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(1) ? ?^\. """̂  / 
Het feit dat in de kolloïdchemie de verhouding tussen theorie en experiment kan 
variëren van zeer op elkaar betrokken tot bijna geheel naast elkaar staand, is 
kenmerkend voor de positie die de kolloïdchemie inneemt tussen de traditionele 
natuurkunde en scheikunde in. 

(2) 
De middelbare laagdikte van polymeer geadsorbeerd op een gekromd oppervlak kan 
bij toenemende kromming van dit oppervlak toenemen, terwijl tegelijkertijd de 
hydrodynamische laagdikte afneemt. 
Dit proefschrift, hoofdstuk 4 

(3) 
Het is niet nodig om, zoals Milner doet, een polydispersiteitsargument te gebruiken 
om kwantitatieve overeenstemming te vinden tussen de experimenteel gevonden 
interactie tussen twee polymeerborstels en de theoretische voorspelling daarvan. 
S.T. Milner, Europhys. Lett., 1988, 7, 695; dit proefschrift hoofdstuk 5 

(4) 
Depletievlokking van een sol door niet-adsorberend polymeer kan voorkomen 
worden door dit polymeer in zeer lage dichtheden op de soldeeltjes te verankeren. 
Dit proefschrift, hoofdstuk 5 

(5) 
Voor het verkrijgen van een zo hoog mogelijke kolloïdchemische performance dient 
men multiblok-copolymeren te gebruiken. 
Dit proefschrift, hoofdstuk 6 

(6) 
Het is bedroevend dat campagnes om het imago van "De Chemie" te verbeteren niet 
verder komen dan het éénzijdig opsommen van verworvenheden die aan de 
chemische technologie te danken zijn. Zowel het creatieve karakter van de 
scheikunde als zijn maatschappelijke rol worden hierdoor tekort gedaan. 

(7) 
Niet de ontwikkeling van de twintigste eeuwse "nieuwe fysica" betekende, zoals 
Capra beweert, het einde van het mechanistische wereldbeeld, maar de al rond 
1700 in brede kring geaccepteerde gravitatietheorie van Newton, die de definitieve 
mathematisering van de natuurkunde inluidde. 
F. Capra, The Turning Point (Toronto, 1982) 

Uoq S7 



(8) 
De wederzijdse relatie tussen techniek en fundamentele natuurwetenschap is een 
ten onrechte door techniekfilosofen verwaarloosd onderwerp. 
Zie bijv. H. Achterhuis (red.), De maat van de techniek (Baarn, 1992) 

(9) 
Volgens de definitie die de IUPAC geeft van een polymer is een eiwit geen polymer. 
IUPAC, PureAppl. Chem. 1974, 40, 479. 

(10) 
Van Dale zou naast het overgankelijke gebruik van het werkwoord adsorberen ook 
het onovergankelijke gebruik van dit woord dienen te vermelden. 
Van Dale, Groot Woordenboek der Nederlands Taal, 12de druk, 1993 

(11) 
Wetenschap is wetenschap als er "Wetenschap" op staat. 

(12) 
Alles is chemie, maar chemie is niet alles. 

(13) 
De kolloïdchemie is ouder dan Mozes. 
vgl. F.A.M. Leermakers (1989) proefschrift LUW, stelling 10. 

(14) 
Het streven naar hogere efficiëntie in het (universitair) onderwijs heeft in de praktijk 
vaak tot gevolg dat het doel van dit onderwijs verwordt tot examentraining. 

(15) 
Ook in stedelijke gebieden zou, ter bevordering van het welzijn van plant, dier èn 
mens, de aanleg en instandhouding van een Ecologische Hoofdstructuur 
nagestreefd moeten worden. De stadsontwikkeling in Amsterdam van de afgelopen 
jaren kan daarbij niet als voorbeeld dienen. 

(16) 
Zestig jaar geleden constateerde Baas Becking: "de meest krasse vervreemding van 
de natuurwetenschap, waaraan een groot gedeelte van de Nederlandsche 
intellectueelen lijden, bijv. vele van onze leiders, die over het algemeen uit 
rechtsgeleerde kringen komen, doet hen vreemd staan tegenover de rol die deze 
wetenschap in een moderne maatschappij vervult." Hedentendage heeft deze 
constatering haar actualiteit helaas nog niet verloren. 
Vakblad voor Biologen, 14 (1932-1933) 151 



(17) 
Het is verbazingwekkend hoeveel aandacht er tijdens practica aan de 
Landbouwuniversiteit aan veiligheid besteed wordt, gezien de desinteresse voor 
gezondheid en veiligheid van studenten en personeel die spreekt uit het beleid van 
deze universiteit ten aanzien van roken in haar gebouwen. 

(18) 
De huidige, ongewenste praktijk dat een parlementslid in Nederland niet aan de 
kiezer maar aan de partij verantwoording schuldig is, kan alleen doorbroken worden 
worden door het invoeren van een kiesstelsel zoals het Britse districtenstelsel, 
waarbij kandidaten direct gekozen worden. 

(19) 
Met name in trein, tram en bus zou het lezen van dagbladen aanzienlijk 
vergemakkelijkt worden, indien de artikelen die op de voorpagina van deze bladen 
beginnen in hun geheel op deze pagina worden afgedrukt, dan wel op de 
achterpagina vervolgd worden. 

Stellingen 
behorende bij het proefschrift 
"Copolymers at the Solid-Liquid Interface" 
van C.M. Wijmans, Landbouwuniversiteit 
Wageningen, 13 april 1994. 



To my parents 



Voorwoord 

Een goed gebruik in ere houdend begin ik dit proefschrift met enige woorden van 
dank aan diegenen zonder wie dit proefschrift niet zijn uiteindelijke vorm had 
verkregen. De eerste die ik wil noemen is Jan Scheutjens. De uitwerking van de 
meeste onderwerpen die in dit proefschrift beschreven worden heeft hij door zijn 
vroegtijdig overlijden helaas niet meegemaakt. Toch kan hij met recht de initiator van 
dit onderzoek worden genoemd. Ik kijk met veel plezier terug op het schrijven van 
hoofdstuk één, wat samen met Jan gebeurde. Ik heb toen van hem kunnen leren om 
noch met de inhoud noch met de presentatie van het geschrevene te snel tevreden 
te zijn. Ik hoop dat de later geschreven hoofdstukken zijn goedkeuring hadden 
kunnen verkrijgen. 

In 1990 Jan brought me into contact with Katya Zhulina. This was certainly not 
the least important act of his with respect to my thesis research. When we first met 
we could not have imagined how fruitful our co-operation would be. Chapters one, 
three, and five are the direct results of our collaboration, but also throughout the 
other chapters I benefited greatly from discussions with Katya: spasibo! 

Het afgelopen jaar heb ik veel profijt gehad van de aanwezigheid van Frans 
Leermakers. Hoewel de grote lijnen van het proefschrift al vast stonden bij zijn komst 
naar de vakgroep, heb ik vooral in hoofdstukken twee en zes goed gebruik kunnen 
maken van nieuwe ideeën die Frans aanbracht. Het enthousiasme en de snelheid 
waarmee hij de concept-hoofdstukken becommentarieerde waren zeer stimulerend. 

Ik ben mijn promotor, Gerard Fleer, zeer erkentelijk voor de grote vrijheid die hij 
me liet bij het uitkiezen van van de precieze onderzoeksonderwerpen en de 
uitwerking daarvan. Tijdens de laatste maanden was hij nauw bij het schrijfwerk 
betrokken. Na "Het Boek" is zo het volgende boekje uit de polymeerclub 
voortgekomen. Het gedetailleerde commentaar dat Gerard steeds leverde heeft de 
presentatie van de onderzoeksresultaten op veel plaatsen zeer verduidelijkt. Mocht 
de lezer nog op onnauwkeurigheden of onduidelijkheden stuiten dan ligt de oorzaak 
daarvan zeker niet bij mijn promotor. 

Hoewel iets minder direct van invloed op het proefschrift, was ook de 
samenwerking met de andere leden van de theoriegroep (Rafel Israels, Cas Meijer, 
Klaas Besseling, Katinka van der Linden en Peter Barneveld) heel plezierig. Voor 
het oplossen van probleempjes en discussies over eigen of andermans onderzoek 
was altijd de ruimte. De "twee-weken weddenschap" met Rafel was een goede 
aansporing om het werk niet al tè lang te laten uitlopen. Met kamergenoot Klaas had 
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ik leuke en leerzame gesprekken. Van met name Peters continue inspanningen om 
de informaticainfrastructuur goed te laten functioneren, heb ik veel profijt gehad. 

Gedurende een groot deel van mijn tijd heb ik in de personen van mijn 
kamergenotes Riet van de Steeg en Nynke Hoogeveen het experimentele 
polymeeronderzoek van nabij kunnen gadeslaan (dat was voordat de management-
gestuurde werkkamertoebedelingspolitiek werd ingevoerd). Ook het brede 
wetenschappelijke aandachtsterrein van de rest van de vakgroep om me heen 
leverde een welkome verruiming van mijn aandachtsblik buiten het "gereken aan 
ketenmoleculen". 

Chris Wijmans 
Januari 1994 
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Introduction 

Already in the third millennium BC, an advanced civilization existed in Egypt. For 
a great deal this civilization was based upon an important development that had 
greatly influenced early information technology: the invention of ink. Carbon black 
particles were mixed with solutions of naturally occurring biopolymers, such as 
casein (from milk), albumin (from egg white), and gum arabic (from the Acacia tree). 
In the language of modern colloid science, the result was a sterically stabilized 
colloidal dispersion.1"3 This is an example of the application of polymers in colloid 
technology, many centuries before anyone had yet coined the words "colloid" or 
"polymer". In our present society this same phenomenon of steric stabilization is 
widely applied in the manufacturing of a whole variety of industrial products, 
including (still!) inks and paints. The technological importance of steric stabilization 
forms a major impetus for fundamental scientific research into the behaviour of 
polymer molecules near interfaces, including the present thesis. 

The first scientific investigation of the effect of polymer adsorption was probably 
performed by Faraday in the middle of the 19th century.4 He prepared gold sols by 
reducing solutions of gold chloride. Faraday was especially interested in the optical 
properties of the gold sols and from these properties he deduced that the gold was 
dispersed as small particles throughout the solution. He further found that the 
addition of small traces of electrolyte leads to an irreversible coagulation of the gold. 
However, when the sol had first been treated with gelatine, Faraday found that it 
became protected against coagulation by the electrolyte. For the modern student of 
colloid science these experimental results sound very familiar. 

A lyophobic sol, like Faraday's gold sol, is a thermodynamically unstable system. 
The van der Waals forces cause the particles to attract each other and coagulate. 
These sols can, however, be stabilized electrostatically. The sol particles carry a 
charge on their surfaces and are surrounded by a diffuse layer of ions with a 
counter-charge. When two of such diffuse layers start to overlap they repel each 
other, which may stabilize the system against flocculation. The equilibrium physics of 
the interaction between two charged sol particles has been understood for about half 
a century and is described by the DLVO theory (named after the four scientists -
Derjaguin, Verwey, Landau, and Overbeek - who were largely responsible for its 
development).56 The protective action of the polymer gelatine is called steric 
stabilization. There exists no theory which can describe such steric stabilization in 
the same handsome manner as the DLVO theory describes electrostatic 



stabilization. Nevertheless, much effort has been put into understanding what 
happens to a polymer molecule when it adsorbs at a solid-liquid interface, and much 
is nowadays known. This thesis is but one bead on a long necklace of theoretical 
and experimental studies to investigate this subject. In the subsequent chapters we 
shall consider various systems where copolymers are adsorbed at solid-liquid 
interfaces, and try to gain more insight into the characteristics of these systems, 
using statistical thermodynamic arguments. But first we will briefly explain what a 
(co-)polymer is. 

Polymers 
The literal meaning of the word polymer is a molecule consisting of many (from 

the Greek, %oXx>) monomeric units (|iepoç). The official definition given by the 
IUPAC7 is "a substance composed of molecules characterized by the multiple 
repetition of one or more species of atoms or groups of atoms (constitutional units) 
linked to each other in amounts sufficient to provide a set of properties that do not 
vary markedly with the addition or removal of one or a few of the constitutional units." 
Probably the simplest example of a polymer is polythene (PET): 

-CH2-CH2-CH2-CH2-CH2- or - ( C H 2 - C H 2 - ) N 

which is formed by the polymerization of ethene. The degree of polymerization N, 
which can be as large as 105, gives the number of monomers in one polymer 
molecule, and is called the chain length. Polythene has been known for about half a 
century, and is used in many applications. We only mention one historically 
interesting application, which is its contribution to the successful development of 
many branches of radar during World War II.8 This was based upon the unrivalled 
dielectric properties of polythene. We give two more examples of polymers which are 
nowadays produced in gigantic quantities all over the world: 

polystyrene (PS): - [ C H 2 - C H ( C 6 H 5 ) - ] N 

and 

polyvinyl chloride (PVC): -(CH2-CHCI-)N 

In these three examples, the polymer molecules are built up from one type of 
constitutional unit, or monomer: ethene, styrene, and vinyl chloride, respectively. 
They are therefore called homopolymers. Polymers built up from more than one type 



of monomer are called copolymers. A copolymer of two monomer units A and B has 
very different properties from those of an A or B homopolymer. Synthetic copolymers 
are produced to improve certain properties, or even as the only means to gain a new 
property. Copolymers that are produced industrially are nearly always random 
copolymers. The different monomer units form an irregular sequence in a random 
copolymer molecule. Copolymers also exist where the monomer units of one type 
are grouped together in one or more blocks. These are called block copolymers. In 
general, the chemical synthesis of block copolymers requires more effort than that of 
random copolymers. Block copolymers are very interesting molecules, as they can 
exhibit very special characteristics. Most of this thesis is concerned with block 
copolymers. Further on in this introduction we will consider block copolymers in a 
little more detail. First we will finish this short general overview of polymers. 

The above might give rise to the impression that polymers are in general 
synthetic molecules. This is certainly not true. There are many examples of 
biopolymers. For example, the carbohydrate polymers: cellulose, which is the chief 
structural material of the plant and vegetable world; starch, the energy reserve in 
plants; and glycogen, the energy reserve in animals. Proteins, the building stones of 
all living species, are a special type of copolymer. (Strictly speaking, proteins do not 
obey the IUPAC definition of polymers. They are, however, generally classified as 
polymers). Proteins are made up of 21 different monomer units, called amino acids. 
Each protein has its own unique sequence of these amino acids, of which a plan is 
laid down in the genes. The most important component of the genes, DNA, is also a 
polymer. Nature has developed mechanisms to translate the genetic blueprint 
present in the DNA into protein molecules with a very low rate of errors occurring in 
the process. Up to 104 amino acid molecules have to be polymerized to make a 
protein molecule. The synthesis of such complicated polymers exactly according to a 
predetermined scheme is a task that lies far beyond the possibilities of conventional 
synthetic chemistry (although mankind has recently discovered how to let nature do 
this for its own benefit). 

The word polymerization was already used by Bertholet9 for the process in which 
several molecules form one large association structure. He used this word to 
describe the reaction of styrene, which upon heating changes from a liquid to a 
transparent solid, as observed in 1839 by Simon.10 The molecular basis of this 
association remained in dispute. The fact that further heating of the polystyrene 
again leads to depolymerization supported the theory that in a polymerization 
reaction a physical aggregate is formed. Not until the 1920's did it become generally 
recognized that the units in polymers are connected by real covalent bonds. 



Staudinger,11 one of the founding fathers of polymer science, played a crucial role in 
the development of this idea. 

Accepting the covalent nature of a polymer, the question arises what shape a 
linear polymer has in solution. Staudinger12 assumed that a polymer molecule was a 
long rigid rod. Kuhn13 showed that this assumption was incompatible with viscosity 
measurements of polymer solutions. He developed an alternative statistical theory of 
polymer chains as linear systems made up of independent elements (statistical 
segments, nowadays also called Kuhn segments). These elements can take on a 
large number of different conformations, resulting in a random coil shape for the 
overall polymer. One can say that this theory forms the basis of all subsequent 
theories in polymer physics. All the work presented in this thesis is based on this 
model of a polymer chain consisting of independent elements. 

Polymers at interfaces 
In many natural and technological processes the occurrence of polymers (and 

also oligomers) at interfaces plays a crucial role. In table 1, which is adapted from ref 
14, a list is given of such processes. 

Table 1 

Adsorption of (or onto) polymers plays a key role in: 

Adhesion 
Coatings 
Lamination 
Reinforcements 
Emulsions 
Suspensions 

Detergent action 
Flotation 

Drilling and cutting 
Solid lubrication 
Paper making 

Magnetic discs 

Crystallization 
Precipitation 
Agglomeration 
Corrosion 

Ageing of composites 
Crack resistance 
Drag reduction 
Textile finishing 
Flocculants 
Chromatography 
Water purification 
Polymer composites 

Soil structure 
Films and membranes 
Biological agglutination 
Biocatalysis 
Immune reactions 
Immunosensors 
Cell recognition 
Adsorption of bacteria 
Drug direction 
Genetic reproduction 
Food stability 
Pesticides 

In this context it is not possible to give an exhaustive overview of all these processes 
in which polymer adsorption phenomena are so important. We shall only mention a 



few in slightly more detail. Together with the list given in table 1 (which by no means 
claims to be complete) this should give the reader some feeling for the diversity of 
applications that exist for scientific research on polymer adsorption. 

We have already mentioned the ancient use of polymers to stabilize dispersions, 
such as ink. This same principle is also used in the production of, for example, 
paints, pharmaceutical products, pesticides, magnetic discs, and foods. Without 
adsorbed polymer a glass of refreshing milk would not look (or taste) half so nice! 
The opposite process of stabilization, destabilization, is also of great importance. In 
this case polymer molecules adsorb simultaneously onto two or more particles in a 
dispersion, thus causing the dispersion to flocculate. The sediment that is formed 
can subsequently be filtrated, which is useful in water purification. Recent research 
has shown that polymer chains on the cell walls of bacteria play an important role 
when these bacteria interact with a solid surface.15 Proteins at interfaces are 
important in biotechnological applications. One can think of the adsorption of 
enzymes onto solid matrices in biocatalysis,16 and of immunoglobulines in 
immunosensors.17 

The study of polymer adsorption forms a discipline of its own. One cannot treat 
the adsorption of polymer molecules as a simple extension of the adsorption of low 
molecular weight species. Simplifying things just a little, one can say that the 
adsorption of small molecules is a "two state" process. A molecule is either adsorbed 
or it is not. Simple models can be used to give a statistical thermodynamic 
description of the adsorption. Of course, also for low molecular weight species 
complicating factors do occur. In certain cases the adsorption takes place on specific 
adsorption sites; in other cases the adsorbate can move freely over the adsorbent 
surface. Interactions between adsorbed molecules (which depend upon the surface 
coverage) may play an important role in the adsorption equilibrium. Especially in gas 
adsorption, sometimes multilayers can be formed. Nevertheless, with some 
inventivity these complications can be incorporated into fairly simple adsorption 
models. This is not the case for polymer adsorption. 

If a polymer chain would only adsorb with all its segments in contact with the 
surface, then it would still be fairly easy to study polymer adsorption. But, although 
the situation that a polymer molecule adsorbs in a completely flat conformation is 
possible, it is very unlikely to occur. A polymer molecule can adsorb in very many 
different conformations. For example, with its first 10 segments adsorbed to the 
surface and with all other segments sticking out into the solution. Or with segment 
numbers 25, 26, 27, 98, and 110 on the surface and all others in the solution. Many 
other adsorbed conformations are possible. An adsorbed polymer layer consists of 
many molecules, each with its own conformation. In order to give a description of 



such an adsorbed layer, one must use statistical methods. This is rather analogous 
to a polymer molecule in solution, whose (average) random coil shape is also the 
result of the many possible conformations. 

Over the years different approaches have been proposed to describe polymer 
adsorption. The reader who wants to know more about these theories is referred to 
the recent overview given by Fleer et a/.18 In this introductory chapter we will pay 
some attention to one of the theoretical models for polymer adsorption, which has 
been used to compute most of the results presented in this thesis. It is the self-
consistent field lattice theory of Scheutjens and Fleer.19.20 Scheutjens and Fleer 
developed this theory to describe the adsorption of homopolymers. Evers et al.2^'23 

extended the theory to included copolymer adsorption. Here we will only discuss the 
basic aspects of the theory in a qualitative manner. Elsewhere in this thesis a more 
quantitative description is given. 

The adsorption theory of Scheutjens and Fleer is a lattice model. A lattice is used 
to generate the conformations of the polymer chains. Each segment is assumed to 
occupy a lattice site. Two connected segments must be situated on two adjacent 
lattice sites. Using this approximation, the number of conformations of a polymer 
chain is greatly reduced. When we refer to segments in the lattice model, we mean 
statistical segments or Kuhn segments. These cannot be identified with a single 
monomeric unit of the polymer chain but usually consist of several monomer units. 
The bonds between the segments are completely flexible. If a segment is located on 
a certain site, a contiguous segment can be on any of the neighbouring lattice sites. 
Furthermore, the excluded volume of the segments is taken into account in an 
average way. This means that conformations are allowed for which two or more 
segments are located on the same lattice site. The approximate manner in which the 
excluded volume is incorporated can lead to artefacts. However, it is far easier to 
generate the complete set of polymer conformations when one need not account for 
the excluded volume of the segments in an exact manner. This advantage outweighs 
the disadvantage of undesired artefacts. 

The adsorption theory of Scheutjens and Fleer is a self-consistent field model. 
The phrase "self-consistent field" indicates how the polymer volume fraction profile is 
computed from the polymer conformations. Consider a polymer solution in contact 
with a smooth, flat surface. The polymer segments gain adsorption energy when 
they are in contact with the surface. This leads to adsorption of the polymer chains. If 
the volume fraction of polymer in the bulk solution is <j>b, then their volume fraction 
close to the surface will be larger than <)>b. We are interested in calculating the 
volume fraction § as a function of the distance z to the surface. In the lattice model 
this means calculating the volume fraction §(z) in each layer z. The volume fraction 



profile (|)(z) is found from a weighted average of all the polymer conformations. For 
each polymer conformation one knows how many of the segments are located in any 
layer z. But this knowledge is itself not yet enough to compute the volume fraction 
profile. Each conformation must also be weighted by a weighting factor. The 
weighting factors account for the energy of that conformation, and for the constraint 
that each lattice site must be filled with a polymer segment or a solvent molecule. If 
the segments have an adsorption energy, conformations with many adsorbed 
segments will have a low energy. If the polymer segments have unfavourable 
energetic interactions with the solvent, the energy of a conformation will depend 
upon the number of segment-solvent contacts. The energy of a conformation is 
determined by the potential energies of all its segments. In each different layer z a 
segment has a different potential energy u(z). This potential energy is itself 
determined by the volume fraction profile. (For example, if the polymer segments 
have unfavourable energetic interactions with the solvent, the potential energy of the 
segments will be high if the solvent volume fraction is high and the polymer volume 
fraction is low). In other words, the volume fraction profile is determined by the 
potential energy profile, and, in turn, the potential energy profile is determined by the 
volume fraction profile. In equilibrium the volume fractions must be consistent with 
the potential field. That is why one speaks of a self-consistent field theory. 

The adsorption theory of Scheutjens and Fleer is a mean-field model. For 
polymer adsorbing onto a flat surface, it is assumed that there is only a 
concentration gradient perpendicular to this surface (z direction). In layers parallel to 
the surface all interactions and volume fractions are smeared out: a mean-field 
approximation is applied in the x and y directions. The mean-field approximation is 
not really inherent to the theory, certainly not in the manner described here. In 
chapter 6 the mean-field approximation is implemented differently. There we are 
concerned with a system where it is not realistic to assume that the concentrations 
are a function of one coordinate only. In this chapter the volume fractions are 
consequently taken to be functions of two independent coordinates. The mean-field 
approximation is then applied in one dimension only. It would also be possible to 
apply the theory without any mean-field approximation, by taking the volume 
fractions as functions of three independent coordinates x, y, and z. However, this 
would mean that the number of variables increases accordingly, which very soon 
leads to computational difficulties. Furthermore, for adsorption onto a flat surface it is 
physically realistic to assume that concentration gradients only occur in the z 
direction. 

The adsorption theory of Scheutjens and Fleer is an equilibrium theory. For a 
given system the equilibrium distribution is computed under certain constraints (for 



example, a fixed chemical potential of the various species or, alternatively, a fixed 
amount of the components). No dynamic aspects are at all taken into account. It is 
only possible to calculate what the equilibrium situation is for a system, not how 
quickly or along what pathway that equilibrium will be reached from a given starting 
configuration. 

Adsorption of homopolymers and copolymers 
In a homopolymer chain all segments are chemically identical. If a homopolymer 

adsorbs, this means that all segments have an affinity for the surface. In one specific 
adsorbed molecule the segments will generally not all be adsorbed at the same time, 
but they are all able to adsorb. A very different situation can occur with copolymers. 
Copolymer chains consist of at least two different kinds of segments. The adsorption 
energies of the different segments are generally not the same. If a copolymer 
consists of two types of segments of which one type does adsorb and the other type 
does not adsorb, this can lead to a very different adsorption behaviour as compared 
to a homopolymer. We first consider the case that all the adsorbing segments, which 
we denote by the letter A, are grouped together in one block and all the 
nonadsorbing segments, which we denote by the letter B, are in another block. We 
then have an AB diblock copolymer. When such a polymer adsorbs from solution, 
the A blocks will cover the surface, whereas the B blocks will stick out into the 
solution. Especially if the B segments dissolve well in the solvent, a thick adsorption 
layer can be formed by these diblock copolymers. 

If the A and B segments are not separated along the polymer chain but, for 
example, mixed in a statistical manner, the diblock copolymer will far more resemble 
a homopolymer. When adsorbing, the A segments will pull the B segments towards 
the surface. An intermediate situation occurs, when the A and B segments are not 
separated into two large blocks but into several smaller alternating A and B blocks 
(multiblock copolymers). The A blocks will adsorb, and the B blocks will form loops 
between the A blocks, protruding into the solution. The greatest part of this thesis is 
concerned with AB diblock copolymers, but in chapter 6 we also study multiblock 
copolymers. 

As mentioned several times before, adsorbed polymer layers can impart colloidal 
stability to a dispersion. The ideal polymer for steric stabilization is a polymer which 
adsorbs in a large amount, but which also dissolves well in the solution, forming a 
thick protective layer around the colloidal particle. For a homopolymer these 
conditions are conflicting. Furthermore, homopolymers tend to form bridges between 
two surfaces, which can lead to an attractive force. Diblock copolymers can more 
effectively give colloidal stability. A diblock copolymer consists of two blocks, each 



with different properties. A good stabilizer will have a strongly adsorbing A block and 
a nonadsorbing B block, which dissolves well in the solution. As only one end of 
such polymer molecules adsorbs, they will not form bridges between two surfaces. 
(Of course certain copolymers can form bridges. If an extra A block is added to a 
diblock copolymer, one gets an ABA triblock copolymer, whose two adsorbing blocks 
can adsorb onto different surfaces. This copolymer bridging effect is also discussed 
in chapter 6). 

The adsorption of a polymer need not only be driven by an affinity of the 
segments for the surface. A dislike of the solvent can also cause adsorption. 
Complications can arise when in a copolymer one of the segment types (the 
adsorbing segments) dislike the solvent (on their own they cannot be dissolved in 
the solvent), while the other segment type dissolves well in the solvent. This disparity 
in interaction with the solvent (in such a case one speaks of a selective solvent) 
favours adsorption of the A segments, but it also leads to the occurrence of another 
phenomenon: the formation of micelles. These are aggregates of polymer molecules 
with the A segments in the middle, and the B segments forming a shell around them, 
which shields the A segments from the solvent. The formation of these micelles is 
analogous to the formation of micelles by surfactants, which consist of far smaller 
molecules. Surfactants are really very short block copolymers (one could call them 
block oligomers). When studying the adsorption of copolymers from a selective 
solvent, the equilibrium between free polymer molecules and micelles should be 
taken into account. This can be done using the self-consistent field lattice theory,24 

although in this thesis we will not consider the possibility of copolymers to form 
micelles. However, the results presented in chapter 3 can be applied to describe 
polymeric micelles. In chapters 3 and 4 we describe the adsorption of AB diblock 
copolymers onto small spherical particles. In chapter 3 we focus our attention on the 
distribution of the B segments around such a particle. This is a very similar situation 
to that which occurs for B segments in a micelle, where they are distributed around a 
core of A segments. 

Strong-stretching approximation 
For all the systems mentioned in the previous section, the adsorption can be 

studied using the self-consistent field lattice theory. For AB diblock copolymers we 
have also applied another theory to describe the adsorbed layer. Using this theory, 
one can calculate the distribution of the B segments. The A segments, which are 
strongly adsorbing, are assumed to form a thin film adjacent to the surface, so that 
their distribution is less interesting. If the adsorbed amount is high enough, the B 
blocks cannot keep their random coil conformation. If they would do so, B blocks 



from neighbouring chains would hinder each other considerably. The excluded 
volume interactions lead to strongly stretched conformations. 

When the B blocks are strongly stretched it is not necessary to generate all their 
possible conformations in order to find the equilibrium volume fraction profile. It turns 
out to be sufficient only to consider a set of most probable conformations. This was 
first realized by Semenov.25 His approach to this problem was subsequently applied 
to studying (homo-)polymer chains that are end-attached to an impenetrable 
surface.26'27 Such a system is often called a polymer brush, because the stretched 
polymer chains resemble the bristles of a brush. We have used such a polymer 
brush as a model for an adsorbed AB diblock copolymer. The amount of adsorbed 
(end-attached) polymer is then an input parameter. In a real block copolymer the B 
blocks are attached to a thin film of A segments, and not directly to the surface. This 
has only minor consequences for the profile of the B segments. Of course, in the 
adsorption process the adsorbed amount is determined by the adsorption 
equilibrium. 

Although in this thesis we investigate polymer brushes as model systems for 
copolymers adsorbed from solution onto a solid surface, polymer brushes can also 
be seen as models for a variety of other interfacial systems in polymer science. First 
of all one can think of polymer chains that are directly grafted to a surface, either by 
a covalent bond with the end-segment of the chain or by a special chemical group. 
This situation hardly differs from an adsorbed diblock copolymer. Polymer brushes 
are also formed when diblock copolymers adsorb at a liquid-liquid or a liquid-air 
interface. (Thin liquid films, as an example of such a system, can be stabilized by 
diblock copolymers). In these cases we have "soft", penetrable interfaces, whose 
characteristics are not necessarily identical to those of a hard, impenetrable solid-
liquid interface. Nevertheless, as a first approximation one can model polymer 
chains attached to a soft surface as a brush on a solid surface. If the brush thickness 
is far larger than the transition layer between the two phases, this approximation 
should not have many undesirable consequences. Finally, brush-like structures can 
be formed in melts or concentrated solutions of block copolymers. In such systems 
the blocks often segregate into different microdomains. These blocks can then be 
treated as chains grafted to the interface between two such domains. Actually, 
Semenov25 first introduced the strong-stretching approximation to describe block 
copolymer melts. It does make a difference whether a brush is immersed in a low 
molecular weight solvent or in a polymer melt. The greater part of this thesis is only 
devoted to brushes immersed in a low molecular weight solvent. Chapter 5 is partly 
concerned with brushes immersed in a polymer solution. In the limit of high volume 
fractions of the dissolved polymer, one is dealing with a brush immersed in a 
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polymer melt. So, in that chapter we will briefly be concerned with brushes immersed 

in a polymer melt. 

Outline of the thesis 
This thesis divides into two parts. Chapters 1-4 deal with (co-)polymers at 

isolated surfaces. The equilibrium profiles are studied of unperturbed brushes and of 
block copolymers freely adsorbing from a solution onto an adjacent surface. 
Chapters 5-7 deal with the interaction between two surfaces bearing adsorbed 
polymer layers. In these last three chapters we use the insights obtained in the first 
four chapters. The results of the last three chapters are directly relevant for 
questions about colloidal stability. 

Chapter 1 is concerned with polymer brushes on flat surfaces. Both the self-
consistent field lattice theory for end-attached polymer chains and the strong-
stretching approximation are introduced. Our aim is to make a rigorous comparison 
between both approaches. By comparing the results of the strong-stretching 
approximation with those of the lattice model, we explore the validity of this 
approximation for different chain lengths, grafting densities, and solvent qualities. 

In chapter 2 an extension of the self-consistent field lattice model is introduced. 
This extension accounts for stiffness in the chains of the polymer brush. It also 
provides a better approximation for the excluded volume of the segments. These 
new concepts are applied to polymer brushes on isolated, flat surfaces (as in chapter 

1). 

Chapters 3 and 4 deal with curved surfaces. In colloidal systems polymers 
generally adsorb onto curved particles, so that the surface curvature is a relevant 
parameter when studying polymer adsorption. In chapter 3 the structure of polymer 
brushes on spherical and cylindrical surfaces is studied. Data for the volume fraction 
profiles of such brushes obtained from the lattice model are presented. We try to 
interpret these data using both the strong-stretching approximation and scaling 
arguments. We also consider the distribution of the end-segments throughout the 
brush. A central question is whether there is a zone near the surface from which 
these end segments are excluded, when the surface is strongly curved. In chapter 4 
we deal with the adsorption equilibrium between free diblock copolymers and diblock 
copolymers adsorbed onto a spherical particle. 

In chapter 5 the interaction between two flat surfaces, each with an end-attached 
polymer layer, is studied. This chapter can be seen as an extension of chapter 1, 
which dealt with a polymer brush on an isolated surface. The main aim of chapter 5 
is to describe the interaction free energy of a system consisting of two such 
surfaces, when both surfaces are brought together. This interaction is calculated 
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both for brushes immersed in pure solvent and for brushes immersed in a solution of 
free polymer chains. As an introduction to the latter system, we also study the 
behaviour of an isolated brush immersed in a solution of free polymer. 

Chapters 1-5 all deal with diblock copolymers. In these chapters we either look at 
freely adsorbing diblock copolymers or we use polymer brushes as a model system 
for adsorbed diblock copolymer layers. In chapter 6 copolymers are studied which 
consist of more than two blocks. The central question in this chapter is under what 
circumstances multiblock copolymers can be used to stabilize a dispersion, and 
under what circumstances such copolymers destabilize a dispersion. We first turn 
our attention to ABA triblock copolymers. These triblock copolymers are able to form 
a bridge between two surfaces, which may induce an attractive force between these 
two surfaces. We then move on to consider multiblock copolymers, consisting of a 
large number of altematingly adsorbing and nonadsorbing blocks. 

The last chapter is about the interaction between two small colloidal particles 
bearing adsorbed diblock copolymer layers. These layers are again modelled as 
terminally attached chains. The relationship between this chapter and chapter 3 is 
the same as that between chapters 5 and 1. In chapter 3 we deal with polymer 
brushes on isolated curved surfaces. In chapter 7 we study the interaction between 
spherical particles with polymer brushes attached to them. The central question in 
this chapter is how the particle curvature influences this (repulsive) interaction. This 
problem is of great relevance for colloidal stability, as sterically stabilized particles 
are always curved. If these particles are not far larger than the dimensions of the 
adsorbed polymer layer, then one may expect that their curvature is an important 
parameter in the process of steric stabilization. We try to gain more insight into this 
system by developing an extended version of the self-consistent field lattice theory. 

All chapters can be read independent of each other. 

Other scientific approaches relevant to this work 
The subjects studied in this thesis can also be investigated using other 

theoretical or experimental approaches. We will not give an elaborate review of 
these, discussing the merits of all major experimental, theoretical, and simulation 
techniques that have been employed to investigate the behaviour of copolymers at 
solid-liquid interfaces. Instead, in this section we only mention some other methods 
that may, in principle, be compared with our model. 

A great deal of our work is concerned with the equilibrium volume fraction profiles 
of polymer brushes. In principle these profiles can be measured using neutron 
scattering and neutron reflectometry. However, these techniques are not sensitive 
enough to investigate most of the details in the volume fraction profiles which we 
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calculate. It will not be easy to find direct experimental evidence for the deviations 
between the strong-stretching approximation and the more exact lattice predictions. 
It is possible to make a useful comparison with Monte Carlo and molecular dynamics 
simulations of polymer brushes. Just as the SCF lattice calculations, these 
simulation methods do not make any a priori assumption about the chain 
conformations. Simulations show the same sort of deviations with respect to the 
strong-stretching approximation as do the SCF lattice calculations. 

The great disadvantage of Monte Carlo and, especially, molecular dynamics 
simulations is that they are computationally very demanding. The CPU times 
involved to simulate a (multi-chain) polymer brush of a reasonable size are orders of 
magnitude larger than the CPU time needed to solve the SCF equations numerically. 
With the present state of the art in computer technology it is certainly not possible to 
perform simulations for all systems presented in this study. However, in one respect 
Monte Carlo and molecular dynamics simulations are more reliable than our SCF 
calculations, as the former do not use a mean-field approximation. In a good solvent 
this mean-field approximation was shown to give the correct results.28 In bad 
solvents there are indications that it is not correct.29 Throughout this study we apply 
the mean-field approximation without questioning its validity. The large majority of 
the results are obtained under 6- or better solvency conditions. In these cases one 
may certainly expect that the mean-field approximation for brushes has no serious 
shortcomings. One should, however, always bear in mind that the results are based 
upon this approximation. 

During the past five to ten years much work has been done on polymer brushes. 
Chapters 1, 2, 3, and 5 clearly are part of the new discipline of "brush research". In 
these chapters the reader encounters many references to the major "brush 
publications". The three other chapters are of a more applied nature, where we try to 
use the theoretical framework to make predictions about interesting colloidal 
systems. Up to now the systems treated in these chapters have not yet received 
much attention, neither from a theoretical nor from an experimental point of view 
(although recently some work has been published on the adsorption of and (de-) 
stabilization by triblock copolymers;30'31 see chapter 6). We hope, and believe, that 
our results on the effect of particle curvature on copolymer adsorption (chapter 4), on 
steric stabilization (chapter 7), and on the adsorption behaviour of multiblock 
copolymers (chapter 6) may inspire further theoretical and, especially, experimental 
investigations of such systems. 
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chapter 1 

Self-Consistent Field Theories for Polymer 
Brushes. 

Lattice Calculations and an Asymptotic Analytical 

Description 

Abstract 

In this chapter we compare two models for calculating the configuration of 
grafted polymer chains at a solid-liquid interface. The first model is the self-
consistent field polymer adsorption theory of Scheutjens and Fleer as extended for 
end-attached chains. In this approach the equilibrium distribution of the polymer is 
found by averaging the statistical weights of all possible chain conformations that 
can be generated on a lattice. The second model is an analytical SCF theory 
developed independently by Zhulina, Borisov and Priamitsyn and by Milner, Witten 
and Cates which predicts the grafted layer structure in the case of strong chain 
stretching. A comparison is made between the results of both theories, and the 
deviations are explained from the assumptions made in the less exact analytical 
theory. 
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1.1 Introduction 

Polymer chains that are grafted at one end onto an impenetrable surface form a 
good model for the analysis of numerous systems, such as sterically stabilized 
colloidal dispersions, block copolymer surfactants at solid-liquid and liquid-liquid 
interfaces, solutions and melts of block copolymers under the conditions in which 
microphases are formed, etc. Theoretical analysis of grafted chain layers was 
initiated by the pioneering publication of Alexander.1 Using scaling arguments,1-3 

the main features of grafted layers were established, particularly the considerable 
stretching of overlapping chains perpendicular to the grafting surface. This 
stretching is greatest for the case of a planar grafted layer, so that the thickness of 
the layer H is proportional to N for solvents of various strengths. This scaling 
relationship between the layer thickness and the degree of polymerization 
suggested the picture of a mainly homogeneous layer of constant concentration 
and at the periphery of the layer a rapid decrease of concentration. 

Further progress in the analytical theory of grafted layers was attained using the 
self-consistent field (SCF) approach proposed by Semenov.4 This approach is 
based on assuming large stretching of the grafted chains with respect to their 
Gaussian dimension to allow the replacement of the set of conformations of a 
stretched grafted chain by their "average trajectory" (the so-called Newton or 
strong-stretching approximation) which significantly simplifies the description of the 
system. This idea was first applied by Semenov to dense grafted layers (i.e. layers 
without solvent) and led to a very elegant theory of super structure formation in 
block copolymer melts under strong segregation conditions. 

This SCF approach was generalized and applied to grafted polymer layers 
immersed in low molecular weight solvents5'6 and solutions or melts of mobile 
polymers.7 Many effects were considered, such as the collapse of the layer due to a 
decrease of the solvent strength,8 the polydispersity of grafted and mobile chains,9 

deformational10 and dynamical11 behaviour of grafted layers, etc. 

These investigations led to a different picture of the grafted layer structure. The 
polymer concentration decreases monotonically on going from the surface to the 
outside of the layer. Furthermore, the free chain ends are distributed throughout the 
whole layer. The system parameters such as solvent quality, polydispersity, etc., 
appear to strongly influence the shapes of the volume fraction profile and the free 
chain end distribution. 

The development of an analytical theory was accompanied by investigations of 
grafted layers by Monte Carlo simulations12-15 and numerical calculations using a 
SCF lattice model.1216 In the latter method, the equilibrium concentration profile of 
the grafted layer is found by accounting for all the possible conformations of the 
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polymer chains that can be generated on a planar lattice. Each conformation is 
weighted by its Boltzmann probability factor. We emphasize that this approach 
gives exact results within the mean-field and lattice model approximations. No 
further approximations are needed to find the equilibrium distribution. Typical 
computation time is on the order of minutes on a desktop workstation. Parameters 
such as molecular weight, grafting density and solvent quality can easily be varied, 
thus enabling the study of the grafted layer structure under various conditions. 
Therefore, a detailed comparison with analytical predictions is feasible. 

The aim of this chapter is the systematic comparison of results obtained by the 
above-mentioned analytical and numerical SCF methods for a planar layer 
immersed in either a pure solvent or a solution of mobile polymer. An initial 
comparison of both approaches for the case of only an athermal solvent17 was very 
promising. In this chapter we consider a wide range of solvent strengths, including 
very good (better than athermal) and poor solvents. 

The combination of these two different methods for the analysis of grafted layers 
is useful for several reasons. First, it provides a better understanding of the 
structural organization of grafted chain layers. Second, it enables us to check the 
validity of the assumptions made in the analytical theory, particularly the Newton 
approximation. Furthermore, the establishment of direct relationships between the 
analytical and the numerical results may stimulate further development of both 
models and their application to other systems. 

In this chapter we shall consider the equilibrium characteristics of a free non-
deformed planar layer, and its deformational behaviour will be considered 
elsewhere. In sections 2 and 3, we summarize the main ideas behind the 
numerical lattice model and analytical SCF theories. Section 4 is devoted to the 
comparison of the results obtained by both methods. 
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1.2 Self-Consistent Field Lattice Model 

The homopolymer adsorption theory of Scheutjens and Fleer18'19 calculates the 
equilibrium distribution of a polymer-solvent system at an interface by taking into 
account all possible conformations, each weighted by its Boltzmann probability 
factor. Cosgrove et al.'12 and Hirz16 showed that this method can be applied to 
terminally attached chains by restricting the conformations to those whose first 
chain segment is in the layer adjacent to the surface. In this section we describe 
both versions for the case of nonadsorbing polymer segments, that is, where 
segments and solvent molecules are assumed to have the same affinity for the 
surface. In this case the polymer tends to avoid the surface in order to minimize the 
loss of conformational entropy. 

Consider a lattice consisting of M layers, numbered z/£ = 1, 2, ..., M, where z 
is the distance from the surface and I the thickness of a layer. Layer 1 is the layer 
adjacent to the surface and layer M is in the bulk solution. We assume full 
occupancy of the lattice layers. Each layer consists of L lattice sites, each of which 
accommodates either a polymer segment or a solvent molecule. A fraction XQ of the 
surface of a lattice site is in contact with other sites in the same layer. Similarly, a 
fraction Xi is in contact with sites in a lower layer and another fraction X-\ with sites 
in a higher layer. For a simple cubic lattice, which has been used to derive all the 
results presented in this chapter, X0 =2/3 and A.1 = 1/6. The cubic lattice gives an 
equal a priory probability to a bond between two segments in any of the four 
directions parallel to the surface as well as to a bond toward the surface or away 
from the surface. 

Polymer chains in a concentration gradient 

We first consider the general case of (non-grafted) polymer chains and solvent 
molecules distributed over the lattice. The chains are N segments long. Within each 
layer a mean-field approximation is applied, so we can write the volume fraction 
profile of segments, <|>(z), and solvent molecules, 1-(|>(z), as functions of z alone. In 
the bulk solution the polymer concentration is (|>b. As mentioned above, we assume 
that there is no net adsorption energy of the polymer segments with respect to that 
of the solvent. Nearest-neighbour interactions between polymer segments and 
solvent are accounted for by the Flory-Huggins interaction parameter %. Because of 
the mean-field approximation all interactions within a layer are smeared out. This 
means that the potential energy u(z) of a polymer segment in layer z relative to that 
in the bulk is given by 

u(z)/kT = x(< 1-24>(z) > -1 + 2(|>b)-ln(1-(|>(z)) + ln(l-4)b) (1) 
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where the angular brackets <> denote a weighted average over three layers, which 
accounts for the fraction of contacts that a segment or solvent molecule has with its 
nearest neighbours in these layers. For example, the average volume fraction of 
nearest-neighbour segments of a site in layer z is given by 

«t>(z)> = A-1 ty(z-£) + X0 <Kz) + h <t>(z+̂ ) (2) 

The segment potential u(z), which corresponds to -kT ln(pj) in ref 18, is the 
derivative of the free energy with respect to the segment concentration in layer z; 
i.e., it is determined by the change in free energy that takes place upon exchanging 
a solvent molecule in layer z with a single polymer segment in the bulk. This 
change is comprised of contributions from the loss of interaction energy, -%<§(z)>, 
which is due to the removal of the solvent molecule from layer z, the gain in energy 
from interactions of the solvent molecule with the bulk solution, %$b, the gain in 
interaction energy due to the insertion of the segment into layer z, % < 1 — <>(z) >, its 
loss in interaction energy due to its removal from the bulk, -x(l-<t>b), and a term for 
the change in the translational entropy of the solvent molecule, ln(1 — <[>(z)) -
ln(l-(|)b). The translational entropy of the solvent is included in u(z), whereas the 
entropy of the polymer is accounted for in the conformation statistics which are 
described below. 

We define a segment weighting factor G(z) as 

G(z) = exp(-u(z)/kT) (3) 

which is a Boltzmann factor of the segment potential in layer z. Detached segments 
(monomers) would have a distribution given by G(z). The intermolecular 
interactions are included in u(z) within the mean-field approximation, but in a chain 
the distribution of a segment is also affected by that of all the other segments in the 
same molecule and may depend on its position in the chain. The connectivity of the 
segments is accounted for in the end-segment weighting factor G(z,s), defined as 
the average statistical weight of all conformations of an s-mer of which the last 
segment is located in layer z and the first segment may be located anywhere in the 
system. If segment s is in layer z, segment s - 1 must be located in one of the layers 
z-£, z, or z + £. This means that G(z,s) is proportional to <G(z,s-1)>, the 
weighted average of statistical weights of (s-l)-mers of which the last segment is 
in one of the layers z - / , z o r z + £. The angular brackets denote a similar average 
as defined by eq 2. Furthermore, segment s in layer z contributes a factor G(z). It is 
now easily seen that a recurrence relation holds which enables us to calculate 
G(z,s) for all values of s: 

G(z,s)=<G(z,s-1)>G(z) (4) 
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The sequence is started with G(z,1) = G(z), the statistical weight of a monomer. 
Thus, G(z,s) is calculated for all s < N, for a given set of values for u(z). To arrive at 
our goal of finding an expression for the total segment volume fraction <Ks,z) of the 
sth polymer segment in layer z, we realize that the sth segment of a polymer of N 
segments can be viewed as being simultaneously the end-segment of an s-mer 
and of an (N + 1-s)-mer. This means that the total statistical weight of the chain is 
given by the joint probability that both end-segments of the subchains are on the 
same site or, because of the mean-field approximation and apart from a factor L, in 
the same layer. Thus, (|>(s,z) becomes 

<Kz,s) = C G(z,s)G(z,N-s + 1)/G(z) (5) 

Here, the denominator accounts for the fact that segment s is counted twice 
(belonging to both chain parts). The normalization constant C can be obtained in 
two ways. In a closed system the total number n of polymer molecules is fixed and 
C follows from the boundary condition n = L ^ <|>(z,s). This relation is valid for any 
s, since there are n segments s in the system. If we substitute <|)(z,s) from eq 5 for 
s = 1 or s = N, we obtain: 

Alternatively, C can be expressed in the bulk concentration §b, which is especially 
useful for open systems. In the bulk solution (|>(z,s) must equal (|>b/N. Moreover, 
according to eqs 1-3, in the bulk solution, u(z) is zero and all G's are unity. Thus, 
from eq 5 it follows that 

C = *b /N (7) 

Finally, the total polymer volume fraction in layer z is 

4Kz) = Zs4>(z,s) (8) 

This volume fraction profile, obtained for a given u(z) profile, should be consistent 
with eq 1 for all values of z. This provides a set of M simultaneous equations in M 
unknown variables u(z), which may be solved by the numerical method (for free as 
well as grafted chains) given in Appendix 1. 

Grafted chains 
Above, we discussed the general case of polymer chains which may adopt any 

possible conformation. However, if the chains have one of their ends attached to 
the surface, the first segment must be in the first layer. Consequently, the 
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generation of chains, using eq 4, must start with Gg(z,1) (where the subscript g 

denotes grafting) being equal to zero for all z *• 1 : 

„ , , fG(z) if z = 1 
G 3 ( Z ' 1 ) = | 0 if Z , 1 <9> 

and eq 4 is replaced by 

Gg(z,s)=<Gg(z,s-1)>G(z) (10) 

Generally, Gg(z,s) < G(z,s) and Gg(z,s) is zero for z > s. In the chain, segment s is 
the joint between a grafted chain of s segments and a non-grafted free chain of N-
s+1 segments. Equation 4 is still valid for generating the conformations starting 
from the other end of the chain, i.e. the chain part from segment N down to s. Thus, 
for grafted chains the equivalent of eq 5 becomes: 

(t>g(z,s) = CgGg(z,s)G(z,N-s + 1)/G(z) (11) 

The total number ng of grafted polymer chains is fixed by the grafting density 
a = ng/L and determines the value of the constant Cg according to eq 6. 

Grafted chains in a solution of free polymer 
If the grafted layer is immersed in a solution of free polymer chains of Nf 

segments, both the volume fraction profile (J>g(z) of the grafted chains and that of the 
free chains, <|>f(z), are calculated from the same potential energy profile u(z). In eq 1 
the volume fraction of the segments <(>(z) is given by <>g(z)-t- <|)f(z). To find the 
volume fractions of the mobile chains, <j>f(z), eqs 4 and 5 are used, and for the 
grafted chains eqs 9-11 are used. The normalization constant for the free polymer 
is determined by the bulk volume fraction (Cf =i^JH() and that of the grafted 
chains by the grafting density (Cg = o/XzGg(z,N)). 

Self-consistent field 
The volume fraction profiles of grafted and free polymer are now given as a 

function of the segment potential profile. In turn, the segment potential itself is 
determined by the volume fraction profile (see eq 1). The problem boils down to 
finding a potential profile which is consistent with the volume fraction profile that it 
produces. Mathematically, this is equivalent to solving an implicit set of equations 
for which a numerical iteration scheme is provided in Appendix 1. 
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1.3 Analytical Theory 

The analytical SCF theory as developed by Zhulina, Priamitsyn and Borisov20 

and Milner, Witten, and Cates6 predicts the asymptotic behaviour of grafted chains 
as the chain length increases. Here we summarize the main equations, 
emphasizing the similarities and differences with the lattice model and using the 
same nomenclature as in the previous section. 

Consider a planar layer of long (Ng » 1) fully flexible polymer chains grafted 
at one end onto a solid surface with relative surface coverage a = ng/L, where ng 

is the total number of chains and L the maximum number of chains that could be 
grafted onto the same surface (f2/c is the surface area per chain, which is called a 
in ref 5, and a/e2 is the number of grafted chains per unit area, which is called c by 
Milner, Witten and Cates10). The chain thickness £ (which in this chapter is 
assumed to be equal to the Kuhn segment length) corresponds to the lattice 
spacing in the model of the previous section. When the grafted chains are strongly 
stretched with respect to their Gaussian dimension, R0 = A/N, the free energy A of 
the system can be written as 

H z ' H 

LEF =^Jdz>g(z ' .N)JdzE(z lz ' .N) + 7Jwz)]dz (12) 

The first term in this equation represents the contribution from the elastic chain 
stretching in the layer. It is determined by the function E(zlz',N) = dz/ds, which 
gives the local stretching of a chain at distance z from the surface when its free end 
is located at z' > z, and by the volume fraction profile of free chain ends <])g(z',N). 
For a given free chain end location z', the other segments in the chain are assumed 
to take the most probable path from the grafting surface to z'. The chain stretching 
function E(zlz',N) determines the position z(s) of every segment, or, equivalently, 
1/E(z I z',N) gives the segment density of the chain at z when its free end is at z'. In 
the lattice model there are many conformations for a chain grafted with one end to 
the surface and with its other end at some specified location. Each segment except 
the first one is not specifically located in one layer but has a density distribution 
given by eq 5. However, the average value of z(s), which follows from the volume 
fraction profile (]>(z,s) of segment s, is 

fz(|)(z,s)dz 
z(s> = f , , ^ =a Lz<t>(z.s)dz/l (13) 

J <|>(z,s)dz Jz 
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Assuming that the most probable path may be approximated by the average path, 
the chain stretching function E(zlz',N) can now be expressed in lattice model 
parameters as 

E(zl2',N) = ̂  = o-1Xzz(^g(z,s + 1)-(|)g(z,s-1)) (14) 

The second term in eq 12 accounts for the free energy of mixing the grafted 
chains with the other molecules in the system, f[<|)(z)] being the free energy density 
of mixing and <t>(z) the volume fraction of grafted polymer at height z from the 
surface. 

Taking into account the three additional conditions below, one can derive the 
equilibrium volume fraction profile (])g(z), the free chain end volume fraction profile 
(|>g(z',N), the local chain stretching E(zlz',N), and the thickness H of the grafted 
layer. The first two conditions are 

f d Z Nq (15) 
£E(zlz',N) 

and 

H 
j(!)g(z)dz/^ = o-Ng (16) 
o 

and the third one is the relationship between (|>g(z), c|)g(z',N), and E(zlz',N) which 
expresses that the total volume fraction at z is the integral over z' of all contributions 
by chains ending at z': 

V(Uz',N)dz' 

•»"»-{tbsr (17) 

In ref 20 the derivation is carried out by minimizing the free energy function A of 
eq 12 under these constraints, using Lagrange's method of undetermined 
multipliers. This results in an expression for E(zlz',N) that does not depend on the 
character of the interactions in the layer and is given by 

E(zlz\N)= - M z , 2 - z 2 ) 1 / 2 (for 0<z<H) (18) 
2Ng 

The chains are stretched inhomogeneously; that is, their stretching is greatest near 
the grafting surface and zero at the free chain end. The volume fraction profile §(z) 
follows from the potential field u(z), which is given by the equation 
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o<Kz) 

A - ^ ^ if 0 < z < H 
8N2^2 (19) 

0 if z > H 

where the numerical constant A is a Lagrange multiplier defining the reference 
potential of u(z). If we give A a value such that the potential is zero in the bulk, then 
eq 18 defines the potential analogously to eq 1. The shape of the potential profile 
u(z) is parabolic and a function only of N£, the contour length of the chain, but 
independent of interactions and grafting density. Milner, Witten, and Cates6 have 
pointed out the equivalence between following the grafted chain from its free end 
toward the surface, arriving after a fixed number of segments independent of the 
position z' of the free end, and following a classical particle in harmonic oscillation 
which moves from its maximum displacement z' to the centre in a time independent 
of the amplitude z' and with velocity E(zlz',N). In both cases the potential energy 
profile is parabolic. 

The shape of the volume fraction profile is not yet determined once u(z) is 
found, for it also depends on the exact form of f[(t>(z)]. The free energy of mixing can 
be written as a Flory type of free energy of mixing: 

f[4>(z)] = (1 - 4>(z)) ln(1 - <Nz)) + x<|>(z)(1 - 4>(z)) (20) 

where % is the Flory-Huggins interaction parameter. The usual contribution of the 
translational entropy of the polymer chains to the free energy is absent because of 
the chains being grafted. Substitution of eq 20 into eq 19 gives the following 
relation between the potential and the volume fraction profile 

M = _ln(1-<|>(z))-2Z<|.(z) 
3 i r 2 z 2 

A - ^ ^ if 0 < z < H 
8N 2 r (21) 

0 if z>H 

The expression for u(z) also follows directly from eq 1 by putting (|>b = 0 (all the 
polymer is grafted so there is no polymer in the bulk) and <4>(z)> = ^>(z). In the 
analytical approach the difference between the segment site volume fraction and 
the average volume fraction of nearest-neighbour segments is neglected. Thus, 
<(J)(z)> = §(z) + A,i(<t>(z + 1)-<|)(z))-M(|>(z)-<|>(z-1)), t n e equivalence in the 
analytical theory is 

< 4>(z) > = 4Kz) + A,! d2ty(z)/dz2 (22) 

As we show below in Figure 4, this approximation does not lead to large 
discrepancies as long as the curvature of the volume fraction profile is small. The 
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value of the numerical constant A can be found from the boundary condition at the 
periphery of the layer. For a 0-solvent or better than ©-solvent (% < 0.5), 
(|)(H) = 0, while in a worse than ©-solvent (% > 0.5), <|)(H) = ty'b, where <t>'b is the 
equilibrium concentration on the coexistence curve for the limit N -> o° (see also ref 
21). Within the framework of the Flory approximation <|>'b is obtained from the 
condition 

Am/kT = ln(l-4)'b) + (|>'b +%(f b f = 0 (23) 

where Am is the chemical potential of the solvent molecules in the concentrated 
phase with respect to that in the dilute phase which is pure solvent. Introducing the 
reduced coordinate t = z/H and average volume fraction § of polymer in the 
grafted layer, 

$=U(t)dt = - L (24) 
o H 

we obtain the final equation for the profile <|>(z): 

-In 
1-<Ktp ' •' I-2-2" *2 

-2X[w)-vb)=öna(;- ] if o < t < i 
*\ Y I 84>2 ( 25) 

<l)(t) = 0 if t > 1 

where §'b = 0 for % < 0.5 and (|>'b is given by eq 23 for % > 0.5. The left-hand 
side of eq 25 is just the expression for u(z) when ()>b = <t>'b (assuming «|>(z)> = 
(|)(z)). When §'b = 0, eq 25 reduces to eq 21. For worse than ©-solvents the 
volume fraction profile drops from §(z) = §'b to §(z) = 0 at the periphery of the 
layer. This is accompanied by a discontinuity in the segment potential at this point 
which corresponds to the difference between the segment potential in a solution of 
concentration ct>'b (i.e. In(l-c|>b] + 2x<|>'b; see eq 21) and that in the bulk of pure 
solvent (i.e. zero). 

In Appendix 2 a simple numerical method is given by which cj>(t) can obtained 
from eq 25 for a given combination of % and a. 

Finally, the free chain end volume fraction profile (])(z',N) is obtained by 
inversion of the integral relationship in eq 17, where the functions E(zlz',N) and 
(|)g(z) are given by eqs 18 and 25, respectively. 
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Virial expansion 

For low grafting densities (<|>(t) « 1) the logarithm of eq 20 can be expanded 

with retention of terms of order §z and <|>3 to express the free energy function f[<t>(z)] 

in terms of the virial coefficients v = 0.5-% and w = 1/6: 

f[<Kz)] = V(|>2(z) + w$3(z) (26) 

This expression leads to less precise results, but it enables us to find relatively 
simple expressions for various grafted layer characteristics.5 Expanding eqs 23 
and 25 to powers of <|>(t) gives the corresponding equations for the profiles (|>(t) and 
coexistence concentration (|>'b = -v/2w. For the particular cases of an athermal and 
a ©-solvent the profiles are given by 

m 
-o-t2) 
2V ' 

1/2 

if 0 < t < 1 and % = 0 

if 0 < t < 1 and % = 0.5 

if t >1 

(27) 

The corresponding thicknesses of the layer are 

if % = 0 

if x = 0.5 

H = \ 
m^ 

f 2 \ 1 / 4 

WO 
(28) 

V 
The inversion of the integral relationship in eq 17 gives the following expressions 
for the free chain end volume fraction profile <t>g(t,N): 

\1/2 

*g(t,N) = 

3o l ( l - t 2 ) ' if 0< t < 1 and x = 0 

2o1 if 0 < t < 1 and % = 0.5 
0 if t > 1 

(29) 

In ref 5 it was shown that for low grafting densities the swelling coefficient a of 
the layer, defined as a = H(x = 0)/H(% = 0.5), is a universal function of the 
parameter 

ß = ̂ (2w3a2)~1/4 (30) 
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independent of the molecular weight of the grafted chains. The parameter ß 
depends both on the solvent quality and on the grafting density. The relationship 
between a and ß is given by 

2ß* 

a 
1-

ß 
5a 

~2ß' 

( 2\ 
1 + ^ r 

1 2L 

arctan 

2"\ 

'cc^ 

WJ 

arctan 
f2c0 
V H y 

X^0.5 

X>0.5 

(31) 

a 
1 1 1 1 r 

2nd and 3rd virial coefficients only 

0=0.01 -

-1 3 e4 

Figure 1. Swelling coefficient a versus the parameter ß according to eq 31, 
based on a truncated virial expansion, and as calculated from the more exact eq 25 
for grafting densities a = 0.1 and 0.01. 

In Figure 1 the function oc(ß) is plotted as given by eq 31. The curve passes through 
the point (0,1) at the ©-temperature, where ß = 0 (since v = 0) and a = 1 by 
definition. As expected, in worse than ©-solvents (ß < 0) the swelling coefficient a 
is smaller than unity, while in good solvents (ß > 0) the polymer layer is thicker 
than in a ©-solvent. In most cases the swelling deviates by less than a factor of 2 
from that in a ©-solvent. For comparison, Figure 1 also shows the curves for 
grafting densities a = 0.01 and o = 0.1 that have been calculated directly from 
eq 25 without using the virial expansion. In the first curve only pair and ternary 
interactions are taken into account; in the latter two curves all higher order 
interactions are also accounted for. For high grafting densities these higher order 
interactions, which oppose the variation in swelling, become more important. For 
a = 0.1 the approximation of a(ß) given by eq 31 is much worse than for 
G = 0.01. Clearly, eqs 26-31 lose validity for high grafting densities. In the next 
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section we present and compare results from the lattice model and from the 

analytical theory using the full expression for f[<!>(z)]. 

Grafted chains in a polymer solution 
To conclude this section, we briefly summarize the results for a grafted layer 

immersed in a solution of short mobile polymer chains with a degree of 
polymerization Nf « Ng and a volume fraction profile denoted by $f(z). Now, the 
free energy density of mixing depends on both profiles, <)>g(z) and ty(z). Instead of 
eq 19 we have two simultaneous equations: 

8fog(t),fr(t)] 

&|>g(t) 
= A g - K 2 t 2 

and 

8f[4>g(t),4>f(t)] 

84>f(t) 
A, 

(32) 

(33) 

with 

K^ 
8 

7tH 

V 9 J 

\2 
(34) 

The numerical constants Ag and Af are obtained from the boundary conditions. 
For the simplest case of grafted and mobile chains of the same monomer type in an 
athermal solvent 

f[<>g(t),<t>f(t)] = ^ P l n ( ^ ( t ) ) + (1 - to (t) - <t>g(t))ln(l-<t>f(t) - ())g(t)) (35) 

With the boundary conditions <|>g(H) = 0 and <t>f(H) = <t>j? (where $\s the bulk 

concentration of mobile polymer) the solution of eqs 32 and 33 is 

4>q(t) : 

(1-4,b)[i-exp(-K2(l-t2)) 

+ ^ 1-exp(-K2(l-t2)N f) if 0 < t < 1 

if t > 1 

(36) 

4>f(t) 
f^exp(-K2(l-t2)Nf) 

•? 

if 0 < t < 1 

if t > 1 
(37) 
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No simple algebraic expression for H is available. However, the layer height is 
completely determined by eqs 34 and 36 and can easily be found numerically from 
the equation $ - f <j)(t)dt = 0 for given values of $, Na, and Nf. The volume 

Jt=0 ' y 

fraction profile <|>g(z',N) of free ends of the grafted chains is given by the equation 

2Kt 
Og(t,N)=N 

\V2 \V2 (1-̂ )D \(K^-t)f U*M(K^-^f (38) 

where 

D(y) = e ^ j e ^ d x 
y 

,2 r „2 

is the Dawson integral. 

1.4 Comparison of Results from Both Theories 

In all the figures of this section the solid curves represent results obtained by the 
lattice model while the dashed curves show the asymptotic predictions of the 
analytical theory. The analytical profiles have been calculated by solving eq 25 for 
given values of a and %. 

0.4 

0.3 

0.2 

0.1 

50 100 150 200 z 250 

Figure 2 Volume fraction profile <|)(z) according to the analytical theory (dashed 
curve) and the lattice model (solid curve). Parameters: Ng = 600, a = 0.1, % = 0. 

Figure 2 shows the volume fraction profile of a grafted polymer of 600 segments in 
an athermal solvent. The grafting density is 0.1; i.e., polymer chains are grafted to 
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10% of the surface sites. The very good agreement between the analytical 
predictions and the lattice calculations is striking. Only very close to the grafting 
surface and at the outer boundary of the grafted layer does a small difference 
between both curves occur. The lattice calculation shows a depletion zone at the 
grafting surface. Such a zone was previously seen in Monte Carlo simulations12'13 

and has also been observed by neutron scattering experiments.22 The presence of 
the grafting surface restricts the conformational freedom of the polymer. This effect 
is neglected in the analytical theory. At the other side of the polymer layer the lattice 
calculation shows a "foot" protruding into the solution whereas the analytical theory 
predicts that the slope of the profile becomes monotonically steeper with increasing 
distance. This foot is an exponential decay of the segment density profile, caused 
by the fact that fluctuations of the average trajectory are large near the chain end 
where the chain stretching is weak.23'24 

Figure 3 Volume fraction § versus reduced height t = z/H according to the 
analytical theory (dashed curve) and the lattice model for Ng = 600, 100, 50 and 
25 (solid curves, in order of increasing deviation from the dashed curve): (A) 
X = - 1 , (B) x = 0, (C) % = 0.5, (D) x = 1- The grafting density a is 0.1. 
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Figure 3 shows volume fraction profiles for different molecular weights of grafted 
polymer in a very good solvent (% = - 1 , Figure 3A), an athermal solvent (Figure 
3B), a ©-solvent (Figure 3C), and a bad solvent (% = 1, Figure 3D). In all cases the 
same (high) grafting density of a = 0.1 has been used. The volume fractions are 
plotted as a function of the reduced height t = z/H, where the layer height H is 
taken from the analytical theory, using only eqs 24 and 25. This enables the 
comparison of profiles for different chain lengths Ng under the same conditions. 

According to the analytical theory, <|)(t) is independent of Ng. However, in 
agreement with Monte Carlo simulations,13 Figure 3 shows that this is not valid for 
short chains. The shorter the chain length, the more the lattice model deviates from 
the analytical theory. Here the effect of the assumption made in the theoretical 
derivations that Ng » 1 is expressed. For all solvent qualities an increase in the 
chain length leads to a better agreement between both approaches. For a given 
chain length, increasing the solvent quality also leads to a better agreement. In a 
better solvent, the grafted layer is more strongly stretched. In a poorer solvent the 
layer is more dense, so that the unfavourable interactions between polymer 
segments and solvent molecules are reduced. In other words, the Newton 
approximation, which assumes strong stretching, is more valid in the case of a 
good solvent than for a poor solvent. Following parts A to D of Figures 3 for a fixed 
chain length, the breakdown of the Newton approximation becomes apparent. The 
deviation is largest in Figure 3D, for % - 1, where the analytical theory predicts a 
drop in the segment density profile at t = 1, whereas the lattice calculations reveal 
a more gradual decrease in segment density, especially for the short chains. 
However, in all cases the analytical theory seems to predict the asymptotic 
behaviour for N -» <» exactly. It is also worth noting that recent data from neutron 
scattering experiments on a grafted layer in a bad solvent are well described using 
a step function for the segment density profile.25 

There is another effect which contributes to the deviations, especially in poor 
solvents. In the analytical theory it is assumed that the volume fraction c|)(z) of the 
segments at position z is the same as «|>(z)>, the average volume fraction of their 
nearest neighbours, whereas in the lattice model these quantities are 
distinguished; see eq 2. For weak curvatures of the volume fraction profile (good 
solvent, large Ng) the difference between c|)(z) and «|>(z)> is not great, as 
<|>(z - £) + (])(z +1) ~ 2<Sf(z), but for strong curvatures a more significant effect on the 
results is to be expected. This effect can be quantified by introducing the same 
assumption into the lattice model. This means replacing < 1-2c|)(z) > by 1 — 2tfi(z) in 
eq 1 for the potential u(z). Parts A and B of Figure 4 give the profiles of parts C and 
D of Figure 3 for Ng = 100, together with the results for the case that <(|>(z)> is set 
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equal to (|>(z). For the ©-solvent (Figure 4A) the two (solid) curves are virtually the 
same. For the bad solvent (% = 1 ; Figure 4B) the more approximate result is in 
slightly better agreement with the analytical predictions. However, a relatively large 
deviation still remains, which must be due to the strong-stretching approximation. 

Figure 4 Effect of neglecting the curvature of the segment density profile when 
calculating the nearest-neighbour interactions. The segment density profiles of C 
(X = 0.5) and D (% = 1) of Figure 3 for Ng = 100 are reproduced in graphs A and 
B, respectively, and a second full curve in each graph represents the result when in 
the lattice calculations <1 - 2((>(z)> in eq 1 is replaced by 1 - 2(|)(z). In A the two 
solid curves virtually coincide. In B the latter curve is slightly more in agreement 
with the analytical prediction (dashed curve) where the same approximation is 
made. 

Figure 5 shows segment potential energy profiles of a chain of 600 segments in 
solvents of various qualities (x = 0, 0.5, 0.6, 0.75, and 1.0). As with the volume 
fraction profiles, very good agreement is found between predictions from the 
analytical theory and lattice calculations, except at the grafting surface and at the 
periphery of the layer. For worse than ©-solvents the volume fraction profile has a 
discontinuity at z = H. This discontinuity is caused by a jump in the potential 
profile from u = — ln̂ 1 — <}>,b ] — 2%ct>'b (the value of the potential at the periphery of the 
grafted layer; see eqs 23 and 25) to u = 0 (the bulk solution, in this case pure 
solvent, being taken as the reference state for the segment potential). As 0'b is the 
equilibrium volume fraction on the coexistence curve, the chemical potential of the 
solvent remains constant in the neighbourhood of H. The form of the curves is the 
same in all cases. The curves are shifted in the vertical direction only, reflecting a 
shift in the reference potential. 
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Figure 5 Segment potential energy profiles u(z) for grafted chains of 600 
segments and grafting density 0.1 in different solvents: x = 0, 0.5, 0.6, 0.75, and 
1.0 (indicated). Dashed curves: analytical predictions. Solid curves: lattice 
calculations. 
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Figure 6 Effect of grafting density a on the volume fraction profiles (])(z) 
according to the analytical theory (dashed curves) and the lattice model (solid 
curves). Parameters: Ng = 600, % = 0; a = 0.01, 0.1, and 0.28 (indicated). 

Decreasing the grafting density also gives less extended layers as is illustrated 
in Figure 6, where volume fraction profiles are given for a = 0.01, 0.1 and 0.28. In 
all three cases Ng = 600 and % = 0. Although near the grafting surface and at the 
outer boundary of the grafted layer the relative deviation between the two theories 
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indeed increases with decreasing o, the absolute differences remain roughly the 
same. For a = 0.28 the lattice model predicts a volume fraction profile that is 
slightly stronger curved than is predicted by the analytical model. For the limiting 
case that the grafting density is unity the lattice model must give a step function 
profile (c|> = 1 for z < N and § = 0 for z > N). We note that for these long chains 
a grafting density as high as even 0.1 is not easily reached in real systems. For 
example, adsorbed block copolymers typically give far lower densities.26 The 
grafted amount in equivalent monolayers of segments, aNg , varies from 168 for 
CT = 0.28 down to a more reasonable value of 6 for a = 0.01. 

Figure 7 Distribution function of free ends, (t)g(t,N)Ng, for chains of 600, 100, 50, 
and 25 segments and grafting density CT = 0.1, according to the analytical theory 
(dashed curves) and the lattice model (solid curves): (A) in an athermal solvent; (B) 
in a ©-solvent. 

So far, we have only compared the overall volume fraction profiles predicted by 
both theories. End-segment distribution profiles are plotted in Figure 7A for an 
athermal solvent and in Figure 7B for a 0-solvent. Again, we use the reduced 
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height (t = z/H) as the abscissa in order to represent the curves for different chain 
lengths in one figure. Moreover, we have multiplied (|)g(z,N) by Ng, so that the areas 
under the curves are all the same. As was the case with the total volume fraction 
profile, the agreement between the analytical theory and the lattice model becomes 
better for longer chain lengths. The most striking feature when comparing parts A 
and B of Figure7 is the far better agreement for long chains in an athermal solvent 
compared to a ©-solvent. However, this is mainly due to a difference in 
approximation. The results for the athermal solvent have been calculated using eq 
38 with $ =0 . This is an exact expression for (]>g(z,N) within the strong-stretching 
limit. Such an expression for ©-solvents is not available. Therefore, the results for 
the ©-solvent were calculated using eq 29, which was derived using the virial 
expansion of f[ct>(z)]. In spite of this approximation, it is clear that we expect a finite 

Figure 8 Volume fraction profiles of a grafted layer (Ng = 200, 50 and 25; 
o = 0.1) immersed in an athermal solution of short mobile polymers (Nf = 10) of 
a chemically identical nature. Dashed curves: analytical theory. Solid curves: lattice 
model. Bulk volume fraction of mobile polymer: (A) $ = 0.1; (B) <|>j? = 0.5. 
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end-segment volume fraction throughout the layer, also near the grafting surface, 
even if the grafting density is high and irrespective of the solvent quality. 

We conclude by discussing the case of a grafted polymer layer immersed in an 
athermal solution of short mobile chains of a chemical nature identical to the 
grafted polymer. Parts A and B of Figure 8 show volume fraction profiles versus 
reduced height t for $ = 0.1 and 0.5, respectively, with Nf = 10, a = 0.1, and 
different values of Ng. Increasing the bulk volume fraction (|>j? of the mobile chains 
compresses the grafted layer from H = 67 in Figure 8A to H = 48 in Figure 8B. 
Just as for grafted layers immersed in pure solvent, longer chain lengths of the 
grafted polymer give a better agreement between the analytical predictions and the 
lattice model. It is seen in Figure 8B that the mobile chains are able to penetrate 
throughout the grafted layer. This is due to their short length in comparison with the 
grafted polymer. Mobile polymer of the same chain length as the grafted polymer 
would only penetrate partly into the grafted layer.2728 

1.5 Conclusions 

Very good agreement is found between the analytical theory and the lattice 
calculations. Only at low grafting densities of short chains in a poor solvent, 
considerable deviations are found between the two approaches because of the 
breakdown of the Newton approximation (strong chain stretching limit) in the 
analytical theory. The derivation of elegant expressions for the layer structure by 
expanding the mixing free energy in a virial series, as was done in ref 5, is only 
valid for relatively low grafting densities (see Figure 1). 
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Appendix 1 

Iteration scheme for the lattice model 
As we have only one type of segment and one solvent, our iteration scheme can 

be quite simple (Evers et al.29 give a general scheme for systems with more than 
one different segment types). For a given set of values for u(z), G(z) = exp(-u(z)/kT) 
is calculated and, from these Boltzmann factors, the volume fraction profile of 
grafted and free polymer is found (using eqs 3-11). The volume fraction tys(z) of 
solvent in layer z is obtained from eq A1 : 

4>s(z) = (l-c)>b)exp(-u(z) + x(< 1-2<Kz) >)-1 + 2^b) (A1) 

Thus, for given values of u(z), the volume fractions of grafted polymer, <)>g(z), of free 
polymer, cj>f(z), and of solvent, <)>s(z), can be calculated. In each layer z the sum of 
these volume fractions should obey the boundary constraint: 

F(z) = 4>g(z) + 4>f(z) + <Mz)-1 = 0 (A2) 

The objective functions F(z) form a set of M simultaneous equations (one for each 
layer) in M unknown potentials u(z). This set can be solved by standard numerical 
methods, e.g. using the Fortran program of Powell.30 

Computational aspects for grafted chains 
For long chains and high grafting densities, that is, when the chains are strongly 

stretched, the potentials u(z) are high and G(z) = exp(-u(z)/kT) is smaller than 
unity. As G(z) is recursively applied in eqs 4 and 10, the values of G(z,s) and 
Gg(z,s) become extremely small for large s while the normalization constant 
Cg =o /X zGg( z 'N ) D e c o m e s v e r v large, easily exceeding the available numerical 
range on a computer. Obviously, since the volume fraction of grafted polymer, 
<))g(z,s), is on the order of unity, the product of these quantities must be near unity; 
see eq 11. The numerical overflow and underflow can be avoided by proper 
scaling. First, we realize that G(z,s) may be very small at small z and that it is unity 
for large z, i.e. in the bulk, but that we need only the initial part of the curve because 
in eq 11 G(z,s) is multiplied by Gg(z,s), which is zero for z > s. Consequently, the 
quantities G(z,N-s + 1) for z > s are irrelevant and may be set to zero. This 
eliminates the largest values and enables a substantial rescaling of the relevant 
section of G(z,s). 

Consider the extreme case of straight chains (when the grafted density o = 1). 
Each segment s would be in layer z = s. Mathematically, <|>g(z,s) = 1 if z = s and 
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<))g(z,s) = O if z * s. Then, the only relevant quantities would be G(N-s + 1,s) and 
Gg(s,s). In the following procedure we normalize the distribution functions so that 
these most important quantities are of order unity 

Define scaled distribution functions G(z,s) and Gg(z,s) as 

G(z,s) = {< é ( Z ' S - 1 ) > G (Z)C(S) if Z ^ N - S + 1 (A3) 
[0 otherwise 

Gg(z,s)= <Gg(z,s-1)>G(z)cg(s) (A4) 

where c(s) and cg(s) are introduced to compensate the low values of G(z) and are 
chosen so that G(N-s + 1,s) and Gg(s,s) remain on the order of unity. For example, 
set c(s) and cg(s) equal to unity for s = 1 and c(s) = l/G(N-s + 1,N-s + 1) and 
Cg(s) = Gg(s-1,s-1) for s > 1. Essentially, eqs A3 and A4 replace eqs 4 and 10, 
respectively. The relations between the scaled and unsealed quantities are 

G(z,s) = 
G(z,s)nc(s') 

s'-1 

0 

if z < N - s + 1 

otherwise 

(A5) 

and 

Gg(z,s) = Gg(z,s)ncg(s') (A6) 
s'=1 

but the functions G(z,s) and Gg(z,s) are not used. The factors c(s) and cg(s) are not 
too far from unity, while the multiple products in eqs A5 and A6 may be very large. 
The next step is to compute the scaled distribution function <j>g(z,s) of segment s: 

$g(z,s) = Gg(z,s) G(z,N-s + 1)/G(z) (A7) 

and normalize it to obtain <t>g(z,s): 

G*n(z,s) 

<nfl(z,s)=v7y ' (AS) 
9 2>g(z>s) 

z 

This scheme applies only to grafted chains. For free chains the function G(z,s) is 
especially relevant for large values of z and does not need to be scaled. 
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Appendix 2 

Iteration scheme for solving equation 25 
This method consists of a pair of nested loops. In the main iteration loop the 

variable <|> is adjusted until <)>-[_ <t>(t)dt < e, where e can be chosen as an 
arbitrarily small number. We have used e = 10"6. The function (|>(t) is obtained in a 
subiteration which solves (]>(t) for a series of t values, using eq 25 and the current 
value of <j). From the values of <(>(t) the integral f ó(t)dt can be approximated. For 

example, if $(\) is known at t' = ô, 3S, 55 1-5, where 5 is a sufficiently small 
number, the integral is approximately 25^\,(|>(t'). Our results are obtained with 
5 = KT4 . 
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chapter 2 

Chain Stiffness and Bond Correlations in 
Polymer Brushes 

Abstract 

We have incorporated chain stiffness and correlations between neighbouring 
bonds into a self-consistent field lattice model for end-attached polymer layers 
(commonly known as "brushes"). An increase in the chain stiff stiffness leads to an 
increasing brush height. This increase is directly related to the change of the length 
of a Kuhn segment in the polymer chain. Introducing correlations between 
neighbouring bonds gives a higher density of the brush, corresponding to a decrease 
of the brush height. For not too stiff chains these two effects virtually compensate 
each other. Hence, the volume fraction profile of "real" grafted chains is nearly 
identical to that of a polymer brush consisting of freely jointed chains. 

42 



2.1 Introduction 

During the last several years polymer brushes, which are formed by attaching 
one end of each polymer chain to a surface, have been the subject of many 
theoretical investigations.1 One very useful way to study such systems is to apply a 
self-consistent field (SCF) lattice model. For example, the polymer adsorption theory 
of Scheutjens and Fleer2 has been extended to brushes.3"5 In this model all possible 
conformations of polymer chains that can be generated on a lattice are weighted and 
averaged, using a random flight approximation for the chains (freely jointed chains). 
Another approach for polymer brushes has been developed by Zhulina et al.6 and 
Milner et al? The latter theories are based on the assumption that the total set of 
possible polymer conformations can be replaced by a set of most likely trajectories. 
They are more approximate than the lattice model but lead to more handsome 
mathematical expressions. For high grafting densities and long chains, this approach 
agrees very well with the lattice calculations.5 

In this chapter we describe two different extensions of the lattice model. So far, 
the polymer molecules have been described as freely jointed chains. For example, 
immediate step reversals are then allowed. The polymer chain conformations are 
treated as step-weighted walks in a potential field. This potential field depends, in a 
mean-field approximation, on all the components present in the system. In contrast 
to the description of polymer brushes based upon scaling arguments, direct 
correlations are neglected: all interactions between segments enter solely through 
the mean potential field. The molecular architecture of the polymer chains is only 
reflected in the connectivity of the segments. Each bond is basically described as a 
Kuhn segment. In other words, the chain conformation weighting factors are 
calculated using a first order Markov model. The SCF theories of Zhulina et alß and 
Milner et al.7 are based on exactly the same physical picture. Zhulina et al. did, 
however, also consider the more general case that the polymer chain is stiffer than a 
random flight chain. They introduced a stiffness parameter p, which they defined as 
the ratio of the Kuhn length and the segment diameter. This stiffness can easily be 
incorporated into the expression for the elastic free energy of deformation 
(stretching) of a Gaussian coil conformation. 

In this chapter we incorporate chain stiffness into the lattice model. We describe 
the general formalism for doing so. Basically, it means that the statistical weights of 
the chain conformations are calculated using a second order Markov model. We 
discuss two ways of implementing the general formalism for chain stiffness. One 
(rather trivial) way is to join each group of p consecutive segments together to form a 
short rigid rod. The rigid rods are then themselves freely jointed to one another. The 
second way is to introduce energy differences between different segment 
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orientations in a polymer chain. In the Theory section we shall first briefly review the 
"conventional" lattice model for freely jointed chains (f.j.c.) in a potential gradient. 
Then we discuss these two methods of introducing chain stiffness. 

Another modification of the lattice model, which we present in section 3, is the 
incorporation of directional correlations between bonds in close (spatial) proximity. 
These bonds need not be situated close to each other along the polymer chain, nor 
do they even have to be on the same polymer chain. In effect, a kind of nematic 
ordering is taken into account. Although in this case the numerical procedure to 
calculate the brush profile is rather similar to that used for the freely jointed chains 
and that used for stiff chains, the underlying model is fundamentally different. 

In the Results section a selection of data will be presented that were obtained 
with the various forms of the lattice model. 

2.2. Theory for Markov chains 

Freely jointed chains25 

Consider a lattice of M layers, which are numbered z = 1, 2 M, with layer 1 

situated adjacent to the surface. The lattice spacing I is equal to the polymer 
segment diameter. A fraction XQ of the contacts of a lattice site is with sites in the 
same layer. Similarly, a fraction X-\ of the contacts is with sites in a lower layer and 
the same fraction X-\ with sites in a higher layer. For a simple cubic lattice, which has 
been used to derive all the results presented in this chapter, X0 = 2/3 and X^ = 1/6. 
The polymer chains have a chain length of N segments, of which the first is located 
in the first layer. The volume fraction of these first segments is identical to the 
grafting density a. The volume fraction of polymer in layer z is written as §(z). 
Nearest-neighbour interactions between polymer segments and solvent are 
accounted for by the Flory-Huggins interaction parameter %. Because of the mean-
field approximation all interactions within a layer are smeared out. We assume 
throughout this chapter that the polymer segments have no adsorption energy. The 
potential energy u(z) of a polymer segment in layer z is given by 

u(z)/kT = -2X<4>(z)>-ln(l-4>(z)) (1) 

where the angular brackets <> denote a weighted average over three layers, which 
accounts for the fraction of contacts that a segment or solvent molecule has with its 
nearest neighbours in these three layers: 

«Kz)> = X$(z -1) + X0Hz) + M*z +1) (2) 

We define a segment weighting factor G(z) as 
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G(z) = exp(-u(z)/kT) (3) 

which is a Boltzmann factor of the segment potential in layer z. The connectivity of 
the segments in a polymer chain is accounted for by introducing the end-segment 
weighting factors G(z,slz',1) and G(z,slz',N). The quantity G(z,slz',1) is defined as 
the average statistical weight of all conformations of an s-mer of which the last 
segment is located in layer z and the first segment is in layer z'. As the first segment 
is grafted in the first layer, the quantity G(z,slz',1) is only nonzero for z' = 1. 
Moreover, for z > s it automatically follows that G(z,sl1,1) = 0. The quantity 
G(z,slz',N) is defined as the average statistical weight of all conformations of an 
(N-s + 1)-mer of which the first segment (s) is located in layer z and the last 
segment (N) is in layer z'. As this last segment may be located anywhere in the 
system, it is convenient to define G(z,slN) = ̂  ,G(z,slz',N). For a freely jointed 
chain the end-segment weighting factors obey the following recurrence relations: 

G(z,sl1,1)= <G(z,s-1M,1)>G(z) 

G(z,slN) = <G(z,s + 1IN)>G(z) 

For s = 1 and s = N, respectively, these sequences are started as follows, 

G(z,NIN) = G(z) Vz 

and (5) 

G(1,1I1,1) = G(1) 

The volume fraction <|>(z,s) of polymer segment s in layer z is proportional to the 
product of two end-segment weighting factors: 

4>(z, s) = C G(z, s 11,1)G(z, s I N)/G(z) (6) 

Here, the denominator accounts for the fact that segment s is counted twice 
(belonging to both chain parts). The normalization constant C follows from the 
boundary condition a = ]£ <|)(z,s)Vs. Substituting <\i(z,s) from eq 6 for s = N we 
obtain 

C = XG(z,NI1,1) W 

2 

Finally, the total volume fraction in layer z is 

(|>(z) = 2>(z.s) (8) 
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This volume fraction profile, obtained for a given u(z) profile, should be consistent 
with eq 1 for all values of z. This provides a set of M simultaneous equations in M 
unknown variables u(z), which can be solved using standard numerical procedures. 

General formalism for stiff polymer chains. 
We take the freely jointed chain as the starting point for our discussion. In such a 

chain a bond between two segments can be in six different directions on a simple 
cubic lattice. For a freely jointed chain the probability of any of these six directions to 
occur does not depend on the position of the previous bond. In this section we 
describe a model where this probability does depends on the previous bond. 
Depending on the angle the new bond makes with the previous one, we denote its 
conformation as "backward", "forward", or "perpendicular". This is illustrated in the 
Figure 1. 

backward perpendicular forward 

Figure 1 Three possible bond angles for a sequence of 3 connected segments on 
a cubic lattice. 

As an example we discuss the case that segment s - 1 of a chain is in layer z - 1 
and segment s is in layer z. Segment s+1 can be in layers z - 1 , z, or z + 1. If it is in 
layer z - 1 we have the backward conformation: the two consecutive bonds form an 
angle of 180° and segment s + 1 is located on the same lattice site as segment s - 1 . 
If segment s + 1 is in layer z the bond conformation is perpendicular: the bond angle 
is 90°. On a cubic lattice such a perpendicular conformation can be made in four 
directions. If segment s + 1 is in layer z + 1 the conformation is forward and the bond 
angle is 0°. We denote the a priori probability of each of these three conformations 
as B, P, and F, respectively, so that: B + F + 4P = 1. For a freely jointed chain these 
probabilities are just given by the lattice parameters: B = F = ^ (= 1/6) and 
4P = XQ (= 4/6). It is possible to introduce a certain degree of stiffness of the chain 
by changing the values of the B, P, and F parameters. We discuss two approaches: 
(i) the freely jointed rods model; (ii) the limited bond flexibility model. First we 
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describe the general formalism to calculated the volume fraction profile of a brush 
consisting of stiff chains. 

We consider the general case that the parameters B, P, and F are functions of 
the segment ranking number s. For each segment s we introduce the energies 
UB(s), UF(s), and Up(s) associated with backward, forward, and perpendicular 
conformations of its bonds, respectively. The parameters B(s), P(s), and F(s) are 
related to these energies as follows: 

B(s) = Cexp(-UB(s)/kT) 

F(s) = Cexp(-UF(s)/kT) (9) 

P(s) = Cexp(-Up(s)/kT) 

where the normalization constant C follows from the condition that 
B(s) + F(s) + 4P(s) = 1. 

When calculating the end-segment distribution functions of a polymer chain, we 
have to take into account whether the addition of a new bond to the chain 
corresponds to a backward, a forward, or a perpendicular conformation. The 
appropriate weighting factor for that conformation must then be included. In order to 
do this, we introduce the end-segment weighting factors G(z,s,dl1,1) and G(z,s,dlN) 
as extensions of the end-segment weighting factors G(z,s,l1,1) and G(z,slN) as 
introduced for the freely jointed chain model. In the expression G(z,s,dl1,1) the letter 
d denotes the direction from segment s to s+ 1. If segment s is located in layer z, the 
value of the direction d is -1 when segment s + 1 is in layer z - 1 ; d = 0 when 
segment s + 1 is also in layer z; and d = +1 when segment s + 1 is in layer z + 1. In 
the expression G(z,s,dlN) the letter d denotes the direction from segment s + 1 to s. 
The recurrence relations in eq 4 for freely jointed chains (and the starting conditions 
of eq 5) must now be extended to account for the contribution of the different bond 
conformations to the end-segment weighting factors. The resulting expressions are 
given in eqs A1.1 - A1.5 of Appendix 1. 

In order to calculate the volume fraction of segment s (s < N) in layer z, one must 
realize that if the bond from segment s to segment s + 1 is in direction d, the bond 
from segment s + 1 to segment s must be in direction - d . Hence, we can write: 

(|>(z, s) = - Y G(z, s, d 11,1)G(z, s, -d I N)/G(z) for s = 1,2 N - 1 
IzG(z,NI1,1)d=_1,o,i 

4Kz,N) = - G(z,NI1,1) (10) 
SzG(z,NI1,1) 
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This equation is a generalization of eq 6 for freely jointed chains towards stiff chains. 
We have made use of the fact that the end-segment (s = N) only has one bond. For 
stiff polymer chains G(z,NI1,1) is defined by eq A1.2. 

The model described in this section is basically a cubic lattice version of the RIS 
(rotational isomeric state) scheme as described by Leermakers and Scheutjens.8 

Freely jointed stiff rods. 
We now consider the case that a group of p consecutive segments is clustered 

into a stiff rod. These rods are freely jointed to each other. Conceptually this is the 
easiest model of a polymer chain with stiffness parameter p. We only discuss the 
situation p = 2 but we note that for larger values of p a straightforward generalization 
is possible. The bond between segments 1 and 2 can be placed in any direction. The 
next bond (between segments 2 and 3) must, however, be in a forward 
conformation. The bond between segments 3 and 4 can again be in any of the three 
conformations, but the bond between segments 4 and 5 must be in a forward 
conformation, etc. 

If we have a chain of freely jointed stiff rods, each with a length of 2 segments, 
the segment bonds are alternatingly completely flexible and fixed in the forward 
conformation. The total number of segments in a chain must be an odd number in 
order to have an integer number of rods. In general, the chain length (expressed as 
number of segments) must be equal to np + 1, with n an integer number. In eq A1.1 
we take F(s) = 1 and B(s) = P(s) = 0 for even values of s, and B(s) = F(s) = X-\ and 
P(s) = XQ for odd values of s. In eq A1.4 we take F(s) = 1 and B(s) = P(s) = 0 for odd 
values of s, and B(s) = F(s) = \-\ and P(s) = Ä,0 for even values of s. In this case the 
polymer has to be grafted both in the first and second layer (or, more generally, in 
the first p layers) with a grafting density of a/2 in both these layers. This is 
necessary in order to have such a set of conformations that all segments can be 
both in odd and even numbered layers. The easiest way to do this is to calculate the 
end-segment distribution functions for the chains grafted in the first layer and in 
those grafted in the second layer separately. The quantity G(z,s,dl1,1) is replaced by 
G(z,s,dlj,1), where the index j can take the values 1 and 2. Equation A1.3 is replaced 
by: 

1/6 if d = 1 
G(j,1,dlj,1) = - 4/6 if d = 0 for j = 1 p (11) 

0 if d = -1 

Equations A1.1, A1.2, A1.4, and A1.5 are applied both for j = 1 and j = 2. The 
volume fractions <J>(z,slj) are also calculated for j = 1 and j = 2: 
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è(z, s I j) = Y G(z, s, d I j , 1)G(z, s, -d I N)/G(z) for s = 1,2 ..., N - 1 
IzG(z,Nl j ,1)d =^o, i 

4,(z,Nlj) = — - H -G(z,Nlj,1) (12) 
EzG(z,Nlj,1) 

The total volume fraction of polymer <))(z) in layer z is: 

N 

<f(z)= S I<t>(z.slj) (13) 
i=l,2 s=i 

Limited bond flexibility. 
In the limited bond flexibility model all segment bonds are treated equally. Instead 

of making half the bonds completely flexible and the other half completely stiff, they 
are all made partly stiff. We first (arbitrarily) define B(s) = 0 for all s, so that all 
conformations are excluded where bonds fold back onto the previous bond. If there 
were no further restrictions, F(s) = P(s) = 1/5 according to eq 9. However, we also 
introduce a "bending" energy difference Uben(s) = Up(s)-UF(s) between the forward 
and perpendicular conformations, which is positive if a forward conformation is 
preferred above a perpendicular one. In our present implementation Uben is 
constant: Uben(s) = Uben for all s. The chain conformation probabilities depend only 
upon this energy difference and not upon the absolute values of UF(s) and Up(s). 
Two consecutive bonds must overcome the energetic barrier Uben in order to "bend" 
and form a 90° bond. For a cubic lattice we now can write: 

F = 1 - 4P and P = (4 + exp(uben/kT))_ ( 14) 

with F(s) = F and P(s) = P for all s. 
The two constraints that we have imposed upon the conformations (no 

backfolding and restricted bond flexibility) make the polymer chain stiff. For a freely 
jointed chain the ratio p between Kuhn length and bond length is unity. For the stiff 
chains p > 1. The dependence of p on P is derived in Appendix 3. 

In the limited bond flexibility model Uben is an input parameter. From eq 14, F 
and P follow directly, and B = 0 as indicated above. Then applying eqs A1.1 - A1.5 
and subsequently eq 10, the volume fraction profile (|>(z,s) of each segment can be 
calculated. Combining this with eq 8 yields the total volume fraction profile of the 
polymer. As for freely jointed chains, this volume fraction profile must be consistent 
with eq 1 for all values of z. 
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2.3 Correlations between neighbouring bonds 

The freely jointed chain model, which was discussed in the first part of section 2, 
is an extension of the classical Flory-Huggins theory for homogeneous polymer 
solutions towards systems with a concentration gradient. The weighting factor of an 
arbitrary chain conformation follows from the end-segment weighting factors. These 
end-segment weighting factors are calculated using a recurrence relation where, for 
example, G(z,sl1,1) is determined by G(z,s-111,1), but does not directly depend on 
any values of G(z,s'l1,1 ) for s' < s - 1 . That is why a freely jointed chain may be called 
a first order Markov chain. In the classical Flory-Huggins theory polymer chains are 
treated in a completely analogous manner. 

The stiff chains discussed in the previous section may be considered as second 
order Markov chains. For these chains G(z,sl1,1) depends on the position of 
segments s -1 and s -2 . As shown above, the extension from a first order to a 
second order Markov chain is easy to make, both conceptually and from a 
computational point of view. An alternative form of the Flory-Huggins theory for 
homogeneous solutions can be derived using second (or higher) order Markov 
chains. However, this has no effect on the equations that describe the 
thermodynamic parameters of a polymer solution, as long as these are defined with 
respect to the pure amorphous phases of its constituent components. For example, 
the chemical potential of a monomeric solvent in a homogeneous mixture of solvent 
(volume fraction 1-<)>) and polymer (volume fraction <|>) is given by: 

± ^ = ln(1-<») + 4>-4>/N + x4>2 (15) 

The chemical potential is defined with respect to a system consisting of pure solvent, 
denoted by the superscript *. Equation 15 holds both for systems with freely jointed 
chains and for systems with second order Markov chains. 

In this section we extend the lattice model for polymer brushes to incorporate 
correlations between neighbouring bonds. These interactions are fundamentally 
different from those giving rise to the chain stiffness and which were accounted for in 
the previous section by applying a second order Markov procedure. We now have to 
deal with excluded volume interactions between segments that are spatially in close 
proximity, but that need not at all be close to each other along the contour of the 
chain (in fact, the segments even need not be situated on the same chain). Below, 
this feature is explained in more detail. 

Fora Markov chain the value of G(z,sl1,1) depends on <G(z,s-1l1,1)> and G(z) 
(eqs 4 or A1.1). The factor <G(z,s-1l1,1)> accounts for the position of segment 
s - 1 , to which segment s is attached. The factor G(z) is a function of the potential in 
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layer z. If <|)(z) = 0, then the second term in eq 1 contributes a factor unity to G(z). All 
lattice sites in layer z are available for segment s. However, if <|)(z) > 0 and, for 
example, segment s -1 is in layer z - 1 , then there is a finite probability that the step 
from segment s -1 in layer z - 1 to s in layer z is blocked by a polymer segment in 
layer z. This probability is accounted for by the nonzero value of <])(z) in the second 
term of eq 1, and enters through G(z) into the recurrence relation (eqs 4 or A1.1). 
The fact that a step may be blocked is caused by the excluded volume of the 
segments. 

At this point one must realize that the use of the term ln(1 — <(>) corresponds to an 
approximation of fundamental importance, which is related to the mean-field 
character of the model. Suppose a large fraction of sites in layer z are filled with 
segments (s) that have a connected segment ( s - 1 or s + 1) in layer z - 1 . In this 
case the probability for a test chain to make a step from layer z - 1 to z is higher than 
that predicted by eq 4. Such a step is not blocked by a segment in layer z whose 
preceding (or following) segment is in layer z - 1 . Parallel bonds never interfere with 
each other! The mean-field character of the theory discussed so far does not 
incorporate this aspect of the excluded volume interactions. 

We can account for this effect by introducing a quantity <|)(zlz') as the fraction of 
possible bonds between layers z and z' that is actually realized. Obviously, 
<t>(zlz') = 0 for |z-z'|>1 and <J>(zlz+1) = (|>(z+1lz). If segments s and s + 1 are both in 
the same layer z, this means that the value of d in the end-segment weighting 
factors G(z,s,dl1) and G(z,s,dlN) is equal to zero. For z = z' we may then write: 

N-1 
<KzIz) = G ( ° N m ) I(G(z,s,011,1)G(z,s,01N))/G(z) (16) 

Similarly for z'= z +1 we have: 

* / 7 i „ + n a N-YG(Z,S,1I1,1)G(Z,S,-11N) + w 

* ( ' Z + 1) = IzG(z,NI1,1) äG(z + 1,s,-1H,1)G(z + 1,s,1IN)J/G(Z) ( 1 7 ) 

Because of the parallel bonds, the probability of making a step from layer z to z +1 is 
increased (as compared to eq 4) by a factor 

g(zlz + 1) = (l-4)(zlz + 1))-1 (18) 

On average, half of all bonds in layer z (i.e. (|>(zlz)) will be in the x-direction and the 
other half will be in the y-direction. So, the probability of making a step from layer z 
to z is increased by a factor 
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g(zlz) = ̂ 1 - ^ z l z ) j (19) 

These factors g(zlz') must be added to the recurrence relations (eqs A1.1 and A1.4). 
This leads to the new recurrence relations and starting conditions which are given in 
Appendix 2. In this appendix the bond correlation factors are incorporated into the 
general formalism for stiff polymer chains. The method is basically a cubic lattice 
version of the SCAF (self-consistent anisotropic field) scheme given by Leermakers 
and Scheutjens.9 

Having calculated the end-segment distribution functions, the polymer volume 
fractions again follow from eq 10. The end-segment distribution functions are 
computed for a set of g(zlz) and g(zlz+1) (and u(z)) values. These values must be 
consistent with the volume fraction profile. This means that for a system of M layers 
we have to solve a set of equations with 3M variables: the potential u(z) and the 
factors g(zlz) and g(zlz+1) in each layer z. 

The bond correlation factors can also be taken into account in the statistical 
thermodynamics of a homogeneous polymer solution. This leads to different results 
as compared to those obtained in the classical Flory-Huggins theory. As an example 
we again give the chemical potential of the solvent in a polymer/solvent mixture. 
Incorporating the bond correlations gives the following result for a cubic lattice:9'10 

kT =-3ln(j-! + ^ J + ln(1-4>) + X ^ (20) 

which reduces to eq 15 in the limit of low volume fractions. 

2.4 Results 

In the previous section two methods were described to incorporate chain stiffness 
into the lattice model. We start this section by comparing results of these two 
models. In Figure 2 volume fraction profiles are given for freely jointed stiff rods (with 
p = 2) and for a chain with limited bond flexibility, for a brush with a grafting density 
a = 0.1 and chain length N = 401. In the former model the volume fraction profile is 
the sum of the profiles of two brushes grafted in the first and second layer, 
respectively. This is the reason why the data points do not all lie exactly on one 
smooth curve. The computations using the limited bond flexibility model were done 
for Uben = In2 (kT). This also corresponds to a Kuhn length p = 2. The brush height 
in Figure 2 is higher than what would be calculated for a freely jointed chain (where 
p = 1); a more detailed comparison is given in Figure 3. The overall agreement 
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between the results of both models is good. An advantage of the limited bond 
flexibility model over the freely jointed rods model is the fact that p can take any 
value (and not only integer values). Further computations of the effect of chain 
stiffness on the brush structure are shown in Figure 3, which was calculated using 
the limited bond flexibility model. 

0.4 

4> 

0.2 -

0 100 200 

Figure 2 Volume fraction profile of a polymer brush as predicted by the model of 
freely jointed rods (data points) and the limited bond flexibility model (solid curve), for 
a stiffness p = 2. Grafting density a = 0.1, athermal solvent (% = 0), chain length 
N = 401. 

The solid curves in Figure 3A are the volume fractions profiles for a = 0.1, 
N = 400, and Uben varying from 0 to 5 kT. The volume fraction profile according to 
the freely jointed chain (f.j.c.) model is also given by a solid curve. The f.j.c. brush 
has a smaller height than the brush for which Uben = 0. This is to be expected as in 
the latter brush direct backfolding of the chain segments is forbidden. Although Uben 

= 0 (so that there is no energy difference between a "perpendicular" and a "forward" 
conformation) the prevention of direct backfolding does already lead to noticeably 

ben . stiffer polymer chains. The Kuhn length for U =0 is 1.5. Increasing U iben 

iben . corresponds to a stiffer chain and a larger brush height. For UDe" = 5 kT (p = 73.7) 
we have reached the situation that a considerable number of chains are completely 
stretched (all bonds are in the "forward" conformation) and the brush height is equal 
to the chain length. In this case the profile approaches a step-profile. 

ben . For the f.j.c. brush and for the brush with U = 0 the volume fraction profiles 
show a depletion zone next to the grafting surface. Previously this phenomenon has 
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400 

Figure 3 Volume fractions profiles predicted by the limited bond flexibility model 
for Uben = 0, 1, 2, 3, 4, and 5 kT as indicated in the figure and for a freely jointed 
chain (f.j.c), for chains of 400 segments. (A): o = 0.1, and % = 0; (B): a = 0.01, and 
X = 0; (C): a = 0.1, and % = 0.5. The dashed curves are the predictions of the theory 
of Zhulina et al.6 for p = 1 (i.e. the f.j.c. model) and for stiffnesses corresponding to 
Uben = 0, 1, 2, 3, 4 and 5 kT. In part A the dashed curve for Uben = 5 kT is not 
shown. 

54 



been seen both in SCF calculations5 and in Monte Carlo simulations.11 For stiffer 
chains (Uben > 1) the profiles are oscillatory in this zone. This behaviour is a 
consequence of the way in which we have defined the contribution of the first two 
segments towards the probability weighting function of the chain conformations (see 
eq A1.3). The bond between segments 1 and 2 (which goes from a site in layer 1 to 
either another site in layer 1 or to a site in layer 2) does not interact with a bond 
between segment 1 and segment 0. We could also implement the model in a slightly 
different way and assume that there is a polymer segment s = 0 in layer z = 0, so 
that the bond between segments 0 and 1 would go from layer 0 to layer 1. In that 
case the presence of segment 2 in layer 1 would be less favourable than it is in the 
present model, because the presence of segment 2 in layer 1 would mean an extra 
"perpendicular" conformation in the chain. In this case eq A1.3 should be replaced 
by: 

F if d = 1 
G(1,1,dl0,0) = - 4P if d = 0 (21) 

0 otherwise 

When this modification is implemented, the oscillation disappears (this is not shown 
in a figure). This illustrates that the oscillation near the grafting surface is an artefact 
caused by the grafting procedure. Nevertheless, this has very little influence on the 
rest of the profile. Throughout the remainder of this chapter we will use eq A1.3, and 
accept the slightly irregular behaviour near the grafting surface. 

The dashed curves in Figure 3A were calculated using the theory of Zhulina et 
al.6 who incorporated chain stiffness into their expression for the entropy of 
stretching a polymer chain. For p = 1 their model agrees very well with the f.j.c. 
model if the full Flory-Huggins expression is used for the free energy of the system,5 

as was done to obtain the curves shown in Figure 3. For values of p up to 10 
(Uben = 3 kT) there is also a good agreement between their analytical theory and our 
limited bond flexibility model. For even stiffer chains the analytical model predicts a 
too large brush height. For Uben = 4 kT (p = 28) the theory of Zhulina et al. has lost 
its physical meaning, as it predicts a brush height which exceeds the chain length. 

In Figure 3B the same curves are drawn as in Figure 3A but now for a ten times 
lower grafting density, namely a = 0.01. Such a grafting density is more 
representative for a polymer brush that is formed by adsorbing an AB-block 
copolymer from solution. Qualitatively the same trends are seen as in Figure 3A. The 
chains are less strongly stretched because of the lower densities. The theory of 
Zhulina et al. gives a reasonable description of the profiles for a value of Ub e n as 
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high as 5 kT. In contrast to the situation for o = 0.1, (virtually) no chains are yet 
completely stretched for Uben = 5 kT . 

Apart from the grafting density, the solvent quality is an important parameter in 
determining the brush structure. Figure 3C gives data for the same grafting density 
as Figure 3A, but now the brush is immersed in a ©-solvent (% = 0.5). In a ©-solvent 
the brush height is smaller than in an athermal solvent. As expected, this result is 
found for all values of the chain stiffness. The relative effect of increasing Uben is 
roughly independent of the solvent quality (compare Figures 2A and 2C). For 
yben _ 4 ^ j p̂ _ 2ß) the brush height has approximately increased by a factor 2 (in 
comparison with a brush of freely jointed chains). In the ©-solvent we see that for 
very large values of p (Uben = 5 kT) the volume fraction profile shows a big "foot" 
protruding into the solution, which is not predicted by the equations of Zhulina ef al. 

0.002 

end 

0.001 -

0 
200 400 

Figure 4 Volume fractions <|>(z,N) of the free end-segments (s = N) of the chains for 
which the overall profiles are given in Figure 2. 

Not only the overall volume fraction profile, but also the distribution of individual 
segments of the polymer chains is influenced by the chain stiffness. Figure 4 shows 
the distribution of the free end-segments, (|>(z,N), of the chains for which the overall 
volume fraction profiles are plotted in Figure 3A. When Uben is increased the 
average position of the end-segment moves to larger distances from the surface. 
This is consistent with the larger overall brush height as seen in Figure 3A. The end-
segments are still distributed throughout the whole brush, and there is no "exclusion 
zone" near the surface. For Uben = 5 kT, (|)(z,N) shows a peak at z = 400. This peak 
is obviously due to the fact that an appreciable number of chains are fully stretched, 
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so that their end-segments are situated at z = N. Increasing Uben even further leads 
to a growth of this peak. 

Above we have clearly demonstrated that increasing the chain stiffness leads to 
more extended brush structures. Figures 2-4 are calculated using second order 
Markov models for polymer chains. Below we also present results for systems where 
correlations between neighbouring bonds are accounted for. As explained in the 
theory section, this approach is combined with a second order Markov procedure to 
compute the chain conformation weighting factors. The most important results are 
given in Figure 5. 

0.4 

0.2 -

P * - » ^ ' 

"~ *~ - N. 

-

1 

f.j.C. 
yben= Q 

U b e n = 1 

\ \ 
\ \ 

\ \ 
\ \ 
\ \ 

\ \ 
\ \ 

V v . 

100 200 

Figure 5 Volume fraction profiles taking nematic interactions (bond correlations) 
into account, for Uben = 0 and 1 kT. The freely jointed chain volume fraction profile is 
given for comparison. Parameters: a = 0.1, % = 0, N = 400. 

In Figure 5 the grafting density and chain length are the same as in Figure 3A, so 
that the curves in Figure 5 can be directly compared with those in Figure 3A for 
Uben = 0 and 1 kT. The bond correlations lead to a decrease of the brush height as 
compared to the limited bond flexibility model alone. For Ub e n = 0 kT the bond 
correlation model predicts a volume fraction profile that is hardly distinguishable from 
the f.j.c. profile! In the limited bond flexibility model this value of Uben (which 
corresponds to p = 1.5) causes a noticeable increase in the brush height. One might 
at first expect the bond correlations to cause a further increase in the brush height, 
because a stretched polymer chain would induce extra stretching of its neighbouring 
chains. However, the correlations between parallel bonds lead to a more efficient 
lateral packing of the chains, so that the density increases and the brush height 
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decreases. In order to explain this unexpected result we first investigate the bond 
orientations. 

For the chosen parameters the polymer chains still have many bonds parallel to 
the grafting surface. This can be seen in Figure 6 were the factors g(zlz+1) and 
g(zlz) (defined by eqs 18 and 19) are plotted for the case Uben = 1 kT of Figure 5. 
The factor g(zlz) is an additional probability for a bond to remain in layer z (parallel to 
the surface). This probability increases as the volume fraction of bonds remaining 
within layer z increases. The factor g(zlz+1) is an additional probability for a bond to 
cross from layer z to layer z+1 (so that it is oriented perpendicular to the surface). In 
Figure 6 one can see that throughout the whole brush g(zlz) > g(zlz+1). Clearly, for a 
grafting density of 0.1 and a not very high chain stiffness the correlations between 
the more numerous parallel bonds reduce the brush height. This gives a good 
description of the influence of the bond correlations on the brush structure, but it 
does not yet provide an explanation for the fact that the packing density in the brush 
increases. 

200 

Figure 6: The nematic (bond orientation) factors g(zlz+1) and g(zlz) for the curve of 
Figure 4 with Uben = 1 kT. 

From a thermodynamic point of view the decrease of the brush height can be 
understood by comparing the equations for the chemical potential of the solvent in a 
solution of polymer chains with and without bond correlations (eqs 15 and 20). In a 
homogeneous solution of polymer (with volume fraction <])) and a monomeric solvent 
(volume fraction 1-<)>) the chemical potential of the solvent is given by eq 20, when 
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one takes the correlations between parallel bonds into account. Expanding the 
logarithmic terms of this equation gives: 

= - • + 
kT N 

u- j i O-N)2 

6N2 
1 

• — + 1 
2 K * 2

+ . . . (22) 

The second virial coefficient, which for long freely jointed chains is --%, becomes 
•\ 2 

--% when nematic interactions are included. This means that, as long as one can 
O 

neglect cubic and higher order terms in cj>, a polymer solution with correlations 
between parallel bonds and a Flory-Huggins parameter % behaves the same as a 
polymer solution without these correlations with an effective Flory-Huggins 
parameter % =% + -• This hypothesis is tested in Figure 7. The solid curve is for a 

6 1 
polymer brush without nematic interactions and % = -, the dashed curve is for a 

6 

polymer with nematic interactions with % = 0. The system with nematic interactions 
gives a slightly larger brush height than the brush without nematic interactions. This 
means that when we correct the calculated profile for the shift in the effective 
solvency, the brush behaves as one would intuitively expect: the nematic 
interactions increase the brush height. 

nematic interactions, 
X = 0 

0.2 h 

~ no nematic interactions, 
X=1/6 

J 

100 z 200 

Figure 7 Comparison of the effect of bond correlations and that of solvency. The 
dashed curve is the same as that in Figure 4 for a brush with nematic interactions, 
with Uben = 0 kT and % = 0. The solid curve is for the same chain length and grafting 
density, but was obtained from the limited bond flexibility model with Uben = 0 kT 
(without nematic interactions) and a solvency parameter % = 1/6. 
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2.5 Discussion 

Our main conclusion is that an increasing chain stiffness increases the height of 
a polymer brush, but that nematic interactions counteract this effect. One should 
realize that we view a polymer molecule not from an "atomistic" but from a more 
"coarse grained" level as we approximate it as a chain of Kuhn segments. If these 
segments have the same length as width it is logical to use a cubic lattice. This is the 
situation for which excellent agreement is found with analytical SCF models, which 
do not take any atomistic details into account either. When one wants to incorporate 
chain stiffness into the lattice model, one must make the (rather arbitrary) choice 
how exactly to implement this. We have done it by forbidding direct backfolding and 
introducing an energy difference between "forward" and "perpendicular" 
conformations. We could also have only introduced this bending energy and have 
allowed backfolding, or we could have taken interactions into account between 
segments that are two or more positions separated along the chain. Given the 
model-like character of our approach it is difficult to say which choice would best 
represent a "real" polymer. However, we can conclude that the effect of stiffness in 
our model agrees very well with the predictions of Zhulina et al., who considered the 
general effect of stiffness on the entropy of stretching a polymer chain (without any 
further assumptions as to the molecular origin of this stiffness). This strongly 
suggests that another way of incorporating stiffness into our lattice model would yield 
essentially the same volume fraction profiles for systems with the same effective 
chain stiffness p. Indeed, Figure 2 illustrates that two different models with the same 
value for p give virtually the same results. 

We have shown that for not too high grafting densities the incorporation of 
correlations between parallel bonds in our model partly compensates the effect of 
chain stiffness. The easiest way to model a polymer brush is by using a freely jointed 
chain approach. This model can be solved analytically, as shown originally by 
Zhulina et al.6 and Milner et al.7 Their earlier work has been extended during the 
past few years, for example, towards polyelectrolytes,12'13 polydisperse systems,14 

etc. All these extensions are based on freely jointed chains. In this chapter we have 
shown that the incorporation of both bond correlations and a moderate chain 
stiffness into the description of a polymer brush leads only to a small adjustment of 
the brush profile. This illustrates that the widely used model of freely jointed chains 
captures the essential trends of end-attached polymer layers. 

It is also interesting to consider the implications of our findings for the comparison 
between SCF models and Monte Carlo simulations. In lattice Monte Carlo 
simulations of multi-chain systems the excluded volume of the polymer segments is 
usually accounted for in a rigorous manner: all system configurations are forbidden 
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where two or more segments overlap. The exclusion of direct backfolding and the 
incorporation of correlations between parallel bonds into the lattice model can be 
seen as a first order correction towards a more rigorous incorporation of excluded 
volume effects. The partly compensating effects found with excluding direct step 
reversals and incorporating correlations between parallel bonds explain why there is 
a relatively good agreement between simple SCF models and multi-chain Monte 
Carlo simulations. 

Appendix 1: End-segment weighting factors for stiff polymer 
chains. 

In this appendix we give the equations for the end-segment weighting factors of 
stiff polymer chains. These end-segment weighting factors are calculated using a 
second order Markov procedure on a cubic lattice. 

The recurrence relation of eq 4 for G(z,sl1,1) is extended to: 

'B(s)xG(z-1,s-1,1M,1) + 4P(s)xG(z,s-1,0l1,1)+N 

lF(s)xG(z + 1, s-1,-111,1) 

'P(s) x G(z - 1 , s -1,111,1) + (2P(s) + F(s) + B(s)) x G(z, s -1,011,1) + 

r->(s)xG(z + 1,s-1,-1M,1) 

'F(s)xG(z-1,s-1,1M,1) + 4P(s)xG(z,s-1,OI1,1)+A 

^B(s)xG(z + 1,s-1,-1M,1) 

G(z,s,-1M,1) = G(z) 

G(z,s,OI1,1) = G(z)x 

G(z,s,1l1,1) = G(z) 

(A1.1) 

This equation reduces to eq 4, if B = F = P = A,-,, considering that G(z,sl1,1) = 

G(z,s,-1l1,1) + G(z,s,OI1,1) + G(z,s,1l1,1). Eq A1.1 is valid for s = 2, 3, ..., N -1 . For 

the end-segment (s = N) we write 

G(z,NI1,1) = G(z)x(G(z-1,N-1,1l1,1) + G(z,N-1,OI1,1) + G(z + 1,N-1,-1l1,1)) 

(A1.2) 
For s = 1 we start the sequence with: 

G(1,1,dl1,1) = 
1/6 if d = 1 
4/6 if - d = 0 
0 otherwise 

(A1.3) 

The first segment must be in the first layer and the first bond has complete freedom 
as it does not interact with a previous bond. 

The quantity G(z,s,dlN) is calculated from the following recurrence relations 
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G(z,s,1IN) = G(z)x 

G(z,s,OIN) = G(z)x 

B(s)xG(z-1,s + 1,-1IN) + 4P(s)xG(z-1,s + 1,0IN) + 

F(s)xG(z-1,s + 1,1IN) 
rP(s) x G(z, s +1,11N) + (2P(s) + F(s) + B(s)) x G(z - 1 , s +1,01N) +' 

TJ(s)xG(z-1,s + 1,1IN) 

F(s)xG(z + 1,s + 1,-1IN) + 4P(s)xG(z + 1,s + 1,0IN)+' 
G(z,s,-1IN) = G(z)x 

l^B(s)xG(z + 1,s + 1,1IN) 
(A1.4) 

These three equations define G(z,s,dlN) for s = 1, 2, 3, ... N-2. For s = N-1 the 
recurrence relation is started with the expressions: 

G(z,N-1,1IN) = G(z)^G(z-1) 
6 

G(z,N-1,0IN) = G(z)jG(z) (A1.5) 
6 

G(z, N - 1 , -11N) = G(z) - G(z +1) 
6 

These equations contain the lattice parameters for the last bond and the segment 
weighting factors of the last two segments which determine this bond. 

Appendix 2: Formalism for chains with bond correlations. 

In this appendix the expressions for the chain-end weighting factors that were 
given in Appendix 1 are extended to include correlations between neighbouring 
bonds. As explained in the main text this means that additional weighting factors 
g(zlz) and g(zlz+1) must be taken into account for bonds within layer z (parallel to 
the surface), and for bonds between layers z and z + 1 (perpendicular to the 
surface), respectively. The quantities G(z,s,dl1,1) and G(z,s,dlN) are then calculated 
from the following recurrence relations: 

'4P(s)xG(z,s-1,OI1,1)xg(zlz)+ N 

rj(s)xG(z + 1,s-1,-1H,1)xg(zlz + 1)y 

T-,(s)xG(z-1,s-1,1M,1)xg(zlz-1)+ " 

(2P(s) + F(s)) x G(z, s -1,011,1) x g(z I z) + 

^P(s)xG(z + 1,s-1,-1l1,1)xg(zlz + 1) J (A2.1a) 

G(z,s,-1l1,1) = G(z)x 

G(z,s,OI1,1) = G(z)> 

G(z,s,1l1,1) = G(z): 
F(s)xG(z-1,s-1,1l1,1)xg(zlz-1)+' 

4P(s)xG(z,s-1,OI1,1)xg(zlz) + 

fors = 2,3,4 N-1 
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G(z,NI1,1) = G(z)x 
G(z-1IN-1,1l1,1)xg(zlz-1) + G(z,N-1,OI1,1)xg(zlz) + 

G(z + 1,N-1,-1l1,1)xg(zlz+1) 

(A2.1b) 
and 

G(z,sI1IN) = G(z)xg(zlz + 1)x(4P(s)xG(z-1,s + 1,0IN) + F(s)xG(z-1,s + 1,1IN)) 

f P(s) x G(z, s +1,11N) + (2P(s) + F(s)) x G(z - 1 , s +1,01N) + 
G(z,s,OIN) = G(z)xg(zlz)x W ' l ' 

^P(s)xG(z-1,s + 1,1IN) 

G(z,s,-1IN) = G(z)xg(zlz-1)x(F(s)xG(z + 1,s + 1>-1IN) + 4P(s)xG(z + 1,s + 1,0IN)) 

fors = 1,2,3 N-2 

Eq A2.1 is started for s = 1 with 

G(1,1,dl1,1) = 
1/6 if d = 1 
4/6 if d = 0 
0 otherwise 

(A2.2) 

(A2.3) 

and eq A2.2 is started for s = N-1 with: 

G(z,N-1,11N) = G(z)-g(z I z-1)G(z-1) 
6 

G(z,N-1,0IN) = G(z)±g(zlz)G(z) 
6 

G(z, N - 1 , -11N) = G(z) - g(z I z + 1)G(z +1) 
6 

(A2.4) 

Appendix 3: Kuhn parameter in the limited bond flexibility model. 

For freely jointed polymer chains the Kuhn segment length is equal to the step 
length (or lattice spacing) £. For chains with limited bond flexibility the Kuhn length 
increases by a factor p, which is determined by the energy Uben. Consider a chain of 
N segments. We represent each bond i by the vector I;. The mean square end-to-
end distance (r2\ (in a constant potential field) can now be written as: 

<•*)- B 
fN-1 Y N - 1 

VJ=I ; 
I'j 

/N-1 N-1 
, = (N-1)/2+2 S I M ] (A3.1) 

k i=1 j=i+1 

On a simple cubic lattice the angle between two bonds can take the values of 0, JC/2 , 

or it. It is easily seen that (lilj+i) = F^2 and (ljlj-,-2) = F2^2. In general, {ljlj+k) = Fk.£2. 
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For N » 1 the second summation on the right-hand side of eq A3.1 can be 
extended to infinity, so that: 

(r2) = ( N - 1 ) ( u ^ ^ 2 (A3.2) 

This corresponds to 

2F 
1-F 
2F 

p = 1 + — - (A3.3) 
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chapter 3 

Polymer Brushes at Curved Surfaces 

Abstract 

In this chapter we use the polymer adsorption theory of Scheutjens and Fleer to 
describe polymer brushes at spherical and cylindrical surfaces that are immersed 
in a low molecular weight solvent. We analyse the volume fraction profiles of such 
brushes, focusing our attention on spherical brushes in athermal solvents. These 
are shown to generally consist of two parts: a power law-like part, and a part that is 
consistent with a parabolic potential energy profile of the polymer segments. 
Depending on the curvature of the surface one of these two parts is the more 
important, or may even dominate completely. We especially consider the 
distribution of the free end-segments and the possible existence of a "dead zone" 
for these segments. Such a dead zone is actually found and is seen to follow a 
scaling law in the case of large curvatures. Furthermore, the effect of diminishing 
the solvent quality is considered for both the total volume fraction profile and the 
distribution of the end-segments. 
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3.1 Introduction 

Over the past years much effort has been put into the theoretical description of 
so-called polymer brushes: systems in which polymer chains are end-attached to 
an interface. Scaling analyses,1-2 self-consistent field (SCF) theories,3-6 and Monte 
Carlo3.8-9 and molecular dynamics simulations10 have been developed for and 
applied to these systems. Originally they were used to describe polymer brushes at 
flat interfaces, but recently several papers have appeared whose aim it is to 
describe curved interfaces.11-13 Especially in the case of an analytical SCF theory it 
is a challenging, and certainly not a trivial step to extend models for flat systems to 
a curved geometry. The relevance of this extension is, however, self-evident. 
Polymer brushes can be seen as a model for adsorbed diblock copolymer layers 
which are able to stabilize colloidal dispersions. Generally, the surface of colloidal 
particles is not flat, but may easily have a radius of curvature that is comparable to 
the thickness of the adsorbed polymeric layer. A model based on polymers grafted 
to a convex interface can also be used to study solutions and melts of block 
copolymers under the conditions in which microphases are formed. Star-shaped 
polymers can be studied by using their similarity to linear chains that are grafted 
onto a small spherical particle. 

The conceptually most simple model of a polymer brush is the scaling picture 
due to Alexander and de Gennes,1 2 which assumes a step-like concentration 
profile with all chain ends situated on the outer side of the polymer layer. Using 
straightforward geometrical arguments this model was later extended by Daoud 
and Cotton to spherical interfaces,14 and by Birshtein et al. to cylindrical 
interfaces.15-16 For such curved interfaces the volume fraction profile becomes 
dependent on the distance to the grafting surface: 

(d-1)(3v-1)/ 

«z) = o / é v [ — J (1) 

where $ is the volume fraction, o is the grafting density, R is the radius of curvature 
of the grafting surface, z is the distance to the surface (so that r = R + z is the 
distance to the centre of the sphere or cylinder, see Figure 1), and v is the Flory 
exponent, which depends upon the solvent quality (v = 3/5 for a good solvent, 
v = 1/2 for a ©-solvent, and v = 1/3 for a nonsolvent). The dimensionality d is 
determined by the geometry of the grafting surface: d = 1, 2, and 3 for planar, 
cylindrical, and spherical surfaces, respectively. 

A more sophisticated approach to the structure of a grafted polymer layer (at a 
flat surface) using self-consistent field (SCF) arguments was given in the papers of 
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Zhulina, Borisov, and Priamitsyn6'17 and of Milner, Witten, and Cates.4-5 These are 
all based on an idea by Semenov18 that when a polymer chain is strongly stretched 
with respect to its Gaussian dimensions, it is possible to replace its set of 
conformations by an "average trajectory," thus significantly simplifying the 
description of the system. This concept was first used by Semenov to study super 
structure formation in block copolymer melts. Later, the SCF approach was 
generalized and it has been applied to grafted polymer layers immersed in both 
low molecular weight solvents,5'17 as well as solutions and melts of mobile 
polymers.19 Furthermore, nonequilibrium effects such as the deformational4 and 
dynamical20 behaviour of grafted layers were studied. These investigations have 
led to a different overall picture of the planar grafted polymer layer structure as 
compared to the scaling approach. The polymer concentration decreases 
monotonically on going away from the grafting surface and free chain ends are 
distributed throughout the whole layer. The precise form of the total concentration 
profile as well as that of the chain end distribution function depend on parameters 
such as solvent quality and polydispersity. In his pioneering publication 
Semenov18 showed that in cylindrical and spherical convex layers the free chain 
ends must be excluded from the vicinity of the grafting surface. Ball et a/.11 were the 
first to extend this SCF approach in a rigorous manner to chains grafted to a 
convex interface. They derived analytical solutions for the case of densely grafted 
chains at a cylindrical interface immersed in a melt. With increasing curvature an 
exclusion zone with an increasing height appears next to the surface. Free chain 
ends are excluded from this zone. For the cases of spherical interfaces and 
brushes with solvent, equations were given that still need to be solved 
(numerically). Ball et al. anticipate that under these conditions the distribution of 
free ends will remain qualitatively the same. 

Simulations of star-shaped polymers using a molecular dynamics method21 do 
indeed suggest that in a spherical geometry the dead zone exists for brushes in a 
good solvent. However, simulations of chains grafted to a cylindrical surface in a 
good solvent12 do not show this dead zone, except for R-»0 (that is, when the 
cylinder is reduced to a single line). The M.D. simulations of ref 21 confirm the 
scaling prediction of eq 1 for d = 3. 

Recently, Dan and Tirrell13 have applied the Edwards diffusion equation 
approach22 to end-attached polymer chains. They extended the numerical 
procedure by Dolan and Edwards23 for grafted chains at a flat surface to cylindrical 
and spherical surfaces. Especially for cylindrical surfaces the scaling predictions 
agree badly with their results. Dan and Tirrell, who investigated brushes in a good 
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solvent, did find dead zones near the surface which agree fairly well with the 
predictions of Ball et al. for brushes in a melt. 

(A) (B) 

Figure 1 (A) Polymer chains that are end-attached to a curved surface with 
radius of curvature R form a brush of height H. The distance to the centre of the 
sphere or cylinder is r, and z denotes the distance to the surface. (B) For 
intermediate values of R the polymer brush can be divided into two parts. From 
z = 0 to z = zo all chains are stretched equally. Segment Ni of every chain is 
situated at a distance zrj from the surface. The remaining N2 = N-Ni segments are 
subject to a parabolic potential profile in the region z = zo to z = H. 

In this chapter we present results from SCF lattice calculations on end-grafted 
chains at cylindrical and spherical surfaces in the presence of solvents of various 
qualities (very bad to very good). The model we use is an extension of the polymer 
adsorption theory of Scheutjens and Fleer2425 for curved geometries, which in its 
basic assumptions is very similar to the diffusion equation approach. However, 
within the approximation of using a mean-field lattice model, all properties of the 
system under consideration can be calculated exactly. No further approximations 
are needed. For example, we need not assume that the polymer segment potential 
is proportional to the local segment density (as was done in the numerical 
procedure of ref 23). Also any solvent quality can be chosen. In the next section we 
will go into further details concerning the lattice model. In section 5 we will show 
results of this model and (where possible) compare them with predictions from one 
of the models mentioned above. First we shall, however, introduce two analytical 
models in sections 3 and 4 to describe brushes in good and ©-solvents at curved 
surfaces. In section 5 we will also see under what conditions these models are 
valid by comparing them with the lattice model calculations. In doing so, we will 
focus our attention on spherical brushes in athermal solvents. 
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3.2 Self-Consistent Field Lattice Model 

In the polymer adsorption theory of Scheutjens and Fleer24-25 the equilibrium 
distribution of a polymer-solvent system at an interface is calculated by taking into 
account all possible conformations, each weighted by its Boltzmann probability 
factor. Cosgrove et al.3 and Hirz26 showed that this method can be applied to 
terminally attached chains by restricting the allowed conformations to those whose 
first segment is in the layer adjacent to the surface. In a previous chapter27 we 
described this modified procedure and used it to calculate characteristics of 
polymer brushes on flat surfaces. The basic principles of the model can also be 
applied in a lattice with a curved geometry, as was first demonstrated by 
Leermakers and Scheutjens,28 who used such a lattice to study lipid vesicles and 
surfactant micelles. In this section we shall briefly review the relevant geometrical 
aspects of their approach. 

The differences between a curved and a planar lattice are that the number of 
sites in a layer increases on moving away from the centre of the lattice and that the 
lattice transition parameters X_, X0, and X+ are layer dependent. A lattice site in 
layer r has neighbouring sites in layers r - 1 , r, and r + 1. A fraction \_ of these 
neighbouring sites are in layer r - 1 , a fraction X0 are in layer r, and a fraction X+ 
are in layer r + 1. We number the layers r= 1, 2, 3, ... starting from the centre of 
the sphere or cylinder. Applying the condition that all layers are equidistant, one 
finds that the volume V(r), expressed in number of lattice sites, enclosed by layer r 
equals: 

Vd(r) = ̂ r d (2) 

where d = 3 for a spherical and d = 2 for a cylindrical lattice (and d = 1 for a flat 
lattice). This volume is defined per surface area for d = 1, per length unit for 
d = 2, and per sphere for d = 3. The numerical constant Cd has the values 
Ci = 1, C2 = 2rc, and C3 = 4K. The number of lattice sites in layer r is given by 
L(r) = V(r)-V(r-1) or 

Ld(r) = ̂ ( r d - ( r - 1 ) d ) (3) 

Differentiating V(r) with respect to r gives the surface area S(r) of layer r: 

Sd(r) = Cdrd-1 (4) 

The transition factors X_(r) and X,+(r) are proportional to the surface area per site 
in contact with the adjacent layer, so that 
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where k+1 and X,_1 are the values of the transition factors for the equivalent planar 
lattice. In all calculations presented in this chapter we have used a cubic lattice, for 
which X+1 = X_i = 1/6. In a flat geometry (d = 1) the simple cubic lattice gives an 
equal a priori probability to a bond between two segments in any of the four 
directions parallel to the surface as well as to a bond toward the surface or away 
from the surface. This is in accordance with the underlying physical model of refs 4 
and 6. We emphasize an important consequence of our definition of the transition 
probabilities. It follows from eqs 3 and 5 that 

^_d(r)Ld(r) = X+d(r - 1)Ld(r -1) (6) 

which means that the condition is satisfied that the statistical weight of a polymer 
conformation does not depend upon the chain end at which we start to evaluate 
this quantity. 

When studying polymer grafted at a solid-liquid interface with a radius of 
curvature R, we must exclude the layers r = 1, 2, 3, ... R from our system. We 
number our layers z = 1,2, 3, ... starting from layer r = R + 1 (z = 1), which is 
adjacent to the solid-liquid interface (see also Figure 1). The actual calculation of 
the equilibrium distribution of a polymer-solvent system now takes places 
completely analogously to the procedure described in ref 27. Only the transition 
parameters of eq 2 of this reference must be replaced by the appropriate 
expressions from our eq 5 and the denominator of eq 6 in ref 27 becomes 
^ L(z)G(z,N). Of course the procedure described above can not only be used to 
compute systems with end-grafted polymer but also for polymer adsorption from 
solution. In chapter 4 we present results thus found for block copolymer adsorption 
onto spherical colloidal particles. 

As described in ref 27 a numerical iteration scheme is applied to find the self-
consistent volume fraction profile of the polymer. Due to their mathematical 
complexity the equations cannot be solved exactly using analytical methods. In the 
next section we will discuss less exact SCF approaches to our system of curved 
brushes, which enable us to find analytical approximations for the volume fraction 
profile. 
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3.3 Analytical SCF Model 

Large curvature 
We will start by considering polymer chains that are end-attached to a spherical 

interface with a small radius of curvature (i.e. brushes with a large curvature). We 
make the simplifying approximation that the free ends of all chains are situated at 
the same distance H from the surface. The elastic chain stretching contribution to 
the free energy of the system for an arbitrary geometry (planar, cylindrical, or 
spherical) can then be written as 

2^2 j
0 ldsJ Cd

 J
0(z + R ) d - y z ) 

and is defined per surface area in the planar case (d = 1), per length unit in the 
cylindrical case (d = 2), and per sphere for the spherical geometry (d = 3). The 
local chain stretching at distance z from the surface is given by ds/dz, £ is the 
segment diameter, and ^ = o-Sd(R) is the number of chains. In distinction to the 
previous section the distance z to the surface is now a continuous variable. 
Because of the equal stretching of all chains 

A/ . ^3fdds . 
* Z = O / DN d Z 

Sd(z + R) 

The contribution to the free energy of the system due to the mixing of grafted chains 
and solvent molecules can be written as a virial expansion, 

H 
Amix = Jdz (vc»2(z) + w*3(z))sd(z + R) (8) 

0 

where v and w are the second and third virial coefficients (within Flory theory v = 
0.5-x and w = 1/6 The free energy functional Aei + Amix must be minimized under 
the constraint 

1 H 

-3-Jdz<Kz)Sd(z + R) = N (9) 
1 'd o 

where N is the degree of polymerization. For a given height H this leads to the 
equation 

a2Rd~2 4 

(z + R ) 2 d -V (z ) 3 
v<|>(z) + 2w(|>2(z) + A (10) 
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where o is the grafting density and A is an undetermined Lagrangian multiplier. 

Solving §(z) from this equation and substituting it into eq 9 one can find A. 

Minimization of the total free energy Ae| + Am jX with respect to H gives the volume 

fraction profile for given values of R and a. Under good solvent conditions and for 

large curvatures the last two terms in eq 10 may be neglected, so that29 

z + R 

Substituting this expression into eq 9 we find the following scaling law for the layer 

height: 

1 
H ~ (avN3Rd_1)d+2 (12) 

In a ©-solvent (v = 0), omitting the first and last terms on the right-hand side of 

eq 10 leads to 

4>(Z) = 
2w z + R 

(13) 

We conclude that in a spherical convex brush <])(z) scales as (z + R ) - 4 ' in a good 

solvent, and <|>(z) ~ (z + R) - 1 in a ©-solvent. In a cylindrical brush §(z) ~ (z + R) - 2 / 3 in 

a good solvent, and <|>(z) ~ (z + R) - ' in a ©-solvent. This is in agreement with eq 1. 

In bad solvents <|>(z) - z° for all three geometries. In a bad solvent (v < 0) the left-

hand side of eq 10 can be neglected, so that 

4,(z) = J i l - + 
YV ; 3w 

( 2 V^ 

^9w2 2w 

1/2 

: const (14) 
j 

The value A = v2 /6w obtained from the minimization of A m j X with respect to H 

under the constraint of eq 9 gives a well-known result for a collapsed globule, 

«.(Z): 
|v| 

2w 
(15) 

Small curvature 

We will now discuss the opposite case of small curvature (R is large). We limit 

ourselves to good solvents and spherical surfaces. Other geometries and solvent 

qualities can be described along similar lines. Of course, for infinitely large radii of 

72 



curvature the polymer brush is described by a parabolic potential profile, which in a 
good solvent leads to a brush height Ho given by the equation, 

H0=f4y/3^vv3(^o)
i/3 (16) 

Following Liatskaya et al.30 and Milner et a/.31 we assume that for low curvatures it 
is still a good approximation to describe the polymer brush by a parabolic potential 
profile. The brush height H will then depend upon the relative curvature crT1, which 
we define as the ratio of the flat brush height and the radius of curvature of the 
surface, co = R/H0. In a good solvent this height H at a spherical surface is given by 
the equation 

'hO 
KHo 

1 + 3H 2 
4coH0

 + 5 
H 

«H0 J 
(17) 

The corresponding volume fraction profile is 

4>(z): 
3oNló 

Hn KHoj 

2 f 
1 -

l f^fl (H) ) 
(18) 

and the distribution function of free ends: 

, . 3zH2 r 

2 - 3 

vwnoy 

coHfi 

1-
H 

(19) 

This result was previously derived by Liatskaya et a/.30 

The approximations made in this model turn up when one examines the 
function g(z). For low values of z it becomes negative. Of course a probability 
smaller than zero has no physical meaning. It is possible to interpret the zone 
where g(z) < 0 as an area where no end-segments are located. We define Ap as 
the size of this "dead zone", so that g(Ap) = 0. The value of Ap (where the 
subscript p stands for parabolic) depends on the curvature of the surface. Figure 2A 
shows the relative thickness of the dead zone, Ap /H, as a function of R/H. The 
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maximum relative value for the dead zone is reached in the limit R/H -> 0, when 
Ap=H/2. When R /H«1 the layer height scales as R^5N3/5aV5, so that the 
absolute value of the dead zone (Ap~H~R2 /5) increases with R and passes 
through a maximum at R/H = 1, as can be seen in Figure 2B. For small curvatures 
(R/H » 1) Ap decays exponentially with R. 

Figure 2 (A) The behaviour of the dead zone for free ends in the parabolic 
potential approximation; A/H is given as a function of R/H (A: dead zone size, H: 
layer height, R: radius). Note that H itself depends on R for a given chain length. (B) 
The ratio of dead zone length A and flat brush height H0 is given as a function of 
the relative radius of curvature ro. 

Intermediate curvatures 
For intermediate radii of curvature we make the approximation that the volume 

fraction profile is a combination of the two previously discussed profiles. Up to a 
distance ZQ from the surface (see Figure 1B) all chains are stretched equally. Per 
chain there are N-| segments in this part of the brush. The other N2 segments are 
situated in a parabolic potential profile and can be thought of as being grafted to an 
imaginary radial surface with radius R + z0. For a spherical layer in a good solvent 
this leads to the following overall profile: 

m= 
g NV3 f2/3v-1/3^4/3 

64K" (R + z) 4/3 for 0 < z < z0 

37^ 

i6rivv 
( H 2 - ( Z - Z 0 ) 2 ) f o rz 0 <z< H + z0 

(20) 

where f = f3 is the number of chains per sphere (f = 4arcR2). The values of N-|, 
N2, H, and z0 follow from the three conditions: 

1) continuity of the profile at z = z0: 

74 



3 y/3 f2/3v-1/3£4/3 3n2 

647t2 J (R + z)4/3 16v£2N2
: 

H = 

H* 

2 v V3 f 1 /3 / 5 / 3 N 

31/37t4/3 (R + Z o ) 2/3 

2) conservation of segments in the inner layer: 

z° 
U3N1 = J^^R + zfdz^ 

3) conservation of segments in the outer layer: 

Zo+H 

U3N2= J(|)(z)47c(R + z)2dz=> 

zo 

7t3(R + z0)2H3 f , 3H 

2vU5No3 1 + \¥ 
4(R + z0) 5(R + z0)2 = 1 

(21) 

(22) 

(23) 

Rearranging these equations and introducing u = z0/R, one can write, 

u = 

f 2V/3 
1 + : 

v 6 y 
CO -1 

, 5 
1 + -7CC 

6 

3/5 

- 1 (24) 

where the constant c is defined by 

(25) 

We now define a critical relative curvature coCr,
 s ° that for co > cocr the potential 

profile is parabolic, whereas for co < coCr the volume fraction profile is a 
combination of both models. For co < coCr there is a zone A = z0 + Ap where no 
end-segments are located. For a spherical brush cocr ~ 0.563. 

For a cylindrical layer in a good solvent the similar procedure gives cocr = 
(4/3TC)^ (2TC-8/3)~ «0.207. For a cylindrical brush a parabolic potential profile 
may be assumed over a wider range of curvatures than for a spherical brush. The 
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combined profiles for ©-solvents and bad solvents in spherical and cylindrical 
geometries can be found in the same manner. 

Figure 3 Effect of radius of curvature and chain length on the segment 
distribution in spherical and cylindrical geometries. (A) and (B) chain length 
N = 100; ( •) R = 1, (+) R = 10, (•) R = 100, (O) R=°°. (C) and (D) R = 10; (A.) 
N = 100, (•) N = 150, (O) N = 200. (A) and (C) spherical geometry; (B) and (D) 
cylindrical geometry. In all cases % = -0.5. 

3.5 Results 

The effects of surface curvature and chain length on the volume fraction profiles 
of brushes at spherical and cylindrical surfaces is shown in Figure 3. Here a very 
good solvent has been used (% = -0.5), which gives slightly more extended 
brushes than an athermal solvent. Parts A and B are drawn for a (relatively) short 
chain length of 100 segments. For low curvatures the profile has a large 
resemblance with the profile of a brush on a flat surface (R = °°), which is also 
drawn for comparison. Upon increasing the curvature, the shape of a growing part 
of the profile becomes convex. The same trend can be seen in parts C and D, 
where curves are drawn for different chain lengths but with the same radius of 
curvature. Increasing the chain length has a similar effect on the shape of the 

76 



profiles as decreasing the radius of curvature. The parameters in Figure 3 are the 
same as those in Figures 2 and 3 of Dan and Tirrell's paper,13 which were 
calculated with an excluded volume parameter v = 1. The shape of our profiles is 
very similar to theirs. However, Dan and Tirrell consistently predict layers that are 
slightly more strongly stretched, and consequently slightly less dense. For 
example, for a spherical interface with R = 100 and N = 100 they calculate a 
brush height that is approximately 10% larger than ours. Probably this is due to the 
way solvent-segment interactions are taken account of by the excluded volume 
parameter. As stated above, all our calculations were done using a cubic lattice. 
For a flat interface this lattice gives exact correspondence with the SCF theory of 
Zhulina et al. and Milner et al. in the limit of infinite chain length.27 

100 

i 
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1 

100 
i 

10 

(A) 
-spherical geometry 

o=0.1 

(B) 
- cylindrical geometry/ 

a=0.1 

+ (C) 
•spherical geometry^, 

a=0.005 
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0.1 

(D) 
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a=0.005 
N 
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Figure 4 Brush thickness as a function of chain length in an athermal solvent. 
The brush thickness has both been expressed as the average segment height and 
as the hydrodynamic thickness (see text). Parameters: (A and C) spherical 
geometry; (B and D) cylindrical geometry; (A and B) a = 0.1; (C and D) 
o = 0.005. Symbols: ( • ) R = 1; (A) R = 10; (•) R = °°; Open symbols are 
hydrodynamic heights; filled-in symbols are average heights. 

Figure 4 gives the brush thickness as a function of polymer chain length under 
various conditions. This thickness has been calculated in two different ways. First, 
we have defined an average brush height Hav in a similar fashion as in ref 13, 

77 



0.06 

0.04 

0.02 -

' • '• 1 

JL^S\R = 
1 ^^NSooS 
L 100 ̂ S 
l \ \ ^ > . 

- 2 5 ^ . 
^S^N 

\ N 

= oo 

sN 

1 

(C) 
o=0.005 

v v \ 
V ^ \ \ 

-

-
-

-

z 200 0 
0.04 

0.02 

25 50 z 75 

z 100 

Figure 5 Volume fraction profiles for a spherical surface; N = 500; (A) o = 0.1, 
R = oo, R = 500, R = 100, and R = 25; (B) o = 0.1, R = 25, R = 10, R = 5, 
and R = 1; (C) o = 0.005, R = oo, R = 500, R = 100, and R = 25; (D) 
o = 0.005, R = 25, R = 10, R = 5, and R = 1. In all cases % = 0. The solid 
curves are lattice calculations. For R = 500 and R = 100 the dashed curves are 
the "parabolic potential profile" approximation. In (D) the dashed curves for R = 1 
and R = 5 follow from the "fixed chain ends" model. All other dashed curves were 
calculated according to the combined model. 

Ha 

X z z 2 (z + R)2^(Z) 

I z ( z + R)20(z) 
(26) 

which is basically a second moment of the volume fraction profile. Secondly, we 
have calculated the hydrodynamic layer thickness Hhy, using the theory of Cohen 
Stuart ef a/.,32 taking the hydrodynamic constant CH = 1- To apply this theory to 
curved surfaces we assume that all solvent flow takes place concentrically with 
respect to the surface (the flow has no component in a direction perpendicular to 
the surface). For low Reynolds numbers this seems a reasonable approximation for 
many practical systems. (Both Hav and Hhy give smaller values than the brush 
height H as defined in e.g. ref 17). When the grafting density is high (a = 0.1) we 
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find very good agreement with the scaling law Hav ~ N for a flat surface, and for a 
spherical surface with R = 1 (star-shaped polymer) we find equally good 
agreement with the scaling law Hav ~ N 0 6 . For cylindrical surfaces the expected 
scaling behaviour Hav ~ N0-75 is found for R = 1. When a = 0.005 increasing 
deviations occur from these power laws, which for flat surfaces are caused by the 
"foot of the parabolic profile".27'33 The hydrodynamic thicknesses agree less well 
with the predicted power law. Experimentally the hydrodynamic thickness may, 
however, be the most easily accessible parameter for defining brush thicknesses in 
these systems. 
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Figure 6 Volume fraction profiles in a spherical geometry for different solvent 
qualities: a decrease of the solvent quality leads to a collapse of the grafted layer. 
In (A) the dashed curves are the parabolic potential model predictions. For R = 1 
the profiles are also given on a logarithmic scale to be able to check for a power 
law dependency between 0 and z. Parameters: a = 0.1; N = 500; % = 0, 0.5, 
0.7, 1; (A) R = 100; (B) R = 10; (C and D) R = 1. 

In Figure 5 lattice volume fraction profiles (full curves) are given for N = 500 in 
a spherical geometry with a = 0.1 and o = 0.005 (a = 0.1 is a very high grafting 
density, which won't easily be reached by adsorbing block copolymers, but which 
may be a good value for modelling a star polymer (when R = 1); a = 0.005 is a 

79 

file://-//0.5


more reasonable value for the grafting density on sterically stabilized colloidal 
particles). The dashed curves have been calculated with the equations of section 3. 
The curves for R = 500 and R = 100 (when a > cocr) are given by the parabolic 
potential profile approximation. For smaller values of R (when co < coCr) the 
"combined model" gives a reasonably good fit with the lattice calculations. The 
dashed curves for o = 0.005 and R = 5, and R = 1 follow directly from eq. 11. 
For these small values of R the "fixed chain ends" model agrees best with the lattice 
calculations. 

Figure 6 shows how the solvent quality influences the polymer brushes. As is 
the case with flat brushes, a worse solvent gives a more compact grafted layer. For 
% ~ 1 the volume fraction profile is well approximated by a step-profile, 
irrespective of the interface curvature, in agreement with eq 14 (of course, the 
height of the brush does depend on the curvature). When the curvature is not too 
large (R = 100 in Figure 6A) a brush can still be reasonably well described by the 
parabolic potential profile approximation applied in a 0-solvent. For R = 1 the 
exponent of the initial decay of the profile gradually changes from 4/3 to 1 when 
the solvency changes from % - 0 to % = 0.5. 

Figure 7 Free chain end distribution functions g, as a function of the reduced 
distance to the surface z/Hav, for various radii of curvature as indicated; (A and B) 
spherical geometry; (C and D) cylindrical geometry; (A and C) a = 0.1; (B and D) 
a = 0.005. Further parameters: N = 1000; % = 0. 
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Figure 7 gives the exact distribution functions of free chain ends of the polymer 
chains. The function g(z/Hav) is drawn, where Ha v is given by eq 26 and 
g(z) = <t>(z,N)Ld(z)/aL.d(1) with (|>(z,N) the volume fraction profile of the end-segments. 
Figure 7 illustrates the existence of a dead zone in both the spherical and 
cylindrical geometries. Of course, the probability that an end-segment is located in 
this zone is not absolutely zero, but very small. As long as o < 1 a polymer chain 
conformation with an end-segment bending back to the surface will have a finite 
probability. This makes it difficult to speak about the absolute size of the dead zone 
within our lattice SCF model. One can only use an arbitrary definition for the dead 
zone, for example the area where g(z) is smaller than 5% of its maximum value.13 

Some conclusions concerning the behaviour of this zone can be drawn from Figure 
7. When the radius of curvature is small, an increase in R leads to a larger dead 
zone, both in absolute terms (which is partly caused by an increase in the layer 
height) and in relative terms (as a fraction of the layer height, which can, for 
example, be expressed by Hav). Increasing R even further at a certain point leads to 
a decrease of the dead zone size and eventually results in its total disappearance. 
These trends are clearly seen in parts A and C of Figure 7, where the grafting 
density is high (o = 0.1). For the far lower grafting density of 0.005, which in many 
practical systems may still be a very realistic value, the dead zone is significantly 
smaller. 

The behaviour of the dead zone size as a function of surface curvature is at 
least qualitatively in agreement with eq 19 (parabolic potential profile) and with the 
combined model. In Figure 8 the chain end distribution g is given as a function of z 
as calculated from the lattice model (solid curves), and the parabolic potential 
model and the combined model (dashed curves) for grafting densities of 0.1 and 
0.005. There is a fair correspondence between the lattice calculations and the 
predictions of section 3. In the parabolic potential model the negative values of g 
for small z must be compensated by too large values of g elsewhere. This is the 
main reason for the differences found round the maximum of g(z). Nevertheless for 
all sets of parameters the analytical equations correctly predict the location of this 
maximum. The lattice calculations do consistently show a smaller dead zone and 
an appreciably wider distribution of free end-segments at the tip of the brush. 
These segments are located in the "foot" of the parabolic profile. Especially for 
smaller values of R, the differences between the two curves become significant. For 
very small R the end-segments certainly do not all tend to be concentrated in a 
narrow zone (although the overall volume fraction profile, as seen above, does 
tend to the -4/3 power law of the "fixed chain ends" model). Overall, the approxi-

81 



0.006 
g 
0.004 

0.002 

0 

' 1 

- R = 500 .'/ 
o=0.1 // 

// 

t/ 
t/ 

t/ // 

>
 

i 
i 

i 

il 

11 

i 

200 z 400 

g 

0.01 

0.005 

0 

i • 

- R = 100 
o = 0.1 

1 

£> (B) -
Y \ 

f \ 

!\ 

1 1 

100 200 z 300 

z 200 

100 z 150 

50 100 z 150 

0.04 

g 

0.02 

0 

. R 
o = 

\ 

= 25 , 
0.005 ' » 

' i 
; | 

if \ 
if \ 

y '\ / i \ 

1 

(G) -

-

i 

50 100 z 150 

150 z 100 

Figure 8 Free chain end distribution functions g, as a function of z in a spherical 
geometry for a = 0.1 (A-D) and o = 0.005 (E-H). The solid curves are lattice 
calculations, the dashed curves are the analytical equations (the parabolic 
potential profile model was used for A,E,F, and G, and the combined model was 
used for B,C,D, and H). Further parameters: N = 1000; % = 0. 
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mate analytical equations give a reasonable prediction of the dead zone size. 

Figure 9 explores a possible scaling behaviour of the free-end distribution. Both 

in the limit of small particle radius and for brushes under parabolic potential 

conditions the brush height scales as 

H •(o-N3Rd-1) -1 d+2 

This suggests that the free end-segments and the dead zone size may have a 
similar scaling dependence. Parts A-C of Figure 9 show the end-segment 
distribution function g in a spherical geometry as a function of z/(N3 /5R2 /5a1 /5). If 
the scaling law A - N3/5R2/5a1/5 were correct all curves should become zero at the 
same value of Z / ( N 3 / 5 R 2 / 5 O 1 / 5 ) . This is not the case. A better approximation 
would be to assume that the dead zone is equal to the first part z0 of the combined 
model. From eqs 21-23 one can then derive that 

/d+2 

(oN3Rd-1) - 1 d+2 

C0 + -

1 
d + 2f4V3 

« d + 2 
1 + TIC 

d+2 

1 
-\jä+2 (d 

d+2 

= 0.509 for co -> 0 if d = 3 
= 0.224 for œ -> 0 if d = 2 

(27) 

where the constant c is given by eq 25. In the legends of Figure 9 the values of 
A/lr\rRa 'a I are also given as calculated from this equation. For short chain 

lengths (e.g. R = 5, N = 200, a = 0.1; see Figure 9C) and for very low grafting 
densities (e.g. R = 5, N = 1000, a = 0.005; see Figure 9B) deviations start to 
occur from eq 27 which are caused by the fact that the chains are not strongly 
stretched for these parameters. We do indeed see that for small values of a> (e.g. for 
R = 5, N = 1000, and o = 0.1 we have co = 0.015) the dead zone size 
approaches the value given by eq 27 for to -> 0. Of course one must realize that 
the exact lattice calculations also take "fluctuations" into account which allow a 
finite number of conformations to have their end-segments bend back to the power-
law part of the volume fraction profile. This is analogous to the "foot" that occurs in 
the volume fraction profile at the tip of the brush and explains why the curves do not 
show a sharply defined border of the dead zone. On the other hand eq 27 of course 
neglects the existence of a dead zone Ap in the parabolic potential part of the 
profile. For (R = 100, N = 1000, a = 0.1; Fig 9A) one sees that the dead zone is 
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significantly larger than the value predicted by eq 27. In this case the contribution of 

Ap to the total dead zone A becomes apparent. Figure 9 also shows that when N 
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Figure 9 The distribution function g as a function of the normalized distance to 
the surface in a spherical geometry (A-C) and in a cylindrical geometry (D-F). This 
distance has been normalized to check the expected scaling behaviour of the dead 
zone: A ~ N3/5R4/5o-1/5 for a spherical surface, and A ~ N 3 / 4 R 1 / 4 G 1 / 4 for a cylindrical 
surface. Parameters: R, N, and a as indicated in the figure; % = 0. In the legends 
the numerical values of eq 27 are also given for the indicated set of parameters. 

and o are changed, the location of the maximum of the function 

g(z/(aN3Rd-1)1/(d+2) hardly changes. The area under the curves does change but 
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this is because we have defined f g(z)dz = 1. If the curves in parts B and C of Figure 
9 are normalized so that 

Jgfz/(aN3R^f(d+2)]drz/(aN3Rd-if(d+2) 

all curves virtually collapse onto a master curve. This is, however, not the case for 
the curves in Figure 9A. Increasing the particle radius shifts the maximum in q to 
lower values of z/((jN3Rd-1) 

Parts D-E of Figure 9 show the same curves as parts A-C for a cylindrical 
surface. Most dead zones are slightly larger than predicted by eq 27. This is 
caused by the contribution of Ap to the total dead zone A. The general shape of the 
curves shows the same behaviour as in the spherical geometry. The values of A 
are smaller than those for the spherical surfaces, but the dependence of A upon N, 
R, and a is very similar to that found in parts A-C of Figure 9. 
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Figure 10 The influence of solvent quality on the chain end distribution. 
Parameters: R = 25, N = 500, a = 0.1, spherical geometry, % = 0, 0.5, 0.7, 1. 

The effect of solvent quality on the free chain end distribution is demonstrated in 
Figure 10. For solvents varying from good (athermal) to very bad (% = 1) g(z/Hav) 
has been drawn for a brush on a spherical surface with a high grafting density 
(a = 0.1). Decreasing the solvent quality leads to a collapse of the polymer layer 
as was seen in Figure 7. However, the distribution of chain ends changes relatively 
little. Of course the area in which the end-segments are located becomes smaller, 
as the layer height itself becomes smaller, and so the size of the dead zone 
decreases. The relative size of the dead zone also decreases slightly (as seen from 
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the curve of g versus the reduced distance to the surface, z/Hav), but this turns out 
to be a minor effect. 

3.6 Discussion and Conclusions 

In this chapter we have shown that the lattice model of the Scheutjens and Fleer 
theory can be usefully extended to study polymer brushes at spherical and 
cylindrical interfaces. The efficient method this theory uses to generate chain 
conformations makes it possible to study the characteristics of polymer brushes 
over a wide range of chain lengths (e.g. for far longer chain lengths than is at 
present possible using simulation techniques). We again emphasize that this 
theory gives exact solutions within the mean-field theory, in which only nearest-
neighbour interactions are accounted for. This makes it an obvious reference point 
with which to compare approximate analytical SCF descriptions of polymer 
brushes. We first compared volume fraction profiles with those calculated by Dan 
and Tirrell.13 We found good agreement between both models. This is not 
surprising as both our approaches are based on a very similar physical model. 

We have concentrated ourselves on analysing the volume fraction profiles of 
brushes at spherical surfaces immersed in an athermal, low molecular weight 
solvent. For small curvatures the parabolic potential profile model agrees very well 
with the more accurate lattice calculations. The differences between both 
descriptions can be largely explained by the fact that the analytical model only 
takes into account pair interactions between segments. For flat surfaces differences 
of the same order of magnitude appear in the volume fraction profile when higher 
terms are neglected in the mixing free energy of polymer and solvent. Similarly, the 
distribution of free end-segments is roughly the same in both models. 

For decreasing radii of curvature the spurious effect of negative values of g(z) 
for low z becomes more prominent. As f g(z)dz = 1 this leads to too high values of 
g(z) outside the dead zone. Furthermore, the lattice calculations predict a finite 
volume fraction of free chain ends beyond the "classical" chain height. This '"foot" 
of the volume fraction profile can be explained completely analogously to that at 
the flat interface.27.33 Increasing the curvature leads to the appearance of a power 
law-like part in the volume fraction profile. 

The "combined model" that we introduced gives a reasonable description of the 
volume fraction profile by dividing it into two parts. The distribution of free ends in 
this model is too narrow, but the position of the maximum of this distribution is the 
same as in the lattice model. For very small particles the lattice model certainly 
does not indicate that all chain ends are situated at the same height above the 
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surface. The total volume fraction profile for such particles does, however, tend to 
the scaling law <|) ~ z"4/3. 

Our lattice calculations show very clear indications of the presence of a dead 
zone both near spherical and cylindrical interfaces. This is in contradiction with the 
molecular dynamics results of Murat and Grest,12 who found no evidence for the 
existence of a dead zone near a cylindrical surface for any finite radius of 
curvature. A quantitative comparison of our results with those of Ball ef a/.11 is not 
possible, as they solved their SCF equations for a system that we have not 
considered in this chapter, namely a cylindrical brush under melt conditions. Our 
calculations do, however, suggest that the dead zone size is not a simple 
monotonie function of the radius. We have tried to explain the radius dependency 
of the dead zone size in terms of the "combined model" for the volume fraction 
profile. We hope that our data and this tentative interpretation will encourage 
further work aimed at better understanding of this dead zone behaviour. 

In conclusion, we have showed that upon decreasing the solvent quality the 
grafted layer collapses and forms a step-like profile, irrespective of the curvature. A 
decrease in solvent quality also leads to a decrease in the dead zone size, but, 
even for a (far) worse than ©-solvent, a dead zone can still exist. 
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chapter 4 

Copolymer Adsorption on Small Particles 

Abstract 

In this chapter we use self-consistent field theory to study the adsorption of 
diblock copolymers onto small colloidal particles. The particles are modelled as 
spheres and the assumption is made that the adsorption parameter of the adsorbing 
segments is independent of the particle curvature. We find that the adsorbed amount 
per unit of surface area increases with increasing curvature. The hydrodynamic layer 
thickness decreases greatly with increasing curvature. The root-mean-square layer 
thickness does not vary much when the curvature changes. 
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4.1 Introduction 

Recently Evers ef a/.1'3 published a statistical thermodynamic model to describe 
the adsorption of copolymers. This work is an extension of the self-consistent field 
theory of Scheutjens and coworkers,46 which was developed to describe polymers 
at interfaces. In one of their papers Evers et al.2 studied the effect of the molecular 
composition of a diblock copolymer on its adsorbed amount. They showed that when 
the total length of the diblock copolymer is kept constant, a maximum is found in the 
adsorbed amount as a function of the fraction of adsorbing segments. This result is 
of great practical importance for the stabilization of colloidal dispersions, as a larger 
adsorbed amount generally corresponds to a larger thickness and, hence, to better 
stabilizing properties. Wu et al.7 have recently presented the results of an 
experimental study of the effect of the composition of a diblock copolymer on its 
adsorbed amount. They adsorbed a block copolymer consisting of a 
(dimethylamino)ethyl methacrylate block and a n-butyl methacrylate block from 2-
propanol onto silica and found a maximum adsorbed amount for a certain ratio of 
both block lengths, as predicted by Evers et al. Marquez and Joanny8 developed a 
different approach to the problem. They proposed a scaling model for diblock 
copolymer adsorption from a nonselective solvent. This model also predicts a 
maximum in the adsorbed amount as a function of the fraction of adsorbing 
segments.9-10 Hence, the maximum in the adsorbed amount of a diblock copolymer 
as a function of its composition seems to be a well established fact. 

The self-consistent field approach of Evers et al.^ is a lattice model for 
incompressible systems. It is based on the following fundamental approximations: 
(i) The polymer molecules are described as Markov chains (i.e. they are freely 
jointed) on a lattice. 

(ii) The many-chain problem is reduced to considering a test chain in an "external" 
field made up by the surrounding chains, 
(iii) Only short-range (nearest-neighbour) interactions are taken into account. 

The papers of Evers et a/.1-3 consider adsorption at infinitely large, flat interfaces. 
In colloidal dispersions polymers adsorb onto curved particles. As long as the radius 
of curvature of these particles is far larger than the dimensions of the adsorbed 
layer, one can model the adsorbent as a flat surface. However, when the radius of 
curvature is of the same order of magnitude as the adsorbed layer thickness, one 
should explicitly account for this curvature. In this chapter we discuss the effect of 
particle curvature on the adsorbed amount and layer thickness of a diblock 
copolymer. We apply the theory of Evers et al. in a spherical lattice as described by 
Leermakers and Scheutjens.6 In such a lattice the layers form equidistant, concentric 
shells. The differences between a planar lattice and a spherical lattice are: (i) the 
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number of sites L(z) in layer z increases on moving away from centre of the lattice; 
(ii) the lattice transition parameters are layer-dependent. These parameters, denoted 
as M z ) . ^o(z)> a nc ' Mz)> a r e defined as the fraction of neighbours a site in layer z 
has in layers z - 1 , z, and z + 1, respectively. The layers are numbered z = 1, 2, 3, ... 
starting at the centre of the lattice and moving outwards. Leermakers and 
Scheutjens have given expressions for the number L(z) of sites in a layer and for the 
lattice transition parameters as a function of z. Wijmans and Zhulina11 used such a 
lattice to describe a polymer brush on a spherical particle. In this case the central R 
layers of the lattice are occupied by the particle. We use the same approach to study 
the adsorption of polymer molecules from solution onto a spherical particle. In this 
case the polymer layer is in equilibrium with the bulk solution. 

4.2 Results 

All calculations were performed using a hexagonal lattice, i.e. 
X+(°°) = X_(°°) = 3/12. The copolymers consist of an adsorbing block of A segments 
(anchor) and a block of nonadsorbing B segments (buoy). We denote the length of 
the A block as NA and the length of the B block as NB. Nearest-neighbour 
interactions between segments are accounted for by the Flory-Huggins parameter %. 
The solvent is taken to be a poor solvent for the A block and a good solvent for the B 
block (XAO = 0-5 and XBO = 0> where O denotes the solvent, and XAB = 0-5). 

Following Silberberg,12 we introduce an adsorption energy parameter XsAO f ° r 

segment A, which is defined as the dimensionless difference [UQ -uA ) /kT, where 
u^ is the adsorption energy of segment A, and UQ is the adsorption energy of a 
solvent molecule. If XAS 'S t n e conventional Flory-Huggins parameter between A 
segments and adsorbent molecules (S), then XSAO = - ^ - ( R + 1 ) {XAS _ XOS} 

because a fraction \_(R+1) of an adsorbed segment (situated in layer R+1) is in 
contact with adsorbent sites. For a given value of XAS *ne lattice model implies that 
the adsorption energy parameter XSAO is a n (increasing) function of the radius of 
curvature R. In the calculations we have kept XsAO constant and we have used 
XSAO = 2- This corresponds to XAS = ~8 f ° r a f'at surface if xos = 0> and to higher 
values of XAS if R is small. The assumption of a constant XSAO seems reasonable 
when the adsorption is caused by a specific interaction, such as the formation of a 
hydrogen bond. In the case of non-specific interactions (e.g. van der Waals forces) 
this assumption might be less justifiable. In an experimental system with (very) small 
particles one should always bear this complicating factor in mind. In contrast to the A 
segments the B segments are taken as nonadsorbing: XSBO = 0-
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300 400 
A 

500 

Figure 1 (A) adsorbed amount 0a per unit of surface area; (B) hydrodynamic layer 
thickness §h; (C) root-mean-square layer thickness 8rms as a function of the number 
of adsorbing segments NA in an AB diblock copolymer. The radius R of the 
adsorbent particle is indicated. Parameters: %AO = 0.5; %BO = 0! XAB = 0-5; ZSAO = 2 I 
%sBo = 0;(t)b=io-4. 

Figure 1 shows results for the adsorption of diblock copolymers onto spherical 
particles. The bulk solution volume fraction <|>b of polymer is kept constant at 
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(t>b = KT4. Figure 1 was calculated for (monodisperse) polymer chains with a total 
chain length (i.e. number NA of A segments plus number Ng of B segments) of 500. 
The values of the particle radius are indicated in the Figure. In part A the adsorbed 
amount 0a (expressed as the total number of segments in adsorbed chains per unit 
of surface area) is given as a function of NA. The parameters have been chosen 
such that for R = oo the system is the same as in Figure 3 of ref 2. 

For all values of R, 0a is a non-monotonic function of NA, exhibiting a maximum 
for NA < 100. Evers et al. explained this maximum as follows. When the fraction of A 
segments is smaller than corresponding to this maximum, the anchoring is weak: the 
adsorbed amount is low because the total adsorption energy per chain is small. 
Beyond this maximum the adsorbed amount decreases with increasing NA because 
the surface region is overcrowded by adsorbing A segments, and the freely dangling 
B blocks become shorter. 

When the surface is curved the adsorbed amount per unit area is larger than for 
a flat surface. A decrease in R leads to an increase in the adsorbed amount for all 
possible compositions of the polymer. The curved geometry allows the B blocks, 
which are protruding into the solution, more lateral freedom, which makes the 
adsorption process entropically more favourable. The curvature dependence is most 
pronounced for chain compositions with a relatively long buoy block (small NA). For 
R = 5 up to twice as much polymer can be adsorbed per unit of surface area as 
compared to a flat surface. When the length of the A block is significantly increased 
beyond its optimal value the curvature effect is strongly reduced. In the limiting case 
of an adsorbing homopolymer (no B segments, only A segments) the adsorbed 
amount is only slightly larger for R = 5 than for R = °°. Furthermore, Figure 1A shows 
that the maximum in the adsorbed amount curve shifts to slightly lower A segment 
fractions when the curvature is increased: a smaller sticking energy is required if the 
B blocks hinder each other to a lesser extent. 

An important parameter to characterize an adsorbed polymer layer is its 
thickness. The effect of the particle curvature on the layer thickness has also been 
studied, as is shown in parts B and C of Figure 1. It turns out that, even qualitatively, 
the effect depends strongly on the way in which one defines the adsorbed layer 
thickness. 

We first consider the hydrodynamic layer thickness 8^, plotted in Figure 1B. The 
hydrodynamic layer thickness of polymer adsorbed onto colloidal particles can be 
determined from techniques such as photon correlation spectroscopy, that measure 
diffusion times. The hydrodynamic layer thickness was calculated under the 
assumption that all flow of the solvent takes place concentrically to the surface. This 
assumption enables us to apply the theory of Cohen Stuart et a/.13 to calculate the 
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hydrodynamic layer thickness from the volume fraction profile. We take the 
hydrodynamic constant Ch equal to unity.2.13 Clearly, the assumption of concentric 
flow is not correct. For small particles one expects that this assumption 
overestimates the layer thickness. However, that would only enhance the curvature 
effect we find for the hydrodynamic layer thickness dependency. The main 
conclusion from Figure 1B is that, upon decreasing R, the hydrodynamic layer 
thickness also decreases. At first sight this might seem a little puzzling, as the 
adsorbed amount increases with increasing curvature. However, a decrease in R 
implies that the volume fraction profile of the B segments falls off more quickly (see 
also Figure 2). The hydrodynamic layer thickness is a measure for the spatial 
extension of the volume fraction profile. 

In Figure 1C the root-mean-square (rms) layer thickness Srms is given for the 
same systems. The rms layer thickness can be determined from a static light 
scattering experiment. This measure of the layer thickness is defined as: 

1 

Örms — Jrms 

AXzz
24>(z)|_(z)^ 

Xz<Kz)L(z) 

2 

Here, L(z) is the number of lattice sites in layer z. For NA < 300, 8rms turns out to be 
an increasing function of R, just as 5h. The relative differences between the layer 
thicknesses found for different values of R are far smaller than those found for the 
hydrodynamic layer thickness, and follow more closely the adsorbed amount Ga. For 
large values of NA (N^ > 400) one even finds that 6rms is a decreasing function of R. 
The different results as compared to the hydrodynamic layer thickness can be 
explained by the definition of the rms layer thickness. The latter thickness does not 
measure the extension of the volume fraction profile §(z) but is a measure for 
L(z)<(>(z). Although the volume fraction profile falls of far more quickly when the 
curvature is increased, L(z) times the volume fraction profile does so less strongly. 
The quantity L(z)(|>(z) is proportional to the fraction of segments at a given distance z 
from the surface. 

In Figure 2 volume fraction profiles of the B blocks are plotted. These data apply 
to chains consisting of 40 A and 460 B segments. The decrease of the 
hydrodynamic layer thickness with increasing curvature can easily be understood 
from these volume fraction profiles. If in this Figure <]> were multiplied by L(z), the 
profiles for small R would increase more than those for large R. This explains the 
different R-dependency of 5̂ , and 5rms. The shape of the curves in Figure 2 is the 
same as what one would expect for nonadsorbing polymer chains terminally 
attached to a spherical surface. For large R the volume fraction profile corresponds 
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to a parabolic potential profile. For small R it changes to a power law. This behaviour 

was studied more extensively in ref 11. 

0.08 

0.04 • \ ^ s 2 0 

\ 5 

\ R = ° o 

\ 

50 z-R 100 

Figure 2 Volume fraction profiles for the B segments of A40B460 copolymers 
adsorbing onto spherical particles with radius R (indicated). All parameters are the 
same as in Figure 1. 
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chapter 5 

Effect of Free Polymer on the Structure of a 

Polymer Brush 

and Interaction Between Two Polymer Brushes 

Abstract 

Self-consistent field (SCF) calculations are presented of a planar grafted 
polymer layer that interacts with either free polymer chains or with another grafted 
layer. Three different systems are studied. The first is a grafted polymer layer 
immersed in a polymer solution. The interaction between grafted and free polymer 
can significantly influence the grafted polymer volume fraction profile. For grafted 
chains that are strongly stretched the lattice calculations are compared with the 
theory of Zhulina, Borisov and Brombacher (Macromolecules 1991, 24, 4679). 
Good agreement is found when the free chain length is far smaller than the grafted 
chain length. The scaling behaviour of the penetration of free polymer into the 
grafted layer is also studied for this system. In the second type of system the 
interaction between two grafted layers in the absence of free polymer is 
considered. The lattice calculations agree well with the theory of Zhulina et al. In 
the third system free polymer is present between the interacting grafted layers. If 
this free polymer has a small chain length, its main effect on the interaction free 
energy is the compression of the free grafted layers, and only repulsion is found. 
However, for larger chain lengths an attraction between the grafted layers appears. 
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5.1 Introduction 

In a previous paper1 the self-consistent field (SCF) description of non-
compressed polymer brushes was discussed. Assuming that the chains in such a 
brush are strongly stretched with respect to their free Gaussian dimension, one can 
elegantly describe the structure of such a system by following a suggestion first 
introduced by Semenov.2 In this approach all possible conformations of the 
polymer chains are replaced by a set of most probable conformations. For a given 
system this assumption can be rigorously checked using a SCF theory that 
involves the generation of all possible chain conformations on a lattice. The 
assumption of strong chain stretching is valid for a polymer brush immersed in a 
low molecular weight solvent under a very wide range of solvent qualities, but this 
assumption breaks down under extreme conditions, notably for very short chain 
lengths. The same holds for a polymer brush that is immersed in a solution of short 
mobile chains which are chemically identical to the grafted chains. 

In this paper we shall discuss interactions between grafted layers in the 
absence and in the presence of free polymer. First, we discuss an isolated brush 
immersed in a solution of free polymer with the same chemical composition (but not 
necessarily the same degree of polymerization) as the grafted polymer. Here, the 
interesting issue is to what extent the free polymer penetrates into the grafted layer. 
Scaling dependencies will be derived for the degree of interpénétration as a 
function of grafting density, free and grafted chain lengths, and free polymer 
concentration. Second, the interaction between two planar grafted polymer layers 
immersed in a solvent will be considered. Zhulina et al.3 and Milner et al.4 showed 
how the strong chain stretching description of a single polymer brush can be 
extended to describe the interaction between two grafted layers if the 
interpénétration of these two layers is neglected. By comparing the predictions of 
this theory with the results of lattice calculations we hope to gain more insight into 
the behaviour of compressed polymer layers. In particular the effects of weak chain 
stretching, and the interpénétration of opposite layers will be studied. The third 
system discussed in this paper is a combination of the two previous ones: the 
interaction of two grafted layers in a solution of free polymer. In section 2 the 
theoretical methods are described, in section 3 numerical and analytical results are 
given, and in section 4 we discuss these results. 
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5.2 Theory 

Lattice Model 
Grafted polymer, solvent, and free mobile polymer is distributed on a planar 

lattice, consisting of M layers of L sites each, between two parallel plates. The 
diameter, £, of the segments defines the lattice spacing. We restrict ourselves to the 
case of grafted and free polymer molecules of identical segment types in an 
athermal solvent. For large interplate distances W this system reduces to that of 
two isolated polymer brushes immersed in a polymer solution. If M^ is smaller than 
twice the brush thickness, we have two brushes in interaction. We consider 
polymer chains that are grafted at one end onto one of the two plates with a relative 
surface coverage o = ng/L, where ng is the total number of chains grafted to that 
plate. In general, we want to compute the equilibrium distribution of all three 
components on the lattice for given values of M, a ( 0 < a < 1 ) , grafted chain 
length Ng, free chain length Nf, and bulk volume fraction $ of the mobile polymer 
(0 < $ < 1). This is done by weighting all possible conformations of the polymer 
chains by their Boltzmann probability factor. In a previous paper1 we showed how 
the Scheutjens-Fleer formalism for polymer adsorption can be used to find the 
volume fraction profiles of such systems with grafted chains in the presence or 
absence of free polymer. In that paper we also discussed the computational 
problems that arise when long polymer chains are considered with a high grafting 
density. 

For two interacting brushes the free energy A(M) of the system can be 
calculated as:5 

LkT 

( (u X^ 
oNg 

v 

l G g ( z , N g ) 
VZ=1 

+ £lntf+e8ln(1-*{>)-XTF (1) 

Nf z = 1 K I 

Here 9f and 6S are the amount of free polymer and the amount of solvent molecules 
in the system, respectively, expressed in equivalent monolayers. The quantity 
Gg(z,Ng) is the average weight of all conformations of a grafted chain of which the 
end segment is in layer z and u(z) is the potential energy profile of the polymer 
segments. When describing the interaction between two layers, it is convenient to 
define the excess surface free energy As as 

AS(M) A(M) / .v. / . \ 9 f ,_. 
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Here, u.s-u.s and Hf-|Xf are the chemical potentials of the solvent and free 
polymer, respectively, defined with respect to their pure amorphous phases 
(denoted by *). They are equal to:6 

± ^ = ln(l-<tf) + <tf(1-1/Nf) 
k T . (3) 

± ^ - = ln<t f+ (1-N f ) ( l - t f ) 

The interaction free energy Aint(M) between two layers can now be written as the 
difference between the excess surface free energy at the given plate separation M 
and the excess surface free energy at infinite plate separation: 

Aint(M) = A s ( M ) - A s H (4) 

Analytical theory for a polymer brush immersed in a solution of free 
polymer 

In this section we briefly review the results of Zhulina et al.,7 who made an 
elaborate SCF analysis of polymer brushes immersed in a solution of mobile 
polymer. Assuming that Nf « Ng, so that the size of a mobile chain is much smaller 
than the characteristic length over which the volume fraction profile of the grafted 
chains decays, one can write the free energy density functional of mixing grafted 
polymer, free polymer and solvent as: 

f-3f(z) = ( l -0 f(z)-0g(z)) ln( l-^, f(z)-^(z)) + Ä | n ^ ( z ) ( 5) 

In the bulk solution (z > H, where H is the brush thickness) (j)g(z) = 0, so that one 

can write 

r 3 f b = ( l - ^ ) m ( i - ^ ) + ^ | n ^ b ( 5 a ) 

By combining f(z) with the elastic term in the free energy of the polymer brush, 
one can derive an expression for the total free energy of the brush (see ref 7 for 
details). One can also derive equations for the grafted and free polymer volume 
fraction profiles <f>g(z) and <|>f(z). In the next section we will discuss the interaction 
between two polymer brushes, which can be analysed by studying how their free 
energy changes upon compression. First we discuss the shape of an isolated 
brush immersed in a solution of free polymer. 
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The volume fraction profiles of the grafted and free chains are given by the 
equations7 

4>g(z) = (1 -^ ) [ i -exp{ -K 2 (H 2 - z 2 ) } ] + ̂ [ l - exp { -K 2 (H 2
 - Z 2 ) N , } ] 

Mz) = ^exp{-K 2 (H 2 -z 2 )N f } 

where z is the distance from the surface and K is given by 

K2 = 3JC2 /8^2N2 

The layer thickness H can be obtained from the normalization condition 

H 

j^g(z)dz = aNg^ 

to give the equation 

KH = NgoK* + (1 - $ )D(KH) + <t>|>Nf 1/2D(KN, 1/2H) (7) 

where 

2 X 

D(x) = e~x Je' dt 
o 

is the Dawson integral. Equations 6 and 7 give the volume fraction profiles <|>g(z) 
and ())f(z), and the brush thickness H as functions of Ng, 1% and a. However, these 
equations are only valid provided Nf « Ng and under the condition that the grafted 
chains are strongly stretched (H » Ng

1/2). 

In order to extend our consideration to low grafting densities and arbitrary 
lengths of the free polymer chains, we have to use scaling arguments.8 Although 
scaling arguments do not provide structural details of the system (volume fraction 
profiles, distribution of free ends, etc.), the combination of scaling and SCF results 
gives a general picture of a brush immersed in a polymer solution. Below, we 
analyse the power-law dependencies of the brush thickness and we also consider 
the degree of penetration of the free polymer into the polymer brush. These 
characteristics are studied as functions of Nf and a. Of course, for Nf « Ng and 
H » Ng1/2, the explicit expressions for H, (|>g(z), and <j>f(z) are available. 

Figure 1A presents a diagram of state of a polymer brush immersed in a 
solution of free polymer. This figure shows the different power-laws that exist for the 
dependence of H on a and Nf. The boundaries between the regimes where these 
laws are valid are also indicated. 

100 



(|>f3/2 _ 

N„-1 

M -6/5 
' N g 

_(A) 

(1) 
H 0 ~N g c i /3 

O 

(4) 
H0 ~ N / 5 

(2) 
H0~Ngc(|)r1 

o = <(>fNf-
1/2 

(3) 
H0 ~ Ng(o/Nf^)f)i/3 

<fcNg-i/2 

o = Nf4)fNq-3/2 

(5) 
H0 ~ Ng3/5 

(N,^f)-1/5 

O = (Nf(|)f)2/5Ng-6/5 

(6) 

H0 ~ Ngi/2 

1 
())r1Ngi/2 Ng 

Nf 

101 



(B) 

•0=Ng3Nf-9/2 
A f~Ng2NriH-i \ 

\ Ag ~ Ng3/2H-i/3 \ 

\ \ Af = Ag ~ Ng3/2H-1/3 

\ x 
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A g ~ Ng2/3H-i/3 à = <t>fN f-^ 

ö =N f ( ( ) fN g -3 /2 . 

A, = Ag ~ Ng1/2 

())f3/2 

foNg-l* 

Nr 

N f 
Figure 1 Diagram of state showing the various regimes for a single grafted 
polymer layer immersed in a polymeric solution. The grafted polymer has a chain 
length N g and is grafted at a density 0. The free polymer is chemically identical to 
the grafted polymer, has a chain length Nf and its volume fraction in the bulk is ty 
(in the text this quantity is indicated as <$). In Figure 1A the regions with different 
scaling laws for the thickness H of the grafted layer are shown. In Figure 1B the 
boundaries are given between regions with different scaling laws for Af (the 
penetration length of free polymer penetrating into the grafted layer) and Ag (the 
penetration length of grafted polymer penetrating into the bulk solution). 

For high grafting densities as well as for low degrees of polymerization of the 

free polymer we are in region 1, which may be called the regime of "brush 
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dominance".8 The brush thickness scales exactly the same as in a pure low-

molecular weight solvent: 

H - NgO-1/3 (8) 

Regions 2 and 3 may be called the regimes of "solution dominance". In region 2 the 

free polymer is excluded from the brush, which is compressed by the osmotic 

pressure of the surrounding solution, leading to the following scaling behaviour of 

the brush height: 

H~Ngc/4>f
b (9) 

In region 3 free polymer penetrates into the brush and screens interactions 

between grafted polymer segments. This screening can be described by 

introducing an effective virial coefficient for pair interactions between these 

segments, vef f = (Nf<|)b] < 1, so that the brush thickness scales as 

H ~ veff
1/3Ng01/3 = NgoV3(Nf(»f

b)-1/3 (10) 

Equations 8-10 can be derived by expanding the expression for H given in eq 7. 

In regions 4, 5, and 6 the grafting density is so low that the grafted chains are either 

nonoverlapping, or only slightly overlapping (for a > N g
_ 1 in region 6). For small 

values of Nf (region 4, where Nfcjij? < 1) the free polymer has a negligible effect and 

the grafted chains essentially behave as isolated coils: 

H~Ng3 /5 (11) 

For larger values of Nf (Nf(|)
b > 1) the effect of the free polymer chains can again be 

accounted for by introducing an effective virial coefficient, veff = (Nf(j)b J , so that 

H~v e f f
1 / 5 N g

3 / 5 =N g
3 / 5 (N f ^ ) - 1 / 5 (12) 

For Nf > Ng1/2/<|>b (region 6) the grafted chains can be described as Gaussian 

coils: 

H~Ng1/2 (13) 

It is interesting to note that for grafting densities Ng
_ 1 < a < c|)bNg-1/2 addition of free 

polymer to a polymer brush immersed in pure solvent can change the scaling 

dependence of the brush height from that of a strongly stretched polymer (H ~ Ng) 

to that of a Gaussian coil (H~Ng
1, /2). The boundaries of the regions shown in 
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Figure 1A can be directly found by equating the scaling dependencies on both 
sides of these boundaries. 

Up to now we have only considered the overall brush height. A further important 
parameter is the degree in which the free and grafted layers interpenetrate. Let Af 

be the penetration length of the free polymer into the brush and Ag the penetration 
length of the grafted polymer into the solution. It has previously been shown9'10 that 
for grafted polymer chains that are strongly stretched, the latter interpénétration 
length scales as 

Ag ~ Ng
2/3H-V3 (14) 

This scaling relationship has a wide applicability. It is valid both for compressed 
and non-compressed brushes, for good and bad solvents, as well as for brushes 
immersed in a melt. One expects this scaling law to describe the degree of 
penetration Ag of the grafted chains into the polymer solution in all three regions of 
Figure 1A (regions 1, 2, and 3) where the grafted chains are strongly stretched. 
The behaviour of the free polymer chains is more complicated. When Nf is large 
only a fraction of the segments of a free chain penetrate into the brush. These 
segments experience the parabolic potential profile u(z) of the brush, 

u(z) = K2(H2-z2) (15) 

with K defined below eq 6. If n segments of the free polymer chain penetrate into 
the brush up to a distance Af from the outer boundary of the brush, then the free 
energy increases with an amount: 

H-Af
 v J f H - A f

 z N9 

The last equality in eq 16 takes into account that the free polymer chains are not 
stretched, so that A f

2 =n^ 2 . Balancing AF with the thermal energy (~kT), one 
obtains 

Af - Ng
2/3H-1/3 (17) 

This scaling dependence holds when n = A f
2/^2 <Nf, or H > £Ng

2Nf~3/2. For 
smaller values of Nf whole molecules of the free polymer penetrate into the brush. 
The increase in free energy due to the presence of a free polymer in the brush at a 
distance z' from the grafting surface is: 
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£ S N £ j K 2 ( H 2 - z 2 ) d z , K 2 N , ( H 2 - z ' 2 ) ^ (18) 
z'-/Nfv2 Ng 

where Af = H-z' and the free chains are again assumed to be Gaussian. 
Balancing this expression with the thermal energy leads to another scaling law for 
A f : 

Af - Ng
2Nf-

1l-r1 (19) 

This dependence should hold for fNg
2Nf-3/2 >H>^NgNf1 /2. When H<^NgNf1/2 

the free polymer penetrates throughout the whole brush (Af = H). 

In Figure 1B the two dashed curves give the boundaries between the areas 
where Af follows the various scaling laws derived above. To the right of the curve 
with the short dashes Af equals Ag and scales as Ng

2/3hr1/3. For o x ^ (i.e. for 
systems in region 1 of the diagram of Figure 1A) this means that the penetration 
lengths scale as Ng

1/3G~1/9. The volume fraction profiles of the grafted and free 
chains are symmetrical around their intersection point. The free chains only partly 
penetrate into the brush. Between both dashed curves whole molecules of the free 
polymer penetrate into the brush, but Af < H. The free chains penetrate farther into 
the brush than the grafted chains do into the solution, so that the volume fraction 
profiles become asymmetrical. This asymmetry is even more pronounced left of the 
curve with the long dashes, where the free chains penetrate throughout the whole 
grafted layer: Af = H, while Ag is still given by eq 14. In region 6, where the grafted 
chains are no longer strongly stretched, Af = Ag = H = ^Ng

1/2. 

Analytical theory for the interaction between two brushes 
We now consider the case of two interacting brushes in a solution of mobile 

polymer with a bulk volume fraction $. Analytical expressions for the volume 
fraction profiles and conformational free energy of a compressed brush were 
obtained earlier.7 Here we extend the results of ref 7 in order to calculate the free 
energy of interaction of two brushes which are compressed against each other. We 
take into account the redistribution of the free polymer during the compression. As 
before, the interpénétration of the two opposite brushes is neglected. The 
interacting brushes are considered as being compressed against an impermeable 
surface which is situated in the middle of the two grafted layers. 

The equilibrium amount of free polymer as a function of the degree of 
compression was given in eqs 23 and 25 of ref 7. When the two brushes just do not 
yet overlap (so that the interplate distance W = 2H) the amount of free polymer, 
9f(2H), in the system equals: 
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e,(2H) = 
2$ D(KNf

1/2H) 

~ö KNf
1/2 (20) 

where H is given by eq 7. When the brushes are compressed we define a 
compression ratio q as M£/2H, which is smaller than unity for compressed brushes. 
The amount of free polymer decreases when q decreases. Introducing the ratio 
y = 0{(M)/ef(2H), we can write the following implicit equation for the amount of free 
polymer: 

\Nf 
D(x) 

y = — — x 
D(qx) 

KHq-a'-Nf
1/2<|>j?D(x)y 

M)D(x) 
(21) 

where D(x) is again the Dawson integral, the normalized grafting density a' is 
defined as c'= 7t(3/8)1'2o\ and x = Nf1//2KM^/2. The conformational free energy 
A(M) of a brush compressed to a distance M£ (< 2H) is given by eq 18 of ref 7: 

A(M) _ M f M2K2
 | 2ef(M)l3a 

LkT " " + " 
__MJ m 
~ 2 o l 1i NfM 

ef(M)a 
M/2 _1A 

JexpJ£2K2Nfx
2)dx 

V 0 

2Nga 29f(M)a|n 

M M 

(M/2 N 

(M/2 - Nga) j exp(^2K2x2 )dx 
l o 

-1^ 

)) 

(22) 

The interaction free energy as defined by eqs 2 and 4 is: 

Aint(M) = A(M)-
(Llf - Ltf ) , , . 

- A(2H) + i — — 1 (9, (2H) - 9, (M)) + (ns - m)(0s(2H) - es(M)) (23) 
Nf 

After some rearrangements the final result becomes 

2 Aint(M) 
LkT oKe-

- { | (KH)3 ( l -q3)- (KH)2a' ( l -q2 ) -

^ [y ln(y^D(x)(D(qx))-1 ) - In <tf ] + («Hq - a' - y t f D(x)Nf1/2 ) > (24) 

ln[(KHq - a1 -y(|>bD(x)Nf 1/2)(D(KHq))-1] - (l - ^)D(KH)ln(l- ̂ ) j + 

| (1 -q ) ( ln ( l -$ ) + tf(1 - 1/Nf)) + (1 -y)x-1D(x)(Nf-
1 Intf - l n ( l - ^ ) + N f 1 -1) } 2H 

This equation is only valid for relatively short mobile chains, since it does not take 
into account the loss in conformational free energy of the chains in the gap 
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between the two brushes. For long mobile chains this should explicitly be taken 
into account. 

5.3 Results 

Grafted chains in a polymer solution 
All lattice model results that are presented in this section were computed using 

a cubic lattice. Figure 2 shows volume fraction profiles of polymer brushes that are 
immersed in a polymer solution, calculated both with the analytical theory (eqs 6 
and 7) and the lattice model. The chain length Nf of the mobile polymer is 10 
segments and the lattice calculations (solid curves) have been made for grafted 
polymer chain lengths Ng of 50, 200, and 600. According to eq 7 H ~ Ng, so that the 
volume fraction profiles given by eq 6 (dashed curves) are independent of Ng if 
they are plotted as a function of the reduced distance z/H. The longer the grafted 
chain length, the better the agreement with the analytical equations. For shorter 
grafted chain lengths the profile of the grafted component shows a clear "foot" 
protruding into the solution. The shorter chains also show a clear depletion zone 
near the surface, which is absent in the analytical model. These features are 
completely analogous to the situation where the brush is immersed in a one-
component low molecular weight solvent. The system of Figure 2 belongs to region 
1 of the phase diagram of Figure 1A. The volume fraction profiles of the free and 
grafted chains are asymmetric around their intersection point. This is especially 
clear for high Ng. Whole molecules of the free component (which are only 10 
segments long) move into the brush, but they do not penetrate farther than 
approximately 50% of the brush height. 

In Figure 3 the analytical model is compared with the lattice calculations for 
systems in regions 1 (a = 0.1), 2 (a = 0.02), and 3 (a = 0.004) of the phase 
diagram. The bulk volume fraction of free polymer has a value of 0.1 in all cases. In 
each case the results are shown for a small free polymer (Nf = 30, which is 5% of 
the chain length of the grafted polymer), and for a larger free polymer (Nf = 300, 
which is half the grafted chain length). In the derivation of eq 6 it was assumed that 
Nf « Ng. Indeed, for all three grafting densities shown in Figure 3 the curves for 
Nf = 30 show better agreement between the lattice calculations and eq 6 than do 
the curves for Nf = 300. For Nf = 30 the brush thickness H is described well by 
eq 7. The penetration length Ag decreases with increasing H and is approximately 
given by eq 14. The free polymer penetrates the brush over a length Af which 
exceeds Ag and becomes equal to H for low grafting densities; these trends agree 
well with the scaling relations given in Figure 1B. 
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Figure 2 Volume fraction profiles of brushes immersed in a solution of short 
mobile polymers with chain length Nf = 10. The volume fractions of both grafted 
and free chains are given as a function of the reduced distance z/H to the grafting 
surface. The layer height H has been calculated using eq 7. The dashed curves 
give (|>g and fy as predicted by eq 6 (these curves do not depend upon Ng as 
H ~ Ng). The solid curves follow from lattice model calculations. Further parameters: 
Ng = 50, 200, and 600; o=0.1 ; $ = 0.1. 

The analytical volume fraction profiles of the grafted component deviate slightly 
from the lattice calculations at the surface and at the periphery of the layer. These 
are well known effects that are also seen with brushes immersed in a one-
component low molecular weight solvent. The presence of the surface leads to a 
narrow depletion layer for the grafted polymer, and because of their finite chain 
length some chains stretch farther away from the surface than they should 
according to eq 6. For Nf = 300 eq 7 still gives a good estimate of the brush 
height, but it predicts a far too sharp boundary of the grafted and free polymer 
layers. Especially for the higher grafting densities this effect is very pronounced. It 
is caused by the very approximate way in which the translational entropy of the 
mobile chains is accounted for in the derivation of eq 6. 

If a full description is wanted of the system consisting of grafted polymer 
immersed in a solution of relatively long free polymer chains, one must combine eq 
7 with the scaling dependencies of the penetration lengths Af and Ag. These were 
given in the previous section (eqs 14-19). In Figure 3 the lattice curves for Nf = 30 
are asymmetric around the intersection point of the two profiles. This is in 
agreement with the prediction for the region left of the curve with the short dashes 
in Figure 1B. For Nf = 300 one moves into the symmetrical region, so that 
Af = Ag. The scaling dependence of Af on Nf, Ng, and H is shown in Figures 4 and 
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5. In all cases the penetration length has (arbitrarily) been defined as the distance 
over which <|)f(z) falls from <)>g(z) (i.e. the volume fraction at the intersection point of 
both profiles) to half this value. The systems which correspond to the data points of 
Figure 4 are described in table 1 A. They all belong the symmetric area of the phase 
diagram. The penetration length Af indeed scales as Ng

2/3H~1/3, as predicted by eq 
17. Table 1B gives the systems that are shown in Figure 5. These belong to the 
asymmetric area of the phase diagram. In this case the penetration length Af scales 
as Ng2(NfH)~ , as expected from eq 19. 
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Figure 3 Volume fraction profiles of brushes immersed in solutions of relatively 
short (Nf = 30) and relatively long (Nf = 300) mobile polymers. The dashed 
curves follow from eq 5 and the solid curves are lattice calculations. In all cases 
Ng = 600 and tf»̂ 1 =0.1. The grafting density and free chain length are indicated in 
the graphs. 
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Figure 4 The penetration length Af of free polymer into the brush as a function of 
grafted chain length Ng, and brush height H. The systems presented in this Figure 
belong to the "symmetric area" of Figure 1B. The data of these systems are given in 
table 1. 
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Figure 5 The same as Figure 4 for systems that are in the "asymmetric area" of 
Figure 1B. The data of these systems are given in table 2. 

So far, we have considered grafted polymer chains that are strongly stretched 
(H ~ Ng, regions 1, 2, and 3 of the phase diagram). When o < ̂ Ng - ^ 2 , an increase 
of the chain length of the mobile polymer leads to a transition of the grafted chains 
from a strongly stretched (H~Ng) to a Gaussian coil conformation (H~Ng

1/2). 
Equation 6, whose derivation was based upon the grafted chains being strongly 
stretched, is then no longer valid. In Figure 6 lattice calculations are shown for 
systems that are expected to show this Gaussian coil behaviour. Only the volume 
fractions of the grafted component are shown. Reduced coordinates have been 
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used to clearly demonstrate the scaling behaviour of the grafted polymer chains. 
One can conclude from Figure 6 that H indeed scales as Ng^2. However, the 
volume fraction profiles themselves do not precisely obey this scaling relationship: 
the scaled profiles do not exactly collapse onto one master curve. 

Table 1A 

Ng 

100 
300 
300 
300 

300 
600 
600 
600 
600 
600 

o 

0.5 
0.1 
0.5 
0.1 
0.5 
0.1 

0.1 
0.1 
0.1 
0.01 

Nf 

200 
200 
200 
200 
200 

6000 

200 
600 
200 
600 

«•? 
0.1 
0.1 
0.5 
0.1 
0.5 

0.1 
0.1 
0.5 

0.5 
0.1 

Ng2/3H-1/3 

5.2029 

8.7143 

9.7201 

9.6549 

11.713 

12.205 

12.226 

14.758 

14.802 

18.171 

Af 

0.99538 

1.7501 

1.9633 

1.9923 

2.5159 

2.3393 

2.6399 

2.9248 

3.4746 

4.0375 

Table 1B 

Ng 

200 
200 
400 
200 
200 
300 
400 
300 
400 

c 

0.1 
0.1 
0.1 
0.25 

0.1 
0.1 
0.1 
0.1 
0.1 

Nf 

50 
50 
50 

10 
10 
10 
10 
10 
10 

•f 
0.1 
0.1 
0.1 

0.1 
0.1 
0.1 
0.1 
0.5 
0.5 

Ng
2/NfH 

12.054 

18.250 

24.446 

40.374 

61.696 

93.175 

124.64 

149.00 

198.61 

Af 

2.3500 

2.9801 

3.5590 

4.4948 

6.9966 

9.8712 

12.986 

16.394 

21.709 
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D = 0.5 
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N = 500 a = 0.01 
N = 1000 a = 0.01 
N = 3000 0 = 0.001 
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g 

Figure 6 Volume fraction profiles of systems in region 6 of Figure 1. Only the 
grafted chains are shown. All curves are lattice calculations. The reduced distance 
to the grafting surface zNg~

1/2 is used as the abscissa to check the relationship 
H~ Ng1/2. The reduced volume fraction §I[GN^2\ is used as the ordinate, so that 
the areas under all curves are equal. In all cases <t>j? = 0.5 and Nf = 500. The 
values of a and Ng are shown in the Figure. 

Interaction between two brushes in pure solvent 
Figure 7 shows interaction curves for the compression of two polymer brushes 

in a pure solvent (no free polymer present). The solid curve is the analytical 
prediction of eq 24, where in this case all terms containing <|>j? and y vanish. The 
other curves were obtained from the lattice model for Ng = 50, 200, and 600. The 
insets show the interaction on a semi-logarithmic scale. Equation 24 predicts that 
A int(q)~Ng. For long chains the lattice calculations approach the prediction of eq 
24. The agreement also becomes better for larger grafting densities (see Figure 
7B). These trends are the same as those found when comparing volume fraction 
profiles of non-compressed brushes. For small compressions (q = 1) relatively large 
deviations remain between the lattice calculations and the strong-stretching model, 
even for long chain lengths. This is most clearly seen from the curves drawn on a 
semi-logarithmic scale. Here only the outer most part of the brush is being 
compressed. In this case the exponential decay ("foot") of the profile, predicted by 
the lattice model, has a relatively strong effect on the interaction curve. This causes 
the interaction free energy to have a finite positive value for values of q larger than 
unity. 

In Figure 8 volume fraction profiles calculated from the lattice model are given 
for Ng = 600 and a = 0.01. The profiles of the brushes on both surfaces are 
drawn individually for three interplate distances: M = 200 (q = 1.03), M = 50 
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(q = 0.26), and M = 20 (q = 0.10). In Figure 8A (q = 1.03) the brushes just start 

to interact with each other. Although q > 1, so that according to the "classical" 

prediction of eq 24 there should not yet be any interaction, the tips of both profiles 

do already slightly overlap, giving rise to a finite free energy of interaction, which is 

neglected in the analytical theory. 

c 
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0.00025 -

0.01 

0.005 -
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• analytical 
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Figure 7 Interaction curves between two brushes in the absence of free polymer. 
The lattice calculations for Ng = 600, 200, and 50 are compared with eq 24 (solid 
curve). Grafting density: a = 0.001 (A), 0.01 (B). The insets show the interaction 
free energies on a semi-logarithmic scale. 

The analytical theory further neglects the fact that when two brushes are 

compressed against each other, the chains attached to both surfaces will to a 

certain extent interpenetrate. This can be clearly seen in parts B and C of Figure 8. 

Decreasing the plate separation eventually leads to a complete overlap of both 
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layers. Taking into account this interpénétration should lead to a slightly less 
repulsive interaction. 

0.05 

Figure 8 Volume fraction profiles of two brushes that are compressed against 
each other. Ng = 600; a = 0.01. The degrees of overlap are as follows: for 
M = 200 q = 1.03; for M = 50 q = 0.26; for M = 20 q = 0.10. 

In Figure 9 the effect of this interpénétration on the free energy of interaction is 
quantified for a brush with a chain length of 200 segments and a grafting density of 
0.01. The results of the lattice model are given for three different cases. The first is 
the compression of two brushes on opposite surfaces (which is denoted in the 
figure legend as "two brushes"). This is exactly the same system as shown in the 
previous figures. In the second case a single brush (denoted as "one brush") is 
compressed by a bare surface (i.e. a surface bearing no grafted polymer); q is now 
defined as M//H. In this case there is no interpénétration, as the chains cannot 
move through the surface by which they are compressed. Therefore one would 
expect a better agreement with eq 24. However, the agreement is worse. Below we 
explain the reason of this discrepancy. The curves denoted by "adsorbing chains" 
in Figure 9 have been calculated for the same system as that denoted by "one 
brush", but now the segments of the polymer have a small attractive interaction with 
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the bare surface. The value of this attraction can be described by the adsorption 
energy xs as defined by Silberberg.11 We have chosen %s - -ln(5/6), which is the 
critical adsorption energy of an infinitely long polymer chain on a cubic lattice. 

< 

0.5 

— eq 24 
adsorbing chains 

— one brush 
- two brushes 

0.5 

Figure 9 Interaction curves between two brushes and between a brush and a 
wall. Parameters: Ng = 200; a = 0.01. The solid curve is calculated using eq 24. 
The curve "two brushes" is the free energy of interaction when two similar brushes 
are compressed against each other; in this case the chains in both brushes can 
interpenetrate. The "one brush" curve gives the free energy of interaction of a 
single brush which is compressed by a hard impenetrable surface. The "adsorbing 
chains" curve is calculated for the same system, but in this case the grafted polymer 
chains have a small adsorption energy for the surface which compresses them. 

For all three cases of Figure 9 the lattice calculations give a more repulsive 
interaction than that predicted by the analytical theory. At any separation the 
compression of a brush by a bare surface is more repulsive than the similar 
compression by another brush. The difference between these two systems is not, 
however, solely due to the interpénétration that occurs between the two brushes. 
The bare surface also imposes entropical restrictions on the conformations of the 
grafted polymer chains. This unfavourable entropical interaction is compensated 
when there is an attractive interaction of the segments with the surface, as is the 
case for the curves denoted by "adsorbing chains". The "adsorbing chain" curve 
and the curve for "two brushes" virtually coincide, except for very small 
compressions (q > 1). When the outermost parts of two brushes start to overlap, 
the interpénétration of the chains leads to a decrease in the repulsive interaction. 
For q < 1 this effect has become negligible. 
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At high compressions the two layers very strongly overlap. Nevertheless, for 
small values of q the analytical equations for the free energy of interaction (where 
this overlap is neglected) agree very well with the lattice calculations. In this region 
the osmotic pressure forms the major contribution to the free energy, so that the 
exact shape of the volume fraction profile becomes less important. 
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Figure 10 Distance of interpénétration A, when two equal brushes are 
compressed against each other. M is the distance between both grafting surfaces, 
expressed in number of lattice layers. This figure checks the scaling dependence 
predicted by eq 14. The solvent qualities, grafting densities, and chain lengths for 
the various sets of data points are given in the legend. 

In Figure 10 the amount of interpénétration is plotted for six different systems. 
The interpénétration length A has been defined as the distance from the mid-plane 
to the plane where the penetrating chains have a volume fraction equal to half their 
volume fraction in the middle. The parameter A is expected to scale as Ng

2/3M-1/3, 
analogous to the scaling relation given in eq 14 for the interpénétration distance Ag 

of a brush into a polymer solution.3 We may indeed conclude from Figure 10 that 
A ~ Ng2/3fvT1/3, irrespective of chain length, grafting density and solvency (% = 0: 
good solvent; % = 0.5: 0-solvent). For small values of M the data of all six systems 
obey this scaling relationship rather accurately. Of course, it is to be expected that 
for larger values of M deviations occur. In these cases the calculated points do not 
lie on the master curve. When M becomes twice the brush height there cannot be 
any interpénétration at all. 
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Interaction between two brushes immersed in a polymer solution 

1-
3 1 
< 

10"2 

10 4 

t 1 
_1 
c 
'< 

102 

10-4 

10"6 

c 

-

_ 4 

2 

0 

( 

) 

1 1 

\ ' 

^ s » ^ _ _ 

1 ° ' 5 1 

1 1 

0.5 

i i 

N f=10 

1 

Nf = 200 

v \ 
\ \ 
\ \ 
\ \ 
I 
1 

1 
1 1 

q 1 

(A) 

(C) 

C 

V 

) 

I 

i 

i 

0.5 

i i 

N f=50 

\ \ 
\ \ 
l 
I 

i i i 

N f=600 

(B) 

-

(D) 

-

-

q 

Figure 11 Interaction curves of two brushes in a polymer solution for various 
chain lengths of free polymer: Nf = 10 (A), 50 (B), 200 (C), and 600 (D). Other 
parameters: Ng = 600; a = 0.01; $ =0.1. The inset shows the data for Nf = 10 
on a linear scale. All other graphs are on semi-logarithmic scale. 

Figure 11 shows interaction curves of brushes in a polymer solution. An 
important parameter in the calculation of Aint(q) is the amount of mobile polymer, 
0f(M), between the plates when they are at an arbitrary separation M. Figure 12 
shows the relative amount of free polymer in the system, y = 0f(q)/0f(q = 1), for 
Ng = 600, o = 0.01, and Nf = 10 and 50. There is excellent agreement between 
the lattice model and the prediction of eq 21 for the amount of free polymer 
expelled from the gap between the brushes. 

In all cases of Figure 11, for large compressions (q < 0.5) the analytical 
equations agree very well with the lattice calculations. The inset for Nf = 10 shows 
the interaction curve on a linear scale. Plotted on this scale the figure shows that 
over the whole range of q eq 24 predicts the interaction very well when free 
polymer chains are present in the system. For the other values of Nf (50, 200, and 
600) a linear plot (not shown) displays the same agreement between the two 
models. To study the interaction at q = 1 it is more convenient to plot the free 
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energy of interaction on a logarithmic scale, as is done in Figure 11 for all four 
values of Nf. The lattice calculations predict a more repulsive interaction for small 
compressions, which is due to the "foot" in the volume fraction profile. This is similar 
to the case for a polymer brush in a pure solvent. The contribution of the foot turns 
out to depend on the free chain length. For Nf = 50 or 200 it shows up for slightly 
larger values of q than it does for Nf = 10, but for Nf = 600 the contribution of the 
foot seems to become less important. 

_ 1 
T\ 

o~ 

Figure 12 The fraction of free polymer remaining between two brushes when 
these are compressed for two values of Nf. Other parameters: Ng = 600; 
a = 0.01 ; $ = 0.1. The dashed curves are calculated using eq 21, and the solid 
curves are the lattice model predictions. 

However, for high Nf the situation is more complicated, as is shown in Figure 
13. Increasing the chain length of the mobile polymer leads to an attractive 
minimum in the interaction curve for q > 1. For Nf = 600 (= Ng) this starts to 
have an important effect on the total interaction free energy for small compressions. 
Van Lent et a\}2 extensively studied this attraction between polymer brushes in a 
polymeric solution. It is an effect that has also been found experimentally and can 
be easily understood for the limiting case when there is no grafted polymer (i.e. 
a = 0). Due to the depletion of free polymer in the vicinity of the surfaces an 
attractive osmotic force appears. Some experimental results indicate that this 
attraction can also exist when the surfaces are covered by a grafted layer (see, for 
example, ref 13 and the references given therein). Van Lent et al. showed that such 
an attraction is predicted by the SCF lattice theory. However, they only considered 
systems for which Nf >Ng . For all values of tfj an increase of Nf then leads to a 
deeper attractive minimum in the interaction curve. In contrast with the situation that 
no grafted polymer is present, this attraction was shown to be an entropie effect 
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caused by the grafted chains themselves and not directly by the free polymer. The 
grafted chains mix more easily with chains from the other grafted layer than with the 
free polymer coils. 
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Figure 13 Effect of the chain length of the mobile polymer on the interaction 
curves near the onset of interaction (q around 1). For large values of Nf an 
attractive minimum appears. Grafting density: a = 0.01 (A), and a = 0.1 (B). Other 
parameters: Ng = 600; $ = 0.1. 

Figure 13 shows that in order to find an attractive minimum the free polymer 
must exceed a certain minimum chain length. Increasing the grafting density 
decreases this minimum value of Nf. For example, when Nf = 400 there is no 
attractive minimum if o = 0.01 (Figure 13A) but for the higher grafting density 
a = 0.1 such a minimum does occur (Figure 13B). In Figure 13 for any q the 
repulsion is larger for shorter Nf. Furthermore, the minimum shifts to a smaller plate 
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Separation when N{ is increased. In Figure 11 this trend was not found for the 
dependency of the repulsion on Nf. This can be explained by the fact that in Figure 
11 the free energy of interaction is given as a function of the relative compression 
q, whereas in Figure 13 it is given as a function of the plate separation M. The 
brush height itself depends on Nf, which explains the apparent non-monotonic 
dependency of the repulsion on Nf found in Figure 11. 

-0.0005 

-0.001 
0.05 0.1 

Figure 14 Depth of the minimum in the interaction curve as a function of the 
grafting density. Parameters: Ng = 600; $ =0.1; the values of Nf are indicated in 
the Figure. 

It would be useful to interpret these results using the diagram of state of Figure 
1. We find that for strongly stretched chains the attraction only occurs when the 
grafted and free polymer profiles are symmetric around their intersection point 
(region 1 for high Nf). However, this symmetry condition is not sufficient for 
attraction to occur. If it were, then in Figure 13 there should be an attraction for 
Nf >Ng2/3o -2/9 when a >$ (i.e. Nf > 119 when o = 0.1). The minimum value 
of Nf turns out to be larger than this. For a system in which there is an attractive 
minimum, the depth of this minimum depends on the grafting density. This is shown 
in Figure 14, where the value of the attractive minimum is given as a function of a. 
This is done for a constant grafted chain length (Ng = 600) and five different free 
chain lengths. For small Nf the attraction disappears completely below a certain 
grafting density. Only at extremely low densities does it then reappear again. This 
is difficult to see in the figure because the curves practically coincide with the left 
ordinate axis. That the attraction must reappear at low coverages is obvious, as for 
a = 0 one recovers the depletion attraction of two surfaces without grafted layers. 
However, Figure 14 shows that increasing the grafting density from zero to just a 
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very low value (a<Ng
_1) already makes the attraction disappear. The grafted 

chains then still have unstretched conformations. This corresponds with the bottom 
part of Figure 1A. 

4 Discussion and Conclusions 

In this paper we have explored the applicability of the strong chain stretching 
approach to give an SCF description of end-grafted polymer layers that either 
interact with each other or with free polymer in solution. This approach has 
previously been shown to agree very well with more exact lattice calculations in 
describing isolated (i.e. noninteracting) grafted layers. In this case significant 
deviations occur only very close to the surface (depletion effect) and at the 
periphery of the grafted layer (exponential decay of the volume fraction profile). For 
long enough polymer chains these deviations are negligible but for short chain 
lengths they may become important. 

Our lattice calculations indeed show that the onset of interaction between two 
brushes is situated at a larger distance than twice the "strong-stretching brush 
height" (for which we defined the reduced surface separation q to be unity). For 
N g = 50 and a = 0.01, representative for the adsorption of a short block 
copolymer, there is already a free energy of interaction of the order of 10 -3 kT per 
lattice site for q = 1.25. Assuming a lattice spacing I of the order of 1 nm, this is an 
interaction that should be just within the detection limit of the surface force 
apparatus. In this context it is interesting to note that Milner14 made a quantitative 
comparison between experimental force-distance data and strong chain stretching 
SCF equations. Only at large separations did he find the theoretical repulsion to be 
significantly lower than the experimental data. Although he prefered to explain this 
discrepancy by a polydispersity argument, our calculations suggest that it may also 
be explained by the approximate character of the strong-stretching theory, and 
would even occur for completely monodisperse brushes. In Figure 7 one can also 
see that even for long chain lengths (Ng = 600) and large compressions 
(q < 0.25) there is still a small difference between the lattice calculations and eq 
24. This may be caused by the depletion zone next to the surface, which is still 
present for small values of M (see Figure 8). 

When two polymer brushes are compressed against each other the distance A 
over which chains penetrate into the opposite layer scales as Ng

2/3M-1/3 (Figure 
10). This interdigitation has, however, hardly any effect on the normal force 
between both layers. But that does not necessarily mean that the overlap of both 
grafted layers is of no consequence whatsoever. When the polymer brushes are 
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compressed and subsequently a lateral (shearing) force is applied, the overlap of 
both layers will probably significantly influence the interaction. In principle, this can 
be investigated using the apparatus of Klein et a/.,15 which measures both normal 
and lateral forces. 

When polymer is added to the solution in which a polymer brush is immersed, 
the grafted layer is compressed. The resulting volume fraction profiles of the grafted 
and free components are given by eq 6. For short free chain lengths this equation 
gives as good a description of the profiles as the strong-stretching theory does for 
brushes immersed in a one-component low molecular weight solvent. For longer 
free chain lengths the overlap area of the grafted and free components is described 
poorly. However, as far as only the brush height is concerned, eq 7 still agrees very 
well with the lattice calculations. 

A new feature we have added to the system of grafted plus free polymer is the 
penetration lengths of both components into the opposite phase. Using simple 
thermodynamic arguments we derived scaling laws for the two penetration lengths 
in different parts of the diagram of states. These scaling laws were corroborated by 
the lattice calculations. In principle, it is possible to determine the volume fraction 
profiles of the grafted and free chains individually in a neutron reflectivity 
experiment. By contrast-matching one of the two components with the solvent, only 
the other component is detected. Thus the interpénétration of both layers might be 
checked experimentally. As far as we know this has not yet been done. 

When free polymer is present in the solution, eq 24 can be used for the free 
energy of interaction between two brushes (this equation predicts a purely 
repulsive interaction). Only when the free polymer chain length exceeds a critical 
value (which depends upon the grafting density and grafted polymer chain length) 
does the interaction profile which is obtained from the lattice model acquire a 
qualitatively new feature: for q > 1 an attractive minimum appears. It is not possible 
to explain this in terms of the diagram of state in Figure 1. The minimum is deepest 
when c = 0 (i.e. for hard surfaces). For relatively short chain lengths (Nf <Ng) 
even a very small amount of grafted polymer already causes the attraction to 
disappear. It should be possible to verify this prediction experimentally. Practical 
applications are perhaps possible in systems where depletion attraction 
undesirably leads to flocculation. 
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chapter 6 

Multiblock Copolymers and Colloidal Stability 

Abstract 

Block copolymers that have both adsorbing and nonadsorbing blocks can be 
used to stabilize colloidal dispersions. However, they can also induce an attraction 
between two particles by forming bridges between the surfaces. In this chapter we 
investigate when such an attraction occurs and how its magnitude depends on the 
relevant system parameters. Most attention is paid to end-adsorbed triblock (A-B-A) 
copolymers and a few calculations are presented for polymers consisting of a larger 
number of blocks ((A-B)n-A with n > 1). Adsorbed layers of triblock copolymers with 
identical adsorbing groups always cause an attractive part in the two particle 
interaction curves. Adsorbed layers of multiblock (n > 1) copolymers with long blocks 
behave similar to triblock copolymers. When their blocks become very short, these 
multiblock copolymers resemble homopolymers whose interaction parameters have 
some average value of those for both types of blocks. 
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6.1 Introduction 

Colloidal dispersions can be sterically stabilized by diblock copolymers. These 
polymers must contain an adsorbing block (anchor, A) and a block that dissolves in 
the solution (buoy, B), forming a protective layer. The interaction between two such 
adsorbed diblock copolymer layers has been studied extensively, both from an 
experimental and a theoretical point of view, over the past few years (see, for 
example, refs 1-4). 

Adsorbed diblock copolymer layers give a purely repulsive interaction when the 
solvent is a good solvent for the B block. This interaction can be modelled by 
considering two terminally grafted polymer layers (polymer brushes), which can be 
fully described using the "classical" parabolic potential profile approximation.2.5 

Calculated interaction free energies have been fitted6 to match experimental data. In 
this approach the grafting density (adsorbed amount of polymer) is an input 
parameter. In this respect the block copolymer adsorption theory of Evers et al.4 is 
more advanced as the chemical potential of individual chains is explicitly accounted 
for, so that one can consider the equilibrium between the polymer layer and the bulk 
solution. Evers et al. predicted that the adsorbed amount of a diblock copolymer 
depends strongly on its composition (ratio between the A and B block lengths). As 
long as the solvent is a good solvent for the B block, the free energy of interaction 
between two adsorbed polymer layers is purely repulsive. At the theta point of the B 
block an attraction starts to appear in the free energy of interaction. 

In this chapter we study the interaction between two adsorbed multiblock 
copolymer layers. The emphasis will be on triblock copolymers, although in section 5 
we will pay some attention to polymers consisting of a larger number of blocks. The 
triblock copolymers have a central buoy block (B) and two anchoring blocks (A). 
When both these end blocks are adsorbed to the same surface, so that the polymer 
chain forms a large loop with the buoy block protruding into the solution, one 
intuitively expects the two adsorbed layers to repel each other in much the same 
way as two diblock copolymer layers. Such repulsive interaction has in fact been 
determined experimentally.7 However, one can also envisage the situation that the 
triblock copolymer forms a bridge between both surfaces, with the two A blocks of 
one polymer chain adsorbed to different surfaces. This bridge formation will 
influence the interaction force and may lead to an attraction between the surfaces. 

In this chapter we investigate the interaction between two adsorbed A-B-A 
polymer layers in a nonselective athermal solvent, using the statistical 
thermodynamic lattice theory of Evers er a/.48 This is a self-consistent mean-field 
model which involves the generation of all possible conformations of the polymer 
chains on a lattice between two flat surfaces. Each conformation is weighted by its 
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Boltzmann factor to find the contribution of this conformation to the overall 
equilibrium distribution. The lattice layers are numbered z = 1, 2, 3, ..., M from one 
surface to the other, and each lattice layer consists of L lattice sites. A lattice site 
accommodates either a polymer segment or a solvent molecule. Nearest-neighbour 
interactions between two species p and q are accounted for by the Flory-Huggins 
parameter xpq. The symbols p and q denote either a polymer segment (A or B), a 
solvent molecule (O), or a molecule of the adsorbent (S). All results were computed 
using a simple cubic lattice, where every lattice site has six neighbours, of which a 
fraction X^ = 1/6 is in each of the adjacent layers. More information on the theory, 
which is taken from ref 4, is given in the appendix. 

The central question in this chapter is how relevant parameters, such as the 
relative blocks lengths and the adsorption energy parameter X^Q of the A segments 
influence the free energy of interaction. This problem can be divided into two parts. 
First, one needs to know how these parameters influence the adsorption at an 
isolated surface. Second, one must determine the interaction between two adsorbed 
layers. Adsorbed diblock copolymers form adsorbed layers which can be well 
described by an end-grafted B-layer (polymer brush). The density of such a brush is 
given by the adsorbed amount, which depends strongly on the composition of the 
polymer chain. An adsorbed triblock copolymer layer can be seen as a modified 
polymer brush with adsorbing "stickers" at the free ends of the polymer chains. 
Milner and Witten9 have developed a theory for the interaction between two such 
grafted telechelic polymer layers. In section 3 we compare our lattice computations 
for grafted telechelic polymer layers with their predictions. We combine these 
computations with an investigation of the adsorbed amount (grafting density) as a 
function of chain composition and segmental adsorption energy. Thus we provide a 
full picture of the behaviour of adsorbed triblock copolymer layers under good 
solvency conditions for the buoy block. 

In section 4 we consider triblock copolymers whose buoy and anchor blocks have 
an equal affinity for the surface but a different interaction with the solvent (which 
leads to homopolymer-like behaviour). This kind of polymers is important in many 
practical systems. The interaction curves of such molecules depend critically on the 
difference between the interactions of both blocks with the solvent. In section 5 we 
pay some attention to the interaction curves of copolymers consisting of a larger 
(> 3) number of blocks. In industrial and technological applications copolymers 
nearly always consist of a large number of (polydisperse and ill-defined) blocks. Our 
calculations are a first step towards a better understanding of the interfacial physics 
of such complicated systems. Many (bio-)macromolecules, for example proteins, 
may be considered as multiblock copolymers. 
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6.2 Polymer brushes with stickers 

We consider the interaction between two polymeric brushes, formed by attaching 
(grafting) one end of a polymer to a surface. The other end of the polymer has an 
adsorbing A group. Milner and Witten9 have also studied this system. They argue 
that when the surfaces are far apart the grafted chains form loops. When the 
surfaces are brought together the polymer chains can exist in two distinct classes of 
conformations. Either the sticker group adsorbs onto the grafting surface (so that the 
chain still forms a large loop), or it adsorbs onto the opposite surface (leading to a 
bridging conformation). As the affinity of the A group for both surfaces is taken to be 
equal, the adsorption energy of the A block should not have any effect on the 
interaction free energy. An attractive and purely entropical contribution to the 
interaction free energy arises because of the possibility of a chain to form a bridging 
conformation. This bridging effect is important when the surface separation is of the 
order of twice the brush height h or less. 
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Ain,/kTL 
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XAS = -200 
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Figure 1 Free energy of interaction of a grafted B-|00A-| layer with grafting density 
o = 0.01. The location of the first B segment is fixed in the first layer (adjacent to the 
surface). The various curves are for different values of XAS a s indicated in the figure. 
All other % parameters (between A and B segments, between A and solvent, 
between B and solvent, between B and the surface, and between solvent and the 
surface) are taken to be zero. The free energy is expressed in units of kT per surface 
site. The number of lattice layers M gives the distance between both surfaces. 

Figure 1 shows the free energy of interaction for grafted layers of B i0 0Ai, where 
the first B segment is grafted to the surface with a grafting density o = 0.01. The 
grafting density is defined as the number of chains per surface site. The Flory-
Huggins %AS parameter between segment A and the surface, which determines the 
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adsorption energy of an A segment, has a large influence on the interaction between 
the grafted layers. For xA S = 0 (not shown in Figure 1) one has the familiar, purely 
repulsive interaction between two homopolymer brushes. When %As becomes more 
negative this interaction becomes less repulsive and even shows an attractive 
minimum for highly negative values of %Ag. Above a certain critical value the 
interaction does no longer depend on %Ag. 

0.15 

0.1 -

0.05 

Figure 2 Volume fraction profiles of the B segments of the grafted B100A1 layers 
of Figure 1. These are profiles of the isolated layer, that is, when the surfaces are far 
apart (noninteracting). The adsorption strengths of the A segments (XAS) a r e 

indicated. 

In Figure 2 volume fractions of the isolated layer are shown for different values of 
XAS- The curve for %AS = -10 still virtually coincides with the curve for xA S = 0. But 
for %As = -50 one sees that the layer is far less extended. A significant fraction of the 
A segments are now adsorbed to the grafting surface. 

Figure 3 shows how the interplate distance affects the distribution of the A 
segments between the two surfaces. An A segment can either be adsorbed to the 
grafting surface (loop conformation), to the opposite surface (bridging conformation), 
or it may dangle somewhere in between (as a free, i.e. nonadsorbed, segment). The 
figure shows the fraction of A segments in loops, bridges, and free ends. When the 
adsorption energy is small (Figure 3A) and the surface separation is large, most 
chains have their ends freely dangling in solution. Only a small fraction form loops. 
This fraction is not high enough to have a considerable effect on the volume fraction 
profile (compare the curves for %AS = 0 a n d ~ 1 0 'n Figure 2). When the surfaces 
approach one another, the number of loop conformations increases and some 
chains start to form bridges. This leads to an attractive energetic contribution to the 
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free energy of interaction. For higher adsorption energies (Figure 3B) a larger portion 
of chains form loops in the isolated layer. This gives a less extended polymer layer 
(see Figure 2). Upon approach of the surfaces, bridges are formed at the expense of 
both loop and "free chain end" conformations. The formation of bridges has both an 
energetic and an entropie effect on the interaction free energy. 

Figure 3 The fraction v of A segments in loops, bridges, and free ends, as a 
function of the distance M between the surfaces, for the system of Figure 1. The four 
curves are for different adsorption strengths, as indicated. 

Comparing Figures 1 and 3 one sees that, once the segmental adsorption energy 
of the stickers is large enough to force ail chains in the isolated layer to adopt a loop 
conformation, the free energy of interaction becomes independent of the actual 
value of the adsorption energy. For %AS = -100 the interaction curve is the same as 
that for XAS = -200. When the surfaces are relatively far apart all chains form loops. 
At this surface separation the B segments have a volume fraction profile comparable 
to that of a grafted brush with chain length N = 50 and a = 0.02 (i.e. a chain length 
that is twice as small and a grafting density that is twice as large). The difference in 
free energy per surface site between such a brush and one with N = 100 and 
o = 0.01 is 0.033 kT. Because this is significantly smaller than the total adsorption 
energy of a grafted B100Ai chain (which is ^IOXAS^T) the chain is completely in a 
loop conformation. 
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When the surfaces approach one another an increasing number of loop 
conformations change to bridging conformations. This has no effect on the total 
energy of the system but it does change the entropy. This is the regime which Milner 
and Witten consider in their paper.9 We will subsequently refer to it as the MW 
regime. One can also reach this regime by increasing the length of the A block rather 
than the adsorption energy of the A segment. The total available adsorption energy 
of a chain is just the product of the A block length NA (number of segments in an A 
block) and their segmental adsorption energy. 
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Figure 4 Free energy of interaction of grafted B-|00Ai and B i 0 0 Ai 0 layers. The 
adsorption strengths of the A segments (%AS) are indicated in the figure. 

In an experiment it will probably be easier to increase the A block length than to 
change the adsorption energy of the individual monomers. However, increasing the 
block length by a certain factor does not always have exactly the same effect as 
increasing the segmental adsorption energy by the same factor. This can be seen in 
Figure 4. In this figure interaction curves are shown for two B100A1 and for two 
B100A10 layers. The grafted B100A-| layer with %AS = -50 has a total potential binding 
energy per chain that is equal to that of a B100A10 brush with XAS = ~5 (so t n a t 

NA%AS = -50). Similarly, the grafted B-)00A1 layer with %AS = -200 has a total 
potential binding energy per chain that is equal to that of a B100A10 brush with 
7AS = -20. The B100A10 chains must, however, have all their A segments in the first 
layer to actually benefit from this total adsorption energy. As this is entropically less 
favourable, the free energy of interaction is more repulsive for the B10oAio brush 
with xAg = -5 than for the Bi00A-| brush with J^AS = -50. Only when NA%As is 
strongly negative (e.g. -200) does the interaction free energy curve of the B-100A10 
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brush approach that of the BiorjAi brush with the same adsorption energy per chain. 
This situation corresponds again to the MW regime. 
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Figure 5 Free energy of interaction for various telechelic polymer layers. 
Diagrams A and B are for B2ooAio chains, C and D for B1000A25 chains. Grafting 
densities and adsorption strengths of the A segments are indicated in the figure. 

In Figure 5 interaction curves are shown for two chain lengths (with NB = 200 and 
1000, respectively) and two grafting densities (0.01 and 0.001). Again there is an 
attractive region in the free energy of interaction when XAS 'S sufficiently negative. At 
a = 0.001 and NB = 200 (Figure 5A) an attraction occurs for NA%As = -200, whereas 
at the same grafting density and NB = 1000 (Figure 5C) a value of -250 is not 
enough for attraction. Longer chains require stronger sticking energies for bridging 
attraction to occur. The same trend is present at a = 0.001 (parts B and D in Figure 
5). Similarly, increasing the grafting density at constant NB also requires stronger 
sticking: N A / A S = -100 at NB = 200 is sufficient for attraction when a = 0.001 (Figure 
5B) but not when a = 0.01 (Figure 5A). The interaction curves in Figure 5 that have a 
minimum are all in the MW regime. 

Figure 6 shows values for the depth and location of the minimum in the 
interaction free energy curve as a function of N (= NB) and a. The minimum in the 
interaction curve scales as o1/3N~1 (Figure 6A) as predicted by Milner and Witten. 
Only for low grafting densities and very short chain lengths do significant deviations 
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occur from this scaling law. Under these circumstances the brush profiles differ 
considerably from their "classical" parabolic form. The minimum always occurs at a 
surface separation d that is larger than the separation 2h at which both (parabolic) 
brushes would just touch. The value of h has been calculated using the procedure 
described in ref 10. Figure 6B suggests that the difference d-2h is proportional to 
the isolated brush height h~No1/3. This is not in agreement with the argument of 
Milner and Witten that d-2h = Ç, where £ is a penetration length defined as 
t, = h(R/h) ' 3 , and R ~ N1//2 is the radius of the (mean-field) chains in solution. This 
should lead to the scaling dependency d-2h ~ N1/3©-1/9. 
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Figure 6 The depth and location of the minimum in the interaction free energy for 
systems in the MW regime. Diagram A gives these minima as a function of G1/3/N . 
Diagram B shows the position of the minimum as a function of No^3; d -2h is the 
distance between the outer edges of two parabolic brushes. 

6.3 Adsorbing triblock copolymers 

The equilibrium adsorbed amount (0a) of a triblock copolymer depends on its 
composition and the adsorption strength of the adsorbing segments in a similar 
manner as that of a diblock copolymer.11 An illustration is given in Figure 7. This 
figure shows the surface density a = 0a/N, where N = 500+2x, of adsorbing 
AXB500AX chains for two different segmental adsorption energies of the A segments. 
The surface density a is the adsorbed amount 0a (in equivalent monolayers) divided 
by the chain length N. This definition is completely analogous to the grafting density 
of a polymer brush. However, for a grafted layer a is an input parameter, whereas 
here it follows from the equilibrium calculation. When the A block is very short the 
adsorbed amount is small as the chains cannot gain enough adsorption energy. 
Increasing the A block length leads to an increase in the adsorbed amount. Beyond 
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a certain value of x, a further increase of the A-block size leads to a decrease of the 
adsorbed amount: the long A-blocks then lie relatively flat on the surface, and leave 
less space for other adsorbed chains. 
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Figure 7 The normalized adsorbed amount a of AXB500AX copolymers as a 
function of the adsorbing A block length x. The surface density o is the adsorbed 
amount 0a (in equivalent monolayers) divided by the chain length N. Parameters: 
bulk volume fraction <|) 
zero. 

; 10 ; XAS = -15 and XAS = -10; all other % parameters are 

At the given segmental adsorption energies, the chains adsorb with both end 
groups onto the surface for all values of x. This means that practically all chains 
(> 99%) are in a "loop conformation". On approach of two surfaces bearing such 
adsorbed layers, the chains will be able to change from their loop conformation to a 
bridging conformation (MW regime). One expects that this should lead to an 
attractive minimum in the free energy of interaction. This is indeed the case, as can 
be seen in Figure 8. 

In this figure the free energy of interaction is given as a function of surface 
separation for %AS = -10 and an A block length of 10, 20, and 40 segments. For 
x = 10 and x = 20 the adsorbed amount is well below its maximum. For x = 40 the 
adsorbed amount is roughly at its maximum value (see Figure 7). The solid curves 
were calculated for chains that are in restricted equilibrium and the dashed curves 
correspond to full equilibrium with the bulk solution (see appendix). The inset of 
Figure 8 shows the same data on a different scale, so that the behaviour at high 
compressions (small plate separation M) can be seen. 

In all cases there is an attractive part in the interaction curves of Figure 8. For 
x = 40 the minimum is deepest and is also situated at the largest surface separation. 
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This is in full agreement with the dependence of this minimum on the grafting 
(adsorption) density a that we found for telechelic brushes (see Figure 6). For x > 40 
the depth of the minimum will again decrease because a becomes smaller. For all 
values of x the attraction has a purely entropical origin, and is caused by the 
possibility of chains in a loop conformation to form bridges. A grafted polymer layer 
with a grafting density equal to the adsorption density of the AXB500AX chains would 
give the same attractive minimum if the grafted chains had a strongly adsorbing 
sticker group (not shown in the figure). 
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Figure 8 Interaction curves for adsorbed AXB500AX layers for x = 10, 20, and 40 
and %AS = _ 10- The solid curves are for a constant amount of polymer in the system 
(restricted equilibrium). This amount corresponds to the equilibrium adsorbed 
amount at large surface separation for <|)b = 10_4. The dashed curves were 
calculated for a constant chemical potential of the polymer chains (full equilibrium). 
The inset shows the same data on a larger scale. 

The main conclusion of the calculations presented in Figure 8 is that under full 
and restricted equilibrium circumstances end-adsorbing triblock copolymers induce 
an attraction between two surfaces. This has as a practical implication that such 
polymers should be able to cause flocculation of a dispersion. However, 
experimental data with the surface force apparatus do not support this hypothesis. 
Dai and Toprakcioglu7 used PEO-PS-PEO triblock copolymers adsorbed from 
toluene onto mica, and only found attraction between the mica surfaces when a bare 
mica surface was compressed against a surface with an adsorbed polymer layer. 
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After repeating a large number of compression and decompression cycles the 
attraction disappeared, which they explained by assuming that the polymer was now 
symmetrically divided over both surfaces with the PS blocks protruding into the 
solution and causing the repulsion. The discrepancy between the experimental data 
and the theoretical predictions might be caused by a small asymmetry in the polymer 
molecule. If one of the adsorbing groups is larger than the other the attraction will be 
decreased. This effect is discussed in more detail below. Furthermore, it is unlikely 
that in the surface force experiment thermodynamic equilibrium is reached. 
However, this does not necessarily mean that equilibrium can never be reached in 
an experiment. A triblock copolymer stabilized colloidal dispersion left to equilibrate 
might well show aggregation. 

The solid curves in Figure 8 were calculated for chains that are in restricted 
equilibrium (the amount of polymer is held constant). In this figure the dashed curves 
show results of calculations in which the chemical potential of the polymer chains is 
held constant (so that the amount of polymer in the system decreases as the 
surfaces approach one another). Up to the minimum in the free energy curve there is 
very little difference between the full equilibrium and the restricted equilibrium 
interactions. Beyond this point, the repulsion is far less when the chemical potential 
is kept constant (this is most clearly seen in the inset, which shows the free energy 
of interaction on a much larger scale). In full equilibrium the system does, however, 
remain repulsive. This has also been found for diblock copolymers4 but not for 
homopolymers.12 
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Figure 9 Interaction curves for A40+yB5ooA4o-y polymers. Solid curves: restricted 
equilibrium; dashed curves: full equilibrium. All further parameters as in Figure 8. 
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Up to now we have only considered triblock copolymers which have equally sized 
adsorbing groups. Using an asymmetric polymer with different size anchoring groups 
one should be able to construct purely repulsive telechelic polymer systems. The 
larger A block will adsorb preferentially to the surface, leaving the smaller block 
dangling in solution. The behaviour of such asymmetric telechelic polymers is 
explored in Figure 9. Here the free energy of interaction is shown for 
A4o+yB5orjA4o-y chains. For y = 0 the curve of Figure 8 for x = 40 is recovered. 
Increasing y means that the asymmetry of the chains is increased while their overall 
composition is kept constant. When the chains become more asymmetric the 
interaction becomes less attractive. For y = 5 (corresponding to a rather modest 
asymmetry) the interaction is repulsive at all separations, although it still has a local 
minimum. These calculations indicate that an experimental verification of the 
telechelic attraction would require a very carefully designed model system. An 
attraction will only be found for polymers with virtually equally sized monodisperse 
adsorbing blocks. 

6.4 Triblock copolymers with blocks of different solvency 

In many systems of practical interest involving adsorbing triblock copolymers 
both types of blocks have an affinity for the surface. In this section we assume that 
this affinity is exactly the same for both segment types. Preferential adsorption of 
one of them can still occur if the interactions of the A and B blocks with the solvent 
are different. The exact characteristics of such an adsorbed layer depend critically 
on the interaction between the solvent and the segments. This is illustrated in Figure 
10 for A2oBi00A20 chains in full equilibrium between two surfaces. Both the A and B 
blocks have energetically favourable interactions with the surfaces (%AS = XBS = _5). 
The solvent O is a good solvent for the B block (%BQ = 0), whereas it is a poor 
solvent for the A block (%AO > 0-5)- We neglect the possibility of these molecules to 
form micelles and only consider the equilibrium between free polymer chains in 
solution and adsorbed chains. The molecules adsorb because of the bad solvency of 
the A blocks. 

If xA O
 w e r e zero> w e would be considering an adsorbing homopolymer, giving an 

attractive interaction. For a relatively low positive value of XAS the interaction curve 
still strongly resembles that of a simple homopolymer. Even for X A O = 0 - 7 5 the 
general shape of the interaction curve is that of a homopolymer, with attraction at 
any plate distance. At low separations this attraction becomes rather strong. For 
XAO = 1 the interaction at large separations is similar to that of the triblock 
copolymers discussed in the previous section. However, for small M an attractive 
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region is found which is absent in Figure 8. For XAO = 2 there ' s a n attraction at large 
surface separation (M > 30) followed by a strong repulsion at lower separation; in 
this case the attractive part at small M does not show up. It is interesting to note that 
the curve for x^o ~ 1 has the same features as found in the well known DLVO theory 
for colloid stability13 under the combined action of electrostatic repulsion and van der 
Waals attraction, with a secondary minimum, a repulsive maximum, and a primary 
minimum. In restricted equilibrium the attraction at low separation is not present 
because the polymer cannot be squeezed out of the system (not shown). 
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Figure 10 Interaction curves for A20B100A20 molecules in full equilibrium. In this 
figure the adsorption energy of the A and B segments is the same but their 
solvencies are different: %BO = 0, XAO i s positive as indicated. Other parameters: 
ZAS = XBS = -5,XBO = 0,^)b=10-4. 

6.5 Multiblock copolymers 

We conclude with a discussion of copolymers consisting of more than three 
blocks. Their behaviour can be best understood by applying the concepts developed 
in section 3 for triblock (ABA) copolymers. We again limit ourselves to good 
(athermal) solvent conditions for both types of blocks, with the A segments having a 
strong affinity for the surface whereas the B blocks do not adsorb. The interaction 
between adsorbed (AxBv)nAx layers can again be compared with the interactions 
between terminally attached (AxBy)n layers with a fixed grafting density a. In Figure 
11A interaction profiles are given for grafted (AxBy)n layers with n = 1, n = 2, n = 4, 
and n = 8. In all cases %AS = -27 and a = 0.005. The first segment of the first B block 
is always the grafted segment. The total chain length is kept constant at 1100 and on 
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average there is one A segment for every ten B segments, so that x = 100/n and 
y = 1000/n. For n = 8 this does not lead to an integer value for the length of the A 
blocks. In this case the A blocks have alternating lengths of 12 and 13 segments. 
Starting with n = 1 and increasing the number of blocks, the attractive minimum 
shifts to smaller separations, and the depth of the attractive well increases. However, 
for n = 8 this trend completely breaks down. Below, we interpret these findings. 
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Figure 11 Interactions curves for grafted multiblocks (AxBy)n (A) and diblocks AxBy 

(B). The grafting density is 0.005 in (A) and 0.005n in (B), so that the amount of 
polymer in the system is the same for all curves. The adsorption energy of A 
segments is %As = ~~27, all other % parameters are zero. 

In the B part of Figure 11 interaction curves are shown for grafted AxBy diblock 
chains with a grafting density of 0.005n. The values chosen for n and for the block 
lengths x and y are the same as in Figure 11 A. Hence, the grafted chains are shorter 
and the grafting density is higher than in Figure 11 A, but the amount of polymer is 
the same in both diagrams. Figure 11B was calculated to test the hypothesis that 
these AxBy diblock layers should give approximately the same interaction profiles as 
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the multiblock layers. In an isolated grafted copolymer layer the adsorbing blocks all 
tend to adsorb onto the surface, thus forming a structure that is very similar to a 
grafted diblock layer with an n times higher grafting density. When the surfaces 
approach each other, the difference is that the multiblock copolymers have the 
opportunity to form larger bridges (comprising several consecutive blocks). The 
diblock copolymers can only form bridges consisting of one B and one A block. So, 
the interaction profiles for both systems need not necessarily be exactly the same. 
Only for n = 1 the curves in diagrams A and B are identical. 

0.0002 

-0.0002 

-0.0005 
100 200 M 300 

Figure 12 The same as Figure 11 but now for xAS = -15. 

The shape of the curves in Figure 11B is qualitatively the same as those in 
Figures 1 and 5 for large negative values of XAS- The attractive part in this type of 
curve is due to bridging, as discussed extensively in section 2. Increasing the value 
of n leads to stronger attractive wells which occur at lower values of the surface 
separation M. This is a consequence of the simultaneous decrease of the chain 
length and increase of the grafting density. For n = 2 and n = 4 the location and the 

139 



depth of the minimum are roughly the same as for the corresponding curves in 
Figure 11 A. Clearly, the interaction between these grafted multiblock layers can be 
understood by treating a multiblock copolymer as a set of diblock copolymer chains. 
For n = 8 the diblock copolymer still shows the same type of behaviour as the other 
diblock copolymer systems, but the multiblock system does not show any attraction 
at all. This is because %As is not sufficiently negative to anchor all the short A blocks 
firmly to the surface. If the A segments would have a higher adsorption affinity, the 
multiblock would also show an attractive minimum which is comparable to that found 
for the diblock copolymer. This point is illustrated in Figure 12. 

Figure 12 shows data for the same systems as Figure 11, but now for a weaker 
adsorption: %AS = -15. Again, in diagram A the interaction is shown for the multiblock 
and in diagram B for the diblock copolymer chains. We start the discussion by 
considering Figure 12B. For n = 1 and n = 2 the same interaction is found as for 
XAS = -27. In these cases the total surface affinity is large enough to ensure 
complete adsorption of the A blocks, and the MW regime applies. For larger n (n = 4 
and n = 8) no attraction is left. Here, we have moved out of the MW regime. In 
section 2 it was shown that for higher grafting densities a higher adsorption energy 
of the A segments is needed to give an attraction. In Figure 12B this effect is partly 
compensated by the fact that an increase of n leads to a decrease of the chain 
length. At given grafting density a decrease in the chain length leads to a lower 
adsorption energy needed to reach the MW regime. Apparently, the increase of the 
grafting density has a larger effect than the decrease of the chain length. For n = 4 
the interaction profile still shows a local minimum (with a positive value), for n = 8 the 
repulsion increases monotonically when the surfaces are brought together, as for 
homopolymer brushes 

The differences between Figures 11B and 12B are also present between Figures 
11A and 12A. The attraction between the multiblock layers for n = 4 and %/\s - _ 2 7 

disappears when XAS is changed to -15. The attractive well for n = 2 still exists if 
XAS = ~ 1 5 DUt i s shallower and has shifted to a larger separation than in Figure 11 A. 
Clearly, the value of XAS determines whether there is an attraction between the 
grafted multiblock layers. Similar trends are found for the diblock copolymer layers. 
However, for a given value of n a more negative value of %As 'S required for an 
attraction to occur between the multiblock layers as compared to the diblock layers. 

In Figure 13 the effect of XAS 'S shown in more detail. Interaction curves are 
shown for grafted (B50oA50)2 chains (i.e. n = 2) and different values of %As- For 
XAS = _11 the interaction is still purely repulsive. For XAS = - 1 4 there is a clear 
attractive minimum but when %As is further decreased this minimum moves to 
smaller surface separations and becomes deeper. For %As = ~21 the maximum 
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attraction is reached, coinciding with the attraction in the B500A50 diblock system. In 
this case the distribution of A segments in both blocks is virtually identical. For 
%AS = -14 the outer A block forms slightly more bridging conformations than the 
middle A block. This explains the different attractive components. Note that it is 
possible to find interaction curves with two minima (e.g. for %AS = -16). 
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Figure 13 Interaction curves for grafted (B500A5o)2 chains. Parameters: a = 0.005, 
XAS = _11> -11.5, -12, -14, -15.5, -16, - 21 ; all other % parameters are zero. 

So far we have only considered grafted multiblock copolymers. Figure 14 shows 
interaction curves that were calculated taking into account the adsorption 
equilibrium. The molecular formula of the polymers is (AxBy)nAx with n equal to 1, 4, 
10 (diagram A) and 10, 20, 50, and 100 (diagram B). The total number of A 
segments per chain is 200 and the total number of B segments per chain is 1000. 
Thus, for n = 4 we have (A40B250)4A40 chains. For larger values of n the A blocks 
cannot all be made of exactly the same number of segments. However, the 
difference between two block lengths within one chain is never larger than one 
segment. For example, for n = 10 the computations were done for chains with the 
following composition: Ai9(BiooAi8)9B-iooA-|9-

When comparing the curves for different n, the first observation is that increasing 
n leads to interactions that start at smaller separations. This is because the 
adsorbed amount decreases when the polymer chains are divided into smaller 
blocks (while keeping the overall composition the same). This implies that the 
adsorbed layer thickness also decreases, so that the interactions start at lower 
surface separations. When n = 1 we have a triblock copolymer; this system was 
discussed in section 3. The curves for n = 1 show the same type of behaviour as 
shown in Figure 8. At M = 150 there is an attraction that is caused by the possibility 
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Figure 14 Interaction curves for adsorbing (AxBy)nAx chains in full equilibrium 
(dashed curves) and restricted equilibrium (solid curves). The total number of A 
segments per chain, (n+1)x, equals 200 and the total number of B segments, ny, 
equals 1000. Parameters: §b = 10 -4, XAS = -15> a" otherx parameters zero; n = 1, 
4, 10, 20, 50, and 100. The interaction curve of a homopolymer (1200 segments) 
with %AS = ~6'3 is also shown. 

of the chains to form bridging conformations. When the layers are further 
compressed a strong repulsion is found (see the inset of Figure 14A). The depth of 
the attractive well decreases when the chains are divided into smaller blocks, and 
the minimum moves to smaller surface separations. For relatively small n (Figure 
14A) the trends are qualitatively the same under restricted and full equilibrium 
conditions. For n = 1 the attraction is simply due to the formation of bridges by one B 
block with an adsorbing block at both its ends. For larger n values (n =4, 10) 
multiblock bridges are formed. For n = 10 the minimum appears at a surface 
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Separation M = 100, which is equal to the length of one B block. A single-block 
bridge would have to be virtually completely stretched, which is of course not very 
likely because of the large entropy penalty; hence the bridges consist of several B 
blocks. Further compression of the system leads to a strong osmotic repulsion. 
However, for n = 10 a local minimum appears in the interaction curve around M = 30, 
see diagram B. 

For even smaller block lengths (i.e. large n) this minimum becomes more 
pronounced, increases in magnitude and leads to a strong attraction. One should 
bear in mind that the free energy scale in part B of Figure 14 is two orders of 
magnitude larger than that in part A of Figure 14. Such a strong attraction is to be 
expected, considering the fact that for large values of n the multiblock copolymer 
starts to resemble a homopolymer whose characteristics are a weighted average of 
those of both types of blocks. The interaction free energy of such a homopolymer is 
also shown in Figure 14B for comparison. Indeed for large n (n = 100) the interaction 
curve is rather similar to that of such a homopolymer. Individual B blocks can now 
form bridges between the surfaces. Only when the separation becomes very small (3 
layers for n = 100) does the interaction become repulsive again. However, at this 
distance the total inter-particle interaction in a dispersion may already be dominated 
by Van der Waals forces between the particles onto which the polymer chains 
adsorb. When using multiblock copolymers to impart steric stability, it is therefore 
advisable to use polymers with long blocks. 

6.6 Concluding remarks 

We have shown that polymer brushes with an adsorbing end-group can have an 
attractive part in their free energy of interaction. For a given grafting density a and 
chain length N the end-group must have a certain minimum adsorption strength for 
this attraction to occur. The depth of the attractive minimum scales as a1/3N~1, as 
predicted previously by Milner and Witten.9 Polymer brushes with an adsorbing end-
group can be seen as a model system to describe end-adsorbing triblock 
copolymers (telechelic polymers). We have also performed calculations on such 
triblock copolymers, taking the adsorption equilibrium with the bulk solution into 
account. In this case we also find an attractive part in the interaction curve. The 
magnitude of the attraction is, however, relatively small. Direct experimental 
evidence for this attraction is not available as yet, as far as we know. The attraction 
disappears when the two adsorbing blocks have different sizes. In this case triblock 
copolymers become good stabilizers. 
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The behaviour of multiblock copolymers consisting of a small number of blocks is 
qualitatively similar to the behaviour of triblock copolymers. Multiblock copolymers 
consisting of a large number of small blocks start to resemble homopolymers. A 
relatively strong attraction at low surface separations is characteristic for such 
systems. 

We have further shown that adsorbing copolymers for which the solvency of the 
two blocks is different can give a rather complicated free energy of interaction. The 
details of these curves depend strongly on the precise values of the interaction 
parameters. 

Appendix: The self-consistent field theory 

An arbitrary segment p (for example, p = A (anchor), p = B (buoy), or p = O 
(solvent)) has a potential energy in layer z that is defined with respect to the bulk 
solution (indicated by the index b) as 

Up(z) = U' (Z) + kTXXpq(< 4>q(z) > H»q) (A-1 ) 
q 

The term u'(z) is a Lagrange parameter which has the physical meaning of a hard
core repulsion, and ensures that the lattice layers are completely filled. The 
summation takes place over all different segment types present in the system, 
including the adsorbent S, which is treated as a component with a volume fraction 
equal to unity for z = 0 and z = M+1, and a volume fraction equal to zero for all 
intermediate values of z. The angular brackets in eq A.1 denote a weighted average 
over the layers z -1 , z, and z+1 : 

«Kz)> = M>(z -1) + A.0<t>(z) + X,-|<|>(z +1) (A.2) 

where XQ and \-\ are the a priori probabilities to move from a lattice site to a 
neighbouring site in the same layer, or to a site in a neighbouring layer, respectively. 
In a cubic lattice X0 = 4/6 and X-\ = 1/6. Monomers are distributed over the lattice 
according to their monomer distribution function, Gp(z), which is a Boltzmann factor 
of Up(z), 

Gp(z) = exp(-Up(z)/kT) (A.3) 

The volume fraction of a free monomer p in layer z is simply given by 

4>p(z) = $j>exp(-iip(z)/kT) (A.4) 
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The computation of the volume fraction (|)j(z,s) in layer z due to segment s of a 

chain molecule i is more involved. The segments of this molecule are numbered 

s = 1, 2 s - 1 , s, s + 1, ..., N j - 1 , N|. We first define the end-segment weighting 

factor Gj(z,s 11) of a subchain consisting of the first s segments of molecule i. The 

end segment of this s-mer must be located in layer z but the first segment may be 

located anywhere in the system. If segment s in layer z, segment s - 1 must be 

located in one of the layers z - 1 , z, or z + 1. This means that Gj(z,sl1) is 

proportional to < Gj(z,s —111) >, where the angular brackets denote a similar 

average as defined by eq A.2. Furthermore, segment s in layer z contributes a factor 

Gj(z,s), which is identical to Gp(z) if s is of type p. It is now easily seen that a 

recurrence relation holds which enables us to calculate Gj(z,s 11) for all values of s 

Gj(z,sM) = <Gi(z,s-1l1)>Gi(z,s) (A.5) 

This recurrence relation is started for s = 1 with Gj(z,111) = Gj(z,s) = Gp(z) if the first 

segment is a segment of type p. If molecule i is grafted to the surface (as polymer 

chains in a brush) only those conformations must be taken into account whose first 

segment is located directly adjacent to the surface. This is done by starting the 

recurrence relation as follows: 

fGj(z,1) i fz = 1orz = M 
Gj(z,1l1)H u (A.6) 

IV 1 0 otherwise v ' 

In a completely analogous way we may define the end-segment weighting factor 

Gj(z,slNj) of the subchain consisting of the segments s, s+1, ..., Nj, of which 

segment Nj may be anywhere in the system but segment s must again be located in 

layer z. The total statistical weight of all conformations of molecule i with segment s 

in layer z is given by the joint probability that both subchains have their end-segment 

in layer z. Thus, <|>j(z,s) becomes 

Gj(z,s) 

The denominator in this equation accounts for the fact that in the two end-segment 

weighting factors segment s is counted twice (s belongs to both subchains). The 

normalization constant Cj can be obtained in two different ways. In a closed system 

the total amount 0j of molecules i, which is expressed in equivalent monolayers, is 

fixed (this is the case in restricted equilibrium) and Cj follows from the condition 

0j = Nj]jr (])j(z,s), which holds for all segments s. For chains that are end-grafted to a 

surface with grafting density a the amount of polymer is given by 0j = NjC. 

Substituting s = Nj, one finds 
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q = N,I(toN,l1) (A-8) 

z 

Alternatively, C| can be expressed in the bulk concentration <\>P of molecule i. As in 
the bulk <t>j(z,s) equals «I^/N. and the potentials up(z) of all segments p are, by 
definition, zero, it follows that 

For a given u(z) profile for all segment types that are present in the system, the 
volume fraction profiles of all molecules can be calculated from eqs A.3 - A.9. These 
volume fraction profiles must obey the constraint that all lattice sites are filled: 

5>i(z,s) = 1 Vz (A. 10) 

Also, the volume fraction profiles must be consistent with eq A.1. An initial guess is 
made of the u(z) profiles and in an iteration procedure this profile is adjusted until 
both these conditions are met. Numerical details of this iteration procedure have 
been published elsewhere.8 

Free energy 
Once the volume fraction profiles are known all thermodynamic functions can in 

principle be calculated. We are especially interested in the interaction free energy. 
Evers et al.7 showed by deriving the canonical partition function that the free energy 
A of the system is given by 

( 

^ = X^n(NiCi)-^p(z)Mz) + ! 2M*)Zpq(*qW)4l 6iXWt>qi 
i ' z,p z,p,q i ^ p,q 

(A.11) 

The quantity <|>pj denotes the fraction of segments in molecule i that are of type p. 
The free energy given by eq A.11 is defined with respect to a reference state in 
which all molecules are separated into their pure amorphous phases. The surface 
excess free energy Aa of a system with respect to its bulk solution is found by 
subtracting the contribution to the free energy due to molecules that are in full 
equilibrium with the bulk solution: 

A^(M) = A ( M ) _ y e i ^ 

kTL kTL Y N i 
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The summation over j does not include the molecules that cannot move out of the 

system (for example, for the solid curves of Figure 9 only the solvent, and not the 

triblock copolymer, is included in the summation). The interaction free energy at a 

surface separation equal to M is the difference between the surface excess free 

energy at this separation and its value at very large separation, where the adsorbed 

layers do not yet interact: 

Aint(M) = A°(M) A ° H 
kTL kTL kTL K ' ' 
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chapter 7 

On the Colloidal Stability of Small 
Polymer-Coated Particles 

Abstract 

A self-consistent field model is developed which enables the calculation of the 
interaction between two spherical particles bearing adsorbed polymer layers. We 
use cylindrical coordinates, so that the potential field can vary in both the radial and 
axial direction. Data are presented for the free energy of interaction for two particles 
with end-attached polymer chains in a good (athermal) solvent. The repulsion is 
less strong than the repulsion predicted by applying Derjaguin's approximation to a 
system with two similar interacting flat surfaces with end-attached polymer. This is 
explained by the greater freedom of the polymer chains to move laterally out of the 
gap between the particles as compared to polymer chains between flat surfaces. 
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7.1 Introduction 

It is well known that polymers can greatly influence the surface properties of 
colloidal dispersions and thus determine the stability of these dispersions. 
Adsorbing homopolymers can impart steric stability, but may also cause bridging 
flocculation between different surfaces. The latter property can be utilized to 
flocculate and sediment impurities. This is, for example, relevant in the process of 
water purification. Polymeric stabilization of colloidal dispersions has many useful 
industrial and technological applications in the preparation of paints, inks, 
lubricants, etc. With block copolymers even better stabilizing properties can be 
achieved than with homopolymers. Diblock copolymers with one adsorbing and 
one nonadsorbing block give larger adsorbed amounts than homopolymers 
consisting only of adsorbing segments. Ideally, the nonadsorbing block dissolves 
well in the solvent, and forms an extended layer around the particle surface. 
Formation of bridges is prevented by steric hindrance between these nonadsorbing 
blocks. 

The adsorption of polymers at isolated interfaces and the interaction between 
two flat surfaces bearing an adsorbed polymer layer have been studied 
extensively. Self-consistent field theories have been developed for the adsorption 
of homopolymers1-3 and block copolymers,46 as well as for grafted polymer 
layers.711 All these theories assume that the surface is an infinitely large flat plane. 
Many experiments have been performed with the surface force apparatus to 
measure the force between two adsorbed polymer layers (for an overview see, for 
example, Luckham12). In such experiments the polymer is adsorbed onto 
cylindrically curved surfaces with a radius of curvature on the order of 1 cm, which 
is many orders of magnitude larger than the radius of gyration of a free polymer coil 
or of the thickness of an adsorbed polymer layer. In this case forces are indeed 
measured that agree well with theoretical predictions based on the assumption of a 
flat surface.13 

Colloidal dispersions generally consist of particles with a radius roughly 
between 10 nm and 10 |o.m. Polymer adsorption often plays an important role in 
such systems. As long as the particle radius is far larger than the radius of gyration 
of the polymer, such systems can be described using the theories for flat surfaces 
mentioned above. However, when both radii have the same order of magnitude, 
one expects these models to loose their validity. As far as we know, no theory 
exists that predicts the interaction between such particles in the presence of 
adsorbing polymer. The aim of this chapter is to study the interaction between two 
small spherical particles bearing adsorbed polymer layers. For this purpose we 
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have developed a lattice model which is an extension of the Scheutjens-Fleer 
theory. 

The statistical mechanical theory for homopolymer adsorption developed by 
Scheutjens and Fleer13 uses a planar lattice on which concentration gradients in 
one dimension may occur. This model can be used to describe adsorption 
phenomena both at a single planar surface and between two interacting flat 
surfaces. Leermakers and Scheutjens14 generalized the lattice theory of 
Scheutjens and Fleer to non-planar geometries. Especially the spherical lattice, 
which is made up out of concentric equidistant layers, is interesting for our purpose. 
For the case of a single sphere it is sufficient to consider only concentration 
gradients in one dimension; within one layer R the concentrations of all species 
may be taken to be constant. The spherical lattice, with gradients in one dimension, 
has been used to describe the aggregation of surfactant and block copolymer 
molecules into micelles. However, it can also be used to model polymer adsorption 
onto a single spherical surface. If the particle onto which adsorption occurs has a 
radius of /Rp (£ being the lattice spacing), this simply means that the inner Rp 

layers of the lattice are inaccessible to all molecules in the system. The volume 
fractions in the layers beyond Rp are assumed to be a function of the distance to 
the surface only, that is, of the layer number. Within each concentric layer a mean-
field is applied. 

Unfortunately, it is not possible to model two interacting spherical surfaces 
using this approach. In this case one cannot assume that the volume fraction profile 
is simply a function of the distance to one point. In order to model two interacting 
particles we have used a lattice with cylindrical coordinates. In the next section we 
will describe this cylindrical lattice in more detail. In the subsequent sections we 
will show how this lattice can be used to model a polymer solution between two 
spherical particles. We shall mainly direct our attention toward terminally attached 
polymer chains. These can be seen as a model for adsorbed diblock copolymers. 
In the results section we present data for the free energy of interaction between two 
spheres with terminally attached chains. 

No results are given for adsorbing polymers in equilibrium with a bulk solution. 
However, in Appendix 2 we do describe a method that can be used to model the 
interaction in the presence of polymers which adsorb from solution onto the 
particles. 
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7.2 Theory 

The Lattice 
We start by briefly describing the spherical lattice.14 Here the layers form 

concentric, equidistant shells. The differences between a planar lattice and a 
spherical lattice are: (i) the number of sites per layer increases on moving away 
from the centre of the lattice and (ii) the lattice transition parameters (X) are layer-
dependent. The lattice transition parameters X_(R), X0(R), and X+(R) are defined 
as the fraction of neighbouring sites in layer R -1 , layer R, and layer R + 1, 
respectively, of a lattice site in layer R. If all layers are equidistant the volume 
enclosed by layer R equals: 

V(R) = ̂ 3(4/3)7tR3
 ( 1 ) 

The number L(R) of lattice sites in layer R is then 

L(R) = r3(V(R) - V(R -1)) = (4/3)7t(3R(R -1) +1) (2) 

The first layer (R = 1) of a spherical lattice, situated in the centre, contains (4/3)n 
lattice sites. The surface area of the Rth layer equals 

S(R) = 4?tó2R2 (3) 

and determines the transition factors, which are proportional to the surface area per 
site in contact with the adjacent layer: 

^s (R\ _ ^p S(R) _ . p 3R 
+V ; "Vl_(R +3R(R-1) + 1 

^(R)^ + ggz l^ +
 3(R-1)2 

V ; A ( R +3R(R-1) + 1 

where the superscript s denotes the spherical lattice and p denotes planar. This 
lattice can be used to compute the volume fraction profile of polymer around a 

single isolated particle. If that particle has a radius of ^Rpthe layers R = 1, 2, 3 
Rp are not accessible for the molecules in solution. The volume fractions are 
calculated as functions of R only. We call this the one-dimensional model: the 
mean-field approximation is applied within each concentric shell, that is, over two 
dimensions, so that there is a concentration gradient in one dimension only (the 
radial direction). 

The cylindrical lattice can be seen as a planar lattice where each lattice layer is 
divided into concentric equidistant rings. One could also say that a circular lattice is 
placed into each layer z of the planar lattice. Now concentration gradients in two 
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dimensions can be accounted for: in the normal (z) and in the radial (R) direction. 
We refer to this as the two-dimensional model. So we write the volume fractions as 
a function of z and R: <t>(z,R). An arbitrary lattice site (z,R) has neighbouring sites in 
the same layer: (z,R), (Z ,R+1) and (z,R-1) and in adjacent layers: (z+1,R), and (z-
1,R). We define lattice parameters ^AZ,AR(Z-R) where Az and AR can take the 
values - , 0, or + for "downward", "lateral", or "upward" steps in directions z and R, 
respectively. Either Az or AR should be zero: "diagonal" sites (e.g. (z+1,R+1) and 
(z-1,R-1)) are not considered to be nearest neighbours, so that X+ + = X+ = 
X_ + = X__ = 0. Hence, for transitions to a lower or a higher layer Az = - or +, 
and AR = 0; and similarly AR = - or + and Az = 0 in the cases of transitions to 
an inner ring or an outer ring within the same layer. Finally, Az = AR = 0 for steps 
within the same layer z and the same ring R. For transitions to a lower or a higher 
layer one simply has the same lattice parameters as for a planar lattice, so that (in a 
cubic lattice): 

À+,o(z,R) = X.P = 1/6 

A._o(z,R) = ^ = V 6 

For transitions within the same layer z one must calculate the corresponding 
circular lattice parameters X°&n. It is easily seen that the number of sites in a 

circular ring of the cylindrical lattice is just 

Lc(R) = j t(R2-(R-1)2) = 7t(2R-1) (6) 

and that the circular lattice parameters are 

XC
+(R) = À P 2 R / ( 2 R - Ï ) 

£ ( R ) = Ä ! } 2 ( R - 1 ) / ( 2 R - 1 ) 

This means that we have the following transition parameters within the same layer 

z for a cubic cylindrical lattice: 

X (R) = _ 5 _ (8a) 
°' v ; 6R-3 

%>(R) = ! (8b) 

^°'+(R) = J ^ (8c) 
Analogous to the case of the planar lattice we define <(|>(z,R)> as: 
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<4>(z,R)> = E X(^Az,ARX^(z + Az,R + AR)) 
Az=-,0,+ AR=-,0,+ O) 
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Figure 1 Cross section through the lattice. Two spherical particles, both with a 
radius of Rp lattice sites, are separated by M layers of lattice sites. The layers z are 
flat but the lattice has a cylindrical symmetry around the central axis connecting the 
particles. Hence, the parameter R refers to cylindrical shells around this axis, and 
the intersection of these shells with the planar layers defines rings with a given 
combination of z and R. Examples of possible polymer chain configurations are 
given. Three directions are shown in this cross section, denoted as "parallel", 
"diagonal", and "perpendicular". 

To model interfacial phenomena a particle with radius Rp is placed in the 
middle of the lattice. This means that certain lattice sites are inaccessible to the 
molecules in the system. Figure 1 shows a cross-section through the lattice. A 
second particle has been drawn in this picture, as we are interested in modelling 
the interaction between two particles. However, for symmetry reasons the part of 
the lattice to the right of the line marked "mirror" need not actually be taken into 
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account in the computations. The size of the system, i.e. the number of layers 
between the particles and the mirror, determines the interparticle distance. 
Obviously, the number of layers and rings between the particle and the other 
boundaries of the system have to be chosen large enough not to introduce any 
spurious boundary effects. For example, if the number of rings is too small the 
polymer chains are compressed "sideways". 

A minor problem is posed by the fact that a spherical particle does not naturally 
fit into the cylindrical lattice. The surface of the particle does not coincide with the 
boundaries between lattice layers. This problem can be solved by treating the 
particle as an extra component which has a fixed volume fraction §p in every lattice 
site; the value of §p varies from 0 for sites that completely belong to the solution to 
1 for sites that are completely within the particle. A site that lies on the interface 
between particle and solution has a particle volume fraction (|>p(z,R) equal to the 
volume fraction of that site on the particle side of the interface. In the example of 

Figure 1, 0 < (|>P(Z,R) < 1 for R = 3 and z = 7, 8 12, and for R = 1 and 
z = 7 or 12, i.e. those sites through which the particle surface cuts. The sum over 
<t>p(z,R)L(R) must give the total particle volume: 

X<|)p(z,R)L(R) = i7 tR3 (10) 
z,R ó 

Algebraic expressions for (|>p(z,R) can be derived (see Appendix 1). This procedure 
leads to a smoothening out of the particle surface. However, we want the total 
surface area of the particle to be the same as in the spherical lattice. When 
energetical interactions between solution species and the surface are taken into 
account (which is necessary to describe the adsorption equilibrium of adsorbing 
molecules) the particle surface area is an important parameter. When polymer 
chains are studied that are grafted to the surface at a given density a the total 
surface area is also important, as it determines the total amount of polymer in the 
system. To solve this problem, we consider the surface shell as the concentric shell 
between a distance Rp and a distance Rp +1 from the particle centre. This shell 
cuts through several lattice sites. Some of these (at the inside) contain a nonzero 
particle volume fraction (|>p(z,R), for example sites (z,R) with z = 7 and R = 2 or 3 
in Figure 1. Other sites (at the outside) belong partly to the solution, and this part 
falls outside the surface shell. Examples of this type are z = 6 and R = 2 or 3 in 
Figure 1. 

We define a quantity v(z,R) as the part (by volume) of each site (or ring) which is 
within a distance Rp +1 of the surface. For sites entirely outside the surface shell 
v(z,R) = 0, for those completely inside this shell v(z,R) = 1; only for sites partly in 
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this shell v(z,R) is in between 0 and 1. The quantity v(z,R) may be calculated with 
the equations given in Appendix 1, after replacing Rp by Rp + 1. Analogous to eq 10 
we have: 

5>(z,R)L(R) = ̂ ( R p + l)3 (11) 
z,R ö 

The difference v(z,R) -c|>p(z,R) characterizes the accessible part of lattice sites 
overlapping with the surface shell; only for these sites the difference is nonzero. For 
sites entirely inside or entirely outside the surface shell v(z,R) -(|>p(z,R) is zero. 
The accessible volume of the entire surface shell is obtained by subtracting eq 10 
from eq 11. Only segments in this surface shell have energetical interactions with 
the surface. For grafted polymer the grafting density a may be identified with the 
volume fraction of grafting segments in the surface shell. 

Terminally attached polymer chains 
Consider two spherical particles at a distance M from each other; the distance 

between the particle centres is M + 2Rp. Both particles carry end-grafted polymer 
chains with a density o. The polymer chain length is N. Nearest-neighbour 
interactions between solvent and polymer segments are accounted for by the Flory-
Huggins parameter %. The segments do not adsorb onto the grafting surface. The 
total number of polymer segments in the system is denoted by 6, so that the 
number of polymer chains per particle is 9/N. This number equals the number of 
grafting segments, which is a times the volume of the surface shell: 

i = | T O ( ( R p + , f - R 3 ) , 1 2 ) 

For large Rp this equation reduces to the well known form 6/N = 4rarR2. 

We need to calculate the (two-dimensional) volume fraction profile (])(z,R) of the 
polymer segments as a function of M. This enables us to find the free energy of the 
system as a function M. The calculation of (]>(z,R) is completely analogous to that of 
(|)(z) for a polymer layer grafted to a flat surface,1 15 but some modifications are 
necessary to account for the two-dimensional nature of the present problem. 

We define the potential energy u(z,R) of a polymer segment in ring (z,R) as 

u(z, R)/kT = -2X < 4>(z, R) > - ln(l - <))p (z, R) - <Kz, R)) ( 13) 

The corresponding segment weighting factor G(z) is given by 

G(z, R) = exp(-u(z, R)/kT) (14) 
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We define the end-segment weighting factor G(z,R;sl1) as the average statistical 
weight of all conformations of an s-mer of which the last segment is located in the 
ring (z,R) given that the first segment is grafted to the particle surface. We further 
define G(z,R;slN) as the average statistical weight of all conformations of an (N-
s+1)-mer of which the last segment (segment s of the grafted polymer chain) is 
located in the ring (z,R) and the first segment (segment N of the grafted chain) may 
be anywhere in the system (except, of course, on sites where (|>p(z,R) = 1). The 
quantities G(z,R;sl1) and G(z,R;slN) can be calculated from the recurrence 
relations: 

G(z,R;s 11) = G(z,R) < G(z,R;s-111) > (15a) 

G(z,R;s IN) = G(z,R) < G(z,R;s + 11N) > (15b) 

where the values of G(z,R;1l1) and G(z,R;NIN) are given below (eqs 18-21). 

Consider polymer chains of length N that are grafted to the surface with a 
grafting density given by eq 12. We assume that the chains are grafted 
homogeneously onto the surface. When the two particles interact, two different 
situations may be envisaged. Either the grafting segments are allowed to move 
over the surface, thus being able to find a more favourable conformation for the 
chains, or they are kept fixed in the same position. We first consider the latter case. 
This condition implies that the volume fraction of the first (grafting) segment of this 
polymer on a site (z,R) must be: 

8(v(z,R)-<Mz,R)) / 1 R , 
(|)(z,R;1)= 4 fê f^ (16) 

3' 
4 ft \3 o 
JJTN (Rp + 1) -R? 

The volume fraction of a segment s on a site (z,R) is in general given by the 
connectivity law, 

^(z,R;s) = C
G ( Z - R ; S ' f ( Z - R ; S l N ) (17) 

v ; G(z,R) ' 

where C is a normalization constant. Eq 16 is a solution of eq 17 for all values of z, 
R and G(z,R) if we define G(z,R;111) and C as follows, 

and 

^N [ (R p + l ) -Rjj 
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Equation 18 gives the starting value for the recurrence relation of eq 15a. The 
calculation of the recurrence relation of eq 15b is started with: 

G(z,R;NIN) = G(z,R) (20) 

Applying eqs 17 and 19 then gives the polymer volume fraction profile. This profile, 
obtained for a given set of values for u(z,R), should be consistent with eq 13 for all 
values of z and R. 

Instead of using the procedure described above for a fixed distribution of the 
grafting segments, we can also assume that the chains have an average grafting 
density a but that, when the two particles approach each other, the grafting 
segments may redistribute themselves over the surface to find the equilibrium 
distribution. We then replace eq 18 by: 

G(z,R;1,1) = { G ( Z ' R ) if V(Z 'R)-MZ 'R)*° ( 2 1 ) 
v ; [ 0 otherwise v ' 

The first segment of a polymer chain may be located on any site that is at least 
partly within the sphere with radius Rp +1. Eq 21 is used for the recurrence relation 
of 15a, eq 20 is still used for the recurrence relation of 15b. The volume fraction 
profile is calculated using eq 17 with the normalization constant C given by: 

C = N£G(Z ,R ;N I1 )L (R ) ( 2 2 ) 

z,R 

Free Energy 
The free energy of the system can be written as a straightforward extension of 

the one-dimensional analogue:4 

A - A * = alnNC-£l_(R)u(z,R)/kT + 
k T zR 

z,H ( 2 3 ) 

XL(R)x(-2 < 4(z,R) > + <t>(z,R) < <t>(z,R) > + 4>(z,R)) 
z,R 

This expression holds for a two component system with grafted polymer (chain 
length N, and grafting density a) and a monomeric solvent. 

When the polymer is grafted to the surface, and the grafting segments are all 
kept at a fixed position during the calculations, it is necessary to slightly modify the 
first term in this equation. Chains that are grafted in different rings (z,R) can be all 
treated as separate components. The amount of polymer grafted to ring (z,R) 
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equals L(R)Na(v(z,R)-(t>p(z,R)). The expression a In NC from the first term of eq 23 

can now be written as a summation over all rings in which chains are grafted: 

( /L(R)Ng(v(z,R)-<l)p(z,R))^ 

G(Nlz,R;1) 
X L(R)a(v(z,R)-(|>p(z,R))ln 

where G(N I z, R; 1) is defined as £ L(R' )G(z', R' ; NI z, R; 1), with 
z',R' 

G(z'>R
,;slz,R;1) = G(z,,R,)<G(z,,R,;s-1lz,R;1)> 

fG(z,R) if z = z'andR = R' 
0 otherwise 

and G(z\R,;1lz,R;1) = 

(24) 

(25) 

7.3 Results and Discussion 

In this section we present results of calculations for the interaction between two 
particles with end-grafted nonadsorbing polymer. We limit ourselves to good 
solvency conditions (% = 0). Our aim is to study the influence of the particle radius 
on the free energy of interaction between the two particles. For large values of Rp 

(Rp » M) this interaction free energy can be directly related to the interaction 
between two flat surfaces. Derjaguin16 showed that the interaction force Fs

nt(M) 
between such spherical particles is proportional to the interaction free energy 
Ap^M) per unit area between two equivalent planar surfaces: 

F^t(M) = 27tRpA
lpnt(M) (26) 

The free energy of interaction between two planar surfaces can be calculated using 
the "classical" one-dimensional model on a flat (cubic) lattice. For large Rp we can 
thus write the interaction free energy between two spheres Agnt(M) as an integral 

over Fs
nt(M): 

M'=M 

AJj^M) = 2TIRP j Ap^M'^M' (27) 

M'= 

Ideally, we would like to calculate the function A's
nt(M)/Rp using the two-

dimensional lattice model for a large range of values of Rp. For large Rpthis 
function should become independent of Rp and approach the values given by eq 
27. However, due to computational limitations we have only been able to perform 
calculations for particles that are so small that large deviations from the results 
predicted by eq 27 should be expected. In Figures 2 and 3 we show the results for 
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a system with Rp = 5, N = 50, and a = 0.1. The model with "fixed" grafting 
segments has been used for both these figures. Before we discuss the free energy 
of interaction for this system, we must prove that the volume fraction profiles as 
calculated with the two-dimensional model are consistent with those obtained from 
a one-dimensional model. 
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Figure 2 Polymer volume fractions in three directions (perpendicular, parallel, 
diagonal; see Figure 1) around a spherical particle calculated with the two-
dimensional model with fixed grafting points. The volume fractions as predicted by 
the one-dimensional model are also shown. 
o = 0.1;x=0. 

Parameters: RD = 5; N = 50; 

This comparison is shown in Figure 2, where the volume fraction profile around 
one particle is plotted for large M (so that the two particles do not yet interact). In 
this case the profile should correspond with the profile that is calculated using the 
one-dimensional spherical lattice. Moreover, the volume fractions should be 
isotropic around the particle. In Figure 2 the polymer volume fractions are shown in 
three directions denoted as parallel, diagonal, and perpendicular. The "parallel" 
direction is along the axis that joins the centres of both particles. The 
"perpendicular" and "diagonal" directions make an angle of 90° and 45° with this 
axis, respectively (see Figure 1). The volume fraction profile of end-attached 
polymer chains on an isolated spherical particle has been extensively studied in ref 
17. Here we only note that there is a satisfactory correspondence between the 
profiles in these three directions and the profile that follows from the one-
dimensional calculations. This is a proof of the consistency of our model. Very 
close to the particle surface the agreement is not perfect. This artefact is caused by 
the way in which we model the surface. We expect that the polymer volume 
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fractions close to the surface only significantly influence the free energy of 

interaction when both particles are brought very close together. 

100 

-< 

50 

0 

Derjaguin 
approximation 

20 M 40 

Figure 3 Free energy of interaction between two spherical particles as a function 
of their separation ("interaction profile"), for the two-dimensional model with fixed 
grafting points, and according to the Derjaguin approximation (eq 27). Parameters 
as in Figure 2. 

The free energy of interaction for two interacting particles is shown in Figure 3. 
The same quantity is also shown as predicted by Derjaguin's approximation (eq 
27). The free energy calculated in this way is far more repulsive than when it is 
computed using the two-dimensional model. Of course we are dealing with a 
situation where the assumption Rp » M is not valid. For small particles the 
repulsion is far less because the polymer chains can move sideways. This 
movement is not accounted for in the Derjaguin approximation. In Figure 4 it is 
demonstrated how the polymer chains use this freedom to move out of the gap 
between the particles when M becomes small. In this Figure the volume fraction 
profile is shown in the perpendicular direction. For large M this profile is the same 
as that in any other direction. For smaller M the volume fractions increase in the 
perpendicular direction. This is due to the redistribution of the polymer tails sticking 
out into the solution. 

Figures 2-4 were all computed for a fixed homogeneous grafting density. The 
grafting points of the polymer chains are then not able to move laterally over the 
surface. If they were able to do so, this would provide an additional mechanism to 
decrease the free energy of the system. However, this effect turns out to be of 
relatively minor importance. Figure 5 shows the free energy of interaction both for 
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fixed grafting points (i.e. using eq 18) and mobile grafting points (i.e. using eq 21). 

Both curves do not start to deviate significantly until relatively large compressions. 
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Figure 4 Volume fractions in the perpendicular direction for the system of Figure 
3. The profiles are shown for various particle separations M, and illustrate the 
movement of the chains out of the region between the particles. 

100 

Figure 5 The free energy of interaction between two spherical particles as 
calculated with the "fixed grafting ends" model and the "mobile grafting ends" 
model. The system is the same as that of Figure 2. 

Figure 6 shows the volume fraction profile in the various directions for the model 
with mobile grafting points for isolated particles. For z > 5 the volume fractions are 
isotropic around the particle surface and coincide with the volume fractions that are 
predicted by the one-dimensional model. Near the particle surface one can see 
that in the parallel and perpendicular directions lower volume fractions are found 
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than in the diagonal direction; the deviations are stronger than in Figure 2. This is 
caused by the way that the grafting is accounted for in eq 21. The first segment of a 
polymer has a roughly equal probability to be situated on any lattice site for which 
v(z,R) > 0. This includes sites for which v(z,R) is far smaller than unity, so that the 
greater part of such sites is outside the sphere with radius Rp +1 around the centre 
of the particle. Some of the grafting segments are then not in contact with the 
surface. It would be possible to improve on this model in such a way that the 
polymer chains are all really grafted within the first layer from the particle surface. 
However, our model already gives a very good profile for slightly larger distances 
from the surface. The volume fractions at these larger distances are most important 
for the interaction profile. 
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Figure 6 The polymer volume fractions around the particle in the "mobile ends" 
model. All parameters are the same as in Figure 2. 

Figure 7 shows interaction curves for different values of Rp. The free energy of 
interaction is divided by the particle radius in order to compare the data for the 
different curves. For large values of Rp one would expect that the curves coincide 
with the one-dimensional calculation ("Derjaguin approximation"). When Rp is 
increased the repulsive interaction does indeed increase. However, due to 
computational limitations no results can be shown for R p>10. Figure 7 is 
calculated using the "fixed ends" model. This means that the closest approach 
between the two particles is M = 2. At this separation enough room is left between 
the particles for a grafting segment on both surfaces. This is why the curve for 
Rp = 2 stops at Aint/RpkT = 30. In the one-dimensional model (two flat plates) the 
smallest distance of approach is M = 2oN, because then the whole volume 
between both surfaces is filled with polymer. 
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Figure 7 The free energy of interaction between spheres with various radii of 
curvature. The free energy A int divided by the particle radius Rp is given as a 
function of the particle separation M for Rp = 2, 5, and 10. The other parameters 
are the same as in Figure 2. The solid curve gives the Derjaguin approximation for 
the free energy of interaction. 

7.4 Concluding Remarks 

We have shown that the interaction between two small spherical particles 
bearing adsorbed polymer layers is far less repulsive than would be expected from 
the interaction between two equivalent flat surfaces. We have described a self-
consistent field model to quantify this "small particle effect". The question remains 
whether one can also experimentally detect this effect. 

It is not possible to directly measure the force between two colloidal particles, as 
one can do between two macroscopic surfaces. Neither is it easy to extract detailed 
information of this force from bulk measurements on colloidal systems, although, in 
principle, this is possible. Force/interparticle separation plots can be calculated 
from osmotic pressure measurements of colloidal dispersions.18'19 Alternatively, 
the high shear limit of the shear modulus of monodisperse spherical particles can 
also be written as a function of the particle interaction potential.20 Costello et al.2'1 

measured forces between layers of adsorbed comb copolymers with the surface 
force apparatus, and compared them to osmotic force and Theological data on 
similar colloidal systems. They found a reasonable agreement with the directly 
measured force/distance profiles between macroscopic surfaces. However, they 
were considering colloidal particles with a radius which was an order of magnitude 
larger than the adsorbed layer thickness. It would be very interesting to repeat their 
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analysis with carefully chosen model systems in which the colloidal particle radius 
has the same order of magnitude as, or is even smaller than, the adsorbed layer 
thickness. 

Another way to experimentally tackle this problem would be using an atomic 
force microscope. One would have to attach a single colloidal particle to the tip of 
the microscope. Then the interaction could be measured between this tip (onto 
which a polymer layer would first have to be adsorbed) and a flat surface with an 
adsorbed polymer layer. The interaction between a sphere and a plane should be 
in between the interaction between two planes and the interaction between two 
spheres. Our lattice model can easily be extended to model the interaction 
between a sphere and an (infinitely large) plane: the mirror in Figure 1 has only to 
be replaced by an impenetrable wall. 

We hope that this chapter may direct the attention of experimentalists towards 
studying the effect of adsorbed polymer on the interaction between small particles. 

Appendix 1 

From geometrical arguments one can derive what fraction <|>p(z,R) of a ring (z,R) 
lies within a sphere with radius Rp that has its centre in the middle of the lattice (i.e. 
between layers 1 and 0). See Figure 8 for the definition of the layer numbers z 
used in this appendix. Below we give the equations for 0p(z,R). Their derivation is 
straightforward. In order to simplify our notation we introduce the variables R and 
R, defined as: R2 = Rp

2 - (R -1)2 and R 2 =R p
2 -R 2 . One can distinguish six 

different cases. In Figure 8 it is indicated which lattice sites correspond to these six 
cases. Below we only consider rings in the layers z > 0. From symmetry 
arguments if follows that <j>p(-lzl,R) = c|)p(lzl+1 ,R). 

1) R p
2 >z 2 +R 2 

The whole ring (z,R) is situated within the particle, i.e. (|>p(z,R) = 1. 

2) Rp
2<(z-1)2+(R-1)2 

The whole ring (z,R) is situated outside the particle, i.e. <|>p(z,R) = 0. 

For the next 4 cases we can write: 
b nR 

4)P(z,R) = X + jdz' / 2 / -x 
i 7c(R2(R-1)2) 
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Figure 8 Definition of the layer numbers z used in Appendix 1. The six different 
types of lattice sites mentioned in this appendix are illustrated. 

We distinguish the following situations: 

3) z2 + R2 > Rp2 > z2 + (R-1)2 and (z-1)2 + R2 > Rp
2 > (z-1)2 + (R-1)2 

In this case X = 0, a = z -1 , b = z, so that the volume fraction is: 
R 2 - z 2 + z - i / 3 

4>p(z,R) = -
R^-R* 

4) R p
2<z 2 + (R-1)2and(z-1)2 + R2>(z-1)2+(R-1)2 

In this case X = 0, a = z - 1 , b = R, so that the volume fraction is: 

4)p(Z,R): 

^ R 3 - ( Z - I / R 2 - ± ( Z - 1 ) 2 

R^-R* 

5) z2 + R 2>R p
2>z 2+(R-1) 2andRp 2>(z-1) 2 + R2 

In this case X = R-z + 1, a = R, b = z, so that the volume fraction is: 

(])p(z,R) = R-z + 1 + 
R 2 (Z-R1-Z 3 /3 + - R 3 

6) Rp2<z2 + (R-1)2andRp
2>(z-1)2+R2 

In this case X = R-z + 1, a = R, b = R, so that the volume fraction is: 
2R3_,| fR2_1^2 

<|>p(z,R) = 1-z + R + -
R2-R^ 
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Appendix 2 

In this appendix we show how the adsorption of a polymer which is in 
equilibrium with a bulk solution can be incorporated into our model for two 
interacting spheres. An adsorbing polymer is supposed to gain (adsorption) energy 
whenever one of its segments is adjacent to the surface, i.e. in the surface shell that 
is situated between the spherical particle with radius Rp and an imaginary sphere 
with radius Rp+1. However, in our model the surface shell does not consist of 
discrete lattice sites. So we introduce the probability v'(z,R) that an adsorbing 
segment in a site (z,R) interacts with the surface as 

v'(z,R) = (v(z,R)-4.P(z,R))/(1-4.p(z,R)) 

This probability is only defined for sites where <|)p(z,R) < 1. For sites outside the 
surface shell v'(z,R) = 0. The weighting factor of a monomer A on a site adjacent 
to the particle can now be written as 

GA(z,R) = v'(z,R)Gfs(z,R) + (1-v'(z,R))G^on(z,R) (A2.1) 

where G^ds(z,R) is the weighting factor of an adsorbed monomer on this site and 
GA

on(z,R) is the weighting factor of a nonadsorbed monomer on the same site. 
Equation A2.1 is a special case of the two-state lattice model used by previous 
authors.22'23 The monomer factors are the Boltzmann factors of the potentials 
uA

on(z,R) and uA
ds(z,R) for nonadsorbed and adsorbed segments A on site (z,R), 

respectively: 

GA
d s(z,R) = exp(-uA

ds(z,R)/kTJ (A2.2a) 

GA
on(z, R) = exp(-uA

on(z, R)/kT) (A2.2b) 

For lattice sites that are completely surrounded by solution sites (i.e. 
«|)p(z,R)> = 0), the monomer weighting factors are equal to the nonadsorbing 
monomer weighting factors. In this case the splitting up of the segment weighting 
factors into an adsorbed and a nonadsorbed term becomes trivial. In general the 
adsorbed and nonadsorbed segment potentials can be written as: 

uads/z p\ 
A

k J ' = -XsA + I X A B < 4>B(Z,R) > +u'ads(z,R) (A2.3a) 
B 

non/ z p \ 
A

k J ' ' = XXAB < 4>B(z,R) > +u'non(Z,R) (A2.3b) 
B 
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The terms X S A ^ - ^ I - I O O X A P ) . where z '=Rp+1, and ^ X A B <<I>B(Z.R)> account 
for the energetical contributions to the potential, and u'ad®(z,R) and u'non(z,R) are 
the (segment-independent) hard core potentials that ensure that both the 
adsorbing and the nonadsorbing parts of every site (z,R) are completely filled with 
segments. We define %so = 0. Defining Au' = U'ads_uinon a n c | combjning eqs. 
A2.1-A2.3 gives: 

GA (z, R) = Gads(z, R) x (v' (z, R) + (1 - v' (z, R)) exp(-XsA + Au' (z, R))) (A2.4) 

Monomers. 
The easiest case to consider is that of a system consisting of only monomers. 

For the volume fraction of a segment A in site (z,R) we can write: 

4>A(z,R) = GA(z,R)4>5» 

= v'(z,R)GA
ds(z,R)(t)A + (1-v'(z,R))GA

on(z,R)^A (A2.5) 

= v,(z>R)())A
ds

 + (1-v,(zIR)HA
on 

The following condition must be satisfied: 

X *A
ds(z, R) = 2 (|>A

on(z, R) =1 - «Mz, R) (A2.6) 
A A 

This equation gives a relationship between u'ads(z,R) and u'non(z,R) which can be 
derived by substituting A2.4 into A2.6: 

X4>AGA
ds(z,R) = 1-(t,p(z,R) 

A 

so that 

p* vmHi-*mŒ*i»+*m=1"vfcR) ,A27) 

This equation must be solved numerically. 

Polymers 
For polymers the recurrence relations (eq 15) must be used to find the volume 

fractions of segments. The total volume fraction of segment s of a polymer i on site 
(z,R) is again the sum of an adsorbed and a nonadsorbed fraction: 

167 



4>i(z,R;s) = v'(z,RHi
ads(z,R;s) + (1-v,(z,R)>i

non(z,R;s) = 

C| < G(z, R; s -111) > (v' (z, R)Gads(z, R) + (1 - v')Gnon(z. R)) < G(z, R; s +11 r) > ( A 2 ' 8 ) 

Applying condition (A2.6) we can write the general form of (A2.7) for polymers by 
substituting A2.4 and A2.8 into A2.6: 

X5>a d s(z,R;s) = 1-<Mz,R) >Kads 

i s 

so that 

f f v'(ZlR) + (l-v'(z,R))exp(xSA-Au'(z,R)) ^ ' ^ 

which can be rewritten as 

Çv(z,R) + (l-V(z!,â))Zexp(XsA-Au'(z,R)) = 1 - * p ( Z ' R ) ( A * ' 9 ) 

Numerical method 
The (total) segment potentials are used as iteration variables. From the segment 

potential profile {GA(z,R)} the (total) segment volume fraction profile {(|)A(z,R)} is 
calculated. Applying (A2.9) for every site the hard core potential difference Au'(z.R) 
is found (this involves solving an equation with one variable, which must, however, 
generally be done numerically). Rewriting eqs. A2.1 - A2.3 gives GA

non(z,R) as an 
explicit function of Au'(z,R): 

GnorVz R) - G A ( Z ' R ) /A2 1 n) 
faA ( Z ' H ) - (i_v(z,R)) + V(z,R)exp(XsA-Au'(z,R)) ( A 2 ' 1 Ü ) 

so that (|>A
non(z,R) can be calculated. For every segment type A we now define a 

function fA(z,R) for every site (z,R) which must be 0 if the field is self-consistent: 

if v'(z,R) = 1 or v'(z,R) = 0: 

fA(z,R)= 1 - 1 -aA(z,R) + a(z,R) 
1-(t>P(z,R) 2 > A ( Z - R ) 

A 
if 0<v'(z,R)<1: 

f.(z,R) = - ——- = — J aA(z,R) + a(z,R) 
M ; 1-̂ )P(z,R) XCn(z-R) X f f W ) 

A A 
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where 

(XA(Z,R): 

uA
o n (z ,R) 

kT - £ X A B 

( \ 
<te(z,R)> Ab 
I<t>c(z.R) 

V c 

-4>B 

uA (z .R) 
kT -X^AB 

<()>B(z,R)> b 

I*cfeR) B 

V c 

if v'(z,R)<1 

+ ZsA if v'(z,R) = 1 

a(z,R) _XAaA(Z 'R)/ 
T A i 

(A2.11) 
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SUMMARY 

Copolymers consisting of both adsorbing and nonadsorbing segments can show 
an adsorption behaviour which is very different from that of homopolymers. We have 
mainly investigated the adsorption of AB diblock copolymers, which have one 
adsorbing block (anchor) and one nonadsorbing block (buoy). The anchors adsorb 
from solution onto a surface and the buoys protrude into the solution. Thus, a 
polymer brush is formed. This name is derived from the resemblance between the 
protruding chains of B segments and the bristles of a brush. The presence of the 
adsorbing segments can be neglected when studying the characteristics of such a 
polymer brush, which is then modelled as (B-) homopolymer molecules which are 
terminally attached to the surface of a solid interface. 

In chapter 1 two self-consistent field (SCF) theories are introduced which give a 
description of such a polymer brush. The first of these theories is a lattice model. It 
takes into account all possible conformations that can be generated on a lattice; the 
molecules are treated as freely jointed chains. The overall volume fraction profile 
(that is, the polymer volume fraction ijiasa function of the distance z to the surface) 
is then found by weighting each conformation with an appropriate Boltzmann factor. 
This theory can both be applied for systems with end-attached polymer molecules 
and for systems with freely adsorbing chains. The volume fraction profiles for any 
given system must be found using a complicated numerical procedure. 

The second theory explicitly assumes that the polymer molecules are strongly 
stretched. Under this assumption only a fraction of all possible molecular 
conformations need be taken into account to find the volume fraction profile. 
Although this approach is less exact than the lattice model, it has as a major 
advantage that an analytical expression can be derived for the shape of the volume 
fraction profile. A simple algebraic expressions is also available for the brush height, 
if only the second and third order terms of a virial expansion of the free energy of 
mixing polymer and solvent are taken into account. If this free energy is accounted 
for in a more exact manner, one must (numerically) calculate the brush height from a 
(simple) integral equation. 

In the first chapter we make a detailed comparison of the predictions of both 
theories for a polymer brush at a flat surface in a low molecular weight solvent. In 
general an excellent agreement is found between the results of both theories. 
Significant deviations only occur very close to the surface and at the periphery of the 
grafted layer. In the lattice model there is a small depletion zone near the grafting 
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surface, which is caused by the entropical restrictions imposed upon many polymer 
conformations by this impenetrable surface. The lattice calculations further show a 
"foot" of the volume fraction profile, which extends further away than the brush 
height as calculated from the strong-stretching approximation. The relative 
importance of these deviations increases with decreasing chain length, decreasing 
grafting density, and decreasing solvent quality. In order to find good quantitative 
agreement between the lattice calculations and the strong-stretching theory, one 
must incorporate the full Flory-Huggins expression for the mixing free energy of 
polymer and solvent into the latter theory. The derivation of elegant, analytical 
expressions for the layer structure by expanding this free energy in a virial series is 
only valid for low grafting densities. 

In all chapters except the second, the polymer chains are treated as freely jointed 
chains in a potential gradient. In chapter 2 more elaborate models are introduced for 
the polymer chains. Chain stiffness is incorporated by reducing the flexibility of the 
segment bonds. Stiffer chains give larger brush heights. Over a large range of chain 
stiffnesses the volume fraction profiles agree well with analytical expressions based 
on the incorporation of chain stiffness into the Gaussian approximation for the local 
stretching of a polymer chain. A further modification is a first order correction to the 
excluded volume interactions in the generation of the chain conformations. This 
correction slightly reduces the brush height. The opposing effects of this correction 
on the one hand, and chain stiffness on the other, suggest that the freely jointed 
chain is a good model for "real" polymers. 

Chapter 3 considers polymer brushes on cylindrical and spherical surfaces with 
a radius of curvature R. On such surfaces the dependence of the brush height H on 
the chain length N differs from that of a flat brush. SCF lattice calculations are 
presented to investigate this dependency as a function of R. For large values of R 
the scaling law H ~ N is recovered for both spherical and cylindrical surfaces. For 
R = 1 good agreement is found with the scaling laws H ~ N0-6 (spherical surface) 
and H - N0-75 (cylindrical surface). Polymer brushes on spherical surfaces can be 
seen as a model for AB diblock copolymers adsorbed onto small colloidal particles. 
For R = 1 a star-branched polymer molecule in solution is modelled. 

The volume fraction profile of the brush is also studied as a function of R. For this 
purpose we focus our attention on spherical brushes immersed in athermal solvents. 
For large radii of curvature we make the assumption that the potential energy profile 
of the segments can be approximated by a parabolic function, as for flat surfaces. 
Applying this approximation, we derived an analytical expression for the volume 
fraction profile which agrees reasonably well with the lattice calculations. For very 
small radii of curvature the lattice calculations predict volume fraction profiles which 
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follow the scaling prediction (<|) ~ z"4/3 for spherical brushes in athermal solvents). 
For intermediate curvatures we propose an analytical expression for the volume 
fraction profile which is a combination of the parabolic potential near the surface, and 
the scaling form farther away from the surface. Thus, over the whole range of radii of 
curvature, analytical expressions for the volume fraction profiles are available which 
give reasonably good correspondence with the lattice calculations. 

We also studied the "dead zone" from which the free ends are excluded near the 
grafting surface. The lattice calculations show such a dead zone under all solvency 
conditions, both for spherical and cylindrical surfaces. The extension of this zone is a 
non-monotonic function of the surface curvature. The relative size of this zone (with 
respect to the brush height) is a decreasing function of R. No easy analytical 
expression is available for the size of the dead zone. 

In chapter 4 the adsorption equilibrium of AB diblock copolymers is considered 
for adsorption from solution onto small spherical particles. For adsorption onto flat 
surfaces it is known that the adsorbed amount shows a maximum as a function of 
the size of the adsorbing block, if the total chain length is kept constant. The 
thickness of the adsorbed layer shows a similar behaviour. Assuming that the 
adsorption energy is independent of surface curvature, we showed that the 
maximum in the adsorbed amount increases when the surface curvature increases. 
The hydrodynamic layer thickness of the adsorbed layer decreases strongly with 
increasing surface curvature. This increase occurs for all ratios of anchor to buoy 
sizes. On the other hand, the root-mean-square layer thickness changes much less 
as a function of the surface curvature. Depending on the anchor to buoy size ratio, it 
may either increase or decrease when the surface becomes more strongly curved. 

Chapter 5 treats the interaction between two polymer brushes, both in the 
presence and absence of free polymer in the solution. In this chapter we first study 
the effect of free polymer chains in solution on the height and volume fraction profile 
of an isolated polymer brush. Using self-consistent field and scaling arguments, 
diagrams of state are constructed, which indicate different regimes with different 
scaling laws for the brush height and for the interpénétration of free and grafted 
polymer chains, as a function of grafting density, free and grafted chain length, and 
bulk volume fraction of the free polymer. These scaling laws are again corroborated 
by SCF lattice calculations. Predictions are also given for the volume fraction profiles 
of free and grafted chains based on the strong-stretching approximation. In the 
derivation of these expressions it is explicitly assumed that the free chain length is 
far smaller than the brush height. When this condition is satisfied, the volume 
fraction profiles from the lattice calculations agree excellently with those predicted by 
the strong-stretching theory. When this condition is not satisfied, both approaches 
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still predict the same height, but the strong-stretching theory gives a far too sharp 
interface between the grafted layer and the free polymer. 

The repulsive interaction between two compressed brushes starts at slightly 
larger separations according to the lattice calculations than one would expect from 
the strong-stretching approximation. This is caused by the "foot" of the volume 
fraction profile. This phenomenon occurs both in the absence and in the presence of 
free polymer in the solution. When free polymer is present the free energy of 
interaction can have an attractive part, caused by the depletion of the free chains. 

Chapter 6 deals with the interaction between two surfaces bearing adsorbed 
multiblock copolymer layers. We first study ABA triblock copolymers. Grafted layers 
of B chains with an end A block ("brushes with stickers") are used to model an 
adsorbed layer of such polymers. When the A adsorption energy of such a grafted 
layer is small, the free energy of interaction between two surfaces is purely 
repulsive. When this adsorption energy increases, a minimum appears, which 
reaches a limiting value at a certain adsorption energy. The minimum adsorption 
energy needed to find an attraction increases with increasing grafting density a, and 
chain length N. The absolute value of this minimum also depends on N and a. It 
scales as c1/3N_1. The minimum always occurs at a separation d that is larger than 
the separation 2h at which the brushes are just in contact if the "feet" in the profiles 
are neglected. The difference d-2h scales as No1'3. The attraction has an entropie 
origin. When the surfaces are far apart, the grafted chains form loops, with the A 
blocks adsorbed to the grafting surface. When the surfaces are brought together, the 
A block of a grafted chain can either adsorb onto the surface to which this chain is 
grafted, or it can adsorb onto the other surface. This freedom to choose between two 
surfaces leads to an entropically driven attraction. 

The interaction between adsorbed layers of ABA triblock copolymers (where the 
adsorbed amount is determined by the equilibrium between free and adsorbed 
chains) has an attractive part if the copolymer chains are symmetric. The interaction 
curve is the same as that of a grafted layer ("brush with stickers") with a grafting 
density corresponding to the adsorbed amount of the triblock copolymers. If one of 
the adsorbing blocks is larger than the other block, the attraction decreases. For a 
relatively low asymmetry (one block roughly 20% larger than the other) the attraction 
disappears completely. 

Multiblock copolymers consisting of more than three blocks can form bridges 
between two surfaces comprising several blocks. We studied the interaction 
between two surfaces bearing adsorbed multiblock copolymer layers. The overall 
composition of the polymer chains was kept constant, but the chains were divided 
into different numbers of A and B blocks (so that the blocks become shorter when 
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there are more blocks per chain). Chains with smaller blocks give smaller adsorbed 
layer thicknesses, so that the interaction starts at smaller separations. In all cases an 
attractive part is found in the interaction curve. Copolymer chains consisting of 
alternating small blocks of A and B segments very much resemble homopolymers 
(with properties that are some average of the A and B segments). These copolymers 
show a strong attraction at small separations (<10 layers), and repulsion at very 
small surface separations (around 2 layers). 

So far, we have only considered situations were the solvent is a good solvent for 
both blocks. The A blocks adsorb preferentially with respect to the B blocks, because 
the former have a stronger intrinsic affinity for the surface. We also consider the 
adsorption of an ABA triblock copolymer were both blocks have the same intrinsic 
affinity for the surface, but where the solvent is poorer for the A block. Now the A 
blocks adsorb preferentially, because of the selectivity of the solvent. We also pay 
attention to the interaction between two surfaces bearing adsorbed layers of such 
copolymers. When the interactions between the A and B segments and the solvent 
differ only slightly, the interaction curve resembles that of an adsorbing 
homopolymer, with an attraction at small separations. When these interactions differ 
a great deal, the interaction resembles that of a "conventional" triblock copolymer, 
with an attractive part at a large separation and repulsion at smaller surface 
separations. In the intermediate situation a more complicated interaction curve is 
found. 

The subject of chapter 7 is the interaction between two small particles bearing 
adsorbed polymer layers. An extended version of the lattice SCF theory was 
introduced, which takes account of gradients in two directions. In this version a 
cylindrical coordinate system is used, so that the volume fractions can vary both 
parallel to the axis connecting the centres of both particles, and in planes 
perpendicular to this axis. Results are presented for terminally attached polymer 
layers. It is first shown that this cylindrical model gives an isotropic profile around 
one isolated particle. This profile agrees well with the profile calculated from the 
"conventional" SCF lattice model, where a concentration gradient can exist in one 
direction only. Various free energy of interaction curves are presented for two 
spherical particles with terminally attached chains. 

If two spherically curved surfaces bearing adsorbed polymer layers interact, then 
the Derjaguin approximation relates this interaction to that between two similar flat 
surfaces, as long as the radius of curvature is far larger than the adsorbed layer. In 
chapter 7 we deal with systems where this condition does not hold. That is why we 
find interactions that are far less repulsive than the interaction according to 
Derjaguin's approximation. For increasing radii of curvature R, the interaction does 
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move in the direction of the interaction predicted for very large R by the Derjaguin 
approximation. On a molecular level the decreased repulsion can be explained by 
the freedom of the grafted chains to mover laterally out of the gap between the two 
particles. Whether or not the grafting segments themselves can also move over the 
surface plays only a minor role. 
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Copolymeren aan het vast-vloeistof grensvlak 

SAMENVATTING 

Copolymeren die zijn opgebouwd uit adsorberende en niet-adsorberende 
segmenten kunnen een adsorptiegedrag vertonen dat sterk afwijkt van het 
adsorptiegedrag van homopolymeren. In dit proefschrift hebben we de meeste 
aandacht besteed aan de adsorptie van AB diblok-copolymeren, bestaande uit een 
adsorberend blok van A segmenten (het "anker") en een niet-adsorberend blok van 
B segmenten (de "boei"). De ankers adsorberen uit een oplossing op een oppervlak, 
terwijl de boeien in de oplossing blijven uitsteken. Op deze manier wordt een 
zogenaamde polymeerborstel gevormd. Deze naam brengt de overeenkomst tot 
uitdrukking tussen de in de oplossing uitstekende staarten van B segmenten en de 
haren van een borstel. Wannneer de structuur van zo'n polymeerborstel bestudeerd 
wordt, kan de aanwezigheid van de adsorberende segmenten verwaarloosd worden. 
De borstel wordt dan voorgesteld als moleculen van een (B) homopolymeer die 
eindstandig aan een vast oppervlak verankerd zijn. 

In hoofdstuk 1 worden twee zelf-consistente veld (ZCV) theorieën besproken die 
gebruikt kunnen worden om polymeerborstels te beschrijven. Het doel van deze 
theorieën is om de volumefractie § van het polymeer uit te rekenen als functie van 
de afstand z tot het oppervlak. Eén van deze theorieën is een roostermodel. Het 
volumefractieprofiel in de borstel wordt berekend door alle mogelijke conformaties 
van de polymeerketens in rekening te brengen. Hierbij wordt ervan uitgegaan dat de 
bindingen tussen de segmenten volkomen flexibel zijn (binnen de beperkingen die 
door het rooster worden opgelegd). Bovendien wordt het uitgesloten volume van de 
segmenten slechts in een gemiddelde-veld benadering meegenomen. Aan 
conformaties waarbij meer dan één segment zich in het zelfde roosterhokje 
bevinden, wordt een eindige waarschijnlijkheid toegekend. We noemen dit het 
"ideale spookketen" model voor een poiymermolecuul. Het volumefractieprofiel 
wordt gevonden door alle conformaties met een bijbehorende Boltzmannfactor te 
wegen. Deze theorie kan zowel toegepast worden op systemen met eindstandig 
verankerde polymeerketens, als op systemen waarbij geadsorbeerde 
polymeermoleculen in evenwicht zijn met vrije moleculen in de bulkoplossing. In alle 
gevallen moet een ingewikkelde numerieke procedure worden toegepast om het 
volumefractieprofiel uit te rekenen. 
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De tweede theorie is op meer benaderingen gebaseerd dan het roostermodel. Er 
wordt vanuit gegaan dat de polymeerketens in een borstel sterk gestrekt zijn (in 
verhouding tot de afmetingen van een statistische kluwen in oplossing). Deze 
aanname maakt het mogelijk het volumefractieprofiel te berekenen uitgaande van 
slechts een fractie van alle mogelijke conformaties van de polymeerketens. Het 
grote voordeel van deze aanpak is dat een analytische uitdrukking kan worden 
afgeleid voor de vorm van het volumefractieprofiel. Indien de verandering van de 
vrije energie die optreedt bij menging van polymeer en oplosmiddel geschreven 
wordt als een viriaalreeks (met de polymeervolumefractie als variabele), kan ook 
voor de dikte van de borstel een eenvoudige algebraïsche vergelijking worden 
afgeleid. Hiertoe is het wel noodzakelijk vierde en hogere orde termen van de 
polymeervolumefractie te verwaarlozen. Indien ook deze hogere termen in rekening 
worden gebracht, moet de borsteldikte numeriek berekend worden uit een 
(eenvoudige) integraalvergelijking. 

In dit eerste hoofdstuk wordt een uitgebreide vergelijking gemaakt tussen de 
voorspellingen die deze beide theorieën geven voor de structuur van een 
polymeerborstel op een vlak oppervlak in een laagmoleculair oplosmiddel. In het 
algemeen bestaat er een uitstekende overeenstemming tussen de voorspellingen 
van beide theorieën. Er treden alleen vlak bij het oppervlak en aan de buitenkant van 
de verankerde laag significante afwijkingen op. In het roostermodel wordt een kleine 
depletielaag gevonden naast het oppervlak waaraan de ketens verankerd zijn. Deze 
laag wordt veroorzaakt door het feit dat dit ondoordringbare oppervlak een groot 
aantal ketenconformaties onmogelijk maakt. Bovendien voorspelt het roostermodel 
een "voet" in het volumefractieprofiel, met eindige waarden voor de volumefractie op 
een afstand tot het oppervlak die groter is dan de borsteldikte voorspeld door de 
"sterke-strekkingstheorie". De relatieve grootte van deze afwijkingen neemt toe 
wanneer ketenlengte, verankeringsdichtheid en kwaliteit van het oplosmiddel 
afnemen. De volledige Flory-Huggins uitdrukking voor de verandering in de vrije 
energie bij menging van polymeer en oplosmiddel moet in rekening worden gebracht 
om een goede (kwantitatieve) overeenstemming tussen de sterke-strekkingstheorie 
en het roostermodel te vinden. Alleen voor lage volumefracties kan de eerder 
genoemde viriaalontwikkeling gebruikt worden om handzame, analytische 
uitdrukkingen voor de structuur van de verankerde laag af te leiden. 

In het grootste deel van dit proefschrift worden polymeermoleculen benaderd als 
ideale spookketens in een potentiaalgradient. Echter, in hoofdstuk 2 worden 
ingewikkeldere modellen gebruikt om, uitgaande van de boven genoemde 
roostertheorie, de ketens in een polymeerborstel te beschrijven. Er wordt ten eerste 
rekening gehouden met ketenstijfheid door de flexibiliteit van segmentbindingen te 
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beperken. Stijvere ketens leiden tot dikkere borstels. Dit effect kan ook goed 
beschreven worden in de analytische theorie door stijfheid mee te nemen in de 
Gaussische benadering voor de locale strekking van een ketenmolecuul. Daarnaast 
wordt een eerste orde correctie toegepast op de gemiddelde-veld benadering voor 
het uitgesloten volume van segmenten in het roostermodel. Deze correctie leidt tot 
iets minder dikke borstels. Het feit dat deze correctie een tegengesteld effect heeft 
dan de invoering van ketenstijfheid, suggereert dat de ideale spookketen een redelijk 
model is voor "echte" polymeren. 

In hoofdstuk 3 worden polymeerborstels op bolvormig en cylindrisch gekromde 
oppervlakken bestudeerd. De borsteldikte H op zulke oppervlakken hangt anders af 
van de ketenlengte N dan op een vlak oppervlak. ZCV roosterberekeningen zijn 
uitgevoerd om te onderzoeken hoe het verband tussen H en N beïnvloed wordt door 
de kromtestraal R van het oppervlak. In de limiet van zeer hoge R wordt zowel voor 
bolvormige als voor cylindervormige oppervlakken een rechtevenredig verband 
tussen H en N gevonden, zoals ook op vlakke oppervlakken het geval is. Voor zeer 
kleine waarden van R (R = 1) worden de volgende evenredigheidsrelaties gevonden: 
H ~ N0-6 (bolvormig oppervlak) en H ~ N0-75 (cylindervormig oppervlak). 
Polymeerborstels op bolvormige oppervlakken zijn een goed model voor 
geadsorbeerde AB diblok-copolymeermoleculen op een klein kolloïdaal deeltje. Voor 
R = 1 is de borstel een model voor een stervormig polymeer in oplossing. 

Er is ook onderzocht hoe de volumefractieprofielen afhangen van. de 
kromtestraal. Hiertoe hebben we onze aandacht gericht op bolvormige borstels in 
atherme oplosmiddelen. Voor hoge waarden van R kan bij benadering gesteld 
worden dat de potentiële energie van de segmenten in een borstel een parabolisch 
functie is van de afstand z tot het oppervlak (voor vlakke borstels is dit een zeer 
goede benadering). Deze benadering leidt tot een analytische uitdrukking voor het 
volumefractieprofiel die inderdaad redelijk overeen komt met de uitkomsten van het 
roostermodel voor grote waarden van R. Voor zeer kleine waarden van R leveren de 
roosterberekeningen profielen op die overeenstemmen met reeds eerder afgeleide 
evenredigheidsrelaties (<|> ~ z - 4 /3 voor bolvormige borstels in een atherm 
oplosmiddel). Voor tussenliggende waarden van R kan het profiel worden opgevat 
als een combinatie van het parabolische profiel dicht bij het oppervlak en de 
evenredigheidsrelatie verder weg van het oppervlak. Door deze drie verschillende 
gevallen te onderscheiden zijn we erin geslaagd om voor alle kromtestralen 
(benaderende) analytische uitdrukkingen af te leiden voor het volumefractieprofiel 
van de polymeerborstels. 

Een laatste onderwerp dat in hoodstuk 3 aan de orde komt is de aanwezigheid 
van een zone naast het oppervlak waar geen vrije uiteinden van verankerde 
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polymeerketens voorkomen. De roosterberekeningen tonen aan dat zo'n "dode 
zone" in alle oplosmiddelen kan bestaan, zowel in bolvormige als cylindrische 
borstels. De absolute grootte van deze zone is geen monotoon dalende of stijgende 
functie van de kromtestraal. De relatieve grootte (in verhouding tot de borsteldikte) is 
een monotoon dalende functie van R. Het is niet gelukt om een analytische 
uitdrukking te geven voor de grootte van de dode zone, zelfs niet bij benadering. 

Het onderwerp van hoofdstuk 4 is het adsorptieëvenwicht voor de adsorptie van 
AB diblok-copolymeren uit een oplossing op kleine, bolvormige, kolloidale deeltjes. 
Het is bekend dat wanneer zulke polymeren op een vlak oppervlak adsorberen, de 
geadsorbeerde hoeveelheid als functie van de grootte van het adsorberende blok 
door een maximum gaat. Ook de dikte van de geadsorbeerde laag vertoont in dat 
geval een maximum. Ervan uitgaande dat de adsorptieënergie onafhankelijk is van 
de oppervlaktekromming, hebben we laten zien dat het maximum in de 
geadsorbeerde hoeveelheid toeneemt als het oppervlak sterker gekromd is. De 
hydrodynamische laagdikte neemt af bij toenemende kromming. Deze toename vindt 
plaats voor alle verhoudingen van de ankergrootte ten opzichte van de boeigrootte. 
Daarentegen verandert de middelbare laagdikte slechts weinig, wanneer het 
oppervlak sterker gekromd wordt. Afhankelijk van de verhouding van de 
ankergrootte ten opzichte van de boeigrootte kan de hydrodynamische laagdikte 
zowel (enigszins) toenemen als afnemen. 

In hoofdstuk 5 wordt gepoogd meer inzicht te krijgen in de interactie tussen 
twee polymeerborstels, zowel in aanwezigheid als in afwezigheid van vrij polymeer 
in de oplossing. Eerst wordt in dit hoofdstuk de invloed onderzocht van vrij polymeer 
op de dikte en het profiel van een geïsoleerde borstel. Evenredigheidsrelaties zijn 
afgeleid die het verband weergeven tussen de laagdikte en de penetratiediktes van 
vrije polymeerketens in de borstel en verankerde ketens in de oplossing enerzijds, 
en de verankeringsdichtheid, de lengte van de verankerde ketens, de lengte van de 
vrije ketens en de bulkvolumefractie van de vrije ketens anderzijds. Deze relaties 
worden bevestigd door ZCV roosterberekeningen. Ook worden de 
volumefractieprofielen van de verankerde en de vrije ketens afgeleid. Deze afleiding 
is wederom gebaseerd op de theorie voor sterk gestrekte ketens in een 
polymeerborstel. Er wordt hierbij verondersteld dat de lengte van de vrije ketens veel 
kleiner is dan de borsteldikte. Wanneer aan deze voorwaarde voldaan is, komen de 
volumefractieprofielen inderdaad zeer goed overeen met de roosterberekeningen. 
Wanneer dat niet meer het geval is, voorspellen beide theorieën nog steeds 
dezelfde borsteldikte. De sterke-strekkingstheorie voorspelt dan echter een veel te 
scherp grensvlak tussen de verankerde laag en het vrije polymeer. 
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Beide theorieën zijn ook met elkaar vergeleken voor de interactie tussen twee 

tegen elkaar samengedrukte borstels. Het roostermodel voorspelt al bij een grotere 

afstand tussen de twee borstels een repulsieve interactie dan de sterke-

strekkingstheorie. Deze interactie op grote afstand wordt veroorzaakt door de reeds 

eerder genoemde "voet" in het volumefractieprofiel, waardoor de verankerde laag 

iets verder in de oplossing uitsteekt dan volgens de sterke-strekkingstheorie het 

geval is. Wanneer er ook nog vrij polymer in de oplossing aanwezig is, kan er een 

depletie-attractie tussen de borstels plaatsvinden. 

Hoofdstuk 6 gaat over de interactie tussen vlakke platen waarop multiblok-

copolymeren zijn geadsorbeerd. Eerst wordt de aandacht gericht op ABA triblok-

copolymeren. Deze kunnen gemodelleerd worden als eindstandig verankerde B 

ketens met aan hun niet verankerde uiteinde een adsorberend A blok ("borstels met 

plakkertjes"). Wanneer de adsorptieënergie van de A segmenten klein is, geven 

twee oppervlakken met zulke verankerde lagen slechts een repulsieve interactie te 

zien. Wannneer deze adsorptieënergie toeneemt, onstaat er ook een attractief 

minimum in de interactie vrije energie. Met verder toenemende adsorptieënergie 

bereikt de absolute waarde van dit minimum een limietwaarde. De minimale 

adsorptieënergie die nodig is voor deze attractie neemt toe als de 

verankeringsdichtheid o toeneemt en ook wanneer de ketenlengte N toeneemt. De 

absolute waarde van het minimum is evenredig met G1 /3N~1 . Het minimum treedt 

altijd op bij plaatafstanden d die groter zijn dan de afstand 2h waarbij de verankerde 

lagen elkaar net zouden raken, indien de "voeten" van de profielen niet in rekening 

worden gebracht. Het verschil d - 2 h is evenredig met No1/3. De aantrekking heeft 

een entropische oorsprong. Wanneer de plaatafstand groot is, is het A blok van een 

verankerde keten geadsorbeerd op het oppervlak waar deze keten op verankerd is. 

De keten vormt op deze manier één grote lus. Wanneer de plaatafstand kleiner 

wordt, kan dit A blok kiezen op welk oppervlak het wil adsorberen. Door deze 

toename van vrijheidsgraden neemt ook de entropie van het systeem toe. Dit is de 

oorzaak van de attractie tussen de twee platen. 

De interactie tussen twee geadsorbeerde lagen van ABA triblok-copolymeren 

(waarbij de geadsorbeerde hoeveelheid bepaald wordt door het evenwicht tussen 

vrije en geadsorbeerde ketens) heeft altijd een attractieve component indien de 

copolymeerketens symmetrisch zijn. De interactiecurve is gelijk aan die van twee 

verankerde lagen (borstels met plakkertjes) met een verankeringsdichtheid die 

overeenkomt met de geadsorbeerde hoeveelheid. Indien één van de adsorberende 

blokken groter is dan de andere, neemt de aantrekking sterk af. Reeds bij een 

relatief lage asymmetrie (het ene blok ca. 20% groter dan het andere) is de interactie 

geheel repulsief. 
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Multiblok-copolymeren die uit meer dan drie blokken bestaan kunnen bruggen 
vormen die uit meerdere blokken zijn opgebouwd. De interactie tussen twee 
oppervlakken waarop copolymeren met alternerende A en B blokken zijn 
geadsorbeerd, is ook onderzocht. Hierbij werd het totale aantal segmenten van een 
bepaald type in een copolymeerketen steeds constant gehouden. Het aantal blokken 
per keten werd echter gevarieerd (zodat de blokken korter worden wanneer het 
aantal blokken per keten toeneemt). Wanneer de bloklengte verkleind wordt, wordt 
de geadsorbeerde laag dunner. In dit geval begint de interactie tussen de twee 
geadsorbeerde lagen dan ook pas op relatief kleinere afstanden. Copolymeer-
moleculen die uit zeer kleine, elkaar afwisselende A en B blokken bestaan, lijken erg 
op homopolymeren die zijn opgebouwd uit segmenten waarvan de eigenschappen 
een gemiddelde zijn van de A en de B segmenten. Net als homopolymeren vertonen 
deze copolymeren een sterke attractie voor kleine plaatafstanden (<10 lagen), die 
slechts op zeer korte afstanden (ca. 2 lagen) gevolgd wordt door een sterke repulsie. 

Tot nu toe hebben we alleen situaties beschouwd waarbij het oplosmiddel een 
goed oplosmiddel is voor beide blokken. De A segmenten adsorberen en de B 
segmenten adsorberen niet, omdat de eerste wel een affiniteit hebben voor het 
oppervlak en de tweede niet. Adsorptie van de A segmenten kan echter ook plaats 
vinden vanwege de selectiviteit van het oplosmiddel. We beschouwen de situatie dat 
zowel de A als de B segmenten een intrinsieke affiniteit bezitten voor het oppervlak. 
De B segmenten lossen goed op (atherm oplosmiddel), maar de A segmenten niet. 
Het A blok van een copolymeer zal nu preferent adsorberen, omdat het zich niet 
graag in de oplossing bevindt. In het geval van ABA triblok-copolymeren kan de 
interactie tussen twee zulke geadsorbeerde lagen interessante verschijnselen 
opleveren. Als de interacties van de A en de B segmenten slechts weinig van elkaar 
verschillen, lijkt de interactie op die van een homopolymeer. Op korte afstanden is er 
een attractie. Als deze interacties zeer sterk verschillen, lijkt de interactie op die van 
een "normaal" copolymeer, met een attractie op grote afstand, gevolgd door een 
sterke repulsie op kortere afstanden. In de tussen liggende gevallen worden 
ingewikkeldere interactiecurves gevonden. 

Het onderwerp van hoofdstuk 7 is de interactie tussen twee kleine, bolvormige 
deeltjes met een geadsorbeerde polymeerlaag. De ZCV roostertheorie wordt hier 
toegepast op systemen met concentratiegradienten in twee onafhankelijke 
richtingen. Er wordt daartoe gebruikt gemaakt van een cylindrisch 
coördinatenstelsel. De volumefracties kunnen nu zowel in de axiale richting 
(evenwijdig aan de verbindingsas tussen de middelpunten van de twee deeltjes) als 
in de radiële richting (loodrecht hierop staand) variëren. In dit laatste hoofdstuk 
worden resultaten gepresenteerd voor deeltjes die zijn bedekt met eindstandig 
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verankerde ketens. Als de twee deeltjes ver van elkaar verwijderd zijn, is het 
volumefractieprofiel rondom één zo'n deeltje isotroop. Dit profiel is bovendien 
nagenoeg gelijk aan het profiel dat berekend wordt met het "conventionele" ZCV 
model, waarbij er slechts sprake kan zijn van een concentratiegradiënt in één 
richting. Dit is een bewijs voor de correctheid van het tweedimensionale model. 

De interactie tussen twee zulke bolvormige deeltjes kan met behulp van de 
Derjaguin benadering gerelateerd worden aan de interactie tussen twee 
overeenkomstige vlakke platen. Deze benadering gaat echter alleen op wanneer de 
kromtestraal van de deeltjes veel groter is dan de polymeerlaagdikte. Dat is niet het 
geval voor de systemen in dit hoofdstuk. Daarom worden er interacties gevonden die 
veel minder repulsief zijn dan volgens de Derjaguin benadering. Voor toenemende 
kromtestralen verschuift de interactie wel in de richting van de Derjaguin benadering. 
Op moleculair niveau kan de verminderde repulsie verklaard worden uit de vrijheid 
die de verankerde ketens hebben om de ruimte tussen de deeltjes te verlaten, 
wanneer deze deeltjes naar elkaar toe komen. Of de verankerde segmenten van de 
ketens hierbij wel of niet vrij over dit oppervlak kunnen bewegen, speelt daarbij een 
ondergeschikte rol. 
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