-experimenten een
zogenaamde reciprociteitsrelatie gevonden tussen een direkte lichtbron en
gerellekteerde straling van een gewas. Deze relatie heeft potentifle toepas-
singen in remote sensingtechnieken. Resterende problemen =zijn: (a) de
berekening van de stralingsprofielen in een gewas kost veel rekentijd; (b}
de azimuthale wvariatie van de bidirektionele reflektie van een gewas kan
niet  gesimuleerd worden; (¢} het wiskundige bewijs van de
reciprociteitsrelatie was niet gevonden.

In Hoofdstuk 2 en 3 wordt de neerwaartse en opwaartse straling uit alle
richtingen in een hemisfeer voorgesteld door stralingsvektoren en de
interakties van de straling met een horizontzal homogene gewaslaag door
reflektie en transmissiematrices. In Hoofdstuk 2 wordt het fysische proces
van reflektie en transmissie van straling door een meerlagengewas onder
vektor-matrix notatie beschouwd. De stralingsvektor die op een gewas valt
kan rechtstreeks vanaf de eerste laag gereflekteerd worden en zo een
komponent van de gereflekteerde stralingsvektor van de top van het gewas
vormen; of hij kan bijvoorbeeld door de eerste laag worden doorgelaten,

door de tweede gereflekteerd, en weer door de eerste worden doorgelaten
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en zo nog eens tot de gereflekteerde stralingsvektor bijdragen. Niet elke
reflektie-transmissiereeks, een zogenaamd stralingspad, resulteert in een
komponent van de gereflekteerde stralingsvektor, maar er is een oneindig
aantal van zulke paden. In Hoofdstuk 2 wordt bewezen dat de reciprociteits-
relatie geldt indien elk tot de reflektie bijdragend stralingspad ook omge-
keerd bewandeld kan worden en kan resulteren in een komponent van de
gereflekteerde stralingsvektor. Aangetoond wordt dat deze omkeerbaarheid
van de stralingspaden algemeen geldt voor reflektie, terwijl voor transmis-
sie een vertikaal uniform gewas en een zwart bodemoppervlak vereist is.

In Heoofdstuk 3 worden de stralingsvergelijkingen herschreven als een
stelsel differentiaal-vergelijkingen met vektoren als variabelen en matrices
en coéfficiénten. Dan worden twee differentiaal-vergelijkingen wvoor neer-
waartse en opwaartse stralingsvektoren afgeleid met als coéfficiénten de
interceptie-, de terugwaartse en de voorwaartse verstrooiingsmatrices die
de drie basismatrices vormen wvoor de interakties van een horizontaal
homogeen gewas met de stralingsvektoren. Deze twee differentiaal-vergelij-
kingen zijn in feite de vektor-matrix versie van de Kubelka-Munk vergelij-
kingen, die twee scalaire differentiaal-vergelijkingen zijn voor totale neer-
waartse en opwaartse stralingsintensiteiten in een gewas met horizontale
Lambertiaanse bladeren. De uitgebreide Kubelka-Munk vergelijkingen
kunnen de richtingsgewijze stralingsoverdracht in een gewas met niet-
Lambertiaanse bladeren en elke bladhoekverdeling beschrijven. Dit is
realistischer dan het modelgewas wvan Suits (1972) dat in principe alleen
vertikale en horizontale bladeren bevat. De azimuthale variaties worden in
acht genomen door de overeenkomstige vektoren en matrices uit te breiden.
De analytische oplossingen voor de profielen van neerwaartse en opwaartse
stralingsvektoren worden gevonden door middel van een standaard matrix
methode en zo wordt ook de bidirektionele reflektie van een gewas verkre-
gen. Ondanks de beschikbaarheid van de analytische oplossing voor de bi-
direktionele reflektie van een pgewas is de azimuthale resolutie nog beperkt
door de rekentijd. Daarom is voor een bladerdek zonder azimuthale voorkeur
een speciale methode ontwikkeld die de dimensies van de betrokken matrices
reduceert en ook een benaderingsmethode die gebaseerd is op de stralingspad-
methode uit Hoofdstuk 2. De benaderingsmethode staat een resolutie toe
van 10 graden zowel in azimuth als in inclinatie, en berekent de bidirek-

tionele reflektie van een gewas binnen aanvaardbare rekentijd.

-107-



In de Hoofdstukken 4 tot en met 7 worden de profielen van temperatuur,
vocht, voelbare en latente warmtestroom-dichtheden in een gewas in detail
bestudeerd, Omdat de afgeleide vergelijkingen voor voelbare en latente
warmtestroom dichtheden met elkaar gekoppeld =zijn, moeten 2e simultaan
worden opgelost, Dit leidt tot de volgende problemen: (a) het kost veel
rekentijd zodat het programma niet op een microcomputer uitgevoerd kan
worden; (b) onderscheid van zonverlichte en beschaduwde bladeren binnen
elke laag zou de opsplitsing van elke laag in verscheidene sublagen wvol-
gens verschillende instralingsnive's eisen; (c) de analytische uitdrukkingen
voor de totale voelbare en latente warmtestroom-dichtheden boven een
gewas zijn niet beschikbaar, zodat het niet mogelijk is relaties te wvinden
tussen de parameters van meerlagenmodellen en de parameters die in het
éénlaag model gebruikt worden (Penman-Monteith benadering), zoals de
gewasweerstand en de excessweerstand.,

In Hoofdstuk 4 worden de voelbare en latente warmieflux-dichtheden
zelf vervangen door de enthalpiestroomdichtheid H, die de som is van de
voelbare en latente warmtestroom-dichtheden, en de verszadigingswarmteflux-
dichtheid J, die het wverschil is tussen de wvoelbare warmteflux-dichtheid en
de latente warmteflux-dichtheid maal een konstante. Deze konstante wordt
zo gekozen dat de resulterende vergelijkingen wvoor H en J onderling
onafhankelijk zijn, en de berekening van de relevante profielen veel een-
voudiger is geworden. Twee ontkoppelde elektrische analogonschema's voor
resp. H en J zijn ontworpen, die de tegenhangers zijn van het ene gekop-
pelde schema voor de voelbare en latente warmte. De berekening van het T
profiel is verder vereenvoudigd door recursieve formules. Bovendien
worden de bekende Penman vergelijkingen in termen van H en I in een
gemeenschappelijke vorm gebracht die toepasbaar is voor zowel é&n- als
meerlagenmodellen en als brug tussen deze heide modellen fungeert.

In Hoofdstuk 5 wordt een methode ontwikkeld om zonverlichte en be-
schaduwde bladeren te onderscheiden, gebaseerd op de twee ontkoppelde
elektrische analogonschema's voor H en J en op de recursieve formules die
in Hoofdstuk 4 ontwikkeld waren. Goudriaan's (1977) simulatieprogramma
MICROWEATHER is daarna in BASIC herschreven. Een volledige listing van
het programma en de symbolen die in het programma gebruikt zijn, =zijn in
de Appendix gegeven. Dit programma in BASIC geeft dezelfde gedetailleer-
de beschrijving van de gewasmikrometeorologie als MICROWEATHER, terwijl
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het op een microcomputer uitgevoerd kan worden., De overeenstemming
tussen de resultaten van beide programma's is goed.

In Hoofdstuk 6 wordt Monteith's (1963) extrapolatiemethode om represen-
tatieve oppervlaktewaardes van temperatuur en dampdruk te verkrijgen
uitgebreid door het dampdrukprofiel door het profiel van de dauwpuntstem-
peratuur te vervangen. Zo kan de gewasweerstand rechtstreeks grafisch
verkregen worden., Twee basisparameters van het éénlaagmodel, de gewaswe:er—
stand en de excessweerstand, worden op deze manier duidelijk voorgesteld.

In Hoofdstuk 7 worden de gewasweerstand en de excessweerstand
berekend uit de parameters van het meerlagenmodel in termen van de
gemeenschappelijke Penmanformules uit Hoofdstuk 4. De formules die voor
deze twee weerstanden zijn afgeleid vertonen heide zowel aerodynamische
als fysiologische komponenten. Aangetoond wordt echter dat voor een dicht
gewas met een droog bodemopperviak de gewasweerstand voornamelijk
fysiologische komponenten bevat en ongeveer gelijk is aan de weerstands-
waarde berekend als de parallelschakeling van alle stomataire weerstanden
van de bladeren; de excessweerstand bevat voornamelijk aerodynamische
komponenten en is een eenvoudige funktie van de wrijvingssnelheid., Daarom
kunnen in dit geval de gewasweerstand en de excessweerstand gemakkelijk
worden geschat in termen van parameters die in het meerlagenmodel zijn
gebruikt.

In de discussie in Hoofdstuk 8 wordt benadrukt dat de methode om
bidirektionele reflektie van een gewas te berekenen zoals die in Hoofdstuk
3 ontwikkeld is belangrijke toepassingen in remote sensing van vegetatie
kan hebben, omdat het in staat stelt de effekten van verschillende bladhoek-
verdelingen en niet-Lambertiaanse bladeren te bestuderen. De resultaten
zouden vergeleken moeten wdrden met data sets voor de bidirektionele
reflektie van verschillende gewasdekken om de praktische betekenis van
deze twee faktoren te zien. Het simulatieprogramma voor gewasmikrometeoro-
logie ontwikkeld voor microcomputers (Hoofdstuk 5) kan voor kort gras
gebruikt worden, waar Goudriaan's MICROWEATHER problemen heeft met
de rekentijd wegens de kleine tijdcoéfficiént in het model. Het model kan
verder ontwikkeld worden om de evapo-transpiratie van een bladerdek nat
geworden door een regenbui te simuleren, en het zou ook in een ziekte- en
plagenmodel ingebouwd kunnen worden. De resultaten verkregen over de
gewasweerstand en de excessweerstand (Hoofdstuk 7) rechtvaardigen de

toepasbaarheid van een é&énlaagmodel voor een dicht bladerdek. Maar wvoor
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een open gewas kan de invloed van het bodemoppervlak niet verwaarloosd

worden, en moet het tweelagenmodel - één stelt het gewas voor en de

ander het bodemoppervlak - gebruikt worden. Deze versie van het mikro-

meteorologische simulatiemodel kan in een model voor gewasgroei als BACROS
{de Wit et al., 1978) ingebouwd worden.

-110-



Acknowledgements

This work was supported by the Ministry of Eduction and Science of
the Netherlands, The cost of printing of the dissertation was partly
covered by the !Stichting Landbouwhogeschool Fonds'. I gratefully
acknowledge their support.

I am very much indebted te Prof, C.T. de Wit, Prof. L. Wartena, and
Dr. J. Goudriaan for their support and inspiration to the production of
the present report. Their critical reading and many helpful suggestions
are most gratefully acknowledged. I am grateful to Dr. R, Rabbinge for
his kind support in many vrespects and for his comments on the
manuscript.

Many thanks are due to Mrs., H. H. van Laar for her exellent editing
work. The manuscript was prepared with typing assistance of Mr., B. H.
J. van Amersioort., The drawings were carefully prepared by Mr., G, C.
Beekhof, The photography was done by Mr. P. R, S5Stad. The English was
corrected by Dr, P, Cortes and Dr. 5. A, Ward. The cover was designed
by Mrs. Xu Peiwen. Their help is greatly acknowledged.

-111~-



References

Allen, W.A., and Richardson, A,J. (1968), Interaction of light with a plant
canopy. J. Opt. Soc. Am,, 58(8):1023-1028.

Allen, W.A., Gayle, T.V., and Richardsen, A.J. (1970), Plant canopy irradi-
ance specified by the Duntley equations. J. Opt. Soc. Am. 60(3):372-376.

Begg, J.E., Bierhuizen, J.F., Lemon, E.R., Misra, D., Slatyer, R.0., and
Stern, W.R. (1964), Diurnal energy and water exchanges 1in bulrush mil-
let. Agric. Meteorol. 1:294-312.

Breece, H.T., and Holmes, R.A. (1971), Bidirectional scattering character-
istics of healthy green soybean and corn leaves in vivo. Appl. Opt.
10(1):119-127.

Brown, K.W., and Covey, T.V. (1966), The energy budget evaluation of the
micrometeorological transfer processes within a corn field. Agric.
Meteorol. 3:73-96.

Bunnik, N.J.J. (1978), The multispectral reflectance of shortwave radiatiom
by agricultural crops in relatiom with their morphological and optical
properties. Mededelingen Landbouwhogeschool Wageningen, Nederland 78-1.

Chamberlain, A.C. (1966), Transpert of gasses to and from grass and grass-
like surfaces. Proc. Roy. Soc. A, 290:236-265.

Chamberlain, A.C., and Chadwick, R.C. €1965), Transfer of iodine frem
atmosphere to ground. Report AERE-R4870, United Kindom Atomic Energy
Authority.

Chance, J.E., and Cantu, J.M. (1975}, A study of plant canopy reflectance
model. Final Report on Faculty Research Grant, Pan American University.

Chance, J.E., and LeMaster, E.W. (1977}, Suits reflectance model for wheat
and cotton: theoretical and experimental tests. Appl. Opt.
16(2):407-412.

Chandrasekhar, S. (1950), Radiative tramsfer. Clarendon Press, Oxford,
393pp.

Cooper, K., Smith, J.A., and Pitts, D. (1982), Reflectance of a vegetation
canopy using the adding method. Appl. Opt. 21{22):4112-4118.

Cowen, T.R. (1968), Mass, heat and momentum exchange between stands of
plants and their atmospheric environment. Quart. J. Roy. Met. Soc.,
94:523-544.

Denmead, 0.T. (1969), Comparative micrometeorology of a wheat field and a

forest of Pinus radiata. Agric. Meteorol., 6:357-371.

-112-




Goudriaan, J. (1977), Crop micrometecrology: a simulation Study. Simulation
Monographs, Pudoc, Wageningen, 249%pp.

Goudriaan, .J., and Waggoner, P.E. (1972}, Simulating both aerial microcli-
mate and soil temperature from observation above the foliar canopy.
Neth. J. agric. Sci. 20:104-124,

Hiramatsu, Y., Takuro, 5., and Maitani, T. (1984}, Goudriaan's model of
crop micrometeorology applied te rice crop. Ckayama Univ. Kurashihi,
Japan (in prep.).

Hulst, H., C. van de (1963), A new look at multiple scattering., New York,
NASA Goddard Space Flight Center, 8lpp.

Inoue, E, (1963), On the turbulent structure of airflow within crop cano-—
pies, J., Meteor. Soc. Japam, 41:319-326,

Kubelka, P., and Munk, F, (1931), Ein Beitrag zur Optik der Farbanstriche.
A. Techn. Physik, 11:593-601,

Laar, H.H. van, Kremer, D., and Wit, C.T. de (1977), Maize. In: Crop photo-
synthesis: methods and compilation of data obtained with a mobile field
equipment, (Th, Alberda, Ed.), Agric. Res. Rep. 865, Pudoc, Wageningen,
12-22,

Landsberg, J.J., and James, G.B. {1971), Wind Profiles in plant canopies:
studies on an analytical model. J. appl. Ecol., 8:729-741.

Lemon, E.R, (1960), Photosynthesis under field conditions. II. An aerody-
namic method for determining the turbulent carbon dioxide exchange
between the atmosphere and a corn field. Agrom. J., 52:697-703.

Lemon, E.R. (1963), Energy and water balance of plant communities. In:
Environmental control of plant growth, (L. T. Evans, Ed.}, New York
and London, 55-78.

Lemen, E,R,, and Wright, J.L. (1969), Photosynthesis under field conditions.
X.A. Assessing sources and sinks of carbon dioxide in a corn crop using
a momentum balance approach., Agron. J., 61:405-411.

Long, I.F., Monteith, J.L., Penman, H.L., and Szeicz, G. (1964), The plant
and its environment. Metecr. Rundsch., 17:97-101.

McNaughtan, K.G. (1976}, Evaporation and advection I: evaporation from
extensive homogeneous surfaces. Quart. J. Rey. Met. Scc., 102:181-191.

Monsi, M,, and Saeki, T. (1953), Uber den Lichtfactor in den Pflanzenge-
sellschaft und seine Bedeutung fur die Stoffproducktion. Jap. Journ.
Bot., 14:22-52.

Monteith, J.L. (1963), Gas exchange in plant communities. In: Envirommental

-113~



control of plant growth, (L.T. Evans, Ed.), Academic press, New York,
95-112..

Monteith, J.L. (1965), Evaporation and enviromment. Symp. Soc. Expl. Biol.
XIX, 205-234.

Monteith, J.L. (1973), Principles of environmental physics. Edward Arnold,
London, 241 pp.

Monteith, J.L. (1981), Evaporation and surface temperature. Quart. J. Roy.
Met. Soc., 107:1-27,

Paltridge, G.W., and Platt C.M,R. (1976), Radiative processes in meteoro-
logy and climatology. Elsevier, New York, 393pp.

Penman, H.L. (1948), Natural evaporation from open water, bare soil and
grass. Proc. Roy. Soc. A., 193:120-146.

Perrier, A. (1976), Etude et essai de modelisaticon des echanges de masse et
d'energie au niveau des couverts vegetaux. -- These de Doctorat d'Etat
-- Universite de Paris VI —-— avril 1976, Paris, 240pp.

Priestley, C.H.B., and Taylor, R.J. (1972), On the assessment of surface
heat flux and evaporation using large-scale parameters. Mon. Weather
Rev., 106:81-92.

Ross, J. (1981), The radiation regime and architecture of plant stands. Dr,
W. Junk Publishers, The Hague, 3%1pp.

Shuttleworth, W.J. (1976), A One-dimensional Theoretical Description of the
Vegetation-Atmosphere Interaction. Boundary-Layer Meteorol. 10:273-302,

Stewart, J.B. (1983), A discussion of the relatfonships between the princi-
pal forms of the combination equation for estimating crop evaporationm.
Agric, Meteorol., 30:111-127.

Stigter, C.J., Goudriaan, J., Bottemanne, F.A., Birnie, J., Lengkeek, J.G.,
and Sibma, L. (1977}, Experimental evaluation eof a crop climate simula-
tion model for Indian corn (Zea mays L.). Agric. Meteorol. 18:163-186.

Suits, G.H., (1972), The calculation of the directional reflectance of a
vegetative canopy. Remote Sensing of Environment, 2:117-125.

Thom, A.S. {(1972), Momentum mass and heat exchange of vegetatien. Quart. J.
Roy. Met. Soc., 98:124-134,

Thom, A.S. (1975), Momentum, mass and heat exchange of plant communities.
In: Vegetation and the atmosphere. V.1 (J.L. Monteith, Ed.), Academic
Press, Londor, 57-109,

Waggoner, P.E., and Reifsnyder,W.E. (1968), Simulation of the temperature,

humidity and evaporation profiles in a leaf canopy. J. appl. Meteorol,

=-114-




7:400-409.

Waggoner, P.E., Furnival, G.M., and Reifsnyder, W.E. (1969), Simulation of
the microclimate in a forest. Forest Sci. 15:37-45.

Wit, C.T, de (1965), Photosynthesis of leaf canopies. Agric. Res. Rep.
No 663. Pudoc, Wageningen, 57pp.

Wwit, C.T. de, and Keulen, H, van (1972), Simulation of transport processes
in soils. Simulation Monographs, Pudoc, Wageningen, 109pp.

Wit, C.T. de, et al. (1978), Simulation of assimilation, respiration and

transpiration of crops. Simulation Monographs, Pudoc, Wageningen, 167pp.

-115-



Curricum vitae

Chen Jialin was born on 19 January 1947 in Shanghai, China. In 1965 he
graduated from the 51-st secondary school, Shanghai. He obtained his
diploma in Physics in 1970 from Fu-Dan University, China, From 1970 to
1978 he worked with an electrical company in the province Guangxi, China,
From October 1978 to September 1980 he studied as a graduate student at
the Institute of Plant Physiclogy, Academia Sinica, Since September 1980
he worked as a guest researcher at the Department of Theoretical Produc-
tion Ecology of the Agricultural University, Wageningen, the Netherlands.
The main work of his Ph. D. studies was carried out in the period of
September 1980 to October 1982, From November 1982 to June 1983 he
studied at the faculty of Mathematics and Physics of the University of
Utrecht, the Netherlands and graduated cum laude in Meteorology. This

dissertation was written in the period of October 1983 to June 1984,

~116-




