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Woord vooraf 

Iedereen die bijgedragen heeft tot deze publicatie en mijn promotie wil ik van harte 

bedanken. 

Theunis Limonard en Jan Barkman hebben veel werk verricht om het onderzoeks­

voorstel te schrijven, en hebben op deze manier de fundamenten voor deze publicatie 

gelegd. Als dagelijks begeleider ben ik Theunis bijzonder veel dank verschuldigd voor 

zijn interesse en steun. Mijn beide promotoren, Prof. Dekker en Barkman, stelden mij 

in staat te promoveren. Ik dank jullie voor de uitgebreide en zinvolle discussies die ik 

met jullie gevoerd heb. 

Naast bovengenoemd team hebben eveneens André Schaffers en Eef Arnolds mij 

veelvuldig bijgestaan. André heeft als doctoraalstudent, vrijwilliger en dienstweigeraar 

mij in staat gesteld het veldonderzoek aanzienlijk uit te breiden. Zowel met André als 

met Eef voerde ik veel discussies over de aanpak en de resultaten van dit onderzoek. 

Belangrijk zijn ook de bijdragen geweest van Berry Diekema en Yvon van 

Haasteren, die gedurende twee respectievelijk één jaar als analist bij dit onderzoek 

betrokken zijn geweest. Zonder hun hulp zouden de experimenten en uitgebreide 

mycorrhizatellingen onmogelijk geweest zijn. 

De kritische massa werd verder in belangrijke mate vergroot door de bijdragen 

van doctoraalstudenten: Jos Wintermans, Petra Ket en Ellen ter Stege. Ik heb bewonde­

ring voor het enthousiasme en de durf waarmee Jos Wintermans en Petra Ket het toen 

voor mij nog bijna onbetreden pad van het experimentele ectomycorrhiza-onderzoek 

aanpakten. Ellen ter Stege heeft veel hooi op haar vork genomen door zowel in 

belangrijke mate mee te helpen bij de veldbemestingsproef als bij het mycologische 

onderzoek van de eerste generatie terreinen. 

De velen die dachten dat het veldwerk bestond uit het vrijblijvend zoeken van 

eetbare paddestoelen en die dit wel eens mee wilden maken, hebben dit altijd moeten 

bekopen met een dag hard werken; maar gezellig was het wel. 

Het begassingsexperiment met zwaveldioxide heb ik uitgevoerd met Ludger van der 

Eerden en Thom Dueck: een fraai voorbeeld van een mutualistische symbiose. 

De veldkennis van Ir. C.P. van Goor en zijn inzicht in de herkomstenproblematiek 

van de groveden in Nederland is van groot belang geweest bij de selectie van de 

terreinen voor het veldonderzoek. 

De vakgroep Fytopathologie heb ik ervaren als een groep mensen waar iedereen 

aandacht voor elkaar heeft. Ik kwam er altijd met plezier. Het is niet mogelijk op deze 

plaats enkelen van de vakgroep te bedanken; hiermee zou ik anderen tekort doen. Een 

uitzondering wil ik echter maken voor Rob van der Vossen, die mij heel wat tijd 

bespaard heeft bij het zoeken naar praktische hulpmiddelen en ideeën. Iedereen van 



harte bedankt voor de prettige samenwerking! 

Op de vakgroep Bosbouw ben ik in staat gesteld mijn proefschrift af te ronden. 

Het LEB-fonds en BION hebben het mij mogelijk gemaakt laboratoria in Schotland 

en de U.S.A. te bezoeken, alsmede twee mycorrhiza-congressen (in U.S.A. en Praag) bij 

te wonen. Deze reizen hebben bijgedragen tot mijn huidige inzicht in het mycorrhiza-

onderzoek. Het LEB-fonds heeft bovendien de produktie van deze dissertatie gesubsi­

dieerd. 

In de loop van het onderzoek is aan de Landbouwuniversiteit een mycorrhiza 

overleggroep ontstaan. De discussies die hier plaatsvonden waren voor mij erg nuttig. 

Ik heb de interesse die mijn ouders tentoongespreid hebben voor mij in het 

algemeen en dit onderzoek in het bijzonder altijd als een grote steun ondervonden. Ook 

de discussies met Eef Arnolds, Theunis Limonard en André Schaffers over het nut van 

dit onderzoek, van ander onderzoek en over geheel andere zaken zijn voor mij erg 

belangrijk geweest. Gedurende de eerste jaren van mijn onderzoek hebben mijn 

toenmalige huisgenoten Nico Heinsbroek en Bernie Jenster als geduldige praatpaal 

gefungeerd. De opmaak van de tabellen was in handen van Jan Breembroek. Ludger van 

der Eerden vervaardigde de tekening op de omslag. Bij de vervaardiging van de figuren 

en van de uiteindelijke lay-out van de tekst is mijn broer Koos behulpzaam geweest. 

Thom Dueck heeft de Engelse tekst gecorrigeerd. Door Ton Gorissen werd de laatste 

correctie van het manuscript verricht. En tot slot bedank ik hier graag Jan Breem­

broek, wiens aanstekelijke, tomeloos positieve kijk op het leven mij over de bergen en 

door de dalen van het schrijven van dit proefschrift geholpen heeft. 

Aad Termorshuizen 
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STELLINGEN 

1. De meeste wetenschappers die werken met planten, realiseren zich niet dat ze bijna 

altijd ook werken of dienen te werken met mycorrhiza's. 

2. In definities van de term mycorrhiza waarin het mutualistische karakter van de 

symbiose belicht wordt is geen plaats voor de orchideeënmycorrhiza's. 

3. De mycoflora in stuif zandgebieden kan het best beheerd worden door plaatselijke 

spontane opslag van bomen enerzijds toe te staan, maar er anderzijds zorg voor te 

dragen dat de bodem niet geheel vastgelegd wordt door de vegetatie. 

4. Een verlaging van de stikstofinput in de Nederlandse bossen zal spoedig een 

positief effect hebben op de paddestoelenflora van mycorrhizavormende schimmels. 

Een geheel herstel zal echter pas kunnen plaatsvinden wanneer de luchtverontrei­

niging gedecimeerd is, de onnatuurlijke overmaat aan stikstof uit het bosoeco-

systeem verdwenen is en de vitaliteit van het bos hersteld is. 

Dit proefschrift. 

5. Voordat bosbemesting in Nederland op grote schaal toegepast gaat worden ter 

bestrijding van de effecten van de stikstofdepositie moet het effect van bos­

bemesting op mycorrhiza's onderzocht worden, omdat een negatief effect grote 

gevolgen kan hebben op de vochtvoorziening van de bossen op de zandgronden in 

droge jaren. 

6. Er wordt te weinig aandacht besteed aan het fysiologische en oecologische 

verschil tussen gedifferentieerde en ongedifferentieerde rhizomorfen van schimmels. 

7. Bij de bepaling van naald- en bladverlies ter vaststelling van de boomvitaliteit in 

het nationaal vitaliteitsonderzoek van Staatsbosbeheer wordt er ten onrechte van 

uit gegaan dat bekend is wat de naald- en bladbezetting is onder "normale" 

omstandigheden. 

Anoniem, 1984-1987. Verslag van het landelijk vitaliteits­

onderzoek, Staatsbosbeer. 

8. De bestudering van natuurlijke processen in bodemoecosystemen in Nederland wordt 

essentieel beïnvloed door de hoge depositie van stikstofverbindingen. 



9. De verspreidingspatronen van de in Nederland op houtige planten algemene soorten 

Honingzwammen (Armillaria mellea, A. lutea en A. ostoyae) worden in hoofdzaak 

bepaald door de zuurgraad van de bodem. 

10. Geluidsoverlast is een onderschat probleem. 

11. Rijkswaterstaat houdt bij het verzwaren van de rivierdijken te weinig rekening met 

de belangen van natuur, cultuur en bewoners. 

12. Bij het opzetten van geïntegreerde landbouwsystemen zou een belangrijk doel 

moeten zijn een gunstig klimaat te scheppen voor de vesiculair arbusculaire 

mycorrhiza's. 

13. Het toepassen van "alternatieve" landbouwmethoden op grote schaal is essentieel 

voor een minder vervuilde wereld en zal tegen relatief geringe kosten een positief 

effect hebben op het milieu, de werkgelegenheid en de volksgezondheid. 

14. President Gorbatsjov van de Sovjet-Unie dient de Nobelprijs voor de vrede te 

krijgen. 

15. Het gebruik van het woord "milieuvriendelijk" is bijna altijd ernstig misleidend en 

zou vervangen moeten worden door "minder milieu-onvriendelijk". 



CONTENTS 

1. General introduction 9 

1.1 Ectomycorrhiza: a short introduction 9 
1.2 Motives for the research 10 
1.3 Hypothesis 13 
1.4 General approach 13 

1.4.1 Field observations 14 
1.4.2 Laboratory experiments 16 

1.5 Relation to international mycorrhiza research 17 

2. Responses of mycorrhizal and non-mycorrhizal Pinus sylvestris 
seedlings on fumigation with SO2 alone or in combination with NH3 19 

2.1 Introduction 19 
2.2 Material & methods 20 
2.3 Results 22 
2.4 Discussion 25 
2.5 Summary 26 

Effects of ammonium and nitrate on mycorrhizal seedlings of 
Pinus sylvestris 29 

3.1 Introduction 29 
3.2 Material & methods 30 
3.3 Results 32 
3.4 Discussion 37 
3.5 Summary 39 

4. The influence of nitrogen fertilization on ectomycorrhizas and 
their fungal carpophores in young stands of Pinus sylvestris 41 

4.1 Introduction 41 
4.2 Material & methods 41 
4.3 Results 42 
4.4 Discussion 48 
4.5 Summary 50 

5. Succession of mycorrhizal fungi in stands of Pinus sylvestris 
in the Netherlands 53 

5.1 Introduction 53 
5.2 Material & methods 53 
5.3 Results 57 
5.4 Discussion 70 
5.5 Summary 73 



6. The decline of carpophores of mycorrhizal fungi in stands 
of Pinus sylvestris in the Netherlands: possible causes 75 

6.1 Introduction 75 
6.2 Material & methods 76 
6.3 Results 79 
6.4 Discussion 90 
6.5 Summary 94 
Appendix I-III 96 

7. General discussion 101 

7.1 Synthesis of factors causing decline of carpophores of 
mycorrhizal fungi 101 

7.2 Evaluation of the hypothesis on the decline of carpophores 
of mycorrhizal fungi 104 

7.3 Implications 104 
7.4 Suggestions for further research 107 

General summary 111 
Samenvatting 114 
References 119 
Curriculum vitae 128 



Chapter 1 

GENERAL INTRODUCTION 

A decrease in the occurrence of carpophores of mycorrhizal fungi in the Netherlands 

and in other parts of Europe during this century has recently been reported. The 

subject of this study was to investigate the causes of this decrease. 

A concise introduction on ectomycorrhizas will be presented in section 1.1, 

followed by the motives (section 1.2) and a hypothesis in section 1.3. The general 

approach of the present research is presented in section 1.4. Finally, the importance of 

this study will be considered in the scope of present-day mycorrhiza research in 

section 1.5. 

1.1 Ectomycorrhiza: a short introduction 

Mycorrhiza is the association of a fungus with living roots of a plant without causing 

damage to the plant. This association usually occurs during the whole life-span of the 

plant. Mycorrhizas possess characteristics which differentiate them morphologically from 

other plant infections. Usually both fungus and plant benefit from the mycorrhizal 

symbiosis: the fungus obtains carbohydrates from the plant and the host obtains water 

and mineral nutrients from the fungus. 

Several mycorrhiza types which differ in morphology and physiology can be 

recognized. Pinus sylvestris, on which this research is focused, has only one type, viz. 

the ectomycorrhiza. Hence, we will deal here only with this type. 

Ectomycorrhizas are characterized by the presence of a fungal layer called the 

Hartig net, which grows between the cortex cells of fine roots. In addition, a 

pseudoparenchymatic fungal mantle surrounds the fine roots. In ectomycorrhizas, 

penetration of the plant cells by the fungus does not occur, except in older stages of 

the mycorrhiza. The ectomycorrhizas are called ectendomycorrhizas if intracellular 

penetration occurs in a relatively young stage of mycorrhizal development (Harley, 

1983). However, an objective distinction between ectomycorrhiza and ectendomycorrhiza 

is difficult, and because they have several characteristics in common, ectendomy­

corrhiza is regarded here as a subtype of ectomycorrhiza. Ectomycorrhizas are 

extremely common and occur in many forest tree species. 

Practically all ectomycorrhizal fungi belong to the Basidiomycetes and Ascomyce-

tes. All ectomycorrhizal fungi are ecologically obligate symbionts, i.e. they grow under 

field-conditions only if they have formed mycorrhizas. Consequently, if carpophores of 
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these fungi are present, the mycorrhizas must also be present. Analysis of the 

aboveground carpophores is therefore a relatively easy way to identify a part of the 

population of mycorrhizal fungi present in a forest. However, it gives an incomplete 

picture of the species present, because fructification is dependent on season and 

weather. In addition, mycorrhizal fungi do not necessarily fructify every year, some 

mycorrhizal fungi fructify belowground (e.g. Rhizopogon Fr. & Nordh. em. Tul. spp.) or 

form very small, easily overlooked carpophores (Ascomycetes spp.) and finally some 

fungi do not form carpophores at all (e.g. Cenococcum geophilum Fr.). 

Evidence of the mycorrhizal status of a fungal species can only be given if an 

isolate of the fungus has been shown to form mycorrhiza under axenical conditions. 

However, it is widely accepted on the basis of field observations that species from 

e.g. Cortinarius Fr., Inocybe Fr. and Russuia Pers.: S.F.Gray form ectomycorrhiza 

(Trappe, 1962), although they have not yet been grown in culture. 

The significance of ectomycorrhizas for the trees is (1) better provision of water 

and nutrients, and (2) increased resistance to pathogens. The increased provision of 

water and nutrients is thought to be caused by the fact that the absorption surface 

of the mycelium of mycorrhizal fungi is much larger than that of the plant root. The 

mechanisms involved in the protection afforded by mycorrhizal fungi to pathogens are 

supposed to be caused by (1) the fungal mantle, which serves as a physical barrier for 

the pathogens, (2) the decreased root exudation compared with that of non-mycorrhizal 

roots, and (3) the production of antibiotics by mycorrhizal fungi. In return, the 

mycorrhizal fungus obtains carbohydrates from the plant. One should best view the 

nature of a mycorrhiza as a dynamic but stable balance, where fungus and plant are 

able to withdraw nutrients from each other. The result is a mutualistic symbiosis. 

From an ecological point of view it is important that ectomycorrhizas increase the 

tolerance of the host to stress. Effects of mycorrhizal infection are therefore more 

clear under circumstances of stress, for instance, drought or nutrient stress. 

The main problems in ectomycorrhiza research are (1) the obvious difficulty of 

performing experiments under controlled conditions with full-grown trees and hence, 

the necessity to generalize the results of laboratory experiments with young plants; (2) 

the inability to grow many species of ectomycorrhizal fungi. 

For more details, the introduction by Jackson & Mason (1984) and the standard-

work by Harley & Smith (1983) are recommended. 

1.2 Motives for the research 

The mycoflora has changed drastically in the Netherlands during this century, as was 

shown by Arnolds (1985a & 1988). Arnolds (1985a) compared 15 excursion reports from 
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the period 1912-1954 with 15 equivalent reports from the period 1973-1982 and reported 

a significant (P<5%) decline in the localities with fungal carpophores of 55 mycorrhizal 

species, whilst not a single species showed a significant increase (table 1). In the first 

period, an average of 71 ectomycorrhizal fruiting species were found per excursion, 

compared to 38 species in the second period (Arnolds, 1988). On the other hand, a 

number of saprophytic and parasitic fruiting species showed a significant increase, 

while others significantly declined (table 1). In the first period, a total of 79 sapro-

trophic fruiting species was reported per excursion, compared to 87 in the second 

period (Arnolds, 1988). The decline of carpophores of ectomycorrhizal fungi has 

occurred in spite of the increased afforested area in the Netherlands, the increased 

knowledge of fungal taxonomy and the strongly increased intensity of mycofloristic 

research. 

TABLE 1 
Numbers of fruiting species of three ecological groups of fungi with a significant 
(P<5%) increase or decline in numbers of localities between 1912-1954 and 1973-1982 

(after Arnolds. 1988). 

Ecological group 
sign. 

increase 

0 
13 
7 

No . of species 
sign. 

decline 

55 
4 

13 

studied 

126 
94 
94 

Mycorrhizal fungi 
Lignicolous fungi 
Saprophytes on litter, humus, dung and fungi 

The most spectacular decline was reported for the hydnaceous fungi, Cantharellus 

cibarius Fr., Cortinarius spp., Dermocybe (Fr.) Wünsche spp., Suillus Micheli: S.F. Gray 

spp. and Tricholoma (Fr.) Staude spp. (Arnolds, 1985a). Of a total of 800 ectomy­

corrhizal macrofungi, 56 (i.e., 7%) are classified as extinct (Arnolds, 1989a). A detailed 

study on the 21 native species of hydnaceous fungi in the Netherlands revealed that 

eight species have not been observed since 1973 and are regarded to be extinct, six 

species were not observed in at least 90% of the localities and the remaining seven 

species were not observed in 58-87% of the localities (Arnolds, 1989a). 

A decline of carpophores of mycorrhizal fungi from other countries in Europe is 

reported as well (Derbsch & Schmitt, 1987; Fellner, 1988; Arnolds, in preparation), and 

lists of threatened species have been published (Derbsch & Schmitt, 1984; Winterhoff & 

Kriegisteiner, 1984; Wojewoda & Lawrynowicz, 1986; Arnolds, 1989a). Derbsch & 

Schmitt (1987) gathered data on the supply of carpophores of Cantharellus cibarius, 

Boletaceae spp. and Armillaria mellea (Vahl:Fr.) Kumm. at the market in Saarbrücken 

between 1956 and 1975 (fig. 1). The mycorrhizal Cantharellus cibarius and Boletaceae 
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Figure 1. The supply of Cantharellus cibarius, Boletaceae spp. and Armillaria mellea at 
the market in Saarbrücken between 1956 and 1975 (after Derbsch & Schmitt, 1987). 

spp. showed a drastic decline, in contrast to the non-mycorrhizal A. mellea, which did 

not decline at all. 

According to Arnolds (1985a & 1988), the decline in the Netherlands has mainly 

taken place on acid sandy soils. On calcareous sandy soils and clayey soils the decline 

was absent or less prominent for most species. Fungi associated with coniferous trees 

declined more strongly than those associated with deciduous trees (Arnolds, 1985a). 

This might be caused by the fact that coniferous trees in the Netherlands are mainly 

restricted to acid sandy soils, in contrast to deciduous trees. 

The decline of Cantharellus cibarius appears to have begun around 1960 (Jansen 

& Van Dobben, 1987). Before 1950, this species was extremely common, nowadays it is 

decidedly rare. A decrease in the number of localities of C. cibarius within three 

decades is reported to be as high as 49% in the province of Noord-Brabant. Jansen & 

Van Dobben (1987) and De Vries et al. (1985) reported that presently carpophores of 

mycorrhizal fungi occur most frequently in sites with a fairly thin humus layer. 

Several hypotheses have been formulated to explain the decline of carpophores of 

mycorrhizal fungi. Most of them are related to the effects of air pollution on soil 

chemistry and on tree vitality. Other hypotheses relate to the succession of forests, 
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ageing of trees, changes in forest management, picking of mushrooms and pollution by 

heavy metals (cf. Jansen & Van Dobben, 1987; Arnolds, 1985a & in preparation.). 

Jansen & Van Dobben (1987) excluded the possibility of excessive picking as 

explanation for the decline of C. cibarius. Most of the other fungi could not have 

declined due to increased mushroom collecting because they are inedible. Moreover, 

most edible fungi are seldom collected in the Netherlands. The possible effect of 

heavy metals on mycorrhizal fungi was excluded by Jansen & Van Dobben (1987) 

because of the low concentrations in the soil. 

1.3 Hypothesis 

It seems likely that the decline of carpophores of mycorrhizal fungi is linked with the 

decrease of tree vitality in Europe (Schutt & Cowling, 1985), because the decline has 

not been observed for saprophytic species (cf. sect. 1.2). A reduced host vitality most 

probably results in a reduction of mycorrhiza vitality and consequently, of that of the 

mycorrhizal fungus. Another possibility is that the air pollutants affect the mycorrhizal 

fungi via changes in the soil, which in turn, may also reduce tree vitality. However, 

irrespective whether air pollution primarily acts on the tree or on the fungus, it will 

always affect the symbiotic partner indirectly. 

The working hypothesis therefore, was that the decline of the mycorrhizal 

mycoflora was caused by air pollution, either affecting the fungus via decreased tree 

vitality, or via changes in soil chemistry. Air pollution was expected to be the main 

factor affecting the fructification of mycorrhizal fungi because (1) the vitality of 

Dutch forests is decreasing drastically, which is generally ascribed to air pollution, (2) 

the decline of carpophores of mycorrhizal fungi mainly occurred on acid, poorly 

buffered sandy soils (Arnolds, 1985a), and (3) this decline was strongest in the more 

polluted, southern part of the country (Arnolds, 1985a). 

1.4 General approach 

The aim of the present research was to investigate whether a relationship could be 

found between the parameters air pollution, tree vitality, frequency of carpophores 

and quantity and quality of ectomycorrhizas. This relationship was studied in field 

observations, a field experiment, and in two laboratory experiments. Field observations 

and experiments each have important disadvantages: only indications can be obtained 

from field observations, and the conclusions from laboratory experiments are usually 
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difficult to apply to the field situation. Therefore, it was considered essential to 

combine these approaches. 

The regional variation in the present mycorrhizal mycoflora in the field was 

studied. The hypothesis was that this variation would parallel the known variation in 

air pollution. Another important question was whether the decrease in number of 

carpophores was related to a similar decline of mycorrhizas. For the causal interpreta­

tion of the correlations found in field work, experiments were carried out. 

The research was focused on Pinus sylvestris L., because (1) its vitality was 

decreasing sharply in the Netherlands (Anonymous, 1984, 1985, 1986c, 1987), (2) the 

decline of the mycorrhizal mycoflora of coniferous species is more evident than for 

deciduous species (Arnolds, 1985a), (3) P. sylvestris is the only native conifer which 

possesses ectomycorrhizas and (4) plantations of P. sylvestris of the same age and on 

the same soil type can be found throughout the country, i.e. in both strongly and 

weakly polluted areas. 

1.4.1 Field observations 

The main part of the field observations was concerned with quantifying carpophores 

of mycorrhizal fungi and observations of tree vitality. It was supposed that counting 

carpophores (per species) would estimate the quantitative occurrence of the species 

present. There were several methodological reasons to concentrate the work on the 

carpophores, instead of direct observations on the mycorrhizas: 

(1) In principle, the number of carpophores can be determined more objectively, 

whilst the number of mycorrhizas is dependent on the sampling method, viz. stand and 

plot choice, sampling date, number of samples, sample size, sample site (random, 

stratified), variation within the plots (trees, vegetation, soil) and sample depth. Only 

the first three variables (stand and plot selection and sample date) are of importance 

for an analysis of carpophores. However, the estimation of species which fructify in 

the soil, such as Rhizopogon species, is like the mycorrhizas dependent on the sampling 

method. 

The high fluctuations in annual and seasonal fructification of carpophores were 

attempted to eliminate by sampling each plot several times during several years, a 

method to be recommended for mycorrhiza sampling. 

(2) The mycorrhizal fungus involved in the symbiosis can not be usually identified. 

Although our knowledge of the morphology of mycorrhizas has been increased 

considerably by the work of Agerer (1987) and his colleagues, the majority of 

mycorrhizas is still unidentifiable, even at the genus level. Information on the number 

of mycorrhizas only (without identification) is insufficient if the fungal species 

14 



involved interact with environmental changes in different ways, which is likely to be 

the case. On the other hand, observations on mycorrhizas reveal species which never 

fructify (e.g., Cenococcum geophilum), as well as species which do not happen to 

fructify during the research. An example is Hebeloma Kumm. spec, in a Douglas-fir 

stand in the Netherlands, which did not fructify for three years, while the typical 

mycorrhizas of this genus were recognized (Jansen & De Vries, 1988). Yet, many more 

species can be registered by the "carpophore method" than by the "mycorrhiza method". 

(3) Quantification methods of mycorrhizas differ between laboratories. The 

difference between mycorrhizal and non-mycorrhizal roots is not sharp. Mycorrhizal 

units are interpreted differently and the distinction between dead and living roots is 

often unclear. 

(4) A moderately or good sampling method requires an enormous amount of work. 

It was possible to cover at least three times as many plots with the "carpophore 

method" as would have been possible if mycorrhizas had been observed with the same 

intensity. 

Naturally, most information is obtained by studying the carpophores as well as the 

mycorrhizas. With the "carpophore method", much more information can be obtained 

about the species composition, and mycorrhizas of all fungi are studied with the 

"mycorrhiza method", including the non-fruiting and hypogeous fungi. Therefore, the 

two approaches have been combined in this study. For practical reasons and because 

the original problem of this research concerned occurrence of carpophores, most 

emphasis was placed on the observations of carpophores. To study the relation between 

the occurrence of carpophores and mycorrhiza parameters, one sampling was made of 

the mycorrhizas in each plot. 

At the time this research was planned, the existence of a clear succession of the 

mycorrhizal mycoflora became apparent (Mason et al., 1982). In order to study different 

stages of mycorrhizal succession, two age classes of stands were involved in this 

research. 

As the mycorrhizal mycoflora may differ strongly between different habitats of 

the same tree species (Jansen, 1981), only stands on dry sandy soils beyond the direct 

influence of ground water were selected. To reduce variation, plots were selected 

containing as few other ectomycorrhizal undergrowth as possible, and the undergrowth 

possessing ectomycorrhizas was removed (viz. Betula L. spp., Quercus robur L. and Q. 

rubra L.). Finally, redundant variation was avoided by selecting only stands of a good 

provenance, as described in section 6.2. 
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1.4.2 Laboratory experiments 

The laboratory experiments were carried out on mycorrhizal and, in one experiment, 

non-mycorrhizal seedlings. The following general ideas were considered essential for the 

experimental work: 

(1) Fungal isolates were only made from carpophores collected in young stands, in 

order to exclude the possibility of fungi being adapted to old trees. 

(2) Only those fungal species were used which were relatively easy to isolate and 

which formed mycorrhizas with young seedlings within three months. 

(3) The effects of treatments were studied on plants which had already acquired 

mycorrhizas. Another possibility would have been to study the effects of treatments on 

the mycorrhization of plants, by treating the plant before and after addition of the 

fungal symbiont. The effects of treatments on already existing mycorrhizas are studied 

by the first method, and effects on newly synthesized mycorrhizas by the latter. The 

first method is probably a better simulation of reality, because the formation of 

mycorrhizas in nature usually occurs by mycorrhizal fungi which have already formed 

mycorrhizas in other places. In the alternative method, an unnatural situation is 

created in which the mycorrhizal fungus starts without having infected a host. 

(4) The mycorrhizas were synthesized in culture tubes in order to prevent 

infection by unwanted mycorrhizal fungi, so-called 'nursery fungi' (e.g. Thelephora 

terrestris Ehrh.:Fr.). After the seedlings had acquired mycorrhizas, they were transplan­

ted into plastic pots. From this moment on, the possibility of infection by other 

fungal species existed, but the chance of successful infection was thought to be 

reduced by the axenic synthesis in culture tubes. After transplantation, plants were 

allowed to acclimatize for several weeks. 

(5) The pots used were large enough to allow free root growth during the experi­

ment. Too small pots hinder root growth and the exploration of the soil by mycorrhizal 

fungus. The latter is probably essential to obtain a more or less naturally functioning 

mycorrhizal symbiosis. This is because the positive effect of mycorrhizal fungi on 

plant nutrition is thought to be caused by the fact that the mycelial absorption surface 

is much larger than that of the plant roots (cf. section 1.1). 

(6) The soil used was sand, practically without humus. The sand was taken from a 

drift-sand area with occasional P. sylvestris. The sand was taken from places where no 

vegetation occurred. The soil was pasteurized instead of sterilized to reduce the 

possibility of the formation of fungus-inhibiting substances, which was already reduced 

by the practical absence of organic matter. 
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1.5 Relation to international mycorrhiza research 

Mycorrhiza research on the basis of observations of carpophores is an indirect 

approximation of the problem. Until recently, this kind of research was highly 

underestimated. For instance, Harley & Smith (1983) treated aspects of carpophore 

research in a part of only one chapter. However, very interesting results were obtained 

by the group of Mason and Dighton, who reported the existence of a succession of 

mycorrhizal fungi in the course of stand development on the basis of carpophore 

observations (Mason et al., 1982; Dighton & Mason, 1985). 

Methods to study communities of macrofungi on the basis of carpophores 

(mycocoenology) have been thoroughly developed since 1963 at the Biological Station 

of the Agricultural University at Wijster (Barkman, 1987). Although the central subject 

was to study the mycofloras (including saprophytes and parasites) in different plant 

communities rather than the ecology of mycorrhizal fungi, the methods are the same. 

The methodology in mycocoenology is comprehensively treated by Arnolds (1981). 

The only place with experience in experimental ectomycorrhiza research in the 

Netherlands was the department of Phytopathology of the Agricultural University, 

where this study was carried out. Experiments with inoculated axenically grown plants 

are well-known, and the type of experiments elaborated on in this study is not special 

(cf. section 1.4.2). However, study of the effects of air pollutants (including their 

deposition) on mycorrhizas is a relatively new branch of mycorrhiza research. 
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Chapter 2 

RESPONSES OF MYCORRHIZAL AND NON-MYCORRHIZAL PINUS SYLVESTRIS 

SEEDLINGS TO FUMIGATION WITH S 0 2 ALONE OR IN COMBINATION WITH N H 3 

To be published, authors A.J. Termorshuizen, L.J. van der Eerden. Th.A. Dueck & J.J.M. 

Berdowski. 

2.1 Introduction 

In this century, the occurrence of carpophores of mycorrhizal fungi has declined 

drastically in the Netherlands. Of the 126 mycorrhizal species investigated, 55 species 

have declined significantly, while none of the species has increased its occurrence 

significantly (Arnolds, 1988). On the other hand, the numbers of carpophores of 

saprophytic and parasitic fungi have remained constant or have increased slightly. 

Arnolds (1988) discussed the possible causes of this phenomenon and concluded that the 

decline of carpophores of mycorrhizal fungi is mainly attributed to acid precipitation 

and its effects on soil chemistry and the vitality of trees. 

In mature stands of Pinus sylvestris (50-80 years), the number of carpophores of 

mycorrhizal fungi per plot (1050 m2) showed a highly negative correlation with the 98 -

percentile SO2 concentration and with the NH3 deposition, while showing a positive 

correlation with several tree parameters, e.g. mean needle occupation per plot 

(Termorshuizen & Schaffers, 1987). The correlations with air pollution and tree vitality 

might be explained by (1) a decrease of the carbohydrate supply to the roots or (2) 

action via the soil, either acidification by SO2 and NH3 or eutrophication by NH3, or 

both. 

Our objectives in this study were to investigate (1) the effect of air pollution on 

the sensitivity of P. sylvestris inoculated with two mycorrhizal fungi and (2) the 

mechanisms through which air pollution affects mycorrhizal development. 

The correlations mentioned above between the number of carpophores and SO2 

pollution in mature stands were not found in young stands (5-10 years) (Termorshuizen 

& Schaffers, 1987). We hypothesized that the disturbance of the upper soil-layer at the 

time of planting temporarily created more advantageous circumstances for the develop­

ment of mycorrhizal fungi in young stands. Another possibility is that young plants are 

more tolerant to air pollution. It is interesting therefore to compare the results with 

young plants in the present fumigation experiment with the results of our field-work. 
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2.2 Material & methods 

Experimental design 

During 7 weeks, seedlings of Pinus sylvestris L. were exposed to 6 levels of SO2 (0, 

32, 66, 130, 260 and 520 ng m" 3 ) and to 2 levels of S 0 2 (66 and 260 fig m~3) combined 

with 100 fig m~3 NH3. The seedlings were inoculated with the mycorrhizal fungus 

Laccaria proxima (Boud.) Pat. (Li = L. proximo inoculated), with Paxillus involutus 

(Batsch) Fr. (Pi = P. involutus inoculated), or non-inoculated (ni). 

The surface of half of the L i - and ni-pots was covered with a layer of activated 

charcoal in order to absorb the pollutants and prevent them from entering the soil. In 

a pilot study, the charcoal layer prevented almost 100% of the SO2 from entering the 

soil. 

The different treatments and the number of plants per treatment are presented in 

table 2. Because of capacity problems not all possible combinations were carried out. 

Plant, fungus and soil materials 

Seeds of P. sylvestris, qualified as topseed, were obtained from the seed garden 

"Grubbenvorst". 

The mycorrhizal fungi were isolated from carpophores in the autumn of 1986. 

Laccaria proxima and Paxillus involutus were collected from young (approx. 7 yr) 

stands of Pinus sylvestris. Both species were isolated on modified Melin-Norkrans agar 

medium (Marx, 1969). 

The soil used was an extremely poor sand practically without humus, originating 

from a drift-sand area near Kootwijk. The soil had a pH(CaCl2) of 4.3 and contained 

per kg soil 2.2 mg N -NO3 , 1.8 mg N - N H 4 and 0.3 mg P, analysed in a 0.01 M CaCl2 

extract (Houba et al., 1986a). After pasteurization (25 min, 60°C), the humidity of the 

soil was maintained at 6% (w/w). In order to reduce evaporation, the surfaces of the 

pots were covered with a 1 cm layer of washed gravel. 

TABLE 2 
The treatments and the number of plants per treatment, ni = non-inoculated seedlings. 
Li = Laccaria proxima inoculated seedlings, Pi = Paxillus involutus inoculated seedlings, 

+C = soil covered with activated charcoal. 

treatment ni ni+C Li Li+C Pi 

no fumigation 5 6 3 4 8 
S 0 2

a 5 4 4 4 8 
S 0 2

b + 100 fig m " 3 N H 3 5 0 4 0 8 

a 32, 66, 130, 260 and 520 fig m " 3 

b 66 and 260 fig m - 3 
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The gravel in the charcoal-treated pots was then covered with 70 g of Norit RB-1 

activated charcoal (ca. 1 cm thick layer). The acidic charcoal was neutralized by 

washing it in running water for 3 days, after which no change in the pH could be 

measured. 

Preparation of the mycorrhizal plants 

Culture tubes (length 145 mm, diam. 21 mm) were filled with 18 cm3 of a 5:1 (v:v) 

mixture of vermiculite and peat. The mixture was then moistened with 1 ml distilled 

water and the tubes were autoclaved twice for 20 min. at 121°C. Twelve ml Norkrans 

nutrient solution (Norkrans, 1949) was then added after which the tubes were again 

autoclaved, and two plugs of mycelium were placed in each of the tubes. 

P. sylvestris seeds were soaked in sterile distilled water for 1 night and surface 

sterilized the next day for 30 min. in 30% H2O2. After the fungi started to grow into 

the substrate, one seed was placed in each tube. After 7 weeks, uncontaminated 

seedlings which had developed mycorrhizas were transplanted into 650 ml plastic pots 

(height 12 cm, diam. 9.5 cm) containing 700 g pasteurized sand. 

Plants were allowed to acclimatize for 2 weeks in a climate room with climatic 

conditions similar to those in the fumigation chambers (see below). 

Plants were watered with demineralized water supplemented with 80 /<mol l"1 CI" 

in the form of sea salt (i.e. the natural CI" concentration occurring in unpolluted 

rainwater near Wageningen). In order to prevent leaching of the pollutants accumulated 

in the charcoal layer, water was injected directly into the gravel layer. 

Exposure to the pollutants 

The experiment was started February 11, 1987 and terminated April 1, 1987. 

Fumigation took place in fully controlled stainless steel fumigation chambers. The 

climatic conditions were maintained at 20 ± 0.5°C and 70 ± 3% RH during the day and 

16 ± 0.5°C and 85 ± 3% RH during the night. Artificial light (450 fiE m"2 s"1) was 

supplied by HPL-N (mercury) and SON-T (sodium) lamps for a diurnal 16 hour light 

period. 

Ambient air was passed via charcoal filters (1.5 s contact time) through fumigati­

on chambers (3.3 m3) at the rate of 80 cm s"' (7 m3 min"1). SO2 was continuously 

supplied to the ventilation air by thermal mass flow controllers (Brooks 5850 TR) to 

final concentrations of 0, 32, 66, 130, 260 and 520 fig m"3 SO2. SO2 concentrations in 

the fumigation chambers were sequentially monitored (Teco 43) and regulated by a HP 

1000-40 computer and joined to a HP data acquisition system. NH3 was continuously 

injected in a similar manner and after being passed through a stainless steel tube 

heated to 800°C to oxidize NH3, it was monitored with a NOx monitor (CSI 1600). 
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Measurement of aboveground parameters 

Prior to terminating the exposure to the pollutants, 4 Pi-plants from the 0, 32, 260 and 

520 pig m'* SO2 treatments were used for the measurement of photosynthesis. Directly 

after the selected plants were removed from the fumigation chambers, photosynthesis 

was measured at 22.4°C, 74% RH and a light intensity of 230 piE m'2 s"1 (400-700 nm). 

At the end of the experiment the plants were observed macroscopically for 

damage symptoms. Further measurements included determination of the maximum and 

mean needle length and estimation of the percentage of secondary needles. The shoot 

was then dried and weighed. 

Measurement of underground parameters 

The root systems were stored in a glutaraldehyde buffer (Alexander & Bigg, 1981) for 

further analysis. Soil samples were air dried after which the pH was measured in a 

10 g sample shaken 24 hr in a 100 ml 0.01 M CaCi2 solution. 

The number of root tips, divided into non-mycorrhizal and mycorrhizal, was 

counted. Mycorrhizal roots were defined as roots with a Hartig net between at least 

some of the cortical cells. Non-mycorrhizal root tips were divided into short (<2 cm) 

and long roots (>2 cm). 

The mycorrhizal roots were divided into forked and unforked mycorrhizas, 

according to their branching. The individual tips of forked mycorrhizas were not 

counted. The mycorrhizal roots were also classified based on their appearance. The 

first class (so-called well-developed mycorrhizas), possessed a smooth, relatively thick 

mantle, so that the root cells were not visible under a 12x magnification. The poorly-

developed second class mycorrhizas either possessed a dented, more or less wrinkled 

mantle or no distinct mantle. 

Statistics 

Results were tested for significant differences using Student's t-test. 

2.3 Results 

Mycorrhiza development (table 3) 

No mycorrhizas were found in the ni-plants. At all treatments, the Pi-plants showed a 

significantly smaller mycorrhizal frequency than the Li-plants (P<1%). The mycorrhizal 

frequency of Li-plants remained at a very high level (93-97%) in all treatments,whereas 

the mycorrhizal frequency of the Pi-plants decreased significantly from the 130 pig m"-* 

SO2 treatment onwards. Addition of 100 pig m"^ NH3 to 66 or 260 pig m~* SO2 
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TABLE 3 
Mycorrhizal frequency (- total number of mycorrhizas relative to the total number of 
short roots), the relative number of forked mycorrhizas (- forked / total number of 
mycorrhizas * 100%), the relative number of well-developed mycorrhizas (= well-
developed / total number of mycorrhizas * 100%) in the Li- and Pi-plants and the 
number of sclerotia per Pi-plant. Asterisks indicate a significant difference with the 

control. * = P<2.5%, ** = P<1%. 

Treatment 

o so2 
32 S 0 2 

66 S 0 2 

66 S 0 2 + N H 3 

130 S 0 2 

260 S 0 2 

260 SO2+NH3 
520 S 0 2 

Mycorrhizal 
frequency 

Li 

97±1 
97±1 
97±1 
97±1 
96±2 
97±1 
96±2 
93±8 

Pi 

78±16 
73±22 
73± 8 
32 ±24** 
45±33* 
44 ±18** 
30 ±10** 
33±21** 

Forked 
mycorrh 

Li 

24 + 11 
28±10 
28 + 12 
27± 6 
28 + 10 
31± 8 
28± 9 
2 3 + 7 

izas (%) 

Pi 

36 + 15 
36 + 14 
43 + 11 
26+20 
27 + 15 
29+ 8 
37 + 16 
27 + 17 

Well-developed 
mycorrhizas (%) 

Li 

89± 7 
89± 5 
90± 6 
83± 5 
82 + 10 
77± 6 
83± 5 
80± 8 

Pi 

75+16 
84 + 13 
74±11 
45 ±24** 
65 ±32 
64 ±22 
55 ±10** 
75 + 18 

No. scle­
rotia 

Pi 

55 ±40 
56 ±22 
76 + 31 
44 + 39 
41+25 
57±43 
36 ±22 
19±12* 

significantly reduced the mycorrhizal frequency of the Pi-plants compared to the 

treatments without NH3 (P<5%). 

The percentage of forked mycorrhizas of the Li-plants was not affected by the 

fumigation treatments, while that of the Pi-plants tended to be negatively affected, 

although not significantly. 

In almost all treatments more than 50% of the mycorrhizas were classified as 

well-developed. The relative number of well-developed mycorrhizas of Li-plants tended 

to decrease slightly with increasing S0 2 concentrations. On the other hand, the 

relative number of well-developed mycorrhizas of Pi-plants was not affected by the 

S0 2 treatments alone, but was significantly reduced by the S0 2 + NH3 treatments 

(P<1%). 

The number of sclerotia formed by P. involulus decreased significantly only in the 

highest S0 2 treatment by a factor 2-3 compared with the other treatments. The 

combined S0 2 + NH3 treatments compared to S0 2 alone reduced the number of P. 

involulus sclerotia, but these differences were not significant. 

Plant growth (table 4) 

No macroscopical symptoms on the shoots were observed. 

The total dry weights of the non-fumigated plants were highest for the ni-plants, 

intermediate for the Pi-plants and lowest for the Li-plants, the latter group being 

significantly different with the ni-plants at P<5%. The ni-plants showed the lowest 

shoot dry weights and the highest root dry weights. The order of root biomass 
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TABLE 4 
Shoot-root ratios and plant dry weights (mg) of the Li-. Pi- and ni-seedlings of P. 
sylvestris following exposure to SO2 (pig m~ ) and NHj (100 fig m~*). Asterisks indicate 

a significant difference with the control. 
* = P<2.5%. ** = P<]%. 

Treatment 

0 S 0 2 

32 S 0 2 

66 S 0 2 

66 SO2+NH3 
130 S 0 2 

260 S 0 2 

260 SO2+NH3 
520 S 0 2 

Shoot-root ratio 
Li 

1.0±0.1 
1.1 ±0.3 
1.0±0.2 
1.1 ±0.1 
1.1 ±0.1 
1.5±0.2* 
1.6±0.4* 
1.9±0.3* 

Pi 

1.0±0.5 
0.7±0.4 
1.1 ±0.3 
0.9±0.2 
0.9±0.2 
1.0±0.2 
1.2±0.2 
1.2±0.4 

ni 

0.7±0.1 
0.5±0.2 
0.8±0.2 
0.6±0.3 
0.6±0.1 
0.5±0.3 
0.6±0.0 
1.1 ±0.6 

Plant dry we 
Li 

161 ± 9 
146±29 
171 ±29 
183+21 
148±40 
149± 19 
183±21 
92±22** 

Pi 

184±51 
192+34 
199±36 
186±59 
183±32 
198±47 
211 ±23 
163 + 34 

ght 
ni 

186+66 
181 ±34 
224 ±54 
203±71 
187±87 
224 ±54 
203±71 
179±76 

production is ni > Pi > Li. Only the root dry weights in the Li-group were significantly 

different (P<2.5%) from the control group. The shoot-root ratios were significantly 

lowest for the ni-plants (P<2.5%), and highest for the Li-plants. 

The fumigation treatments did not affect the plant dry weights, except for Li-

plants in the highest S 0 2 treatment. The shoot-root ratios generally increased at the 

higher S 0 2 t reatments, but were significant only for the Li-plants from the 260 fig m"-' 

S 0 2 t reatment onwards (P<2.5%). 

Photosynthesis (table 5) 

Large effects due to the fumigation treatments were observed on the photosynthesis of 

the Pi-plants (table 5). The amount of photosynthesized C 0 2 per g fresh weight of the 

needles decreased significantly by 47% and 70% in the 260 and 520 fig m " ' S 0 2 

treatments, respectively. 

Soil pH 

The pH of the soil was 4.3 ± 0.2 for all treatments. 

TABLE 5 
Photosynthesis per g fresh needles of Pi-plants after fumigation of P. sylvestris 
seedlings with SO2. Asterisks indicate significant difference with the control. 

** = P<1%. 

Treatment mg C 0 2 g"1 h~ ' 

0 so2 
32 S 0 2 

260 S 0 2 

520 S 0 2 

0.53 ± 0.12 
0.50 ± 0.09 
0.28 ± 0.06** 
0.16 ± 0.07** 
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Activated charcoal effects 

Activated charcoal covered the soil surface of the ni- and Li-plants only. No effects of 

the addition of charcoal were found, neither for the plant, its mycorrhizas, nor for the 

pH of the soil. 

2.4 Discussion 

The fumigations had different effects on the two fungal species. The mycorrhizal 

frequency of L. proxima was not decreased, while on the other hand, the mycorrhizal 

frequency of P. involutus was inhibited from 66 n% m~^ SO2 combined with 100 n% m"-' 

NH3, or from 130 fig m~3 SO2 alone onwards (table 3). These SO2 concentrations are 

comparable with the 95- and 98-percentile concentrations occurring in the Netherlands 

(Anonymous, 1986ab). 

The question now arises how P. involutus is affected, and why L. proxima is not 

affected by SO2. That SO2 affected mycorrhizas via the soil is unlikely, because no 

changes in the soil pH were detected, and the charcoal did not influence the fumigati­

on effects. 

The negative effect of SO2 on the mycorrhizal frequency of Pi-plants may well be 

explained by the inhibition of photosynthesis, possibly in combination with a decrease 

in carbohydrate transport (McLaughlin et al., 1982; Lorenc-Plucinska, 1986), which 

decreases the availability of carbohydrates for the mycorrhizal fungi. Likewise, shading 

or defoliating trees results in a decreased mycorrhizal frequency (e.g. Ekwebalam & 

Reid, 1983) and a decreased number of carpophores of mycorrhizal fungi (Last et al., 

1979). 

In contrast to the mycorrhizal frequency of the Pi-plants the plant dry weight 

was not affected by SO2, except for the Li-plants at the highest SO2 treatment. 

Comparable results were obtained in vital, mature stands of P. sylvestris, where a 

significant negative correlation of the SO2 concentration with the number of carpopho­

res of mycorrhizal fungi was found (cf. Termorshuizen & Schaffers, Ch. 6). At the 

same time, the average stand vitality showed a small negative correlation with the SO2 

concentration. However, the correlation of the SO2 concentration with the mycorrhizal 

frequency was very weak, indicating that the formation of carpophores is hampered 

before the development of mycorrhizas is affected. 

The results from the present study as well as from the field observations indicate 

that the assimilate-dependent structures which are most distant from the photosynthe-

tic apparatus (i.e., the mycorrhizal fungus and the mycorrhiza) are the first to be 

affected if the production and transport of carbohydrates is reduced. This seems to be 

due to both a decrease in the photosynthesis and a higher retention of carbohydrates 
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by the needles. Lorenc-Plucinska (1986) and Gorissen & Van Veen (1988) reported a 

much stronger inhibition of assimilate transport than of the photosynthesis itself in 

seedlings of P. sylvestris, regardless of the concentration used (650-1950 fig m'^ SO2 

for 5 hr). 

In contrast to the mycorrhizal frequency, the percentage of forked mycorrhizas of 

P. involutus was not affected by the fumigation treatments. This indicates that at all 

fumigation levels, once established mycorrhizas are able to continue their growth at 

the expense of new infections. 

Because L. proximo mycorrhizas were not affected by the pollution treatments, the 

carbohydrate demand of L. proximo is apparently much lower than that of P. involutus, 

or, alternatively, L. proximo is a stronger sink for carbohydrates than P. involutus. 

Indirect evidence for a lower carbohydrate demand of L. proximo is the absence of 

rhizomorphs and sclerotia in L. proximo and the formation of much smaller carpophores 

than P. involutus (Dighton & Mason, 1985). On the other hand, Stenström & Unestam 

(1987) and Gagnon et al. (1988) ascribe relatively high sink capacities to Laccaria 

species (L. proximo and L. bicolor (Maire) P.D.Orton, respectively) compared with other 

mycorrhizal fungi. This may also be true in this experiment, where lower dry weights 

of Li-plants compared to the Pi-plants were found. The lower dry weight of inoculated 

plants compared to ni-plants might be an initial effect of mycorrhizal formation caused 

by the absorption of photosynthates by the mycorrhizal fungus (e.g. Dighton et al., 

1987; Gagnon et al., 1988). 

The negative effect of NH3 added to the SO2 fumigations on P. involutus 

mycorrhizas might be caused by direct uptake of the shoot as well. Kaupenjohann et al. 

(1989) suggested that the negative effects found on P. sylvestris needles were due to 

NH3 from a near-by hen-house. Dueck et al. (in press) and Van der Eerden et al. 

(1989) reported physiological disturbances in NH3-polluted young plants of P. sylvestris 

and Pseudotsuga menziesii, respectively. Another possible pathway of NH3, via the soil, 

is the subject of a following study (cf. Ch. 3 & 4). 

In this study, we showed that SO2 can affect the mycorrhizas of P. sylvestris 

seedlings in a relatively short time. We further obtained indications that the effects 

are highly dependent on the fungal symbiont. This may well explain the fact that some 

mycorrhizal fungi did not decline this century in the Netherlands (Arnolds, 1988). 

2.S Summary 

The effects of a range of SO2 concentrations from 0 to 520 fig m"-' (including two 

concentrations of SO2 combined with 100 fig m~* NH3) on 9 week old seedlings of 

Pinus sylvestris were studied. Seedlings were non-inoculated or inoculated with either 
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Paxillus involutus or Laccaria proximo. In order to study the effect of SO2 fumigation 

on the mycorrhiza via the soil, half of the non-inoculated pots and half of the pots 

inoculated with L. proximo were covered with a layer of activated charcoal. 

Exposure to SO2 for 7 weeks decreased the photosynthesis of the plants signifi­

cantly. Mycorrhizal formation of L. proximo was not affected by SO2, whilst that of P. 

involutus decreased significantly from 130 ^g m~* SO2 or 66 /ig m"^ SO2 + 100 fi% m~-> 

NH3 onwards. Activated charcoal did not influence the results and the pH of the soil 

showed no differences between the treatments. 

The results are compared with field observations, and the possible mechanisms 

involved are discussed. 
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Chapter 3 

EFFECTS OF AMMONIUM AND NITRATE ON MYCORRHIZAL SEEDLINGS OF 

PINUS SYLVESTRIS 

Submitted to European Journal of Forest Pathology, authors A.J. Termorshuizen & 

P.C. Ket. 

3.1 Introduction 

Under natural conditions, nitrogen is a growth-limiting factor in forest ecosystems. In 

the Netherlands however, nitrogen input in forests has reached levels which are very 

likely deleterious to trees (Nihlgàrd, 1985; Roelofs, 1985). The mean deposition levels 

for nitrogen oxides (mainly from industries and traffic) and ammonia (mainly from 

farmyard manure) in 1986 in the Netherlands were 22 and 19 kg N ha"1 yr~' respecti­

vely (Anonymous, 1988). Local extremes up to 64 kg ha"' yr"1 (Van Breemen et al., 

1982) can be largely ascribed to ammonia because of its relatively high dry deposition 

rate (Asman & Maas, 1987). 

The dry deposition of ammonia on leaves may increase growth of epiphyllic algae 

and may enhance fungal and insect attacks (Nihlgàrd, 1985). Plants can take up 

ammonia and ammonium sulphate particles directly from the air through the stomata, 

which results in leaf damage (Gmur et al., 1983). In the soil, ammonia is rapidly 

changed into ammonium compounds. Deposition of ammonia can therefore be seen as an 

ammonium fertilization effect. According to Nihlgàrd (1985), an increased uptake of 

nitrogen increases growth and conversion of carbohydrates into amino acids, which in 

turn decreases frost hardiness, carbohydrate transport to the roots and mycorrhizas, 

and increases leaching of nutrients from the leaves. 

Although the effects of different forms of nitrogen on mycorrhizas have often 

been investigated and discussed, only low concentrations have usually been considered. 

In the present study, we examined the effects of high depositions of nitrogen on 

mycorrhizas in the following laboratory experiment and a field experiment (Termorshui­

zen, Ch. 4). In the laboratory experiment we studied the effects of ammonium and 

nitrate on already established mycorrhizas formed by Pinus sylvestris after inoculation 

with either Paxillus involutus or Suillus bovinus. 
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3.2 Material & Methods 

Preparation of the mycorrhizal plants 

Seeds of Pinus sylvestris L. were obtained from the seed garden "Grubbenvorst". They 

were soaked in sterile distilled water for one night and surface sterilized the next day 

in 30% H2O2 for 30 min. Subsequently, the seeds were allowed to germinate on sterile 

1.0% agar containing 0.5% glucose. 

Mycorrhizal fungi were isolated from carpophores in the autumn of 1985. Paxillus 

involutus (BatschrFr.) Fr. and Suillus bovinus (L.:Fr.) O.Kuntze were collected from a 6-

year-old stand of P. sylvestris and were isolated on modified Melin-Norkrans agar 

medium (Marx, 1969). 

Culture tubes (length 145 mm, diam. 21 mm) were filled with 25 cm-' vermiculite, 

moistened with 2 ml distilled water and then autoclaved twice for 20 min. at 121°C. 

Thirteen ml MMN nutrient solution (Marx, 1969) was then added after which the tubes 

were autoclaved again for 20 min. at 121°C. After the last autoclaving, two plugs of 

mycelium and one germinated seed were placed in each of the tubes. 

After 10 weeks, uncontaminated seedlings which had acquired mycorrhizas were 

transplanted into plastic pots (height 17.5 cm, diam. 18 cm) containing 3300 g 

pasteurized sand. In order to reduce evaporation, the surfaces of the pots were covered 

with a 1 cm layer of gravel. 

The soil used was an extremely poor sand practically without humus, originating 

from a drift-sand area near Kootwijk (pH(CaCl2) 4.3, 2.2 mg kg"1 N-NO3, 1.8 mg kg"1 

N-NH4 and 0.3 mg kg"1 P). Soil analysis was performed according to Houba et al. 

(1986a, 1986b) in a 0.01 CaCl2 extract. After pasteurization (25 min, 60°C), soil 

moisture was maintained at 5-7% (w/w). 

Treatments 

The experiment took place in a glasshouse without temperature or air humidity control. 

Soil moisture was maintained at 5-7% (w/w) after weighing the pots once, or during 

periods of warm weather, twice a week. After acclimatizing for 6 weeks, plants were 

watered weekly with ammonium sulphate or sodium nitrate in distilled water, equalling 

0, 0.49, 2.5, 4.9 and 19.6 mg N wk"1 pot"1 or 0, 10, 50, 100 and 400 kg N ha"1 yr"1 

(recalculation based on the pot surface). For reasons of simplicity, the treatments in 

kg N ha" yr"1 will be used here and will be abbreviated to kg. The solutions were 

adjusted with HCl to pH 4.5. 

A weekly fertilization was chosen instead of a single fertilization because the 

former simulates the field situation better and the plant and mycorrhizal fungus would 

likely suffer from the sudden change in nutrition following a single fertilization. 

Ammonium sulphate was used because this approaches the reality better than ammonium 
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tartrate or ammonium phosphate. Sodium nitrate was used because it is generally 

considered to affect the plant less than hydrogen, potassium or magnesium combined 

with nitrate (Richards, 1965). 

The fertilizations started May 19, 1986 and the plants were harvested November 

23, 1986 (26 weeks). 

Measurement of parameters 

After terminating the experiment, shoot length, number of branches per shoot, 

percentage of secondary needles and needle color was estimated. The needles and stems 

were dried separately for 48 hr at 80°C and weighed. The root system was carefully 

removed from the soil, gently washed and stored in a glutaraldehyde buffer (Alexander 

& Bigg, 1981) until further analysis took place. 

The root length and the number of root tips were determined on a random part 

of the fragmented root system (1-5 cm fragments). The samples consisted of at least 40 

random subsamples, and at least 20% of the root system. The root tips were divided 

into non-mycorrhizal and mycorrhizal. 

It was necessary to develop a working definition for mycorrhizal roots because 

intermediate types were observed between typical mycorrhizal roots (with a clearly 

visible mantle and aerial mycelium) and non-mycorrhizal roots (with many, approx. 5 

mm long root hairs). Short roots with one or two poorly developed root hairs always 

possessed a Hartig net between some of the cortical cells. Short roots with more than 

two poorly developed root hairs often had no Hartig net. Therefore, all short roots 

possessing less than three root hairs were called mycorrhizal, and those with more 

than two root hairs non-mycorrhizal. 

The mycorrhizal roots were divided into forked and unforked mycorrhizas 

according to their branching. The individual tips of forked mycorrhizas were not 

counted. 

Non-mycorrhizal root tips were divided into short (<2 cm) and long (>2 cm) 

roots. 

N, P, K and Mg content of the needles of two seedlings per treatment were 

analysed according to Novozamsky et al. (1988). 
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3.3 Results 

Plant parameters 

The dry weight of P. involutus-ixiocxùaX&A plants increased significantly (P<1%) to the 

nitrogen treatments, with an optimum at 50 kg (fig. 2a). Ammonium stimulated growth 

more than nitrate, except at the 400 kg treatment. The dry weight of 5. bovinus-

inoculated plants showed no significant change due to the treatments except an 

increase (P<5%) at the 100 kg ammonium treatment. The changes in biomass production 

can be ascribed to changes in the shoot biomass. However, for both fungal treatments, 

fertilization from 50 kg onwards negatively affected the root length. The root 

length/weight ratio decreased up to a factor 2.6 and 1.6 for the P. involutus and S. 

bovinus inoculated plants, respectively (fig. 2b). This decrease was significant in P. 

i'rcvo/uto-inoculated plants (P<5%) for all treatments, except for the 10 kg ammonium 

treatment, and was only weakly significant for the highest treatments (P<7%) for the S. 

èov/MMj-inoculated plants. Accordingly, roots from the higher nitrogen treatments had 

thicker roots than those of the control. 

The average shoot length at the end of the experiment was 11 cm for the P. 

/rcvo/nto-inoculated plants and 7.5 cm for the S. èov//;iM-inoculated plants. The shoot 

length was only positively affected by the 100 kg nitrate treatment of the P. involu-

to-inoculated plants (P<5%). There were no effects on the percentage of secondary 

needles or on the number of branches. Except for one plant (treatment P. involutus, 

400 kg ammonium) no changes in the needle color were observed. 

Mycorrhiza parameters 

The mean number of P. involutus mycorrhizas per treatment varied from ca. 1000 to 

6000 per plant, increasing with both 10 kg treatments and then decreasing (fig. 4a). 

The decrease was significant from the 100 kg ammonium treatment onwards, and for 

the highest nitrate treatment. The two highest treatments showed significantly more 

mycorrhizas in the nitrate treatments than in the ammonium treatments (P<1%). The 

total number of S. bovinus mycorrhizas per plant ranged from ca. 500 - 2500, and 

showed no clear differences between the nitrogen levels. 

The reduction in total number of mycorrhizas at high nitrogen levels was much 

more than the decrease in plant dry weight. Consequently, the number of mycorrhizas 

per unit shoot dry weight (fig. 4b) decreased significantly, for the P. involutus (P<1%) 

and 5. èovrntw-inoculated (P<5%) plants, and for ammonium and nitrate from the 50 kg 

treatments onwards. The largest difference occurred between the 10 and 50 kg 

treatments. The negative effect of nitrate on the number of mycorrhizas per unit shoot 
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Plant Dry Weight [g]( 
Shoot 

Root 
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** ** 
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Figure 2. The effect of ammonium sulphate and sodium nitrate on (a) total plant dry 
weight fgj (the lower part of the bars represents the root dry weight) and (b) root 
length/weight ratio [m/g]. Asterisks indicate a significant difference from the control. 
** = P<1%, * = P<5%. 

- 33 



dry weight was somewhat smaller at the 100 and 400 kg treatments than the effect of 

ammonium. 

Although the mycorrhizal frequency of P. ;nvo/«/«5-inoculated plants was 

significantly decreased at the higher ammonium treatments (P<1%) compared to the 

control, ca. 40% of the root system was still mycorrhizal (fig. 3). On the other hand, 

mycorrhizal frequency of P. /«vo/uto-inoculated plants was only slightly reduced due 

to the nitrate treatments. The mycorrhizal frequency of S. èovmus-inoculated plants 

showed an insignificant decrease. 

We determined the percentage of forked mycorrhizas relative to the total number 

of mycorrhizas to obtain a parameter for the growth of individual mycorrhizas. The 

relative number of forked mycorrhizas varied and was not affected by the treatments. 

The number of sclerotia produced by P. involutus was drastically decreased by 

ammonium and nitrate treatments from 50 kg treatments onwards (P<1%, table 6). The 

number of sclerotia at the 10 kg treatments was higher than in the control, signifi­

cantly so (P<1%) for the ammonium treatment. 

Mycorrhizal Frequency 
100 

80 

60 

40 

20 

PAXILLUS SUILLUS 

• H I I I I • m i n 
0 10 50 100 400 0 10 50 100 400 

Kg N / Ha / Yr 

I I Co':ro! I I Ammonium Nitrate 

Figure 3. The effect of ammonium sulphate and sodium nitrate on the mycorrhizal 
frequency (= total number of mycorrhizas / total number of (mycorrhizal and non-
mycorrhizal) root tips * 100%). Asterisks indicate a significant difference from the 
control. ** = P<1%, * = P<5%. 
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Figure 4. The effect of ammonium sulphate and sodium nitrate on (a) the total number 
of mycorrhizas per plant and (b) the number of mycorrhizas per mg shoot dry weight. 
Asterisks indicate a significant difference from the control. ** = P<1%, * = P<5%. 
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581 ±185** 
288 ±197 

5± 3** 
20 ±26** 

3±5** 
7±9** 

13±15** 
4±15** 

TABLE 6 
The mean number of P. involutus sclerotia per plant (± S.D.). Asterisks indicate a 

significant difference from the control. ** = P<1%, * = P<5%. 

Level (kg N/ha/yr) 
Treatment 0 10 50 100 400 

Control 178± 79 
Ammonium 
Nitrate 

Concentration of nutrients in the needles 

The nitrogen concentration in the needles was positively correlated with the amount of 

nitrogen input (table 7). Needles of plants treated with ammonium contained higher 

nitrogen concentrations than those treated with nitrate, and needles of S. bovinus-

inoculated plants contained more nitrogen than P. mvo/u/ws-inoculated plants. The 

concentration of P, K and Mg in the needles generally decreased at higher treatments 

(table 7). At the 400 kg treatment, P concentration is decreased ca. 50% compared to 

the control. The same holds for K concentrations in ammonium-treated needles. In the 

nitrate treatments however, a slight decrease in the K concentration appeared only in 

P. involutus-inoculated plants, and increased in S. èovoîKs-inoculated plants at the 

highest nitrate treatment. The Mg concentration in the needles did not change 

significantly from the control. 

Soil pH 

There was only a very small fertilization effect on soil pH. Compared to the control, 

the highest treatments differed -0.1 and 0.1 pH units for the ammonium and nitrate 

treatments, respectively. 

TABLE 7 
Total N, P, K and Mg content of Pinus sylvestris needles (mmol kg' dry weight). 

Treatment 
(kg N/ha/yr) 

Control 

Ammonium 

Nitrate 

0 

10 
50 

100 
400 

10 
50 

100 
400 

Paxillus 

N 
1152 

1180 
1785 
2084 
2830 

1245 
1487 
1436 
1861 

P 
80 

70 
59 
43 
39 

76 
58 
60 
40 

involutus 

K 
280 

262 
178 
170 
152 

256 
231 
196 
214 

Mg 
69 

54 
59 
35 
44 

63 
59 
68 
53 

Suillus bovinus 

N 
1602 

2175 
2958 
2691 
3421 

1322 
1641 
2328 
2764 

P 
97 

44 
33 
46 
25 

62 
37 
38 
24 

K 
271 

264 
232 
211 
160 

253 
293 
285 
366 

Mg 
65 

57 
44 
39 
42 

62 
53 
56 
43 
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3.4 Discussion 

The results show that fertilization with ammonium as well as with nitrate has a 

significant positive effect on the shoot dry weight of P. involutus-inocu\ated plants, 

with an optimum at 50 kg. The effects on shoot dry weights of 5. Zwvmas-inoculated 

plants were much smaller (ammonium treatments) or absent (nitrate treatments). 

Evidently, the positive effect will be found only if the nitrogen content of the soil is 

very low. The decrease of plant dry weights at high fertilization rates are likely to be 

caused by the decrease of mycorrhizal formation and deficiency of other nutrients. 

The reason for the increased weight of the roots per unit of length is unclear. It 

was not caused by a decreased number of mycorrhizal roots, because roots from the 

highest treatments were clearly thicker than those of the control. Comparable 

observations were made by Olsthoorn et al. (in preparation), who found an 1.8 decrease 

of the root length/weight ratio in one-year-old Douglas fir seedlings treated with 60 

mMol (NH4)2SÛ4 per plant for five months (ca. 336 kg N ha"' yr~'). 

The ammonium fertilized plants produced higher dry weights than the nitrate 

fertilized plants, caused by a preferential uptake of ammonium (table 7), which is 

confirmed by most authors (France & Reid, 1983). 

In contrast to the reaction of plant dry weight, the mycorrhizas were more 

inhibited by ammonium than by nitrate, indicating an indirect effect by nitrogen via 

the internal nutritional status of the plant (Björkman, 1942). Following Björkman's 

hypothesis, mycorrhizal formation decreases if the absorption of nitrogen by the plant 

increases. This causes an increased conversion of carbohydrates into amino acids, 

reducing the supply of carbohydrates to the mycorrhizas. 

Björkman's hypothesis is in agreement with our results. In the case of nitrate 

nutrition, lower nitrogen concentrations in the needles were found, making relatively 

more carbohydrates available to the mycorrhizal fungus, which results in a higher 

mycorrhizal frequency and a higher number of mycorrhizas than in the case of 

ammonium nutrition. 

Ammonium and nitrate did not affect the percentage of forked mycorrhizas. Once 

established, mycorrhizas are probably able to continue growth at the expense of new 

infections and in the case of P. involutus, the formation of new sclerotia. 

Our results do not agree with those of some authors, who report that mycorrhizal 

fungi prefer ammonium, barely or not at all absorbing nitrate. Bigg (in Alexander, 1983) 

reported a so-called "direct" toxic effect of nitrate on mycorrhizas by showing that 

mycorrhizal formation decreased under the influence of nitrate nutrition in a symbiosis 

where both phyto- and mycobiont separately were able to absorb nitrate. However, this 

effect could also have been caused by changes in the N content of the plant, as 

explained above by Björkman's hypothesis. Rudawska (1986) reported negative effects of 
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nitrate compared to ammonium on the occurrence of mycorrhizas in potted P. sylvestris 

seedlings. 

Nitrogen nutrition research has always been subject to conflicting results. For 

example, Krajina et al. (1973), Bigg & Daniel (1978) and Bledsoe & Zasoski (1983) 

reported positive effects on the growth of Douglas-fir seedlings fertilized with nitrate, 

in comparison to ammonium fertilization, but Van den Driessche (1971, 1975) reported a 

larger growth response due to ammonium. Later, Van den Driessche (1978) reported 

that ammonium was more effective than nitrate on Douglas-fir seedlings at soil pH 7, 

and that nitrate was increasingly more effective than ammonium at soil pH 5.5 or less. 

These conflicting results may be caused by differences in the nitrogen nutrition of 

mycorrhizal fungal species and their isolates. Usually, mycorrhizal fungi are not taken 

into account in nitrogen nutrition studies of woody plants, and if so, the variation 

between species and isolates is not considered. 

The variation between different mycobionts was clearly demonstrated by Lunde-

berg (1970), who found large variations in the nitrogen utilization between species and 

between isolates of the same mycorrhizal species growing in pure culture. Although 

the results from these pure culture studies cannot be extended to the field situation, 

Lundeberg's research (1970) definitely indicates that mycorrhizal fungal species 

apparently differ highly in their nitrogen nutrition strategy. This is also demonstrated 

by the differences between the P. involutus- and S. ftovmus-inoculated plants in our 

present research. Differences in carbohydrate demands between mycorrhizal fungal 

species (and between isolates of the same species) might also explain differences in the 

effects of nitrogen on mycorrhizal plants and fungi. Mycorrhizal fungal species with a 

relatively low carbohydrate demand will be less inhibited by nitrogen fertilization than 

species with a relatively high carbohydrate demand. Subsequent research into the 

nitrogen nutrition of mycorrhizas and the variation between species and isolates of 

mycorrhizal fungi is therefore necessary. 

We conclude that ammonia deposition on soil negatively affects mycorrhizas. 

Inhibition of mycorrhizal formation occurs at lower nitrogen levels than the inhibition 

of tree growth. The nitrogen level where inhibition of mycorrhizas starts depends on 

the availability and form of mineral nitrogen, the mycorrhizal fungal species, the tree 

species and the carbohydrate economy of the plant. The present rate of nitrogen 

deposition in the Netherlands might very well affect mycorrhizas. 
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3.5 Summary 

Potted Pinus sylvestris seedlings with established mycorrhizas of Paxillus involutus and 

Suillus bovinus were fertilized weekly with ammonium sulphate and sodium nitrate for 

26 weeks in order to simulate the nitrogen pollution in the Netherlands. The seedlings 

were fertilized with 0, 0.49, 2.5, 4.9 and 19.6 mg N wk"1 pot"1, which equals 0, 10, 50, 

100 and 400 kg N ha yr . The dry weight of the P. mvo/u/us-inoculated plants was 

positively affected by both fertilizations with an optimum at 50 kg N ha" ' yr"1. The 

ammonium treatments had a larger positive effect than nitrate, especially for P. 

involutus-inoculated plants. The root length/weight ratio of P. mvo/uto-inoculated 

plants decreased significantly due to fertilizations, indicating thicker roots. The number 

of mycorrhizas and the mycorrhizal frequency were negatively affected by the nitrogen 

treatments, especially ammonium. The nitrogen content in the needles was higher in 

ammonium-treated plants than in nitrate-treated plants. The effects on seedlings 

inoculated with P. involutus were more pronounced than on those inoculated with S. 

bovinus. Mycorrhizas appeared to be affected by nitrogen after it has been taken up. 
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Chapter 4 

THE INFLUENCE OF NITROGEN FERTILIZATION ON ECTOMYCORRHIZAS AND 

THEIR FUNGAL CARPOPHORES IN YOUNG STANDS OF PFNUS SYLVESTRIS. 

Submitted to Forest Ecology and Management, author A.J. Termorshuizen. 

4.1 Introduction 

The mycorrhizal mycoflora has decreased severely this century in the Netherlands 

(Arnolds, 1988) as well as in other European countries (Fellner, 1988; Arnolds, in 

preparation). Although it appears likely that the decrease is linked to air pollution or 

decreased tree vitality, the mechanism has not yet been elucidated. 

Termorshuizen & Schaffers (1987) reported that the occurrence of carpophores of 

mycorrhizal fungi in 50 to 80-year-old stands of Pinus sylvestris was negatively 

correlated to the NH3 deposition and ambient NOx concentration, and to a lesser 

extent to the ambient SO2 air concentration. However, these correlations could not be 

found for carpophores in 5 to 10-year-old stands. Many more carpophores and fruiting 

species of mycorrhizal fungi appeared to occur in young stands than in 50 to 80-year-

old stands. It was concluded that the conditions for fructification of mycorrhizal fungi 

are more favourable in young stands than in old ones. Termorshuizen & Schaffers (Ch. 

6) assumed that this was due to the high nitrogen losses caused by previous clear-

cutting and soil ploughing, the lower interception of air pollutants by smaller trees and 

the higher need of young trees for external nitrogen. Mycorrhizas and their fungal 

carpophores in young stands might therefore be tolerant to the actual levels of 

ambient nitrogen pollution, but they might suffer at higher levels of nitrogen pollution. 

A nitrogen fertilization experiment was carried out in order to study the sensitivity of 

the mycorrhizas and their fungal carpophores to increased nitrogen pollution, in two 

young stands of P. sylvestris. 

4.2 Material & methods 

Two stands of P. sylvestris L. were selected, one near Dwingeloo (northern Nether­

lands) planted in 1980 and the other near Liessel (southern Netherlands) planted in 

1979. Both soils were dry sandy soils without horizon development. The canopy closure 
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in the Dwingeloo and Liessel stand was 90% and 98%, respectively. The tree height in 

1986 was approx. 3-3.5 m in both stands. The herbal understory vegetation covered 

about 50% of the area and consisted mainly of Deschampsia flexuosa (L.) Trin. in both 

stands. Woody plants possessing ectomycorrhizas were removed. 

In each stand, 15 plots measuring 15x20 m^ were laid out with 2.5 m paths left. 

The plots were annually fertilized from 1986 to 1988 with (NH4)2S04 or NaN03 (30 and 

60 kg N ha"1 yr""1), each on three plots, in addition to three control plots receiving no 

fertilizers. Each year half of the fertilizer was applied in May and the other half in 

August. 

Each year from the end of September until the middle of November, the plots 

were searched three times for carpophores of mycorrhizal fungi. The caps of the 

carpophores were removed after each visit in order to prevent recounting the 

carpophores. 

Root samples were randomly taken from each plot in October 1987 (ten samples) 

and 1988 (seven samples) from the upper 13 cm with a 2.5 cm diameter auger (volume 

63.8 cm3), after removing the litter layer. The samples were cleaned and the root 

length, mycorrhizal frequency (= 100% * no. of mycorrhizas/(no. of mycorrhizas + no. 

of non-mycorrhizal root tips)) and number of mycorrhizas were estimated. A mycorrhi-

za is defined here as a (dichotomously) branched or unbranched short root possessing 

a Hartig net. 

An analysis of variance was carried out to examine the effect of nitrogen level 

and nitrogen form on mycorrhizas. Because the effects of nitrogen form were absent, 

the analysis was repeated with the nitrogen level as the only factor. The controls 

were compared to the treatments using Student's t-test on In-transformed data 

(number and dry weight of carpophores). 

4.3 Results 

The mycorrhizal mycoflora in both stands consisted for more than 50% of Lactarius 

rufus (Scop.:Fr.) Fr. Other species contributing more than 2.5% of the total number of 

carpophores were Laccaria proximo (Boud.) Pat., Suillus bovinus (L.:Fr.) O.Kuntze and 

Inocybe lacera (Fr.:Fr.) Kummer in Liessel, and Paxillus involutus (Batsch:Fr.) Fr., 

Laccaria proxima, Lactarius hepaticus Plowr. in Boud. and Hygrophorus hypothejus 

(Fr.:Fr.) Fr. in Dwingeloo. During the three years, 8717 carpophores were observed in 

Liessel and 1544 in Dwingeloo. 

The number and dry weight production of carpophores and the number of fruiting 

species involved were nearly always negatively affected by the fertilization level. 

However, due to the large degree of variation, few effects were significant (fig. 5-9). 
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Figure 5. The effect of (NHjjjSO^ and NaNO$ on the number of carpophores of 
mycorrhizal fungi in the plots at Dwingeloo and at Liessel. Standard deviations are 
indicated above each bar and asterisks indicate a significant difference from the 
control according to Student's t-test and V' or '++' behind the year indication indicate 
a significant F value of the nitrogen level in that year. , + = P < 10%, , ++ = P < 
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Figure 6. The effect of (NH^)2S0^ and NaNOj on the dry weight production of 
carpophores of mycorrhizal fungi in the plots at Dwingeloo and at Liessei. For further 
explanation see figure 5. 
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Figure 7. The effect of (NH^)2SO^ and NaNO$ on the number of fruiting species of 
mycorrhizal fungi in the plots at Dwingeloo and at Liessel. For further explanation 
see figure 5. 
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Figure 8. The effect of (NH^jSO^ and NaNOj on the number of carpophores of 
Lactarius rufus in the plots at Dwingeloo and at Liessel. For further explanation see 
figure 5. 
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Figure 9. The effect of (NH4)2SC>4 and NaNOj on the number of carpophores of 
Laccaria proxima in the plots at Dwingeloo and at Liessel. For further explanation see 
figure 5. 
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The dry weight production of carpophores was affected to a greater extent than the 

number of carpophores. The effects were most clear in Dwingeloo, although comparable 

trends in Liessel appeared in 1986 and 1987. No effects on the number and production 

of carpophores or on the number of fruiting species were observed in Liessel in 1988. 

There was no evidence of a cumulative effect on the number and production of 

carpophores or on the number of fruiting species over the years. 

There were no indications for a systematic change in species composition, except 

for two species. Lactarius rufus reacted negatively to the nitrogen level in Dwingeloo 

as well as in Liessel (fig. 8), while Laccaria proximo, which showed a remarkable 

positive reaction to the nitrogen level in Liessel in 1987 and 1988 (fig. 9). However, 

the latter effect was only statistically significant for the 30 kg N-NO3 ha"' yr~' 

treatment. L. proxima occurred in very small quantities in Dwingeloo, and did not 

react to the treatments. 

The mean mycorrhizal frequency was higher than 99% in all plots (fig. 10). No 

differences between the treatments were noted in the total number of mycorrhizas or 

mycorrhizas per unit of root length (fig. 10). There were about 3.5 times more my­

corrhizas per unit of soil volume in Liessel than in Dwingeloo, although the number of 

mycorrhizas per unit of root length was slightly higher in Dwingeloo. 

No differences between the ammonium and nitrate treatments were observed. 

A severe infection by Lophodermium seditiosum Mintar, Staley & Millar occurred 

in the stand near Dwingeloo in 1986 and 1987. The mean needle age class was less 

than 1.0, whereas that in Liessel was 2.0. While recovering from the L. seditiosum 

infection in 1988, the stand in Dwingeloo showed a mean needle age class of 2.0, 

whereas that in Liessel was 2.7. 

4.4 Discussion 

The number of fruiting species and the number of carpophores generally decrease 

after nitrogen fertilization (Pinus sylvestris: Ohenoja, 1988; Ritter & Tolle, 1978; 

Shubin, 1988; Wästerlund, 1982; Pinus taeda L.: Menge & Grand, 1978). Likewise, 

nitrogen fertilization in pot experiments usually inhibits mycorrhizal formation 

(Richards, 1965; Termorshuizen & Ket, Ch. 3). Björkman (1942) suggested that this 

negative effect was caused by the increased conversion of carbohydrates into amino 

acids, reducing the supply of carbohydrates to the mycorrhizas. 

On the other hand, several studies showed an increase in the number of carpo­

phores of Paxillus involutus after fertilizations up to 240 kg N ha"' (Laiho, 1970 

(CaNH4N03); Ohenoja, 1988 (Urea); Hora, 1959 ((NH4)2S04)). Also, the number of 

carpophores of Laccaria bicolor (Maire) P.D. Orton (Ohenoja, 1988) and Lactarius rufus 
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Figure 10. The mycorrhizal frequency, number of mycorrhizas per 100 cm? and number 
of mycorrhizas per 100 cm of root length in Dwingeloo and Liessel, in 1987 and 1988. 
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(Hora, 1959) have been reported to increase with nitrogen fertilization. Conflicting 

results might have their origin in differences in soil fertility. However, in studies 

where the total mycorrhizal mycoflora was taken into account, the total number of 

carpophores was still decreased, irrespective of the reaction of the individual species. 

Apparently differences exist between mycorrhizal species in the sensitivity to ammoni­

um and nitrate and consequently, according to Björkman (1942), to carbohydrate 

availability. The relatively tolerant species will take the places of the more sensitive 

species. This seems to have occurred in Liessel, where the number of carpophores of 

Laccaria proximo increased considerably in 1987 and 1988 in the fertilized plots. 

Interestingly, L. proximo is one of the few mycorrhizal species in the Netherlands 

which showed an (insignificant) increase this century (Arnolds, 1985a). On the other 

hand, Lactarius rufus showed an (insignificant) decline. 

The results indicate that the mycorrhizas are not influenced quantitatively by the 

nitrogen fertilization, in contrast to their fungal carpophores. Menge & Grand (1978) 

reported an 88% decrease of the number of carpophores and a 14% decrease in the 

number of mycorrhizas per unit of soil volume in 11-year-old, fertilized (112 kg N 

ha"1 as NH4NO3) Pinus taeda L. plantations, compared to the control. Ritter & Tolle 

(1978) reported the complete elimination of the carpophores in 1977 in stands of P. 

sylvestris, where from 1974 to 1977 3000 kg N ha"1 was applied as liquid manure. The 

mycorrhizal frequency however, was still 55%, compared to 87% in the control. If 

effects of nitrogen fertilization on mycorrhizas can be explained in terms of changes in 

the carbohydrate availability, it seems quite logical that the formation of carpophores 

is hampered before the development of mycorrhizas decreases. 

The stronger effect of fertilization at Dwingeloo might be explained by the lower 

vitality of the trees caused by infection with Lophodermium seditiosum. This needle-

infecting fungus inhibits the production of photosynthates, further decreasing the 

carbohydrate availability for mycorrhizal fungi in addition to the influence of the 

nitrogen fertilization. This may also explain the fact that 5.6 times more carpophores 

were found in the stand near Liessel than in the stand near Dwingeloo. 

The results indicate that nitrogen pollution might significantly contribute to the 

decline of the mycorrhizal mycoflora in the Netherlands. 

4.5 Summary 

Previous research indicated that young stands of Pinus sylvestris L. have a richer 

mycorrhizal mycoflora than old ones. In old stands a strongly negative correlation was 

found between the ammonia deposition and the mycorrhizal mycoflora, which could not 

be found in young stands. The sensitivity of mycorrhizas and their fungal carpophores 
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to increased nitrogen pollution was tested by a nitrogen fertilization experiment in two 

stands of P. sylvestris of 6- and 7-years-old. In the years 1986 to 1988 plots (15x20 

m2) were fertilized each year with (NH^SC^ or NaNC>3, at rates of 0, 30 and 60 kg N 

ha"1 yr~'. Treatments were carried out in triplicate. The number of fruiting species 

and the number and dry weight of carpophores were both decreased by the higher 

fertilization levels, but the mycorrhizal frequency and the number of mycorrhizas per 

unit of soil volume were not affected. In conclusion it seems that the carpophore 

formation is much more sensitive to nitrogen fertilization than the mycorrhizal 

formation. This is possibly due to carbohydrate deficiency of the mycorrhizal fungi. 
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Chapter 5 

SUCCESSION OF MYCORRHIZAL FUNGI IN STANDS OF PWUS SYLVESTRIS 

IN THE NETHERLANDS 

Submitted to Vegetation Science, author A.J. Termorshuizen. 

5.1 Introduction 

Succession in the mycorrhizal mycoflora in tree stands in monoculture has been 

recognized by several authors (Pinus contorta Dougl., Picea sitchensis (Bong.) Carr.: 

Dighton et al., 1986; Betula L. spp:. Mason et al., 1982; Pinus radiata D. Don.: 

Chu-Chou, 1979; Pinus sylvestris L.: Termorshuizen & Schaffers, 1987). The group of 

Dighton and Mason introduced the terms 'early-stage' and 'late-stage' fungi, referring 

to fungi which predominate and fruit during the first years following the tree planting 

(e.g. Thelephora terrestris Ehrh.:Fr.) and fungi which are usually found later in the 

course of plantation development (e.g. Russuia Pers. spp. and Amanita Pers. spp.). 

According to Dighton & Mason (1985), the succession of mycorrhizal fungi can 

possibly be explained by changes in carbohydrate supply from the host tree and by an 

increase in the litter and humus layer. A change in the supply of carbohydrates might 

be caused by a decrease of net photosynthesis (Hintikka, 1988), tree vitality (Termors­

huizen & Schaffers, 1987), or by an altered distribution of photosynthates over root 

and shoot (Hintikka, 1988). Furthermore, the mycorrhizas might be affected by an in­

creased internal recycling of nutrients as the trees age (Miller et al., 1979). Succession 

may also be influenced by allelopathic effects of litter (Rose et al., 1983; Perry & 

Choquette, 1987), or of plants (Robinson, 1972) and by competition for nutrients with 

saprophytic fungi (Gadgil & Gadgil, 1975) or with plants (Theodorou & Bowen, 1971). 

The phenomena of both 'early-stage' and 'late-stage' fungi apply only to the first 

10-20 years of first rotation stands. The aim of the present study was to examine the 

relation between the composition of the mycorrhizal mycoflora and stand age of P. 

sylvestris plantations of different rotations. 

5.2 Material & methods 

A number of 35 stands of Pinus sylvestris L. were selected throughout the Netherlands 

(fig. 11), in which plots measuring 1050 m^ each were set out. Selection was confined 
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Figure 11. Location of the Yl-s (o), Yl-p (x), Y2 (+), OW-n (*), OW-h (*) and OP (-) 
stands in the Netherlands. For abbreviations of the stand types see table 8. 

to homogeneous stands on sandy soils beyond the direct influence of the ground water, 

supporting as few other ectomycorrhizal plants as possible. Undergrowth possessing 

ectomycorrhizas was removed. Only stands of a good provenance, based on morphologi­

cal characteristics of the trees were selected, as explained in a previous publication 

(Termorshuizen & Schaffers, 1987). 

Young (4-13 years) and old (50-80 years) stands were selected. In each age class, 

stands of three types were selected on the basis of the number of rotations and the 

soil type. The young stands had either grown spontaneously on drift sands (1st 

rotation, type Yl-s), were planted and 1st rotation on non-forest soil (type Yl-p) or 

planted and 2nd or 3rd rotation (type Y2). Two of the Yl-p stands were situated on 

formerly arable land, and the other two on drained moor-peat. The old stands were 
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TABLE 8 

Age classes and stand types under study and abbreviations used. 

Code Description 

Age classes Y Young (4-13 yr) 
O Old (50-80 yr) 

Stand types Yl-s Young, 1st rotation and self-sown 
Yl-p Young, 1st rotation and planted 
Y2 Young, 2nd or 3rd rotation and planted 
OW-h Old, planted on soil without horizon development 
OW-n as OW-h, but very thin humus layer and practically no herbs 
OP Old, planted on soil with pronounced podsol 

distinguished on the basis of their occurrence on soils with or without a pronounced 

podsol (type OP: old with podsol and types OW-h and OW-n: old without podsol). The 

presence of a podsol corresponds to a long forest history and the absence thereof 

corresponds with first rotation forests. Stands of type OW-n were characterized by the 

almost complete absence of a herb layer and very thin humus layer, in contrast to the 

stands of type OW-h where a well-developed herb and humus layer were present. All 

the old stands were planted. 

The two age classes and the selected stand types are listed with their descriptions 

in table 8. The number of stands under study in 1986 and 1987 and some of the plot 

characteristics are also presented (table 9). 

During the autumns of 1986 and 1987, the plots were systematically searched three 

(1986) resp. four (1987) times at three-week intervals for carpophores of mycorrhizal 

fungi. In order to avoid counting the same carpophore twice, the caps were removed. 

TABLE 9 
Number of plots under study and some stand type characteristics. For abbreviations 

of the stand types see table 8. 

No. Plots 1986 
1987 

Age (yr)b 

Humus layer (cm) 

Tree height (m) 
No. trees plot"' 
Canopy closure 

Yl-s 

2 
4 

8-13 
0.5 

3-5 
300-500 

85-95 

Yl-p 

4 
4 

4-10 
0.5 

2.5-4.5 
250-400 

35-98 

Stand 

Y2 

8 
8 

6-11 
0.5-2.0 

& mixed 
3-5 

350-450 
80-95 

type 

OW-n 

2 
2 

60 
0.5-1.0 

5-10 
120-265 

90-95 

OW-h 

13 
12a 

50-80 
1-3 

10-20 
40-110 
45-80 

OP 

4 
4 

50-80 
3-5 

15-20 
40-80 
50-85 

a One plot was clear cut before the 1987 observations were started. 
b In 1986. 
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Taxonomy and nomenclature are according to Moser (1983) and Jülich (1984), except for 

the taxonomy of Dermocybe (Fr.) Wünsche where H0iland (1984) was followed. 

Comparison of the mycofloristic composition of the plots was principally based on 

differences in species composition, and relatively little weight was given to differences 

in numbers of carpophores of each species by using transformed figures, in which 0 

means 0 carpophores, 1 means 1-9 carpophores, 2 means 10-99 carpophores, 3 means 

100-999 carpophores and 4 means more than 1000 carpophores. For all comparative 

analyses used, the total number of carpophores of each species in the most productive 

year was taken. 

To identify the mycofloristic associated groups of plots, the transformed data 

matrix was subjected to a Bray and Curtis simple ordination technique, after Van der 

Maarel (1979), using a matrix of indices of dissimilarity. Indices of dissimilarity of the 

transformed data matrix were calculated according to S0rensen (Van der Maare!, 1979). 

The use of other indices of dissimilarity according to Jaccard, Barkman, Van der 

Maarel and Moravec (Whittaker, 1973) hardly influenced the results. 

In addition, the transformed data matrix was subjected to a divisive clustering 

technique known as two-way indicator species analysis (TWINSPAN). TWINSPAN is 

based on a reciprocal averaging algorithm, and divisions are made on the basis of 

species presence and abundance (Van Tongeren, 1987). 

Preferential occurrence of fungal species in one (group of) stand type(s) was 

tested using the Chi square test (Snedecor & Cochran, 1980). Species which occurred 

more frequently in one (group of) stand type(s) at P<2.5% were referred to as 

differential species for that (group of) stand type(s). Species which occurred in only 

one (group of) stand type(s) were referred to as exclusive species for that (group of) 

stand type(s). Exclusive species may therefore occur in one plot only and are not 

automatically differential at the same time. 

A second Bray and Curtis ordination was carried out on the basis of composition 

and cover percentages of the green vegetation. The cover percentages were transformed 

to a scale ranging from 0 to 9 according to Van der Maarel (1979). 

The relation between the composition of the mycorrhizal mycoflora and the 

composition of the green vegetation was studied using a matrix of indices of dissimila­

rity after S0rensen, based on the presence/absence of species only. One matrix was 

based on the mycorrhizal mycoflora in the plots and the other was based on the green 

vegetation. The index of dissimilarity between two stand types was calculated as the 

mean of the indices of dissimilarity between the plots of the one stand type with those 

of the other stand type. Subsequently the indices of dissimilarity which were based on 

the mycorrhizal mycoflora were compared with those based on the green vegetation. 

In October 1987 ten root samples were randomly taken in each plot from the 

upper 13 cm with a 2.5 cm diameter auger (volume 63.8 cm-'), after removing the litter 
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layer. The major part of litter and sand was removed with a 1 mm sieve. Roots were 

subsequently cleaned in a small glass box containing water. During cleaning, the dead 

roots (defined as roots which are desiccated, shrunken and highly fragile) were 

removed. After cleaning, the roots were stored in a glutaraldehyde buffer (Alexander & 

Bigg, 1981) until further analysis. 

The root length in each soil sample was determined and the number of root tips 

was counted. The root tips were divided into non-mycorrhizal and mycorrhizal. Non-

mycorrhizal root tips were divided into short (<2 cm) and long (>2 cm) roots. The 

mycorrhizas were classified on the basis of their appearance. The first class of 

mycorrhizas (the "well-developed" mycorrhizas), possessed a smooth, relatively thick 

mantle, so that root cells were not visible at a magnification of 12x. The second class 

of mycorrhizas ("poorly-developed") either possessed a dented and more or less 

wrinkled mantle or no visible mantle. No attempts were made to identify the mycorrhi­

zas in any way. All root data were recalculated to a volume of 100 cm-'. 

5.3 Results 

Number of species, carpophores and dry weight production 

The number of carpophores and the number of species per plot were considerably 

higher for the young plots than for the old plots, except for the OW-n plots (fig. 12). 

The smallest number of carpophores was found in the OW-h plots and the smallest 

number of species in the OP and OW-h plots (table 10). In both years the number of 

species in the Yl-s plots was higher than in the Y2 and Yl-p plots, and in the Y2 

plots higher than in the Yl-p plots. 

The carpophore dry weight production per plot roughly coincided with the number 

of carpophores. The average carpophore dry weight in the Yl-s stand types was 1.2-5.2 

times higher than in the other young stand types, and 1.6-61 times higher than in the 

other old stand types (table 10). 

The number of carpophores differed considerably between the two years in all 

stand types, showing a mean decrease of 130%, 310% and 310% for the OW-h, OP and 

Yl-p plots, respectively, and a mean increase of 120%, 140% and 290% for the OW-n, 

Yl-s and Y2 plots, respectively. The number of species was higher in 1987 than in 

1986, viz. 130% for the old plots and 160% for the young plots. 
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Figure 12. The total number of species and maximum number of carpophores per plot. 
For abbreviations of the stand types see table 8. 

Species 

A total of 42 species was found (table 11 ). Five species were found in all stand types 

(table 12). A number of 17 species appeared to occur significantly (P<2.5%) more in one 

(group of) stand type(s) than in the other stand types (=differential species). Only 

three of these species occurred in the old plots, viz. Cortinarius obtusus, Lactarius 

hepaticus and Russula ochroleuca. The other 14 species appeared to be differential for 

one or more young stand types. Of the differential species, 11 were also classified as 

exclusive species. In addition, 13 exclusive species were found which were not 

differential, all occurring in the young plots. Tricholoma was exclusively present with 4 

species in plots of the Yl-s stand type, and absent in the other stand types. Of the 

young stand types, Yl-s had much more exclusive species than the other types. Of the 

five species occurring in all plots Laccaria proximo and Paxillus involutus were found 

in all stand types without showing preference for one stand type. 

Composition of the mycoflora 

After three divisions the TWINSPAN analysis resulted in six clusters (table 11). The 

first division separated the young and old plots. 

In the young plots, the second division separated the two Yl-p plots which were 

situated on former arable land (cluster 1, table 11), and the third division separated 

the Yl-s plots (cluster 2) from the other young plots (cluster 3). The two Yl-p plots 
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TABLE 11 
Mycorrhizal mycoflora of the plots manually arranged. Figures refer to transformed 
numbers of carpophores, in which 0 means 0 carpophores, 1 means 1 to 9 carpophores, 
2 means 10 to 99 carpophores, etc. Plots with the same cluster numbers (third line) 
belong to identical clusters according to the TWINSPAN cluster (contd. facing page) 

Stand age: 
Plot number: 
Stand type: 
TWINSPAN cluster: 

? Hebeloma velutipes 
? Cortinarius saniosus 
-* Suillus luteus 
- Tricholoma équestre 
- Tricholoma imbricatum 
- Lactarius glyciosmus 
-* Boletus edulis 
- Tricholoma portenlosum 
? Inocybe mixtilis 
-* Amanita gemmata 
-* Tricholoma robustum 
-* Cortinarius mucosus 
-* Chroogomphus rutilus 
= Hebeloma mesophaeum 
= Inocybe lacera 
- Hygrophorus hypolhejus 
? Inocybe carpta 
? Inocybe brevispora 
+ Laccaria laccata 
- Rhizopogon luteolus 
? Cortinarius fusisporus 
-* Coltricia perennis 
= Amanita rubescens 
? Cortinarius flexipes 
? Inocybe umbrina 
-* Suillus bovinus 
- Amanita muscaria 
- Comphidius roseus 
-* Dermocybe croceocona 
-* Suillus variegatus 
- Cortinarius obtusus 
? Inocybe lanuginosa 
+ Russula emetica 
-* Dermocybe semisanguinea 
+ Scleroderma cilrinum 
- Lactarius rufus 
= Lactarius helvus 
+ Laccaria proxima 
= Paxillus involulus 
+ Xerocomus badius 
+ Lactarius hepalicus 
+ Russula ochroleuca 
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TABLE 11 (contd.) 
analysis. The change in occurrence during this century in the Netherlands (Arnolds. 
1985a) is indicated left of the list of species: -*: significant decrease (P<5%), -: 
insignificant decrease, =: no change, +: insignificant increase and ?: change unknown. 

Abbreviations of the stand types: ls=Yl-s, lp=Yl-p, 2=Y2, Wh=OW-h, Wn=OW-n, P=OP. 

OLD Stand age 
31 32 43 45 46 48 52 47 50 42 51 53 44 56 49 57 55 41 54 Plot number 

WnWnWhWh PWhWh PWhWhWhWh PWhWhWhWh PWh Stand type 
4 4 5 5 5 5 5 5 6 5 5 5 5 5 5 5 6 5 5 TWINSPAN cluster 
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1 

1 
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3 
2 

2 
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1 
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1 
3 
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1 
2 
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1 
1 
1 
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1 
1 
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1 1 
1 2 
1 1 
2 2 
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2 
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2 
1 

2 
1 

1 

1 1 
1 

2 
1 

1 

2 

1 
2 

2 

1 
1 

1 
2 

2 1 4 
2 

Hebeloma velutipes 
Cortinarius saniosus 
Suillus luteus 
Tricholoma équestre 
Tricholoma imbricatum 
Lactarius glyciosmus 
Boletus edulis 
Tricholoma portentosum 
Inocybe mixtilis 
Amanita gemmata 
Tricholoma robustum 
Cortinarius mucosus 
Chroogomphus rutilus 
Hebeloma mesophaeum 
Inocybe lacera 
Hygrophorus hypothejus 
Inocybe carpta 
Inocybe brevispora 
Laccaria laccata 
Rhizopogon luteolus 
Cortinarius fusisporus 
Coltricia perennis 
Amanita rubescens 
Cortinarius flexipes 
Inocybe umbrina 
Suillus bovinus 
Amanita muscaria 
Gomphidius roseus 
Dermocybe croceocona 
Suillus variegatus 
Cortinarius obtusus 
Inocybe lanuginosa 
Russula emetica 
Dermocybe semisanguinea 
Scleroderma citrinum 
Lactarius rufus 
Lactarius helvus 
Laccaria proxima 
Paxil lus involutus 
Xerocomus badius 
Lactarius hepalicus 
Russula ochroleuca 
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which were situated on drained moor-peat were classified in the same cluster as the Y2 

plots (viz. cluster 3). 

In the old plots the two OW-n plots were separated in the second division 

(cluster 4) and in the third division two OW-h plots (cluster 6) were singled out from 

the rest of the OP + OW-h plots (cluster 5). However, this latter division is doubtful 

because there were no clear differences between the mycorrhizal mycoflora of the plots 

of cluster 5 with those of cluster 6 (table 11). 

Most TWINSPAN clusters were also recognizable in the Bray & Curtis ordination 

(fig. 13). However, in the ordination graph, TWINSPAN cluster 6 was not clearly 

separated from TWINSPAN cluster 5. It also appeared that the two Yl-p plots which 

were grouped together with the Y2 plots in cluster 3, are ordinated intermediately 

between the other Yl-p plots (cluster 1) and the Y2 plots. 

The separation of the OW-n plots from the other old plots by TWINSPAN was 

clear in the ordination diagram. From the ordination diagram can be concluded that 

these plots contain a mycoflora which is more similar to the Y2 plots than to the 

other old plots. 

The ordination diagram and the TWINSPAN analysis did not show any relation 

with soil type of the old plots. 

5ri3 
Stand Type 

V Y1-S 

IV 

Yi-p n Y2 A OP x OW-h s ow-n 

Figure 13. Ordination of the plots based on the mycoflora. demarcates clusters 
recognized by TWINSPAN and roman numerals indicate TWINSPAN cluster numbers (cf. 
table 11). 
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Mycorrhizas 

The root length and the number of mycorrhizas were higher in the Y l - s and Y2 plots 

than in the OP and OW-h plots (table 13). The Y l - p plots showed less mycorrhizas and 

a lower root length than the other young plots, but they were still higher than those 

of the OP and OW-h plots. The root length and the mycorrhiza parameters of the 

OW-n plots were comparable to those of the Y l - s and Y2 plots. On average 1.6 to 2.0 

mycorrhizas occurred per cm root. 

On the other hand, the mycorrhizal frequency and the percentage of well-

developed mycorrhizas showed small differences between the stand types. In all stand 

types the mycorrhizal frequency was on average higher than 96%. 

The root length and the number of mycorrhizas showed very high standard 

deviations; those of the number of mycorrhizas per cm root and of the mycorrhizal 

frequency were much smaller. 

TABLE 13 
Root length and total number of mycorrhizas per 100 cm soil, number of mycorrhizas 
per cm root length, mycorrhizal frequency and number of well-developed mycorrhizas 
relative to the total number of mycorrhizas of the soil samples (± S.D.). In cases of 
two observations the range is placed between brackets. For abbreviations of the stand 

types, see table 8. 

Stand 
type 

Y l - s 
Y l - p 
Y2 
OW-n 
OW-h 
OP 

Root length 
(cm) 

137+26 
78±39 

104±34 
135 (28) 
46 + 21 
71 ±21 

Total no. 
mycorrhizas 

250±53 
138+66 
207+67 
228 (16) 

90 ±50 
J14 ±38 

No. 
cm 

mycorrhizas/ 
root length 

1.9±0.3 
1.9±0.4 
2.0±0.4 
1.7 (0.2) 
2.0±0.5 
1.6±0.3 

Mycorrhizal 
frequency (%) 

99.9±0.1 
98.8± 1.7 
99.6±0.5 
100 (0) 

96.7±8.1 
99.8 + 0.2 

Well-developed 
mycorrhizas (%) 

12 + 5.0 
20 + 6.8 
21+5.6 
22 (3.0) 
12±6.8 
22 + 2.4 

Relation with changes in the Dutch mycoflora 

The change in occurrence of the relevant species during this century in the Nether­

lands is indicated in table 11 (data after Arnolds, 1985a). It appeared that declining 

species were more common in young stand types (especially in the Y l - s type) than in 

old stand types OP and OW-h (fig. 14). In the Y l - s , Y l - p and Y2 plots 18, 6 and 11 

declining species were found, respectively, and in the OP and OW-h plots 1 and 2 

declining species, respectively. In the two old OW-n plots 8 declining species were 

found. In the OP plots the number of increasing species was higher than in the OW-h 

plots. 
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No. Species 

30 

25 -

Y1-s Y1-p Y2 OP OW-h OW-n 

Stand Type 

Species showing: 

IHH unknown change 

I I insign. increase 

^M no change 

insign. decline 

significant decline 

No, Carpophores 

3500 
Species showing: 

iHÜ unknown change 

I I insign. increase 

^ ^ no change 

insign. decline 

significant decline 

Y1-s Y1-p Y2 OP OW-h OW-n 

Stand Type 

Figure 14. The occurrence of species classified according to their change this century 
in the Netherlands (Arnolds, 1985a). For abbreviations of the stand types see table 8. 
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TABLE 14 
Green vegetation of the plots, arranged in the same order as in table 11. Figures refer 
to cover percentages: r: cover <1%, 1-2 individuals, +: cover <1%, 3-100 individuals, p: 
cover <]%, >100 individuals, a: cover 1-2%, b: 2-5%, 2a: 5-12.5%, (contd. facing page) 

Stand age: YOUNG 
Plot number: 12 11 4 3 2 1 25 24 22 21 23 26 27 13 14 28 
Stand type: lp lp Is Is Is Is 2 2 2 2 2 2 2 lp lp 2 

Canopy closure (%): 35 97 95 90 90 85 95 80 85 95 95 95 90 95 98 90 
Shrub layer cover (%): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Herb layer cover (%): 50 5 <1 <1 <1 <1 1 50 11 33 54 50 55 80 65 17 
Moss layer cover (%): 80 20 5 8 7 4 15 10 37 39 43 80 33 5 1 55 

Holcus lanatus 2a b p 
Agrostis tenuis 2a 2a 
Rumex acetosella 2a 
Polytrichum piliferum 2b b 2a + 
Campylopus introflexus a b + 2a + 2 + 
Cladonia spp. + + + + + a 
Vaccinium myrtillus + + a 2b 
Rubus fruticosus 2a b 
Polytrichum formosum 5a + a r 2a 
Deschampsia flexuosa 2a + a 3 2a 3 3 3 4 
Dicranum scoparium p + 3 2a 3 3 2a 2a 2a 
Hypnum cupressiforme + a a a 3 3 3 3 
Calluna vulgaris + + + a a a + 2a 2a 2a 2a 
Erica tetralix + p 2a 2a + 
Molinia caerulea 4 3 
Dryopteris carthusiana r r r 
Dryopteris dilatata a 
Corydalis claviculata + a r 
Galium saxatile r 
Pleurozium schreberi 2a 
Empetrum nigrum 
Goodyera repens 
Stellaria media 
Senecio sylvaticus 
Ilex aquifolium 
Chamaerion angustifolium 
Agrostis stolonifera 
Agrostis capillaris 
Festuca ovina 
Carex pilulifera 
Juncus squarrosus 
Vaccinium vitis-ideae + 
Leucobryum glaucum 
Frangula alnus 
Prunus serotina 

Species, occurring in one plot only: Aegopodium podagraria (50; r), Carex arenaria (53: 
2b), Cerastium fontanum (41: +), Galeopsis tetrahit (49: +), Hieracium laevigatum (45: r), 
Juncus effusus (41: +), Nardus stricta (42: a), (contd. facing page) 
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TABLE 14 (contd.) 
2b: 12.5-25%, 3: 25-50%, 4: 50-75%, 5a: 75-90% and 5b: 90-100%. For abbreviations of 

the stand types see table 11. 

OLD Stand age 
31 32 43 45 46 48 52 47 50 42 51 53 44 56 49 57 55 41 54 Plot number 

WnWnWhWh PWhWh PWhWhWhWh PWhWhWhWh PWh Stand type 

95 90 70 50 50 55 80 70 80 45 70 40 55 45 80 45 58 85 60 Canopy closure (%) 
0 0 0 0 0 0 <1 0 0 0 5 45 0 0 0 0 0 0 0 Shrub layer cover (%) 
2 <1 58 79 70 89 85 75 67 77 75 45 54 95 76 68 93 43 85 Herb layer cover (%) 

25 17 48 29 60 18 80 10 16 8 15 70 49 7 26 26 9 48 80 Moss layer cover (%) 

Holcus lanatus 
r Agrostis tenuis 

p Rumex acetosella 
Polytrichum piliferum 
Campylopus introflexus 
Cladonia spp. 
Vaccinium myrtillus 
Rubus fruticosus 
Polytrichum formosum 
Deschampsia flexuosa 
Dicranum scoparium 
Hypnum cupressi/orme 
Calluna vulgaris 
Erica tetralix 
Molinia caerulea 
Dryopteris carthusiana 
Dryopteris dilatata 
Corydalis claviculata 
Galium saxatile 
Pleurozium schreberi 
Empetrum nigrum 
Goodyera repens 
Stellaria media 
Senecio sylvaticus 
Ilex aquifolium 
Chamaerion angustifolium 
Agrostis stoloni/era 
Agrostis capillaris 
Festuca ovina 
Carex pilulifera 
Juncus squarrosus 

2b Vaccinium vitis-ideae 
+ + Leucobryum glaucum 

r 3* Frangula alnus 
a r Prunus serotina 

Polytrichum juniperinum (1: b), Rumex aecetosa (42: r), Sambucus nigra (50: r), Sorbus 
aucuparia (shrub, 51: b). 

In shrub layer. 
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Composition of the green vegetation and its relation to the mycofloristic composition 

Data on the green vegetation are presented in table 14. The most common species were 

Deschampsia flexuosa, Calluna vulgaris, Dicranum scoparium and Hypnum cupressiforme. 

Only C. vulgaris was found in all stand types. 

The Yl-s and OW-n stand types were characterized by very low herb layer cover 

percentages and the presence of Cladonia spp. In the Y2 plots, less species occurred 

than in the old plots but no species occurred which differentiated them from the old 

stand types. The vegetation of the two Yl-p plots on drained moor-peat consisted 

mainly of Molinia caerulea, Calluna vulgaris and Erica tetralix. The vegetation of the 

two other Yl-p plots, which were situated on formerly arable land, differed strongly 

from all other plots (table 14). 

The cover percentage of the herb layer was negatively correlated with the number 

of carpophores and the number of fungal species (fig. 16). The ordination on the basis 

of the green vegetation (fig. 15) separated the stand types less clearly, but in roughly 

the same way compared to the ordination on the basis of the mycoflora (cf. fig. 13). 

The indices of dissimilarity between the stand types based on the green vegetation 

were highly correlated with those based on the mycoflora (P<1%, fig. 17). 

D X 

a n 
XD 

< ^ x > 

Stand Type 

V Y1-S Y1-p D Y2 A OP X OW-h OW-n 

Figure 15. Ordination of the plots based on the green vegetation. For abbreviations of 
the stand types see table 8. 
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Herb Layer Cover % 

100r 

80 

60 

40 

20 

y = -"lOx+110 

( r = -.56 

W W . I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i f I I I I I 4JLl-ILH'T'Lt-' I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7,0 8.0 9.0 

Herb Layer Cover % 

100 

log No, Carpophores 

B 

y = -4.0X+85 

Number of Fruiting Species 

Figure 16. The relation between the herb layer cover percentage and (A) the maximum 
number of carpophores (elog) and (B) the number of fruiting species per plot. 
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ID (Green Vegetation) 
100-

60 

40 

20 

•a 

• D 

y = .77X+24 

( r = .83 ) 

20 40 
I I ! I ! 

60 
! I I I I I 

80 100 

ID (Mycoflora) 

Figure 17. Indices of dissimilarity (after Sçfrensen) between all possible combinations of 
stand types, based on the mycoflora data, in relation to those based on the green 
vegetation data. 

5.4 Discussion 

Differences in mycorrhizal mycoflora were not only observed between stands of 

different age but also between stand types with the same tree age. The differences in 

the mycoflora must therefore be related to differences in the soil. This might have its 

origin in the humus content of the soil, because (1) the Yl plots almost completely 

lacked a humus layer in contrast to the Y2 plots, and (2) the OW-n plots had a humus 

layer and mycoflora which was more comparable to the young than to the other old 

plots. 

Several authors observed or suggested a negative relationship between the 

presence of humus and the growth or occurrence of mycorrhizas and roots. Alvarez el 

al. (1979) observed a higher survival rate and better growth of Abies concolor (Gord. & 

Glend.) Lindl. seedlings in mineral soil without than with organic layers, and attributed 

this to the better mycorrhiza development in mineral soil without organic layers. 

Bakshi et al. (1972) also attributed the poor root growth and poor mycorrhizal 

development of Abies pindrow Royle to the presence of thick humus layers. Dighton el 

al. (1986) reported a relation between the succession of mycorrhizal fungi and tree 

canopy closure, and concluded that this might be causally related to the accumulation 
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of litter. However, in the present study the young plots had a much higher canopy 

closure than the old plots (table 9), indicating that the canopy closure is not directly 

related to the succession of mycorrhizal fungi. 

The richer mycorrhizal mycoflora of the young plots compared to the OP and 

OW-h plots, as well as the presence of several species in the young plots which have 

shown a decline in the Netherlands, indicate relatively favourable conditions for 

fructification of mycorrhizal fungi in the young stands. This agrees with observations 

made in a previous study (Termorshuizen & Schaffers, 1987), where indications were 

obtained that nitrogen deposition and sulphur dioxide severely affect the occurrence of 

carpophores of mycorrhizal fungi in old stands, but not in young stands. This apparent 

difference in sensitivity to air pollution was attributed to differences in the intercepti­

on and accumulation of air pollutants in the soil and in a different need for nitrogen 

(Termorshuizen & Schaffers, Ch. 6). 

Interestingly, several declining species, which were found to be differential for 

the young stands in the present study, are also reported to be present in 20 to 100-

year-old stands of P. sylvestris in Estonia and Finland (table 15) (Hintikka, 1988; 

Kalamees & Silver, 1988). Hintikka (1988) reported many more carpophores in 20 to 30-

year-old stands of P. sylvestris than in 5 to 15-year-old stands. The differences 

between the mycorrhizal mycofloras in Finland and Estonia with the mycorrhizal 

mycoflora in the Netherlands might be related to differences in nitrogen deposition, 

which is much higher in the latter country (Buijsman et al., 1987). 

The differences in the abundance of carpophores between the young and old plots 

are also likely to be related to the lower root density in the old plots. The lower root 

TABLE 15 
Presence (+) or absence (-) of some selected mycorrhizal fungal species in stands of 
different ages of Pinus sylvestris in Finland (Hintikka, 1988), Estonia (Kalamees & 

Silver, 1988) and the Netherlands (present research, Termorshuizen). 

Stand age 

Boletus edulis 
Chroogomphus rutilans 
Coltricia perennis 
Cortinarius mucosus 
Hygrophorus hypothejus 
Lactarius rufus 
Suillus bovinus 
Suillus luteus 
Suillus variegatus 
Tricholoma portentosum 

5-15 

-
-
-
-
+ 
+ 
+ 
+ 
-

Finland 

20-30 

+ 
+ 

-
+ 
+ 
+ 
+ 
+ 
+ 
-

30-50 

+ 
-
+ 
+ 
+ 
+ 
+ 
-
+ 
+ 

>70 

+ 
-
+ 
-
+ 
+ 
-
+ 
+ 

Estonia 

25 

+ 
+ 
-
+ 
+ 
+ 
+ 
+ 
-

80-100 

+ 
+ 
-
+ 
+ 
+ 
+ 
+ 
+ 

Netherlands 

5-10 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

50-80 

-
-
-
-
+ 
+ 
+ 
+ 
-
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density might be caused by silvicultural treatments, which resulted in a lower canopy 

closure of the old stands (table 9). This is affirmed by the observation that the two 

old plots of stand type OW-n had a high canopy closure (table 9) and a high root 

density (table 13). 

In addition to the possible influence of the humus layer on the composition of 

the mycoflora, the negative correlations of the herb layer cover with the abundance of 

carpophores and the number of fruiting species also suggest a more direct influence of 

plants on fungi, e.g. by competition or allelopathy. However, the most common plant 

species occurring in the old plots, Deschampsia flexuosa (L.) Trin., was quite common 

in some young plots as well, where many carpophores were found. The rich mycorrhizal 

mycoflora in Poland, in combination with the presence of a rich herb layer (Rudnicka-

Jezierska, 1969), also indicates that inhibition of mycorrhizal mycoflora by competition 

or allelopathy of higher plants is not a general phenomenon. It is therefore more likely 

that both the green vegetation and the mycorrhizal mycoflora are influenced by the 

same soil factors which change during succession. 

The mycorrhizal succession seems to progress hand in hand with the succession of 

the green vegetation (fig. 17). The same was concluded by Arnolds (1981), who studied 

the coenology of saprophytic macrofungi in grasslands and heathlands. As Arnolds 

(1981) already concluded, it seems pointless to introduce an independent syntaxonomic 

system for fungi as was proposed by Darimont (1973). On the other hand, it seems 

more appropiate to compose an integrated syntaxonomic system for fungi, plants and 

probably also for other organisms, which is likely to provide more information about 

the environment. 

Dighton & Mason (1985) ascribed 'r' strategies to the 'early-stage' fungi and 'K' 

strategies to the 'late-stage' fungi. According to them 'r' properties of 'early-stage' 

fungi are the production of relatively small carpophores, rapid mycelial growth, absence 

of mycelial strands and use of inorganic material. In contrast, 'late-stage' fungi would 

produce larger carpophores, show slower mycelial growth, form mycelial strands and use 

mainly organic material. 

The 'r' and 'K' attributes of 'early-stage' and 'late-stage' fungi as formulated by 

Dighton & Mason (1985), do not agree with the characteristics of the species which 

were found in the young and old plots in the present study. The carpophores were 

largest in the young stands (table 10), and many species from the young plots form 

rhizomorphs abundantly (e.g. Tricholoma species, cf. Godbout & Fortin, 1985). However, 

it should be questioned whether carpophore weight, or size, is related to ' r /K' 

attributes of a fungal species, instead of size and numbers of spores produced. 

Furthermore, Abuzinadah & Read (1989) showed that the 'early-stage' fungus Hebeloma 

crustuliniforme (Bull.:Fr.) Quel, was much more effective in transferring protein-N than 

the 'late-stage' fungi Amanita muscaria and Paxillus involutus. 
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On the basis of the present research it can be concluded that succession of 

mycorrhizal fungi is not only limited to the first years after planting, within which the 

'early-stage' and 'late-stage' fungi are distinguished (Fox, 1986), but also to the older 

development stages. It seems that the composition of the mycorrhizal mycoflora is not 

in the first place related to the ageing of trees, but rather to the ageing of the forest 

soil. In successive rotations other fungal species are therefore expected to behave as 

'early-stage' and 'late-stage' fungi. However, much more research is needed to elucidate 

the processes underlying mycorrhizal succession in more detail. 

5.5 Summary 

The composition of the mycorrhizal mycoflora was investigated in 35 stands of Pinus 

sylvestris L. throughout the Netherlands. Three types of young (4-13 years) and old 

(50-80 years) stands were selected on the basis of number of rotations and soil type. 

The young stands had either grown spontaneously on drift sands (1st rotation, type 

Yl-s), were planted and 1st rotation (type Yl-p) or planted and 2nd or 3rd rotation 

(type Y2). The old stands were distinguished on the basis of their occurrence on soils 

with or without a pronounced podsol (type OP: old with podsol and two OW types: old 

without podsol). Stands of type OW-n were characterized by a very thin humus layer 

and almost complete absence of a herb layer, in contrast to the stands of type OW-h, 

where a well-developed herb and humus layer were present. 

A plot measuring 1050 m2 within each stand was searched for carpophores of 

mycorrhizal fungi during the autumns of 1986 and 1987. Ten soil samples per plot were 

taken in October 1987 in order to assess the mycorrhizal status of the tree roots. 

The composition of mycorrhizal mycoflora in the different plots was subjected to 

a TWINSPAN cluster analysis and a Bray & Curtis ordination. It appeared that the plot 

groupings generated by these analyses largely parallelled the stand types, indicating 

that each stand type has its own mycoflora. Differences in mycofloristic composition 

between stand types were parallelled by differences in the composition of green 

vegetation. 

The young stand types had 3.5-27 times more carpophores and 1.4-6.8 times more 

species than the OP and OW-h stand types. The OW-n stand type however, was more 

similar to the Y2 stand type than to the other old stand types. Considerable differen­

ces in species composition between the Yl and Y2 stand types were observed. It is 

concluded that the succession of mycorrhizal fungi is not primarily influenced by 

ageing of the trees, but rather by changes in the soil. 

The results were compared with data on changes in the occurrence of fruiting 

species of mycorrhizal fungi in the Netherlands during this century. It appeared that 
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species which have declined according to these data were more frequent in the young 

plots than in the OP and OW-h plots. However, these species are reported to be 

frequent in old stands of P. sylvestris in Estonia and Finland. It is argued that this 

difference is related to the high nitrogen deposition in the Netherlands. 
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Chapter 6 

THE DECLINE OF CARPOPHORES OF MYCORRHIZAL FUNGI IN STANDS 

OF PINUS SYLVESTRIS L. IN THE NETHERLANDS: POSSIBLE CAUSES 

Submitted to Nova Hedwigia, authors A.J. Termorshuizen and A.P. Schaf fers. 

6.1 Introduction 

The decline of carpophores of mycorrhizal fungi during this century in the Netherlands 

has been described in detail by Arnolds (1985, 1988). From other countries in Europe 

such a decline has also been reported (Derbsch & Schmitt, 1987; Fellner, 1990; see also 

Arnolds, in preparation), and lists of threatened species have been published (Derbsch 

& Schmitt, 1984; Winterhoff, 1984; Winterhoff & Kriegisteiner, 1984; Wojewoda & 

Lawrynowicz, 1986; Arnolds, 1989a). 

The occurrence of carpophores of mycorrhizal fungi appeared to be closely related 

to the amount of air pollution and to tree vitality (Schlechte, 1986; Termorshuizen & 

Schaffers, 1987; Fellner, 1990). This would give the carpophores a bio-indicative value 

for the amount of air pollution and/or the vitality of a forest (Dörfelt & Braun, 1980; 

Fellner, 1990). However, Jansen & De Nie (1988) and Termorshuizen & Schaffers (1987) 

showed that the age of the forest was a complicating factor: younger stands of 

Pseudotsuga menziesii (Mirb.) Franco and Pinus sylvestris L. appeared to have a 

different and richer mycoflora than older stands. 

The cause of the decline of carpophores is usually considered to be related to air 

pollution or to decline of tree vitality, but the exact mechanism is unknown. Generally, 

two hypotheses have been proposed (Termorshuizen & Schaf fers, 1987). The first one 

states that air pollution affects the photosynthetic apparatus and the transport of 

photosynthates, decreasing the supply of carbohydrates to mycorrhizal fungi. The 

second hypothesis states that air pollution affects the soil environment, which may 

directly or indirectly affect mycorrhizal fungi. Termorshuizen & Schaffers (1987) found 

indications that both means of action significantly affect mycorrhizal fungi, without 

indicating the relative importance of the hypotheses. 

In our previous article (Termorshuizen & Schaffers, 1987) we found negative 

effects of air pollution on the occurrence of carpophores in mature stands, but not in 

young stands of P. sylvestris. In this study we report observations in stands of P. 

sylvestris of different age in the Netherlands during 1985-1987. Our aim was to gain a 
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better insight into the factors which regulate the occurrence of carpophores of 

mycorrhizal fungi. 

6.2 Material & methods 

Selection of stands 

Stands of Pinus sylvestris L. were selected throughout the Netherlands (fig. 18). 

Selection was confined to homogeneous stands on sandy soils beyond the direct 

influence of ground water, containing as few other ectomycorrhizal plants as possible. 

Only stands of a good provenance were selected. It is well known that at the 

beginning of this century seed of P. sylvestris of a bad provenance was regularly used, 

especially in the southern part of the Netherlands (Huisman, 1983). However, it is not 

registered. We therefore used a method after Van Goor (pers. comm.) which is based on 

the assumption that provenances which are well-adapted to local circumstances can be 

recognized as follows: a) the shape and architecture of the trees within a stand should 

be homogeneous, b) the stems of the individual trees should be straight, c) annual stem 

length increment should be more or less regular, especially in the first 15 years, d) 

reversible chlorosis of the needles during winter should be absent and e) absence of 

spontaneous death of individual trees. We discarded the last criterion of Van Goor's 

method, because of all criteria, we suspected this would significantly overlap with our 

problem. 

In 1985, 8 young (5-10 years) and 11 old (50-80 years) stands were selected. 

Another 6 old stands were selected in 1986. Some of their characteristics are listed in 

table 16. In 1987, one of the stands under investigation had been accidently clear cut. 

Because 10 old stands were investigated over three years and 16 old stands over two 

years, analyses over the three and two years will be presented separately for the old 

stands. 

TABLE 16 
Some general characteristics of the young and old plots. 

Age 

Young Old 

No. Plots 8 l l -17 a 

Plot Size (m2) 1050 1050 
Age (yr) 5 - 1 0 5 0 - 8 0 
Height (m) 2 - 3 . 5 1 3 - 2 2 
Canopy Closure (%) 85 - 98 40 - 75 
Generation 2nd-3rd lst-3rd 

a In 1985 eleven plots were selected and in 1986 six additional plots; in 1987 one plot 
had accidently been clear cut. 

- 76 -



Figure 18. The location of young (+) and old plots (0) and of three meteorological 
stations (x). 

Two old stands which were included in a former study (Termorshuizen & Schaffers, 

1987 and Ch. 5) were omitted in this study due to large differences in soil characteris­

tics and tree growth, compared to the other old plots. 

All stands had been planted and a dense herbal vegetation with a high coverage 

of Deschampsia flexuosa (L.) Trin. existed in most plots. Data on the vegetation is 

presented in more detail in Termorshuizen (Ch. 5). 

Within each stand a plot was selected measuring 1050 m2. Undergrowth possessing 

ectomycorrhizas was removed in all plots. 
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Observations on carpophores 

The plots were systematically searched each year in October and November three (1985, 

1986) or four (1987) times for carpophores of mycorrhizal fungi. In order to prevent 

re-counting the carpophores, the caps were removed. Taxonomy and nomenclature are 

according to Moser (1983) and Jülich (1984) except for the taxonomy of Dermocybe Fr. 

(Wünsche) where H0iland (1984) was followed. Of each species the mean dry weight was 

determined on 10 to 50 carpophores. 

We used the number and dry weight production of carpophores and the number of 

fruiting species as carpophore parameters. The maximum number of carpophores is 

defined as the cumulative number of carpophores per species of the most productive 

year. Analogously, the maximum (dry weight) production of carpophores is defined here 

as the cumulative dry weight production of carpophores per species of the most 

productive year. 

Observations on mycorrhizas 

After removing the litter layer, ten root samples were randomly taken from each plot 

in October 1987 from the upper 13 cm with a 2.5 cm diameter auger (volume 63.8 cm-'). 

The major part of litter and sand was removed with a 1 mm sieve. Roots were 

subsequently cleaned in a small glass tray containing water. The dead roots (defined as 

roots which are desiccated, shrunken and highly fragile) were removed during cleaning. 

After cleaning, the roots were stored in a glutaraldehyde buffer (Alexander & Bigg, 

1981) until further analysis. 

In each root sample the root length and the number of non-mycorrhizal and 

mycorrhizal root tips were determined. It was necessary to develop a working definition 

for mycorrhizal roots because intermediate types were observed between typical 

mycorrhizal roots (with a clearly visible mantle and aerial mycelium) and non-mycorrhi­

zal roots (with many, approx. 5 mm long root hairs). Short roots with one or two 

poorly developed root hairs always possessed a Hartig net between some of the cortical 

cells. Short roots with three or more poorly developed root hairs often had no Hartig 

net. Therefore, all short roots possessing less than three root hairs were called 

mycorrhizal, and those with more than two non-mycorrhizal. Non-mycorrhizal root tips 

were divided into short (<2 cm) and long (>2 cm) roots. 

The mycorrhizas were classified on the basis of their appearance. The first class 

(so-called well-developed mycorrhizas) possessed a smooth, relatively thick mantle, so 

that the root cells were not visible under a 12x magnification. The poorly-developed 

second class mycorrhizas either possessed a dented and more or less wrinkled mantle or 

no distinct mantle. 

Apart from Cer.ococcum geophilum Fr. no attempts were made to identify the 

mycorrhizas in any way. All root data were recalculated to a volume of 100 cm3. 
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Measurement of tree vitality 

Each year in July or August parameters of the individual trees were measured: tree 

girth, tree class, crown width, crown density (estimated percentage of the crown 

projection), needle occupation, discoloration of needles, recovery shoots, resin flow, 

fungal diseases, insect pests and death or bending of the leader shoot. Following the 

method of the Dutch State Forestry Service (Anonymous, 1987), the needle occupation 

was used as indicator of the tree vitality. The needle occupation is defined as the 

maximum number of needles occurring on at least two branches, expressed as the 

cumulated needle occupation percentage per needle-year (e.g., 150% needle occupation 

means that all needles of one year are present, 50% of a second year and none of the 

other years, or, alternatively, that 80%, 50% and 20% of the needles are present of 

three successive years). 

Data on air pollution and climate 

The data on concentrations of SO2 and NOx (x=l, 2) in the air and on total nitrogen 

deposition were derived from Anonymous (1986a, 1986b, 1988) for the years 1985-1987 

separately. Because the NH3 deposition levels are only rough estimates based on 

farmyard manure statistics (Buijsman et al., 1985), one deposition level per plot is used, 

calculated as the mean of the estimated deposition levels of 1986 and 1987 (Anonymous 

1986a, 1986b, 1988) (estimated deposition levels of 1985 were not available). 

An indication of weather conditions during the research at three meteorological 

stations of the Royal Dutch Meteorological Institute is presented in figure 19. 

6.3 Results3 

Mycoflora 

Each year the average number of carpophores and fruiting species was much higher in 

young plots than in old plots (fig. 20). A factor 13 more carpophores and a factor 3.0 

more fruiting species were found in young compared to old plots. The differences in 

numbers of carpophores between young and old plots agree with the differences in 

total dry weights of carpophores. 

In the old plots, Lactarius hepaticus Plowr. in Boud. was by far the most 

abundant species, accounting for 51%, 82% and 59% of the total number of carpophores 

in 1985, 1986 and 1987, respectively. Laccaria proximo (Boud.) Pat. was the most 

common species in young plots and accounted for 83%, 50% and 46% of the total 

number of carpophores in the three respective years. 

a The relevant data used in this study are presented in appendices I to III. 

- 79 -



Precipitation (mm) 

140 i 

120 

100 

60 

40 

2 0 -

0 

Location 

H i Eel de LZH Deelen 

_n 

I 

I Eindhoven 

1985 1985 1985 1986 1986 1986 1986 1987 1987 1987 1987 
2 3 4 1 2 3 4 1 2 3 4 

Quarter 

Temperature (°C) 

20-

15 

10 -

- 5 

B 

HI 

i 

1 I 

1 
I 

1 , J 

1985 1985 1985 1986 1986 198< 
2 3 4 1 2 3 

1986 1987 1987 1987 1987 
4 1 2 3 4 

Quarter 
Figure 19. The quarterly precipitation [mm] (A) and average air temperature [°C] (B) 
reported by the meteorological stations at Eelde, Deelen and Eindhoven for 1985-1987. 
For the location of the meteorological stations, see figure 18. 

Eleven species were found in young plots which appeared to have declined during 

this century in the Netherlands according to Arnolds (1985a) (table 17). Some of these 

species occurred abundantly in more than 50% of the young plots, viz. Dermocybe 

croceocona (Fr.) Mos., D. semisangumea (Fr.) Mos., Lactarius rufus (Scop.:Fr.) Fr. and 

Suillus bovinus (L.:Fr.) O.Kuntze. Of the decreasing species, only L. rufus (in five 

plots) and S. bovinus (in two plots) were found in low quantities in old plots (table 

17). 
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Figure 20. The mean numbers per plot of (A) fruiting species, (B) carpophores and (C) 
dry weight production of carpophores [g] for the young and old plots during the 
investigation years. 

The number of carpophores and fruiting species differed considerably between the 

years, and the young and old plots did not show the same pattern (fig. 20). The young 

plots were poorest in 1986, while an optimum in the old plots for the number and the 

dry weight production of carpophores was found. For both the young and old plots, the 

number of species was highest in 1987. 

Mycorrhizas 

Practically all root tips were mycorrhizal in both the young and old plots (table 18). In 

only one old plot the mycorrhizal frequency was less than 95%. About two times more 

roots and mycorrhizas were present in young than in old plots. Cenococcum geophilum 

occurred in all plots and was very common, occupying on average 26% and 12% of the 

mycorrhizal roots in the young and old plots, respectively. In the young and old plots 

the proportion of well-developed mycorrhizas was 21% and 15%, respectively. 

Tree vitality 

The tree vitality, expressed here as needle occupation, increased for both young and 

old plots during the years. The needle occupation in old plots increased from 195 ± 20% 

in 1985 to 240 ± 15% in 1987. The bending of leader shoots occurred regularly in the 

old plots, in up to 77% of the trees in one plot. In the young plots, the increase in 
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TABLE 17 
Presence (%) and average number of carpophores per plot of the most productive year 
(of the years 1986 and 1987) for each species, classified by their change in occurrence 

during this century in the Netherlands according to Arnolds (1985a). 

Young Plots Old Plots 

Presence No. Carpo-
(%) phores Plot"1 

Presence No. Carpo-
(%) phores Plot"1 

Species with significant decline 
Chroogomphus rutilus 
Coltricia perennis 
Dermocybe croceocona 
Dermocybe semisanguinea 
Suillus bovinus 
Suillus variegatus 

Species with insignificant decline 
Amanita muscaria 
Gomphidius roseus 
Hygrophorus hypothejus 
Lactarius rufus 
Rhizopogon luteolus 

Species without change 
Amanita rubescens 
Hebeloma mesophaeum 
Inocybe lacera 
Lactarius helvus 
Paxillus involutus 

Species with insignificant increase 
Laccaria laccata 
Laccaria proximal 
Lactarius hepaticus 
Russula emetica 
Russula ochroleuca 
Scleroderma citrinum 
Xerocomus badius 

Species with unknown change 
Cortinarius flexipes 
Cortinarius fusisporus 
Inocybe brevispora 
Inocybe boltonii 
Inocybe lanuginosa 
Inocybe umbrina 

13 
25 
75 
75 
75 
25 

38 
38 
25 
00 
25 

50 
13 
38 
13 
00 

13 
00 
88 
13 
25 
63 
75 

25 
50 
88 
63 
13 
25 

1 
21 

240 
424 
76 
31 

2 
4 

20 
492 

18 

16 
3 

11 
12 
27 

7 
1276 
225 

12 
6 

64 
29 

24 
312 
12 
13 
3 
5 

0 
0 
0 
0 

13 
0 

0 
0 
0 

31 
0 

0 
0 
0 

13 
56 

0 
88 
94 
13 
56 
6 

50 

0 
0 
0 
0 

13 
0 

0 
0 
0 
0 
2 
0 

0 
0 
0 
6 
0 

0 
0 
0 

22 
7 

0 
15 

273 
1 
4 
2 
3 

0 
0 
0 
0 
4 
0 

a Incl. L. bicolor. 
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TABLE 18 
Plot average, minimum (min) and maximum (max) of some parameters of the roots of 

the young and old plots. Figures recalculated to 100 cm^. 

Young plots 

average 

104±34 
207 ±67 
1.4 + 0.1 
100±0.5 
21 ±5.6 
26±18 

min 

41 
72 
1.2 
99 
13 

1.5 

max 

152 
271 
1.6 
100 
29 
42 

Old 

average 

52±23 
96 ±47 
1.7±0.4 
97 + 7.1 
15 + 7.4 
12±6.9 

plots 

min 

20 
25 

0.9 
71 

2.6 
1.0 

max 

88 
212 
2.3 
100 
25 
27 

Root length (cm) 
Total no. mycorrhizas 
Total no. mycorrhizas/cm root length 
Mycorrhizal frequency 
Rel. no. well-developed mycorrhizas3 

Rel. no. of C. geophilum mycorrhizas 

a Excl. C. geophilum. 

the needle occupation ranged from 205 ± 20% in 1985 up to 225 ± 25% in 1987. In part 

of the young plots the degree of damage caused by Lophodermium seditiosum Minter, 

Staley & Millar was very high. 

Tree parameters which did not show a significant variation between the plots (e.g. 

crown width) and those which occurred only rarely (e.g. discoloration of the needles, 

insect pests) are not presented here. 

Air pollution 

The 98-percentile concentrations of SO2 (based on diurnal maxima) showed highest 

mean levels in 1985, 128 ± 12 fig m - 3 . In 1986 and 1987 the mean levels were 86 ± 22 

and 108 ± 43 fig m~3. The 98-percentile concentrations of NOx (based on diurnal 

maxima) did not show differences worth mentioning between the years, and were 

stable, averaging 108-122 pi% m . The estimated average nitrogen deposition due to 

NH3 emission varied between the localities from 115 to 240 kg ha"' yr" ' . 

Correlations of data from the old plots 

The concentration or deposition of all air pollutants under study showed significant 

negative correlations with the number and dry weight production of carpophores (table 

19). NH3 deposition (fig. 21) and NOx concentration showed the strongest negative 

correlations with the number and dry weight production of carpophores (table 19). The 

SO2 concentration and the percentage of trees with bending of the leader shoot 

showed comparable, although in most cases, weaker correlations. The needle occupation 

had the weakest correlations (positive) with the carpophore parameters. In most cases 

the number of fruiting species had weaker correlations with the environmental 

parameters than the number and the dry weight production of carpophores. 

Correlations varied more or less between the years, but the same trend usually 

appeared each year. If only the plots which were investigated during three years are 
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Figure 21. The relation between ammonia deposition and maximum dry weight producti­
on of carpophores (elog) fgj per species over the years 1985-1987 and 1986-1987 for 
the young and old plots. 
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TABLE 19 
Correlation coefficients between carpophore parameters and environmental parameters 
of the old plots per year and combined over the years 1985-1987 and over the years 
1986-1987. SO2 and N0X: 98-percentile concentration based on diurnal maxima: NH^: 
estimated nitrogen deposition due to NHj pollution; Needle: average plot needle 
occupation; Bent: percentage of trees with bending of the leader shoot; Significance 

levels: * = P<5%, ** = P<2.5%, *** = P<1%. 

S02 NH3 NOY Needle Bent 

No. carpophores1 

Dry weight prod. a 

No. species 

Average no. carp. a 

Average d.w.prod.3 

Average no. spec. 

Max. no. carp. a 

Max. d.w.prod.3 

Max. no. spec. 

1985 
1986 
1987 

1985 
1986 
1987 

1985 
1986 
1987 

1985-87 
1986-87 

1985-87 
1986-87 

1985-87 
1986-87 

1985-87 
1986-87 

1985-87 
1986-87 

1985-87 
1986-87 

78*** 
57*** 
34 

81*** 
58*** 
36 

63* 
08 
23 

66** 
40 

63* 
44* 

56* 
17 

64** 
40 

51 
42 

55 
10 

- . 81** 
-.79*** -
- .43* 

-.82*** -
-.78*** -
-.57** 

-.60* 
-.21 
- .43* 

- . 91*** -
-.66*** -

-.96*** -
-.74*** -

-.54 
-.38 

-.89*** -
-.65*** -

-.94*** -
- .71*** -

-.45 
-.40 

86*** 
61*** 
47* 

85*** 
58*** 
50** 

72*** 
04 
00 

68** 
58*** 

58* 
58*** 

39 
05 

69** 
62*** 

63* 
58*** 

18 
00 

.24 

.42 

.05 

.26 

.34 

.16 

.54 

.03 

.23 

.44 

.29 

.48 

.32 

.22 

.22 

.37 

.27 

.44 

.27 

.39 

.42 

b) 
-.70*** 
-.24 

b) 
- . 71*** 
-.36 

b) 
- .49** 
- .39 

b) 
- . 51** 

b) 
- .63** 

b) 
- .49** 

b) 
- .46* 

b) 
- .55** 

b) 
- .46* 

3 In-transformed, 
b Not observed. 

considered (10 plots), the correlations were stronger than if all the investigated plots 

are considered over two years (16 plots) (table 19). Nevertheless, the correlations of 

the two-year investigated plots are still comparable with those of the three-year 

investigated plots. 

The needle occupation and percentage of trees with a bent leader shoot had 

significant (respectively negative and positive) correlations with NH3 (table 20 & fig. 

22), but the correlations with NOx and SO2 were less clear. The crown density, which 

was expected to be a good tree vitality parameter, had weak correlations with the air 

pollutants (except in 1985, table 20) as well as with the carpophore parameters 

(correlations not presented). 
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Figure 22. The relations between ammonia deposition and (A) average needle occupation 
and (B) the percentage of trees with bending of the leader shoot in the old plots. 
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TABLE 20 
Correlation coefficients between air pollution parameters and tree parameters of the 

old and young plots. For abbreviations and significance levels, see table 19. 

YOUNG PLOTS 

Needle occupation 

Lophodermium 
damage 

OLD PLOTS 

Needle occupation 

% Trees with bend­
ing leader 
shoots 

Crown density (%) 

a Not observed in 

1985 
1986 
1987 
1985-87 

1985 
1986 
1987 
1985-87 

1985 
1986 
1987 
1985-87 
1986-87 

1985 
1986 
1987 
1985-87 
1986-87 

1985 
1986 
1987 
1985-87 
1986-87 

1985. 

so2 

.54 

.93*** 

.01 

.51 

-.30 
-.84*** 
-.23 
-.48 

S0 2 

-.34 
.02 
.18 

-.39 
.19 

a) 
.36 
.09 

a) 
.23 

-.45 
.18 
.07 

-.41 
.22 

NH3 

.73** 

.75** 

.69* 

.77** 

-.35 
-.71** 
-.57 
-.71** 

NH3 

-.53 
-.57** 
-.57** 
-.58* 
-.57** 

a) 
.75*** 
.78*** 

a) 
.75*** 

-.77*** 
-.15 
-.06 
-.48 
-.12 

NOx 

.47 

.92*** 

.90*** 

.78** 

-.62* 
-.79** 
-.49 
-.74** 

NOx 

-.30 
-.21 
-.14 
-.29 
-.20 

a) 
.40 
.45* 

a) 
.43* 

-.25 
.06 
.46* 
.12 
.25 

Lophodermium 
damage 

-.74** 
-.81*** 
-.80*** 
-.96*** 

Correlations of data from the young plots 

The number of carpophores and fruiting species showed strongest correlations with the 

NOx concentration (positive), the degree of damage caused by Lophodermium sediliosum 

(negative) and the needle occupation (positive) (table 21). Correlations varied more or 

less between the years but the same trend usually appeared each year. 

The degree of damage caused by L. sediliosum showed quite understandable high 

negative correlations with the needle occupation (fig. 23, table 20). L. sediliosum 

occurred most frequently in plots with low air pollution, which may explain the 

significant positive correlations of the needle occupation with air pollutants. 
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TABLE 21 
Correlation coefficients between carpophore parameters and environmental parameters 
of the young plots per year and combined over the years 1985-1987. Loph: degree of 
damage caused by Lophodermium seditiosum. For other abbreviations and significance 

levels, see table 19. 

so2 
NHi NO v Needle Loph 

No. carpophores3 

Dry weight prod.a 

No. species 

1985 
1986 
1987 

1985 
1986 
1987 

1985 
1986 
1987 

Average no. carpophoresa 

Average dry weight prod.a 

Average no. species 
Max. no. carpophores3 

Max. dry weight prod.3 

Max. no. species 

-.06 
.70* 

-.33 

.24 

.69* 
-.34 

.29 

.75** 
-.04 

-.01 
.10 
.37 

-.04 
.12 
.41 

.15 

.45 

.42 

.39 

.39 

.46 

.06 

.44 

.46 

.35 

.44 

.40 

.26 

.45 

.20 

.68* 

.83*** 

.89*** 

.93*** 

.77** 

.92*** 

.20 

.78** 

.74** 

.83*** 

.94*** 

.67* 

.79** 

.94*** 

.36 

.31 

.63* 

.66* 

.47 

.60 

.78** 

.06 

.68* 

.60 

.67* 

.72** 

.55 

.67* 

.74** 

.32 

-.56 
-.82*** 
-.11 

-.59 
-.81*** 
-.32 

.01 
-.76** 
-.23 

-.66* 
-.68* 
-.49 
-.66* 
-.68* 
-.22 

3 In-transformed. 
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Figure 23. The relation between degree of damage caused by Lophodermium seditiosum 
in young plots, assessed in an arbitrary scale of 0 (no damage) to 4 (absence of living 
needles) and the average needle occupation. 



Correlations of mycorrhiza parameters 

The mycorrhizal frequency was significantly positively correlated with the number and 

dry weight production of carpophores for the young as well as for the old plots (table 

22). The mycorrhizal frequency in the old plots showed weak correlations with air 

pollution parameters and was weakly significant for NH3 (negative, P<10%). 

In contrast to the mycorrhizal frequency, the total number of mycorrhizas per soil 

sample was only weakly correlated with the number and dry weight production of 

carpophores, and showed relatively high positive correlations with NH3 deposition and 

N O x concentration (significantly so for old plots). 

The relative number of mycorrhizas of Cenococcum geophilum was negatively 

correlated with the number and dry weight production of carpophores in old plots, but 

positively in young plots. In both the young and old plots the absolute and relative 

number of mycorrhizas of C. geophilum was positively correlated with NH3 and NO x . In 

the young plots these correlations were highly significant (P<1%). 

TABLE 22 
Correlations of the root and mycorrhiza parameters with carpophore, air pollution and 

tree parameters for 1987. For abbreviations and significance levels, see table 19. 

YOUNG PLOTS Dry weight 
prod. 

No. 
carp. SO-, NHo NO x Needle 

Root length 
Tot.no. mycorrhizas 
Tot.no. mycorrh. excl. C. geophilum 
Mycorrhizal frequency 
Tot.no. mycorrh. / unit root length 
Rel.no. well-developed mycorrhizas 
Tot.no. mycorrhizas of C. geophilum 
Rel.no. mycorrhizas of C. geophilum 

27 
31 
41 
96*** 
CT*** 

71* 
q - 7 * * * 

0 0 * * * 

29 
22 
45 
88*** 
76** 
72* 
OQ*** 

g2*** 

.07 
-.08 
.19 

-.47 
-.23 
-.72 
-.36 
-.43 

00 -
50 
13 -
69 
80** 
55 
87*** 
78** 

03 
50 
20 
84** 
85*** 
79** 
96*** 
90*** 

25 
71* 
11 
67 
82** 
59 
88*** 
74* 

OLD PLOTS 

Root length 
Tot.no. mycorrhizas 
Tot.no. mycorrh. excl. C. geophilum 
Mycorrhizal frequency 
Tot.no. mycorrh. / unit root length 
Rel.no. well-developed mycorrhizas 
Tot.no. mycorrhizas of C. geophilum 
Rel.no. mycorrhizas of C. geophilum 

17 
02 
07 
52** 
08 
17 
27 
44* 

.27 

.22 

.26 

.54** 

.08 

.27 
-.14 
-.45* 

-.29 
-.21 
-.23 
.05 
.07 

-.45* 
.07 
.28 

.26 

.43* 

.42 
-.36 
.09 

-.10 
.18 
.10 

.37 

.43* 

.35 

.06 

.09 
-.06 

.56** 

.40 

-.13 
-.14 
-.11 
-.01 
-.40 
.05 

-.21 
-.07 
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6.4 Discussion 

Large differences in the number of carpophores and fruiting species between young and 

old plots were observed. The old plots produced less carpophores and fruiting species 

compared to mature P. sylvestris forests in other countries (table 23). The reduction is 

most prominent in plots exposed to relatively high concentrations of air pollutants, 

notably nitrogen pollutants. In the young plots, however, the numbers of carpophores 

and fruiting species are comparable with, or even higher than those of P. sylvestris of 

different ages in other countries (table 23), and are not negatively correlated with air 

pollution parameters. Several species which have shown a decline during this century in 

the Netherlands (Arnolds, 1985a) are abundant in young plots. In old plots however, 

only two declining species (viz. Lactarius rufus and Suillus bovinus) were found (table 

17). Apparently, the decline of carpophores of mycorrhizal fungi has occurred more 

prominently in old stands. 

The reduction of carpophores in the old plots may be explained by the fact that 

leaf damage by NH3 (Van der Eerden, 1982; Kaupenjohann et al., 1989) or by other air 

pollutants (Kozlowski & Constantinidou, 1986) can decrease the photosynthesis and in 

addition, a decrease in the transport of photosynthates (Lorenc-Plucinska, 1984; 

McLaughlin et al., 1982). Nitrogen pollution also leads to an increased uptake of 

nitrogen by the trees, increasing the conversion of nitrogen into amino acids. This 

conversion requires carbohydrates, and thus decreases the supply of carbohydrates to 

the mycorrhizas (Björkman, 1942). In addition, increased nitrogen uptake may lead to 

deficiency of other nutrients, especially on poor and acid soils (Paavilainen & 

Pietiläinen, 1983; Rehfuss et al., 1983). This may explain the fact that the decline of 

carpophores of mycorrhizal fungi is most pronounced on poor and acid soils (Arnolds, 

1985a). 

Most old stands which were investigated belonged to the most vital class, 

according to the Dutch State Forestry Service (Anonymous, 1987), and a few stands 

belonged to the second most vital class. The absence of low vitality classes can be 

ascribed to the selection criteria we used, especially the criterion of good provenance. 

Apparently, a decline of carpophores of mycorrhizal fungi may occur in stands before 

macroscopical decline of tree vitality becomes visible (Fellner, 1990). This may be 

explained by the fact that in the case of stressed carbohydrate economy, plants invest 

relatively more energy in the shoot than in the root in order to repair or replace 

injured tissue. 

The decline of carpophores seems to precede a decline in the mycorrhizas, since 

the mycorrhizal frequency reached very high levels in all plots except one (>95%). In 

some poor stands of Pseudotsuga menziesii in the Netherlands, mycorrhizas have 
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already been reported to be completely absent (Jansen & De Nie, 1987). The situation 

of mycorrhizas in less vital old stands of P. sylvestris therefore needs additional 

research. It seems logical that the formation of carpophores is hampered before the 

formation of mycorrhizas decreases, because successful colonisation of the soil by 

mycorrhizal fungi depends basically on the availability of carbohydrates from a host. 

Therefore, under circumstances of a decreased carbohydrate availability, the mycorrhi­

zal fungus is likely to invest relatively more energy in the maintenance of the 

mycorrhizal infection than in the formation of carpophores. 

Our correlations indicate that nitrogen pollution affects the mycorrhizal fungi in 

old stands more than SO2 pollution. Nitrogen fertilization experiments normally have a 

negative effect on the number of both carpophores and fruiting species (Ritter & Tolle, 

1978; Menge & Grand, 1978; Wästerlund, 1982; Ohenoja, 1988; Shubin, 1988), which is 

usually more clear than the effect on the mycorrhizas. 

Nitrogen deposition has increased tremendously in the Netherlands since the 

sixties. This is caused predominantly by the enormous growth in cattle population, 

increasing the production of manure from 24.10' kg in 1950 up to 85.10' kg in 1988 

(Anonymous, 1980, 1989). Besides, the NH3 losses from manure have increased due to 

the change from solid to liquid manure storage (Buijsman et al., 1987). Furthermore the 

NOx concentrations in the air have also increased considerably (Kozlowski & Constanti-

nidou, 1986). Local extremes in nitrogen deposition in forests can be largely ascribed to 

ammonia because of its relatively high dry deposition rate (Asman & Maas, 1987) and 

because its sources are often close to the forests. The increase in nitrogen deposition 

of the last decades coincides with the observed decline in carpophores. 

In most forests without human influence, nitrogen is the limiting factor for tree 

growth (Carlyle, 1986). On a short-term basis, or at low concentrations, extra nitrogen 

may therefore stimulate growth (Termorshuizen & Ket, Ch. 3) and photosynthesis 

(Pérez-Soba et al., 1990). However, as trees age, this growth stimulating effect may 

lead to deficiency of other nutrients as explained above. In addition, the need for 

external nitrogen by younger trees is larger than for older trees, where internal 

recycling becomes more important (Carlyle, 1986). Younger trees and their mycorrhizas 

may therefore benefit from nitrogen at levels where older trees may suffer. Other 

important factors creating more favourable circumstances for mycorrhizal fungi in 

young stands may be: 

(1) The smaller size of young trees and protection under the lee of old stands 

might contribute substantially to a lower interception of air pollutants compared to 

that of old stands. Quantitative data on this subject are, unfortunately, not available. 

(2) Clear-cutting and disturbance of the soil before and at the time of planting 

result in increased leaching of nitrate (Vitousek, 1981; Tamm, 1982). Consequently, 

young stands start to grow on soil relatively free from nitrogen pollution, also 
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because the polluted upper soil-layer is mixed with the underlying relatively unpolluted 

soil. The importance of the humus layer is stressed by De Vries et al. (1985), who 

found significant negative correlations between the thickness of the humus layer and 

the number of carpophores. Removal of the upper soil-layer (litter and humus) in 

mature stands of P. sylvestris had a positive effect on the occurrence of carpophores 

of mycorrhizal fungi (Jansen & Van Dobben, 1987; Kuyper, 1988). The same was 

observed in this study in plot no. 49 (the poorest plot with respect to carpophores, 

with the highest NH3 pollution) where approx. 30 rvr of the litter and humus layer 

(including the vegetation) was removed illegally by unknowns in 1987. In the autumn of 

1987, 88 carpophores of mycorrhizal fungi were counted on this spot, which was 94 

times more per unit area than on the remaining 1020 m2 of the plot. 

Instead of air pollution, the variation in the occurrence of carpophores in the 

young plots was primarily influenced by the incidence of L. sediliosum. Interestingly, 

the incidence of Lophodermium spp. is likely to be negatively affected by air pollution, 

as was reported for SO2 by Scheffer & Hedgcock (in Horn, 1985) and Grzywacz & 

Wazny (1973). The positive correlations between the number of carpophores and air 

pollution in young plots might therefore be well explained by the sensitivity of L. 

sediliosum to air pollution. 

In the course of stand development, a decline in the occurrence of carpophores 

can be expected to start when nitrogen uptake (as a result of nitrogen pollution) 

inhibits the transport of carbohydrates to the mycorrhizal fungi. Decline in occurrence 

of carpophores is influenced by many factors (e.g. soil characteristics, silvicultural 

measures, stress factors) and consequently depends on the local situation. Observations 

in closed stands of P. sylvestris in the Netherlands (Termorshuizen, unpublished) 

suggest that this may begin between the 15th and 25th year. Jansen & De Nie (1988), 

who studied the occurrence of carpophores of mycorrhizal fungi in stands of Pseudo­

tsuga menziesii in the Netherlands, also reported a sudden reduction in number of 

carpophores of mycorrhizal fungi in stands older than 20 years. Termorshuizen (Ch. 4) 

observed negative effects on the number of carpophores in two young stands of P. 

sylvestris by fertilization with (NH^SC^ or NaNC>3 at 60 kg N ha"1. Apparently 

decline will commence earlier if air pollution increases. 

Of the mycorrhiza parameters we estimated, only the mycorrhizal frequency was 

significantly correlated with the number and dry weight production of carpophores in 

both young and old plots. However, the total number of mycorrhizas did not show 

such correlations. In young plots, the positive correlations of total number of 

mycorrhizas with the nitrogen air pollutants can be ascribed largely to Cenococcum 

geophilum (table 22). However, we are not able to explain the significantly positive 

correlations of the total number of mycorrhizas with NH3 deposition and NOx 
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concentration (table 22). Clearly more research is needed in order to evaluate the 

ecological significance of, and the relation between different mycorrhiza parameters. 

Cenococcum geophilum occupied large parts of the roots (table 18), and was 

positively correlated with nitrogen pollution. The correlations of this non-fruiting 

species were significantly negative with the number and dry weight production of 

carpophores in old plots, but highly positive in young plots. We are not able to explain 

this phenomenon, and more research is needed on this species. 

It seems plausible that the nitrogen enrichment of the forests is responsible in 

the first place for the decline of carpophores in the Netherlands. In addition, other 

pollutants which affect the trees worsen effects on mycorrhizal fungi. The high 

mycorrhizal frequencies observed in all plots, and the change towards a richer 

mycoflora after replanting the site indicate that the mycoflora may recover to some 

extent after replanting, if the air pollution, especially the NH3 pollution, is drastically 

diminished. 

6.5 Summary 

This study was set up after a drastic decline in the mycorrhizal mycoflora in the 

Netherlands had been reported. A number of 8 young (5-10 years) and 17 old (50-80 

years) stands of Pinus sylvestris L. were selected throughout the Netherlands. In each 

stand, a plot measuring 1050 m^ was selected and during each autumn of the years 

1985, 1986 and 1987 was searched for carpophores of mycorrhizal fungi. The vitality of 

the stands was annually determined by quantifying the needle occupation of the trees. 

Ten soil samples per plot were taken in October 1987 in order to assess the mycorrhi­

zal status of the roots. 

Each year the young plots had a higher number of carpophores and more fruiting 

species than the old plots. A highly significant negative correlation was found between 

the estimated pollution by nitrogen compounds and both the number of carpophores and 

the number of fruiting species in the old plots. The correlations with the 98-percentile 

concentrations of SO2 were also negative but less significant than the correlations 

with the deposition and pollution levels of the nitrogen compounds, or not significant 

at all. Compared with recent data on the mycorrhizal mycoflora of old stands of P. 

sylvestris in countries less polluted with nitrogen, the mycoflora of the Dutch stands 

was extremely poor. However, the mycorrhizal frequency was higher than 95% in all 

plots except one, indicating that decline was mainly restricted to the production of 

carpophores. Possible causes are discussed, and the possible role of nitrogen pollution 

is stressed. 
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The young plots, however, did not show negative correlations with the air 

pollutants, and their mycofloras were comparable with those of stands of P. sylvestris 

in less polluted countries. It is concluded that no decline of mycorrhizal fungi has 

occurred in the young stands, or at least not to the same extent as in the old stands. 

It is suggested that the most important cause for this difference is clear-cutting and 

disturbance of the soil before and at the time of replanting, which results in a 

relatively unpolluted upper-layer of the soil. 
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Chapter 7 

GENERAL DISCUSSION 

In the previous chapters, different aspects of the decline of mycorrhizal mycoflora 

have been treated. An attempt is made to integrate these various aspects in section 

7.1. The hypothesis formulated in the general introduction (sect. 1.3) is evaluated in 

section 7.2. The implications of this research for the conservation of the mycorrhizal 

mycoflora are examined in section 7.3. Finally, new questions raised by the present 

research are discussed and the need for further research is indicated in section 7.4. 

7.1 Synthesis of factors causing decline of carpophores of mycorrhizal fungi 

The principal factor underlying the differences in mycorrhizal mycoflora between old 

plots is the influence of nitrogen pollution on the nitrogen and carbon cycle of the 

plant (fig. 24). Together these cycles determine the availability of carbohydrates for 

mycorrhizal fungi. Also, pollution by sulphur dioxide (and probably photo-oxidants) is 

likely to affect mycorrhizal mycoflora. 

According to the literature, N uptake by the plant increases amino acid synthesis, 

decreasing the supply of carbohydrates to mycorrhizas. Effects on the mycorrhizal 

fungi consequently depend on the amount of N uptake in proportion to the amount of 

photosynthesis by the plant. An increased uptake of nitrogen might initially increase 

the photosynthesis and growth, but a decrease can be expected if other nutrients 

become deficient (Ch. 3). 

The supply of carbohydrates to mycorrhizas may also be decreased if photosyn­

thesis is inhibited by NH3, NOx or SO2 (Ch. 2). In the Netherlands, these air pollutants 

appear to have a significant influence on the frequency of carpophores of mycorrhizal 

fungi (Ch. 6). Of these pollutants, nitrogen pollutants reduce the frequency of 

carpophores most significantly, which is probably caused by the relatively high dry 

deposition rate of ammonia and because the sources of ammonia are often close to the 

forests (Ch. 6). 

N uptake will be increased if N pollution increases, if N interception increases (as 

a result of increased aerodynamical roughness of the tree canopy) and if nitrification 

decreases, and consequently, leaching decreases. In addition, the effects of N uptake 

will be worse for mycorrhiza in older trees, where redistribution of N compounds 

becomes more important due to decreased N demands (Carlyle, 1986). Quantification of 
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Figure 24. Schematic representation of the carbon and nitrogen cycles of an ectomv-
corrhizal tree under ammonia pollution. Dotted arrows represent less important 
processes. 

these effects under field-conditions is quite difficult because of the many factors which 

influence photosynthesis and N uptake and deserves much more research. Special 

attention should be paid to the effects of nitrogen pollution on the properties of the 

litter and humus layer, and to effects of the presence or absence of such a polluted 

layer on the mycorrhizal fungi (Ch. 5,6). 

In young stands, N uptake is likely to be less than in old stands, because of the 

relatively low interception of air pollutants and the increased nitrification and leaching 

of nitrates due to the recent clear-cutting and soil disturbance. The absence of 

Lophodermium seditiosum in heavily polluted areas (including S02) offered better 

conditions for root growth and mycorrhizal development in these areas. 

In conclusion, the decline of mycorrhizal mycoflora can be explained in terms of 

carbohydrate deficiency for mycorrhizal fungi. Factors which increase N uptake by the 

plant increase the effects of decreased photosynthesis and transport of photosynthates 

on mycorrhizas. Carbohydrate deficiency does not initially affect the formation of 
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mycorrhizas, but rather inhibits carpophore fructification (Ch. 4,6). In a later stage, 

mycorrhizal formation starts to decrease. The formation of carpophores and mycorrhizas 

both seem to be hampered before the aboveground vitality of the tree is reduced 

significantly (Ch. 2-4,6). 

Photosynthesis can be affected by air pollutants or by many other factors, for 

instance by pests or diseases. In the present study, it seems very plausible that 

infection by Lophodermium seditiosum significantly influenced the occurrence of 

carpophores by affecting production of photosynthates (Ch. 6). 

In spite of the drastic decrease in fruiting species and abundance of carpophores 

in the old plots, mycorrhizal frequency was still nearly 100% everywhere (Ch. 5,6). 

This means that the species concerned were only affected in their ability to fructify or 

that their places on the roots have been taken over by less sensitive species. The 

latter possibility, the taking over by less sensitive species, is supported by several 

observations: (1) Several species showed an increase in frequency of carpophores during 

this century in the Netherlands (e.g., Laccaria proximo and Russula ochroleuca; Arnolds, 

1985a), (2) Laccaria proxima may have taken over the places of Lactarius ruf us in the 

N fertilized plots at Deurne (Ch. 4), and (3) in the laboratory experiments (Ch. 2,3), 

the mycorrhizal frequency was generally negatively affected by the treatments, but 

there were considerable differences between the fungal species. Laccaria proxima 

appeared to be insensitive to SO2, whereas Paxillus involutus appeared to be sensitive 

to SC>2 fumigation. 

If the decline of mycorrhizal mycoflora can be explained in terms of carbohydrate 

deficiency for mycorrhizal fungi, apparently great intraspecific differences exist in 

tolerance to carbohydrate deficiency. In the experiments (Ch. 2-4), clear differences 

appeared between species in sensitivity to SO2 and N fertilization. Species which 

survive under circumstances of carbohydrate deficiency must have either low carbohy­

drate demands, high sink capacities or saprophytic capabilities. It was suggested that 

Laccaria proxima was a relatively insensitive species to reduction in the supply of 

carbohydrates (Ch. 2,4). 

Little is known about the minimum carbohydrate demands of mycorrhizal fungi. 

High carbohydrate sink capacities have been shown to exist for several fungal species 

(Dighton et al., 1987; Stenström & Nyland, 1987; Gagnon et al., 1988) and saprophytic 

capabilities of mycorrhizal fungi have been demonstrated by Trojanowski et al. (1984), 

Haselwandter et al. (1987) in vivo and by Dighton et al. (1987) in vitro. However, it 

seems unlikely that the insensitivity of Laccaria proxima in the SO2 fumigation 

experiment (Ch. 2) can be explained in terms of a change towards saprotrophic 

nutrition by the fungus, because of the almost complete absence of organic matter in 

the soil used. 
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The mechanisms underlying the succession of mycoflora in first and second 

generation stands remain hypothetical. It was concluded (Ch. 5) that the explanation 

must be found in differences in the biotic or abiotic characteristics of the soil. 

Because of differences of the present data with data from abroad, an interaction 

between air pollution and this succession can however not be excluded. 

7.2 Evaluation of the hypothesis on the decline of carpophores of mycorrhizal fungi 

The working hypothesis proposed in section 1.3 stated that the decline of mycorrhizal 

mycoflora was caused by air pollution, affecting the fungus either via decreased tree 

vitality or via changes in soil chemistry. From the present research it appeared that 

air pollution does not affect mycorrhizal mycoflora everywhere to the same extent 

(Ch. 6). Stand age strongly influences the effects of air pollution on mycoflora. The 

hypothesis that air pollution is the most important factor seems to be true for mature 

stands of P. sylvestris, but not for young stands. However, more severe levels of air 

pollution are likely to affect the mycorrhizas in young stands as well (Ch. 2-4,6). Air 

pollution affects mycorrhizas via injury of trees aboveground (Ch. 2) as well as by 

changes in soil chemistry (Ch. 3,4). It is very difficult to judge which is the more 

important process. However, both act via the tree and both influence the carbohydrate 

availability for mycorrhizal fungi (Ch. 2,3). It seems that nitrogen pollution in the 

Netherlands affects mycorrhizal fungi stronger than other forms of pollution (Ch. 6). 

Decreased frequency of carpophores of mycorrhizal fungi is not parallelled by 

decreased mycorrhizal frequency (Ch. 6). The decline of carpophores of mycorrhizal 

fungi probably indicates a decrease in mycorrhizal frequency in the near future (Ch. 6). 

This is supported by laboratory experiments, where pollution (Ch. 2) and nitrogen 

fertilization (Ch. 3) negatively affected mycorrhizal frequency. 

In addition to air pollution, succession of Dutch forests also explains part of the 

change in mycorrhizal mycoflora (Ch. 5). Young stands of first rotation, nowadays rare 

in the Netherlands, appeared to have several fungal species which did not occur in 

stands of second or third rotation or in old stands of first rotation. However, data of 

old pine forests from abroad indicate that air pollution might influence this succession 

(Ch. 5). 
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7.3 Implications 

The present-day situation of fructification of mycorrhizal fungi in the Netherlands is 

alarming. Many species have declined or even disappeared, and it seems that this 

decline still continues. 

From the mycorrhizal point of view, the situation is less precarious. Mycorrhizal 

frequency in all plots but one was higher than 95%. This, and the rapid change into a 

rich mycoflora after replanting indicate that the soil is not polluted to such an extent 

that the growth of all mycorrhizal fungal species is structurally hampered. However, 

since mycorrhizal frequency was also negatively correlated with nitrogen pollution (Ch. 

6, significant at P<10%), the decrease of mycorrhizal frequency might just have been 

started recently. In addition, it is likely that high mycorrhizal frequencies are caused 

by few insensitive species (sect. 7.1). Bearing in mind the results of two experiments 

given in chapters 2 and 3 where negative effects of SO2 and nitrogen compounds on 

the mycorrhizal frequency were reported, a continuation of this decrease can be 

expected. 

In addition, the proportion of well-developed mycorrhizas may have decreased this 

century. Although data on this mycorrhiza parameter are not known from localities 

abroad, it was found to be rather low in the stands under study and lower in old 

stands than in young stands (sect. 6.3). As indicated in section 7.4, this subject 

requires more research. 

With respect to the level of air pollution in the Netherlands, the decrease of 

mycorrhizas and of mycorrhizal mycoflora under the present conditions is likely to 

continue. The observations of Fellner (1988) in the Giant Mountains of Czechoslovakia 

show that the complete disappearance of the mycorrhizal mycoflora is possible. 

The decrease of species diversity and in a later stage, the possible decrease of 

mycorrhizal frequency, will probably negatively affect tree vitality with respect to 

nutrient and water uptake, and sensitivity to root pathogens. Assuming that each 

fungal species has its own (unique) role in an ecosystem, an unnatural decrease in 

species diversity is likely to hamper the functioning of the present ecosystem. 

On the other hand, the present status of mycorrhizal mycoflora of young plots 

appears to be relatively good compared to mycoflora of the old plots or to mycological 

data from abroad. The relative insensitivity of young stands to air pollution decreases 

with age, as explained in chapter 6 and section 7.1. A collapse of the mycoflora seems 

to occur in ca. 15 to 25-year-old stands of P. sylvestris (unpublished observations) (Ch. 

6). 

In general, decline will be delayed if N uptake decreases, or if photosynthesis and 

transport of photosynthates increase. In the absence of nitrogen pollution, the decline 

of mycorrhizas and their carpophores during stand development is not expected. If 
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nitrogen pollution is decreased but still present, mycorrhizal mycoflora in stands of P. 

sylvestris will probably show a less and more gradual decline, occurring in a later 

stage of stand development. 

The rate of change of mycorrhizal mycoflora in old stands after a decrease of 

nitrogen pollution is more difficult to predict. A richer development of the mycoflora 

can be expected to start when (1) the plant has recovered from nitrogen pollution 

stress, (2) the nitrogen uptake by the plant has decreased and (3) mycorrhizal fungi 

have recovered from their carbohydrate deficiency. The change is likely to be much 

slower in old stands than in recently replanted stands. Nitrogen losses due to leaching 

will be much lower in old stands than in young stands where considerable nitrification 

occurs after cutting the stand. In addition, restoration of mycorrhizal mycoflora 

depends on the occurrence and effects of other air pollutants as well. 

The most needed action for the protection and restoration of mycorrhizal 

mycoflora is, of cause, to decrease air pollution, especially nitrogen. Of the two 

compounds causing nitrogen pollution, ammonia is likely to have the strongest impact. 

In the Netherlands, sources of ammonia (bio-industries) are often close to forests on 

sandy soils and the dry deposition rate of ammonia is relatively high compared to NOx 

compounds (Asman & Maas, 1987). 

Without a change in air pollution policy, other measures in favour of mycorrhizal 

fungi will not be very useful. However, there may be some possibilities, which are 

discussed below: (1) removal of the litter and humus layer, (2) accelerated clear-cut of 

forests, (3) ploughing the soil preceeding replanting, and (4) fertilization. 

Ad (1). Removal of the humus and litter layer has a drastic positive effect on 

mycorrhizal mycoflora (Ch. 6), but the solution is an academic one. Costs are extremely 

high, and an enormous waste problem arises. However, if it is carried out on a small 

scale, it may be useful for conservation of forest ecosystems with their characteristic 

vegetations. In the Netherlands this measure is already being practiced for conservation 

of heathlands. 

Ad (2). Clear-cutting and replanting have a positive effect on mycorrhizal 

mycoflora (Ch. 6). However, this should be considered only if it is justified from a 

silvicultural point of view. If the aim is to clear-cut and replant a stand only to 

restore the mycoflora, this should not be done before the nitrogen pollution has been 

decreased, because of its temporary positive effect. Furthermore, fungal species which 

only occur in old forests will not be made to appear by this measure. 

Ad (3). Ploughing the soil preceeding replanting increases nitrification and conse­

quently leaching of nitrate. Deep-ploughing will have a greater positive effect on 

mycoflora than superficial row-ploughing. Deep-ploughing on the other hand, is more 

expensive and it should only be seriously considered after the nitrogen pollution has 

decreased. 
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Ad (4). From a plant nutritionist's view, the effects of nitrogen pollution on 

forests is a deficiency problem of the plant with respect to for example K, Mg and P. 

Fertilization with these elements would diminish this imbalance of nutrition. The 

relative surplus of nitrogen uptake compared to photosynthesis would disappear due to 

increased photosynthesis, and therefore it can be expected that mycorrhizas are 

affected positively. The latter may be true, but we have to bear in mind that many 

forest fertilization experiments show negative effects on mycorrhizas (reviewed by 

Kuyper, 1989). The Dutch situation however, is not comparable with most of these 

experiments, because of the surplus of available nitrogen in forest soil, making the 

effects of additional fertilization on mycorrhizas unpredictable. 

Liming forests is practiced in some areas (e.g. Germany and Sweden) and is being 

considered in the Netherlands in order to decrease the soil acidity. Liming in the 

Netherlands would result in an enormous nitrification and this is likely to be detrimen­

tal to the trees and the mycorrhizas. However, in combination with clear-cutting and 

ploughing, liming before replanting might be considered as a measure to increase 

nitrification and decrease acidity. 

Increased tree growth due to fertilization is likely to cause problems with the 

water supply, especially if mycorrhizas react negatively to fertilization. Besides, 

increased sensitivity to obligate pathogens and to frost is likely to occur. Before 

applying forest fertilization in practice, more research is needed in order to evaluate 

the effects on mycorrhizas. If the effects appear to be negative, forest fertilization 

should therefore be cancelled. Forest fertilization should also be avoided if nitrogen 

pollution will decrease in the near-future, because (1) the favorable development of 

mycorrhizal mycoflora after replanting indicates that the negative effects of nitrogen 

pollution are diminished in young stands, removing the reason for fertilization and (2) 

the long-term effects of fertilization on mycorrhizas, and also on many other compo­

nents of the forest ecosystem, are unknown. 

In conclusion, there are hardly any measures which can be taken to improve 

mycorrhizal fungi if the amount of air pollution is not reduced. On the other hand, it 

seems likely that a decrease in nitrogen pollution will have positive effects on the 

mycoflora after replanting a site. Possibly ploughing before replanting increases this 

positive effect. 

7.4 Suggestions for further research 

In this study attention was mainly focused on three variables of the forest ecosystem: 

tree, mycorrhizal fungus and air pollution. Naturally, an ecosystem is composed of many 

more factors. Nitrogen deposition has many more effects on the soil ecosystem, on the 
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vegetation, the microflora and -fauna and abiotic factors. All these changes in turn 

affect other abiotic factors and organisms, and certainly also the mycorrhizal fungi. 

Special attention should be paid to the nitrogen cycle in forest ecosystems under 

increased nitrogen pollution. 

However, the causes of decline of the mycorrhizal mycoflora have become more 

clear through the results of this study and measures can be taken to stop the decline. 

Based on the results and experiences in this study, the following subjects are 

recommended for further research: (1) soil chemistry, (2) intra- and interspecific 

variation in ectomycorrhizal fungi, (3) experimental evidence for the relation between 

air pollution and mycoflora- and mycorrhiza parameters in mature stands, (4) the 

functioning of "poorly-developed" mycorrhizas (chapters 1-3,6), (5) the ecology of 

Cenococcum geophilum and (6) the generalization of the conclusions of this study to 

other tree species and to other countries. 

Ad ( 1). In a previous publication (Termorshuizen & Schaffers, 1987), results of 

chemical analysis of the upper 0-5 cm in 21 stands were presented. There appeared to 

be no significant differences between the plots, which were situated in different parts 

of the Netherlands. One reason may be that too few samples have been taken. 

Alternatively, nitrogen was likely taken up by the vegetation. Part of the nitrogen was 

possibly volatilized during drying of the soil samples. This was not further investigated 

because the subject seemed to be very complicated and time consuming. 

Ad (2). The experiments (Ch. 2-3) showed differences in effects of treatments 

between the various species. However, one cannot draw general conclusions on the 

results of separate species, because only one isolate was used for each species. 

Therefore, experiments should be repeated with many more isolates of one species and 

with many more species. Intraspecific variability in nitrogen nutrition of numerous 

species in vitro has been shown by Lundeberg (1970) but the characteristics might be 

quite different when functioning as a symbiont. It is a well-known fundamental problem 

to work with different isolates because the amount of work soon increases to an 

unacceptably high level. Studies of this kind however, are essential to make further 

progress in ecological mycorrhiza research. 

Special attention should also be given to the possible causes of differences 

between declined and increased fungal species. It would be very interesting to test the 

hypothesis that species either differ in saprotrophic capabilities, in carbohydrate 

demands or in sink capacities for carbohydrates. 

Ad (3). The difficulties in performing experiments under controlled conditions with 

mature trees is also a fundamental problem in ectomycorrhiza research. The best 

solution seems to perform experiments in the field with a given mycorrhizal population, 

instead of an (theoretically preferable) inoculated population of one or more known 
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fungal species. The disadvantage to this approach is however, that one must accept 

the starting-point, which makes this kind of experiments difficult to reproduce. 

As a result of the field observations in the present study, special attention 

should be paid to the possible influence of the litter and humus layer on the mycorrhi-

zas in the presence or absence of nitrogen air pollution. 

Ad (4). As described in section 6.2, it appeared to be difficult to make a clear 

distinction between mycorrhizal and non-mycorrhizal roots. Very often short roots 

were found without a mantle, without root hairs and with a Hartig net, present in only 

a few cells. Intracellular growth did not occur. These roots are not entirely non-

mycorrhizal, neither are they typically mycorrhizal. It might be supposed that these 

roots are young, newly developing mycorrhizas. However, the mycorrhizas looked old, 

with usually a shrunken surface and very little or no extramatrical mycelium. Young 

mycorrhizas always had a mantle and a well-developed Hartig net. 

The poor-looking mycorrhizas with a poorly developed Hartig net seem to be the 

same atypical mycorrhizas as described concisely by Harvey et al. (1976) and Blasius 

et al. (1985), who omitted these roots from the countings. However, this might 

essentially influence mycorrhizal frequency, which is usually based on the total number 

of root tips. Therefore, two classes of mycorrhizas were distinguished in this study, 

one with a typical morphology (the 'well-developed' mycorrhizas) and the other with 

the limited development (the 'poorly-developed' mycorrhizas). 

Poorly-developed mycorrhizas were not only observed in the field, but in both 

pot experiments as well (Ch. 1,2). Because infection by other mycorrhizal fungi only 

occurred sporadically in these experiments, it seems that one fungal species can cause 

both well- and poorly-developed mycorrhizas. 

Ad (5). During soil analysis, mycorrhizas (with mycorrhizal fungi other than C. 

geophilum) covered with patches of C. geophilum were often observed, which suggests 

that C. geophilum overgrew existing mycorrhizas. There are two explanations for this 

apparent aggression of C. geophilum: (1) C. geophilum may decompose older mycorrhizas 

by possessing weak saprotrophic and/or pathogenic capabilities and (2) C. geophilum 

may take over the places of other, weakened mycorrhizal fungi. An interesting question 

is whether the C. geophilum which overgrows existing mycorrhizas and causes the 

"patchy" appearance is the same species as the C. geophilum which causes the typical, 

uniformly black mycorrhizas. 

Because of the high frequency of C. geophilum in all stands investigated in the 

present study, and because the variation in the occurrence of C. geophilum between 

plots could not be explained (Ch. 6), more research is urgently needed to elucidate the 

functioning of this fungal species in the forest ecosystem. 

Ad (6). Tree species may have different mycorrhizal fungi, differ in sensitivity to 

air pollutants and nutrition physiology and in many other aspects. However, the 
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essential parts of the theory (section 7.1) are likely to occur in other tree species as 

well. Air pollutants always reduce photosynthesis to a certain extent, and the supply of 

carbohydrates to ectomycorrhizal fungi always depends on photosynthesis. However, 

levels of tolerance to air pollutants may differ. In the present study only vital stands 

of P. sylvestris were studied, which all had high mycorrhizal frequencies (Ch. 6). 

Therefore, the mycorrhizal status of less vital stands should be investigated in near 

future. The results of such a study are likely to provide insight into future develop­

ment of mycorrhizal fungi if the decrease of the forest vitality in the Netherlands 

continues. 

In this study, it was concluded that nitrogen pollution is the main cause of the 

decline of mycorrhizal mycoflora in the Netherlands. Because the nitrogen pollution in 

many parts of Europe is much lower (Buijsman et al., 1987), other factors are likely to 

be important as well. These factors are probably closely related to those which explain 

the decrease of tree vitality in Europe (cf. Schutt & Cowling, 1985). In other countries, 

more emphasis should be placed on the effects of SO2, O3, acid mist and soil 

acidification. However, the decline of mycorrhizal mycoflora can probably still be 

explained in terms of a decreased supply of carbohydrates to the mycorrhizal fungus. 
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GENERAL SUMMARY 

The carpophores of mycorrhizal fungi have declined drastically during this century in 

the Netherlands and in other European countries. In contrast, saprophytic and 

pathogenic fungi did not show a significant change. In this thesis, the possible causes 

of the decline of mycorrhizal mycoflora have been examined. The hypothesis was put 

forward that the functioning of mycorrhiza was hampered, either through a decrease of 

tree vitality or by changes in soil chemistry, both resulting from air pollution. Pinus 

sylvestris was chosen as study object, because in the Netherlands (1) its vitality has 

decreased considerably, (2) mycorrhizal mycoflora of coniferous tree species decreased 

more strongly than that of deciduous species, (3) it is the only native conifer which 

possesses ectomycorrhizas and (4) plantations of P. sylvestris of the same age and on 

the same soil type can be found throughout the country. 

In a pot experiment, mycorrhizas of Paxillus involutus appeared to be sensitive to 

SC>2 fumigation alone, or in combination with NH3 pollution, in contrast to mycorrhizas 

of Laccaria proximo. Photosynthesis, measured on P. «vo/uto-inoculated seedlings, 

was inhibited by SO2 fumigation. However, effects on plant growth were negligible 

(Chapter 2). 

Nitrate and ammonium salts in a pot experiment had a significant negative effect 

on the mycorrhizas (Paxillus involutus and Suillus bovinus), and a significant positive 

effect on plant growth. Ammonium treatments affected the seedlings more positively 

and the mycorrhizas more negatively than nitrate. The N content of seedling needles 

fertilized with ammonium was higher than those treated with nitrate. It was suggested 

that a high N uptake by the plant decreased the carbohydrate availability for the 

mycorrhizal fungi (Chapter 3). 

Ammonium and nitrate fertilization at rates of 0, 30 and 60 kg N ha"1 yr~' in 

two young stands of P. sylvestris during three years had a similar, significantly 

negative effect on the number and total dry weight of carpophores and on the number 

of fruiting species. However, the number of carpophores of Laccaria proxima increased 

due to the fertilization treatments in one stand. Mycorrhizal frequency and number of 

mycorrhizas were not affected (Chapter 4). 

Field observations revealed that the mycorrhizal mycoflora of young stands of P. 

sylvestris included species which have become rare during this century in the Nether­

lands (Chapter 5). Especially in first rotation young stands on drift sands many of 

these species were found, several of them in large numbers. This seems to be related 

to the fact that first rotation stands have become rare in the Netherlands. There was 

a considerable difference in the mycorrhizal mycoflora of first rotation young stands 

compared to that of second rotation young stands and of old stands. However, a 
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literature survey showed that the fungal species which appeared to occur specifically in 

the first rotation young stands were also common in humus-rich and mature stands in 

Poland, Finland and Russia. Possible explanations for this difference are discussed. 

In 50 to 80-year-old stands of P. sylvestris, the number of mycorrhizal fruiting 

species as well as the number and total dry weight of their carpophores had highly 

negative correlations with the NH3 deposition and ambient NOx concentration, and to a 

lesser extent with ambient SO2 concentration (Chapter 6). The mycorrhizal mycoflora 

showed insignificant positive correlations with tree vitality, expressed as the needle 

occupation of the trees. The mycorrhizal mycoflora was very poor in most old plots. 

Young stands had a much richer mycoflora than old stands. Over the three years 

of field observations, more species (factor 3) and more carpophores (factor 13) were 

found in the young plots. 

The mycorrhizal mycoflora in 5 to 10-year-old stands was negatively influenced by 

infection of trees by Lophodermium seditiosum. High positive correlations were found 

with ambient NOx concentrations and could be partially ascribed to infection by L. 

seditiosum, which occurred in the less polluted areas. 

The mycorrhizal frequency exceeded 95% in all but one of the old plots and in all 

young plots, indicating that the decrease of carpophores preceedes that of mycorrhizas. 

The following conclusions were drawn: 

(1) No decline of carpophores of mycorrhizal fungi could be detected in young 

stands of P. sylvestris, this in contrast to the situation in old stands. 

(2) The carpophores of mycorrhizal fungi in young stands are negatively affected 

by (artificial) nitrogen fertilization. The mycorrhizas of seedlings can be negatively 

affected by nitrogen fertilization and by SO2 fumigation. 

(3) The nitrogen effect on the mycorrhizas is likely to be a result of decreased 

supply of carbohydrates by the plant, caused by the increased uptake of nitrogen 

compounds. 

(4) The effects of nitrogen deposition and SO2 pollution on P. sylvestris and 

mycorrhiza depend on the fungal species involved. 

(5) The age of forest soils determines to a great extent the mycoflora. The ageing 

of Dutch forests contributes to the decrease of mycorrhizal mycoflora. It is not clear 

to what extent air pollution influences the succession of mycorrhizal fungi. 

(6) Nitrogen pollution is the major factor explaining the decrease of mycorrhizal 

mycoflora. The absence of effects of nitrogen pollution in young plots is explained by 

the high nitrogen losses due to clear-cutting and soil ploughing, decreased interception 

of air pollutants by smaller trees and the higher need for external nitrogen of young 

trees. 

(7) Carpophores of mycorrhizal fungi are more sensitive to nitrogen pollution than 

mycorrhizas. 
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(8) It is proposed that the decline in mycorrhizal mycoflora during stand develop­

ment might not occur if air pollution, particularly nitrogen pollution, is drastically 

diminished, and if the excess nitrogen in the ecosystem is removed. 
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ACHTERUITGANG VAN PADDESTOELEN VAN MYCORRHIZAVORMENDE SCHIMMELS 

IN OPSTANDEN VAN GROVE DEN 

Samenvatting 

Uit historisch onderzoek is gebleken dat in deze eeuw een grote verarming opgetreden 

is in de soortenrijkdom van paddestoelen in Nederland en andere Europese landen. 

Deze verarming heeft zich bijna uitsluitend voorgedaan bij de groep van schimmels die 

samenleeft met houtige gewassen, de zogenaamde mycorrhizavormende schimmels. In 

deze samenlevingsvorm gaan schimmel en plant een relatie aan waarvan beide profiteren 

door uitwisseling van voedingsstoffen. 

In dit proefschrift wordt de verarming in de soortenrijkdom van paddestoelen van 

mycorrhizavormende schimmels nader onderzocht aan de mycorrhiza's van grove den en 

wordt getracht de oorzaak ervoor te vinden. 

Aangezien de verarming niet is opgetreden bij andere paddestoelen dan die van 

mycorrhizavormende schimmels lijkt een verband met de algemene daling in vitaliteit 

van de Europese bossen voor de hand te liggen. 

Een indicatie voor de vitaliteit van de bossen wordt in het algemeen verkregen 

door bepaling van de naaldbezetting van de bomen. Onder normale omstandigheden 

blijven de naalden van grove den ongeveer drie jaar aan een boom zitten voordat ze 

eraf vallen. Bomen met een lagere vitaliteit laten hun naalden eerder vallen en kunnen 

daardoor minder goed in de suikerbehoefte van de mycorrhizavormende schimmel 

voorzien. Hierdoor kan de groei van de schimmel en daarmee de vorming van padde­

stoelen geremd worden, aangezien mycorrhizavormende schimmels weinig of geen andere 

bronnen voor bevrediging van hun suikerbehoefte hebben. 

De daling van de vitaliteit van de Europese bossen wordt in het algemeen toege­

schreven aan luchtverontreiniging. Luchtverontreiniging kan niet alleen beschadiging 

van de bovengrondse delen van de plant veroorzaken, het kan ook allerlei bodemchemi-

sche veranderingen tot gevolg hebben, waarvan verzuring een bekend voorbeeld is. 

Naast het feit dat luchtverontreiniging via de boom een effect kan hebben op de 

schimmel, kan dus ook luchtverontreiniging de schimmel door veranderingen in het 

bodemmilieu aantasten. 

Het onderzoek is toegespitst op de effecten die luchtverontreiniging kan hebben 

op de mycorrhiza's, mycorrhizavormende schimmels en hun paddestoelen. Het onderzoek 

is beperkt tot de mycorrhiza's van grove den. Deze boomsoort heeft recentelijk in 

Nederland een achteruitgang in vitaliteit vertoond. Verder was gebleken dat de 

verarming in de rijkdom aan paddestoelen duidelijker was voor de paddestoelen die bij 

coniferen groeien dan voor paddestoelen die aan loofbomen of aan beide gebonden zijn. 
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Bovendien is grove den vanuit bosbouwkundig oogpunt voor Nederland interessant, 

omdat het de meest algemeen aangeplante boomsoort is. 

In het laboratorium werden twee proeven verricht waarin de effecten van 

begassing met zwaveldioxide (al dan niet in combinatie met begassing met ammoniak) en 

van stikstofbemesting onderzocht werden op kiemplanten van grove den. Deze kiemplan-

ten werden voorafgaand aan de behandelingen geïnfecteerd met bepaalde soorten 

mycorrhizavormende schimmels. Zwaveldioxide bleek een negatief effect te hebben op 

de infectie van de kiemplantjes door de mycorrhizavormende schimmel Krulzoom 

(Paxillus involutus), maar de Fopzwam (Laccaria proximo.) bleek niet beïnvloed te 

worden. Additionele begassing met ammoniak bij twee niveaus van begassing met 

zwaveldioxide bleek alleen bij Krulzoom een negatief effect te hebben vergeleken met 

hetzelfde niveau zwaveldioxide zonder ammoniak. 

Het effect van stikstofbemesting op mycorrhiza's werd onderzocht omdat de 

luchtverontreiniging met ammoniak (van de bio-industrie) en stikstofoxiden (van verkeer 

en industrie) een zo grote vlucht heeft genomen dat momenteel grote hoeveelheden 

stikstof in de bossen voorkomen, hetgeen een onnatuurlijke situatie is. Bemesting met 

ammonium- en nitraat-stikstof in een potproef bleek een positief effect te hebben op 

de plantegroei tot een niveau, waarboven de groei niet meer veranderde, maar er bleek 

een sterk negatief effect op te treden op de mycorrhiza's. Dit negatieve effect is ook 

beschreven in de literatuur en wordt verklaard door de toegenomen productie van 

aminozuren door de plant, waarvoor zowel stikstof als suikers nodig zijn. Hierdoor 

komen minder suikers beschikbaar voor de mycorrhizavormende schimmels, die hierdoor 

dus geremd worden in de groei. 

In een veldexperirrjent in een jonge opstand van grove den waarin bemest werd 

met ammonium- en nitraatzouten bleek de bemesting een duidelijk negatief effect te 

hebben op de paddestoelen van mycorrhizavormende schimmels. Er bleek echter 

nauwelijks een effect te zijn op de mycorrhiza's zelf. Geconcludeerd werd dat de 

paddestoelen waarschijnlijk gevoeliger reageren op stikstofbemesting dan mycorrhiza's. 

Door geheel Nederland werden opstanden van grove den geselecteerd met het doel 

de aantallen en soorten paddestoelen van mycorrhizavormde schimmels van deze 

opstanden met elkaar te vergelijken en te onderzoeken welke milieufactoren gecorre­

leerd zouden zijn met waargenomen verschillen in aantallen en soorten paddestoelen 

tussen de terreinen. De terreinen werden uitgezet op zandgronden in Noord-Holland, 

Drenthe, Overijssel, Gelderland, Noord-Brabant en Limburg. Aangezien uit de literatuur 

bleek dat jonge bossen andere soorten paddestoelen hebben dan oude bossen werden 

terreinen uitgezet zowel in de leeftijdsklasse van 5-10 jaar als in die van 50-80 jaar. 

In 1985 zijn 8 jonge en 13 oude terreinen uitgezet. Dit aantal is in 1986 uitgebreid met 

6 oude terreinen. 

In de terreinen (oppervlakte 1050 m^) werden in de jaren 1985, 1986 en 1987 de 
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paddestoelen van mycorrhizavormende schimmels geïnventariseerd. Verder werd ieder 

jaar de boomvitaliteit bepaald. Tevens werd de vegetatie beschreven. Gegevens over de 

luchtverontreiniging werden verkregen uit de literatuur. 

In de oude terreinen bleek een duidelijk verband te bestaan tussen de hoeveelheid 

luchtverontreiniging door stikstof en het aantal paddestoelen van mycorrhizavormende 

schimmels. In de terreinen met de hoogste luchtverontreiniging door stikstof bleken de 

geringste aantallen paddestoelen voor te komen. Ook de correlatie tussen aantal 

paddestoelen en zwaveldioxide luchtverontreiniging was negatief, maar zwakker dan de 

correlaties met stikstof luchtverontreiniging. De soortenrijkdom aan paddestoelen was 

zwakker, maar op dezelfde manier gecorreleerd met de luchtverontreiniging als het 

aantal paddestoelen. 

De infectiegraad van de mycorrhiza's (dit is het aantal mycorrhiza-worteltopjes 

ten opzichte van het totaal aantal worteltopjes) gaf dezelfde correlaties met luchtver­

ontreiniging te zien als het aantal paddestoelen, en was in alle terreinen op één na 

hoger dan 95%. Blijkbaar reageren de paddestoelen van mycorrhizavormende schimmels 

veel gevoeliger dan de mycorrhiza's zelf. Deze conclusie werd ook reeds getrokken uit 

de resultaten van de stikstof veldbemestingsproef (zie boven). Dit verschijnsel is goed 

verklaarbaar: de belangrijkste eis voor een mycorrhizavormende schimmel is een goed 

functionerende symbiose; zonder symbiose valt, onder natuurlijke omstandigheden, niet 

te leven voor de mycorrhizavormende schimmel. 

Bovengenoemde correlaties van de oude terreinen werden niet aangetroffen in de 

jonge terreinen. Hier bleek het voorkomen van een schimmelziekte die naaldval 

veroorzaakt (naaldschot, veroorzaakt door Lophodermium seditiosum) negatief gecorre­

leerd te zijn met de rijkdom aan paddestoelen en soorten paddestoelen. Deze pathogène 

schimmel kwam voornamelijk in hevige mate voor in gebieden met relatief weinig 

luchtverontreniging. In de literatuur werden aanwijzingen gevonden dat dit verband 

tussen het voorkomen van Lophodermium seditiosum en luchtverontreiniging causaal kan 

zijn. 

Ondanks het plaatselijk voorkomen van Lophodermium seditiosum waren alle jonge 

terreinen gemiddeld rijker aan paddestoelen en veel rijker aan soorten paddestoelen dan 

de oude terreinen. Bovendien bleken verscheidene soorten die gedurende deze eeuw in 

Nederland een significante achteruitgang vertoond hebben, in de jonge terreinen 

algemeen voor te komen. 

Geconcludeerd werd dat de verarming in de soortenrijkdom aan paddestoelen niet 

of nauwelijks opgetreden is in de jonge terreinen, terwijl deze in de oude terreinen 

juist zeer duidelijk is. 

Vanaf 1986 werden de jonge terreinen aan een verder onderzoek onderworpen. 

Naast de reeds uitgezette tweede generatie terreinen (dit zijn terreinen waar vóór de 

huidige opstand ook bos is geweest) werden acht jonge terreinen geselecteerd op 
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plaatsen zonder recente bosgeschiedenis: vier op stuifzand, twee op voormalige 

landbouwgrond en twee op ontwaterd hoogveen. 

Het bleek dat de soortensamenstelling van de paddestoelen van de eerste generatie 

terreinen sterk verschilde met die van de tweede generatie terreinen. Opvallend was de 

aanwezigheid van relatief veel soorten die een significante achteruitgang vertoond 

hebben gedurende deze eeuw in Nederland. 

Gesuggereerd werd dat de aanwezigheid van relatief veel achteruitgegane soorten 

in de jonge terreinen samenhangt met de algemeenheid van dit type terreinen in Neder­

land. Gezien de ongelijke leeftijdsopbouw van het Nederlandse bos zijn jonge terreinen 

van grove den zeldzamer dan oude, en eerste generatie jong bos is zelfs erg zeldzaam. 

Het bleek echter dat soorten paddestoelen die in dit onderzoek alleen in jonge 

terreinen gevonden werden, in het buitenland (Finland, Polen en Rusland) ook in oude 

bossen gevonden worden. Op basis hiervan, en op basis van het gevonden verband 

tussen de mate van luchtverontreiniging en het voorkomen van paddestoelen in de oude 

terreinen, werd geconcludeerd dat in oude terreinen een factor aanwezig is die de 

fructificatie van mycorrhizavormende schimmels remt, en die afwezig of minder 

prominent aanwezig is in de jonge terreinen. 

Op basis van deze conclusie en gegevens uit de literatuur werd een theorie 

opgesteld die bovenvermelde waarnemingen uit experimenten en veldwaarnemingen 

verklaart. 

De hoofdcomponent die de verarming in de paddestoelenflora van mycorrhizavor­

mende schimmels in Nederland verklaart, is volgens die theorie luchtverontreiniging met 

ammoniak en stikstofoxiden en, in geringere mate, zwaveldioxide. Deze veroorzaakt een 

tekort aan suikers voor de mycorrhizavormende schimmels. In jonge terreinen is de 

stikstofopname door de planten echter geringer doordat (1) de stikstof behoef te van 

jonge bomen groter is dan die van oude bomen, (2) de planten minder stikstofverbin­

dingen onderscheppen omdat ze lager zijn dan oude bomen en omdat ze meestal relatief 

beschut tussen oudere opstanden gesitueerd zijn en (3) er grote stikstofverliezen zijn 

opgetreden na het vellen van het oude bos tot en met het inplanten van jong bos. 

Met het ouder worden van jong bos is de verwachting dat bij gelijkblijvende 

luchtverontreiniging door stikstof de paddestoelenflora achteruit zal gaan. Deze 

achteruitgang zal trager verlopen bij geringere luchtverontreiniging door stikstof. Een 

verlaging van de luchtverontreiniging door zwaveldioxide zal eveneens een positieve 

invloed hebben op de paddestoelenflora. Verwacht wordt echter dat de invloed van 

stikstof groter is dan de invloed van zwaveldioxide, aangezien ammoniakemissies in 

Nederland veelal dicht in de buurt van bossen gelocaliseerd zijn. Gezien de relatief 

hoge depositiesnelheid van ammoniak is de invloed vooral dicht bij de emissiebron 

groot. Het heeft derhalve meer zin de ammoniakemissies te bestrijden dan de stikstof-

oxideëmissies. 
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Om een verdere achteruitgang van de paddestoelenflora en een daling in de 

infectiegraad van mycorrhiza's tegen te gaan dient de stikstof luchtverontreiniging, met 

name de ammoniak luchtverontreiniging, drastisch beperkt te worden. 
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