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(1) PIDY s e
Het feit dat in de kolloidchemie de verhouding tussen theorie en éxperiment kan
varigren van zeer op elkaar betrokken tot bijna geheel naast elkaar staand, is
kenmerkend voor de positie die de kolloidchemie inneemt tussen de traditionele

natuurkunde en scheikunde in.

4
De middelbare laagdikte van polymeer geadsorbeerd op sen gekrormd opperviak kan
bij toenamende kromming van dit opperviak toenemen, terwijl tegelijkertijd de
hydrodynamische laagdikte afneemt.
Dit proefschrift, hoofdsiuk 4

3
Het is niet nedig om, zoals Milner doet, een polydispersiteitsargument te gebruiken
om kwantitatieve overeenstemming te vinden tussen de experimenteel gevonden
interactie tussen twee polymeerborstels en de theoretische voorspelling daarvan.
S.T. Milner, Europhys. Lett., 1988, 7, 695; dit proefschrift hoofdstuk 5

(4)
Depletieviokking van een sol door niet-adsorberend polymeer kan voorkomen
warden door dit polymeer in zeer lage dichtheden op de soldeeltjes te verankeren.
Dit proefschrift, hoofdstuk 5

(5)
Voor het verkrijgen van een zo hoog mogslijke kollofdchemische performance dient
men multiblok-copolymeresn te gebruiken.
Dit proefschrift, hoofdstuk 6

(6)
Het is bedroevend dat campagnes om het imago van "De Chemie" te verbeteren niet
verder komen dan het éénzijdig opsommen van verworvenheden die aan de
chemische technologie te danken zijn. Zowel het creatieve karakter van de
scheikunde als zijn maatschappelijke rol worden hierdoor tekort gedaan.

@)
Niet de ontwikkeling van de twintigste esuwse "nieuwe fysica" betekende, zoals
Capra beweert, het einde van het mechanistische wereldbeeld, maar de al rond
1700 in brede kring geaccepteerde gravitatietheorie van Newton, die de definitieve
mathematisering van de natuurkunde inluidde,
F. Capra, The Tuming Point (Toronto, 1982)




(8)
De wederzijdse relatie tussen techniek en fundamentele natuurwetenschap is een
ten onrechte door techniekfilosofen verwaartoosd ondsrwerp.
Zie bijv. H. Achterhuis (red.), De maat van de techniek (Baarn, 1992}

)
Volgens de definitie die de [UPAC geeft van een polymer is gen eiwit geen polymer.
IUPAC, Pure Appl. Chem. 1974, 40, 479.

{10)
Van Dale zou naast het overgankelijke gebruik van het werkwoord adsorberen ook
het onovergankelijke gebruik van dit woord dienen te vermelden.
Van Dale, Groot Woordenbosk dor Nederlands Taal, 129¢ druk, 1993

(1)

Wetenschap is wetenschap als er "Wetenschap” op staat.

(12)
Alles is chemie, maar chemie is niet alles.

(13)
De kolloidchemie is ouder dan Mozes.
vgl. F.A.M. Leermakers (1989} proefschrift LUW, stelting 10.

(14)
Het streven naar hogere efficiéntie in het {universitair) onderwijs heeft in de praktijk
vaak tot gevolg dat het doel van dit onderwijs verwordt tot examentraining.

{15)
Ook in stedelijke gebieden zou, ter bevordering van het welzijn van plant, dier &n
mens, de aanleg en instandhouding van een Ecologische Hoofdstructuur
nagestreefd moeten worden. De stadsontwikkeling in Amsterdam van de afgelopen
jaren kan daarbij niet als voorbeeld dienen.

(16)
Zostig jaar geleden constatesrde Baas Backing: "de meest krasse vervreemding van
de natuurwetenschap, waaraan een groot gedeslte van de Nederlandsche
intellectueelen lijden, bijv. vele van onze leiders, die over het algemeen uit
rechtsgeleerde kringen komen, doet hen vreemd staan tegenover de rol die deze
wetenschap in een moderne maatschappij vervult." Hedentendage heeft deze
constatering haar actualiteit helaas nog niet verloren.
Vakblad voor Biologen, 14 (1932-1933) 151




(17)
Het is verbazingwekkend hoeveel aandacht er tijdens practica aan de
Landbouwuniversiteit aan veiligheid besteed wordt, gezien de desinteresse voor
gezondheid en veiligheid van studenten en personeel die spreekt uit het beleid van
deze universiteit ten aanzien van roken in haar gebouwen.

(18)
De huidige, ongewenste praktijk dat esen parlementslid in Nederland nist aan de
kiezer maar aan de partij verantwoording schuldig is, kan alleen deorbroken worden
worden door het invoeren van een kiesstelsel zoais het Britse districtenstelsel,
waarbij kandidaten direct gakozen worden.

(19)
Met name in trein, tram en bus zou het lezen van dagbladen aanzienlijk
vergemakkelijkt worden, indien de artikelen die op de voorpagina van deze biaden
beginnen in hun gsheel op deze pagina worden afgedrukt, dan wel op de
achterpagina vervolgd worden.

Stellingen

behorende bij het proefschrift
*Copolymers at the Solid-Liquid interface”
van C.M. Wijmans, Landbouwuniversiteit
Wageningen, 13 april 1994.




To my parents




Voorwoord

Een goed gebtuik in ere houdend begin ik dit proefschrift met enige woorden van
dank aan diegenen zonder wie dit proefschrift niet zijn uiteindelijke vorm had
verkregen, De eerste die ik wil noemen is Jan Scheutjens. De uitwerking van de
meeste onderwerpen die in dit proefschrift beschreven worden heeft hij door zijn
vroegtijdig overlijden helaas niet meegemaakt. Toch kan hij met recht de initiator van
dit onderzoek worden genoemd. lk kijk met veel plezier terug op het schrijven van
hoofdstuk één, wat samen met Jan gebeurde. Ik heb toen van hem kunnen leren om
noch met de inhoud noch met de presentatie van het geschrevene te snel tevreden
te zijn. Ik hoop dat de later geschreven hoofdstukken zijn goedkeuring hadden
kunnen verkrijgen.

In 1990 Jan brought me into contact with Katya Zhulina. This was certainly not
the least important act of his with respect to my thesis research. When we first met
we could not have imagined how fruitful our co-operation would be. Chapters one,
three, and five are the direct results of aur collaboration, but also throughout the
other chapters | benefited greatly from discussions with Katya: spasibo!

Het afgelopen jaar heb ik veel profijt gehad van de aanwezigheid van Frans
Leemakers. Hoewel de grote lijnen van het proefschrift al vast stonden bij zijn komst
naar de vakgroep, heb ik vooral in hoofdstukken twee en zes goed gebruik kunnen
maken van nieuwe ideeén die Frans aanbracht. Het enthousiasme en de snelheid
waarmee hij de concept-hoofdstukken becommentarieerde waren zeer stimulerend.

Ik ben mijn promotor, Gerard Fleer, zeer erkentelijk voor de grote vrijheid die hij
me liet bij het uitkiezen van van de precieze onderzoeksonderwerpen en de
uitwerking daarvan. Tijdens de laatste maanden was hij nauw bij het schrijfwerk
betrokken. Na "Het Boek" is zo het volgende boekje uit de polymeerclub
voortgekomen. Het gedetailleerde commentaar dat Gerard steeds leverde heeft de
presentatie van de onderzoeksresultaten op veel plaatsen zeer verduidelijkt. Mocht
de lezer nog op onnauwkeurigheden of onduidelijkheden stuiten dan ligt de oorzaak
daarvan zeker niet bij mijn promotor.

Hoewel iets minder direct van invioed op het proefschrift, was ook de
samenwerking met de andere leden van de theoriegroep (Rafel [sraéis, Cas Meijer,
Klaas Besseling, Katinka van der Linden en Peter Bameveld) heel plezierig. Voor
het oplossen van probleempjes en discussies over eigen of andermans onderzosek
was altijd de ruimte. De "twee-weken weddenschap" met Rafel was een goede
aansporing om het werk niet al t& lang te laten uitlopen. Met kamergenoot Klaas had

vi




ik leuke en leerzame gesprekken. Van met name Peters continue inspanningen om
de informaticainfrastructuur goed te laten functioneren, heb ik veel profijt gehad.

Gedurende een groot deel van mijn tijd heb ik in de personen van mijn
kamergenotes Riet van de Steeg en Nynke Hoogeveen het experimentele
polymeercnderzoek van nabij kunnen gadeslaan (dat was voordat de management-
gestuurde werkkamertoebedelingspolitiek werd ingevoerd). Ook het brede
wetonschappelijke aandachtsterrsin van de rest van de vakgroep om me heen
leverde een welkome verruiming van mijn aandachtsbfik buiten het "gereken aan
ketenmoleculen".

Chris Wijmans
Januari 1994
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Introduction

Already in the third millennium BC, an advanced civilization existed in Egypt. For
a great deal this civilization was based upon an important development that had
greatly influenced early information technology: the invention of ink. Carbon black
particles were mixed with solutions of naturally occurring biopolymers, such as
casein (from milk), albumin (from egg white), and gum arabic (from the Acacia tree).
In the language of modem colloid science, the result was a sterically stabilized
colloidal dispersion.t-3 This is an example of the application of polymers in colloid
technolegy, many centuries before anyone had yet coined the words "colloid" or
"polymer". In our present society this same phenomenon of steric stabilization is
widely applied in the manufacturing of a whole variety of industrial products,
including (stillf) inks and paints. The technological importance of steric stabilization
forms a major impetus for fundamental scientific research into the behaviour of
polymer molecules near interfaces, including the present thesis.

The first scientific investigation of the effect of polymer adsorption was probably
performed by Faraday in the middle of the 19th century.* He prepared gold sols by
reducing solutions of gold chloride, Faraday was especially interested in the optical
properties of the gold sols and from these properties he deduced that the gold was
dispersed as small particles throughout the solution. He further found that the
addition of small traces of electrolyte leads to an irreversible coagulation of the gold.
However, when the sol had first been treated with gelatine, Faraday found that it
became protected against coagulation by the electrolyte. For the modern student of
colloid science these experimental results sound very familiar.

A lyophobic sol, like Faraday's gold sol, is a thermodynamically unstable system.
The van der Waals forces cause the particles to attract each other and coagulate.
These sols can, however, be stabilized electrostatically. The sol particles carry a
charge on their surfaces and are surrounded by a diffuse layer of ions with a
counter-charge. When two of such diffuse layers start to overlap they repel each
other, which may stabilize the system against flocculation. The equilibrium physics of
the interaction between two charged sol particles has been understood for about half
a century and is described by the DLVO theory (named after the four scientists -
Derjaguin, Verwey, Landau, and Overbeek - who ware largsly responsible for its
development).56 The protective action of the polymer gelatine is called steric
stabilization. There exists no theory which can describe such steric stabilization in
the same handsome manner as the DLVQO theory describes electrostatic



stabilization. Nevertheless, much effort has been put into understanding what
happens to a polymer molecule when it adsorbs at a solid-liquid interface, and much
is nowadays known. This thesis is but one bead on a long necklace of theoretical
and experimental studies to investigate this subject. in the subsequent chapters we
shall consider various systems wheare copolymers are adsorbed at solid-liquid
interfaces, and try to gain more insight into the characteristics of these systems,
using statistical thermodynamic arguments. But first we will briefly explain what a
(co-)polymer is.

Polymers

The literal meaning of the word polymer is a molecule consisting of many (from
the Greek, noiv) monomeric units (uepog). The official definition given by the
IUPAC? is "a substance composed of molecules characterized by the multiple
repetition of one or more species of atoms or groups of atoms (constitutional units)
linked to each other in amounts sufficient to provide a set of properties that do not
vary markedly with the addition or removal of one or a few of the constitutional units."
Probably the simplest example of a polymer is polythene {PET):

—CHp-CHp—CH2—CHz—CHp— or  —(CHx-CHz-)N

which is formed by the polymerization of ethene. The degree of polymerization N,
which can be as large as 10%, gives the number of monomers in one polymer
molecule, and is called the chain length. Polythene has been known for about half a
century, and is used in many applications. We only mention one historically
interesting application, which is its contribution to the successful development of
many branches of radar during World War |1.8 This was based upon the unrivalled
dielectric properties of polythene. We give two more examples of polymers which are
nowadays produced in gigantic quantities all over the world:

polystyrene (PS): —[CH2—CH(CsH5)-]n
and
pelyvinyl chloride {PVC): —(CH2—-CHCI-}N

In these three examples, the polymer molecules are built up from one type of
constitutional unit, or monomer: ethene, styrene, and viny! chloride, respectively.
They are therefore called homopolymers. Polymers built up from more than one type

.



of monomer are called copolymers. A copolymer of two monomer units A and B has
very different properties from those of an A or B homopolymer. Synthetic copolymers
are produced to improve certain properties, or even as the only means to gain a new
property. Copolymers that are produced industrially are nearly always random
copolymers. The different monomer units form an irregular sequence in a random
copolymer molecule. Copolymers also exist where the monomer units of one type
are grouped together in one or more blocks. These are calted block copolymers. In
general, the chemical synthesis of block copolymers requires more effort than that of
random copolymers. Block copolymers are very interesting molecules, as they can
exhibit very special characteristics, Most of this thesis is concerned with block
copolymers. Further on in this introduction we will consider block copolymers in a
littte more detail. First we will finish this short general overview of polymers.

The above might give rise to the impression that polymers are in general
synthetic molecules. This is certainly not true. There are many examples of
biopalymers. For example, the carbohydrate polymers: cellulose, which is the chief
structural material of the plant and vegetable world, starch, the energy reserve in
plants; and glycogen, the energy reserve in animals. Proteins, the building stones of
all living species, are a special type of copolymer. (Strictly speaking, proteins do not
obaey the IUPAC definition of polymers. They are, however, generally classified as
polymers}. Proteins are made up of 21 different monomer units, called amino acids.
Each protein has its own unique sequence of these amino acids, of which a plan is
laid down in the genes. The most important component of the genes, DNA, is aisc a
polymer. Nature has developed mechanisms to translate the genetic blueprint
present in the DNA into protein molecules with a very low rate of errors occurring in
the process. Up to 10* amino acid molecules have to be polymerized to make a
protein molecule. The synthesis of such complicated polymers exactly according to a
predetermined scheme is a task that lies far beyond the possibilities of conventional
synthetic chemistry (although mankind has recently discovered how to let nature do
this for its own benefit).

The word polymerization was already used by Bertholet® for the process in which
several molecules form one large association structure. He used this word to
describe the reaction of styrene, which upon heating changes from a liquid to a
transparent solid, as observed in 1839 by Simon.1% The molecular basis of this
association remained in dispute. The fact that further heating of the polystyrene
again leads to depolymerization supported the theory that in a polymerization
reaction a physical aggregate is formed. Not until the 1920's did it become generally
recognized that the units in polymers are connected by real covalent bonds.



Staudinger,! one of the founding fathers of polymer science, played a crucial role in
the development of this idea.

Accepting the covalent nature of a polymer, the question arises what shape a
linear polymer has in solution. Staudinger!2 assumed that a polymer molecule was a
long rigid rod. Kuhn13 showed that this assumption was incompatible with viscosity
measurements of polymer solutions. He developed an alternative statistical theory of
polymer chains as linear systems made up of independent elements (statistical
segments, nowadays aiso called Kuhn segments). These elements can take on a
large number of different conformations, resulting in a random coil shape for the
overall polymer. One can say that this theory forms the basis of all subsequent
thearigs in polymer physics. All the waork presented in this thesis is based on this
model of a polymer chain consisting of independent elements.

Polymers at interfaces

In many nhatural and technological processes the occurrence of polymers (and
also oligomers) at interfaces plays a crucial role. In table 1, which is adapted from ref
14, a list is given of such processes.

Table 1

Adsorption of (or onto) polymers plays a key role in:

Adhesion Crystallization Soil structure
Coatings Precipitation Films and membranes
Lamination Agglomeration Biological agglutination
Reinforcements Caorrosion Biocatalysis
Emulsions Ageing of composites Immune reactions
Suspensions Crack resistance Immunosensors
Detergent action Drag reduction Cell recognition
Flotation Textile finishing Adsorption of bacteria
Drilling and cutting Flocculants Drug direction

Solid lubrication Chromatography Genetic reproduction
Paper making Water purification Food stability
Magnetic discs Polymer composites Pesticides

In this context it is not possible to give an exhaustive overview of all these processes
in which polymer adsomtion phenomena are so important. We shall only mention a




few in slightly more detail. Together with the list given in table 1 (which by no means
claims to be complets) this should give the reader some feeling for the diversity of
applications that exist for scientific research on polymer adsorption.

We have already mentioned the ancient use of polymers to stabilize dispersions,
such as ink. This same principle is also used in the production of, for example,
paints, pharmaceutical products, pesticides, magnetic discs, and foods. Without
adsorbed polymer a glass of refreshing milk would not look {or taste} half so nice!
The opposite process of stabilization, destabilization, is also of great importance. In
this case polymer molecules adsorb simultaneously onto two or more particles in a
dispersion, thus causing the dispersion to flocculate. The sediment that is formed
can subsequently be filtrated, which is useful in water purification. Recent research
has shown that polymer chains on the cell walls of bacteria play an important role
when these bacteria interact with a solid surface.’® Proteins at interfaces are
important in biotechnological applications. One can think of the adsorption of
enzymes onto solid matrices in biocatalysis,’® and of immunoglobulines in
immunosensors.7

The study of polymer adsorption forms a discipline of its own. One cannot treat
the adsorption of polymer molecules as a simple extension of the adsorption of low
molecular weight species. Simplifying things just a little, one can say that the
adsorption of small molecules is a "two state" process. A molecule is either adsorbed
or it is not. Simple models can be used to give a statistical thermodynamic
description of the adsorption. Of course, aiso for low molecular weight species
complicating factors do occur. In certain cases the adsorption takes place on specific
adsorption sites; in other cases the adsorbate can move freely over the adsorbent
surface. Interactions between adsorbed molecules (which depend upon the surface
coverage) may play an important role in the adsorption equilibrium. Especially in gas
adsorption, sometimes muitilayers can be formed. Nevertheless, with some
inventivity these complications can be incorporated into fairly simple adsorption
models. This is not the case for polymer adsorption.

If a polymer chain would only adsorb with all its segments in contact with the
surface, then it would still be fairly easy to study polymer adsorption. But, aithough
the situation that a polymer molecule adsorbs in a completely fiat conformation is
possible, it is very unlikely to occur. A polymer molecule can adsorb in very many
different conformations. For example, with its first 10 segments adsorbed to the
surface and with all other segments sticking out into the solution. Or with segment
numbers 25, 26, 27, 98, and 110 on the surface and all others in the solution. Many
other adsorbed conformations are possible. An adsorbed polymer layer consists of
many molecules, each with its own conformation. In order to give a description of




such an adsorbed layer, one must use statistical methods. This is rather anatogous
to a polymer molecule in solution, whose {(average) random coil shape is also the
result of the many possible conformations.

Over the years different approaches have been proposed to describe polymer
adsorption. The reader who wants to know more about these theories is referred to
the recent overview given by Fleer et al.18 In this introductory chapter we will pay
some attention to one of the theoretical models for polymer adsorption, which has
been used to compute most of the results presented in this thesis. It is the self-
consistent field lattice theory of Scheutjens and Fieer.19:20 Scheutjens and Fleer
developed this theory to describe the adsorption of homopolymers. Evers et af.21-23
extended the theory to included copolymer adsorption. Here we wilk only discuss the
basic aspects of the theory in a qualitative manner. Elsewhere in this thesis a more
quantitative description is given.

The adsorption theory of Scheutjens and Fleer is a /attice model. A lattice is used
to generate the conformations of the polymer chains. Each segment is assumed to
occupy a lattice site. Two connected segments must be situated on two adjacent
iattice sites. Using this approximation, the number of conformations of a polymer
chain is greatly reduced. When we refer to segments in the lattice model, we mean
statistical segments or Kuhn segments. These cannot be identified with a single
monomeric unit of the polymer chain but usually consist of several monomer units.
The bonds between the segments are completely flexible. If a segment is located on
a certain site, a contiguous segment can be on any of the neighbouring laftice sites.
Furthermore, the excluded volume of the segments is taken into account in an
average way. This means that conformations are allowed for which two or more
segments are located on the same lattice site. The approximate manner in which the
excluded volume is incorporated can lead to artefacts. However, it is far easier to
generate the complete set of polymer conformations when one need not account for
the excluded volume of the segments in an exact manner. This advantage outwsighs
the disadvantage of undesired artefacts.

The adsorption theory of Scheutjens and Fleer is a seff-consistent field model.
The phrase "self-consistent field" indicates how the polymer volume fraction profile is
computed from the polymer conformations. Consider a polymer solution in contact
with a smooth, flat surface. The polymer segments gain adsorption energy when
they are in contact with the surface. This leads to adsorption of the polymer chains. If
the volume fraction of polymer in the bulk solution is ¢b, then their volume fraction
close to the surface will be larger than ¢°. We are interested in calculating the
volume fraction ¢ as a function of the distance z to the surface. In the lattice model
this means calculating the volume fraction ¢(z) in each layer z. The volume fraction




profile ¢(z) is found from a weighted average of all the polymer conformations. For
sach polymer conformation one knows how many of the segments are located in any
layer z. But this knowledge is itself not yet enough to compute the volume fraction
profile. Each conformation must also be weighted by a weighting factor. The
weighting factors account for the energy of that conformation, and for the constraint
that each lattice site must be filled with a polymer segment or a solvent molecule. If
the segments have an adsorption energy, conformations with many adsorbed
segments will have a low energy. If the polymer segments have unfavourable
enargetic interactions with the solvent, the energy of a conformation will depend
upon the number of segment-solvent contacts. The energy of a conformation is
determined by the potential energies of all its segments. In each different layer z a
segment has a different potential energy u(z}. This potential energy is itself
determined by the volume fraction profile. (For example, if the polymer segments
have unfavourable energetic interactions with the solvent, the potential energy of the
segments will be high if the solvent volume fraction is high and the polymer volume
fraction is low). In other words, the volume fraction profile is determined by the
potential energy profile, and, in tum, the potential energy profile is determined by the
volume fraction profile. In equilibrium the volume fractions must be consistent with
the potential field. That is why one speaks of a self-consistent field theory.

The adsorption theory of Scheutiens and Fleer is a mean-field model. For
polymer adsorbing onto a flat surface, it is assumed that there is only a
concentration gradient perpendicular to this surface (z direction). In layers parallel to
the surface all interactions and volume fractions are smeared out: a mean-field
approximation is applied in the x and y directions. The mean-field approximation is
not really inherent to the theory, certainly not in the manner described here. In
chapter 6 the mean-field approximation is implemented differently. There we are
concemed with a system where it is not realistic to assume that the concentrations
are a function of one coordinate only. In this chapter the volume fractions are
consequently taken to be functions of two independent coordinates. The mean-field
approximation is then applied in ene dimension only. It would also be possible to
apply the theory without any mean-field approximation, by taking the volume
fractions as functions of three independent coordinates x, y, and z. However, this
would mean that the number of variables increases accordingly, which very soon
leads to computational difficulties. Furthermore, for adsomtion onto a flat surface it is
physically realistic to assume that concentration gradients only occur in the z
direction.

The adsorption theory of Scheutjens and Fleer is an equifibrium theory. For a
given system the equilibrium distribution is computed under certain constraints {for




example, a fixed chemical potential of the various species or, alternatively, a fixed
amount of the components). No dynamic aspects are at all taken into account. It is
only possible to calculate what the equilibrium situation is for a system, not how
quickly or along what pathway that equilibrium will be reached from a given starting
configuration,

Adsorption of homopolymers and caopolymers

In a homopolymer chain all segments are chemically identical. If a homopolymer
adsorbs, this means that all segments have an affinity for the surface. In one specific
adsorbed molecule the segments will generally not all be adsorbed at the same time,
but they are all able to adsorb. A very different situaticn can occur with copolymers.
Copolymer chains consist of at least two different kinds of segments. The adsofption
energies of the different segments are generally not the same. If a copolymer
consists of two types of segments of which one type does adsorb and the other type
does not adsorb, this can lead to a very different adsorption behaviour as compared
to a homopolymer. We first consider the case that all the adsorbing segments, which
we denote by the letter A, are grouped together in one block and all the
nonadsorbing segments, which we denote by the Istter B, are in another block. We
then have an AB diblock copolymer. When such a polymer adsorbs from solution,
the A blocks will cover the surface, whereas the B blocks will stick out into the
solution. Especially if the B segments dissolve well in the solvent, a thick adsorption
tayer can be formed by these diblock copolymers.

If the A and B segments are not separated along the polymer chain but, for
example, mixed in a statistical manner, the diblock copolymer will far more resemble
a homopolymer. When adsorbing, the A segments will pull the B segments towards
the surface. An intermediate situation occurs, when the A and B segments are not
separated into two large blocks but into several smaller alternating A and B blocks
(multiblock copolymers). The A blocks will adsorb, and the B blocks will form loops
between the A blocks, protruding into the solution. The greatest part of this thesis is
concerned with AB diblack copalymers, but in chapter 6 we also study multiblock
copolymers.

As mentioned several times before, adsorbed polymer layers can impart colloidal
stability to a dispersion. The ideal polymer for steric stabilization is a polymer which
adsorbs in a large amount, but which also dissolves well in the solution, forming a
thick protective layer around the colloidal particle. For a homopolymer these
conditions are conflicting. Furthermore, homopolymers tend to form bridges between
two surfaces, which can lead to an attractive force. Diblock copolymers can more
effectively give colloidal stability. A diblock copolymer consists of two blocks, each




with different propetties. A good stabilizer will have a strongly adsorbing A block and
a nonadsorbing B block, which dissolves well in the solution. As only one end of
such polymer molecules adsorbs, they will not form bridges between two surfaces.
(Of course certain copolymers can form bridges. If an extra A block is added to a
diblock copolymer, one gets an ABA triblock copolymer, whose two adsorbing blocks
can adsorb onto different surfaces. This copolymer bridging effect is also discussed
in chapter 6).

The adsorption of a polymer need not only be driven by an affinity of the
segments for the surface. A dislike of the solvent can also cause adsorption.
Complications can arise when in a copolymer one of the segment types (the
adsorbing segments) dislike the solvent (on their own they cannot be dissolved in
the solvent), while the other segment type dissolves well in the solvent. This disparity
in interaction with the solvent (in such a case one speaks of a selective solvent)
favours adsorption of the A segments, but it also leads to the occurrence of another
phenomenon: the formation of micelles. These are aggregates of polymer molecules
with the A segments in the middle, and the B segments forming a shell around them,
which shields the A segments from the solvent. The formation of these micelles is
analogous to the formation of micelles by surfactants, which consist of far smaller
molecules. Surfactants are really very short block copolymers {one could call them
block oligomers). When studying the adsorption of copolymers from a selective
solvent, the equilibrium between free polymer melecules and micelles should be
taken into account. This can be done using the self-consistent field lattice theory,24
although in this thesis we will not consider the possibility of copolymers to form
micelles. However, the results presented in chapter 3 can be applied to describe
polymeric micelles. In chapters 3 and 4 we describe the adsorption of AB diblock
copolymers onto small spherical particles. In chapter 3 we focus our attention on the
distribution of the B segments around such a particle. This is a very similar situation
to that which occurs for B segments in a micelle, where they are distributed around a
core of A segments.

Strong-stretching approximation

For all the systems mentioned in the previous section, the adsorption can be
studied using the self-consistent field lattice theory. For AB diblock copolymers we
have also applied another theory to describe the adsorbed layer. Using this theory,
one can calculate the distribution of the B segments. The A segments, which are
strongly adsorbing, are assumed to form a thin film adjacent to the surface, so that
their distribution is less interesting. If the adsorbed amount is high encugh, the B
blocks cannot keep their random coil conformation. If they would do so, B blocks
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from neighbouring chains would hinder each other considerably. The excluded
volume interactions lead to strongly stretched conformations.

When the B blocks are strongly stretched it is not necessary to generate all their
possible conformations in order to find the equilibrium volume fraction profile. It tums
out to be sufficient only to consider a set of most probable conformations. This was
first realized by Semenov.25 His approach to this problem was subsequently applied
to studying (homo-)polymer chains that are end-attached to an impenetrable
surface.26.27 Such a system is often called a polymer brush, because the stretched
polymer chiains resemble the bristles of a brush. We have used such a polymer
brush as a model for an adsorbed AB diblock copolymer. The amount of adsorbed
(end-attached) polymer is then an input parameter. In a real block copolymer the B
blocks are attached to a thin film of A segments, and not directly to the surface. This
has only minor consequences for the profile of the B segments. Of course, in the
adsorption process the adsorbed amount is determined by the adsorption
equilibrium.

Although in this thesis we investigate polymer brushes as model systems for
copolymers adsorbed from sclution onto a solid surface, polymer brushes can also
be seen as maodels for a variety of other interfacial systems in polymer science. First
of all one can think of polymer chains that are directly grafted to a surface, either by
a covalent bond with the end-segment of the chain or by a special chemica! group.
This situation hardly differs from an adsorbed diblock copolymer. Polymer brushes
are also formed when diblock copolymers adsorb at a liquid-liquid ar a liquid-air
interface. (Thin liquid fitms, as an example of such a system, can be stabilized by
diblock copolymers). in these cases we have "soft", penetrable interfaces, whose
characteristics are not necessarily identical to those of a hard, impenetrable solid-
liquid interface. Nevertheless, as a first approximation one can model polymer
chains attached to a soft surface as a brush on a solid surface. If the brush thickness
is far larger than the transition layer between the two phases, this approximation
should not have many undesirable consequences. Finally, brush-like structures can
be formed in melts or concentrated solutions of block copolymers. In such systems
the blocks often segregate into different microdomains. These blocks can then be
treated as chains grafted to the interface between two such domains. Actually,
Semenov25 first introduced the strong-stretching approximation to describe block
copolymer melts. It does make a difference whether a brush is immersed in a low
molecular weight solvent or in a polymer melt. The greater part of this thesis is only
devoted to brushes immersed in a low molecular weight solvent. Chapter 5 is partly
concerned with brushes immersed in a polymer solution. In the limit of high volume
fractions of the dissolved polymer, one is dealing with a brush immersed in a
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polymer meit. So, in that chapter we will briefly be concerned with brushes imrmersed
in a polymer melt.

Outline of the thesis

This thesis divides into two parts. Chapters 1-4 deal with (co-)polymers at
isolated surfaces. The equilibrium profiles are studied of unperturbed brushes and of
block copolymers freely adsorbing from a solution onto an adjacent surface.
Chapters 5-7 deal with the interaction between two surfaces bearing adsorbed
polymer layers. In these last three chapters we use the insights obtained in the first
four chapters, The results of the last three chapters are directly relevant for
guestions about colloidal stability.

Chapter 1 is concerned with polymer brushes on flat surfaces. Both the self-
consistent field lattice theory for end-attached polymer chains and the strong-
stretching approximation are introduced. Our aim is to make a rigorous comparison
between both approaches. By comparing the resulis of the strong-stretching
approximation with those of the lattice model, we explore the validity of this
approximation for different chain lengths, grafting densities, and solvent qualities.

In chapter 2 an extension cf the self-consistent field lattice model is introduced.
This extension accounts for stiffness in the chains of the polymer brush. It also
provides a better approximation for the excluded volume of the segments. These
new concepts are applied to polymer brushes on isolated, flat surfaces (as in chapter
1).

Chapters 3 and 4 deal with curved surfaces. In colloidal systems polymers
generally adsorb onto curved particles, so that the surface curvature is a relevant
parameter when studying polymer adsorption. in chapter 3 the structure of polymer
brushes on sphericai and cylindrical surfaces is studied. Data for the volurne fraction
profiles of such brushes obtained from the lattice model are presented. We try to
interpret these data using both the strong-stretching approximation and scaling
arguments. We also consider the distribution of the end-segments throughout the
brush. A central question is whether there is a zone near the surface from which
these end segments are excluded, when the surface is strongly curved. In chapter 4
we deal with the adsorption equilibrium between free diblock copolymers and diblock
copolymers adsorbed onhto a spherical particle.

in chapter 5 the interaction between two flat surfaces, each with an end-attached
polymer layer, is studied. This chapter can be seen as an extension of chapter 1,
which dealt with a polymer brush on an isolated surface. The main aim of chapter 5
is to describe the interaction free energy of a system consisting of two such
surfaces, when both surfaces are brought together. This interaction is calcutated
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both for brushes immersed in pure solvent and for brushes immersed in a solution of
free polymer chains. As an introduction to the latter system, we also study the
behaviour of an isolated brush immersed in a solution of free polymer,

Chapters 1-5 all deal with diblock copolymers. In these chapters we either look at
freely adsorbing diblock copolymers or we use polymer brushes as a model system
for adsorbed diblock copolymer layers. In chapter 6 copolymers are studied which
consist of more than two blocks. The central question in this chapter is under what
circumstances multiblock copolymers can be used to stabilize a dispersion, and
under what circumstances such copolymers destabilize a dispersion. We first turn
our attention to ABA triblock copolymers. These triblock copolymers are able to form
a bridge between two surfaces, which may induce an attractive force between these
two surfaces. We then move on to consider multiblock copolymers, consisting of a
large number of alternatingly adsorbing and nonadsorbing blocks.

The last chapter is about the interaction between two small collcidal particles
bearing adsorbed diblock copolymer layers. These layers are again modelled as
terminally attached chains. The relationship between this chapter and chapter 3 is
the same as that between chapters 5 and 1. In chapter 3 we deal with polymer
brushes on isolated curved surfaces. In chapter 7 we study the interaction between
spharical particles with polymer brushes attached to them. The central question in
this chapter is how the particle curvature influences this {repulsive} interaction. This
problem is of great relevance for colloidal stability, as sterically stabilized particles
are always curved. If these particles are not far larger than the dimensions of the
adsorbed polymer layer, then one may expect that their curvature is an important
parameter in the process of steric stabilization. We try to gain more insight into this
system by developing an extended version of the self-consistent field lattice theory.

All chapters can be read independent of each other.

Other scientific approaches relevant to this work

The subjects studied in this thesis can also be investigated using other
theoretical or experimental approaches. We will not give an elaborate review of
these, discussing the merits of all major experimental, theoretical, and simulation
techniques that have been employed to investigate the behaviour of copolymers at
solid-liquid interfaces. Instead, in this section we only mention some other methods
that may, in principle, be compared with cur model.

A great deal of our work is concemed with the equilibrium volume fraction profiles
of polymer brushes. In principle these profiles can be measured using neutron
scattering and neutron reflectometry. However, these techniques are not sensitive
enough to investigate most of the details in the volume fraction profiles which we
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calculate. It will not be easy to find direct experimental evidence for the deviations
between the strong-stretching approximation and the more exact lattice predictions.
It is possible to make a useful comparison with Monte Carlo and molecular dynamics
simulations of polymer brushes. Just as the SCF lattice calculations, these
simulation methods do not make any a priori assumption about the chain
conformations. Simulations show the same sort of deviations with respect to the
strong-stretching approximation as do the SCF lattice calculations.

The great disadvantage of Monte Carlo and, especially, molecular dynamics
simulations is that they are computationally very demanding. The CPU times
involved to simulate a {multi-chain) polymer brush of a reasonable size are orders of
magnitude larger than the CPU time needed to solve the SCF equations numerically.
With the present state of the art in computer technology it is certainly not possible to
perform simulations for all systems presented in this study. However, in one respect
Monte Carlo and molecular dynamics simulations are more reliable than our SCF
calculations, as the former do not use a mean-field approximation. In a good solvent
this mean-field approximation was shown to give the correct results.28 In bad
solvents there are indications that it is not correct.29 Throughout this study we apply
the mean-field approximation without questioning its validity. The iarge majority of
the results are obtained under @- or better sclvency conditions. In these cases one
may certainly expect that the mean-field approximation for brushes has no serious
shortcomings. One should, however, always bear in mind that the results are based
upon this approximation.

During the past five to ten years much work has been done on polymer brushes.
Chapters 1, 2, 3, and 5 clearly are part of the new discipline of "brush research". In
these chapters the reader encounters many references to the major "brush
publications". The three other chapters are of a more applied nature, where we try to
use the theoretical framework to make predictions about interesting colloidal
systems. Up to now the systems treated in these chapters have not yet received
much attention, neither from a theoretical nor from an experimental point of view
(although recently some work has been published on the adsorption of and (de-)
stabilization by triblock copolymers;3%.31 see chapter 6). We hope, and believe, that
our results on the effect of particle curvature on copolymer adsorption (chapter 4), on
steric stabilization (chapter 7), and on the adsocrption behaviour of multiblock
copolymers (chapter 6) may inspire further theoretical and, especially, experimental
investigations of such systems.
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chapter 1

Self-Consistent Field Theories for Polymer
Brushes.
Lattice Calculations and an Asymptotic Analytical

Description

Abstract

In this chapter we compare two models for calculating the configuration of .
grafted polymer chains at a solid-liquid interface. The first model is the self-
consistent field polymer adsorption theory of Scheutjens and Fleer as extended for
end-attached chains. In this approach the equilibrium distribution of the polymer is
found by averaging the statistical weights of all possible chain conformations that
can be generated on a lattice. The second model is an analytical SCF theory
developed independently by Zhulina, Borisov and Priamitsyn and by Milner, Witten
and Cates which predicts the grafted layer structure in the case of strong chain
stretching. A comparison is made between the results of both theories, and the
deviations are explained from the assumptions made in the less exact analytical
theory.



1.1 Introduction

Polymer chains that are grafted at one end onto an impenetrable surface form a
good model for the analysis of numerous systems, such as sterically stabilized
colloidal dispersions, block copolymer surfactants at solid-liquid and liquid-liquid
interfaces, sofutions and melts of block copolymers under the conditions in which
microphases are formed, etc. Theoretical analysis of grafted chain layers was
initiated by the pioneering publication of Alexander.! Using scaling arguments,1-3
the main features of grafied layers were established, particularly the considerable
stretching of overlapping chains perpendicular to the grafting surface. This
stretching is greatest for the case of a planar grafted tayer, so that the thickness of
the layer His proportional to N for solvents of various strengths. This scaling
relationship between the layer thickness and the degree of polymerization
suggested the picture of a mainly homogeneous layer of constant concentration
and at the periphery of the layer a rapid decrease of concentration.

Further progress in the analytical theory of grafted layers was attained using the
self-consistent field (SCF) approach proposed by Semenov.* This approach is
based on assuming large stretching of the grafted chains with respect to their
Gaussian dimension to allow the replacement of the set of conformations of a
stretched grafted chain by their "average trajectory" (the so-called Newton or
strong-stretching approximation) which significantly simplifies the description of the
system. This idea was first applied by Semenov to dense grafted layers (i.e. layers
without solvent) and led to a very elegant theory of super structure formation in
block copolymer melts under strong segregation conditions.

This SCF approach was generalized and applied to grafted polymer layers
immersed in low molecular weight solvents5.6 and solutions or melts of maobile
polymers.? Many effects were considered, such as the collapse of the layer due to a
decrease of the sofvent strength,® the polydispersity of grafted and mobile chains,®
deformational® and dynamical'! behaviour of grafted layers, etc.

These investigations led to a different picture of the grafted layer structure. The
polymer concentration decreases monotonically on going from the surface to the
outside of the layer. Furthermore, the free chaih ends are distributed throughout the
whole layer. The system parameters such as solvent guality, polydispersity, etc.,
appear to strongly influence the shapes of the volume fraction profile and the free
chain end distribution.

The development of an analytical theory was accompanied by investigations of
grafted layars by Monte Carlo simulations2-15 and numerical calculations using a
SCF laitice model.12.16 |n the latter method, the equilibrium concentration profile of
the grafted layer is found by accounting for all the possible conformations of the
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polymer chains that can be generated on a planar lattice. Each conformation is
weighted by its Boltzmann probability factor. We emphasize that this approach
gives exact results within the mean-field and lattice model approximations. No
further approximations are needed to find the equilibrium distribution. Typical
computation time is on the order of minutes on a desktop workstation. Parameters
such as molecular weight, grafting density and solvent quality can easily be varied,
thus enabling the study of the grafted layer structure under various conditions.
Therefore, a detailed comparison with analytical predictions is feasible.

The aim of this chapter is the systematic comparison of results obtained by the
above-mentioned analytical and numerical SCF methods for a planar layer
immersed in either a pure solvent or a solution of mobile polymer. An initial
comparison of both approaches for the case of only an athermal solvent!? was very
promising. In this chapter we consider a wide range of solvent strengths, including
very good (better than athermal) and poor solvents.

The combination of these two different methods for the analysis of grafted layers
is useful for several reasons. First, it provides a better understanding of the
structural organization of grafted chain layers. Second, it enables us to check the
validity of the assumptions made in the analytical theory, particularly the Newton
approximation. Furthermore, the establishment of direct relationships between the
analytical and the numerical results may stimulate further development of both
models and their application to other systems.

In this chapter we shall consider the equilibrium characterlstlcs of a free non-
deformed planar layer, and its deformational behaviour will be considered
elsewhere. In sections 2 and 3, we summarize the main ideas behind the
nomerical lattice model and analytical SCF theories. Saection 4 is devoted to the
comparison of the resulis obtained by both methods.




1.2 Self-Consistent Field Lattice Model

The hemepolymer adsorption theory of Scheutiens and Fleer?8:19 calculates the
equilibrium distribution of a polymer-solvent system at an interface by taking into
account all possible conformations, each weighted by its Boltzmann probability
factor. Cosgrove et al12 and Hirz!'® showed that this method can be applied to
terminally attached chains by restricting the conformations to those whose first
chain segment is in the layer adjacent to the surface. In this section we describe
both versions for the case of nonadsorbing polymer segments, that is, where
segments and solvent molecules are assumed to have the same affinity for the
surface. In this case the polymer tends to avoid the surface in order to minimize the
loss of conformational entrapy.

Consider a lattice consisting of M layers, numbered z/¢ =1, 2, ..., M, where z
is the distance from the surface and ¢ the thickness of a layer. Layer 1 is the layer
adjacent to the surface and layer M is in the bulk solution. We assume full
occupancy of the lattice layers. Each layer consists of L lattice sites, each of which
accommodates either a polymer segment or a solvent molecule. A fraction A, of the
surface of a lattice site is in contact with other sites in the same layer. Similarly, a
fraction A4 is in contact with sites in a lower layer and another fraction A, with sites
in a higher layer. For a simple cubic lattice, which has been used to derive all the
results presented in this chapter, Ay =2/3 and Ay =1/6. The cubic lattice gives an
equal a priory probability to a bond between two segments in any of the four
directions parallel to the surface as well as to a bond toward the surface or away
from the surface.

Polymer chains in a concentration gradient

We first consider the general case of (non-grafted) polymer chains and solvent
molecules distributed over the lattice. The chains are N segments long. Within each
layer a mean-field approximation is applied, so we can write the volume fraction
profite of segments, ¢(z), and solvent molecules, 1-¢(z), as functions of z alone. In
the bulk solution the polymer concentration is ¢°. As mentioned above, we assume
that there is no net adsorption energy of the polymer ssgments with respect to that
of the solvent. Nearest-neighbour interactions between polymer segments and
solvent are accounted for by the Flory-Huggins interaction parameter . Because of
the mean-field approximation all interactions within a layer are smeared out. This
means that the potential energy u(z) of a polymer segment in layer z relative to that
in the bulk is given by

W2)/KT = x{< 1-20(z) > 1+ 26° ) ~In(1—¢(2)) +In(1-¢°) (1)
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where the angular brackets <> denote a weighted average over three layers, which
accounts for the fraction of contacts that a segment or solvent molecule has with its
nearest neighbours in these layers. For example, the average volume fraction of
nearest-neighbour segments of a site in layer z is given by

<0(z)> = A1 §(2-4) + Ag §(2) + Ay §(z+8) (2

The segment potential u(z), which corresponds te —kT In(pj) in ref 18, is the
derivative of the free energy with respect to the segment concentration in layer z;
i.e., it is determined by the change in free energy that takes place upan exchanging
a solvent molecule in layer z with a single polymer segment in the bulk. This
change is comprised of contributions from the loss of interaction energy, —x<¢(z)>,
which is due to the removal of the solvent molecule from layer z, the gain in energy
from interactions of the solvent molecule with the bulk solution, x¢b, the gain in
interaction energy due to the insertion of the segment into layer z, x <1-¢(z) >, its
loss in interaction energy due to its ramoval from the bulk, fx(1—¢b), and a term for
the change in the translational entropy of the solvent molecule, In(1-¢(z)) —
In(1-¢b). The translational entropy of the solvent is included in u(z), whereas the
entropy of the polymer is accounted for in the conformation statistics which are
described below.
We define a segment weighting factor G(z) as

G(2) = exp(-u{z)/KT) (3)

which is a Boltzmann factor of the segment potential in layer z. Detached segments
{monomers} would have a distribution given by G(z). The intermolecutar
interactions are included in u(z) within the mean-field approximation, but in a chain
the distribution of a segment is also affected by that of all the other segments in the
same molecule and may depend on its position in the chain. The connectivity of the
segments is accounted for in the end-segment weighting factor G(z,s), defined as
the average statistical weight of all conformations of an s-mer of which the last
segment is located in layer z and the first segment may be located anywhere in the
system. If segment s is in layer z, segment s -1 must be located in one of the layers
z—£4, z, or z+/{. This means that G(z,s) is proportional to <G(z,s-1) >, the
weighted average of statistical weights of (s-1)-mers of which the last segment is
in one of the layers z— ¢, zor z+ ¢. The angular brackets denote a similar average
as defined by eq 2. Furthermore, segment s in layer z contributes a factor G{z). it is
now easily seen that a recurrence relation holds which enables us to calculate
G(z,5) for all values of s:

G(z.s) = < G(z,s-1} > G{2) 4
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The sequence is started with G(z,1) = G(z), the statistical weight of a monomer.
Thus, G(z,s) is calculated for all s < N, for a given set of values for u(z). To arrive at
our goal of finding an expression for the total segment volume fraction ¢(s,z) of the
sth polymer segment in layer z, we realize that the sth segment of a polymer of N
segments can be viewed as being simultaneously the end-segment of an s-mer
and of an (N+1-s}-mer. This means that the total statistical weight of the chain is
given by the joint probability that both end-segments of the subchains are on the
same site or, because of the mean-field approximation and apart from a factor L, in
the same layer. Thus, §(s,z) becomes

o(z,s8) = C G(z,5)G(z,N~s+1)/G(z) {5)

Here, the denominator accounts for the fact that segment s is counted twice
{belonging to both chain parts). The normalization constant C can be obtained in
two ways. In a closed system the total number n of polymer molecules is fixed and
C follows from the boundary condition n= LZZ o(z,s). This relation is valid for any
s, since there are n segments s in the system. If we substitute ¢(z,s) from eq 5 for
s=1o0r s =N, we oblain:

C- e 6
LZZG(Z,N) (©)
Alternatively, C can be expressed in the bulk concentration ¢b, which is especially
useful for open systems. In the bulk solution ¢{z,s} must equal q>b /N. Moreover,
according to egs 1-3, in the bulk solution, u(z) is zero and all G's are unity. Thus,

from eq 5 it follows that

C=¢"MN (7)
Finally, the total polymer volume fraction in layer z is
#2) = L0z, 8) (8)

This volume fraction profile, obtained for a given u{z) profile, should be consistent
with eq 1 for all values of z. This provides a set of M simultaneous equations in M
unknown variables u(z), which may be solved by the numerical method (for free as
wall as grafted chains) given in Appendix 1.

Grafted chains

Above, we discussed the general case of polymer chains which may adopt any
possible conformation. However, if the chains have one of their ends attached to
the surface, the first segment must be in the first layer. Consequently, the
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generation of chains, using eq 4, must start with Gg(z,1) (where the subscript g
denotes grafting) being equal to zero for all z # 1:

Glz) if z=1

G,z =
o= {o if z#1

(9)

and eq 4 is replaced by
Gglz.8) =< Gy(z,s -1 > G(2) (10)

Generally, Gg(z.s} < G(z,8} and Ggy(z,s} is zero for z > s. In the chain, segment s is
the joint between a grafted chain of s segments and a non-grafted free chain of N—
s+1 segments. Equation 4 is still valid for generating the conformaticns starting
from the other end of the chain, i.e. the chain part from segment N down to s. Thus,
for grafted chains the equivalent of eq 5 becomes:

dg(z,8) = CyGg(z,8) G(z. N -5+ 1)/G(z) {11)

The total number ng of grafted polymer chains is fixed by the grafting density
o =ng /L and determines the value of the constant Gy according to eq 6.

Grafted chains in a solution of free polymer

If the grafted layer is immersed in a selution of free polymer chains of N;
segments, both the volume fraction profile ¢4(z) of the grafted chains and that of the
free chains, ¢i(2), are calculated from the same potential energy profile u(z). In eq 1
the volume fraction of the segments §(z) is given by ¢4(2)+¢¢(z). To find the
volume fractions of the mobile chains, ¢(2), eqs 4 and 5 are used, and for the
grafted chains eqs 9-11 are used. The normalization constant for the free polymer
is determined by the bulk volume fraction (C; = :|>'f"’ /Nf) and that of the grafted
chains by the grafting density (C4 = 6/%,Gg(z,N)).

Self-consgistent field

The volume fraction profiles of grafted and free polymer are now given as a
function of the segment potential profile. In turn, the segment potential itself is
determined by the volume fraction profile (see eq 1). The problem boils down to
finding a potential profile which is consistent with the volume fraction profile that it
produces. Mathematically, this is equivalent to solving an implicit set of equations
for which a numerical iteration scheme is provided in Appendix 1.
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1.3 Analytical Theory

The analytical SCF theory as developed by Zhulina, Priamitsyn and Borisov20
and Miiner, Witten, and Cates® predicts the asymptotic behaviour of grafted chains
as the chain length increases. Here we summarize the main equations,
emphasizing the similarities and differences with the lattice model and using the
same nomenclature as in the previous section.

Consider a planar layer of long (Ng >> 1) fully flexible polymer chains grafted
at one end onto a solid surface with relative surface coverage o = Ng /L, where Ng
is the total number of chains and L the maximum number of chains that could be
grafied onto the same surface (32/0 is the surface area per chain, which is called ¢
in ref 5, and a/£2 is the number of grafted chains per unit area, which is called ¢ by
Milner, Witten and Cates!0), The chain thickness ¢ (which in this chapter is
assumed to be equal to the Kuhn segment length) corresponds to the lattice
spacing in the model of the previous section. When the grafted chains are strongly
stretched with respect to their Gaussian dimension, Ry = £/N, the free energy A of
the system can be written as

A

o zgsjdz dql2’, N)_[dzE(zlz N)+- _[f[¢(z)]dz (12)

The first term in this equation represents the contribution from the elastic chain
stretching in the layer. It is determined by the function E(z|z',N)= dz/ds, which
gives the local stretching of a chain at distance z from the surface when its free end
is located at z' > z, and by the volume fraction profile of free chain ends dg(z',N).
For a given free chain end location z', the other segments in the chain are assumed
to take the mast probable path from the grafting surface to z'. The chain stretching
function E(zlz',N) determines the position z{s) of every segment, or, equivalently,
1E(z1Z',N) gives the segment density of the chain at z when its free end is at z'. In
the lattice model there are many conformations for a chain grafted with one end to
the surface and with its other end at some specified location. Each segment except
the first one is not specifically located in one layer but has a density distribution
given by eq 5. However, the average value of Z{s), which follows from the volume
fraction profile o(z,s) of segment s, is

j zd(z,s)dz

J. 250 0_1.[2 zd{z,s)dz/ ¢ (13)
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Assuming that the most probable path may be approximated by the average path,
the chain stretching function E{ziz',N) can now be expressed in lattice model
parameters as

Ez12 N = 2 o1Y Afogizis+1)- (2.5 1) (14)

The second term in eq 12 accounts for the free energy of mixing the grafted
chains with the other molecules in the system, fl¢(z)] being the free energy density
of mixing and ¢(z) the volume fraction of grafted polymer at height z from the
surface.

Taking into account the three additional conditions below, one can derive the
equilibrium volume fraction profile ¢4(z), the free chain end volume fraction profile
dg(z',N), the local chain stretching E(zlz',N), and the thickness H of the grafted
layer. The first two conditions are

Z
JE Z1ZN) Ng (18)
0

and
H
j dg(2)dz/¢ = oNg (16)
4]

and the third one is the relationship between ¢4(z), 64{z'\N), and E(zlz',N} which
expresses that the total volume fraction at z is the integral over z' of all contributions
by chains ending at z"

N
g(2) = ITQLI}NT (17)

In ref 20 the derivation is carried out by minimizing the free energy function A of
eq 12 under these constraints, using Lagrange's method of undetermined
multipliers. This results in an expression for E(z!z',N) that does not depend on the
character of the interactions in the layer and is given by

2
E@z!z.N)= %(z@ —22]1/ (for 0<z<H) (18)
g

The chains are stretched inhomogeneously; that is, their stretching is greatest near
the grafting surface and zero at the free chain end. The volume fraction profile ¢(z)
follows from the potential field u(z), which is given by the equation
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W(2)/KT = 5;[:((:))] _ A 8N2¢2 ff O=z<H (19)
it z>H

where the numerical constant A is a Lagrange multiplier defining the reference
potential of u(z). If we give A a value such that the potential is zero in the bulk, then
eq 18 defines the potential analogously to eq 1. The shape of the potential profile
u(z) is parabolic and a function only of N¢£, the contour length of the chain, but
independent of interactions and grafting density. Milner, Witten, and Cates® have
pointed out the equivalence between following the grafted chain from its free end
toward the surface, arriving after a fixed numhber of segments independent of the
position z' of the free end, and following a classical particle in harmonic oscillation
which moves from its maximum displacement z' to the centre in a time independent
of the amplitude z' and with velocity E(zlz',N). In both cases the potential energy
profile is parabalic.

The shape of the volume fraction profile is not yet determined once u(z) is
found, for it also depends on the exact form of f{¢(z)]. The free energy of mixing can
be written as a Flory type of free energy of mixing:

fé(2)] = (1- $(2)In(1- 6(2)) + x$(2){1- 6(2)) (20)

where g is the Flory-Huggins interaction parameter. The usual contribution of the
translational entropy of the polymer chains to the free energy is absent because of
the chains being grafted. Substitution of eq 20 into eq 12 gives the following
relation between the potential and the volume fraction profile
wz) A—% if 0<z<H
F:elnﬁ—cp(z)) - 2x0(z) = 8Ng¢ (21)
0 if z>H

The expression for u(z) also follows directly from eq 1 by putting tbb =0 (all the
polymer is grafted so there is no polymer in the bulk} and <0(z)> = ¢(z). In the
analytical approach the difference between the segment site volume fraction and
the average volume fraction of nearest-neighbour segments is neglected. Thus,
<d(2)> = 9(2) + M(d(z+0-0(2) - Ai(o(z)-¢{z- 1)), the equivalence in the
analytical theory is

< §(z) >= 6(z) + A1 9%0(z}/ 922 (22)

As we show below in Figure 4, this approximation does not lead to large
discrepancies as long as the curvature of the volume fraction profile is small. The
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value of the numerical constant A ¢an be found from the boundary condition at the
periphery of the layer. For a ©-solvent or better than @-solvent (y < 0.5),
¢(H) = 0, while in a worse than @-solvent {(x > 0.5), ¢{(H) = ¢'0, where ¢b is the
equilibrium concentration oh the coexistence curve for the limit N — « (see also ref
21). Within the framework of the Flory approximation ¢'b is obtained from the
condition

Apq/KT = |n(1 - ¢'b) + 4P +x(¢'b)‘2 =0 (23)

where Ay is the chemical potential of the solvent molecules in the concentrated
phase with respect fo that in the dilute phase which is pure solvent. Infroducing the
reduced coordinate t=2z/H and average volume fraction & of polymer in the
grafted layer,

Ngct
¢ = j ot)dt =~ (24)
we obtain the final equation for the profile ¢(z):
1-o(t) by 3r2c2(1-12) .
l(f J 2x(¢(t) cp) e if 0<t<d (25)

o) = 0 it t>1

where ¢'b =0 for ¥ £0.5 and ¢'b is given by eq 23 for x = 0.5. The left-hand
side of eq 25 is just the expression for u{z) when q>b = ¢'b (assuming <¢(z)> =
¢(z)). When ¢'b =0, eq 25 reduces to eq 21. For worse than ©@-solvents the
volume fraction profile drops from ¢(z) = o to o{z) =0 at the periphery of the
layer. This is accompanied by a discontinuity in the segment potential at this point
which corresponds to the difference between the segment potential in a solution of
concentration ¢'b (i.e. In(1—¢'b)+2x¢'b; see eq 21) and that in the bulk of pure
solvent (i.e. zero).

In Appendix 2 a simple numerical method is given by which ¢(t) can obtained
from eq 25 for a given combination of x and .

Finally, the free chain end volume fraction profile ¢(z'\N} is obtained by
inversion of the integral relationship in eq 17, where the functions E{zlz',\N) and
bg(2z) are given by eqs 18 and 25, respectively.
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Virial expansion

For low grafting densities (¢(t) << 1) the logarithm of eq 20 can be expanded
with retention of terms of order ¢ and ¢° to express the free energy function flo(2)]
in terms of the virial cosefficients v=0.5-y andw =1/6:

f6(2)] = vo?(z)+ wo®(2) (26)

This expression leads to less precise results, but it enables us to find relatively
simpie expressions for various grafted layer characteristics.® Expanding eqs 23
and 25 to powers of ¢(t) gives the corresponding equations for the profiles o(t) and
coexistence concentration q:'b = —v/2w. For the particular cases of an athermal and
a ®-solvent the profiles are given by

gu—t?) it 0<t<1 and x=0
2

i@:i(p#)v if 0<t<1 and x=05 (27)

[} T

0 if t>t

The corresponding thicknesses of the layer are

3
(§$] Ng¢  if x=0
'3
H= 28
4{ wo? v 28
e I
T

The inversion of the integral relationship in eq 17 gives the following expressions
for the free chain end volume fraction profile ¢g(t,N):

1/2
301(1—’(2)/ if 0<t<1 and x=0
dg(tN) =120t if 0<t<1 and x=05 (29)
0 it t>1

In ref 5 it was shown that for low grafting densities the swelling coefficient o of
the layer, defined as o =H(y =0)/H{x=0.5), is a universal function of the
parameter

p

_Vv

/4
5(2w°%)

(2w30'2 (30)
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independent of the molecular weight of the grafted chains. The parameter p
depends both on the seolvent quality and on the grafting density. The relationship
between « and [} is given by

2
o o o
-+ 1+ arctan(—) x<05
1 B p p
—5= (31)
2 —§E+ l+£ arctan 2o >0.5
25|42 B =
1 T T I I
o 2nd and 3rd virial coefficients only

Figure 1. Swelling coefficient o versus the parameter § according to eq 31,
based on a truncated virial expansion, and as calculated from the more exact eg 25
for grafting densities o = 0.1 and 0.01.

In Figure 1 the function a(f) is plotted as given by eq 31. The curve passes through
the point (0,1} at the ©-temperature, where =0 (since v=0) and « =1 by
definition. As expected, in worse than ©-solvenis {f < 0} the swelling coefficient o
is smaller than unity, while in good solvents (B > 0) the polymer layer is thicker
than in a ©-solvent. In most cases the swelling deviates by less than a factor of 2
from that in a Q-solvent. For compatrison, Figure 1 alsec shows the curves for
grafting densities ¢ =0.01 and ¢ = 0.1 that have been calculated directly from
eq 25 without using the virial expansion. In the first curve only pair and ternary
interactions are taken into account; in the latter two curves all higher order
interactions are also accounted for. For high grafting densities these higher order
interactions, which oppose the variation in swelling, become mors important. For
o = 0.1 the approximation of o(B) given by eq 31 is much worse than for
o = 0.01. Clearly, egs 26-31 lose validity for high grafting densities. In the next
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section we present and compare results from the lattice model and from the
analytical theory using the full expression for f[¢(z)].

Grafted chains in a polymer solution

To conclude this section, we briefly summarize the results for a grafted layer
immersed in a solution of short mobile polymer chains with a degree of
polymerization Nj << Ng and a volume fraction profile denoted by ¢(«(z). Now, the
free energy density of mixing depends on both profiles, ¢4(z) and ¢4(2). Instead of
eq 19 we have two simultaneous equations:

8ogtt),or(t)] _

Ag—K22 32
sogl) 9 (52)
and
8M0g(t). ¢1(1)]
TR A 33
dog(t) (9)
with
2
K2 = g(ﬂ] (34)
8| Nyt

The numerical constants A4 and A; are obtained from the boundary conditions.
For the simplest case of grafted and mobile chains of the same monomer type in an
athermal solvent

{og(t).04(t)] = ¢g,—‘f” In(o5(t)} + (1- 41(t) - 0g(1))In(1- &¢(t) - 04(t)) (35)

With the boundary conditions ¢4(H) = 0 and ¢y(H) = ¢F {where ¢?is the bulk
concentration of mobile polymer) the solution of eqs 32 and 33 is

(1- q>?)[1- exp(—K?-(1—t2)}]

ogl)=1 + ¢?[1-exp(—K2(1_t2)Nf]] if o<t< (36)
0 if t>1

o(t) = ‘qaz exp(—KZ (1 - 12)N,) i-f 0<t<1 -
¢ if t>1
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No simple algebraic expression for H is available. However, the layer height is
completely determined by eqs 34 and 36 and can easily be found numerically from
the equation $—Jt=o¢(t)dt:0 for given values of q)?, Ng, and N;. The volume
fraction profile $g(z'.\N) of free ends of the grafted chains is given by the equation

dgtN) = i‘—':t {(1 - ¢?)D((K2 (1-12 )]1/ 2] +oP JKI;D((K‘?(F N, )1"2 J} (38)
where
D(y) = e'yzfe"zdx
0

is the Dawson integral.

1.4 Comparison of Results from Both Theories

In all the figures of this section the solid curves represent results obtained by the
lattice model while the dashed curves show the asymptotic predictions of the
analytical theory. The analytical profiles have been calculated by solving eq 25 for
given valuss of ¢ and y.

0.4

0.3

0.2

0.1

0 L ! L L
0 50 100 150 200 , 250

Figure 2 Volume fraction profile ¢(z} according to the analytical theory (dashed
curve} and the lattice model (solid curve). Parameters: Ng =600,6=01,%=0.

Figure 2 shows the volume fraction profile of a grafted polymer of 600 segments in
an athermal solvent. The grafting density is 0.1, i.e., polymer chains are grafted to
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10% of the surface sites. The very good agresment between the analytical
predictions and the lattice calculations is striking. Only very close to the grafting
surface and at the outer boundary of the grafted layer does a small difference
between both curves occur. The lattice calculation shows a depletion zone at the
grafting surface. Such a zone was previously seen in Monte Carlo simulations12.13
and has also been observed by neutron scattering experiments.22 The presence of
the grafting surface restricts the conformational freedom of the polymer. This effect
is neglected in the analytical theory. At the other side of the polymer layer the lattice
calculation shows a "foot" protruding into the solution whereas the analytical theory
predicts that the slope of the profile becomes monotonically steeper with increasing
distance. This foot is an exponential decay of the segment density profile, caused
by the fact that fluctuations of the average trajectory are large near the chain end
where the chain stretching is weak.23.24

08 T T T T

¢ {A) (B)
08 + -
04 |
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(C) (D)
0.6 ~ T x = 1 -

x=05

02 +

1.5

Figure 3 Volume fraction ¢ versus reduced height t=z/H according to the
analytical theory (dashed curve) and the lattice model for Ng = 600, 100, 50 and
25 (solid curves, in order of increasing deviation from the dashed curve): (A)
x=-1,(B) x =0, (C) x =05, (D) y = 1. The grafting density ¢ is 0.1.
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Figure 3 shows volume fraction profiles for different molecular weights of grafted
polymer in a very good solvent (x = -1, Figure 3A), an athermal soclvent (Figure
3B), a ®-solvent {Figure 3C), and a bad solvent (¥ = 1, Figure 3D). In all cases the
same (high) grafting density of 6 = 0.1 has been used. The volume fractions are
pitotted as a function of the reduced height t=z/H, where the layer height His
taken from the analytical theory, using only egs 24 and 25. This enables the
comparison of profiles for different chain lengths Ng under the same conditions.

According to the analytical theory, ¢(t) is independent of Ng. However, in
agreement with Monte Carlo simulations,!3 Figure 3 shows that this is not valid for
short chains. The shorter the chain length, the more the lattice modsl deviates from
the analytical theory. Here the effect of the assumption made in the theoretical
derivations that Ny >> 1 is expressed. For all solvent gualities an increase in the
chain length leads to a better agreement between both approaches. For a given
chain length, increasing the solvent quality also leads to a better agreement. In a
better solvent, the grafted layer is more strongly stretched. In a poorer solvent the
layer is more dense, so that the unfavourable interactions between polymer
segments and solvent molecules are reduced. In other words, the Newton
approximation, which assumes strong stretching, is more valid in the case of a
good solvent than for a poor solvent. Following parts A to D of Figures 3 for a fixed
chain length, the breakdown of the Newton approximation becomes apparent. The
deviation is largest in Figure 3D, for x = 1, where the analytical theory predicts a
drop in the segment density profile at t = 1, whereas the lattice calculations reveal
a more gradual decrease in segment density, especially for the short chains.
However, in all cases the analytical theory seems to predict the asymptotic
behaviour for N — o exactly. It is also worth noting that recent data from neutron
scattering experiments on a grafted layer in a bad solvent are well described using
a step function for the segment density profile.25

There is another effect which contributes to the deviations, especially in poor
solvents. In the analytical theory it is assumed that the volume fraction ¢(z) of the
segments at position z is the same as <¢(z)>, the average volume fraction of their
nearest neighbours, whereas in the lattice model these quantities are
distinguished; see eq 2. For weak curvatures of the volume fraction profile (good
solvent, large Ng) the difference between ¢(z) and <¢(z)> is not great, as
o{z— )+ d(z+ £) = 2¢(z), but for strong curvatures a more significant effect on the
results is to be expected. This effect can be guantified by introducing the same
assumption into the lattice model. This means replacing < 1-26¢(z) > by 1-2¢(z) in
eq 1 for the potential u{z). Parts A and B of Figure 4 give the profiles of parts C and
D of Figure 3 for Ng = 100, together with the results for the case that <¢(z)> is set
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equal to ¢(z). For the ®-solvent (Figure 4A) the two (solid) curves are virtually the
same. For the bad solvent (3 = 1; Figure 4B) the more approximate result is in
slightly better agreement with the analytical predictions. However, a relatively large
deviation still remains, which must be due to the strong-stretching approximation.

C.8 T T T T

0.6

0.4

0.2

Figure 4 Effect of neglecting the curvature of the segment density profile when
calculating the nearest-neighbour interactions. The segment density profiles of C
{x =0.5) and D (y = 1) of Figure 3 for Ny = 100 are reproduced in graphs A and
B, raspectively, and a second full curve in each graph represents the result when in
the lattice calculations <1 — 26(z)> in eq 1 is replaced by 1 —26(z). In A the two
solid curves virtually coincide. In B the latter curve is slightly more in agreement
with the analytical prediction (dashed curve) where the same approximation is
made.

Figure 5 shows segment potential energy profiles of a chain of 600 segments in
solvents of various qualities {x = 0, 0.5, 0.6, 0.75, and 1.0). As with the volume
fraction profiles, very good agreement is found between predictions from the
analytical theory and lattice calculations, except at the grafting surface and at the
periphery of the layer. For warse than @-solvents the volume fraction profile has a
discontinuity at z=H. This discontinuity is caused by a jump in the potential
profile from u= —In(1—-¢'b)—2x¢'b {the value of the potential at the periphery of the
grafted layer; see eqs 23 and 25) to u = 0 (the bulk solution, in this case pure
solvent, being taken as the reference state for the segment potential). As 6 is the
equilibrium volume fraction on the coexistence curve, the chemical potential of the
solvent remains constant in the neighbourhood of H. The form of the curves is the
same in all cases. The curves are shifted in the vertical direction only, reflecting a
shift in the reference potential.
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0 100 200

Figure 5 Segment potential energy profiles u{z) for grafted chains of 600
segments and grafting density 0.1 in different solvents: ¥ =0, 0.5, 0.6, 0.75, and
1.0 (indicated). Dashed curves: analytical predictions. Solid curves: lattice
calculations.

0 100 200 300 2

Figure 6 Effect of grafting density ¢ on the volume fraction profiles ¢(z)
according to the analytical theory (dashed curves) and the lattice model (solid
curves). Paramsters: Ng =600, x =0; o =0.01, 0.1, and 0.28 {indicated).

Decreasing the grafting density also gives less extended layers as is iliustrated
in Figure 6, where volume fraction profiles are given for ¢ = 0.01, 0.1 and 0.28. In
all three cases Ng = 600 and y = 0. Although near the grafting surface and at the
outer boundary of the grafted layer the relative deviation between the two theories

34




indeed increases with decreasing o, the absolute differences remain roughly the
same. For ¢ = 0.28 the lattice model predicts a volume fraction profile that is
slightly stronger curved than is predicted by the analytical model. For the fimiting
case that the grafting density is unity the lattice model must give a step function
profile (¢ =1 for z< N and ¢ =0 for z > N). We note that for these long chains
a grafting density as high as even 0.1 is not easily reached in real systems. For
example, adsorbed block capolymers typically give far lower densities.2¢ The
grafted amount in equivalent monolayers of segments, cNg, varies from 168 for
c = 0.28 down to a more reasonable value of 6 for ¢ = 0.01.
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Figure 7 Distribution function of free ends, o4(t,N)Ng, for chains of 600, 100, 50,
and 25 segments and grafting density ¢ = 0.1, according to the analytical theory
{dashed curves) and the lattice model {solid curves): {A) in an athermal solvent; (B)
in a @-solvent.

So far, we have only compared the overall volume fraction profiles predicted by

both theories. End-segment distribution profiles are plotted in Figure 7A for an
athermal solvent and in Figure 7B for a ©-solvent. Again, we use the reduced
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height (t = z/H) as the abscissa in order to represent the curves for different chain
lengths in one figure. Moreover, we have multiplied ¢4(z,N) by Ng, so that the areas
under the curves are all the same. As was the case with the total volume fraction
profile, the agreement between the analytical theory and the lattice model becomes
better for longer chain lengths. The most striking feature when comparing parts A
and B of Figure7 is the far better agreement for long chains in an athermal solvent
compared to a ©-solvent. However, this is mainly due to a difference in
approximation. The results for the athermal solvent have been calculated using eq
38 with ¢? =0. This is an exact expression for ¢g{z,N) within the strong-stretching
limit. Such an exprassion for @-solvents is not available. Therefore, the results for
the ©-solvent were calculated using eq 29, which was derived using the virial
expansion of fl¢(z)]. In spite of this approximation, it is clear that we expect a finite
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Figure 8 Volume fraction profiles of a grafted layer (Ng =200, 50 and 25;
o = 0.1) immersed in an athermal sclution of short mobile polymers (N; = 10) of
a chemicaily identical nature. Dashed curves: analytical theory. Solid curves: lattice
model. Bulk volume fraction of mobile polymer: (A) ¢? =0.1; (B) ¢o? = 0.5.
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end-segment volume fraction throughout the layer, also near the grafting surface,
even if the grafting density is high and irrespective of the solvent quality.

We conclude by discussing the case of a grafted polymer layer immersed in an
athermal solution of short mobile chains of a chemical nature identical to the
grafted polymer. Parts A and B of Figure 8 show volume fraction profiles versus
reduced height t for ¢ = 0.1 and 0.5, respectively, with N; =10, ¢ = 0.1, and
different values of Ng. Increasing the bulk volume fraction ¢¥’ of the moﬁile chains
compresses the grafted layer from H =67 in Figure 8A to H=48 in Figure 8B,
Just as for grafted layers immersed in pure solvent, longer chain lengths of the
grafted polymer give a better agreement between the analytical predictions and the
lattice model. It is seen in Figure BB that the mobile chains are able to penetrate
throughout the grafted layer. This is due to their short length in comparison with the
grafted polymer. Mobile polymer of the same chain length as the grafted polymer
would only penetrate parly into the grafted layer.27.28

1.5 Conclusions

Very good agreement is found between the analytical theory and the lattice
calculations. Only at low grafting densities of short chains in a poor solvent,
considerable deviations are found between the two approaches because of the
breakdown of the Newton approximation (strong chain stretching limit) in the
analytical theory. The derivation of elegant expressions for the layer structure by
expanding the mixing free energy in a virial series, as was done in ref 5, is only
valid for relatively low grafting densities {see Figure 1).
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Appendix 1

Iteration scheme for the lattice model

As we have only one type of segment and one solvent, our iteration scheme can
be quite simple {(Evers ef al2? give a general scheme for systems with more than
one different segment types}. For a given set of values for u(z), G(z) = exp(--u(z)/kT)
is calcufated and, from these Boltzmann factors, the volume fraction profile of
grafted and free polymer is found (using eqgs 3-11). The volume fraction ¢4(z} of
solvent in layer z is obtained from eq A1:

¢g(2) = (1 - ¢b) exp(—u(z) +x(<1-20(2) >) -1+ 2¢b) (A1)

Thus, for given values of u(z}, the volume fractions of grafted polymer, o4(2), of free
polymer, ¢4(2), and of solvent, ¢4(2), can be calculated. In each layer z the sum of
these volume fractions should obey the boundary constraint:

F(z} = dq(z) +91(2) + 05(2} -1=0 (A2)

Tha objective functions F(z) form a set of M simultaneocus equations (one for each
layer) in M unknown potentials u(z). This set can be solved by standard numerical
methods, e.g. using the Fortran program of Powel|.30

Computational aspects for grafted chains

For long chains and high grafting densities, that is, when the chains are strongly
stretched, the potentials u(z) are high and G(z) = exp(-u(z)/kT} is smaller than
unity. As G(z) is recursively applied in eqs 4 and 10, the values of G(z,s) and
Gg(z,8) become extremely small for large s while the normalization constant
Cy =0/, Gy(z.N) becomes very large, easily exceeding the available numerical
range on a computer. Obviously, since the volume fraction of grafted polymer,
0g{z.s), is on the order of unity, the product of these quantities must be near unity;
see eq 11. The numerical overflow and underflow can be avoided by proper
scaling. First, we realize that G(z,s) may be very small at small z and that it is unity
for large z, i.e. in the bulk, but that we need only the initial part of the curve because
in eq 11 G(z,s) is multiplied by Gy{z,s}, which is zero for z > s. Consequently, the
quantities G(z,N-s+1) for z > s are irrelevant and may he set to zero. This
eliminates the largest values and enables a substantial rescaling of the relevant
section of Gi(z,s).

Consider the extreme case of straight chains {when the grafted density o = 1).
Each segment s would be in layer z = s. Mathematically, ¢4(z,s} =1 if z=s and
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¢g(z,8) = 0 if z= s. Then, the only relevant quantities would be G(N-s+1,s) and
Gg(s,s). In the following procedure we normalize the distribution functions so that
these most important quantities are of order unity

Define scaled distribution functions G(z,s) and Ggy(z,s) as

G(z,s) =

{; Glzs—1)>GZe(s)  Hz<N—s+1 ")

otherwise

Ggzs)= <Bylz.s-1> Gl2)eyls) (A4)

where c(s) and Gg(s) are introduced to compensate the low values of G(z) and are
chosen so that G(N-s+1s) and Gg(s,s) remain on the order of unity. For example,
set c(s) and cy(s) equal to unity for s =1 and c(s)=1/G(N—s+1,N—s+1) and
cg(s) = Gy(s—1s~1) for s > 1. Essentially, eqs A3 and A4 replace eqs 4 and 10,
respectively. The relations between the scaled and unscaled quantities are

S
G(z,8) = G(z, 8)1;110(5 ) ifz<N-s+1 -
0 otherwise
and
= s
Gg {z,s)= Gg {z, s)H Cg(S') -
s'=1

but the functions G(z,s) and Gg(z,s) are not used. The factors c(s) and cy(s) are not
too far from unity, while the multiple products in eqs A5 and A6 may be very large.
The next step is to compute the scaled distribution function :Eg(z,s) of segment s:

b(2.5) = Gg(z,5) Gz N-s+1)/G(2) (A7)
and normalize it to obtain g{z.s):

G‘T’g(Z, S)

dglz,8) = Ws—) (A8)
Z

This scheme applies only to grafled chains. For free chains the function G(z,s) is
especially relevant for large values of z and does not need to be scaled.
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Appendix 2

Iteration scheme for solving equation 25

This method consists of a pair of nested loops. In the main iteration loop the
variable ¢ is adjusted until & - j ®{t)dt <e, where ¢ can be chaosen as an
arbitrarily small number. We have used £=107%. The function ¢(t} is obtained in a
subiteration which solves ¢{t) for a series of t values using eq 25 and the current
value of ¢. From the values of (1) the integral J' 0 o(t)dt can be approximated. For
example, if ¢(t) is known at t' = &, 38, 58, ..., 1-8, where § is a sufficiently small
numbe_l; the integral is approximately 2?52t ®(t'). Our results are obtained with
8=10
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chapter 2

Chain Stiffness and Bond Correlations in
Polymer Brushes

Abstract

We have incorporated chain stiffness and correlations between neighbouring
bonds into a self-consistent field lattice model for end-attached polymer layers
(commonly known as "brushes"). An increase in the chain stiff stiffness leads to an
increasing brush height. This increase is directly related to the change of the length
of a Kuhn segment in the polymer chain. Introducing correlations between
neighbouring bonds gives a higher density of the brush, corresponding to a decrease
of the brush height. For not too stiff chains these two effects virtually compensate
each other. Hence, the volume fraction profile of "real" grafted chains is nearly
identical to that of a polymer brush consisting of freely jointed chains.
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2.1 Introduction

During the last several years polymer brushes, which are formed by attaching
one end of each polymer chain to a surface, have been the subject of many
theoretical investigations.! One very useful way fo study such systems is to apply a
self-consistent field (SCF) lattice model. For example, the polymer adsorption theory
of Scheutjens and Fleer? has been extended to brushes.3-5 |n this model all possibie
conformations of polymer chains that can be generated on a lattice are weighted and
averaged, using a random flight approximation for the chains (freely jointed chains).
Another approach for polymer brushes has heen developed by Zhulina ef al.® and
Milner et al.7 The latter theories are based on the assumption that the total set of
possible palymer conformations can be replaced by a set of mast likely trajectories.
They are more approximate than the lattice model but lead to more handsome
mathematical expressions. For high grafting densities and long chains, this approach
agrees very well with the lattice calculations.5

In this chapter we describe two different extensions of the lattice model. So far,
the polymer molecules have been described as freely jointed chains. For example,
immediate step reversals are then allowed. The polymer chain conformations are
treated as step-weighted walks in a potential field. This potential field depends, in a
mean-field approximation, on alf the components present in the sysiem. In conirast
to the description of polymer brushes based upon scaling arguments, direct
correlations are neglected: all interactions between segments enier solely through
the mean potential field. The malecular architecture of the polymer chains is only
reflected in the connectivity of the segments. Each bond is basically described as a
Kubn segment. In other words, the chain conformation weighting factors are
calculated using a first order Markov model. The SCF theories of Zhulina et al.é and
Milner et al.7 are based on exactly the same physical picture. Zhulina et al. did,
however, also consider the more general case that the polymer chain is stiffer than a
random flight chain. They introduced a stiffness parameter p, which they defined as
the ratio of the Kuhn length and the segment diameter. This stifiness can easily be
incorporated into the expression for the elastic free energy of deformation
(stretching) of a Gaussian coil conformation.

In this chapter we incorporate chain stiffness into the lattice model. We describe
the general formalism for doing so. Basically, it means that the statistical weights of
the chain conformations are calculated using a second order Markov model. We
discuss two ways of implementing the general formalism for chain stiffness. One
(rather trivial) way is to join each group of p consecutive segments together to form a
short rigid rod. The rigid rods are then themselves freely jointed to one ancther. The
second way is to introduce energy differences between different segment
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orientations in a polymer chain. In the Theory section we shall first briefly review the
"conventional" lattice model for freely jointed chains (f.j.c.) in a potential gradient.
Then we discuss these two methods of introducing chain stiffness.

Another modification of the lattice model, which we present in section 3, is the
incorporation of directional correlations betwesn bonds in close (spatial) proximity.
These bonds need not be situated close to each other along the polymer chain, nor
do they even have to be on the same polymer chain. In effect, a kind of nematic
ordering is taken into account. Although in this case the numerical procedure to
calculate the brush profile is rather similar to that used for the freely jointed chains
and that used for stiff chains, the underlying model is fundamentally different.

In the Results section a selection of data will be presented that were obtained
with the various forms of the lattice model.

2.2. Theory for Markov chains

Freely jointed chains25

Consider a lattice of M layers, which are numbered z=1, 2, ..., M, with layer 1
situated adjacent to the surface. The lattice spacing ¢ is equal to the polymer
segment diameter. A fraction Ag of the contacts of a lattice site is with sites in the
same layer. Similarly, a fraction A, of the contacts is with sites in a lower layer and
the same fraction A4 with sites in a higher layer. For a simple cubic lattice, which has
been used to derive all the results presented in this chapter, g = 2/3 and A4 = 1/6.
The polymer chains have a chain length of N segments, of which the first is located
in the first Yayer. The volume fraction of these first segments is identical to the
grafting density . The volume fraction of polymer in layer z is written as ¢(z).
Nearest-neighbour interactions between polymer segments and solvent are
accounted for by the Flory-Huggins interaction parameter y. Because of the mean-
field approximation all interactions within a layer are smeared out. We assume
throughout this chapter that the polymer segments have no adsorption energy. The
potential energy u(z) of a polymer segment in layer z is given by

uz)/kT = -2y < 9(2) > ~In(1- 6(z)) 1

where the angular brackets <> denote a weighted average over three layers, which
accounts for the fraction of contacts that a seament or solvent molecule has with its
nearest neighbours in these three layers:

<(z)> = M{z — 1)+ Ro¢(2) + Moz +1) {2)

We define a segment weighting factor G(z) as
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G(2) = exp(-u(z)/KT) (3)

which is a Boltzmann factor of the segment pctential in layer z. The connectivity of
the segments in a polymer chain is accounted for by introducing the end-segment
weighting factors G(z,s1z',1) and G(z,slz',N). The quantity G(z,slz',1) is defined as
the average statistical weight of all conformations of an s-mer of which the last
segment is located in layer z and the first segment is in layer z'. As the first segment
is grafted in the first layer, the quantity G{z,slz',1) is only nonzero for z' = 1.
Moreover, for z > s it automatically follows that G(z,sl1,1) = 0. The quantity
G(z,slz'\N) is defined as the average statistical weight of all conformations of an
{(N-s+1)-mer of which the first segment (s) is located in layer z and the last
segment (N) is in layer z'. As this last segment may be located anywhere in the
system, it is convenient to define G(z,sIN)= ZZ. G(z.s12,N). For a freely jointed
chain the end-segment weighting factors obey the following recurrence relations:

G(zsl11)= <G(zs-111)>G(2)

G(z,sIN) = <G{z,s+1IN)>G(z) (4)

For s = 1 and s = N, respectively, these sequences are started as follows,
G(zNIN)=G(z) Vz
and (5)
G(1111,1)=G(1)

The volume fraction ¢(z,5) of polymer segment s in layer z is proportional to the
product of two end-segment weighting factors:

d(z,s} = CG(z,s11,1)G(z,s IN)/G(2) (6)
Here, the denominator accounts for the fact that segment s is counted twice
(belonging to both chain parts). The normalization constant C follows from the

boundary condition c=zz¢(z,s) ¥vs. Substituting ¢(z,s) from eq 6 for s = N we
obtain

_ s
C=SGENY )

z

Finally, the total volume fraction in layer z is

¥2) =3 (z.5) (8)
S
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This volume fraction profile, obtained for a given u(z) profile, should be consistent
with eq 1 for all values of z. This provides a set of M simultanecus equations in M
unknown variables u(z), which can be solved using standard numerical procedures.

General formalism for stiff polymer chains.

We take the freely jointed chain as the starting point for our discussion. In such a
chain a bond between two segments can be in six different directions on a simple
cubic lattice. For a freely jointed chain the probability of any of these six directions to
occur does not depend on the position of the previous bond. In this section we
describe a model where this probability does depends an the previous bond.
Depending on the angle the new bond makes with the previous one, we denote its
conformation as "backward", "forward", or "perpendicular”. This is illustrated in the
Figure 1.

:>0 *—o ®

backward perpendicular forward

Figure 1 Three possible bond angles for a sequence of 3 connected segments on
a cubic lattice.

As an example we discuss the case that segment s—1 of a chain is in layer z-1
and segment s is in layer z. Segment s+1 can be in layers z-1, z, or z+1. lfitis in
layer z— 1 we have the backward conformation: the two consecutive bonds form an
angle of 180" and segment s +1 is located on the same lattice site as segment s—1.
if segment s +1 is in layer z the bond conformation is perpendicular: the bond angle
is 90°. On a cubic lattice such a perpendicular conformation can be made in four
directions. If segment s+1 is in iayer z+1 the conformation is forward and the bond
angle is 0°. We denote the a priori probability of each of these three conformations
as B, P, and F, respectively, so that: B+F + 4P =1. For a freely jointed chain these
probabilities are just given by the lattice parameters: B=F =2, (=16) and
4P = Aq (= 4/6). It is possible to introduce a certain degree of stiffness of the chain
by changing the values of the B, P, and F parameters. We discuss two approaches:
(i) the freely jointed rods model; (ii} the limited bond flexibility model. First we
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describe the general formalism to calculated the volume fraction profile of a brush
consisting of stiff chains.

We consider the general case that the parameters B, P, and F are functions of
the segment ranking number s. For each segment s we introduce the energies
UB(s), UF(s), and Up(s) associated with backward, forward, and perpendicular
conformations of its bonds, respectively. The parameters B(s), P(s}, and F(s) are
related to these energies as follows:

B(s)=C exp(—UB (s)/ kT)
F(s)=C exp(—UF(s)/ kT) (9)
P(s)=C exp(—UP(s)/kT)

where the normalization constant C follows from the condition that
B(s}+F(s}+4P(s)=1.

When calculating the end-segment distribution functions of a polymer chain, we
have to take into account whether the addition of a new bond to the chain
corresponds to a backward, a forward, or a perpendicular conformation. The
appropriate weighting factor for that conformation must then be included. In order to
do this, we intreduce the end-segment weighting factors G{z,s,d(1,1) and G{z,s,dIN)
as extensions of the end-segment weighting factors G{z,s,11,1) and G{z,sIN) as
introduced for the freely jointed chain model. In the expression G{z,s,d1,1) the letter
d denotes the direction from segment s to s+1. If segment s is located in layer z, the
value of the direction d is —1 when segment s+1 is in layer z—1; d = 0 when
segment s+1 is also in layer z; and d = +1 when segment s+1is in layer z+1. In
the expression G{z,s,dIN) the letter d denctes the direction from segment s+1 to s.
The recurrence relations in eq 4 for freely jointed chains (and the starting conditions
of eq 5) must now be extended to account for the contribution of the different bond
conformations to the end-segment weighting factors. The resulting expressions are
given in egqs A1.1 - A1.5 of Appendix 1.

In order to calculate the volume fraction of segment s (s < N) in layer z, one must
realize that if the bond from segment s to segment s+1 is in direction d, the bond
from segment s +1 to segment s must be in direction —d. Hence, we can write:

#(z,8)=——— Y G(z,sdl11)G(zs,~dIN)/G(z) fors=1,2, .., N—1
(z.s) S GENILY d=§'.o,1( )G( )

N)=—— % G(zNI11 10
o(z,N) S BN (zNI11) (10)

47




This equation is a generalization of eq 6 for freely jointed chains towards stiff chains.
We have made use of the fact that the end-segment (s = N) only has one bond. For
stiff polymer chains G{z,NI1,1) is defined by eq A1.2.

The model described in this section is basically a cubic lattice version of the RIS
(rotational isomeric state) scheme as described by Leermakers and Scheutjens.8

Freely jointed stiff rods.

We now consider the case that a group of p consecutive segments is clustered
into a stiff rod. These rods are freely jointed to each other. Conceptually this is the
easiest model of a polymer chain with stiffness parameter p. We only discuss the
situation p = 2 but we note that for larger values of p a straightforward generalization
is possible. The bond between segments 1 and 2 can be placed in any direction. The
next bond (between segments 2 and 3) must, however, be in a forward
conformation. The bond between segments 3 and 4 can again be in any of the three
conformations, but the bond between segments 4 and 5 must be in a forward
conformation, etc.

If we have a chain of freely jointed stiff rods, each with a length of 2 segments,
the segment bonds are alternatingly completely flexible and fixed in the forward
conformation. The total number of segments in a chain must be an odd number in
order to have an integer number of rods. In general, the chain length (expressed as
number of segments) must be equal to np + 1, with n an integer number. In eq A1.1
we take F(s) = 1 and B(s) = P(s) = C for even values of s, and B(s) = F(s) = A4 and
P(s) = Ay for odd values of s. In eq A1.4 we take F(s) = 1 and B{s) = P(s) = C for odd
values of s, and B(s) = F(s) = A and P(s) = Ay for even values of s. In this case the
polymer has to be grafted both in the first and second layer (or, more generally, in
the first p layers) with a grafting density of /2 in both these layers. This is
necessary in order to have such a set of conformations that all segments can be
both in odd and even numbered layers. The easiest way to do this is to calculate the
end-segment distribution functions for the chains grafted in the first layer and in
those grafted in the second layer separately. The quantity G(z,s,dl1,1) is replaced by
G(z,s,dlj,1), where the index j can take the values 1 and 2. Equation A1.3 is replaced
by:

16 ifd =1
G(j1d11) =1 4/6 ifd=0 forj=1, .., p (11
0 ifd=-1

Equations A1.1, A1.2, A1.4, and A1.5 are applied both for j=1 and j=2. The
volume fractions o{2.slj) are also calculated forj=1and j=2:
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)

ozsljjs ——— G(z,s,d1},1)G(z,5,—dIN)/G(z) fors=1,2.., N-1
ZZ G(Z, NI j, 1) d=_z1:o,1
¢(z,N1 ) (zN1j1) (12)

-— % @
2:G(zNIj1)

The total volume fraction of polymer ¢(z) in layer z is:

N
o(z)= Y Y d(zst]) (13)

=12 s=1

Limited bond flexibility.

In the limited bond flexibility model all segment bonds are treated equally. Instead
of making half the bonds completely flexible and the other half complstely stiff, they
are all made partly stiff. We first (arbitrarily) define B(s) = 0 for all s, so that all
conformations are excluded where bonds fold back onto the previous bond. If there
were no further restrictions, F(s)=P(s)=1/5 according to eq 9. However, we also
introduce a "bending" energy difference Ube”(s} = Up(s)—UF(s) between the forward
and perpendicular conformations, which is positive if a forward conformation is
preferred above a perpendicular one. In our present implementation yben g
constant: Ube"(s) = UPe" for all s. The chain conformation probabilities depend only
upon this energy difference and not upon the absolute values of UF(s) and UP(S).
Two consecutive bonds must overcome the energetic barrier U8 in order to "bend"
and form a 90° bend. For a cubic lattice we now can write:

F-1-4PandP= (4 + exp(Uben/kT])_1 (14)

with F(s) = F and P(s) = P for all s.

The two constraints that we have imposed upon the conformations (no
backfolding and restricted bond flexibility} make the polymer chain stiff. For a freely
jointed chain the ratio p between Kuhn length and bond length is unity. For the stiff
chains p > 1. The dependence of p on P is derived in Appendix 3.

In the limited bond flexibility model uben ig an input parameter. From eq 14, F
and P follow directly, and B = 0 as indicated above. Then applying egs A1.1 - A1.5
and subsequently eq 10, the volume fraction profile ¢{z,s) of each segment can be
calculated. Combining this with eq 8 yields the total volume fraction profile of the
polymer. As faor freely jeinted chains, this volume fraction profile must be consistent
with eq 1 for all values of z.
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2.3 Correlations between neighbouring bonds

The freely jointed chain model, which was discussed in the first part of section 2,
is an extension of the classical Flory-Huggins theory for homogeneous polymer
solutions towards systems with a concentration gradient. The weighting factor of an
arbitrary chain conformation follows from the end-segment weighting factors. These
end-segment weighting factors are calculated using a recurrence relation where, for
example, G(z,sl1,1) is determined by G(z,s-111,1), but does not directly depend on
any values of G(z,s'l1,1) for s'< s—1. That is why a freely jointed chain may be called
a first order Markov chain. In the classical Flory-Huggins theory polymer chains are
treated in a completely analogous manner.

The stiff chains discussed in the previous section may be considered as second
order Markov chains. For these chains G(z,st1,1)} depends on the position of
segments s—1 and s—2. As shown above, the extension from a first order to a
second order Markov chain is easy to make, both conceptually and from a
computational point of view. An alternative form of the Flory-Huggins theory for
homogeneous sclutions can be derived using second (or higher) order Markov
chains. However, this has no effect on the equations that describe the
thermedynamic parameters of a pelymer solution, as long as these are defined with
respect to the pure amorphous phases of its constituent components. For example,
the chemical potential of a monomeric solvent in a homogeneous mixture of solvent
{volume fraction 1—¢) and polymer (volume fraction ¢} is given by:

S =In(1-0)+0-¢/N+ xo® (15)

The chemical potential is defined with respect to a system consisting of pure solvent,
denoted by the superscript *. Equation 15 holds both for systems with freely jointed
chains and for systems with second order Markov chains.

In this section we extend the lattice model for polymer brushes to incorporate
correlations between neighbouring bonds. These interactions are fundamentally
different from those giving rise to the chain stiffness and which were accounted for in
the previous section by applying a second order Markov procedure. We now have to
deal with exciuded volume interactions between segments that are spatially in close
proximity, but that need not at all be close to each other along the contour of the
chain (in fact, the segments even need not be situated on the same chain). Below,
this feature is explained in more detail.

For a Markov chain the value of G{z,s!1,1) depends on <G{z,s—1I1,1)> and G(z)
(egs 4 or A1.1). The factor <G(z,s—111,1)> accounts for the position of segment
s—1, to which segment s is attached. The factor G{z) is a function of the potential in
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layer z. i ¢(z) = 0, then the second term in eq 1 contributes a factor unity to G(z). All
lattice sites in layer z are available for segment s. However, if ¢(z) > 0 and, for
example, segment s—1 is in layer z—1, then there is a finite probability that the step
from segment s—1in layer z-1 to s in layer z is blocked by a polymer segment in
layer z. This probability is accounted for by the nonzero value of ¢(z) in the second
term of eq 1, and enters through G(z} into the recurrence relation {eqgs 4 or A1.1).
The fact that a step may be blocked is caused by the excluded volume of thé
segments.

At this point one must realize that the use of the term In{1-¢) corresponds to an
approximation of fundamental importance, which is related to the mean-field
character of the model. Suppose a large fraction of sites in layer z are filled with
segments (s) that have a connected segment {s—1 or s+1) in layer z—1. In this
case the probability for a test chain to make a step from layer z—11to z is higher than
that predicted by eq 4. Such a step is not blocked by a segment in layer z whose
preceding (or following) segment is in layer z—1. Parallel bonds never interfere with
each otherl The mean-field character of the theory discussed so far does not
incorporate this aspect of the excluded volume interactions.

We can account for this sffect by introducing a quantity ¢(zlz'} as the fraction of
possible bonds between layers z and z' that is actually realized. Obviously,
¢(zlz') = 0 for [z—2|> 1 and ¢(zlz+1) = ¢(z+11z). If segments s and s+1 are both in
the same layer z, this means that the value of d in the end-segment weighting
factors G{z,s,d|1) and G(z,s,dIN) is equal to zero. For z = ' we may then write:

N—1

G
¢(Z [ Z) = W SXIﬂ(G(Z,S,O i1, 1)G(Z, 5,01 N))/G(Z) (1 6)

Similarly for z' = z+1 we have:

_ o N-1G(z,s,1111)G(z,8,-11 N} +
¢(ZIZH)—ZZG(Z.NI1,1) E(G(z+ts,—1l1,1)G(z+1,s,1IN)] Gz (7)

Because of the parallel bonds, the probability of making a step from layer zto z+1is
increased (as compared to eq 4) by a factor

g(zlz+1)=(1—q>(z|z+1)]"1 (18)

On average, half of all bonds in layer z {i.e. ¢(zlz)) will be in the x-direction and the
other half will be in the y-direction. So, the probability of making a step from layer z
to z is increased by a factor
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-1
g(zlz)=(1—%¢{zlz)) (19)

These factors g(zlz'} must be added to the recurrence relations (egs A1.1 and A1.4),
This leads to the new recurrence relations and starting conditions which are given in
Appendix 2. In this appendix the bond correlation factors are incorporated into the
general formalism for stiff polymer chains. The method is basically a cubic lattice
version of the SCAF (self-consistent anisotropic field} scheme given by Leermakers
and Scheutjens.?

Having calculated the end-segment distribution functions, the polymer volume
fractions again follow from eq 10. The end-segment distribution functions are
computed for a set of g(zlz) and g(zlz+1) (and u(z)) values. These values must be
consistent with the volume fraction profile. This means that far a system of M layers
we have to solve a set of equations with 3M variables: the potential u{z} and the
factors g(zlz) and g(zlz+1) in each layer z.

The bond correlation factors can also be taken into account in the statistical
thermodynamics of a homogeneous polymer solution. This leads to different results
as compared to those obtained in the classical Flory-Huggins theory. As an example
we again give the chemical potential of the solvent in a polymer/solvent mixture.
Incorporating the bond correlations gives the following result for a cubic lattice:9.10

| Ll LA PR S B _ 2
T 31n(1 3+3N]-t—ln(1 o)+ X (20)

which reduces to eq 15 in the limit of low volume fractions.

2.4 Results

In the previous section two methods were described to incorporate chain stiffness
into the lattice model. We start this section by comparing results of these two
models. In Figure 2 volume fraction profiles are given for freely jointed stiff rods (with
p = 2) and for a chain with limited bond flexibility, for a brush with a grafting density
¢ = 0.1 and chain length N = 401. In the former model the volume fraction profile is
the sum of the profiles of two brushes grafted in the first and second layer,
respectively. This is the reason why the data points do not all lie exactly on one
smoath curve. The computations using the limited bond flexibility model were done
for UPe" =1n2 (kT}. This also corresponds to a Kuhn length p = 2. The brush height
in Figure 2 is higher than what would be calculated for a freely jointed chain {where
p = 1); a more detailed comparison is given in Figure 3. The overall agreement
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between the results of both models is good. An advantage of the limited bond
flexibility model over the freely jointed rods model is the fact that p can take any
value (and not only integer values). Further computations of the effect of chain
stiffness on the brush structure are shown in Figure 3, which was calculated using
the limited bond flexibility model.

04 j T T

0.2

0 100 z 200

Figure 2 Volume fraction profile of a polymer brush as predicted by the model of
freely jointed rods (data points) and the limited bond flexibility model (solid curve), for
a stiffness p = 2. Grafting density ¢ = 0.1, athermal solvent (3 = 0), chain length
N =401,

The solid curves in Figure 3A are the volume fractions profiles for o =0.1,
N = 400, and Uben varying from 0 to 5 kT. The volume fraction profile according to
the freely jointed chain (f.j.c.) model is also given by a solid curve. The f.j.c. brush
has a smaller height than the brush for which Uben = Q. This is to be expected as in
the latter brush direct backfolding of the chain segments is forbidden. Although UPe"
= 0 (so that there is no energy difference between a "perpendicular’ and a "forward"
conformation) the prevention of direct backfolding does already lead to noticeably
stiffer polymer chains. The Kuhn length for UP®" =0 is 1.5. Increasing UPe"
corresponds to a stiffer chain and a larger brush height. For uben = 5 kT {(p=73.7)
we have reached the situation that a considerable number of chains are completely
stretched (all bonds are in the "forward" conformation) and the brush height is equal
to the chain length. In this case the profile approaches a step-profile.

For the f.j.c. brush and for the brush with UPe" = 0 the volume fraction profiles
show a depletion zone next to the grafting surface. Previously this phenomenon has
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Figure 3 Volume fractions profiles predicted by the limited bond flexibility model
for UPEN =0, 1, 2, 3, 4, and 5 kT as indicated in the figure and for a freely jointed
chain (f.j.c.), for chains of 400 segments. (A): 6 =0.1, and 3 = 0; (B): 6 =0.01, and
x=0; (C): 6 =0.1, and ¥ = 0.5. The dashed curves are the predictions of the theory
of Zhulina et a/.6 for p = 1 (i.e. the {.j.c. model) and for stiffnesses corresponding to
uben — 0, 1,2, 3,4 and 5kT. in part A the dashed curve for UP®" = 5 kT is not
shown.




been seen both in SCF calculations® and in Monte Carlo simulations.1?! For stiffer
chains (Ub‘an 2 1) the profiles are oscillatory in this zone. This behaviour is a
consequence of the way in which we have defined the contribution of the first two
segments towards the probability weighting function of the chain conformations (see
eq A1.3). The bond between segments 1 and 2 (which goes from a site in fayer 1 to
either another site in layer 1 or to a site in layer 2) does not interact with a bond
between segment 1 and segment 0. We could also implement the model in a slightly
different way and assume that there is a polymer segment s =0 in layer z=0, so
that the bond between segments 0 and 1 would go from layer ¢ to layer 1. In that
case the presence of segment 2 in layer 1 would be less favourable than it is in the
present model, because the presence of segment 2 in layer 1 would mean an extra
"perpendicular" conformation in the chain. In this case eq A1.3 should be replaced
by:

F if d=1

G(11d10,0)=4 4P if d=0 (21)
0 otherwise

When this modification is implemented, the oscillation disappears (this is not shown
in a figure). This illustrates that the oscillation near the grafting surface is an antefact
caused by the grafting procedure. Nevertheless, this has very little influence on the
rest of the profile. Throughout the remainder of this chapter we will use eq A1.3, and
accept the slightly irregular behaviour near the grafting surface.

The dashed curves in Figure 3A were calculated using the theory of Zhulina et
al® who incorporated chain stiffness into their expression for the entropy of
stretching a polymer chain. For p = 1 their model agrees very well with the f.j.c.
model if the full Flory-Huggins expression is used for the free energy of the system,5
as was done to obtain the curves shown in Figure 3. For values of p up to 10
(Ub‘an = 3 kT} there is also a good agreement between their analytical theory and our
limited bond flexibility model. For even stiffer chains the analytical model predicts a
too large brush height. For UP®" = 4 kT (p = 28) the theory of Zhulina et al. has lost
its physical meaning, as it pradicts a brush height which excesds the chain length.

In Figure 3B the same curves are drawn as in Figure 3A but now for a ten times
lower grafting density, namely o =0.01. Such a grafting density is more
representative for a polymer brush that is formed by adsorbing an AB-block
copolymer from solution. Qualitatively the same trends are seen as in Figure 3A. The
chains are less strongly stretched because of the lower densities. The theory of
Zhulina et al. gives a reasonable description of the profiles for a value of uben ag
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high as 5 kT. In contrast to the situation for ¢ = 0.1, (virtually) no chains are yet
completely stretched for yben = 5 kT .

Apart from the grafting density, the solvent quality is an important parameter in
determining the brush structure. Figure 3C gives data for the same grafting density
as Figure 3A, but now the brush is immersed in a ®-solvent (x = 0.5). In a ©-solvent
the brush height is smaller than in an athermal solvent. As expected, this result is
found for aii values of the chain stiffness. The relative effect of increasing UP€" is
roughly independent of the solvent quality (compare Figures 2A and 2C). For
pben_ 4 kT (p = 28) the brush height has approximately increased by a factor 2 (in
comparison with a brush of fresly jointed chains}. In the ©-solvent we see that for
very large values of p (UP8" = 5 kT) the volume fraction profile shows a big "foot"
protruding into the solution, which is not predicted by the equations of Zhulina et al.

0.002 T T T
¢ end [_ n
U™"=0
0.001 1 5 -
fj.c. 2 3 4
0 |
0 200 7 400

Figure 4 Volume fractions ¢(z,N) of the free end-segments (s = N) of the chains for
which the overall profiles are given in Figure 2.

Not only the overall volume fraction profile, but also the distribution of individual
segments of the polymer chains is influenced by the chain stifiness. Figure 4 shows
the distribution of the free end-segments, 6{z,N), of the chains for which the overall
volume fraction profiles are plotted in Figure 3A. When U is increased the
average position of the end-segment moves to larger distances from the surface.
This is consistent with the larger overall brush height as seen in Figure 3A. The end-
segments are still distributed throughout the whale brush, and there is no "exclusion
zone" near the surface. For UP®M = 5 KT, ¢(z,N) shows a peak at z = 400. This peak
is obviously due 1o the fact that an appreciable number of chains are fully stretched,
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so that their end-segments are situated at z = N. Increasing UPe" even further leads
to a growth of this peak.

Above we have clearly demonstrated that increasing the chain stifiness leads to
more extended brush structures. Figures 2-4 are calculated using second order
Markov models for polymer chains. Below we also present results for systems where
correlations between neighbouring bonds are accounted for. As explained in the
theory section, this approach is combined with a second order Markov procedure to
compute the chain conformation weighting factors. The most important results are
given in Figure 5.

0 100 z 200

Figure 5 Volume fraction profiles taking nematic interactions (bond correlations)
into account, for UP®" = 0 and 1 kT. The freely jointed chain volume fraction profile is
given for comparison. Parameters: 6 =0.1, % =0, N = 400.

In Figure 5 the grafting density and chain length are the same as in Figure 3A, so
that the curves in Figure 5 can be directly compared with those in Figure 3A for
Ube" = 0 and 1 kT. The bond correlations lead to a decrease of the brush height as
compared to the limited bond flexibility model alone. For UPe" = 0 kT the bond
correlation model predicts a volume fraction profile that is hardly distinguishable from
the f.j.c. profile! In the limited bond flexibility model this value of UP®" (which
corresponds to p = 1.5) causes a noticeable increass in the brush height. One might
at first expect the bond correlations to cause a further increase in the brush height,
because a stretched polymer chain would induce extra stretching of its neighbouring
chains. However, the correlations betwsen parallel bonds lead to a more efficient
lateral packing of the chains, so that the density increases and the brush height

57




decreasss. In order to explain this unexpected result we first investigate the bond
orientations.

For the chosen parameters the polymer chains still have many bonds parallel to
the grafting surface. This can be seen in Figure 6 were the factors g(zlz+1)} and
g(zlz) (defined by eqs 18 and 19) are plotted for the case UP" = { kT of Figure 5.
The factor g{zlz) is an additional probability for a bond to remain in layer z (parallel to
the surface). This probability increases as the volums fraction of bonds remaining
within layer z increases. The factor g{ziz+1) is an additionai probability for a bond to
cross from layer z to layer z+1 (so that it is oriented perpendicular to the surface). In
Figure & one can see that throughout the whole brush g(zlz) > g(zlz+1). Clearly, for a
grafting density of 0.1 and a not very high chain stiffness the correlations between
the more numerous parallel bonds reduce the brush height. This gives a good
description of the influence of the bond correlations on the brush structure, but it
does not yet provide an explanation for the fact that the packing density in the brush
increases.

1.2

a(zlz")

1.1

b 100 200

Figure 6: The nematic (bond orientation} factors g(zlz+1) and g(zlz) for the curve of
Figure 4 with UP®P = 1 kT.

From a thermodynamic point of view the decrease of the brush height can be
understood by comparing the squations for the chemical poiential of the solvent in a
solution of polymer chains with and without bond correlations (eqs 15 and 20). In a
homogeneous solution of polymer (with volume fraction ¢) and a monomeric solvent
{volume fraction 1-¢) the chemical potential of the solvent is given by eq 20, when
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one takes the correlations between parallel bonds into account. Expanding the
logarithmic terms of this equation gives:

p-p* ¢ [(=N 1 |2
kKT N (6N2 g TR @2

The second virial coefficient, which for long freely jointed chains is %—x, becomes
%—x when nematic interactions are included. This means that, as long as one can
neglect cubic and higher order terms in ¢, a polymer solution with correlations
between parallel bonds and a Flory-Huggins parameter x behaves the same as a
polymer solution without these correlations with an effective Flory-Huggins
parameter x = x+ . This hypothesis is tested in Fagure 7. The solid curve is for a
polymer brush wnhout nematic interactions and ¢ = E the dashed curve is for a
polymer with nematic interactions with x = 0. The system with nematic interactions
gives a slightly larger brush height than the brush without nematic interactions. This
means that when we correct the calculated profile for the shift in the effective
solvency, the brush behaves as one would intuitively expect: the nematic
interactions increase the brush height.

I 1 |
¢
04 -
nematic interactions,
‘A
0.2 -
~ no nematic interactions, .
x=1/6
0 | 1
0 100 z 200

Flgure 7 Comparison of the effect of bond correlations and that of solvency. The
dashed curve is the same as that in Figure 4 for a brush with nematic interactions.
with UPeN = 0 kT and % = 0. The solid curve is for the same chain length and grafting
density, but was obtained from the limited bond flexibility model with UPe" = 0 kT
(without nematic interactions) and a solvency parameter y = 1/6.
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2.5 Discussion

Our main conclusion is that an increasing chain stiffness increases the height of
a polymer brush, but that nematic interactions counteract this effect. One should
realize that we view a polymer molecule not from an "atomistic" but from a more
"coarse grained" level as we approximate it as a chain of Kuhn segments. If these
segments have the same length as width it is logical to use a cubic lattice. This is the
situation for which excellent agreement is found with analytical SCF models, which
do not take any atomistic details into account either. When one wants to incorporate
chain stiffness into the lattice model, one must make the {rather arbitrary) choice
how exactly to implement this. We have done it by forbidding direct backfolding and
introducing an energy difference between “forward" and “perpendicular"
conformations. We could also have only introduced this bending energy and have
allowed backfolding, or we could have taken interactions into account between
segments that are two or more positions separated along the chain. Given the
medel-like character of aur approach it is difficult to say which choice would best
represent a "real" polymer. However, we can conclude that the effect of stiffness in
our madel agrees very well with the predictions of Zhulina ef al., who considered the
general effect of stifiness on the entropy of stretching a polymer chain (without any
further assumptions as to the molecular origin of this stiffness). This strongly
suggests that another way of incorporating stiffness into our lattice model would yield
essentially the same volume fraction profiles for systems with the same effective
chain stiffness p. Indeed, Figure 2 illustrates that two different models with the same
value for p give virtually the same results. ‘

We have shown that for not too high grafting densities the incorporation of
correlations between parallel bonds in our model partly compensates the effect of
chain stifiness. The easiest way to madel a polymer brush is by usihg a freely jointed
chain approach. This model can be solved analytically, as shown originally by
Zhulina et alé and Milner et al.” Their earlier work has been extended during the
past few years, for example, towards polyelectralytes,2.13 polydisperse systems, 4
etc. All these extensions are based on freely jointed chains. In this chapter we have
shown that the incorporation of both bond correlations and a moderate chain
stiffness into the description of a polymer brush leads only to a small adjustment of
the brush profile. This illustrates that the widely used model of freely jointed chains
captures the essential trends of end-attached polymer layers.

It is also interesting to consider the implications of our findings for the comparison
between SCF models and Monte Carlo simulations. In lattice Monte Carlo
simulations of multi-chain systems the excluded volume of the polymer segments is
usually accounted for in a rigorous manner: all system configurations are forbidden
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where two or more segments overlap. The exclusion of direct backfolding and the
incorporation of correlations between parallel bonds into the lattice model can be
seen as a first order correction towards a more rigorous incorporation of excluded
volume effects. The partly compensating effects found with excluding direct step
reversals and incorporating correlations between parallel bonds explain why there is
a relatively good agresment between simple SCF models and multi-chain Monte
Carlo simulations.

Appendix 1: End-segment weighting factors for stiff polymer
chains.

In this appendix we give the equations for the end-segment weighting factors of
stiff polymer chains. These end-segment weighting factors ars calculated using a
second order Markov procedure on a cubic lattice.

The recurrence relation of eq 4 for G(z,sl1,1) is extended to:

B(s}xG(z-1s-11111)+4P(s)x G{z,s - 1,011+
F(s)xG(z+1s-1-1i11) J
P(s)xG(z-1s-11111)}+(2P(s) +F(s)+B(s)) x G{z,s - 1,0 1 ,1) +
P(s)xG(z+1s—-1,-1i11) J
F(s)xG{z-1,5-11111)+4P(s}x G{z,s - 1,0 1,1} +
B(s})xG(z+1s~1-1i11) ' J

G(z,s,—1111) = G(Z)x[
G(z,s,0111) = G(Z)x(

G(z,s 1111} = G(z)x[
(A1.1)

This equation reduces to eq 4, if B=F =P = A, considering that G{z,sl1,1} =
G(z,s,-111 )+ G(z, 8,011, 1)+ G{z,5,111,1). Eg A1.1 is valid fors=2, 3, ..., N-1. For
the end-segment (s = N) we write

G(zNI1L1)=G2)x(Gz-1N-11111)+G(zN-1,011,1)+G(z+1N=1-1111)

(A1.2)
For s = 1 we start the sequence with:
16 if d=1
G(1dI) =« 4/6 if d=0 (A1.3)

0 otherwise

The first segment must be in the first layer and the first bond has complete freedom
as it does not interact with a previous bond:
The quantity G{z,s,dIN} is calculated from the following recurrence relations
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Gzs1IN) =G(Z)X[B(S)xG(z—LsH,—ﬂN)+4P(s)xG(z—1,s+1,01N)+]

F(s)xG(z-1s+11IN})
P(S)XG(Z,S+1,1|N)+(2P(S)+F(S)+B(S))><G(Z—1,S+1,0iN}+J
P(s)xG{z—1,s+11IN)
F(s)xG(z+1,s+1,—1|N)+4P(s)xG(z+1,s+1,0lN)+J
B(s)xG(z+15+11IN}

G(z,50IN)= G(z)x[

G(z,s,—1IN) = G(z)x(

(A1.4)
These three equations define G(z,s,dIN) fors=1,2,3,... N-2. For s = N-1 the
recurrence relation is started with the expressions:

GzN-11IN) = G(z)%G(z—ﬂ

GZN-101N} = G(z)%G(z) (A1.5)
GZN=1,-1IN) = G(z)%G(z +1)

These equations contain the laitice parameters for the last bond and the segment
weighting factors of the last two segments which determine this bond.

Appendix 2: Formalism for chains with bond correlations.

In this appendix the expressions for the chain-end weighting factors that were
given in Appendix 1 are extended to include correlations between neighbouring
bonds. As explained in the main text this means that additional weighting factors
g{zlz) and g(zlz+1} must be taken into account for bonds within layer z (parallel to
the surface), and for bonds between layers z and z+1 (perpendicular to the
surface), respectively. The quantities G(z,s,dl1,1) and G(z,s,dIN) are then calculated
from the following recurrence relations:

4P(s)x G(z,s - 1011 1)xg(z| 2) +
F(s)xG(z+1.s—1,—1]1,1)><g(zlz+1}J
P(s}xG(z-1s-1111,)xglzlz- 1)+
G(z.s,011,1) = G(2) x| (2P(s)+F(s))x G(z,s - 1,011, ) xg(z| 2) +
P(s)xG(z+1s-1,-111,1)xg(zl z+1) (A2.1a)
F8)xG(z-1s—-11I1)xglzlz— )+
4P(s)xG(z,s—10111)xg{zl z)+ J
fors=2,3,4, .., N-1

G(z,s,-1111) =G(z)x (

Glz.s 1111)= G(Z)x(
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e(z.Nn,n=e(z)x(G(z“-N“'“‘-‘)x9<2'2-*)+G(LN—1.0I1.1)xg(zlz)+J

G(z+1N-1-111,)xg(zlz+1)
(A2.1b)
and
G(z,8,1IN) = G(z) x g(z | z+ ) < (4P(s) x G(z - 15+ L,OIN) + F(s) x G(z - 1,5+ 1, 1 N))
P(s)xG(z,s+1,1IN)+(2P(s)+F(s))xG(z—1,s+1,0IN)+]
P(s)xG(z—-1,s+11IN)
G(z,s,-1IN) = G(z) x gz | 2— ) x (F(s) x G(z+1,5+1,-1IN}+ 4P(s) x G(z+1,5+1,0IN))
fors=1,2,3, ..., N-2

G(z,s,OIN)=G(z)xg(zIz)x(

(A2.2)
Eq A2.1 is started for s = 1 with:
16 if d=1
G(L1dI1)=14/6 if d=0 (A2.3)
0 otherwise
and eq A2.2 is started for s = N—1 with:
G(zN-11IN)= G(z)%g(ziz—1)G(z—1)
G(zZN-10IN)= G(z)%g(z 1 2)G(z) (A2.4)

GzN-1-1IN) = G(z)%g{z | z+ )Gz +1)

Appendix 3: Kuhn parameter in the limited bond flexibility model.

For freely jointed polymer chains the Kuhn segment length is squal to the step
length (or lattice spacing) £. For chains with limited bond flexibility the Kuhn length
increases by a factor p, which is determined by the energy uPen_ Consider a chain of
N segments. We represent each bond i by the vector |, The mean square end-to-
end distance (r2> {in a constant potential field) can now be written as:

()= <(Eli ){’El ,J> =(N-1)¢2 + 2<E1_'§1Iilj> (A3.1)

On a simple cubic lattice the angle between two bonds can take the values of 0, #/2,
or . It is easily seen that (1) =F¢® and (li,2) =F2¢2. In general, (k) =F<¢.
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For N >> 1 the second summation on the right-hand side of eq A3.1 can be
extended to infinity, so that;

r?)=(N-1 (1 5)32 ,
()= =11+ = (A3.2)
This corresponds to
2F
= 1 e .
p=1+ 1 F (A3.3)
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chapter 3

Polymer Brushes at Curved Surfaces

Abstract

In this chapter we use the polymer adsorption theory of Scheutjens and Fleer to
describe polymer brushes at spherical and cylindrical surfaces that are immersed
in a low molecular weight solvent. We analyse the volume fraction profiles of such
brushes, focusing our attention on spherical brushes in athermal solvents. These
are shown io generally consist of two parts: a power law-like part, and a part that is
consistent with a parabolic potential energy profile of the polymer segments,
Depending on the curvature of the surface one of these two parts is the more
important, or may even dominate completely. We especially consider the
distribution of the free end-segments and the possible existence of a "dead zone"
for these segments. Such a dead zone is actually found and is seen to follow a
scaling law in the case of large curvatures. Furthermore, the effect of diminishing
the solvent quality is considered for both the total volume fraction profile and the
distribution of the end-segments.
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3.1 Introduction

Over the past years much effort has been put into the theoretical description of
so-called polymer brushes: systems in which polymer chains are end-attached to
an interface. Scaling analyses,1.? self-consistent fisld (SCF) theories,® and Monte
Carlo38.9 and molecular dynamics simulations'9 have been developed for and
applied to these systems. Originally they were used to describe polymer brushes at
flat interfaces, but recently several papers have appeared whose aim it is to
describe curved interfaces.1-13 Especially in the case of an analytical SCF theory it
is a challenging, and certainly not a trivial step to extend models for flat systems to
a curved geometry. The relevance of this extension is, however, self-evident.
Polymer brushes can be seen as a model for adsorbed diblock copolymer layers
which are able to stabilize colloidal dispersions. Generally, the surface of colloidal
particles is not flat, but may easily have a radius of curvature that is comparable to
the thickness of the adsorbed polymeric layer. A model based on polymers grafted
to a convex interface can also be used to study solutions and melts of block
copolymers under the conditions in which microphases are formed. Star-shaped
polymers can be studied by using their similarity to linear chains that are grafted
onto a small spherical particle.

The conceptually most simple model of a polymer brush is the scaling picture
due {0 Alexander and de Gennes,1.2 which assumes a step-like concentration
profile with all chain ends situated on the cuter side of the polymer layer. Using
straightforward geometrical arguments this model was later extended by Daoud
and Cotton to spherical interfaces,’4 and by Birshtein et al. to cylindrical
interfaces.15.36 For such curved interfaces the volume fraction profile becomes
dependent on the distance to the grafting surface:

(d-1)(3v-1)
¢(z)=ca"%v(%] Ve (1)

where ¢ is the volume fraction, ¢ is the grafting density, R is the radius of curvature
of the grafting surface, 2 is the distance to the surface (so that r=R+z is the
distance to the centre of the sphere or cylinder, see Figure 1), and v is the Flory
exponent, which depends upon the solvent quality (v=3/5 for a good soivent,
v =12 for a @-solvent, and v=1/3 for a nonsolvent). The dimensionality d is
determined by the geometry of the grafting surface: d = 1, 2, and 3 for planar,
cylindrical, and spherical surfaces, raspectively.

A more sophisticated approach to the structure of a grafted polymer layer (at a
flat surface) using self-consistent field (SCF) arguments was given in the papers of
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Zhulina, Borisov, and Priamitsyn®17 and of Milner, Witten, and Cates.45 These are
all based on an idea by Semenov?8 that when a polymer chain is strongly stretched
with respect to its Gaussian dimensions, it is possible to replace its set of
conformations by an "average trajectory,” thus significantly simplifying the
description of the system. This concept was first used by Semenov to study super
structure formation in block copolymer melts. Later, the SCF approach was
generalized and it has been applied to grafted polymer layers immersed in both
low molecular weight solvents,5'7 as well as solutions and melts of mobile
polymers.'® Furthermore, nonequilibrium effects such as the deformational* and
dynamical?C behaviour of grafted layers were studied. These investigations have
led to a different overall picture of the planar grafted polymer layer structure as
compared to the scaling approach. The polymer concentration decrsases
menotonically on going away from the grafting surface and free chain ends are
distributed throughout the whaole layer. The precise form of the total concentration
profile as well as that of the chain end distribution function depend on parameters
such as solvent quality and polydispersity. In his pioneering publication
Semenov18 showed that in cylindrical and spherical convex layers the free chain
ends must be excluded from the vicinity of the grafting surface. Ball et al.11 were the
first to extend this SCF approach in a rigorous manner to chains grafted to a
convex interface. They derived analytical solutions for the case of densely grafted
chains at a cylindrical interface immersed in a melt. With increasing curvature an
exclusion zone with an increasing height appears next to the surface. Free chain
ends are excluded from this zone. For the cases of spherical interfaces and
brushes with solvent, equations were given that still need to be solved
(numerically). Ball et al. anticipate that under these conditions the distribution of
free ends will remain qualitatively the same.

Simulations of star-shaped polymers using a molecular dynamics method?21 do
indeed suggest that in a spherical geometry the dead zone exists for brushes in a
good solvent. However, simulations of chains grafied to a cylindrical surface in a
good solvent!2 do not show this dead zone, except for R —» 0 (that is, when the
cylinder is reduced to a single line). The M.D. simulations of ref 21 ¢onfirm the
scaling prediction of eq 1 for d = 3.

Recently, Dan and Tirrell'? have applied the Edwards diffusion equation
approach22 to end-attached polymer chains. They extended the numerical
procedure by Dolan and Edwards2?® for grafted chains at a flat surface to cylindrical
and spherical surfaces. Especially for cylindrical surfaces the scaling predictions
agree badly with their results. Dan and Tirrell, who investigated brushes in a good
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solvent, did find dead zones near the surface which agree fairly well with the
predictions of Ball ef al. for brushes in a melt.

(A) (8)

Figure 1 {A) Polymer chains that are end-attached to a curved surface with
radius of curvature R form a brush of height H. The distance to the centre of the
sphere or cylinder is r, and z denotes the distance to the surface. (B} For
intermediate values of R the polymer brush can be divided into two parts. From
z =0 to z=zq all chains are siretched equally. Segment Ny of every chain is
situated at a distance zg from the surface. The remaining N, = NNy segments are
subject to a parabolic potential profile in the region z=zg to z=H.

In this chapter we present results from SCF lattice calculations on end-grafted
chains at cylindrical and spherical surfaces in the presence of solvents of various
qualities (very bad to very goad). The model we use is an extension of the polymer
adsorption theory of Scheutjens and Fleer24.25 for curved geometries, which in its
basic assumptions is very similar to the diffusion equation approach. However,
within the approximation of using a mean-field lattice model, all properties of the
system under consideration can be calculated exactly. No further approximations
are needed. For example, we need not assume that the polymer segment potential
is proportional to the local segment density (as was done in the numerical
procedure of ref 23). Also any solvent quality can be chosen. In the next section we
will go into further details conceming the lattice model. In section 5 we wili show
results of this model and (where possible) compare them with predictions from one
of the models mentioned above. First we shall, however, introduce two analytical
models in sections 3 and 4 to describe brushes in good and ©-solvents at curved
surfaces. In section 5 we will also see under what conditions these models are
valid by comparing them with the lattice model calculations. In doing so, we will
focus our attention on spherical brushes in athermal selvents.
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3.2 Self-Consistent Field Lattice Model

In the polymer adsorption theory of Scheutjens and Fleer24.25 the equilibrium
distribution of a polymer-solvent system at an interface is calculated by taking into
account all possible conformations, each weighted by its Boltzmann probability
factor. Cosgrove et al.3 and Hirz26 showed that this method can be applied to
terminally attached chains by restricting the allowed conformations to those whose
first segment is in the layer adjacent to the surface. In a previous chapter2? we
described this modified procedure and used it to calculate characteristics of
polymer brushes on flat surfaces. The basic principles of the model can also be
applied in a lattice with a curved geometry, as was first demonstrated by
Leermakers and Scheutjens,28 who used such a lattice to study lipid vesicles and
surfactant micellas. In this section we shall briefly review the relevant geometrical
aspects of their approach.

The differences between a curved and a planar lattice are that the number of
sites in a layer increases on moving away from the centre of the lattice and that the
lattice transition parameters A_, Ay, and A, are layer dependent. A lattice site in
layer r has neighbouring sites in layers r—1, r, and r+1. A fraction A_ of these
neighbouring sites are in layer r-1, a fraction Ay are in layer r, and a fraction A,
are in layer r+1. We number the layers r=1, 2, 3, ... starting from the centre of
the sphere or cylinder. Applying the condition that all layers are equidistant, one
finds that the volume V(r), expressed in number of lattice sites, enclosed by layer r
equals:

V() = 210 (@)

where d = 3 for a spherical and d = 2 for a cylindrical lattice (and d = 1 for a flat
lattice). This volume is defined per surface area for d =1, per length unit for
d =2, and per sphere for d = 3. The numerical constant Cy4 has the values
Cy=1, Cs=2mx, and Cz = 4n. The number of lattice sites in layer r is given by
L(r)=V(r)—V(r—1) or

_Cafd_(_ 4@
La(n) = =2 (- (--1)%) (3)
Differentiating V(r) with respect to r gives the surface area S(r) of layer
S4(n) =Car*™ (4)

The transition factors A_(r) and A,(r) are proportional to the surface area per site
in contact with the adjacent layer, so that

69



=, 3ql0)
z'+d(r) = 2'4-1 Ld (I')

=1, 2D ®)
Aggl) =1-A 40 —A_4(n

where A, and A_, are the vaiues of the transition factors for the equivalent planar
lattice. In all calculations presented in this chapter we have used a cubic lattice, for
which A4 ,,=A_,=16. In a flat goometry (d = 1) the simple cubic lattice gives an
equal a priori probability to a bond between two segments in any of the four
directions parallel to the surface as well as to a bond toward the surface or away
from the surface. This is in accordance with the underlying physical model of refs 4
and 6. We emphasize an important consequence of our definition of the transition
probabilities. It follows from eqs 3 and 5 that

A_ghg(r) = A 4{r—NLq(r—1) (6)

which means that the condition is satisfied that the statistical weight of a polymer
conformation does not depend upon the chain end at which we start to evaluate
this quantity.

When studying polymer grafted at a solid-liquid interface with a radius of
curvature R, we must exclude the layers r=1, 2, 3, ... R from our system. We
number our layers z=1, 2, 3, ... starting from layer r=R+1 (z=1), which is
adjacent to the solid-liquid interface (see also Figure 1). The actual calculation of
the equilibrium distribution of a polymer-solvent system now takes places
completely analogously to the procedure described in ref 27. Only the transition
parameters of eq 2 of this reference must be replaced by the appropriate
expressions from our eq 5 and the denominator of eq 6 in ref 27 becomes
ZZL(Z)G(Z,N). Of course the procedure described above can not only be used to
compute systems with end-grafted polymer but also for polymer adsorption from
solution. In chapter 4 we present results thus found for block copolymer adsorption
onto spherical colioidal particles.

As described in ref 27 a numerical iteration scheme is applied to find the self-
consistent volume fraction profile of the polymer. Due to their mathematical
complexity the equations cannot be solved exactly using analytical methods. In the
next section we will discuss less exact SCF approaches to our system of curved
brushes, which enable us to find analytical approximations for the volume fraction
profile.
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3.3 Analytical SCF Model

Large curvature

We will start by considering polymer chains that are end-attached to a spherical
interface with a small radius of curvature (i.e. brushes with a large curvature). We
make the simplifying approximation that the free ends of all chains are situated at
the same distance H from the surface. The elastic chain stretching contribution to
the free energy of the system for an arbitrary geometry (planar, cylindrical, or
spherical) can then be written as

3fy ( J 3£fd dz
Aot = ze’-'[ Iz-|~1=1) lo(2) i

and is defined per surface area in the planar case (d=1}, per length unit in the
eylindrical case (d=2), and per sphere for the spherical geometry (d=3}. The
local chain stretching at distance z from the surface is given by ds/dz, ¢ is the
segment diameter, and {y = 6S4(R) is the number of chains. In distinction to the
previous section the distance z to the surface is now a continuous variable.
Because of the equal stretching of all chains

3fyds

"5

The contribution to the free energy of the system due to the mixing of grafted chains
and solvent molecules can be written as a virial expansion,

Anmix =sz (v42(2)+ wo®(2))S(z+R) (8)
0

where v and w are the second and third virial cosfficients (within Flory theory v =
0.5—y and w =16 The free energy functional Ag +Amix must be minimized under
the constraint

H
3+d [ dz o(z)Sq(z+R) =N ©)
0

where N is the degree of polymerization. For a given height H this leads to the

equation
2nd--2
'('Z__i-—g—)zwz(z) = %V¢(Z)+2W¢2(Z)+ A (1 0)
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where o is the grafting density and A is an undetermined Lagrangian multiplier.
Solving &(z) from this equation and substituting it into eq 9 one can find A.
Minimization of the total free energy Ag + Anix With respect to H gives the volume
fraction profile for given values of R and ¢. Under good solvent conditions and for
large curvatures the last two terms in eq 10 may be neglected, so that29

PE 20-2
(2

Substituting this expression into eg 9 we find the following scaling law for the layer
height:

1
H -~ (ch3Rd-1)§§ (12)

In a ®-solvent (v = 0), omitting the fitst and last terms on the right-hand side of
eq 10 leads to

5 14 2d-2

(o (B4
#2) _(2w] (Z+FJ (13)
We conclude that in a spherical convex brush ¢{z) scales as (z+R)'4/ 4
solvent, and ¢(z) ~ (z+R)""in a @-solvent. In a cylindrical brush o(z) ~(z+R)
a good solvent, and ¢(z) ~ (Z+R)—'/ 2 in a ©-solvent. This is in agreement with eq 1.
In bad solvents ¢(z) ~ z° for all three geometries. In a bad solvent {v < 0) the left-

hand side of eq 10 can be neglected, so that

v (v a)?
¢(Z) = ﬁ + (m‘ — 2—w] = const (1 4)

in a good
23 in

The value A =v2/6w obtained from the minimization of Amix with respect to H
under the constraint of eq 9 gives a well-known result for a collapsed globule,

o2)= 10 (15)

Small curvature

We will now discuss the opposite case of small curvature (R is large). We limit
ourselves to good solvents and spherical surfaces. Other geometries and solvent
gualities can be described along similar lines. Of course, for infinitely large radii of
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curvature the polymer brush is described by a parabolic potential profile, which in a
good solvent leads to a brush height Hp given by the equation,

LE 13
Ho = (n%J vaVa(fzc)/ (16)

Following Liatskaya et al.30 and Milner et a/31 we assume that for low curvatures it
is still a good approximation to describe the pelymer brush by a parabolic potential
profile. The brush height H will then depend upon the relative curvature ®™!, which
we define as the ratio of the flat brush height and the radius of curvature of the
surface, @ =R/Hy. In a good solvent this height H at a spherical surface is given by
the equation

3 2

H 1+ SH +l H =1 a7
Ho 4(&)H0 5 (DHO
The corresponding volume fraction profile is

2 2

36N/ ( H (z]
= | 1= = 18
o(z) ™ ( Ho] [ H (18)

and the distribution function of free ends:
2 2 1
3zH2 3H 2( H 8( H Yrzy 2V )2
92z)=—3 { 2+ -— +—= =1 1-|= -
Ho O)Ho 3 (DH'O 3 (l)HO H H

This result was previously derived by Liatskaya et a/.30

The approximations made in this mode! turn up when one examines the
function g(z). For low values of z it becomes negative. Of course a probability
smaller than zero has no physical meaning. It is possible to interpret the zone
where g(z) <0 as an area where no end-segments are located. We define A, as
the size of this "dead zone", so that g(Ap)=0. The value of A, (where the
subscript p stands for parabolic} depends on the curvature of the surface. Figure 2A
shows the relative thickness of the dead zone, A, /H, as a function of R/H. The
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maximum relative value for the dead zone is reached in the limit R/H— 0, when
Ap =H/2. When R/H<<1 the layer height scales as R¥5N*56Y%, so that the
ahsolute value of the dead zone ( Ap ~H~R2/5) increases with R and passes
through a maximum at R/H =1, as can be seen in Figure 2B. For small curvatures
(R/H >>1) A, decays exponentially with R.

1 T 1 1 T 1
AM A A M,
04 | @ 1 02

02 - 0.1

0 1 1 1 0
0 2 RH 4 0 1 2 ® 3

Figure 2 (A) The behaviour of the dead zone for free ends in the parabolic
potential approximation; A/H is given as a function of R/H (A: dead zone size, H:
layer height, R: radius). Note that H itself depends on R for a given chain length. (B)
The ratio of dead zone length A and flat brush height Hy is given as a function of
the relative radius of curvature w.

Intermediate curvatures

For intermediate radii of curvature we make the approximation that the volume
fraction profile is a combination of the two previously discussed profiles. Up to a
distance zg from the surface (see Figure 1B) all chains are stretched equally. Per
chain there are N4 segments in this part of the brush. The other N, segments are
situated in a parabolic potential profile and can be thought of as being grafted to an
imaginary radial surface with radius R+ z5. For a spherical layer in a good solvent
this leads to the following overall profile:

q V3 2/3,-13,44/3

(6471:2J (R+z]"‘/:3
3n?

16¢2N,%v

for0<z=<zg
6(z) = (20)

(Hz—(z—ZO)zl forzg<z< H+zg

where f=1f4 is the number of chains per sphere (f= 40xR?). The values of Ny,
Ng, H, and z; foliow from the three conditions:
1) continuity of the profile at z = z:
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( 3 )1!3 §2/3-V34/3 ) 32 2
84n2)  (R+2)%°  16ve2N,?

2v¥3V3,53N,

VB3R 1 203

2) conservation of segments in the inner layer:

29
16Ny = [¢4n(R+2)°dz =
0

) M 58 _ps/3
Ny = e ((F{+zo) -R% ]

3) conservation of segments in the outer layer:

zp+H
N, = [o(z)an(R+2)dz =
Zp
n3(R +2g)*H® . I H2 1
2vEON,> 4R+2z9) 5R+2z)°

Rearranging these equations and introducing u=zy/R, one can write,

2\V3
1+§[n__) o
3. 6

5
1+ —=nc
en

a/5

-1

where the constant ¢ is defined by

4
c =—E+(%+5(%—1D2 =1.334
8 64 4

Woe now define a critical relative curvature wer, 50 that for @ > we; the potential
profile is parabolic, whereas for ® < wgr the volume fraction profile is a
combination of both models. For @ < wer there is a zone A =2y +Ap where no

end-segments are located. For a spherical brush g =~ 0.563.

For a cylindrical layer in a good solvent the similar procedure gives g =
(4/3n)1/3(21n—8/3)'1 = 0.207. For a cylindrical brush a parabolic potential profile
may be assumed over a wider range of curvatures than for a spherical brush. The
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combined profiles for ®-solvents and bad solvents in spherical and cylindrical

geometries can be found in the same manner.
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Figure 3 Effect of radius of curvature and chain length on the segment
distribution in spherical and cylindrical geometries. (A) and (B) chain length
N=100; (®#) R=1, (+) R=10, (¢) R=100, (O} R=c. {(C} and (D) R=10; (4)
N =100, (l) N =150, (O) N =200. (A) and (C) spherical geometry; (B) and (D)
cylindrical geometry. In all cases y =-0.5.

3.5 Results

The effects of surface curvature and chain length on the volume fraction profiles
of brushes at spherical and cylindrical surfaces is shown in Figure 3. Here a very
good solvent has been used (y =-0.5), which gives slightly more extended
brushes than an athermal solvent. Parts A and B are drawn for a (relatively) short
chain length of 100 segmentis. For low curvatures the profite has a large
resemblance with the profile of a brush on a flat surface (R =<}, which is also
drawn for comparison. Upon increasing the curvature, the shape of a growing part
of the profile becomes convex. The same trend can be seen in parts C and D,
where curves are drawn for different chain lengths but with the same radius of
curvature. Increasing the chain length has a similar effect on the shape of the
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profiles as decreasing the radius of curvature. The parameters in Figure 3 are the
same as those in Figures 2 and 3 of Dan and Tirrell's paper,'3 which were
calculated with an excluded volume parameter v = 1. The shape of our profiles is
very similar to theirs. However, Dan and Tirrell consistently predict layers that are
slightly more strongly stretched, and consequently slightly less dense. For
example, for a spherical interface with R =100 and N =100 they calculate a
brush height that is approximately 10% larger than ours. Probably this is due to the
way solvent-segment interactions are taken account of by the excluded volums
parameter. As stated above, all our calculations were done using a cubic lattice.
For a flat interface this lattice gives exact correspondence with the SCF theory of
Zhulina et af. and Milner et al. in the limit of infinite chain length.27

(A ' B *
100 [-spherical geometry leylindrical geometry

10

L
(C) '}_ 1 (D) 1 1
100 |-spherical geometry - cylindrical geomty
H ¢ =0.005 ¢=0.005
N
10 | 4+ / -

3.6
1t N 4 4
0.1 ' ! !
10 100 1000 N 10 100 1000 N

Figure 4 Brush thickness as a function of chain length in an atherma!l solvent.
The brush thickness has both been expressed as the average segment height and
as the hydrodynamic thickness (see text). Parameters: (A and C) spherical
geometry; (B and D) cylindrical geemstry; (A and B) o =0.1; (C and D)
¢ = 0.005. Symbols: (@) R=1; (A) R=10; (B) R=; Open symbols are
hydrodynamic heights; filled-in symbols are average heights.

Figure 4 gives the brush thickness as a function of polymer chain length under

various conditions. This thickness has been calculated in two different ways. First,
we have defined an average brush height H,,, in a similar fashion as in ref 13,
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Figure 5 Volume fraction profiles for a spherical surface; N = 500; (A) 6 = 0.1,
R==, R=500, R=100, and R=25; (B) ¢ =0.1, R=25 R=10, R=5,
and R=1; {C) 6 =0.005, R=w, R=500, R=100, and R=25; (D)
g =0.005 R=25 R=10, R=5, and R=1. In all cases y =0. The solid
curves are lattice calculations. For R =500 and R = 100 the dashed curves are
the "parabolic potential profile” approximation. In (D} the dashed curves for R =1
and R = 5 follow from the "fixed chain ends" model. All other dashed curves were
caiculated according to the combined model.

1
(X, 2(z+RPe(z) 2
Hay = [ zz 2+ H)2¢(Z) (26)

which is basically a second moment of the volume fraction profile. Secondly, we
have calculated the hydrodynamic layer thickness Hy,y, using the theory of Cohen
Stuart et al.,32 taking the hydrodynamic constant Cyy = 1. To apply this theory to
curved surfaces we assume that all solvent flow takes place concentrically with
respect to the surface (the flow has no component in a direction perpendicular to
the surface). For low Reyneclds numbers this seems a reasonable approximation for
many practical systems. (Both Hay and Hyy give smaller values than the brush
height H as defined in e.g. ref 17). When the grafting density is high (o = 0.1) we
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find very good agreement with the scaling law Hy, ~ N for a flat surface, and for a
spherical surface with R =1 (star-shaped polymer) we find equally good
agreement with the scaling law Hg, ~ N®6. For cyiindrical surfaces the expected
scaling behaviour Hy, ~ N2-75 s found for R = 1. When o = 0.005 increasing
deviations occur from these power laws, which for flat surfaces are caused by the
"foot of the parabolic profile".27.33 The hydrodynamic thicknesses agree less well
with the predicted power law. Experimentally the hydrodynamic thickness may,
however, be the most easily accessible parameter for defining brush thicknesses in
these systems.

08 T T 0.75 T T
¢
05
0.4
0.25

0.01

0.001

Figure 6 Volume fraction profiles in a spherical geometry for different solvent
qualities: a decrease of the solvent quality leads to a collapse of the grafted layer.
In {A) the dashed curves are the parabolic potential model predictions. For R = 1
the profiles are also given on a logarithmic scale to be able to check for a power
law dependency between ¢ and z, Parameters: ¢ =0.1; N=500; y =0, 0.5,
0.7, 1; (A} R=100; (B) R=10; (C and D) R=1.

In Figure 5 lattice volume fraction profiles {full curves} are given for N =500 in
a spherical geometry with ¢ =0.1 and ¢ = 0.005 (o = 0.1 is a very high grafting
density, which won't easily be reached by adsorbing block copolymers, but which
may be a good value for modelling a star polymer (when R=1); 6 =0.005 is a
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more reasonable value for the grafting density on sterically stabilized colloidal
particles). The dashed curves have been calculated with the equations of section 3.
The curves for R =500 and R = 100 (when o > mqr) are given by the parabolic
potential profile approximation. For smaller values of R (when w < @) the
"combined model" gives a reasonably good fit with the lattice calculations, The
dashed curves for ¢ =0.0056 and R =5, and R =1 follow directly from eq. 11.
For these small values of R the "fixed chain ends" model agrees best with the lattice
calculations.

Figure 6 shows how the solvent quality influences the polymer brushes. As is
the case with flat brushes, a worse solvent gives a more compact grafted layer. For
% = 1 the volume fraction profile is well approximated by a step-profile,
irrespective of the interface curvature, in agreement with eq 14 (of course, the
height of the brush does depend on the curvature}. When the curvature is not too
large (R = 100 in Figure 6A) a brush can still be reasonably well described by the
parabolic potential profile approximation applied in a ©-solvent. For R =1 the
exponent of the initial decay of the profile gradually changes from 4/3 to 1 when
the solvency changes from % = 0 to x = 0.5.

0.04 T T T T v T T T
(A) {B)
g | R=1 spherical | R=1 spherical
a =0.005
25,
002 | 100 |
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0 u ; : : :
g © R=1/5 o)
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o=01 ¢=0.0056
- 100 T
0.01 4 o0 ]
0 1 1 1
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Figure 7 Free chain end distribution functions g, as a function of the reduced
distance to the surface z/H,, , for various radii of curvature as indicated; (A and B)
spherical geometry; (C and D) cylindrical geometry; (A and C) 6 =0.1; (B and D)
g = 0.005. Further parameters: N = 1000; y = 0.
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Figure 7 gives the exact distribution functions of free chain ends of the polymer
chains. The function g(z/H,,} is drawn, where My, is given by eq 26 and
() = ¢(z,N)L9(z)/ 6L9(1) with §(z,N) the volume fraction profile of the end-segments.
Figure 7 illustrates the existence of a dead zone in both the spherical and
cylindrical geometries. Of course, the probability that an end-segment is located in
this zone is not absolutely zero, but very small. As long as o < 1 a polymer chain
conformation with an end-segment bending back to the surface will have a finite
probability. This makes it difficult to speak about the absolute size of the dead zone
within our lattice SCF model. One can only use an arbitrary definition for the dead
zone, for example the area where g(z) is smaller than 5% of its maximum value.?3
Some conclusions concerning the behaviour of this zone can be drawn from Figure
7. When the radius of curvature is small, an increase in R leads to a larger dead
zone, both in absolute terms (which is partly caused by an increase in the layer
height) and in relative terms (as a fraction of the layer height, which can, for
example, be expressed by H,,}. Increasing R even further at a certain point leads to
a decrease of the dead zone size and eventually resulis in its total disappearance.
These trends are clearly seen in parts A and C of Figure 7, where the grafting
density is high {c = 0.1). For the far lower grafting density of 0.005, which in many
practical systems may still be a very realistic value, the dead zone is significantly
smaller,

The behaviour of the dead zone size as a function of surface curvature is at
least qualitatively in agreement with eq 19 (parabolic potential profile) and with the
combined model. In Figure 8 the chain end distribution g is given as a function of z
as calculated from the lattice model (solid curves), and the parabelic potential
model and the combined medel (dashed curves) for grafting densities of 0.1 and
0.005. There is a fair correspondence between the lattice calculations and the
predictions of section 3. In the parabolic potential model the negative values of g
for small z must be compensated by too large values of g elsewhere. This is the
main reason for the differences found round the maximum of g(z). Nevertheless for
all sets of parameters the analytical equations correctly predict the location of this
maximum. The lattice calculations do consistently show a smaller dead zone and
an appreciably wider distribution of free end-segments at the tip of the brush.
These segments are located in the “foot" of the parabolic profile. Especially for
smaller values of R, the differences between the two curves become significant. For
very small R the end-segments certainly do not all tend to be concentrated in a
narrow zone (although the overall volume fraction profile, as seen above, does
tend to the —4/3 power law of the "fixed chain ends" model). Overall, the approxi-

81




0.006

0.004

0.002

50

100 z 150

G015

0.01 -

0.005

0.02

0.01

0.04

0.02

P g

=]
T
|
L

g

z 100

Figure 8 Free chain end distribution functions g, as a function of z in a spherical
geometry for ¢ = 0.1 {A-D) and ¢ = 0.005 (E-H). The solid curves are lattice
calculations, the dashed curves are the analytical equations (the parabolic
potential profile model was used for A.E,F, and G, and the combined model was
used for B,C,D, and H), Further parameters: N = 1000; x = 0.
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mate analytical equations give a reasonable prediction of the dead zone size.

Figure 9 explores a possible scaling behaviour of the free-end distribution. Both
in the limit of small particle radius and for brushes under parabolic potential
conditions the brush height scales as

H-~ (GNaﬁd‘1 )d_li

This suggests that the free end-segments and the dead zone size may have a
similar scaling dependence. Parts A-C of Figure 9 show the end-segment
distribution function g in a spherical geometry as a function of z/ (Na" SR2/551 5). if
the scaling law A ~ N¥®R%5sY5 were correct all curves should become zero at the
same value of z/ (Ns" SR2/551 5). This is not the case. A better approximation
would be to assume that the dead zone is equal to the first part z; of the combined
model. From eqs 21-23 one can then derive that

3
8Vs  de2(aps |7 3
1 [2}3m+L(_J3 ; 1 \a+2
—_A :va-_é £ 3 3 —\."m i 30)
L 1+d+27I:C ﬂ:2
(O-Naﬂd‘1)d+2 5
=0509fore—0 ifd=3 (27)

=0224forod—-0 Hd=2

where the constant c is given by eq 25. In the legends of Figure 9 the values of
A/ (Naﬂd‘1c)1 * are also given as calculated from this equation. For short chain
lengths (e.g. R=5, N =200, o =0.1; see Figure 9C) and for very low grafting
densities (e.g. R =5, N=1000, ¢ =0.005; see Figure 9B) deviations start to
occur from eq 27 which are caused by the fact that the chains are not strongly
stretched for these parameters. We do indeed see that for small values of o {s.g. for
R=5 N=1000, and o =0.1 we have o = 0.015) the dead zone size
approaches the value given by eq 27 for @ — 0. Of course one must realize that
the exact lattice calculations also take "fluctuations” into account which aliow a
finite number of conformations to have their end-segments bend back to the power-
law part of the volume fraction profile. This is analogous to the "foot" that occurs in
the volume fraction profile at the tip of the brush and explains why the curves do not
show a sharply defined border of the dead zone. On the other hand eq 27 of course
neglects the existence of a dead zone Aj, in the parabolic potential part of the
profile. For (R =100, N = 1000, ¢ = 0.1; Fig 9A} one sees that the dead zone is
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significantly larger than the value predicted by eq 27. In this case the contribution of
Ap to the total dead zone A becomes apparent. Figure 9 also shows that when N

0.03 T _ _ T 1
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Figure 9 The distribution function g as a function of the normalized distance to
the surface in a spherical geometry {A-C) and in a cylindrical geometry (D-F). This
distance has been normalized to check the expected scaling behaviour of the dead
zone: A ~N¥5R%55Y5 for a spherical surface, and A ~ N¥*RY4s¥4 for a cylindrical
surface. Parameters: R, N, and ¢ as indicated in the figure; i = 0. In the legends
the numerical values of eq 27 are also given for the indicated set of parameters.

and ¢ are changed, the location of the maximum of the function
a(z I(GN3Rd‘1)" (d+2) hardly changes. The area under the curves does change but
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this is because we have defined I g(z)dz = 1. i the curves in parts B and C of Figure
9 are normalized so that

jg[;/ (oN3Rd-1)wd+2’J d[z/(cNaRd_1}V(d+z)] _,

all curves virtually collapse onto a master curve. This is, however, not the case for
the curves in Figure 9A. Incteasing the particle radius shifts the maximum in g to
lower values of z/ (0N3F{d‘1 e,

Parts D-E of Figure 9 show the same curves as parts A-C for a cylindrical
surface. Most dead zones are slightly larger than predicted by eq 27. This is
caused by the contribution of A, to the total dead zone A. The general shape of the
curves shows the same behaviour as in the spherical geometry. The values of A
are smaller than those for the spherical surfaces, but the dependence of A upon N,
R, and o is very similar to that found in parts A-C of Figure 9.

a.1
g

0.05

Figure 10 The influence of solvent quality on the chain end distribution.
Parameters: R =25, N =500, ¢ = 0.1, spherical geometry, x =0, 0.5, 0.7, 1.

The effect of solvent quality on the free chain end distribution is demonstrated in
Figure 10. For solvents varying from good (athermal) to very bad (3 = 1) g(z/Hay)
has been drawn for a brush on a spherical surface with a high grafting density
{c = 0.1}, Decreaging the solvent quality leads to a collapse of the polymer layer
as was seen in Figure 7. However, the distribution of chain ends changes relatively
little. Of course the area in which the end-segments are located becomes smaller,
as the layer height itself becomes smaller, and so the size of the dead zone
decreases. The relative size of the dead zone also decreases slightly (as seen from
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the curve of g versus the reduced distance to the surface, z/H,, ), but this tums out
to be a minor effect.

3.6 Discussion and Conclusions

In this chapter we have shown that the lattice model of the Scheutjens and Fleer
theory can be usefully extended to study polymer brushes at spherical and
cylindrical interfaces. The efficient method this theory uses to generate chain
conformations makes it possible to study the characteristics of polymer brushes
over a wide range of chain lengths (e.g. for far longer chain lengths than is at
present possible using simulation techniques). We again emphasize that this
theory gives exact solutions within the mean-field theory, in which only nearest-
neighbour interactions are accounted for. This makes it an obvious reference point
with which to compare approximate analytical SCF descriptions of polymer
brushes. We first compared volume fraction profiles with those calculated by Dan
and Tirrell.'3 We found good agreement between both models. This is not
surprising as both our approaches are based on a very sirilar physical model.

We have concentrated ourselves on analysing the volume fraction profiles of
brushes at spherical surfaces immersed in an athermal, low molecular weight
solvent. For small curvatures the parabolic potential profile model agrees very well
with the more accurate lattice calculations. The differences between both
descriptions can be largely explained by the fact that the analytical model only
takes into account pair interactions between segments. For flat surfaces differences -
of the same order of magnitude appear in the volume fraction profile when higher
terms are neglected in the mixing free energy of polymer and solvent. Similarly, the
distribution of free end-segments is roughly the same in both models.

For decreasing radii of curvature the spurious effect of negative values of g(z)
for low z becomes more prominent. As jg(z)dz =1 this leads to too high values of
g(z) outside the dead zone. Furthermore, the lattice calculations predict a finite
volume fraction of free chain ends beyond the "classical" chain height. This "foot"
of the volume fraction profile can be explained completely analogously to that at
the flat interface.27.32 Increasing the curvature leads to the appearance of a power
law-like part in the volume fraction profile.

The "combined model" that we introduced gives a reascnable description of the
volume fraction profile by dividing it into two parts. The distribution of free ends in
this model is too narrow, but the position of the maximum of this distribution is the
same as in the lattice model. For very small particles the lattice model certainly
does not indicate that all chain ends are situated at the same height above the
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surface. The total volume fraction profile for such particles does, however, tend o
the scaling law ¢ ~ 3,

Our lattice catculations show very clear indications of the presence of a dead
zone both near spherical and cylindrical interfaces. This is in contradiction with the
molecular dynamics results of Murat and Grest,12 who found no evidence for the
existence of a dead zone near a cylindrical surface for any finite radius of
curvature. A quantitative comparison of our results with those of Ball et al11 is not
possible, as they solved their SCF equations for a system that we have not
considered in this chapter, namely a cylindrical brush under melt conditions. Qur
calculations do, however, suggest that the dead zone size is not a simple
monotonic function of the radius. We have tried to explain the radius dependency
of the dead zone size in terms of the "combined model" for the volume fraction
profile. We hope that our data and this tentative interpretation will encourage
further work aimed at better understanding of this dead zone behaviour.

In conclusion, we have showed that upon decreasing the solvent quality the
grafted layer collapses and forms a step-like profile, irrespective of the curvature. A
decrease in solvent quality also leads to a decrease in the dead zone size, but,
even for a (far) worse than ©-solvent, a dead zone can still exist.
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chapter 4

Copolymer Adsorption on Small Particles

Abstract

in this chapter we use self-consistent field theory to study the adsorption of
diblock copolymers onto small colloidal particles. The patlicles are modelled as
spheres and the assumption is made that the adsorption parameter of the adsorbing
segments is independent of the particle curvature. We find that the adsorbed amount
per unit of surface area increases with increasing curvature. The hydrodynamic layer
thickness decreases greatly with increasing curvature. The root-mean-square layer
thickness does not vary much when the curvature changes.
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4.1 Introduction

Recently Evers et al.!-2 published a statistical thermodynamic model to describe
the adsorption of copolymers. This work is an extension of the self-consistent field
theory of Scheutjens and coworkers, 46 which was deveioped to describe polymers
at interfaces. In one of their papers Evers ef al.2 studied the effect of the molecular
composition of a diblock copolymer on its adsorbed amount. They showed that when
the total length of the diblock copolymer is kept constant, a maximum is found in the
adsorbed amount as a function of the fraction of adsorbing segments. This result is
of great practical importance for the stabilization of colloidal dispersions, as a larger
adsorbed amount generally corresponds to a larger thickness and, hence, to better
stabilizing properties. Wu et al.? have recently presented the results of an
experimental study of the effect of the composition of a diblock copolymer on its
adsorbed amount. They adsorbed a block copolymer consisting of a
(dimethylamino)ethyl methacrylate block and a n-butyl methacrylate block from 2-
propanol onto silica and found a maximum adsorbed amount for a certain ratio of
both block lengths, as predicted by Evers et al. Marquez and Joanny® developed a
different approach to the problem. They proposed a scaling model for diblock
copolymer adsorption from a nonselective solvent. This model also predicts a
maximum in the adsorbed amount as a function of the fraction of adsorbing
segments.®-10 Hence, the maximum in the adsorbed amount of a diblock copolymer
as a function of its composition seems to be a well established fact.

The self-consistent field approach of Evers ef al.l is a lattice model for
incompressible systems. It is based on the following fundamental approximations:

{i) The polymer molecules are described as Markov chains (i.e. they are freely
jointed) on a lattice.

(ii) The many-chain problem is reduced to considering a test chain in an "external"
field made up by the surrcunding chains.

{iiy Only short-range (nearest-neighbour} interactions are taken into account.

The papers of Evers et al.1-3 consider adsorption at infinitely large, flat interfaces.
In colloidal dispersions polymers adsorb onto curved particles. As long as the radius
of curvature of these particles is far larger than the dimensions of the adsorbed
layer, one can model the adsorbent as a fiat surface. However, when the radius of
curvature is of the same order of magnitude as the adsorbed layer thickness, one
should explicitly account for this curvature. In this chapter we discuss the effect of
particle curvature on the adsorbed amount and layer thickness of a diblock
copolymer. We apply the theory of Evers st al. in a spherical lattice as described by
Leermakers and Scheutjens.® In such a lattice the layers form equidistant, concentric
shells. The differences between a planar lattice and a spherical lattice ara: (i) the
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nurber of sites L(z} in layer z increases on moving away from centre of the lattice;
(i) the lattice transition parameters are layer-dependent. These parameters, denoted
as A_(2), Ag(z), and A,(2), are defined as the fraction of neighbours a site in layer z
has in layers z—1, z, and z+1, respectively. The layers are numberedz=1, 2, 3, ...
starting at the centre of the lattice and moving outwards. Leermakers and
Scheutjens have given expressions for the number L(z) of sites in a layer and for the
lattice transition parameters as a function of z. Wijmans and Zhulina!! used such a
lattice to describe a polymer brush on a spherical particle. In this case the central R
layers of the lattice are occupied by the particle. We use the same approach to study
the adsorption of polymer molecules from solution onto a spherical particle. In this
case the polymer layer is in equilibrium with the bulk solution.

4.2 Resulls

All calculations were performed using a hexagonal lattice, i.e.
Ay(o0) = A_(e0) = 3/12. The copolymers consist of an adsorbing block of A segments
{anchor) and a block of nonadsorbing B segments (buoy). We denote the length of
the A block as Ny and the length of the B block as Ng. Nearest-neighbour
interactions between segments are accounted for by the Flory-Huggins parameter 7.
The solvent is taken to be a poor solvent for the A block and a good solvent for the B
block {(xan = 0.5 and ¥pn = 0, where O denotes the solvent, and yag = 0.5).

Fallowing Silberberg,12 we introduce an adsorption energy parameter yg5q for
segment A, which is defined as the dimensionless difference (ug ﬁug) /kT, where
ui is the adsorption energy of segment A, and ug is the adsorption energy of a
solvent molecule. If xag is the conventional Flory-Huggins parameter between A
segments and adsorbent molecules (S), then yxga0 =-A (R+1){xas-xos!}
because a fraction A_(R+1) of an adsorbed segment (situated in layer R+1) is in
contact with adsorbent sites. For a given value of yag the lattice model implies that
the adsorption energy paramster xsao i an (increasing) function of the radius of
curvature R. In the calculations we have kept xgao constant and we have used
%sAo = 2. This corresponds to yag = -8 for a flat surface if yog = 0, and to higher
values of xas if R is small. The assumption of a constant ysag seems reascnable
when the adsorption is caused by a specific interaction, such as the formation of a
hydrogen bond. In the case of non-specific interactions (e.g. van der Waals forces)
this assumption might be less justifiable. In an experimental system with {very} small
particles one should always bear this complicating factor in mind. In contrast to the A
segments the B segments are taken as nonadsorbing: yspn = 0.
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Figure 1 (A} adsorbed amount 62 per unit of surface area; (B) hydrodynamic layer

thickness &; (C) root-mean-squars layer thickness 8;ms as a function of the number

of adsorbing segments Ny in an AB diblock copolymer. The radius R of the

adsorbent particle is indicated. Parameters: xao =0.5; %go = 0; %ag = 0.5, Xsp0 =2;
—0 &b —10-%

xsBo =0; 6" =10""

Figure 1 shows results for the adsorption of diblock copolymers onto spherical
particles. The bulk solution volume fraction ¢b of polymer is kept constant at
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¢b =107, Figure 1 was calculated for (monodisperse) polymer chains with a total
chain length {i.e. number N4 of A segments plus number Ng of B segments) of 500,
The values of the particle radius are indicated in the Figure. In part A the adsorbed
amount 62 (expressed as the total number of segments in adsorbed chains per unit
of surface area) is given as a function of N5. The parameters have been chosen
such that for R = — the system is the same as in Figure 3 of ref 2.

For all values of R, 82 is a non-monotonic function of N, exhibiting a maximum
for Np < 100. Evers et al. explained this maximum as follows. When the fraction of A
segments is saller than corresponding to this maximum, the anchoring is weak: the
adsorbed amount is low because the total adsorption energy per chain is small.
Beyond this maximum the adsorbed amount decreases with increasing N because
the surface region is overcrowded by adsorbing A segments, and the freely dangling
B blocks become shorter.

When the surface is curved the adsorbed amount per unit area is larger than for
a flat surface. A decrease in R leads to an increase in the adsorbed amount for all
possible compositions of the polymer. The curved geometry allows the B blocks,
which are protruding into the solution, more lateral freedom, which makes the
adsorption process entropically more favourable. The curvature dependence is most
pronounced for chain compositions with a relatively tong buoy block (small N,}. For
R = 5 up to twice as much polymer can be adsorbed per unit of surface area as
compared to a flat surface. When the length of the A block is significantly increased
beyond its optimal value the curvature effect is strongly reduced. In the limiting case
of an adsorbing homopolymer (no B segments, only A segments) the adsorbed
amount is only slightly farger for R = 5 than for R = «, Furthermore, Figure 1A shows
that the maximum in the adsorbed amount curve shifts to slightly lower A segment
fractions when the curvature is increased: a smaller sticking energy is required if the
B blocks hinder each other to a lesser extent.

An important parameter to characterize an adsorbed polymer layer is its
thickness. The effect of the particle curvature on the layer thickness has also been
studied, as is shown in parts B and C of Figure 1. [t tums out that, even qualitatively,
the effect depends strongly on the way in which one defines the adsorbed layer
thickness.

We first consider the hydrodynamic layer thickness 8, plotted in Figure 1B. The
hydrodynamic layer thickness of polymer adsorbed onto colloidal particles can be
determined from techniques such as photon correlation spectroscopy, that measure
diffusion times. The hydrodynamic layer thickness was calculated under the
assumption that all flow of the solvent takes place concentrically to the surface. This
assumption enables us to apply the theory of Cohen Stuart et al’3 to calculate the
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hydrodynamic layer thickness from the volume fraction profile. We take the
hydrodynamic constant Gy, equal to unity.213 Clearly, the assumption of concentric
flow is not correct. For small particles one expects that this assumption
overestimates the layer thickness. However, that would only enhance the curvature
effect we find for the hydrodynamic layer thickness dependency. The main
conclusion from Figure 1B is that, upon decreasing R, the hydrodynamic layer
thickness also decreases. At first sight this might seem a little puzzling, as the
adsorbed amount increases with increasing curvature. However, a decrease in R
implies that the volume fraction profile of the B segments falls off more quickly {see
also Figure 2). The hydroedynamic layer thickness is a measure for the spatial
extension of the volume fraction profile.

In Figure 1C the root-mean-square (rms) layer thickness 5y is given for the
same systems. The rms layer thickness can be determined from a static light
scattering experiment. This measure of the layer thickness is defined as:

1

s | X ek
™ = 5w

Here, L(z) is the number of lattice sites in layer z. For Np < 300, §pg turns out to be
an increasing function of R, just as 8n. The relative differences between the layer
thicknesses found for different vaiues of R are far smaller than those found for the
hydrodynamic layer thickness, and follow more closely the adsorbed amount 82, For
large values of Ny (N4 > 400) one even finds that &, is a decreasing function of R.
The different results as compared to the hydrodynamic layer thickness can be
explained by the definition of the rms layer thickness. The latter thickness does not
measure the extension of the volume fraction profile ¢{z) but is a measure for
L(z)¢{z). Although the volume fraction profile falls of far more quickly when the
curvature is increased, L(z) times the volume fraction profile does so less strongly.
The quantity L(z)¢(z) is proportional to the fraction of segments at a given distance z
from the surface.

In Figure 2 volume fraction profiles of the B blocks are plotted. These data apply
to chains consisting of 40 A and 460 B segments. The decrease of the
hydrodynamic layer thickness with increasing curvature can easily be understood
from these volume fraction profiles. If in this Figure ¢ were multiplied by L{z), the
profiles for small R would increase more than those for large R. This explains the
different R-dependency of 8, and 8y,s. The shape of the curves in Figure 2 is the
same as what one would expect for nonadsorbing polymer chains terminally
attached to a spherical surface. For large R the volume fraction profile corresponds
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to a parabolic potential profile. For small R it changes to a power law. This behaviour
was studied more extensively in ref 11,

0.08 , .
¢ ! R=e
0.04 [ 20 -
5
0 —
0 50 ,_g 100

Figure 2 Volume fraction profiles for the B segments of A gB4gg copolymers
adsorbing onto spherical particles with radius R (indicated). All parameters are the
same as in Figure 1.
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chapter 5

Effect of Free Polymer on the Structure of a
Polymer Brush

and Interaction Between Two Polymer Brushes

Abstract

Self-consistent field (SCF) calculations are presented of a planar grafted
polymer layer that interacts with either free polymer chains or with another grafted
layer. Three different systems are studied. The first is a grafted polymer layer
immersed in a polymer solution. The interaction between grafted and free polymer
can significantly influence the grafted polymer volume fraction profile. For grafted
chains that are strongly stretched the lattice calculations are compared with the
theory of Zhulina, Borisov and Brombacher (Macromolecules 1991, 24, 4679).
Good agreement is found when the free chain length is far smaller than the grafted
chain length. The scaling behaviour of the penetration of free polymer into the
grafted layer is also studied for this system. In the second type of system the
interaction between two grafted layers in the absence of free polymer is
considered. The lattice calculations agree well with the theory of Zhulina &t al. In
the third system free polymer is present between the interacting grafted layers. If
this free polymer has a small chain length, its main effect on the interaction free
energy is the compression of the free grafted layers, and only repulsion is found.
However, for larger chain lengths an attraction between the grafted layers appears.
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5.1 Introduction

In a previous paper! the self-consistent field (SCF) description of non-
compressed polymer brushes was discussed. Assuming that the chaing in such a
brush are strongly stretched with respect to their free Gaussian dimension, one can
elegantly describe the structure of such a system by following a suggestion first
introduced by Semenov.? In this approach all possible conformations of the
polymer chains are replaced by a set of most probable conformations. For a given
system this assumption can be rigorously checked using a SCF theory that
involves the generation of all possible chain conformations on a lattice. The
assumption of strong chain stretching is valid for a polymer brush immersed in a
low molecular weight sclvent under a very wide range of solvent qualities, but this
assumption breaks down under extreme conditions, notably for very short chain
lengths. The same holds for a polymer brush that is immersed in a solution of short
mobile chains which are chemically identical to the grafted chains.

In this paper we shall discuss interactions between grafted [ayers in the
absence and in the presence of free polymer. First, we discuss an isolated brush
immersed in a solution of free polymer with the same chemical composition (but not
necessarily the same degree of polymerization) as the grafted polymer. Here, the
interesting issue is to what extent the free polymer penetrates into the grafted layer.
Scaling dependencies will be derived for the degree of interpenetration as a
function of grafting density, free and grafted chain lengths, and free polymer
concentration. Second, the interaction between two planar grafted polymer layers
immersed in a solvent will be considered. Zhulina et al?® and Milner ef al.4 showed
how the strong chain stretching description of a single polymer brush can be
extended to describe the interaction between two grafted layers if the
interpenetration of these two layers is neglected. By comparing the predictions of
this theory with the results of lattice calculations we hope to gain more insight into
the behaviour of compressed polymer layers. In particular the effects of weak chain
stretching, and the interpenetration of opposite layers will be studied. The third
system discussed in this paper is a combination of the two previous ones: the
interaction of two grafted layers in a solution of free polymer. In section 2 the
theoretical methods are described, in section 3 numerical and analytical results are
given, and in section 4 we discuss these results,

97



5.2 Theory

Lattice Model

Grafted polymer, solvent, and free mobile polymer is distributed on a planar
lattice, consisting of M layers of L sites each, between two parallel plates. The
diameter, £, of the segments defines the lattice spacing. We restrict ourselves to the
case of grafted and free polymer molecules of identical segment types in an
athermal solvent. For large interplate distances M¢ this system reduces to that of
two isolated polymer brushes immersed in a polymer solution. If M/ is smaller than
twice the brush thickness, we have two brushes in interaction. We consider
polymer chains that are grafted at one end onto one of the two plates with a relative
surface coverage ¢ =ny /L, where ng is the total number of chains grafted to that
plate. In general, we want to compute the equilibrium distribution of all three
components on the lattice for given values of M, ¢ (0 < ¢ < 1), grafted chain
length Ng, free chain length Ny, and bulk volume fraction ¢? of the mobile polymer
(0s ¢? <1). This is done by weighting all possible conformations of the polymer
chains by their Boltzmann probability factor. In a previous paper! we showed how
the Scheutjens-Fleer formalism for polymer adsorption can be used to find the
volume fraction profiles of such systems with grafted chains in the presence or
absence of free polymer. In that paper we also discussed the computational
problems that arise when long polymer chains are considered with a high grafting
density.

For two interacting brushes the free enargy A(M) of the system can be
calculated as:®

-
AM
2D = cNg(ng(z Ng)] Rnd? +6 In( 22_1”(2) (1)

Here 8¢ and &, are the amount of free polymer and the amount of solvent molecules
in the system, respectively, expressed in equivalent monolayers. The quantity
Gg{zNg) is the average weight of all conformations of a grafted chain of which the
end segment is in layer z and u(z} is the potential energy profile of the polymer
segments. When describing the interaction between two layers, it is convenient to
define the excess surface free energy A as

A A (2o

3 3 {2)

uf)ﬁ—f
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Here, us—u; and pg- p.; are the chemical potentials of the solvent and free
polymer, respectively, defined with respect to their pure amorphous phases
(denoted by *). They are equal to:6

%=In(1—¢?)+¢?(1-1/“f) o

B g s (1-N)1-47)

The interaction free energy Ai"t(M) between two layers can now be written as the
difference between the excess surface free energy at the given plate separation M
and the excess surface free energy at infinite plate separation:

AN = AS(M) — AS(ec) (4

Analytical theory for a polymer brush immersed in a solution of free
polymer

In this section we briefly review the results of Zhulina et al.,?” who made an
elaborate SCF analysis of polymer brushes immersed in a solution of mobile
polymer. Assuming that N¢ << Ny, so that the size of a mobile chain is much smaller
than the characteristic length over which the volume fraction profile of the grafted
chains decays, one can write the free energy density functional of mixing grafted
polymer, free polymer and solvent as:

£912) = (1= 012 09(2) {1~ 42) - (2)) + H (o) ©®)

In the bulk solution (z > H, where H is the brush thickness) ¢4(z} = 0, so that one
can write

30 = (1 ¢f]ln(1 ¢f)+¢f Ing? (5a)

By combining f(z) with the elastic term in the free energy of the polymer brush,
one can derive an expression for the total free energy of the brush (see ref 7 for
details). One can alsc derive equations for the grafted and free polymer volume
fraction profiles ¢4(z) and ¢¢z). In the next section we will discuss the interaction
between two polymer brushes, which can be analysed by studying how their free
energy changes upon compression. First we discuss the shape of an isolated
brush immersed in a solution of free polymer.
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The volume fraction profiles of the grafted and free chains are given by the
equations?

bgl2)=01- ¢'f°)[1 - <axp{—K2(H"2 -2 )}] + ¢?[1 - exp{—Kz(H2 -z2 ]Nf}]

(8)
(2= of exp{—K2 (H?-22 )Nf}

where z is the distance from the surface and K is given by
2 _ a2 a2 2
K? = 3r%/8¢2N3

The layer thickness H can be cobtained from the normalization condition

H
Jg(z)dz = oNge®
0

te give the equation
KH = NgoKe +(1- 9 )D(KH) + 62N V2D(KN, ¥ 2H) (7)

where

b 4
Dix) = e [ect
0

is the Dawson integral. Equations 6 and 7 give the volume fraction profiles ¢q(2z)
and ¢#(z), and the brush thickness H as functions of Ng, N¢, and 6. However, these
equations are only valid provided Ny <<Ng and under the condition that the grafted
chains are strongly stretched (H >> Ngvz).

In order to extend our consideration to low grafting densities and arbitrary
lengths of the free polymer chains, we have to use scaling arguments.& Although
scaling arguments do not provide structural details of the system (volume fraction
profiles, distribution of free ends, etc.), the combination of scaling and SCF results
gives a general picture of a brush immersed in a polymer solution. Below, we
analyse the power-law dependencies of the brush thickness and we also consider
the degree of penetration of the free polymer into the polymer brush. These
characteristics are studied as functions of Nyand ¢. Of course, for Ny <<Ng and
H>>Ng"2, the explicit expressions for H, ¢g(z), and ¢((z} are available.

Figure 1A presents a diagram of state of a polymer brush immersed in a
solution of free polymer. This figure shows the different power-laws that exist for the
dependence of H on ¢ and N;. The boundaries between the regimes where these
laws are valid are also indicated.
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Figure 1 Diagram of state showing the various regimes for a single grafted
polymer layer immersed in a polymeric solution. The grafted polymer has a chain
length Ng and is grafted at a density ¢. The free polymer is chemically identical to
the grafted polymer, has a chain length Nf and its volume fraction in the bulk is ¢,
{in the text this quantity is indicated as ¢f ). In Figure 1A the regions with different
scaling laws for the thickness H of the grafted layer are shown. In Figure 1B the
boundaries are given between regions with different scaling laws for A; (the
penetration length of free polymer penetrating into the grafted layer) and A4 (the
penetration length of grafted polymer penetrating inte the bulk solution).

For high grafting densities as well as for low degrees of polymerization of the
free polymer we are in region 1, which may be called the regime of "brush
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dominance".?2 The brush thickness scales exactly the same as in a pure low-
molacular weight solvent:

H~Ngo¥? (8)

Regions 2 and 3 may be called the regimes of "solution dominance". In region 2 the
free polymer is excluded from the brush, which is compressed by the ocsmotic
pressure of the surrounding solution, leading to the follewing scaling behaviour of
the brush height:

H~Ngo /4P (@)

in region 3 free polymer penetrates into the brush and screens interactions
between grafted polymer segments. This screening can be described by
introducing an effective virial coefficient for pair interactions bstween these
segments, Vqf = (Nf¢fb)_1 < 1, so that the brush thickness scales as

]—1/3 (10)

H ~ veit*Nga¥® = Ngo V3(Niof
Equations 8-10 can be derived by expanding the expression for H given ineq 7.
In regions 4, 5, and 6 the grafting density is so low that the grafted chains are either
nonoverlapping, or only slightly overlapping (for c:r>Ng'1 in region 6). For small
values of N; {region 4, where Nf¢? < 1) the free polymer has a negligible effect and
the grafted chains essentially behave as isolated coils:

H~ N5 {(11)

For larger values of N¢ (Nf¢fb >1) the effect of the free polymer chains can again be
accounted for by introducing an effective viriat coefficient, vgy = (qu)?) , 80 that

I

H - v ®Ng™5 = Ng¥/5(No? (12)

For Ng >Ng1f'2 /¢? (region 6) the grafted chains can be described as Gaussian
coils:

H~Ng¥2 (13)
It is interesting to note that for grafting densities Ny~ < o < ¢PNg~"2 addition of free
polymer to a polymer brush immersed in pure solvent can change the scaling

dependence of the brush height from that of a strongly stretched polymer (H ~Ny)
to that of a Gaussian coil (H~Ng1f'2). The boundaries of the regions shown in
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Figure 1A can be directly found by equating the scaling dependencies on both
sides of these boundaries.

Up to now we have only considered the overall brush height. A further important
parameter is the degree in which the free and grafted layers interpenetrate. Let A¢
be the penetration length of the free polymer into the brush and Aq the penetration
length of the grafted polymer into the solution. It has previously been shown#10 that
for grafted polymer chains that are strongly stretched, the latter interpenetration
length scales as

Ag ~NZ3H V3 (14)

This scaling relationship has a wide applicability. It is valid both for compressed
and non-compressed brushes, for good and bad solvents, as well as for brushes
immersed in a melt. One expects this scaling law to describe the degree of
penetration Ag of the grafted chains into the polymer solution in all three regions of
Figure 1A {regions 1, 2, and 3) where the grafted chains are strongly stretched.

The behaviour of the free polymer chains is more complicated. When Ny is large
only a fraction of the segments of a free chain penetrate into the brush. These
segments expatience the parabolic potential profile u{z) of the brush,

u(z) = K3(H? - 22) (15)

with K defined below eq 6. If n segments of the free polymer chain penetrate into
the brush up to a distance As from the outer boundary of the brush, then the free
energy increases with an amount:

H 3

u(z)[—]dz = Ai fuz)oz = nKk2HA = oL (16)

- Ay z fH-A £'Ng

Ak
kT H
The last equality in eq 16 takes inte account that the free polymer chains are not

stretched, so that Af2 =n¢?, Balancing AF with the thermal energy (~kT), one
obtains

A ~ N3 V3 (17)
This scaling dependence holds when n=A#2/® <N;, or H>NG2N2. For
smaller values of Ny whole melecules of the free polymer penetrate into the brush.

The increase in free energy due to the presence of a free polymer in the brush at a
distance 2' from the grafting surface is:
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N2 TKz(HZ - 2)dz = KNy (R - 22) = DU (18)

¢ Z'—ngVz

5%

where A;=H-z and the free chains are again assumed to be Gaussian.
Balancing this expression with the thermal energy leads to another scaling law for
Ay

A ~ NN H (19)

This dependence should hold for ENgng'S/ 25H> ngNf‘V 2, When H< ENng‘Vz
the free polymer penetrates throughout the whole brush {A; = H}.

In Figure 1B the two dashed curves give the boundaries between the areas
where A; follows the various scaling laws derived above. To the right of the curve
with the short dashes A equals Aq and scales as Ngz” 3HY3, For 6 > ¢?3’{ 2 (i.e. for
systems in region 1 of the diagram of Figure 1A) this means that the penetration
lengths scale as NgV 3679, The volume fraction profiles of the grafted and free
chains are symmetrical around their intersection point. The free chains only partly
penetrate into the brush. Between both dashed curves whole molecules of the free
polymer penetrate into the brush, but A; < H. The free chains penetrate farther into
the brush than the grafted chains do into the solution, so that the volume fraction
profiles become asymmetrical. This asymmetry is even more pronounced left of the
curve with the long dashes, where the free chains penetrate throughout the whole
grafted layer: A; = H, while A, is still given by eq 14. In region 6, where the grafted
chains are no longer strongly stretched, Ap = Ag =H = #Ng"2.

Analytical theory for the interaction between two brushes

We now consider the case of two interacting brushes in a solution of mobile
polymer with a bulk volume fraction ¢?. Analytical expressions for the volume
fraction profiles and conformational free energy of a compressed brush were
obtained earlier.” Here we extend the results of ref 7 in order to calculate the free
energy of interaction of two brushes which are compressed against each other. We
take into account the redistribution of the free polymer during the compression. As
before, the interpenetration of the two opposite brushes is neglected. The
interacting brushes are considered as being compressed against an impermeable
surface which is situated in the middle of the two grafted layers.

The equilibrium amount of free polymer as a function of the degree of
compression was given in egqs 23 and 25 of ref 7. When the two brushes just do not
yet overlap (so that the interplate distance M¢ = 2H} the amount of free polymer,
8¢2H), in the system equals:
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24 D(KN¢2H)
B(2H)= L 1 20

{2H) o KNsz (20)
where H is given by eq 7. When the brushes are compressed we define a
compression ratio q as M¢/2H, which is smaller than unity for compressed brushes.
The amount of free polymer decreases when q decreases. Introducing the ratio
y = 0;(M)/0;(2H), we can write the following implicit equation for the amount of free
polymer:

(21)

N
g D0 KHq- o' —N;126bD(x)y |
D(ax) (1-#0)D()

where D(x) is again the Dawson integral, the normalized grafting density ¢' is
defined as o'= n(3/8)1/20, and x=N{¥2KM¢/2. The conformational free energy
A(M) of a brush compressed to a distance M¢ (< 2H) is given by eq 18 of ref 7:

M2 -1
AM) M MPKZ  28,M)e3s o0y LD
T = EE{ 2t oMo £ exp£2K2NpEdx | |+

(22)
Nya _ 26;(M)c e a2 X
1-— = - S (/2 -Ngo) gexp(t’ K:C)ax | |}
The interaction free energy as defined by eqs 2 and 4 is:

A = AM) - A(2H) + LmN_—f”") (8;(2H) - 8¢(M)) + (us - p;}[es(zH) —-085(M)) (23)

After some rearrangements the final result becomes

Afﬁﬁ'f”) - —"*c,fgz{ %(KH)3(1—Cla]—(KH)zcr'(1—q2)+
b
%‘S;) [y1n{yepDED(@)) ) - | +(KHa- o -yapDLON¥2) (24)

In[(KHq ~g _y¢$D(x)N;1/2](D(KHq))‘1] - (1 - P )D(KH)ln(1 - ¢$) } +

2H
of

{ (1~ a)In{1- 8P )+ 6 (1 YNg))+ (1-y)x DOYN T IngP —nf1- 9P )+ N1 1) }

This equation is only valid for relatively short mobile chains, since it does not take
into account the loss in conformational free energy of the chains in the gap
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between the two brushes. For long mobile chains this should explicitly be taken
into account.

5.3 Results

Grafted chains inh a polymer solution

All lattice model results that are presented in this section were computed using
a cubic lattice. Figure 2 shows volume fraction profiles of polymer brushes that are
immersed in a polymer solution, calculated both with the analytical theory (eqs 6
and 7) and the lattice model. The chain length Ny of the mobile polymer is 10
segments and the lattice calculations (solid curves) have been made for grafted
polymer chain lengths Ng of 50, 200, and 600. According to eq 7 H~Nj, so that the
volume fraction profiles given by eq 6 (dashed curves) are independent of Ny if
they are plotted as a function of the reduced distance z/H. The longer the grafted
chain length, the better the agreement with the analytical equations. For shorter
grafted chain lengths the profile of the grafted component shows a clear "foot"
protruding into the solution. The shorter chains also show a clear depletion zone
near the surface, which is absent in the analytical model. These features are
completely analogous to the situation where the brush is immersed in a one-
component low molecular weight solvent. The system of Figure 2 belongs to region
1 of the phase diagram of Figure 1A. The volume fraction profiles of the free and
grafted chains are asymmetric around their intersection point. This is especially
clear for high Ng. Whole molecules of the free component (which are only 10
segments long) move into the brush, but they do not penetrate farther than
approximately 50% of the brush height.

In Figure 3 the analytical model is compared with the lattice calcutations for
systems in regions 1 {6=0.1), 2 (6=0.02), and 3 (c=0.004) of the phase
diagram. The bulk volume fraction of free polymer has a value of 0.1 in all cases. In
each case the results are shown for a small free polymer (N; = 30, which is 5% of
the chain length of the grafted polymer), and for a larger free polymer (N; = 300,
which is half the grafted chain length). In the derivation of eq 6 it was assumed that
Ny << Ng. Indeed, for all three grafting densities shown in Figure 3 the curves for
N; = 30 show better agreement between the lattice calculations and eq 6 than do
the curves for Ny = 300. For N; = 30 the brush thickness H is described well by
eq 7. The penetration length Ay decreases with increasing H and is approximately
given by eq 14. The free polymer penetrates the brush over a length As which
exceeds Ay and becomes equal to H for low grafting densities; these trends agree
well with the scaling relations given in Figure 1B.
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Figure 2 Volume fraction profiles of brushes immersed in a solution of short
mobile polymers with chain length N; =10. The volume fractions of both grafted
and free chains are given as a function of the reduced distance z/H to the grafting
surface. The layer height H has been calculated using eq 7. The dashed curves
give ¢g and ¢; as predicted by eq 6 (these curves do not depend upon Ng as
H ~Ng). The solid curves follow from lattice model calculations. Further parameters:
Ng = 50, 200, and 600; 6=0.1; 6f =0.1.

The analytical volume fraction profiles of the grafted component deviate slightly
from the lattice calculations at the surface and at the periphery of the layer. These
are well known effects that are also seen with brushes immersed in a one-
component low molecular weight solvent. The presence of the surface leads to a
narrow depletion layer for the grafted polymer, and because of their finite chain
length some chains stretch farther away from the surface than they should
according to eq 6. For Ny = 300 eq 7 still gives a good estimate of the brush
height, but it predicts a far toe sharp boundary of the grafted and free polymer
layers. Especially for the higher grafting densities this effect is very pronounced. It
is caused by the very approximate way in which the translational entropy of the
mobile chains is accounted for in the derivation of eq 6.

If a full description is wanted of the system consisting of grafted polymer
immersed in a solution of relatively long free polymer chains, one must combine eq
7 with the scaling dependencies of the penetration lengths Ar and A,. These were
given in the previous section {egs 14-19). In Figure 3 the laitice curves for Ny = 30
are asymmetric around the intersection point of the two profiles. This is in
agreement with the prediction for the region left of the curve with the short dashes
in Figure 1B. For Ny =300 one moves info the symmestrical region, so that
Ag = Ag. The scaling dependence of A on Ny, Ng, and H is shown in Figures 4 and
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5. In all cases the penetration length has (arbitrarily) been defined as the distance
over which ¢¢(z) falls from q)g{z) (i.e. the volume fraction at the intersection point of
both profiles}) to half this value. The systems which correspond to the data points of
Figure 4 are described in table 1A. They all belong the symmetric area of the phase
diagram. The penetration fength A; indeed scales as N92/3H‘1f'3, as predicted by eq
17. Table 1B gives the systems that are shown in Figure 5. These belong to the
asymmetric area of the phase diagram. In this case the penetration length A; scales
as Ny (NiH)™, as expected from eq 19.

0.12
b
0.08

0.04

0 1 L L
0 100 20 0 100 200 Z

Figure 3 Volume fraction profiles of brushes immersed in solutions of relatively
short (N;=30) and relatively long (N;=300) mobile polymers. The dashed
curves follow from eq & and the solid curves are lattice calculations. In all cases
Ng =600 and ¢'f° =0.1. The grafting density and free chain length are indicated in
the graphs.
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Figure 4 The penetration length A; of free polymer into the brush as a function of
grafted chain length Ng, and brush height H. The systems presented in this Figure
belong to the "symmetric area” of Figure 1B. The data of these systems are given in
table 1.
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Figure 5 The same as Figure 4 for systems that are in the "asymmetric area" of
Figure 1B. The data of these systems are given in table 2.

So far, we have considered grafted polymer chains that are strongly stretched
(H~Ng, regions 1, 2, and 3 of the phase diagram). When & < ¢?Ng‘1/2, an increase
of the chain length of the mobile polymer leads to a transition of the grafted chains
from a strongly stretched (H~Ng) to a Gaussian coil conformation (H~Ng1/2).
Equation 6, whose derivation was based upon the grafted chains being strongly
stretched, is then no longer valid. In Figure € lattice calculations are shown for
systems that are expected to show this Gaussian coil behaviour. Only the volume
fractions of the grafted component are shown. Reduced coordinates have been
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used to clearly demonstrate the scaling behaviour of the grafted polymer chains.
One can conclude from Figure 6 that H indeed scales as NgVZ_ However, the
volume fraction profiles themselves do not precisely obey this scaling relationship:

the scaled profiles do not exactly collapse onto one master curve.

Table 1A

Ng ] N ¢? Nng' 3-ve Af

100 0.5 200 0.1 52029 0.99538
300 0.1 200 0.1 8.7143 1.7501
300 0.5 200 0.5 9.7201 1.9633
300 0.1 200 01 9.6549 1.9923
300 0.5 200 0.5 11.713 2.5159
600 0.1 6000 0.1 12.205 2.3393
600 0.1 200 01 12.226 2.6399
600 0.1 600 05 14.758 2.9248
600 0.1 200 05 14.802 3.4746
600 0.01 600 0.1 18.171 4.0375
Table 1B

Ng o Ny of Ng? /NH Ag

200 0.1 50 0.1 12.054 2.3500
200 0.1 50 01 18.250 2.9801
400 0.1 50 0.1 24.446 3.5590
200 0.25 10 0.1 40.374 4.4948
200 0.1 10 0.1 61.696 6.9966
300 0.1 10 0.1 93.175 9.8712
400 0.1 10 0.1 124.64 12.986
300 0.1 10 0.5 149.00 16.394
400 0.1 10 0.5 198.61 21.709
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Figure 6 Volume fraction profiles of systems in region & of Figure 1. Only the
grafted chains are shown. All curves are lattice calculations. The reduced distance
to the grafting surface zNgy ~¥2 is used as the abscissa to check the relationship
H~Ngy V2 The reduced vofume fraction ¢/(oNg ¥2) is used as the ordinate, so that
the areas under all curves are equal. In all cases ¢f =05 and N;=500. The
values of ¢ and Ng are shown in the Figure.

Interaction between two brushes in pure solvent

Figure 7 shows interaction curves for the compression of two polymer brushes
in a pure solvent (no free polymer present). The solid curve is the analytical
prediction of eq 24, where in this case all terms centaining ¢'f° and y vanish. The
other curves were obtained from the lattice model for Ng = 50, 200, and 600. The
insets show the interaction on a semi-logarithmic scale. Equation 24 predicts that
Ai”t(q) ~Ngy. For long chains the lattice calculations approach the prediction of eq
24. The agreement also becomes better for larger grafting densities (see Figure
7B). These trends are the same as those found when comparing volume fraction
profiles of non-compressed brushes. For small compressions (q= 1) relatively large
deviations remain between the lattice calculations and the strong-stretching model,
even for long chain lengths. This is most clearly seen from the curves drawn on a
semi-logarithmic scale. Here only the outer most part of the brush is being
compressed. In this case the exponential decay ("foot") of the profile, predicted by
the lattice model, has a relatively strong effect on the interaction curve. This causes
the interaction free energy to have a finite positive value for values of g larger than
unity.

in Figure 8 volume fraction profiles calculated from the lattice model are given
for Ny =600 and ¢ = 0.01. The profiles of the brushes on both surfaces are
drawn individually for three interplate distances: M =200 (g =1.03), M =50
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(g =0.26), and M =20 (q=0.10). In Figure 8A (q = 1.03) the brushes just start
to interact with each other. Although gq > 1, so that according to the "classical"
prediction of eq 24 there should not yet be any interaction, the tips of both profiles
do already slightly overlap, giving rise to a finite free energy of interaction, which is
neglected in the analytical theory.

analytical
= N_= 600
ﬁ ---N=200
ue — —nN’=50
2 g
E
g
0.0005
0.00025
0
’
0.01
v
|
zc»
<
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Figure 7 Interaction curves between two brushes in the absence of free polymer.
The lattice calculations for Ny = 600, 200, and 50 are compared with eq 24 {solid
curve). Grafting density: ¢ = 0.001 (A), 0.01 (B). The insets show the interaction
free energies on a semi-logarithmic scale.

The analytical theory further neglects the fact that when two brushes are
compressed against each other, the chains attached to both surfaces will to a
certain extent interpenetrate. This can be clearly seen in parts B and C of Figure 8.
Decreasing the plate separation eventually leads to a complete overlap of both
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layers. Taking into account this interpenetration should lead to a slightly less
repulsive interaction.

Figure 8 Volume fraction profiles of two brushes that are compressed against
each other. Ny = 600; & = 0.01. The degrees of overlap are as follows: for
M=200 gq=1.03; for M=50 q=0.26; for M=20 gq=0.10.

In Figure 9 the effect of this interpenetration on the free energy of interaction is
quantified for a brush with a chain length of 200 segments and a grafting density of
0.01. The resulis of the lattice model are given for three different cases. The first is
the comprassion of two brushes on opposite surfaces (which is denoted in the
figure legend as "two brushes"). This is exactly the same system as shown in the
previous figures. In the second case a single brush (denoted as "one brush"} is
compressed by a bare surface (i.e. a surface bearting no grafted polymer); q is now
defined as M{/H. In this case there is no interpenetration, as the chains cannot
move through the surface by which they are compressed. Therefore one would
expect a better agreement with eq 24. However, the agreement is worse. Below we
explain the reason of this discrepancy. The curves denoted by "adsorbing chains”
in Figure 9 have been calculated for the same system as that denoted by "one
brush", but now the segments of the polymer have a small attractive interaction with
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the bare surface. The value of this attraction can be described by the adsorption
energy s as defined by Silberberg.'! We have chosen x4 = —In(5/6), which is the
critical adsorption energy of an infinitely long polymer chain on a cubic lattice.

eq 24
........... adsorbing chains
—-~ —one brush
1 \ — — — two brushes
l T
S b ]
£ : I N\ -
2 ‘\\ L \\ 1
05+ W os] \‘ N 1]
) Ny
W Y
N\ ? ! ?
. =™
0
0 05 q !

Figure 9 Interaction curves between two brushes and between a brush and a
wall. Parameters: Ny = 200; ¢ = 0.01. The solid curve is calculated using eq 24.
The curve "two brushes" is the free energy of interaction when two similar brushes
are compressed against each other; in this case the chains in both brushes can
interpenstrate. The "one brush" curve gives the free energy of interaction of a
single brush which is compressed by a hard impenetrable surface. The "adsorbing
chains" curve is calculated for the same system, but in this case the grafted polymer
chains have a small adsorption energy for the surface which compresses them.

For all three cases of Figure 9 the lattice calculations give a more repulsive
interaction than that predicted by the analytical theory. At any separation the
compression of a brush by a bare surface is more repulsive than the similar
compression by another brush. The difference between these two systems is not,
however, solely due to the interpenetration that occurs between the two brushes.
The bare surface also imposes entropical restrictions on the conformations of the
grafted polymer chains. This unfavourable entropical interaction is compensated
when there is an attractive interaction of the segments with the surface, as is the
case for the curves denoted by "adsorbing chains". The "adsorbing chain" curve
and the curve for "two brushes" virtually coincide, except for very small
compressions {q > 1}. When the outermost paris of two brushes start to overlap,
the interpenetration of the chains leads to a decrease in the repulsive interaction.
For g < 1 this effect has become negligible.
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At high compressions the two layers very strongly overlap. Nevertheless, for
small values of q the analytical equations for the free energy of interaction (where
this overlap is neglected) agree very well with the lattice calculations. In this region
the osmotic pressure forms the major contribution to the free energy, so that the
exact shape of the volume fraction profile becomes less important.

x=0 6=001 N=1000
x=00=0.1 N=500

% =0 ¢ =0.005 N=2000
%=05 6=0.01 N=1000
x=0.5 o=0.1 N=500
x =05 ¢=0.005 N =2000 e |

10

P+XoOO

0 20 p2oy-s 40
]

Figure 10 Distance of interpenetration A, when two equal brushes are
compressed against each other. M is the distance between both grafting surfaces,
expressed in number of |attice layers. This figure checks the scaling dependence
predicted by eq 14. The solvent qualities, grafting densities, and chain lengths for
the various sets of data points are given in the legend.

In Figure 10 the amount of interpenetration is plotted for six different systems.
The interpenetration length A has been defined as the distance from the mid-plane
to the plane where the penetrating chains have a volume fraction equal to half their
volume fraction in the middle. The parameter A is expected to scale as Ny M3,
analogous to the scaling relation given in eq 14 for the interpenetration distance Ag
of a brush into a polymer solution.® We may indeed conclude from Figure 10 that
A~ NQZ/ SmY3, irrespective of chain length, grafting density and solvency (y = 0:
good solvent; ¢ = 0.5: ®-solvent). For small values of M the data of all six systems
obey this scaling relationship rather accurately. Of course, it is to be expected that
for larger values of M deviations occur. In these cases the calculated points do not
li¢ on the master curve. When M becomes twice the brush height there cannot be
any interpenetration at all.

116




Interaction between two brushes immersed in a polymer solution

A™LKT
T

10®

Figure 11 Interaction curves of two brushes in a polymer solution for various
chain lengths of free polymer: Ny =10 (A), 50 (B), 200 (C), and 600 (D). Other
parameters: Ng =600; o =0.071; ¢? =0.1. The inset shows the data for Ny = 10
on a linear scale. All other graphs are on semi-logarithmic scale.

Figure 11 shows interaction curves of brushes in a polymer solution. An
important parameter in the calculation of AinY{q) is the amount of mobile polymer,
8¢{M), between the plates when they are at an arbitrary separation M. Figure 12
shows the relative amount of free polymer in the system, y=84(q)/6¢{q=1), for
Ng =600, ¢ =0.01, and N; = 10 and 50. There is excellent agreement between
the lattice model and the prediction of eq 21 for the amount of free polymer
expelled from the gap betwsen the brushes.

In all cases of Figure 11, for large compressions (g < 0.5) the analytical
ecuations agree very well with the laftice calculations. The inset for Ny = 10 shows
the interaction curve on a linear scale. Plotted on this scale the figure shows that
over the whole range of g eq 24 predicts the interaction very well when free
polymer chains are present in the system. For the other values of N; (50, 200, and
600} a iinear plot {not shown) disptays the same agreement between the two
models. To study the interaction at q = 1 it is more convenient to plot the free
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energy of interaction on a logarithmic scale, as is done in Figure 11 for all four
values of N;. The laftice calculations predict a more repulsive interaction for small
compressions, which is due to the "foot" in the volume fraction profile. This is similar
to the case for a polymer brush in a pure solvent. The contribution of the foot turns
out to depend on the free chain length. For Ny = 50 or 200 it shows up for slightly
larger values of g than it does for Ny = 10, but for Ny = 600 the contribution of the
foot seems to become less important.
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Figure 12 The fraction of free polymer remaining between two brushes when
these are compressed for two values of N;. Other parameters: Ny = 600;
o = 0.01; ¢$ =0.1. The dashed curves are calculated using eq 21, and the solid
curves are the lattice model predictions.

However, for high N; the situation is more complicated, as is shown in Figure
13. Increasing the chain length of the mobile polymer leads to an attractive
minimum in the interaction curve for > 1. For Ny = 600 (= Ng) this starts to
have an important effect on the total interaction free energy for small compressions.
Van Lent ot al.12 extensively studied this attraction between polymer brushes in a
polymeric solution. It is an effect that has also been found experimentally and can
be easily understood for the limiting case when there is ho grafted polymer (i.e.
¢ =0). Due to the depletion of free polymer in the vicinity of the surfaces an
attractive osmotic force appears. Some experimental results indicate that this
attraction can also exist when the surfaces are covered by a grafted layer (see, for
example, ref 13 and the references given therein). Van Lent et al. showed that such
an attraction is predicted by the SCF lattice theory. However, they only considered
systems for which Ny = Ng. For all values of ¢? an increase of N; then leads o a
deeper attractive minimum in the interaction curve. In contrast with the situation that
no grafted polymer is present, this attraction was shown to be an entropic effect
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caused by the grafted chains themselves and not directly by the free polymer. The
grafted chains mix more easily with chains from the other grafted layer than with the

free polymer coils.

10107

AL

-5.010°
100 120 140 v 160

4010*

A"KTL

—-4010*

500

390 400 410y 420

Figure 13 Effect of the chain length of the mobile polymer on the interaction
curves near the onset of interaction (q around 1). For large values of N; an
attractive minimum appears. Grafting density: ¢ =0.01 (A), and o = 0.1 (B). Other
parameters: Ng = 600; ¢? =0.1.

Figure 13 shows that in order to find an attractive minimum the free polymer
must exceed a certain minimum chain length. Increasing the grafting density
decreases this minimum value of Ni. For example, when Nf= 400 there is no
attractive minimum if o = 0.01 (Figure 13A) but for the higher grafting density
¢ = 0.1 such a minimum does occur (Figure 13B). In Figure 13 for any q the
repulsion is larger for shorter Ny. Furthermore, the minimum shifts to a smaller plate
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separation when Ny is increased. In Figure 11 this trend was not found for the
dependency of the repulsion on N;. This can be explained by the fact that in Figure
11 the free energy of interaction is given as a function of the relative compression
g, whereas in Figure 13 it is given as a function of the plate separation M. The
brush height itself depends on N;, which explains the apparent non-mgnotonic
dependency of the repulsion on N; found in Figure 11.
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—0.001
0 0.05 s 01

Figure 14 Depth of the minimum in the interaction curve as a function of the
grafting density. Parameters: Ng = 600; ¢? =0.1; the values of N; are indicated in
the Figure.

It would be useful to interpret these resuits using the diagram of state of Figure
1. We find that for strongly stretched chains the attraction only occurs when the
grafted and free polymer profiles are symmetric around thseir intersection point
{region 1 for high Nf}). However, this symmetry condition is not sufficient for
attraction to occur. If it were, then in Figure 13 there should be an attraction for
N > Ngz/sc—afg when ¢ > ¢?3 2 (i.e. Nt > 119 when ¢ = 0.1). The minimum value
of N¢ turns out to be larger than this. For a system in which there is an attractive
minimum, the depth of this minimum depends on the grafting density. This is shown
in Figure 14, where the value of the attractive minimum is given as a function of o.
This is done for a constant grafted chain length (N, = 600} and five different free
chain lengths. For small N; the attraction disappears completely below a certain
grafting density, Only at extremely low densities does it then reappear again. This
is difficult to see in the figure because the curves practically coincide with the left
ordinate axis. That the attraction must reappear at low coverages is obvious, as for
o =0 one recovers the depletion attraction of two surfaces without grafted layers.
Howaver, Figure 14 shows that increasing the grafting density from zero to just a
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very low value (o < Ng‘1) already makes the attraction disappear. The grafted
chains then still have unstretched conformations. This corresponds with the bottom
part of Figure 1A.

4 Discussion and Conclusions

In this paper we have explored the applicability of the strong chain stretching
approach to give an SCF description of end-grafted polymer layers that either
interact with each other or with free polymer in solution. This approach has
previously been shown to agree very well with more exact lattice calculations in
describing isolated {i.e. noninteracting) grafted layers. In this case significant
deviations occur only very close to the surface (depletion effect) and at the
periphery of the grafted layer {(exponential decay of the volume fraction profile). For
long enough polymer chains these deviations are negligible but for short chain
lengths they may become important.

Our lattice calculations indeed show that the onset of interaction between two
brushes is situated at a larger distance than twice the "strong-stretching brush
height" (for which we defined the reduced surface separation q to be unity). For
Ng =50 and ¢ =0.01, representative for the adsorption of a short block
copolymer, there is already a free energy of interaction of the order of 1073 kT per
lattice site for g = 1.25. Assuming a lattice spacing £ of the order of 1 nm, this is an
interaction that should be just within the detection limit of the surface force
apparatus. In this context it is interasting to note that Milner'4 mads a quantitative
comparison between experimental force-distance data and strong chain stretching
SCF equations. Only at large separations did he find the theoretical repulsion to be
significantly lower than the experimental data. Although he prefered to explain this
discrepancy by a polydispersity argument, our calculations suggest that it may also
be explained by the approximate character of the strong-stretching theory, and
would even occur for completely monodisperse brushes. In Figure 7 one can also
see that even for long chain lengths (Ng =600) and large compressions
{g < 0.25) there is still a small difference between the lattice calculations and eq
24. This may be caused by the depletion zone next to the surface, which is still
present for small values of M {see Figure 8).

When two polymer brushes are compressed against each other the distance A
over which chains penetrate into the opposite layer scales as NgzmM“f3 (Figure
10}. This interdigitation has, however, hardly any effect on the normal force
between both layers. But that does not necessarily mean that the overlap of both
grafted layers is of no consequence whatsoever. When the polymer brushes are
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compressed and subsequently a lateral (shearing) force is applied, the overlap of
-both layers will probably significantly influence the interaction. In principle, this can
be investigated using the apparatus of Klein ef a/.,!% which measures both normal
and lateral forces.

When polymer is added to the solution in which a polymer brush is immersed,
the grafted layer is compressed. The resulting volume fraction profiles of the grafted
and free components are given by eq 6. For short free chain lengths this equation
gives as good a description of the profiles as the strong-stretching theory does for
brushes immersed in a one-component low molecular weight solvent. For longer
free chain lengths the overlap area of the grafted and free components is described
poorly. However, as far as only the brush height is concemed, eq 7 still agrees very
well with the lattice calculations.

A new feature we have added to the system of grafted plus free polymer is the
penetration lengths of both components into the opposite phase. Using simple
thermedynamic arguments we derived scaling laws for the two penetration lengths
in different parts of the diagram of states. These scaling laws were corroborated by
the lattice calculations. In principle, it is possible to determine the volume fraction
profiles of the grafted and free chains individually in a neutron reflectivity
experiment. By contrast-matching one of the two components with the sclvent, only
the other component is detected. Thus the interpenetration of both layers might be
checked experimentally. As far as we know this has not yet been done.

When free polymer is present in the solution, eq 24 can be used for the free
energy of interaction between two brushes (this equation predicts a purely
repulsive interaction). Only when the free polymer chain length exceeds a critical
value (which depends upen the grafting density and grafted polymer chain length)
does the interaction profile which is obtained from the lattice model acquire a
qualitatively new feature: for g = 1 an attractive minimum appears. it is not possibie
to explain this in terms of the diagram of state in Figure 1. The minimum is deepest
when ¢ =0 (i.e. for hard surfaces). For relatively short chain lengths (N <Ng)
even a very small amount of grafted polymer already causes the attraction to
disappear. It should be possible to verify this prediction experimentally. Practical
applications are perhaps possible in systems where depletion attraction
undesirably Jeads to flocculation.
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chapter 6

Multiblock Copolymers and Colloidal Stability

Abstract

Block copolymers that have both adsorbing and nonadsorbing blocks can be
used to stabilize colloidal dispersions. However, they can also induce an attraction
between two particles by forming bridges between the surfaces. In this chapter we
investigate when such an attraction occurs and how its magnitude depends on the
relevant system parameters. Most attention is paid to end-adsorbed triblock (A-B-A)
copolymers and a few calculations are presented for polymers consisting of a larger
number of blocks ((A-B),-A with n > 1). Adsorbed layers of triblock copolymers with
identical adsorbing groups always cause an attractive part in the two particle
interaction curves. Adsorbed layers of muliiblock (n > 1} copolymers with long blocks
behave similar to triblock copolymers. When their blocks become very short, these
multiblock copolymers resemble homopolymers whose interaction parameters have
some average value of those for both types of blocks.
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6.1 Introduction

Colloidal dispersions can be sterically stabilized by diblock copolymers. These
polymers must contain an adsorbing block (anchor, A) and a block that dissolves in
the solution (buoy, B}, forming a protective layer. The interaction between two such
adsorbed diblock copolymer layers has been studied extensively, both from an
experimental and a theoretical point of view, over the past few years (see, for
exampie, refs 1-4).

Adsorbed diblock copolymer layers give a purely repulsive interaction when the
solvent is a good solvent for the B block. This interaction can be modelled by
considering two terminally grafted polymer layers (polymer brushes), which can be
fully described using the "classical" parabolic potential profile approximation.%5
Calculated interaction free energies have been fitted® to match experimental data. In
this approach the grafting density (adsorbed amount of polymer) is an input
parameter. In this respect the block copolymer adsorption theory of Evers et al4 is
more advanced as the chemical potential of individual chains is explicitly accounted
for, so that one can consider the equilibrium between the polymer layer and the bulk
solution. Evers et al. predicted that the adsorbed amount of a diblock copolymer
depends strongly on its composition {ratio between the A and B block lengths). As
long as the solvent is a good solvent for the B block, the free energy of interaction
between two adsorbed polymer layers is purely repulsive. At the theta paint of the B
block an attraction starts to appear in the free energy of interaction.

- In this chapter we study the interaction between two adsorbed multiblock
copolymer layers. The emphasis will be on triblock copolymers, although in section 5
we will pay some attention to polymers consisting of a larger number of blocks. The
triblock copolymers have a central buoy biock {B) and two anchoring blocks (A).
When both these end blocks are adsorbed to the same surface, so that the polymer
chain forms a large loop with the buoy block protruding into the solution, one
intuitively sxpects the two adsorbed layers to repel each other in much the same
way as two diblock copolymer layers. Such repulsive interaction has in fact been
determined experimentally.” However, one can also envisage the situation that the
triblock copolymer forms a bridge between both surfaces, with the two A blocks of
one polymer chain adsorbed to different surfaces. This bridge formation will
influence the interaction force and may lead to an attraction between the surfaces.

In this chapter we investigate the interaction between two adsorbed A-B-A
polymer layers in a nonselective athermal solvent, using the statistical
thermodynamic lattice theory of Evers et al.%8 This is a seif-consistent mean-field
model which involves the generation of all possible conformations of the polymer
chains on a lattice betwsen two flat surfaces. Each conformation is weighted by its
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Boltzmann factor to find the contribution of this conformation to the overall
equilibrium distribution. The lattice layers are numbered z =1, 2, 3, ..., M from one
surface to the other, and each lattice layer consists of L lattice sites. A lattice site
accommodates either a polymer segment or a solvent molecule. Nearest-neighbour
interactions between two species p and q are accounted for by the Flory-Huggins
parameter 3pq The symbols p and q denote sither a polymer segment (A or B}, a
solvent molecule {O), or a molecule of the adsorbent (S). All results were computed
using a simple cubic lattice, where every lattice site has six neighbours, of which a
fraction X, =1/6 is in each of the adjacent layers. More information on the theory,
which is taken from ref 4, is given in the appendix.

The central question in this chapter is how relevant parameters, such as the
relative blocks lengths and the adsorption energy parameter g of the A segments
influence the free energy of interaction. This problem can be divided into two parts.
First, one needs to know how these parameters influence the adsorption at an
isolated surface. Second, one must determine the interaction between two adsarbed
layers. Adsorbed diblock copolymers form adsorbed layers which can be well
described by an end-grafted B-layer (polymer brush}. The density of such a brush is
given by the adsorbed amount, which depends strongly on the composition of the
polymer chain. An adsorbed triblock copolymer layer can be seen as a modified
polymer brush with adsorbing "stickers” at the free ends of the polymer chains.
Milner and Witten® have developed a theory for the interaction between two such
grafted telechelic polymer layers. In section 3 we compare our lattice computations
for grafted telechelic polymer layers with their predictions. We combine these
computations with an investigation of the adsorbed amount (grafting density) as a
function of chain composition and segmental adsorption energy. Thus we provide a
full picture of the behaviour of adsorbed triblock copolymer layers under good
solvency conditions for the buoy block.

In secticn 4 we consider riblock copolymers whose buoy and anchor blocks have
an equal affinity for the surface but a different interaction with the solvent (which
leads to homopolymer-like behaviour). This kind of polymers is important in many
practical systems. The interaction curves of such molecules depend critically on the
difference between the interactions of both blocks with the solvent. In section 5 we
pay some attention to the interaction curves of copolymers consisting of a larger
(> 3) number of blocks. In industrial and technological applications copolymers
nearly always consist of a large number of (polydisperse and ill-defined) blocks. Our
calculations are a first step towards a better understanding of the interfacial physics
of such complicated systems. Many (bio-)macromolecules, for example proteins,
may be considered as multiblock copolymers.
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6.2 Polymer brushes with stickers

We consider the interaction between two polymeric brushes, formed by attaching
{grafting) one end of a polymer to a surface. The other end of the polymer has an
adsorbing A group. Milner and Witten® have also studied this system. They argue
that when the surfaces are far apart the grafted chains form loops. When the
surfaces are brought together the polymer chains can exist in two distinet classes of
conformations. Either the sticker group adsorbs onto the grafting surface (so that the
chain still forms a large loop), or it adsorbs onto the opposite surface (leading to a
bridging conformation). As the affinity of the A group for both surfaces is taken to be
equal, the adsorption energy of the A block should not have any effect on the
interaction free energy. An attractive and purely entropical contribution to the
interaction free energy arises because of the possibility of a chain to form a bridging
conformation. This bridging effect is important when the surface separation is of the
order of twice the brush height h or less.

0.01
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Figure 1 Free energy of interaction of a grafted BgpA¢ layer with grafting density
o = 0.01. The location of the first B segment is fixed in the first layer (adjacent to the
surface). The various curves are for different values of 4 g as indicated in the figure.
All other 4 parameters (between A and B segments, between A and solvent,
between B and solvent, between B and the surface, and between solvent and the
surface) are taken to be zero. The free energy is expressed in units of KT per surface
site. The number of lattice layers M gives the distance between both surfaces.

Figure 1 shows the free energy of interaction for grafted layers of ByypA4, where
the first B segment is grafted to the surface with a grafting density o = 0.01. The
grafting density is defined as the number of chains per surface site. The Flory-
Huggins 3 ag parameter between segment A and the surface, which determines the
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adsorption energy of an A segment, has a large influence on the interaction between
the grafted layers. For gag = 0 (not shown in Figure 1) one has the familiar, purely
repulsive interaction between two homopolymer brushes. When yag becomes more
negative this interaction becomes less repulsive and even shows an attractive
minimum for highly negative values of % 55. Above a certain critical value the
interaction does no fonger depend on xas.
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Figure 2 Volume fraction profiles of the B segments of the grafted ByggA+ layers
of Figure 1. These are profiles of the isolated layer, that is, when the surfaces are far
apart (noninteracting}. The adsorption strengths of the A segments (xag) are
indicated.

In Figure 2 volume fractions of the isolated layer are shown for different values of
xas. The curve for xag =—10 still virtually coincides with the curve for x5 = 0. But
for xag = —50 one sees that the layer is far less extended. A significant fraction of the
A segments are now adsorbed to the grafting surface.

Figurs 3 shows how the interplate distance affects the distribution of the A
segments between the two surfaces. An A segment can either be adsorbed to the
grafting surface (loop conformation), to the opposite surface {bridging conformation),
or it may dangle somewhere in between (as a free, i.e. nonadsorbed, segment). The
figure shows the fraction of A segments in loops, bridges, and free ends. When the
adsorption energy is small (Figure 3A) and the surface separation is large, most
chains have their ends freely dangling in solution. Only a small fraction form loops.
This fraction is not high enough to have a considerable effect on the volume fraction
profile (compare the curves for yxag = 0 and —10 in Figure 2). When the surfaces
approach one another, the number of loop conformations increases and some
chains start to form bridges. This leads to an attractive energetic contribution to the
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free energy of interaction. For higher adsorption energies (Figure 3B) a larger portion
of chains form loops in the isolated layer. This gives a less extended polymer layer
{see Figure 2). Upon approach of the surfaces, bridges are formed at the expense of
both loop and "free chain end" conformations. The formation of bridges has both an
energetic and an entropic effact on the interaction free ensrgy.
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Figure 3 The fraction v of A segments in loops, bridges, and free ends, as a
function of the distance M between the surfaces, for the system of Figure 1. The four
curves are for different adsorption strengths, as indicated.

Comparing Figures 1 and 3 one sees that, once the segmental adsorption energy
of the stickers is large enough fo force all chains in the isolated layer to adopt a loop
conformation, the free energy of interaction becomes independent of the actual
value of the adsorption energy. For y a5 = —100 the interaction curve is the same as
that for xag = —200. When the surfaces are relatively far apart all chains form loops.
At this surface separation the B segments have a volume fraction profile comparable
to that of a grafted brush with chain length N = 50 and ¢ = 0.02 {(i.e. a chain length
that is twice as small and a grafting density that is twice as large). The difference in
free energy per surface site between such a brush and one with N =100 and
o = 0.01 is 0.033 kT. Because this is significantly smaller than the total adsorption
energy of a grafted ByggA¢ chain (which is A40%agkT) the chain is completely in a
loop conformation.
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When the surfaces approach one another an increasing number of loop
conformations change to bridging conformations, This has no effect on the total
energy of the system but it does change the entropy. This is the regime which Milner
and Witten consider in their paper.9 We will subsequently refer to it as the MW
regime. One can also reach this regime by increasing the length of the A block rather
than the adsomtion energy of the A segment. The total available adsorption energy
of a chain is just the product of the A block length Ny (number of segments in an A
block) and their segmental adsorption energy.
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Figure 4 Fres energy of interaction of grafted BygpA1 and BygoAqg layers. The
adsorption strengths of the A segments (xas) are indicated in the figure.

In an experiment it will probably be easier to increase the A block length than to
change the adsorption energy of the individual monomers. Howsever, increasing the
block length by a certain factor does not always have exactly the same effect as
increasing the segmental adsorption energy by the same factor. This can be seen in
Figure 4. In this figure interaction curves are shown for two BygpA¢ and for two
B1ooA4g layers. The grafted ByggAq layer with x5 = —50 has a total potential binding
energy per chain that is equal to that of a BygghA g brush with a5 = -5 (so that
Naxas = —50). Similarly, the grafted ByggA4 layer with xas =-200 has a total
potential binding energy per chain that is equal to that of a ByggA1g brush with
1as = —20. The BygpA4g chains must, however, have all their A segments in the first
layer to actually benefit from this total adsorption energy. As this is entropically less
favourable, the free energy of interaction is more repulsive for the ByggA o brush
with ¥ag =—5 than for the ByggA¢ brush with xag =—50. Only when Npaxas is
strongly negative {e.g. —200) does the interaction free energy curve of the B1gpA1g
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brush approach that of the By50A4 brush with the same adsorption energy per chain.
This situation corresponds again to the MW regime.
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Figure 5 Free energy of interaction for various telechelic polymer layers.
Diagrams A and B are for BoggA1g chains, C and D for Bqggofas chains. Grafting
densities and adsorption strengths of the A segments are indicated in the figure.

In Figure 5 interaction curves are shown for two chain lengths (with Ng = 200 and
1000, respectively) and two grafting densities (0.01 and 0.001). Again there is an
attractive region in the free energy of interaction when y 55 is sufficiently negative. At
o =0.001 and Ng = 200 (Figure 5A) an attraction occurs for Naxag = —200, whereas
at the same grafting density and Ng = 1000 (Figure 5C) a value of —250 is not
enough for attraction. Longer chains require stronger sticking energies for bridging
attraction to occur. The same trend is present at ¢ = 0.001 (parts B and D in Figure
5). Similarly, increasing the grafting density at constant Np alse requires strenger
sticking: Naxag = —100 at Ng = 200 is sufficient for attraction when ¢ = 0.001 (Figure
5B) but not when o = 0.01 (Figure 5A). The interaction curves in Figure 5 that have a
minimum are all in the MW regime.

Figure 6 shows values for the depth and location of the minimum in the
interaction free energy curve as a function of N (= Ng) and ¢. The minimum in the
interaction curve scales as 6¥3N~" (Figure 6A) as predicted by Milner and Witten.
Only for low grafting densities and very short chain lengths do significant deviations
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occur from this scaling law. Under these circumstances the brush profiles differ
considerably from their “classical" parabolic form. The minimum always occurs at a
surface separation d that is larger than the separation 2h at which both {parabolic)
brushes would just touch. The value of h has been calculated using the procedure
described in ref 10. Figure 6B suggests that the difference d-2h is proportional to
the isolated brush height h ~ No'/3. This is not in agreement with the argument of
Milner and Witten that d-2h =&, where & is a penetration length defined as
& =h(R/M*3, and R~ N¥2 is the radius of the (mean-field) chains in solution. This
should lead to the scaling dependency d—-2h ~ N¥3~¥9,
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Figure 6 The depth and location of the minimum in the interaction free energy for
systems in the MW regime. Diagram A gives these minima as a function of ch/N.
Diagram B shows the position of the minimum as a function of No¥3: d-2h is the
distance between the outer edges of two parabolic brushes.

6.3 Adsorbing triblock copolymers

The equilibrium adsorbed amount (8%) of a triblock copolymer depends on its
composition and the adsorption strength of the adsorbing segments in a similar
manner as that of a diblock copotymer.11 An illustration is given in Figure 7. This
figure shows the surface density o=ea/N, where N =500+2x, of adsorbing
A,BsaoAy chains for two different segmental adsorption energies of the A segments.
The surface density o is the adsorbed amount 82 (in equivalent monolayers) divided
by the chain length N. This definition is completely analogous to the grafting density
of a polymer brush. However, for a grafted layer o is an input parameter, whereas
here it follows from the equilibrium calculation. When the A block is very short the
adsorbed amount is small as the chains cannot gain enough adsorption energy.
Increasing the A block length leads to an increase in the adsorbed amount. Beyond
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a certain value of x, a further increase of the A-block size leads to a decrease of the
adsorbed amount: the long A-blocks then lie relatively flat on the surface, and leave
less space for other adsorbed chains.
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Figure 7 The normalized adsorbed amount o of A,BggpA, copolymers as a
function of the adsorbing A block length x. The surface density ¢ is the adsorbed
amount 82 (in equivalent monclayers) divided by the chain length N. Parameters:
bulk volume fraction ¢° =107%; xas =—15 and yag = —10; all other y parameters are
zero,

At the given segmental adsorption energies, the chains adsorb with both end
groups onto the surface for all values of x. This means that practically all chains
(> 99%) are in a "loop conformation”. On approach of two surfaces bearing such
adsorbed layers, the chains will be able to change from their loop conformation to a
bridging conformation (MW regime). One expects that this should lead to an
attractive minimum in the free energy of interaction. This is indeed the case, as can
be seen in Figure 8.

In this figure the free energy of interaction is given as a function of surface
separation for yag =—10 and an A block length of 10, 20, and 40 segments. For
x =10 and x = 20 the adsorbed amount is well below its maximum. For x = 40 the
adsorbed amount is roughly at its maximum value (see Figure 7). The solid curves
were calculated for chains that are in restricted equilibrium and the dashed curves
correspond to full equilibrium with the bulk solution (see appendix). The inset of
Figure 8 shows the same data on a different scale, so that the behaviour at high
compressions {small plate separation M) can be seen.

In all cases there is an attractive part in the interaction curves of Figure 8. For
x = 40 the minimum is deepest and is also situated at the largest surface separation.
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This is in full agreement with the dependence of this minimum on the grafting
{adsorption) density o that we found for telechelic brushes (see Figure 6). For x > 40
the depth of the minimum will again decrease because ¢ becomes smaller. For all
values of x the attraction has a purely entropical origin, and is caused by the
possibility of chains in a loop conformation to form bridges. A grafted polymer layer
with a grafting density equal to the adsorption density of the A,BgpoAy chains would
give the same attractive minimum if the grafted chains had a strongly adsorbing
sticker group (not shown in the figure).
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Figure 8 Interaction curves for adsorbed A,BggpA, layers for x = 10, 20, and 40
and yag =—10. The solid curves are for a constant amount of polymer in the system
(restricted equilibrium). This amount corresponds to the equilibrium adsorbed
amount at large surface separation for ¢b =10~%. The dashed curves were
calculated for a constant chemical potential of the polymer chains (full equilibrium).
The inset shows the same data on a larger scale.

The main conclusion of the calculations presented ih Figure 8 is that under full
and restricted equilibrium circumstances end-adsorbing triblock copolymers induce
an attraction between two surfaces. This has as a practical implication that such
polymers should be able to cause flocculation of a dispersion. However,
experimental data with the surface force apparatus do not support this hypothesis.
Dai and Toprakcioglu? used PEQO-PS-PEO triblock copolymers adsorbed from
toluene onto mica, and only found attraction between the mica surfaces when a bare
mica surface was compressed against a surface with an adsorbed polymer layer.
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After repeating a large number of comprassion and decompression cycles the
attraction disappeared, which they explained by assuming that the polymer was now
symmetrically divided over both surfaces with the PS blocks protruding into the
solution and causing the repulsion. The discrepancy between the experimental data
and the theoretical predictions might be caused by a small asymmetry in the polymer
molecule. If one of the adsorbing groups is larger than the other the attraction will be
decreased. This effect is discussed in more detail below. Furthermore, it is unlikely
that in the surface force experiment thermodynamic equilibrium is reached.
However, this does not necessarily mean that equilibrium can never be reached in
an experiment. A triblock copolymer stabilized coiloidal dispersion left to equilibrate
might well show aggregation.

The solid curves in Figure B were calculated for chains that are in restricted
equilibrium (the amount of polymer is held constant). In this figure the dashed curves
show results of calculations in which the chemicat potential of the polymer chains is
held constant (so that the amount of polymer in the system decreases as the
surfaces approach one another). Up to the minimum in the free energy curve there is
very little difference between the full equilibrium and the restricted equilibrium
interactions. Beyond this point, the repulsion is far less when the chemical potential
is kept constant (this is most clearly seen in the inset, which shows the free energy
of interaction on a much farger scale). In full equilibrium the system does, however,
remain repulsive. This has also been found for diblock copolymers4 but not for
homopolymers.12
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Figure 9 Interaction curves for Ayq,BsooA4o—y Polymers. Solid curves: restricted
equilibrium; dashed curves: full equilibrium. All further parameters as in Figure 8.
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Up to now we have only considered triblock copolymers which have equally sized
adsorbing groups. Using an asymmetric polymer with different size anchoring groups
one should be able to construct purely repulsive telechelic polymer systems. The
larger A block will adsorb preferentially to the surface, leaving the smaller block
dangling in solution. The behaviour of such asymmetric telechelic polymers is
explored in Figure 9. Here the free energy of interaction is shown for
A40+yBsooAsp_y chains. For y =0 the curve of Figure 8 for x = 40 is recovered.
Increasing y means that the asymmetry of the chains is increased while their overall
composition is kept constant. When the chains become more asymmetric the
interaction becomes less attractive. For y =5 (corresponding to a rather modest
asymmetry) the interaction is repulsive at all separations, although it still has a local
minimum. These calculations indicate that an experimental verification of the
telechelic attraction would require a very carefully designed model system. An
attraction will only be found for polymers with virtually equally sized monodisperse
adsorbing blocks.

6.4 Triblock copolymers with blocks of different solvency

In many systems of practical interest involving adsorbing triblock copolymers
both types of blocks have an affinity for the surface. In this section we assume that
this affinity is exactly the same for both segment types. Preferential adsorption of
one of them can still oceur if the interactions of the A and B blocks with the solvent
are different. The exact characteristics of such an adsorbed layer depend critically
on the interaction between the solvent and the segments. This is illustrated in Figure
10 for AsgB1goAag chains in full equilibrium between two surfaces. Both the A and B
blocks have energetically favourable interactions with the surfaces (xas= xgs=—5).
The solvent O is a good solvent for the B block (xpo = 0), whereas it is a poor
solvent for the A block {xag > 0.5). We neglect the possibility of these molecules to
form micelles and only consider the equilibrium between free polymer chains in
solution and adsorbed chains. The melecules adsorb because of the bad solvency of
the A blocks.

If xao were zero, we would be considering an adsorbing homopolymer, giving an
attractive interaction. For a relatively low positive value of yag the interaction curve
still strongly resembles that of a simple homopolymer. Even for xao=0.75 the
general shape of the interaction curve is that of a homopolymer, with attraction at
any plate distance. At low separations this attraction becomes rather strong. For
%ao = 1 the interaction at large separations is similar to that of the triblock
copolymers discussed in the previous section. However, for small M an attractive
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region is found which is absent in Figure 8. For a0 = 2 there is an attraction at large
surface separation (M > 30) followed by a strong repulsion at lower separation; in
this case the attractive part at small M does not show up. It is interesting to note that
the curve for x50 = 1 has the same features as found in the well known DLVO theory
for colloid stability!® under the combined action of electrostatic repulsion and van der
Waals attraction, with a secondary minimum, a repulsive maximum, and a primary
minimum. In restricted equilibrium the attraction at low separation is not present
because the polymer cannot be squeezed out of the system (not shown).
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Figure 10 Interaction curves for AggBqgpAng molecules in full equilibrium. In this
figure the adsorption energy of the A and B segments is the same but their
solvencies are different: ygo = 0. xao i positive as indicated. Other parameters:

XAS = X8s = —5. %80 = 0, 6P = 1074,

6.5 Multiblock copolymers

We conclude with a discussion of copolymers consisting of mare than three
blocks. Their behaviour can be best understood by applying the concepts developed
in section 3 for triblock (ABA) copolymers. We again limit ourselves to good
(athermal) solvent conditions for both types of blocks, with the A segments having a
strong affinity for the surface whereas the B blocks do not adsorb. The interaction
between adsorbed (A,By) A, layers can again be compared with the interactions
between terminally attached (A,By), layers with a fixed grafting density o. In Figure
11A interaction profiles are given for grafted (A,By}y, layers withn=1,n=2,n=4,
and n = 8. In all cases yag=~27 and c = 0.005. The first segment of the first B block
is always the grafted segment. The total chain length is kept constant at 1100 and on
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average there is one A segment for every ten B segments, so that x =100/n and
y =1000/n. For n = 8 this does not iead to an integer value for the length of the A
blocks. In this case the A blocks have alternating lengths of 12 and 13 segments.
Starting with n =1 and increasing the number of blocks, the attractive minimum
shifts to smaller separations, and the depth of the attractive well increases. However,
for n = 8 this trend completely breaks down. Below, wa interpret these findings.
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Figure 11 Interactions curves for grafted multiblocks (AyBy), (A) and diblocks A,B,,
{B). The grafting density is 0.005 in {A) and 0.005n in (B}, so that the amount of
polymer in the system is the same for all curves. The adsorption energy of A
segments is yag = —27, all other y parameters are zero.

In the B part of Figure 11 interaction curves are shown for grafted A;B, diblock
chains with a grafting density of 0.005n. The values chosen for n and for the block
lengths x and y are the same as in Figure 11A. Hence, the grafted chains are shorter
and the grafting density is higher than in Figure 11A, but the amount of polymer is
the same in both diagrams. Figure 11B was calculated o test the hypothesis that
these A,B, diblock layers should give approximately the same interaction profiles as

138



the multiblock layers. In an isolated grafted copolymer layer the adsorbing blocks all
tend to adsorb onto the surface, thus forming a structure that is very simitar to a
grafted dibiock layer with an n times higher grafting density. When the surfaces
approach each other, the difference is that the multiblock copolymers have the
opportunity to form larger bridges (comprising several consecutive blocks). The
diblock copolymers can only form bridges consisting of one B and one A block. So,
the interaction profiles for both systems need not necessarily be exactly the same.
Only for n = 1 the curves in diagrams A and B are identical.
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Figure 12 The same as Figure 11 but now for y4g =-15.

The shape of the curves in Figure 11B is qualitatively the same as those in
Figures 1 and 5 for large negative values of xag. The attractive part in this type of
curve is due to bridging, as discussed extensively in section 2. Increasing the value
of n leads 1o stronger attractive wells which occur at lower values of the surface
separation M. This is a consequence of the simultaneous decrease of the chain
length and increase of the grafting density. For n = 2 and n = 4 the location and the
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depth of the minimum are roughly the same as for the corresponding curves in
Figure 11A. Clearly, the interaction between these grafted multiblock layers can be
understood by treating a multiblock copolymer as a set of diblock copolymer chains.
For n = 8 the diblock copolymer stilt shows the same type of behaviour as the other
diblock copolymer systems, but the multiblock system does not show any atiraction
at all. This is because xag is not sufficiently negative to anchor all the short A blocks
firmly to the surface. If the A segments would have a higher adsorption affinity, the
multiblock would also show an attractive minimum which is comparable to that found
for the diblock copolymer. This point is illustrated in Figure 12.

Figure 12 shows data for the same systems as Figure 11, but now for a weaker
adsorption: gag =—15. Again, in diagram A the interaction is shown for the multiblock
and in diagram B for the diblock copolymer chains. We start the discussion by
considering Figure 12B. For n =1 and n = 2 the same interaction is found as for
xas =—27. In these cases the total surface affinity is large enough to ensure
complete adsorption of the A biocks, and the MW regime applies. Forlargern (n =4
and n = 8) no attraction is left. Here, we have moved out of the MW regime. In
section 2 it was shown that for higher grafting densities a higher adsorption energy
of the A segments is needed to give an attraction. In Figure 12B this effect is parily
compensated by the fact that an increase of n leads to a decrease of the chain
length. At given grafting density a decrease in the chain length leads to a lower
adsorption energy needed to reach the MW regime. Apparently, the increase of the
grafting density has a larger effect than the decrease of the chain length. For n =4
the interaction profile still shows a local minimum {(with a pesitive value), for n = 8 the
repulsion increases monotonically when the surfaces are brought together, as for
homopolymer brushes

The differences between Figures 11B and 12B are also present between Figures
11A and 12A. The attraction between the multiblock layers for n = 4 and yag =27
disappears when yas is changed {o —15. The attractive well for n = 2 still exists if
xas = —15 but is shallower and has shifted to a larger separation than in Figure 11A.
Clearly, the value of xag determines whether there is an attraction between the
grafted multiblock layers. Similar trends are found for the diblock copolymer layers.
However, for a given value of n a more negative value of g is required for an
attraction to occur between the multiblock layers as compared to the diblock layers.

In Figure 13 the effect of xa5 is shown in more detail. Interaction curves are
shown for grafted (BsggAsgp)2 chains (i.e. n=2) and different values of yas. For
%as =~11 the interaction is still purely repulsive. For yag =—14 there is a clear
attractive minimum but when yag is further decreased this minimum moves to
smaller surface separations and becomes deeper. For yag =—-21 the maximum

140




attraction is reached, coinciding with the attraction in the BggoAsq diblock system. In
this case the distribution of A segments in both blocks is virtually identical. For
xas = —14 the outer A block forms slightly more bridging conformations than the
middle A block. This sexplains the different attractive components. Note that it is
possible to find interaction curves with two minima (e.g. for 4 4q=—16).
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Figure 13 [nteraction curves for grafted (BsppAsp)2 chains. Parameters: o = 0.005,
%as =—11,-11.5,-12, -14, -15.5, —16, —21; all other y parameters are zero.

So far we have only considered grafted muitiblock copolymers. Figure 14 shows
interaction curves that were calculated taking into account the adsorption
equilibrium. The molecular formula of the polymers is (ABy)nAy with n equal to 1, 4,
10 (diagram A) and 10, 20, 50, and 100 (diagram B). The total number of A
segments per chain is 200 and the total number of B segments per chain is 1000.
Thus, for n = 4 we have (A4oBagg)4A40 chains. For larger values of n the A blocks
cannot all be made of exactly the same number of segments. However, the
difference between two block lengths within one chain is never larger than one
segment. For example, for n = 10 the computations were done for chains with the
following composition: A{q(B1opAia8}eB1ooA1g-

When comparing the curves for different n, the first observation is that increasing
n leads to interactions that start at smaller separations. This is because the
adsorbed amount decreases when the polymer chains are divided into smaller
blocks (while keeping the overall composition the same). This implies that the
adsorbed fayer thickness also decreases, so that the interactions start at lower
surface separations. When n =1 we have a triblock copolymer; this system was
discussed in section 3. The curves for n = 1 show the same type of behaviour as
shown in Figure 8. At M = 150 there is an attraction that is caused by the possibiiity
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Figure 14 Interaction curves for adsorbing (A,By)nAy chains in full equilibrium
{dashed curves) and restricted equilibrium (solid curves). The total number of A
segments per chain, (n+1)x, equals 200 and the total number of B segments, ny,
equals 1000. Parameters: ¢° =107, xag = —15. all ather y parameters zero; n = 1,
4, 10, 20, 50, and 100. The interaction curve of a homopolymer {1200 segments)
with yag = ~6.3 is also shown.

of the chains to form bridging conformations. When the layers are further
compressed a strong repulsion is found (see the inset of Figure 14A). The depth of
the attractive well decreases when the chains are divided into smaller blocks, and
the minimum moves to smaller surface separations. For relatively smalil n (Figure
14A) the trends are qualitatively the same under restricted and full equilibrium
conditions. For n = 1 the atiraction is simply due to the formation of bridges by one B
block with an adsorbing block at both its ends. For larger n values (n =4, 10)
multiblock bridges are formed. For n = 10 the minimum appears at a surface
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separation M = 100, which is equal to the length of one B block. A single-block
bridge would have to be virtually completely stretched, which is of course not very
likely because of the large entropy penalty; hence the bridges consist of several B
blocks. Further compression of the system leads to a strong osmotic repulsion.
However, for n = 10 a local minimum appears in the interaction curve around M = 30,
see diagram B.

For even smaller block lengths (i.e. large n) this minimum becomes more
proenounced, increases in magnitude and leads to a strong attraction. One should
bear in mind that the free energy scale in part B of Figure 14 is two orders of
magnitude larger than that in part A of Figure 14. Such a strong attraction is to be
expected, considering the fact that for large values of n the multiblock copolymer
starts to resemble a homopolymer whose characteristics are a weighted average of
those of both types of blocks. The interaction free energy of such a homopolymer is
also shown in Figure 14B for comparison. Indeed for large n (n = 100) the interaction
curve is rather similar to that of such a homopolymer. Individual B blocks can now
form bridges between the surfaces. Only when the separation becomes very small (3
layers for n = 100) does the interaction become repulsive again. However, at this
distance the total inter-particle interaction in a dispersion may already be dominated
by Van der Waals forces between the particles onte which the polymer chains
adsorb. When using multiblock copolymers to impart steric stability, it is therefore
advisable to use polymers with long blocks.

6.6 Concluding remarks

We have shown that polymer brushes with an adsorbing end-group can have an
attractive part in their free energy of interaction. For a given grafting density ¢ and
chain length N the end-group must have a certain minimum adsorption strength for
this attraction to occur. The depth of the attractive minimum scales as oV3N™, as
predicted previously by Milner and Witten.® Polymer brushes with an adsorbing end-
group can be seen as a model system to describe end-adsorbing triblock
copolymers (telechelic polymers). We have alsc performed calculations on such
triblock copolymers, taking the adsorption equilibrium with the bulk solution into
account. In this case we also find an aftractive part in the interaction curve. The
magnitude of the attraction is, however, reiatively small. Direct experimental
evidence for this attraction is not available as yet, as far as we know. The attraction
disappears when the two adsorbing blocks have different sizes. In this case triblock
copolymers become good stabilizers,
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The behaviour of multiblock copolymers consisting of a small number of blocks is
qualitatively similar to the behaviour of triblock copolymers. Multiblock copolymers
consisting of a large number of small blocks start to resemble homopolymers. A
relatively strong attraction at low surface separations is characteristic for such
systems.

We have further shown that adsorbing copolymers for which the solvency of the
two blocks is different can give a rather complicated free energy of interaction. The
details of these curves depend strongly on the precise values of the interaction
parameters.

Appendix: The self-consistent field theory

An arbitrary segment p (for example, p = A {anchor), p =B (buoy), or p=0
(solvent)) has a potential energy in layer z that is defined with respect to the bulk
solution (indicated by the index b) as

up(2z) =u' (2} +kTY, qu(< 0q(2) > —¢g) (A1)
q

The term u'(z} is a Lagrange parameter which has the physical meaning of a hard-
core repulsion, and ensures that the lattice layers are completely filled. The
summation takes place over all different segment types present in the system,
including the adsorbent S, which is treated as a component with a volume fraction
equal to unity for z=0 and z = M+1, and a volume fraction equal to zero for all
intermadiate values of z. The angular brackets in eq A.1 denote a weighted average
over the layers z—1, z, and z+1:

<®(Z)> = Md(z— 1)+ Aod(z} + Ad{z + 1) (A.2)
where Agand A4 are the a priori probabilities to move from a lattice site to a
neighbouring site in the same layer, or to a site in a neighbouring layer, respactively.
In a cubic lattice Ag =4/6 and A;=16. Monomers are distributed over the laftice

according to their monomer distribution function, Gj(z), which is a Boltzmann factor
of up(z),

Gp(2) = exp(—up(z) /kT) {A.3)
The volume fraction of a free monomer p in layer z is simply given by

9p(2) = ¢ exp(—up(2) /kT) (A.4)
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The computation of the volume fraction ¢;(z,s) in layer z due to segment s of a
chain molecule i is more involved. The segments of this molecule are numbered
s=1,2, .. s-1,8 s+1, ..., Nj—1, N;. We first define the end-segment weighting
factor Gi{z,s11) of a subchain consisting of the first s segments of molecule i. The
end segment of this s-mer must be located in layer z but the first segment may be
located anywhere in the system. If segment s in layer z, segment s—1 must be
located in one of the layers z—1, z, or z+1. This means that Gj(zs!1) is
proportional to < Gj(z,s—111)>, where the angular brackets denote a similar
average as defined by eq A.2. Furthermore, segment s in layer z contributes a factor
Gi(z,s), which is identical to Gp(z) if s is of type p. It is now easily seen that a
recurrence relation holds which enables us to calculate Gi(z,s11) for all values of s

Gi{z,s11) = < Gi(z,s—111) > Gi(z.9) (A.5)

This recurrence relation is started for s = 1 with Gi(z,111) = Gj(z,s) = G(2} if the first
segment is a segment of type p. If molecule i is grafted to the surface (as polymer
chains in a brush) only those conformations must be taken into account whose first
segment is located directly adjacent to the surface. This is done by starting the
recurrence relation as follows:

Gz ifz=1orz=M

0 otherwise (A-8)

Gz, 11 )= {
In a completely analogous way we may define the end-segment weighting factor
Gi(z.slNi) of the subchain consisting of the segments s, s+1, ..., N;, of which
segment N; may be anywhere in the system but segment s must again be located in
layer z. The total statistical weight of all conformations of molecule i with segment s
in layer z is given by the joint probability that both subchains have their end-segment
in layer z. Thus, ¢i(z,s) becomes

. _ ~ Gi(zs11)Gi(z s IN;)
¢i(zs)=G; Gi(z9)

(A7)

The denominator in this equation accounts for the fact that in the two end-segment
weighting factors segment s is counted twice (s belongs to both subchains). The
normalization constant C; can be obtained in two different ways. In a closed system
the total amount 8; of molecules i, which is expressed in equivalent monolayers, is
fixed (this is the case in restricted equilibrium) and C; follows from the condition
6 = Nizz i{z,s), which holds for all segments s. For chains that are end-grafted to a
surface with grafting density o the amount of polymer is given by 8;= No.
Substituting s = N;, one finds
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9

Ci= NiEGi(Z,Ni 11)

(A.8)

Alternatively, C; can be expressed in the bulk concentration ¢ib of molecule i. As in
the bulk ¢;(zs) equals ¢° /I\li and the potentials uy(z) of all segments p are, by
definition, zero, it follows that

b
o
Ci=—L A9
N (A.9)
For a given u(z) profile for all segment types that are present in the system, the
volume fraction profiles of all molecules can be calculated from egs A.3 - A.9. These
volume fraction profiles must obey the constraint that all lattice sites are filled:

I ailzs)=1 vz (A.10)
is

Also, the volume fraction profiles must be consistent with eq A.1. An initial guess is
made of the u(z) profiles and in an iteration procedure this profile is adjusted until
both these conditions are met. Numerical details of this iteration procedure have
been published elsewhere.8

Free energy

Once the volume fraction profiles are known all thermodynamic functions can in
principle be calculated. We are especially interested in the interaction free energy.
Evers et al.7 showed by deriving the canonical partition function that the free energy
A of the system is given by

AM 8, ..
k(TL) - 2 ‘ ' 2% Wp(2) 2% Mpa(0a(2)) - 5 2 8. Ppikpodq
Z fisls] i e8]
(A11)

The quantity ¢;i denotes the fraction of segments in molecule i that are of type p.
The free energy given by eq A.11 is defined with respect to a reference state in
which all molecules are separated into their pure amorphous phases. The surface
excess free energy A® of a system with respect to its bulk solution is found by
subtracting the contribution to the free energy due to molecules that are in full
equilibrium with the bulk solution:

AT _ AM)_ 5 Ot

= (A.12)
kTL kTL
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The summation over | does not include the molecules that cannot move out of the
system {for example, for the solid curves of Figure 9 only the solvent, and not the
triblock copolymer, is included in the summation). The interaction free energy at a
surface separation equal to M is the difference between the surface excess free
energy at this separation and its value at very large separation, where the adsorbed
layers do not yet interact:

AMM) _ AS(M)  A%(=)

= A
KTL KTL kTL (A13)
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chapter 7

On the Colloidal Stability of Small
Polymer-Coated Particles

Abstract

A self-consistent field model is developed which enables the calculation of the
interaction between two spherical particles bearing adsorbed polymer layers. We
use cylindrical coordinates, so that the potential field can vary in both the radial and
axial direction. Data are presented for the free energy of interaction for two particles
with end-attached polymer chains in a good {athermai) solvent. The repulsion is
less strong than the repulsion predicted by applying Derjaguin's approximation to a
system with two similar interacting flat surfaces with end-attached polymer. This is
explained by the greater freedom of the polymer chains to move laterally out of the
gap between the particles as compared to polymer chains between flat surfaces.
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7.1 Introduction

it is well known that polymers can greatly influence the surface properties of
colloidal dispersions and thus determine the stability of these dispersions.
Adsorbing homopolymers can impart steric stability, but may also cause bridging
flocculation between different surfaces. The latter property can be utilized to
flocculate and sediment impurities. This is, for example, relevant in the process of
water purification. Polymeric stabilization of colloidal dispersions has many useful
industrial and technological applications in the preparation of paints, inks,
lubricants, etc. With block copolymers even beiter stabilizing properties can be
achieved than with homopolymers. Diblock copolymars with one adsorbing and
one nonadsorbing block give larger adsorbed amounts than homopolymers
consisting only of adsorbing segments. Ideally, the nonadsorbing block dissolves
well in the solvent, and forms an extended layer around the particle surface.
Formation of bridges is prevented by steric hindrance between these nonadsorbing
blocks.

The adsorption of polymers at isolated interfaces and the interaction between
two flat surfaces bearing an adsorbed polymer layer have been studied
extensively. Self-consistent field theories have been developed for the adsorption
of homopolymers!-3 and block copolymers,4-¢ as weli as for grafted polymer
layers.7-'1 All these theories assume that the surface is an infinitely large flat plane.
Many experiments have been performed with the surface force apparatus to
measure the force between two adsorbed polymer layers (for an overview see, for
example, Luckhaml2). In such experimenis the polymer is adsorbed onto
cylindrically curved surfaces with a radius of curvature on the order of 1 cm, which
is many orders of magnitude larger than the radius of gyration of a free polymer coil
or of the thickness of an adsorbed polymer layer. In this case forces are indeed
measured that agree well with theoretical predictions based on the assumption of a
flat surface. 13

Colloidal dispersions generally consist of particles with a radius roughly
between 10 nm and 10 pm. Polymer adsorption often plays an important role in
such systems. As long as the particle radius is far larger than the radius of gyration
of the polymer, such systems can be described using the theories for flat surfaces
mentioned above. However, when both radii have the same order of magnitude,
one expects these models to loose their validity. As far as we know, no theory
exists that predicts the interaction between such particles in the presence of
adsorbing polymer. The aim of this chapter is to study the interaction between two
small spherical particles bearing adsorbed polymer layers. For this purpose we
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have developed a lattice model which is an extension of the Scheutjens-Fleer
theory.

The statistical mechanical theory for homopolymer adsorption developed by
Scheutjens and Fleer!-3 uses a planar lattice on which concentration gradients in
one dimension may occur. This model can be used to describe adsorption
phenomena both at a single planar surface and between two interacting flat
surfaces. Leermakers and Scheutjens'4 generalized the lattice theory of
Scheutjens and Fleer to non-planar geometries. Especially the spherical lattice,
which is made up out of concentric equidistant layers, is interesting for our purpose.
For the case of a single sphere it is sufficient to consider only concentration
gradients in one dimension; within one layer R the concentrations of all species
may be taken to be constant. The spherical lattice, with gradients in one dimension,
has been used to describe the aggregation of surfactant and block copolymer
molecules into micelles. However, it can alse be used to model polymer adsorption
onto a single spherical surface. If the pariicle onto which adsorption occurs has a
radius of ¢R; (£ being the lattice spacing), this simply means that the inner Rp
layers of the lattice are inaccessible to all molecules in the system. The volume
fractions in the layers beyond Ry, are assumed to be a function of the distance to
the surface anly, that is, of the layer number. Within each concentric layer a mean-
field is applied.

Unfertunately, it is not possible to model two interacting spherical surfaces
using this approach. In this case one cannot assume that the volume fraction profile
is simply a function of the distance to one point. In order to model two interacting
particles we have used a lattice with cylindrical coordinates. in the next section we
will describe this cylindrical lattice in more detail. In the subsequent sections we
will show how this lattice can be used to model a polymer solution between two
spherical particles. We shall mainly direct our attention toward terminally attached
polymer chains. These can be seen as a modei for adsorbed diblock copolymers.
In the results section we present data for the free energy of interaction between two
spheres with terminally attached chains.

No results are given for adsorbing polymers in equilibrium with a bulk solution.
However, in Appendix 2 we do describe a method that can be used to model the
interaction in the presence of polymers which adsorb from solution onto the
particles.
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7.2 Theory

The Lattice

We start by briefly describing the spherical lattice.14 Here the layers form
concentric, equidistant shells. The differences between a planar lattice and a
spherical lattice are: (i) the number of sites per layer increases on moving away
from the centre of the lattice and (i} the lattice transition parameters (A} are layer-
dependent. The lattice transition parameters A _.(R), A¢(R), and A (R) are defined
as the fraction of neighbouring sites in layer R-1, layer R, and layer R+1,
respectively, of a lattice site in layer R. If all layers are equidistant the volume
enclosed by layer R equals:

V(R) = ¢3(4/3)nR3 (1)
The number L(R) of lattice sites in layer R is then
L(R) = £ 3(V{R) - V(R-1)) = (4/3)m(3RAR - 1) + 1) (2)

The first layer (R = 1) of a spherical lattice, situated in the centre, contains (4/3)x
lattice sites. The surface area of the Rth layer equals

S(R) = 4nr®R? (3)

and determines the transition factors, which are proportional to the surface area per
site in contact with the adjacent layer:

SR) _,p __ 3R
LR 3RR-1)+1

S(R-1_,p _3(R-17
GLR T ARER-1+1

W (R)= 4

(4)

23 (R) =A%

where the superscript s denotes the spherical lattice and p denotes planar. This
lattice can be used to compute the volume fraction profile of polymer around a
single isolated particle. If that particle has a radius of {Rpthe layers R=1, 2, 3, ..,
Rp are not accessible for the molecules in solution. The volume fractions are
calculated as functions of R only. We call this the one-dimensional model: the
mean-field approximation is applied within each concentric shell, that is, over two
dimensions, so that there is a concentration gradient in one dimension only (the
radial direction).

The cylindrical lattice can be seen as a planar lattice where each lattice layer is
divided into concentric equidistant rings. One could also say that a circular lattice is
placed into each layer z of the planar lattice. Now concentration gradients in two
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dimensions can be accounted for: in the normal (z) and in the radial (R) direction.
Woe refer to this as the two-dimensional model. So we write the volume fractions as
a function of z and R: ¢(z,R}). An arbitrary lattica site (z,R) has neighbouring sites in
the same layer: (z,R}, {z,A+1) and (z,R—1) and in adjacent layers: (z+1,R), and {z—
1,R). We define lattice parameters A4, sg(z,R) where Az and AR can take the
valugs —, 0, or + for "downward", "laterai”, or "upward" steps in directions z and R,
respectively. Either Az or AR should be zero: "diagonal" sites (e.g. (z+1,R+1) and
(z—1,R-1)) are not considered to be nearest neighbours, so that A, , =4, _=
A_+ =A__=0. Hence, for transitions to a lower or a higher layer Az =— or +,
and AR = 0; and similarly AR =—- or + and Az =0 in the cases of transitions to
an inner ring or an outer ring within the same layer. Finally, Az = AR = 0 for steps
within the same layer z and the same ring R. For transitions to a lower or a higher
layer one simply has the same lattice parameters as for a planar lattice, so that {(in a
cubic lattice):

Ao(zR) =25 =6
r_o(zR)=2 =16

(5)

For transitions within the same layer z one must calculate the corresponding
circular lattice parameters ?L‘jm. It is easily seen that the number of sites in a

circular ring of the cylindrical lattice is just
L°®R) = n{R? - (R-1)?) = n(2R-1) (6)

and that the circular lattice parameters are
25.(R) = Af 2R/(2R 1)

22 (R) =8 2(R-1)/(2R-1) ”
- 1

This means that we have the following transition parameters within the same layer
z for a cubic cylindrical lattice:

Mo (R) = éﬁR—_s (8a)
hoolR) =3 (80)
Ao+(R)= g;_—; (8c)

Analogous to the case of the planar l[attice we define <¢(z,R)> as:
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<ozR)> = Y Y (Aazar x9(z+AzR+AR))
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Figure 1 Cross section through the lattice. Two spherical particles, both with a
radius of Ry, lattice sites, are separated by M layers of lattice sites. The layers z are
flat but the lattice has a cylindrical symmetry around the central axis connecting the
particles. Hence, the parameter R refers to cylindrical shells around this axis, and
the intersection of these shells with the planar layers defines rings with a given
combination of z and R. Examples of possible polymer chain configurations are
given. Three directions are shown in this cross section, denoted as "parallel”,
"diagonal", and "perpendicular”.

To model interfacial phenomena a particle with radius R, is placed in the
middie of the lattice. This means that certain latlice sites are inaccessible to the
molecules in the system. Figure 1 shows a cross-section through the lattice. A
second particle has been drawn in this picture, as we are interested in modelling
the interaction between two particles. However, for symmetry reasons the part of
the lattice to the right of the line marked "mirror" need not actually be taken into
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account in the computations. The size of the system, i.e. the number of layers
between the paricles and the mirror, determines the interparticle distance.
Obviously, the number of layers and rings between the particie and the other
boundaries of the system have to be chosen large enough not to introduce any
spurious boundary effects. For example, if the number of rings is too small the
polymer chains are compressed "sideways".

A minor problem is posed by the fact that a spherical particle does not naturally
fit into the cylindrical lattice. The surface of the pariicle does not coincide with the
boundaries between lattice layers. This problem can be solved by treating the
particle as an extra component which has a fixed volume fraction ¢p in every lattice
site; the value of op varies from 0 for sites that completely belong to the solution to
1 for sites that are completely within the particle. A site that lies on the interface
between particle and solution has a particle volume fraction ¢p{z,R}) equal to the
volume fraction of that site on the particle side of the interface. In the example of
Figure 1, 0 <¢p{z,R} <1 for R=3 and z=7, 8, ..., 12, and for R=1 and
z =7 or 12, i.e. those sites through which the particle surface cuts. The sum over
op(z,R}L(R) must give the total particle volume;

S op(zR)L(R) = = 7R3 (10)
zR 3

Algebraic expressions for ¢p(z,R) can be derived (see Appendix 1), This procedure
leads to a smoothening out of the particle surface. However, we want the total
surface area of the particle to be the same as in the spherical Jattice. When
energetical interactions between solution species and the surface are taken into
account {which is necessary to describe the adsorption equilibrium of adsorbing
molecules) the particle surface area is an important parameter. When polymer
chains are studied that are grafted to the surface at a given density ¢ the total
surface area is also important, as it determines the total amount of polymer in the
system. To solve this problem, we consider the surface shell as the cancentric shell
between a distance Ry and a distance Ry, +1 from the particie centre. This shell
cuts through several lattice sites. Some of these (at the inside) contain a nonzero
patticle volume fraction ¢p(z,R), for example sites (z,R) withz=7and R=2o0r 3
in Figure 1. Other sites (at the outside) belong partly to the solution, and this part
falls outside the surface shell. Examples of this type are z=6and R=2 or 3 in
Figure 1.

Woe define a quantity v(2,R) as the par (by volume) of each site {(or ring) which is
within a distance Ry +1 of the surface. For sites entirely outside the surface shell
v(z,R) = 0, for those completely inside this shell v(z,R) = 1; only for sites partly in
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this shell v(z,R} is in between 0 and 1. The guantity v(z,R) may be calculated with
the equations given in Appendix 1, after replacing Ry by Ry +1. Analogous to eq 10
we have:

S v(ZRILR) = %n(ﬁp 1 (1)
zR

The difference v(z,R) — ¢p(z,R) characterizes the accessible part of lattice sites
overlapping with the surface shell; only for these sites the difference is nonzero. For
sites entirely inside or entirely outside the surface shell v(z,R) — ¢p(z,R) is zero.
The accessible volume of the entire surface shell is obtained by subtracting eq 10
from eq 11. Only segments in this surface shell have energetical interactions with
the surface. For grafted polymer the grafting density ¢ may be identified with the
volume fraction of grafting segments in the surface shell.

Terminally attached polymer chains

Consider two spherical particles at a distance M from each other; the distance
between the particle centres is M+2R,. Both particles carry end-grafted polymer
chains with a density ¢. The polymer chain length is N. Nearest-neighbour
interactions between solvent and polymer segments are accounted for by the Flory-
Huggins parameter . The segments do not adsorb onto the grafting surface. The
total number of polymer segments in the system is denoted by 8, so that the
number of palymer chains per particle is 6/N. This number equals the number of
grafting segments, which is ¢ times the volume of the surface shell;

2~ 2nof (R +1)°-R3) (12)

For large Rp this equation reduces to the well known form 8/N = 4AnoRE.

We need to calculate the (two-dimensional) volume fraction profile ¢{z,R) of the
polymer segments as a function of M. This enables us to find the free energy of the
system as a function M. The calculation of ¢$(z,R) is completely analogous to that of
¢(z) for a polymer layer grafted to a flat surface,’.15 but some modifications are
necessary to account for the two-dimensional nature of the present problem.

We define the potential energy u(z,R} of a polymer segment in ring (z,R) as

u(z,R)/KT = -2x < §(z,R) > - In(1- dp(z,R) - &(z,R)) (13)

The corresponding segment weighting factor G(z) is given by

G(z.R) = exp(—u(z, R)/kT) (14)

155




We define the end-segment weighting factor G(z,R;sl1) as the average statistical
weight of all conformations of an s-mer of which the last segment is located in the
ring (z,R) given that the first segment is grafted to the particle surface. We further
define G(z,R;sIN} as the average statistical weight of all conformations of an (N—
s+1)-mer of which the last segment {(segment s of the grafted polymer chain) is
located in the ring (z,R) and the first segment (segment N of the grafted chain} may
be anywhere in the system (except, of course, on sites where ¢p{z,R) = 1). The
quantities G(z,R;sl1) and G{(z,R;sIN) can be calculated from the recurrence
relations:

G(zRsl1)=G(zR)< G(zRs-1i1) > (15a)
G(z,R;stN)=G(z,R) < G(z.R;s+1IN) > (15b)

where the values of G(z,R;111) and G{z,R;NIN) are given below (egs 18-21).

Consider polymer chains of length N that are grafted to the surface with a
grafting density given by eq 12. We assume that the chains are grafted
homogeneously onto the surface. When the two partticles interact, two different
situations may be envisaged. Either the grafting segments are allowsed to move
over the surface, thus being able to find a more favourable conformation for the
chains, or they are kept fixed in the same position. We first consider the latter case.
This condition implies that the volume fraction of the first (grafting) segment of this
polymer on a site (z,R) must be:

6(v(z.R) - 9p(z,R))
3
%EN((F{DH) _ng]

The volume fraction of a segment s on a site (z,R} is in general given by the
connectivity law,

dzR1) =

(16)

(z,R; s 1)G(z,R;s IN}

G
o(z,Rs)=C GzR)

(17}

where C is a normalization constant, Eq 16 is a solution of eq 17 for all values of z,
R and G{z,R) if we define G(z,R;1i1} and C as follows,

G(Z! R)(V(Z, H) —0p (z, H))

G(zR 111 = GZRIN) (18)
and
c= 9 (19)

gnN((Rp + 1]3 - Hg)
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Equation 18 gives the starting value for the recurrence relation of eq 15a. The
calculation of the recurrence relation of eq 15b is started with:

G(z,RNIN) = G(z,R) (20)

Applying egs 17 and 19 then gives the polymer volume fraction profile. This profile,
obtained for a given set of values for u(z,R), should be consistent with eq 13 for all
values of z and R.

Iinstead of using the procedure described above for a fixed distribution of the
grafting segments, we can also assume that the chains have an average grafting
density o but that, when the two particles approach each other, the grafting
segments may redistribute themselves over the surface to find the equilibrium
distribution. We then replace eq 18 by:

G(z,R) if v(zR}-¢p(zR)=0

21
0 otherwise 1)

G(z,R;111) = {
The first segment of a polymer chain may be located on any site that is at least
partly within the sphere with radius Ry, +1. Eq 21 is used for the recurrence relation
of 15a, eq 20 is still used for the recurrence relation of 15b. The volume fraction
profile is calculated using eq 17 with the nommalization constant C given by:

_ 9
" NY G(zRNI1)L{R)
zR

C (22)

Free Energy
The free energy of the system can be written as a straightforward extension of
the one-dimensional analogue:4

AR L 6INC- Y LRz R)/KT +
ZR (23)
Y LRkx{-2 < #(z,R) > + o{z,R} < &(z,R) > + (z,R))

zR

This expression holds for a two component system with grafied polymer {chain
length N, and grafting density o) and a monomeric solvent.

When the polymer is grafted to the surface, and the grafting segments are all
kept at a fixed position during the calculations, it is necessary to slightly modify the
first term in this equation. Chains that are grafted in different rings (z,R) can be all
treated as separate components. The amount of polymer grafted to ring (z,R)
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equals L(RNo(v(z,R)—¢p(2.R)). The expression cInNC from the first term of eq 23
can now be written as a summation over all rings in which chains are grafted:

_ L{RIN c(v(z, R)-¢p(z, R))
z%[L(Ff)G[V(z. R)-¢p{z, R])ln( GINIZR Y (24)
where G{NIz,R;1) is defined as ZL(R' JG(Z',R";N | z,R; 1), with
ZR
G(z' R;slzR)=G(z ,R) <Gz ,R;s5-11zR 1) >
and Gz RAIZRY= {G(Z,H) if z=2 am?l R=R (25)
0 otherwise

7.3 Results and Discussion

In this section we present results of calculations for the interaction between two
particles with end-grafied nonadsorbing polymer. We limit ourseives to good
solvency conditions {x = 0). Our aim is to study the influence of the particle radius
on the free energy of interaction between the two particles. For large values of R,
(Rg >> M) this interaction free energy can be directly related to the interaction
between two flat surfaces. Derjaguin'é showed that the interaction force FI"{M)
between such spherical particles is proportional to the interaction free energy
A:;’,“(M) per unit area between two equivalent planar surfaces:

FiN(M) = 2rR,AIM (M) (26)

The free energy of interaction between two planar surfaces can be calculated using
the "classical" one-dimensional model on a flat {cubic) lattice. For large Ry we can
thus write the interaction free energy between two spheres Ag“(M) as an integral
over FiM(M):
N MI:M.
AL'(M)=2nR, [AR(M)aM (27)
M =0
ideally, we would like to calculate the function Ais“t(M)/F{p using the two-
dimensional lattice model for a large range of values of R,. For large R, this
function should become independent of Ry and approach the values given by eq
27. However, due to computational limitations we have only been able to perform
calculations for particles that are so small that large deviations from the results
predicted by eq 27 should be expected. In Figures 2 and 3 we show the results for
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a system with R, = 5, N=50, and 6 =0.1. The model with "fixed" grafting
segments has been used for both these figures. Before we discuss the free energy
of interaction for this system, we must prove that the volume fraction profiles as
calculated with the two-dimensional model are consistent with those obtained from
a one-dimensional model.

o fa o 1-dim
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Figure 2 Polymer volume fractions in three directions (perpendicular, parallel,
diagonal; see Figure 1)} around a spherical particle calculated with the two-
dimensional model with fixed grafting points. The volume fractions as predicted by
the one-dimensional model are also shown. Parameters: Rp=5; N = 50;
¢ =0.1; x=0.

This comparison is shown in Figure 2, where the volume fraction profile around
one particle is plotted for large M (so that the two particles do not yet interact). In
this case the profite should correspond with the profile that is calculated using the
one-dimensional spherical lattice. Moreover, the volume fractions should be
isotropic around the particle. In Figure 2 the polymer volume fractions are shown in
three directions denoted as parallel, diagonal, and perpendicular. The "parallel”
direction is along the axis that joins the centres of both particles. The
"perpendicular" and "diagonal" directions make an angle of 90° and 45° with this
axis, respectively (see Figure 1). The volume fraction profile of end-attached
polymer chains on an isclated spherical particle has been extensively studied in ref
17. Here we only note that there is a satisfactory correspondence between the
profiles in these three directions and the profile that follows from the one-
dimensional calculations. This is a proof of the consistency of our model. Very
close to the particle surface the agreement is not perfect. This artefact is caused by
the way in which we model the surface. We expect that the polymer volume
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fractions close to the surface only significantly influence the free energy of
interaction when both particles are brought very close togsther.
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Figure 3 Free energy of interaction between two spherical particles as a function
of their separation (“interaction profile"), for the two-dimensional model with fixed
grafting points, and according to the Derjaguin approximation {(eq 27}. Parameters
as in Figure 2.

The free energy of interaction for two interacting particles is shown in Figure 3.
The same quantity is alsc shown as predicted by Derjaguin's approximation (eq
27). The free energy calculated in this way is far more repulsive than when it is
computed using the two-dimensional model. Of course we are dealing with a
situation where the assumption Rp >>M is not valid. For small particles the
repulsion is far less because the polymer chains can move sideways, This
movement is not accounted for in the Derjaguin approximation. in Figure 4 it is
demonstrated how the polymer chains use this freedom to move out of the gap
between the particles when M becomes small. In this Figure the volume fraction
profile is shown in the perpendicular direction. For large M this profile is the same
as that in any other direction. For smaller M the volume fractions increase in the
perpendicular direction. This is due to the redistribution of the polymer tails sticking
out into the solution.

Figures 2-4 were all computed for a fixed homogeneous grafting density. The
grafting points of the polymer chains are then not able to move laterally over the
surface. If they were able to do so, this would provide an additional mechanism to
decrease the free energy of the system. However, this effect turns out to be of
relatively minor importance. Figure 5 shows the free energy of interaction both for
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fixed grafting points (i.e. using eq 18) and mobile grafting points (i.e. using eq 21).
Both curves do not start to deviate significantly until relatively large compressions.
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Figure 4 Volume fractions in the perpendicular direction for the system of Figure
3. The profiles are shown for various particle separations M, and illustrate the
movement of the chains out of the region between the particles.
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Figure 5 The free energy of interaction between two spherical particles as
caleulated with the "fixed grafting ends" model and the "mobile grafting ends"
model. The system is the same as that of Figure 2.

Figure 6 shows the volume fraction profiie in the various directions for the model
with mobile grafting points for isolated paticles. For z > 5 the volume fractions are
isotropic around the particle surface and coincide with the volume fractions that are
predicted by the one-dimensional model. Near the particle surface one can see
that in the parallel and perpendicular directions lower volume fractions are found
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than in the diagonal direction; the deviations are stronger than in Figure 2. This is
caused by the way that the grafting is accounted for in eq 21. The first segment of a
polymer has a roughly equal probability to be situated on any lattice site for which
v(z,R) > 0. This includes sites for which v(z,R} is far smaller than unity, so that the
greater part of such sites is outside the sphere with radius R, +1 around the centre
of the particle. Some of the grafting segments are then not in contact with the
surface. It would be possible to improve on this model in such a way that the
polymer chains are all really grafted within the first layer from the particle surface.
However, our model already gives a very good profile for slightly larger distances
from the surface. The volume fractions at these larger distances are most important
for the interaction profile.
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Figure 6 The polymer volume fractions around the particle in the "mobile ends"
model. All parameters are the same as in Figure 2.

Figure 7 shows interaction curves for different values of Ry,. The free energy of
interaction is divided by the particle radius in order to compare the data for the
different curves. For large values of R, one would expect that the curves coincide
with the one-dimensicnal calculation ("Derjaguin approximation®). When R, is
increased the repulsive interaction does indeed increase. However, due to
computational limitations no results can be shown for Ry > 10. Figure 7 is
calculated using the "fixed ends" model. This means that the closest approach
between the two particles is M = 2. At this separation enough room is left between
the particles for a grafting segment on both surfaces. This is why the curve for
Rp = 2 stops at Ai“'/Fika = 30. In the one-dimensional model (two flat plates) the
smallest distance of approach is M = 26N, because then the whole volume
between both surfaces is filled with polymer.
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Figure 7 The free energy of interaction between spheres with various radii of
curvature. The free energy A divided by the particle radius Ry is given as a
function of the particle separation M for R, = 2, 5, and 10. The other parameters
are the same as in Figure 2. The solid curve gives the Derjaguin approximation for
the free energy of interaction.

7.4 Concluding Remarks

We have shown that the interaction between two small spherical particles
bearing adsorbed polymer layers is far less repulsive than would be expected from
the interaction between two equivalent flat surfaces. We have described a self-
consistent field model to quantify this "small particle effect”. The question remains
whether one can also experimentally detect this effect.

It is not possible to directly measure the force between two colloidal particles, as
one can do between two macroscopic surfaces. Neither is it easy to extract detailed
information of this force from bulk measurements on colloidal systems, although, in
principle, this is possible. Forcefinterparticle separation plots can be calculated
from osmotic pressure measurements of colloidal dispersions.18.19 Alternatively,
the high shear limit of the shear modulus of monodisperse spherical particles can
also be written as a function of the particle interaction potential.2® Costello et a/.21
measured forces between layers of adsorbed comb copolymers with the surface
force apparatus, and compared them to gsmotic force and rheological data on
similar colloidal systems. They found a reasonable agreement with the directly
measurad force/distance profiles between macroscopic surfaces. However, they
were considering colloidal particles with a radius which was an order of magnitude
larger than the adsorbed layer thickness. It would be very interesting to repeat their
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analysis with carefully chosen model systems in which the colloidal particle radius
has the same order of magnitude as, or is even smaller than, the adsorbed layer
thickness.

Another way to experimentally tackle this problem weould be using an atomic
force microscope. One would have to attach a single colloidal particle to the tip of
the microscope. Then the interaction could be measured between this tip (onto
which a polymer layer would first have to be adsorbed) and a flat surface with an
adsorbed polymer layer. The interaction between a sphere and a plane should be
in between the interaction between two planes and the interaction between two
spheres. Qur lattice model can easily be extended to model the interaction
between a sphere and an (infinitely large) plane: the mirror in Figure 1 has only to
be replaced by an impenetrable walt.

We hope that this chapter may direct the attention of experimentalists towards
studying the effect of adsorbed polymer on the interaction between small particles.

Appendix 1

From geometrical arguments one can derive what fraction ¢p(z,R) of a ring (z,R)
lies within a sphere with radius Rp, that has its centre in the middie of the lattice (i.e.
between layers 1 and 0). See Figure 8 for the definition of the layer numbers z
used in this appendix. Below we give the equations for ¢p(z,R). Their derivation is
straightforward. In order to simplify our notation we introduce the variables R and
R, defined as: R2=R,2-(R-1? and R?=R,2-R2 One can distinguish six
different cases. In Figure 8 it is indicated which lattice sites correspond to these six
cases. Below we only consider rings in the layers z > 0. From symmetry
arguments if follows that op{—Iz!/,R) = ¢p(lzl+1,R).

1) R2 =22 +R®
The whole ring (z,R) is situated within the particle, i.e. ¢p(z,R)=1.

2) Rp? <(z-12+(R-1?
The whole ring (z,R) is situated outside the particle, i.e. ¢p(z,R)= 0.

For the next 4 cases we can write:

op(z,R)=X +sz'»~»~L
s HRPR-17)
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Figure 8 Definition of the layer numbers z used in Appendix 1. The six different
types of lattice sites mentioned in this appendix are illustrated.

We distinguish the following situations:

3) ZZ+R%2>R2 222 +(R-1 and (z- 12 +R? >R, 2 (-1 + R-1?
In this case X =0, a=z-1, b = z, so that the volume fraction is:
RZ-z2+z-13
tp(zR)=——Z 2212
R -R

4) Rp2 <z +(R-1? and (z-1)* +R? >_-(z—1)2+(F~1—1)2
In this case X=0,a=2-1,b= R, so that the volume fraction is:
3ﬁ3-(z-1)(ﬁ2—%(z—1)2)

4p(zR) = =

5) z2+R? >Rp2 >22 +(R-1° and sz 2 (z-12 +R?
In this case X=R-z+1, a= R, b = z, s0 that the volume fraction is:
ﬁz[z—ﬁ)—23/3+%ﬁ3

R)=R- _
op(z,R) zZ+1+ 2 2

6) RoZ <z2+(R-12 and Ry2 2 (z- 12 +R?
In this case X =R-z+1, a=R, b=R, so that the volume fraction is:
259 _ﬁ[ﬁ'z —%ﬁ2)

cl;,:.(z,R)=1—z+I§1+3

A2 _R2
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Appendix 2

In this appendix we show how the adsorption of a polymer which is in
equilibrium with a bulk solution can be incorporated into our model for two
interacting spheres. An adsorbing polymer is supposed to gain (adsorption) energy
whenever one of its segments is adjacent to the surface, i.e. in the surface shell that
is situated between the spherical particle with radius Ry, and an imaginary sphere
with radius Rp+1. However, in our model the surface shell does not consist of
discrete lattice sites. So we introduce the probability v'(z,R)} that an adsorbing
segment in a site (z,R) interacts with the surface as

vi(z,R) = (V(Z, R)-¢p(z, R))/(1 —-¢p(z, H))

This probability is only defined for sites where ¢p(z,R} < 1. For sites outside the
surface shell v'(z,R) = 0. The weighting factor of a monomer A on a site adjacent
to the particle can now be written as

Ga(z.R) = v'(z R)G3%(z,R) +(1- v (z )Gz R) (A2.1)

where G3%5(z,R) is the weighting factor of an adsorbed monomer on this site and
G°"(z R} is the weighting factor of a nonadsorbed monomer on the same site.
Equation A2.1 is a special case of the two-state lattice model used by previous
authors.22.23 The monomer factors are the Boltzmann factors of the potentials
ul"(z,R) and 13%(z,R) for nonadsorbed and adsorbed segments A on site (z,R),
respectively:

G3%5(2,R) = exp( L3 (z.R) k) (A2.2a)
GY"(z.R) = exp(-up™"(z, R) kT) (A2.2b)
For lattice sites that are completely surrounded by solution sites (i.e.
<op(z,R)> = 0), the monomer weighting factors are equal to the nonadsorbing
monomer weighting factors. In this case the splitting up of the segment weighting

factors into an adsorbed and a nonadscrbed term becomes trivial. In general the
adsorbed and nonadsorbed segment potentials can be written as:

ui*(zR)

= XA +§9CAB < pg(z.R) > +u?9s (z R) (A2.3a)
non
R
E%_) = xas < 08(z.R) > +u"" (z,R) (A2.3b)
B
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The terms st(= -3 (2 )xAp), where =R, +1, and ¥ _xap < ¢a{z,R) > account
for the energetical contributions to the potential, and u'3® (z,R) and u™"(zR) are
the (segment-independent} hard core potentials that ensure that both the
adsorbing and the nanadsorbing parts of every site (z,R) are completely filled with
segments. We define xso = 0. Defining Au’ = u295—y'™" and combining egs.
AZ2.1-A2.3 gives:

Ga(zR) = G3%(z,R) x (v' zR)+(1-v(zR) exp(—xs A +AU(Z, R)]) (A2.4)

Monomers.
The easiest case to consider is that of a system consisting of only monomers.
For the volume fraction of a segment A in site (z,R) we can write:

6a(zR) = Gz R}
= v(2,R)GI3(z,R)0% + (1-V'(z,R)GR"(z, R)6Y (A2.5)

= V{(z,R)04% +(1- V' (ZR)pR"
The following condition must be satisfied:
Y 6a%(@R) = ¢)°"(z,R) =1 - ¢p(z.R) (A2.6)
A A
This equation gives a relationship between 39 (z,R) and u"°"(z R) which can be
derived by substituting A2.4 into A2.6:

Y oR Gz R) = 1 ¢p(z.R)
A

so that

X Ga(zR)
o AV (2R)+({1-v'(z,R))exp(~xsa + AU (ZR))

=1-9p{zR) (A2.7)

This eguation must be solved numerically.

Polymers
For polymers the recurrence relations {(eq 15) must be used to find the volume

fractions of segments. The total volume fraction of segment s of a polymer i on site
(z,R) is again the sum of an adsorbed and a nonadsorbed fraction:
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#(zRis) = VZRNAP Rs)+(1-V 2 R)O"(zRis) =

Ci<G(z,R;s—111)> (v' (z,R)G2%(z,R) + (1- v)G""(z, R)) <G(zRs+11) > (A2.8)

Applying condition (A2.6) we can write the general form of (A2.7) for polymers by
substituting A2.4 and A2.8 into A2.6:

3 ¥ 039z R;5) = 1-9p(z.R)
i s

so that

0i(z,R,s) 4l
22‘ (zR)+(1- v'(z.R})exp(xsa — AU (z,R)) =1-0pzR)

which can be rewritten as

ba (z.R} _q_
%’ v'(z,R)+(1-v'(z,R))exp(xsa - AU (ZR)) 1-op@R) (A2.9)

Numerical method

The (total) segment potentials are used as iteration variables. From the segment
potential profile {Ga(z,R)} the (total) segment volume fraction profile {¢a({z,R)} is
calculated. Applying (A2.9) for every site the hard core potential difference Au'(z,R)
is found (this involves solving an equation with one variable, which must, however,
generally be done numerically). Rewriting egs. A2.1 - A2.3 gives G,"°"(z,R) as an
explicit function of Au'(z,R):

GA (Z! R)

(1-v'(zR))+V(z,R)exp{xsa - AU (z.R)) (A2.10)

GIO"(z,R) =

so that 6,"°"(z,R) can be calculated. For every segment type A we now define a
function f5(z,R) for every site (z,R)} which must be 0 if the field is self-consistent:
if vz R)=1 or v{z,R)=0:
1 1

fa(z.R} = ey - 2¢A(Z: A -aa(z,R)+a(z,R)
A
if O<vi{zR)<1:
fa(z ) = —2 1 —aazR)+ oz R)

1-¢p(z,R) 2¢“°”(z R) Zcbads( z,R)
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where

w2 R) <¢g{zR)> b . :
KT E‘XAB Z¢C(Z, R) L if v'(zR) <1
oA (ZR) = c
UA(Z R) Z sz F) > -¢tB’ + XsA if vi(z,R)=1
Zq; z,R)
o(z,R) = EAGA(Z% 1
A
{A2.11)
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SUMMARY

Copolymers consisting of both adsorbing and nonadsorbing segments can show
an adsorption behaviour which is very different from that of homopolymers. We have
mainly investigated the adsorption of AB diblock copolymers, which have one
adsorbing block (ancher) and cne nonadsorbing block (buoy). The anchors adsorb
from solution onto a surface and the buoys protrude into the solution. Thus, a
polymer brush is formed. This name is derived from the resemblance between the
protruding chains of B segments and the bristles of a brush. The presence of the
adsorbing segments can be neglected when studying the characteristics of such a
polymer brush, which is then modelled as {B-) homopolymer molecules which are
termninally attached to the surface of a solid interface.

In chapter 1 two self-consistent field (SCF) theories are introduced which give a
description of such a polymer brush. The first of these theories is a lattice model. It
takes into account all possible conformations that can be generated on a lattice; the
molecules are treated as freely jointed chains. The overall volume fraction profile
{that is, the polymer volume fraction ¢ as a function of the distance z to the surface)
is then found by weighting each conformation with an appropriate Boltzmann factor.
This theory can both be applied for systems with end-attached polymer molecules
and for systems with freely adsorbing chains. The volume fraction profiles for any
given system must be found using a complicated numerical procedure.

The second theory explicitly assumes that the polymer molecules are strongly
stretched. Under this assumption only a fraction of all possible molecular
conformations need be taken into account to find the volume fraction profile.
Although this approach is less exact than the lattice model, it has as a major
advantage that an analytical expression can be derived for the shape of the volume
fraction profile. A simple algebraic expressions is also available for the brush height,
if only the second and third order terms of a virial expansion of the free energy of
mixing polymer and solvent are taken into account. If this free energy is accounted
for in & more exact manner, one must (numerically) calculate the brush height from a
(simple} integral equation.

In the first chapter we make a detailed comparison of the predictions of both
theories for a polymer brush at a flat surface in a low molecular weight sclvent. In
general an excellent agreement is found between the results of both theories.
Significant deviations only occur very close to the surface and at the periphery of the
grafted layer. In the lattice model there is a small depletion zone near the grafting
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surface, which is caused by the entropical restrictions imposed upon many polymer
conformations by this impenetrable surface. The lattice calculations further show a
"foot" of the volume fraction profile, which extends further away than the brush
height as calculated from the strong-stretching approximation. The relative
importance of these deviations increases with decreasing chain length, decreasing
grafting density, and decreasing solvent quality. In order to find good quantitative
agreement between the lattice calculations and the strong-streiching theory, one
must incorporate the full Flory-Huggins expression for the mixing free energy of
polymer and solvent inio the latter theory. The derivation of elegant, analytical
expressions for the layer structure by expanding this free energy in a virial series is
only valid for low grafting densities.

In all chapters except the second, the polymer chains are treated as freely jointed
chains in a potential gradient. In chapter 2 more elaborate models are introduced for
the polymer chains. Chain stiffness is incorporated by reducing the flexibility of the
segment bonds. Stiffer chains give larger brush heights. Over a large range of chain
stiffnesses the volume fraction profiles agree well with analytical expressions based
on the incorporation of chain stiffness into the Gaussian approximation for the local
stretching of a polymer chain. A further modification is a first order correction to the
excluded volume interactions in the generation of the chain conformations, This
correction slightly reduces the brush height. The opposing effects of this correction
on the one hand, and chain stiffness on the other, suggest that the freely jointed
chain is a good model for "real" polymers.

Chapter 3 considers polymer brushes on cylindrical and spherical surfaces with
a radius of curvature R. On such surfaces the dependence of the brush height H on
the chain length N differs from that of a flat brush. SCF lattice calculations are
presented to investigate this dependency as a function of R. For large values of R
the scaling law H ~ N is recovered for both sphericai and cylindrical surfaces. For
R = 1 good agreement is found with the scaling laws H ~ NO-8 (spherical surface)
and H ~ NO-75 (cylindrical surface). Polymer brushes on spherical surfaces can be
seen as a model for AB diblock copolymers adsorbed onto small colloidal particles.
For R = 1 a star-branched pelymer molecule in solution is modelled.

The volume fraction profile of the brush is also studied as a function of R. For this
purpose we focus our attention on spherical brushes immersed in athermal solvents.
For large radii of curvature we make the assumption that the potential energy profile
of the segments can be approximated by a parabolic function, as for flat surfaces.
Applying this approximation, we derived an analytical expression for the volume
fraction profile which agrees reasonably well with the lattice calculations. For very
small radii of curvature the lattice calculations predict velume fraction profiles which
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follow the scaling prediction (0 ~ 73 for spherical brushes in athermal solvents).
For intermediate curvatures we propose an analytical expression for the volume
fraction profile which is a combination of the parabolic potential near the surface, and
the scaling form farther away from the surface. Thus, over the whole range of radii of
curvature, analytical expressions for the volume fraction profiles are available which
give reasonably good correspondence with the lattice calculations.

Woe also studied the "dead zone" from which the free ends are excluded near the
grafting surface. The lattice calculations show such a dead zone under all solvency
conditions, both for spherical and cylindrical surfaces. The extension of this zone is a
non-monotonic function of the surface curvature. The relative size of this zone (with
respect to the brush height) is a decreasing function of R. No easy analytical
expression is available for the size of the dead zone.

In chapter 4 the adsorption equilibrium of AB diblock copolymers is considered
for adsorption from solution onto smalt spherical particles. For adsorption onto flat
surfaces it is known that the adsorbed amount shows a maximum as a function of
the size of the adsorbing block, if the total chain length is kept constant. The
thickness of the adsorbed layer shows a similar behaviour. Assuming that the
adsorption energy is independent of surface curvature, we showed that the
maximum in the adsorbed amount increases when the surface curvature increases.
The hydrodynamic layer thickness of the adsorbed layer decreases strongly with
increasing surface curvature. This increase occurs for all ratios of anchor to buoy
sizes. On the other hand, the root-mean-square layer thickness changes much less
as a function of the surface curvature. Depending on the anchor to buoy size ratio, it
may either increase or decrease when the surface becomes more strongly curved.

Chapter 5 treats the interaction between two polymer brushes, both in the
presence and absence of free polymer in the solution. In this chapter we first study
the effect of free polymer chains in solution on the height and volume fraction profile
of an isclated polymer brush. Using self-consistent field and scaling arguments,
diagrams of state are constructed, which indicate different regimes with different
scaling laws for the brush height and for the interpenetration of free and grafted
polymer chains, as a function of grafting density, free and grafted chain length, and
bulk volume fraction of the free polymer. These scaling laws are again corroborated
by SCF lattice calculations. Predictions are also given for the volume fraction profiles
of free and grafted chains based on the strong-stretching approximation. In the
derivation of these expressions it is explicitly assumed that the free chain length is
far smaller than the brush height. When this condition is satisfied, the volume
fraction profiles from the lattice calculations agree excellently with those predicted by
the strong-stretching theory. When this condition is not satisfied, both approaches
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still predict the same height, but the strong-stretching theory gives a far too sharp
interface between the grafted layer and the free polymer.

The repulsive interaction between two compressed brushes starts at slightly
targer separations according to the lattice calculations than one would expect from
the strang-stretching approximation. This is caused by the "foot" of the valume
fraction profile. This phenomenon occurs hoth in the absence and in the presence of
free polymer in the solution. When fres polymer is present the free energy of
interaction can have an attractive part, caused by the depletion of the free chains.

Chapter 6 deals with the interaction between two surfaces bearing adsorbed
muitiblock copolymer layers. Wae first study ABA triblock copolymers. Grafted layers
of B chains with an end A block ("brushes with stickers") are used to model an
adsorbed layer of such polymers. When the A adsorption energy of such a grafted
layer is small, the free energy of interaction between iwo surfaces is purely
repulsive. When this adsorption energy increases, a minimum appears, which
reaches a limiting value at a certain adsorption energy. The minimum adsorption
energy needed to find an attraction increases with increasing grafting density ¢, and
chain length N. The absolute value of this minimum also depends on N and o. It
scales as 6¥>N"'. The minimum always occurs at a separation d that is larger than
the separation 2h at which the brushes are just in contact if the "feet" in the profiles
are neglected. The difference d - 2h scales as No¥2. The attraction has an entropic
origin. When the surfaces are far apart, the grafted chains form loops, with the A
blocks adsorbed to the grafting surface. When the surfaces are brought together, the
A block of a grafted chain can either adsorb onto the surface to which this chain is
grafted, or it can adsorb onto the other surface. This freedom to choose between two
surfaces leads to an entropically driven attraction.

The interaction between adsorbed layers of ABA triblock copolymers (where the
adsorbed amount is determined by the equilibrium between free and adsorbed
chains) has an attractive part if the copolymer chains are symmetric. The interaction
curve is the same as that of a grafted layer {"brush with stickers") with a grafting
density corresponding to the adsorbed amount of the triblock copolymets. If one of
the adsorbing blocks is larger than the ather block, the attraction decreases. For a
relatively low asymmetry (one block roughly 20% larger than the other) the attraction
disappears completely.

Multiblock copolymers consisting of more than three blocks can form bridges
between two surfaces comprising several blocks. We studied the interaction
between two surfaces bearing adsorbed multiblock copolymer layers. The overall
composition of the polymer chains was kept constant, but the chains were divided
into different numbers of A and B blocks {so that the blocks become shorter when
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there are more blocks per chain). Chains with smalier blocks give smaller adsorbed
layer thicknesses, so that the interaction starts at smaller separations. In all cases an
attractive part is found in the interaction curve. Copolymer chains consisting of
alternating small blocks of A and B segments very much resemble homopolymers
(with properties that are some average of the A and B segments). These copclymers
show a strong attraction at small separations (<10 layers), and repulsion at very
small surface separations (around 2 layers).

So far, we have only considered situations were the solvent is a good solvent for
both blocks. The A blocks adsorb preferentially with respect to the B blocks, because
the former have a stronger intrinsic affinity for the surface. We also consider the
adsorption of an ABA triblock copolymer were both blocks have the same intrinsic
affinity for the surface, but where the solvent is poorer for the A block. Now the A
hlocks adsorb preferentially, because of the selectivity of the solvent. We also pay
attention to the interaction between two surfaces bearing adsorbed layers of such
copolyrmers. When the interactions between the A and B segments and the solvent
differ only slightly, the interaction curve resembles that of an adsorbing
homopolymer, with an attraction at small separations. When these interactions differ
a great deal, the interaction resembles that of a "conventional” triblock copolymer,
with an attractive part at a farge separation and repulsion at smaller surface
separations. In the intermediate situation a more complicated interaction curve is
found.

The subject of chapter 7 is the interaction between two small particles bearing
adsorbed polymer layers. An extended version of the lattice SCF theory was
introduced, which takes account of gradients in two directions. In this version a
cylindrical coordinate system is used, so that the volume fractions can vary hoth
parallel to the axis connecting the centres of both particles, and in planes
perpendicuiar to this axis. Results are presented for terminally attached polymer
layers. It is first shown that this cylindrical model gives an isotropic profile around
one isolated particle. This profile agrees well with the profile calculated from the
"conventional" SCF lattice model, where a concentration gradient can exist in one
direction only. Various free energy of interaction curves are presented for two
spherical particles with terminally attached chains.

If two spherically curved surfaces bearing adsorbed polymer layers interact, then
the Derjaguin approximation relates this interaction to that between two similar flat
surfaces, as long as the radius of curvature is far larger than the adsorbed layer. In
chapter 7 we deal with systems where this condition does not hold. That is why we
find interactions that are far less repulsive than the interaction according to
Derjaguin's approximation. For increasing radii of curvature R, the interaction does
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move in the direction of the interaction predicted far very large R by the Derjaguin
approximation. On a molecular level the decreased repulsion can be explained by
the freedom of the grafted chains to mover laterally out of the gap between the two
particles. Whether or not the grafting segments themselves can also move over the
surface plays only a minor role.
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Copolymeren aan het vast-vioeistof grensviak

SAMENVATTING

Capolymeren die zijn opgebouwd uit adsorberende en niet-adsorberende
segmenten kunnen een adsorptiegedrag vertonen dat sterk afwijkt van het
adsorptiegedrag van homopolymeren. In dit proefschrift hebben we de meeste
aandacht besteed aan de adsorptie van AB diblck-copolymeren, bestaande uit een
adsorberend blck van A segmenten (het "anker") en een niet-adsorberend blok van
B segmenten (de "boei"}. De ankers adsorberen uit een oplossing op een opperviak,
terwijl de boeien in de oplossing biijven uitsteken. Op deze manier wordt een
zogenaamde polymeerborstel gevormd. Deze naam brengt de overeenkomst tot
uvitdrukking tussen de in de oplossing uitstekende staarten van B segmenten en de
haren van een borstel. Wannneer de structuur van zo'n polymeerborstel bestudeerd
wordt, kan de aanwezigheid van de adsorberende segmenten verwaaroosd worden.
De borstel wordt dan voorgesteld als moleculen van een (B) homopolymeer die
eindstandig aan een vast oppervlak verankerd zijn.

In hoofdstuk 1 worden twee zelf-consistente veld (ZCV) theorieén besproken die
gebruikt kunnen worden om polymeerborstels te beschrijven. Het doel van deze
theorieén is om de volumefractie ¢ van het polymeer uit te rekenen als functie van
de afstand z tot het opperviak. Eén van deze theorieén is een roostermodel. Het
volumefractieprofiel in de borstel wordt berekend door alle mogelijke conformaties
van de polymeerketens in rekening te brengen. Hierbij wordt ervan uitgegaan dat de
bindingen tussen de segmenten volkomen flexibel zijn (binnen de beperkingen die
door het rooster worden opgelegd). Bovendien wordt het uitgesloten volume van de
segmenten slechts in een gemiddelde-veld benadering meegenomen. Aan
conformaties waarbij meer dan één segment zich in het zelfde roosterhokje
bevinden, wordt een eindige waarschijnlijkheid toegekend. We noemen dit het
"ideale spookketen" model voor een polymermolecuul. Het volumefractieprofiel
wordt gevonden door alle conformaties met een bijbehorende Boltzmannfactor te
wegen. Deze theorie kan zowel toegepast worden op systemen met eindstandig
verankerde polymeerketens, als op systemen waarbij geadsorbeerde
polymeermoleculen in evenwicht zijn met vrije moleculen in de bulkoplossing. In alle
gevallen moet een ingewikkelde numerieke procedure worden toegepast om het
volumefractieprofie! uit te rekenen.
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De tweede theorie is op meer benaderingen gebaseerd dan het roostermodel. Er
wordt vanuit gegaan dat de polymeerketens in een borstel sterk gestrekt zijn (in
verhouding tot de afmetingen van een statistische kluwen in oplossing). Deze
aanname maakt het mogelijk het volumefractieprofiel te berekenen uitgaande van
slechts een fractig van alle mogelijke conformaties van de polymeerketens. Het
grote voordeel van deze aanpak is dat sen analytische uitdrukking kan worden
afgeleid voor de vorm van het volumefractieprofiel. Indien de verandering van de
vrije energie die optreedt bij menging van polymeer en oplosmiddel geschreven
wordt als een viriaalreeks (met de polymeervolumefractie als variabele), kan ook
voor de dikte van de borstel een eenvoudige algebraische vergelijking worden
afgeleid. Hiertoe is het wel noodzakelijk vierde en hogere orde termen van de
polymeervolumefractie te verwaarlozen. Indien ook deze hogere termen in rekening
worden gebracht, moet de borsteldikte numeriek berekend worden uit een
{eenvoudige) infegraalvergelijking.

In dit eerste hoofdstuk wordt een uitgebreide vergelijking gemaakt tussen de
voorspellingen die deze beide theorieén geven voor de structuur van een
polymeerborstel op een vlak oppervlak in een laagmoleculair oplosmiddel. In het
algemeen bestaat er een uitstekende overeensternming tussen de voorspellingen
van beide theorieén. Er treden alleen vlak bij het opperviak en aan de buitenkant van
de verankerde laag significante afwijkingen op. In het roostermodel wordt een kleine
depletietaag gevonden naast het oppervlak waaraan de ketens verankerd zijn. Deze
laag wordt veroorzaakt door het feit dat dit ondoordringbare opperviak een groot
aantal ketenconformaties onmeogelijk maakt. Bovendien voorspelt het roostermodel
een "voet" in het volumefractieprofiel, met eindige waarden voor de volumefractie op
een afstand tot het oppervlak die groter is dan de borsteldikte voorspeld door de
"sterke-strekkingstheorie". De relatieve grootte van deze afwijkingen neemt toe
wanneer ketenlengte, verankeringsdichtheid en kwaliteit van het oplosmiddel
afnemen. De volledige Flory-Huggins uitdrukking voor de verandering in de vrije
energie bij menging van polymeer en oplosmiddel moet in rekening worden gebracht
om een goede (kwantitatieve) overeenstemming tussen de sterke-strekkingstheorie
en het roostermodel te vinden. Alleen voor lage volumefracties kan de eerder
genoemde viriaalontwikkeling gebruikt worden om handzame, analytische
vitdrukkingen voor de structuur van de verankerde laag af te leiden.

in het grootste deel van dit proefschrift worden polymeermoleculen benaderd als
ideale spookketens in een potentiaalgradient. Echier, in hoofdstuk 2 worden
ingewikkeldere modellen gebruikt om, uvitgaande van de boven genoemde
roostertheorie, de ketens in een polymeerborstel te beschrijven. Er wordt ten eserste
rekening gehouden met ketenstijfheid door de flexibiliteit van segmentbindingen te
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beperken. Stijvere ketens leiden tot dikkere borstels. Dit effect kan ook goed
beschreven worden in de analytische theorie door stijffheid mee te nemen in de
Gaussische benadering voor de locale strekking van een ketenmolecuul. Daarnaast
wordt een eerste orde correctie toegepast op de gemiddelde-veld benadering voor
het uitgesloten volume van segmenten in het roostermodel. Deze correctie leidt tot
iets minder dikke borstels. Het feit dat deze correctie een tegengesteld effect heeft
dan de invoering van ketenstijtheid, suggereert dat de ideale spookketen een redelijk
model is voor "echte" polymeren.

In hoofdstuk 3 worden polymeerborstels op bolvormig en cylindrisch gekromde
opperviakken bestudeerd. De borsteldikte H op zulke opperviakken hangt anders af
van de ketenlengte N dan op sen viak opperviak. ZCV roosterberekeningen zijn
uitgevoerd om te onderzoeken hoe het verband tussen H en N beinviced wordt door
de kromtestraal R van het oppervlak. In de limiet van zeer hoge R wordt zowel voor
bolvormige als voor cylindervormige oppervlakken een rechtevenredig verband
tussen H en N gevonden, zoals ook op vlakke oppervlakken het geval is. Voor zeer
kleine waarden van R (R = 1) worden de volgende evenredigheidsrelaties gevonden:
H~ N06 (bolvormig oppervlak) en H ~ NO-75 (cylindervormig opperviak).
Polymeerborstels op bolvormige opperviakken zijn een goed model voor
geadsorbeerde AB diblok-copolymeermoleculen op een klein kolloidaal deeltje. Voor
R = 1 is de borstel een model voor een stervormig polymeer in oplossing.

Er is ook onderzocht hoe de volumefractieprofielen afhangen van. de
kromtestraal. Hiertoe hebben we onze aandacht gericht op bolvormige borstels in
atherme oplosmiddelen. Voor hoge waarden van R kan bij benadering gesteld
worden dat de potentiéle energie van de segmenten in een borstel een parabolisch
functie is van de afstand z tot het oppervlak (voor vlakke borstels is dit een zeer
goede benadering). Deze benadering leidt tot een analytische uitdrukking voor het
volumefractieprofiel die inderdaad redelijk overeen komt met de uitkomsten van het
roostermodel voor grote waarden van R. Vaor zeer kleine waarden van R leveren de
roosterberekeningen profielen op die overeenstemmen met resds eerder afgeleide
evenredigheidsrelaties (¢ ~ 243 voor bolvormige borstels in een atherm
oplosmiddel). Voor tusseniiggende waarden van R kan het profiel worden opgevat
als een combinatie van het parabolische profiel dicht bij het opperviak en de
evenredigheidsrelatie verder weg van het oppetviak. Door deze drie verschillende
gevallen te onderscheiden zijn we erin geslaagd om voor alle kromtestralen
(benaderende) analytische uitdrukkingen af te leiden voor het volumefractieprofiel
van de polymeerborstels.

Een laatste onderwerp dat in hoodstuk 3 aan de orde komt is de aanwezigheid
van een zone naast hel oppervlak waar geen vrije uiteinden van verankerde
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polymeerketens voorkomen. De roosterberekeningen tonen aan dat zo'n "dode
zone" in alle oplosmiddelen kan bestaan, zowel in bolvormige als cylindrische
borstels. De absolute grootte van deze zone is geen monotoon dalende of stijgende
functie van de kromtestraal. De relatieve grootte {in verhouding tot de borsteldikte) is
een monotoon dalende functie van R. Het is niet gelukt om een analytische
uvitdrukking te geven voor de grootte van de dode zone, zelfs niet bij benadering.

Het onderwerp van hoofdstuk 4 is het adsorptieévenwicht voor de adsorptie van
AB diblok-copolymeren uit een oplossing op kleine, bolvormige, kalloidale deelijes.
Het is bekend dat wanneer zulke polymeren op een viak opperviak adsorberen, de
geadsorbeerds hoeveelheid als functie van de grooite van het adsorberende blok
door een maximum gaat. Ock de dikte van de geadsorbeerde laag vertoont in dat
geval een maximum. Ervan uitgaande dat de adsorptieénergie onafhankelijk is van
de oppervlaktekromming, hebben we laten zien dat het maximum in de
geadsorbeerde hoeveelheid toeneemt als het opperviak sterker gekromd is. De
hydrodynamische laagdikte neemt af bij toenemende kremming. Deze toename vindt
plaats voor alle verhoudingen van de ankergrootte ten cpzichte van de beeigrootte.
Daarentegen verandert de middelbare laagdikie slechts weinig, wanneer het
opperviak sterker gekromd wordt, Afhankelijk van de verhouding van de
ankergrootte ten opzichte van de boeigrootte kan de hydrodynamische laagdikie
zowel (enigszins) toenemen als afnemen.

in hoofdstuk 5 wordt gepocogd meer inzicht te krijgen in de interactie tussen
twee polymeerborstels, zowel in aanwezigheid als in afwezigheid van vrij polymeer
in de oplossing. Eerst wordt in dit hoofdstuk de invioed onderzocht van vrij polymeer
op de dikte en het profiel van een geisoleerde borstel. Evenredigheidsrelaties zijn
afgeleid die het verband weergeven tussen de laagdikie en de penetratiediktes van
vrije pelymeerketens in de borstel en verankerde ketens in de oplossing enerzijds,
en de verankeringsdichtheid, de lengte van de verankerde ketens, de lengte van de
vrije ketens en de bulkvolumefractie van de vrije ketens anderzijds. Deze relaties
worden bevestigd door ZCV roosterberekeningen. Ook worden de
volumefractieproficlen van de verankerde en de vrije ketens afgeleid. Deze afleiding
is wederom gebaseerd op de theorie voor sterk gestrekte ketens in een
polymeerborstel. Er wordt hierbij verondersteld dat de lengte van de vrije ketens veel
kleiner is dan de borsteldikte. Wanneer aan deze voorwaarde voldaan is, komen de
volumefractieprofielen inderdaad zeer goed overeen met de roosterberekeningen.
Wanneer dat niet meer het geval is, voorspellen beide theorieén nog steeds
dezelfde borsteldikte. De sterke-strekkingstheorie voorspelt dan echter een veel te
scherp grensvlak tussen de verankerde laag en het vrije polymeer.
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Beide theorieén zijn ook met elkaar vergeleken voor de interactie tussen twee
tegen elkaar samengedrukte borstels. Het roostermodel voorspelt al bij @en grotere
afstand tussen de twee borstels een repulsieve interactie dan de sterke-
strekkingsthecrie. Deze interactie op grote afstand wordt veroorzaakt door de reeds
eerder genoemde "voet® in het volumefractieprofiel, waardoor de verankerde laag
iets verder in de oplossing uitsteekt dan volgens de sterke-strekkingstheorie het
geval is. Wanneer er ook nog vrij polymer in de oplossing aanwezig is, kan er een
depletie-attractie tussen de borstels plaatsvinden.

Hoofdstuk 6 gaat over de interactie tussen vlakke platen waarop multiblok-
copolymeren zijn geadsorbeerd. Eerst wordt de aandacht gericht op ABA triblok-
copolymeren. Deze kunnen gemodelleerd worden als eindstandig verankerde B
ketens met aan hun niet verankerde uiteinde een adsorberend A blok ("borstels met
plakkertjes"). Wanneer de adsorptieénergie van de A segmenten klein is, geven
twee oppervilakken met zulke verankerde lagen slechts een repulsieve interactie te
zien. Wannneer deze adsorptieénergie toeneemt, onstaat er ook een attractief
minimum in de interactie vrije energie. Met verder toenemende adsorptieénergie
bereikt de absolute waarde van dit minimum een limistwaarde. De minimale
adsorptieénergie die nodig is voor deze attractie neemt toe als de
verankeringsdichtheid ¢ toeneemt en ook wanneer de ketenlengte N toeneemt. De
absolute waarde van het minimum is evenredig met 6¥>N. Het minimum treedt
altijld op bij plaatafstanden d die groter zijn dan de afstand 2h waarbij de verankerde
lagen elkaar net zouden raken, indien de "voeten" van de profielen niet in rekening
worden gebracht. Het verschil d—2h is evenredig met No3. De aantrekking heeft
een entropische oorsprong. Wanneer de plaatafstand groot is, is het A blok van een
verankerde keten geadsorbeerd op het oppervlak waar deze keten op verankerd is,
De keten vormt op deze manier één grote lus. Wanneer de plaatafstand kleiner
wordt, kan dit A blok kiezen op welk opperviak het wil adsorberen. Door deze
toename van vrijheidsgraden neemt ook de entropie van het systeem toe. Dit is de
oorzaak van de attractie tussen de twee platen.

De interactie tussen twee geadsorbeerde lagen van ABA triblok-copolymeren
(waarbij de geadsorbeerde hoeveelheid bepaald wordt door het evenwicht tussen
vrije en geadsorbeerde ketens) heeft altijd een attractieve component indien de
copolymeerketens symmetrisch zijn. De interactiecurve is gelijk aan die van twee
verankerde lagen (borstels met plakkertjes) met een verankeringsdichtheid die
overeenkomt met de geadsorbeerde hoeveelheid. Indien één van de adsorberends
blokken groter is dan de andere, neemt de aantrekking sterk af. Reeds bij een
relatief lage asymmetrie (het ene blok ca. 20% groter dan het andere) is de interactie
geheel repulsief.
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Multiblok-copolymeren die uit meer dan drie blokken bestaan kunnen bruggen
vormen die uit meerdere blokken zijn opgebouwd. De interactie tussen twee
oppervlakken waarop copolymeren met alternerende A en B blokken zijn
geadsorbserd, is cok onderzocht. Hierbij werd het totale aantal segmenten van een
bepaald type in een copolymeerketen steeds constant gehouden. Het aantal blokken
per keten werd echter gevarieerd (zodat de blokken korter worden wanneer het
aantal blokken per keten toeneemt). Wanneer de bloklengte verkleind wordt, wordt
de geadsorbeerde laag dunner. In dit geval begint de interactie tussen de twee
geadsorbesrde lagen dan ook pas op relatisf kleinere afstanden. Copolymeer-
moleculen die uit zeer kleine, elkaar afwisselende A en B blokken bestaan, lijken erg
op homopolymeran die zijn opgebouwd uit segmenten waarvan de eigenschappen
een gemiddelde zijn van de A en de B segmenten. Net als homopolymeren vertonen
deze copolymeren een sterke attractie voor kleine plaatafstanden (<10 lagen), die
slechts op zeer korte afstanden {ca. 2 lagen) gevolgd wordt door een sterke repulsie.

Tot nu toe hebben we alleen situaties baschouwd waarbij het oplosmiddel een
goed oplosmiddel is voor beide bilokken. De A segmenten adsorberen en de B
segmenten adsorberen niet, omdat de eerste wel een affiniteit hebben voor het
opperviak en de tweede niet. Adsorptie van de A segmenten kan echter ook plaats
vinden vanwege de selectiviteit van het oplosmiddel. We beschouwen de situatie dat
zowel de A als de B segmenten een intrinsieke affiniteit bezitten voor het opperviak.
De B segmenten lossen goed op (atherm oplosmiddel), maar de A segmenten niet.
Het A blok van een copolymeer zal nu preferent adsorberan, omdat het zich niet
graag in de oplossing bevindt. In het geval van ABA triblok-copolymeren kan de
interactie tussen twee zulke geadsorbeerde lagen interessante verschijnselen
opleveren. Als de interacties van de A en de B segmenten slechts weinig van elkaar
verschillen, lijkt de interactie op die van een homopolymeer. Op korte afstanden is er
een aftractie. Als deze interacties zeer sterk verschillen, fijki de interactie op die van
een "normaal” copolymeer, met een attractie op grote afstand, gevolgd door een
sterke repulsie op kortere afstanden. In de tussen liggende gevallen worden
ingewikkeldere interactiecurves gevonden.

Het onderwerp van hoofdstuk 7 is de interactie tussen twee kleine, bolvormige
deeltjes met een geadsorbeerde polymeerlaag. De ZCV roostertheorie wordt hier
toegepast op systemen met concentratiegradienten in twee onafhankelijke
richtingen. Er wordt daartoe gebruikt gemaakt van een cylindrisch
codrdinatensteisel. De volumefracties kunnen nu zowsl in de axiale richting
(evenwijdig aan de verbindingsas tussen de middelpunten van de twee deeltjes) als
in de radiéle richting (locdrecht hierop staand) variéren. In dit laatste hoofdstuk
worden resultaten gepresenteerd voor deeltjes die zijn bedekt met eindstandig
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verankerde ketens. Als de twee deeltjes ver van elkaar verwijderd zijn, is het
volumefractieprofiel rondom één zo'n desitje isotroop. Dit profiel is bovendien
nagenoeyg gelijk aan het profiel dat berekend wordt met het "conventionele" ZCV
model, waarbij er slechts sprake kan zijn van een concentratiegradiént in één
richting. Dit is een bewijs voor de correctheid van het tweedimensionale model.

De interactie tussen twee zulke bolvormige deeltjes kan met behulp van de
Derjaguin benadering gerelateerd worden aan de interactie tussen twee
overeenkomstige vlakke platen. Deze benadering gaat echter alleen op wanneer de
kromtestraal van de deeltjes veel groter is dan de polymeerlaagdikte. Dat is niet het
geval voor de systemen in dit hoofdstuk. Daarom worden er interacties gevonden die
veel minder repulsief zijn dan volgens de Detjaguin benadering. Voor toenemende
kromtestralen verschuift de interactie wel in de richting van de Derjaguin benadering.
Op moleculair niveau kan de verminderde repulsie verkiaard worden uit de vrijheid
die de verankerde ketens hebben om de ruimte tussen de deeltjes te verlaten,
wanneer deze deeltjes naar elkaar toe komen. Of de verankerde segmenten van de
ketens hierbij wel of niet vrij over dit oppervlak kunnen bewegen, speelt daarbij een
andergeschikte rol.
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