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STELLINGEN 

1. De feitelijke stikstofbinding van erwt en tuinboon is lager dan de 

potentiële stikstofbinding, hetgeen berust op onvoldoende toevoer 

van fotoassimilaten. 

Dit proefschrift 

2. Het belang van waterstof-oxydatie voor de aktiviteit van nitrogenase 

in symbiontische systemen wordt schromelijk overschat. 

Evans,H.J. el al, 1981. pp. 84 - 96 
in Current perspectives in nitrogen 
fixation (eds. A.H. Gibson and W.E. 
Newton) Canberra 

Dit proefschrift 

3. Toediening van stikstofmeststof gedurende de periode van peulvulling kan 

de zaadopbrengst van vroege erwterassen verhogen. 

Sinclair,T.R. and De Wit, C.T. 1976. 
Agronomy J. 68 : 319 - 324 

4. De verbouw van gewassen voor de produktie van ethanol als brandstof is 

in Nederland zinloos en in ontwikkelingslanden misdadig. 

P. van Zijl, Intermediair 26 juni 1981 

5. Teelt van veldbonen voor eiwitrijk ruwvoer, als tussengewas bij de 

herinzaai van grasland, kan in Nederland jaarlijks evenveel energie 

besparen als een stad van 20.000 inwoners verbruikt. 

6. Daar de bouw van rioolwater-zuiveringsinstallaties in Nederland vrijwel 

voltooid is, moet de heffing voor huishoudens op basis van de wet 

'Verontreiniging Oppervlaktewateren' worden afgeschaft teneinde meer 

menskracht vrij te maken voor andere taken in het milieubeheer. 

B 1 Î M :• • •.'•'*. 



7. Zij die de invoering van referenda bepleiten om aktievoerders de wind 

uit de zeilen te nemen, houden er onvoldoende rekening mee dat vaak de 

rechtmatigheid van het overheidsbeleid wordt aangevochten en niet 

zozeer de steun van de bevolking voor dat beleid. 

Couwenberg, S.W., Intermediair 29 mei 1981 

8. Bij de recente diskussie over het al dan niet verbieden van politieke 

partijen met een racistische inslag zijn de partijen met een theokratische 

inslag ten onrechte buiten beschouwing gebleven. 

Michiel van Mil 

Actual and potential nitrogen fixation in pea and field bean as affected by 

combined nitrogen. 

Wageningen, 6 november 1981 
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VOORWOORD 

Ieder onderzoek is afhankelijk van een samenwerking tussen degene die het 

uitvoert en vele anderen. In versterkte mate geldt dit voor een promotie­

onderzoek. Het onderwerp is immers al in grote lijnen bepaald, de voornaamste 

methoden zijn al in huis en het geld komt ook ergens vandaan. Het spreekt dus 

eigenlijk vanzelf dat velen mij in woord en daad geholpen hebben. 

Het projekt 'Stikstofbemesting van vlinderbloemige gewassen' waaraan ik 

vier jaar heb gewerkt, was een lang gekoesterde wensdroom van prof. Mulder. 

Zijn steeds weer nieuwe ideeën en kritisch kommentaar zorgden ervoor dat de 

vaart er niet uit ging. 

Het welslagen van dit onderzoek is ook in belangrijke mate te danken aan 

Lie Tek-An die mij veel suggesties gegeven heeft, waaronder de goede greep 

in de stammenkollektie. Frank Houwaard, ex-lotgenoot in knollenland, heeft 

mij van begin tot einde op vele manieren bijgestaan. Voor adviezen en hulp 

met methoden kon ik altijd terecht bij Wim Roelofsen en Antoon Akkermans. 

Het ijverige en nauwgezette werken van Piet Dijksman heeft alle stikstof­

analyses van dit proefschrift opgeleverd. De planten werden met toewijding 

verzorgd door de heren 0. van Geffen, E. van Velsen en A. Houwers. Annie 

Mol-Rozenboom wiste alle ongewenste sporen van mijn arbeid uit, waarbij geen 

overstroming haar te veel was. De mooie plaatjes werden vervaardigd door de 

heren J. van Velzen en A.Wessels. De laatste schakel werd gevormd door mw. 

C. MölIer-Mol die het meestal deerlijk toegetakelde manuscript op uitmuntende 

wijze wist om te toveren tot het boekje dat nu voor u ligt. 

Graag wil ik iedereen die in de afgelopen jaren meegewerkt heeft van harte 

bedanken. 

Tenslotte mag niet onvermeld blijven dat het onderzoek voor een aanzienlijk 

deel gefinancierd werd door het Landbouwkundig Bureau der Nederlandse Stikstof­

meststoffen Industrie. 



GENERAL INTRODUCTION 

Grain legumes and protein production 

The yield of grain legumes in the past decades has not taken advantage Of 

modern agricultural growing practices, breeding and research like other important 

crops, for example cereals. Both in developed and in developing countries, the 

yield of grain legumes amounts to less than one-half of that of cereals (Fig. 1) 

(24). The low yields of grain legumes as compared with cereals can be explained 

by the differences in seed composition. Legume seeds contain more lipids and 

protein than cereal seeds, and consequently require a higher amount of photo-

synthesized carbohydrates for their synthesis {e.g. with groundnuts and barley 

0.43 and 0.75 g of seed produced per g of carbohydrates, respectively) (72). 

The rates of yield increase are also different for the two groups of crops: in 

the past decade, yields of maize increased by 15%, whereas those of beans 

(Phaseolus spp) rose only by 3% (92). However, with the economically more 

attractive soybeans and groundnuts, yield increases amounted to 20 and 37%, 

respectively, indicating that grain legumes may respond to research, breeding and 

improved management. 

The area used for growing grain legumes has decreased by 21% in the past 

decade in developed countries, whereas in developing countries this area (exclud­

ing that with soybeans and groundnuts) has risen at an equal rate as the total 

arable land (approx. 10%). The soybean area in developing countries increased by 

55% in this period (FAO production yearbooks). 

The reduced interest in grain legumes in developed countries is coupled with 

an increased consumption of animal protein, as can be seen in Table 1 from the 

decreasing ratio of consumed to consumable protein. This ratio is strongly 

dependent on income per capita, a high income leading to a high protein consump­

tion as well as a substitution of animal for vegetable protein (29). In devel­

oping countries, population is growing but also agricultural exports are increas­

ing by allocating more land to cash crops. This tends to a change of the type 



1950 1960 1970 1980 
Years 

Fig. 1a,b. Seed production of cereals (o, • ) , pulses (excluding soybeans and 
peanuts) (A, A) and soybeans (a , • ) in developed countries (o, A , a ) 
and developing countries (t, A , « ) . Source: FAO Production Yearbooks. 

of crops grown for local food, the high-yielding cereals replacing the low-yield­

ing legumes (92). The resulting diet may contain sufficient carbohydrates for 

the daily energy requirement, but it is too low in protein. In general, the ratio 

A of cereals to legumes in the diet of developing countries is 9, whereas it 

should be 7 to 5 to prevent malnutrition (10, 92). Thus, a decreasing interest 

in grain legumes, occurring in developed countries, is a symptom of an affluent 

society, whereas in developing countries it is a sign of a low standard of 

1 iving. 

The agricultural pattern in The Netherlands shows the characteristics of an 

affluent society. Together with the build-up of an extensive system of dairy 

and meat production, the area of grain legumes shrank considerably, e.g. that 



Table 1. Production and consumption of protein in 1965. Source: (29) 

North America 
Western Europe 
Developed countries 
(total) 
Latin America 
South-East Asia 
Africa 
Developing countries 
(total) 

Income class ($)3' 
< 100 
100-200 
200-400 
400-800 
800-1600 
> 1600 

Production 
of consumab' 
protein D 

(kg/capita. 

152 
49 
76 

47 
24 
29 
29 

24 
26 
32 
52 
57 

106 

Consumpt ion 
e of consumable 

protein 

year) 

104 
81 
80 

43 
26 
26 
29 

24 
27 
32 
49 
70 
98 

1) 

Consumed 
protein 2) 

35 
33 
34 

24 
19 
22 
21 

19 
20 
22 
29 
33 
35 

Ratio of 
consumed to 
consumable 
protein 

0.34 
0.41 
0.42 

0.57 
0.73 
0.85 
0.72 

0.80 
0.73 
0.69 
0.59 
0.47 
0.35 

1) 

2) 

3) 

Protein in vegetable products, fit for human consumption plus protein in 
animal products from vegetable fodder not fit for human consumption. 

From vegetable and animal origin. 

Countries classified according to average income per capita, year in 1965 
based upon data of 85 countries. 

of green peas grown for dry-seed production from 30000 ha in 1960 to 2400 ha in 

1979. Typically, the area of peas grown for the canning industry increased slowly, 

from 5000 ha in 1960 to 5400 ha in 1980, indicating that a low-yielding crop 

grown for luxury consumption is less affected when income rises. Field beans have 

almost disappeared as a food crop, but recently, growers have resumed interest, 

now as a feed crop for silage (source: Landbouwcijfers 1980). 

Agricultural production in the Netherlands has greatly benefitted by the 

increased use of nitrogen fertilizers (97 kg N per ha in 1960, 216 kg N per ha 

in 1977, values that are higher than those of other developed countries). However, 

with increasing energy prices agricultural practices that use lower levels of 

combined nitrogen than at present are likely to be propagated. This might well 

lead to a renewed attention to legume crops in developed countries. In developing 

countries, the use of grain legumes in food production will probably also depend 

on improved yields of these crops as compared with cereals. 



Nitrogen fertilizer use has been of crucial importance to the enhanced 

productivity of cereals. One reason for the fact that yields of legume crops 

lag behind those of cereals is that in general they do not respond to added 

fertilizer ni trogen. Combined nitrogen interferes with the biological nitrogen 

fixation process of the ~\equme-Rhizobium symbiosis. Legume crops seem to be 

close to a 'yield barrier' resulting from the limits of photosynthetic capacity 

and of the capacity of nitrogen supply of the symbiotic system. Both aspects 

will have to be investigated when attempting to surmount this barrier. Therefore, 

in this introduction the data available from the present literature will be 

briefly summarized with regard to the nitrogen and carbon limitations to seed 

production of grain legumes. 

Nitrogen limitation and combined-nitrogen dressings 

If the growth of legumes, capable of fixing atmospheric nitrogen by means of 

root nodules, would always be nitrogen-limited, consistent yield increases would 

be obtained by the supply of combined nitrogen. However, the data available from 

literature on this topic are often conflicting. 

Suboptimum symbioses Dressings of combined nitrogen nearly always enhance yield 

of legumes growing under circumstances unfavourable for the establishment of a 

fully effective, nitrogen-fixing symbiosis. 

The formation of root nodules by Rhizobium strains does not occur at a low 

soil pH, the value of which is different for each host species (53), while also 

the rhizobial strains may vary in acid tolerance (39, 40). In these cases, yield 

of legumes is increased by nitrogen fertilizer dressings (9, 18). Also, a de­

ficiency of trace elements like B (50) or Mo (52) prevents the development of a 

fully effective symbiosis. The addition of combined nitrogen can partly overcome 

the resulting nitrogen limitation to growth. 

The nitrogen-fixing capacity of the symbiosis might also be impaired by 

infestation with plagues and diseases. Combined nitrogen was found to increase 

seed yield of pea plants when the root nodules were invaded by Sitona larvae 

(50), when the plants were attacked by Fusarium (50) or by insects. Lodging of 

the plants cannot be alleviated by combined nitrogen but is even aggravated at 

high dressings (51). 

Legume seed yields can also be decreased if Rhizobium strains are present in 

the soil which do not establish a fully effective symbiosis with the host plant. 

Rhizobium strains that produce ineffective nodules (without nitrogen fixation) 

or moderately effective nodules (with low levels of nitrogen fixation) 

10 



considerably reduce the yield of plant nitrogen and seed as compared with 

strains which produce highly effective nodules with a specific host plant. 

Nitrogen fertilizer dressings may improve yield of plants infected by Rhizobium 
strains of poor nitrogen-fixing capacity (27). 

Apart from fertilizer dressings, inoculation of the sowing-seed with a 

highly effective strain can produce good results if few indigenous rhizobia 

are present in the soil (11, 37). However, typical problems may be encountered 

with inoculant strains regarding:(a) competition with the indigenous rhizobia 

for nodulation sites on the legume roots (42); (b) survival in the soil as 

free-living bacteria (11, 55); (c) a narrow host-plant range of the inoculant 

strain leading to an ineffective symbiosis when a different host species of the 

same cross-inoculation group is grown at the inoculated plot (4). 

The introduction of new plant varieties to areas outside the region where 

they originated may also result in symbioses possessing a poor nitrogen-fixing 

capacity with the locally occurring rhizobia (17). Host plants may require a 

specific Rhizobium strain for an effective symbiosis, whereas other Rhizobium 
strains produce ineffective nodules (41, 42) or inhibit nodule formation by other 

strains without producing nodules themselves (43). Nitrogen dressings are likely 

to increase yield in all these cases, although no reports are available from 

field experiments. 

Optimum symbioses It is hardly surprising that yield increases are obtained by 

the supply of combined nitrogen to suboptimum symbioses. To a certain extent, 

it is a consequence of the definition of 'suboptimum', although always specific 

factors can be earmarked as being responsible for the low nitrogen gain of the 

symbiosis. Therefore, a more interesting problem, at least from a theoretical 

point of view, concerns the question whether also the yield of a fully effective 

symbiosis with a high rate of nitrogen fixation would respond to combined nitro­

gen. With regard to field experiments many conflicting reports can be found in 

the literature, which is not exhaustively treated here. 

No enhancement of seed yield was found in trials with combined nitrogen dress­

ings of pea (21, 50); soybean (1, 36, 81, 85, 87) and field bean [vicia sp.; 

15, 28, 63). But yield increases were met in other experiments, e.g. with soybean 

(15, 10, 36); cowpea (14); pea (15, 75); field beans {vicia sp.; 65) and beans 

{Phaseolus sp.; 79). 

In growth chamber and greenhouse experiments, uninoculated legume plants 

supplied with combined nitrogen from sowing consistently show a higher dry matter 

11 



production than plants inoculated with an effective Rhizobiwn strain but 

without added fertilizer. This phenomenon has been attributed to higher energy 

costs for the fixation of atmospheric nitrogen than for assimilation of com­

bined nitrogen. It may be true of plants growing with NHt-N, but it has not 

convincingly been established that growth with N0Ö-N would require much less 

energy than symbiotic growth with atmospheric N„ (equal costs: 22, 49; lower 

costs of N0Ô-N assimilation than of N„ fixation: 45, 57, 67, 71). The problem 

is complicated by the fact that a considerable part of the nitrate taken up 

is reduced to ammonia in the leaves, using reducing equivalents derived from 

photosynthetic activity, which thus decrease the respiratory costs of nitrate 

reduction (3, 84). On the other hand, a high carbohydrate requirement of 

nitrogen-fixing roots might provide a stronger sink for photoassimilates leading 

to an increased photosynthesises more carbohydrates can be exported from the 

leaves (44, 66). 

The growth rates of nitrogen-fixing plants are usually lower than those of 

plants growing with combined nitrogen from sowing. Seedlings grown without 

added nitrogenous fertilizer face a period of'nitrogen hunger' before the 

infection process and nodule formation start, whereas seedlings growing with 

combined nitrogen maintain a constantly high growth rate (19, 69). Inoculated 

seedlings that are supplied with a low level of combined nitrogen (not inter­

fering with nodule formation) produce a higher shoot mass and leaf area which 

are capable of supporting a higher nitrogen-fixing activity than inoculated 

seedlings without added nitrogen (6). This 'starter dose' effect is often aimed 

at in agricultural practice (13, 64), but results can only be detected if both 

the naturally available nitrogen level of the soil and the residual nitrogen 

from the preceding crop are low. 

Physiological effect of combined nitrogen on nitrogen fixation 

Combined nitrogen exerts a detrimental effect on symbiotic nitrogen fixation, 

as was already found in the beginning of nitrogen fixation research (48, 62, 64, 

86). However, the exact way in which combined nitrogen suppresses both the 

formation of new nodules and the activity of existing nodules, has evoked a 

good deal of controversy. 

Nodule formation The process of nodule formation by invasion of root hairs by 

free-living rhizobia has been described in detail (38). During this complicated 

process, Rhizobium bacteria enter the root via an infection thread, induce cell 

divisions in the root cortex, and are normally transformed into large,non-motile, 

12 



and often branched bacteroids, capable of fixing nitrogen. The inhibition of 

the initiation and growth of nodules by combined nitrogen was shown to be a 

local effect in a series of experiments with split-root systems of which one 

half was kept nitrogen-free and the other half was supplied with nitrate (90). 

The hypothesis that nitrate inhibition of nodule formation would be exerted 

via the production of nitrite has to be discarded as this does not explain the 

similar effect of ammonium ions (23, 47). Also the theory that the C/N ratio in 

the plant determined the extent of nodule formation has to be amplified as it 

offers no sufficient physiological interpretation. A relationship between 

carbohydrate supply and the effect of combined nitrogen on nodule formation is 

apparent (61). The restraint of nodule formation by combined nitrogen was 

counteracted by the addition of carbohydrate compounds (91). 

Plant growth regulators may play an important part in nodule formation. The 

addition of nitrate to legume seedlings decreases root hair curling and nodule 

initiation by lowering the level of the auxin indolyl-acetic acid (IAA)(80). 

This adverse effect of nitrate could be reversed by external supply of IAA 

(54, 82). Furthermore, cytokinins might be involved in the interaction between 

host plant and rhizobial microsymbiont, as free-living rhizobia were shown to 

excrete sufficiently large quantities of cytokinins to induce cell divisions in 

a soybean-callus test (59). Phytohormone activity has been demonstrated both in 

nodule formation with actinomycetal symbioses (88) and in rhizobial symbioses 

(26, 77, 78) although no clear-cut solution was offered to the problem of 

external influences {e.g. combined nitrogen) on the process of infection and 

nodule growth. However, nodules contain cytokinins and auxins in concentrations 

well above those found in the adjacent root tissue (26), similar to root tips 

(70). This indicates that further research into the role of phytohormones in 

nodule formation is necessary to elucidate the effect of combined nitrogen on 

nodule formation. 

Nodule activity The decline of nitrogenase activity upon the supply of combined 

nitrogen to already nodulated roots is not due to an accumulation of amino 

acids in the nodules (32) or to a direct inhibition of nitrogenase by added 

ammonium ions (30) as bacteroids do not take up ammonium ions (33). In medium-

term experiments with nodulated pea plants the nitrogenase content of the 

bacteroids was not affected by combined nitrogen; nitrogenase could be re­

activated by supplying the bacteroids with ATP and reducing equivalents (30). 

However, leghemoglobin synthesis was strongly repressed resulting in the 

13 



colour of the nodules turning from pink to green (8). The adverse effect of 

combined nitrogen on nitrogen fixation of nodulated pea plants could be counter­

acted by a high light intensity or by added sucrose (31). 
14 In experiments with shoots of leguminous plants exposed to C0 ? , addition 

of combined nitrogen evoked a change in the translocation pattern of photo-

synthates from the shoot to the roots, resulting in a lower proportion of 

carbohydrates supplied to the nodules and a higher to other parts of the root 

system (34, 74). This is consistent with the involvement of plant growth regu­

lators as discussed above. The addition of combined nitrogen enhanced the 

cytokinin levels of root tips (68, 83) and probably increased photosynthate 

supply to these tips which would in turn lead to a lower supply of carbohydrates 

to the nodules. 

Carbohydrate limitation to nitrogen fixation 

As the photosynthate supply of the nodules seems to be of crucial importance 

for the explanation of the effect of combined nitrogen on nitrogen fixation, it 

is worthwhile to subject the relation between photosynthesis and nitrogen 

fixation to a closer examination. The fact that optimum legume-Rhizobium sym­

bioses do not respond to nitrogen fertilizer dressings in an unequivocal way, 

points to the possibility of a photosynthate-1 imited growth during the entire 

growth cycle or part of it. Actually, carbon dioxide enrichment of the atmos­

phere resulted in a strongly increased nitrogen fixation and yield (25, 58). 

Furthermore, source-sink manipulations including defoliation and shading 

reduced nitrogen fixation (5, 12, 35, 50). The same effect occurred when light 

intensity was low, whereas an increased light intensity raised nitrogen fixation 

(2, 7, 46) as did grafting of two shoots on a single root (76). 

However, the 'nitrogen-hunger' period during the early phases of seedling 

growth was prolonged and growth was retarded by a high light intensity because 

the nitrogen deficiency was aggravated (20, 56, 89). Later on, the plants grown 

at high light intensity showed a higher dry matter production as well as a 

higher nitrogen fixation than plants grown at a lower light intensity (89). 

Also in the generative growth phase of legumes, an enhancement of photosynthesis 

might eventually result in a lower seed yield. A high rate of photosynthesis 

would accelerate seed production but also increase the demand for nitrogen, 

which would lead to a mobilization of nitrogenous compounds from vegetative 

tissues for translocation to the seeds. Thus, photosynthesis would be reduced 

soon, in turn lowering nitrogen fixation and ending up in 'self-destruction' 

of the plant (72). 

14 



Outline of the investigations 

The investigations reported in this paper are focused on the question 

whether growth and yield of ~\equme-Rhizobiwn symbioses are determined by 

nitrogen or carbohydrate limitation, with emphasis on the former. The study 

was carried out with Rhizobium strains selected for differences in nitrogen-

fixing capacity, and with host species and cultivars with different seed-

production rates and photosynthetic capacities. 

In Chapters 1 and 2, the in vitro nitrogenase activity of isolated bacteroids 

was compared with the in vivo nitrogenase activity of nodulated pea and field 

bean plants in order to find out whether nitrogen fixation in these plants was 

limited by an intrinsic factor of the bacteria or by external factors, such as 

photosynthate supply. Chapter 3 reports on the efficiency of energy-yielding 

respiratory processes in the root system in relation to the nitrogen source 

(atmospheric or combined nitrogen). Chapter 4 deals with a study on nitrogen 

fixation in a symbiosis containing a bacterial uptake hydrogenase, capable of 

recirculating the hydrogen produced by nitrogenase concomitantly with nitrogen 

fixation. In Chapter 5, nodule formation and nitrogen-fixing capacity of a 

number of R. leguminosarum strains in association with pea plants were described 

in detail. Finally, Chapter 6 contains a study on the influence of combined 

nitrogen on nitrogen fixation of symbioses of pea plants with the R. legumin­
osarum strains studied in Chapter 5. A tentative model was presented for the 

interactions between nitrogen fixation and photosynthesis. 
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1 ACTUAL AND POTENTIAL NITROGEN FIXATION IN 
PISUM SATIVUM L. AND VICIA F AB A L 

ABSTRACT 

In this study, actual nitrogen fixation of pea (Pisum sativum L.) and 

field bean {vicia faba L , ) , measured as the in vivo acetylene reduction of 

nodulated roots, was compared with potential nitrogen fixation, measured as 

the in vitro acetylene reduction of isolated bacteroids of Rhizobium 
leguminosamm. Actual nitrogen fixation of pea and field bean growing in 

jars or in the field equalled potential nitrogen fixation during vegetative 

growth. In the generative phase, however, the actual nitrogen fixation was 

much lower than the potential nitrogen fixation. 

In field beans supplied with nitrate at sowing, values of actual and potential 

nitrogen fixation were much lower than in those of control plants until pod 

formation. Actual nitrogen fixation of nitrate-grown plants increased slowly 

due to a gradual formation of nodules on lateral roots. Specific nitrogenase 

activities of these nodules were twice as high as compared to nodules on primary 

roots. From pod formation, potential nitrogen fixation of nitrate-grown plants 

became equal to that of plants grown without added nitrate. A second nitrate 

dressing at mid-pod fill causes a ready drop of the actual nitrogen fixation. 

However, potential nitrogen fixation remained constant for ten days before 

collapsing. 

During growth of pea and field bean, nodule mass increased whereas 

the available nitrogenase was only partly utilized. Therefore, in the long 

run, the amount of nitrogen fixed seems to be regulated by nodule mass 

rather than by nodule activity. 

From the data presented in this paper it is concluded that in pea and 

field bean, vegetative growth is nitrogen-limited, whereas during the generative 

stage nitrogen fixation is limited by an inadequate carbohydrate supply. 
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INTRODUCTION 

The question if growth of leguminous crops is restrained by carbon or 

nitrogen limitation has since long attracted the attention of many scientists 

(e.g. Wilson, 17). In the present paper, attention is focused on the 

nitrogen-fixing capacity of the lequme-Rhizobium symbiosis, in particular 

on the question whether this capacity is restricted by the amount of 

nitrogenase in the plant or by other factors, such as the energy supply of 

the enzyme. 

Quantitative data on nitrogen fixation by legume-ff/ziaoMum symbioses are 

usually derived from momentary acetylene-reducing values of the root system 

or from long-term changes in nitrogen content of the plant material. In this 

study, the in vivo acetylene reduction by nodulated roots (actual nitrogen 

fixation) is compared with the in vitro acetylene reduction by isolated 

bacteroids (potential nitrogen fixation). In the latter case ATP and reducing 

power are supplied to bacteroids treated with EDTA-toluene (15) to ensure 

maximum nitrogenase activity. This in vitro acetylene-reducing technique was 

used earlier (Houwaard,8, 9) to assess the influence of ammonia on nitrogen 

fixation by bacteroids of Rhizobium leguminosarum in symbiosis with pea plants. 

Upon the addition of ammonia to pea plants, the 'in vitro nitrogenase activity 

of the bacteroids remained unchanged whereas the in vivo activity declined, 

presumably due to a shortage of photoassimilates in the nodules. 

In the present investigation the in vitro method was used to determine 

whether during the growth cycle of leguminous plants the potential nitrogen 

fixation differs from the actual nitrogen fixation. Plants used for these 

tests were grown under optimum conditions comparable to those of plants 

cultivated in agricultural practice, i.e. in soil and in open air. In such 

plants the influence of combined nitrogen on actual and potential nitrogen 

fixation has been studied. 

MATERIALS AND METHODS 

Plant material and growth 

Enamelled Mitscherlich jars of 6 liter capacity, sterilized with alcohol, 

were filled with a mixture (—) of 1 part of heat-sterilized sand and 2 parts 

of non-sterile clay. In preliminary experiments the clay soil, obtained from 

newly reclaimed polder land, had been shown to have a very low population 

22 



of indigenous /?. leguminosarton. The effective strains PRE and RB1 of 

R. leguminosarvm were used for peas and field beans, respectively, and the 

ineffective strain P8 for both peas and field beans. All strains were 

obtained from the culture collection of our laboratory. For inoculation, 

50 ml of a 7-days old culture was mixed with 6 liter of soil. A basal dressing 

of 540 mg of PpO,- and 900 mg of K„0 was applied per pot. 

Seeds of pea {Pisum sativum I., cultivar Rondo) and field bean (Vicia 
faba L., cultivar Minica) were surface-sterilized by immersion in a solution 

containing 4% of H?0p and a few drops of Teepol (detergent) for 25 min 

before sowing. The soil was then covered with sterilized gravel to prevent 

clogging after watering. Plants were kept in the open air under wire for 

protection against birds. In each jar ultimately 8 pea plants or 3 field 

bean plants were retained. 

In a separate experiment, field bean seeds were inoculated with R. legumi-

nosarum, strain RB1, and sown in a field plot in rows of 45 cm. A basal 
2 

dressing of 18 g of P^Og and 29 g of KpO was applied per m . 

Hydrogen production and acetylene reduction by nodulated roots 

The shoots of the plants were detached and the roots freed from soil 

particles by gentle shaking. The whole root system, or in some cases the 

primary and the lateral roots separately, were incubated in stoppered 

1-liter Erlenmeyer flasks. After 25 min, a 100-yl gas sample was assayed 

for hydrogen, using a thermal conductivity detector. Subsequently, 100 ml 

of acetylene was added and a 100-yl gas sample was taken after 15 min. 

Ethylene production was determined with a gas Chromatograph equipped with 

a hydrogen flame detector. Rates of hydrogen production and acetylene 

reduction were linear with time up to 80 min. 

Nitrogenase determinations in bacteroids 

In vitro nitrogenase activity of bacteroids was determined with the 

EDTA-toluene method (EDTA = ethylenediaminetetra-acetic acid) according to 

van Straten and Roel ofsen (15). After completion of the in vivo assay, roots 

were washed in tap water and the nodules carefully collected. These nodules 

were squeezed in a Bergersen press (2) under argon at 0°C in a buffer 

solution containing TRIS (50 mM) (TRIS = tris(hydroxymethyl)aminomethane), 

MgCl2 (2.5 m M ) , 4% (̂ ) PVP (PVP = polyvinylpyrrolidone) and Na 2 S 2 0 4 (20 mM). 

The pH was adjusted to 7.2 with HCl. Bacteroids were centrifuged for 10 min at 

5500 x g under argon, washed with a buffer solution (same buffer without PVP), 
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centrifugea again, and resuspended in the buffer solution without PVP (1 ml 

of buffer per 80 mg of nodule fresh weight). 

Nitrogenase activity of the bacteroids was restored by regeneration at 25°C 

for 30 min. Subsequently, 1 ml of buffer containing 1 ymole of EDTA and 3 drops 

of toluene was added to 1 ml of bacteroid suspension, and the mixture vigorously 

shaken for 1 min. After 1 min of settlement, a 0.5-ml aliquot of the aqueouslayer 

was transferred to a 16.5-ml Hungate tube finally containing 50 ymoles of Tris-

HC1, 15 ymoles of MgClp, 18.4 ymoles of creatine phosphate, 5.6 ymoles of 

adenosine-5-triphosphate (disodium salt), 30 yg of creatine kinase and 20 ymoles 

of Na2S20., in a volume of 1.0 ml, pH 7.2. The gas phase consisted of 10% 

acetylene in argon. Ethylene production was measured by flame detection after 

10 min incubation on a shaker bath of 25°C, 200 strokes per min. 

RESULTS 

Nitrogenase activity duping ontogenesis 

Profiles of actual and potential nitrogen fixation by field beans and peas 

growing in jars during ontogenesis are shown in Fig. 1. In field beans, there 

was a peak in nitrogenase activity coinciding with the start of the pod-filling 

stage. No such a pattern was observed in peas. Both in field beans and in peas, 

potential nitrogen fixation was equal to the actual fixation during the vegeta­

tive stage. Starting from flowering in peas and from pod formation in field 

beans, the potential nitrogen fixation became significantly higher than the 

actual fixation in a one-sided t-test at the 0.001 level (14). 

Actual nitrogenase activity per plant in field beans was about five times 

higher than in peas. The difference was mainly due to the higher nodule weight 

of the field bean-Rhizobium symbiosis (Fig. 2a), resulting from the higher plant 

weight of field beans. The amount of bacteroid protein in field bean nodules 

decreased during the growth season from 90 to 40 mg per g of nodule fresh weight 

(Fig. 2b). Pea nodules retained a constant level of about 40 mg of bacteroid 

protein per g of nodule fresh weight (Fig. 2b). 

Based upon the data of Figs. 1, 2a and 2b, the specific activity of nitro­

genase was calculated (Fig. 2c). In pea plants, the decreasing specific 
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100 120 
Days 

Fig. 1. Actual (•, •) and potential ( Q , o) nitrogenase activity of pea ( B , 0 ) 
and field bean (•, o) during ontogenesis. Plotted values of actual 
nitrogen fixation are means of 2 sets of 8 plants each (pea) and of 
2 sets of 3 plants each (field bean). Values of potential nitrogenase 
activity per plant were calculated from nodule fresh weight of 3 plants 
and triplicate nitrogenase determinations in bacteroids obtained from 
a known quantity of nodules. Arrow 1 indicates the start of flowering 
in pea and arrow 2 the start of pod formation in field bean. 

activity was compensated by an increasing nodule mass, resulting in a constant 

level of in vivo nitrogenase activity during the growth season (Fig. 1). In 

contrast, the peak of nitrogenase activity per plant in field beans was due 

to a rise of specific activity as well as to an increased nodular mass. 

Effect of combined nitrogen 

To study the effect of combined nitrogen on actual and potential nitrogen 

fixation, field beans growing in jars were given 1130 mg of N as NaNO, both 

at sowing and at mid-pod fill (Fig. 3 ) . Actual and potential nitrogen fixation 

of nitrate-grown field bean plants were much lower than those of plants grown 

without added nitrate, e.g. , at day 62 1.2 and 12.4 umoles of C^Hg reduced/ 

plant.h (Figs. 3 and 1, respectively). From the beginning of pod formation at 
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Fig. 2 (a). Nodules, fresh weight, mg/plant. Pea ( O ) , field bean (o); 
means of duplicate determinations, 

(b). Bacteroidal protein per unit of fresh weight nodules. Means of 
duplicate determinations of pea ( O ) and field bean (o). 

(c). Nitrogenase, specific activities, ymoles C2H4/g of bacteroidal 
protein.h; mean values of triplicate determinations, of pea 
{in vivo • , in vitro O ) and field bean (in vivo •, in vitro o). 
For start of flowering (pea) and of pod fill (field bean) see 
Fig. 1. 

day 77, potential nitrogen fixation of nitrate-grown plants approached that of 

control plants. Actual nitrogen fixation of nitrate-grown plants rose at a 

lower rate, so that the deviation from the potential nitrogen fixation became 

more pronounced than in the control plants. For example, at day 89 actual 

nitrogen fixation amounted to 29.2 ymoles of C^H« reduced/plant.h as compared 

to 36.3 ymoles of C2H~ reduced/plant.h in control plants, whereas potential 

nitrogen fixation values were 48.8 ymoles of C„H2 reduced/plant.h in both cases 

(Figs. 1 and 3 ) . 
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t Days 
N 

Fig. 3. Actual (•) and potential (o) nitrogenase activity of field beans 
supplied with 1130 mg N as NaN03 at sowing and at mid-pod fill (arrow) 
For sample sizes see legend of Fig. 1. 

The second nitrate dressing at mid-pod fill drastically lowered the actual 

nitrogen fixation (Fig. 3) but left the potential fixation unaffected for 10 

days. After that, an almost complete loss of activity took place within 4 days. 

Location of nitrogenase activity 

Addition of nitrate at sowing delayed nodule formation by field beans, as 

demonstrated in Table 1. The morphology of the root systems of field bean plants, 

which possess a well-developed tap root, enabled us to differentiate between 

nodules on primary and lateral roots. Owing to the delay in nodule formation, 

significantly more nodules were formed on lateral roots of nitrate-grown plants 

as compared to plants grown without nitrate (p < 0.05). This resulted in a 

considerably larger contribution of the activity of nodules on lateral roots 

to total nitrogenase activity in nitrate-grown plants than found in control 

plants without added nitrate (p < 0.01). Acetylene-reducing activity of lateral-

root nodules, when calculated per unit of nodule fresh weight, was higher than 
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Table 1. Actual nitrogenase activities of nodules from primary and lateral roots 
of field beans, as affected by the addition of nitrate at sowing a^ 

Time 
(days 
after 
sowing) 

Nodules on 
primary roots 

Fresh wt. Nitrogenase 
(mg/plant) activity b) 

Nodules on 
lateral roots 

Fresh wt. 
(mg/plant) 

Nitrogenase 
activity b) 

Contribution of 
nodules on lateral 
roots to total 
nitrogenase 
activity (%) 

Without nitrate 

62 
75 
77 
89 
98 

With 

62 
75 
77 
89 
98 

515 
881 
973 

1570 
1380 

nitrate 

0 
235 
407 
295 
125 

14.9 
18.4 
26.5 
19.9 
17.3 

12.4 
22.2 
20.3 
17.5 

0 
36 
85 

306 
139 

78 
222 
353 
776 
995 

36.9 
35.5 
16.5 
28.0 

16.3 
12.4 
32.1 
29.9 
22.4 

10 
14 
14 

100 
49 
56 
79 
91 

b) 

Data represent means of duplicate measurements. For statistical inference 
see text. 
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Fig. 4. In vivo (•, A) and in vitro (o, A) specific activities of nitrogenase 
of bacteroids from primary (•, o) and lateral (A, A) root nodules of 
field bean plants grown without added nitrate. Values represent means 
of duplicate determinations. 
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Table 2. Nitrogenase activity in pea and field bean during the entire growth 
period 

Experiment 

Pea 
Field bean 
Field bean 
grown with 

Experiment 

Field bean 
Field bean 

I 

N03 

II 

(jar) 
(field) 

Nitrogenase 

Actual 

Product 
of: 

C2H4 

(mmoles 
plant) 

1 

11 
40 
18 

24 
31 

{in 

ion 

H2 

/ 

2 

4 
15 
4 

11 
13 

activity 

vivo) 

Fixât 
of: 

N2 

(mg/ 

ion 

N2 

plant) 

3 

106 
374 
167 

227 
291 

4 

65 
235 
134 

127 
174 

Potential 

Production 
of: 

C2H4 

(mmoles/ 
plant) 

5 

14 
48 
35 

37 
45 

in vitro) 

Fixation 
of: 

N2 

(mg/ 
plant) 

6 

132 
447 
324 

346 
416 

Actual a 
of poten 
N„ fixât 

7 

81 
84 
51 

66 
70 

s % 
tial 
ion 

8 

50 
53 
41 

37 
42 

1) In air + 10% C?H2 
2) In air 
3) Calculated from 1 
4) Calculated from 1 minus 2 
6) Calculated from 5 
7) Values of 3 as % of those of 6 
8) Values of 4 as % of those of 6 

that of primary-root nodules in an F test at the 0.05 level (Table 1). When the 

nitrogenase activities were expressed per unit of bacteroid protein, differences 

between nodules of primary and lateral roots were more significant (p < 0.01) 

(Fig. 4). Specific nitrogenase activity of nodules from lateral roots was 

often 50-100% higher than that of primary-root nodules. 

Actual and potential nitrogen fixation 

Based upon the momentary data of nitrogenase activity, as presented above, 

the amounts of nitrogen fixed during the entire growth period were calculated 

(Table 2). Under the conditions of the in vivo nitrogenase assay with 10% of 

acetylene in air, acetylene reduction represents the entire nitrogenase 

activity. However, in air, in the absence of acetylene, a fraction of the 
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total electron flow through nitrogenase is not used in nitrogen fixation but 

gives rise to the production of hydrogen. Therefore, in the calculations of 

nitrogen fixation, ethylene production was corrected for hydrogen evolved in 

air. A stoichiometrical factor of 3.0 was used to convert acetylene reduction 

into nitrogen fixation. For simplicity, nitrogen fixation was assumed to 

continue at the same level for 24 h a day. 

Actual nitrogen fixation amounted to 51-84% of the potential nitrogen 

fixation in the cases studied. When the distribution of energy among hydrogen 

production and nitrogen reduction occurring in vivo was taken into account, 

the actual nitrogen fixation even declined to 37-53% of the potential nitrogen 

fixation (Table 2 ) . 

The data on nitrogen fixation discussed above, were obtained from plants 

growing in jars. In a separate experiment field-grown field bean plants were 

tested for actual and potential nitrogen fixation (Table 2 ) . In general, 

field-grown plants produced more dry matter (not shown) and possessed a 

higher level of nitrogen fixation than plants growing in jars. The ratio of 

potential to actual nitrogen fixation, however, was equal in both cases. 

DISCUSSION 

Actual and -potential nitrogen fixation 

The central theme of this paper is the distinction between actual and 

potential nitrogen fixation, as calculated from in vivo and in vitro nitro­

genase activities, respectively. The limitations of the in vivo acetylene 

reduction assay of nodulated roots have been extensively discussed by various 

authors (5,'10). Therefore, this discussion is restricted to the in vitro 
method. 

A major disadvantage of the EDTA-toluene technique of assaying in vitro 
nitrogenase activity of isolated bacteroids is its sensitivity to oxygen. 

Even traces of oxygen irreversibly lower nitrogenase activity. Removing the 

plants from the soil might have damaged the nodules. 

Explaining the difference between in vivo and in vitro nitrogenase activity 

as a result of scratching to the nodules is unlikely because oxygen probably 

decreases both values of the same degree. 

The conditions of the EDTA-toluene method have been carefully optimized (15), 
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Nevertheless, the question may be raised whether the in vitro activity measured 

in this way really is the maximum activity, or that maximum activity is even 

higher, as it was recently shown that electron donors to nitrogenase may differ 

in efficiency (16). However, our in vitro method was adequate to demonstrate that 

starting from flowering, an excess amount of nitrogenase is present, presumably 

not utilized in nitrogen fixation (Figs. 1 and 2c). 

To date, indirect evidence for an excess of nitrogenase in root nodules 

has been derived from Arrhenius plots of nitrogenase activity versus temperature 

(5, 6 ) . Our direct nitrogenase determinations corroborate this conclusion for 

plants in the generative growth phase only. The assumption that below 20°C 

nitrogenase content was limiting nitrogen fixation (6) was not substantiated 

in the present study in which field beans growing in jars were compared with 

those growing in the field. In jars, soil temperatures were almost equal to 

ambient air temperature (15-30°C), while in the field at 10 cm depth, soil 

temperatures ranged from 13-18°C. However, in jar-grown as well as in field-

grown plants, potential nitrogen fixation was higher than actual nitrogen 

fixation (Table 2 ) . 

Addition of nitrate to field beans with full-grown nodules at mid-pod fill 

induced an immediate drop of in vivo nitrogenase activity, but the in vitro 
activity remained unchanged, conformable to the results of Houwaard (8) with 

added ammonium chloride to peas. Finally, the in vitro nitrogenase activity 

collapsed within 4 days (Fig. 3 ) , in accordance with Bisseling et al. (3). 

To their estimates, nitrogenase turn-over in R. leguminosarwn bacteroids 

amounts to 50% within 2 days. 

Nodule mass and activity 

Dry matter production in pea plants was about five times lower than that 

in field beans (data not shown). This difference was also observed in nodule 

fresh weight of these plants and in nitrogenase activity per plant (Figs.1, 2a). 

Addition of nitrate at sowing mainly reduces nodule mass and not nitrogenase 

activity of the nodules (Table 1). Some authors have found that an enhance­

ment of photosynthesis by increasing light intensity or atmospheric carbon 

dioxide concentration initially increased the nitrogenase activity of the 

nodules. However, after several days of treatment, a rise of the nodular mass 

accounted for the major part of the increased nitrogen fixation (1, 11, 12). 

Thus, in the long run, nitrogen fixation seems to be regulated by nodule mass 

rather than by nodule activity. Nodule formation and growth even continue 

when energy supply to the nodules is insufficient for a full utilization of 

nitrogenase (Figs. 2a,c). 
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The specific {in vitro) nitrogenase activities of nodules on primary and 

lateral roots show pronounced differences (Fig. 4 ) . Van den Bos et al. (4) 

demonstrated that the in vitro nitrogenase activity of mature bacteroids 

decreased with age. In the present experiment, lateral-root nodules may have 

contained young bacteroids of a higher degree of nitrogen-fixing activity as 

compared t.o the bacteroids of primary-root nodules, which would account for 

the higher in vivo and in vitro activity of lateral-root nodules as compared 

with primary-root nodules. 

nitrogen or carbohydrate limitation 

The in vitro method of determining nitrogenase activity in bacteroids is 

based upon an optimized supply of ATP and reducing equivalents (15). Therefore, 

if the in vitro activity is higher than the in vivo activity, the difference 

may be interpreted in terms of an energy shortage of the nodules. This view 

is corroborated by comparing the present results with literature data. During 

the generative stage of growth, flower primordia and developing pods act as 

carbohydrate sinks, reducing the translocation of photoassimilates to the 

root nodules (7). In the present experiments, the potential nitrogen fixation 

deviated from the actual fixation from the onset of flowering (pea) or pod 

fill (field bean) (arrows 1 and 2, respectively, of Fig. 1). Addition of 

nitrate also causes a decline of photosynthate translocation to the nodules (13). 

Concomitantly, the ratio of the actual to the potential nitrogen fixation is 

lower in nitrate-grown plants than in plants growing without combined nitrogen 

(Fig. 3). 

If our interpretation of the physiological significance of potential nitrogen 

fixation is correct, then leguminous plants are growing under nitrogen-limi­

tation during the vegetative stage. During the generative stage nitrogen fix­

ation is limited by carbohydrate supply leading to excess of nitrogenase in 

the nodules. During the growth cycle of the legumes the average nitrogenase 

utilization amounted to 66 - 81% in the absence of combined nitrogen (Table 2 ) . 

Therefore, in order to increase yields of ~\&q\me-Rhizobium symbioses, efforts 

should probably be directed to the utilization of the entire potential nitrogen 

fixation by the enhancement of photosynthesis, rather than by creating Rhizobium 
strains of a higher nitrogen-fixing capacity. 
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ACTUAL AND POTENTIAL NITROGEN FIXATION BY PEA 
ROOT NODULES AS AFFECTED BY CYTOKININ AND 
ETHYLENE 

ABSTRACT 

In this paper, the in vivo nitrogenase activity (actual nitrogen fixation) 

of nodulated pea roots {visum sativum L.) has been compared with the in vitro 
nitrogenase activity (potential nitrogen fixation) of bacteroids of two strains 

of Rhizobium leguminosarwn,one with and one without hydrogenase. The actual 

nitrogen fixation of nodules of 28 days old plants, kept in a growth chamber, 

amounted to 77-82% of the potential nitrogen fixation. Treatment of the nodules 

or the lower leaves with benzyladenine, a synthetic cytokinin, raised the 

nitrogenase activity of pea plants to 100% of the potential value. Ethephon, an 

ethylene-releasing compound,raised the nitrogen fixation of pea plants only 

when it was supplied to the nodules. The beneficial effect of both ethephon and 

benzyladenine on nitrogen fixation was maximal after 2 days and decreased after­

wards. 

Addition of nitrate to the nutrient solution (final concentration 10 mM) 

decreased the actual nitrogen fixation of the nodules to 55% of the potential 

nitrogen fixation of the bacteroids within 48 hours. Simultaneous addition of 

benzyladenine to the nodules counteracted the nitrate effect, raising the actual 

nitrogen fixation to 81% of the potential value. 

Treatment with benzyladenine raised the energy supply to the nodules, as it 

was shown in translocation experiments with assimilated ^CCL. No quantitative 

relationship between energy supply and nitrogenase activity was found. 

INTRODUCTION 

Until now, little attention has been paid to the question whether all or 

only part of the nitrogenase present in Rhizobium bacteroids of leguminous root 

nodules is active during growth of the legume under various environmental con­

ditions. 
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In this paper, the in vivo nitrogenase activity of root nodules (actual 

nitrogen fixation) was compared with the in vitro nitrogenase activity (potential 

nitrogen fixation) of isolated bacteroids, supplied with ATP and reducing 

equivalents. In a previous Chapter (Ch.1, pages 21-33),the course of the nitro­

genase activity during ontogenesis of pea and field bean was reported. The 

results obtained indicated that in the vegetative stage of legumes, growing in 

the open air, nitrogenase was fully utilized, but in the generative stage actual 

nitrogen fixation amounted to 51-84% of the potential nitrogen fixation. 

Energy supply of the enzyme is considered to be a major factor regulating 

actual nitrogenase activity (19). Therefore, in this paper an attempt was made 

to alter the ratio of actual to potential nitrogen fixation by treatments that 

either would lower photosynthate supply to the nodules (addition of nitrate) or 

would enhance photosynthate availability to the nodules, such as local appli­

cation of plant growth regulators. The ratio of actual to potential nitrogen 

fixation might also be influenced by a more efficient use of the energy avail­

able, such as functioning of a hydrogen uptake system in the bacteroids. This 

system enables the bacteroids to recover part of the energy lost by 

hydrogen production concomitantly to nitrogen fixation. Therefore, also a 

comparison was made of nitrogenase utilization of pea plants inoculated with 

strains of Rhizobium leguminosarum with or without an uptake hydrogenase. 

MATERIALS AND METHODS 

Plant material 

Pea seeds {Pisum sativum L. cultivar Rondo) were sterilized by immersion in 

a 4% solution of HLOp and a few drops of Teepol (a detergent). After 20 min, 

seeds were sown in heat-sterilized gravel which was inoculated with a strain of 

Rhizobium leguminosarum. Strain S310a, containing an uptake hydrogenase, and 

strain PRE, without a hydrogenase, were obtained from the culture collection of 

our laboratory. The gravel was soaked before sowing with a nitrogen-free nutrient 

solution containing (mg/1 of tap water) K2HP04.3H20, 360; KH2P04, 120; MgS04.7H20, 

250; CaS04.2H20, 250; Fe-citrate, 30; MnS04.4H20, 1; ZnS04.7H20, 0.25; CuS04.5H20„ 

0.25; H3B03, 0.25; Na2Mo04.2H20, 0.05. Plants were grown in a growth chamber at 

20°C, with a 16 h light - 8 h dark period and a light intensity (W/m ) of 8.8 

(blue), 7.2 (red) and 12.0 (far-red). 

At 21 days after sowing, plants were transferred to 300-ml Erlenmeyer flasks 

containing 100 ml of the nutrient solution plus 75 mg of KCl. Each flask con-
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tained 4 plants, supported by a plug of cotton wool, keeping the root nodules 

above the nutrient solution. 

Treatments 

Five days after transferring the plants to Erlenmeyer flasks, the root nodules 

or the first and second leaves (from the bottom) were treated with 1 ml/4 plants 

of an aqueous solution of benzyladenine (10, 100 and 1000 ug/ml, pH 9 with KOH) 

or ethephon (2-chloroethylphosphoric acid, 250 and 1000 ug/ml); both solutions 

contained a trace of Teepol. Control plants of the benzyladenine experiment 

received 1 ml of a 670 yg/ml solution of adenine under similar conditions. In 

some cases, the nitrogen-free nutrient solution was replaced by a solution 

containing KN0, (10 mM) instead of KCl. Nutrient solutions were renewed daily. 

Hydrogen production and acetylene reduction 

Sets of 4 intact plants were placed in a stoppered 300-ml Erlenmeyer flask 

and assayed for hydrogen production after 20 min,using a gaschromatograph 

equipped with a thermal conductivity detector. Subsequently, 30 ml of acetylene 

was added and ethylene production determined after 15 min by a gaschromatograph 

equipped with a hydrogen flame detector. The rate of acetylene reduction was 

linear for 60 min. 

In vitro nitrogenase assay of bacteroids 

Bacteroids were isolated from nodules after the in vivo assay as described by 

van Straten and Roelofsen (16). Isolated bacteroids were treated with ethylene-

diaminetetraacetic acid and toluene, supplied with reducing equivalents (Na^SpOJ 

and an ATP-generating system, and incubated at 24°C under an atmosphere of 90% 

argon and 10% acetylene. Ethylene production was determined after 10 min. 

RESULTS 

Actual nitrogenase activity as affected by ethephon and benzyladenine 
Local application of ethephon to root nodules of pea plants markedly affected 

nitrogenase activity after 2 days, as shown in Fig. 1. When 65 yg of ethephon 

was applied per plant, nitrogenase activity was enhanced significantly (F test; 

p < 0.05). However, when nodules were treated with 250 yg of ethephon per plant, 

nitrogenase activity was significantly lowered (p < 0.05) and the nodules turned 

green. Treatment of the first and second leaves (from the bottom) did not produce 

significant changes in nitrogenase activity. 

Application of benzyladenine significantly raised nitrogenase activity (F test; 

p < 0.05) both when applied to nodules or to the first and second leaves (Fig. 2 ) . 
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150 300 
Ethephon,/ng/plant 
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Be nzylad en ine, A4 g/p lant 

Fig. 1 
Fig. 2 

Fig. 1. Nitrogenase activity of 28 days old pea plants inoculated with 
R. leguminosarvm PRE. Data represent means of triplicate 
measurements of sets of 4 plants, 48 h after application of 
ethephon to the first and second leaf from the bottom (0) or 
to nodules (o). 

Fig. 2. Nitrogenase activity 
R. leguminosarum PRE 
measurements of sets 
benzyladenine to the 
to nodules of plants 
solution (o) and to 
solution containing 
were given 150 yg of 
adenine (not shown) 
compared to adenine 

of 28 days old pea plants inoculated with 
Data represent means of triplicate 

of 4 plants, 48 h after application of 
first and second leaf from the bottom (0), 
growing on a nitrogen-free nutrient 

nodules of plants transferred to a nutrient 
10 mmoles of KNO, per 1 (•). Control sets 
adenine per plant. Control plants without 

possessed an equal nitrogenase activity as 
treated control plants. 

The site of application did not produce significant differences. The effect of 

benzyladenine on nitrogenase activity was dependent on concentration. 

The highest values were reached when 250 yg of benzyladenine was used per plant. 

Increasing concentrations to 500 yg per plant lowered nitrogenase activity (data 

not shown). 

Both in the experiments of Figs. 1 and 2, nitrogenase activity was measured 

2 days after the application of ethephon and benzyladenine, respectively. In 

preliminary experiments, a maximum response was obtained 2 days after treatment 

with growth regulators. After 4 days, no effects on nitrogen fixation were 

observed in comparison with the control plants. A repeated application of 
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benzyladenine, 4 days after the initial treatment, again raised nitrogenase 

activity of plants growing without combined nitrogen after an incubation period 

of 24 hours. 

In plants, transferred to a nutrient solution containing 10 mmoles of KNO, 

per 1, nitrogenase activity was significantly reduced (p < 0.05) (1.06 and 1.42 

ymoles of C ^ produced/plant.h by plants with and without nitrate, respectively). 

Treatment of the nodules with benzyladenine counteracted the nitrate effect by 

increasing nitrogenase activity (1.55 ymoles of C2H. produced/plant.h with 

250 yg/plant of benzyladenine). 

Actual and potential nitrogen fixation 

The way in which benzyladenine and nitrate treatments affect nitrogenase ac­

tivity was studied with two R. leguminosarum strains, S310a and PRE, by compari­

son of the actual nitrogenase activity of nodulated roots and the potential 

nitrogenase activity of isolated bacteroids, the latter being supplied with 

reducing equivalents (Na2S20j and an ATP-generating system. The ratio of the 

actual to the potential nitrogen fixation was distinctly influenced by the two 

treatments, as shown in Table 1. Untreated pea plants utilized the nitrogenase 

Table 1. Effect of strain of B. leguminosarum, benzyladenine and nitrate 
treatments on actual and potential nitrogen fixation, photosynthate supply 
and relative efficiency of nitrogen fixation by pea plants'!) 

Strain 
of 
micro-
symbiont 

S310a 

PRE 

Treatment 

Control 
BA 

Control 
BA 
N05 
NOJ + BA 

Nitrogenase activity 
(ymoles of C2H4 
produced/g nodules 
fresh wt.h ) 

Actual 

16.3 d 
21.9 a 
27.9 b 
34.1 a 
19.0 od 

27.7 b 

Potential 

21.1 a 
21.9 0 

33.9 a 
35.1 a 
34.6 a 

34.2 a 

Ratio of 
actual to 
potential 
nitrogenase 
activity 
{%) 

11 
100 

82 
97 
55 

81 

Nodule label2) 

(kcpm/plant) 

94 I 
125 m 
111 lm 
155 n 
61 k 
72 k 

Relative 
efficiency 
(*)3> 

95 p 
95 p 

71 q 
60 r 
68 q 

62 r 

Values represent means of triplicate measurements, 2 days after treatment 
of nodules with 250 yg/plant of benzyladenine (BA) or transfer of plants to 
a nutrient solution containing 10 mmoles of KNOo/1. Values followed by the 
same letter are not significantly different in Tukey's test at the 5% level. 

2) 
For explanation see text. 

^Calculated as (1- H2 evolved in air 
C2H4 produced air + 10% C2H2'-ldU/o U 4 ; 
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present in the bacteroids for only 80%. Benzyladenine (250 yg per plant) raised 

the actual nitrogen fixation to 100% or nearly 100% of the potential values. 

In plants supplied with nitrate, the ratio of actual to potential nitrogen 

fixation dropped to 55%. Simultaneous application of benzyladenine to nodules 

of-such plants raised the actual nitrogen fixation as well as the ratio actual-

potçntial nitrogen fixation to values similar to those of control plants without 

combined nitrogen (Table 1). 

In order to check whether the favourable effect of benzyladenine on nitro-

genase activity was coupled with an increased photosynthate supply of the nod-
14 

ules, a pulse-label experiment with C0o was carried out. Shoots of pea plants 
14 

were exposed in light to C0 2 for 15 min, 24 h after the start of the nitrate 

and benzyladenine treatments. Roots were carefully excluded from labelling by 

sealing them with plastic foil and beeswax. Plants were killed in liquid nitrogen 

24 h after labelling, i.e. 48 h after the start of the treatments, to ascertain 

a possible correlation with the nitrogenase data obtained from other sets of 

plants. Root nodules were crushed in liquid nitrogen and aliquots counted in a 

liquid scintillation counter, using Instagel (Packard Inc.) as a scintillation 

liquid. 

The results of this experiment show (Table 1) that with strain PRE, more 

radioactivity was recovered in the nodules than with strain S310a. Benzyladenine 

treatment of nodules gave a pronounced rise of recovered radioactivity with both 

S310a and PRE. Benzyladenine (250 yg per plant) increased nodule counts per min 

significantly in 2 out of 3 treatments. Specific radioactivity of nodules was 

equal to that of shoots, whereas that of roots was 3-5 times lower (data not 

shown). Nitrate in the nutrient solution significantly lowered nodule counts per 

min as compared to the control. 

The nitrogenase activity of nodules formed with strain S310a, which contains 

an uptake hydrogenase, responded to benzyladenine similarly to that of nodules 

formed with strain PRE (Table 1). The presence of the hydrogenase in S310a 

resulted in a higher relative efficiency than with strain PRE, i.e. fewer moles 

of hydrogen evolved in air per mole of ethylene produced under acetylene. With 

strain PRE, a decrease of the relative efficiency was observed when the nitro­

genase activity was increased by benzyladenine treatment, both in the presence 

and absence of nitrate in the nutrient solution. 

The ratio of actual to potential nitrogen fixation with S310a was slightly 

below that with PRE. The lower actual nitrogen fixation with S310a was due to 

a lower potential nitrogenase activity of the bacteroids. Expressed on a protein 
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basis, in vitro nitrogenase activity amounted to 365 ymoles of C2H- produced/g 

of protein.h in S310a bacteroids, as compared with 732 ymoles of C^H. produced/g 

of protein.h in PRE bacteroids. 

DISCUSSION 

Mode of action of benzyladenine and ethephon 

Plant growth regulators belonging to the cytokinin group, as benzyladenine, 

are known to attract assimilates to the site where the hormone is applied. They 

reduce protein degradation (10), increase ion uptake and transport, and induce 

cell division (8, 17). 

Ethephon, an artificial compound, is degraded within the plant to ethylene 

at pH values above 3.5. Ethylene mobilizes storage products, directs them to 

the site of fruit growth and promotes fruit ripening and senescence (15). 

In this study, benzyladenine and ethephon were used in an attempt to alter 

photosynthate availability to the nodules which might influence the ratio of 

actual to potential nitrogen fixation. Fairly large quantities of benzyladenine 

were used as compared to literature data on leaf application (11). No data were 

available on local application of growth regulators to nodules. As nodules are 

considered to be impermeable to water, the uptake of benzyladenine and ethephon 

probably has to occur through the root cortex. With our method of brush appli­

cation of an aqueoussolution to the nodules, inevitably also adjacent root parts 

were treated. However, both with leaf and nodule treatments, the quantities of 

growth regulator actually taken up are unknown. 

In line with'literature data (1), the observed effect of ethephon on nodules 

(Fig. 1) might be explained in terms of mobilization of assimilates. Consequently, 

a low concentration of ethephon would stimulate nitrogenase activity bymobilizing 

storage products (e.g. starch). A high concentration of this'growth regulator 

initially might have enhanced nitrogen fixation, but would later on cause an 

exhaustion of substrates and consequently a decrease of nitrogen fixation: Treat­

ment of nodules with benzyladenine may enhance the sink function of the nodules 

and stimulate nitrogenase activity due to a higher supply of photosynthates 

(Fig. 2, Table 1). 

Lower leaves have been shown to act as source of substrates to nodules (11, 13). 

Application of ethephon or benzyladenine to these source leaves was aimed at in­

creasing photosynthate supply of the nodules in an indirect way. Ethephon was 

thought to mobilize storage carbohydrates in the leaves, making them available 
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for translocation to the nodules. Even if this would have happened, no effect of 

it on nitrogenase activity was observed (Fig. 1). Benzyladenine treatment of the 

source leaves was intended to reduce protein degradation and thus to enhance photo­

synthesis in the leaf. Alternatively, the translocation pattern in the plant 

could be changed, diverting photosynthate transportation from the shoot apex to 

the nodules. In either way, the observed rise in nitrogen fixation after leaf 

application of benzyladenine is likely to be due to an increased supply of 

photosynthate to the nodules. 

Actual and potential nitrogen fixation 

Benzyladenine application to nodules increased the actual nitrogenase activity 

(Table 1). This phenomenon was correlated with an increase in energy supply. 

However, no quantitative relationship could be established between the additional 

photosynthates translocated to the nodules and the rise in nitrogenase activity. 

The same difficulty was encountered by other authors (7, 14); it might be 

attributed to the synthesis of storage products, to the accumulation of assimi­

lates in the plant tissue of the nodules (7) or to differences in respiratory 

activity of the nodules, leading to a smaller pool of labelled compounds. 

A considerable gap exists between the occurrence of maximum nitrogenase 

activity, 48 h after treatment with benzyladenine, and the translocation time 
14 

of C labelled photosynthate (3-9 h)(6). One explanation of this deviation 

might be the occurrence of uptake problems of externally applied growth regu­

lators as discussed above. 

On a cellular level, benzyladenine is known to increase respiration, proton 

extrusion and transmembrane potential in pea plants (8, 9, 10). On the other 

hand, Laane et al. (5) showed that in bacteroids of R. leguminosarum, transmem­

brane potential was acting as a major force regulating nitrogenase activity by 

directing the electron flow to nitrogenase. Combining these results, the effect 

of benzyladenine on nitrogenase activity might be explained by a higher supply 

of photosynthates, an enhanced respiration, leading to a higher transmembrane 

potential and, consequently, a higher nitrogenase activity. 

Combined nitrogen decreased the ratio of actual to potential nitrogen fixation 

(Table 1 ) , as was found earlier in this laboratory (3; Chapter 1, pp. 21 - 33) 

Addition of sucrose to the nutrient solution alleviated the effect of combined 

nitrogen on nitrogenase activity (4) partly by overcoming a shortage of energy 

in the nodules but also by decreasing nitrogen uptake. In our experiment, a 

decrease of nitrate uptake was unlikely because in general, benzyladenine stimu­

lates ion uptake and transport. However, the benzyladenine effect on photosyn-
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thate supply (Table 1) was lower in nitrate-grown plants as compared to plants 

growing in a nitrogen-free nutrient solution. 

The possibility of increasing nitrogen fixation by the use of cytokinins and 

other growth regulators (especially those synthetized in roots), as indicated 

by the results of the present investigation,might open interesting perspectives 

to agriculture if the short duration of the higher activity and the impractical 

application site might be overcome. Another approach would be to increase the 

rate of natural cytokinin synthesis in root nodules. The main cytokinin activity 

of nodules seems to be located in the nodule meristem, Rhizobium-infected cells 

possessing a lower activity (17). But also free-living rhizobia have been shown 

to be capable of synthetizing cytokinin-like substances in sufficient quantity 

to induce cell division in a soybean-callus test (12). Whether also bacteroids 

produce such substances is unknown. However, bacteroids might influence 

photosynthate supply to the nodules either directly by excretion of cyto­

kinins, or indirectly by triggering off synthesis of cytokinins in the 

plant (18). 
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ALTERNATIVE, CYANIDE-RESISTANT, RESPIRATION IN 
ROOT SYSTEMS OF PISUM SATIVUM L. AS AFFECTED 
BY STRAIN OF RHIZOBIUM LEGUMINOSARUM AND 
NITRATE SUPPLY 

ABSTRACT 

A study has been made of the a l t e rna t i ve , cyanide-resistant, respiratory 

pathway in non-nodulated pea plants {Pisum sativum L . , cu l t i va r Rondo) as well 

as in pea-Rhï-zobium symbioses of d i f fe ren t n i t rogen- f ix ing capacity. A l ternat ive 

respiratory a c t i v i t y was low in root systems of 26-days old non-nodulated or 

nodulated plants in the absence of n i t r a t e , regardless of the n i t rogen- f ix ing 

capacity of the nodules. 

Supply of the plants with n i t ra te (10 mM) raised the respirat ion of the root 

system due to a l ternat ive- resp i ra t ion a c t i v i t y . In non-nodulated root systems 

respirat ion rate was doubled, 48 h a f te r the supply of n i t r a t e , and a l ternat ive 

respirat ion increased to 60% of the electron flow to oxygen. In nodulated root 

systems, the ni trate-induced enhancement of the a l ternat ive respirat ion was 

inversely related to the n i t rogen- f ix ing capacity. 

Carbohydrate levels in i ne f fec t ive ly nodulated plants were higher than those 

in e f fec t i ve ly nodulated plants in the absence of n i t r a t e . When n i t ra te was 

suppl ied, carbohydrate levels f e l l concomitantly with the r ise in a l ternat ive 

resp i ra t ion. In n i t rogen- f ix ing p lants, they remained unchanged upon the addit ion 

of n i t r a t e . 

The response of growth rate and the induction of n i t ra te reductase to n i t ra te 

supply were lower with plants lacking the capacity to f i x nitrogen than in n i t r o ­

gen-f ixing pi ants.Ni t ra te supply reduced nitrogenase a c t i v i t y both in highly and 

moderately e f fec t ive Rhizobiwn s t ra ins . Upon n i t ra te supply, hydrogen production 

by nitrogenase decreased more rapidly than to ta l nitrogenase a c t i v i t y , leading 

to an increased re la t i ve e f f ic iency. Inh ib i t ion of the a l ternat ive respi rat ion 

of isolated bacteroids led to a sharp decline of nitrogenase a c t i v i t y due to 

oxygen i nac t i va t ion . 
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Pea plants with and without nitrogen f i x a t i o n , responded to added n i t ra te 

by increased a l ternat ive respirat ion consuming 6-10%and 24-43%, respect ively, 

of the carbohydrates supplied to the roots by the shoots wi th in 48 h. A main 

function of a l ternat ive respirat ion in pea roots seems to be the degradation of 

excess carbohydrates supplied by the shoot fol lowing a growth stimulus by the 

supply of n i t r a te . As a l ternat ive respirat ion was also found in pea plants with 

a high n i t rogen- f ix ing capacity upon the supply with n i t r a t e , i t is concluded 

that these plants were growing under nitrogen l i m i t a t i o n . 

From respirat ion measurements of detached nodules i t is concluded that 

u t i l i z a t i o n of the a l ternat ive pathway in these nodules decreases the amount 

of ATP generated with 8-21% of the maximum ATP production from glucose. There­

f o r e , the a l ternat ive respirat ion should be taken into account when calculat ing 

energy requirements of nitrogen f i x a t i o n , based on the differences in respir ­

ation between n i t rogen- f ix ing and non-nodulated n i t r a t e - u t i l i z i n g p lants. 

INTRODUCTION 

In plant mitochondria, an alternative respiratory pathway is known to function 

in addition to the cytochrome pathway (Bahr and Bonner, 1973a,b). This alter­

native pathway is insensitive to cyanide but can be inhibited by hydroxamic 

acids. The alternative respiratory pathway branches from the cytochrome path­

way at ubiquinone (Storey, 1976), which easily transfers electrons to the cyto­

chrome pathway, but which reduces the first carrier of the alternative pathway 

only when it is in its largely reduced state (Bahr and Bonner, 1973b). The alter­

native pathway is generally assumed to yield no ATP during electron transfer to 

oxygen (Solomos, 1977). In this aspect, alternative respiratory activity may 

be regarded as a 'wastage' of energy. 

In a recent review, Lambers (1980) suggested that the alternative route might 

function as an 'overflow mechanism' to get rid of excessive amounts of carbo­

hydrates, not utilized for growth, maintenance or formation of storage products 

in plants. According to De Visser and Lambers (1979), roots of nodulated, 

nitrogen-fixing pea plants possess a very low alternative-pathway activity. In 

contrast, alternative respiration in roots of non-nodulated pea plants grown 

on ammonia or nitrate, amounted to 25-50% of total respiration (Lambers, 1980). 

These results show that nitrogen source and nitrogen supply are important factors 

in determining respiratory efficiency in legumes. 
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In experiments with nodulated legumes, the quantity of carbohydrates supplied 

to the roots was estimated by Pate and co-workers to amount to 55-74% of the car­

bohydrates generated in net photosynthesis.Nodules acquired 32% of the net photo-

synthate in Visum sativum (Minchin and Pate, 1973). Twelve per cent of the net 

photosynthate was used in nodule respiration for maintenance and nitrogen fix­

ation; the remainder would be used for synthesis and transport of amino acids. 

In spite of the large quantities of carbohydrates supplied to nodulated roots, 

a low alternative respiratory activity was found (De Visser and Lambers, 1979). 

Due to the high costs of energy for nitrogen fixation and synthesis of amino 

acids no excess of carbohydrates is generated which would be respired via the 

alternative pathway. 

In order to find out whether a relation exists between alternative respiration 

and nitrogen fixation, in the present paper this type of respiration was deter­

mined in non-nodulated and nodulated root systems of pea plants with different 

nitrogen-fixing capacity and with different relations between growth, storage 

and respiration. Also separated nodules and bacteroids were investigated. The 

influence of the nitrogen source on respiration, growth and nitrogen fixation 

was analyzed in a series of experiments in which nitrate was added to nodulated 

and non-nodulated plants. The data on 'energy loss' by the alternative respir­

ation were compared with the data on energy costs of nitrogen fixation and 

hydrogen production by nitrogenase. 

ABBREVIATION: SHAM (salicylhydroxamic acid). 

MATERIALS AND METHODS 

Plant growth 

Seeds of pea plants {visum sativum L. cultivar Rondo) were sterilized by 

immersion in an aqueous solution of 4% HpO« and a few drops of Teepol (detergent). 

After 20 min, seeds were sown in sterilized gravel or perlite, which was 

inoculated with a strain of Rhizobium leguminosarum. All strains used in these 

experiments were obtained from the culture collection of the Laboratory of 

Microbiology, Wageningen. 

The plants were watered with a sterile nitrogen-free nutrient solution con-

taining(mg/l of tap water) K2HP04> 360; KH2P04, 120; MgS04.7H20, 250; CaS04, 250; 

Fe(III) citrate, 30; MnS04>4H20, 1; ZnS04.7H20, 0.25; CuS04.5H20, 0.25; H 3 B0 3 , 

0.25; Na2Mo04.2HoO, 0.05. Plants were kept in a growth chamber at a light/dark 

period of 16/8 h at 20°C and a relative humidity of 70%. At 21 days after sowing, 
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they were transferred to 300-ml Erlenmeyer flasks, containing 100 ml of nutrient 

solution plus KCl (10 mM). Experimental sets consisted of 4 plants supported by 

a cotton wool plug. In some experiments, the nutrient solution was replaced by 

a solution containing KNO, (10 mM) instead of KCl, 6 days after transfer of the 

plants. 

Plant respiration 

Measurements started 5 days after transfer of the plants to the water culture. 

Respiration was determined according to^Lambers and Steingröver(1978).Root systems 

were detached from the shoots and fitted into a 300-ml vessel equipped with a 

CI ark-type electrode and a magnetic stirrer. The vessel was filled with an air-

saturated nutrient solution plus 10 mmoles of KCl or KNO, per 1, but without 

Fe(III) citrate, and sealed with a mixture of equal parts of vaseline and 

beeswax. Respiration measurements were performed in a water bath at 20°C. Linear 

rates of oxygen consumption were monitored for at least 10 min. Then the solution 

was replaced by an equal one containing in addition 25 mmoles of SHAM per 1, and 

oxygen consumption measured again for 10 min. 

Respiration of root nodules, 30-50 mg of fresh weight, was determined 

polarographically in a YSI magnetic-stirrer bath at 20°C. Nutrient solutions 

of the composition as described above were saturated with 02 before use in 

order to improve linear response. 

Baateroid respiration 

Nodules were detached from the roots and squeezed in a Bergersen press 

(Bergersen, 1966) in a buffer containing 50 mmoles of Tri s(hydroxymethyl)-ami no-

methane, 2.5 mmoles of MgCl-^HpO, 300 mmoles of sucrose and 4% by weight of 

polyvinylpyrrolidone(PVP), in 1 1 of demineralized water. The pH was adjusted to 

7.2 with HCl before use. The nodule brei was centrifuged at 5500 x g for 10 min 

and the supernatant (nodule cytosol) used in respiration measurements. The 

bacteroids (pellet) were washed in the same buffer without PVP and resuspended 

to a concentration of 80 mg of nodule fresh wt per ml of buffer. Respiration 

measurements were carried out in a YSI magnetic-stirrer bath at 20°C, using 

succinate (10 mM) as the substrate.- Inhibitor constants (apparent Ki) were cal­

culated from the reciprocal of respiratory rate against concentration of SHAM 

(0.1-10 mM) (Bahr and Bonner, 1973a). 

Hydrogen production and acetylene reduction 

Detached roots of 4 plants were incubated in a stoppered 300-ml Erlenmeyer 

flask. After 20 min, a 100 pi gas sample was taken and hydrogen production 

determined with a gas Chromatograph equipped with a thermal conductivity detector 
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Subsequently, 30 ml of acetylene was added to the flask and after 15 min a 100 pi 

gas sample was analyzed for ethylene production by hydrogen-flame detection. 

Nitrate reductase 

Nitrate reductase was assayed in the first unfolded leaf from the top using 

NADH as an electron donor, as described by Stulen (1974). Leaf extracts were 

incubated at 27°C in the presence of NADH and KNO,. Nitrite production was 

determined colorimetrically after 30 min, using the sulphanilamide method (Snell 

and Snell, 1949). 

Chemical analyses 

Ethanol-soluble carbohydrates ('sugars') were determined by the anthrone 

method (Trevelyan and Harrison, 1952) in ethanol-extracted plant dry matter. 

The residue was heated at 100°C for 2 h with 0.1 N HCl. The content of ethanol-

insoluble carbohydrates ('starch') was measured in the supernatant using the 

anthrone method. 
Plant nitrogen was determined by the Kjeldahl method, using CuSO, and Se 

as catalysts. 

RESULTS 

Alternative respiration and nitrogen fixation 

Pea-Rhizobium symbioses with different nitrogen-fixing capacity were obtained 

by inoculation of visum sativum L. (cultivar Rondo) with different strains of 

Rhizobium leguminosarum. As shown in Table 1, these symbioses displayed different 

properties with regard to nodule formation, hydrogen production and acetylene 

reduction, and growth. 

Table 1. Characteristics of pea-Rhizobium symbioses, 28 days after sowing. 
Values represent means of 7 determinations of sets of 4 plants. Values in 
one column followed by the same letter are not significantly different in 
Tukey's test at the 0.05 level 

Strain 
of 
micro-
symbiont 

Non-
nodulated 
P8 
S313 
S310a 
PRE 
PF2 

C2H4 pro­
duction 
(umoles/g 
nod fr wt.h) 

0 a 
0 0 

11.1 b 
14.1 b 
28.1 a 
25.1 a 

H2 production 
(umoles/g 
nod fr wt. h) 

0 e 
0 e 
5.5 c 
1.6 d 

10.3 b 
14.0 a 

Relative 
efficiency 

W 

— 
— 
50 
89 
63 
44 

Nodule 
fresh 
wt (mg/ 
plant) 

0 d 
54 0 

197 a 
56 e 

107 b 
102 b 

Plant 
nitrogen 
(mg/ 
plant) 

4.9 0 
5.8 e 

10.6 b 
9.8 b 

12.2 b 
16.1 a 

Shoot 
to 
root 
ratio 

1.5 
1.6 
1.7 
1.9 
1.8 
2.0 
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With strain S310a, the ratio of hydrogen evolved in air to ethylene produced 

in air with 10% acetylene was lower than with other strains owing to the presence 

in this strain of a hydrogenase that enabled the utilization of H? produced by 

the nitrogenase system (Table 1). Assuming full utilization of hydrogen taken up 

by hydrogenase-containing rhizobial strains, Schubert and Evans (1976) calculated 

relative efficiencies according to the formula (1- 2 r ^ ^ V " ^ i r ) .100%. 

Thus a high relative efficiency indicates that little energy is lost in hydrogen 

production by nitrogenase activity. 

Respiration measurements of root systems of these symbioses were performed at 

26 days after sowing (Table 2 ) . Root systems without a nitrogen-fixing symbiosis 

generally showed a lower respiration rate than those with such a system. A sig­

nificant difference between total respiration and cytochrome (SHAM-resistant) 

respiration was found only in the symbiosis Rondo x PF?, which also possessed 

the highest shoot to root ratio (Table 1). With the other R. leguminosarum strains 

no significant differences were found, in spite of the distinctly different 

nitrogen-fixation parameters. 

Table 2. Total and SHAM-resistant respiration of 26-days old pea root 
systems grown without nitrate. Values represent means of 3 sets of 
4 plants. Values followed by the same letter are not significantly 
different in Tukey's test at the 0.05 level 

Strain of 
micro-
symbiont 

Non-nodulated 
P8 
S313 
S310a 
PRE 
PF2 

Respirât ion 
(mg 09/g dry wt.h) 

Total 
(1) 

3.8 d 
3.0 ef 
4.7 ab 
4.8 ab 
3.9 cd 
5.1 a 

SHAM-resistant 
(2) 

3.5 de 
2.9 ƒ 
4.5 ab 
4.4 ba 
3.9 od 
4.4 ba 

Ratio 
(1:2) 

1.1 
1.0 
1.0 
1.1 
1.0 
1.2 

Effect of nitrate supply 
Alternative respiration. As pea plants with a low nitrogen-fixing capacity were 

likely to grow under nitrogen limitation, a series of experiments was carried 

out in which nitrogen limitation was overcome by the addition of nitrate. 

Immediately after the initial respiration measurements at day 26, the plants 

were transferred to a nutrient solution containing 10 mmoles of KN03 instead 

of 10 mmoles of KCl per 1. 
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As shown in Fig. 1a., alternative respiration was generated within 24 h after 

the supply of nitrate. An analysis of variance showed that the ratio of total to 

SHAM-resistant respiration increased more sharply in non-nodulated plants than 

in nodulated plants with a low nitrogen-fixing capacity, which in their turn 

produced a high ratio as compared with nodulated plants with a high nitrogen-

fixing capacity (F test, p < 0.01). The alternative respiratory activity was 

generated in addition to the cytochrome (SHAM-resistant) respiration (Fig. 1b) 

Fig. 1a. Ratio of total to SHAM-resistant respiration of root systems of pea 
plants (non-nodulated, V; inoculated with R. legum-inosarum strains 
P8, •; S313, A; PRE, D ; and P F 2 , 0 ) as affected by nitrate supply 
(10 mM) (day 0, 26 days after sowing). Values are means of 9 deter­
minations of sets of 4 plants from 3 experiments. For statistical 
interference see text. 

Fig. 1b. Total (V,0) and SHAM-resistant (•,•) respiration (mg 02/g dry wt.h) 
of root systems of pea plants (non-nodulated, V, • and inoculated 
with strain P F 2 Ô , # ) as affected by nitrate supply (day 0, 26 days 
after sowing). Values are means of 3 determinations of sets of 4 
plants, from one experiment out of the 3 experiments of Fig. 1a. 

51 



- 80 
S 

60 

•o 40 

o 
o 

20 

Fig. 2 
Days 

S 
.c 

E 

Fig. 3 

2 3 
Days 

Fig. 2. Ethanol-soluble (•, A, + ) and ethanol-insoluble (o, A , 0 ) carbohydrates 
( mg glucose eq./g dry wt) in roots of pea plants inoculated with 
R. leguminosarum strains P8 (•, o ) ; S313 (A, A) and PF2 (• , O ) as 
affected by nitrate supply (10 mM) (day 0, 26 days after sowing). 
Values are means of triplicate determinations. 

Fig. 3. Nitrate-reductase activity (ymoles NO^/g fr wt.h) in the first unfolded 
leaf from the top of pea plants, inoculated with R. leguminosarum 
strains P8 (•), S313 (A) and PF2 ( O ) , as affected by nitrate supply 
(10 mM) (day 0, 26 days after sowing). Values are means of duplicate 
determinations of 4 leaves. 

Carbohydrate content. In the ineffective symbiosis (P8), carbohydrate levels 

in roots as well as in shoots were much higher than in effective symbioses 

(Fig. 2, roots only). On the addition of nitrate, however, both ethanol-soluble 

and ethanol-insoluble carbohydrates dropped to the levels of effectively nodu­

lated plants within 48 and 72 h, respectively. Carbohydrate levels in nitrogen-

fixing plants remained unaffected by nitrate supply. 

Nitrate reductase. Synthesis of nitrate reductase in leaves was induced by 

nitrate (Fig. 3 ) . A more rapid synthesis was observed in leaves of plants with 

a high nitrogen-fixing capacity. Growth rates of plants without nitrogen fixation 

responded to nitrate 2-3 days after transfer to the nitrate-containing nutrient 

solutions and thus lagged behind the synthesis of nitrate reductase. 
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Fig. 4a. Ethylene production of pea plants inoculated with R. legwninosarum 
strains S313 (A), PRE (D ) , and PF2 ( O ) , as affected by nitrate 
supply (10 mM) (day 0, 26 days after sowing). 

Fig. 4b.Relative efficiency of pea plants inoculated with R. leguminosarum 
strains S313 (A) and PRE ( D ) as affected by nitrate supply (10 mM) 
(day 0, 26 days after sowing). 

Nitrogenase activity. Transfer of nodulated pea plants to the nutrient solution 

with nitrate (10 mM) caused a decrease of nitrogenase activity in symbiotic 

associations with a high as well as a low nitrogen-fixing capacity (Fig. 4a). 

Hydrogen production decreased more rapidly than acetylene reduction, resulting 

in a rise of the relative efficiency ( Fig. 4b). 

Alternative respiration in baoteroids 

Although SHAM-sensitive respiration has been described in mitochondria of 

higher plants (Solomos, 1977), it became interesting to check whether not only 

the plant part of the nodules but also the bacteroid fraction contributes to this 

type of respiration. Respiration of nodule cytosol (nodule brei minus bacteroids) 

was sensitive to SHAM, as shown in Table 3, but SHAM-sensitive respiration was 

also present in bacteroids supplied with succinate (10 mM). Respiration rates of 
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Table 3. Inhibitor constants (apparent Ki) of KCN and SHAM in R. leguminosarum 
bacteroids and nodule cytosol. Values represent means of 6 determinations. 
Values followed by the same letter are not significantly different in Tukey's 
test at the 0.05 level 

Strain of 
microsymbiont 

Nodule 
cytosol 
(mM SHAM) 

Bacteroids 
(mM SHAM) 

Bacteroids 
(mM SHAM in the 
presence of 
0.8 mM KCN) 

Bacteroids 
(mM KCN) 

P8 
S313 
PRE 

N.D. 
N.D. 
9.4 ha 

27 .1 a 
25.7 a 
15.8 b 

4.4 a 
N.D. 
4.9 a 

2.1 q 
N.D. 
0.2 p 

N.D. = Not Determined 

bacteroids of strain PRE, capable of nitrogen fixation, were higher but K̂  values 

were lower than those of bacteroids of strain P8 lacking the capacity to fix 

nitrogen. 
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Fig. 5. Ethylene production (nmoles/mg protein.min) by bacteroids of R. legumin­
osarum PRE as affected by 02 input and concentration of SHAM (0,0 , 
12.5 mM, A and 25 mM, A) For experimental conditions see text. 
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Nitrogen fixation was absent under the experimental conditions of Table 3» 

due to oxygen inactivation. Therefore, the function of the alternative respir­

ation in nitrogen fixation was investigated in a separate experiment, in which 

respiration of PRE bacteroids was measured under nitrogen-fixing conditions 

(Fig. 5). Bacteroids were incubated under varying oxygen tension in the presence 

of reduced myoglobin and bovine serum albumine, using succinate (20 mM) as the 

substrate, as described by Laane et al. (1978). With SHAM (12.5 mM), respiration 

was much lower as compared to the control, resulting in a lower maximum of 

nitrogenase activity at a lower oxygen input (cf. Fig. 5, Table 3 ) . 

DISCUSSION 

Alternative respiration and nitrate supply 

In roots of pea plants growing without nitrate, alternative respiration was 

only found in plants inoculated with R. leguminosarum strain PF„, which had a 

high growth rate and a high nitrogenase activity (Tables 1 and 2 ) . Although 

the symbiosis with PRE was as active as that with PF„ regarding N„ fixation, 

its activity started a number of days later, as can be seen from its lower yield 

of plant nitrogen. When nitrate was supplied, the growth rates of all plants 

were enhanced and alternative respiration was generated (Fig. 1). This happened 

in addition to the cytochrome-1inked respiration (Fig. 1b; see also Bahr and 

Bonner, 1973b). Alternative respiration of nitrogen-fixing plants was stimulated 

by nitrate supply to a much lower extent than that of plants without nitrogen 

fixation (Fig. 1). The latter plants, which had been growing under nitrogen 

limitation, contained high levels of carbohydrates that declined (Fig. 2) 

before a growth response became manifest. With the ineffective strain P8, the 

ratio of total to SHAM-resistant respiration decreased to the values of the 

effective strain after the excess of carbohydrates had been decreased (Figs 1a 

and 2 ) . Therefore, the degradation of excess carbohydrates is probably a func­

tion of the alternative respiratory pathway, as suggested by Lambers (1980). 

According to his 'overflow'-hypothesis, alternative respiration is generated if 

there is an imbalance between the carbohydrates supplied by the shoot and the 

carbohydrate requirements of the roots for growth, maintenance, storage or 

osmoregulation. As alternative respiration was also generated upon the supply 

of nitrate to pea plants with a high nitrogenase activity, this would mean 

that under the experimental conditions employed, these plants were not growing 

under C limitation but probably under N limitation. 
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Alternative respiration and carbohydrate metabolism 

Based upon the data on respiration, carbohydrate levels and plant growth, 

as presented in the Results section, the contribution of the alternative 

respiration to the carbohydrate metabolism of the pea plant was calculated 

(Table 4 ) . To calculate the amounts of substrate used as carbon skeletons for 

the synthesis of cell material, a coefficient of 1.4 g was used to convert g 

of dry weight produced into g of glucose utilized (Penning de Vries, 1974). 

Carbohydrate supply of the root by the shoot was calculated from the 

substrate used in the respiration of the root and in the synthesis of root 

material. This value therefore does not include the amount of carbohydrates 

recirculated to the shoot in amino acids, which was estimated at 14% of total 

carbohydrate supply of the root in cowpea (Herridge and Pate, 1977) and 20% 

in pea (Minchin and Pate, 1973). To convert the respiration data from 

oxygen consumed per h into glucose consumed per day, a respiratory quotient 

of 1.0 was assumed and diurnal variation was neglected. In a recent paper, 

Lambers et al. (1980) observed diurnal variations in roots of Lupinus albus L. 

both in carbon dioxide production and oxygen consumption. Therefore, the 

conversion employed in the present study must be considered as a rough estimate. 

Net photosynthesis was determined from the substrate used in the synthesis of 

shoot material and in translocation to the root. 

In nitrogen-fixing plants, both net photosynthesis and carbohydrate supply 

of the roots were higher than in plants without nitrogen fixation owing to the 

improved nitrogen supply (Table 4 ) . Although carbohydrate supply of the roots 

is increased by added nitrate, the distribution pattern in the root system is 

altered (Small and Leonard, 1969), resulting in less carbohydrates being 

supplied to the nodules. This explains the moderate decrease of nitrogenase 

activity due to the supply of nitrate (Fig. 4 ) . Similarly, Bethlenfalvay et al. 
(1978b) found that photosynthesis was enhanced by the addition of ammonia to 

non-nodulated pea plants. With different Rhizobium strains, photosynthesis was 

positively correlated with nitrogen fixation (Bethlenfalvay et al. 1978a). 

The alternative respiration of the root system was active in catabolizing 

1-7% of the carbohydrate supply óf the root when the plants were growing 

without nitrate (Table 4 ) . With nitrate, however, the proportion of the 

alternative respiration in carbohydrate catabolism was much higher (5-11% in 

nitrogen-fixing plants and 15-31% in non-nodulated or ineffectively nodulated 

plants). Therefore, the alternative respiration should be taken into account 

in calculations of energy requirement of nitrogen fixation and nitrate reduction, 

based upon respiration measurements of nitrogen-fixing and nitrate-reducing plants. 
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Table 4. Proportion of the a l ternat ive respirat ion in carbohydrate metabolism 
of pea plants (non-nodulated or infected by a s t ra in of R. leguminosarum), 
growing without n i t ra te (day 0, 26 days a f te r sowing) and 48 h a f te r the supply 
of n i t ra te (10 mM; day 2 ) . For explanation see t ex t . 

Item Non-nodulated P8 S313 PRE 

1a. Total root 5.0 8.5 5.3 7.0 9.0 9.8 7.8 8.7 
respiration 
(mg 0?/g dry 
wt.h) 
(cf Fig. 1b) 

1b. Alternative 8 52 4 31 4 20 2 10 
respiration as 
% of total 
respiration 
(cf Fig. 1a) 

2. Shoot dry wt 164 179 174 190 260 354 241 298 
(mg/plant) 

3. Root dry wt 109 112 108 112 157 176 133 148 
(mg/plant) 

4. Carbohydrate 15 36 17 37 42 69 43 57 
supply of 
root by shoot 
(mg glucose/ 
plant.day) 
(la + 3) 

5. Net photo- 19 60 23 70 60 130 79 113 
synthesis 
(mg glucose/ 
plant.day) 
(2 + 4 ) 

6. Alternative 
respiration of 
the root system 
a. as % of 7 31 3 15 3 11 1 5 

carbohydrate 
supply (1b) 

b. as % of net 5 19 2 8 2 6 1 3 
photo­
synthesis (1b) 

57 



Alternative respiration and nitrogen fixation 

Nitrogen fixation was calculated from ethylene production under air with 10% 

of acetylene (representing total nitrogenase activity) minus hydrogen production 

in air, representing that part of nitrogenase activity not utilized in nitrogen 

fixation (Table 5 ) . The carbohydrate requirement of nitrogen fixation was 

calculated from respiration measurements of detached nodules. The resulting 

values of 3.1 - 4.2 mg of carbon utilized per mg of nitrogen fixed with strain 

PRE correspond to the values of 4.1 mg C/mg N in pea nodules (Minchin and Pate, 

1973) and 2 - 5 mg C/mg N in cowpea nodules (Herridge and Pate, 1977). The 

large amount of nodular tissue formed with strain S313 enhanced the overall 

cost of nitrogen fixation to 6.3 - 11.1 mg C/mg N owing to a higher nodule 

respiration at equal amounts of nitrogen fixed. 

Energy costs of total nitrogenase activity were expressed in terms of moles 

of ATP derived from nodule respiration per mole of nitrogen fixed (Table 5 ) . 

One mole of glucose was assumed to yield 36 moles of ATP when respired via the 

cytochrome pathway as compared with 12 moles when the alternative pathway was 

utilized. The possible influence of wound respiration was neglected, so that 

the reported values must be considered as rough estimates. The values of moles 

of ATP utilized per mole of nitrogen fixed are considerably higher than the 

value of 28 mol ATP/mol Np as reported by Evans et al. (1981), as in our case 

also nodule maintenance respiration is accounted for. 

A calculation of the amount of ATP 'lost' by hydrogen production simultaneous­

ly with nitrogen fixation was based upon the assumption that production of 1 

mole of hydrogen requires 7 moles of ATP (Pate et al., 1981). The amount of ATP 

'lost' in the production of hydrogen is of the same order of magnitude as 

compared with the amount of ATP lost by the alternative respiration with strain 

S313, producing a large amount of nodular tissue. However, with strain PRE 

considerably more ATP was lost in hydrogen production than by use of the alter­

native pathway (Table 5 ) . 

Alternative respiration was found not only in the plant part of the nodule 

(cytosol), but also in the bacteroids (Table 3 ) . The inhibitor constants for 

SHAM in bacteroids were almost 50-100 times higher as compared to those reported 

from plant mitochondria (Tomlinson and Moreland, 1975; Henry and Nyns, 1975). 

Althought the alternative oxidase is less sensitive to SHAM when succinate is 

used as substrate, permeability difficulties in addition might explain this 

difference. Similar to the data obtained with mitochondria, an increased 

electron flux via the alternative pathway yielded a lower K- for SHAM {e.g. 
presence or absence of KCN; PRE in comparison to P8) (Wedding et al. 1973). 
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Table 5. Costs of nitrogen fixation in pea-Rhizobium symbioses growing without 
nitrate (day 0 , 26 days after sowing) and 48 h after the supply of nitrate 
(10 mM; day 2). For explanation see text. 

Item 

1. Production (ymoles/ 
plant.day) of (cf Table 1) 
a. ethylene 
b. hydrogen 
c. nitrogen fixed (1a,b) 

P8 

0 

0 
0 
0 

2 

0 
0 
0 

S313 

0 

72 
36 
12 

2 

50 
21 
10 

PRE 

0 

67 
39 
9 

2 

49 
23 
9 

1.0 2. a. Total respirat ion of 
nodule (mg glucose/ 
plant.day) 

b. A l ternat ive nodule 52 
respirat ion as % of 
t o ta l 

c. Total nodule respiration 6 
as % of carbohydrate 
supply of roots 
(Table 4; 2a) 

3. Overall costs of nitrogen 
fixation (mg C respired/ 
mg N) (1c, 2a) 

4. ATP (ymoles/plant.day) 
a. production in nodules (2a,b) 
b. 'lost' in alternative 

respiration (2b) 
c. 'lost' in hydrogen 

production (1b) 

5. Overall costs of nitrogen 
fixation (moles of ATP/ 
moles N2 fixed) 
a. actual ATP production (4a,1c) 
b. assuming full phosphoryl­

ation efficiency (no alter­
native respiration)(4a,b;1c) 

1.0 

38 

5.3 

19 

12 

6.3 

7.5 

23 

11 

11.1 

252 

77 
89 

147 

131 
155 

2.6 

26 

3.1 

273 

46 
55 

2.5 

11 

4.2 

36 
72 

145 
49 

927 
135 

1270 
230 

424 
89 

467 
37 

161 

54 
58 

59 



Treatment of nitrogen-fixing bacteroids with SHAM, final concentration 

12.5 mM, significantly reduced nitrogenase activity (Fig. 5) by decreasing 

respiration. As an inhibition of alternative respiration does not involve a 

decrease in ATP production during electron transfer from succinate to oxygen 

(Storey and Bahr, 1969), this decrease might point to a respiratory protection 

as a possible function of the alternative respiration in bacteroids. The 

alternative oxidase is known to be less sensitive to oxygen than cytochrome 

oxidase (Solomos, 1977). In analogy, Appleby et al. (1976) reported respiratory 

protection by an oxygen-insensitive oxidase in R. japonioum bacteroids. Also, 

a non-phosphorylating, oxygen-insensitive oxidase was found in Azotobaoter 
vinelandii (Ackrell and Jones, 1971; Eilermann, 1973) and assumed to function 

in protecting nitrogenase against high pO-. 
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NITROGEN FIXATION BY A PEA-RH/ZOB/UM SYMBIOSIS 
CONTAINING A BACTERIAL UPTAKE HYDROGENASE 

ABSTRACT 

Pea plants {Pisum sativum cv. Rondo) were sown in soil with low numbers of 

indigenous rhizobia and inoculated with Bhizobivan leguminosarum strain S310a 

containing an uptake hydrogenase (Hup ) , or strain PRE, without hydrogenase 

(Hup ).Roots of pea plants grown in the open air and inoculated with S310a did 

evolve traces of hydrogen in air, whereas with strain PRE (Hup") 38% of the 

electron flow through nitrogenase was allocated to hydrogen production during 

the entire growth cycle of the plants. However, total plant nitrogen of the 

symbiosis with strain S310a was considerably lower than that with PRE (720 and 

1380 mg N per pot, respectively). This was due to a lower nitrogenase activity 

of the nodules of S310a, to a lower bacteroid content of these nodules and to an 

early senescence of the nodules in comparison with PRE. Also potential nitrogen 

fixation (as calculated from in vitro nitrogenase activity of isolated bacteroids, 

supplied with ATP and reducing equivalents) was lower with S310a than with PRE. 

From the later part of the vegetative phase of the pea plants, an excess amount 

of nitrogenase not utilized in nitrogen fixation was present both in the 

nodules of S310a and in those of PRE which amounted to 27% in S310a (Hup+) and 

19% in PRE (Hup"). The in vitro hydrogenase activity of S310a bacteroids 

decreased during the pod-filling period of the plant. 

Pea plants inoculated with S310a, cultivated in a qrowth chamber, showed no 

positive effects on nitrogen fixation by enrichment of the root atmosphere 

with 1% of hydrogen, even so when the energy supply of nitrogenase was minimized 

by combination of low light intensity and nitrate addition. Nitrogenase 

activity of isolated S310a bacteroids kept under aerobic conditions was not 

enhanced when 10% of hydrogen was present as a substrate. However, hydrogen 

oxidation provided a respiratory protection of nitrogenase against high oxygen 

levels. 
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As the energy gain by the oxidation of hydrogen was estimated at 0.6 - 4.7% 

of the ATP produced in the nodules by the respiration of carbohydrates, it is 

concluded that the occurrence of hydrogenase plays only a minor role in the 

energy supply of nitrogenase. 

INTRODUCTION 

Most Rhizobium species possess a number of strains which contain a hydrogenase 

capable of oxidizing all or part of the hydrogen produced by nitrogenase simul­

taneously with nitrogen fixation {e.g. Schubert and Evans, 1976; Evans et al. 

1980). The energy loss by this ATP-dependent H„ production might be minimized 

by hydrogenase activity, although it has been assumed that the production of 

1 mole of H„ requires 7 moles of ATP (Pate, Atkins and Rainbird, 1981) but that 

the oxidation of 1 mole of H„ would yield only 2 moles of ATP (Dixon, 1972) 

The greater part of the papers published on the subject deal with the hydro­

genase of R. japon-iaum.This hydrogenase can virtually recycle all of the H„ 

produced by nitrogenase and the presence of the enzyme has been shown to increase 

nitrogenase activity of isolated bacteroids supplied with H~ (Ruiz-Argu'eso, 

Emerich and Evans, 1979). Dry-matter production as well as nitrogenase activity 

were higher in greenhouse-grown soybean plants inoculated with hydrogenase-

positive (Hup ) strains than in similar plants inoculated with hydrogenase-

negative (Hup ) strains (Schubert, Jennings and Evans, 1978). However, when 

nitrogenase activity and dry matter-production of a Hup'-mutant strain were com­

pared with the values of the Hup wild-type strain, only minor differences of 

weak significance were found (Zablotowicz, Russell and Evans, 1981; Lepo et al., 
1981). In a field experiment with soybean, the use of a Hup strain of 

R. japoniaum as inoculant resulted only in a low increase in seed protein but 

not in a higher seed yield than was obtained with soybean inoculated with a Hup 

strain (Hanus et al., 1981). 

With the less-explored Hup strains of R. leguminosarum, the hydrogen uptake 

rates usually are not sufficient to recycle all of the hydrogen generated by 

nitrogenase activity (Ruiz-Arglieso, Hanus and Evans, 1978; Bethlenfalvay and 

Phillips, 1979). The alleged beneficial effects of hydrogen oxidation to energy 

supply of nitrogenase start from the assumption that energy supply is the rate-

limiting step of nitrogen fixation. In a previous Chapter (Ch. 1, pp.21-33) it 
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was shown that nitrogenase content was limiting nitrogen fixation during the 

main part of vegetative growth of pea plants with a Hup strain of 

R. leguminosarum, whereas energy supply was likely to be rate-limiting during 

generative growth. In order to ascertain whether the presence of hydrogenase 

could increase nitrogen fixation in R. leguminosarum, in the present paper 

both actual and potential nitrogen fixation values are reported in pea plants 

inoculated with Hup strain S310a during the growth cycle in open air in soil 

and under energy-limiting conditions in a growth chamber. 

MATERIALS AND METHODS 

Plant material and growth 

Seeds of pea plants [Pisum sativum L. cv. Rondo) were sown in gravel as 

described earlier (Chapter 2, p. 36) , and inoculated with R. leguminosarum 
S310a,which contains hydrogenase. The plants were kept in a growth chamber at 

20°C and 70% relative humidity, with a 16 h light/8 h dark cycle. At 14 days 

after sowing, when nodule formation had started, plants were transferred to a 

4.2-1 container with 2.5 1 of nitrogen-free nutrient solution 

and an additional supply of KCl, 10 mmoles per 1. The nodules were kept in the 

gas phase. Ten plants, supported by rubber stoppers, were placed in a plastic lid. 

Subsequently, the lid was closely fit to the container and the nutrient solution 

aerated with C0«-free air containing 1% of H« (treatment) or with CO^-free air 

(control). After the hydrogenase and nitrogenase measurements at 21 days after 

sowing,the nutrient solution was replaced by a solution containing KNCu 

(10 mmoles per 1) instead of KCl. The nitrogen-containing nutrient solution was 

refreshed every two days. 

In a separate experiment, plants were grown in the open air in pots in soil 

containing low numbers of indigenous rhizobia, as described before ( Chapter 1, 

pp. 21-33). 

Hydrogenase and nitrogenase measurements 

In vivo hydrogen production and nitrogenase activity in nodulated roots were 

determined as described before ( Chapter 1 ). 

For the in vitro anaerobic assay of hydrogenase and nitrogenase, nodules 

were picked from the roots after completion of the in vivo assay. The nodules 

were squeezed in a press under argon, at 0°C, in a buffer containing (mmoles/1): 

Tris(hydroxymethyl)aminomethane, 50; MgCl«, 2.5; sucrose, 300; 1,4 dithiotreitol, 

5; and polyvinylpyrrolidone (PVP), 4% {-). The pH was adjusted to 8.0 with HCl. 
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Bacteroids were centrifuged for 10 min at 5500g under argon, washed with a buffer 

solution (same buffer without PVP) and resuspended in this buffer solution. 

Bacteroids from 1 g of nodules were transferred to a 16.5 ml Hungate tube with 

2 ml of buffer containing 10 mM of methylene blue, under an atmosphere of 0.6% 

H? in argon. H„ consumption at 25°C was followed gas-chromatographically at 

30 min intervals after pre-incubation for 10 min (Roelofsen and Akkermans, 1979). 

In vitro nitrogenase was determined in bacteroids treated with EDTA and toluene, 

and supplied with ATP and sodium dithionite as described before (Van Straten and 

Roelofsen, 1976; Chapter 1 ). 

RESULTS 

In a preliminary experiment, only 2 Hup strains were found among 47 strains 

of R. leguminosamm of the culture collection of this laboratory, showing that 

the occurrence of a hydrogenase is a rare feature in R. leguminosamm. The 

hydrogenase found in free-living R. leguminosarum S310a showed derepression 

characteristics similar to those of R. japonicum 110 when grown in a medium as 

described by Lim and Shanmugam (1978). For example, uptake hydrogenase activity 

in cells of S310a with succinate and cyclic AMP amounted to 1.8 mmoles H„/g.h 

protein.h, as compared with 2.3 mmoles h^/g-h with cells of strain 110 withmalatt 

and cyclic AMP, reported by Lim and Shanmugam. 

Nitrogenase and hydrogenase activities of plants growing in open air 

To assess the influence of an uptake hydrogenase on nitrogen fixation and 

growth, a pot experiment was carried out in which pea plants were cultivated in 

soil inoculated with R. leguminosamm S310a (Hup ) and PRE (Hup"). During the 

entire growth period, considerably less nitrogen was fixed by pea plants grown 

in symbiosis with S310a than by plants grown with PRE, as evidenced by total 

plant nitrogen values (720 and 1380 mg N per pot at maturity, respectively). 

Actual nitrogen fixation {in vivo nitrogenase activity of nodulated roots) 

and potential nitrogen fixation [in vitro nitrogenase activity of isolated 

bacteroids) are shown in Fig. 1a for the entire growth cycle of the plants. 

With strain S310a, both actual and potential nitrogen fixation were signifi­

cantly lower than with strain PRE (p < 0.001). During the main part of vegetat­

ive growth, actual was equal to potential nitrogen fixation with both strains, 

but from 61 days after sowing the potential was higher than the actual nitrogen 

fixation (p < 0.01). Actual and potential nitrogen fixation per unit of nodule 

weight decreased with time (Fig. 1a). 
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Fig. 1a. Actual (•,•) and potential ( o , D ) nitrogenase activity during 
ontogenesis of pea plants inoculated with R. leguminosarum strains 
S310a (t, o) and PRE (• , D ). Values are means of triplicate 
determinations (potential nitrogenase activity) or duplicate 
determinations of 8 plants (actual nitrogenase activity) growing in 
pots in the open air. 

Fig. 1b. Bacterial-protein content of nodules from pea plants inoculated with 
R. leguminosarum strains S310a (o) or PRE ( n ). Values are means of 
duplicate determinations. 

Fig. 1c. Specific nitrogenase activity {in vivo, », • ; in vitro, o ,D ) of 
pea plants inoculated with R. leguminosarum strainsS310a (•, o) and 
PRE (• , D ). Values are means of duplicate determinations. 
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When nitrogen fixation was calculated for the entire growth season, assuming 

a nitrogenase activity of 24 h per day without diurnal variation, and a factor 

of 3.0 to convert moles of ethylene produced into moles of nitrogen fixed, 

actual and potential nitrogen fixation in pea plants inoculated with S310a 

would amount to 2.3 and 3.1 mmoles N2 per plant, respectively. Thus, with the 

Hup strain S310a 27% of the nitrogen-fixing capacity would not be utilized. 

In plants inoculated with the Hup strain PRE actual and potential nitrogen 

fixation during the growth period would amount to 3.8 and 4.7 mmoles of N„ per 

plant, respectively, which means that 19% of the nitrogen-fixing capacity would 

not be utilized. 

The differences in nitrogenase activity between S310a and PRE can partly be 

explained by differences in bacterial-protein content of the nodules (Figs. 1b,c), 

especially during the pod-filling period. However, during the vegetative growth 

phase the bacterial protein present in S310a was clearly less active in nitrogen 

fixation than the protein of PRE (Fig. 1c). This might be caused by a less 

complete transformation of bacteria (rods, no nitrogenase activity) into bacter-

oids (branched shape, high nitrogenase activity) during nodule development with 

strain S310a as compared with strain PRE. An almost equal nitrogenase activity 

per individual bacteroid at a greatly different activity per unit of nodule 

weight was found earlier in this laboratory with field beans growing with 

R. leguminosarum strains PRE and PF,, (van den Berg, 1977). 

Hydrogen production in air by nodulated roots was significantly lower in 

symbiosis with S310a than with PRE (Fig. 2a) resulting in a pronounced difference 

in relative efficiency (Schubert and Evans, 1976) during the growth period 

(95% in S310a and 62% in PRE). Bacteroid hydrogenase activity, as determined 

with the methylene-blue assay, was found in S310a only (Fig. 2b). Similar to 

nitrogenase activity, specific hydrogenase activity declined with time. If the 

nitrogenase of strain S310a is assumed to produce hydrogen in the same proportion 

to ethylene as was found with strain PRE, the hydrogenase values of Fig. 2b are 

too low to explain the almost absent net hydrogen production in air by nodulated 

roots with S310a up to 70 days after sowing. 

Nitrogenase and hydrogenase activities under reduced light conditions 

In order to be able to notice even a minor positive effect of the hydrogenase 

activity on the energy supply of nodules with strain S310a, an experiment was 

carried out with pea plants inoculated with this strain, kept in a growth chamber 

under suboptimal conditions. As a low nitrogenase activity under poor energy 

conditions might lead to a hydrogen production which could be too low for satu-
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Days 
120 

Fig. 2a. Hydrogen production in air by pea roots nodulated with R. leguminosarum 
strains S31;0a(o) and PRE ( D ). Values are means of duplicate 
determinations in sets of 8 plants from pots in the open air. 

Fig. 2b. Specific in vitro hydrogenase activity of pea root nodules formed 
with R. leguminosarum strain S310a (o). Values are means of duplicate 
determinations. 

ration of the hydrogenase, treatment groups were given \% of H9 in the root 
2 

atmosphere. At a light intensity of 90 W/m no differences were observed in 

nodule weight per plant and in vivo and in vitro nitrogenase activity due to 

growth with \% of H? during 7 days, as compared to control plants grown without 

added hydrogen. When nitrate (10 mM) was supplied, nodule weight and both in vivo 
and in vitro nitrogenase activity decreased equally in hydrogen-treated 

plants and in plants without added hydrogen. Therefore, experiments were carried 

out in which light intensity was reduced to 50 W/m and after 7 days nitrate 

(10 mM) was added in order to minimize energy supply to nitrogenase (Table 1). 

Under this reduced light intensity, the in vivo nitrogenase activity and nodule 

fresh weight amounted to only one-third of the values found at high light inten­

sity, but no differences in these parameters were found that were associated 

with hydrogen enrichment. Also the in vitro hydrogenase activity was equal, but 

the in vitro nitrogenase activity was clearly higher when the plants were treated 

with H„; nitrate partly eliminated this effect. 
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Table 1. Hydrogenase and nitrogenase activities of pea plants as affected 
by the supply of \% of H2 to the root atmosphere from 14 days after sowing. 
The plants were inoculated at sowing with R. legwninosarum S310a and were 
kept on an N-free nutrient solution in a growth chamber at 50 W/m2. At 21 
days after sowing the plants were supplied with a similar nutrient solution 
containing KNO,, 10 mmoles/1 

Item Days after sowing 

21 (- NO3) 

no H2 + H„ 

28 (+ N0~) 

no Hp + H2 

In vivo CpH. production 
(ymoles/plant.h) 1 . 0 + 0 . 1 1 . 0 + 0 . 1 1 . 2 + 0 . 2 1 .4+ 0.3 

Nodule fresh weight 

(mg/plant)1) 75 ± 8 72 ± 6 143 ± 6 166 + 10 

In vitro hydrogenase 

activity (ymoles H„ 

consumed/g nodules, 

fresh wt.h) 2 ) 1.2 ±0.3 0.9 ± 0.1 0.4 ± 0.2 0.3 ± 0.0 

In vitro nitrogenase 

activity (ymoles CpH, 

produced/g nodules, 

fresh wt.h)2^ 5.7 ±1.3 9.8 ±1.4 5.2 ±1.0 6.5 ± 0.2 

1 ) 
Means and standard deviation of duplicate samples of 10 plants. 

2) 
Means of triplicate samples. 
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Fig. 3. Effect of pO„ on the nitrogenase activity of isolated bacteroids of 
R. leguminosarum strain S310a, supplied with 10% of H2 (o) or without 
added H2 (•). 

Nitrogenase activity of bacteroids supplied with H„ 

The in vitro nitrogenase assay determines the activity of the enzyme under 

anaerobic conditions, using ATP and sodium dithionite as source of energy and of 

reducing equivalents, respectively. Therefore the contribution of hydrogen uptake 

to energy supply for nitrogen fixation had to be measured under aerobic con­

ditions with isolated bacteroids capable of using the hydrogen added as sub­

strate. Washed bacteroids of strain S310a from 630 mg of nodular tissue were 

incubated under 10% of acetylene and varying pCL, in the presence of reduced 

myoglobin and of bovine serum albumine (final volume of the incubation mixture 

2 ml), as described by Laane, Haaker and Veeger (1978). The effect of 10% of H„ 

on nitrogenase activity of bacteroids without added carbon substrate is shown 

in Fig. 3. The hydrogen uptake system in S310a bacteroids did not raise nitro­

genase activity above the rate of bacteroids dependent on endogenous respiration. 

However, the activity of nitrogenase in bacteroids in the presence of 10% of H? 

is maintained at a higher p0„, showing that in S310a bacteroids the hydrogenase 

system only offers some respiratory protection. 
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DISCUSSION 

Hydrogen uptake and utilization by bacteroids of the Hup strain S310a of 

R. leguminosavum did not increase nitrogenase activity but only provided 

respiratory protection (Fig. 3 ) , in contrast to the results obtained with 

R. japoniaum bacteroids (Ruiz-Argüeso et al., 1979). It is doubtful, however, 

to what extent a respiratory protection is functional in the legume nodule, 

where bacteroids are present in compartments, buffered as to high oxygen level 

by leghemoqlobin. 

No stimulation of nitrogen-fixing characteristics was found in the exper­

iment with nodulated pea plants in hydrogen-enriched environment (Table 1 ) , 

except the increased in vitro nitrogenase activity of plants growing at 

reduced light intensity. Even in that case, however, the benefit of hydrogen 

is doubtful as the in vitro nitrogenase activity was lower than the in vivo 
activity. This has been found earlier with plants growing in water culture 

(Houwaard, 1978). As the nodules produced in water culture had a whitish 

surface due to the formation of lenticel tissue, the oxygen content of this 

tissue might have caused a partial inactivation of nitrogenase during prep­

aration of the bacteroids. 

The in vitro nitrogenase activity was higher than the in vivo activity 

during the generative phase of pea plants growing in pots in the open air 

(Fig. 1a), supporting the concept of potential nitrogen fixation (Chapter 1, pp. 

21-34) The hydrogenase present in strain S310a prevented the generation of 

large amounts of hydrogen in air (Fig. 2a) but did not contribute to improved 

utilization of the potential nitrogen fixation which amounted to 73% with S310a 

(Hup+) and to 81% with PRE (Hup"). In the generative phase with PRE as well as 

with S310a, nitrogen fixation seems limited by photosynthate supply, regardless 

of nitrogen-fixing capacity and regardless of the presence of hydrogenase 

(Fig. 1a). Both with PRE and S310a, the full capacity of the nitrogen-fixing 

system was only realized by an enhanced photosynthate supply (Chapter 2, page 

39). Even under energy-limiting conditions the presence of hydrogenase had 

no detectable effect on nitrogen fixation.Thus, hydrogen oxidation will 

certainly not enhance nitrogenase activity when energy supply is not the 

limiting factor, e.g. during early vegetative growth under optimum conditions 

when the content of the enzyme is limiting nitrogen fixation. 

In a previous paper ( Chapter 3 ) the energy consumption of the 

nodules of the highly effective strain PRE in acetylene reduction was estimated 
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at 6.3 moles of ATP per mole of C„H2 reduced, whereas in nodules of the moder­

ately effective strain S313 a value was calculated of 12.9 moles ATP consumed 

per mole of C?H2 reduced. When one of these values is assumed to be valid for 

the nodules of the moderately effective strain S310a, and when the oxidation 

of 1 mole of H„ is assumed to yield 2 moles of ATP (Dixon, 1972), the contri­

bution of hydrogenase to energy generation in the nodule can be calculated. 

Assuming that the costs of acetylene reduction with the moderately effective 

strain S310a are equal to those with the highly effective strain PRE, hydro­

genase activity would produce 1.1 - 2.9% of the ATP generated in respiration 

in the experiment with added hydrogen (Table 1). In the pot experiments with 

soil these values amounted to 3.3 - 9.7% during the period when hydrogenase 

activity was detected (Fig. 2b). However, a comparison with the intermediate 

strain S313 is more realistic, as nodule weight per plant as well as nodule 

activity are similar to those with S310a. In that case, the hydrogenase 

contributes 0.6 - 1.4% of the ATP generated in respiration during the experiment 

in hydrogen-enriched air, whereas in the pot experiment 1.6 - 4.7% of the ATP 

production would be provided by hydrogenase activity. These benefits of hydro­

genase activity are lower than those calculated by Evans et al. (1981) for 

R. japoniaum (9.1% of ATP supply to nitrogenase) based on a different set of 

assumptions. 

Whatever the benefits of hydrogenase activity may be, they do not compensate 

for other,less favourable, characteristics. The shorter span of nodule activity 

with S310a as compared with strain PRE is one of such characteristics. With 

hydrogenase-containing strains of R. leguminosarum, nitrogen fixation and dry 

matter production are lower than it is true of most of the hydrogenase-less 

strains {e.g. Fig. 1, S310a vs PRE; strain 128C53 us 175G11, Ruiz-Arglieso 

et al., 1978). In addition, hydrogenase-positive strains might be weak competi­

tors (e.g. S310a vs PRE, Van Mil, in prep.). Summarizing, it may be concluded 

that the presence of hydrogenase should only play a minor role in selecting a 

Rhizobiwn strain for use as an inoculant. 

REFERENCES 

1. Berg, E.H.R. van den. 1977. The effectiveness of the symbiosis of Rhizobium 
leguminosarum on pea and broad bean. Plant and Soil 48: 629r639. 

2. Bethlenfalvay, G.J., and Phillips, D.A. 1979. Variation in nitrogenase and 
hydrogenase activity of Alaska pea root nodules. Plant Physiology 63: 
816-820. 

3. Dixon, R.O.D. 1972. Hydrogenase in legume root nodule bacteroids: occurrence 
and properties. Archives of Microbiology 85: 193-201. 

73 



4. Evans, H.J., Emen'ch, D.W., Lepo, J.E., Maier, R.J., Carter, K.R., Hanus, F.J 
and Russell, S.A. 1980. The role of hydrogenase in nodule bacteroids and 
free-living rhizobia, pp 55-81 in Nitrogen Fixation, Proceedings of the 
Phytochemical Society of Europe Symposium, Sussex 1979 (eds.W.D.P. Stewart 
and J.R. Gallon), Academic Press London. 

5. Evans, H.J., Purohit, K., Cantrell, M.A., Eisbrenner, G., Russell, S.A., 
Hanus, F.J., and Lepo, J.E. 1981. Hydrogen losses and hydrogenases in 
nitrogen-fixing organisms, pp 84-96 in Current perspectives in nitrogen 
fixation, Proceedings of the Fourth International Symposium on Nitrogen 
Fixation, Canberra 1980 (eds. A.H. Gibson and W.E. Newton), Elsevier/ 
North Holland Amsterdam 

6. Hanus,F.J., Albrecht, S.L., Zablotowicz, R. M. , Emerich, D.W., Russell, S.A., 
and Evans, H.J. 1981. Yield and nitrogen content of soybean seed as 
influenced by Rhizobium japoniaum inoculants possessing the hydrogenase 
characteristic. Agronomy Journal 73: 368-372. 

7. Houwaard, F. 1978. Influence of ammonium chloride on the nitrogenase activity 
of nodulated pea plants {visum sativum). Applied and Environmental Micro­
biology 35: 1061-1065. 

8. Laane, C , Haaker, H., and Veeger, C. 1978. Involvement of the cytoplasmatic 
membrane in nitrogen fixation by Rhizobium leguminosarum bacteroids. 
European Journal of Biochemistry 87: 147-153. 

9. Lepo, J.E., Hickok, R.E., Cantrell, M.A., Russell, S.A., and Evans, H.J. 1981, 
1981. Revertible hydrogen uptake-deficient mutants of Rhizobium japoniaum. 
Journal of Bacteriology 146: 614-620. 

10. Lim, S.T., and Shanmugam, K.T. 1979. Regulation of hydrogen utilisation in 
Rhizobium japoniaum by cyclic AMP. Biochimica et Biophysica Acta 584: 
479-492. 

11. Pate, J.S., Atkins, C A . , and Rainbird, R.M. 1981. Theoretical and exper­
imental costing of nitrogen fixation and related processes in nodules of 
legumes, pp 105-116 in Current perspectives in nitrogen fixation, 
Proceedings of the Fourth International Symposium on Nitrogen Fixation, 
Canberra 1980 (eds. A.H. Gibson and W.E. Newton). Elsevier/North Holland 
Amsterdam. 

12. Roelofsen, W., and Akkermans, A.D.L. 1979. Uptake and evolution of H„ and 
reduction of C?H„ by root nodules and nodule homogenates of Alnus glutinosa. 
Plant and Soil 52: 571-578. 

13. Ruiz-Argüeso, T., Emerich, D.W., and Evans, H.J. 1979. Hydrogenase system 
in legume nodules: a mechanism of providing nitrogenase with energy and 
protection from oxygen damage. Biochemical and Biophysical Research 
Communications 86: 259-264. 

14. Ruiz-Argüeso,T.,Hanus, F.J., and Evans, H.J. 1978. Hydrogen production and 
uptake by pea nodules as affected by strains of Rhizobium leguminosarum. 
Archives of Microbiology 116: 113-118. 

15. Schubert, K.R., and Evans, H.J. 1976. Hydrogen evolution: a major factor 
affecting the efficiency of nitrogen fixation in nodulated symbionts. 
Proceedings of the National Academy of Sciences U.S.A. 73: 1207-1211. 

16. Schubert, K.R., Jennings, N.T., and Evans, H.J. 1978. Hydrogen reactions 
of nodulated leguminous plants. II Effects on dry matter accumulation 
and nitrogen fixation. Plant Physiology 61: 398-401. 

17. Straten, J. van, and Roelofsen, W., 1976. Improved method for preparing 
anaerobic bacteroid suspensions of Rhizobium leguminosarum for the 
acetylene reduction assay. Applied and Environmental Microbiology 31: 
859-863. 

18. Zablotowicz, R.M., Russell, S.A., and Evans, H.J. 1980. Effect of the 
hydrogenase system in Rhizobium japoniaum on the nitrogen fixation and 
growth of soybeans at different stages of development. Agronomy Journal 
72: 555-559. 

74 



NODULE FORMATION AND NITROGEN FIXATION IN 
SYMBIOSES OF PEA (PISUM SATIVUM L ) AND 
DIFFERENT STRAINS OF RHIZOBIUM LEGUMINOSARUM 

ABSTRACT 

Symbioses of one pea variety {Pisum sativum L., cultivar Rondo) inoculated 

with different strains of Rhizobium lëguminosarum showed marked differences 

in nitrogen-fixing characteristics. Nitrogen fixation, as calculated from 

plant-nitrogen data, was highest with strain PRE which produced a low nodular 

mass with a high nitrogenase activity. With this strain red nodules were 

located mainly on the primary roots, but lateral-root nodules were steadily 

produced. Pea plants inoculated with strains S313 and S310a fixed less nitrogen 

than those inoculated with strain PRE. Their nodule formation pattern was 

different from that of PRE, strain S313 producing large amounts of pink, 

whitish nodular mass on the primary root but virtually no nodules on the 

lateral roots, whereas with strain S310a the primary (red) root nodules rapidly 

were replaced by large amounts of red lateral root nodules. Pea plants inocu­

lated with the ineffective strain P8 produced small, white nodules predominantly 

on the lateral roots. 

Nodule numbers on the primary roots were equal with all strains, whereas 

numbers of nodules on lateral roots were inversely correlated to nodule weight 

on the primary root. From the data presented it is concluded that nodule for­

mation is connected with nitrogenase activity, a low activity being compensated 

for by the production of large nodules (S313) or by the formation of many new 

nodules (S310a). 

Nitrogenase activity of the nodules declined with time. Less electrons 

were spent in hydrogen production as compared with acetylene reduction, 

resulting in a rise of relative efficiency with proceeding growth period. 

The values of nitrogen fixation, as calculated from acetylene-reduction data, 

using a conversion factor of 3.0, were lower than those derived from the differ­

ences between yield of plant nitrogen of the effective symbioses (with strains 
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PRE, S313 and S310a) and that of the ineffective symbiosis with strain P8. When 

the hydrogen produced in air by effectively nodulated roots was subtracted from 

the acetylene-reduction values, nitrogen fixation was even more seriously under­

estimated, but in addition severely biased in favour of the hydrogenase-

containing strain S310a, which produced a low plant-nitrogen yield. 

The real values of the conversion factor, as obtained by division of the 

acetylene-reduction figures by the yield of plant nitrogen derived from nitrogen 

fixation, decreased gradually during the growth period. With all strains, 

nitrogen fixation was highest during the pod-filling stage. 

In a separate experiment 3 pea cultivars, differing in seed-production rates, 

were inoculated with a single R. leguminosarum strain. Nitrogen fixation with 

an early variety (Florix) was lower than that with an intermediate variety 

(Rondo) or a late variety (Mercato). Mercato fixed more nitrogen than Rondo 

but its seed yield was less because of a poorer translocation of nitrogen to 

the seed from vegetative matter. 

INTRODUCTION 

In agriculture, yields of leguminous crops are determined to a considerable 

extent by the quality of the symbioses, i.e. by the matching of the host cultivar 

with the rhizobial strain (5,11). As plant breeding programmes are usually aimed 

at increased yield, and at improved resistance against pests and diseases, a high 

nitrogen fixation capacity is selected in an indirect way. 

A direct approach to enhance nitrogen fixation is to find new Rhizobium 
strains with better nitrogen-fixing characteristics. In the present paper, the 

relation between nitrogen fixation, yield and symbiotic characteristics has 

been investigated in associations of peas with a number of selected strains of 

Rhizobium leguminosarum. As low levels of nitrogen fixation have to be compen­

sated by the supply of combined nitrogen for obtaining satisfactory yields, the 

influence of combined nitrogen on nodulation, nitrogen fixation and yield is 

described in a second paper. 

MATERIALS AND METHODS 

Plant material and growth 

Enamelled Mitscherlich jars of 6-1 capacity, sterilized with alcohol, were 

filled with a mixture (-) of 1 part of heat-sterilized sand and 2 parts of non-

sterile clay, obtained from newly reclaimed polder land. For inoculation, 50 ml 
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of a 7-days old culture of Rhizobium leguminosarum was mixed with 6 1 of soil. 

A basal fertilizer gift of 3.8 mmoles of phosphorus and 9.6 mmoles of potassium 

was applied per pot. 

Seeds of pea plants {visum sativum L . ) , cultivars Florix, Mercato and Rondo, 

were surface-sterilized by immersion in a solution containing 4% of H^O« and a 

few drops of Teepol (detergent) for 25 min before sowing. The soil was then 

covered with sterilized gravel to prevent clogging after watering. Plants were 

kept in the open air under wire for protection against birds. In each pot finally 

8 plants were retained. 

Hydrogen production and acetylene reduction 

The shoots of the plants were detached, the roots freed from soil particles 

by gently shaking and incubated in stoppered 1-1 Erlenmeyer flasks. After 25 min 

a 100-ul gas sample was assayed for hydrogen production using a gas Chromatograph 

equipped with a thermal conductivity detector. Subsequently, 100 ml of acetylene 

was added and a 100-yl gas sample was taken after 15 min. Ethylene production 

was determined with a gas Chromatograph equipped with a hydrogen-flame detector. 

Rates of hydrogen production and acetylene reduction were linear with time up 

to 80 min. 

Nitrogen analyses of the plant material 

Nitrogen in oven-dried plant material was determined by the Kjeldahl method, 

using CuSO« and selenium as catalysts. 

RESULTS 

In a preliminary experiment, the success of inoculation of the natural soil 

used in the experiments, which was assumed to contain low levels of indigenous 

rhizobia, was tested with mutant strains of R. leguminosarum resistant against 

streptomycin as well as acriflavine (Table 1). Seeds were sown in small 0.5-1 

test pots as described in the Methods section , using 5 ml of a 4-days old bac­

terial culture grown on yeast-mannitol broth as an inoculum (approximately 5.10 

bacteria per g of soil). The nodules of the pea plants were checked 40 days after 

sowing by pricking a needle first into a surface-sterilized nodule and then into 

yeast-mannitol agar plates without and with streptomycin and acriflavine. Inocu­

lation with R. leguminosarum strains PRE and S313a proved to be successful, 
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Table 1. Nodule formation on pea {visum sativum cv. Rondo) by indigenous 
rhizobia and by inoculated strains (antibiotic-resistant), 40 days after 
sowing in clay soil. Values represent means and standard deviations of 
duplicate determinations 

Strain 

P8 

S310aSA 

S313SA 

pRESA 

Uninocul ated 

Pink nodules 
per plant 

2 ± 1 

15 ± 5 

15 ± 2 

20 ± 4 

7 ± 2 

Antibiotic-
resistant 
colonies (%) 

0 

34 ± 9 

88 + 12 

78 ± 15 

0 

CpHp reduction 

(nmoles/pl.h) 

80 ± 50 

350 ± 80 

370 ± 170 

240 ± 120 

100 ± 50 

SA whereas strain S310a was less able to compete with indigenous Rhizobium strains 

for nodulation sites. Inoculation with the wild-type strain P8 gave many small 

white ineffective nodules on pea plants but a few larger pink nodules which were 

apparently derived from indigenous strains. From these results it was concluded 

that in a large-scale experiment inoculation should be heavier (5.10 bacteria 

per g of soil) in order to prevent competition difficulties. In the large-scale 

experiment only wild-type strains were used. 

Nodule formation and nitrogen fixation 

Nodulation brought about by three R. leguminosarum strains showed clearly 

different patterns (Plate 1). The ineffective strain P8 produced small white 

nodules in a great number on the lateral roots. In contrast, strain S313 formed 

big, branched nodules with a faintly pink colour in a great mass, virtually only 

on the primary roots. Strain PRE occupied an intermediate position with medium-

sized, red nodules spread over primary and lateral roots in a more even way. 

Strain S310a (not shown) behaved similarly to PRE, except for the nodule colour 

which changed from red to green more rapidly, indicating early senescence. 

There was no difference in the number of nodules on primary roots produced by 

each rhizobia! strain (Fig. 1a). The numbers of lateral-root nodules formed 

during growth were significantly different with the four strains (F test, 

p < 0.01, Fig. _1b). The highest numbers of lateral-root nodules were found with 

S310a and P8. 
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Plate 1. Root systems of 64-days old pea plants inoculated with Rhizobium 
strains P8 (a), PRE (b), and S313 (c). 
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Fig. 1. Root nodule numbers during ontogenesis of pea plants, cv. Rondo 
inoculated with R. legum-inosarum strains P8 (•), S310a (o), S313 (A), 
and PRE ( O ) . Values represent means of duplicate samples of 4 plants 
from different pots, (a) Nodule numbers on primary roots, (b) Nodule 
numbers on lateral roots. 

Nodule fresh weight per plant increased gradually until mid-pod fill, as 

shown in Fig. 2a. With S313 and S310a nodule weight per plant was significantly 

higher (p < 0.01) than that with PRE. From mid-pod fill, nodule weights decrease! 

slowly with PRE and rapidly with S313. With strain S310a, a considerable pro­

portion of the nodules turned green early. The contribution of primary-root 

nodules to total nodule weight decreased during plant growth, the greatest de­

crease being found with S313 (Fig. 2b). Primary-root nodules contributed signifi­

cantly (p < 0.01) more to total nodule weight per plant in the sequence S313 > 

PRE > S310a, P8. 
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Fig. 2. Root nodule fresh weight during ontogenesis of pea plants, cv. Rondo 
inoculated with R. leguminosarum strains P8 (•), S31Oa (o), S313 (A), 
and PRE ( D ) . Values represent means of duplicate samples of 4 plants 
from different pots, (a) Total nodule fresh weight per plant, 
(b) Weight ratio of primary to lateral root nodules. 

Nitrogenase activity of the nodules formed by PRE, S313 and S310a with cv. 
Rondo declined during growth, the greater fall being found with PRE (Fig. 3a). 
Roots nodulated with P8 displayed no nitrogenase activity. The quantity of 
hydrogen produced in air by nitrogenase decreased more rapidly as compared with 

the decrease in ethylene produced under acetylene, resulting in a steady rise of 
H„ produced in air 

the relative efficiency (1- ~i j—r- •. ,,.„, r ,, )(see 13; Fig 3b). 
C?Hd proauced in air + 10% Ĉ H,, 3 
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Fig. 3. Nitrogenase activity of root nodules during ontogenesis of pea plants, 
cv. Rondo, inoculated with R. leguminosavum strains S310a (o), 
S313 (A), and PRE (•). Values are means of duplicate pots with 
8 plants each, (a) Ethylene produced under air + 10% acetylene, 
expressed per g of nodule fresh weight, (b) Relative efficiency 
(see text). 

Strain S310a on the other hand displayed a high relative efficiency owing to the 

presence of a hydrogenase capable of utilizing part of the hydrogen evolved by 

nitrogenase (Chapter 4, pp. 63-75 ) . Relative efficiency with this strain 

initially amounted to 96-99% but decreased to the values of the strains without 

a hydrogenase at pod fill (day 78). This occurred together with the formation of 

a few large nodules on the lateral roots, which were morphologically different 

from the nodules initially produced with S310a. When these deviating nodules were 

assayed separately (day 93) a relative efficiency of 48% was found indicating 

that they were formed by one of the few rhizobia originally present in the soil. 

The R. leguminosarwn strains studied in this experiment showed distinct differ­

ences in the supply of nitrogen to the plant (Fig. 4c). With the ineffective stra 

P8, the plant was fully dependent on seed and available soil nitrogen, resulting 

in a very low yield of nitrogen at maturity (15 mg N/plant). The amounts of plant 
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Fig. 4. Nitrogen fixation during ontogenesis of pea plants, cv. Rondo,inocu­
lated with if. leguminosarum strains P8 (•), S310a (o), S313 (A), and 
PRE ( D ) . Values represent means of duplicate samples, (a) Calculated 
from ethylene production (under 10% of acetylene in air) minus hydrogen 
production in air. (b) Calculated from ethylene production under 10% 
of acetylene in air. (c) Total plant nitrogen as determined by the 
Kjeldahl method. 

nitrogen contained in cv. Rondo differed significantly (p < 0.01) with the 

rhizobial strains in the sequence PRE > S313 > S310a > P8. 

The fact that pea plants inoculated with strain P8 displayed no nitrogenase 

activity, enabled us to calculate the amount of nitrogen fixed by nitrogen-

fixing symbioses by subtracting the nitrogen yield of the P8-associations from 

the values of the effective symbioses. During the entire growth period, nitrogen 

fixation of the 3 associations tested amounted to 122, 96, and 56 mg N per plant 

with PRE, S313 and S310a, respectively (fig. 4c). 
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Nitrogen fixation during the growth period was also estimated from acetylene-

reduction data, assuming an activity of the nitrogen-fixing system during 24 h 

per day without diurnal variation, and using a factor of 3.0 to convert moles 

of ethylene produced under acetylene into moles of nitrogen fixed (Fig. 4b). 

These values underestimated nitrogen fixation as compared with the plant nitrogen 

data: 71, 61, and 52 mg N per plant with PRE, S313 and S310a, respectively. This 

underestimation was more serious with strains PRE and S313 (37-42%) than with 

strain S310a (8%). 

Hydrogen production in air by nitrogenase is usually considered to occur in 

competition with nitrogen fixation. Therefore, nitrogen fixation was also esti­

mated from ethylene production under air + 10% of acetylene (representing total 

nitrogenase activity) minus hydrogen production in air (Fig. 4a). According to 

this method, nitrogen fixation during the growth period would amount to 43, 38 

and 48 mg N per plant with strains PRE, S313 and S310a, respectively. Thus, the 

inclusion of the hydrogen production not only aggravated the underestimation of 

nitrogen fixation but even caused a misrepresentation of the nitrogen-fixing 

capacity in favour of the hydrogenase-positive strain S310a. 

The distribution of the nitrogen-fixing activity over the growth period was 

influenced by the rhizobial strain (Table 2 ) . With S310a, nitrogen fixation 

declined rapidly during pod formation, whereas with S313 and PRE a considerable 

part of the total nitrogen fixation took place during the pod-filling period. 

When the conversion factors of ethylene production under acetylene into nitrogen 

fixed were calculated on a growth season basis, assuming an activity of 24 h 

per day without diurnal variation, the values deviated considerably from the 

theoretical value of 3.0 (Table 2 ) . The ratio was high during vegetative growth 

but decreased afterwards. When the allocation of electrons between nitrogen and 

proton reduction was taken into account, the ratio dropped below 3.0 except for 

strain S310a. This strain, which contains an uptake hydrogenase, gave rise to 

a consistently higher ratio between ethylene produced and nitrogen fixed than 

the other strains. However, also with S310a this ratio declined during the growth 

period. 
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Table 2. Nitrogen fixation during ontogenesis of pea (cv. Rondo)-Rhizobzum 
symbioses '' 

Growth stage Strain of microsymbiont 

S310a S313 PRE 

Vegetative (1-68 days) „% 
N2 fixed (mmoles/plant) 

C2VN23 ) ., 
(C2H4-H2)/N2

4 ; 

Flowering and pod formation (69-86 days) 
N9 f ixed (mmoles/plant)2) 

C2H4/N2
J ; 

(C2H4-H2)/N2
4) 

Pod-fill and ripening (87-114 days) 
N2 fixed (mmoles/plant)2) 

C2H4/N2
3) 

(C2H4-H2)/N2
4) 

Entire growth period (1-114 days) 
N9 f ixed (mmoles/plant)2) 

3) C2H4/N2
J ; 

(C2H4-H2)/N2
4) 

1.00 

4.33 

4.25 

0.64 

4.07 

3.83 

0.49 

2.86 

2.31 

2.11 

3.90 

3.68 

1.61 

3.54 

1.67 

0.71 

2.87 

2.37 

1.24 

1.67 

1.41 

3.56 

2.76 

1.72 

1.60 

4.14 

1.82 

1.12 

2.27 

1.89 

1.62 

1.37 

1.13 

4.38 

2.62 

1.58 

1 ) Values are averages of duplicate samples of 8 plants 
2) 'Calculated from plant nitrogen of the effective symbiosis minus plant nitrogen 

of the ineffective symbiosis (Rondo x P8) 
3) Conversion factor for converting C2H4 produced in air + 10% of C2H2 into 

Infixed 
4) Conversion factor for converting C0H. produced in air + 10% of C2H„, minus 

H2 produced in air, into N2 fixed/ 
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Host influenae 

In a separate experiment, the influence of the host plant was briefly checked 

in 3 pea cultivars with different rates of seed production: Florix (early), 

Rondo (intermediate), and Mercato (late). The plants were inoculated with a 

single strain of R. leguminosarum, PF~. The distribution of nitrogen fixation 

during the growth period is shown in Table 3. The considerably shorter growth 

period of Florix resulted in a lower yield of fixed nitrogen and seed yield 

(Fig. 5a) as compared with Rondo and Mercato. The late-flowering cultivar Mercato 

apparently had a higher nitrogen-fixing capacity than Rondo, when calculated 

from values of ethylene produced under acetylene, using a conversion factor of 

3.0 to convert moles of ethylene produced into nitrogen fixed (Fig. 5b). However, 

the actual difference in plant nitrogen between Mercato and Rondo was not as 

large as suggested by the ethylene production data (Fig. 5c). With Mercato, seed 

yield was lower than with Rondo (Fig. 5a) but final yield of plant nitrogen was 

higher owing to a higher nitrogen content of the leaves (at maturity 35.4 and 

18.6 mg N per plant with Mercato and Rondo, respectively). 

Table 3. Nitrogen fixation during ontogenesis of pea cultivars inoculated 
with R. leguminosarum Strain PF o 

Growth stage Cult ivar 

F lor ix Rondo Mercato 

Vegetative (days) .^ 
N„ f ixed (mmoles/plant) 

Flowering and pod formation (days) 
N„ f ixed (mmoles/plant)1) 

Pod- f i l l and ripening (days) 
N~ f ixed (mmoles/plant)1) 

Entire growth period (days) 
N9 f ixed (mmoles/plant)1) 

1 - 4 7 1 - 5 7 1 - 6 4 
1.13 1.79 2.00 

48 - 58 58 - 73 65 - 86 
0.37 0.70 1.40 

59 - 86 7 3 - 1 0 0 8 7 - 1 0 5 
0.54 1.45 0.67 

1 - 8 6 1 - 1 0 0 1 - 105 
2.04 3.94 4.07 

'Calculated from plant nitrogen of the effective symbiosis minus plant 
nitrogen of the ineffective symbiosis Rondo x P8. Values are averages 
of duplicate determinations of 8 plants 
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90 110 
Days 

Fig. 5. Seed production and nitrogen fixation during ontogenesis of pea 
cultivars (Florix, x; Rondo,^; and Mercato,^) inoculated with 
R. leguminosarum strain PF£. Values represent means of duplicate 
samples, (a) Seed production, (b) Nitrogen fixation as calculated 
from acetylene reduction values. For explanation see text, (c) Plant 
nitrogen as determined by the Kjeldahl method. 

DISCUSSION 

Soduîe formation 

The difference in nodule formation between legumes infected with an effective 

strain of Rhizobium and legumes infected with an ineffective strain was reported 

early in the study of nitrogen fixation (6). However, differences in nodule 

formation between effective strains have received less attention (18). With 

strain PRE, a high nitrogenase activity of the nodules (Fig. 3a) was associated 
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with a relatively low nodular mass, mainly located on the primary root (Fig. 2 ) . 

With strain S313, the lower nitrogenase activity of the nodules was almost 

compensated by the high nodular mass produced (compare Figs 2, 3 and 4) whereas 

with strain S310a the low nitrogenase activity led to a constant formation of 

nodular tissue on lateral roots (Fig. 2 ) . However, with S310a this did not result 

in a nitrogen-fixing capacity as high as that of PRE, as the older nodules aged 

at an early stage. 

The nodulation pattern of strain S310a was similar to that of strain P8 

(Figs 1, 2 ) . As with S310a and P8 nodule numbers were equal but nodule weights 

were different (Figs 1 , 2 ) , the hypothesis that nodule formation is regulated 

by the synthesis of an unknown inhibiting compound is unlikely, as this hypoth­

esis cannot explain the occurrence of different nodule weights at equal nodule 

numbers (12). An explanation of the observed differences in nodulation patterns 

might be offered by assuming differences in synthesis of growth-stimulating 

phytohormones, such as cytokinins. A function of phytohormones in nodule 

formation as has been proposed by Libbenga (10), has so far not been verified 

adequately. Therefore, we restrict to the general view that nitrogenase activity 

and nodule formation are related by strategies that are different with each 

strain. A high nitrogenase activity is assumed to be associated with a relatively 

low amount of nodular tissue (PRE) and viae versa (S313), whereas a rapid 

senescence is compensated by the formation of new nodules. These patterns are 

of course dependent on the interaction between host and microsymbiont. A large 

supply of photo-assimilates increases nodule mass, as was discussed earlier in 

a comparison of pea with field bean (Chapter 1, page 31). 

Hydrogen 'production 

Hydrogen production in air decreased relatively to ethylene production 

(Fig. 3b) with strains PRE and S313 during the first 60 days of growth. Sub­

sequently, it declined much more sharply than the ethylene production, so that 

the relative efficiency of the symbioses with these strains rose to approximately 

90%. The relative efficiency with strain S310a was nearly 100% owing to the 

presence of hydrogenase which recycled the hydrogen produced by nitrogenase, but 

obviously this process did not compensate for the low nitrogenase activity and 

unfavourable nodule formation pattern with this strain (Fig. 4 ) . 

The observed rise in relative efficiency of nitrogen-fixing nodules (Fig. 3b) 

during the generative growth phase of the pea plants coincides with the pre­

sumably decreasing supply of photosynthates to the nodules due to the formation 

of pods (9). This observation is in agreement with results reported in a 



previous Chapter 1,(pp.21 - 34) which showed that energy supply of nitro-

genase during the generative phase is insufficient for a maximum nitrogenase 

activity, in contrast with the vegetative phase, during which nitrogenase is 

entirely utilized. The decrease in hydrogen production during presumably reduced 

photosynthate supply of the nodules seems to contradict evidence from experiments 

with isolated nitrogenase (16, 7, 17). These experiments generally indicate that 

under low energy conditions, e.g. when ATP levels are low (16), or when electron 

flow through nitrogenase Mo^Fe component is low (7), electrons are allocated 

to proton reduction rather than to the fixation of nitrogen. Also more hydrogen 

is produced when the ratio of Fe component (II) to Mo-Fe component (I) of 

nitrogenase is low, i.e. when few electrons are transferred by the Fe protein 

to the Mo-Fe protein (17). 

Van den Bos et al.(3) have shown that the ratio of Fe protein to Mo-Fe 

protein increases with the age of bacteroids of R. legwminosarum strain PRE. 

Therefore, the increase in relative efficiency during the growth period of 

pea plants (Fig. 3; 1, 2) might be associated with the altered ratio of nitro­

genase components rather than to the inadequate photosynthate supply of the 

nodules. 

The observation that nitrogenase is not fully utilized during generative 

growth of pea plants and field bean plants is likely to be explained by the 

lower photosynthate supply, as in short-term experiments an excess of nitro­

genase, present in the nodules, can be activated by increasing photosynthate 

supply ( Chapter 2) 

The calculation of nitrogen fixation from acetylene-reduction figures is 

hazardous, as can be seen from Fig. 4 and Table 2. Even when nitrogenase 

activity was assumed to continue for 24 h per day at its daytime level , the 

plant nitrogen yields were underestimated by the use of a conversion factor 

of 3.0 (Fig. 4; 8 ) . In any case, hydrogen production should not be taken into 

account when comparing strains with and without hydrogenase, as not only an 

underestimation occurs but even a misrepresentation is found in favour of a 

strain with hydrogenase but of low nitrogen-fixing capacity. The data of 

Table 2 also indicate that a conversion factor of 3.0 underestimates nitrogen 

fixation more seriously when applied to plants in the generative growth phase 

than to plants in the vegetative phase (15). In the latter case nitrogen-

fixation data are overestimated when derived from acetylene-reduction values. 
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Host plants 

Some desirable features of pea varieties with regard to nitrogen fixation 

have been described in the literature (4). From Fig. 5 it can be derived that 

the early variety Florix showed 'self-destructive' traits (14) due to a rapid 

seed production, resulting in a low overall level of nitrogen fixation. The 

late flowering variety Mercato fixed more nitrogen than the intermediate variety 

Rondo, especially during the prolonged stages of vegetative growth and flower­

ing. However, seed production of Mercato was lower than that of Rondo, stressinç 

once more that nitrogen-fixing capacity is just one of the main features to be 

reckoned with in the selection of host plants. 

REFERENCES 

1. Bethlenfalvay, G.J., Abu-Shakra, F.F., Fishbeck, K., and Phillips, D.A. 1978 
The effect of source-sink manipulations on nitrogen fixation in peas. 
Physiol. Plant 43: 31-34. 

2. Bethlenfalvay, G.J., and Phillips, D.A. 1977. Ontogenetic interactions 
between photosynthesis and symbiotic nitrogen fixation in legumes. 
Plant Physiol. 60: 419-421. 

3. Bos, R.C. van den, Bisseling, T., and Kammen, A. van. 1978. Analysis of 
DNA content, nitrogenase activity and in vivo protein synthesis of Rhizobium 
leguminosarum bacteroids on sucrose gradients. J. Gen. Microbiol. 109: 
131-139. 

4. Caldwell, B.E., and Vest, H.G. 1977. Genetic aspects of nodulation and 
dinitrogen fixation by legumes: the macrosymbiont, pp 557-576 in A treatise 
on dinitrogen fixation (Section III), (R.W.F. Hardy and W.S. Silver, eds.) 
Wiley, New York. 

5. Devine, T.E. and Breithaupt, B.H. 1980. Significance of incompatibility 
reactions of Rhizobium japonicum strains with soybean host genotypes. 
Crop Sei. 20: 269-271. 

6. Fred, E.B., Baldwin, I.L., and McCoy, E. 1932. Root nodule bacteria and 
leguminous plants, Madison. 

7. Hageman, R.V., and Burris, R.H. 1980. Electron allocation to alternative 
substrates of Azotobaater nitrogenase is controlled by the electron flux 
through nitrogenase. Biochim. Biophys. Acta 591: 63-75. 

8. Hardy, R.W.F., Burns, R . C , and Holsten, R.D. 1973. Applications of the 
acetylene-ethyl ene assay for measurement of nitrogen fixation. Soil Biol. 
Biochem. 5: 47-81. 

9. Lawrie, A.C., and Wheeler, C.T. 1974. The effects of flowering and fruit 
formation on the supply of photosynthetic assimilates to the nodules j)f 
Visum sativum L. in relation to the fixation of nitrogen. New Phyto!. 73: 
1119-1127. 

10. Libbenga, K.R., and Bogers, R.J. 1974. Root nodule morphogenesis, pp 430-472 
in The biology of nitrogen fixation (A. Quispel, ed.) North-Holland Publ. 
Co., Amsterdam. 

11. Lie, T.A. 1978. Symbiotic specialization in pea plants: the requirement of 
specific Rhizobium strains for peas from Afghanistan. Ann. Appl. Bot. 88: 
462-456. 

12. Nutman, P.S. 1952. Studies on the physiology of nodule formation. 
III. Experiments on the excision of root tips and nodules. Ann. Bot. 16: 
80-101. 

90 



13. Schubert, K.R., and Evans, H.J. 1976. Hydrogen evolution, a major factor 
affecting the efficiency of N fixation in nodulated symbionts. Proc. Natl. 
Acad. Sei. U.S.A. 73: 1207-1211. 

14. Sinclair, T.R., and De Wit, C.T. 1976. Analysis of the carbon and nitrogen 
limitations to soybean yield. Agron. J. 68: 319-324. 

15. Sprent, J.I., and Bradfort, A.M. 1977. Nitrogen fixation in field beans 
{vicia faha) as affected by population density, shading and its relationship 
with soil moisture. J. Agric. Sei. 88: 303-310. 

16. Stiefel, E.J., Burgess, B.K., Wherland, S., Newton, W.E., Corbin, J.L., and 
Watt, G.D. 1980. Azotobaater vinelandii biochemistry: H2(D2)/N2 relationships 
of nitrogenase and some aspects of iron metabolism, pp 211-222 in Nitrogen 
fixation, vol. 1 (eds. W.E. Newton and W.H. Orme-Johnson) University Park 
Press, Baltimore. 

17. Yates, M.G., and Walker, C.C. 1980. Hydrogenase activity and hydrogen 
evolution by nitrogenase in nitrogen-fixing Azotobaater ahroooocoum, 
pp 95-109 in Nitrogen fixation, vol. 1 (eds. W.E. Newton and W.H. Orme-
Johnson) University Park Press, Baltimore. 

18. Wright, W.H. 1925. The nodule bacteria of soybeans. II. Nitrogen fixation 
experiments. Soil Science 20: 131-141. 

91 



EFFECT OF N-FERTILIZERS ON NITROGEN FIXATION AND 
SEED YIELD OF PEA-RH/ZOB/UM SYMBIOSES OF 
DIFFERENT NITROGEN-FIXING CAPACITY 

ABSTRACT 

The supply of nitrate to pea (cultivar Rondo)-Rhisobium symbioses with 

different nitrogen-fixing capacity growing in natural soil,lowered nitrogen 

fixation more seriously in symbioses with the highly effective strain PRE than 

with the moderately effective strain S313. Nitrogen fixation with strain S310a 

was lower than that with S313, but was enhanced by low levels of nitrate supply. 

In pea plants inoculated with strain PRE, nitrogen fixation was decreased by 

the addition of combined nitrogen irrespective of the time of dressing during 

the growth period. 

Leaf dry weight and seed yields were significantly increased by the supply 

of nitrate, even in the case of symbioses with the highly effective strain PRE. 

Seed yield increases owing to the application of nitrate with strains S310a 

and S313 were higher than those with PRE. Pea plants inoculated with S313 

produced more seed at high nitrate levels than plants infected with PRE, 

associated with a higher leaf mass and nitrogen fixation. The differential 

effects of combined nitrogen on nitrogen fixation and seed yield 

were described in a model. According to a path analysis, the fact that nitrogen 

fixation of a less effective strain is relatively unaffected by combined 

nitrogen could be attributed to increased photosynthesis. The harvest index 

was dependent on the rate of seed production by the pea cultivar and was not 

affected by the rhizobial strain or by nitrate supply. Only in the case of the 

ineffective symbiosis Rondo x P8 the harvest index increased owing to nitrate 

supply. 

Nodule numbers and nodule weight per plant decreased with all strains after 

the supply of nitrate, whereas the weight per nodule was raised with strains 

PRE and S310a. With those strains, the fewer nodules also showed a higher 

nitrogenase activity per nodule than those of the plants without added nitrate. 

In the xylem exudate of plants inoculated with effective strains, asparagine 
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and aspartic acid accounted for 50 and 20% of the total arnino-acid nitrogen, 

respectively. With the ineffective symbiosis Rondo x P8 less asparagine and 

more aspartic acid was produced, viz. 10 and 50%, respectively, of the total 

amino-acid nitrogen. The amino-acid pattern did not vary with nitrate supply. 

Neither ethanol-soluble nor insoluble carbohydrate content of the roots of 

an effective symbiosis was influenced by nitrate supply. With an ineffective 

strain, however, the ethanol-soluble carbohydrates increased with nitrate 

supply up to 800 mg N per pot but decreased thereafter. This phenomenon was 

attributed to an increased production of photosynthate which could not be 

used in growth, due to lack of nitrogen. 

From the data presented in this paper it is concluded that strains whose 

nitrogen fixation has a low sensitivity in symbioses to combined nitrogen 

offer no favourable prospects for use as an inoculant. 

INTRODUCTION 

In a previous paper, a number of pea-Rhizobium symbioses were described with 

distinctly different nitrogen-fixing capacities. The results obtained with 

those symbioses gave rise to the hypothesis that associations with a poor 

nitrogen-fixing capacity,giving plants with a low nitrogen content and a low 

seed yield, might respond to combined nitrogen differently from a symbiosis with 

a high nitrogen-fixing capacity. 

Combined nitrogen is known to exert a detrimental effect on nodule formation 

and on nitrogen fixation, as was already observed in the beginning of nitrogen 

fixation research (17, 2 4 ) . It has no direct effect on the nitrogen-fixing 

system (11) but reduces the photosynthate supply to the root nodules, leading 

to a lower nitrogenase activity (18; Chapter 2, page 39/. The addition of com­

bined nitrogen therefore often leads to a simultaneous decrease in nitrogen 

fixation without increasing yield (2, 21). However, also beneficial effects of 

combined nitrogen on nitrogen fixation have been reported, for example the 

addition of a 'starter dose' which increases nitrogen fixation by enhancing 

photosynthesis (4,. 12, 13, 15). Since these effects so far have not been examine 

in a coherent study, the investigationsreported in the present paper deal with 

the effect of combined nitrogen on pea-Rhizobium symbioses with high and low 

nitrogen-fixing capacities in relation to nitrogen fixation, photosynthetic 

capacity and seed yield. 
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MATERIALS AND METHODS 

Plant growth and nitrogen fertilizer 

The various pea-Rhisobium symbioses were grown in non-sterile soil as described 

in the previous paper. Rye grass, Westerwolds, cv. Tewera (Lolium perenne) was 

sown in soil without gravel cover. 

A solution of NH.NCU or NaNO-, was given at different growth stages of the 
15 1e; 

plant. In the N experiment a solution of K NO, was supplied at sowing and at 
15 

pod fill (enrichment percentages varying from 1.28-2.79 atom % N ) . 
Amino acids in xylem exudate 

Pots were watered and the plants were decapitated after 2 h. Xylem sap was 

collected in glass capillary tubes for 1 h and stored at -20°C until analysis. 

Protein was removed from the samples by addition of sulphosalicylic acid, 2% by 

weight, followed by centrifugation. The supernatant was analyzed for amino acids 

with a Biotronik Amino Acid Analyzer. 

Carbohydrates 

Ethanol-soluble carbohydrates ('sugars') were determined in ethanol extracts 

of roots by the anthrone method (20). The residue was heated at 100°C for 2 h 

with 0.1 N HCl to hydrolyze the ethanol-insoluble carbohydrates ('starch') which 

were subsequently measured in the supernatant with the anthrone method. 

Nitrogen determinations 

Nitrogen content of shoot, root, pod wall and seed was determined by the 

Kjeldahl method. A 100 mg sample of dry plant material was digested for 3 h at 

360°C with 3 ml of concentrated H2S0., using a mixed catalyst of CuSO», Se and 

K2S0». Subsequently, the ammonia generated in digestion was steam-distilled into 

10 ml of H,B03 (40 g/1) and titrated with 0.02 N H2S04, using a mixed indicator 

of methyl red and bromocresolgreen. 
15 When samples were analyzed for N, the ammonia generated in the digestion 

was steam-distilled into 10 ml 0.1 N HCl. Ammonia was determined in a 1-ml 
15 aliquot with Nessler's reagent. The remaining distillate was analyzed for N 

by emission spectrometry, using the Rittenberg method of freeing N~ from NH-.C1 
15 e n 

(1 ) . Enrichment of N was calculated by comparison with a standard set supplied 

by VEB Chemie, Be r l i n , D.D.R. (7 ) . 
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RESULTS 

Nitrogen fixation and combined nitrogen supply 

The nitrogenase activity of effectively nodulated pea plants (cv. Rondo x 

PRE) was reduced by the supply of combined nitrogen at sowing (Fig. 1). Even a 

low dose of ammonium nitrate decreased in vivo nitrogenase activity and delayed 

the occurrence of the maximum enzyme activity. In plants without added nitrogen, 

maximum nitrogenase activity was found at the beginning of the pod-filling 

stage. 

The effect on nitrogen fixation of split dressings of combined nitrogen at 

various moments of the growth period was studied in a separate experiment with 

pea plants inoculated with R. legwninosarum strain PRE (effective) and strain 

P8 (ineffective). Nitrogen fixation was calculated as the difference in total 

plant nitrogen between the effective and ineffective symbiosis (Fig. 2 ) . 

Ö 
£ 

o HH- t 70 90 
Days 

Fig. 1. Profiles of nitrogenase activity in the symbiosis pea (cv. Rondo) x 
R. leguminosarum PRE during ontogenesis (1978 experiment), as 
affected by the supply of NH4NO3 at sowing: no added N, D ; 314, • ; 
and 942 mg N/pot, 0. Arrow indicates the beginning of the pod-filling 
stage, 65 days after sowing. Values are means of duplicate samples 
of 8 plants. 
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Fig. 2. Yields of nitrogen fixed in the symbiosis pea (cv. Rondo) x R. legvmino-
sarvan PRE (1979 experiment) as affected by the addition at various 
growth stages of NaNC>3: 515, • ; 1130 mg N/pot,» . N (Kj) analyses 
were performed at maturity of the plants. The broken line indicates 
the amount of nitrogen fixed by plants growing without added NaNC^. 
Values represent means of duplicate determinations. 

Obviously, nitrogen fixation is reduced less seriously by the supply of combined 

nitrogen late in the growing season than by supply at an earlier date. 

Seed yield of effectively nodulated pea plants was hardly affected by varying 

the moment of (split) dressings of combined nitrogen during the growth period 

(Table 1). Supply of the nitrogen during flowering and pod filling tended to 

give higher seed yields. 
is — Experiments with NO . The response to combined nitrogen of nitrogen fixation 

in symbioses with different nitrogen-fixing capacities was studied in an 
15 experiment in which N-labeled nitrate was used in order to differentiate 

between fixed nitrogen and plant nitrogen derived from combined nitrogen. 

Nitrate was given in split dressings of equal quantities at sowing and at 

pod fill to prevent damage by high doses of the fertilizer. 

Yield of plant nitrogen of all symbioses had increased substantially by the 

supply of nitrate.The highest amount of nitrate had been taken up by the 

moderately effective symbiosis of cv. Rondo with R. leguminosarum, strain S310a 

(column 6 of Table 2 ) . 
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Table 1. Effect of the moment of split dressings with NH^NOj on the seed yield 
of pea plants (cv. Rondo) inoculated with R. legvminosanm strain PRE '' 

Total 

NH4N0-

(mg N/ 

0 
314 

628 

amount of 

added 

pot) 

Split dressings of NH 

during 

Sowing 

0 
314 

0 
0 
0 

314 
314 
314 

0 
0 
0 

the stage of 

Vegetative 
growth 

0 
0 

314 
0 
0 

314 
0 
0 

314 
314 

0 

4N03 
(mg 

Flowerir 

0 
0 
0 

314 
0 

0 
314 

0 
314 

0 
314 

N/pot) 

g Pod-filling 

0 
0 
0 
0 

314 

0 
0 

314 
0 

314 
314 

Seed dry 

weight 

(g/pot) 

13.0 a 
15.0 a 
18.1 b 
18.2 b 
17.8 b 

17.7 b 
19.8 ab 
18.1 b 
22.0 a 
19.2 b 
19.3 b 

1) Values are means of determinations of 5 pots. Values followed by the same 
letter are not significantly different in Tukey's test at the 0.05 level. 

To estimate the amount of nitrogen fixed by the various symbiotic systems, 

total plant nitrogen of the effective symbiosis was diminished with the amount 

of plant nitrogen of the ineffective symbiosis dressed with the same amount 

of combined nitrogen as the effective association (column 4 of Table 2 ) . As 

alternative for the ineffective symbiosis, the nitrogen yield of rye grass 

plants was employed for calculating the yields of fixed N (column 5 of Table 2), 

A somewhat more accurate way to estimate the amount of fixed nitrogen in 

symbioses grown in natural soil and dressed with combined nitrogen consists of 

the calculation of total plant nitrogen minus (a), the nitrate-derived nitrogen 

of the plant material and (b) the amount of nitrogen taken up from soil and 

seed. The nitrate-derived nitrogen in plant material can be directly measured 

by supplying a labeled nitrogen compound (column 6 of Table 2 ) . Available soil 

+ seed N was derived from the ineffective symbiosis cv. Rondo x P8, dressed 

with an equal amount of nitrate (column 7 of Table 2 ) . The results of these 

calculations are given in columns 4, 5 and 8 of Table 2. Comparison of both 

ways of estimation shows that at low levels of combined nitrogen the first-

mentioned method gave somewhat lower values than the last-mentioned,whereas 

at high levels the results tended to be the other way round. 
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15 A simplified method of calculating nitrogen fixation from N-fertilizer 

trials has been proposed by Fried and Middelboe ( 8 ) . According to their m e t h o d , 

the amount of fixed nitrogen (A value) is calculated as 

15 /. excess atom % N in legume x . . , M , (1 3-r ) x total N legume 
excess atom % N in reference crop 

The calculated A values of our experiment correspond closely to the nitrogen 

fixation values found by subtraction of nitrate-derived nitrogen and available 

soil nitrogen from total nitrogen of the effective symbioses (Table 2 , column 9 ) . 

Of the three effective R. leguminosarum strains tested the highly effective 

strain PRE in symbiosis with cv. Rondo fixed the highest amounts of nitrogen in 

the absence of added nitrate or with a low amount of this N compound. With 

high amounts of added nitrate (800, 1200 and 1600 mg N per pot) nitrogen fix­

ation with strain PRE was considerably reduced. With the moderately effective 

strain S313 lower amounts of nitrogen were fixed than with PRE in the absence 

of combined n i t r o g e n , but the reverse was true at high levels of combined 

nitrogen. The low nitrogen-fixing capacity with strain S310a was enhanced by 3 8 % 

by nitrate supply up to 800 mg N per p o t , whereas with higher levels of combined 

n i t r o g e n , nitrogen fixation decreased, similar to that of the other strains. 

Nitrogen fixation during the growth period. The greater part of nitrogen 

fixation occurred during the pod-filling period (Table 3) as has been found 

earlier in pea ( 1 9 ) , soybean (9) and cowpea ( 6 ) . The higher nitrogen fixation 

during the pod-filling stage coincided with a somewhat higher efficiency of 

nitrate uptake than during the period of vegetative growth and flowering. 

Nitrogen fixation of pea-ff. leguminosarum strains with a low or intermediate 

nitrogen-fixing capacity (S310a and S 3 1 3 , respectively) responded favourably 

to added nitrate during the generative phase of the growth cycle. The yields 

of fixed N until maturity were increased by the supply of nitrate up to a dose 

of 800 mg N per pot at the beginning of the pod-filling period, whereas nitrate 

supply at sowing decreased nitrogen fixation with all strains. 
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15 Table 3. Uptake of K NO3 and N2 fixation by pea plants (cv. Rondo) from sowing 
tothe beginning of pod-fill (1-72 days) and from pod-fill until maturity 
(73-114 days). Values represent means of duplicate samples of 8 plants and 
are given as mg N/pot 

Strain of K1 5N03 supplied 1) Uptake of 15N03 N2 fixation 

microsymbiont "(T^) (73-114)" "(wFj-(73-114) 

P8 0 -
400 
800 

1200 
1600 

S313 0 
400 
800 

1200 
1600 

S310a 0 
400 
800 

1200 
1600 

PRE 0 
400 
800 

1200 
1600 

1) Split dressing, 50% at sowing and 50% at day 73. 

108 
157 
378 
524 
. 
121 
218 
452 
491 
-
106 
218 
374 
504 
_ 
137 
241 
392 
525 

240 
367 
521 
567 
-
167 
246 
531 
650 
-
181 
278 
457 
755 
-
112 
411 
479 
568 

-
-
-
-

429 
262 
164 
85 

171 

278 
174 
139 
196 
125 

442 
436 
246 
174 
102 

-
-
-
-

568 
674 
746 
688 
364 

314 
471 
680 
417 
214 

786 
682 
478 
353 
275 
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400 800 1200 1600 
KN0 3 ,mg N /po t 

Fig. 3. Seed yields at maturity of pea-Rhizobium symbioses as affected by split 
dressings of KN03 viz. 50% at sowing and 50% at pod fill. Values 
represent means of yields of 4 pots. 
(a) Pea cv. Rondo inoculated with R. leguminosarwn strains P8 (t), 
S310a (o), S313 (A), and PRE (O)(1980 experiment). PRE (1978) supplied 
with NH4N03 (•). 
(b) Fraction of N03-derived N in seed N, at maturity of pea cv. Rondo, 
inoculated with R. leguminosarum strains P8 (•), S310a (o), S313 (A), 
and PRE ( 0 ) . 

Seed yield 

N dressings with KN^of pea plants ( cu l t i va r Rondo), inoculated with d i f f e r ­

ent Rhizobium s t r a ins , raised seed dry weight (F ig . 3a). With s t rains P8, S310a 

and S313, seed y ie lds were s i gn i f i can t l y enhanced (p < 0.001) by n i t r a te supply 

(1980). Strain PRE produced a high seed y ie ld in the 1980 experiment without 

added n i t r a t e ; supply of the nitrogen compound gave only a low, weakly s i g n i f i ­

cant (p < 0.05) addit ional seed y i e l d . However, in the 1978 experiment, the seed 

dry weight with PRE was much lower than in 1980, but i t was considerably en­

hanced by added N H ^ (p < 0.001). This points out that seasonal factors exert 

an important influence on the y ie ld response to combined-nitrogen app l ica t ion. 
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<t o — • * 

b 

400 1200 1600 0 400 800 
K N 0 3 , m g N /po t 

Fig. 4. Harvest indices (ratios of seed nitrogen to total plant nitrogen) of 
pea-Rhisobium symbioses as affected by split dressings of nitrate, 
50% at sowing and 50% at pod fill. 
(a) Pea cv. Rondo, inoculated with R. leguminosamm strains P8 (•), 
S310a (o), S313 (A), and PRE ( D ) . 
(b) Pea cvs Florix, early (x), Rondo, intermediate (O)» and Mercato, 
late (•), inoculated with R. leguminosarum PF„. 

The contribution of nitrate-derived nitrogen to the seed yield was higher in 

pea plants inoculated with the ineffective strain P8 than in nitrogen-fixing 

plants (Fig. 3b). 

The harvest index of the various symbioses, which normally is a measure of 

the efficiency of redistribution of nitrogen from vegetative parts and pod walls 

to the seed was independent of nitrate supply and of rhizobial strain (Figs 

4a,b). However, with the ineffective strain P8 the harvest index of the un­

fertilized plants deviated from those dressed with nitrate owing to nitrogen 

deficiency so that little nitrogen was available for redistribution (Fig. 4a, 

Table 1). The harvest index was only dependent on the pea variety as can be 

seen by comparing Figs 4a and b. 
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Nodule formation 

Addition of nitrate to pea plants cv. Rondo at sowing had reduced nodulation 

as it was observed at pod fill. Numbers of nodules on primary as well as on 

lateral roots of almost all of the symbioses tested had considerably decreased 

(Table 4 ) . The same was true of total nodule weight per plant. In the case of 

weight per nodule the effect of combined nitrogen was much more variable as 

concerns different symbioses. With R. leguminosarwn strain S313, which forms 

large amounts of nodular tissue (up to 40% of total root w t ) , weight per 

nodule on primary roots had dropped to approximately 1/3 on the nitrate-dressed 

plants as compared to the plants without added nitrate. Weight per nodule on 

lateral roots was also adversely affected by nitrate supply at sowing but the 

reduction was much less pronounced than it was true of the nodules on primary 

roots. In the case of strain S310a and to a lesser extent PRE, weight per 

nodule on primary roots was much higher when nitrate had been supplied. The 

beneficial effect of nitrate supply on weight of individual nodules on lateral 

roots with those two strains was much less pronounced than that on primary 

roots. 

The second supply of nitrate at the start of pod filling, has adversely 

affected numbers and total weight of nodules on both primary and lateral roots 

as observed at maturity of the plants. Weight per nodule on lateral roots had 

only slightly decreased as compared with those on primary roots. In the case 

of S310a the nodules had clearly increased in weight by the dressing with 

nitrate. 

Nitrogenase activity of the S313 nodules, measured at pod filling had de­

clined slightly due to nitrate supply at sowing, as contrasted to the S310a and 

PRE nodules whose nitrogenase activity was considerably higher than that of 

nodules of unfertilized symbioses. Nitrogen-fixing activity of the various 

associations dropped to low values during maturity of the plants. Nodules from 

plants dresses with nitrate tended to be more active than those without supply 

of nitrate. This was particularly true of the nodules formed with S313. 

Carbohydrate content and amino acid composition. A comparison of the carbohydrate 

contents of the roots of ineffectively nodulated (P8) and effectively nodulated 

(PRE) plants showed that the contents of ethanol-insoluble carbohydrates 

(mainly starch) in both associations were equal, and declined slightly with 

increased nitrate supply (Fig. 5). Ethanol-soluble carbohydrates (sugars) of 

symbioses with the effective strain PRE were lower than the ethanol-insoluble 
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200 400 600 800 
KN03.mg N/pot 

Fig. 5. Ethanol-soluble (•,•) and ethanol-insoluble (o,0) carbohydrates in 
roots of pea plants (cv. Rondo), 68 days after sowing, inoculated with 
R. legwrtinosavum strains P8 (•, o) and PRE (w ,0), as affected by 
nitrate supply at sowing. Values represent means of triplicate 
determinations. 

carbohydrates. In symbioses with the ineffective P8 strain,nitrate supply 

caused a distinct maximum in the content of ethanol-soluble carbohydrates, 

which decreased to the value found with PRE at the highest level of nitrate 

added. A similar phenomenon has been observed in effectively nodulated soybean 

plants (14). It was attributed to an increase in photosynthetic activity of 

the plant, without sufficient nitrogen being present for the utilization of 

the additonal sugars for growth, resulting in an increase in sugar concentration. 

No explanation can be given why no increase in ethanol-insoluble carbohydrates 

('starch') was found along with the rise in ethanol-soluble carbohydrates 

since the contents of these carbohydrates are usually related (see Chapter 3, 

Fig. 2) 

The amino-acid content of the xylem exudate was hardly affected by the 

supply of nitrate to the plants (Figs. 6a,b), as was found earlier with peas 

(6). The amount of nitrogen present as amino acid in the xylem sap of the 

ineffective symbiosis Rondo x P8 was lower than that of the effective symbioses 

Rondo x PRE, x S310a and x S313, but increased with nitrate supply (Fig. 6a). 
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200 400 600 800 
K N 0 3 . m g N / p o t 

Fig. 6. Amino-acid nitrogen in the xyleni exudate of pea (cv. Rondo) inoculated 
with R. legwninosarum strains P8 (•), S310a (o), S313 ( A ) , and 
PRE ( 0 ) , as affected by nitrate supply at sowing. Analyses made 
68 days after sowing. 
(a) Total amino-acid N concentration. 
(b) Ratio of Asp.-N to Asn.-N. 

A similar slight response to nitrate occurred in the exudate of pea plants 

associated with the poorly N2-assimilating R. leguminosarum strain S310a. The 

only difference in the amino acid pattern between the strains (not shown) was 

formed by the aspartic acid and asparagine concentrations as was found earlier 

in this laboratory (22). With the ineffective strain P8, nitrogen was trans­

ported in the plant as aspartic acid rather than as asparagine, whereas the 

reverse was true with the effective strains (Fig. 6b). These two amino acids 

together accounted for 58-89% of the total amino-acid nitrogen of the xylem 

exudate of all symbioses. 
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DISCUSSION 

Differential response to combined nitrogen of pea plants inoculated with 

different rhizobial strains 

Seed yield of pea plants was increased by the supply of combined nitrogen, 

even with strain PRE which possesses a high nitrogen-fixing capacity without 

added nitrate (Table 2, Fig.7b). Nitrate uptake and utilization by plants 

inoculated with strains with a low nitrogen-fixing capacity (S313, S310a) were 

higher than it was true in plants inoculated with strain PRE (Table 2 ) . At high 

800 1200 1600 
K N 0 3 , m g N /po t 

Fig. 7(a). Dry weight of shoots (= leaves + stem) at maturity of pea plants, 
inoculated with R. leguminosarum strains P8 (•), S310a (o), S313 (A), 
and PRE ( D ) , as affected by nitrate supply. Values are means of 
4 pots of 8 plants each, 

(b). Nitrogen fixation during growth of pea plants, inoculated with 
R. leguminosarum strains S310a (o), S313 (A), and PRE ( D ) . Values 
derived from Table 2. 
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nitrate supply, seed yields with S313 and S310a were higher than those with 

PRE (Fig. 3a). The pea cv. Rondo association with strain PRE fixed the highest 

amounts of nitrogen at low nitrate supply (Table 2, Fig. 7b). At high levels 

of added nitrate, the yield of fixed nitrogen decreased sharply to 31% of the 

value without added nitrate. The shoot dry weight of this symbiosis increased 

slightly, due to nitrate supply (Fig. 7a). In contrast, the shoot dry weight 

of plants inoculated with strain S310a rose steeply when nitrate was added. 

The poor nitrogen-fixing capacity of the pea symbiosis with S310a was enhanced 

from 100 to 138% at a nitrate supply of 800 mg N/pot, but fell to 57% of the 

initial value when higher amounts of nitrate were supplied. Nitrogen fixation 

with the moderately effective strain S313 was only lowered to 54% at high 

nitrate supply. The shoot dry weight of this symbiosis responded to added 

nitrate to a lower degree than with S310a but more than with PRE. 

The dissimilar response to the supply of combined nitrogen with highly 

effective and moderately effective rhizobial strains is explained by assuming 

the occurrence of different levels of C- and N-limited growth simultaneously. 

A symbiosis growing under N limitation might react to combined nitrogen supply 

by increased photosynthesis, with an enhanced nitrogen fixation as an indirect 

result. However, also a symbiosis growing under C limitation might react to 

combined N supply, as simultaneously with a C limitation nitrogen fixation 

is limited owing to a shortage of carbohydrates. A similar concept has recently 

<ni t rogen f i 
I 
* . 

photosynt 
(a) 

n i t rogen f i xa t i on 

I 
photosynthes is 

^ p h o t o s y n t h e s i s ^ ^ 
c o m b i n e d ^ . 1 - ^ s e e d yield 
n i t rogen- - » , * „ „ ^^* 

' k l f i xa t ion 

Fig. 8. Model of relations between combined nitrogen supply, photosynthesis 
and nitrogen f ixation with regard to seed yield of plants. 
(a) Vegetative phase. 
(b) Generative phase. 
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been proposed by Phillips and co-workers (16, 23). These relations are visual­

ized in the summary models presented in Fig. 8 for the vegetative and the 

generative growth phases. 

The model of Fig.8a for vegetative growth is based upon the assumption that 

growth of legumes in soil in this phase is principially N-limited. There is 

support from literature to justify this assumption from fertilizer trials 

{e.g. 12, 15, 24), but it has also been shown that under such conditions the 

available amount of nitrogenase is limiting nitrogen fixation (Chapter 1, pp. 

21 - 34) The model of Fig. 8b for generative growth depends on the assumption 

that principally a C limitation exists during this growth phase. This assumption 

is also supported by experimental evidence, e.g. the response to carbon dioxide 

enrichment of the atmosphere (9) and the response to a higher light intensity 

(3). Furthermore by the observation that during the generative growth phase, an 

excess of nitrogenase is present in the nodules, not used in nitrogen fixation 

(Chapter 1) 

In order to provide a quantitative description of the effect of carbon and 

nitrogen limitation on growth of the various symbioses studied, a pathway 

analysis was made according to the models of Fig. 8. The results of this 

analysis using the data of Table 2 for nitrogen fixation and combined nitrogen 

uptake (columns 8 and 7, respectively )and Figs 3 and 7 for seed yield and 

shoot weight, respectively, are listed in Table 5. Photosynthesis has been 

roughly estimated by using dry weights of plant mass with photosynthetic 

activity, i.e. shoot, leaves and pod walls. This is inaccurate because photo-

synthetic activity per unit of leaf mass differs with rhizobial strain (5; 

Chapter 3, Table 4) and changes with age, but it is suitable for an approxi­

mate evaluation of the relationship between the variables. 

The path regressions of Table 5 are derived from a series of linear multiple 

regression equations, assuming a causal order as shown in Fig. 8. In path 

regressions, the influence of variables which intervene according to the causal 

order assumed is accounted for. For example, the path regression of photo­

synthesis (dependent variable) on combined nitrogen (independent variable) 

during the vegetative period (Table 5, item 3) includes the direct effect of 

combined nitrogen on photosynthesis as well as the indirect effect via nitrogen 

fixation. 

The decrease of nitrogen fixation due to combined nitrogen supply was 

significantly different between the Rhizobiwn strains (Table 5, items 1 and 6) 

in the sequence PRE > S313 > S310a. During the vegetative growth phase, photo­

synthesis with strain PRE appeared to be mainly dependent on nitrogen fixation, 
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Table 5. Path regressions of nitrogen fixation, photosynthesis and seed yield 
on combined nitrogen 1) 

Path regression Strain of microsymbiont 

P8 S313 S310a PRE 

Vegetative growth (Fig. 8a) 

1 N„ fixation on combined N 

2 Photosynthesis on N? fixation 

3 Photosynthesis on combined N 

4 Fit of multiple regressions (R ) 0.85 

Generative growth (Fig. 8b) 

5 Photosynthesis on combined N 

6 N„ fixation on combined N 

7 Seed yield on combined N 

8 N~ fixation on photosynthesis 

9 Seed yield on photosynthesis 

10 Seed yield on N? fixation 

11 Fit of multiple regressions {Rù) 

0 

0 

30 28 a 

-0 

16 

14 

** 
48 b 

** 
67 b 

** 
00 b 

-0 

15 

18 

** 
23 c 

** 
93 b ** 
09 b 

-0 

25 

6 

** 
73 a 

** 
51 a 

** 
28 o 

0.69 0.77 0.75 

I 

[ 

<) 

21 

0 

19 

0 

-0 

0 

0 

oor 

oi 5* 

28 b 

91 

** 
6.58 a 

** 
-0.51 b 

** 
4.71 a 

** 
0.06 a 

0.78 a 
** 

22.18 a 

0.86 

10.95 b* 
** 

-0.27 a 
** 

11.75 b 
** 

0.05 a 

0.93 a 
** 

12.33 b 

0.95 

** 
4.12 d 

-0.78 a 
** 

3.08 a 

-0.00 b 

-0-33 b 
** 

22.40 a 

0.77 

Path regressions from multiple linear regression equations (units mg) based 
upon 25 cases per strain in each part of the growth period. Values in one row 
followed by the same letter are not significantly different at the 0.05 level 
in a two-sided t-test. Asterisks indicate that the path regression is non-zero 
(*, 0.05 level; **, 0.01 level) according toan F test. 

whereas with strains S313 and S310a combined nitrogen and nitrogen fixation 

influenced photosynthesis to an equal extent (Table 5, items 2 and 3 ) . 

Photosynthesis during the generative growth period was increased by combined 

nitrogen in the sequence P8 > S310a > S313 > PRE (item 5 ) . With strains S310a 

and S313, an enhanced photosynthesis due to the addition of nitrate signifi­

cantly increased nitrogen fixation (item 8) and seed yield (item 9 ) . Seed 

yield was not significantly correlated with photosynthesis with strains PRE 

and P8 owing to the dominating effect of nitrogen fixation in PRE and combined 

nitrogen in P8. 

111 



The fit of the multiple regressions was reasinably good (items 4 and 11), 

notwithstanding the fact that the assumption of linear relationship was not 

always justified. For example, the relation between nitrogen fixation and 

combined nitrogen contained a significant square power term with strain S310a 

(cf. Fig. 7b),, which was left out of consideration. 

The results presented in this paper show that pea plants inoculated with 

strains of if. leguminosarum with a different nitrogen-fixing capacity respond 

to combined nitrogen in a different way as was found before in a field trial 

with these strains (10). At high dressings more nitrate is taken up by plants 

living in symbiosis with a strain of moderate nitrogen-fixing capacity than by 

plants with a highly effective strain (Table 2 ) . Photosynthesis is enhanced by 

added nitrate in plants inoculated with a less effective strain. Therefore, at 

high nitrate dressings of these strains a higher level of nitrogen fixation is 

found than with a highly effective strain at high nitrate dressings. An 

increased nitrate uptake, photosynthesis and nitrogen fixation account for 

the high seed production of less effective strains as compared with highly 

effective strains at high nitrate dressings. Consequently, the less effective 

strains possess a nitrogen-fixing capacity that is less sensitive to combined 

nitrogen. Selection of such strains for use as inoculant, is not likely to 

produce yield increases with economically feasible fertilizer dressings. 
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GENERAL DISCUSSION 

Potential nitrogen fixation 

The in vitro nitrogenase assay (Ch. 1) of isolated bacteroids, treated with 

EDTA and toluene, and supplied with ATP and sodium dithionite, appeared to be 

a valuable method for obtaining information on nitrogenase utilization in 

legume-rhizobia symbioses. The method was used in experiments with various 

host plants inoculated with R. leguminosarum strains of different origin viz. 
PRE, The Netherlands (Chs 1, 3 ) ; S310a, Sweden (Ch.3) ; RB1, Turkey (Ch. 1); 

TOM, Turkey and HIM, Pakistan (van Mil, unpublished results). However, with 

some strains, e.g. PF? and S313, this assay did not provide satisfactory 

results, rendering these strains unsuitable for the purpose of determining 

nitrogenase utilization. 

The EDTA-toluene method usually yields values of in vitro nitrogenase 

activity that are higher than those of in vivo activity, which enabled us to 

develop the concept of potential nitrogen fixation. The electron donor used, 

sodium dithionite, was recently shown to be not as efficient in generating 

nitrogenase activity as a mixture of flavodoxin + ferredoxin I (25). Therefore, 

the EDTA-toluene method might underestimate potential nitrogen fixation. 

According to the results obtained with our assay, pea plants inoculated with 

R. leguminosarum strains PRE and S310a, and field bean plants inoculated with 

RB1 utilized their full potential nitrogen fixation only during the vegetative 

phase, when grown in soil in the open air (Chs 1 , 3 ) . Actual nitrogen fixation 

was found to be consistently lower than potential nitrogen fixation in the 

generative phase, irrespective of shoot mass or of shoot to root ratio (Ch. 1). 

This discrepancy between actual and potential nitrogen fixation was widened 

by the addition of nitrate, which lowered actual nitrogen fixation, whereas 

potential nitrogen fixation remained unaffected for 10 days (Ch. 1). Both the 

development of generative organs (13) and the addition of combined nitrogen 

(10, 19) cause a change in photosynthate translocation pattern from the shoot 
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to the root, resulting in a lower carbohydrate supply of the nodules. The 

application of benzyladenine to the nodules eliminates the adverse effect of 

added nitrate on actual nitrogen fixation (Ch. 2 ) , probably by increasing 

carbohydrate supply to the nodules. From the data presented in Chs 1 and 2 

the conclusion can be drawn that in the vegetative phase, nitrogen fixation 

is limited by the nitrogenase content of the bacteroids, whereas in the 

generative phase, an inadequate supply of carbohydrates from the host plant 

to the micro-symbiont causes a suboptimal rate of nitrogen fixation. As these 

results were also obtained in field-grown bean plants (Ch. 1) it is likely that 

this conclusion also holds under circumstances relevant to agriculture. 

Regulation of nodule formation 

Despite the differences in nodule-formation characteristics between the 

pea-Rhisobium symbioses investigated, the maximum amount of nodules per plant 

were obtained at the beginning of the pod-filling period (Ch. 5; cf. field 

beans, Ch. 1). The process of nodule formation can be regarded as a continuous 

adaptation of nodular mass to the increasing shoot mass (Ch. 1 ) , but it is 

surprising that increase of nodular weight occurs preferentially to the complete 

utilization of the nitrogenase present in the bacteroids. Nodule formation 

probably occurs at lower levels of carbohydrate supply than the functioning of 

nitrogenase at optimum rate (28). The same was found in experiments with 

enhanced photosynthesis, e.g. by carbon dioxide enrichment of the atmosphere 

(8, 16), by increased light intensity (1) or by grafting of two shoots on one 

root system (22). Nodule activity was raised immediately after these treatments, 

but later on nodular mass grew higher and accounted for the major part of the 

increased nitrogen fixation per plant. 

An explanation of these phenomena might be offered by the observation that 

uninfected cells of the nodules rather than infected cells are supplied with 

photosynthates (12). This might point to a lower synthesis of photoassimilate-

attracting phytohormones in cells infected with rhizobia than in uninfected 

cells, e.g. the nodular meristematic tissue. 

Hydrogen production and hydrogenase activity 

Gradually less hydrogen was found to be produced by nodules in air relative 

to total nitrogenase activity during ontogenesis of both bean and pea plants, 

giving rise to an increased relative efficiency uponstarting of pod filling 

(Chs 4, 5; 3). An enhanced light intensity was shown to stimulate nitrogenase 

activity, but hydrogen production was raised to a higher degree, resulting in 
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a decrease of the relative efficiency (4). The addition of combined nitrogen 

to pea plants caused a lower actual nitrogenase activity coupled with a higher 

relative efficiency than that of control plants without added nitrate,whereas 

treatment of nodules with benzyladenine produced opposite results (Ch. 2 ) . 

Depodding of field beans reduced nitrogenase activity but enhanced relative 

efficiency. Application of benzyladenine to the lower leaves decreased relative 

efficiency, but increased nitrogenase activity (van Mil, unpublished results). 

From these results it might be concluded that a high production of hydrogen 

by the nitrogenase system is a sign of an excess of energy, whereas under 

circumstances of a low energy supply of the nodules, hydrogen production would 

decline more sharply than total nitrogenase activity. However, there are also 

reports according to which short-term changes in energy supply would have no 

impact on relative efficiency when influencing total nitrogenase activity (1.8) 

or where a rise in nodule activity was associated with a rise in relative 

efficiency (2, 9 ) . Furthermore, experiments with isolated nitrogenase have 

convincingly shown that electrons are allocated to hydrogen production rather 

than to nitrogen fixation under low energy supply (21). No explanation can be 

given of the widely differing results of the experiments with isolated nitro­

genase and those obtained in the present investigation with nodulated pea plants 

growing in soils, as to the influence of energy supply of the nitrogenase system 

on hydrogen production and nitrogen fixation. Therefore more research needs to 

be done to elucidate this effect. 

Hydrogenase activity of R. leguminosarwn strain S310a (Hup ) was not associ­

ated with a high level of nitrogenase utilization, nor did it prevent or delay 

nodule senescence as compared with strain PRE (Hup"). As hydrogen oxidation 

in plants with S310a would only provide a maximum of 0.6-4.7% of ATP supply to 

nitrogenase (Ch. 4) {i.e. less than 0.6% of the energy gained in net photo­

synthesis), no amazing results can be expected. Evans and co-workers (7) re­

ported an energy gain by hydrogen oxidation in soybeans of 9.1% of ATP supply 

to nitrogenase, which would account for a rise in dry matter production of 21% 

as compared with soybeans inoculated with a Hup strain after an exponential 

growth period for 25 days with a 9.1% enhanced relative growth rate. As a high 

dry matter production in general is coupled with a high nodular mass (Chs 1 and 

5 ) , plants inoculated with Hup bacteria would release more Hup bacteria 

upon senescence than plants inoculated with Hup" bacteria. These Hup bacteria 

might also be benefitted by hydrogenase activity when occurring in the soil in 

a free-living state (6), which would offer them another considerable advantage 
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over Hup bacteria. However, the fact that the vast majority of naturally 

occurring strains is Hup" (Ch. 5; 14) indicatesthat at least one of these 

statements is substantially incorrect. 

Interactions between C and N limitations of growth 

A 'starter dose' of combined nitrogen may increase nitrogen fixation via 
increased photosynthesis (see General Introduction). In Ch. 6 the low nitrogen-

fixing capacity of pea plants inoculated with R. leguminosarum strain S310a 

was shown to be enhanced by the supply of nitrate up to 800 mg N per pot, 

correlated with a rise in leaf dry weight. In contrast, the high nitrogen-

fixing capacity of pea plants inoculated with strain PRE was reduced by added 

nitrate, the leaf dry weight hardly being altered. Net photosynthesis, as 

calculated from respiration measurements of root systems and of plant-growth 

data (Ch. 3 ) , was increased to a greater extent by nitrate supply in pea plants 

inoculated with the moderately effective strain S313 than in plants with the 

highly effective strain PRE. The generation of a low rate of alternative 

respiratory activity(Ch. 3) due to added nitrate even in plants inoculated 

with highly effective Rhizobium strains might point to an N limitation of 

growth. The potential nitrogen fixation, however, in pea plants of the same 

age, kept under identical conditions was not fully utilized (Ch. 2 ) , which 

indicates a C-limited growth. To explain this apparent contradiction, we might 

assume that C and N limitations occur simultaneously in nodules and in whole 

plants. For example, the nodules might be C-limited, with part of the potential 

nitrogen fixation not utilized, which would result in an N-limited growth of 

the whole plant. A similar approach has been advocated by Phillips and co-workers 

(15, 26). 

During generative growth leguminous plants are C-limited, as can be concluded 

from experiments with C0„ enrichment.which leads to a higher nitrogen fixation 

and a higher yield (8). However, also combined-nitrogen dressings during the 

pod-filling period may result in an enhanced yield. Combined-nitrogen supply 

increased seed yield of a determinate soybean cultivar, whereas seed yield of 

an indeterminate cultivar was not affected (11). This points to an important 

influence of the rate of seed production on photosynthesis, nitrogen fixation 

and yield. 

In the present investigation seed yield of pea plants cv. Rondo (pod-filling 

period 25 days) responded to nitrate added during the pod-filling period (Ch. 6), 

whereas seed yield of field beans (pod-filling period 35 days) was not raised 

(van Mil, unpublished results; 17). Due to the rapid seed formation in pea, 
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nitrogen fixation declined more sharply than in field beans during ontogenesis 

of plants grown without added nitrate (Chs 1 , 4 ) . 

Thus, if the rate of seed production is high, the nitrogen demand of the 

seed will also be high. At the same time nitrogen fixation is limited by the 

reduced carbohydrate supply, and consequently, nitrogenous compounds are 

mobilized from vegetative tissue and transported to the growing seeds. Photo­

synthesis is reduced, which in turn leads to a lower nitrogen fixation, 

eventually resulting in the 'self-destruction' of the plant (19). In such a 

case, combined-nitrogen dressings during the generative growth phase,preferably 

as foliar spray of urea because the nitrate-absorption capacity of the roots is 

reduced (5, 23, 24, 27), may prevent self-destruction by lengthening the period 

of high photosynthetic activity and thus may increase yield. 

If the rate of seed growth is low (as in field bean), the self-destructive 

traits are less pronounced and combined nitrogen supply at mid season has no 

effect on yield (17). 

Prospects for agriculture and research 

In agricultural practice there seems to be no clear-cut approach as to 

increase in yields of leguminous crops by combined-nitrogen dressings, except 

with suboptimum symbioses or when an extremely low quantity of soil nitrogen 

is available (see General Introduction). The yield of peas with a relatively 

short pod-filling period might be increased by combined-nitrogen dressings 

during that period,although there is the risk of lodging. With peas grown for 

the canning industry yield increases, if any, will be low because a large 

amount of nitrogen is retained in the leaves due to the early harvest. 

The recommendation of 'super-strains' with hydrogenase, does not seem to 

offer unequivocally good prospects, as hydrogenase-containing strains may 

have disadvantages (Chs 4, 5). 

Thus, perspectives for enhancing the yield of legume crops will be on a 

long term, and in the field of research. The interactions between C and N 

limitation need elucidation. To remove the 'yield barrier', attention should 

be focused on increasing the photosynthetic capacity of the plant, as the 

nodular tissue seems to be formed in response to the needs of the plant. 

Another fruitful approach might involve a renewed interest in the role of plant 

growth regulators, as the supply of the nodules with photosynthates is of 

crucial importance to nitrogen fixation. Studies on C- and N-limited growth 

in legumes with different rates of seed production {e.g. pea and field bean) 
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and with different nitrogen requirements for seed production (e.g. pea and 

clover) would provide still another valuable extension of the investigations 

reported in this thesis. 
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SUMMARY 

Actual nitrogen fixation of pea and field-bean plants, grown in soil in the 

open air, was determined as the acetylene reduction of nodulated roots. During the 

major part of the vegetative growth of these plants,actual nitrogen fixation was 

equal to the potential maximum nitrogenase activity of the bacteroids present in 

the nodules. This means that increase of the actual nitrogen fixation could be 

achieved only if the potential nitrogenase activity of the bacteroids would be 

enhanced or if more nodules would be present. During the generative growth phase, 

the potential nitrogenase activity of the bacteroids was not entirely utilized 

irrespective of the shoot mass of the host plant or the nitrogen-fixing capacity 

of the Rhizobium microsymbiont. 

The addition of nitrate to nodulated plants sharply reduced actual nitrogen 

fixation but did not affect potential nitrogen fixation within 10 days. The 

nitrate effect was temporarily eliminated by treatment of the root nodules with 

benzyladenine, a synthetic plant-growth regulator with a photosynthate-attracting 

action. It is concluded that incomplete utilization of the nitrogenase present in 

the bacteroids is caused by an inadequate carbohydrate supply of the nodules upon 

supply of the leguminous plant with nitrate. 

In root systems of pea plants growing in symbiosis with R. legvminosarum 
strains of poor nitrogen-fixing capacity, the N-limited growth led to an accumu­

lation of carbohydrates. Upon the supply of such plants with nitrate, the carbo­

hydrate level was decreased concomitantly to an increase in alternative {i.e. 
cyanide-resistant) respiration. Low rates of alternative respiration were found 

when nitrate was added to pea plants inoculated with highly effective strains, 

as the N-limitation of the plants was less severe. The carbohydrates respired 

in the nodules amounted to 6.3 mg C/mg N fixed with a moderately effective strain 

but only 3.1 mg C/mg N fixed with a highly effective strain. 

Some rhizobial strains possess a hydrogenase that is capable of recirculating 

part of the hydrogen evolved in air by nitrogenase simultaneously with nitrogen 

fixation. However, the energy gain by hydrogen oxidation was very low, viz. 
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0.6-4.3% of the costs of nitrogen fixation. As hydrogen oxidation did not 

delay nodule senescence or increase nitrogenase utilization, the presence of 

hydrogenase in rhizobial strains seems to be an unimportant factor in deter­

mining the nitrogen-fixing capacity of the symbiosis. 

Strains of R. legvminosawm with a low nitrogen-fixing capacity showed a 

distinctly different nodule formation pattern on primary and lateral roots of 

pea plants as compared with highly effective strains. The estimates of the yield o1 

fixed nitrogen, derived from the acetylene-reduction method, of plants inoculated 

with rhizobial strains of different nitrogen-fixing capacity, equally deterio­

rated during the growth period. When rates of hydrogen production in air were 

subtracted from the acetylene reduction rates, the estimates of nitrogen fixation 

were severely biased in favour of a hydrogenase-containing strain. 

Nitrogen fixation of pea plants infected with a highly effective strain of 

R. leguminosarum was decreased by the supply of combined nitrogen to a greater 

extent than that of plants with a moderately effective strain. In plants inocu­

lated with a strain of poor nitrogen-fixing capacity, nitrogen fixation per plant 

was even stimulated by a low dose of combined nitrogen. This increase was prob­

ably due to an enhanced photosynthetic capacity which counteracted the adverse 

effect of combined nitrogen. Seed yields were increased by nitrate dressings, 

regardless of the rhizobial strain. Seed yields of plants inoculated with moder­

ately effective strains were slightly higher than those of highly effective 

strains at high levels of combined nitrogen, owing to higher nitrate uptake, 

higher nitrogen fixation and increased photosynthesis. 
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SAMENVATTING 

Vlinderbloemige gewassen zoals erwt en tuinboon (veldboon) zijn in staat om 

stikstof uit de lucht te binden door een samenwerking (symbiose) aan te gaan 

met bacteriën van het geslacht Bh-Lzobium. Deze bacteriën dringen de wortel 

binnen via de wortelharen en veroorzaken daar de vorming van wortelknollen. De 

stikstofbindende bacteriën in deze knollen hebben een gedaanteverandering 

ondergaan van staafvorm naar vertakte of knotsvorm (bacteroïden). 

Tijdens de symbiose voorziet de waardplant de bacteroïden van suikers, 

verkregen door de fotosynthese. Bij erwt en tuinboon die in potten met grond 

in de open lucht werden geteeld was tot de bloei de maximale stikstofbinding 

van de bacteroïden (de potentiële stikstofbinding) de beperkende factor van de 

stikstofbinding van de planten (actuele stikstofbinding). In deze periode kan 

alleen door betere knollen of door meer knollen de stikstofbinding van de 

planten worden verhoogd. Dit is in tegenstelling tot de periode van bloei en 

peul vorming waarin het stikstofbindend vermogen van de bacteroïden meestal aan­

zienlijk hoger is dan de werkelijke stikstofbinding (potentiële groter dan actuele 

stikstofbinding). In deze periode krijgen de knollen te weinig suikers van de 

plant om optimaal te functioneren omdat een aanzienlijk deel van de produkten 

van de fotosynthese voor zaadvorming wordt gebruikt. 

De toevoeging van nitraat aan planten met wortelknollen leidt tot een daling 

van de stikstofbinding doordat de toevoer van suikers naar de wortelknollen 

vermindert. Dit effect kan tijdelijk worden tegengegaan wanneer de wortelknollen 

tegelijk met de nitraatgift behandeld worden met benzyladenine, een synthetisch 

plantehormoon dat suikers kan aantrekken. 

Tuinbonen ontwikkelen zich veel forser dan erwten en binden ook veel meer 

stikstof. De stikstofbinding van erwt en tuinboon bereikt haar maximale hoogte 

aan het begin van de peulvullingsfase. Dit komt doordat steeds nieuwe actieve 

wortelknollen worden gevormd. Het is echter vreemd dat in de symbiose van plant 

en bacterie de stikstofbinding eerder wordt verhoogd door meer knolweefsel te 
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maken dan door het stikstofbindend vermogen van de bactero'fden volledig te 

benutten. 

Tijdens de peul vullingsfase daalt de stikstofbinding. Het sterkst gebeurt 

dit bij de erwten die een korte peulvullingsduur hebben, het minst bij tuinbonen 

en erwten met een lange peulvullingsduur. 

Niet alle bacteriestammen hebben een evengroot vermogen om stikstof te binden 

in symbiose met een bepaalde waardplant. Erwteplanten die met een matig of 

slecht stikstofbindende bacteriestam worden geënt groeien bij stikstofgebrek. 

Er is dan te weinig stikstof in de plant aanwezig waardoor de door de foto­

synthese gevormde suikers niet volledig worden benut voor de groei, maar worden 

opgehoopt in de erwteplanten. Wanneer deze planten dan van nitraat worden voor­

zien, worden de suikers zodanig verademd dat weinig energie wordt verkregen 

(verspillende ademhaling). In planten die met een goed stikstofbindende 

R. leguminosarum stam zijn geënt worden minder suikers opgehoopt. Daardoor 

treedt minder verspillende ademhaling op als nitraat wordt toegevoegd. 

Tijdens de stikstofbinding vormen de bacteroïden naast ammoniak ook waterstof 

die in de lucht verdwijnt, waardoor energie verloren gaat. Sommige Rhizdbivm-
stammen vormen niet alleen waterstof, maar kunnen deze verbinding zelf weer 

opnemen. Op deze manier zou een deel van de verloren gegane energie weer kunnen 

worden teruggewonnen. In ons onderzoek bleek echter, dat dit waterstofopnemend 

vermogen van weinig belang is om de stikstofbinding en de groei van de planten 

te bevorderen. 

Erwteplanten die in symbiose met een goede R. leguminosarum stam groeien, 

binden meer stikstof en produceren meer bladmateriaal en zaad dan planten die 

met een slechte of matige stam knollen vormen. Wanneer nitraat wordt gegeven 

aan planten geënt met een goede stam, wordt de stikstofbinding verlaagd maar de 

zaadopbrengst vaak iets verhoogd door de ruime stikstofvoorziening als gevolg 

van de nitraatbemesting. Bij planten die met een matige stam zijn geënt daalt 

de stikstofbinding minder dan het geval was bij een goede stam maar de reactie 

op toegediende kunstmeststikstof is groter. Er kan dan meer blad worden gevormd 

waardoor de fotosynthese wordt verhoogd en het nadelig effect van nitraat op de 

stikstofbinding kan worden tegengegaan. Bij planten die door een slechte 

Rhizobium-stam zijn geïnfecteerd kan een lage nitraatgift op deze wijze zelfs 

de stikstofbinding verhogen. Bij een hoge nitraatgift kan de zaadproductie 

van dergelijke planten iets hoger zijn dan die van planten met een goede stam 

omdat de laatste in dat geval minder nitraat opnemen, minder stikstof binden 
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en daardoor een lagere fotosynthese hebben. 

Voor de 1 andbouwpraktijk kunnen de in dit onderzoek verkregen resul­

taten niet rechtstreeks gebruikt worden. Bij erwten zal in een beperkt aantal 

gevallen een kleine stikstofbemesting bij het zaaien een gunstige uitwerking 

kunnen hebben op de bladvorming en uiteindelijk ook op de zaadopbrengst. In 

principe zou een bemesting tijdens de peul vullingsfase, bijvoorbeeld door een 

bespuiting met ureum, een opbrengstverhoging kunnen geven, maar vanuit de 

praktijk kunnen bezwaren ingebracht worden tegen een bemesting van een te 

velde staand gewas. 

Het voornaamste resultaat van dit onderzoek is wel dat de opbrengst van 

vlinderbloemige gewassen verhoogd kan worden als de fotosynthese verhoogd wordt. 

Er worden dan extra wortel knol! en gevormd waardoor indirect een hogere stikstof-

binding kan worden verkregen. Er is op dit moment te weinig bekend omtrent het 

verband tussen fotosynthese en stikstofbinding tijdens de groeicyclus van de 

peulvruchten. Nader onderzoek hierover is dan ook noodzakelijk om de opbrengsten 

van deze gewassen te kunnen verhogen. Voor Nederland kan verwacht worden dat 

de belangstelling voor peulvruchten zal toenemen als de energieprijzen blijven 

stijgen. De prijs van stikstofmeststoffen zal er dan toe leiden dat de vlinder­

bloemige gewassen, die weinig of geen stikstofmeststof nodig hebben, zich uit­

breiden ten koste van gewassen die een hoge stikstofgift nodig hebben,zeker als 

de opbrengsten verhoogd kunnen worden. Te denken valt bijvoorbeeld aan het 

vervangen van gras als eiwitrijk ruwvoeder door veldbonen of aan het vervangen 

van vlees voor menselijke consumptie door peulvruchten. 

Voor ontwikkelingslanden zijn hogere opbrengsten van peul vruchten,die als 

voedselgewas verbouwd worden,noodzakelijk, maar niet toereikend, om het be­

staande eiwittekort in de voeding op te heffen. 
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