
95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Components of the
metabolic syndrome
Clustering and genetic variance

Cécile M. Povel



Components of the
metabolic syndrome
Clustering and genetic variance

Cécile M. Povel



Thesis committee

Thesis supervisor
Prof. dr. ir. E.J.M. Feskens
Personal chair at the division of Human Nutrition, Wageningen University

Thesis co-supervisor
Dr. ir. J.M.A. Boer
Senior researcher, RIVM, Bilthoven

Other members
Prof. dr. M.R. Müller, Wageningen University
Dr. B. Balkau, University Paris-Sud, France
Prof. dr. H. Snieder, University of Groningen
Prof. dr. P.E. Slagboom, Leiden University

This research was conducted under the auspices of the Graduate School VLAG
(Food Technology, Agrobiotechnology, Nutrition, and Health Sciences)



Components of the
metabolic syndrome
Clustering and genetic variance

Cécile M. Povel

Thesis
Submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University
by the authority of the Rector Magnificus

Prof.dr. M.J. Kropff,
in the presence of the

Thesis Committee appointed by the Academic Board
to be defended in public

on Wednesday 23 May 2012
at 11 a.m. in the Aula.



Cécile M. Povel

Components of the metabolic syndrome: clustering and genetic variance
168 pages

Thesis, Wageningen University, Wageningen, the Netherlands (2012)
With references, with summaries in English and Dutch

ISBN 978-94-6173-242-2



Abstract
Background
Abdominal obesity, hyperglycemia, hypertriglyceridemia, low HDL cholesterol levels 
and hypertension frequently co-occur within individuals. The cluster of these features 
is referred to as metabolic syndrome (MetS). The aim of this thesis was to investigate 
which metabolic endpoints should be studied in order to explain the clustering of 
MetS features best. Furthermore, genetic association studies were conducted to get 
more insight into the pathophysiology underlying the clustering of MetS features.

Methods
We conducted two studies to investigate which metabolic endpoints should be stud-
ied in order to best explain the clustering of MetS features. In the EPIC-NL case-cohort 
study we used confirmatory factor analyses to study the model fit and predictive abil-
ity for type 2 diabetes (T2D) and cardiovascular diseases (CVD) of several MetS models, 
including traditional and novel MetS features. Furthermore, we reviewed twin and 
family studies, which presented genetic correlation coefficients between different tra-
ditional and novel MetS features and between MetS and novel MetS features. We con-
ducted four studies investigating which single nucleotide polymorphisms (SNP’s) were 
associated with clustering of MetS features. First, we systematically reviewed published 
candidate gene studies on MetS. Second, we analyzed whether SNP’s associated with 
inflammatory biomarkers, waist circumference, insulin resistance, HDL cholesterol or 
triglycerides in genome wide association studies (GWAS) were also associated with MetS 
and MetS-score in a random sample of the EPIC-NL study. Third, in the Doetinchem 
cohort, we determined if SNP’s of genes located in transcriptional pathways of glu-
cose and lipid metabolism were associated with multiple MetS features simultane-
ously. Fourth, we evaluated the interaction between these SNP’s and BMI in relation to 
glucose levels.

Results
A MetS model composed of the traditional MetS features and high sensitive C-reac-
tive protein (hsCRP) optimally predicted T2D and CVD, while still representing a single 
entity. Our review of 9 twin and 19 family studies showed that genetic correlations 
were strongest, i.e. genetic pleiotropy was highest, between waist circumference and 
HOMA-IR, HDL cholesterol and triglycerides, and between adiponectin and MetS. After 
having systematically reviewed 25 genes in 88 candidate gene studies, we found evi-
dence for an association of FTO rs9939609, TCF7L2 rs7903146, APOA5 C56G (rs3135506), 
APOA5 T1131C (rs662799), APOC3 C482T (rs2854117), Il6 174G>C (rs1800795) and CETP 
Taq-1B (rs708272) with MetS. SNP’s associated with waist circumference in GWAS were 
on a group level significantly associated with MetS in a random sample of EPIC-NL, 
whereas a group of SNP’s associated with insulin resistance was significantly associated 
with MetS-score. On the individual level MC4R rs17782312 and IRS1 rs2943634 were 
associated with MetS. In the Doetinchem cohort CETP Ile405Val (rs5882) and APOE 
Cys112Arg (rs429358) were associated with both the prevalence of low HDL cholesterol 
levels and with abdominal obesity. In this cohort, two highly correlated SNP’s in the 
PPARGC1A gene, Gly482Ser (rs8192678) and Thr528Thr (rs3755863), showed a significant 
interaction with BMI on glucose levels.



Conclusion
One MetS factor with or without hsCRP, can be used to study the clustering of MetS 
and MetS related features, because this factor can be represented as one statistical 
entity. However, in order to fully explain the clustering of MetS features, specific com-
binations of MetS features should be studied. Our results indicate that genetic plei-
otropy is highest for the combination of HOMA-IR and waist circumference and the 
combination of HDL cholesterol and triglycerides. Therefore these combinations are 
good candidate endpoints for studies on genetic variants pleiotropic to several MetS 
and MetS related features. SNP’s associated with the clustering of MetS features are 
involved in mechanisms traditionally believed to underlie MetS development, i.e. glu-
cose metabolism and weight regulation, but also in other mechanisms, i.e. lipid metab-
olism and inflammation. This suggests that, although the MetS features may represent 
a statistical entity, there are multiple, related mechanisms explaining the clustering of 
MetS features.
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Metabolic syndrome
Abdominal obesity, hyperglycemia, hypertriglyceridemia, low serum high density lipo-
protein (HDL) cholesterol levels and hypertension frequently co-occur within individ-
uals. The cluster of these features is generally referred to as the metabolic syndrome 
(MetS).
The metabolic syndrome was first recognized in 1923. At that time, Kylin [1], a Swed-
ish physician, described a syndrome involving hypertension, hyperglycemia and hype-
ruricaemia. Afterwards, in 1965 Avogaro and Crepaldi [3] described a syndrome which 
consisted of hypertension, hyperglycemia and obesity. In 1988, the MetS was brought 
to the attention of a wider audience by Reaven [4]. He described “Syndrome X”, 
which increases the risk of type 2 diabetes (T2D) and cardiovascular diseases (CVD) and 
was composed of insulin resistance, hyperglycemia, dyslipidemia and hypertension. 
According to Reaven the mechanism underlying this syndrome was insulin resistance 
[4].
After all these years, the precise definition of MetS is still under debate and several 
expert groups from e.g. WHO and NHLBI are reconsidering its definition. However, 
for international comparisons and to facilitate research on MetS etiology, it is impor-
tant that a commonly agreed set of criteria exist which defines MetS [2]. According 
to the most recent consensus statement a person is defined to have MetS when he/
she has three or more of the following five features (see text box): increased waist cir-
cumference, elevated serum triglycerides (≥1.7 mmol/L) or drug treatment for ele-
vated triglycerides; reduced serum HDL cholesterol (in men: <1.0 mmol/L; in women: 
<1.3 mmol/L) or drug treatment for reduced HDL cholesterol; increased blood pres-
sure (systolic ≥130 and/or diastolic ≥85 mm Hg) or antihypertensive drug treatment; 
increased fasting plasma glucose (>5.6 mmol/L) or glucose lowering drug treatment 
[2]. Regarding increased waist circumference, it is recommended to use ethnic spe-
cific cut-off points. However, recommendations on cut-off points for Caucasians differ 
considerably; either a waist circumference ≥94 cm for men and ≥80 cm for women [5], 
corresponding with the BMI cut-off point for overweight [2], or a waist circumference 
≥102 cm for men and ≥88 cm for women, corresponding with the BMI cut-off point for 
obesity [2], is recommended [6, 7].

Criteria for diagnosis of the metabolic syndrome [2]
The presence of at least any 3 of the following 5 risk factors

Measures Categorical Cut Points

Elevated waist circumference  Population and country specific definitions a

Elevated triglycerides or drug treatment b  ≥1.7 mmol/L (150 mg/dL)
Reduced HDL cholesterol or drug treatment b  <1.0 mmol/L (40 mg/dL) in males
  <1.3 mmol/L (50 mg/dL) in females
Elevated blood pressure or drug treatment  Systolic ≥130 and/or
  diastolic ≥85 mmHg
Elevated fasting glucose or drug treatment  ≥5.6 mmol/L (100 mg/dL)

a  It is recommended that the IDF cut points be used for non-Europeans and either the IDF or AHA/NHLBI cut points used for people of 

European origin until more data are available.
b  The most commonly used drugs for elevated serum triglycerides and reduced serum HDL cholesterol are fibrates and nicotinic acid. 

A patient taking 1 of these drugs can be presumed to have high triglycerides and low HDL cholesterol. High-dose ω-3 fatty acids 

presume high triglycerides.
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The prevalence of MetS is relatively high and rising [8]. In Western societies the prev-
alence among adults is 25-30% [8-10]. In the Netherlands, the prevalence of MetS 
among people aged 30 to 40 years is approximately 20% in men and 9% in women. 
Among people between 50 and 60 years the prevalence is approximately 50% in men 
and 60% in women [11].
People with MetS are at a twofold increased risk for developing coronary heart disease 
(CHD) and at a fivefold increased risk for developing T2D in the next five to ten years 
[2, 12]. In CHD or diabetes patients, the MetS is often present, and the number of com-
ponents of the MetS is associated with disease progression and risk [2]. Thus, given 
its high prevalence and severe consequences, MetS is a phenomenon of high public 
health relevance.
There are multiple risk factors for MetS including genetic factors, physical inactiv-
ity, over nutrition and obesity. Also older people and people of Asian origin are at 
increased risk of developing MetS [7]. The obesity epidemic and the ageing population 
are therefore important causes for the rising prevalence of MetS [6, 8].

Metabolic syndrome under debate
Most metabolic diseases are characterized by one unifying pathophysiological factor. 
For example, myocardial infarction is characterized by myocardial necrosis, osteoporo-
sis by a low bone mass and micro-architectural deterioration of bone tissue, and lung 
cancer by the accumulation of abnormal cells in the lungs [13]. For MetS, the question 
is whether it represents a distinct clinical entity characterized by a unifying pathophysi-
ological factor, like these other diseases, or whether it is loosely associated cluster of 
risk factors for T2D and CVD [14, 15]. According to Reaven the unifying pathophysi-
ological factor for MetS is insulin resistance [4]. However, more recently it has been 
proposed that not one, but multiple interrelated causal mechanisms, underlie MetS 
development [7].
If a metabolic disease it a clinical entity, characterized by a unifying pathophysiological 
factor, the symptoms characterizing the disease are most likely highly correlated and 
represent a statistical entity. Thus, when a unifying pathophysiological factor for MetS 
exists, the MetS features are likely to represent a statistical entity [15]. This can be tested 
with confirmatory factor analysis, a hypothesis driven data reduction technique, which 
can be used to combine data. Studies using confirmatory factor analysis on MetS fea-
tures so far suggest that the MetS features included in the current definition indeed 
represent one statistical entity [16-22]. This makes it more likely that one unifying 
pathophysiological factor is responsible for MetS development, and explains the clus-
tering of its features, but by no means proves this. It could for example also be that two 
distinct pathophysiological factors both cause a similar pattern of disease symptoms.
Not only the concept of MetS is under debate, but also its definition . Several changes 
to the current MetS definition have been suggested in scientific literature. First, the fea-
tures currently included in the MetS definition are under debate. In order to increase 
the predictive ability of MetS for T2D and CVD, it has been proposed to add features to 
the definition of MetS. These features include amongst others circulating adiponectin, 
C-reactive protein (CRP), albumin, APOB and free fatty acid levels (FFA) or a fatty liver 
[5]. However, it is unclear if MetS represents one statistical entity after addition of one 
or more of these features. Second, some favor a continuous MetS definition, as in the 
current bivariate MetS definition information is lost. For example, a minor change in 
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triglyceride levels from 1.70 mmol/L to 1.64 mmol/L, could result in an individual no 
longer being classified as having MetS [15, 23]. However, this change in triglyceride lev-
els has only a minor effect on the metabolic profile and the risk for T2D and CVD of this 
individual. Furthermore, when plotted against the number of positive features the risk 
for CVD raises continuously, with no suggestion of a threshold effect [24]. A continuous 
definition of MetS does not exist yet. Such a definition could for example be based on 
a MetS factor derived from confirmatory factor analysis.

Clustering of metabolic syndrome features
– pathophysiology –
A good understanding of the mechanism behind the clustering of MetS features is 
important, because such understanding may eventually facilitate the development of 
preventive or treatment strategies which can target multiple MetS features simultane-
ously. Currently it is not yet fully understood why the features of MetS cluster [14]. 
Most likely the clustering of these features is caused by multiple underlying, interre-
lated causal mechanisms [7]. These mechanisms are described below and depicted in 
figure 1.

Adipose tissue dysfunction may be important in MetS development. The efflux of FFA 
from the adipose tissue is determined by the balance between lipolysis and lipogenesis 
[25]. In obese or insulin resistant individuals this balance is often disturbed. Plasma FFA 
levels are increased, due to increased endogenous lipolysis and a reduced FFA uptake by 
adipose tissue. Endogenous lipolysis is increased due to defects in adipose tissue trig-
lyceride lipase (ATGL) and hormone sensitive lipase (HSL). FFA uptake is decreased due 

Dietary fat

Abdominal
Obesity

Hypertension

Insulin
Resistance

VLDL

chylomicrons

e.g. in�ammation

Dyslipodaemia
TG    , HDL

FFA

Figure 1  Possible interrelationships between the features of metabolic syndrome
  TG, triglycerides; HDL, HDL cholesterol; VLDL, very low density lipoprotein; FFA, free fatty acids
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to insufficient lipogenesis and a defective regulation of adipose tissue lipoprotein lipase 
(LPL) in response to insulin. The defective regulation of LPL may result in a decreased 
uptake of chylomicrons in the adipose tissue and an increased spillover of fatty acids 
in the plasma FFA pool [25, 26].
The inability of adipose tissue to trap FFA leads to increased lipid accumulation in non-
adipose tissue, i.e. muscle, liver and β-cells, resulting in many metabolic abnormali-
ties. Elevated FFA uptake into muscle increases intramyocyte triglyceride content with 
concurrent insulin resistance [25]. The FFA flux to the liver is mainly influenced by vis-
ceral and only to a lesser extent by subcutaneous fat. This is related to the fact that the 
visceral fat depot drains directly in the portal vein, which represents 80% of the total 
hepatic blood flow. An increased FFA flux to the liver may increase the production of 
very low density lipoprotein (VLDL) and stimulate insulin resistance of the liver. Hepatic 
insulin resistance may aggravate overproduction of VLDL even further. Increased VLDL 
levels may, through hydrolysis of VLDL, lead to increased FFA concentrations in the 
blood stream. Furthermore, increased VLDL levels may, through an increased transfer 
of triglycerides in VLDL to LDL or HDL by cholesteryl ester transfer protein (CETP), lead 
to increased small dense LDL cholesterol and increased triglyceride-enriched HDL cho-
lesterol levels. As triglyceride-enriched HDL cholesterol is a better substrate for hepatic 
lipase, it is cleared rapidly from the circulation, resulting in decreased HDL cholesterol 
levels. Furthermore, as in the liver FFA serve as a substrate for synthesis of triglyceride, 
an increased FFA flux to the liver increases triglyceride levels [25-30]. In the β-cells, a 
chronic increased FFA flux from adipose tissue (>48 h) decreases glucose stimulated 
insulin secretion, resulting in insulin resistance [25]. Finally, increased FFA levels in the 
blood stream can mediate vasoconstriction, therewith causing hypertension [28].

Insulin resistance may also explain part of the clustering of the MetS features, inde-
pendent of plasma FFA levels. Due to the lower response to insulin, some metabolic 
effects of insulin may be diminished. First, glucose uptake by tissues is diminished, and 
glucose levels are increased. Second, hyperinsulinemia may result in enhanced sodium 
reabsorption and increased sympathic nervous system activity, which both contribute 
to the development of hypertension [4, 28]. Third, insulin resistance leads to a reduc-
tion in endothelial nitric oxide (NO) production, leading to endothelial dysfunction 
and atherosclerosis [27]. Fourth, early literature suggested that insulin resistance may 
cause weight gain due to the inhibition of lipolysis, reduced thermic effect of food, 
increased appetite or increased efficiency of fat storage. However, more recent litera-
ture also suggests that insulin resistance serves as a homeostatic mechanism to protect 
against further weight gain, especially in those with diabetes [31].

In obese people insulin resistance, dyslipidemia and hypertension may develop through 
an increased efflux of FFA [28]. Furthermore, obesity may lead to the activation of the 
renin angiotensin system, resulting in the development of hypertension and possibly 
insulin resistance [27]. Finally, due to the increase in adipose tissue size the production 
of adipokines, such as TNF-α, leptin or IL-6 is increased in obese people. [27]. Elevated 
levels of these adipokines may have several metabolic effects [28, 32]. For example, 
there are indications that IL-6 increases insulin resistance, FFA levels, triglyceride levels 
and blood pressure [25, 32, 33]. Furthermore, IL-6 induces the production of CRP by 
the liver [25, 32]. In contrast to other adipokines for which production increases, pro-
duction of adiponectin decreases with obesity. The suppressed adiponectin production 
may increase plasma FFA, glucose and hsCRP levels [25].
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Clustering of metabolic syndrome features
– genetic variance –
The pathophysiology behind the clustering of MetS features is currently not fully 
understood. Genetic association studies on the clustering of MetS features may con-
tribute to a better understanding. As genetic variants affects gene functioning, the 
association between genetic variants and a disease may identify genes relevant for the 
development of this disease. Identification of disease genes may eventually increase our 
understanding of disease mechanisms. The advantage of genetic association studies is, 
that according to the principles of Mendelian randomisation, they are not affected by 
reverse causality and are largely unaffected by socioeconomic and behavioural con-
founders [34], resulting in the potential for clear study interpretation [35]. Compared 
to mechanistic animal experiments advantages of genetic association studies are the 
cost-effectiveness of genotyping and the relevance to humans [35].
In order to unravel the pathophysiology of clustering of MetS features, the main inter-
est is in genetic variants associated with multiple MetS features. However, up till now 
most genetic association studies focussed on a single MetS feature, whereas fewer stud-
ies focussed on genetic variants associated with combinations of MetS features, of with 
the prevalence of MetS itself. Probably more genetic variants associated with a combi-
nation of MetS features of with MetS remain to be discovered.
Below we first describe studies on genetic variance and MetS. Second, we describe 
studies on the genetic variance and specific combinations of MetS features.

A heritability estimate represents the amount of variation in a phenotype that is influ-
enced by genetic variation. Heritability estimates of MetS range from 10% to 30% 
[36-38]. These estimates are generally lower than the heritability estimates for most 
individual MetS features, which range from 8%-37% for blood pressure [39] to 28%-
81% for lipid levels [40].
Actual genetic variants explaining the heritable component of MetS can either be 
detected in family studies, or in populations of unrelated individuals. In family studies, 
linkage analyses aim to find a chromosomal locus or genetic variant which is associated 
with the segregation of the disease in a pedigree. Initially, linkage analyses were based 
on a large number of short tandem repeats (STRS) or micro-satellites. In two genome-
wide linkage studies based on these markers, an association between the 3q27 locus 
and MetS was shown [41, 42]. On this locus, one of the candidate genes for MetS, the 
ADIPOQ gene, which encodes for adiponectin, is located.
Most studies on genetic determinants of MetS were, however, not conducted in fam-
ily studies, but in populations of unrelated individuals. These genetic association stud-
ies mainly focused on single nucleotide polymorphisms (SNP’s). Many candidate gene 
studies on MetS have been conducted. However, at the start of the research described 
in this thesis no clear overview of these studies was available [43, 44]. SNP-MetS asso-
ciations were also studied in two genome wide association studies (GWAS). In these 
studies six different SNP’s, all involved in lipid metabolism, were associated with MetS. 
In the first GWAS among 4 Finish population-based cohorts (N~8000) rs964184 in the 
ZNF259 gene was associated with MetS [43]. The other GWAS was conducted among 7 
independent studies, comprising 22 161 participants from European ancestry [44]. In 
this study, 5 SNP’s (BUD13 rs10790162, ZNF259 rs2075290, APOA5 rs2266788, LPL rs295 
and CETP rs173539) were associated with MetS.
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Studying specific combinations of MetS features is another way to get insight into 
the genetic variance responsible for the clustering of MetS features. The amount of 
genetic variance which is shared between two MetS features, i.e. the genetic pleiotropy 
between two MetS features, can be estimated by means of a genetic correlation coef-
ficient. Together with the environmental correlation coefficient, a genetic correlation 
coefficient determines the phenotypic correlation coefficient between two MetS fea-
tures (formula 1) [45].

Formula 1  |  Genetic pleiotropy

ρ(phenotype)  = (heritability_x)(heritabilty_y) * ρ(genotype) +
  (1-heritability_x)(1-heritabilty_y) * ρ(environment)

In several studies, genetic correlation coefficients between MetS features have been cal-
culated [46]. The effect estimates of the genetic correlation coefficients varied widely 
across studies and at the start of the research described in this thesis a good overview 
was lacking.
Up until now, a few SNP’s associated with multiple MetS or MetS related features have 
been discovered. For example, FADS1 rs174550 is associated both with plasma glucose 
and serum HDL cholesterol levels [47]. In most studies, either candidate gene [48-54] 
or GWAS [47, 55, 56], the association with individual MetS features was analysed first; 
afterwards it was determined which SNP’s were associated with multiple MetS features. 
In only a few genetic association studies a specific combination of two MetS features 
has been studied directly [44, 57-59]. In a GWAS among 7 independent studies, includ-
ing 22 161 participants from European ancestry, genetic associations with any combi-
nation of two MetS features were studied [44]. In this study 27 SNP’s in 16 genes were 
associated with a combination of two MetS features [44]. Most of these SNP’s were 
involved in lipid metabolism and except for two, all combinations of MetS features 
contained either serum triglycerides or HDL cholesterol, whereas seven contained both 
triglycerides and HDL cholesterol. Of the 27 SNP’s associated with a combination of two 
MetS features, only four were also associated with the prevalence of MetS. This exem-
plifies that not all genetic variants which explain part of the clustering of MetS features 
are also associated with MetS itself.

The SNP’s discovered in GWAS on MetS and on specific combinations of MetS features 
could only explain a small fraction of the correlation among the MetS features [44]. 
Many more genetic variants explaining the clustering of MetS features remain to be 
discovered. These genetic variants may be discovered by studying genetic associations 
with MetS as endpoint. Alternatively, they may be discovered by studying genetic asso-
ciations with specific combinations of MetS features.

There are several ways in which a genetic variant can contribute to the co-occurrence 
of two MetS features. The three models presented below illustrate this.
According to the first model, the effect of a genetic variant on MetS feature 1 is com-
pletely mediated by the effect of a genetic variant on MetS feature 2 (figure 2a). In this 
case, the association between the genetic variant and MetS feature 2 would completely 
disappear after adjustment for MetS feature 1. A good example of this model is the 
association of the FTO rs9939609 SNP with glucose, insulin and lipid levels. The asso-
ciations with these endpoints disappeared after adjustment for BMI and were consistent 
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with those predicted given the FTO-BMI and BMI-endpoint associations [54]. According 
to the second model, a genetic variant is associated with two MetS features through 
two independent pathways (figure 2b). For example, the GCKR rs780094 SNP increases 
triglyceride levels via increased VLDL-triglyceride synthesis, but decreases glucose levels 
via decreased hepatic glucose production and increased glucose utilization [60]. It may 
be the case, as for GCKR rs780094, that the pathways leading to distinct phenotypes 
initially overlap, e.g. GCKR rs780094 induces an overexpression of GCK but separates 
afterwards, e.g. GCK overexpression affects lipid and glucose levels via distinct mecha-
nisms. According to the third model, a genetic variant affects the clustering of MetS 
features by changing the strength of an association existing between two MetS features  

A

B

C

Figure 2  A  The effect between the genetic variant and MetS feature 2 is mediated by the effect between
    the genetic variant and MetS feature 1 (model 1)
  B  The genetic variants affects MetS feature 1 and MetS feature 2 via independent pathways
    (model 2)
  C  The genetic variant modifies the association between MetS feature 1 and MetS feature 2
    (model 3)
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(figure 2c). For example, the association between adiposity and blood pressure is 
stronger in carriers of the 350G, 825T or 1429T allele in the GNB3 gene [61].
Application of the three models described above in research on genetic variants and 
several combinations of MetS features may give a deeper insight in how genetic vari-
ants may affect the clustering of MetS features. To the best of our knowledge, these 
models have not been used previously with the underlying aim to explain the cluster-
ing of MetS features.

Research question and outline of the thesis
Currently, it is unclear how the clustering of MetS features can be best studied, i.e. 
which endpoints, features or combinations of features should be investigated. Further-
more, the pathophysiology behind the clustering of MetS features is not fully under-
stood. Therefore, the research questions of this thesis are:

1 Which metabolic endpoints should be studied in order to explain the clustering of 
 MetS features best?

2 Which pathophysiology is underlying the clustering of MetS features?

To investigate the first question we have posed two sub-questions:

1a Which MetS model predicts T2D and CVD best, while still representing one 
 statistical entity?

1b How much genetic variance is shared between the different MetS and MetS 
 related features?

To investigate the second question we have defined two more sub-questions:

2a Which genetic variants are associated with MetS?

2b Are genetic variants located in transcriptional pathways of glucose and lipid metabolism 
 associated with the clustering of MetS features through model 1, 2 or 3?

In the study described in chapter 2 (question 1a) we have designed several one-factor 
MetS models, consisting of traditional and non-traditional MetS features, with con-
firmatory factor analysis in the EPIC-NL case-cohort study [62]. For those MetS mod-
els with a good model fit, we have determined which predicted incident T2D and CVD 
best.
In chapter 3 (question 1b), we have reviewed studies describing genetic correlation 
coefficients between MetS and MetS related features, therewith aiming to identify 
MetS features which have much, and MetS features which have little, genetic variation 
in common.In chapter 4 and 5, we have focused on genetic variants associated with 
MetS (question 2a). In chapter 4, we have systematically reviewed available candidate 
gene studies on MetS. In chapter 5, we have studied whether SNP’s associated with 
waist circumference, insulin resistance, HDL cholesterol, triglycerides or inflammatory 
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biomarkers in GWAS, are also associated with MetS in a random sample of the EPIC-NL 
study [62].
In chapter 6 and 7 we have described the association between specific combinations of 
MetS features and SNP’s in genes, located in transcriptional pathways of glucose and 
lipid metabolism in the Doetinchem cohort [63] (question 2b). In chapter 6 we have 
described if some of these SNP’s were associated with multiple MetS features, either 
independently (model 2) or through a mediating effect (model 1). In chapter 7 we have 
studied whether interaction effects existed between these SNP’s and BMI on glucose lev-
els (model 3).
In chapter 8 we have discussed the findings of this thesis, their public health rele-
vance and methodological considerations. Furthermore, recommendations for further 
research have been given.
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Abstract
Objective
Metabolic syndrome (MetS) is a cluster of abdominal obesity, hyperglycemia, hyper-
tension and dyslipidemia, which increases the risk for type 2 diabetes and cardiovascu-
lar diseases (CVD). Some argue that MetS is not a single disorder, because the traditional 
MetS features do not represent one entity. They would like to exclude features from 
MetS. Others would like to add additional features in order to increase predictive abil-
ity of MetS. The aim is to identify a MetS model which optimally predicts type 2 dia-
betes and CVD, while still representing a single entity

Research, Design and Methods
In a random sample (n=1928) of the EPIC-NL cohort and a subset of the EPIC-NL MOR-
GEN study (n=1333), we tested the model fit of several one-factor MetS models using 
confirmatory factor analysis. We compared predictive ability for type 2 diabetes and 
CVD of these models within the EPIC-NL case-cohort study of 545 incident type 2 dia-
betes, 1312 incident CVD cases, and a random sample, using survival analyses and 
reclassification.

Results
The standard model, representing the current MetS definition (EPIC-NL CFI=0.95; 
MORGEN CFI=0.98), the standard model excluding blood pressure (EPIC-NL CFI=0.95; 
MORGEN CFI=1.00), and the standard model extended with hsCRP (EPIC-NL CFI=0.95) 
had an acceptable model fit. Compared to the standard model, the model extended 
with hsCRP predicted type 2 diabetes (IDI: 0.34) and CVD (IDI: 0.07) slightly better.

Conclusions
It seems valid to represent the traditional MetS features by a single entity. Extension of 
this entity with hsCRP slightly improves predictive ability for type 2 diabetes and CVD.
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Introduction
Metabolic syndrome (MetS) is a cluster of multiple correlated metabolic features, that 
is associated with a fivefold increased risk of type 2 diabetes and a twofold increased 
risk of cardiovascular disease (CVD) [1]. According to the joint interim statement of IDF 
and AHA/NHLBI, MetS is defined as the presence of three or more of the following five 
features: abdominal obesity, hyperglycaemia, hypertension, hypertriglyceridemia and 
low HDL cholesterol levels [1].
Nevertheless, the debate around the definition of MetS is still ongoing. Firstly, several 
expert groups including WHO, NHLBI and IDF are considering the inclusion of addi-
tional features in the definition of MetS [1, 2] such as markers of sub-clinical inflam-
mation [2], markers of liver function [3], uric acid [4] and albumin [2]. This could 
increase the predictive ability of MetS for type 2 diabetes and CVD. Secondly, as MetS 
could be regarded as a single disorder, all features included in the definition of MetS, 
should represent a single entity, i.e. should be captured in a single factor. Currently, it 
is unclear whether MetS can still be considered a single entity after inclusion of addi-
tional features. Some even argue that under the current definition MetS does not rep-
resent a single disorder, and favour exclusion of blood pressure from MetS [5].
Whether the current MetS definition or MetS definitions extended with additional 
features represents a single entity, can be tested with factor analysis. Factor analysis is 
a data reduction technique, which can be used to amalgamate data. Two factor analy-
ses techniques exist: explanatory factor analysis (EFA), which is a data driven technique 
and confirmatory factor analysis (CFA), which is hypothesis driven. In most studies EFA 
has been used [6]. However, due to the explorative and subjective nature of EFA, results 
of EFA studies on MetS are inconsistent [7]. In contrast, conclusion of CFA studies were 
very so far quite consistent, suggesting that the MetS features included in the cur-
rent definition represent one entity [4, 7-12]. However, as CFA MetS models including 
additional features, such as hsCRP [8], uric acid [4], albumin and liver enzymes, have 
rarely been studied, it is unknown whether they represents one entity. Furthermore, to 
the best of our knowledge, the different one-factor CFA MetS models, have never been 
compared with respect to their predictive ability for the development of type 2 diabetes 
and CVD. Once a MetS model, that optimally predicts type 2 diabetes and CVD, while 
still representing one disorder, has been identified, future research should focus on the 
pathophysiology behind this MetS model. A deeper understanding of this pathophysi-
ology may eventually lead to development of treatment strategies targeting the mecha-
nism responsible for the co-occurrence of MetS features.
The first aim of this paper was to test if the traditional MetS features represent a sin-
gle factor, and if so, if this was still the case after inclusion of novel MetS features. The 
second aim was to identify a MetS model that best predicts type 2 diabetes and CVD, 
while still representing a single factor.
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Research, Design and Methods
EPIC-NL: Study design
The EPIC-NL cohort consists of the two Dutch contributions to the European Inves-
tigation into Cancer and Nutrition (EPIC) project: the Prospect and the Monitoring 
Project on Risk Factors for Chronic Diseases (MORGEN) cohorts. Both cohorts were 
initiated in 1993 and the study design of this combined cohort is described in detail 
elsewhere [13]. In brief, Prospect is a prospective cohort study among 17 357 women 
aged 49-70 who participated in the breast cancer screening between 1993 and 1997. 
The MORGEN-project consists of 22 654 men (n = 10 260) and women (n = 12 394) aged 
20-59 years recruited from three Dutch towns (Amsterdam, Doetinchem, and Maas-
tricht). From 1993 to 1997, each year a new random sample of approximately 5000 
individuals were examined for the MORGEN-project. Both studies complied with the 
Declaration of Helsinki. The Prospect-EPIC study was approved by the Institutional 
Review Board of the University Medical Center Utrecht and the MORGEN project was 
approved by the Medical Ethical Committee of TNO, The Netherlands [13].

Study Population
Analyses were performed in two subsets composed of EPIC-NL participants, in whom 
all MetS features were measured: the EPIC-NL case-cohort study [13] and a subset of 
EPIC-NL MORGEN participants [14]. The EPIC-NL case-cohort study consist of a 6.5% 
baseline random sample of the total EPIC-NL study (n=2604), all incident diabetes 
cases (n=924) and all incident CVD cases (n=2030). In the EPIC-NL case-cohort study, 
we compared the model fit and predictive ability for type 2 diabetes, CHD and stroke 
of different MetS models. Blood status was non-fasting and glucose status was assessed 
with haemoglobin A1c (HbA1C). In addition to information on traditional MetS fea-
tures, also information on non-traditional MetS features, such as high sensitive C-reac-
tive protein (hsCRP), was available.
The EPIC-NL MORGEN subset was used as a replication sample for the analysis on model 
fit. This subset consists of 1379 non-diabetic participants, who indicated that their last 
meal was on the day before blood sampling. In contrast to the EPIC-NL case-cohort 
study, plasma glucose was measured instead of HbA1C, while information on non-
traditional MetS features was not available.
Participants with missing blood samples (157 participants in the random sample; 174 
incident CVD cases; and 66 incident type 2 diabetes), participants who were taking glu-
cose lowering or blood pressure lowering medication (282 participants in the random 
sample; 709 incident CVD cases; and 279 incident type 2 diabetes; and 45 participants 
of the MORGEN subset) or participants with missing values for one of the MetS or MetS 
related features (237 participants in the random sample; 34 incident diabetes cases; and 
165 incident CVD cases) were excluded. Subjects with missing blood samples were on 
average 2.4 years older and had a 1.1 kg/m² higher BMI, than those without missing 
blood samples. Age and BMI were similar between subjects with and without missing 
values for one of the MetS or MetS related feature. Finally, the EPIC-NL case-cohort 
study consisted of 1928 participants in the random sample, 545 incident diabetes cases 
and 1312 incident CVD cases. For the risk prediction analyses prevalent type 2 diabetes 
and CVD cases were excluded from the random sample. Of the random sample partici-
pants, 53 were incident type 2 diabetes cases and 88 were incident CVD cases. The EPIC-
NL MORGEN subset consisted of 1333 participants. Of the EPIC-NL participants 133 were 
included both in the EPIC-NL case-cohort study and in the EPIC-NL MORGEN subset.



27  |  chapter 2

Ascertainment of diabetes in EPIC-NL
The ascertainment and verification of diabetes cases has been described in detail else-
where [15]. In short, diabetes was ascertained via self-report, a urinary glucose strip test 
and linkage to registers of hospital discharge diagnoses. Self-reported diabetes status 
was assessed in the baseline questionnaire and in 2 follow-up questionnaires, which 
were sent out within regular intervals of three to five years. For Prospect participants 
only, a urinary glucose strip was sent out with the first follow-up questionnaire. Follow 
up by linkage to registers of hospital discharge diagnoses was completed on the 1st of 
January 2006. Potential cases were verified against participants' general practitioner or 
pharmacist information. Only verified type 2 diabetes cases were included.

Ascertainment of cardiovascular disease in EPIC-NL
Data on CVD morbidity were obtained through linkage with the national medical reg-
istry. For CVD mortality, vital status was obtained through linkage with the munici-
pal population registries. Subsequently, primary and secondary causes of death were 
obtained through linkage with Statistics Netherlands. Follow up was completed on 1st 
of January 2006. Coronary heart disease (CHD) was coded with ICD-9 codes 410-414 
and Cerebro Vascular Accident (CVA) with ICD-9 codes 430-434, 436 [16]. CVD was 
defined as the presence of CHD, CVA or both.

Baseline measurements in EPIC-NL
At baseline, a physical examination was performed and non-fasting blood samples 
were drawn. Furthermore, a general questionnaire and an food frequency question-
naire (FFQ) were filled out by each participant [13].
During the physical examination, systolic and diastolic blood pressure measurements 
were performed twice in the supine position on the right arm using a Boso Oscillo-
mat (Bosch & Son, Jungingen, Germany) (Prospect) or twice on the left arm using 
a random zero sphygmomanometer (MORGEN). The mean of the two measurements 
was taken. Waist circumference and height were measured. Body weight was meas-
ured with light indoor clothing without shoes. Blood levels of established biochemical 
parameters were measured in EDTA or citrate plasma. HbA1c was measured in eryth-
rocytes using an immunoturbidimetric latex test. High-density lipoprotein (HDL) was 
measured with a homogeneous assay with enzymatic endpoint. Trigycerides, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase 
(GGT), uric acid and glucose were measured using enzymatic methods, whereas hsCRP 
was measured with a turbidimetric method. Albumin was measured using a colorimet-
ric method [13, 14].
Data on smoking habits, educational level, self-reported medication use, physical 
activity, and alcohol intake were obtained by general questionnaires and a FFQ. Physi-
cal activity was categorized by calculating the Cambridge Physical Activity Score [17].

Statistics
Triglycerides, hsCRP, ALT, AST and GGT were log transformed to improve normality. 
Using confirmatory factor analysis (CFA), we designed several second-order one fac-
tor MetS models based on the MetS model of Shen et al. [9]. These models con-
sisted of three levels: a single MetS factor; several first-order factors (e.g. lipids), which 
defined the single MetS factor; and some second-order factors (e.g. triglycerides and 
HDL cholesterol), which defined the first-order factors. We designed the following one-
factor MetS models: model 1, a standard MetS model, based on the current defini-
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tion of MetS [1], including the traditional MetS features, i.e. waist circumference, 
triglycerides, HDL cholesterol, systolic blood pressure, diastolic blood pressure and as 
marker of glucose status, either HbA1C or glucose (figure 1a, 1b); model 2, a stand-
ard MetS model excluding the blood pressure factor; and model 3, a standard MetS 
model extended with either a hsCRP factor (figure 1c), a albumin factor, a uric acid fac-
tor or a liver enzymes factor. The liver enzymes factor was a first-order factor defined 
by the second-order factors ALT, AST en GGT. In all models, the factor variance of the 
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Figure 1  A  The standard second-order one-factor MetS model in the random sample of EPIC-NL
  B  The standard second-order one-factor MetS model in the subset of the MORGEN study
  C  The standard second-order one-factor MetS model extended with hsCRP in the random
    sample of EPIC-NL

Data are presented as factor loading (standard error); All factor loadings are significant (P<0.05); The first-order factors are: WC, lipids, 

HbA1C, FPG and BP; The second-order factors are: TG, HDL, SBP and DBP; Mets, Metabolic syndrome; WC, waist circumference; TG, 

triglycerides; HDL, HDL-cholesterol; HbA1C, haemoglobin A1c; FPG, fasting plasma glucose; BP, blood pressure; SBP, systolic blood 

pressure; DBP, diastolic blood pressure

A
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MetS factor, the factor loading of triglycerides, and the factor loading of systolic blood 
pressure were fixed to 1. For model 3, the MetS model excluding blood pressure, not 
enough degrees of freedom (df ) were available to calculate model fit. Therefore, the 
error variance of the factor with the highest factor loading (waist circumference) was 
fixed to 1 for the model fit calculations of this model.
Model fit of MetS models composed of traditional MetS features was calculated both 
in the random sample of EPIC-NL and in the EPIC-NL MORGEN subset. Model fit of 
MetS models including non-traditional features was calculated only in the random 
sample of EPIC-NL. We compared the model fit of all alternative MetS models with 
the model fit of the standard one-factor MetS model (model 1). Factor loadings and 
standard errors were obtained using the maximum likelihood method. The χ² test, the 
comparative fit index (CFI), the standardized root means square residual (SRMR) and 
the root mean square error of approximation (RMSEA) were used to assess model fit. 
Models with RMSEA >0.10, CFI <0.95 or SRMR >0.08 were rejected [18]. The χ² differ-
ence test was used to compare model fit across different models.
For MetS models with an acceptable model fit, we compared the predictive ability of 
the factor scores for incidence of type 2 diabetes, CVD, CHD and CVA in the EPIC-NL 
case-cohort study. We calculated the factor scores using the factor score coefficients of 
the different MetS features extracted by the regression method from the random sam-
ple. All factor scores coefficients were standardized to the means and standard errors of 
the MetS features in the random sample. For all factor scores, we calculated cox pro-
portional hazard ratio’s (HR’s), integral discrimination indices (IDI’s) and C-statistics 
for incidence of type 2 diabetes, CVD, CHD and CVA. For the one factor MetS models, 
HR were calculated per SD of factor score. The change in C-statistics and the IDI’s were 
used to compare predictive ability of the standard MetS model, model 1, with the alter-
native models. The C-statistic is equivalent to the probability that the predicted risk is 
higher for a case than for a non-case [19].
The IDI can be viewed as the difference in the proportion of variance explained by 
two models [20]. Model calibration was tested by the Hosmer-Lemeshow chi-square 
test. IDI’s and C-statistics were adjusted for the overrepresentation of cases in the case-
cohort study by inverse probability weighing. HR’s were adjusted with a pseudo likeli-
hood method [21].
CFA analyses were performed in MPLUS sixth edition (Los Angeles, CA: Muthén & 
Muthén). HR’s, C-statistics and IDI’s were calculated in SAS version 9.2 (SAS Institute, 
INC., Cary, North Carolina).

Results
Baseline characteristics of the study population are provided in table 1. Participants in 
the EPIC-NL case-cohort study were on average 51.8 years and 28.5% was male. MetS 
prevalence was higher in incident diabetes cases (77.4%) and incident CVD cases (46.0%) 
than in the random sample (26.7%). In the MORGEN subset, participants were on aver-
age 39.1 years and 50.5% was male. MetS prevalence was somewhat lower (14.9%) than 
in the random sample of EPIC-NL (26.7%).
The standard one-factor MetS model (model 1; figure 1a, b), which is based on the cur-
rent definition of MetS, had an acceptable model fit with a CFI of 0.95 (table 2). Other 
one-factor MetS models with a good model fit were the MetS model excluding blood 
pressure (model 2) and the MetS model extended with hsCRP (model 3; figure 1c). The 
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Table 1 Baseline characteristics of the EPIC-NL study

    EPIC-NL case-cohort    Subset of
    Random sample Type 2 diabetes CVD  EPIC-MORGEN
    (n=1928)  (n=545)  (n=1312)  (n=1333)

Sex (% men)      25.9 (500)    27.2 (148)    33.5 (440 )   50.5 (673)
Age (yr)        48.9 (11.7)   55.7 (7.3)    55.0 (8.9)    39.1 (10.6)
Waist circumference (cm)    85.5 (11.4)   96.7 (11.5  )  89.6 (12.0)   86.5 (12.6)
BMI (kg/m2)      25.8 (3.9)    29.5 (4.5)    26.6 (4.0)    25.2 (4.0)
HbA1C (%)       5.40 (0.61)   6.33 (1.30)   5.64 (0.83)   -
Plasma glucose (mmol/L)    -    -    -    5.31 (0.97)
HDL-cholesterol (mmol/L)    1.28 (0.34)   1.05 (0.26)   1.18 (0.32)   1.32 (0.36)
Triglyceride (mmol/L)     1.31 (0.92-1.94) a  2.01 (1.40-2.74) a  1.54 (1.12-2.27) a  0.94 (0.69-1.40)
Systolic Blood Pressure (mm Hg)   124.8 (17.7)  137.3 (22.0)  134.8 (21.1)  118.7 (15.6)
Diastolic Blood Pressure (mm Hg)  77.3 (10.2)   82.9 (10.9)   81.4 (11.3)   77.5 (10.3)
MetS prevalence(%) a,b    26.7 (515)    77.4 (422)    46.0 (603)    14.9 (199)
hsCRP (mmol/L)      1.22 (0.57-2.67)  2.50 (1.15-4.75)  1.74 (0.81-3.53)  -
Alanine Aminotransferase (IU/L)    14.5 (11.9-18.4)  16.8 (13.2-22.7)  14.6 (11.9-18.8)  -
Aspartate Aminotransferase (IU/L)  20.0 (17.4-23.5)  20.9 (17.5-25.5)  20.1 (17.5-24.1)  -
Gamma Glutamyltransferase (IU/L)  20.7 (16.5-28.1)  28.5 (22.6-40.2)  24.4 (19.2-33.1)  -
albumin (g/L)      38.9 (4.9)    37.7 (4.8)    38.2 (4.9)    -
uric acid (mmol/L)      258.5 (67.7)  284.9 (70.4)  269.0 (70.9)  -
Cambridge Physical Activity Index  2.8 (1.0)    2.7 (1.1)    2.7 (1.1)    2.6 (1.1)
Current smokers (%)      32.2 (620)    29.3 (158)    42.7 (556)    51.9 (686)
Alcohol abstainers (%)    9.5 (176)    11.2 (59)    6.5 (83)    13.9 (184)
Alcohol (g/d) c      12.3 (15.5)   9.5 (13.8)    12.6 (16.5)   17.9 (23.0)
Highly educated (%) d     21.6 (412)    9.5 (51)    14.5 (189)    18.6 (248)

Data are presented as means (standard deviation), median (p25-p75) or %(n); Subjects with blood pressure lowering or glucose lowering medication are excluded; 

CVD, cardiovascular disease; BMI, body mass index; HbA1C, haemoglobin A1c; MetS, metabolic syndrome; hsCRP, high sensitive C-reactive protein
a  Non-fasting values
b  MetS is defined as having 3 or more of the following features: Hyperglycemia: HbA1C ≥5.7% or fasting plasma glucose ≥5.6 mmol/L; Abdominal obesity: ♂ ≥102 

cm; ♀≥ 88 cm; Low HDL: ♂ <1.0; ♀<1.3 mmol/L; Hypertriglyceridemia: ≥1.7 mmol/L ;Hypertension: ≥130/85 mm Hg;
c  Among alcohol users
d  People who completed higher vocational education or university.

Table 2  Model fit indices of several MetS models in the random sample of the EPIC-NL study and in a subset with participants 
  of the MORGEN study

 random sample EPIC-NL (n=1928)   Subset of MORGEN (n=1333)
Model χ2 df P RMSEA SRMR CFI χ2 df P RMSEA SRMR CFI

Standard one factor model (1)  150.2  7  <0.001  0.10  0.045  0.95  56.0  7  <0.001  0.07  0.039  0.98
Model 1  –  blood pressure (2)  43.1  2  <0.001  0.10  0.040  0.95  2.2  2  0.34  0.01  0.01  1.00
Model 1  +  hsCRP (3)  163.3  12  <0.001  0.08  0.040  0.95           
Model 1  +  uric acid (4)  289.4  12  <0.001  0.11  0.059  0.92           
Model 1  +  liver enzymes (5)  440.5  24  <0.001  0.10  0.056  0.92           
Model 1  +  albumin (6)  665.2  12  <0.001  0.09  0.168  0.80           

Difference  (model 2  –  model 1)  -107.1 a  5  <0.001        -53.8 a  5  <0.001     
Difference  (model 3  –  model 1)  13.1  5  0.03                 
Difference  (model 4  –  model 1)  139.2  5  <0.001                 
Difference  (model 5  –  model 1)  290.3  17  <0.001                 
Difference  (model 6  –  model 1)  515.0  5  <0.001                 

a  Absolute values are used to calculate significance of χ2

CFI, comparative fit index; SRMR, standardized root means square residual; RMSEA, mean square error of approximation
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CFI’s of one-factor MetS models extended with uric acid, liver enzymes or albumin 
were below 0.95, indicating that their model fit was unacceptable. These extended 
MetS models did also not fit well, after the exclusion of the blood pressure factor (data 
not shown). Compared to the standard MetS model (model 1), the standard MetS 
model excluding blood pressure (model 2) fitted better, whereas the model extended 
with hsCRP (model 3) fitted worse.
HR’s for type 2 diabetes (HR 2.71, 95%CI 2.30-3.18) and CVD (HR 1.25, 95%CI 1.13-1.39) 
were lowest in the MetS model excluding blood pressure (model 2), whereas they were 
highest in the MetS model extended with hsCRP (HR type 2 diabetes 3.94, 95%CI 3.28-
4.74; CVD 1.28, 95%CI 1.16-1.42)(table 3). Off all MetS models, the model extended 
with hsCRP (model 3) predicted type 2 diabetes, CHD, CVA and CVD the best (type 2 dia-
betes C-index 0.8013; CVD C-index 0.6352). For all models the the Hosmer-Lemeshow 
test was not-significant, indicating a good calibration.

Discussion
We have examined the factor structure of MetS using confirmatory factor analysis 
(CFA) in two population based study samples. The good model fit of the standard one-
factor MetS model, representing the current definition, indicated that it is valid to 
compose one entity out of the traditional MetS features. If the standard MetS model 
was extended with hsCRP predictive ability for type 2 diabetes and CVD increased 
slightly, while model fit was still acceptable.
In line with the results of previous CFA studies [7-9], we found that it is valid to com-
pose out of the five traditional MetS features one entity, i.e. one factor. The model fit of 
a one-factor MetS model, composed of the traditional MetS features, was even better 
after exclusion of the blood pressure factor. This is consistent with other studies indi-
cating that blood pressure is distinct from the other traditional MetS features, both 
from a physiological [22] and a statistical point of view. For example, blood pressure 
generally has the lowest factor loading in CFA MetS models [7-11]. Furthermore, blood 

Table 2  Model fit indices of several MetS models in the random sample of the EPIC-NL study and in a subset with participants 
  of the MORGEN study

 random sample EPIC-NL (n=1928)   Subset of MORGEN (n=1333)
Model χ2 df P RMSEA SRMR CFI χ2 df P RMSEA SRMR CFI

Standard one factor model (1)  150.2  7  <0.001  0.10  0.045  0.95  56.0  7  <0.001  0.07  0.039  0.98
Model 1  –  blood pressure (2)  43.1  2  <0.001  0.10  0.040  0.95  2.2  2  0.34  0.01  0.01  1.00
Model 1  +  hsCRP (3)  163.3  12  <0.001  0.08  0.040  0.95           
Model 1  +  uric acid (4)  289.4  12  <0.001  0.11  0.059  0.92           
Model 1  +  liver enzymes (5)  440.5  24  <0.001  0.10  0.056  0.92           
Model 1  +  albumin (6)  665.2  12  <0.001  0.09  0.168  0.80           

Difference  (model 2  –  model 1)  -107.1 a  5  <0.001        -53.8 a  5  <0.001     
Difference  (model 3  –  model 1)  13.1  5  0.03                 
Difference  (model 4  –  model 1)  139.2  5  <0.001                 
Difference  (model 5  –  model 1)  290.3  17  <0.001                 
Difference  (model 6  –  model 1)  515.0  5  <0.001                 

a  Absolute values are used to calculate significance of χ2

CFI, comparative fit index; SRMR, standardized root means square residual; RMSEA, mean square error of approximation
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Table 3  Predictive ability of several MetS models for type 2 diabetes and CVD

   Standard MetS model Standard MetS model Standard MetS model
   (reference)  minus blood pressure extended with hsCRP

Included MetS features  TG, HDL, HbA1C, WC,    TG, HDL, HbA1C, WC    TG, HDL, HbA1C, WC, 
      SBP, DBP            SBP, DBP, hsCRP
Diabetes (n=545)
HR (95% CI) a    3.58  (3.05; 4.20)  2.70  (2.37; 3.11)   3.77  (3.21; 4.42)
HR (95% CI) b    3.70  (3.09; 4.42)  2.71  (2.30; 3.18)   3.94  (3.28; 4.74)
C-index      0.7949      0.7539      0.8013
C-index change (P-value)  -      -0.0411  (<0.0001)    0.0064  (0.0001)
IDI (95% CI)    -      -1.58  (-1.89; -1.28)  0.34  (0.25; 0.44)
P-value Hosmer-Lemeshow  0.36      0.21      0.87

CVD (n=1312)
HR (95% CI) a    1.31  (1.20; 1.43)  1.28  (1.17; 1.39)   1.33  (1.22; 1.46)
HR (95% CI) b    1.26  (1.14; 1.40)  1.25  (1.13; 1.39)   1.28  (1.16; 1.42)
C-index      0.6315      0.6153      0.6352
C-index change (P-value)  -      -0.0162  (<0.0001)    0.0037  (0.01)
IDI (95% CI)    -      -0.22  (-0.28; -0.20)  0.07  (0.04; 0.09)
P-value Hosmer-Lemeshow  0.76      0.94      0.95

CHD (n=956)
HR (95% CI) a    1.40  (1.27; 1.55)  1.37  (1.24; 1.52)   1.42  (1.29; 1.57)
HR (95% CI) b    1.35  (1.20; 1.51)  1.30  (1.16; 1.47)   1.36  (1.21; 1.53)
C-index      0.6496      0.6336      0.6519
C-index change (P-value)  -      -0.0161  (<0.0001)    0.0022  (0.16)
IDI (95% CI)    -      -0.19  (-0.23; -0.15)  0.04  (0.02; 0.06)
P-value Hosmer-Lemeshow  0.88      0.95      0.96

CVA (n=375)
HR (95% CI) a    1.11  (0.98 ; 1.25)  1.07  (0.95; 1.21)   1.13  (1.00; 1.29)
HR (95% CI) b    1.08  (0.93; 1.25)  1.04  (0.90; 1.19)   1.10  (0.95; 1.28)
C-index      0.5760      0.5603      0.5828
C-index change (P-value)  -      -0.0157  (<0.0001)    0.0068  (0.004)
IDI (95% CI)    -      -0.04  (-0.05; -0.02)  0.02  (0.01; 0.03)
P-value Hosmer-Lemeshow  0.68      0.83      0.90

HR, hazard ratio; IDI, Integrated discrimination improvement; hsCRP, high sensitive C-reactive protein; Hazard ratios are presented per standard deviation,

  IDI’s are presented as % improvement
a  adjusted for age, sex and cohort 
b  adjusted for age, sex, cohort, smoking (current, former, none), education level, Cambridge physical activity index and alcohol intake

pressure is identified as a separate factor in most EFA studies [6]. Although omitting 
the blood pressure factor improved model fit, it also considerably decreased predictive 
ability for type 2 diabetes, CVA and CHD. Since this predictive ability is of clinical rel-
evance, removal of blood pressure from the MetS definition is questionable.
Of the one-factor MetS models extended with non-traditional MetS features only the 
MetS model extended with hsCRP had an acceptable model fit. In 645 non-Hispanic 
whites or African Americans, an essentially similar MetS model also had a good model 
fit [8]. In our data the MetS model extended with hsCRP predicted type 2 diabetes, CVA 
and CHD slightly better than the standard MetS model. In two large prospective cohort 
studies hsCRP added substantial prognostic information to MetS [23, 24]. Therefore, 
in contrast to our study, the addition of hsCRP to MetS was clinically relevant in these 
previous studies. Part of the added predictive power of hsCRP may be explained by the 
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association of hsCRP with insulin resistance and fibrinolysis. Both increase risk of type 
2 diabetes and CVD, but are not included in the current definition of MetS [25].
In our study, the model fit of other one-factor MetS models extended with additional 
features, i.e. albumin, liver enzymes or uric acid was not acceptable. To the best of our 
knowledge models extended with albumin or liver enzymes have not been previously 
studied. Our results with respect to these models are, however, in line with several 
EFA studies [23-26]. Contrary to our results, among 410 Spanish participants, a one-
factor MetS model extended with uric acid had a very good model fit (CFI 0.99) [4]. 
The relatively low factor loading of MetS features strongly associated with uric acid, 
such as glucose [27], may explain the bad model fit of model extended with uric acid 
in our data.
Strength of our study was the hypothesis driven CFA approach, which we used to com-
pare the model fit of a standard MetS model with several modified MetS models. 
Results of CFA studies are generally much more reproducible, than results of EFA studies. 
Furthermore, we tested the model fit of the MetS models in two relatively large study 
samples, and results were very similar. A limitation of our study was the absence of glu-
cose measurements in the EPIC-NL case-cohort study. HbA1C levels were used instead. 
HbA1C levels were highly correlated with fasting plasma glucose levels (r²=0.75) in 160 
participants with both measurements available. Despite this, the correlation between 
HbA1C and waist circumference was much weaker than the correlation between fast-
ing plasma glucose and waist circumference. This weak correlation, which has also 
been observed by others [28], resulted in a relative low factor loading for the glucose 
factor (based on HbA1C) in the random sample of EPIC-NL. This can perhaps explain 
why the model fit was generally worse for the MetS models in the random sample of 
EPIC-NL, compared to the models of the EPIC-NL MORGEN subset. A second limitation 
was that triglycerides levels were non-fasting in the EPIC-NL case-cohort study. As post-
prandial lipid levels are more strongly correlated with MetS features than fasting lipid 
levels, we may have overestimated the factor loadings of the lipid factor in the EPIC-NL 
case-cohort [29]. This is confirmed by the fact that the factor loading of the lipid factor 
was higher the EPIC-NL random sample than in the MORGEN subset, in which fasting 
sample were used. The participants (~7%) we excluded from the EPIC-NL case-cohort 
due to missing blood samples, had on average a 1.1 kg/m² higher BMI. As the correla-
tions between waist circumference and other MetS features were slightly higher in the 
group with missing blood samples, exclusion of these participants may have resulted 
in somewhat lower factor loadings for the waist circumference factor. Additionally, the 
two datasets we used were not completely independent, as 133 subjects were present 
both in the EPIC-NL case-cohort study and in the MORGEN subset. However, when we 
excluded these 133 participants from the MORGEN subset, results were essentially simi-
lar. Finally, in order to be able to estimate model fit of the MetS model excluding blood 
pressure, we fixed the error variance of waist circumference in this model to one. This 
fixation has probably worsened the model fit. Therefore, we may have underestimated 
the improvement in model fit obtained by deleting the blood pressure factor.
In conclusion, it is valid to compose out of the traditional MetS features one entity and 
consequently to view MetS as a single disorder. A model additionally including hsCRP 
still represented a single entity and predicted type 2 diabetes and CVD somewhat better 
than a MetS model with only the traditional features. Therefore inclusion of hsCRP in 
future MetS definitions may be considered.
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Abstract
Heritability estimates of MetS range from approximately 10%−30%. The genetic varia-
tion that is shared among MetS features can be calculated by genetic correlation coef-
ficients. The objective of this paper is to identify MetS feature as well as MetS related 
features which have much genetic variation in common, by reviewing the literature 
regarding genetic correlation coefficients. Identification of features, that have much 
genetic variation in common, may eventually facilitate the search for pleitropic genetic 
variants that may explain the clustering of MetS features.
A PubMed search with the search terms “(metabolic syndrome OR insulin resistance 
syndrome) and (heritability OR genetic correlation OR pleiotropy)” was performed. 
Studies published before July 7th 2011, which presented genetic correlation coefficients 
between the different MetS features and genetic correlation coefficients of MetS and 
its features with adipose tissue-, pro-inflammatory and pro-thrombotic biomarkers 
were included.
Nine twin and 19 family studies were included in the review. Genetic correlations var-
ied, but were strongest between waist circumference and HOMA-IR (r²: 0.36 to 0.79, 
median: 0.50), HDL cholesterol and triglycerides ( r²: −0.05 to −0.59, median −0.45), 
adiponectin and MetS (r²: −0.32 to −0.43; median −0.38), adiponectin and insulin 
(r²: −0.10 to −0.60; median −0.30) and between adiponectin and HDL-cholesterol 
(r²: −0.22 to −0.51, median −0.29).
In conclusion, heritability studies suggest that genetic pleiotropy exist especially 
between certain MetS features, as well as between MetS and adiponectin. Further 
research on actual genetic variants responsible for the genetic pleiotropy of these com-
binations will provide more insight into the etiology of MetS.
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Introduction
Metabolic syndrome (MetS) refers to the clustering of abdominal obesity, hypertriglyc-
eridemia, low HDL-cholesterol levels, hypertension and hyperglycemia [1]. People with 
three or more of these features are defined to have MetS according to the consensus 
statement of IDF and NCEP ATP III [1]. People with MetS are at increased risk of coro-
nary heart disease (CHD) and type 2 diabetes (T2D) [1]. Besides the conventional MetS 
features, adipose tissue-, pro-inflammatory- and pro-thrombotic biomarkers, such as 
adiponectin and CRP, are important MetS related factors that play a role in the onset 
of CVD and T2D [2]. If added to the definition of MetS, these biomarkers may improve 
the predictive power of MetS for these conditions [2].
Heritability estimates of MetS range from approximately 10 to 30% [3-5]. This indi-
cates that MetS is influenced both by environmental and genetic factors. The amount 
of additive genetic variation which is shared between two MetS features can be esti-
mated from family and twin studies and is expressed by a genetic correlation coeffi-
cient. A genetic correlation expresses the extent to which two measurement reflect the 
same genetic character [6]. Research on genetic correlations can facilitate the search for 
pleiotropic genetic variants. MetS features which are highly genetically correlated have 
much genetic variation in common. For those features it will be easier to identify com-
mon genetic variants [6]. Identification of, for example, common genetic variants for 
dyslipidemia and insulin resistance may help to understand why some diabetic patients 
will develop dyslipidaemia, while others will not. Eventually, this understanding may 
affect treatment strategies.
Genetic correlation coefficients of the MetS features with each other and with MetS 
related biomarkers have been calculated in multiple twin and family studies. However, 
results of these studies are inconsistent and no overview of the available evidence exists. 
Therefore, the objective of this paper is to summarize these genetic correlation coeffi-
cients in order to identify those MetS features that share much genetic variation with 
another MetS feature or with a MetS related biomarker.
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Methods
An electronic literature search was conducted using PubMed. The search terms “(met-
abolic syndrome OR insulin resistance syndrome) and (heritability OR genetic cor-
relation OR pleiotropy)” were used. Furthermore, we reviewed the reference lists of 
retrieved articles to identify other relevant publications.
Studies included were: 1) published before 7th July 2011; 2) family or twin studies; 
and 3) studies which presented genetic correlation coefficients between the different 
MetS features or studies which presented genetic correlation coefficients of adipose tis-
sue, pro-inflammatory and pro-thrombotic biomarkers with MetS and its individual 
features. No further in or exclusion criteria were used. For each article the following 
information was extracted if applicable: genetic correlation coefficients of MetS fea-
tures, study design (family study or twin study), health status of the study population, 
number of monozygotic twins, number of dizygotic twins, number of families, ethnic-
ity, average age and average BMI.
As correlation coefficients are not normally distributed by definition, we summarized 
genetic correlations coefficients between MetS or MetS related features, by median 
genetic correlation coefficients. As a measure of variation we used the range of genetic 
correlation coefficients. By visual inspection we evaluated whether age, family history, 
ethnicity, and health status of the population influenced the genetic correlation coef-
ficients. If we suspected a population characteristic to influence the genetic correlation 
coefficient and if the population characteristic was present in ≥ 3 studies, we conducted 
a sensitivity analysis.

Results
Our literature search through PubMed yielded 444 articles. In 21 of these articles 
genetic correlation coefficients with MetS features were described. Through review of 
references we identified 7 additional articles. Finally, we included 9 twin [7-15] and 19 
family studies [3, 15-33], describing 239 genetic correlations. The number of subjects 
included ranged from 132 to 3234 in the twin studies and from 375 to 5376 in the fam-

Table 1 Median genetic correlation coefficients of MetS features with each other and with adiponectin

    WC   FPG   HOMA-IR   TG   HDL   MetS

FPG      0.16 (0.01; 0.51)  (n=6)  -      -      -      -      -
HOMA-IR      0.59 (0.41; 0.79)  (n=7)  -      -      -      -      -
TG      0.32 (-0.61; 0.61)  (n=8)  0.19 (-0.32; 0.30)  (n=9)  0.37 (-0.12; 0.57)  (n=7)  -      -      -
HDL      -0.22 (-0.50; 0.03)  (n=7)  -0.07 (-0.26; 0.08)  (n=7)  -0.30 (-0.50; -0.09)  (n=6)  -0.46 (-0.59; 0.07)  (n=12)  -      -
SBP      0.22 (0.00; 1.00)  (n=9)  0.07 (-0.15; 0.58)  (n=9)  0.23 (0.06; 0.59)  (n=6)  0.08 (-0.42; 0.22)  (n=9)  -0.04 (-0.23; 0.07)  (n=10)  -
DBP      0.16 (0.08; 0.61)  (n=7)  0.10 (-0.08; 0.27)  (n=6)  0.33 (0.23; 0.43)  (n=6)  0.09 (-0.63; 0.19)  (n=6)  -0.12 (-0.16; 0.03)  (n=6)  -
Adiponectin    -0.23 (-0.20; -0.29)  (n=3)  -0.10 (-0.40; 0.01)  (n=4)  -0.26 (-0.10; -0.60)  (n=4)  -0.19 (-0.12; -0.35)  (n=4)  0.22 (0.27; 0.51)  (n=4)  -0.32 (-0.43; -0.37)  (n=2)

Data are presented as median genetic correlation coefficients (lowest genetic correlation coefficient – highest genetic correlation coefficient)

n, number of studies in which the genetic correlations has been presented; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

TG, triglyceride levels; HDL, HDL-cholesterol levels; FPG, fasting plasma glucose; INS fasting insulin; HOMA-IR, homeostasis model assessment insulin resistance; 

MetS, metabolic syndrome
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Table 1 Median genetic correlation coefficients of MetS features with each other and with adiponectin

    WC   FPG   HOMA-IR   TG   HDL   MetS

FPG      0.16 (0.01; 0.51)  (n=6)  -      -      -      -      -
HOMA-IR      0.59 (0.41; 0.79)  (n=7)  -      -      -      -      -
TG      0.32 (-0.61; 0.61)  (n=8)  0.19 (-0.32; 0.30)  (n=9)  0.37 (-0.12; 0.57)  (n=7)  -      -      -
HDL      -0.22 (-0.50; 0.03)  (n=7)  -0.07 (-0.26; 0.08)  (n=7)  -0.30 (-0.50; -0.09)  (n=6)  -0.46 (-0.59; 0.07)  (n=12)  -      -
SBP      0.22 (0.00; 1.00)  (n=9)  0.07 (-0.15; 0.58)  (n=9)  0.23 (0.06; 0.59)  (n=6)  0.08 (-0.42; 0.22)  (n=9)  -0.04 (-0.23; 0.07)  (n=10)  -
DBP      0.16 (0.08; 0.61)  (n=7)  0.10 (-0.08; 0.27)  (n=6)  0.33 (0.23; 0.43)  (n=6)  0.09 (-0.63; 0.19)  (n=6)  -0.12 (-0.16; 0.03)  (n=6)  -
Adiponectin    -0.23 (-0.20; -0.29)  (n=3)  -0.10 (-0.40; 0.01)  (n=4)  -0.26 (-0.10; -0.60)  (n=4)  -0.19 (-0.12; -0.35)  (n=4)  0.22 (0.27; 0.51)  (n=4)  -0.32 (-0.43; -0.37)  (n=2)

ily studies. Thirteen studies were conducted in Caucasian populations [3, 10-12, 14-17, 
22, 23, 29-32], eight in Hispanic populations [18, 21, 24, 26-28, 30, 33] and seven in 
Asian populations [7-9, 13, 19, 20, 25] (Supplementary table 1, Supplementary table 2).
In table 1, median values of genetic correlation coefficients between MetS features 
across all studies are presented. Genetic correlation coefficients were strongest for waist 
circumference and HOMA-IR (r²: 0.41 to 0.79, median: 0.59) (figure 1), and for HDL cho-
lesterol and triglycerides (r²: 0.07 to −0.59, median −0.46) (figure 2). The genetic cor-
relation coefficients for blood pressure and HDL cholesterol (r²: −0.23 to 0.06, median; 
−0.09), blood pressure and triglycerides (r²: −0.63 to 0.22, median; 0.10), blood pres-
sure and fasting glucose (r²: −0.15 to 0.58, median; 0.13) and for fasting glucose and 
HDL cholesterol (r²: −0.26 to 0.08, median −0.07) were lowest. Functioning of glucose 
metabolism was measured with different indices. The genetic correlations with HOMA-
IR were generally higher than the genetic correlations with fasting glucose.
In Supplementary table 2, genetic correlations of MetS and its features with related 
biomarkers are presented. Genetic correlations have been published for 9 biomark-
ers. Most studies have been published on adiponectin, whereas only a few studies 
have been published on other biomarkers. Total and high molecular weight adiponec-
tin were most strongly genetically correlated with MetS (r²: −0.32 to −0.43, median 
−0.37), HDL cholesterol (r²: 0.22 to 0.51; median 0.27) and HOMA-IR (r²: −0.10 to 
−0.60; median −0.26). In the study of Menzaghi et. al [31], the genetic correlations 
were stronger with total and high molecular weight adiponectin than with medium 
and low molecular weight adiponectin.
Having evaluated the individual estimates, the strength of the genetic correlation coef-
ficients did not seem to depend on study type, ethnicity, age or BMI of the population 
(Supplementary table 1, Supplementary table 2). In a study population with a high 
family history of obesity, genetic correlation coefficients with waist circumference were 
higher than in other studies [3]. Furthermore, we suspected that the health status of 
the study population might influence genetic correlation coefficients. However, the 
median genetic correlation coefficients calculated from studies conducted among gen-
erally healthy populations, were very similar to the median genetic correlation coeffi-
cients calculated from all studies (e.g. HOMA-IR and waist circumference r²=0.54; HDL 
cholesterol and triglycerides r²=−0.46)



42  |  chapter 3

-0.2 0.0 -0.4 -0.6 

Tang et al., 2006 (16) 

Median r2 (lowest r2  - highest r2) 

Benyamin et al., 2007 (10) 

Heller et al., 1994 (12) 

Zhang et al., 2009 (7) 

Sung et al., 2009 (8) 

Pang et al., 2010 (9) 

Freeman et al., 2003 (22) 

Mahaney et al., 1995 (26) 

Li et al., 2003 (19) 

Zabaneh et al., 2009 (20) 

Mathias et al., 2009 (25) 

Butte et al., 2005 (21) 

0.6 0.8 0.4 

Benyamin et al., 2007 (10) 

Samaras et al., 1999 (11) 

Bosy-Wesphal et al., 2007 (3) 

Tang et al., 2006 (16) 

Hong et al., 1998 (23) 

Li et al., 2006 (19)  

Mathias et al., 2009 (25) 

Median r2 (lowest r2  - highest r2) 

Figure 2  Summary of genetic correlation coefficients between triglycerides and HDL cholesterol
  in 12 studies

Figure 1  Summary of genetic correlation coefficients between insulin resistance and waist circumference
  in 7 studies
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Discussion
In this paper we have summarized the results of 28 family and twin studies that pre-
sented genetic correlation coefficients between the different MetS features, as well as 
genetic correlations between MetS features and MetS-related biomarkers. Genetic cor-
relations were strongest between waist circumference and insulin resistance, HDL cho-
lesterol and triglycerides, and adiponectin and MetS. The MetS features most strongly 
genetically correlated with adiponectin were insulin and HDL cholesterol.
Generally, the genetic correlations varied widely across studies. Differences in genetic 
architecture between study populations, such as different allele frequencies, could pos-
sibly explain this variation. In one study, for example, only families originating from 
overweight or obese probands were included [3]. Therefore this study population is 
enriched for obesogenic genes. Consequently, the percentage of insulin resistant cases 
caused by obesogenic genes may be relatively high explaining the higher genetic corre-
lation between HOMA-IR and waist circumferences in this study, as compared to other 
studies. Furthermore, as all studies were conducted among different populations in 
different environments, gene-environment interactions could explain some of the dif-
ferences between studies [6]. Finally, random error could also be an issue, especially in 
the smaller study populations [6].
Overall, genetic correlations were higher between MetS features and HOMA-IR, than 
between MetS features and fasting glucose, which increases secondary to insulin resist-
ance [34]. As insulin resistance is one of the mechanisms proposed to initiate MetS 
development, it is not surprising that the genetic correlations are highest for those 
markers which most closely reflect insulin resistance, e.g. HOMA-IR [1]. Until now most 
studies on genetic variants have focused on fasting glucose instead of HOMA-IR. More 
research on genetic variants associated with insulin resistance may therefore help to 
identify genetic variants that influence multiple MetS features.
Currently, only a few genetic variants have been identified which are associated with 
more than one MetS feature. These identified genetic variants are all associated with 
MetS features that are clearly genetically correlated. For example, the high genetic cor-
relation between triglycerides and HDL cholesterol may be partly explained by genetic 
variants in the LPL gene and genetic variants in the APOA1/ APOC3/ APOA4/ APOA5 gene 
cluster. These genetic variants are associated with both HDL cholesterol and triglycer-
ides [35]. Furthermore, genetic variants in the FTO gene are both associated with waist 
circumference and insulin resistance [36]. Therefore these genetic variants may partly 
explain the relatively high genetic correlation coefficient between abdominal obesity 
and insulin resistance.
Genetic correlations of adipose tissue biomarkers, pro-inflammatory biomarkers and 
pro-thrombotic biomarkers, such as adiponectin and CRP, with Mets and its features 
have been calculated in just a few studies [15, 16, 22, 28-33]. Only for adiponectin 
enough studies were conducted to draw meaningful conclusions [28-31]. Adiponectin 
is an adipose tissue secreted hormone, which is decreased in obese and diabetic patients 
[37]. Adiponectin was genetically most strongly correlated with HOMA-IR, fasting insu-
lin, HDL cholesterol and MetS itself. The shared genetic variance of adiponectin with 
MetS and its individual features may be partly explained by the rs4311394 SNP, located 
in the ADP-ribosylation factor-like 15 (ARL15) gene, a gene with unknown function [38]. 
In a recent genome wide association study, ARL15 rs4311394 was not only associated 
with adiponectin, but also with insulin, T2D and CHD [38]. Furthermore, rs4311394 was 
modestly but not significantly associated with BMI [38]. To the best of our knowledge 



44  |  chapter 3

the association between rs4311394 and HDL cholesterol or MetS has not been investi-
gated yet. Besides the ARL15 rs4311394 SNP, genetic variance at the 3q27 locus, may also 
partly explain the genetic correlation between adiponectin and MetS. The 3q27 locus, 
were the gene encoding adiponectin is located, has been associated with MetS and T2D 
in genome wide linkage studies [37].
In this paper we have pointed out the pairs of MetS features that have much genetic 
variation in common, by describing genetic correlation coefficients. A genetic correla-
tion coefficient between two MetS features determines together with the heritabilities 
and environmental correlation coefficient of these features, the phenotypic correlation 
coefficient [6]. If the correlated characters have a low heritability the phenotypic cor-
relation coefficient is mainly determined by the environmental correlation coefficient. 
Vice versa if both traits have a high heritability the phenotypic correlation coefficient is 
mainly determined by the genetic correlation coefficient. With the exception of blood 
pressure, MetS features have an average heritability of around 0.50 [29, 39-41]. There-
fore, one can assume that, except for correlations with blood pressure, genetic correla-
tion coefficients between two MetS features determine roughly 50% of the phenotypic 
correlation coefficients between those features.
The amount of genetic variation shared between two MetS features is determined both 
by the number of genetic variants and by the effect size of these variants. It is not pos-
sible to derive whether the shared genetic variation is caused by a small number of 
genetic variants with a large effect, or by a large number of genetic variants with a small 
effect. Furthermore, genetic correlations only estimate the amount of genetic variation 
shared between two MetS features and do no not give any hint on how this shared 
variation is realized. The shared genetic variation between two MetS features can be 
caused by two independent genetic effects, or the genetic effect on one MetS feature 
may be completely mediated by the effect of another MetS feature [6]. Lastly, one 
should realize that genetic correlation coefficients may be overestimated due to shared 
environmental factors [42]. To get further insight in how the shared genetic variation 
between two traits is realized, it is import to investigate which genetic variants are actu-
ally responsible for the shared genetic variation.
In conclusion, heritability studies suggest that genetic pleiotropy exist between HDL 
cholesterol and triglycerides and between waist circumference and insulin resistance. 
Furthermore, genetic pleiotropy seemed to be present between adiponectin and MetS. 
Further research, on actual genetic variants responsible for the pleiotropy of these 
MetS features, could provide more insight into the etiology of MetS. We suggest to 
start with the analysis of available GWAS for the associations between SNP’s and those 
combinations of MetS features, which are highly genetically correlated.
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Supplementary  Genetic correlation coefficient between the features of the metabolic syndrome obtained
Table 1    from twin- and family studies.

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL
   (N) (N) (N) (N)  (y) (kg/m2)    IR

[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  FPG  0.01  x  x  x  x
[8]  Twin  Y  944  732  212    A  42.4  -  FPG  0.18  x  x  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  FPG  0.14  x  x  x  x
[18]  Family  Y  375      21  H  41.6  27.4  FPG  0.46  x  x  x  x
[19]  Family  N l  913      179  A  41.5  24.8  FPG  0.51  x  x  x  x
[21]  Family  N k  1030      319  H   -  -  FPG  0.14  x  x  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  HOMA IR  0.64 a  x  x  x  x
[11]  Twin  Y p  220  118  102    C  52.2  25.3  HOMA IR  0.41 h  x  x  x  x
[3]  Family  N n  492      90  C  39.6  25.3  HOMA IR  0.73  x  x  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  HOMA IR  0.54 d  x  x  x  x
[23]  Family   Y r  512      98  C  -  25.9  HOMA IR  0.48 g,d  x  x  x  x
[25]  Family   N o  524      26  A  -  -  HOMA IR  0.79 d  x  x  x  x
[19]  Family  N l  913      179  A  41.5  24.8  HOMA IR  0.46  x  x  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  TG  0.03  -  0.47 a  x  x
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  TG  0.40  -0.08    x  x
[8]  Twin  Y  944  732  212    A  42.4  -  TG  0.36  0.19  -  x  x
[9]  Twin  Y  1390  810  580    A  37  -  TG  -  0.23  -  x  x
[22]  Family  Y  537      89  C  43.2  25.9  TG  -  -  0.31 d  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  TG  0.28  0.05  0.37 d  x  x
[3]  Family  N n  492      90  C  39.6  25.3  TG  0.61  -  0.57  x  x
[18]  Family  Y  375      21  H  41.6  27.4  TG  -0.61  -0.32  -  x  x
[24]  Family  Y  1510      41  H  -  30.3  TG  -  -  0.30 d  x  x
[19]  Family  N l  913      179  A  41.5  24.8  TG  0.60  0.27  0.38  x  x
[20]  Family  N m  1635      181  A  39.4  25.8  TG    0.22  -0.12  x  x
[25]  Family   N o  524      26  A  -  -  TG  -  0.3  -  x  x
[21]  Family  N k  1030      319  H   -  -  TG  0.17  0.18  -  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  HDL  0.03  -  -0.16 a  -0.53  x
[12]  Twin  Y  236        C  -  -  HDL  -  -  -  -0.48 b  x
      368                      -0.43 c

[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  HDL  -0.13  0.08    -0.24  x
[8]  Twin  Y  944  732  212    A  42.4  -  HDL  -0.25  0.06  -  -0.39  x
[9]  Twin  Y  1390  810  580    A  37  -  HDL  -  -0.22  -  0.07  x
[13]  Twin  Y  654  -  -    A  40  23.6  HDL  -  -  -  -  x
[22]  Family  Y  537      89  C  43.2  25.9  HDL  -  -  -0.09 d  -0.55  x
[16]  Family  Y p  1940      445  C  51.5  27.2  HDL  -0.22  -0.09  -0.27 d  -0.51  x
[3]  Family  N n  492      90  C  39.6  25.3  HDL  -0.40  -  -0.50  -  x
[26]  Family  Y  569      25  H  39.4  -  HDL  -  -  -  -0.52  x
[27]  Family  Y p  1202      42  H  36.4  28.6  HDL  -  -  -0.33 d  -  x
[24]  Family  Y  1510      41  H  -  30.3  HDL  -  -  -0.36 d  -  x
[19]  Family  N l  913      179  A  41.5  24.8  HDL  -0.50  -0.26  -0.38  -0.59  x
[20]  Family  N m  1635      181  A  39.4  25.8  HDL  -  -0.07  -0.19  -0.50  x
[25]  Family   N o  524      26  A  -  -  HDL  -  -  -  -0.4  x
[21]  Family  N k  1030      319  H  -  -  HDL  -0.21  0.04  -  -0.05   x
[10]  Twin  Y  1250  622  628    C  38  24.4  SBP  0.20  -  0.27 a  0.21  -0.01
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  SBP  0.00  0.05    0.22  -0.06
[8]  Twin  Y  944  732  212    A  42.4  -  SBP  0.08 i  0.13 i  -  0.07 i  -0.05 i

[13]  Twin  Y  654  -  -    A  40  23.6  SBP  -  -  -  -  -0.09
[22]  Family  Y  537      89  C  43.2  25.9  SBP  0.63  -  0.28 d  0.01  -0.10
[16]  Family  Y p  1940      445  C  51.5  27.2  SBP  0.16  0.18  0.18 d  0.17  0.03
[17]  Family  Y  5376      2184  j  C  -  25.2  SBP    -0.08 i      -0.10 i

[3]  Family  N n  492      90  C  39.6  25.3  SBP  1.00  -  0.59 e  -  -
[18]  Family  Y  375      21  H  41.6  27.4  SBP  0.00  -0.15  -  -0.42  -
[24]  Family  Y  o10      41  H  -  30.3  SBP  -  -  0.06 d  -  -
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Supplementary  Genetic correlation coefficient between the features of the metabolic syndrome obtained
Table 1    from twin- and family studies.

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL
   (N) (N) (N) (N)  (y) (kg/m2)    IR

[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  FPG  0.01  x  x  x  x
[8]  Twin  Y  944  732  212    A  42.4  -  FPG  0.18  x  x  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  FPG  0.14  x  x  x  x
[18]  Family  Y  375      21  H  41.6  27.4  FPG  0.46  x  x  x  x
[19]  Family  N l  913      179  A  41.5  24.8  FPG  0.51  x  x  x  x
[21]  Family  N k  1030      319  H   -  -  FPG  0.14  x  x  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  HOMA IR  0.64 a  x  x  x  x
[11]  Twin  Y p  220  118  102    C  52.2  25.3  HOMA IR  0.41 h  x  x  x  x
[3]  Family  N n  492      90  C  39.6  25.3  HOMA IR  0.73  x  x  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  HOMA IR  0.54 d  x  x  x  x
[23]  Family   Y r  512      98  C  -  25.9  HOMA IR  0.48 g,d  x  x  x  x
[25]  Family   N o  524      26  A  -  -  HOMA IR  0.79 d  x  x  x  x
[19]  Family  N l  913      179  A  41.5  24.8  HOMA IR  0.46  x  x  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  TG  0.03  -  0.47 a  x  x
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  TG  0.40  -0.08    x  x
[8]  Twin  Y  944  732  212    A  42.4  -  TG  0.36  0.19  -  x  x
[9]  Twin  Y  1390  810  580    A  37  -  TG  -  0.23  -  x  x
[22]  Family  Y  537      89  C  43.2  25.9  TG  -  -  0.31 d  x  x
[16]  Family  Y p  1940      445  C  51.5  27.2  TG  0.28  0.05  0.37 d  x  x
[3]  Family  N n  492      90  C  39.6  25.3  TG  0.61  -  0.57  x  x
[18]  Family  Y  375      21  H  41.6  27.4  TG  -0.61  -0.32  -  x  x
[24]  Family  Y  1510      41  H  -  30.3  TG  -  -  0.30 d  x  x
[19]  Family  N l  913      179  A  41.5  24.8  TG  0.60  0.27  0.38  x  x
[20]  Family  N m  1635      181  A  39.4  25.8  TG    0.22  -0.12  x  x
[25]  Family   N o  524      26  A  -  -  TG  -  0.3  -  x  x
[21]  Family  N k  1030      319  H   -  -  TG  0.17  0.18  -  x  x
[10]  Twin  Y  1250  622  628    C  38  24.4  HDL  0.03  -  -0.16 a  -0.53  x
[12]  Twin  Y  236        C  -  -  HDL  -  -  -  -0.48 b  x
      368                      -0.43 c

[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  HDL  -0.13  0.08    -0.24  x
[8]  Twin  Y  944  732  212    A  42.4  -  HDL  -0.25  0.06  -  -0.39  x
[9]  Twin  Y  1390  810  580    A  37  -  HDL  -  -0.22  -  0.07  x
[13]  Twin  Y  654  -  -    A  40  23.6  HDL  -  -  -  -  x
[22]  Family  Y  537      89  C  43.2  25.9  HDL  -  -  -0.09 d  -0.55  x
[16]  Family  Y p  1940      445  C  51.5  27.2  HDL  -0.22  -0.09  -0.27 d  -0.51  x
[3]  Family  N n  492      90  C  39.6  25.3  HDL  -0.40  -  -0.50  -  x
[26]  Family  Y  569      25  H  39.4  -  HDL  -  -  -  -0.52  x
[27]  Family  Y p  1202      42  H  36.4  28.6  HDL  -  -  -0.33 d  -  x
[24]  Family  Y  1510      41  H  -  30.3  HDL  -  -  -0.36 d  -  x
[19]  Family  N l  913      179  A  41.5  24.8  HDL  -0.50  -0.26  -0.38  -0.59  x
[20]  Family  N m  1635      181  A  39.4  25.8  HDL  -  -0.07  -0.19  -0.50  x
[25]  Family   N o  524      26  A  -  -  HDL  -  -  -  -0.4  x
[21]  Family  N k  1030      319  H  -  -  HDL  -0.21  0.04  -  -0.05   x
[10]  Twin  Y  1250  622  628    C  38  24.4  SBP  0.20  -  0.27 a  0.21  -0.01
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  SBP  0.00  0.05    0.22  -0.06
[8]  Twin  Y  944  732  212    A  42.4  -  SBP  0.08 i  0.13 i  -  0.07 i  -0.05 i

[13]  Twin  Y  654  -  -    A  40  23.6  SBP  -  -  -  -  -0.09
[22]  Family  Y  537      89  C  43.2  25.9  SBP  0.63  -  0.28 d  0.01  -0.10
[16]  Family  Y p  1940      445  C  51.5  27.2  SBP  0.16  0.18  0.18 d  0.17  0.03
[17]  Family  Y  5376      2184  j  C  -  25.2  SBP    -0.08 i      -0.10 i

[3]  Family  N n  492      90  C  39.6  25.3  SBP  1.00  -  0.59 e  -  -
[18]  Family  Y  375      21  H  41.6  27.4  SBP  0.00  -0.15  -  -0.42  -
[24]  Family  Y  o10      41  H  -  30.3  SBP  -  -  0.06 d  -  -
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Supplementary  Continued
Table 1

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL
   (N) (N) (N) (N)  (y) (kg/m2)    IR

[19]  Family  N l  913      179  A  41.5  24.8  SBP  0.27  0.07  0.07  -0.01  -0.23
[20]  Family  N m  1635      181  A  39.4  25.8  SBP    -0.09    0.12  -0.01
[25]  Family   N o  524      26  A  -  -  SBP  -  0.58  -  -  -
[21]  Family  N k  1030      319  H   -  -  SBP  0.33  0.44  -  0.07  0.08
[10]  Twin  Y  1250  622  628    C  38  24.4  DBP  0.27  -  0.23 a  0.10  -0.13
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  DBP  0.13  0.08    0.19  -0.16
[8]  Twin  Y  944  732  212    A  42.4  -  DBP  0.08 i  0.13 i  -  0.07 i  -0.05 i

[16]  Family  Y p  1940      445  C  51.5  27.2  DBP  0.14  0.11  0.25 d  0.12  0.03
[17]  Family  Y  5376      2184  j  C  -  25.2  DBP    -0.08 i      -0.10 i

[3]  Family  N n  492      90  C  39.6  25.3  DBP  0.61  -  0.35 e  -  -
[18]  Family  Y  375      21  H  41.6  27.4  DBP  0.19  -0.06  -  -0.63  -
[24]  Family  Y  1510      41  H  -  30.3  DBP  -  -  0.30 d  x  x
[19]  Family  N l  913      179  A  41.5  24.8  DBP  0.16  0.27  0.43  0.02  -0.14
[25]  Family   N o  524      26  A  -  -  DBP  -  -  0.42 d  -  -

Twin, Twin study; Family, Family study; A, Asian; C, Caucasian; H, Hispanci; Total (N), total number of people in the study population; MZ(N) number of study sub-

jects which are monozygotic twins; DZ(N) number of study subjects which are dyzogotic twins; Family (N) number of families in the study; WC, waist circum-

ference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglyceride levels; HDL, HDL-cholesterol levels; FPG, fasting plasma glucose; INS fasting 

insulin; HOMA-IR, homeostasis model assessment insulin resistance
a  BIGTT-SI, a marker for insulin sensitivity is measured. To estimate the effect on insulin resistance correlation coefficients have been multiplied by -1
b  <=65.4 years
c  >65.4 years
d  Insulin is used
e  male
f  female
g  abdominal fat measured by computed tomography scan
h  Central body fat measured with DXA female
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Supplementary  Continued
Table 1

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL
   (N) (N) (N) (N)  (y) (kg/m2)    IR

[19]  Family  N l  913      179  A  41.5  24.8  SBP  0.27  0.07  0.07  -0.01  -0.23
[20]  Family  N m  1635      181  A  39.4  25.8  SBP    -0.09    0.12  -0.01
[25]  Family   N o  524      26  A  -  -  SBP  -  0.58  -  -  -
[21]  Family  N k  1030      319  H   -  -  SBP  0.33  0.44  -  0.07  0.08
[10]  Twin  Y  1250  622  628    C  38  24.4  DBP  0.27  -  0.23 a  0.10  -0.13
[7]  Twin  Y  3234  2232  1002    A  32.3  21.9  DBP  0.13  0.08    0.19  -0.16
[8]  Twin  Y  944  732  212    A  42.4  -  DBP  0.08 i  0.13 i  -  0.07 i  -0.05 i

[16]  Family  Y p  1940      445  C  51.5  27.2  DBP  0.14  0.11  0.25 d  0.12  0.03
[17]  Family  Y  5376      2184  j  C  -  25.2  DBP    -0.08 i      -0.10 i

[3]  Family  N n  492      90  C  39.6  25.3  DBP  0.61  -  0.35 e  -  -
[18]  Family  Y  375      21  H  41.6  27.4  DBP  0.19  -0.06  -  -0.63  -
[24]  Family  Y  1510      41  H  -  30.3  DBP  -  -  0.30 d  x  x
[19]  Family  N l  913      179  A  41.5  24.8  DBP  0.16  0.27  0.43  0.02  -0.14
[25]  Family   N o  524      26  A  -  -  DBP  -  -  0.42 d  -  -

i  mean blood pressure is used
j  households instead of families are used
k  Probands are obese or overweight children (4-19y)
l  All probands were diabetic
m All probands had premature coronary heart disease
n  All included families had at least one overweight or obese family member
o  Probands were either participants in the Chennai Urban Rural Epidemiology study, or paricipants of the Chennai Urban Population study, or diabetic subjects 

from an outpatient clinic
p  Diabetic patients are excluded
q  CVD cases, pregnant and breasfeading women, and people taking weight reducing medication were excluded
r  People with a BMI>40, with conditions life-threatening with cycle exercise, with lipid lowering or hypertensive medication were excluded



50  |  chapter 3

Supplementary  Genetic correlation coefficient of MetS features with inflammatory, thrombotic
Table 2    and adipose tissue biomarkers across twin and family studies

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL SBP DBP MetS
   (N) (N) (N) (N)  (y) (kg/m2)    IR

	 	 	 	 	 	 	 	 	 	 Adipose	tissue	biomarkers
[28]  Family  Y  898      -  H  41.2  29.2  Adip  -0.29  -0.40 a  -0.60 d  -0.35  0.51     
[29]  Family  Y  2256      22  C  28.6  26.9  Adip  -0.20  -0.03  -0.19  -0.12  0.25  -0.10 e  -0.10 e  -0.43
[30]  Family  N b  805      -  H  -  -  Adip    0.01  -0.10  -0.21  0.32     
[31]  Family  Y h  640      235  C  40.3  26.3  HMW adip  -0.23  -0.15  -0.32  -0.17  0.22  -0.01  -0.24  -0.32 c

[31]  Family  Y h  640      235  C  40.3  26.3  MMW adip  -0.05  -0.10  -0.08  -0.02  0.14  -0.21  -0.02  -0.13 c

[31]  Family  Y h  640      235  C  40.3  26.3  LMW adip  -0.05  -0.10  -0.08  -0.02  0.14  -0.21  -0.02  -0.13 c

[14]  Twin  Y  1250  622  628    C  37.2  24.4  Leptin  0.65 f

                      0.64 g

	 	 	 	 	 	 	 	 	 	 Pro-inflammatory	biomarkers
[32]  Family  Y  737      264  C  40.5  26.2  Resistin   0.32  0.26  0.28  0.10  -0.08      0.35 c

[15]  Twin  Y  216  152  64    C  40.7  24.8  CRP        0.45    0.28  0.29 
[16]  Family   Y h  1940      445  C  51.5  27.2  CRP  0.57  -0.05  0.50 d  0.26  -0.20  0.39  0.24 

	 	 	 	 	 	 	 	 	 	 Thrombotic	biomarkers
[16]  Family   Y h  1940      445  C  51.5  27.2  PAI-1  0.62  0.07  0.56 d  0.54  -0.37  0.01  0.21 
[22]  Family  Y  537      89  C  43.2  25.9  PAI-1      0.17 d  0.59  -0.04  0.61   
[22]  Family  Y  537      89  C  43.2  25.9  t-PA      0.02 d  0.23  0.04  0.70   
[22]  Family  Y  537      89  C  43.2  25.9  Fibrinogen      0.42 d  0.36  -0.35  0.13   
[22]  Family  Y  537      89  C  43.2  25.9  FVII      0.30 d  0.36  0.02  0.29   
[33]  Family   Y  428      20  H  38.5  28.8  ICAM-1  0.26  0.01  0.22  0.06  -0.24  0.05  0.04 

Twin, Twin study; Family, Family study; C, Caucasian; H, Hispanci; Total  (N),  total number of people  in the study population; Family  (N) number of  families  in 

the  study;  Adip,  adiponectin; WC,  waist  circumference;  FPG,  fasting;  INS,  insulin;  HOMA-IR,  homeostasis  model  assessment  insulin  resistance; TG,  triglycer-

ide levels; HDL, HDL-cholesterol levels; SBP, systolic blood pressure; DBP, diastolic blood pressure; MetS, Metabolic Syndrome; HMW, high molecular weight;  

MMW,  medium  molecular  weight;  LMW,  low  molecular  weight;  PAI-1,  plasminogen  activator  inhibitor  1;  t-PA,  tissue  plasminogen  activator;  FVII,  Factor VII;  

CRP, C-reactive protein; ICAM-1, intracellular adhesion molecule-1
a  2h-glucose used
b  Probands are obese or overweight children (4-19y)



51  |  chapter 3

Supplementary  Genetic correlation coefficient of MetS features with inflammatory, thrombotic
Table 2    and adipose tissue biomarkers across twin and family studies

Ref Study Design Healthy Total MZ DZ Family Race Age BMI ρ_genetic WC FPG HOMA TG HDL SBP DBP MetS
   (N) (N) (N) (N)  (y) (kg/m2)    IR

	 	 	 	 	 	 	 	 	 	 Adipose	tissue	biomarkers
[28]  Family  Y  898      -  H  41.2  29.2  Adip  -0.29  -0.40 a  -0.60 d  -0.35  0.51     
[29]  Family  Y  2256      22  C  28.6  26.9  Adip  -0.20  -0.03  -0.19  -0.12  0.25  -0.10 e  -0.10 e  -0.43
[30]  Family  N b  805      -  H  -  -  Adip    0.01  -0.10  -0.21  0.32     
[31]  Family  Y h  640      235  C  40.3  26.3  HMW adip  -0.23  -0.15  -0.32  -0.17  0.22  -0.01  -0.24  -0.32 c

[31]  Family  Y h  640      235  C  40.3  26.3  MMW adip  -0.05  -0.10  -0.08  -0.02  0.14  -0.21  -0.02  -0.13 c

[31]  Family  Y h  640      235  C  40.3  26.3  LMW adip  -0.05  -0.10  -0.08  -0.02  0.14  -0.21  -0.02  -0.13 c

[14]  Twin  Y  1250  622  628    C  37.2  24.4  Leptin  0.65 f

                      0.64 g

	 	 	 	 	 	 	 	 	 	 Pro-inflammatory	biomarkers
[32]  Family  Y  737      264  C  40.5  26.2  Resistin   0.32  0.26  0.28  0.10  -0.08      0.35 c

[15]  Twin  Y  216  152  64    C  40.7  24.8  CRP        0.45    0.28  0.29 
[16]  Family   Y h  1940      445  C  51.5  27.2  CRP  0.57  -0.05  0.50 d  0.26  -0.20  0.39  0.24 

	 	 	 	 	 	 	 	 	 	 Thrombotic	biomarkers
[16]  Family   Y h  1940      445  C  51.5  27.2  PAI-1  0.62  0.07  0.56 d  0.54  -0.37  0.01  0.21 
[22]  Family  Y  537      89  C  43.2  25.9  PAI-1      0.17 d  0.59  -0.04  0.61   
[22]  Family  Y  537      89  C  43.2  25.9  t-PA      0.02 d  0.23  0.04  0.70   
[22]  Family  Y  537      89  C  43.2  25.9  Fibrinogen      0.42 d  0.36  -0.35  0.13   
[22]  Family  Y  537      89  C  43.2  25.9  FVII      0.30 d  0.36  0.02  0.29   
[33]  Family   Y  428      20  H  38.5  28.8  ICAM-1  0.26  0.01  0.22  0.06  -0.24  0.05  0.04 

c  MetS score is used
d  Insulin is used
e  mean blood pressure is used
f  in male
g  in female
h  in non-diabetic subjects
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Abstract
Several candidate gene studies on the metabolic syndrome (MetS) have been con-
ducted. However, for most single nucleotide polymorphisms (SNP’s) no systematic 
review on their association with MetS exists. A systematic electronic literature search 
was conducted until the 2nd of June 2010, using HuGE Navigator. English language 
articles were selected. Only genes of which at least one SNP – MetS association was 
studied in an accumulative total population ≥4000 subjects were included. Meta-anal-
yses were conducted on SNP’s with 3 or more studies available in a generally healthy 
population. In total 88 studies on 25 genes were reviewed. Additionally, for nine SNP’s 
in seven genes (GNB3, PPARG, TCF7L2, APOA5, APOC3, APOE, CETP) a meta-analysis was 
conducted. The minor allele of rs9939609 (FTO), rs7903146 (TCF7L2), C56G (APOA5), 
T1131C (APOA5), C482T (APOC3), C455T (APOC3) and 174G>C (IL6) were more prevalent 
in subjects with MetS, whereas the minor allele of Taq-1B (CETP) was less prevalent in 
subjects with the MetS. After having systematically reviewed the most studied SNP- 
MetS associations, we found evidence for an association with the MetS for 8 SNP’s, 
mostly located in genes involved in lipid metabolism.
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Introduction
The metabolic syndrome (MetS) is a common multi-component condition includ-
ing abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. It is associated 
with an increased risk of coronary heart disease (CHD) and type 2 diabetes (T2D). The 
prevalence of MetS, which is currently around 30%, is rising worldwide [88]. Herit-
ability estimates for MetS range from 10-30% [89-91], indicating that MetS is partly 
heritable. Knowledge of the exact genetic factors underlying MetS development may 
help to explain why the features of MetS frequently co-occur within one individual. 
In order to detect genes underlying MetS development several candidate gene stud-
ies, have been performed with inconsistent results. However, no systematic review has 
been conducted to date, and thus no clear overview of the available evidence on the 
genetics of the MetS exists. Therefore, the objective of this paper is to systematically 
review the studies on single nucleotide polymorphisms (SNP’s) and MetS, and where 
possible to summarize the results using meta-analyses.

Methods
Search strategy
An electronic literature search was conducted using HuGE Navigator. HuGE Naviga-
tor is a database of published population-based epidemiologic studies of human genes 
extracted and curated from PubMed since 2001 [92]. Previous validations on selected 
gene-disease associations showed that HuGE Navigator was equally sensitive, but more 
specific than PubMed [93].
For the Huge Navigator search, the search term “metabolic syndrome x [Text MesH]” 
was used. This search retrieved articles on the association between MetS and any 
genetic variant. The latest search was undertaken on 2nd of June 2010. As HuGE Navi-
gator only retrieves articles published since 2001, an additional PubMed search was 
done. For the PubMed search, the search term “metabolic syndrome x [Text + MesH] 
with limits on publication date from 1990/1/1 to 2001/12/31” was used.

Eligibility criteria
Articles were included when they contained MetS as outcome and were: published 
in English; original research articles; conducted in humans; and testing for SNP main 
effects. All existing definitions of MetS (supplementary table 1) were eligible as study 
outcome.
Genes were included if two or more articles were retrieved on the same gene, and at 
least for one of the SNP’s in this gene the accumulative total study population was 
≥4000 subjects. A study with 4000 subjects has a power of 80% to detect an OR ≤0.8 
or an OR≥1.2, assuming a significance level of 0.05, a MetS prevalence of 30% and a 
minor allele frequency (MAF) of 0.25. An exception was made for the ADIPOQ gene, 
which has been related to MetS in linkage studies (7). The ADIPOQ G276T (rs1501299) 
polymorphism was studied in an accumulative total population of 3865 subjects only. 
However, because the MAF of this SNP was 0.30 instead of 0.25, the power to detect an 
association was 90%. For other SNP’s investigated in 3000-3999 subjects either the MAF 
was too low to obtain sufficient power, or the prior evidence substantiating an associa-
tion with MetS was weak.
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Included studies were eligible for inclusion in the meta-analyses if they had a cross-
sectional or case-control design, and if the crude genotype distribution according to 
MetS status was available. If the genotype distribution could not be extracted from 
the original research article, investigators were contacted via email. Meta-analyses were 
carried out for SNP’s with both 3 or more eligible studies available in a generally healthy 
population and with inconsistent study outcomes.

Data extraction
Data extraction was conducted by one author (CMP). For quality control, data were 
extracted by two of the other authors (JMAB, ER) for ten percent of the entered papers. 
Only minor discrepancies were found. For each article the following information was 
extracted: authors, publication year, sample size, number of MetS cases, ethnicity, 
health status of the population (e.g. CHD or T2D patients), study design, mean age, per-
centage men, crude genotype distribution by MetS status, odds ratio and the reported 
measure of variance. For the selected genes all SNP – MetS associations published, 
independent of sample size, were extracted. If results were given for multiple MetS 
definitions, results for the definition of the NCEP ATPIII, which is the most common 
definition, were extracted. If results were presented separately for men and women an 
aggregate effect measure was calculated where possible.

Data analyses
For SNP’s located in the same gene we checked the correlation coefficients according to 
HapMap. If SNP’s had a correlation ≥0.8 we mentioned this in the results.
For SNP’s included in the meta-analyses, OR’s of individual studies were recalculated 
from the available genotype distributions according to an allelic model. Afterwards, 
combined OR’s were calculated using random effect models and forest plots were 
drawn. Heterogeneity was investigated by the I² statistic. Roughly, I² values of 25%, 
50% and 75% can be regarded as low, moderate, and high heterogeneity [94]. The fol-
lowing sources of heterogeneity were explored by meta-regression: health status of the 
population (e.g. CHD or T2D patients), gender, age, MetS definition, study design and 
ethnicity. In some cases too few studies were available to conduct meta-regression with 
STATA. In those cases sensitivity analyses were performed. Funnel plots, Egger’s and 
Begg’s test were used to check for publication bias. STATA 11 (StataCorp LP, Collega 
Station, TX, USA) was used to perform all analyses.
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Figure 1 Literature search results. SNP, single nucleotide polymorphism.

Results
Our literature search yielded 104 articles identified through PubMed and 465 articles 
identified through Huge Navigator (figure 1). None of the studies identified through 
PubMed were eligible, while 186 identified through Huge Navigator were. Of the eligi-
ble papers, 51 were excluded because <2 articles were published on the same gene, and 
48 were excluded because all SNP’s in the gene described in the article were studied in 
<4000 subjects. Finally, 87 articles on 25 genes were included in this review. In these 87 
articles 88 studies were described.
The majority of the studies were cross-sectional studies (n=73; 83%). Of the remain-
ing studies, 11 were case-control studies, 3 were family studies and 1 was a prospective 
study. Most studies were either conducted in subjects of Caucasian (n=56; 64%) or 
Asian origin (n=21; 24%). The average prevalence of MetS across all studies was 30%. In 
75% (n=66) of the studies MetS was defined according to the criteria of the NCEP ATP 
III. Meta-analyses were carried out for those SNP’s with 3 or more eligible studies avail-
able in a generally healthy population, which included 37 studies [1-13, 15, 17-29, 33, 
36-43] on 9 SNP’s located in 7 genes (GNB3, PPARG, TCF7L2, APOA5, APOC3, APOE, CETP). 
In none of the meta-analyses the Egger’s test, the Begg’s test, or the funnel plots could 
indicate the presence of publication bias.
First we will describe the association between MetS and those genes with sufficient 
data for meta-analyses. Secondly, we will describe the remaining SNP-MetS associations 
in a narrative review. In table 1, an overview is provided of all genes studied, the path-
ways they are involved in and the results of the meta-analyses. Detailed information on 
all studies is available in supplementary tables 2a-2y.
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Results of the Meta-analyses

PPARG
PPARG is a nuclear receptor involved in glucose and fatty acid metabolism [17]. The 
Pro12Ala (rs1801282) polymorphism of the PPARG gene has been consistently associated 
with T2D [95, 96]. However, of the 16 studies investigating the association between 
Pro12Ala (rs1801282) and MetS [3-11, 13-17], most showed no effect [1, 3-17]. This is 
confirmed by our meta-analysis among 13 studies[1, 3-13, 17] (pooled OR of Ala vs. 
Pro 1.08; 95% 0.93- 1.24, I²=48.3%) (figure 2). Meta regression revealed that popula-
tion characteristics such as ethnicity and health status could not explain the moder-
ate heterogeneity present in this meta-analysis (supplementary table 3). Interestingly, 
although the 12Pro allele is associated with increased risk of T2D and insulin resistance 
independent of BMI [95], from the meta-analysis it can be concluded that if any effect 
on MetS exists, 12Ala is the risk allele. As the 12Ala genotype has been associated with 
BMI in a meta-analysis among Caucasian subjects [95], this effect could possibly be 
mediated by BMI.
The association between C1431T (rs3856806), another well-known PPARG polymor-
phism, and MetS, has been investigated in 6 cross-sectional studies (17-19, 21, 23, 25) 
and 1 family study [16]. In the family study, conducted among 423 Chinese subjects, 
the prevalence of the 1431T allele was lowest in subjects with MetS. However, in our 
meta-analysis of the 6 cross-sectional studies (17-19, 21, 23, 25) there was no associa-
tion between C1431T (rs3856806) and MetS (pooled OR of T v C 0.97, 95%CI 0.86-1.11, 
I²=0%) (figure 3).

Table 1  Summary of the reviewed SNP’s in relation to metabolic syndrome

Gene - SNP’s Pathways involved     Results

  Weight Glucose Lipid Inflammation Blood
    regulation  metabolism  metabolism    pressure Pooled OR I2

Meta-analyses

PPARG  - Pro12Ala (rs1801281)  x  x  x      1.08 (95%CI: 0.93-1.24)  48.3%
  - C134T (rs3856806)            0.97 (95%CI: 0.86-1.11)  0%

TCF7L2  - rs7903146    x        1.18 (95%CI 1.04-1.34)  25.6%

APOA5  - T113C (rs662799)      x      1.24 (95%CI 1.10-1.41)  47.7%
  - C56G (rs3135506)            1.26 (95%CI 1.09-1.47)  0%

APOC3  - C482T (rs2854117)      x      1.57 (95%CI 1.00-2.48)  90.5%
  - C455T (rs2854116)            NA

APOE  - ε2/ε3/ε4	(ε2/-	v	ε3/	ε3)      x      0.91 (95%CI 0.70-1.18)  7.5%
  - ε2/ε3/ε4	(ε4/-	v	ε3/	ε3)            1.61 (95%CI 0.87-2.97)  88.3%

CETP  - Taq-1B (rs708272)      x      0.93 (95%CI 0.80-1.90)  59.8%
              0.89 (95%CI 0.80-0.97) a  4.4%

GNB3  -C825T (rs5433)  x    x    x  1.03 (95%CI 0.94-1.12)  0%

FTO  -rs9939609  x          1.17 (95%CI 1.10-1.25)45  0%
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Table 1  Summary of the reviewed SNP’s in relation to metabolic syndrome

Gene - SNP’s Pathways involved     Results

  Weight Glucose Lipid Inflammation Blood
    regulation  metabolism  metabolism    pressure Pooled OR I2

Meta-analyses

PPARG  - Pro12Ala (rs1801281)  x  x  x      1.08 (95%CI: 0.93-1.24)  48.3%
  - C134T (rs3856806)            0.97 (95%CI: 0.86-1.11)  0%

TCF7L2  - rs7903146    x        1.18 (95%CI 1.04-1.34)  25.6%

APOA5  - T113C (rs662799)      x      1.24 (95%CI 1.10-1.41)  47.7%
  - C56G (rs3135506)            1.26 (95%CI 1.09-1.47)  0%

APOC3  - C482T (rs2854117)      x      1.57 (95%CI 1.00-2.48)  90.5%
  - C455T (rs2854116)            NA

APOE  - ε2/ε3/ε4	(ε2/-	v	ε3/	ε3)      x      0.91 (95%CI 0.70-1.18)  7.5%
  - ε2/ε3/ε4	(ε4/-	v	ε3/	ε3)            1.61 (95%CI 0.87-2.97)  88.3%

CETP  - Taq-1B (rs708272)      x      0.93 (95%CI 0.80-1.90)  59.8%
              0.89 (95%CI 0.80-0.97) a  4.4%

GNB3  -C825T (rs5433)  x    x    x  1.03 (95%CI 0.94-1.12)  0%

FTO  -rs9939609  x          1.17 (95%CI 1.10-1.25)45  0%

  odds ratio
 .1  1  10

 Study
 OR Ala v Pro
 (95% CI)  % Weight

 Asian
 Vimaleswaran(3)  0.94 (0.73, 1.22)  12.2 
 Rhee(4)  0.58 (0.17, 1.94)   1.3 
 Dongxia(6)  0.93 (0.57, 1.52)   6.1 
 Ranjith(8)  0.99 (0.64, 1.53)   7.2 
 Haseeb(10)  1.28 (0.90, 1.83)   9.1 

 Caucasian
 Frederiksen(1)  0.87 (0.67, 1.12)  12.2 
 Meirhaeghe(2)  1.27 (0.95, 1.71)  10.8 
 Fiorito(5)  2.14 (1.06, 4.33)   3.5 
 Montagnana(7)  0.95 (0.83, 1.09)  16.5 
 Milewicz(9)  1.34 (0.79, 2.27)   5.5 
 Tellechea(12)  1.75 (1.09, 2.80)   6.4 
 McCarthy(13)  0.64 (0.38, 1.06)   5.8 

 Mixed
 Miller(11)  1.70 (0.84, 3.44)   3.5 

 Overall  1.08 (0.93, 1.25)  100.0 

Figure 2  Meta-analysis on the association between the PPARG	Pro12Ala (rs1801282) polymorphism and
  the metabolic syndrome; heterogeneity I2 = 48.3%; MAF Caucasian 0.06–0.17; MAF Asian
  0.05–0.13; MAF mixed population 0.09; MAF, minor allele frequency; OR, odds ratio



62  |  chapter 4

Table 1  Continued

Gene - SNP’s Pathways involved     Results

  Weight Glucose Lipid Inflammation Blood
    regulation  metabolism  metabolism    pressure Evidence level

Narrative review

UCP1    x          (-)

UCP2    x          (-)

LEPR    x  x  x      (-)

ADIPOQ  -G276T (rs1501299)    x  x  x    (-)

IL6  -174G>C (rs1800795)        x    (+)

RETN  -420C>G	(rs1862513)  x      x    (-)

LMNA  -H566H (rs4641)   x  x  x      (-)

ADRB2  -Arg16Gly (rs1042713)    x  x    x  (-)
  -Gln27Gln (rs1042714)            (-)

ADRB3  -Trp64Arg (rs4994)    x  x    x  (-)

PPARD  -87T>C	(rs2016520)  x  x        (-)

PPARGC1A -Gly482Ser (rs8192678)    x  x      (-)
  -Thr394Thr (rs3755863)            (-)

FABP2  -Ala54Thr (rs179883)    x  x      (-)

CAPN10  -UCSNP43 (rs3792267)    x        (-)

IRS1  -Gly927Arg (rs1801278)    x        (-)

ENPP1  -K21Q (rs1044498)    x        (-)

GCK  -30G>A	(rs1799884)    x        (-)

KCNJ11  -E23K (rs5219)    x        (-)

NA, not available; (+), sufficient evidence for an association based on the narrative review; (-), insufficient evidence for an association based on the

narrative review;

a Results of a sensitivity analysis in non-patients

Interestingly, although both the 12Ala and the 1431C allele did not seem to increase 
MetS risk significantly in our meta-analyses, a haplotype containing the same alleles 
was associated with an increased prevalence of MetS in a cross-sectional study among 
1115 French subjects [17]. Other SNP’s in the PPARG gene have not been associated with 
MetS (22, 34).
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Table 1  Continued

Gene - SNP’s Pathways involved     Results

  Weight Glucose Lipid Inflammation Blood
    regulation  metabolism  metabolism    pressure Evidence level

Narrative review

UCP1    x          (-)

UCP2    x          (-)

LEPR    x  x  x      (-)

ADIPOQ  -G276T (rs1501299)    x  x  x    (-)

IL6  -174G>C (rs1800795)        x    (+)

RETN  -420C>G	(rs1862513)  x      x    (-)

LMNA  -H566H (rs4641)   x  x  x      (-)

ADRB2  -Arg16Gly (rs1042713)    x  x    x  (-)
  -Gln27Gln (rs1042714)            (-)

ADRB3  -Trp64Arg (rs4994)    x  x    x  (-)

PPARD  -87T>C	(rs2016520)  x  x        (-)

PPARGC1A -Gly482Ser (rs8192678)    x  x      (-)
  -Thr394Thr (rs3755863)            (-)

FABP2  -Ala54Thr (rs179883)    x  x      (-)

CAPN10  -UCSNP43 (rs3792267)    x        (-)

IRS1  -Gly927Arg (rs1801278)    x        (-)

ENPP1  -K21Q (rs1044498)    x        (-)

GCK  -30G>A	(rs1799884)    x        (-)

KCNJ11  -E23K (rs5219)    x        (-)
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TCF7L2
The TCF7L2 gene is involved in Wnt signaling and insulin secretion [97]. The T-allele 
of the rs7903146 polymorphism in the TCF7L2 gene increases the risk of T2D [98]. The 
T allele also increased MetS risk in our meta-analysis of 5 studies (pooled OR 1.18, 95%CI 
1.04-1.34) (figure 4) [18-22]. The heterogeneity between studies was low (I²=25.6%), 
and decreased to 0% in a sensitivity analysis among generally healthy subjects [19-22]. 
The pooled OR increased to 1.29 (95%CI 1.10-1.36).
Although both Begg’s (P=0.01) and Egger’s test (P=0.008) were significant, no publi-
cation bias was present, as the largest studies had the largest effect. One expects that 
in case of publication bias, the smallest studies would show the highest OR’s [99, 100]. 
A prospective study among 16143 Swedes confirmed the results of our meta-analysis. 
In this prospective study the OR for developing MetS in 23 years was 1.10 (95%CI 1.04-
1.17) [14].
As expected results for the rs12255372 polymorphism [19-21] were similar as those of the 
completely correlated rs7903146 polymorphism (r²=1 HapMap CEU).
Furthermore, in one study among obese hypertensive patients the TCF7L2 copy number 
variation, DG10S478X, was associated with MetS [18].

APOA5
APOA5 reduces plasma triglyceride levels by stimulating the hydrolysis of triglycerides 
through the activation of lipoprotein lipase (LPL) and by inhibiting very low density 
lipoproteins (VLDL) production [101]. The C allele of the T1131C (rs662799) polymor-
phism in the APOA5 gene is associated with higher triglycerides and reduces HDL-cho-
lesterol levels [30-32]. The T1131C (rs662799) polymorphism, or genetic variants highly 
correlated with the T1131C (rs662799) polymorphism, were significantly associated 
with MetS in all [15, 23-32], but 3 studies [23, 26, 31]. Accordingly, in our meta-analysis 
among 9 of these studies [15, 23-29] the C-allele of the T1131C (rs662799) polymor-
phism increased MetS risks (pooled OR 1.24, 95%CI 1.10-1.41) (figure 5). Meta-regres-

 

 Study
 OR T v C
 (95% CI)  % Weight

 Asian

 Vimaleswaran (3)  0.90 (0.71, 1.13)  28.9 

 Rhee(4)  0.73 (0.40, 1.31)   4.6 

 Dongxia (6)  0.97 (0.75, 1.25)  24.6 

 Haseeb (10)  1.23 (0.90, 1.69)  16.2 

 Caucasian

 Meirhaeghe (2)  0.99 (0.74, 1.33)  18.5 

 McCarthy (13)  0.94 (0.59, 1.51)   7.2 

 Overall  0.97 (0.86, 1.11)  100.0 

 odds ratio
 .1  1  10

Figure 3 Meta-analysis on the association between the PPARG	C1431T (rs3856806) polymorphism and
  the metabolic syndrome; heterogeneity I2 = 0%; MAF Asian 0.14–0.30; Caucasian 0.08–0.15;
  MAF, minor allele frequency; OR, odds ratio
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sion analysis revealed that the moderate heterogeneity (I² = 47.7%) present could be 
explained by population characteristics such as sex and ethnicity (supplementary table 
4). Therefore, we performed a sensitivity analysis in Caucasian subjects only. The OR 
in this sensitivity analysis was somewhat lower (pooled OR C versus T 1.20, 95%CI 1.02-
1.41, I² = 19.0%).

 

 Study

 Arabic

 Saadi (19)

 Caucasian

 Sarzani (18)

 Warodomwichit (20)

 Marzi (21)

 Melzer (22)

 Overall

 odds ratio
 .1  1  10

 % Weight

 14.5

  5.2

 28.9

 27.4

 24.1

 100.0

 0.97 (0.72, 1.31)

 0.76 (0.44, 1.31)

 1.28 (1.06, 1.55)

 1.27 (1.04, 1.54)

 1.22 (0.98, 1.51)

 1.18 (1.04, 1.34)

 OR T v C 

 (95% CI)

Figure 4 Meta-analysis on the association between the TCF7L2 rs7903146 polymorphism and the
  metabolic syndrome; heterogeneity I2 = 25.6%; MAF Caucasian 0.28–0.35; MAF Arabic 0.39;
  MAF, minor allele frequency; OR, odds ratio

Figure 5 Meta-analysis on the association between the APOA5 T1131C (rs662799) polymorphism and 
  the metabolic syndrome; heterogeneity I2 = 47.7%; MAF Arabic 0.13; MAF Asian 0.30–0.31; 
  MAF Caucasian 0.06–0.08; MAF Hispanic 0.14; MAF, minor allele frequency; OR, odds ratio

  odds ratio
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 Komurcu−Bayrak (27)

 Asian
 Yamada (15)
 Hsu (28)

 Caucasian
 Dallongeville (24)
 Maász (25)
 Grallert (26_KORA)
 Grallert (26_SAPHIR)
 Niculescu (29)

 Hispanic
 Mattei (23)

 Overall

 OR C v T
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 1.22 (0.99, 1.50)  15.0

 1.44 (1.25, 1.66)  19.4
 1.56 (1.15, 2.11)  10.3

 1.24 (1.00, 1.54)  14.5
 1.86 (1.12, 3.09)   5.0
 1.04 (0.77, 1.39)  10.7
 1.21 (0.90, 1.62)  10.8
 0.92 (0.53, 1.57)   4.5

 0.90 (0.66, 1.23)   9.9

 1.24 (1.10, 1.41)  100.0

 1
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Another APOA5 polymorphism which has been frequently investigated in relation to 
MetS is the C56G (rs3135506) polymorphism. The meta-analysis included 5 studies 
[23, 26, 27, 29] and showed that the G allele of the C56G (rs3135506) polymorphism 
increased MetS risk (pooled OR 1.26, 95% CI 1.09-1.47, I² =0%) (figure 6). However, 
the C56G (rs3135506) polymorphism was not associated with MetS in a study among 
2417 Japanese, which could not be included in the meta-analysis, because the genotype 
distribution could not be obtained [30].
Three other APOA5 polymorphisms, all not correlated with one of the polymorphisms 
discussed above, have also been investigated in relation to MetS [24, 26, 30]. Two of 
these polymorphisms, 12,238T>C (rs625524) [24] and Gly185Cys (rs2075291) [30] were 
associated with MetS, in one single study.

 

 Study

 OR G v C

 (95% CI)  % Weight

 Arabic

 Komurcu−Bayrak (27)  1.15 (0.84, 1.57)  23.8

 Caucasian

 Grallert (26_KORA)  1.48 (1.07, 2.05)  21.5

 Grallert (26_SAPHIR)  1.37 (1.03, 1.82)  28.6

 Niculescu (29)  1.45 (0.81, 2.60)   6.7

 Hispanic

 Mattei (23)  1.00 (0.71, 1.41)  19.4

 Overall  1.26 (1.09, 1.47)  100.0

 odds ratio
 .1  1  10

Figure 6 Meta-analysis on the association between the APOA5	C56G (rs3135506) polymorphism and the
  metabolic syndrome; heterogeneity I2 = 0%; MAF Arabic 0.05; MAF Caucasian 0.06–0.09;
  MAF Hispanic 0.10; MAF, minor allele frequency; OR, odds ratio

APOC3
APOC3 increases plasma triglycerides levels, by the inhibition of LPL activity and by the 
interference with ApoE mediated uptake of triglycerides [34, 102]. The minor 482T 
allele of the APOC3 C482T (rs2854117) polymorphism is associated with increased trig-
lyceride levels [103]. The same allele also increased MetS risk in 4 [11, 29, 33, 34] out 
of 5 studies [11, 24, 29, 33, 34]. Our meta-analysis among the 4 studies with genotype 
distributions available [11, 24, 29, 33] confirmed that the 482T allele increased MetS 
risk (pooled OR 1.57, 95%CI 1.00-2.48) (figure 7). However, although the direction of 
the effect was the same for most studies, the heterogeneity between studies was high 
(I²=90.5%). Both the heterogeneity and the OR were slightly lower among cross-sec-
tional studies (OR 1.24, 95%CI 0.90-2.01, I²=78.2%) [24, 33] and studies in Caucasian 
subjects (OR 1.16, 95%CI 0.79-1.70, I²=84.9%) [24, 29, 33].
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 Study

 Caucasian

 Dallongeville (24)  0.95 (0.84, 1.08)  24.1

 Niculescu (29)  2.04 (1.38, 3.02)  20.7

 Pollex (33_adults)  1.50 (1.15, 1.97)  22.6

 Pollex (33_children)  1.06 (0.41, 2.75)  11.8

 Mixed

 Miller (11)  2.86 (1.94, 4.21)  20.8

 Overall  1.57 (1.00, 2.48)  100.0

 OR G v C 

 (95% CI)  % Weight

 odds ratio
 .1  1  10

Figure 7 Meta-analysis on the association between the APOC3	C482T (rs2854117) polymorphism and the 
  metabolic syndrome; heterogeneity I2 = 90.5%; MAF mixed population 0.24; MAF Caucasian 
  (excluding Oji Cree aboriginals33) 0.21–0.27; MAF Oji Cree aboriginals33 0.43–0.44; 
  MAF, minor allele frequency; OR, odds ratio

As expected results for the C455T (rs2854116) polymorphism [11, 29, 33-35] were similar 
to those of the highly correlated C482T (rs2854117) polymorphism (r²=0.97 HapMaP 
CEU) [33]. On the contrary, for APOC3 1100C>T[15] and APOC3 SstI [13, 24] no association 
with MetS could be detected.

APOE
Apolipoprotein-E (APOE) has an important function in the clearance of chylomicron 
remnants and VLDL from plasma. Three APOE isoforms encoded by the ε2/ε3/ε4 hap-
lotype exist. The ε3 isoform is the most prevalent isoform. In comparison with the ε3 
isoform, the ε2 isoform decreases cholesterol levels and increases triglyceride levels, 
whereas the ε4 isoform increases both cholesterol and triglyceride levels [104]. In our 
meta-analysis among 5 studies [11, 36-39] the ε2/- genotype (ε2/ε3 + ε2/ε2) none sig-
nificantly decreased MetS risk (pooled OR ε2/- v ε3/ε3 0.91; 95%CI 0.70-1.18, I²=7.5%) 
whereas the ε4/- genotype (ε4/ ε4 + ε4/ε3) tended to increase MetS risk (pooled OR ε4/- 
v ε3/ε3 1.61, 95%CI 0.87-2.97, I²=88.3% ) (figure 8a, figure 8b). The fact that 4 out of 5 
studies were conducted in subjects of different ethnicity, may explain the high hetero-
geneity (I²=88.3%) observed for the ε4/- genotype.
In two studies the effect of individual SNP’s in the APOE gene instead of the effect of 
the ε2/ε3/ε4 haplotype was investigated. In a study among 1788 Japanese [15], in which 
3 SNP’s of the APOE gene had been genotyped, the Arg158Cys (rs7412) polymorphisms, 
which is part of the ε2/ε3/ε4 haplotype, was associated with MetS. However, this asso-
ciation could not be replicated in 305 Caucasian CAD patients [13]
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 Study

 Arabic
 Onat (36)

 Subtotal

 Asian
 Ranjith (37)

 Subtotal

 Caucasian
 Olivieri (35)
 Sima (38)

 Subtotal

 Mixed
 Miller (11)

 Subtotal

 Overall

 odds ratio
 .1  1  10

 OR E44 + E43 v E33

 (95% CI)  % Weight

 22.1
 22.1

 21.0
 21.0

 19.7
 17.9
 37.6

 19.4
 19.4

 100.0

 1.10 (0.82, 1.47)
 1.10 (0.82, 1.47)

 3.87 (2.56, 5.84)

 2.72 (1.58, 4.67)

 1.75 (0.70, 4.38)

 0.82 (0.47, 1.45)

 1.61 (0.87, 2.97)

 3.87 (2.56, 5.84)

 1.06 (0.53, 2.13)

 0.82 (0.47, 1.45)

CETP
The cholesteryl ester transfer protein (CETP) plays an import role in reverse cholesterol 
transport. The B2 allele of the CETP Taq-1B (rs708272) polymorphism increases HDL 
cholesterol levels and decreases triglyceride levels and CETP activity [105]. In our meta-
analysis including 4 studies [37, 40-42], the B2 allele tended to decrease MetS risk 
(pooled OR 0.93, 95% 0.80- 1.09, I² = 59.8%.) (figure 9). When we excluded the study 
of Ranjith et all.[37] among 592 patients with acute MI from our meta-analysis the het-

Figure 8  A  Meta-analysis on the association between the APOE	ε2/ε3/ε4 haplotype and the metabolic 
    syndrome; heterogeneity I2 = 7.5%; frequency ε2 Arabic 0.12; frequency ε2 Asian 0.05; 
    frequency ε2 Caucasian 0.06–0.09; frequency ε2 mixed 0.05; OR, odds ratio;
  B  Meta-analysis on the association between the APOE	ε2/ε3/ε4 haplotype and the metabolic 
    syndrome; heterogeneity I2 = 88.3%; frequency ε4 Arabic 0.07; frequency ε4 Asian 0.09; 
    frequency ε4 Caucasian 0.08–0.09; frequency ε4 mixed 0.20; OR, odds ratio
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erogeneity decreased (I² = 4.4%), and the OR became significant (pooled OR B2 v B1 
0.89, 95%CI 0.80-0.97). The study among 1788 Japanese, which could not be included 
in the meta-analysis showed no association between the Taq-1B (rs708272) polymor-
phism and MetS [30]. Furthermore, in studies on other polymorphisms in the CETP 
gene, no associations with MetS were observed [13, 15, 30].

FTO
Studies in humans and rodents suggest that FTO regulates food intake and effects 
the lypolytic activity in adipose tissue [106]. The A-allele of the rs9939609 polymor-
phism in the FTO gene has been associated with increased BMI and T2D risk in multi-
ple genome wide association studies (GWAS) [45]. The A-allele of the rs9939609 also 
increased MetS prevalence in a large meta-analysis among 12555 European subjects 
(OR per A allele 1.17 ; 95%CI 1.10- 1.25, P=3.0 * 10-6) [45] and in a smaller meta-anal-
ysis among 2112 subjects of mixed ethnicity (AA + AT vs. TT OR 1.26; 95%CI 1.02-1.57) 
[44]. OR’s of the individual studies included in the meta-analyses ranged from 1.10 to 
1.44. In line with these results, the OR per A-allele for developing MetS in 23 years was 
1.08 (95%CI 1.02-1.14) in a large prospective study among 16143 non-diabetic Swedes 
[14]. Furthermore, the rs1421085 polymorphism, which is highly correlated with the 
rs9939609 polymorphism (r²=0.93), was associated with MetS in 2 independent stud-
ies [47, 48]. On the contrary, rs9939609 and 2 other highly correlated polymorphisms 
were not associated with MetS in a study among 1488 Japanese [46].

Figure 9 Meta-analysis on the association between the CETP	Taq-1B (rs708272) polymorphism and the 
  metabolic syndrome; heterogeneity I2 = 59.8%; MAF Arabic 0.43; MAF Asian 0.48; 
  MAF Caucasian 0.41–0.43; MAF, minor allele frequency; OR, odds ratio
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 0.93 (0.80, 1.09)  100.0
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GNB3
The GNB3 gene is involved in G-protein signal transduction. The C825T (rs5433) poly-
morphism in the GNB3 gene has been associated with obesity, hypertension, dyslipi-
demia and T2D, which are all features of MetS [2, 43]. However, although in one study 
the C825T (rs5433) polymorphism was associated with MetS in Oji Cree women [33], 
other studies could not replicate these results [2, 11, 15, 43]. Also, our meta-analysis of 
4 studies [2, 11, 33, 43] (figure 10) could not demonstrate an association between the 
C825T (rs5433) polymorphism and MetS (pooled OR of 825T v C 1.03, 95%CI 0.94-1.12, 
I²=0). In one study, among 2417 Japanese, the association with the GNB3 1429C>T 
(rs5446) polymorphism was investigated [30]. Also this polymorphism was not associ-
ated with MetS.

Figure 10   Meta-analysis on the association between the GNB3	C825T (rs5433) and the metabolic 
    syndrome; heterogeneity I2 = 0%; MAF mixed 0.34; MAF Caucasian (excluding Oji Cree 
    aboriginals33) 0.31–0.34; MAF Oji Cree aboriginals33 0.46–0.49; MAF, minor allele 
    frequency; OR, odds ratio
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Narative review of associations with MetS for SNP’s not elegible
for meta-analysis

In this narrative review we describe SNP’s which were not elegible for meta-analysis 
because they have been studied in too few studies with generally healthy subjects. 
Detailed information about these SNP’s can be found in the online supplementary 
tables 2i-2y.
Of all SNP’s, the strongest evidence for an association with MetS was found for the IL6 
174G>C (rs1800795) promoter polymorphism. IL-6 is a cytokine with a broad range of 
effects, e.g. it is the primary determinant of hepatic CRP secretion [63]. Elevated plasma 
IL-6 levels are associated with T2D and CHD, both end stages of MetS [63]. The asso-
ciation between the IL6 174G>C (rs1800795) promoter polymorphism and MetS was 
significant in 3 [13, 62, 63] out of 4 [13, 61-63] studies. In three studies the 174C allele 
increased MetS risk [61-63], while in a fourth study the direction of the association 
was not reported [13]. In most studies on inflammatory SNP’s other than IL6 174G>C 
(rs1800795), such as SNP’s in RETN[15, 64, 65] and ADIPOQ [54-58], no association with 
MetS was found. Especially for ADIPOQ this was remarkable. The ADIPOQ gene encodes 
for adiponectin. Lower plasma adiponectin concentrations have been associated with 
several features of MetS including insulin resistance [58]. Furthermore, in a linkage 
study the ADIPOQ locus, 3q27, was associated with MetS [107]. However, in most stud-
ies the ADIPOQ G276T (rs1501299) polymorphism was not associated with MetS [54, 55, 
57-60] . Furthermore, in the single study in which an effect was shown for ADIPOQ 
G276T (rs1501299) [56], this effect was opposite to the effect expected based on the 
association of ADIPOQ G276T (rs1501299) with adiponectin and insulin sensitivity [108]. 
The ADIPOQ G276T (rs1501299) polymorphism was not the only SNP in which, despite 
strong prior evidence for possible involvement of the gene in MetS development, an 
association with MetS seemed absent. Also, no association with MetS seemed to exist 
for SNP’s in the LMNA [66-69] gene, while the LMNA gene is associated with lipodys-
trophy, a syndrome which shares many features with MetS [66]. Involvement of a 
gene in multiple MetS pathways, did not guarantee an association for SNP’s in this 
gene with MetS. The evidence for an association with MetS was weak for SNP’s in the 
ADRB2 [13-15, 70] and ADRB3 [14, 15, 71-73] gene, genes involved in glucose metabo-
lism, lipid metabolism, and blood pressure regulation [70], SNP’s in the LEPR gene[30, 
52, 53], which is involved in body weight regulation, fatty acid oxidation and glucose 
metabolism [109]; SNP’s in the PPARD gene [15, 74, 75], which regulates both glucose 
and energy metabolism [75]; and SNP’s in the PPARGC1A gene [3, 14, 15, 76], which is 
involved in lipid and glucose metabolism [76]. However, for the Ala54Thr (rs1799883) 
SNP [11, 33, 34, 77-79] in the FABP2 gene, which is involved in both fatty acid and glu-
cose metabolism [77, 78], some evidence for an association with MetS exists. In the 
majority of studies [11, 33, 77-79], most of which were conducted in patient popula-
tions [34, 77-79], the Thr54 allele increased MetS risk, although in most studies the 
association was not statistically significant [11, 33, 77, 79]. For all other SNP’s reviewed, 
either located in genes involved in energy metabolism (UCP1 and UCP2 [3, 14, 15, 30, 
49-51]) or in genes involved in glucose metabolism (CAPN10 [14, 15, 80-83], IRS1 [8, 14, 
15], ENPP1 [14, 15, 84-86], GCK[15, 87] and KCNJ11[8, 14, 15]) the evidence for an associa-
tion with MetS was not substantial.
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Discussion
In this systematic review we described the most studied SNP’s in relation to MetS. The 
overall results suggest an association with MetS for SNP’s in the FTO, TCFL72, IL6, APOA5, 
APOC3 and CETP genes.
The FTO rs9939609 and the TCF7L2 rs7903146 polymorphism are the top hits of GWAS 
on respectively BMI [110] and T2D [111]. The TCF7L2 rs7903146 polymorphism influ-
ences insulin secretion, and to a lesser extent this SNP also affects insulin resistance[112]. 
The 174C allele of the IL6 174G>C (rs1800795) polymorphism increased MetS risk in 
3 [13, 62, 63] out of 4 studies [13, 61-63]. In line with the effect on MetS the 174CC 
genotype tended to increase BMI and IL6 levels[113], both MetS-associated features, 
in meta-analysis on 15 and 17 studies, respectively. Accordingly, in another meta-anal-
ysis on 7 studies the 174CC genotype also tended to increase CHD risk, an end stage 
of MetS [114]. However, contrary to the effect on MetS, the 174CC genotype signifi-
cantly decreased glucose levels in a meta-analysis on 7 studies [113]. The other SNP’s 
which were associated with MetS, the T1131C APOA5 (rs662799) [26], the C56G APOA5 
(rs3135506) [26], the C455T (rs2854116) APOC3, the C482T (rs2854117) APOC3 [103] and 
the Taq-1B (rs708272) CETP [105] polymorphisms, are all associated with hypertriglyc-
eridemia. Furthermore, the C482T (rs2854117) polymorphism, which is located in the 
insulin response element of the APOC3 gene promoter, has also been associated with 
insulin and glucose levels [102, 115].
Focussing on combined phenotypes, like MetS, may lead to the discovery of new SNP’s 
that would not have been found when studying the phenotypes separately. The fact 
that the study of combined phenotypes may lead to the discovery of new risk loci is 
nicely illustrated by a recent GWAS on Crohn’s and Celiac disease, where the focus on 
risk loci shared between Crohn’s and Celiac disease leads to the discovery of six new 
risk loci [116]. All SNP’s included in this review which were associated with MetS were 
also strongly associated with an individual feature of MetS. Up till now no SNP has 
been found, which has only a minor effect on individual MetS features, but which does 
affect the clustering of the different features. Nevertheless, such a SNP may still be dis-
covered. Interestingly, we observed that although all SNP’s associated with MetS were 
associated with an individual MetS feature the reverse is not always true. For example, 
both PPARG Pro12Ala (rs1801282) and TCF7L2 rs7903146 are associated with hyperglyc-
emia. However, only TCF7L2 rs7903146 and not PPARG Pro12Ala (rs1801282) seemed to 
be associated with MetS. This subdivision of on the one hand SNP’s which are associ-
ated with one MetS feature only, and on the other hand SNP’s which are associated with 
multiple MetS features, and thus also associated with MetS, may facilitate the discov-
ery of pathways responsible for the clustering of MetS features.
Interestingly, although disturbances in glucose metabolism [88], weight regulation [88] 
and inflammation [117] all three have been proposed to initiate MetS, most SNP’s asso-
ciated with MetS are located in genes involved in lipid metabolism. The associations 
of these SNP’s in the CETP, APOC3 and APOA5 genes with the MetS may be mediated 
by hypertriglyceridemia. Accumulation of triglycerides in the muscles may stimulate 
the development of insulin resistance [118]. Furthermore, dysfunctioning of the APOA5 
and APOC3 gene increases free fatty acid levels [102, 119], which in turn may stimulate 
development of MetS features, such as dyslipidemia, overweight, insulin resistance, 
hypertension or inflammation [118]. Alternatively, the overrepresentation of SNP’s in 
lipid metabolism, may be caused by the stress put on lipid metabolism in MetS defini-
tion. In the most common MetS definitions, the NCEP ATP III and the IDF definition, a 
disturbed lipid metabolism is characterized by 2 MetS features i.e. low HDL cholesterol 
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levels and increased triglyceride levels, whereas disturbances in the other mechanisms 
such as weight regulation, are all only characterized by 1 MetS feature.
In this review we have focussed on SNP-MetS associations which have been investi-
gated in at least two studies. Consequently, significant SNP-MetS associations which 
have not been researched yet or which have only been researched in one study were not 
described. One of the best ways to test a large number of not investigated SNP - MetS 
associations is to conduct a GWAS. Unfortunately, to the best of our knowledge, such a 
GWAS has not been conducted yet.
Strength of this review is the unbiased way in which we have summarized results of 
the available studies on SNP – MetS associations. For all genes described, at least one 
SNP – MetS association was investigated in an accumulative total population across all 
published studies ≥4000 subjects. The number of 4000 subjects allowed us to detect 
SNP – MetS associations of moderate effect size (OR ≤0.8 or an OR ≥1.2). Therefore, we 
may have missed associations of smaller effect size. E.g. the pooled OR of 0.90 for the 
APOE ε2ε3ε4 haplotype was not statistically significant in our meta-analysis. Population 
characteristics, such as ethnicity and health status of the study population, differed 
between the studies included in this review. Despite these differences, study outcomes 
were homogeneous for some SNP’s, e.g. the GNB3 C825T (rs5433) and PPARG C1431T 
(rs3856806) polymorphism. However, for other SNP’s these differences could explain 
the observed heterogeneity in study outcomes. For example, ethnicity explained nearly 
all heterogeneity present in the meta-analysis on APOA5 T1131C (rs662799). Further-
more, heterogeneity decreased and the OR increased, if studies in patient populations 
were excluded from the meta-analyses on the TCF7L2 rs7903146 and the CETP Taq-1B 
(rs708272) polymorphisms. In two meta-analyses, on the APOC3 C482T (rs2854117) pol-
ymorphism and APOE ε2ε3ε4 haplotype, a high unexplained heterogeneity was present. 
Especially for these genetic variants it will be valuable to conduct an updated meta-
analysis stratified for several subgroups, if more studies become available. The Egger’s 
and Begg’s test did not indicate that in any of the meta-analyses publication bias was 
present. However, both tests have a low power unless a large number of studies (n≥25) 
are analyzed [99, 100]. As our meta-analyses were conducted among a smaller number 
of studies, we can not rule out the possibility that publication bias is present anyway.
In conclusion, we found evidence for an association with MetS for 8 SNP’s. All of these 
SNP’s were also associated with an individual MetS feature, most of them with dyslipi-
demia. This suggests that lipid metabolism plays a central role in MetS development.
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Abstract
Introduction
Mechanisms involved in metabolic syndrome (MetS) development include insulin 
resistance, weight regulation, inflammation and lipid metabolism. Aim of this study is 
to investigate the association of single nucleotide polymorphisms (SNP’s) involved in 
these mechanisms with MetS.

Methods
In a random sample of the EPIC-NL study (n=1886), 38 SNP’s associated with waist 
circumference, insulin resistance, triglycerides, HDL cholesterol and inflammation in 
genome wide association studies (GWAS) were selected from the 50K IBC array and one 
additional SNP was measured with KASPar chemistry. The five groups of SNP’s, each 
belonging to one of the metabolic endpoints mentioned above, were associated with 
MetS and MetS-score using Goeman’s global test. For groups of SNP’s significantly 
associated with the presence of MetS or MetS-score, further analyses were conducted.

Results
The group of waist circumference SNP’s was associated with waist circumference 
(P=0.03) and presence of MetS (P=0.03). Furthermore, the group of SNP’s related to 
insulin resistance was associated with MetS score (P<0.01), HDL cholesterol (P<0.01), 
triglycerides (P<0.01) and HbA1C (P=0.04). Subsequent analyses showed that MC4R 
rs17782312, involved in weight regulation, and IRS1 rs2943634, related to insulin resist-
ance were associated with MetS (OR 1.16, 95%CI 1.02-1.32 and OR 0.88, 95% CI 0.79; 
0.97, respectively). The groups of inflammation and lipid SNP’s were neither associated 
with presence of MetS nor with MetS score.

Conclusion
In this study we found support for the hypothesis that weight regulation and insulin 
metabolism are involved in MetS development. MC4R rs17782312 and IRS1 rs2943634 
may explain part of the genetic variation in MetS.
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Introduction
Methods

EPIC-NL:	Study	design
In the EPIC-NL cohort the two Dutch contributions to the European Investigation into 
Cancer and Nutrition (EPIC) project are combined: the Prospect-EPIC and the MOR-
GEN-EPIC (Monitoring Project on Risk Factors for Chronic Diseases) cohorts. Both 
cohorts were initiated in 1993.The study design of the combined cohort is described 
in detail elsewhere [8]. In brief, Prospect is a prospective cohort study among 17 357 
women aged 49-70 who participated in a breast cancer screening program between 
1993 and 1997. The MORGEN-project consists of 22 654 men and women aged 20-59 
years recruited from three Dutch towns (Amsterdam, Doetinchem, and Maastricht). 
From 1993 to 1997, each year a new random sample of approximately 5000 individuals 
were examined for the MORGEN-project.
A 6.5% random sample of the EPIC-NL study was selected and blood and buffy coat 
was retrieved for these subjects (n=2604). We used this random sample for our analy-
ses. After exclusion of participants with missing blood samples (n=157), missing values 
for haemoglobin A1c (HbA1C), waist circumference, high-density lipoprotein(HDL) 
cholesterol, systolic blood pressure, diastolic blood pressure, triglycerides or C-reactive 
protein (n=128), or with missing SNP data (n=438) the study population consisted of 
1886 participants. All participants signed informed consent before study inclusion. 
Both studies complied with the Declaration of Helsinki. The Prospect-EPIC study was 
approved by the Institutional Review Board of the University Medical Center Utrecht 
and the MORGEN project was approved by the Medical Ethical Committee of TNO, The 
Netherlands.

Baseline	measurements
At baseline, a physical examination was performed and non-fasting blood samples 
were drawn. During the physical examination, systolic and diastolic blood pressure 
measurements were performed twice in the supine position on the right arm using a 
BosoOscillomat (Bosch & Son, Jungingen, Germany) (Prospect) or on the left arm 
using a random zero sphygmomanometer (MORGEN). The mean of both measure-
ments was taken. Waist circumference and height were measured to the nearest 0.5 cm. 
Body weight was measured with light indoor clothing without shoes on, to the nearest  
100 gr.

Biomarker measurements
Levels of the biochemical parameters were measured in EDTA or citrate plasma. HbA1c 
was measured with a homogeneous assay with enzymatic endpoint. Trigycerides were 
measured using enzymatic methods, whereas high sensitve C-reactive protein (hsCRP) 
was measured with a turbidimetric method [8]. MetS was defined according to an 
adapted version of the AHA/NHLBI MetS definition as having at least 3 of the following 
5 MetS features [9]: abdominal obesity (waist circumference ♂ ≥102 cm; ♀ ≥88 cm); 
low HDL cholesterol (♂ <1.0; ♀ <1.3 mmol/L); hypertriglyceridemia (≥1.7 mmol/L); 
hypertension (≥130/85 mm Hg or hypertensive medicine); hyperglycemia (HbA1C 
≥5.7% or glucose lowering medication) [10, 11]. MetS-score was calculated by sum-
ming the number of MetS features present in each participant.
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Genotyping
Genomic DNA was extracted in different batches using standard methods, such as salt-
ing out, QIAamp® Blood Kit (Qiagen Inc., Valencia, CA, USA). We were able to isolate 
DNA from 2398 participants in the random sample. For 206 participants in the random 
sample this was not possible due to missing buffy coats or blood samples. The partici-
pants were genotyped using a gene-centric 50K iSelect chip array, previously described 
as the IBC CVD chip [12]. The design and coverage of the IBC array compared to con-
ventional genome-wide genotyping arrays has been described in detail elsewhere [12]. 
Additionally, the MC4R rs17700633 SNP was available for 853 women of the random 
sample. For this SNP genomic DNA was extracted with an in-house developed extrac-
tion method at Kbiosciences (Hoddesdon Herts, UK). (http://www.kbioscience.co.uk/
lab%20services/DNA%20extraction/Ext_services_intro.html) MC4R rs17700633 was 
genotyped with the KASPar chemistry, an allele-specific PCR SNP genotyping that uses 
FRET quencher cassette oligos [13].
From the available SNP’s, we selected those significantly associated (P≤1.0*10-5) with 
waist circumference, inflammatory markers, triglycerides, HDL cholesterol or HOMA-
IR (p<0.05). As only a few GWAS on HOMA-IR are conducted, SNP’s both associated 
with a glucose related traits in GWAS (P≤1.0*10-5) and with HOMA-IR (P≤0.05) were 
also included. Highly correlated SNP’s were included in case the original SNP from the 
GWAS was not available on the IBC array (r² ≥ 0.80). If SNP’s were only found in a GWAS, 
without a replication sample, they were excluded. In total we included 39 SNP’s: 2 SNP’s 
associated with waist circumference, 5 SNP’s associated with insulin resistance, 6 SNP’s 
associated with inflammation, 16 SNP’s associated with triglycerides and 16 SNP’s associ-
ated with HDL cholesterol (table 1).

Statistics
Distributions of genotypes were tested for deviation from HWE by chi-square analyses. 
Triglycerides and hsCRP were log-transformed to improve normality. Participants on 
blood pressure medication were excluded from the analyses on blood pressure, partici-
pants on glucose lowering medication from the analysis on HbA1C, and participants 
with acute inflammation (hsCRP>10 mmol/L) from the analyses on hsCRP.
SNP’s were divided into 5 groups (table 1) according to the known associations in GWAS. 
These groups of SNP’s were associated with the corresponding phenotype using the lin-
ear regression model of Goeman’s global test [7]. For example, we tested if the group 
of SNP’s associated with waist circumference in GWAS was also associated with waist 
circumference in our data. Subsequently, for each group of SNP’s the association with 
MetS was analysed using the log-linear model of Goeman’s global test, and the associa-
tion with MetS-score using the linear regression model of Goeman’s global test. If one 
of these associations was significant, we conducted additional data-analyses. First, to 
see whether the association with the group of SNP’s was mediated by the correspond-
ing phenotype from GWAS, we adjusted the association between MetS and the group 
of SNP’s for this phenotype. Second, we tested if the group of SNP’s was also associ-
ated with the individual MetS features or hsCRP using the linear regression model of 
Goeman’s global test. Third, we analysed the association of the individual SNP’s in this 
group with MetS using log-linear models and with MetS-score using linear regression. 
For the individual SNP’s which were significantly associated with MetS or MetS-score, 
we analysed associations with the individual MetS features and hsCRP using linear 
regression. See figure 1 for an overview of our data-analyses scheme. All analyses were 
corrected for age, sex and cohort. Significance was defined as a 2-sided P-value <0.05. 
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Table 1  SNPs included in the analyses of random sample of EPIC-NL (n=1886)

Gene  SNP (literature) SNP (dataset) MAF (dataset) ref r2 SNPs

Insulin resistance
PPARG  rs1801282  rs1801282  G: 0.13  [25]  -
IRS1  rs2943634  rs2943634  A: 0.35  [21]  -
GCKR  rs780094  rs780094  T: 0.37  [25]  -
IGF1  rs35767  rs35767  A: 0.16  [25]  -
GCK  rs4607517  rs1799884  T: 0.18  [25]  1

Abdominal obesity
FTO  rs1421085  rs1421085  C: 0.40  [32]  -
MC4R a  rs17782313  rs17782313  C: 0.25  [32]  -

Inflammation
IL6R  rs4537545  rs4537545  T: 0.39  [33]  -
LEPR  rs6700896  rs1805096  A: 0.38  [33]  0.89
CRP  rs7553007  rs1341665  A: 0.32  [33]  1
ADIPOQ  rs1648707  rs182052  A: 0.34  [34]  1
IL18  rs1834481  rs5744256  G: 0.26  [35]  1
GCKR  rs780094  rs780094  T: 0.37  [36]  -
         
Triglycerides
AFF1  rs442177  rs3775214  G: 0.43  [37]  0.96
APOB  rs673548  rs673548  A: 0.22  [38]  -
APOB  rs693  rs693  G: 0.50  [39]  -
APOA5-A4-C3-A1  rs12286037  rs12286037  T: 0.08  [40]  -
APOA5  rs6589566  rs2075290  C: 0.06  [41]  1
FADS1  rs174548  rs174548  G: 0.29  [37] 
FADS1-2-3  rs174547  rs174577  A: 0.35  [42]  1
GALNT2  rs4846914  rs4846914  G: 0.41  [39]  -
LPL  rs328  rs328  G: 0.10  [39]  -
MLXIPL  rs17145738  rs17145750  T: 0.16  [40]  0.86
PLTP  rs7679  rs6073952  A: 0.20  [42]  0.82
TRIB1  rs2954029  rs2954029  T: 0.47  [42]  -
CLIP2   rs16996148  rs16996148  T: 0.10  [40]  -
GCKR  rs780094  rs780094  T: 0.37  [27]  -
ANGPTL3-DOCK7  rs1748195  rs1748197  A: 0.35  [40]  1
ANGPTL3-DOCK7  rs12130333  rs12130333  T: 0.24  [39]  -

HDL cholesterol
ABCA1  rs1883025  rs1883025  T: 0.24  [42]  -
ABCA1  rs3890182  rs3890182  A: 0.10  [37]  -
APOB  rs11902417  rs11902417  A: 0.24  [37]  -
CETP  rs1800775  rs1800775  A: 0.46  [43]  -
CETP  rs3764261  rs3764261  A: 0.31  [44]  -
FADS1  rs174548  rs174548  G: 0.29  [37]  -
FADS1-2-3   rs174547  rs174577  A: 0.35  [42]  -
GALNT2  rs4846914  rs4846914  G: 0.41  [39]  -
LCAT  rs255052  rs255052  A: 0.17  [40]  -
LCAT  rs12449157  rs1109166  C: 0.18  [37]  0.94
LIPC  rs1800588  rs1800588  T: 0.22  [39]  -
LIPG  rs2156552  rs2156552  A: 0.16  [37]  -
LPL  rs328  rs328  G: 0.10  [39]  -
PLTP  rs7679  rs6073952  A: 0.20  [42]  0.82
MMAB	MVK  rs2338104    rs10774708  A: 0.47  [42]  1
HNF4A  rs1800961  rs1800961  T: 0.04  [42]  -

a  Data available in 853 women
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The global test was calculated in R version 2.12.1 (R Foundation for Statistical Com-
puting; www.r-project.org). The analyses for individual SNP’s were performed with SAS 
version 9.2 (SAS Institute, INC., Cary, North Carolina).

Results
All SNP’s were in HWE (P>0.05). Minor allele frequency of the SNP’s ranged from 0.04-
0.47 (table 1). The random sample of EPIC-NL consisted of 465 men and 1421 women 
(table 2). The mean age was 50.1 (SD=11.7) and 30.3% of all participants had MetS. 
Mean waist circumference was 85.5 cm (SD 11.6), mean HbA1C was 5.46% (SD 0.69), 
median triglycerides 1.32 mmol/L (P25-P75 0.91-1.98), mean HDL cholesterol 1.27 
mmol/L (SD 0.35), mean systolic blood pressure 129.9 mm/Hg (SD 18.5) and mean 
diastolic blood pressure 78.2 mmHg (SD 10.4).The group of abdominal obesity SNP’s 
was significantly associated with waist circumference (P=0.01), the group of insulin 
resistance SNP with HbA1C (P=0.04) and the group of inflammation SNP’s with hsCRP 
(P=7.3*10-6). In contrast, the group of triglyceride SNP’s and the group of HDL choles-
terol SNP’s were not significantly associated with triglycerides (P=0.08) and HDL cho-
lesterol (P=0.32), respectively.
P-values for the association of all groups of SNP’s with MetS or MetS-score are shown 
in table 3. The group of SNP’s, known for their association with insulin resistance, 
was borderline significantly associated with MetS (P=0.06) and statistical significantly 
associated with MetS-score (P=0.003). This group of SNP’s was also significantly associ-
ated with HbA1C, triglycerides and HDL cholesterol (table 4). The associations of this 
group of SNP’s with MetS-score and MetS features weakened slightly after adjustment 
for HbA1C (table 4). Of the five insulin resistance SNP’s included in the group IRS1 
rs2943634 was the only SNP individually associated with MetS or MetS-score (table 
5). These associations remained after adjustment for HbA1C (data not shown). IRS1 

Association:
SNPs group - MetS or MetS score?

No Yes

Association:
SNPs group - individual features?

Association:
Individual SNPs - MetS or MetS score?

No Yes

Association:
Individual SNPs - individual features?

Figure 1 Flow diagram of analyses
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Table 2  Characteristics of 1886 subjects of the random sample of EPIC-NL

    Total  Men  Women
    (n=1886)  (n=465)  (n=1421)

Sex (% men)  24.6  (465)   
Age (yr)  50.1  (11.7)  43.9  (11.1)  52.2  (11.2)
Waist circumference (cm)  85.5  (11.6)  92.0  (11.4)  82.9  (10.5)
Abdominal obesity(%) a  27.7  (522)  21.9  (102)  29.6  (420)
HbA1C (%)  5.46  (0.69)  5.27  (0.61)  5.53  (0.71)
Hyperglycemia a  28.3  (534)  17.8  (83)  31.7  (451)
Diabetic medication(%)  1.2  (22)  0.2  (1)  1.5  (21)
HDL-cholesterol (mmol/L)  1.27  (0.35)  1.14  (0.28)  1.31  (0.36)
Low HDL-cholesterol(%) a  47.8  (902)  29.2  (136)  53.9 (766)
Triglyceride (mmol/L) b,c  1.32  (0.91-1.98)  1.72  (1.15-2.40)  1.22  (0.85-1.80)
Hypertriglyceridemia a,b  33.8  (637)  50.8  (236)  28.2  (401)
Systolic blood pressure (mm Hg)  126.9  (18.5)  127.1  (14.8)  126.8  (19.5)
Diastolic blood pressure (mm Hg)  78.2  (10.4)  80.3  (10.1)  77.5  (10.4)
Hypertension(%) a  45.6  (860)  47.1  (219)  45.1  (641)
Blood pressure lowering medication (%)  10.7  (202)  5.6  (26)  12.4  (176)
High sensitive CRP (mmol/L)  1.41  (0.62-3.39)  1.20  (0.53-2.82)  1.49  (0.66-3.70)
MetS-score (number of features)   1.8  (1.4)  1.7  (1.3)  1.9  (1.4)
MetS prevalence(%) a   30.3  (572)  25.2  (117)  32.0  (455)

Data are presented as means (standard deviation), median with inter-quartile range or % (n); MetS, metabolic syndrome
a  Abdominal  obesity,  low  HDL,  hypertension,  hypertriglyceridemia  and  MetS  are  defined  according  to  the  criteria  of  AHA-NHLBI 

(2005). Hyperglycemia is defined according to the criteria of the American Diabetes Association (2010). Abdominal obesity: ♂ ≥102 

cm; ♀≥ 88 cm; Low HDL: ♂ <1.0; ♀<1.3 mmol/L; Hypertriglyceridemia: ≥1.7 mmol/L ;Hypertension: ≥130/85 mm Hg or hypertensive 

medicine;  Hyperglycemia:  HbA1C  in  National  GlycohemoglobinStandarization  Program  (NGSP)  units  ≥  5.7%  or  glucose  lowering 

medication; MetS is defined as having at least 3 MetS features
b  Non-fasting values
c  No information on lipid lowering medication is available

Table 3  P-values for Goeman’s global test, testing the association of inflammation, waist circumference, 
  insulin resistance and lipid SNPs with on MetS and MetS-score

Group of SNPs   MetS  MetS score
    (n=1886)  (n=1886)

Inflammation  P=0.37  P=0.15
Waist circumference a  P=0.03  P=0.08
Insulinresistance  P=0.06  P=0.003
Triglycerides + HDL cholesterol  P=0.72  P=0.73
Triglycerides  P=0.45  P=0.62
HDLcholesterol  P=0.97  P=0.87

All analyses are adjusted for age, sex and cohort
a  Data available in 853 women

rs2943634 was also associated with HbA1C (per allele difference -0.034, 95%CI -0.070; 
0.002), triglycerides (per allele difference -0.051, 95%CI -0.085; -0.017) and HDL cho-
lesterol (per allele difference 0.029, 95%CI 0.008; 0.052).
The group of SNP’s, known for their association with waist circumference, was sta-
tistical significantly associated with MetS (P=0.03) and tended to be associated with 
MetS-score (P=0.08) (table 3). The association with MetS and the suggested associa-
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Table 5  Individual SNPs associated with waist circumference or insulin resistance in GWAS in relation to
  MetS and MetS-score

    MetS  MetS-score
    (n=1886)  (n=1886)

Waist circumference
FTO   rs1421085  1.02  (0.93; 1.12)  0.05  (-0.03; 0.14)
MC4R   rs17782313 a  1.16  (1.02; 1.32)  0.10  (-0.05; 0.24)

Insulin resistance
PPARG   rs1801282  1.04  (0.91; 1.19)  0.10  (-0.02; 023)
IRS1   rs2943634  0.88  (0.79; 0.97)  -0.14  (-0.23;-0.06)
GCKR   rs780094   0.99  (0.89; 1.09)  0.05  (-0.04; 0.13)
IGF1   rs35767  1.03  (0.91; 1.16)  0.03  (-0.08; 0.14)
GCK   rs1799884  1.07  (0.95; 1.20)  0.08  (-0.03; 0.22)

Data are presented as PR per minor allele for MetS and as minor allele change for MetS Score; MetS, Metabolic syndrome; 

All analyses are adjusted for age, sex and cohort 
a  Data available in 853 women

Table 4  P-values for Goeman’s global test, testing the association of waist circumference and insulin resistance SNPs 
  with metabolic syndrome and related features

Group of SNPs MetS MetS-score WC HbA1C Log (TG) HDL SBP DBP Log (CRP)
   (cm) (%) (mmol/L) (mmol/L) (mm HG) (mm HG) (mmol/L)

n	 1886	 1886	 1886	 1864	a	 1886	 1886	 1684	c	 1684	c	 1683	b

WC d  P=0.03  P=0.08  P=0.01  P=0.73  P=0.81  P=0.36  P=0.29  P=0.11  P=0.22
Adj WC  P=0.16  P=0.80  -  P=0.47  P=0.55  P=0.09  P=0.36  P=0.34  P=0.68
IR  P=0.06  P=0.003  P=0.45  P=0.04  P=0.0003  P=0.0005  P=0.07  P=0.16  P=0.16
Adj HbA1C  P=0.12  P=0.01  P=0.70  -  P=0.0005  P=0.0008  P=0.10  P=0.22  P=0.17

All analyses are adjusted for age, sex and cohort; Mets, Metabolic syndrome; WC, waist circumference; TG, triglycerides; HDL, HDL-

cholesterol; HbA1C, haemoglobin A1c; SBP systolic blood pressure; DBP diastolic blood pressure; Adj, adjusted; IR, insulin resistance
a  Subjects which are using glucose lowering medication are excluded
b  Subjects with CRP > 10 mmol/L are excluded 
c  Subjects with blood pressure lowering medication are excluded
d  Data available in 853 women

tion with MetS-score disappeared after adjustment for waist circumference (table 4). 
Furthermore, no association was found with any individual MetS feature except for 
waist circumference (table 4). Of the 2 abdominal obesity SNP’s only MC4R rs17782313 
was individually associated with MetS (table 5). This association remained after adjust-
ment for waist circumference.
MC4R rs17782313 was not associated with any individual MetS feature, including waist 
circumference itself (data not shown).
The groups of SNP’s linked in GWAS with inflammation, triglycerides or HDL cholesterol 
were neither associated with MetS nor with MetS-score (table 3). Therefore no further 
data-analyses were done for these groups of SNP’s.
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Table 4  P-values for Goeman’s global test, testing the association of waist circumference and insulin resistance SNPs 
  with metabolic syndrome and related features

Group of SNPs MetS MetS-score WC HbA1C Log (TG) HDL SBP DBP Log (CRP)
   (cm) (%) (mmol/L) (mmol/L) (mm HG) (mm HG) (mmol/L)

n	 1886	 1886	 1886	 1864	a	 1886	 1886	 1684	c	 1684	c	 1683	b

WC d  P=0.03  P=0.08  P=0.01  P=0.73  P=0.81  P=0.36  P=0.29  P=0.11  P=0.22
Adj WC  P=0.16  P=0.80  -  P=0.47  P=0.55  P=0.09  P=0.36  P=0.34  P=0.68
IR  P=0.06  P=0.003  P=0.45  P=0.04  P=0.0003  P=0.0005  P=0.07  P=0.16  P=0.16
Adj HbA1C  P=0.12  P=0.01  P=0.70  -  P=0.0005  P=0.0008  P=0.10  P=0.22  P=0.17

Discussion
In this population based study of 465 men and 1421 women, we studied the rela-
tion between MetS and groups of SNP’s associated in GWAS with waist circumference, 
insulin resistance, inflammation, triglycerides or HDL cholesterol. Only the group of 
waist circumference SNP’s and the group of insulin resistance SNP’s were associated with 
MetS or MetS-score.
In our study the group of SNP’s which were associated with waist circumference in 
GWAS (MC4R rs17782313 and FTO rs1421085) was associated with waist circumference, 
as well as with MetS. However, the association with MetS disappeared after adjust-
ment for waist circumference. This result is in line with the theory that visceral obes-
ity induces the development of MetS and related features, such as insulin resistance, 
dyslipidemia and hypertension [1, 3, 14]. The association with MetS was mainly driven 
by MC4R rs17782313. In the KORA study among 7888 adults, an association between 
MC4R rs2229616 (r²=1 with rs17782313) and MetS was found [15], supporting our find-
ings. Unfortunately, in our study, data on MC4R rs17782313 were available for women 
only. However, as in the KORA study [15] the association between MC4R rs2229616 and 
MetS was not dependent on sex, we expect that this did not influence our findings. 
Although we found an association between MC4R rs17782313 and MetS, we found no 
association between MC4R rs17782313 and any individual MetS feature, including waist 
circumference. Furthermore, the association between MC4R rs17782313 and MetS, did 
remain after adjustment for waist circumference. This suggests that the association 
between MC4R rs17782313 and MetS, is at least in part, independent of body weight. 
Both human and animal studies found that MC4R rs17782313 has an effect on insulin 
resistance, independent of body weight [16, 17]. Therefore, the association between 
MC4R rs17782313 and MetS is probably partly mediated by insulin resistance. Con-
trary to a meta-analysis among 12555 Europeans, in which FTO rs9939609 (r²=1 with 
rs1421085) was significantly associated with MetS (OR 1.17 ; 95%CI 1.10- 1.25) [18], we 
did not observe an association between FTO rs1421085 and MetS. This discrepancy may 
be explained by the weak association between FTO rs1421085 and waist circumference 
in our study. In our study the regression coefficient between FTO rs1421085 and waist 
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circumference was 0.03 per SD, whereas in other studies it ranged from 0.07 per SD to 
0.14 per SD [18].
We found an association between insulin resistance SNP’s and MetS and MetS-score 
that remained after adjustment for HbA1C. This suggests that this association is not 
mediated by HbA1C. However, as HbA1C is not an optimal marker of insulin resist-
ance (r² between HOMA-IR – HbA1C ≈0.50 [19]), we do not exclude the possibility that 
insulin resistance mediates the association between insulin resistance SNP’s and MetS. 
Out of the group of five insulin resistance SNP’s, IRS1 rs2943634 was the only SNP signif-
icantly associated with MetS and MetS score. It was also associated with HbA1C, trig-
lycerides and HDL cholesterol. Associations of IRS1 rs2943634 with glucose related [20] 
and lipid traits [21] have been observed by others. In contrast, in a study among 1126 
non-Hispanic whites, 898 non-Hispanic blacks and 906 Mexican Americans, the IRS1 
rs7578326 (r² with rs2943634=0.82) was not associated with MetS, neither in the overall 
population, nor in specific ethnic groups [22]. However, as the number of Caucasian 
participants and MetS prevalence were lower in the previous than in our study, the 
power to detect an association with MetS in Caucasian was also lower in the previous 
than in our study. IRS1 rs2943634 was not associated with waist circumference, both in 
our study and in a much larger study among 39576 individuals [21]. In accordance with 
the human data described above, an IRS1 knock-out mouse model displayed a non-
obese MetS like phenotype with insulin resistance, increased blood pressure, increased 
triglycerides, decreased HDL cholesterol and decreased LPL activity [23]. Besides IRS1 
rs2943634 the group of insulin resistance SNP’s consisted of PPARG rs1801282, GCKR 
rs780094, GCK rs1799884, and IGF1 rs35767. In line with other studies, none of these 
SNP’s were associated with MetS in our data [4, 22, 24]. This may in part be explained 
by the relatively relatively weak effect of PPARG rs1801282, GCK rs1799884, and IGF1 
rs35767 on HOMA-IR compared to IRS1 rs2943634 [20, 25]. Furthermore, pleiotropic 
effects may explain the lack of an association of PPARG rs1801282 and GCKR rs780094 
with MetS. The 12Pro allele of PPARG rs1801282 has opposite effects on insulin resist-
ance and BMI in Caucasian subjects [26], whereas GCKR rs780094 has opposite effects 
on insulin resistance and lipid levels [27]. These opposite effects may result in a zero 
association with MetS. In summary, it seems that the association between the groups 
of insulin resistance SNP’s and MetS, was mainly driven by IRS1 rs2943634.
We did not observe an association between groups of SNP’s known for their associa-
tion with triglycerides or HDL cholesterol and MetS. On the contrary, in a GWAS [5] 
and a systematic review of genetic association studies[4], the majority of SNP’s asso-
ciated with MetS was involved in lipid metabolism. Possibly, lack of an association 
between lipid SNP’s and MetS in our study can be explained by the weak association 
of lipid SNP’s with lipid levels in EPIC-NL. Subgroup analyses revealed that the weak 
associations we observed between lipid SNP’s and lipid levels could not be explained 
by medication use, sex or a difference between the MORGEN and Prospect study. Fur-
thermore, it is unlikely that the non-fasting state of our samples gives an explanation, 
as in a GWAS, the association with lipid levels was independent of the fasting state for 
most SNP’s [28].
We found no significant association between a group of inflammation SNP’s and MetS. 
This zero association is in line with a study among 4286 British women, in which a 
CRP haplotype was not associated with the individual features of MetS [29]. Further-
more, Rafiq et al. could not detect an association between type 2 diabetes, an endpoint 
of MetS and 8 SNP’s known to alter circulating levels of inflammatory proteins, which 
were located in the IL-18, IL1RN, IL6R, MIF, PAII and CRP genes [30]. Overall, this evi-
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dence may suggest that inflammation does not play a causal role in MetS development. 
However, for several reasons it can not be ruled out that SNP’s in inflammatory path-
ways exist that are causally related to MetS. First, for not all inflammatory proteins a 
SNP-MetS association has been investigated. Second, as the global test gives a com-
bined result for all SNP’s, the global test may be not significant, despite the presence of 
an association between one of the single SNP’s and MetS.
In this study we have explored the biomarkers involved in MetS development, by stud-
ying SNP’s related to these biomarkers. Advantage of this approach is that, according to 
the principles of Mendelian randomization the associations we investigated are neither 
affected by reverse causality nor by socioeconomic and behavioural confounders [31]. 
Furthermore, as all participants were Caucasian, it is unlikely that our study results 
have been affected by population stratification. Sixteen SNP’s which were associated in 
GWAS with waist circumference, inflammatory biomarkers and lipid levels were not on 
the IBC CVD array (appendix I). Inclusion of the three waist circumference SNP’s, which 
were not on the array, might have increased the possibility to find associations with 
several MetS features. As the global test of inflammation SNP’s on hsCRP was already 
highly significant (P=7.3*10-6), inclusion of additional SNP’s, which were absent on the 
IBC CVD array, would not have changed our results for the global test, but may have 
revealed additional individual SNP’s. The IBC CVD array covered all lipid genes detected 
in GWAS, but not for every gene each SNP was available. However, the total number of 
lipid SNP’s in our study was relatively large and relatively few lipid SNP’s were missing. 
Therefore we believe that inclusion of additional lipid SNP’s, would not have changed 
our results considerably on the group level. The IBC CVD array covered all insulin resist-
ance SNP’s discovered in GWAS. However, up till now for only three SNP’s a genome 
wide association with HOMA-IR has been found and replicated. To increase power we 
also included those SNP’s associated with glucose related traits in GWAS, which were also 
associated with HOMA-IR (P≤0.05). However, as the association between the group of 
insulin resistance SNP’s and HbA1C was just significant, the power to detect associa-
tions with MetS and its features was still low.
In conclusion, we found that SNP’s associated with waist circumference or insulin resist-
ance in GWAS were also associated with MetS. These results are in line with the hypoth-
eses that weight regulation and insulin metabolism are causative factors for MetS.
Individual SNP’s for which we found an association with MetS were MC4R rs17782312 
which is involved in weight regulation and IRS1 rs2943634 which is involved in insulin 
resistance.
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Appendix I
Loci related to waist circumference, insulin resistance, inflammatory biomarkers, triglyc-
erides and HDL cholesterol in genome wide association studies till 01-01-2011 which are not 
on the IBC CVD array

Waist circumference
NRXN3    –  rs10146997 [45]
TFAP2B    –  rs987237 [32]
MSRA    –  rs7826222 [32]

Insulin resistance

Inflammatory biomarkers
HNF1A    –  rs1183910 [36]
ARL15    –  rs4311394 [34]
APOE, APOC1, APOCII  –  rs4420638 [46]
CDH13    –  rs3865188 [47]

Triglycerides
LPL    –  rs326 [48]
APOA1    –  rs2075292 [48]
APOA1, APOC3, APOA4, APOA5 –  rs10892151 [49]
APOA1, APOC3, APOA4, APOA5 –  rs4938303[37]
CLIP2    –  rs7557067 [42]

HDL cholesterol
CETP    –  rs9989419 [37]
LIPC    –  rs10468017 [42]
CLIP2    –  rs2304130 [37]
MAB, MVK   –  rs9943753 [37]
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Abstract
Background
Our objective was to find single nucleotide polymorphisms (SNP’s), within transcrip-
tional pathways of glucose and lipid metabolism, which are related to multiple features 
of the metabolic syndrome (MetS).

Methods
373 SNP’s were measured in 3575 subjects of the Doetinchem cohort. Prevalence of 
MetS features, i.e. hyperglycemia, abdominal obesity, decreased HDL cholesterol levels 
and hypertension, were measured twice in 6 years. Associations between the SNP’s and 
the individual MetS features were analyzed by log-linear models. For SNP’s related to 
multiple MetS features (P<0.01), we investigated whether these associations were inde-
pendent of each other.

Results
Two SNP’s, CETP Ile405Val and APOE Cys112Arg, were associated with both the preva-
lence of low HDL cholesterol level (Ile405Val P=<.0001; Cys112Arg P= 0.001) and with 
the prevalence of abdominal obesity (Ile405Val P=0.007; Cys112Arg P=0.007). For both 
SNP’s, the association with HDL cholesterol was partly independent of the association 
with abdominal obesity and vice versa.

Conclusion
Two SNP’s, mainly known for their role in lipid metabolism, were associated with two 
MetS features i.e., low HDL cholesterol concentration, as well as, independent of this 
association, abdominal obesity. These SNP’s may help to explain why low HDL choles-
terol levels and abdominal obesity frequently co-occur.
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Introduction
The metabolic syndrome (MetS) is a common multi-component condition includ-
ing abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. It is associated 
with an increased risk of cardiovascular disease and type 2 diabetes [1]. A central ques-
tion in understanding the MetS is why these traits cluster together [1]. The clustering 
may be explained by a complex physiological cascade of events, in which the occur-
rence of one trait initiates the occurrence of a second. Alternatively, a causative factor 
common to several metabolic traits may explain the clustering. This factor could be 
either of genetic or environmental nature [2].
Family and twin studies indicate that the different features of the MetS share a com-
mon genetic component [2-5]. Twin studies show that the correlation between the fea-
tures of the metabolic syndrome is higher in monozygotic compared to dizygotic twins 
[2, 6, 7]. Family studies also show significant genetic correlations between the different 
features of the metabolic syndrome [4]. Heritability estimates of the MetS itself range 
from 13-27% [3-5]. However, despite the evidence from these heritability studies, only 
a few single nucleotide polymorphisms (SNP’s) have been linked to multiple features 
of the MetS[1].
Disturbances in lipid and glucose metabolism may lead to the development of one or 
more MetS features [8]. Therefore, genes involved in these pathways are potentially 
pleiotropic for multiple MetS features. In a population based cohort study, we studied 
373 SNP’s mainly selected from transcriptional pathways of glucose and lipid metabo-
lism, and their association with multiple features of the MetS.

Methods
Study population
The Doetinchem Study is a population-based cohort study on lifestyle, biological risk 
factors and chronic diseases [9]. Between 1987 and 1991, 12404 subjects, aged 20-59, 
all inhabitants of Doetinchem, a town in a rural area in east of the Netherlands, were 
enrolled in the baseline cohort. A random sub-sample of this cohort (63%) was invited 
for a second measurement round (1993-1997; response 79%) and for a third measure-
ment round (1998-2002; response 75%). Overall, the Doetinchem Cohort comprises 
4662 persons with repeated measurements.
Pregnancy and alteration in smoking behavior are factors that influence body weight 
and therewith the MetS. Therefore, subjects of the Doetinchem Cohort who changed 
their smoking habits (n=750), who had missing data on smoking status (n=11) or who 
where pregnant at the time of measurement (n=122) were excluded from the current 
study. This resulted in a final study population of 3779 subjects. The second and third 
measurement rounds included glucose and waist circumference measurements and 
were used for the present study. All participants gave written informed consent and 
approval was obtained from local Medical–Ethical Committees.

Measurements
During each measurement round, a questionnaire on lifestyle factors was administered 
and anthropometric and biochemical variables were measured. For a more detailed 
description see [10].
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During the second and third visit waist circumference was measured according to writ-
ten instructions based on WHO criteria for waist measurement (1989). Waist circum-
ference was determined to the nearest 0.5 cm, at midway between the lowest rib and 
the iliac crest, with subjects in standing position and after breathing out gently. Waist 
circumference was measured in duplicate and the mean of the two measurements was 
taken. Blood pressure (BP) was measured in each round, with the subject in sitting 
position using a random-zero sphygmomanometer. Systolic pressure was recorded 
at the appearance of sounds (first-phase Korotkoff) and diastolic blood pressure was 
recorded at the disappearance of sounds (fifth-phase Korotkoff). BP measurement was 
repeated and values were averaged. During the physical examination, regular audits 
were performed to check adherence to the BP measuring protocol (e.g. resting time, 
adequate cuff size).
Non-fasting blood samples were taken by venapuncture for all subjects. Blood samples 
were fractionated into serum, buffy coat and erythrocytes and subsequently stored at 
-30°C until further use. Plasma glucose levels were measured as described by Tietz [11]. 
HDL cholesterol was measured in EDTA-plasma until 1998, and from 1998 onwards in 
serum, at the Lipid Reference Laboratory (LRL) of the university Hospital Dijkzigt in 
Rotterdam, using standardized enzymatic methods. Performance for enzymatic HDL 
cholesterol measurements fulfilled National Cholesterol Education Program (NCEP) 
recommendations throughout the entire study period.
Genomic DNA was extracted from the buffy coat fraction with a salting out method. 
A total of 139 subjects were not eligible for genotyping, mainly because of failure to 
extract DNA or unavailability of buffy coats. For 3640 subjects, 401 SNP across 270 
candidate genes were genotyped. A set of 383 SNP’s across 253 candidate genes, passed 
the Illumina design tool and were genotyped with the Illumina Golden Gate assay 
using the Sentrix Array Matrix platform (Illumina Inc, San Diego, California) [11]. 
18 Additional SNP’s were genotyped by KBioscience (Hoddesdon, Hertfordshire, UK) 
using the KASPar chemistry, which is a competitive allele specific PCR SNP genotyping 
system using FRET quencher cassette oligonucleotides http://www.kbioscience.co.uk). 
Two SNP’s (rs7412 and rs429358 in APOE) that failed in the Illumina Golden Gate assay 
were successfully re-genotyped with Taqman assay.
A detailed description of the SNP selection procedure and a full SNP list have been pub-
lished elsewhere [10]. In short, 270 candidate genes were selected by a pathway-driven 
approach, with emphasis on regulatory pathways that control fatty acid, glucose, cho-
lesterol and bile salt homeostasis [10]. The selection procedure started from the mas-
ter regulator genes encoding nuclear receptors (PPAR’s, LXR, NR1H4) and transcription 
factors (SREBP’s) and continued by selecting their co-activators, co-repressors and tar-
get genes. In addition, hormonal receptors (insulin receptor), their down-stream sig-
naling proteins and genes involved in β-signaling were selected. For each gene out of 
these pathways, 1-7 SNP’s most likely to carry functional properties were selected. For 
26 SNP’s genotyping was unsuccessful. In addition, 33 SNP’s were not in Hardy Wein-
berg Equilibrium (HWE). Verification was carried out in a random sample (n=96) for 
the eight SNP’s (24%) that deviated most strongly from HWE. All yielded the same 
results, except for 2 SNP’s, which were therefore excluded [10]. After the exclusion of 
subjects with genotype failure or discordance on gender control (n=65), 3575 subjects 
were available for data analyses. Finally, data on 373 SNP’s in 254 genes were available 
for 3575 subjects.

http://www.kbioscience.co.uk
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Statistical analyses
Abdominal obesity, low HDL cholesterol levels, hyperglycemia and hypertension were 
defined according to the criteria of the AHA/NHLBI (2005)[12].
All analyses were performed with SAS version 9.1 (SAS Institute, INC., Cary, North Caro-
lina). Distributions of genotypes were tested for deviation from HWE by chi-square 
analyses (PROC ALLELE). Associations with individual MetS features and co-occurrence 
of MetS features were tested. To optimize precision, subjects who changed phenotype 
between the two rounds were excluded. This means that subjects being e.g. hyperten-
sive in one round and normotensive in the other round or vice versa were excluded. All 
analyses were adjusted for age and sex.
In a first series of analyses, the association between individual MetS features and each 
SNP was analyzed by log-linear models. The prevalence ratios of change per allele were 
calculated with an additive genetic model. To avoid chance findings we only followed 
up those SNP’s which were related to multiple MetS features with P≤0.01. We deter-
mined the expected number of SNP’s related to 2 or more MetS features with P<0.01 by 
chance alone and under the assumption of independent random outcomes using the 
following formula: Chance (P≤0.01 for SNP_1 - MetS feature_1 association) * Chance 
(P≤0.01 for the SNP_2 - MetS feature_2 association) * Chance (association 1 and 2 in 
the same direction) * number of MetS feature combinations * number of SNP’s. The 
expected number appeared to be 0.12 (0.01 * 0.01 * 0.5 * 6 * 373). Subsequently we 
tested whether the number of observed SNP’s associated with 2 or more MetS features 
differed significantly from the expected 0.12 SNP’s.
In our study abdominal obesity and decreased HDL cholesterol appeared to be the 
MetS features both associated with the same SNP’s. In a second series of analyses, it was 

Table 1  Characteristics of 3575 subjects of the Doetinchem Cohort in round 2 and 3

    Round 2  Round 3
    1993-1997 1998-2002

Age (yr)  46.5 (9.7)  51.5 (9.7)
Sex (% men)  47.8   47.8
Waist circumference (cm)  90.2 (11.1)  92.9 (11.4)
Increased waist circumference (%) a  31.3  40.3
Glucose levels (mmol/L) b  5.3 (1.3)  5.4 (1.5)
Diabetic medication (%)  0.8   2.3
Hyperglycemia (%) a  28.8  33.6
HDL-cholesterol (mmol/L)  1.38 (0.38)  1.37 (0.39)
Low HDL-cholesterol (%) a  25.4   29.0
Diastolic Blood Pressure (mm Hg)  79.9 (10.6)  81.4 (10.7)
Systolic Blood Pressure (mm Hg)  125.1 (16.4)  129.3 (18.01)
Hypertension (%) a  50.8  58.5
Blood Pressure lowering medication (%)  6.5  11.0
MetS-score (number of features)  1.34 (1.1)  1.61 (1.1)
Metabolic syndrome prevalence (%)   14.9   22.7

Data are presented as means (standard deviation) or %
a  Abdominal obesity, hyperglycemia, low HDL, hypertension and MetS are defined according to the criteria of AHA-NHLBI (2005).

  Abdominal obesity: ♂ ≥ 102 cm; ♀ ≥ 88 cm; Low HDL: ♂ < 1.0; ♀ < 1.3 mmol/L; hypertension: ≥130/85 mm Hg or hypertensive medi-

cine; Hyperglycemia ≥ 5.6 (mmol/L) or glucose lowering medication; MetS is defined as having 3 MetS features measured in Doet-

inchem Cohort
b  Non-fasting values
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tested if the association between these SNP’s and HDL cholesterol was independent of 
the association with abdominal obesity, and vice versa. This was done both by adjust-
ment and by stratification. The HDL cholesterol analyses were adjusted for abdominal 
obesity and vice versa. For stratified analyses, the association with abdominal obesity 
was analyzed in subjects with high HDL cholesterol levels. Low HDL cholesterol was 
analyzed in subjects without abdominal obesity.

Results
Baseline characteristics among the 3575 subjects of the Doetinchem cohort are pre-
sented in table 1. Hypertension was the most prevalent MetS feature (41.6% of the sub-
jects were stable hypertensive and 32.3% of the subjects were stable normotensive). The 
least prevalent MetS feature was low HDL cholesterol (18.7% were stable for low HDL 
and 64.1% were stable for high HDL). The most frequent combination of co-occurring 
MetS features was hypertension and abdominal obesity (14.5% were stable positive, 

Table 2  SNP’s associated (P<0.01) with stable MetS features among subjects of the Doetinchem
  Cohort over 2 surveys (1993-1997; 1998-2002) 

SNP   MAF  Gene  PR / allele a P-Value
       (95%CI)

Hyperglycemia	(n=2280)
rs1137101  0.46  LEPR  0.84 (0.76; 0.93)  0.001
rs3842748  0.21  INS-IGF2  1.20 (1.07; 1.35)  0.002
rs6795441  0.45  RAF1  0.86 (0.77; 0.95)  0.003
rs7903146  0.29  TCF7L2  1.17 (1.05; 1.30)  0.005
rs1143634  0.24  IL1B  1.17 (1.05; 1.31)  0.005

Abdominal	obesity	(n=2931)
rs35724  0.38  NR1H4  0.91 (0.85; 0.97)  0.005
rs10860603  0.14  NR1H4  0.86 (0.78; 0.96)  0.006
rs1800796  0.04  IL6  0.77 (0.64;0.93)  0.007
rs5882  0.31  CETP  0.90 (0.83;0.97)  0.007
rs429358  0.16  APOE  1.12 (1.03;1.23)  0.007

Hypertension	(n=2643)
rs130005  0.10  CREBBP  0.89 (0.82; 0.97)  0.006
rs3759324  0.25  SCCN1A  1.07 (1.02; 1.12)  0.009

Low	HDL-Cholesterol	(n=2959)
rs1800777  0.03  CETP  1.60 (1.56;2.32)  3.3 E-12

rs3208305  0.30  LPL  0.70 (0.63;0.79)  9.3 E-10

rs328  0.11  LPL  0.60 (0.49; 0.72)  1.2 E-7

rs5882  0.31  CETP  0.76 (0.69;0.86)  2.1 E-6

rs429358  0.16  APOE  1.21 (1.07;1.37)  0.001
rs174546  0.33  FADS1  1.18 (1.07;1.30)  0.001
rs780094  0.36  GCKR  1.17 (1.06; 1.29)  0.002
rs268  0.02  LPL  1.45 (1.12; 1.86)  0.004
rs5275  0.31  PTGS2  1.15 (1.04; 1.27)  0.006

MAF = Minor allele frequency; PR = Prevalence Ratio;
a  Prevalence ratios are expressed per minor allele assuming an additive genetic model
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21.2% were stable negative). The least frequent combination was decreased HDL choles-
terol levels and hyperglycemia (3.5% were stable positive, 32.6 % were stable negative).
19 SNP’s were related to at least one of the stable MetS features with P<0.01 (table 2). 
Two of them, Ile405Val (rs5882) in the Cholesteryl Ester Transfer Protein (CETP) gene and 
Cys112Arg (rs429358) in the Apolipoprotein E (APOE) gene were related to 2 MetS features 
each with P<0.01. This number differs significantly from the expected 0.12 SNP’s to be 
associated with two features or more by chance alone (p<0.005 chi-square with Yates 
correction). Both SNP’s were in HWE (Ile405Val P=0.21; Cys112Arg P=0.48). The minor 
Val allele of Ile405Val in the CETP gene was associated with both a decreased prevalence 
of low HDL cholesterol levels (PR/allele 0.76, 95%CI 0.69; 0.86) and a decreased preva-
lence of abdominal obesity (PR/allele 0.90, 95%CI 0.83; 0.97) (table 3). The minor Arg 
allele of the Cys112Arg in the APOE gene was associated with an increased prevalence of 
low HDL cholesterol levels (PR/allele 1.21, 95% CI 1.07; 1.37) and an increased prevalence 
of abdominal obesity (PR/allele 1.12, 95% CI 1.03; 1.23) (table 4). Results for both SNP’s 
remained significant after adjusting the abdominal obesity analyses for HDL choles-
terol and vice versa. Further analyses showed that both SNP’s were associated with the 
simultaneous occurrence of abdominal obesity and low HDL cholesterol levels, with 
decreased HDL cholesterol levels in a subgroup of people without abdominal obesity, 

  Table 3  Association of Ile405Val (rs5882) in the CETP gene with abdominal obesity and low HDL-
      cholesterol levels

Outcome a Ile / Ile Ile / Val Val / Val PR / allele b P-trend
    (95%CI)

Prevalence of low HDL c

Overall  26.0%  20.6%  14.4%  0.76 (0.69;0.86)  <.0001
  (n=669, total n=2959)
Adjusted for abdominal obesity  24.7%  21.3%  16.0%  0.83 (0.74;0.93)  0.002
  (n=669, total n=2959)
Among subjects without abdominal obesity  18.4%  13.0%  7.8%  0.68 (0.56;0.82)  <0.001
  (n=252, total n=1684)

Prevalence of abdominal obesity d

Overall  34.7%  31.9%  26.4%  0.90 (0.83;0.97)  0.0072
  (n=958, total n=2931)
Adjusted for low HDL  33.1%  30.4%  27.0%  0.92 (0.83;1)  0.05
  (n=958, total n=2931)
Among subjects with high HDL levels  27.9%  22.8%  18.7%  0.82 (0.73;0.93)  0.0014
  (n=470, total n=1902)

Prevalence of both low HDL and abdominal obesity e

Overall  19.5%  16.3%  11.2%  0.81 (0.69;0.94)  0.0076
  (n=298, total n=1730)

PR = Prevalence Ratio
a  All analyses are adjusted for age and sex 
b  Prevalence ratios are expressed per minor VAL allele assuming an additive genetic model
c  Subjects with low HDL-cholesterol in round 2, but not  in round 3 or vice versa, were excluded
d  Subjects with abdominal obesity in round 2, but not round 3 or vice versa, were excluded
e  Only subjects with either both abdominal obesity and low HDL-cholesterol levels in round 2 and 3 or with both no abdominal obes-

ity and high HDL-cholesterol  levels were  included.   Subjects without abdominal obesity and with high HDL-cholesterol  levels  in 

round 2 and 3 were used as the reference category
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and with abdominal obesity in a subgroup of people with normal HDL cholesterol lev-
els (table 3; table 4).
The Cys112Arg genotype of the APOE gene is part of the ε2, ε3, ε4 haplotype. Results 
of the ε2ε3ε4 haplotype analyses were similar to the results of the Cys112Arg analyses. 
Compared to the ε3/ε3 isoform, the ε4/- isoforms (ε3/ε4 and ε4/ε4) were associated 
with an increased prevalence of low HDL cholesterol levels (PR 1.24, 95%CI 1.07; 1.44) 
and an increased prevalence of abdominal obesity (PR 1.13, 95%CI 1.01; 1.26). No asso-
ciations were found with the ε2/- isoforms (ε3/ε2 and ε2/ε2).

Discussion
In this explorative study of 373 SNP’s, mainly located in pathways related to lipid and 
glucose metabolism, we found a significant association between the Ile405Val genotype 
in the CETP gene and the Cys112Arg genotype in the APOE gene, with multiple features 
of the metabolic syndrome, i.e. the prevalence of abdominal obesity and prevalence of 
low HDL cholesterol. For both SNP’s, the association with abdominal obesity was partly 
independent of the association with HDL cholesterol, and vice versa. No, association 
was found between SNP’s in genes involved in glucose metabolism or blood pressure 
regulation and multiple MetS features.

Table 4  Association of Cys112Arg (rs429358) in the APOE gene with abdominal obesity and low HDL-
  cholesterol levels 

Outcome a Cys/Cys Cys/Arg Arg/Arg PR / allele b P-trend
    (95%CI)

Prevalence of low HDL c

Overall  21.2%  25.5%  32.3%  1.21 (1.07;1.37)  0.0013
  (n=669, total n=2959)
Adjusted for abdominal obesity  21.0%  25.5%  30.2%  1.20 (1.06;1.36)  0.005
  (n=669, total n=2959)
Among subjects without abdominal obesity
  (n=252, total n=1684)  13.5%  18.0%  26.0%  1.35 (1.11; 1.65)  0.0031

Prevalence of abdominal obesity d

Overall  31.2%  35.8%  39.6%  1.12 (1.03;1.23)  0.0074
  (n=958, total n=2931)
Adjusted for low HDL  30.1%  33.1%  38.9%  1.12 (1.0l;1.25)  0.04
  (n=958, total n=2931)
Among subjects with high HDL levels  23.5%  27.3%  34.5%  1.16 (1.01;1.33)  0.03
  (n=470, total n=1902)

Prevalence of both low HDL and abdominal obesity e

Overall  15.7%  20.7%  27.8%  1.29 (1.08;1.54)  0.0045
  (n=298, total n=1730)

PR = Prevalence Ratio
a  All analyses are adjusted for age and sex 
b  Prevalence ratios are expressed per minor ARG allele assuming an additive genetic model
c  Subjects with low HDL-cholesterol in round 2, but not  in round 3 or vice versa, were excluded
d  Subjects with abdominal obesity in round 2, but not round 3 or vice versa, were excluded
e  Only subjects with either both abdominal obesity and low HDL-cholesterol levels in round 2 and 3 or with both no abdominal obes-

ity and high HDL-cholesterol  levels were  included.   Subjects without abdominal obesity and with high HDL-cholesterol  levels  in 

round 2 and 3 were used as the reference category
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In humans, CETP and ApoE are expressed in the liver and in peripheral tissues, such as 
adipose tissue [13, 14]. Both genes are involved in plasma lipid homeostasis. CETP stim-
ulates the clearance of HDL cholesterol from plasma [14]. Furthermore, CETP increases 
the formation of small dense LDL particles and triglycerides [15]. ApoE removes athero-
genic lipoproteins, such as VLDL, from the circulation [16]. This results in lower cho-
lesterol and triglyceride levels. Besides having a role in lipid homeostasis, a few studies 
indicate that CETP and ApoE may be involved in other metabolic processes such as 
weight regulation. For example, APOE plays a role in the deposition of dietary fat in 
adipose tissue [17]. As CETP is synthesized in the adipose tissue, CETP may affect adipose 
tissue characteristics [18].
The Ile405Val polymorphism in the CETP gene induces a change in amino acid sequence. 
Therefore it is likely to be a functional SNP. In our study, the Val allele of the Ile405Val 
genotype was associated with a lower prevalence of abdominal obesity and a lower 
prevalence of low HDL cholesterol levels. The stratified and adjusted analyses in our 
study suggested that the association with prevalence of abdominal obesity and preva-
lence of low HDL cholesterol levels was partly independent of each other. This suggests 
that CETP regulates weight and HDL cholesterol via independent pathways.
In line with our results, a meta-analysis of 29 studies, showed that Val allele carriers had 
higher HDL levels [19]. Furthermore, a Chinese case-control study in 934 obesity cases 
and 924 controls showed a decreased obesity risk for Val/Val homozygotes, which per-
sisted after adjustment for HDL cholesterol levels [20]. In previous studies, the 405Val 
allele has been associated with lower CETP mass and lower CETP activity [19]. Lower 
CETP plasma levels are correlated with a lower obesity risk [21]. The 405Val allele has 
also been associated with other positive health outcomes such as, increased HDL and 
LDL particle size [15], decreased coronary heart disease risk [22], and increased longevity 
[15], all of which are related to the MetS. In summary, cumulative evidence indicates 
that Ile405Val is involved in several metabolic processes, including lipid level control 
and weight regulation.
The Cys112Arg genotype of the APOE gene is a non-synonymous genotype. Together 
with Arg158Cys (rs7412), the Cys112Arg forms the ε2ε3ε4 haplotype. The ε2, ε3 and ε4 
ApoE isoforms differ markedly on the structural and functional level [16]. In our study 
the Arg allele of the Cys112Arg genotype was associated with an increased prevalence of 
low HDL cholesterol levels and an increased prevalence of abdominal obesity. Again the 
stratified and adjusted analyses suggested that the associations with the prevalence of 
abdominal obesity and prevalence of low HDL cholesterol levels were partly independ-
ent of each other. The ε4 isoform showed a similar, though less pronounced, pattern 
of associations. No associations were observed with Arg158Cys or ε2 isoform, of the 
ε2ε3ε4 haplotype.
Previous studies generally focused on the ε2, ε3 and ε4 haplotype and did not take 
associations with the individual Arg158Cys and Cys112Arg into account. In line with our 
study, the ε4 isoform was associated with a more detrimental metabolic profile in most 
studies. A meta-analysis of 19 studies in 9751 subjects, showed that ε3/ε4 carriers had 
lower HDL cholesterol levels than ε3/ε3 carriers [23] . Most studies showed either a posi-
tive [24-27] or no [28-31] association between the ε4 isoform and body weight. How-
ever, some showed a negative association (31, 32). Arbones Mainar et al. [28] showed 
that compared to ApoE3 mice, ApoE4 mice fed a western diet were more prone to the 
development of several MetS features, such as increased insulin resistance, decreased 
fat tolerance and increased fat cell size. However, they gained less body weight. This 
suggests that the positive association between the ε4 isoform and abdominal obesity 
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may be driven by the development of other MetS features, such as insulin resistance 
[28]. Furthermore, these results suggest that the ε4 isoform may be associated with 
MetS. This has indeed been shown in other epidemiological studies [25, 26, 29].
Strength of our pathway driven candidate gene study was the relatively large sample 
size. Contrast and precision were increased by exclusively including people with con-
sistent MetS phenotype, i.e. classified as healthy or not healthy for a particular meta-
bolic phenotype over two measurement rounds. Furthermore we tried to keep the 
probability of chance findings low by including only those SNPS that were related to 
two or more MetS features with P<0.01 into the second round of data-analysis. We 
found 2 SNP’s, which differed significantly from the expected 0.12 SNP’s (p<0.005 chi-
square with Yates correction). However, the 0.12 expected SNP’s were obtained assum-
ing independent random outcomes. As HDL cholesterol and abdominal obesity are not 
completely independent, this assumption is partly violated. However, the associations 
with abdominal obesity and HDL cholesterol remained significant in our stratified and 
adjusted analyses. A weakness of our study may be that blood samples were taken from 
non-fasting subjects. This may have randomly affected the glucose measurements. 
Another weakness is that triglycerides levels were not measured in our study. There-
fore, we may have missed SNP’s which were related to hypertriglyceridemia and one or 
two other MetS feature. For example, the CETP Ile405Val mutation has been associated 
with triglycerides in previous studies [19]. We therefore expect that in our study popu-
lation this SNP will not only be associated with HDL cholesterol and abdominal obesity, 
but also with triglyceride levels.
In this explorative study of 373 SNP’s among 3575 subjects, we emphasized on the 
intricate links between several MetS features. We have showed that two SNP’s, mainly 
known for their role in lipid metabolism, influenced both abdominal obesity and low 
HDL cholesterol levels, partly independent of each phenotype. If the pleiotropic effects 
of these genes are further confirmed by others it might be possible to develop medi-
cation which increases HDL cholesterol leves and reduces waist circumference, and so 
affects the development of MetS
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Abstract
Objective
Much of the genetic variation in glucose levels remains to be discovered. Especially, 
research on gene-environment interactions is scarce. Overweight is one of the main 
risk factors for hyperglycemia. As transcriptional regulation is important for both 
weight maintenance and glucose control, we analyzed 353 single nucleotide polymor-
phisms (SNP’s), occurring in transcriptional pathways of glucose and lipid metabolism 
in interaction with body mass index (BMI) on glucose levels.

Research design and methods
SNP’s were measured in 3244 participants of the Doetichem cohort. Non-fasting glu-
cose levels and BMI were measured twice in 6 years. SNP x BMI interactions were ana-
lyzed by mixed models and adjusted for age, sex, time since last meal and follow-up 
time. False Discovery Rate (FDR) <0.2, was used to adjust for multiple testing.

Results
Two SNP’s in the PPARGC1A gene, (rs8192678 FDR=0.07; rs3755863 FDR=0.17), showed a 
significant interaction with BMI. The rare allele of both SNP’s was associated with sig-
nificantly lower glucose levels in subjects with a BMI ≤ 25 kg/m² (rs8192678 P=0.02; 
rs3755863 P=0.03). An inverse association was suggested in subjects with a BMI > 28 
kg/m². A small intervention study (n=120) showed similar, though non-significant, 
results.

Conclusions
Using a pathway-based approach we found that BMI significantly modified the asso-
ciation between two SNP’s in the PPARGC1A gene and glucose levels. The association 
between glucose and PPARGC1A was only present in lean subjects. This suggests that the 
effect of the PPARGC1A gene, which is involved both in fatty acid oxidation and glucose 
metabolism, is modified by BMI.
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Introduction
Elevated plasma glucose levels are a risk factor for type 2 diabetes mellitus. Even within 
a non-diabetic population there is a substantial variation in glucose levels [1]. This 
variation arises from both genetic and environmental factors. Identification of factors 
that influence glucose levels may improve our understanding of the pathogenesis of 
diabetes.
The heritability of glucose levels, as estimated by family studies, is approximately 30% 
[2-4]. However, as the established polymorphisms so far explain a limited amount 
of genetic variation in glucose levels [1], many more polymorphisms remain to be 
discovered. Most studies analyzed the individual association between polymorphisms 
and glucose levels without taking gene-environment interaction effects into account. 
Therefore, exploration of interaction effects may unravel new polymorphims. Further-
more, interaction effects may explain discrepancies between studies.
Overweight is one of the main risk factors for elevated plasma glucose levels and dia-
betes [5]. The association between plasma glucose levels or diabetes and several poly-
morphisms (e.g. in PPARG) is modulated by obesity status [6, 7]. As transcriptional 
regulation is an important factor for maintaining glucose and energy homeostasis, pol-
ymorphisms occurring in transcriptional pathways related to glucose and lipid metab-
olism may be involved both in weight regulation and development of hyperglycemia 
[8]. Surveying genetic variants across these pathways in interaction with body weight 
could provide new insights into genetic determinants of glucose levels.
In this study, we studied the interaction of 353 single nucleotide polymorphisms 
(SNP’s), occurring in transcriptional pathways of glucose and lipid metabolism, with 
body mass index (BMI) in relation to repeated measures of glucose levels in a popula-
tion based cohort study.

Research, Design and Methods
Study population
The Doetinchem Study is a population-based cohort study on lifestyle, biological risk 
factors and chronic diseases [9]. Between 1987 and 1991, 12404 subjects, aged 20-59, 
all inhabitants of Doetinchem, a town in a rural area in east of the Netherlands, were 
enrolled in the baseline cohort. A random sub-sample of this cohort (63%) was invited 
for a second measurement round between 1993 and 1997 (response 79%) and for a 
third measurement in the period 1998-2002 (response 75%). Overall, the Doetinchem 
cohort comprises 4662 persons with repeated measurements.
Pregnancy and alteration in smoking behavior are factors that influence body weight, 
whereas diabetic medication affects glucose levels. Therefore, participants of the Doet-
inchem Cohort who changed their smoking habits (n=750), who had missing data 
on smoking status (n=11), who where pregnant at the time of measurement (n=122) 
or who took diabetic medication (n=76) were excluded from the current study. The 
second and third measurement rounds included glucose measurements and were used 
for the present study. However, glucose levels were not measured in the beginning of 
round 2 from January till April 1993, and thus another 255 subjects were excluded. This 
resulted in a final study population of 3448 participants.
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General questionnaire and anthropometric measurements
During each measurement round, anthropometric data and data on lifestyle factors 
were collected. Data on pregnancy , status (non-, ex-, current smoker) and physical 
activity were obtained by a standardized questionnaire [10]. The Cambridge Phyiscal 
Activity Index (CPAI), as described by Wareham et al.,[11] was calculated by combin-
ing occupational physical activity with time spent on cycling and sporting in sum-
mer and winter. Subjects were divided into four physical activity categories (inactive, 
moderately inactive, moderately active and active). No information on the CPAI was 
available for the beginning of round 2 (1993). Body weight was measured on subjects 
wearing light indoor clothing with emptied pockets and without shoes. To adjust for 
light indoor clothing, 1 kilogram was subtracted from the measured body weight. Body 
weight (kg) was measured to the nearest 0.5 kg and height (cm) to the nearest 0.5 cm. 
BMI was calculated as weight (kg) divided by the square of height (m²).

Assessment of plasma glucose and biochemical measurements
Non-fasting blood samples were taken by venapuncture for all participants. Time of 
venapuncture and time of last meal were recorded. Time between venapuncture and 
last meal was calculated. Blood samples were fractionated into serum, buffy coat, and 
erythrocytes and subsequently stored at -30°C until further use. Plasma glucose levels 
were measured as described by Tietz [12].

Selection of candidate genes and SNP’s
A total of 253 candidate genes were selected by a pathway-driven approach, with 
emphasis on regulatory pathways that control fatty acid, glucose, cholesterol and bile 
salt homeostasis [10, 13]. In short, the selection procedure started from the master regu-
lator genes encoding nuclear receptors (PPAR’s, LXR, NR1H4) and transcription factors 
(SREBP’s) and continued by selecting their co-activators, co-repressors and target genes. 
In addition, hormonal receptors (insulin receptor) and their down-stream signaling 
proteins were selected. For each gene out of these pathways one to seven SNP’s were 
selected using the procedure described in detail elsewhere [10]. Finally a set of 383 SNP’s 
across 253 candidate genes, passed the Illumina Assay Design Tool and were included.

Genotyping
Genomic DNA was extracted from the buffy coat fraction with a salting out method 
[14]. A total of 139 subjects were not eligible for genotyping, mainly because of fail-
ure to extract DNA or unavailability of buffy coats. For 3309 subjects high throughput 
SNP genotyping was performed with the Illumina Golden Gate assay using the Sentrix 
Array Matrix platform (Illumina Inc, San Diego, California) [15]; Sixty-five subjects 
were excluded due to genotype failure or discordance on gender control and 28 SNP’s 
were excluded because genotyping was unsuccessful. In addition, 33 SNP’s were not in 
Hardy Weinberg Equilibrium (HWE). Verification was carried out in a random sample 
(n=96) for the eight SNP’s (24%) that deviated most strongly from HWE. All yielded the 
same results, except for 2 SNP’s, which were therefore excluded[16]. Thus, data on 353 
SNP’s in 239 genes were available for 3244 participants.

Study on Lifestyle intervention and Impaired glucose tolerance Maastricht 
(SLIM)
All SNP’s which were measured in the Doetinchem study were also measured in the SLIM 
study, using the same Illumina array. Study design, inclusion and exclusion criteria of 
SLIM, an intervention study, have earlier been described in detail [17]. In short, BMI and 



111  |  chapter 7

fasting plasma glucose levels were measured yearly from 1999 to 2005. Data of 120 par-
ticipants from year 1999 to 2003, with both anthropometric and genotype information 
available, were used for replication analyses. Data from year 2004 and 2005 were not 
used, because in these years information was only available for 68 participants.

Statistical analyses
All analyses were performed with SAS version 9.1 (SAS Institute, INC., Cary, North Caro-
lina). Distributions of genotypes were tested for deviation from HWE by chi-square 
analyses (PROC ALLELE).
As the glucose distribution was skewed, glucose values were log-transformed. Repeated 
measurements of log-glucose and BMI were used in multilevel random coefficient mod-
els (PROC MIXED) to study interaction effects of SNP’s x BMI on log-glucose levels. This 
model accounts for correlation between repeated measures within subjects. In order to 
account for individual differences in glucose levels, a random intercept was used. Anal-
yses were adjusted for age, sex, time since last meal (continuous), time since last meal 
(<=2 hours; >2 hours) and follow up time. After a meal, glucose levels peak shortly, 
and they return to near normal levels in approximately 2 hours. After 2 hours glucose 
levels decrease slowly [18].
The false discovery rate (FDR), which is a commonly accepted method in high-through-
put genomic studies, was used to adjust for multiple testing [19, 20]. Significance was 
defined as FDR ≤0.20 [21]. When a significant interaction was found, the association 
between the SNP and log-glucose, stratified by BMI (≤25 kg/m², >25 kg/m² and ≤28 
kg/m², >28 kg/m²) was analyzed. The cut off points of 25 kg/m² and 28 kg/m² equal, 
respectively, the 50th and 75th percentile of the study population rounded to the near-
est whole number. The model used was similar to that of the interaction analyses. For 
the stratified and replication analyses, significance was defined as a P-value ≤0.05.

Results
The Doetinchem Cohort
Among the 3244 subjects of the Doetinchem cohort median non-fasting glucose levels 
increased from 5.1 mmol/L (P25-P75: 4.7-5.6) in round 2 to 5.2 mmol/L (P25-P75: 4.8-
5.8) in round 3 (table 1). The number of participants with elevated non-fasting glucose 
levels (≥ 11.1 mmol/L) was small, n=2 and n=17 in round 2 and round 3 respectively. 
BMI also increased slightly from round 2 till round 3. The overall correlation coefficient 
between log-glucose and BMI was 0.22 (P<0.001).

Table 1  Baseline characteristics of 3244 subjects of the Doetinchem Cohort

 Round 2 Round 3
 1993-1997 1998-2002

Age (yr)  46.5 (9.7)  51.5 (9.7)
Sex (% men)  47.8 % (n=1552)  47.8 % (n=1552)
BMI (kg/m2)  25.3 (3.5)  26.0 (3.8)
Glucose levels (mmol/L) a  5.1 (4.7-5.6)  5.2 (4.8-5.8)
Time since last meal (h)  3.2 (3.6)  3.1 (3.3)

Data are presented as means (standard deviation) or median with inter-quartile range 
a  Non-fasting values
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Two out of the 353 SNP’s, rs8192678 (P-value=0.0002; FDR=0.07) and rs3755863 
(P=0.0012; FDR=0.17), showed a significant interaction with BMI after adjustment for 
multiple testing. Results were similar after additional adjustment for physical activ-
ity in a subgroup of 2844 people with data available (rs8192678*BMI - P<0.0001; 
rs3755863*BMI - P=0.0005). The rs8192678 and rs3755863 SNP of the PPARGC1A gene, 
better know as Gly482Ser and Thr528Thr, were highly correlated (r²=0.88; P<0.001). 
Both SNP’s were in HWE (rs8192678 P=0.14; rs3755863 P=0.25). In subjects with a BMI 
≤25 kg/m², the A/A genotype of rs8192678 (P=0.02) and rs3755863 (P=0.03) was signifi-
cantly associated with lower log-glucose levels (table 2). In contrast, in subjects with a 
BMI>28 kg/m² an opposite trend was found, the A/A genotype of both SNP’s were asso-
ciated with slightly higher log-glucose values (rs8192678 P=0.12; rs3755863 P=0.14). No 
association was found in subjects with a BMI between 25 and 28 kg/m². Taking alterna-
tive cut-off points between 25 and 28 kg/m² did not change the results. According to 
our data, both SNP’s seem to be inherited in a recessive mode. Single SNP and haplotype 
analysis under a recessive model showed similar results.
Some other SNP’s in the PPARGC1A pathway showed an interaction with BMI under a sig-
nificance level of P<0.05. These SNP’s were located in GSK3B (rs334558: P-value=0.004, 
FDR=0.29), UCP2 (rs659366: P-value=0.005, FDR=0.29; rs660339: P-value=0.01, 
FDR=0.35), PCK2 (rs2759409: P-value=0.007, FDR=0.29), LIPC (rs1800588: P-value=0.02, 
FDR=0.43), EP300 (rs4822012: P-value=0.02, FDR=0.43), PPARG (rs3856806: P-value=0.04, 
FDR=0.56), and AKT2 (rs748236: P-value=0.04, FDR=0.56) (Supplementary table 1).

Table 2  Log-glucose levels according to genotype stratified by BMI

rs8192678 - Gly482Ser A/A A/G G/G P-value
 Ser/Ser Ser/Gly Gly/Gly
 (n=415) (n=1545) (n=1609)

BMI ≤ 25 (kg/m2)  1.59 (0.01)  1.63 (0.01)  1.61 (0.01)  0.02
BMI > 25 and ≤ 28 (kg/m2)  1.67 (0.01)  1.66 (0.01)  1.67 (0.01)  0.62
BMI > 28 (kg/m2)  1.73 (0.02)  1.70 (0.01)  1.71 (0.01)  0.12

rs3755863 - Thr528Thr A/A A/G G/G P-value
 Thr/Thr Thr/Thr Thr/Thr
 (n=503) (n=1514) (n=1224)

BMI ≤ 25 (kg/m2)  1.60 (0.01)  1.62 (0.01)  1.62 (0.01)   0.02
BMI > 25 and ≤ 28 (kg/m2)  1.67 (0.01)  1.67 (0.01)  1.67 (0.01)  0.90
BMI > 28 (kg/m2)  1.72 (0.01)  1.70 (0.01)  1.71 (0.01)  0.14 
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Replication in the SLIM study
Among the 120 SLIM participants, mean fasting glucose levels ranged from 6.0 (0.78) 
mmol/L in round 1 to 6.3 (0.92) mmol/L in round 5. Mean BMI was 29.5 (3.5) kg/m² 
in round 1, decreased somewhat in round 2 and returned to 29.5 kg/m² in round 5. For 
rs3755863 genotype calling did not succeed due to overlap between genotype clusters. 
The interaction effect of rs8192678*BMI on fasting log-glucose levels was similar to the 
interaction in the Doetinchem cohort, though not statistically significant (P=0.15). In 
subjects with a BMI >28 kg/m², the AA genotype of rs8192678 showed somewhat higher 
log-glucose values (AA, AG, GG: 1.89 (0.04), 1.82 (0.02), 1.81 (0.02); P= 0.20). However, 
in subjects with a BMI ≤28 kg/m², no association was found (AA, AG, GG: 1.75 (0.05), 
1.76 (0.02), 1.77 (0.02); P= 0.87). These results remained the same after further correc-
tion for intervention status.

Discussion
In this explorative study of 353 SNP’s, mainly located in pathways related to lipid and 
glucose metabolism, we found a significant interaction between 2 SNP’s in the PPARGC1A 
gene (rs8192678; rs3755863) and BMI on glucose levels. The rare allele of both SNP’s was 
associated with lower glucose levels in subjects with a BMI ≤25 kg/m², but with higher 
glucose levels in subjects with a BMI >28 kg/m. A small cohort study of 120 mainly 
overweight or obese subjects suggested a similar association.
PPARGC1A is a transcriptional co-activator that interacts with a broad range of tran-
scription factors involved in a wide variety of biological processes, including glucose 
metabolism in the liver and muscle, mitochondrial biogenesis, lipid oxidation,
and adipocyte differentiation [22]. One of the transcription factors regulated by 
PPARGC1A is PPARG. In line with our results, Wei et al. [7] found a significant interac-
tion effect of 2 SNP’s in the PPARG gene (rs4135304; rs4135247) and BMI on fasting plasma 
glucose levels in African Americans. For both polymorphisms allelic effects on glucose 
levels were reversed among individuals with lower BMI and individuals with higher 
BMI. However, neither Wei et al. [7] noir we observed an interaction effect between 
BMI and the well-studied rs1801282 (Pro12Ala) polymorphism of PPARG. Interestingly, 
we found an interaction effect with another SNP in the PPARG gene, the rs3856806 poly-
morphism (P= 0.04). However, this interaction was no longer statistically significant 
after adjustment for multiple testing. Besides, we found interactions with BMI for SNP’s 
in other genes of the PPARGC1A pathway (GSK3B, UCP2, PCK2, EP300, LIPC and AKT2) 
under a significance level of P<0.05. These associations were no longer significant after 
adjustment for multiple testing. Furthermore, to the best of our knowledge, there are 
no other human studies showing an interaction between BMI and SNP’s in these genes 
on glucose levels.
Owing to the high correlation between rs8192678 and rs3755863, both SNP’s showed 
similar associations with serum glucose levels. Of these SNP’s, rs8192678 or Gly482Ser, 
induces a change in amino acid sequences, whereas rs3755863 or Thr528Thr does not. 
Although the amino acid change induced by the Gly482Ser polymorphism has not 
been shown to affect a regulatory regions within PPARGC1A [23], Ling et al. [24, 25] 
showed that the Gly482Ser polymorphism changed PPARGC1A mRNA expression.
The Ser allele of the Gly482Ser mutation has been related to diabetes [26] and obesity 
[27, 28]. In a meta-analysis of eight studies, the Ser allele of the Gly482Ser polymor-
phism was associated with modest increase of type 2 diabetes risk [26]. However, in the 
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same meta-analysis, no association was found with fasting glucose levels or fasting insu-
lin levels. This may be due to between–study heterogeneity, which could result from 
differences in genetic or environmental factors. Indeed, several environmental factors, 
such as age [25, 28, 29], physical activity [28, 30] and acarbose treatment [31], have 
been shown to interact with the Gly482Ser polymorphism. Furthermore, Goyenchea 
et all. [32] showed in an 8 week weight loss trial, that insulin resistance decreased sig-
nificantly more in Ser/Ser subjects compared to Gly/Ser and Gly/Gly subjects, whereas 
the decrease in body weight and adiposity were similar among the different genotypes. 
These results support our finding that body weight modifies the association between 
the Gly482Ser polymorphism and glucose.
The Ser allele of the Gly482Ser polymorphism has been shown to correlate with 
decreased PPARGC1A mRNA expression in muscle [25] and insulin islets [24].We specu-
late that the Ser allele may also down-regulate PPARGC1A expression in other tissues. 
Down-regulation of PPARGC1A in liver and muscle has opposite effects on glucose lev-
els. In liver, PPARGC1A down-regulation decreases gluconeogenesis [22], which has a 
blood glucose lowering effect. In contrast, in vitro studies suggest that down-regu-
lation of PPARGC1A in muscle increases insulin resistance, by down-regulating GLUT4 
transporters [22] and by stimulating muscle lipid accumulation [33]. This, in turn, 
increases blood glucose levels. Our results suggest that body weight affects the balance 
between the glucose lowering and glucose increasing processes. We hypothesize that 
in lean people, the Ser allele may decrease glucose levels through decreased gluconeo-
genesis, whereas in obese people, who are generally more insulin resistant, the balance 
may shift towards increased insulin resistance properties of the Ser allele, leading to 
increased glucose levels.
Strengths of this pathway driven candidate gene study were the relatively large sam-
ple size and the availability of repeated anthropometric measurements, which improve 
study power and precision. Furthermore, the SLIM study showed a similar interaction 
with a larger effect size. Owing to the smaller sample size, these results were, however, 
not statistically significant. Our blood samples were taken from non-fasting subjects. 
To account for this, we corrected our analysis for time since last meal. Moreover, the 
error induced by the non-fasting state of the subjects is of random rather than of sys-
tematic nature. As mentioned above, our findings are in line with evidence from other 
studies and might be biologically plausible. Nevertheless, it can not be excluded that 
our results are based on chance alone.
In this explorative study among 3244 subjects investigating 353 SNP’s in 253 candidate 
genes, we emphasized on the intricate links between glucose and lipid metabolism 
through common transcriptional factors. We found that BMI significantly modifies the 
association between two SNP’s in the PPARGC1A gene (rs8192678; rs3755863) and glucose 
levels. Although the Ser/Ser genotype of PPARGC1A was associated with lower glucose 
levels in lean subjects, it may be inversely associated in obese people. This suggests 
that the effect of the polymorphisms in the PPARGC1A gene, which is involved both 
in fatty acid and glucose metabolism, is modified by BMI. Based on this study, it can 
be speculated that Ser/Ser subjects are more susceptible to develop hyperglycemia in 
an obesogenic environment, but less susceptible to develop hyperglycemia in a non-
obesogenic environment.



115  |  chapter 7

Conflict of interest
The authors declare no conflict of interest

Acknowledgment
The Doetinchem Cohort Study was financially supported by the Ministry of Health, 
Welfare and Sport of The Netherlands and the National Institute for Public Health 
and the Environment. The authors thank the epidemiologists and fieldworkers of the 
Municipal Health Service in Doetinchem for their contribution to the data collection 
for this study. Project director is Dr. W.M.M. Verschuren. Logistic management was 
provided by J. Steenbrink and P. Vissink, and administrative support by E.P. van der 
Wolf. Data management was provided by A. Blokstra, A.W.D. van Kessel and P.E. 
Steinberger. Genotyping facilities were provided by C. Wijmenga. Technical assist-
ance was provided by H.M. Hodemaekers and C. Strien. The SLIM study was sup-
ported by grants from the Dutch Diabetes Research Foundation (DFN 98.901 and DFN 
2000.00.020) and the Netherlands Organization for Scientific Research (ZonMW 940-
35-034, 2,200.0139). We thank M. Mensink and W.H.M. Saris for their contribution.



116  |  chapter 7

Supplementary SNP * BMI interaction on log-glucose
Table 1

Gene BMI*SNP Minor Allele P-value FDR

PPARGC1A  BMI*rs8192678  A  0.000235  0.065189
PPARGC1A   BMI*rs3755863  A  0.001205  0.166837
GSK3B  BMI*rs334558  G  0.004309  0.29138
UCP2  BMI*rs659366  T  0.005321  0.29138
INSR  BMI*rs2963  T  0.006259  0.29138
NR1H3  BMI*rs1449627  G  0.007226  0.29138
PCK2  BMI*rs2759409  G  0.007363  0.29138
PTGS2  BMI*rs5277  C  0.00919  0.318204
UCP2  BMI*rs660339  T  0.011213  0.345111
NCOA3  BMI*rs2230782  C  0.014025  0.38849
EP300  BMI*rs4822012  T  0.018023  0.428762
PCK1  BMI*rs707555  C  0.020475  0.428762
LIPC  BMI*rs1800588  T  0.020912  0.428762
SCARB1  BMI*rs5888  C  0.022145  0.428762
CYP51A1  BMI*rs7797834  G  0.023605  0.428762
ACACA  BMI*rs9330250  C  0.024766  0.428762
CYP4A11  BMI*rs3890011  C  0.029296  0.477345
CD5L  BMI*rs2261295  G  0.032276  0.496698
PPARG  BMI*rs3856806  T  0.040955  0.568366
GPAM  BMI*rs2254537  A  0.042365  0.568366
AKT2  BMI*rs748236  T  0.043089  0.568366
ACLY  BMI*rs2304497  G  0.047107  0.586427
SCCN1A  BMI*rs3759324  C  0.051463  0.586427
MMP9  BMI*rs2664538  G  0.054448  0.586427
IL1B  BMI*rs1143634  T  0.059483  0.586427
FABP2  BMI*rs1799883  A  0.059538  0.586427
MTP  BMI*rs1800591  T  0.064304  0.586427
MTP  BMI*rs3816873  C  0.064849  0.586427
GNB3  BMI*rs5443  T  0.065076  0.586427
PRKCA  BMI*rs7210446  G  0.066813  0.586427
APOB  BMI*rs1367117  A  0.067978  0.586427
EIF4EBP1  BMI*rs6605631  G  0.069138  0.586427
HRAS  BMI*rs4963176  C  0.070197  0.586427
PCAF  BMI*rs3021408  T  0.073325  0.586427
LIPC  BMI*rs690  G  0.074182  0.586427
SHC1  BMI*rs4845401  G  0.076214  0.586427
LDLR  BMI*rs688  T  0.080163  0.600136
PDK1  BMI*rs1005273  T  0.084385  0.607966
CETP  BMI*rs1800775  A  0.085598  0.607966
APOA2  BMI*rs3813628  C  0.088619  0.613685
CYP4B1  BMI*rs2297809  A  0.098437  0.66505
ABCB4  BMI*rs31653  A  0.104653  0.665498
LPL  BMI*rs3208305  T  0.105892  0.665498
PLTP  BMI*rs553359  C  0.110713  0.665498
ABCA1  BMI*rs2230806  A  0.112913  0.665498
IFNG  BMI*rs2069718  T  0.116511  0.665498
FASN  BMI*rs2228309  T  0.119636  0.665498
PPARA  BMI*rs1055659  T  0.123904  0.665498
PPARA  BMI*rs4253655  A  0.124946  0.665498
INSR  BMI*rs2059806  A  0.128458  0.665498
RXRG  BMI*rs3818569  A  0.128999  0.665498
PPARGC1A  BMI*rs2932976  A  0.135899  0.665498
PIK3CA  BMI*rs7614305  A  0.136569  0.665498
DEFA6  BMI*rs1803898  A  0.137127  0.665498
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ADIPOR2  BMI*rs1044471  A  0.138786  0.665498
LDLR  BMI*rs5925  T  0.139671  0.665498
CYP7A1  BMI*rs3808607  C  0.141088  0.665498
AGTR1  BMI*rs5186  G  0.141449  0.665498
PPARA  BMI*rs1800206  C  0.141749  0.665498
NFKB1  BMI*rs170731  G  0.156387  0.721985
MVD  BMI*rs8854  A  0.162712  0.738873
ACOX2  BMI*rs1137582  C  0.167246  0.746601
UE2I  BMI*rs8063  A  0.173655  0.746601
LPL  BMI*rs328  G  0.176861  0.746601
SNX26  BMI*rs231228  T  0.177197  0.746601
PMVK  BMI*rs1891805  C  0.178659  0.746601
LPL  BMI*rs1059507  T  0.180586  0.746601
SREBF1  BMI*rs8066560  A  0.18441  0.746974
PPARG  BMI*rs1801282  G  0.186069  0.746974
PPARA  BMI*rs135539  G  0.19087  0.755302
CPT1B  BMI*rs470117  A  0.209639  0.7846
CCND3  BMI*rs3218108  A  0.211231  0.7846
RARA  BMI*rs7217852  G  0.213328  0.7846
PPARG  BMI*rs709158  G  0.218222  0.7846
ABCG1  BMI*rs2839482  G  0.221404  0.7846
STAT1  BMI*rs2066802  C  0.224112  0.7846
KLF5  BMI*rs4885062  G  0.224744  0.7846
FADS1  BMI*rs482548  T  0.225762  0.7846
PCK1  BMI*rs2071023  G  0.232153  0.7846
PPARA  BMI*rs6008259  A   0.233414  0.7846
ABCB11  BMI*rs2287622  T  0.235132  0.7846
NOS3  BMI*rs1799983  T  0.235183  0.7846
MSR1  BMI*rs3747531  C  0.236436  0.7846
PPARA  BMI*rs4253778  C  0.242028  0.7846
RHOQ  BMI*rs1451152  A  0.246498  0.7846
SOS1  BMI*rs1059310  A  0.247673  0.7846
CETP  BMI*rs1800777  A  0.250015  0.7846
RXRA  BMI*rs1805352  C  0.25022  0.7846
ACAT2  BMI*rs3464  T  0.252092  0.7846
HPG2  BMI*rs8752  G  0.255425  0.786142
ABCG8  BMI*rs4148211  G  0.259303  0.789308
NCOA6  BMI*rs6088618  A  0.265591  0.795784
SREBF1  BMI*rs4925119  A  0.267177  0.795784
ABCB4  BMI*rs8187799  G  0.270892  0.798266
EDNRA  BMI*rs5333  C  0.274637  0.800783
ACACA  BMI*rs8071315  C  0.278398  0.803294
APOC2  BMI*rs1132899  C  0.282353  0.806307
IRS1  BMI*rs1801278  A  0.289563  0.815104
CREBBP  BMI*rs130005  G  0.292575  0.815104
AGT  BMI*rs5050  G  0.299766  0.815104
CEBPB  BMI*rs6020348  A  0.299796  0.815104
RAF1  BMI*rs6795441  G  0.305584  0.815104
PPARGCA1  BMI*rs2970870  C  0.307915  0.815104
AACS  BMI*rs900410  C  0.310908  0.815104
IL6  BMI*rs1800795  C  0.316768  0.815104
PTPN1  BMI*rs718630  C  0.318295  0.815104
ESRRA  BMI*rs2276014  T  0.320217  0.815104
LEPR  BMI*rs1137101  G  0.32484  0.815104
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CCL2  BMI*rs4586  C  0.325476  0.815104
PPARGC1B  BMI*rs1076064  C  0.329592  0.815104
PGA4  BMI*rs6800271  T  0.329688  0.815104
MEF2D  BMI*rs1925950  G  0.335332  0.815104
MEF2C  BMI*rs2457979  A  0.337239  0.815104
NCOA6  BMI*rs3787220  A  0.340094  0.815104
SIRT1  BMI*rs7069102  C  0.340364  0.815104
THRB  BMI*rs1394761  T  0.341343  0.815104
GSK3B  BMI*rs3755557  A  0.344853  0.81606
PIK3R2  BMI*rs613339  A  0.347987  0.81606
CDKN2A  BMI*rs3731249  A  0.356533  0.81606
NCOA2  BMI*rs3088092  T  0.358346  0.81606
PTGS2  BMI*rs5275  T  0.358641  0.81606
EDNRB  BMI*rs5352  A  0.361263  0.81606
CETP  BMI*rs5882  G  0.365077  0.81606
ACE  BMI*rs4343  A  0.365312  0.81606
AKT1  BMI*rs3001371  T  0.378395  0.838524
HMGCS1  BMI*rs1548097  G  0.383518  0.843131
PDK4  BMI*rs6931  A  0.390197  0.85106
RETN  BMI*rs1862513  C  0.39346  0.851472
PIAS1  BMI*rs1489599  G  0.400735  0.859872
ADIPOR2  BMI*rs1029629  C  0.40355  0.859872
AGER  BMI*rs1800624  A  0.410775  0.868584
ADAMTS4  BMI*rs4233367  T  0.416011  0.871879
FRAP1  BMI*rs2076657  C  0.419551  0.871879
AGT  BMI*rs699  C  0.421775  0.871879
PTGS2  BMI*rs20417  C  0.426112  0.874319
FOXC2  BMI*S04_FOXC2  C  0.434449  0.879361
PP3CA  BMI*rs3804404  G  0.438029  0.879361
UCP3  BMI*rs1800849  T  0.438406  0.879361
CPT1B  BMI*rs140515  C  0.443753  0.879361
PPARD  BMI*S14_PPARD  T  0.45037  0.879361
IDI1  BMI*rs7075141  G  0.45406  0.879361
SC5DL  BMI*rs1061332  A  0.459678  0.879361
NR1H4  BMI*rs35724  A  0.470885  0.879361
NRIP1  BMI*rs2229741  A  0.474247  0.879361
APOB  BMI*rs1042031  A  0.478923  0.879361
NCOA3  BMI*rs2076546  C  0.483282  0.879361
EDN1  BMI*rs1794849  T  0.487208  0.879361
NCOR1  BMI*rs178802  A  0.488972  0.879361
SIRT1  BMI*rs2273773  C  0.489899  0.879361
ABCA1  BMI*rs2275543  C  0.496515  0.879361
FBXW7  BMI*rs2676330  À  0.504131  0.879361
AGER  BMI*rs1062070  G  0.506254  0.879361
FABP1  BMI*rs2241883  C  0.508115  0.879361
NFKB1  BMI*rs1801  C  0.508204  0.879361
USF1  BMI*rs3737787  T  0.508342  0.879361
CAMK4  BMI*rs1469442  G  0.508854  0.879361
ACADVL  BMI*rs507506  A  0.509834  0.879361
ACADL  BMI*rs2286963  G  0.511423  0.879361
ABCG8  BMI*rs4148217  A  0.513685  0.879361
DHCR7  BMI*rs1044482  G  0.517608  0.879361
PLA2G7  BMI*rs1051931  A  0.520037  0.879361
PTRN2  BMI*rs11700  C  0.523228  0.879361
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FDFT1  BMI*rs1047643  C  0.524581  0.879361
MVK  BMI*rs7957619  A  0.525217  0.879361
CD36  BMI*rs1049654  A  0.525997  0.879361
PLTP  BMI*rs394643  A  0.531151  0.879361
PPARGC1B  BMI*rs7732671  C  0.534657  0.879361
ELOVL5  BMI*rs209512  G  0.53687  0.879361
RAPGEF1  BMI*rs7854489  C  0.537473  0.879361
IRS2  BMI*rs4773092  A  0.54179  0.879361
MAPK14  BMI*rs6457878  T  0.542855  0.879361
RXRB  BMI*rs1547387  C  0.550786  0.884504
SAH  BMI*rs5716  T  0.553847  0.884504
GABPA  BMI*rs2829887  A  0.555609  0.884504
ELOVL2  BMI*rs4532436  G  0.563535  0.88698
NCOR2  BMI*rs2229840  A  0.563568  0.88698
NRF1  BMI*rs1882094  C  0.579951  0.890693
PPARGC1A  BMI*rs2970869  A  0.583459  0.890693
CD36  BMI*rs1049673  G  0.585428  0.890693
GRB2  BMI*rs4788891  A  0.586453  0.890693
FDFT1  BMI*rs9205  C  0.587329  0.890693
IL6  BMI*rs1800796  C  0.590609  0.890693
NFKBIA  BMI*rs2233409  T  0.592353  0.890693
HNF4A  BMI*rs1800961  T  0.59753  0.890693
HNF4A  BMI*rs745975  A  0.598127  0.890693
MBTPS1  BMI*rs3759972  G  0.602233  0.890693
INSIG2  BMI*rs9308762  C  0.605574  0.890693
ME1  BMI*rs1144181  A  0.617659  0.890693
CRSP3  BMI*rs2781667  T  0.620369  0.890693
PTEN  BMI*rs2735343  C  0.626388  0.890693
MEF2C  BMI*rs244760  G  0.628438  0.890693
LEP  BMI*rs2167270  A  0.631762  0.890693
RELB  BMI*rs10856  T  0.636616  0.890693
LPL  BMI*rs268  G  0.64311  0.890693
INPPL1  BMI*rs2276048  C  0.643233  0.890693
ABCA1  BMI*rs1800977  T  0.643983  0.890693
CREBBP  BMI*rs1296720  G  0.64544  0.890693
ECE1  BMI*rs213045  T  0.651646  0.890693
HMGCR  BMI*S06_HMGCR  T  0.654892  0.890693
SQLE  BMI*rs966946  C  0.656351  0.890693
ECE1  BMI*rs213046  C  0.66267  0.890693
ABCD3  BMI*rs16946  A  0.662991  0.890693
NOS3  BMI*rs2070744  C  0.663683  0.890693
RETN  BMI*rs3745367  A  0.665386  0.890693
CYP8B1  BMI*rs735320  A  0.666844  0.890693
NR1H2  BMI*rs1405655  C  0.669296  0.890693
ADD1  BMI*rs4961  T  0.670869  0.890693
MYBBP1A  BMI*rs751670  A  0.675275  0.890693
ADIPOR1  BMI*rs2275737  A  0.676487  0.890693
STAT5A  BMI*rs2293158  G  0.677816  0.890693
NFKB2  BMI*rs1056890  T  0.679427  0.890693
ABCG1  BMI*rs915843  T  0.681686  0.890693
UCP1  BMI*rs1800592  G  0.688533  0.891824
CREB1  BMI*rs2551640  G  0.689587  0.891824
ELOVL6  BMI*rs4146696  A  0.692478  0.891824
FOXO1A  BMI*rs2721044  T  0.69543  0.891824
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CDKN2A  BMI*rs3088440  A  0.716576  0.909838
TRIB3  BMI*rs6115830  T  0.720328  0.909838
ABCG5  BMI*rs6720173  C  0.720418  0.909838
TM7SF2  BMI*rs1546532  C  0.722615  0.909838
PPRC1  BMI*rs2815402  G  0.73382  0.919766
PPARG  BMI*rs880663  C  0.737424  0.920119
HMGCS2  BMI*rs536662  A  0.750738  0.928169
CREBBP  BMI*rs2239316  G  0.75161  0.928169
SOCS3  BMI*rs4969170  A  0.753928  0.928169
NPPB  BMI*rs198389  G  0.767064  0.932032
IGF1R  BMI*rs2229765  A  0.76909  0.932032
CBL  BMI*rs4938638  G  0.770973  0.932032
APOA5  BMI*rs3135506  C  0.778446  0.932032
CPT1B  BMI*rs131758  A  0.779092  0.932032
STAT5B  BMI*rs6503691  T  0.780444  0.932032
PPARD  BMI*rs2016520  G  0.781015  0.932032
LIPC  BMI*rs6082  G  0.78646  0.932032
EDNRA  BMI*rs1801708  A  0.789384  0.932032
APOA2  BMI*rs5082  C  0.790713  0.932032
NR3C1  BMI*rs6191  G  0.810333  0.938321
ESR1  BMI*rs2234693  C  0.81227  0.938321
LEPR  BMI*rs8179183  C  0.813497  0.938321
CYP11B2  BMI*rs1799998  C  0.814218  0.938321
SREBF2  BMI*rs4822063  C  0.822145  0.938321
INS  BMI*rs3842748  G  0.825159  0.938321
NCOA6IP  BMI*rs7823773  G  0.829573  0.938321
NR1H4  BMI*rs4764980  A  0.834018  0.938321
RPS6KB1  BMI*rs1051424  G  0.835287  0.938321
LIPE  BMI*rs1206034  T  0.83628  0.938321
SUMO1  BMI*rs6755690  G  0.841353  0.938321
UCP3  BMI*rs2075577  C  0.842162  0.938321
PRKACA  BMI*rs729372  A  0.84289  0.938321
PPARGC1A  BMI*rs2970847  T  0.845176  0.938321
FDP2  BMI*rs2297480  C  0.84686  0.938321
NPPA  BMI*rs5063  A  0.854276  0.941631
SCAND1  BMI*rs6060717  C  0.856646  0.941631
SREBF2  BMI*rs6002527  C  0.867366  0.949645
PPARBP  BMI*rs4795367  G  0.872848  0.951885
KCNMB1  BMI*rs827778  A  0.884768  0.959136
ABCB4  BMI*rs2109505  A  0.890739  0.959136
SREBF2  BMI*rs2269657  T  0.890762  0.959136
LEPR  BMI*rs1137100  G  0.893347  0.959136
PIK3R1  BMI*rs706713  T  0.899935  0.962478
RXRB  BMI*rs6531  C  0.903784  0.962878
NR3C1  BMI*rs6196  G  0.90762  0.96326
PPARBP  BMI*rs7501488  T  0.91113  0.963294
PPARGC1A  BMI*rs3796407  A  0.925507  0.967845
SPP1  BMI*rs1126616  T  0.927351  0.967845
UCP1  BMI*S18_UCP1  A  0.928637  0.967845
NCOR2  BMI*rs2272368  C  0.929411  0.967845
NOS2A  BMI*rs2297518  A  0.938649  0.970514
FBP1  BMI*rs1754435  A  0.938981  0.970514
FADS1  BMI*rs174546  T  0.944561  0.972652
PPARD  BMI*rs1053049  C  0.949636  0.974256
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TNF  BMI*rs1800629  A  0.953944  0.975065
RXRA  BMI*rs3118571  G  0.981898  0.995623
ABCA1  BMI*rs2066716  A  0.984487  0.995623
RXRA  BMI*rs3132300  T  0.987806  0.995623
NOS2A  BMI*rs1060826  A  0.988434  0.995623
RXRA  BMI*rs1805348  A  0.99592  0.996683
INSR   BMI*rs2860172  A  0.996683  0.996683
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General Discussion
Abdominal obesity, hyperglycemia, hypertriglyceridemia, low serum High Density 
Lipoprotein (HDL) cholesterol levels and hypertension frequently co-occur within indi-
viduals. The cluster of these features is referred to as metabolic syndrome (MetS). Cur-
rently, it is unclear how, i.e. by which endpoints, the clustering of MetS features can 
be best studied. Also the pathophysiology behind the clustering of MetS features is not 
fully understood. Therefore the research questions posed in this thesis were:

Which metabolic endpoints should be studied in order to explain the clustering of MetS 
features best?

Wich pathophysiology is underlying the clustering of MetS features?

All together the research described in this thesis aims to contribute to a better under-
standing of MetS. In chapter 2 and 3 we aimed to identify endpoints or combinations 
of endpoints, that should be studied in order to successfully elucidate factors responsi-
ble for the clustering of MetS features. In chapters 4 to 7 we investigated genetic vari-
ants in relation the clustering of MetS features, therewith aiming to give insight in the 
pathological pathways responsible for this clustering.
This final chapter starts with an overview of our main findings embedded within a dis-
cussion of the results of other studies. This section is followed by a section on meth-
odological considerations, a section on the implications for public health, a section on 
recommendations for future research and by an overall conclusion.
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Main findings
MetS is a very heterogeneous phenotype. Because of this heterogeneity critics of MetS 
doubt whether the traditional MetS features represent one entity, and consequently 
they question whether MetS exists [1]. If MetS is a clinical entity, characterized by a 
unifying pathophysiological factor, the symptoms characterizing the disease are most 
likely highly correlated and represent a statistical entity. In chapter 2 we observed, in 
line with other studies [2-8], that a one-factor confirmatory factor analysis(CFA) MetS 
model composed of traditional MetS features had an acceptable model fit. This indi-
cates that it is possible to construct a single statistical entity out of the traditional MetS 
features. In order to increase the predictive ability of MetS for T2D and CVD, it has 
been proposed to add additional features to the definition of MetS. We have tested the 
model fit of one-factor CFA MetS models additionally including hsCRP, uric acid, albu-
min or liver enzymes. Of these models only the model additionally including hsCRP 
represented a single entity. Compared to a MetS model including traditional MetS 
features only, this model predicted T2D and CVD somewhat better. Therefore inclusion 
of hsCRP in future MetS definitions may be considered. Although the model fit of a 
one-factor MetS model including traditional MetS features was acceptable, it was not 
perfect. This implies that it is impossible to explain all covariance between the differ-
ent MetS features with one MetS factor. Consequentially, the causes and mechanisms 
behind the clustering of MetS features will never be fully explained by studies focuss-
ing on one MetS factor.
To fully explain this clustering, the different combinations of MetS features should be 
studied. For those combinations of MetS features with the largest genetic pleiotropy, 
it will probably be easiest to detect common genetic variants. In chapter 3 we esti-
mated genetic pleiotropy between several MetS and MetS related features, by review-
ing genetic correlation coefficients assessed in twin and family studies published before 
7th of July 2010. We concluded that genetic pleiotropy was greatest between plasma 
HDL cholesterol and triglycerides (median r²genetic = -0.45) and between waist circum-
ference and HOMA-IR, a measure of insulin resistance (median r²genetic = 0.50). This 
implies that for these combinations it will probably be relatively easy to identify com-
mon genetic variants. In most studies we reviewed genetic and environmental correla-
tion coefficients between the different MetS features were, at first sight, similar. This 
suggests that genes and environment influence the clustering of MetS features through 
similar mechanisms [9].
The pathophysiology behind the clustering of MetS features is currently not fully 
understood. Genetic association studies on the clustering of MetS features may con-
tribute to a better understanding of this pathophysiology. In table 1 the single nucle-
otide polymorphisms(SNP’s) for which in this thesis an association with MetS or with 
a specific combination of MetS features was found, are presented. The SNP’s associ-
ated with MetS give a general idea of the mechanisms responsible for the clustering 
of MetS features, whereas the SNP’s associated with specific combinations of MetS fea-
tures provide deeper and more specific insights into the clustering of MetS features. 
As discussed in the introduction, SNP’s could influence the clustering of MetS features 
via three different models: model 1, the effect of a SNP on MetS feature 1 is completely 
mediated by the effect of the genetic variant on MetS feature 2; model 2, a SNP is asso-
ciated with two MetS features through two independent pathways; model 3, a SNP 
changes the strength of the association between MetS feature 1 and MetS feature 2. In 
this thesis we found examples for all three models.
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We and others [2-8] showed that it is possible to construct one statistical entity out of 
the traditional MetS features. This does not necessarily imply that the traditional MetS 
features are characterized by one pathophysiological factor. The SNP’s which were asso-
ciated with the clustering of MetS features in this thesis are involved in several differ-
ent mechanisms, including weight regulation, glucose and insulin metabolism, lipid 
metabolism and inflammation (figure 1). This supports the hypothesis that MetS is 
caused by multiple underlying interrelated causal mechanisms [27].
The most cited mechanisms responsible for the congregation of MetS features are 
insulin resistance and weight regulation [27, 28]. For both these two mechanisms we 
found SNP’s that were associated with MetS (chapter 4, chapter 5). Of these SNP’s, FTO 
rs9939609 and MC4R rs17782312 are mainly known for their role in weight regulation 
and TCF7L2 rs7903146 and IRS1 rs2943634 are mainly known for their role in insulin 
and glucose metabolism. The association of MetS with FTO rs9939609 is most likely 
completely mediated by the effect of FTO rs9939609 on body weight (model 1). Freathy 
et al. found that the association of FTO rs9939609 with some MetS features, i.e. glucose 
and lipid levels, disappeared after adjustment for BMI and that these associations were 
consistent with those predicted given the FTO-BMI and BMI-MetS features associations 
[29]. FTO rs9939609 was associated with MetS in a systematic review of candidate gene 
studies (chapter 4). However, in a random sample of EPIC-NL study, FTO rs9939609 
was not associated with MetS or MetS-score, probably due to the relative weak associa-
tion with body weight. Therefore, we were not able to test the mediating effect of FTO 
rs9939609. In a random sample of the EPIC-NL study the association between MetS and 

Table 1  Genetic variants associated with the clustering of MetS features

Reference

chapter 4     [13]

chapter 5

chapter 6     [22]

chapter 7     [24]

Endpoint

metabolic syndrome

metabolic syndrome

low HDL cholesterol and
abdominal obesity

Interaction of
glucose levels on BMI

SNPs studied

SNPs in 25 genes

39 SNPs involved in weight
regulation insulin resistance,
lipid metabolism and 
inflammation

373 SNPs occurring in
transcriptional pathways of
glucose and lipid metabolism

353 SNPs occurring in
transcriptional pathways of
glucose and lipid metabolism

Study Population

review of 88 candidate
gene studies

1886 participants of 
EPIC-NL

3575 participants of the
Doetinchem cohort

3244 participants of the
Doetichem cohort
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MC4R rs17782312 remained after adjustment for waist circumference. This suggests that 
the association between MC4R rs17782312 and MetS is probably, at least partly, inde-
pendent of the effect of MC4R rs17782312 on body weight (model 2). These findings 
are in line with other, both human and animal, studies in which the MC4R rs17782313 
SNP or the MC4R gene affected insulin resistance independent of body weight [10, 11].
TCF7L2 rs7903146 was associated with MetS in the systematic review of candidate gene 
studies. TCF7L2 is a member of the T-cell transcription factor family, which plays an 
important role in the WNT signaling pathway. This pathway is a major component 
in the regulation of cell proliferation and differentiation, is involved in adipogenesis 
and required for the development of pancreatic islets during embryotic growth, and 
through TCF7L2 influences glucagons-like 1 peptide secretion [18]. TCF7L2 rs7903146 is 
associated with hepatic insulin resistance and diminished insulin secretion [18]. So far, 
it is not known if the effect of TCF7L2 rs7903146 on MetS can be completely explained 
by the effects on glucose metabolism or if other mechanisms also play a role. Possibly, 
TCF7L2 rs7903146 could also affect MetS by disruption of adipogenesis, through inter-
ference with the WNT signalling pathway [30].
The IRS1 rs2943634 SNP was associated with MetS in a random sample of EPIC-NL. 
Accordingly, an IRS1 knock-out mouse model displayed a non-obese MetS like phe-
notype consisting of insulin resistance, increased blood pressure, increased triglycer-
ides, decreased HDL cholesterol and decreased lipoprotein lipase (LPL) activity [31]. The 
dyslipidemic phenotype, both observed in knock-out mice and T-allele carriers of IRS1 
rs2943634, may be caused by impairment in insulin action, resulting in overproduc-

Significant SNPs

APOA5	C56G
APOA5	T1131C

APOC3	C482T
APOC3	C455T

CETP	Taq-1B

FTO	rs9939609

TCF7L2	rs7903146

IL-6	174G>C

MC4R	rs17782312

IRS1	rs2943634

CETP	Ile405Val

APOE	Cys112Arg

PPARGC1A	Gly482Ser	
PPARGC1A	Thr528Thr

Associated with

LPL ↑ → FFA ↓, VLDL production ↓ [14]

LPL ↓ → FFA ↑, inhibition of ApoE mediated clearance of VLDL [15]

reverse cholesterol transport ↑ → HDL cholesterol ↓ [12]

disturbed food intake regulation → obesity ↑ [16]

insulin secretion ↓ + hepatic insulin resistance ↑ → glucose ↑ [17, 18]

insulin resistance ↑ , FFA ↑, CRP ↑ [19, 20]
sympathetic nervous system ↑ → hypertension [21]

disturbed food intake regulation → obesity ↑ [10]
insulin resistance ↑ [10, 11]

insulin resistance ↑ [12]

reverse cholesterol transport ↑ → HDL cholesterol ↓ [12]

VLDL ↓ [23]

lipid oxidation ↓, gluconeogenesis ↓ [25, 26]
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tion of VLDL in the liver and decreased clearance of VLDL and chylomicrons (model 1) 
[31]. The association between IRS1 and hypertension could be related to impairment in 
endothelium-dependent vascular relaxation [31], possibly in relation to inhibition of 
the P13K/Akt signalling pathway caused by a defect in IRS1 (model 2) [32].
Besides insulin resistance and abdominal obesity, also inflammation, a more controver-
sial mechanism, has been suggested to explain the clustering of MetS features [20, 28, 
33]. We failed to show an association between a group of SNP’s, known for their asso-
ciation with inflammatory biomarkers in GWAS, and MetS in a random sample of the 
EPIC-NL study (chapter 5). However, we cannot preclude that a few specific inflamma-
tory biomarkers are causative to MetS. For example, when we analysed individual asso-
ciations of the inflammation SNP’s with MetS-score in this random sample, we found 
an association of IL6-R rs4537545 with MetS score (-0.08, 95%CI -0.17; 0.00). Addi-
tionally, in a systematic review of candidate gene studies on MetS we found an asso-
ciation between a SNP in the IL6 gene, IL6 174G>C (rs1800795) and MetS (chapter 4).
These two studies, in conjunction with some studies which reported an association 
between interleukin 6 and MetS or MetS related features, such as insulin resistance, 
FFA levels, triglyceride levels and blood pressure [19-21], support a role for interleukin-6 
in MetS development.
Another adipokine which has been proposed to be involved in MetS development 
is adiponectin [34]. The genetic correlation between adiponectin and MetS (median 
r²genetic = -0.32; chapter 3), suggests a link between adiponectin metabolism and MetS. 
However, in the systematic review we found no evidence for an association between 
SNP’s located in the ADIPOQ gene, the gene encoding adiponectin, and MetS. Some 
recently discovered genetic variants, such as the ARL15 rs4311394 SNP, may explain part 

Figure 1  Mechanisms by which SNP’s identified in this thesis effect the co-occurrence of MetS features;
  TG, triglycerides; HDL, HDL cholesterol; VLDL, very low density lipoprotein; FFA, free fatty acids
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of this inconsistency [34]. This SNP was discovered in a GWAS on adiponectin, and 
besides with adiponectin, also associated with insulin, T2D and CHD, all metabolic syn-
drome related outcomes [34]. To the best of our knowledge, an association between 
ARL15 and MetS has not been reported.
Recently, two GWAS added another dimension to the etiology of MetS [35, 36]. In both 
these GWAS all SNP’s found to be associated with MetS were involved in lipid metabo-
lism. In line with these GWAS, most of the SNP’s which were associated with MetS in 
our systematic review on candidate gene studies were involved in lipid metabolism 
(chapter 4). More specifically many of these lipid SNP’s were located in the APOA1/C3/
A4/A5 gene cluster, in the BUD13 gene, which is flanking the APOA1/C3/A4/A5 gene cluster 
or in the ZNF259 gene, which is flanking the BUD13 gene. The SNP’s located in or close 
to the APOA1/C3/A4/A5 gene cluster were: APOA5 rs2266788 [36], APOA5 C56G (rs3135506), 
APOA5 T1131C (rs662799), APOC3 C482T (rs2854117), APOC3 C455T (rs2854116) (chapter 
4), ZNF259 rs964184 [35], ZNF259 rs2075290 and BUD13 rs10790162 [36]. APOA5 and 
APOC3, in which several SNP’s associated with MetS are located, both affect lipid levels, 
amongst others, through their influence on LPL. Interestingly, in a recent GWAS LPL 
rs295 was also associated with MetS [36]. In the systematic review (chapter 4)
LPL S447X (rs328) (r²CEU 0.49 with LPL rs295) was excluded, because the accumulative 
total study population for this SNP was <4000 subjects. However, in all three candidate 
gene studies investigating the association between LPL S447X and MetS, the S447 allele 
was associated with a higher prevalence of MetS [37-39]. In the Doetinchem cohort 
this SNP was also associated with a MetS-score consisting of abdominal obesity, hyperg-
lycemia, hypertension and low serum HDL cholesterol (P=0.05). However, in a random 
sample of EPIC-NL LPL S447X was neither associated with MetS or with MetS-score. 
Furthermore, in a random sample of EPIC-NL a group of SNP’s, known for their associa-
tion with lipid levels in GWAS, was also not associated with MetS (chapter 4). The lack 
of an association with MetS may be explained by the small effect the lipid SNP’s had on 
lipid levels in the EPIC-NL study.
Subgroup analyses revealed that the weak associations between lipid SNP’s and lipid 
levels could not be explained by medication use, sex or a difference between the MOR-
GEN and Prospect study.
In short, we found evidence of an association with MetS for SNP’s located in genes 
involved in glucose and insulin metabolism, weight regulation, lipid metabolism and 
inflammation. In line with these results, Fontaine-Bisson et al. found that that SNP’s 
located in glucose and insulin metabolism, weight regulation and lipid metabolism 
were associated with T2D, an endpoint of MetS [40].
In chapter 6 and 7 we have investigated the association between specific combinations 
of MetS features and SNP’s in genes, located in transcriptional pathways of glucose 
and lipid metabolism in the Doetinchem cohort. We again found evidence support-
ing the link between lipid metabolism and the clustering of MetS features (chapter 6). 
The APOE Cys112Arg (rs429358) and the CETP Ile405Val (rs5882) SNP’s influenced both 
abdominal obesity and low HDL cholesterol levels, partly independent of each pheno-
type (model 1 and model 2). Therefore, these SNP’s may explain part of the genetic plei-
otropy between HDL cholesterol and waist circumference (median r²genetic = -0.22) 
(chapter 3). Furthermore, APOE Cys112Arg and CETP Ile405Val were associated with a 
MetS-score consisting of abdominal obesity, hyperglycemia, hypertension and low 
serum HDL cholesterol (MetS-score/allele Cys112Arg 0.12, 95% CI 0.01; 0.21; Ile405Val 
-0.08, 95% CI -0.16; -0.004). In a GWAS of seven studies, another uncorrelated SNP in 
the CETP gene, rs173539, was associated with the prevalnce of MetS, as well as with 
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the bivariate combination of low HDL cholesterol and high waist circumference [36]. 
These and our findings support that CETP, which is mainly known for its role in reverse 
cholesterol transport [41], is involved in the clustering of MetS features. Besides with 
MetS-score, APOE Cys112Arg was also associated with the prevalence of MetS, defined as 
the presence of three or more of the following four features, abdominal obesity, hyper-
glycemia, hypertension and low serum HDL cholesterol (PR/allele 1.21, 95% CI 1.03; 
1.44). APOE Cys112Arg is part of the APOE ε2/ε3/ε4 haplotype. In the Doetinchem cohort 
results of the ε2ε3ε4 haplotype analyses were similar to the results of the Cys112Arg SNP. 
Compared to the ε3/ε3 haplotype, the ε4/- haplotype tended to increase MetS preva-
lence (PR 1.21, 95%CI 0.98; 1.50). Also in the meta-analyses of candidate gene studies 
the ε4/- haplotype tended to increase the risk of MetS (pooled OR ε4/- vs. ε3/ε3 1.61, 
95% CI 0.87; 2.97, I² = 88.3%). When we updated the meta-analyses with the results 
of the Doetinchem study the pooled OR became borderline significant (pooled OR ε4/- 
vs. ε3/ε3 1.53, 95% CI 0.98; 2.37, I² = 86.7%). This suggests that also APOE, which has 
an important function in the clearance of chylomicron remnants and VLDL from the 
plasma, may play a role in MetS development.
In the Doetinchem cohort, we found an interaction effect of BMI on glucose for two 
highly correlated SNP’s in the PPARGC1A gene, Gly482Ser (rs8192678) and Thr528Thr 
(rs3755863) (model 3) (chapter 7). PPARGC1A is a transcriptional co-activator that inter-
acts with a broad range of transcription factors involved in a wide variety of biological 
processes, including glucose metabolism in the liver and muscle, mitochondrial bio-
genesis, lipid oxidation, and adipocyte differentiation [25]. In our study, the rare allele 
of both PPARGC1A SNP’s was significantly associated with lower glucose levels in sub-
jects with a BMI ≤25 kg/m². An reverse association was suggested in subjects with a BMI 
> 28 kg/m². A small intervention study, the SLIM study, showed similar though non-
significant results. The interaction effect we found was in line with an 8 weeks weight 
loss trial [42]. These studies support that PPARGC1A Gly482Ser and PPARGC1A Thr528Thr 
affect the clustering of MetS features, by modulating the association between weight 
regulation and glucose metabolism. However, the PPARGC1A SNP’s were not associated 
with MetS in the Doetinchem cohort (Gly482Ser P=0.24; Thr528Thr P=0.27). This 
exemplifies that not all SNP’s involved in the clustering of MetS features, are also asso-
ciated with MetS itself.
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Methodological considerations
MetS is a very heterogeneous phenotype. As nicely pointed out by Professor Brad-
ford Hill [43], it is more difficult to find a cause, either genetic or environmental, for 
a heterogeneous phenotype, such as MetS, than for a more specific phenotype, such 
as hypertension. Furthermore, as the predominant MetS subtype may differ between 
populations it may be difficult to replicate associations with MetS in an independent 
study sample. For example, the pre-dominant MetS subtypes in the Rucphen family 
study contain abdominal obesity, dyslipidemia and hypertension [44], whereas in the 
EPIC-NL study the pre-dominant MetS stubtypes all contain hyperglycemia. Therefore, 
a genetic variant associated with a MetS subtype containing hyperglycemia may be 
associated with MetS in EPIC-NL, but not in the Rucphen family study. A way to get 
around the heterogeneity problem is to study specific combinations of MetS features, 
as is done in the analyses of the Doetinchem cohort (chapter 6 and 7).
Besides this heterogeneity issue, also the relatively low heritability of MetS (10%-30% 
[44-46]) hampers the detection of associations between genetic variants and MetS. It 
may be therefore more fruitful to focus on specific combinations of MetS features with 
much genetic variance in common. The amount of genetic variance shared between 
MetS features can be estimated with genetic correlation coefficients. A disadvantage of 
genetic correlation coefficients is that they are usually subject to rather large sampling 
errors and therefore seldom very precise [9]. By summarizing genetic correlation coef-
ficients between MetS features across several studies, we reduced this sampling error 
and gave more precise estimates of genetic correlation coefficients between the MetS 
features (chapter 3).
Not only for MetS, but for any other complex trait, it is difficult to find underlying 
genetic variants that determine its risk. For example, the unexplained genetic variance 
for T2D is over 90% [47]. To the best of our knowledge, the unexplained genetic vari-
ance for MetS is unknown. However, as the number of genetic association studies on 
MetS is much smaller than on T2D, the unexplained genetic variance for MetS is likely 
to be high as well. One of the barriers for the detection of genetic variants associated 
with complex traits is a low study power, resulting in a large number of false negatives. 
Firstly, this low study power is caused by the small effect size many SNP’s have. For 
example, in a recent GWAS on MetS, the largest odds ratio(OR) was 1.3 [36]. Secondly, 
study power is low due to the adjustment for multiple testing, and consequently the 
small alphas. For example, a GWAS with 4549 cases and 5679 controls has a power of less 
than 5% to detect an OR of 1.10 for a SNP with a MAF of 0.30 with a P-value of 1.0*10-6 
[48]. Also in the random sample of EPIC-NL the power to detect an association between 
MetS and 39 SNP’s of interest would have been very low, if we had tested all SNP’s indi-
vidually and adjusted for multiple testing afterwards. Using the stringent Bonferroni 
correction (P=1.28*10-3) the power to detect a 1.2 prevalence ratio with MetS for a SNP 
with a MAF of 0.30 would have been 7%. To increase study power, we therefore stud-
ied the joint effect of five groups of SNP’s, using Goeman’s global test (chapter 5) [49]. 
Disadvantage of this approach is that a large individual effect of a SNP on MetS can 
be missed, due to the fact that all the other SNP’s in the group are truly not associated 
with MetS.
 In the Doetinchem cohort, we adjusted for multiple testing with the false discovery 
rate (FDR), when testing 353 SNP’s individually for their interaction effect with BMI on 
glucose levels (chapter 7). The FDR, which is less stringent than the Bonferroni test, 
refers to the proportion of false positive tests among all positives [50]. To increase 
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study power in these analyses we relaxed the cut off value for the FDR from the tradi-
tional 0.05 to 0.20, like other candidate gene studies did [51, 52]. This has also been 
done in GWAS in which for example P-value=1.0*10-6 or higher was applied, instead of 
P-value=1.0*10-8, which correspond to 0.05 false positives [48, 50].
The downside of less stringent cut off values is an increase in false positives. To dif-
ferentiate the true positive findings from the false positive findings replication in an 
independent population is common practise [53]. We replicated the interaction effect 
between PPARGC1A Gly482Ser and BMI on glucose levels observed in the Doetinchem 
cohort in the SLIM study (chapter 7). For the analyses on multiple MetS features, 
results did not replicate in the SLIM study (chapter 6). However, for these findings 
supportive evidence was available in literature. Failure to replicate an association does 
not necessarily imply that the initial finding is false positive. Inconsistent replication 
may be caused by various forms of between-study heterogeneity, including differences 
in genetic ancestry and environmental influences [53]. These sources of heterogeneity 
may also explain part of the heterogeneity observed in the meta-analysis on candi-
date gene studies (chapter 4). For example, ethnicity explained nearly all heterogeneity 
present in the meta-analysis on APOA5 T1131C (rs662799).
Two important biases for genetic association studies exist: population stratification and 
publication bias [50, 54]. Population stratification refers to a situation in which the 
study population includes subgroups of individuals that are on average more related 
to each other, than to other members of the wider study population [50]. Population 
stratification may confound genetic associations, resulting in false positive findings. 
Participants of the EPIC-NL study (chapter 5), as well as the Doetinchem cohort (chap-
ter 6, 7), were randomly selected from a population mainly consisting of Dutch Cau-
casian individuals. In the EPIC-NL study all non-Caucasian participants were excluded 
by a principle component analyses of the genetic population structure. Also related 
individuals were excluded [55]. Therefore, population stratification has probably not 
been an issue in the EPIC-NL study. The Doetinchem cohort still contains a few non-
Caucasian and a few related participants. However, as they are only few, the gene 
pool is expected to be fairly homogeneous [56]. Therefore, population stratification has 
probably not been a major issue in the Doetinchem cohort.
Although the Egger’s and Begg’s test did not indicate publication bias in any of the 
meta-analyses on candidate gene studies, publication bias may still have affected the 
systematic review (chapter 4). First, the power of the Egger’s and Begg’s test to detect 
publication bias in our meta-analyses was relatively low. Second, publication bias has 
not been tested in the narrative review. As negative data are often not reported, we may 
have overestimated the genetic associations [54, 57]. Therefore, as was the case with the 
updated meta-analysis on PPARG Pro12Ala and T2D [58], an update of the meta-analyses 
on MetS may show weaker associations in few years’ time, especially after inclusion of 
data from GWAS.

Implications for public health
Lifestyle therapy, focusing on weight reduction and increased physical activity, may 
prevent or treat multiple MetS features simultaneously [27]. However, as adherence 
to lifestyle therapy is poor and long-term success is modest [59], drug treatment may 
be necessary. Currently no drugs that target multiple MetS features simultaneously are 
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available. Therefore, if lifestyle therapy is ineffective, no other option is left than to 
focus on treatment of individual MetS features.
The concept of MetS has already impacted clinical practice. The attention drawn to 
the co-occurrence of MetS features has motivated physicians, who diagnosed one of 
the MetS features, to screen for additional ones [60, 61]. Nowadays screening for the 
MetS features is, or should be, part of routine clinical assessment. Lifestyle interven-
tion is also part of the treatment options for the individual MetS features. Therefore, it 
is unclear at the moment whether additional value can be obtained for clinical practice 
by making the actual diagnosis of MetS, i.e. the presence of three or more features. 
Diagnosing MetS may have several advantages. It may direct physicians towards pre-
scribing lifestyle therapies that address all MetS features simultaneously, instead of 
using medication [62, 63]. Furthermore, diagnosis of MetS may motivate patients to 
make lifestyle changes that prevent progression of MetS to T2D or CVD [64]. Whether 
diagnosis of MetS will indeed result in the intended behavioral changes of patients and 
physicians described above, are hypotheses which remain to be tested [64].
Currently no drug for MetS is available. A drug for MetS would target pathophysi-
ological factors responsible for the co-occurrence of MetS features. These pathophysio-
logical factors could be identified by genetic research. Although genetic variants related 
to complex disease generally have small effects, these genetic variants may still pin-
point potential targets for drug development. Thiazolidinediones and sulfonylureas are 
examples of drugs which target loci for which a genetic association have been found 
[65]. Thiazolidinediones and sulfonylureas are diabetic medication, which are ligands 
for PPARG [66] and for the KATP channels encoded by KCNJ11 [67], respectively. PPARG 
Pro12Ala (rs1801282) [68, 69] and KCNJ11 E23K (rs5129) [69, 70] are the corresponding 
genetic variants. Although the drugs were on the market before the genetic associa-
tions were revealed this example exemplifies the concept that drug development based 
on genetic associations could be fruitful. Currently, no drug targeting one of the genes 
associated with MetS is on the market. However, for some of them drugs are being 
developed. For example, the pharmaceutical industry has developed a small-molecule 
agonist for MC4R [71]. This drug decreases food intake, but is also associated with an 
increased blood pressure, an increased heart rate, penile erections and flushing [72]. 
Due to these side-effects MC4R agonist are ineffective as anti-MetS drug and probably 
not useful as anti-obesity drug [73]. Furthermore, the discovery of small-molecule acti-
vators of the insulin receptor, a target upstream of IRS-1, may also lead to the develop-
ment of a new drug for MetS [73].
Applications of research on the genetics of MetS seem to be more easily attainable in 
the field of drug development, than in the field of risk prediction. First, MetS did not 
add predictive ability to a risk score for diabetes consisting of age, sex, ethnicity, fasting 
glucose, systolic blood pressure, HDL cholesterol, BMI and parental or sibling history 
of diabetes [74, 75]. MetS also did not add predictive ability to the Framingham risk 
score for CVD [75-77]. As MetS itself does not seem to improve traditional risk scores, 
it is questionable whether genetic variants for MetS will improve these scores. Second, 
so far genetic variants have added little predictive ability to risk scores for chronic dis-
eases, such as T2D [78] and CVD [79, 80]. Third, as the currently known MetS variants 
have all been previously identified in studies on individual MetS features, inclusion of 
genetic variants for MetS will not add information to a risk score for T2D and CVD, 
which already includes genetic variants for the individual features.
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Recommendations for future research
Genetic association studies on complex diseases, such as MetS and its features, have 
identified hundreds of common genetic variants with relatively small effects. However, 
these common genetic variants only explain a small proportion of the heritability esti-
mates [81]. So many more genetic variants associated with the clustering of MetS fea-
tures remain to be discovered.
Up till now most studies on genetic variants associated with the clustering of MetS 
features, focused on MetS itself, as defined by one of the traditional MetS definitions.
However, several improvements to the current MetS definition are conceivable, such 
that this definition better reflects the clustering. Then it would probably be much eas-
ier to identify genetic variants associated with the clustering of MetS features.
Our CFA MetS model with the traditional MetS features had an acceptable model fit. 
This implies that this model reflected the correlation matrix of the MetS features, i.e. 
the clustering of MetS features, reasonably well. However, in the CFA MetS model the 
factor loadings of the MetS features differed, whereas in the current MetS definition 
the MetS features all have an equal weight. To the best of our knowledge, it has not 
been previously reported whether a CFA MetS model with equal weights for all MetS 
features has an acceptable model fit. In the subset of the MORGEN study and in a ran-
dom sample of EPIC-NL, the model fit was unacceptable when the factor loadings of 
a one-factor CFA MetS model were kept equal (MORGEN subset CFI 0.92, RMSEA 0.13, 
SRMR 0.081; random sample of EPIC-NL CFI 0.87, RMSEA 0.1136, SRMR 0.088). This 
implies that in our study populations a CFA MetS model, in which all factor loadings 
are equal, badly reflects the clustering of the MetS features. Therefore, a MetS defini-
tion with weighted features would probably reflect the clustering of MetS features bet-
ter than the traditional MetS definition.
Another improvement to the MetS definition could be to design a continuous one, e.g. 
based on a CFA MetS model. As a continuous MetS definition better reflects the clus-
tering of MetS features and is more powerful, than the traditional bivariate MetS defi-
nition, it will be probably easier to identify genetic variants associated with clustering 
of MetS features with such a continuous MetS definition. Similarly, if the determinant 
of interest is associated with all MetS features, the conventional MetS-score is more 
powerful than the bivariate MetS definition. Other advantages of a continuous MetS 
definition are that with such a definition less information is lost [1, 82]. A continuous 
MetS definition, could eventually lead to a new MetS definition for clinical practice, 
by the development of a nomogram, in which each MetS feature is divided in multi-
ple strata [82]. In this nomogram the different MetS features are divided into multiple 
strata, and not into two strata as is the case with current MetS definition. Therefore a 
categorical or bivariate MetS definition read from this nomogram will be more refined 
than the current MetS definition.
In order to increase the predictive ability of MetS for T2D and CVD, it has been pro-
posed to add features to the current definition of MetS. However, for many of these 
features it is not known whether such a revised MetS model acceptably represents 
the correlations between the features. More research is necessary to establish which 
MetS definition optimally predicts T2D and CVD, while still representing one statisti-
cal entity. Furthermore, it should be investigated if addition of novel MetS features is 
cost effective.
Although the one-factor CFA MetS model had an acceptable model fit, the model fit 
was not perfect. Hence, the correlations between the MetS features, i.e. the clustering 
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of the MetS features, can not be fully explained by one MetS factor. In order to do 
so, studies on specific combinations of MetS features should be performed. An advan-
tage of the study of specific combinations of MetS features is that they represent less 
heterogeneous phenotypes than MetS. Furthermore, it may be much easier to detect 
genetic variants for a specific combination of MetS features, which are highly geneti-
cally correlated, than for MetS, which has a relatively low heritability. We suggest to 
start with the analysis of available GWAS for the associations between SNP’s and those 
combinations of MetS features, which are highly genetically correlated, such as HOMA-
IR and waist circumference.
An alternative approach from studying the clustering of MetS features directly, would 
be to focus on metabolic traits which are likely to explain part of the clustering of MetS 
features, such as abdominal obesity, HOMA-IR and FFA. Probably, some of the genetic 
variants associated with these metabolic traits are also associated with the clustering of 
MetS features. For example, FTO rs9939609 is associated with both abdominal obesity 
and MetS. Genetic association studies on HOMA-IR and FFA are scarce, i.e. candidate 
gene studies on these traits are relatively few [83], no GWAS on FFA has been published 
and only a few GWAS on HOMA-IR are available [84, 85]. Therefore, GWAS on FFA and 
HOMA-IR, and subsequent association analysis of loci discovered in these GWAS with 
MetS, may lead to the discovery of novel genetic loci associated with the clustering of 
MetS features.
One of the ways to find more genetic variants associated with the clustering of MetS 
features is to study different endpoints, e.g. use a revised MetS definition. However, 
part of the “heritability gap”, i.e. the unexplained genetic variance, may also be filled 
by the study of alternative genetic variants. Up till now most studies focused on com-
mon genetic variants. However, research on rare variants with small or intermediate 
effects may fill part of the “heritability gap”, as nicely illustrated by two recent stud-
ies on HDL cholesterol [86] and celiac disease [87]. The study on celiac disease indi-
cates that these rare variants may even be located in genes, in which no common 
genetic variants have been detected [87]. So, research on rare genetic variants may 
not only help to close the heritability gap, but also lead to discovery of additional 
disease genes. Second, structural variations other than SNP’s are only measured in a 
few studies. Therefore, research on copy number or epigenetic variations may explain 
part of the unidentified genetic variance [81, 88]. Third, gene-gene or gene-environ-
ment interactions may also explain part of the unidentified genetic variance [81]. A 
principle problem of research on gene-environment interactions is the misclassified 
or biased information on the environment exposure [89]. The study of more reliable 
environmental exposure markers, e.g. plasma nutrient levels instead of nutrient intake 
measures, may therefore facilitate the detection of gene-environment interactions. Fur-
thermore, as the sample size required to detect an interaction effect is roughly at least 
four times the sample size that is needed to evaluate the main effect, the power to 
detect an interaction effects, either gene-gene or gene-environment, is limited [89]. To 
address this power issue several novel, more powerful, statistical tests to detect interac-
tion effects have been developed, such as the case-only design, multifactor dimension-
ally reduction, tree based approaches, data-mining approaches and Bayesian modeling 
approaches [90, 91]. Nevertheless, the research output from these techniques, i.e. the 
number of confirmed interaction effects, has been limited so far.
In the above mentioned research suggestions, we focussed on further studies through 
which more genetic variance, responsible for the clustering of MetS features, can be 
explained. We suggested to study alternative endpoints, alternative genetic variants or 
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to focus on interaction effects. Up till now most genetic research on the clustering of 
MetS features suggests that the clustering of MetS features is not caused by one, but by 
several mechanisms. Therefore, it would make sense to define several subtypes of MetS 
based on the different mechanisms involved in the clustering of MetS features. For dia-
betes, the differentiation on a pathophysiological basis between type 1 and type 2 made 
by Roger Himsworth in 1936 [28], resulted eventually in differential treatment for type 
1 and type 2 diabetes, i.e. insulin treatment for type 1 and sulfonylureas treatment for 
type 2 diabetes [92]. Possibly a differentiation between several pathophysiological dis-
tinct MetS subtypes would also result in subtype specific treatment and prevention 
strategies. In order to be able to define these subtypes, our understanding of the patho-
physiological processes involved in MetS development should be improved, either by 
genetic association studies or by other mechanistically oriented studies.
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Conclusion
The clustering of MetS features can be studied by one MetS factor or by specific com-
binations of MetS features. In case one MetS factor is used, this MetS factor should 
be powerful and reasonably well represent the correlation matrix between the different 
MetS features. Our results suggest that it may be best to design a continuous MetS 
definition in which the features have different weights. In order to increase predictive 
ability for T2D and CVD of MetS, hsCRP may be added, if cost effective. We showed 
that one MetS factor will not be able to fully explain the clustering of MetS features. 
In order to do so, specific combinations of MetS features should be studied. Based on 
the review of genetic correlation coefficients, genetic pleiotropy was largest between 
plasma HDL cholesterol and triglycerides (median r²genetic = 0.50) and between waist 
circumference and HOMA-IR (median r²genetic = -0.45). For these two pairs of MetS and 
MetS related features, it will probably be relatively easy to detect genetic variants.
This thesis shows that the SNP’s associated with the clustering of MetS features are 
involved in weight regulation, glucose and insulin metabolism, lipid metabolism and 
inflammation. Many of the SNP’s involved in lipid metabolism are located in, or in 
close proxy to, the APOA1/C3/A4/A5 gene cluster. Interestingly, although the genetic cor-
relation between adiponectin and MetS was relatively high, the number of SNP’s asso-
ciated with both adiponectin and MetS was small. Probably, these SNP’s remain to be 
discovered. The SNP’s associated with the clustering of MetS features, could influence 
this clustering in different ways. First, such as observed for FTO rs9939609, the effect 
on one MetS feature could mediate the effect on other MetS features, therewith affect-
ing the clustering. Second, a SNP could be associated with multiple MetS features 
through independent pathways, such as observed for MC4R rs17782313, APOE Cys112Arg 
(rs429358) and CETP Ile405Val (rs5882). Third, a SNP could modulate the association 
between two MetS features, e.g. PPARGC1A Gly482Ser (rs8192678) modulated the asso-
ciation between BMI and glucose.
The SNP’s associated with the clustering of MetS features are involved in several dif-
ferent mechanisms. This suggests that, although the MetS features can be represented 
with one statistical entity, there are multiple underlying mechanisms explaining its 
development. Therefore, it would make sense to define several subtypes of MetS based 
on the different mechanisms explaining the clustering of MetS features, like was done 
for e.g. diabetes mellitus.
Up till now the translation of genetic research into public health relevance has been 
limited. In the future, discovery of pathophysiological factors associated with multi-
ple MetS features, identified by genetic research, may hopefully lead to the develop-
ment of new preventive and treatment strategies, targeting multiple MetS features 
simultaneously.
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Summary
Abdominal obesity, hyperglycemia, hypertriglyceridemia, low serum HDL cholesterol 
levels and hypertension frequently co-occur within individuals. According to the most 
recent definition, people in whom three or more of these clinical features co-occur are 
considered to have metabolic syndrome (MetS). People with MetS are at a twofold 
increased risk for developing coronary heart disease (CHD) and at a fivefold increased 
risk for developing type 2 diabetes (T2D) in the next five to ten years. In Western soci-
eties the prevalence of MetS among adults is high, around 25-30%, and is expected to 
rise.
Currently, it is unclear how, i.e. by which endpoints, the clustering of MetS features 
can be studied best. Also the pathophysiology behind the clustering of MetS features is 
not fully understood. Genetic association studies on MetS or on specific combinations 
of MetS features may provide more insight in this pathophysiology.

In chapter 2 we tested the model fit of several one-factor MetS models consisting of 
traditional and novel MetS features, such as hsCRP, uric acid, albumin or liver enzymes, 
using confirmatory factor analysis in the EPIC-NL case-cohort study (random sample 
n=1928; incident T2D cases n=545, incident CVD cases n=1312). Three one-factor MetS 
models had a good model fit and represented one entity, i.e. a standard model consist-
ing of the traditional MetS features, a standard model excluding blood pressure and a 
standard model including high sensitive C-reactive protein (hsCRP). This suggests that 
MetS defined according to one of these three models, represents a single disorder, at 
least from a statistical point of view. Of the three models, the model which addition-
ally included hsCRP predicted T2D and CVD the best. Therefore, inclusion of hsCRP in 
future MetS definitions may be considered.
In chapter 3 we have reviewed 9 twin and 19 family studies, describing in total 239 
genetic correlation coefficients between MetS and MetS related features. Genetic 
correlations were strongest between waist circumference and HOMA-IR (median 
r²genetic=0.50), HDL cholesterol and triglycerides (median r²genetic=-0.45), and between 
adiponectin and MetS (median r²genetic=-0.32). This implies that for these combina-
tions of MetS features, it will probably be relatively easy to identify common genetic 
variants.
In chapter 4 and 5 we identified genetic variants associated with MetS. In chapter 4 
we systematically reviewed candidate gene studies on MetS published before the 2nd of 
June 2010. In total we included 88 studies on 25 genes in this review. The minor alleles 
of rs9939609 (FTO), rs7903146 (TCF7L2), C56G (APOA5), T1131C (APOA5), C482T (APOC3), 
C455T (APOC3) and 174G>C (IL6) were more prevalent in subjects with MetS than in 
subjects without MetS, whereas the minor allele of Taq-1B (CETP) was less prevalent 
in subjects with MetS. Most single nucleotide polymorphisms (SNP’s) associated with 
MetS were located in genes involved in lipid metabolism. This suggests that besides 
insulin resistance and weight regulation, lipid metabolism may also play a central role 
in MetS development.
In chapter 5 we analyzed whether SNP’s shown to be associated with inflammatory 
biomarkers, waist circumference, insulin resistance, serum HDL cholesterol or triglyc-
erides in GWAS, were associated with MetS and MetS-score in a random sample of the 
EPIC-NL study (n=1886). On the group level, the waist circumference SNP’s were signifi-
cantly associated with the prevalence of MetS, and the insulin resistance SNP’s with the 
MetS-score. The groups of lipid and inflammation SNP’s were neither associated with 
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MetS nor with the MetS-score. The lack of an association between the group of lipid 
SNP’s and MetS may be explained by the small effect of these SNP’s on lipid levels in 
the EPIC-NL study. These results in EPIC-NL support the hypothesis that weight regula-
tion and insulin resistance are involved in MetS development. Individual SNP’s which 
were associated with MetS were MC4R rs17782312, involved in weight regulation, and 
IRS1 rs2943634, related to insulin resistance. These SNP’s may explain part of the genetic 
variation in MetS.
In chapter 6 and 7 we have investigated the association between specific combina-
tions of MetS features and 373 SNP’s of genes located in transcriptional pathways of 
glucose and lipid metabolism in the Doetinchem cohort. In chapter 6 we have studied 
whether these SNP’s were related to multiple MetS features. Two SNP’s, CETP Ile405Val 
(rs5882) and APOE Cys112Arg (rs429358), were associated with both the prevalence of 
low HDL cholesterol levels and the prevalence of abdominal obesity. For both SNP’s, 
the association with HDL cholesterol was partly independent of the association with 
abdominal obesity and partly mediated by obesity. This indicates that the associations 
with HDL cholesterol and abdominal obesity work, at least partly, through independ-
ent pathways.
In chapter 7 we studied whether 353 of the aforementioned SNP’s were associated with 
glucose levels, in interaction with body mass index (BMI). Two highly correlated SNP’s 
in the PPARGC1A gene, Gly482Ser (rs8192678) and Thr528Thr (rs3755863), showed a sig-
nificant interaction with BMI. The rare allele of both SNP’s was significantly associated 
with lower glucose levels in subjects with a BMI ≤ 25kg/m². An inverse association was 
suggested in subjects with a BMI ≥ 28kg/m². A small intervention study, the SLIM study, 
showed similar, though non-significant, results. Based on these results it can be specu-
lated that people homozygous for the rare allele of the Gly482Ser and Thr528Thr SNP’s 
are more susceptible to develop hyperglycemia in an obesogenic environment, but less 
susceptible to develop hyperglycemia in a non-obesogenic environment.

In conclusion, our results suggest that the traditional MetS features, with or without 
hsCRP, can acceptably be represented by one statistical entity. However, in order to 
fully explain the clustering of MetS features, specific combinations of MetS features, 
especially those which are highly genetically correlated, notably HOMA-IR and waist 
circumference and HDL cholesterol and triglycerides, should be studied. A SNP could 
influence the co-occurrence of two MetS features in different ways, i.e. the effect a SNP 
has on one MetS feature can be explained by the effect the SNP has on another MetS 
feature, a SNP influences two MetS features through two independent pathways or a 
SNP may change the strength of an association existing between two MetS features. 
We showed that SNP’s associated with the clustering of MetS features are involved in 
several different mechanisms. For example rs7903146 (TCF7L2) and IRS1 rs2943634 are 
involved in glucose metabolism, C56G (APOA5) and C482T (APOC3) in lipid metabolism, 
MC4R rs17782312 and FTO rs9939609 in weigh regulation and 174G>C (IL6) in inflam-
mation. This suggests that, although the MetS features may represent a single statistical 
entity, there are multiple, related, mechanisms underlying its development.



148  |  Samenvatting

Samenvatting
Abdominale obesitas, hyperglycemia, hypertriglyceridemia, een laag serum HDL-cho-
lesterol en een hoge bloeddruk komen vaak samen voor. Volgens de meest recente 
definitie, hebben mensen met drie of meer van deze kenmerken het metabool syn-
droom (MetS). Mensen met MetS hebben een twee maal verhoogd risico op type 2 
diabetes (T2D) en een vijf maal verhoogd risico op coronaire hart ziekten. In de West-
erse wereld is de prevalentie van MetS hoog, ongeveer 25-30%. Men verwacht dat deze 
prevalentie nog verder zal stijgen.
Op dit moment is het onduidelijk hoe, oftewel met welke eindpunten, de clustering 
van MetS kenmerken het best bestudeerd kan worden. Ook de pathofysiologie onder-
liggend aan deze clustering is nog niet volledig ontrafeld. Genetische associatie studies 
naar MetS of naar specifieke combinaties van MetS kenmerken kunnen meer inzicht 
geven in deze pathofysiologie.

In hoofdstuk 2 hebben we met behulp van “confirmatory factor analyses” een aan-
tal verschillende één-factor MetS modellen geanalyseerd in het EPIC-NL case-cohort 
(mensen uit de random steekproef n=1928; incidente T2D patiënten n=545; incidente 
hart- en vaatziekten patiënten n=1312). Deze modellen waren opgebouwd uit tradi-
tionele en potentieel nieuwe MetS kenmerken, zoals hoog gevoelig C-reactief proteïne, 
urinezuur, albumine of leverenzymen. Drie één-factor MetS modellen, namelijk een 
standaard model bestaande uit de traditionele MetS kenmerken, een standaard model 
inclusief hoog gevoelig C-reactief proteïne en een standaard model zonder bloeddruk 
waren statistisch valide en stelde een entiteit voor. Dit betekent dat MetS gedefinieerd 
volgens één van deze drie modellen, in ieder geval vanuit statistisch perspectief, één 
ziekte is. Het standaard model inclusief hoog gevoelig C-reactief proteïne voorspelde 
van deze drie valide modellen type T2D en HVZ het beste. Gebaseerd op dit resultaat, is 
de mogelijkheid om hoog gevoelig C-reactief proteïne op te nemen in de definitie van 
het metabool syndroom, het overwegen waard.
In hoofdstuk 3 hebben we de resultaten van 9 tweeling en 19 familie studies, waarin 
239 genetisch correlatiecoëfficiënten tussen MetS- en MetS gerelateerde kenmerken 
beschreven waren, samengevat. De genetische correlaties waren het sterkst tussen mid-
delomtrek en HOMA-IR (mediaan r²genetisch=0.50), tussen HDL-cholesterol en triglyceri-
den (mediaan r²genetisch=-0.45) en tussen adiponectine en MetS (mediaan r²genetisch=-0.32). 
Dit betekent dat het voor deze combinaties van MetS kenmerken waarschijnlijk rela-
tief gemakkelijk is om gemeenschappelijke genetische varianten in het humane DNA te 
vinden.In hoofdstuk 4 en 5 hebben we genetische varianten geïdentificeerd die geas-
socieerd zijn met MetS.
In hoofdstuk 4 hebben we de resultaten van kandidaat-gen studies gepubliceerd voor 2 
juni 2010 samengevat. We hebben 88 studies, waarin 25 genen beschreven waren, bes-
proken. Het minst voorkomende allel van rs9939609 (FTO), rs7903146 (TCF7L2), C56G 
(APOA5), T1131C (APOA5), C482T (APOC3), C455T (APOC3) en 174G>C (IL6) had een hogere 
prevalentie in mensen met MetS dan in mensen zonder MetS. Het minst voorko-
mende allel van Taq-1B (CETP) had juist een hogere prevalentie in mensen met MetS. 
De meeste genetische varianten die geassocieerd waren met MetS waren afkomstig uit 
genen die betrokken zijn bij het vetmetabolisme. Dit kan er op duiden dat behalve 
insulineresistentie en gewichtsregulatie ook het vetmetabolisme een rol kan spelen bij 
het ontstaan van MetS.
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In hoofdstuk 5 hebben we bestudeerd of genetische varianten waarvan bekend is dat 
ze in genoombrede associaties studies geassocieerd zijn met inflammatoire biomarkers, 
insulineresistentie, serum HDL-cholesterol of triglyceriden, ook geassocieerd zijn met 
MetS of met MetS-score in een steekproef van deelnemers uit EPIC-NL (n=1886). Op 
groepsniveau waren de genetische varianten die oorspronkelijk gerelateerd waren met 
middelomtrek geassocieerd met de prevalentie van het MetS en waren de genetische 
varianten die oorspronkelijk gerelateerd waren met insulineresistentie geassocieerd met 
MetS-score. De groep met genetische varianten afkomstig uit het vet of inflammatie 
metabolisme waren niet geassocieerd met MetS, noch met MetS-score. De afwezigheid 
van een associatie tussen genetische varianten afkomstig uit het vetmetabolisme en 
MetS kan misschien verklaard worden door de zwakke associatie tussen deze genetische 
varianten en lipiden niveaus in de EPIC-NL studie. De resultaten van de EPIC-NL studie 
ondersteunen de hypothese dat gewichtsregulatie en insulineresistentie betrokken 
zijn bij de ontwikkeling van MetS. Individuele genetische varianten die geassocieerd 
waren met MetS waren MC4R rs17782312, een genetische variant betrokken bij gewich-
tsregulatie, en IRS1 rs2943634, een genetische variant gerelateerd aan insuline resisten-
tie. Deze genetische varianten kunnen mogelijk de genetische component van MetS 
gedeeltelijk verklaren.
In hoofdstuk 6 en 7 hebben we in het Doetinchem cohort de associatie tussen speci-
fieke combinaties van MetS kenmerken en 373 genetische varianten gelegen in genen 
afkomstig uit glucose en lipiden transcriptie mechanisme onderzocht. In hoofdstuk 6 
hebben we bestudeerd of deze genetische varianten gerelateerd zijn met meerder MetS 
kenmerken. Twee genetische varianten, CETP Ile405Val (rs5882) en APOE Cys112Arg 
(rs429358), waren geassocieerd met zowel de prevalentie van een laag HDL-cholesterol 
als met de prevalentie van abdominale obesitas. Voor beide genetische varianten was 
de associatie met HDL-cholesterol gedeeltelijk afhankelijk en gedeeltelijk onafhankelijk 
van de associatie met abdominale obesitas. Dit betekent dat de associatie met HDL-
cholesterol en de associatie met abdominale obesitas, in ieder geval gedeeltelijk, door 
onafhankelijke mechanismes te weeg wordt gebracht. 
In hoofdstuk 7 hebben we bestudeerd of 353 van de eerder genoemde genetische vari-
anten in interactie met BMI geassocieerd waren met glucose niveaus. Twee hoog gecor-
releerde genetische varianten uit het PPARGC1A gen, namelijk Gly482Ser (rs8192678) 
en Thr528Thr (rs3755863), vertoonden een significant interactie effect met BMI. Het 
minst voorkomende allel van beide genetische varianten was significant geassoci-
eerd met lagere glucose niveaus in deelnemers met een BMI ≤ 25kg/m². Er leek een 
inverse associatie te zijn in deelnemers met een BMI ≥ 28kg/m². Een kleine interventie 
studie, de SLIM studie, liet een soortgelijk, maar niet significant resultaat zien. Geba-
seerd op deze resultaten kan men speculeren dat mensen die homzygoot zijn voor het 
minst voorkomende allel van de Gly482Ser en Thr528Thr genetische varianten extra 
gevoelig zijn om hyperglycemia te ontwikkelen in een obesogene leefomgeving, maar 
juist minder gevoelig zijn om hyperglycemia te ontwikkelen in een niet-obesogene 
leefomgeving.
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Concluderend, onze resultaten suggereren dat de traditionele MetS kenmerken, met 
of zonder hoog gevoelig C-reactief proteïne, één statistische entiteit voorstellen. Maar 
om de clustering van MetS kenmerken volledig te kunnen verklaren moeten speci-
fieke combinaties van MetS kenmerken bestudeerd worden. Het is vooral belangrijk 
om MetS kenmerken, die hoog genetische gecorreleerd zijn, zoals HOMA-IR en mid-
delomtrek en HDL-cholesterol en triglyceriden, nader te bestuderen. Een genetische 
variant kan er op verschillende manieren voor zorgen dat twee MetS kenmerken vaak 
samen voorkomen. In de eerste plaats kan het effect dat een genetische variant heeft 
op een MetS kenmerk volledig verklaard worden door het effect dat de genetische vari-
ant heeft op een ander MetS kenmerk. In de twee plaats kan een genetische variant 
twee MetS kenmerken via twee onafhankelijke mechanismes beïnvloeden. In de derde 
plaats kan een genetische variant de sterkte van de associatie tussen twee MetS ken-
merken veranderen. We hebben laten zien dat genetische varianten die geassocieerd 
waren met clustering van MetS kenmerken betrokken zijn bij verschillende mecha-
nismes. Bijvoorbeeld rs7903146 (TCF7L2) en IRS1 rs2943634 zijn betrokken bij het glu-
cose mechanisme, C56G (APOA5) en C482T (APOC3) bij het lipiden metabolisme, MC4R 
rs17782312 en FTO rs9939609 bij gewichtsregulatie en 174G>C (IL6) bij inflammatie. 
Dit suggereert dat, hoewel de MetS kenmerken een statistische entiteit voorstellen, er 
meerdere  gerelateerde mechanismes aan het MetS ten grondslag liggen.
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Abbreviations
Adip  adiponectin
ALT  Aminotransferase
APOE  Apolipoprotein-E
AST  Aspartate aminotransferase
ATGL  Adipose tissue triglyceride lipase

BMI  Body mass index
BP  Blood pressure

CETP  Cholesteryl ester transfer protein
CFA  Confirmatory factor analysis
CFI  Comparative fit index
CHD  Coronary heart disease
CPAI  Cambridge Phyiscal Activity Index
CRP  C-reactive protein
CVD  Cardiovascular diseases
CVA  Cerebro Vascular Accident

DBP  Diastolic blood pressure

EFA  Explanatory factor analysis
EPIC  European Investigation into Cancer and Nutrition

FDR  False discovery rate
FFA  Free fatty acids
FPG  Fasting plasma glucose
FVII  Factor VII

GGT  Gamma glutamyltransferase
GWAS  Genome wide association study

HbA1C  Haemoglobin A1c
HDL  High Density Lipoprotein
HMW  High molecular weight
HOMA-IR Homeostasis model assessment insulin resistance
hsCRP  High sensitive C-reactive protein
HSL  Hormone sensitive lipase
HWE  Hardy Weinberg Equilibrium

ICAM-1  Intracellular adhesion molecule-1
INS  Insulin
IR  Insulin resistance

LDL  Low Density Lipoprotein
LMW  Low molecular weight
LPL  Lipoprotein lipase
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MAF  Minor allele frequency
MORGEN Monitoring Project on Risk Factors for Chronic Diseases
MetS  Metabolic Syndrome

NO  Nitric oxide

OR  Odds ratio

PAI-1  Plasminogen activator inhibitor 1
PR  Prevalence ratio

RMSEA  Root mean square error of approximation

SBP  Systolic blood pressure
SD  Standard deviation
SLIM  Study on Lifestyle intervention and Impaired glucose tolerance
   Maastricht
SNP  Single nucleotide polymorphism
SRMR  Standardized root means square residual
STRS  Short tandem repeats

TG  Triglyceride
t-PA  Tissue plasminogen activator

VLDL  Very Low Density Lipoprotein

WC  Waist circumference
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Dankwoord
Nu, 4 jaar na mijn eerste werkdag als AIO, mag ik mijzelf doctor noemen. Doctor 
is een persoonlijke titel, maar bij het verkrijgen ervan hebben heel veel mensen mij 
geholpen. Ieder op zijn of haar eigen manier. Zeker is dat zonder de motiverende 
woorden, wetenschappelijke input, luisterende oren en gezellig praatjes, dit boekje er 
niet geweest was. Van alle mensen, die voor mij de afgelopen jaren van betekenis zijn 
geweest, wil ik er hieronder een aantal naar voren halen.

Allereerst wil ik mijn promotor, Edith en mijn co-promotor Jolanda bedanken. 
Jolanda, ik ben heel blij dat je me de afgelopen vier jaar gesteund hebt. Ik bewonder je 
tact, je verbindende kracht en je nooit verslappende kritische blik. Ik heb het heel erg 
gewaardeerd, dat je altijd voor me klaar stond. Je las keer op keer een volgende versie 
door en je dacht echt mee hoe een artikel naar een hoger niveau getild kon worden. 
Maar, bovenal, bedankt voor de keren dat ik mijn hart bij je heb mogen luchten. 
Edith, je bent een echte wetenschapper en een ware kruisbestuiver. Er zijn weinig 
mensen met zo’n brede wetenschappelijke kennis. Fijn dat je die kennis in de afgelo-
pen jaren met mij hebt willen delen. Met je enthousiasme, je mailtjes met interessante 
artikelen en je wetenschappelijk inzicht, heb je mij geholpen mijn wetenschappelijke 
vaardigheden verder te ontwikkelen.

Ook alle andere mensen met wie ik tijdens mijn AIO-tijd heb samengewerkt, wil ik 
graag bedanken voor hun input. Allereerst alle mensen uit het SOR Healthy Ageing 
team, Martijn, Erwin, Kevin, Mariken, Sandra, Riny en Saskia, bedankt! Martijn, je 
bent een man uit één stuk, heel erg bedankt voor de keren die je achter me bent gaan 
staan. Erwin bedankt voor de rustige en geduldige manier waarop je feedback hebt 
gegeven op het, nu reed gepubliceerde, review paper. Kevin, you have an extended 
knowledge of the scientific literature. Thanks for sharing this knowledge. Thanks also 
for granting me the honour, of being your paranymph.
Mijn co-auteurs van het Julius Centrum, Yvonne, Joline en Charlotte bedankt voor 
jullie frisse en kritische blik op de laatste twee artikelen die ik geschreven heb. Best sec-
retariaat Humane Voeding, best secretariaat CVG, bedankt voor jullie hulp. My thesis 
committee professor Müller, doctor Balkau, professor Snieder and professor Slagboom 
thanks for taking the time to read and comment upon my thesis. Jelle bedankt voor 
het lay-outen en het ontwerpen van de voorkant van mijn boekje.

Behalve de mensen, die direct betrokken waren bij mijn proefschrift of bij een of meer 
van de artikelen daaruit, is er nog een hele rits van mensen die mij in de afgelopen vier 
jaar op meer indirecte wijze gesteund heeft. Allereerst mijn twee paranimfen. Rianne, 
we kennen elkaar al sinds september 2002, toen we beide begonnen aan het eerste jaar 
‘Voeding en Gezondheid’. Vanaf dat moment hebben onze wegen zich op verschil-
lende momenten gekruist en heeft onze vriendschap zicht verdiept. Ook deze geza-
menlijke AIO jaren heb ik als heel waardevol ervaren. Fijn dat je er al die jaren voor me 
was. Annemarie, het was gezellig! Ik ben blij dat ik de laatste anderhalf jaar met jou een 
kamer heb mogen delen. Je rustige, maar duidelijke manier om een boodschap over te 
brengen, heeft me op veel momenten goed gedaan. Ook met mijn andere kamergen-
oten, heb ik een leuke tijd gehad. Mariken, ik zal niet snel vergeten dat je voor me klaar 
stond toen ik midden in mijn AIO-dip zat. Anke, Simone en Natasja, bedankt voor jul-
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lie gezelligheid. The PhD-tour committee, Sanne, Michel, Sandra and Rianne, we had 
a really good time together. Martine en Frederike, fijn dat ik met jullie op het RIVM 
over al mijn AIO-zaken kon praten. Alle andere collega’s van het RIVM, bedankt voor de 
gezellig praatjes tijdens de lunch en dinsdagochtend koffie. Mede-AIO’s  van de WUR, 
in het bijzonder, maar zeker niet uitsluitend, Diewertje, Mirre, Renate, Vera, Sandra, 
Nicole, Nicolien, Elske, Eveline, Anne, Truus en Wieke, bedankt voor alles wat we 
samen hebben meegemaakt, de PhD-tour naar Denemarken, Zweden en Finland, de 
PhD-tour naar Mexico en VS, de nationale congressen, de internationale congressen, 
de cursussen, de rondjes arboretum, de lunches en de praatjes op de gang.

Lieve familie, papa, mama en Reinier, fijn dat jullie altijd op de zijlijn stonden om me 
aan te moedigen, mijn verhalen aan te horen en advies te geven. Saurabh, with you 
I have shared all the ups and downs of my PhD. If my PhD worries had contained 
calories, you would have become obscenely fat from eating them. Thanks for your love 
and support!





 
Povel CM

About the author



162  |  About the author

Curriculum Vitae
Cécile Povel was born on March 13th, 1984 in Leidschendam, the Netherlands. After 
completing secondary school at the “Christelijk Gymnasium” in Utrecht, she started 
her studies in Nutrition and Health at Wageningen University. She obtained her Mas-
ter’s degree (cum laude) with a major in Epidemiology and Public Health and a minor in 
Food Law in 2008. Her Master’s thesis Food Law at Wageningen University resulted in 
a publication “Scientific Substantiation of Health Claims The Soft Core of the Claims 
Regulation”, in the European Food and Feed Law Review. Her Master’s thesis Epide-
miology at Wageningen University resulted in a publication “Hemachromatosis(HFE) 
genotype and atherosclerosis: Increased susceptibility to iron-induced vascular dam-
age in C282Y carriers?” in Atherosclerosis. She conducted two internships: one in Food 
Law at Unilever R&D, Vlaardingen and one in Epidemiology at Karolinksa Institute, 
Stockholm, Sweden. In 2008, Cécile was appointed as PhD student at the Division 
of Human Nutrition of Wageningen University and at the Centre for Nutrition and 
Health (CVG) of the National Institute for Public Health and the Environment (RIVM). 
She investigated which metabolic endpoints should be studied in order to explain 
the clustering of  metabolic syndrome features, i.e. abdominal obesity, hyperglycemia, 
hypertriglyceridemia, low HDL cholesterol levels and hypertension. By studying genetic 
variants associated with the clustering of metabolic syndrome features, she aimed to 
better understand the pathophysiology behind this clustering. As part of her PhD the-
sis, she wrote two reviews, as well as several epidemiological papers. During her PhD 
project, Cécile joined the educational program of graduate school VLAG, attended sev-
eral international conferences and was involved in teaching. Furthermore, she was a 
member of the research committee at the Division of Human Nutrition and member 
of the organising committee of the PhD study tour to Denmark, Sweden and Finland 
in 2009.



163  |  About the author

List of publications
Publications in peer-reviewed journals
• | Cécile Povel, Bernd van der Meulen, Scientific Substantiation of Health Claims 

The Soft Core of the Claims Regulation, European Food and Feed Law Review, 
2|2007, p 82-90

• | Povel CM, Feskens EJM, Imholz S, Blaak EE, Boer JMA, Dollé ME, Glucose 
levels and genetic variant across transcriptional pathways: interaction effects with 
BMI, Int J Obes, 34(5), 2010, p 840-845

• | Engberink MF, Povel CM, Durga J, Swinkels DW, de Kort WL, Schouten EG, 
Verhoef P, Geleijnse JM, Hemachromatosis (HFE) genotype and atherosclero-
sis: Increased susceptibility to iron-induced vascular damage in C282Y carriers?, 
Atherosclerosis, 211(2), 2010, p520-525

• | Povel CM, Boer JMA, Reiling E, Feskens EJM, Genetic variants and the metabolic 
syndrome: a systematic review, Obes Rev, 12(11), 2011, p 952-967

• | Povel CM, Boer JMA, Imholz S, Dolle ME, Feskens EJM, Genetic variants in 
lipid metabolism are independently associated with multiple features of the meta-
bolic syndrome, Lipid Health Dis, 10(118), 2011

• | Povel CM, Boer JM, Feskens EJM, Shared genetic variance between the features 
of the metabolic syndrome: Heritability studies, Mol Genet Metab, 104(4), 2011, p 
666-669

Submitted papers
• | Povel CM, Beulens JW, van der Schouw YT, Dollé MET, Spijkerman AMW, Ver-

schuren WMM, Feskens EJM, Boer JMA, Metabolic syndrome model definitions 
predicting type 2 diabetes and cardiovascular disease

• | Povel CM, Boer JMA, Onland-Moret NC, Dollé MET, Feskens EJM, van der 
Schouw YT, SNP’s involved in insulin resistance, weight regulation, lipid metabo-
lism and inflammation in relation to metabolic syndrome

Abstracts in scientific journals or proceedings
• | Povel CM, Feskens EJM, Imholz S, Blaak EE, Boer JMA, Dollé ME, Glucose 

levels and genetic variant across transcriptional pathways: interaction effects with 
BMI, Eur J Clin Nutr, 2009, 63 (Suppl. 3), p 14 (Wageningen Nutritional Science 
Forum, 2009, Arnhem, The Netherlands, poster presentation)

• | Povel CM, Feskens EJM, Imholz S, Blaak EE, Boer JMA, Dollé ME, Glucose 
levels and genetic variant across transcriptional pathways: interaction effects with 
BMI, In: abstract book of the Annual Meeting of the EDEG, 2009, Wageningen, the 
Netherlands (poster presentation)

• | Povel CM, Feskens EJM, Imholz S, Blaak EE, Boer JMA, Dollé ME, Glucose 
levels and genetic variant across transcriptional pathways: interaction effects with 
BMI, Diabetologia, 2009, 52 (Suppl. 1), p 142 (EASD Annual Meeting, 2009, Vienna, 
Austria, poster presentation)

• | Povel CM, Boer JMA, Imholz S, Dolle ME, Feskens EJM, Genetic variants in 
lipid metabolism are independently associated with multiple features of the meta-
bolic syndrome, In: abstract book of WEON, 2010, Nijmegen, the Netherlands (oral 
presentation)



164  |  About the author

• | Povel CM, Boer JMA, Reiling E, Feskens EJM, Genetic variants and the metabolic 
syndrome: a systematic review, In: abstract book of NVDO, 2010, Oosterbeek, the 
Netherlands (oral presentation)

• | Povel CM, Boer JMA, Reiling E, Feskens EJM, Genetic variants and the metabolic 
syndrome: a systematic review, J Diabetes, 2011, 3 (Suppl. 1), p 126-127 (Interna-
tional Conference on Pre-diabetes and the Metabolic Syndrome, 2011, Madrid, 
Spain, poster presentation)

• | Povel CM, Boer JM, Feskens EJM, Shared genetic variance between the features 
of the metabolic syndrome: Heritability studies, J Diabetes, 2011, 3 (Suppl. 1), p 
126 (International Conference on Pre-diabetes and the Metabolic Syndrome, 2011, 
Madrid, Spain, poster presentation)

• | Povel CM, Boer JMA, Onland-Moret NC, Dollé MET, Feskens EJM, van der 
Schouw YT, SNPs involved in insulin resistance, weight regulation, lipid metabo-
lism and inflammation in relation to metabolic syndrome, In: abstract book of 
WEON, 2011, Ijmuiden, the Netherlands (poster presentation)

• | Povel CM, Beulens JW, van der Schouw YT, Dollé MET, Spijkerman AMW, Ver-
schuren WMM, Feskens EJM, Boer JMA, Metabolic syndrome model definitions 
predicting type 2 diabetes and cardiovascular disease, In: abstract book of NVDO, 
2011, Oosterbeek, the Netherlands (oral presentation)



165  |  About the author

Overview of completed training activities
Discipline specific courses and meetings
• | Annual conference of the Netherlands Epidemiology Society (WEON), 2008 (Gro-

ningen, the Netherlands) 
• | Nutrigenomics Consortium (NuGo) week, 2008 (Potsdam, Germany)
• | SNP’s and Human Diseases, 2008 (Rotterdam, the Netherlands)
• | Course Epigenesis and epigenetics, 2008 (Wageningen, the Netherlands)
• | Wageningen Nutritional Science Forum, 2009 (Arnhem, the Netherlands)
• | Annual Meeting of the European Diabetes Epidemiology Group (EDEG), 2009
 (Wageningen, the Netherlands)
• | Masterclass Nutrigenomics, 2009 (Wageningen, the Netherlands)
• | European Association for the Study of Diabetes (EASD) Annual Meeting, 2009 
 (Vienna, Austria)
• | Genetic Epidemiology, 2010 (Utrecht, the Netherlands)
• | Annual conference of the Netherlands Epidemiology Society (WEON), 2010 
 (Nijmegen, the Netherlands) 
• | Annual meeting of the Dutch Association for Diabetes Research (NVDO), 2010 
 (Oosterbeek, the Netherlands)
• | International conference on pre-diabetes and metabolic syndrome, 2011 
 (Madrid, Spain)
• | Annual conference of the Netherlands Epidemiology Society (WEON), 2011 
 (IJmuiden, the Netherlands) 
• | Annual meeting of the Dutch Association for Diabetes Research (NVDO), 2011 
 (Oosterbeek, the Netherlands)

General courses and activities
• | PhD Introduction Course, 2008 (Eindhoven, the Netherlands)
• | Philosophy and ethics of food science and technology, 2009
 (Wageningen, the Netherlands)
• | NWO training day ‘Developing your brand’ and ‘Negotiation’, 2009 
 (Utrecht, the Netherlands)
• | Scientific Writing, 2009 (Wageningen, the Netherlands)
• | PhD-assessment, 2009 (Wageningen, the Netherlands)
• | NWO training day ‘Leadership skills for beginners’ and ‘Networking’, 2010 
 (Utrecht, the Netherlands)
• | Interpersonal Communication for PhD students, 2010
 (Wageningen, the Netherlands)
• | Theme meeting of The Royal Netherlands Academy of Arts and Sciences (KNAW), 

2011 (Amsterdam, the Netherlands)
• | NWO Science meets press event (bessensap), 2011 (the Hague, the Netherlands)
• | Masterclass Multilevel Analysis, 2011 (Wageningen, the Netherlands)



166  |  About the author

Optional courses and activities 
• | Preparing a PhD research proposal
• | Nutritional Genomics and Genetics Course, 2008 (Wageningen, the Netherlands)
• | Organizing and participating in PhD study tour to Denmark, Sweden en Finland, 

2009
• | Participating in PhD study tour to Mexico and USA, 2011
• | Literature and discussion groups ‘Journal Club’, ‘Oldsmobiles’, ‘Epi-Research’, 

‘Methodology Club’, ‘Rothman-lunches’ and ‘CVG lectures’, 2008-2012 



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104



Colophon
The research described in this thesis was performed at Wageningen University,
Wageningen, the Netherlands and the National Institute for Public Health
and the Environment (RIVM), Bilthoven, the Netherlands

The financial support for the publication of this thesis by
Wageningen University and RIVM is gratefully acknowledged.

Cover & Layout design
Jelle J. Botma

Printing
Grafisch Service Centrum Wageningen

Copyright © Cécile M. Povel 2012

95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95



95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


	Title page
	Abstract
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Summary (ENG)
	Samenvatting (NL)
	Abbreviations
	Dankwoord
	About the author
	Colophon

