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S T E L L I N G E N 

1. 

De recente resultaten van Harrison betreffende het gedrag van aerosol-
deeltjes in een ruimte met houten wanden, leiden tot een verband tussen 
diffusie-grenslaagdikte en aerosol-diffusiecoefficient dat sterk afwijkt 
van de theorie en van andere waarnemingen betreffende dit verband. 

A.W. Harrison, J. Coll. Inter f. Soi. 69_ (1979), 563. 
Dit proefschrift: §2.2.2, in het bijzonder vergelijking (15). 

Facy's schatting van het belang van thermoforese ten opzichte van diffusio-
forese van aerosol-deeltjes in de nabijheid van verdampende of condenserende 
druppels is een grootte-orde te laag. 

L. Facy, "Radioactive precipitations and fall out", in: "Nuclear 
Radiation in Geophysics", eds. H. Israel en A. Krebs (Springer, 
Heidelberg, 1962), p.226. 

De waarnemingen van Van de Vate waaruit Van der Hage concludeert dat de 
nucleatie-snelheid van water op hydrofobe deeltjes veel groter is dan volgens 
de klassieke theorie berekend kan worden, zijn in dit verband multi-inter-
pretabel. 

J.C.H, van der Hage, "Condensation of water on insoluble substrates", 
proefschrift Universiteit van Utrecht, 1974, p. 55. 

Deeltjes groter dan enkele micrometers kunnen in de buitenlucht niet verzameld 
worden met een van de luchtbeweging onafhankelijk rendement als een monster-
aanzuigmond in rust wordt gebruikt. 

5. 

Bij epidemiologisch onderzoek betreffende luchtverontreinigend stof is de 
aerosolmonsterneming tot nu toe onvoldoende gezondheidsrelevant geweest. 

"Sulfur Oxides and Suspended Particulate Matter", Environmental 
Health Criteria 8, World Health Organization, Geneva, 1979, sections 
2.2.3 and 8.3. 

6. 

De grote stroom resultaten van meetnetten voor neerslag-samenstelling is 
voorlopig niet bruikbaar voor de doeleinden die men zich daarbij voorstelt 
betreffende kennis van verontreiniging van bodem, water en lucht. 



7 . 

De bezwaren van natuurwetenschappelijke zijde tegen sub-Avogadro verdunningen 
in de homeopathie (< 10~24, c.q. "potenties" > D24) moeten zich ook richten 
tegen de zeer lage partiële zuurstof-drukken (< 10_22 kPa) in de gas-vast 
chemie van metaaloxiden met defect-structuren. 

0. Leeser, Lehrbuch der Homöopathie (3e druk, K.F. Haug, Ulm, 1963), 
p.535. 
L.M. Atlas, G.J. Schieman, "Defect equilibria of PuC>2-x, 1100 to 
1600 °C in: Proc. Int. Symp. "Thermodynamics", Vienna, 22-27 July, 
1965 (IAEA, Vienna, 1966), vol.11, p. 407. 
K.L. Komarek, M. Silver, "Thermodynamic properties of zirconium-
oxygen, titanium-oxygen and hafnium-oxygen alloys", in: Proc. Int. 
Symp. "Thermodynamics of Nuclear Materials", Vienna, 21-25 May, 1962 
(IAEA, Vienna, 1962), p.749. 

Antoni van Leeuwenhoek was de eerste belangrijke natuurwetenschappelijke 
onderzoeker van aerosoldeeltjes. 

"Alle de brieven" van Antoni van Leeuwenhoek (Amsterdam/Lisse: 
Swets & Zeitlinger, 1939-1979); bijv. kaarsrook: deel I, p.182; 
tabaksrook: deel I, p.220; mistdeeltjes: deel III, p.300; tin- en 
loodrook: deel V, p.108. 

9. 

De onomkeerbare klimaatbeïnvloeding ten gevolge van kooldioxide-emissie door 
de verbranding van fossiele brandstoffen is waarschijnlijk een groter probleem 
dan de mogelijke effecten van radio-actief afval van nucleaire energie-opwekking 

10. 

Hoewel een belangrijk deel van de taak van de Landbouwhogeschool te Wageningen 
is gericht op monocultures, is het toch niet gewenst de doctoraten-oogst aan 
deze instelling te beperken tot die in Landbouwwetenschappen. 

11. 

Het past een christen om zorgen te hebben over het milieu maar niet om 
milieu-activist te zijn. 

12. 

Polemiek in de kerkelijke pers strijdt met christelijke grondregels. 

Matthäus 18: 15-17. 

13. 

Het zou beter zijn als men zijn schoolgeld weer kan terughalen. 

A. Kuyper, "Ons program" (Höveker en Wormser, A'dam, 1880), p.223. 

Stellingen bij het proefschrift "Investigations into the dynamics of aerosols 
in enclosures as used for air pollution studies". 

Joh. F. van de Vate 
Wageningen, 24 september 1980. 



VOORWOORD 

Dit proefschrift wil op een bescheiden wijze tot uitdrukking 

brengen de prachtige samenhang waarin God Zijn schepping gemaakt heeft 

en nog steeds zo in stand houdt, waaruit Zijn almacht en trouw blijkt. 

Hem ben ik dank verschuldigd dat ik met dit proefschrift te midden van 

veel andere activiteiten een stukje van die schepping mag ontplooien. 

Mijn ouders wil ik in dit voorwoord een voorname plaats geven. Zij 

hebben in de financieel moeilijke jaren na de Tweede Wereldoorlog mij 

in de gelegenheid gesteld een universitaire studie te volgen. In het 

bijzonder wijlen mijn vader heeft mij opgevoed in het zien van het 

esthetische van de omringende werkelijkheid en in het bijzonder van de 

natuurwetenschappelijke verschijnselen en wetmatigheden, een instelling 

van veel belang voor een natuurwetenschappelijk onderzoeker. 

Prof.Dr. E.H. Adema, mijn promotor, ben ik erg erkentelijk voor 

zijn belangrijke begeleiding bij het in definitieve vorm brengen van 

dit proefschrift en vooral voor zijn welwillendheid een al grotendeels 

gevormde dissertatie onder zijn supervisie te nemen. De kritische 

commentaren op concepten van deze dissertatie door twee van zijn vak

groep-medewerkers Dr.Ir. Eltjo Buringh en Ir. Peter Hofschreuder 

zijn belangrijk geweest voor zowel vorm als inhoud van dit proefschrift. 

Ik ben hen daarvoor erg dankbaar. 

I feel strongly obliged to acknowledge my co-promotor 

Prof.Dr. W. Stöber for his various activities in relation to this 

thesis. His critical reading of the manuscript in its final form, 

advices on various aerosol subjects dealt with in this thesis, and 

further comments have been greatfully appreciated. 

Prof.Dr. F.H. Schmidt wil ik ook graag hier vermelden. Het spijt 

me dat U in een bepaald stadium van mijn promotie hebt moeten terug

treden. Uw commentaar op dit proefschrift heb ik echter erg gewaardeerd 

en is met vrucht verwerkt. 

Het Energieonderzoek Centrum Nederland verdient veel waardering 

voor de ter beschikking stelling van verschillende technische facili

teiten onontbeerlijk voor het verschijnen van dit proefschrift. Vooral 

wil ik Prof.Dr. J.A. Goedkoop en Dr. A. Tolk noemen bij mijn dankwoord 

vanwege hun stimulerende belangstelling voor het aerosolonderzoek dat 

ik bij het ECN nu bijna 13 jaar heb mogen leiden. Bovendien heeft het 



commentaar van eerstgenoemde bij het manuscript van dit proefschrift 

belangrijk bijgedragen aan een goede weergave van mijn ideeën hierin. 

De experimentele uitvoering van het onderzoek vermeld in dit proef

schrift heb ik samen met Leo Hermans en Adri Plomp mogen doen. Bij het 

uitwerken van de vele waarnemingen ben ik bevestigd in mijn overtuiging 

dat zonder hun inzet en bijzondere experimenteer-vaardigheid dit proef

schrift niet de noodzakelijke basisgegevens had gekregen. Zij weten 

dat ik de kwaliteit van hun werk hoog schat. 

Ik wil zeker ook Ir. J.R.D. Stoute noemen die mij op plezierige 

wijze ingewijd heeft in de aerosolmysteries. Discussies met 

Dr.Ir. J.A.M. Kops, Dr. H.M. ten Brink en technische hulp van ver

schillende medewerkers van de ECN-groep Aerosolonderzoek hebben bijge

dragen tot dit proefschrift; hen wil ik ook bijzonder bedanken. 

Mevrouw Admiraal-Ypma verdient veel waardering voor de verzorging 

van het type-werk. 

Ik ben aan mijn vrouw, Agathe, bijzondere dank verschuldigd vanwege 

haar opofferende, voortdurende aanmoediging bij de studie voor en het 

schrijven van dit proefschrift. Ze heeft zonder enig teken van onge

noegen gedragen dat mijn afwezigheid in de huiselijke kring gedurende 

anderhalf jaar nog groter was dan normaal. Ook waardeer ik de morele 

steun die mijn kinderen me gaven door zo consequent de houding van hun 

moeder na te volgen. 
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LIST OF SYMBOLS 

A - proportionality constants in (19), (89) and (90) 

B - proportionality constant in (27) 

D - diffusion coefficient in (10) 

E - electric field strength in (41) 

proportionality constant in (87) and (88) 

F(d) - slip correction factor for particle of diameter d in (8) 

G - factor in (91) and (92) 

AH - latent heat of vaporization in (34) and (88) 

I - flux, of particles in (14), of light in (37) 

K - coagulation constant in (1) 
I 21 

Kn - Knudsen number (= — = —r-) 
r d 

M - molecular mass in (62) 

N - number 

Q - heating power 

R - gas constant 

proportionality constant in (48) and (49) 

S - surface area 

%S - percentage of supersaturation in (93) 

T - Kelvin temperature 

U - force 

X - mole fraction 

b - exponent to n in section 4.3.2 

c - concentration 

slip coefficients in (28 ) 

d - particle diameter 

f - factor of increase of d due to compaction in (79) 

f - factor of increase of d due to n primaries in section 2.3 



g - gravitational acceleration 

h - height of aerosol chamber 

k - Boltzmann constant 

Z - mean free path of molecules 

- h in (55) 

m - mass of aerosol particle 

n - number 

gas/particle interaction coefficient (n , ) in (23) 

p - pressure 

q - electric charge 

r - radius of droplet 

r - radius of particle 

t - time 

v - velocity 

x - distance 

a - thermophoretic constant in (20) 

- coefficient of thermal expansion in (55) 

ß - decay constant of aerosol removal in (5) 

S - thickness of boundary layer in (11) 

e - absolute dielectric constant in (44) 

n - gas viscosity 

K - dynamic shape factor in (47) 

A - thermal conductivity in (25) 

M - mobility in (6) 

p - density 

o - standard deviation 

u - angular velocity of rotation 



Subscripts 

a - aerodynamic 

B - according to Brock in (28°) 

crit - in (31) 

d - diffusive in (16) 

- vapour in (61) 

diff - diffusiophoretic in (32) 

D - according to Derjaguin in (28 ) 

e - mass (or volume) equivalent in (46) 

electric in (41) 

eff - effective 

E - according to Epstein in (28 ) 

f - floor in (18) 

g - gas in (22) 

geometric in (51) 

- measured in (29) 
c 

momentum in (28 ) 

maximum 

number 

p - particulate 

photophoretic in (37) 

S - according to Stetter in (28 ) 

s - sedimentation in (17) 

sp - spatial in (73) 

t " thermal in (28°) 

th - thermophoretic in (19) 

v - vapour in (88) 
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1. INTRODUCTION 

1.1. General 

Commonly "aerosol" is defined as a heterogeneous system of finely 

dispersed solid or liquid matter suspended in a gas. Since, in contrast 

to hydrosols, the aerosol system is inherently unstable, the problem 

of the size range of the dispersed phase reduces to the sensivity and 

the quickness of the means to observe it. Usually, interest is limited 

to the size range of 0.01 to 100 pm. 

For a long time aerosols have been recognized as an important part of 

nature. In 1885 Sir Oliver Lodge |l| remarked: "If the atmosphere were 

purely gaseous and held no minute foreign bodies in suspensions, ...., 

the sun would glare down directly with blinding intensity and objects 

not directly in sunlight would be in almost complete shadow". Besides, 

cloud formation by condensation of water vapour would be strongly 

hampered, leading to a different world climate. On the other hand, for 

modern traffic and shipping, the presence of fog causes severe 

problems, so that the considerable efforts to investigate the role and 

the behaviour of condensation nuclei and to forecast visibility are 

of more than academic interest. 

For centuries anthropogenic aerosols have been considered as air 

pollution to be combatted, the main part of these aerosols originating 

from combustion. Recently, interest paid to pollution of the air by partic

ulate matter has increased strongly. There were various reasons for 

this change in view of airborne particulate matter. One of the 

reasons has been the insight that the gaseous air contaminants like 

S0„ \2\ and NO |3|, originally considered to be main air pollutants, ap

peared to have enhanced toxicity in the presence of aerosols probably due 

to conversion at the particle's surface or due to a postulated increased 

inhalability (concentrating and vehicle function of the particle). 

This synergism of gaseous contaminants and aerosols is the proposed 

explanation for smog catastrophies like the one of 1952 in London |4|. 

Effects owing to anthropogenic aerosols other than on human health or 

living nature, which have placed them more and more on the environmen

tal foreground are e.g.: 

- decreased visibility (mainly related to sulphate particles), 
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- a possible influence on the world's climate, 

- changes in the composition of precipitation (acidification), 

- enhanced corrosion of materials, 

- other consequences of atmospheric interactions with particles, like 

radical scavenging, photocatalysis, formation of photoactive compounds 

(HN02). 

Nearly every handbook on aerosols commences with a survey of the 

various names attributed to aerosols according to their composition, 

formation, appearance, etc. To avoid adding to the confusion caused 

by the sometimes controversial definitions, the existence of this 

extensive literature e.g. |5| may merely be mentioned here. In the pres

ent work, however, other terms like "nucleus" are also used. Concentra

tions of nuclei are measured by means of condensation nuclei counters 

(pg. 68); nuclei play a role in aerosol formation inside enclosures 

with a heated layer of liquid (section 4.5). The use of the term 

nucleus in aerosol science stems from meteorology where aerosols play 

an important role in water droplet and ice nucleation. 

This study concerns the behaviour of enclosed aerosols. Originally, it 

was carried out with the aim to derive rules which could refine the 

evaluation of reactor safety with regard to severe hypothetical accidents 

of nuclear power reactors |6|. However, the applicability of the 

results is much wider, amongst others to atmospheric research (to which 

the present study is generally dedicated). One of the experimental 

problems of atmospheric research is the principal impossibility of 

avoiding interferences due to the surroundings. When investigating 

a localized air parcel in situ one should follow this parcel during 

its transport which can be done e.g. by means of balloon-borne instru

ments. However, interference from mixing in of air from outside the 

parcel will be unavoidable in this approach. The alternative of placing 

the parcel inside an enclosure eliminates the air mixing interference 

but now the walls of the enclosure will influence the properties of 

the air parcel. Nevertheless, the latter technique is most widely used 

in atmospheric research. Obviously, atmospheric research and other 

investigations on air-borne material require some knowledge about the 

influence of the dimensions and parameters of the enclosure confining 

the air or cloud of particles to be examined. In air pollution research 
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this is the case, for example if the kinetics of a slow chemical reaction 

involving aerosols must be investigated. For this purpose the often 

used (dynamic) flow reactor has limited use because the relevant trace-

analytical determinations need large samples which can only be obtained 

at higher flow velocities limiting this type of reactors to reactions 

of relatively fast kinetics. 

However, knowledge of the stability of aerosols in vessels may be useful 

for still more purposes. Either the aerosol container may be used as a 

supply of atmospheric nuclei with a concentration having a known time 

dependence, or the enclosure may be used for research on aerosols in 

a defined environment. Moreover, the properties of the aerosol particles 

can be examined by investigating the decay rate of an enclosed aerosol. 

Finally, using a known aerosol the enclosure can be characterized as 

to its properties as an aerosol enclosure. 

Consequently, this study has been carried out in view of the importance 

of the knowledge of the processes in enclosed aerosols for: 

- the use of enclosures under controlled laboratory conditions: 

a) in atmospheric research for the study of aerosol processes in the 

atmosphere like coagulation, sedimentation, condensation, 

scavenging, nucleation and chemical reactions, 

b) in environmental sciences for the study of the totality of aerosol 

processes playing a role in air pollution, 

c) in microbiology, particularly aerobiology of airborne microbes, 

d) as a tool for assessment of aerosol properties; 

- experimental simulation of post-accident situations of nuclear 

reactors or other potentially hazardous industrial installations; 

- the characterization of aerosols stored in a container as a supply, 

for calibration etc. of aerosol measuring apparatus. 

From the review of available literature of research on enclosed aerosols 

(see next section) it may become clear that there is a considerable 

and widespread interest in this field, but also that results are rather 

incoherent. This is also one of the motivations for the present study. 

The majority of the aerosols in this study used was generated by the 

so-called Exploding Wire technique which will be explained later on. 

Although the motivation for the use of aerosols from an Exploding Wire 

in the present research stems from nuclear safety, it must be emphasized 

here that these aerosols have aerodynamics similar to the so-called 
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condensation aerosols. These aerosols play an important role in air 

pollution since they are typically anthropogenic owing to their formation 

by wide-spread high-temperature processes such as occurring in combustion 

engines and iron works. In a separate study on the morphology and 

chemical composition of atmospheric particles, the author has shown |7| 

the occurrence of important concentrations of these chain-like particles 

near busy roads and in industrial areas. Figure 1 allows comparison 

between these atmospheric aerosols and the aerosols from an Exploding 

Wire. 

w S 

Fig. la. Condensation aerosol of copper oxide formed by the Exploding 

Wire technique. The platinum shadow illustrates the three-

dimensional character of the aggregates. 
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.olim, 

Fig. ib. Iron oxide aerosol sampled Fig. lc. Aerosol particle (presumedly 

in an industrial area with carbonaceous material) 

iron works. sampled near a busy road. 

1.2. Atmospheric aerosols 

Aerosols in the troposphere have various origins. Nature itself gives 

the largest contribution (̂  4 x 10 g.yr ) |8|. Anthropogenic sources, 

though important locally or regionally, emit globally with a much lower 

rate (̂  3 x 10 g-yr ) |8|. Meteoritic dust is insignificant 

(2 x 10 g-yr |8J). It is most functional to describe the atmo

spheric aerosol in terms of its size distribution. According to 

Whitby |9| (supported by experimental evidence, also from many other 

studies) the number size spectrum of the atmospheric aerosol basically 

consists of three modes 

- a "transient nuclei" mode with a geometric median diameter of 0.017 urn-

and a geometric standard deviation of 1.74, 

- an "accumulation" range with a geometric median diameter of 0.34 um 

and a geometric standard deviation of 2.05, 

- a "coarse particle" region with a geometric median diameter of about 

8.8 pm and a geometric standard deviation of 2.33. 

Sources mainly emit into the smallest or largest mode. When aerosol 

formation is via the molecular stage (photochemical, combustion, etc.) 

transient nuclei will be produced. Coarse particles are produced by 



mechanical means like grinding, by wind, etc. Due to the high rate of 

coagulation of nuclei these small particles are quickly transported from 

the transient nuclei mode to the accumulation mode. The accumulation 

mode is relatively stable since the combined atmospheric deposition process 

(diffusion removal and inertial removal) is least effective for these 

particles. Since most of the surface area of airborne particulates is 

concentrated in the accumulation mode, coagulation of transient nuclei 

is predominantly with this mode. Background aerosols in remote areas 

have mainly sizes which fall in the accumulation mode. However, when 

the sun is shining in these areas considerable amounts of transient 

nuclei can be found (Great Smoky Mountains), and when arid regions 

(Sahara desert) are concerned, dust storms can give a major contribution 

of coarse particles. Worlds largest natural aerosol source is the ocean 

(10 g.yr ) |8|. The marine aerosol is produced by the bursting-bubble 

mechanism which is a mechanical process. However, the droplets initially 

formed evaporate to particles which are much smaller. The marine aerosol 

size spectrum consists roughly of two modes: one coinciding with the 

coarse particle mode, the other mode extending from the accumulation 

mode into the transient nuclei |lOJ. 

In urban regions the various anthropogenic sources can give the whole 

spectrum of the three modes. These emissions are extensively studied 

like fly-ash, traffic aerosols, and various industrial emissions. A 

separate category is the secondary formed aerosol, e.g. sulphate 

particles from the primary SO emission and photochemical smog from 

sun irradiation of complex mixtures of nitrogen oxides and unsaturated 

hydrocarbons (sometimes also SO is involved in this photochemical 

system). Such secondary aerosols mainly appear in the accumulation mode 

due to either condensation on existing accumulation particles or rapid 

coagulation of homogeneously formed clusters or nuclei with these 

accumulation particles. 

1.3. Review of literature 

1 j.3̂ 2i_Ear ly_2er iod 

Already during more than half a century aerosol behaviour in enclosures 

was subject of research although with widely different objectives. 

Investigations on enclosed aerosol date back to at least 1916. In that 
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year Kennedy |11| published his study on the decay of nuclei produced 

by a Bunsen burner in a vessel. The aim of the study was to obtain 

information about the electric charges on particulate matter under 

circumstances simulating atmospheric conditions. Particle number 

concentrations were measured by means of an (Aitken) nucleus counter 

(pg. 68). The decay appeared to be a second order process which was 

attributed to the coagulation of the small particles. This was 
5 -3 

found to hold over a concentration range from 8 x 10 cm to 
4 - 3 7 x 10 cm . For lower concentrations the rate of disappearance 

was faster than that due to coagulation. In 1928 W.D. Flower |l2| con

firmed Kennedy's conclusions on coagulation as the dominating process 

in high number concentration aerosols in enclosures. Flower has used 

particles formed by heating a platinum wire in air and has measured 

relative number concentrations by means of the ultra-microscope. In 

1933 P.J. Nolan published his study using the same measuring technique 

on the influence of condensation nuclei and dust particles on 

atmospheric ionisation |13|. He followed the decay of an enclosed 

aerosol consisting of atmospheric nuclei and particles over a period 

of 150 hours. This decay appeared to obey an exponential law except 

for the first day during which the rate of decay was higher. In 

agreement with Kennedy, Nolan attributed the initial high decay rate 

to coagulation, whereas the prolonged exponential decay was said to be 

caused by diffusion deposition from a well-stirred atmosphere on the 

walls of the storage balloon that was used. In 1935 J.J. Nolan and 

V.H. Guerrini published their study on the parallel plate single-stage 

diffusion battery |l4| in which study the authors investigated the 

concentration decay in a gasometer in order to see whether the storage 

of nuclei would change the size spectrum of the nuclei used. It looked 

as if the processes of diffusion and settling operate to remove the 

particles at the extremes of the size distribution. Six years later 

P.J. Nolan re-examined his previous results |l4| together with the 

results of Rauscher |l5| and again concluded that the exponential decay 

is mainly due to diffusion taking place in a boundary layer. In 1955 

Pollak and O'Connor |l6|, assisted by Fürth |l7|, developed a theory 

for the disappearance of atmospheric nuclei assuming that the "whole 

column of particles diffuses radially while sedimenting bodily"; 

thereby Pollak disavows Nolan's stirred diffusion model. They observed 
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also a non-exponential part in their long-term decay curves. 

In the same year P.J. Nolan |l8| (probably convinced by Pollak's critique) 

gives a new approach to the problem. His analysis based on measurements 

of the diffusion coefficient by means of the diffusion box |l4| leads 

also to a non-exponential decay of enclosed aerosols. Accordingly, in 

1956 Pollak et al. |l9| published an extensive article on the determina

tion of the diffusion coefficient of condensation nuclei using the two 

different techniques. The "static" method applies the decay inside a 

vessel using Pollak's theory on diffusion deposition for analysis of 

the decay rate data. The "dynamic" method uses the diffusion box of 

Nolan |l4|. Their "static" method, however, they state to be valid 

only for narrow but tall spaces with an air-column diameter of no more 

than a few cm. Also a boundary of 1.5 mm had to be postulated which 

remains free of nuclei at the start of the experiments. In 1959, O'Connor 
3 

reported experimental results with nuclei stored in a 4 m rubber balloon 

gasometer and showed that the "average" size of the nuclei (measured 

by the "dynamic" method) increased presumably due to preferential losses 

of smaller particles by diffusion on the wall 1201 . The results 

presented indicate that a constant size was approached. This size 

was deduced from the effective diffusion coefficient obtained with 

the "dynamic" method. Meanwhile Nolan and Scott |2l| in 1955 added 

to the existing knowledge of enclosed aerosols by introducing a 

refined "dynamic" method taking into account the relation between the 

effective diffusion coefficient and the flow rate through their 

diffusion box. The size dispersity of enclosed nuclei appeared to decrease 

considerably during storage. In 1965, however, McGreevy |22| showed 

that the "dynamic" method should be used with great care since the 

diffusion box measures an effective diffusion coefficient which can 

be seriously misleading when the size distribution is skew. For example, 

the presence of a significant fraction of small nuclei can suggest 

diffusion coefficients which are much too large. McGreevy also stated 

that aerosols stored for periods up to 10 days remain polydisperse. 

He further concluded that after about two days the size of nuclei in 

a container would lie between two size limits dependent on the size 

of the enclosure used and on the original size distribution. McGreevy's 

extensive publications are of great importance because his critical 

comments on the "dynamic method" (diffusion box) unsettles Pollak's 
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model of non-stirred (spatially non-uniform) aerosol deposition in 

chambers as this model was largely based on "dynamic" method data. 

Outside the field of meteorology, Langstroth and Gillespie (|23|, |24|) 

have studied around 1950 the effect of initial mass concentration, 

humidity and stirring on the decay of ammonium chloride smoke inside 

vessels. They reported exponential decay curves for both mass and 

particle number. Increased humidity and stirring led to increased 

wall losses. In 1962 Rosinski et al. 1251 reported about their 

investigations with enclosed aerosols originating from an Exploding 

Wire (pg. 62). An influence of radioactive labelling of the aerosol 

on the coagulation rate was observed. They found that after correction 

for coagulation the "decay constant" of the aerosol decreased with 

time. However, closer analysis of their data given in their publication 

does not support such a time-dependent "decay constant". 

'•3^2^_Nuclear safety_research 

In the mid-sixties, nuclear reactor safety motivated the initiation of 

various investigations of enclosed aerosols. Up to that time, in the 

safety evaluation of a radioactive cloud formed e.g. by a reactor 

accident, a 100% release to the environment was assumed. The investigations 

that were initated has as their common aim to account in the safety cal

culations for the instability of the enclosed radioactive cloud. 

Reports of an expert group and symposia |26, 27| give a good survey 

of the efforts of the various groups in this field. Most of these 

groups ultimately try to develop computer models as versatile as 

possible regarding the description of the mechanisms active in aerosols 

inside containments. Since the safety of nuclear aerosols is directly 

related to aerosol mass, interest of these groups is mainly in gravita

tional aerosol deposition, the rate of which is known to be strongly 

coupled with any preceding coagulation. An exact formulation of 

coagulation, however, is very difficult (if not impossible) at least 

for solid aerosols. As a result, the main effort of these groups 

has been in coagulation. Coagulation, however, is not our primary 

interest since the enclosure itself is not influencing an aerosol 

coagulating inside it except by preventing dispersion. Nevertheless, 

the extent to which this work is focussed on aerosol stability inside 

containments justifies treatment of this study. Though it must be kept 
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in mind that usually rather high aerosol mass concentrations (one or 
-3 

more g.m ) are concerned and, furthermore, this safety related research 

aims at upper estimates of the time dependent mass concentration. 

The most extensive series of experiments on nuclear aerosols has been 

done by Greenfield et al. This investigation is probably also the 

oldest work in this area. Aerosols have been investigated in vessel 

volumes varying from 1 m to 6 m 126 | . In these experiments mainly 

sodium smoke produced from various types of sodium fires is used but 

the experimental programme also included Û ,0„ aerosols from arc 

vaporization. Aerosol mass concentration versus time and depositions 

on walls and floor versus time have been measured. In a number of cases 

cascade impactor samples have been used for the determination of the 

size distribution. Due to the high mass concentrations in these 

-3 

sodium smoke experiments (1 - 100 g.m ) the average aerodynamic dia

meters observed were quite high, viz. several \im. The observed decay 

curves were non-exponential with decay rates slowing down as time 

proceeds. The U.O aerosols having lower initial mass concentrations 
J c 

showed a nearly exponential decay after an initially accelerated decay. 

In case of the sodium smoke experiments a considerable temperature 

rise inside the vessels has been observed. The high mass concentrations 

as well as the additional thermal effects considerably complicate the 

interpretation of the experimental results of Atomics International. 

Nevertheless, they have developed a computer programme (code HAA-3) 

which allows the calculation of the time-dependent aerosol concentration 

in a closed vessel. Coagulation, stirred gravitational settling and 

diffusive deposition are taken into account |28|. The computed concentrations 

are in reasonable agreement with the experimental values |29|. Further 

improvements of the HAA-3 code have been reported ]30|. 

In the same years, R.J. Davis of Oak Ridge National Laboratory has 

developed a special model for the estimation of aerosol concentration 

in a closed vessel |3l|. He assumed a power-function type particle 

size distribution (comparable to the Junge-distribution) to be present, 

after coagulation within a certain size region has ceased. Then, Davis 

derived a concentration-time relation which he regards to be in fair 

agreement with the above mentioned experimental results obtained by 

Atomics International. Stirred settling was the only deposition process 

taken into account. 
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More recently, one of the largest nuclear aerosol projects commenced at 

Oak Ridge National Laboratory (USA), the ART-project (Aerosol Release and 

Transport). In the first stage of the ART-project main efforts are in 

the area of aerosol formation rate under hypothetical accident conditions. 

Later on, greater attention will be given to aerosol behaviour inside 

containments. The first preliminary results on this are available [32|. 

At Brookhaven National Laboratory, Castleman Jr. et al. have also carried 

out aerosol research which was mainly theoretical. They have solved an 

equation expressing the processes in high number density aerosols subject 

to both Brownian motion and stirred gravitational settling in a closed 

system | 33[. Lindauer and Castleman |33[ have calculated for such large 

initial number concentrations that after a short time an enclosed 

aerosol shows a lognormal size distribution with a geometric standard 

deviation of 1.37 irrespective of its original properties. Calculations 

and their sparse experimental results compare very well |34|. 

Schikarski's research group (Karlsruhe,FRG) has investigated enclosed 

aerosols of UO produced by the Exploding Wire technique. The German 

primary effort has been in development of a versatile computer programme. 

The most recent version of their code PARDISEKO deals with coagulation 

and a number of stirred deposition mechanisms (gravitational, thermo-

phoretic and diffusive) |35|. From a number of experiments the Germans 

concluded that thermophoretic deposition is a dominating removal 

process under sodium fire circumstances |36|. This conclusion sheds 

controversial light on the above mentioned fit between the HAA-3 code 

(without thermophoresis) and the Atomics International sodium smoke 

results. A problem related to PARDISEKO as well as to similar codes is 

the use of shape factors for non-spherical particles which factors 

should correct for the shape dependence of coagulation and phoretic 

processes. In practice, time independent and empirical factors are 

applied which makes the validation of the codes by fit with experiment 

rather unreliable. In accordance whith the nature of these codes 

(safety application) usually the aerosol concentrations are overpredicted. 

At Battelle's Columbus Laboratories a versatile code (HAARM-3) has 

been developed which represents the most recent modification of the 

original HAA-3 code (see above). It provides a more physically realistic 

modelling of the nuclear conditions it is applicable to. Treated are 

various types of coagulation and stirred deposition (settling, diffusion 
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and thermophoresis). Reasonable fit with experimental data from elsewhere 

is shown [37|. No experiments on enclosed aerosols have been performed 

at Battelle Columbus. 

At Japan Atomic Energy Research Institute, aerosol codes have been 

developed. Also experiments on enclosed aerosols have been performed. 

The code (ABC) models coagulation, settling, diffusion and thermo

phoresis in all cases for well-stirred aerosols | 3 8 j. Significant 

problems were met in fitting the ABC-code with experimental data particu

larly those on sodium smoke aerosols. Good fit was obtained for data 

from specially designed experiments where thermophoresis should be the 

dominating process. In France a large experimental programme has been 

executed using large-scale 

using sodium fire aerosols. 

3 executed using large-scale spaces (several 1000 m ) almost exclusively 

2^3i3i_Smog_chamber_studies 

In view of the very high mass concentrations generally involved in the 

above listed nuclear oriented investigations, this research is only 

of limited interest here. Much lower mass concentrations are used in 

so-called smog chamber studies where gaseous contaminants in filtered 

or unfiltered ambient air are exposed to near-UV light. Some investigators 

interested in aerosol production in these systems have given attention 

to the fate of the particles produced in smog chambers. Miller |39|, 

in a study of sulphate particulate formation in irradiated SO /air 

mixtures, recognised the importance of wall losses of these particles 

in his 200-liter chamber. He has shown that for unfiltered air no 

important wall losses occur. However, this observation applies to the 

dark (unirradiated) conditions only, which could be different from the 

irradiated conditions. Miller expects important loss rates due to 

diffusion for the S0„/unfiltered air system due to the small nuclei 

formed in that case. McMurry in his thesis 140.|, which is based mainly 
3 

on aerosol investigations using a 65-m air-filled teflon bag placed 

on a laboratory roof, also considers the error in his smog chamber data 

from wall losses. He regards inertial and gravitational removal to 

govern loss of large particles. However, the given results from experiments 

using e.g. 1 ym particles (70% per hour removal) are far too high for 

being explainable by gravitational deposition whereas inertial deposition 

in the non-stirred bag seems very unlikely for 1 ym particles. Probably 
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effects due to electrostatic charges at the teflon walls or photophoresis 

or thermophoresis have played a role. Another study deals with the 

same problem (Zalabsky |4l|) as that of Miller (see above). Zalabsky 

has made a special study of the decay rates of platinum hot-wire 

aerosol and H_SO, aerosol (about 0.03 urn diameter) in his 24-liter 

reactor. He concludes that a limited stirring (partial homogenisation 

of the atmosphere) could explain the results. However, there is no 

need to use this explanation. The observed decay curves are exponential 

and it can be shown that stirred diffusion to the reactor walls with 

a stagnant boundary layer of 0.5 mm thickness explains the observations 

fairly well. Zalabsky's diffusion coefficients probably are incorrect 

in view of the small half-life of the aerosol (27 min) which leads to 

a rather large boundary layer thickness & compared to the S value which 

can be calculated using Eq. (15) derived later on. 

In a later stage (see pg. 106) the observations made by McMurry and 

Zalabsky will be discussed in the framework of stirred electrophoretic 

deposition onto the aerosol chamber walls. A picture reasonably coherent 

with other observations on electrophoretic deposition can be 

obtained. 

In summary, literature shows two or three disciplines active in the 

field of enclosed aerosols. In early periods of attention to this 

subject, the meteorologists extensively investigated the decay of nuclei in 

enclosures. The initial view of "stirred deposition" has been left by 

Pollack who assumed "non-stirred deposition" on the basis of his 

diffusion box observations ("dynamic method"). The critique on Pollack's 

"dynamic method" did not lead to reconsidering the stirred deposition 

model. In the nuclear safety efforts since the mid-sixties, the importance 

of the stirred deposition model has been recognized again. However, the 

attention is focussed on high mass concentrations and related processes 

which are not relevant to air pollution. Furthermore, the main objective 

of these studies is to derive merely conservative estimates of aerosol 

concentrations. Only on a few occasions qualitative investigations are 

made of the wall effects on aerosol behaviour in smog chambers. 
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1.4. Objectives 

In view of the incoherent picture of the behaviour of aerosols inside 

enclosures as obtained from a literature search, it is scientifically 

worthwile to improve the knowledge on enclosed aerosols. It is also 

desirable to have a general model for aerosol removal inside enclosures 

allowing a mutual comparison of the various removal mechanisms responsible 

for the instability of enclosed aerosols. As set forth in section 1.1. 

(pg. 15), this knowledge can be used either to predict the behaviour 

of known aerosols inside enclosures in use for various purpose or to 

characterize an unknown aerosol aerodynamically. 
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2. THEORY 

2.1. Coagulation 

Aerosols formed at a considerable number concentrations inevitably will 

show significant coagulation during an initial period. The particles 

subject to deposition are formed and shaped by the coagulation which 

constitutes in this way an important pre-stage to the final deposition 

period. Coagulation, being a two-particle process, will decrease 

relatively quickly compared to the deposition processes which have 

first-order kinetics. 

Kennedy |11| has observed that nuclei in a closed vessel disappear 

according to a second order process. The relationship was found to 
5 4 - 3 

exist over a range of concentrations from 8 x 10 to 7 x 10 cm . For 

lower concentrations the decay rate appeared to be faster which was 

attributed to some additional deposition process being of the first 

order and hence showing an increasing relative importance |13 f. 

Coagulation of particles of equal size has been treated extensively 

by Von Smoluchowski |42a|. The decay of the particle number concentration 

c is described by 

dc 
n _ 

dt 
- Yc1 

n 
(1 ) 

where K is the coagulation constant. 

This equation can be integrated 

c (o) 
r-rr = Kt or: c (t) = -~ (2) 

c c (o) n Ktc (o) + 1 y 

n n n 

The general expression for the coagulation of a polydisperse aerosol 

has been given by Muller |42b|. The solution of the general equation 

has been obtained by Zebel |43| and also Spiegler 1441 , assuming the 

particles to be spherical droplets. This assumption has the advantage 

that coagulation of two particles yields a new one having a defined 

diameter. This is, however, far from reality for our case of conden

sation aerosols of branched chain-like coagulates (fig. 1). This 

lack of realism has been recognized by the Atomics International Group 

when it observed the bad fit between their HAA-3 code and the 
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experimental results on condensation aerosols |30|. 

From experiments, however, it may be concluded that the coagulation 

constant of an aging aerosol can be considered to be constant and 
-9 3 - 1 . 

slightly larger than 10 cm .s . This has been explained by the 

compensating effects on K of the changes of particle size and dispersity 

of the size distribution |A5|. 

Some investigators state that electrical charges on the aerosol particles 

can affect the rate of coagulation considerably |46, 47|. However, 

Gillespie's results |46| apply to particles having relatively high 

charges and, moreover, are not convincing in view of the large scatter 

in the results. Rosinski |47| dealing with highly radioactive aerosols 

presents data which are difficult to interpret and the effects observed 

relate only faintly to electrical influences on coagulation rates. 

Zebel |45| has given a treatment of electrical effects on coagulation. 

2.2. Deposition of enclosed aerosols 

2.i2^_K_General 

Temperature differences between the walls and the atmosphere of an 

enclosure give rise to free convection flows inside. These flows can 

be calculated with the aid of the Prandtl relation |48, 49| for the 

vertical flow which develops at a heated wall, when an effective wall 

is assigned to the enclosure. It has been shown by Watson, Perez and 

Fontana |50| that the convective flows increase with increasing tank 

dimensions at a given temperature difference between gas and walls. 

This can also be deduced from the Prandtl relation (see Eq. (55), |48|). 

In practice free convection is always present inside a vessel due to 

temperature gradients induced by the environment. Application of 

thorough cooling of the lower vessel part can suppress unintentional 

convection. It has been shown by Fuchs |49| that a temperature 

difference of the order of 0.01 C in an enclosure with an effective 

wall length of one meter is capable of keeping an aerosol consisting 

of particles smaller than 10 um homogeneously distributed inside the 

enclosure. This state of homogeneous aerosol distribution which 

generally occurs, is usually called "stirred". In some cases intentional 

or unintentional local heating of the enclosure may be present. 

Evidently, the magnitude of the convective flow will be larger in case 
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the enclosure is heated from below. 

As mentioned above non-stirred circumstances are abnormal. The occurrence 

of non-stirred deposition is dealt with in a separate section (2.5) 

of this chapter. 

The deposition on the walls is only possible when the particles penetrate 

into the stagnant boundary layer (> 1 mm) in contact with the walls. 

Since the stopping distance of aerosol particles in a system with flow 

velocities of about 10 cm.s is in the range of 10 urn to 100 urn, the 

aerosol particles can reach the walls only with the aid of additional 

mechanisms like gravitational settling, diffusion, thermophoresis, etc. 

Gravitational deposition will occur through this layer near upward facing 

horizontal surfaces. Deposition due to Brownian diffusion is active 

through the boundary layer towards the whole internal surface of the 

enclosure. Deposition in non-isothermal cases takes place through the 

boundary layer near the cold walls. 

The number of particles An deposited during a time period At through the 

stagnant layer onto area S at a deposition velocity v is related to the 

particle number concentration c by 

An = - v S c At (3) 
n 

For a containment volume V, c = —, n being the total number of aerosol 

particles contained in the vessel. Now, (3) may be rearranged into 

(4) 
dt 

When v is time independent, which is the case for a monodisperse 

aerosol in which no coagulation takes place, (4) may be solved: 

Cn = C n ( o ) e x p ( ~ e t ) ( 5 ) 

S 
This is an exponential decay with a decay constant ß equal to VTT. 

In case of a monodisperse aerosol the deposition velocity is equal 

to the terminal velocity which each particle attains due to the force 

causing deposition. Hence, according to the definition of the 

mobility p of a particle the deposition velocity is related to the 
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deposition force U by 

terminal velocity of particle _ v ... 
force causing translation U 

The mobility u of an aerosol particle is dependent on particle size and 

shape, and on the viscosity of the gaseous medium in which it is suspended. 

The equation for spherical particles due to Knudsen and Weber |5l| and 

Millikan j 52| is generally accepted: 

F(d) 
3 ïïn.d 

d = particle diameter, 

n = viscosity of the medium in which the particle moves 
-4 

(n of air of STP = 1.83 x 10 poise), 

(7) 

and 

„,,. , , 1.66 x 10 5.3 x 10 , ,, .4 ,. ,„. 
F(d) = 1 + j + exp (-8.33 x 10 d) (8) 

with d expressed in cm. 

The empirical factor F(d) (see e.g. |53|) is called slip factor. It is 

near unity for particles larger than a few um diameter but increases 

strongly with decreasing particle size. For particle diameters smaller 

than the mean free path of the molecules, F(d) is inversely proportional 

to d, F(d)xd amounting to about 0.23 (d in u m ) . 

The mobility is a basic property of a particle since it describes 

its behaviour due to an external force, as a rule irrespective of the 

nature of the force (gravity, electrical force, thermal force, e t c . ) . 

In case of nonspherical particles, however, the mobility depends on 

the orientation and on the nature of the force. When a nonspherical 

particle carrying a dipole is subjected to an electrical force, its 

mobility depends also on the orientation of the dipole. The same is 

true for inertial forces where the dynamic shape factor K is orientation 

dependent. 

Substitution of (7) into (6) yields, for spherical particles, 

ii F(d)U . 
v = p x U = - j (9) 

i und 
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In the following sections various deposition processes of stirred 

aerosols are dealt with. 

2i2^2^_Stirred_dif fusive_de£OS_ition 

Deposition by Brownian motion of an aerosol homogeneously distributed 

inside a container takes place through a boundary layer at the walls. 

The driving force for this transport is the concentration gradient 

across this boundary layer. At the walls the particle number concentration 

is taken zero since all particles reaching the wall are assumed to 

stick to it and not to be resuspended. At the inner side of the boundary 

layer the concentration equals the concentration of the homogeneously 

filled containment. Fick's law describes the diffusion of particles 

due to a concentration gradient —:— 

where D = the diffusion coefficient of the particles in the gaseous 

medium. Eq. (10) may be rewritten as 

dC" D S nn 

for an aerosol in an enclosure of volume V, total surface area S and 

with a thickness 6 of the concentration boundary layer. The introduction 

of 6 as an effective boundary layer thickness is a necessary simplifi

cation which implies a linear concentration gradient near the walls. 

The coefficient of diffusion D of a particle is related to the mobility 

u of the particle as follows (Einstein |54|) 

" = ê (i2) 

where: 

k = Boltzmann constant 

T = Kelvin temperature. 

Substitution of equation (7) into (12) yields the size dependence 

of the diffusion coefficient: 
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D = 3SdF(d) (,3) 

For coarse particles (> 1 um) D is inversely proportional to particle 

diameter (F(d) « 1 ) ; nuclei (< 0,05 um) have D-values inversely 
2 

proportional to d . 

6 has been defined by Fuchs |55| as the distance from the wall at which 

the coefficients of molecular and convective diffusion are equal. 

At the edge of the boundary layer the particle flux I due to convection 

equals the rate of deposition: 

Dc 

1 = - ^ (14) 

According to Fuchs |55|, 6 depends not only on the intensity of convec

tion but also on D. Since D is size dependent, it follows that 6 will 

be a function of particle size too. This cannot be treated exactly, 

but some indications on the relation between D and 6 can be obtained 

from the discussions of Fuchs on this subject J 551 . Fuchs explains that 

when D decreases, turbulent fluctuations carry the particles closer 

to the wall and in so doing partly compensate for the small value of D. 
i 

He obtains a D4 dependence of 6 , where the exponent may be even smaller 

in reality. 

In conclusion, 6 will be largely independent of the particle size of the 

enclosed aerosol. This is in agreement with the general approach of 
i i -4 

various authors. Fuchs |55| calculated 6-values of 5 x 10 mm and 

0.02 mm, from experiments by Shifrin |56| and Gillespie |57J, respec

tively. Castleman j34j referring to Fuchs, assumed the thickness 6 to be 

0.02 mm. Greenfield J 291 obtained 6 = 10 mm from his experimental 

data. These 6-values, however, are all very small (though obtained for 

comparable aerosols) compared to the values found by Nolan |58| and 

the author |59|, viz. 6-values of the order of 1 mm. Very likely, the 

small 6-values are due to erroneous interpretation of measurement data. 

Often, incorrectly, deposition due to thermophoresis or by electro

phoresis has been attributed to diffusion deposition. 

Since gas molecules can classically be treated as particles, the 

applicability of Fuchs' 6-model can be tested for the extremes of the 

range of 10 urn (molecules) to 0.1 um (aerosol particles). Eq. (13) 
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relates the diffusion coefficient D to particle diameter d. From experi

mental data by Cox et al. |60| on the decay of concentrations of SO in 

a vessel, one may deduce a 6 value of 2.5 cm. In addition, for water 

vapour diffusing from a pool into an air-filled vessel a & value of 

3.5 cm has been found |6l|. Nolan j 3 81 using "atmospheric or room 

air" in a 330 litres vessel obtained a 6-value of 0.23 cm and simul

taneously estimated the average diffusion coefficient to be 1.2 x 10 
9 _ i 

cm .s . Mercer and Tillery |62| using "room air" containing particles 
— L 2 — 1 

of D » 1.3 x 10 cm .s (d = 0.02 ym) give experimental data on wall 

losses from which a S value of 0.6 cm can be deduced. Rooker and 

Davies 1631 calculated 6 equal to 0.4 cm for CaCO, nuclei of 
—6 ? — 1 

D = 2.2 x 10 cm .s . Finally, in section 4.6.4 of this study the 

diffusion deposition of 0.06 urn NaCl particles is found to take place 

across a boundary layer of 6 =0.26 cm. Table I* lists the 6-values 

together with the corresponding diameters d and the diffusion coefficients 

D of the "particles" (gas molecules are also treated as particles). 

Power curve fitting of these data yields 

5 = 4.6 D0'265 (15) 

with a coefficient of correlation r of 0.98 (n=6). One can conclude 

that Fuchs' model (predicting the exponent of D equal to 0.25), is not 

far from correct. For vessels of volume V and internal wall surface area 

S the half-life t, of aerosols disappearing by diffusion losses can 

be calculated, using Eqs. (15) and (16), from t, = 0.693 f ~ = 53 D~°"7 5 

2 D b 

for a 1 m square box. The half-lifes for particles of 0.01 urn 

and 0.1 um are about 4 and 90 hours, respectively. These half-lives 

are relatively large compared to those pertaining to other processes in 
smog chambers where the photochemically produced nuclei "disappear" by 

5 -3 coagulation rather quickly (1 hour half-life for c fa 10 cm ). Only 

for low mass production rates and when sufficient aging has taken place 

(resulting in small particle sizes and concentrations) one may expect 

removal due to diffusive deposition which then can be significant prior 

to important particle growth due to coagulation. 

The value of & will not be very different for various tanks since the 

unintentional temperature gradients will not deviate much from case to 

case. Furthermore the Prandtl relation shows that the free convection 

* Tables can be found on page 152 and following. 
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flow is only proportional to the square root of the product of the 

temperature difference and the total wall length (Eq. (55), |48|). 

When the disappearance of a monodisperse aerosol is governed by 

stirred diffusive deposition an exponential decay will be observed. 

The deposition velocity v equals the ratio of D to 6, which remains 

unchanged during the aerosol life. Hence, by integration of (10) the 

general equation (5) may be obtained with a decay constant 

ß d = f x f (16) 

When a polydisperse aerosol decays due to stirred diffusion the coarse 

particles will be deposited more slowly than the fine particles since 

D is smaller for larger particle sizes. The decay curve of such an 

aerosol will show a decreasing "decay constant". The same phenomenon 

will be shown by a coagulating aerosol, however. 

2^2i3^_Stirred_gravitational_de2osition 

In case of stirred gravitational deposition the force U causing the 

deposition of the aerosol is the weight of the aerosol particles. 

Substitution of U = -r Trpd g (p = particle density; g = gravitational 
6 

acceleration) in (9) yields the Stokes settling velocity for spherical 

particles 

d2 F(d) (17) 
s \i 

The use of p instead of the difference between the densities of particle 

and gas implies negligible buoyancy. According to equation (5) a mono-

disperse aerosol will decay exponentially with a decay constant. 

es
 = v s i r ( 1 8 ) 

with S_ being the projected area of the containment floor. For simple 
. V 

vertical vessels — can be replaced by the height of the vessel. 
bf 

When a polydisperse aerosol decays due to stirred gravitational deposi

tion its size distribution will change since the coarser particles 

will settle preferentially leading to a decreasing average diameter. 

When deposition is only due to settling the average deposition velocity 
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decreases and consequently the aerosol stability increases. 

Conditions of non-stirred settling are discussed in section 2.5. 

2j.2̂ 4. _S tirred_thermo£hore t ic_de£OS i tion 

In a temperature gradient a particle is subjected to a force which is 

called the thermophoretic force. This force, U , is proportional to 

the temperature gradient — according to Einstein |64| and Epstein |65| 

U ,_ = A ̂  x ̂  (19) 
th th dx 

Using relation (6) between force U , , velocity v , and mobility y, one 

obtains after substitution of (7) that the thermophoretic velocity 

v , is also proportional to the temperature gradient 

a is a particle-size dependent proportionality constant which will be 

discussed later on. Measurements |66, 67, 68| of the thermophoretic 

velocity as a function of the temperature gradient have shown the 

correctness of (20), the value of a being of almost identical magnitude 

regardless of particle material, e.g. its thermal conductivity. 

There are various distinct theoretical treatments of the thermophoretic 

effect. The major part of the theories is based on the short treat

ment by Einstein |64|. The thermal force is considered to be the net 

result of the impulses in the direction of the temperature gradient 

imparted to the particle by impinging gas molecules. 

When the particle is small compared to the mean free path (Z) of the 

gas molecules the problem is essentially that of thermal diffusion 

of a two-component gaseous system where one component has a negligible 

size. In case of small Knudsen numbers (particle radius r larger than 

the mean free path I, Kn = —) the temperature distribution inside the 

particle and the various effects of the particle on the surrounding gas 

have to be taken into account as was done e.g. by Epstein |65|. 

Then the thermophoretic force originates from "thermal creep" of gas 

molecules along the unevenly heated particle surface. In that case the 

thermophoretic force mainly arises from that part of the particle 
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surface where the thermal gradient along the surface is largest, viz. 

the "sides" of the moving particle. Clearly, in this model the heat 

transfer through the particle itself will play an important role in 

the thermophoresis of larger particles. 

After Epstein's treatment the complexity of the derived relations 

further increased since observations have shown that any influence 

of thermal conductivity of the aerosol particles is absent |66, 69|. 

Several constants associated with the temperature jump and the thermal 

slip at the particle surface had to be postulated in order to fit 

theory and experiment |67, 69, 70|. 

On the other side Stetter argues that these theoretical treat

ments are incorrect because they are based on speculative concepts 

concerning thermal creep, pressure unbalance and on the unknown physical 

properties of colloidal matter |7l|. Stetter explains |72| that thermo

phoresis is not caused directly by the temperature gradients themselves 

but via the concentration gradients in the gas due to the temperature 

gradients. The concentration gradients give rise to self-diffusion of 

the gas molecules which in a closed space must be compensated by a 

hydrodynamic Stefan back flow ("Rückstrom") in order to preserve pressure 

equilibrium. This is further illustrated by figures 2 and 3. 

Fig. 2. Thermophoresis in a closed space with movable wall and hole 

simulating an aerosol particle. T_ and T are cold and warm 

parts. Due to the temperature dependent molecular concentration 

and velocity a diffusion flow arises through the hole from the 

cold to the warm part. The resulting pressure difference 

causes a translation of the wall to the left, being thermo

phoresis. The driving force is only due to pressure: diffusing 

molecules exert no force on the wall (Stetter 50 ). 
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Fig. 3. Mass flows related to thermophoresis in a boundary layer at 

a cold wall. The temperature gradient — causes a diffusion 

air flow A to the warm gas atmosphere. Due to the induced 

pressure difference an air flow B results which pushes aerosol 

particles forward to the cold wall. 

This backflow from hot to cold drags the aerosol particles with a 

velocity |72| 

"th 

dc 
_! 
dx 

(21) 

where D is the diffusion coefficient of the gas molecules, c the 
g dc° _ g 

number concentration of gas molecules, and the gradient of this 
dx 

concentration due to the temperature field. Since c is inversely 

proportional to temperature T equation (21) can be rewritten 
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D 
/H'l' 

(22) "th T dx 

According to Stetter I72I a factor - — m u s t be introduced in (22) 
nth 

for the different interactions (expressed by n ) of various gas 

molecules with the particle surface. This leads to 

v = — S - x — (23) 
th n UT x dx K ' 

th 

which in combination with (20) leads to a = 
"th1' 

In fact the proportionality constant A , (in Eq. (19)) between the 

thermophoretic force U on a particle and the temperature gradient 
d T j 

— , can be expressed now as 

k Dg 

th 

which summarises the relation between thermophoresis and the properties 

of the particle and of the gas. 

Small particles (r < I) have n = 2 if the gas molecules can be 

treated as rigid spheres. In the case of air, however, n , — 3 |72|. 

For r > I, v decreases to — of the small particle value and hence 

for air n ca 8. Large particles have a relatively small effective 

size since the force from the back flow is limited to a boundary 

region of the particle surface with a thickness of the order of the 

mean free path in the gas phase. The remaining part of the particle 

surface plays no role in thermophoresis since there is no corresponding 

back flow in this region. 

Comparing the two theories on thermophoresis in the light of the 

experimental results, it can be established that in the small particle 

region (Kn > 1) there is good agreement between experiment and the 

theories of e.g. Brock 1691 , Waldmann ]701 and Stetter |7l|. The 

experimentally found reduced thermophoretic velocity of large particles 

(Kn < 1) is quantitatively explained by Stetter |7l|, though Stetter 

uses n ,-values which are empirical. All theories based on Einstein's 

approach |64, 65, 66, 69, 70| lead to relations which either are in 

disagreement with observations or include accommodation constants for 

the particular gas-surface system which are obtained from fitting theory 
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and experiment for high thermal conductivity aerosols |7l|. To 

complicate the problem, it must be remarked that Bokanov and 

Derjaguin [73 j have shown that the thermal slip is much smaller than 

assumed by e.g. Brock |69|. This is also shown for diffusion slip by 

Whitmore |74|. To date no satisfactory theory exists that deals with 

the thermophoretic force in the intermediate size range r ^ 1. 

Rotation of the particles is an aspect which has not been taken into 

account in either of the theories. A much smaller thermophoresis may 

result from the theories based on thermal slip when the Brownian 

rotation lowers the temperature gradient in the particle due to 

insufficient thermal coupling between the rotating particle and the 

surrounding gaseous medium. 

When an enclosed aerosol is subjected to thermophoretic deposition 

the corresponding decay constant ß , is given by 

0 dT th . . 
ßth = a X dix" X — ( 2 4 ) 

which is the combination of the Eqs. (4) and (20), and where S , 

equals the surface area of the "cold" walls (the heat sink) and 

a = -S-= as in (23). 
nthT 

The heat transfer can be related to aerosol mass transport by sub

stitution of Newton's law of cooling 

dT 
dx A S , 

g th 

which leads to 

5 = -SL Q 
th A V 

(25) 

(26) 

(A = thermal conductivity of the gas phase and 

Q = thermal power transferred by the enclosed gas). 

According to Stetter (apart from n , ) the factor a is a parameter of 

the gas only (a = — = _ , see Eq. (23)). Therefore, this must apply to 
nt-v,-*-

T— too. It can also be shown that -r— is independent of temperature. 
g g 

Gas kinetics theory 1751 gives a proportionality between D and Z-v 
and also a proportionality between A and p v le where v is the 

g g g v g 
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average velocity of the gas molecules and c is the specific heat 
° v D 

capacity (heat capacity per unit mass). Consequently, -— (= ~~=) 
-1 g nthAg1 

is proportional to (n , p c T) in which n, c and pT are all 
th g v v 

temperature-independent parameters. Taking n , = 8 for large particles 
a , + n i

 3 y - ' t 

in air, -r— amounts to 0.3 cm .J g 

In order to allow comparison between our experimental results and the 

values which can be derived from various theories on thermophoresis, 

the observed decay constants ß are transformed to dimensionless constant 

B defined by Eq. (24) and 

v , h - B ^ = £ (27) 
th p T dx 

g 

The proportionality factor B — — has been denoted a in Eq. (20) which 
pgTDg 

according to Stetter equals —==• (Eq. (23)). Since the Schmidt 
nth 

number (= — ) is near unity for gases | 55| (theoretically 0.83 for 
ĝ g n 

gas molecules of rigid spheres |75|), then D = — . Therefore, we can 
g Pg 

define a constant B (in 27) for Stetter's model by 

Bc = — (28a) 
b n , 

th 

The following B-values apply to the relations derived by Epstein, 

Brock and Derjaguin: 

2 2A + A 
g P 

c A Kn 
t_P_ 

2 2A + A + 2c A Kn 1 + 2c Kn 
g p t p m 

(28b) 

(28c) 

BD = 2 BB (28d) 

21 
with: Kn = Knudsen number = —r-

d 

c and c the thermal jump and isothermal slip coefficients 

2.16 and 1.23, resp. ( |69|) , 

A and A the thermal conductivities of carrier gas and particle, 
g P 

respectively. 

The formulae of Brock and Derjaguin differ by a factor of two. 
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Epstein's relation has a strong dependence on A for large A -values 

in contrast to B and B , which are almost independent of A . 
B D p 

The experimental value B , which is to be compared with these theoretical 

values, may be obtained from the measured decay constant g , of an 

aerosol in a heated aerosol vessel (Eq. (26)) by 

A T 
B - X x J_ x 0 (29) 
m Q D th 

g 
A T 
—£— is a constant depending on the properties of the gas; for helium 

8 . -3 
and nitrogen its values are 0.37 and 0.50 J.cm , respectively. 

An important effect arises due to thermophores!s in an aerosol vessel 

with a heated floor. Particles which settle through the stagnant 

boundary layer at the floor experience a counter force due to the 

temperature gradient there. The critical diameter (d . ) of a 

particle that will float in this thermal boundary layer near the 

floor can be calculated as follows. 

According to Newton's law of cooling the temperature gradient -r— which 

arises in the boundary layer of thermal conductivity A , and the heat 

Q causing the 

equation (25): 

Q causing the T-gradient through a surface area S, are related by 

Q=A S f £ 
g f dx 

A vertical temperature gradient — hampers settling of a particle 
dx 

due to a thermophoretic force (see Eqs. (6), (7), (20)). 

, \ h . 37rnad dT 
th u F(d) dx U U ; 

In case of equilibrium between the gravitational and thermophoretic 

forces, with the particle suspended in the boundary layer, 

dcrit - (p A g F(d) X S7,) • ,0 U x F(d)J (31) 

p g f ^ f ' 

For p = particle density, here assumed to be 1 g.cm 
P 3 _2 

g =10 cm.sec 
a n -, 3 T-l ,. , . , T — = 0.3 era .J (in case of air) 
g -U 

n = 1.8 x 10 poise (air) 
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Q -2 
One obtains d . in cm when -r- is expressed in W.cm crlt ?f Q 
Fie. 4 gives d . as a function of the heat flux -r— for the d e ° crit Sj crit 
range of 0.1 - 10 um. A warm floor with a temperature of 10 K higher 

-3 -2 
than the aerosol above it dissipates roughly 6 x 10 W.cm . The 

corresponding value of d . is about 0.8 um. 
crit 

Fig. 4. Critical diameter d (in um) of 

a particle having unit density 

that will float in the boundary 

layer above a heated plate in 

air. Plate heat flux Q/Sf in 

W.m 

2^2^_5^_Stirred_diffusiophoretic deposition 

Diffusiophoresis is defined as the transport of aerosol particles 

due to the presence of a concentration gradient in the gas phase. This 

requires the gas to consist of two or more components. Waldmann |70| 

has treated the general case of a particle in a binary gas mixture of 

which the two components are counterdiffusing. Diffusiophoresis arises 

in a system with a component which evaporates and condenses this 

component diffuses through another, "stationary" non-condensing component. 

Goldsmith and May |76| have considered this case of an aerosol in con

densing vapour as a superposition of the Stefan flow on the diffusion 

flows of the two components. According to Stetter |72|, diffusing 

molecules exert no force on aerosol particles since at the moment of the 

collision the molecules are no longer diffusing (fig. 2). Hence, the 
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aerosol particles will obtain a velocity in the direction of the dif

fusing species merely due to and equal to the Stefan backflow (fig. 5) 

which is governed by (see also Eq. (21)) 

vdiff c dx 
(32) 

where D„ is the diffusion coefficient of the diffusing component and 

c. is the gas concentration. According to the predictions of Stetter |72| 

for the analogous case of thermophoresis, v ._f decreases with increasing 

particle size in the range y ^ 1 (Kn ^ 1 ) . 

Fig. 5. Mass flows related to diffusiophoresis in a boundary layer at 

a cold wall on which water condenses. The concentration gradients 

of water vapour and air cause mass diffusion flows A and B, resp. 

The pressure difference due to flow B gives rise to an air counter 

flow C which drags aerosol particles to the blurring wall. 
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The size dependence in this range found experimentally by Schmitt |68| 

and Derjaguin |77| is in qualitative agreement with this. 
dp2 dpj 

In (32) c. may be replaced by the gas pressure p.. Since also —;— = - — — 

we may write 

D2 d p2 
v..,f = — -r± (33) 

diff p. dx 

where: p~ = particle pressure of the second diffusing vapour component. 

For not too large partial pressures of the vapour component (which 

as a rule is the case at temperatures below the boiling point of the 

vapour component) p. equals total pressure = 100 kPa. 

For the water vapour-air system at s.t.p. studied by Goldsmith and 

May |76| equation (33) fits their results fairly well. Therefore, the 

conclusion of these investigators that they found excellent agreement 

with their modified Waldmann theory is no proof of the correctness of 

this theory, since Stefan flow dominated in their system. 

The same applies to the experimental studies of Schmitt 168 j and 

Derjaguin |77| since they also carried out their experiments at 

relatively small partial vapour pressures (p ra 100 kPa). 

In addition to this, experimental evidence is obtained by Whitmore 

and Meisen |74| that counter diffusion must not be taken into account. 

Hence, the above given argument of Stetter concerning the absence of 

a force on particles due to diffusing molecules is supported indirectly 

(see also fig. 2). 

In the case of a partial pressure gradient of saturated vapour which is 

caused merely by heat flow with a corresponding temperature gradient 

-—, equation (33) may be modified by means of the p-T relation of 
dx 
Clausius-Clapeyron 

v = ^ x ^ x d T - ( 3 4, 
Vdiff T2 X RP]

 X dx ( ' 

with AH = latent heat of vaporisation of the second component. 

As for stirred thermophoretic deposition - see Eqs. (24) through (26) 

- a decay constant 3,.ff may then be derived 



45 

wdiff " i - "- - « (35> 

Here, implicitly, it is assumed that heat transfer is convective in 

the main vessel atmosphere but diffusive in the boundary layer at the 

walls. For the usual case of a heat flow conditioned vapour pressure 

gradient, thermophoresis and diffusiophoresis will occur simultaneously. 

Hence, a total aerosol decay will result with a decay constant 

P^D„ v2 2 
> T2 

g 

X 

AH 
V 

RP, 
X I) 

V 

fP2D2 A Hv \ Q 
ß

d + t • ßdiff+ e th - (-rx w:+ V rv 
(36) 

AH 

RT P ] / X V 

AT 
When the temperature gradient — is increased (and consequently Q too) 

v,.„ increases more than v due to the exponential temperature 

dependence of p„. Above a certain value of -r— the deposition will be 

entirely due to diffusiophoresis. For a dynamic system this has been 

shown by Goldsmith and May |76|. In case of an aerosol tank with a 

water layer on the floor already at room temperature the two terms 

are nearly equal for aerosol particles larger than several tenths 

of a micron. 

2^2^6i_Stirred_£hoto2horetic_dep_osition 

Photophoresis is defined as the transport of a particle due to light 

illumination of one side of the particle. Simplified one may regard 

photophoresis as a secondary effect which arises due to the heating 

of one side of the particle, inducing thermophoresis. Photophoresis 

can be negative or positive depending on the absorptive properties of 

the particle material. When the particle is partially transparent 

heating can be on the rear side of the particle resulting in a transla

tion to the light source opposite to when the particle is strongly 

absorbent. Particles of reflecting materials do not show photophoresis. 

Tong |78| has made an extensive study of the materials dependence of 

photophoresis and he has measured also the effect using very large 

(1 to 10 mm) particles. Tong also has developed a theory on photo

phoresis starting from the older theories on thermophoresis like 
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Epstein's |65|. Unfortunately, Tong's derivation is not available. 

However, Tong's publication |78| gives a relation for the photophoretic 

force U of absorbing particles: 

U . J U l l S__ ( 3 7 ) 
p 5p 2A + X KJ>,) 

g P 

where p = gas pressure and I = light flux. Using Eqs. (6) and (7), 

substitution in (37) gives for the photophoretic velocity v 

v p = i ^ 2 r ^ i r F ( d ) ( 38 ) 

g p 
X 

The factor — ^ is typical for Epstein's model (see Eq. (28b)) 
g + AP 

which is generally considered to be incorrect. Also our findings 

contradict Epstein's theory and favour e.g. Stetter's model (pg. 113). 

Therefore we replace — =—-— (which is Epstein's constant B in 
1 g P 

Eq. (28b)) by (which is Stetter's constant B_ in Eq. (28a)), 
nth b 

yielding 

2 1 F(d) (39) 
45pnth 

Now the decay of aerosol in a vessel due to illumination can be 

described by a decay constant 

S S 
ß„ = v i f = 7 T ^ — i r F(:d) (40) 

p p V 45p n , V 

S is the surface area of the illuminated wall region, n , usually 
p th 

amounts to 5 for particles of Kn < 1 and is a measure of the interaction 

between the gas molecules surrounding the particle and the particle 

surface (pg. 38) . 

Photophoresis in the sunlit troposphere is due to a light flux of 
-2 _ 2 -1 

about 0.1 W cm (- 10 cm.kPa.s ). Consequently, according to 

Eq. (39) the photophoretic velocity of aerosol in the troposphere is 

about 0.01 cm. s . This is of the same order of magnitude as the (dry) 

deposition velocity on the soil of aerosol particles in the size range 

of 0.1 - I um. This means that e.g. the ubiquitous sulphate particles 

in the troposphere (which, when dry, are in this size range) may be 

deposited by photophoresis to a significant extent; 100% absorption by 
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sulphate particles is assumed which probably is not correct. 

2i2i7^_Stirred_electro£horetic_deDOsition 

Aerosol particles carrying an electric charge are transported in an 

electric field. The resulting velocity v of electrophoretic movement 

is related to the strength E of the electric field and the electric 

particle mobility y by 

v = y E (41) 

Since y = —, Eq. (6), and the force U exerted by the electric field 

on a particle with a charge q is given by 

Ue = qpE (42) 

it follows that 

^e = % v = % Vr - S IS (43) 

For particles of 0.03 ym to 0.1 ym diameter charged in Whitby's 

diffusion charger |79| the electrical mobility is in the range of 

10 to 10 cm .V ,s . Atmospheric particles and nuclei 
-4 2 1 - 1 

produced by combustion have average y -values up to 3 x 10 cm .V .s 

(e.g. |80| and |8l|). When droplets of an aqueous solution or suspension 

are produced by nebulizing (pg. 63) these droplets carry charges. The 

particles resulting after evaporation will have 10 - 100 charges 

(predominantly positive). After neutralization (e.g. by exposure to 
o c 

Kr radiation) the particles attain Boltzmann bipolar charge distribu

tion (about 1 charge unit per particle of 0.4 ym). Then the y -value 

amounts to several 10 cm .V .s |82|. 

Electrophoretic removal can be important in enclosures if the walls 

are electrically charged, i.e. the walls are made of high-resistivity 

material like plastic, or when the particles carry a large number of 

charges. In the past some attention has been given to electrophoretic 

wall deposition mainly in view of the undesirable aerosol instability 

in plastic aerosol chambers 180, 83, 84, 85|. Lieberman and Rosinski |83] 

considered the loss rate in a plastic chamber to be almost exclusively 
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due to stirred electrophoresis. The observed decay constants (about 
-3 -1 . 

10 s in a 320-liters Lucite sphere), however, were not analyzed 

further. Stein et al. |80, 84, 85| in three publications in 1972 on the 

deposition of aerosols on charged polystyrene surfaces reports loss 

rates of 80% in a 20-minute period 1841 , the rates decreasing with 

increasing humidity |80|. It has also been shown that treatment of the 

enclosure walls with various antistatic agents can lead to almost 

complete elimination of electrophoretic deposition (less than a few 

% loss rate within 20 minutes). A model for stirred electrophoretic 

deposition, however, is not given. More recently, Yu |86| gave a com

prehensive treatment of removal of unipolarly charged particles in 

vessels. Unfortunately, Yu assumed deposition from a stagnant atmosphere 

which is not realistic since (see below) electrophoretic deposition 

velocities are usually smaller than the convection velocities 

(> several cm.s ) in enclosures. 

Stirred electrophoretic aerosol deposition should be considered a 

process which (like other stirred deposition processes) is rate-limited 

in the stagnant boundary layer at the enclosure walls. This electro

phoretic velocity in the boundary layer near the charge islands on 

the walls is proportional to the local electric field strength E( 

which is given by 

q q 
E = „ % = ̂ -f- (44) ze c S 2eS o g e e 

where: q = charge on the walls 

S = surface area charged 
e 

e = E E = absolute dielectric constant of air 
o g 

(8.85 x 10"16 C2.cm~2.tf') 

E = absolute dielectric constant of vacuum 
o 

E = (relative) dielectric constant of air (RJ 1 ). 
g 

Consequently, using Eqs. (4), (5), (41) and (44), an aerosol in an 

enclosure will decay due to electrophoresis with a decay constant ß 

given by 

S S y q 
E-f = - f ^ (45) 
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Provided y and q remain constant, the electrophoretic decay will be 

exponential. 

Usually, aerosol particles are bipolarly charged, the same being valid 

for the charge islands on the walls. Consequently, the deposition of 

particles of a certain polarity will take place only on those areas 

which have an opposite charge. Quantitative treatment of this different 

behaviour of particles of different polarities is difficult and requires 

exact knowledge of the aerosol charge distribution and the charging of 

the walls. The latter, however, at best is known only roughly as a rule; 

the walls have charge islands of the various polarities and of various 

sizes |80|. Therefore, we use a simplified quantitative approach 

defining an effective wall charge q which can be obtained by measuring 

the aerosol decay constant ß and assuming a certain electrical mobility 

Vi of the aerosol. Electrophoretic decay can be non-exponential 

especially if the product u q has significantly different values for 

the polarities of the aerosol. 

In general, electrophoretic deposition is undesirable. When aerosol 

chambers are used with walls of non-conductive materials like plastics 

and glass, proper actions should be taken to avoid electrophoretic 

removal to become important. To the author's experience treatment of 

the walls with a solution of any common laboratory detergent will 

effectively eliminate static surface charge under wet as well as dry 

conditions. As an indication of the care required it should be men

tioned merely that simply rubbing the outside of a 20-liters perspex 

box containing a dense iron oxide fume resulted in clean-up of the box 

contents within a few seconds. This is quite reasonable in view of the 
— Q — ? 

possibility of charging plastic surfaces up to 10 C.cm |87| 
-4 2 -1 -1 

which for an aerosol of p =10 cm .V ,s leads to half-lives of 
e 

the order of 0.1 seconds in a vessel of this size. 

Another type of electrophoretic deposition can prevail when the 

charged aerosol is enclosed in a vessel having conducting walls. Then, 

image charges are formed at the vessel walls which lead to Coulomb 

attraction of the aerosol particles too. This can be treated roughly 

as follows. We assume the same image charge q to be formed at the 

vessel wall by a particle carrying a charge q at a (small) distance 

of half the thickness 6 (ft* 1 mm for 0.1 um particles) of the boundary 
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layer at the wall. The Coulomb force U acting on the particle is then 

given by 

2 2 
q q 

üe - — L _ _ - - L (42') 
4TT£(J6) 1TEÔ 

The resulting average particle velocity v due to this image charge 

electrophoresis amounts to 

2 

v = u u L. (4i>) 
e e 2 

TTEÔ 

and the related decay constant g is given by 

2 
c yq„ c 

ß = v ^ = - ^ - ^ (45') 
e ev ,2 V 

TTEO 

Non-neutralized particles (q ss 30 electric charges) of about 0.1 urn 

diameter (u = 1.7 x 10 m .s- .J ) in the s.s.-walled 200-vessel 

(section 3.2) are subject to image charge electrophoretic deposition 

with a decay constant of the order of 10 s . This is of similar 

magnitude as of other deposition processes. The induced charge will be 

smaller when the walls consist of a non-conducting material, dependent 

on the dielectric constant of the wall material. 

2.3. Particle shape, density and size distribution 

Conveniently, a non-spherical aerosol particle is aerodynamically 

characterized by two parameters, viz. the aerodynamic diameter and the 

dynamic shape factor |88|. The aerodynamic diameter (d ) of the particle 

is defined as the diameter of a hypothetical sphere of unit density 

having the same Stokes' settling velocity v as the particle possesses. 

The dynamic shape factor K of the particle is the ratio of the particle's 

drag to the drag of a sphere with the same mass. Hence, writing d 

for the diameter of that sphere, 

U F(d ) 

3i n d v e 

6 (46) 

This can be transformed to a relation between K, p, d and d 
e a 
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d 2 F(d ) 

po d 2 F ( d a } 

a 

where p is unit density, 
o 

Dynamic shape factors of non-spherical particles of simple shapes 

(e.g. cubes, cylinders and prolate ellipsoids) can be calculated 

approximately (Kops, |89|) and these theoretical results are well 

confirmed by experiment. 

Aggregates of solid primaries have been studied experimentally by 

Stöber |90|, Kops |89| and recently by Allen |9l| yielding K values 

which are related to aggregate microstructure (primaries size distribu

tion and number n of primaries per aggregate). Stöber's investigations 

were focussed on aggregates of limited numbers (up to about 20) of 

monodisperse polystyrene spheres. Kops has studied aggregates of 

relatively large numbers n (10-10 ) of polydisperse primaries of 

metal, metal oxide or organic dye. Allen's group has been working on 

U(Pu)0„ aerosols and his results show the dynamic shape factor decreasing 

with increasing n which is contrary to the findings of Kops and Stöber. 

The latter two find a relation between K and the microstructure depen

dent on the arrangement of the primaries in the aggregate. From Kops's 

work one may deduce that for aggregates of lognormally distributed 

primaries < can be related to n by 

F ( d e ) 1/3 
- ' (48) R ^ O C n ) " 

where R F (Kn) is a factor primarily related to the size of the primary 
2 

particles |89|. R is proportional to exp(ln a ) while F (Kn) is related 

to the slip factor for primary particles with Knudsen number Kn. 

Eq. (48) is valid for linear chains only and Kops has found also that 
3 

for his aerosols this means a validity range of n < 5 x 10 . A 
3 

different relation applies to larger aggregates (n > 5 x 10 ) which 

are composed of branched threedimensional networks 

F(d ) 
K = -jj-5- (49) 

R2 

where R is a measure of the packing density of the aggregate. 
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Consequently, with increasing aggregate size (or n) initially , . , 
1 e 

showed increase in proportion to the cube root of n. Around 
3 . 

n = 5 x 10 it should reach the maximum value as given by (49), accor
ding to the observations by Kops |89|. 

For spherical particles of known diameter d, only density p needs to 

be corrected for in order to calculate the aerodynamic diameter: 

In table II, d is given as a function of d for various values of p. 
a ° 

Other diameter definitions used in this publication are: 

- Stokes diameter, defined as the diameter according to the Stokes 

relation; 

- mass equivalent diameter, d , defined as the diameter of a sphere 

with a mass equal to the particle's mass. 

Dynamic shape factors have been derived and determined only for 

particles of simple shapes |92|. Particles consisting of more than 

one sphere of the same size have known shape factors |93|. Usually 

for such clusters a size factor f is used which is defined as the 
n 

ratio of the aerodynamic diameter of the cluster of n spheres to the 

aerodynamic diameter of the individual spheres, f -values of compact 

clusters and straight chains of spheres have been determined with the 

aid of the spiral aerosol centrifuge |94|. 

Aerodynamic characterisation of branched chainlike aggregates of 

polydisperse primary particles was with limited success up to now. Using 

their electrical mobility analyzer, Vomela and Whitby |95| have 

obtained results which indicate that in the size range of 0.1 ym the 

Stokes diameter of solid condensation aerosols is nearly equal to the 

equivalent mass diameter. However, the use of this analyzer for 

aerodynamic characterisation of aggregates is dubious due to the 

unknown charging properties of aggregates (which properties should 

be known for the analysis). Also, there may be changes in shape and 

orientation of the aggregates when charged and exposed to the electric 

field of the analyzer 1961 . Moreover, a Stokes diameter cannot be 

converted into an aerodynamic diameter without correction (as in 
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Eq. (50)) for the density of fluffy aggregates, which is an undefined 

property in this case. 

Usually, an observed size distribution, e.g. a number frequency 

distribution f (r) is fitted to a log-normal distribution: 

2 
. I- (In r - In r ) I 

fn^> - (in ag) /2„ « * {' ^ 2 ^ ƒ (5.) 

with the characteristic parameters: r = geometric mean and 

0 = geometric standard deviation of the particle radii distribution. 

The fitting to a log-normal distribution is particularly useful when 

various distributions of the sample have to be converted such as the 

distributions of surface area, volume and mass. However, in using 

such conversions, particular attention must be given to the fit 

between data and the log-normal distribution since serious errors may 

arise in the new distributions due to relatively small deviations from 

a log-normal distribution. The relations are conveniently summarized in 

|97|. For example the mean particle mass m is obtained by 

m = j- TTp (d ) 3 exp (4.5 In2 a ) (52) 
6 g g 

provided p is size independent and the distribution is log-normal. 

2.4. Size distribution of enclosed aerosols 

The size distribution of an aerosol aging in an enclosure will be 

correlated with the initial size distribution at the moment of the 

formation and it will show the influences of the various forces on 

the particulate cloud later on. In case of condensation aerosols the 

generally large particle concentration gives rise to a high rate 

of coagulation during the initial period (c.f. Eq. (1)). For a 
9 -3 

concentration of c = 1 0 cm the concentration is halved in about 
n 

1 sec. Since this "half-life" is inversely proportional to c , after 

a few minutes the concentration is practically independent of the 

initial (large) concentration (pg. 77). Consequently, this initial 

period of pure, rapid coagulation can be considered as a part of the 

aerosol formation, which does not help us too much in case of solid 



54 

condensation aerosols since we still remain confronted with the approxi

mative equations for coagulation of these aerosols (pg. 27). 

After the initial coagulation period the deposition processes will 

dominate more and more owing to their first order nature. Accordingly, 

the deposition processes will shape the size distribution of the 

enclosed aerosol in the long run. With respect to the long term size 

distribution it is worthwhile to consider the commonly observed expo

nential decay curve of unheated enclosed aerosols (pg. 19). 

As observed by the author (fig. 18), also the decay of enclosed mono-

disperse aerosols is governed by the exponential relation (5). 

Hence, we may conclude that the aerosol behaves as if it were aero-

dynamically monodisperse. Such a behaviour may be correlated with two 

principally different size distributions: either the size distribution 

has such a small standard deviation that it can be regarded as mono-

disperse, or the size distribution remains constant although strongly 

polydisperse. The later situation arises when the deposition forces 

are size independent or when they combine to give a self-preserving 

size distribution. 

Thermophoresis and diffusiophoresis have a slight size dependence 

for particles larger than a few tenths of a um. In those cases an 

exponential decay may be attributed to an uninfluenced polydisperse 

size distribution. Diffusion, however, is size dependent and settling 

even more. Consequently, the commonly observed exponential decay curves 

can only be explained by constant size distributions which look 

monodisperse or which are really monodisperse due to the generation. 

In order to have a self-preserving size distribution of an enclosed 

aerosol formed by an instantaneous source two mechanisms are required. 

These must act in such a manner that the population in every size 

interval decays exponentially with the same half-life. The mechanisms 

involved must have opposite size dependences, viz. the fine and coarse 

particle regions must be influenced preferentially. This counter

balancing must lead to an equilibrium size distribution and hence the 

two influences must be of the same kinetic order. Various investiga

tors claim that the combined action of coagulation and stirred settling 

results in a self-preserving size distribution J31, 33, 98J. 
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It may be clear that the combination of coagulation and gravita

tional deposition alone cannot result in a constant size spectrum 

of an aging enclosed aerosol. With time passing, the dominance of 

settling of the formed large particles will increase over particle 

growth by coagulation due to the different kinetic orders of the 

regarded mechanisms: coagulation is of second order kinetics and de

position of first order. 

Another combination of two processes which could lead to a self-

preserving size distribution is stirred diffusive and gravitational 

deposition. This has been proposed originally by the author |6|. However, 

it can be shown that this pair of mechanisms cannot explain the 

exponential decay either. If the size distribution would be in such 

dynamic equilibrium, the normalized number of particles with size d 

must be independent of time t, or 

6_ Jn(d,t)\ = 

St 1 N(t) J £ i"^i^> = 0 (53) 

The left-hand side of (53) can be transformed: 

ïïM-^-»* <*> 
where 3(d) and 3 are the total decay constants (diffusion and settling) 

of the number of particles with size d and of the total number of all 

particles, respectively. n(d,t) is the decaying number of particles with 

size d and N(t) the total number of all particles. 

From (54) and condition (53) it follows that either 3(d) equals 3, 

or the relative number of particles of any size d is zero. The first 

case is impossible in case of a polydisperse aerosol since 3(d) is 

a function of d for combined diffusive and gravitational deposition 

and consequently cannot be equal to the constant 3. The second case 

is a trivial solution. In conclusion, the combination of stirred 

diffusion and settling cannot lead to an exponentially decaying poly-

disperse aerosol which has yielded 3(d) = 3. Hence, the deposition 

processes are size independent or the aerosol is practically 

monodisperse. The latter must be the case for unheated aerosols. The 

monodisperse character of an enclosed aerosol may arise from the 

initial period dominated by coagulation which removes preferentially 
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and very fast all small particles. Although only valid for a droplet 

aerosol, it has been shown by Castleman |99| that in the coagulation 

period an initially log-normal aerosol preserves its log-

normal size distribution but the standard deviation o^ changes 

rapidly to a value of about 1.4 irrespective of the initial a . Qual

itatively, an analogous treatment of the coagulation of an aerosol 

consisting of solid particles will yield the same result except that 

a smaller a results. This is due to the fact that coagulation of n 
g 

droplets leads to a droplet which has a larger aerodynamic size than 

an aggregate of n solid particles. 

All deposition processes combined will show a minimum of deposition 

rate somewhere below 1 pm and above 0.1 um. Thus the modal peak of 

an aged aerosol must be somewhere in this region with a decreasing a . 

In summary, a condensation aerosol formed in an enclosure will deposit 

exponentially after the coagulation period since the aerosol is 

practically monodisperse. Which deposition process will dominate after 

this period depends on the aerodynamic diameter of the resulting aerosol. 

The deposition will further decrease the dispersity. The stronger the 

size dependence of the deposition rate the more rapidly will the 

standard deviation decrease. The influence will decrease in the 

sequence: sedimentation, diffusion, thermo- and diffusiophoresis. 

2.5. Non-stirred aerosol deposition 

Non-stirred aerosol deposition can occur under various conditions and 

for various aerosols. The deposition velocity can be larger than the 

usual convective flow velocities in enclosures. In some cases, however, 

the flow velocities are relatively small compared to the deposition 

velocities resulting in non-stirred deposition. In the following 

sections the occurrence of non-stirred conditions will be treated for 

a number of cases. Additionally, attention will- be given to the so-

called rotating drums |l00|, systems for which a postulate on non-stirred 

conditions underlies the increased aerosol stability. 

2.5^K Non-stirred aerosol_settling 

When the particle size is so large t 

the free convection normally keeping the aerosol stirred, there will 

When the particle size is so large that v approaches the velocity of 
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arise an inhomogeneous aerosol distribution. The particle diameter 

d at which this occurs, can be obtained by taking the Stokes' 
max 

settling velocity (17) equal to the velocity of the free convection 

given by the Prandtl relation |48| 

-|S- d2 F(d ) = 0,5 /gaAT I (55) 
! 8 r\ max max 

where a is the coefficient of thermal expansion of the gas (—), AT 

is the average temperature difference causing the convection and 1 is 

the wall length which may be taken approximately equal to the cube 

root of the tankvolume. For this rough calculation F(d ) may be taken 

unity (d > 1 urn). Then the following relation holds: max 

d = 3 (II) J (^ATZ. I 
max p g 

Obviously, d is little dependent on AT and I. When we use aero-
max 

dynamic diameters (pg. 50) P is unity. AT is about 0.01 C for vessels 

in the laboratory according to the authors' experience. Hence, for the 
3 

usual range of tank volumes (50 liters to 5 m ) d ranges from 13 ym 
max 

to 20 ym, so that indeed only a slight dependence on the enclosure 
volume exists. In order to reduce d by à factor of two, AT must be 

max 

smaller by more than one order of magnitude. 

Clearly, aerosol research, which as a rule is limited to particle 

diameters of a few ym or less, concerns "stirred" aerosols. 

2^5^2^_Non-stirred_diffusive_de£osition 

Treatment of aerosol diffusive deposition like that of gravita

tional settling in the previous section 2.5.1. (with instead of 

v the convection velocity v, = —) leads to the maximum diffusion 
s d o 

coefficient D for which the stirred model still holds 
max 

D = 0.5 6 /gaAT I (57) 
max 

in which S = 4.6 D ' (Eq. (15)) according to our model (pg.33 ). 
-4 

For an extreme case of AT = 10 K and for characteristic vessel 
2 - 1 

dimensions of 1 m, D amounts to 0.3 cm .s . This means that 
max 
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usually a homogeneous spatial distribution exists even for low-
. . 2 - 1 

molecular gases having diffusion coefficients of the order of 0.1 cm .s 

This conclusion is contrary to the prevailing opinion that diffusive 

deposition takes place from a stagnant atmosphere (see e.g. Goldberg 

et al. I 101 I and Pich |20, 103j). They stated that their models for 

non-stirred diffusive aerosol behaviour are realistic. However, the 

above given evidence shows that in reality usually diffusive de

position is of the stirred type. 

2^5i3i_Atmosgheric_stabilit^_of_box_atmos£heres 

When the gas phase consists of two components of different molecular 

weights, the atmospheric conditions in the aerosol box may be non

uniform. From a heated layer of liquid on the floor molecules diffuse 

upwards against gravity. When these vapour molecules are much heavier 

than those of the gas in the box a situation may arise where a major 

part of the atmosphere in the box is stagnant. Then aerosol deposi

tion cannot be considered stirred deposition any longer and the rules 

derived hitherto cannot be applied. This situation has not been con

sidered in literature. In this case the density p of the atmosphere 

decreases with increasing height h 

^ < 0 (58) 
dh 

Apart from the boundary layers near the walls the temperature T decreases 

also with increasing height h. Hence, 

dh 

The boundary condition for the stable case is now given by combination 

of (58) and (59) 

ff > 0 (60) 

When -r̂  has a negative value, the driving-force of natural convection 
dl 

is larger than the buoyancy force and consequently the atmosphere will 

become stirred. 
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(60) can be transformed by substitution of 

p = p X + p X (61) 
d d g g 

with X the molefraction and the subscripts d and g referring to the 

vapour and gas components. The density of an ideal gas at atmospheric 

pressure is related to the temperature T and its molecular mass M by 

p - 2 ? 3
 3 f ° 0.0,2 f (62) 

22.4 x 10 

3 3 

since 1 mole of gas (M grams) has a volume of 22.4 x 10 cm STP. 

Now (60) becomes 

M 

T 

dp 
dT 

0.012 {(Md - Mg) x ± (^) - -f} > 0 (63) 

It is difficult to calculate X since the mole fraction of vapour 

in the box as a function of height and temperature will depend on 

the degree of mixing of upwards diffusing vapour and gas and the 

slow vapour deficient stream downwards from the cold vertical walls. 

However, an upper limit to X, can be taken when aerosol particles 
a 

which act as condensation nuclei are present in the box. This 

means that it may be assumed that at every point inside the box the 

vapour is only slightly supersaturated at the local temperature. The 

atmosphere may be supersaturated if aerosol is absent of if the 

aerosol particles are smaller than the critical size required for 

condensation nuclei. For a saturated vapour the relation of Clausius-

Clapeyron in its mole analogy is valid 
, X, x AH 

Ä ̂ = -V̂  (64) 

Substitution of (63) and further differentiation of (64) yields 

T 
S = °-f± {(Md - Mg,

 X4 (AH, - RT) - Mg} (65) 
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Since R equals 8.31 J/mole.K and AH usually is larger than 10 kJ/mole, 

AH - RT is large and positive for T < 1200 K. 

Three cases may be distinguished: 

1. M_, < M 
d g c X -, 

This means t h a t < (M, - M ) ~ (AH - RT) - M > i s n e g a t i v e and con-
dp l d g R T v gj 

sequently — < 0, which indicates a stirred atmosphere. 

2 . M,, > M , b u t 
d g 

X M 

RT ( A H v - R T ) < MT^TT 
d g 

yields — < 0: the atmosphere is stirred, 
dl 

Although the vapour molecules are heavier than the gas molecules, 

yet the natural convection will mix the atmosphere because either 

the molecular mass difference M, - M or the vapour content of the 
d g 

atmosphere X is too small. The last case corresponds with a system 

of vapour at a temperature far below the boiling point of the liquid. 

3. M, > M and 
d g 

i f (ÛHv -RT) > ï rW 
d g 

gives a stable atmosphere: (M - M )X is large enough. This usually 

will be the case at temperatures near the boiling point of a liquid 

having a large molecular mass M,. In all other cases atmospheres 

will be convectively stirred and the air-borne particles will 

deposit according to stirred deposition rules. 

2i4_15^_Rotating_drums 

In 1958 Goldberg |100] proposed the use of a cylindrical chamber 

rotating around its horizontal axis. Such rotating vessels should 

allow aerosols contained in them to remain air-borne during much 

longer periods than in stationary vessels. As shown by Fuchs |104| 

important conditions for proper functioning of a rotating drum are 

- the atmosphere filling the drum should rotate bodily 

- there should be no significant convection. 

According to Fuchs the aerosol concentration decreases exponentially 

under these conditions with a decay constant equal to _ ÉL (u> = 
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angular velocity of drum rotation, v = Stokes' settling velocity, 

g = gravitational acceleration). Frostling | 105 j gives some experimental 

results concerning the aerosol stability in a rotating drum. 

Frostling's data shows that the aerosol stability is hardly improved 

compared to the theoretical improvement by several orders of magnitude 

which would follow from the relation derived by Fuchs. Obviously, the 

afore mentioned conditions are not fulfilled in Frostling's experi

ments. Very probably, the absence of free convection is a condition 

which cannot be met. In the previous sections it has been made plaus

ible that already minute heat flows lead to well-stirred atmospheres 

thereby violating the secondly mentioned condition. Additionally, a 

rotating drum is a very unattractive aerosol chamber from the view 

point of the experimentalist. Such drums have very limited sampling 

possibilities, viz. only at the axis. 
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3. MATERIALS AND METHODS 

3.1. Aerosol formation 

The major part of this research concerns condensation aerosols generated 

by means of the Exploding Wire technique; by this technique the energy 

stored in a battery of low-inductance capacitors is dissipated in a 

wire of the materials to be dispersed. The wire evaporates explosively, 

followed by condensation to particles. There were various arguments issuing 

from the original aim of this study (nuclear reactor safety) which were 

in favour of the use of this formation method. Besides, a few general 

aspects of this technique plead for a more wide-spread use of it. 

Firstly, as a discontinuous source its generation usually takes place 

within a millisecond and consequently, the moment of birth of the 

aerosol is accurately known. Secondly, the formation can be repeated 

with an excellent reproducibility provided care is taken to have a 

constant electrical circuit. Thirdly, many formation parameters 

can be varied easily. Finally, the technique itself has no special 

side effects such as continuous overpressure in the aerosol tank; the 

amounts of heat and electrical charge involved are of no consequence 

to the aerosol system created. 

A drawback of the Exploding Wire technique is the limited amount of 

stored energy on the capacitor bank which means that only limited 

amounts of material can be dispersed. Furthermore, only electrically 

conductive materials are explodable; trials to disperse isolating 

materials on a metal support were unsuccesful. 

The Exploding Wire equipment consists of 4 parallel capacitors 

with a total capacity of 30.8 uF which can be loaded up to 18 kV. The 

circuit is fired with a triggered air gap switch. The circuit including 

the coaxial cable to the Exploding Wire - mounted inside an aerosol 

tank - has a resonance period of 28 ysec, an inductance of 650 nH and 

a resistance of 22 mil. The Exploding Wire rig, called SPARK, is a 

mobile unit, so that it can be connected to various aerosol tanks. 

Depending on the wire resistance the stored energy is dissipated in 

the wire with efficiencies of 50 to 100 %. Application of a shunt 

parallel to the Exploding Wire allows casually required low 

efficiencies. 
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The energy dissipated in an Exploding Wire was measured with the aid of 

an identical wire in a bomb calorimeter. Initially the wires were mounted 

by clamping with screws but it appeared that this resulted in unreliable 

energy dissipations in cases wires were shunted. Later on those wires 

were connected by soldering and in this way reproducible energy dissi

pations were observed. 

In some cases aerosols were produced by spraying a solution or suspension 

and drying the droplets to solid particles. The atomizers applied were: 

a Collison atomizer (Aerosol Products (Colchester) Ltd., London) and 

a Wiesbadener Doppelinhalator (Wiesbadener Inhalatoren-Vertrieb, Karl 

Blümel, Wiesbaden). 

3.2. Containments 

During the course of the aerosol research various aerosol containments 

were used at ECN. Table III gives a survey of them. 

The aerosol tank "100" is a vertical cylindrical oil storage tank 

made of steel. The tank was mainly used for study of the effect of 

temperature gradients. The sampling ports are 15, 85 and 155 cm above 
3 

its bottom. The "200" tank is a 1 m steel containment. Due to the 
3 

dimensions (2 x 1 x 0.5 m ) this tank may be placed in positions so 

that different vessel heights may be used and yet the same total inter

nal wall surface area is maintained. Fig. 6 shows the positions of the 

sampling ports and further details of the tanks "100" and "200". 

J--

& 

Fig. 6. The aerosoltanks "100" and "200". S are sampling ports. 

Dimensions in cm. 
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The "300" tank is a 75-liters stainless steel tank. This tank has been 

designed in order to study the aerosol behaviour at temperatures up 

to 200 C. For that purpose "300" was placed inside an industrial 

furnace provided with an internal forced circulation of heated air. 

Provisions were made to enable 

- conditioning and analysis of the tank atmosphere; 

- explosion of wires with the aid of the SPARK rig. 

Lucite tanks of 150 liters capacity (PERVEX) were especially designed 

for study of the effect of temperature gradients. A brass floor 

enabled homogeneous floor heating whereas by means of a quartz heating 

dish an inhomogeneously heated floor can be created. The temperature 

field and air velocity have been measured by means of thermocouples 

and a hot-wire anemometer. 

3 
The largest aerosol tank used is the 20 m ENAK vessel. This is a 

disused reactor vessel placed upside down on a steel bottom plate. In 

order to carry out safe experiments with radioactive aerosol it was 

necessary to guarantee a negative pressure inside ENAK. Fig. 7 gives 

a sketch of the tank with its auxiliary equipment for sampling and 

pressure control. 

:OI+C>HCKF 

Fig. 7. The ENAK vessel. S are sampling ports. 
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Although in some cases the vessels contained filtered air prior to the 

experiments, as a rule the experiments were performed with unfiltered 

laboratory air. As a result of the air-conditioning this air was of 
3 -3 -3 

sufficient quality (c s 10 cm , c < 1 yg.m ) in particular for 
the Exploding Wire experiments which were performed with concentrations 

3 -3 -3 
far in excess to 10 cm and 1 yg.m 

3.3. Analytical and sampling techniques 

3iii!i_SamDling_for_electron_microscop_2 

Direct sampling on an electron microscope grid was achieved by electro

static precipitation. The point-to-plane modification of the electro

static precipitator (ESP) developed by Morrow and Mercer |106[ was 
( o 

used and also further tested. The grids were covered with a 200 A 

carbon film. The electron microscope used has been a Philips EM 200. 

In principle electrostatic precipitation of aerosols works as follows. 

An aerosol particle entering a stable high-voltage corona discharge in 

air is charged by collision with ions of the negative charge cloud. The 

charged particle moves in the electrical field towards the positive 

electrode where it is deposited. The strong turbulence in the precipi

tation space (due to the so-called ionic wind) causes a homogeneous 

filling of the space. Due to this the grid shows also homogeneous 

covering by the aerosol particles. The precipitation process does not 

influence the aerosol sample provided that the precipitation target 

becomes not too crowded. Fig. 8 shows one of the ESP's used. Using a 

NaCl aerosol and two identical ESP's in series,the efficiency of the 

ESP as a function of particle size has been determined according to 

N (d) 

^ • ' - N^dT ( 6 6 ) 

were N,(d) and N„(d) are the numbers of particles with size d pre

cipitated in the first ESP and the second ESP, respectively. Fig. 9 

shows the relation between the sampling efficiency and the particle 

size. ti(d) values for d > 0.3 ym have been measured with the aid of 

monodisperse aerosols of polystyrene spheres. 
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i» i iÉSi^-

Fig. 8. ECN point-to-plane electrostatic precipitator, assembled (A) 

and disassembled (B). Aerosol flow and HV as indicated. Particles 

entering the corona discharge become all negatively charged 

and consequently are deposited on a carbon foil covered elec

tron microscope grid which is placed on top of the grounded 

electrode (a). 
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Fig. 9. Sampling efficiency (n) of electrostatic precipitator as 

a function of particle size d (in ym). Below 0.3 ym 

crystalline NaCl particles were used, beyond 0.3 ym polystyrene 

spheres. 
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Fig. 10. Comparision of measuring data of an aging aerosol obtained by 

means of a Gardner condensation nucleus counter and by counting 

of particles on an electron micrograph taken from a grid loaded 

with aerosol sampled with the ESP. Number concentrations 
-3 

c (in cm ) as a function of time t (in hours). 

Fig. 11. Comparison of measurements with commercial (Gardner) condensation 

nuclei counter (CNC) and high sensitivity counter (MLD). 
3 

Au-aerosol in 1 m ("200") tank in 2 meters height position. 
-3 _, . . ,_ 

c m cm and time t in hours. 
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Obviously the precipitation efficiency is not very dependent on the 

particle size of the sampled aerosol if the size range is mainly 

below 1 um. Thus the particle size distribution of a sampled aerosol 

is hardly influenced. An average sampling efficiency of 85 % has been 

used for estimating the particle number concentration. The ESP shows 

identical properties in air and other gases such as pure nitrogen 

or helium. 

3. 3̂ .2̂ _Par tic le_number_concen trat ion 

Two methods have been applied for the determination of the number of 

aerosol particles in containments. 

Since the overall efficiency of the ESP has been estimated to be about 

85 %, it is possible to calculate the particles number concentration 

from the number of particles on electron micrographs of known areas of 

the grid and from the sample volume. 

The second method applied for measurement of the particle number con

centration is that of the condensation nuclei counter. In principle 

this instrument detects all nuclei above about 0.01 um by condensing 

water on them in an expansion chamber. The concentration is measured by 

comparing the initial intensity of a light beam with the intensity 

after passage through the chamber. The condensation nuclei counters 

used (Small Particle Detector, Gardner Ass., Inc.) have a measuring 

range of 2 x 10 to 10 cm . The condensation nuclei counter has been 

compared with the ESP-counting method by measuring the decay of an 

enclosed aerosol. Fig. 10 shows that there is a reasonable agreement 

between the results of both techniques. This is in accordance with 

separate findings to which the author contributed | 10 7 | . 

An improved version of the condensation nuclei counter has been built 

by the author. Instead of using the extinction of the cloud, the scattered 

light intensity is measured. In this way the detection limit for aerosol 

particles could be lowered more than an order of magnitude. The apparatus 

(MLD) has been calibrated by means of a divider of a similar type as 

originally used for the Pollak counters |l08|. One absolute concentration 

value has been obtained with the aid of the ESP-electron microscope 

technique described above. Fig. 11 shows the good agreement between the 

measuring data obtained with the Gardner counter (CNC) and MLD. 
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3^3i3i_Mass_concentration 

The aerosol is sampled by loading cellulose nitrate membrane filters 

(Sartorius, Göttingen) of the type MF 100. The efficiency of these 

filters is virtually 100 % |l09|. For suction a syringe is used with 
3 - 1 . . 

a flow rate of about 200 cm .min . The volume of the syringe is 
3 3 

either 100 cm or 1000 cm . Initially, mass concentrations have been 
3 

measured by weighing the filter loads. The detection limit (some 10 yg/m ) 

was too high for our purposes. Better, mass concentration data have 

been obtained by preirradiating the wire material and counting the 

activity of the filter load. The count rate has been converted into 

mass with the aid of a filter loaded with a known amount of material 

of the same specific activity. 
3^3i4^_Size_distribution 

As shown in 3.3.1, a representative sample of aerosol particles can 

be obtained by means of the point-to-plane precipitator. Electron 

micrographs of the sampled particulate matter have been analysed using 

the semiautomatic size analyser TGZ-3 (Zeiss). 

During the last part of this study a spiral centrifuge according to 

Stöber |ll0| became available. The Stöber centrifuge facilitates 

separation and classification of aerosol particles according to their 

aerodynamic diameters in the size range between 1.5 pm and about 

0.1 pm. The device consists essentially of a rotor with a vertical axis. 

As the aerosol flows outwards through a spiral duct in the rotor, the 

aerosol particles are deposited along a thin strip on the outer wall of 

the duct. The deposition place of an aerosol particle can be converted 

into an aerodynamic diameter by means of a calibration curve which is 

obtained with the aid of monodisperse polystyrene aerosols. The deposition 

pattern for an aerosol consisting of singlets and clusters of poly

styrene spheres is shown in fig. 12. Calibration data have been obtained 

using polydisperse polystyrene aerosol which compare nicely with the 

data from the deposit location of the monodisperse polystyrene aerosol 

(fig. 13). Since the range of commercially available sizes of mono-

disperse polystyrene latices does not extend below 0.1 ym diameter, 

these polydisperse aerosols are an important tool for calibration of 

the centrifuge. With the aid of this calibration curve an aerodynamic 
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Fig. 13. Calibration curve (deposition place I in cm as a function of 

d in ym) of the Stöber centrifuge obtained with monodispers 

(o) as well as with polydisperse <W9*) polystyrene aerosols 

diameter can be attributed to an arbitrary particle according to its 

deposition place in the centrifuge. 

In order to obtain the aerodynamic diameter distribution of an aerosol 

the particle density as a function of deposition place must be measured 

by counting of particles on an electron micrograph of a certain area. 

However, there are various size dependent effects disturbing the direct 

relation between particle deposit density and the original abundance in 

the aerosol. In the coarse region (> 0.8 ym dia) there is a size dependent 

loss at the centrifuge entrance. Furthermore, the double vortex in the 

channel (due to Coriolis forces) contributes to a locally non-uniform 

deposit of the aerosol. 

Using the polydisperse polystyrene aerosol the location dependent 

(and consequently size dependent) correction factors have been 

determined and are shown in fig. 14. 
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Fig. 14. Experimentally determined correction factors f for the 

Stöber centrifuge as compared to the (dashed) curve 
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3.4. Materials 

Gold wires used had a 99.9 wt.% purity. Other materials exploded 

(Cu, U, etc.) were of technical quality. 

Sodium chloride aerosols have been obtained by spraying aqueous 

solutions of NaCl p.a. Polydisperse polystyrene aerosols have been 

produced in the same way using solutions of polystyrene (Dow Chem.) in 

xylene p.a. In the latter case obviously the all-glass Wiesbadener 

Doppelinhalator has been used in view of the plastic components of the 

Collison atomizer. 

Monodisperse polystyrene latices of Dow Chem. and Pechiney-Saint Gobain 

have been used. Since the sizes quoted by the manufacturers are 

unreliable according to literature |lll|, all sizes were electron micro

scopically redetermined. Table IV represents the results and allows 

comparison with data from literature and from manufacturers. 
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The carrier gas of the aerosol was mostly air but in some cases nitrogen 

or helium with impurity levels below 10 ppm was used. 

3.5. Experimental errors 

The basic measuring data comprises those concerning number concentration 

(c ), mass concentration (c ) and various particle sizes. Inaccuracy 

in time data is negligible compared to other uncertainties. Mass 

concentration measurments have an accuracy which depends mainly on the 

volume measurement in the range of higher c -values (ca + 10 %) but 
m — 

near the lowest limit of mass detection, the accuracy of c is worse 
' m 

(< ̂ 2 5 % ) . Particle number concentration data as obtained with the 

Gardner condensation nuclei counter is accurate within +_ 20% generally 

|107|; however, in the low c range (< 10 cm ) accuracy is about 

_+ 30 %. c -values as obtained from counting particles on electron 

micrographs of samples taken by means of ESP have an accuracy slightly 

less than those from the CNC (see e.g. fig. 10). As a result, average 

particle mass, calculated as the ratio of c to c , is obtained with 
m n 

+_ 30 Z. Most of the calculations involve half-lives (t.) or decay 

constants (g) which originate from decay data on aerosol concentration. 

ß or t, were obtained graphically with an accuracy better than 10 %; 
2 

however, sometimes accuracy was worse. 

Aerodynamic diameters as determined by means of the Stöber centrifuge 

are known better than +_ 1 % in the size range larger than 0. 1 ym. 

Spatial dimensions of particles as measured from electron micrographs 

are usually accurate within +_ 10 %. In the size range 0.005 - 0.05 pm 

(primary particles) considerable uncertainty exists in size data 

amounting to about +_ 25 %. 

Systematic errors in the experimental observation could have resulted 

from sampling artefacts. Sampling was done with linear velocities of 

a few cm.s or more. Under these conditions no artefacts due to non-

isokinetics or non-axiality can have taken place for particles in our 

aerodynamic diameter range of 0.1 - 1 ym. Also losses of such particles 

in the sampling lines used (< 20 cm length and I.D. > 5 mm) are 

negligible. 
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4. RESULTS AND DISCUSSIONS 

4.1. Primary particles 

Size and shape of the primary particles formed immediately after the 

explosion of an Exploding Wire depend on various parameters. In case 

of gold the particles are spherical with formation of crystalline 

faces in a few cases. However, particles of metal oxide like MgO 

or Fe„0 , clearly show crystalline properties (figs. 15 and lb resp.). 

Obviously, high-melting materials such as these metal oxides (U_0o is 
j o 

another example) easier form monocrystalline particles after their 

formation in the molecular form than lower-melting metals like gold. 

Fig. 15. MgO aerosol; a) from electrical explosion of Mg ribbon in air, 

b) formed by burning a Mg ribbon in air. 
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As may be expected the size of the primary particles formed immediately 

after the explosion is found to be dependent on the specific explosion 

energy (Espec) (see fig. 15a and 15b). Since the size of the primary 

particles forms a record of the way of aerosol formation, this important 

aspect of the aerosol formation was studied in more detail. Espec was 

measured with the bomb calorimeter (pg. 62). The primary particle size 

was measured by means of the TGZ-3 (pg. 69) after taking an electron 

micrograph of a sample obtained with the ESP (pg. 65). Although the 

sample consisted of coagulated primary particles, the good resolution 

of the electron microscope allows the measurement of the diameter 

distribution (diameters of the order of 0.01 vim) of the primary particles. 

Table V summarizes the data about the relation between the geometric 

median diameter (d ), the geometric standard deviation (a ) and Espec 

for gold aerosols. The diameter distribution is nicely log-normal and 

d, decreases with increasing Espec, whereas o, is 1.5+0.1 irrespec-
lg lg -

tive of Espec. Both effects have been observed by others, e.g. 

Phalen |ll2|. Our results of d compare very well with those of 

Tomaides |113 f and Barkow |ll4| presumably because their specific 

explosion energy data are measured values or because the energy losses 

in the electrical circuit were negligible. Results of other investigators 

(see ref. |ll2|) have systematically larger Espec values, presumably, 

due to the assumption of complete energy dissipation in the EW. 

Fig. 16 shows the dependence of d on Espec. A reasonable qualitative 

explanation for the observed dependence of d on Espec may be the 

following one. 
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Fig. 16. Geometric median diameter (10 um) of primary particles of 

gold aerosols as a function of specific explosion energy (Espec). 
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At a certain moment after the explosion an expanding sphere of vaporized 

material is present, the radius of the vapour sphere at the moment of 

condensation being larger for larger Espec. So at this moment the 

vapour concentration is lower, leading to smaller particles assuming 

homogeneous condensation and a nuclei concentration independent of 

Espec. 

The surface energy stored in the dispersity of the aerosol can be 

taken as the energy used for aerosol formation from the wire material. 

The specific surface energy can be calculated according to Ulich and 

Jost |ll5|. The ratio of this specific surface energy to the specific 

formation energy (Espec) measured by means of the bomb calorimeter is 

given in table V. This ratio decreases with increasing Espec, as more 

energy is wasted by heat dissipation. The interaction between the 

electric discharge and the wire, obviously is stronger in case of 

smaller Espec, probably due to less radial expansion of the dis

charge. 

Using Eq. (52) the mean mass m of the primary particles has been 

calculated and given in Table V. Taking into account an initial mass 
-3 . . . 

concentration c (o) of about 10 mg.m one calculates an initial 
™ 7 - 3 

number concentration c (o) of about 10 cm assuming instantaneous 
n 

distribution in the space. In this way, however, an upper limit of 

c (o) is used. To the author's experience the homogeneous space 
n . . 3 

distribution is reached only after about 15 minutes in case of a 1 m 

vessel, thereby enhancing coagulation in the early period of the 

aerosol life. 

Closer examination of the relation between m and Espec (Table V) 

leads to the conclusion that for higher specific formation energies 

(Espec > 20 kJ.g ) these two properties are almost inversely propor

tional, the product (Espec) .m being (1.7 +_ 0.6) x 10 kJ. This 

indicates that the explosive particle formation is a three-dimensional 

process of evaporation and condensation as indicated above. Further 

discussion of the Exploding-Wire formation mechanism is regarded to be 

beyond the scope of this thesis. 
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4.2. Coagulation 

Coagulation is an inherent property of aerosols. Whether coagulation 

of an aerosol in a chamber is an important process depends on the 

number concentration as well as on the containment size and shape, the 

former being the most important parameter. In case of instantaneous 

aerosol formation such as by Exploding Wires, coagulation is dominant 

during an initial period. Enhanced coagulation takes place when the 

aerosol cloud is expanding in the aerosol vessel immediately after 

3 

the local explosion (during about 15 minutes in a 1 m vessel). There

fore, the measured or extrapolated initial particle number concentration 

will always be smaller than calculated from exploded mass, chamber 

volume and primary particle size. Fig. 17 show the coincidence of 

number concentration data during the period (about 5 hours) dominated 

by coagulation, as observed in various chambers. 

1 1 1 1 JT 
200 2 m « 

,, .5 „ A à 
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Fig. 17. Reciprocal value of the particle concentration l/c (cm ) as a 

function of time t (in hours) in various tanks. 



After this period the decay curves diverge for different vessels. The 

decay due to coagulation can be described by Eqs. (1) and (2) within 

the measuring uncertainty. The coagulation constant calculated from a 

great number of experiments with Exploding Wire aerosols in containments 
-9 -9 3 -1 

of wide variety ranges from 1.2 x 10 to 2.5 x 10 cm sec which 

is a reasonable value for particles in the size range of 0.02 to 0.07 

ym | 1 16 | . 

In the initial period of pure (second order) coagulation the average 

mass m per particle changes relatively fast compared to the later 

periods in which the (first order) deposition processes dominate. The 

rate of change of m can be related to the coagulation constant K 

,- , c de dc 
dm _ d , nu _ 1 . m n. ,,_. 

dT - dïï ( — } - — 2 (cn ~dT - Cm -dF} (67) 

n c 
dc dc „ 

In the absence of deposition — — = 0 and - — — = Kc . I f we assume 
dt dt n 

the initial mass concentration equal to c (0), then 
m 

ai * K c m ( 0 ) <68> 

-3 
Starting with an instantaneous aerosol concentration c (o) » 1 mg.m 

j f i • i, i ,„-9 3 - 1 . dm ,„-14 . -1 
and taking K = 2 x 10 cm . s , one arrives at -j— f» 10 g.h 

This means that primary particles smaller than 0.1 urn coagulate to 
-14 . 

particles of 10 g average mass in a time period of about one hour. 
-3 

Such particles have mass equivalent diameters (p = 1 g.cm ) of 0.3 um. 

Moreover, due to the second order kinetics of the coagulation process 

the rate of coagulation is so strongly dependent on initial number 

concentration c (o) that a period t(10%) can be defined after which 

the number concentration is independent of c (o) within 10%. In Eq. (2) 
1 n 

(section 2.1) r—^ should equal 0.1 K t(10%) under these conditions. 
C n 7 - 3 -9 3 -1 

Consequently, taking c (o) = 10 cm and K = 2 x 10 cm .s , t(10%) 
amounts to 500 seconds or about 10 minutes. As a result, all aerosols 

. . . . 7 - 3 
of initial number concentrations larger than 10 cm will have number 

r _ o 

concentrations equal to about 10 cm within 10% of that value 10 

minutes after their formation. 
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4.3. Aerosol deposition in unheated dry vessels 

In this section experimental results will be discussed on the deposi

tion of aerosols in unheated dry vessels. The theoretical background 

has been given in the sections 2.2.1 through 2.2.3 and 2.2.5 as far 

as stirred systems are concerned. In section 4.3.6 the occurrence of 

non-stirred deposition is discussed in view of some limited experimental 

data with reference to the theoretical section 2.5 on this subject. 

4^3^2^_2ua^i-monod^sjDe^s^_aerosols 

In order to evaluate the relative importance of the various deposition 

processes responsible for aerosol decay in unheated containments, the 

decay of monodisperse polystyrene aerosols was studied in the 200 vessel 

(fig. 6) in its 2 m height position. The aerosols were produced directly 

in the vessel by spraying an aqueous suspension of polystyrene spheres 

(section 3.1) and subsequent drying in the vessel atmosphere. Electric 

discharging by means of a so-called neutralizer was considered unneces

sary because of the electrically conductive metal vessel walls. The 
• . • . . 3 -3 

initial number concentration was kept sufficiently low (< 10 cm ) 

to have a negligible influence of coagulation on the number concen

tration decay even in the case of the lowest deposition rate. The number 

concentration was measured by taking electrostatically precipitated 

samples of known volume (section 3.3.2). This technique allows simul

taneous measurement of the concentrations of multiplets by counting 

the singlets, doublets etc. individually. 

Apart from an initial short period of filling of the vessel space 

and build up of multiplet particles the number concentration decays 

exponentially. Fig. 18 shows this for a few runs. The decay constants 

g obtained from such plots are given in Table IV. Particles with sizes 

larger than about 0.5 um dia have a deposition velocity equal to the 

Stokes settling velocity given by (17). In this range the measured 

decay constants equal g (as calculated from (17) and (18)) using 
-3 . .S 

p = 1.06 g.cm . This is shown in fig. 19, in which the fit between 

the measuring data beyond 0.5 um and equation (18) is evident. The 

deposition velocities of the multiplets and their related decay 

constants ß have been calculated using the size factors f as 
s n 

reported by Stöber |94| and given in table IV. 
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Fig. 18. Decay curves of some monodisperse aerosols in 200-vessel 
-3 

(2 m height), c m cm , t in hours, d in ym; n = number 

of spheres per particle. 



Fig. 19. Measured (solid dots) and calculated (line) decay constants 

B (in s ) of quasi-monodisperse polystyrene aerosols in 

200-vessel (2 m height) as a function of the diameter of the 

particles (d in ym). See also Table IV. 

The agreement between measured and calculated decay constants in the 

range of d > 0.5 pm supports the correctness of the stirred-settling 

model and, additionally, justifies Stöbers f -values and the under

lying model of the aerodynamics of multiplet clusters |94|. 

In the small particle region an increase of the measured ß-values, 

due to diffusional deposition, is to be expected. This is observed 

below 0.2 ym dia (fig. 19). In this size region the wall loss of the 

aerosol will be governed by diffusion, and to some extent also by 

settling. A total decay constant 3 has been calculated for this combined 

diffusion and settling. The resulting ß-values are listed in the last 

column of Table IV. The equations (15), (16), (17) and (18) have been 

used. The measured and calculated ß-values agree only to a certain 

degree. The observed decay constants are roughly 30 % too high. This 
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could be due to an additional deposition mechanism. Probably, the 

electric charges on the particles (from their formation by spraying, 

which charges were not removed by a neutralizer) could have caused 

electrophoretic deposition. However, since the vessel walls consisted 

of steel, which is electrically conducting, this electrophoresis should 

have been due to image charges on the walls. A brief calculation using 

Eq. (45') shows the correct order of magnitude of this electric 

effect, namely about 10 s (see pg. 50). 

4i3i2^_Influence_of_aerosol_formation_£arameters 

The stability of an aerosol enclosed in a containment is directly 

related to the aerodynamic properties of the aerosol particles which 

in turn bear a relation to the way of formation of the particles. 

The Exploding Wire technique is particularly useful for the study of 

the effect of aerosol formation because the specific formation energy 

(Espec) of the aerosol generation can be easily measured and can be 

varied within reasonable limits. Fig. 20 shows the decay curves of 

gold aerosols formed with different Espec and with almost identical 
-3 

initial mass concentration c (o) = 5 mg m in the unheated 200-vessel. 
m 

Obviously, aerosol stability increases with increasing specific formation 

energy. This can be understood because specific formation energy affects 

directly particle size (section 4.1). The fact that curves A (270 kj.g ) 

and B (130 kj.g ) coincide, puts in doubt on the correctness in 

this experiment of the value of 270 kJ.g . Likely, incorrect mounting 

of the wire has occurred, leading to a lower Espec not much different 

from 130 kJ.g in case A. 

Increasing Espec the geometric median diameter d decreases, the 

standard deviation remaining unchanged. According to Kops |89| (2.3) the 

aerodynamic diameter of a coagulate is proportional to the diameter of 

the constituting primary particles. However, the relation between aero

dynamic diameter d of an aggregate and the number of primary particles 

n per aggregate is also of importance. Obviously, when d is propor

tional to n''Dxd. there will be no influence of Espec on aerosol 

lg' v 

stability (still assuming c (o) constant) for b = 3. The value of b 
4 

has been found to depend on n, viz. b = 3 for n > 10 and b = 6 for 
4 i i 4 - 3 -3 

n < 10 89 . After about 10 hours c fa 10 cm , c «* 4 mg m . Since 1 1 n m 
the primary particle diameter is of the order of 0.02 urn, it may be 

3 
calculated that n fa 10 which in view of Kons' findings means b = 6. 
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3 Fig. 20. Mass concentration (c , in mg/m )and aerodynamic diameter 

(d , in ym) of gold aerosol as a function of time (t, in hours) 

after explosive formation in 200 vessel (height = 2 m ) . A 

and B: Espec = 270 and 130 kJ/g resp., no heating; C: 

Espec = 20 kJ/g, no heating; D: Espec = 270 kJ/g, heating 

power level = 200 W (see section 4.4.1.). 

Consequently, for higher Espec smaller aerodynamic diameters 

d (°° n d ) are produced which in turn yields more stable aerosols a ig 
in accordance with the observations (fig. 20). The b = 6 region for 

4 . . 
n ^ 10 is typical for finely dispersed coagulates of solid primary 
particles. 

Any aerosol of liquid matter may form new spherical droplets upon 

coagulation and, consequently, the value of b will amount to 3 then. 

This means that a liquid aerosol (droplets in air, like mist, fog or 
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smog) after a certain period of coagulation aging will have an aero

dynamic diameter irrespective of its original dispersion (usually 

related to the number of nuclei present at the moment of aerosol 

formation by condensation) . Only the amount of condensable vapour 

(being the product of the rates of production or evaporation and time) 

determines the aerodynamic properties after this coagulation period. 

More insight has been obtained by measuring the aerodynamic diameter 

distribution of the aerosol during its decay in the vessel. The Stöber 

spiral centrifuge was used for this purpose. Mass aerodynamic size 

distributions were obtained with this apparatus by radioactive 

labelling of the gold aerosol by means of irradiation with neutrons 

of the gold wire prior to their explosive conversion into aerosol. 

Fig. 2! shows the logarithmic normal character of the aerodynamic 

size distribution found in this way. 
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Fig. 21. Log-probability plot showing the log-normal character of the 

aerodynamic diameter (d , in um) distribution of a gold 
a3 

aerosol (c (o)) = 5 mg/m , Espec = 130 kJ/g) after 100 hours 
m 

aging in 200 vessel. 

With a few exceptions (probably due to instrumental malfunctions) 

always log-normal distributions were obtained. The geometric median 

aerodynamic diameters increase initially (fig. 20). After about 20 

hours the aerodynamic diameter d levels off and reaches an almost 
a 

stationary value. During the initial period of 20 hours coagulation 
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governs the size distribution. Within a very short period (< 1 hour) 

the geometric median d has reached a value of 0.3 - 0.4 um. Therefore, 

losses by diffusion to the walls will have been very small, which is 

also illustrated by the relatively small decrease of the mass concen

tration in this period and by the subsequent exponential decay 

of the aerosol mass concentration (fig. 20). When an additional 

and different deposition process would have been active in this 

initial stage, a change in the decay constants should have 

been observed during the course of the experiments. 

The nearly constant aerodynamic size of the aerosol after about 20 

hours is in agreement with the exponential aerosol decay. As concluded 

from the experiments with monodisperse particles (pg. 81), particles 

having aerodynamic diameters of 0.5 um and larger are removed pre

dominantly by gravitational settling. Hence, the observed decay 

constant equals ß . Using Eqs. (17) and (18) the "effective" aero

dynamic diameter of the aerosol can be calculated. The results are 

represented in Table VI which table allows also comparison with the 

directly measured diameter. 

There is a resonable agreement (within 5%) between the aerodynamic 

diameters obtained by different methods. This supports the idea that 

stirred gravitational settling is the dominant deposition mechanism. 

However, for some unexplainable reason there is a small but systematic 

difference, viz. the "effective" aerodynamic diameter is systematically 

higher than the calculated one. This could be due to a small error in 

the calibration of the centrifuge used. 

As explained in section 2.4 the exponential decay is an interesting 

phenomenon. When stirred gravitational settling is the only deposition 

process (as proved above) such a strongly size dependent process should 

influence the size distribution of the depositing aerosol considerably 

by removing the heaviest particles preferentially, which in turn would 

lead to a continuously changing decay constant. This conflicts with 

the findings. The explanation is found in the observed small geometric 

standard devaitions (a ) . Table VI shows (a ) values of 1.18 - 1.22 
a g a g 

which means that the aerosol is almost monodisperse! This proves that 

the observed decay curves are exponential due to the fact that the 

aerosol particles have an aerodynamic size distribution which remains 

almost unchanged during further deposition because the size distribution 
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is so narrow (a » 1.2) and not because of a self-preserving size 

distribution process, which could be an alternative explanation (pg. 54). 

Preferentially, coagulation is between particles of different size 

(K increases with increasing size dispersity |43J) thereby removing 

the smallest particles and adding only slightly to the size of the 

coarse ones. Moreover, the n dependence of d of solid aggregates 

could be part of the explanation of this narrow d -distribution. As 

a result, any additional particle attached to a coarse one produces 

only a small increase of the aerodynamic diameter of the coagulate. 

4^3^3^_Influence_of_vessel_height 

The vertical dimensions of an aerosol enclosure are of importance for 

stirred gravitational settling of the particles onto the vessel floor 

(section 2.2.3). Generally, the effective vessel height h (defined as 

the ratio of the vessel volume to the surface area of the horizontal 

projection of the upward facing vessel walls) is the relevant parameter 

in the aerosol decay constant. However, the (well-defined) height of 

a vessel may be used in case of vessels of simple shapes. 

The aerosol will coagulate rapidly when it is formed instantaneously 

(e.g. by "explosive" generation). Coagulation will continue to govern 

the number concentration (meanwhile coarsening the particle size 
d cn distribution) until the coagulation rate (——) is negligible 

6 dt coag s & 

(say 10%) compared to the rate of stirred gravitational deposition d cn 
(——) . This transition is defined by a point of time t given by 

de dc 
(-r2) = 0.1 (~) (69) 

dt 'coag dt 's 

which by using equations (1) and (4), can be transformed into 

Kc (t ) = 0.1 B = 0.1 -r=- (70) 
n t s n 

For vessels with a large height, this leads to a relatively small 

c (t ) value. Consequently, in tall vessels coagulation can proceed 

relatively long and as a result particles grow to larger sizes. As an 

example, for an aerosol of 0.5 urn aerodynamic diameter in a vessel of 

h = 1 m the concentration c (t ) below which coagulation has almost 



87 

3 -3 
ceased is 10 cm 

Some experiments were performed in the matchbox-like 200-vessel (see 

Table III) which vessel has been designed in view of having the 

possibility of variation of vessel height by means of merely changing 

vessel orientation. This is an attractive approach because it 

involves the variation of only one vessel parameter (viz. height) 

keeping other parameters (e.g. wall surface area) unchanged. The 
-3 . 

experimental results for gold aerosols of 5 mg.m initial mass concen

tration are summarized in Table VII. Clearly, lowering the vessel height 

h from 2 m to 0.5 m decreases the ultimate (t -*- <*>) aerodynamic diameter 

of the aerosol from 1.0 um to 0.72 um in accordance with the consid

erations given above. Fig. 22 further elucidates this, in particular 

in terms ofm, the average mass per particle .All these curves show 

the same typical course, viz. a fast initial increase of m followed 

by a maximum and a long-lasting decrease which likely approaches a 

final m value. The fast initial increase of the average mass m per 

particle, obviously, is due to coagulation since it is mainly the 

result of the fast decrease of the number concentration c . The long-

term decrease of the average mass m per particle must be the result of 

the selective removal of the coarse particles due to gravitational 

settling because the effect shown is clearly height related. The maximum 

shifts to later points of time and reaches higher values for larger 

vessel heights. This behaviour can be understood from equations 

(69) and (70). The decrease of c (t ) for taller vessels 
n t 

implies that m reaches a higher value at a later point of time. Or, 

in other words, the stirred gravitational deposition removes particles 

with a higher rate for decreasing heights, thereby shortening the 

period of "pure" coagulation and giving rise to a lower •maximum value 

of m. 



Fig. 22a. Decay of the mass concentration of gold aerosol in 

"200"-tank. The height of the tank is varied by turning the 
-3 

tank at time t . Espec = 20 kJ/g.c in mg.m and t in hours. 

10 20 30 40 50 60 70 80 90 

Fig. 22b. Decay of the particle number concentration of gold 

aerosol in "200"-tank. The height of the tank is varied. 
3 -3 Espec = 20 kJ/g; c (o) = !00 mg/m .c in cm and t in hours. 
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Fig. 22c. Course of the mean particle mass of gold aerosol in 

"200"-tank. The influence of height variation is shown. 

Espec = 20 kJ/g; c (o) = 100 mg/m . m in 0.1 pg and t in hours. 

4.3.4. Measurement_of_d^namic_shap_e_factors_from_decay._Çuryes_of _mas s 

and number_concentration 

From the above given results (sections 4.3.1 and 4.3.2) it became 

clear that aerosol decay constants can be used for calculation of 

aerodynamic properties of aerosols, the aerodynamic diameter d and 

the dynamic shape factor K (Eq. (47)). 

This decay curve method will be applied in this section to a large 

number of experimental data which are available on aerosol decay in 

various vessels. Also experiments have been performed specially focussed 

on comparing the decay curve method with alternatives for measurement 

of aerodynamic aerosol properties, like the spiral centrifuge. A survey 

of these possibilities for assessment of aerodynamic properties is 

given. 

Three different experimental approaches are possible. 

A) Firstly, one may use a d - classifying aerosol sampling device like 

the Stöber centrifuge. This is the technique orginally applied at ECN 

by Kops |89|. Mass and number of aerosol particles in d - fractionated 
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samples give the average mass m per aggregate of known d . In 

combination with (47) < can now be calculated as a function of d , 
a' 

these measurements making use of 

d = f*™ (71) 
e irp 

d calculated in this way is not the real average mass equivalent 

diameter, but due to lack of information on the mass spectrum of 

the aerosol particles probably a slightly different d value should 

be used actually, the difference being related to the standard 

deviation of the mass distribution. 

B) The second approach utilizes aerosol behaviour inside aerosol 

chambers. Decay curves of mass (c ) and number (c ) concentrations 
m n 

are the basic experimental data. These decay curves are exponential 

after an initial (coagulation) period. Usually, the dispersity of 

the aerodynamic diameter distribution is small (a "* '•?) after this 

coagulation period (pg. 85). For particles larger than 0.5 pm the 

decay constant ß is related to d (pg. 81). Using Eqs. (17) and 
(18) d can be calculated now from ß and h 

a s 

Sf v P g 
B = v -f = -A = - £ — d F(d ) ~ (72) 
s s V h 18 n a a h 

where v is the Stokes settling velocity. The inverse chamber height 
1 s 

T equals the ratio of floor surface area S_ to chamber volume V for 
h f 
chambers of undefined height. 8 values were obtained from c 

e s m 
decay curves. It has been shown that d values calculated from these 

a 
decay curves by means of (72) correspond very well to those from d 
distributions measured with the aid of a spiral centrifuge (section 

3 
3.3.4). Similarly, the behaviour of monodisperse aerosols m a l m 

chamber supports this also (pg. 81). The average mass m of a par

ticle (necessary for calculation of d ) is found by dividing the 
e 

values of c and c obtained for the same period 3 is pertaining to. 
m n s 

Mass concentration decay curves should be used to obtain ß for two 
' s 

reasons. Firstly, mass concentration is not affected by coagulation. 

No other deposition processes than stirred settling being active, 

these measuring data are the most relevant for calculations using (72). 
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Secondly, the number concentration data are far less accurate. This 

is true in particular in the lower concentration range which must 

be used in order to avoid influence of coagulation on the decay rate. 

C) A third approach should be mentioned here, although it is limited to 

cluster-type aggregates only. This method is based on Kops's inves

tigations into the aerodynamics of aggregates |89| and an additional 

analysis of his results by Walkenhorst |ll7|. The cluster-type 

aggregates generally have spherical appearance in spite of their 

marked fluffiness. This spherical appearance fits the independence 

of K on n, provided these (larger) aggregates also have a nearly 

constant packing density p . The clusters have a spatial diameter 
sp 

d when observed by low resolution techniques. They can be described 

by the following relations: 

- the equality of the mass of the cluster-type aggregate and its mass 

equivalent particle, leading to 

p d3 = p d3 (73) 
sp sp e 

- the equality of the settling velocities of these aggregates and 

their aerodynamic equivalent, yielding 

p d2 F(d ) = p d2 F(d ) (74) 
sp sp sp o a a 

Substitution of (73) and (74) into (47) yields 

d F(d ) . F(d ) d 

«'-P—J - « ^ F ( d e ) . F ( d ) (75) 
de F2(d ) de 

sp 
2 

F (d ) « 1 for the large cluster-type particles. Table VIII shows 
sp 

that the experimental data from Kops |89| lead to K values which 

are nearly independent of the aggregate size. The dynamic 

shape factor equals 15.5 + 1.5. 

In case of these aerosols also microstructure data (geometric median 

diameter d, and geometric standard deviation cr, ) were available, 
lg 'g 

enabling simultaneous calculation of the average number n of primary 
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particles per coagulate from m, p, d, and a, 
V V 6 1 g lg 

6m 
3 2 

irp d exp (4.5 In a ) 

(76) 

Fig. 23 represents the results of < measurements as a function of the 

number n of primaries per aggregate from centrifuge analysis of four 

runs with UQ0 aerosols and one run with Cu oxide aerosol in the 
J o 

100-vessel. Table IX gives additional information. Closer examination 

of these data has revealed w , - to obey Eq. (48) very well in case of 

U.O.. R,F.(Kn) equals 3.1 in the range of n up to 8.1 x 10 . This fits 
J o 11 

fairly Kops observations on four different materials |89| from which 

a value of 2.9 for R F (Kn) can be derived for our primary particle 

size (0.026 um). The copper oxide run shows a similar relation though 

with a worse fit to Eq. (48) (see fig. 23). 
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Fig. 23. Ratio of dynamic shape factor K to the slip correction factor 

F(d ) of aggregates of U 0 and copper oxide as a function 
e à o 

of the number n of primary particles per aggregate. Results 

from centrifuge analysis (method A). 

Larger aggregates with n > 10 deviate from Eq. (48) and its underlying 

theory on chain-like aggregates. However, F(de) 
does not approach a 

constant value, which implies a constant packing density as found by 

Kops |89| and reflected by Eq. (49). Instead , . and K go through 
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a maximum and decrease for n > 2 x 10 . This decrease was also observed 
i i . 2 4 

by Allen |91| in the measuring range of 5 x 10 < n < 10 , though at 

much lower tc values. The implications of this phenomenon will be dealt 

with later on. 

The decay curves gave d values (Eq. (72)) which are in good agreement 

with the centrifuge measurements (Cu oxide: 0.45 ym and 0.41 um, resp., 

and U^O: identical, viz. 0.78 pm). Again small standard deviations 

(1.26 and 1.22) have been obtained which once again explain the observed 

exponential decay of the aerosols. This agreement, together with the 

above given evidence, gives additional confidence to measuring method B. 
The results on log 

F(dJ 
obtained with this technique (7.0 and 8.0 for 

U,0 and Cu oxide, resp.) have been plotted in fig. 24. 

Fig. 24. TTTJ—r as a function of the number n of primary particles per 
e 

aggregate of various materials (mainly Au(#) but also U 0 (•) 
j o 

and Cu oxide(A) as obtained from analysis of decay curves 

(method B). The solid line represents the results produced 

by the spiral centrifuge (method A). The dashed line gives 
4 

the extension for n > 10 (method B). 

Obviously, the centrifuge results (method A) and the decay curve results 

(method B) compare very well. About thirty sets of experimental data 

(c , c , microstructure) on aerosol behaviour inside various chambers m n 
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3 . . 

(from 75 liters to 20 m ) have been available for analysis according 

to method B. These sets comprise experiments with gold and copper 

oxide aerosols,both generated by means of the Exploding Wire technique. 
The c , c and microstructure data have been treated in a way similar 

m n 
to the U,0 and Cu oxide experimental data above. Fig. 24 represents 

. . . . K 1/3 
these additional data together with the relation , . = 0.33 n 

r (.dej 

obtained for the U 0 aerosols. Although with considerable scatter, 

all the measuring points are grouped around this line; statistical 

analysis gave (with a coefficient of correlation r = 0.94) a best fit 

to . . = 0.28 n . The scatter around the best-fitting curve is 
* (.deJ 

due to the uncertainty in the available information on the primary 

particles sizes d . From equation (76) it is obvious that n is very 
l g _o 

sensitive to changes in d due to its proportionality to d . Conse

quently, also these measurements support the validity of Eq. (48) over 

a large range of n values and in turn indicate that these aerosols 

behave as "chainlike" aggregates. 

The phenomenon of decreasing or constant K with increasing n requires 

further discussion. In summary, Allen |9l| found K decreasing even at 
2 4 

small K values in the range 5 x 10 < n < 10 . In contrast to this, 
Kops |89| and the author (both using the centrifuge) found the deviation 

n 
,5 

3 
from Eq. (48) to occur for n > 5 x 10 . With method B, however, no 

indication is found of this deviation from Eq. (48) up to n = 10 

(fig. 24). An explanation for these discrepancies could be the following. 

Close examination of electron micrographs has shown that larger aggregates 

consist of typical ringshaped elements of a certain ring size. This 

gives the impression that during coagulation the chains can grow to 

critical sizes before there is a significant chance to have the chain 

touching the body of the aggregate. That the chains are not rigidly 

fixed to the body of the aggregate has been observed by Whytlaw-Gray 

|118| by means of his ultra microscope: "The chains or strings seem 

flexible, and twist and whirl about in a striking way". This critical 

size of the chains before closing to rings will be influenced by ex

ternal forces like those in turbulences. Obviously, the same is valid 

to the aggregate's packing density. This could be an explanation for 

the different findings between method A (centrifuge) and method B 

(decay curves). During the transport of the aggregates to the centri

fuge they could have been compacted in this way whereas in the chamber 

atmospheres there are not such forces. An additional process may be 
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responsible for the greatly differing results of Allen et al. [91|. 

These investigators have used a continuous aerosol source, producing 

primary particles which are brought into an aging chamber of 25 liter 

from which the centrifuge samples were taken. This should lead to 

considerable coagulation of primaries with larger aggregates which 

results in higher packing densities than when coagulation takes place 

between chain-like structures. Due to this coagulation in their aging 

chamber between primaries and already formed aggregates one may expect 

an increasing packing density for larger aggregates in agreement with 

Allen's observations. However, also external forces e.g. from turbulences 

could have influenced the shape of their aggregates giving rise to the 

low K values. 

To our experience usually solid aggregates have aerodynamic diameters 

in the range of 0. 1 pm up to about 2 vim. When exposed to atmospheres 

of high relative humidity (> 95%) sorption of water vapour 

into the regions of contact between the primaries will occur because 

of the negative curvature of these regions. This condensed water exerts 

internal forces on the aggregate due to its surface tension. According 

to experience of the author this will cause compaction of the aggregate 

to a dense close—packed cluster. Such a change of shape should 

affect the aggregate's aerodynamic behaviour. This could be of importance 

for aerosol behaviour in the human respiratory tract. Assuming the 

Lung Model of the Task Group on Lung Dynamics of the International 

Commission on Radiological Protection to be roughly correct, the 

aggregates should be able to penetrate into the pulmonary region where 

they are deposited with an efficiency of about 30%. It is well-known 

that the human respiratory system has a relative humidity of about 

99%. Any shape change due to condensation of water on inhaled aggregates, 

resulting in an increased aerodynamic diameter, should influence the 

deposition efficiency in the pulmonary region. 

The shape change ultimately leads to a nearly spherical particle which 

in fact is the mass equivalent of the aggregate,with a diameter d and 

density p (we assume the amount of condensed water to be negligible). 

The aerodynamic diameter d' of the new particle is given by the equality 

between the Stokes settling velocities of the mass equivalent of the 

aggregate and the aerodynamic equivalent 
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p g d2 F(d ) p g (d')2 F(d') 
e e_ _ _o a a (ii\ 

18 n 18 n ; 

Combination of (77) with the relation Eq. (47) for the dynamic shape 

factor K of the aggregate leads to 

/ F ( d a } 

d' = d VK ?- (78) 
a a F(d') 

Table X gives the factor f by which the aerodynamic diameter of an 

aggregate is increased due to the compaction 

%-l d. / F ( d ) 
f = -A = yV ?_ , (79) 

a F(d') 
a 

using the centrifuge measurements on copper oxide and U.O aerosols 
4 8 

from Table IX. In the region of n < 10 (low d values) where there is 

no important discrepancy between the findings by Kops and by the author, 

f increases with increasing n. The foregoing analysis of the causes 

of the discrepancy for the region n > 10 suggests that „,, . = 0.33 n 

should be valid. Since in this range all slip factors tend to become 

unity, f should follow 

f = /i< = vd.33 r1 / 3 (80) 

which means that f should begin to increase in absence of slip. The 

value of f will be about 4 at d « 1 ym. If it is true that 
a 

K has a maximum value (as Kops |89| observed) amounting to about 15 

(Table VIII) f should level off to around 4. 

In summary, as a rule the shape change of a solid aggregate in a 

humid atmosphere results in a significant increase of the aerodynamic 

diameter. The aggregates possessing submicron aerodynamic diameters are 

transformed into spherical particles with an aerodynamic diameter of 

1 )ii to 3 um. Consequently, the deposition of aggregates in the 

pulmonary region will be enhanced. 
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4^3^5^_Influence_of_the_initial_aerosol_concentration 

The initial mass concentration c (o) of an aerosol formed in a vessel 
m 

influences its behaviour. It is possible to identify the differences 

in aerosol behaviour due to c (o) variation by keeping other parameters 

constant. Qualitatively, the most remarkable feature is the large 

and direct influence of c (o) variation on the coagulation process. 

This is due to the second order kinetics of the coagulation process, 
2 

its initial rate being proportional to c (o), which in turn is propor-
2 n 

tional to c (o). Dependent on the decay constant ß of the aerosol 
removal process (which is stirred gravitational settling in case of 
not too low c (o)) , considerable aerosol mass removal rates will result 

m 

(pg. 86). Higher c (o) values lead to higher d values of the aerosol 

via the coagulation, which means an increased decay constant ß for 

stirred settling. 

This is actually what is observed and is illustrated in fig. 25. 

10 

1 

0.1 

* ^ \ 

cm 

-

SB 

^ ^ ^ B 

\ « 

-

-

-

-

^ 

-

SO 70 

Fig. 25. Mass concentration c (in mg.m ) of gold aerosol only 

differing in initial mass concentration as a function of time t 

(in hours). Espec = 20 kJ.g . 200-vessel in 2 m-height position. 
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The results displayed concern two gold aerosols decaying in the 200-

vessel in its 2m upright position. Though the values of c (o) differ 
^ m 

considerably (80 and 5 rag.m ) , the aerosol formation has been kept 
carefully identical (20 kJ/g resulting in primary particles of 

d, = 0.030 um and a, = 1 . 5 ) . 
'g lg 

A more quantitative description of the aerosol stability can be given 

by comparing the calculated and observed decay constants. The approach 

of the previous section can be used for the analysis of the aerosol 

processes. Moreover, an important simplification can be achieved by 

taking into account that after a certain period the number concentration 

is almost independent of c (o) (pg. 7 8 ) . Using the average mass m(o) 

at t = o (which according to Table V is about 6 x 10~ g) the initial 
o _o C _ •} 

number concentrations of 1.4 x 10 cm and 8.9 x 10 cm are obtained 
-3 -3 

for c (o) = 80 mg.m case B and 5 mg.m case A resp. By combination of 

Eqs. (47) and (72) one obtains a relation between the decay constant 

ß , the dynamic shape factor < and the mass equivalent diameter d of 

the aerosol 

S p d e F ( d e ) 1 
" - e (81) 

18 n K h 

.1/3 
Substitution of Eq. (71) into (81) and using . . = — - — (4.3.4) as 

= F(.d p) 3 
well as n sa — , yields 

m(o) 
1 / 3 

ß = Kl "N-rä(o) ml F2(d ) (82) 
s ri h [ I J e 

This can be reduced to 

ß =0.16 m 1 / 3 F2(d ) (83) 
s e 

-3 
for our case of the two gold aerosols (p = 19 g.cm , h = 200 cm and 

m(o) « 6 x 10~1 6 g (Tabel V)) in the 200-vessel. F(d ) , the slip 

correction factor for a particle d , can be obtained from m using 

Eqs. (8) and (71). F(d ) amounts to about 1.5. 
c m e ! 

Since m = — , and also c = — (for t > 10 minutes, see pg. 78) (83) can 
CJJ n Kt 

be further transformed into 

1/3 1/3 7 
!i = 0.16 K l / J (c t ) ' / J F^(d ) (84) 
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This relation describes the aerosol deposition rate as a function of 

mass concentration and time, assuming coagulation to be the dominant 

process shaping the size distribution. 

Three different points of time after aerosol formation have been 

arbitrarily chosen for evaluation of equation (84), viz. 0.25; 2.5 and 

5 hours. Table XI allows comparison between the calculated and measured 

(from fig. 24) half-lives (K = 1.5 x 10~9 cm3.s_1; see pg.78). The 

agreement between calculation and measurement is generally good. 

Particularly, the matching is very good in case B, the high mass 

concentration aerosol. This is surprising in view of the uncertainty 

involved in the measured half-life of case B as may be obvious from 

fig. 25. Less satifactory is the trend in the calculated half-lives, 

especially in case A. This trend is not borne out by the fact that the 

decay is observed to be nicely exponential. An explanation 

may be found in the c -value (= — ) substituted in Eq. (83), leading 
n Kt 

to a cube root in relation to g in Eq. (84). The c -value calculated 
s n 

in this manner could have been too high due to the neglect of enhanced 

coagulation during the expansion of the aerosol cloud after its 

formation (see pg. 76). This can be translated as a c -value too large 

or a t-value too small. Consequently, g has been calculated too 
s 

small (t, too high) and this error is larger the shorter the time 
2 

period after aerosol production (smaller t-values). Obviously, this 

applies also to case B though to a less extent. Removal of the trend in t, 

requires a correction of -0. 25h at t=0. 25h which is the cloud expansion time (pg. 76) 

One feature of the decay curves of fig. 25 has not yet been dealt with, 

viz. the increasing half-life of the aerosol B as time proceeds. To 

our opinion this is a typical feature of higher cm(o) aerosols. The 

following explanation could be valid. Coagulation initially increases 

m and d , leading to relatively large values of m and d . Soon after or 

during this period stirred settling starts removing the larger particles 

at a high rate from the atmosphere. Consequently, m and d will begin 

to decrease and this leads to an increasing aerosol stability and 

increased half-life. It is impossible to make a quantitative model for 

the behaviour of such aerosols of high initial mass concentrations 

without using complicated analysis of the time dependent aerosol size 

distribution. 
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Increase of the initial mass concentration to high levels, should give 

rise to inhomogeneous filling of the vessel since the large particles 

which are formed either directly or by coagulation, will have large 

settling velocities compared to the convective flows in the vessel. 

Eq. (56) allows calculation of the maximum particle size which can 

remain well-stirred in a vessel. No special experiments have been 

performed in order to investigate this effect. A few observations on 

this subject will be made in the next section. 

^i3J_6i_Non-st irr ed_condit ions 

As treated in section 2.5 and mentioned in the previous section, 

particles can be too large to keep them well-stirred. The other extreme 

case could be that particles are so small that their diffusive deposition 

velocity is comparable to the atmospheric flow velocities. Decreased 

atmosphere flow velocities may be caused by certain thermodynamic 

conditions existent in the vessel atmosphere (pg. 58). Experimental 

results for such cases, however, with the exception of diffusion, are 

dealt with in the following sections. 

4.3.6.1. Non-stirred settling 

In a number of cases aerosols of larger initial aerosol mass concentra-
-3 

tions (> 100 mg.m ) have been investigated but only in our smallest 

vessel ("300", see Tabel III). This leads to spatial inhomogeneity. 
-3 

Fig. 26 shows two experiments with c (o) = lOOmg.m where aerosol mass 

concentrations have been measured at two heights (10 cm and 40 cm). 

There is an initial period of non-stirred settling with higher con

centrations in the lower part of the 300-vessel. After this exceptional 

period, aerosol deposition is again of the stirred type. Then the aerosols 

disappear with half-lives of about 4 hours which means that the aerosol 

has an effective aerodynamic diameter of about 0.8 ym. Eq. (56) tells 

us that an effective temperature difference AT of 10 K between walls 

and vessel atmosphere is large enough to keep the deposition of such 

aerosols well stirred. Only special measures (the upper part of the 

vessel warmer than the lower part) can prevent the aerosol from being 

well-stirred. 
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Fig. 26. Mass concentration c (in mg.m ) as a function of time t 

(hours) of gold aerosol in 100-vessel (90% thermal insulation 

of the walls). Heater on floor center: 0 W, 50 W and 200 W. 

Local inhomogeneities are visible up till 7 hours at "lower" 

and "upper" sampling ports in absence of heating. 

Another extreme case investigated has been a gold aerosol of c (o) = 

500 mg.m" in the 100-vessel (Table III). Although a half-life as 

small as 3 hours has been observed (consequently d »1.8 um) the 

aerosol was removed by stirred deposition, as could be established 

from the equality of samples taken at different heights. From Eq. (56) 

it follows that AT must have been larger than 10 K. 

The convective flows inside aerosol vessels arise from heat transfer 

between the' laboratory atmosphere and the vessel. The response 

of the vessel walls as a transfer medium for heat is of importance for 

the coupling between the two media. For the smaller 300-vessel (75 

liters) with relatively thick walls, obviously, a smaller effective AT 
3 

exists between gas and wall compared to the larger 100-vessel (1.2 m ). 
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From Eq. (25) one obtains lowest estimates of related heating powers 

of the order of uW in the vessels. The power densities in the surrounding 
-3 

atmosphere will be roughly of the order of 1 W.m . This means that 

considerable "damping" by the walls of the heat flows must occur before 

the critical uW levels inside the vessels are achieved. 

4.3.6.2. Stratification 

In section 2.5 a boundary condition has been derived for the occurrence 

of atmospheric stability in a containment with a heated pool of liquid 

on the floor. Experiments have been conducted in order to validate 

this boundary condition. Twelve different vapour/gas systems were 

studied in PERVEX, the rectangular 150 liter plexiglass box with a brass 

floor. The floor and a pool of liquid above it were heated homogeneous

ly, as a rule with a power level of 60W. The box pressure was atmos

pheric. The vertical temperature profile was measured by means of a 

movable thermocouple. This vertical temperature scanning in the box 

has revealed that two significantly different profiles are possible: 

either, apart from a boundary layer near the walls, a larger part of 

the box atmosphere is isothermal, or there is a steady decrease of 

temperature upwards. In accordance with Eqs. (58), (59), and (60), the 

cases correspond with stirred and stagnant atmospheres, respectively. 

In addition to this, when aerosol is introduced into the box, illumina

tion by means of an electric torch of the droplets formed gives an 

additional, direct opportunity to observe the stability of the atmos

phere. These observations have been always in accordance with the 

temperature profile measured. 

Figure 27 shows the temperature profiles of five different liquid-air 

systems. The heaviest two liquids appear to develop a stagnant atmos

phere whereas the three alcohols used {b, o, and d) yield a stirred 

atmosphere, apart from the boundary layers (~ 1 cm) near the floor and 

the top of the tank. However, it is apparent that the heaviest alcohol 

(isopropyl alcohol, represented by the solid line) has a slight tendency 

to develop a stable layer in the lowest 10 cm. Another effect related 

to the degree of convection of the atmosphere is the decreased floor 

temperature in case of convection stirring. Convection, as an additional 

heat conductive process, will decrease the heat resistance between the 

heat source and the heat absorbing surroundings. 
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Fig. 27. Vertical temperature profiles of five different liquid-air 

systems at 60 W heating; a = di-isopropylether, b = isopropyl 

alcohol, a and d = ethyl and methyl alcohol, e = carbon 

tetrachloride. 

Change of the gaseous component can also drastically alter the convec

tion situation as is shown in fig. 28. 
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Fig. 28. Vertical temperature profiles of helium-air with and without 

a water layer on the floor. Power is 60 W. 
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Comparison of the curves for water-air and water-helium reveals that 

due to the relatively small molecular mass of helium the atmosphere 

is nonisothermal, corresponding with an inhomogeneous vapour-gas filling 

of the box. By comparison with the fairly isothermal situation in pure 

helium, it is seen that the watervapour-helium system is stagnant due 

to the presence of the heavier water vapour. This stabilizing effect of 

water vapour is absent in case of air in accordance with the larger 

molecular mass of air compared to water. 

The influence of heating power on atmospheric stability has not been 

studied systematically but a few experiments exhibit the effects to 

be expected (see fig. 29). When the heating power is decreased from 

60 to 30 W, the temperature profiles retain their general appearance 

but are shifted to lower temperatures. However, one detail is worth 

mentioning. Decrease of the heating power in case of a stagnant 

atmosphere (Freon 113 and n-hexane) increases the stagnation zone 

in the lower part of the box. This could probably be associated with 

a transition from case 3 (M. > M , stagnant) to case 2 (M, > M , 
d g d g 

stirred) under the influence of a temperature lowering far enough below 

the boiling point of the liquid. In fig. 29 it is seen that these 

vapour-gas systems fit also the general picture of either stagnant or 

stirred atmospheres. 
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Fig. 29. Vertical temperature profiles of three vapour-gas systems at 

different heating powers; 30 and 60 W. 
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Table XII presents the results of the vapour-gas systems studied. In 

the last column, the observations concerning the atmospheric stability 

have been tabulated. The dp/dT values have been calculated using Eq. (65). 

The AH and X, data have been obtained from |ll9|. The validity of 

inequality Eq. (60) as a boundary condition for the stagnant case, is 

clearly shown. Apart from a transition region the observations are in 

nice agreement with the theoretical predictions. The extraordinary 

behaviour of the isopropyl alcohol-air system can be explained in the 

following manner. Compared to ra-propyl alcohol, the isomer has a 

vapour pressure nearly two times larger. This leads to an enhanced 

diffusion of isopropyl-alcohol molecules to the cold walls, thereby 

decreasing X and violating the model used for deriving Eq. (65). An 

X, value smaller than that used in calculation of dp/dt, would have 

led to a smaller dp/dt value, probably a negative one. Moreover, as 

remarked in the discussion of fig. 27, isopropyl alcohol is a transition 

case, since it has a'stable layer in the lowest 10 cm of the box. 

4^3±7^_Stirred_electrop_horesis 

Very limited experimental data is available on the subject of stirred 

electrophoresis because the effect itself has been regarded undesirable 

and could be eliminated rather easily. 

Table XIII summarizes some experimental data collected from literature 

and from one experiment carried out by the author in a polyethylene 
3 

vessel of 0.5 m volume. Due to lack of exact knowledge on the electrical 

mobilities u of the aerosol particles studied in the experiments 
e -4 2 - 1 -1 

reported in Table XIII, a reasonable value of 10 cm .V .s was 

chosen for the neutralized aerosol . Then a relatively reliable 

estimate of the p -values as given in Table XIII for the unneutralized 

aerosols produced by nebulization and dry dispersion can be obtained 

from Stein's charging characteristics |80| of his aerosols. It is 

assumed that the u -value for dry-dispersed aerosol applies also to 

Lieberman's aerosol |83|. The wall charge q can be calculated from 

q = ß M (85) 
e e p 
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which is equivalent to Eq. (45). 

Both Lieberman's and Stein's data |83|, |80| leads to consistent q 
-7 . e 

values of roughly 1.5 x 10 C. Their spherical plastic vessels of 
2 

320 liters had an inner wall surface area S of about 2.5 m which yields 
nearly equal q -values with an average surface charge density of 

_g _ 2 e 2 
6 x 10 C m . Our polyethylene vessels having S » 3 m , however, should 

-9 _2 
have had an average surface charge density of 7 x 10 C m . The 

difference between the charge density of our vessels and the other 

vessels is to be expected, because the vessels of Lieberman and Stein 

have been cleaned prior to their use for the experiments which 

certainly will result in significant surface charging (Stein reports 

charge islands with voltages of up to 10 kV 1801 ). Our vessel has not 

been cleaned prior to the experiment reported. 

McMurry |40| using a 65 m teflon bag as aerosol container, quotes 

70% removal per hour of 1 um polystyrene spheres from the bag atmosphere. 
-4 -I 

This corresponds to a decay constant of about 10 s . Assuming 
-4 2 -1 -1 

neutralized particles (u =10 cm .V .s ) and an inner wall surface 

of 200 m , one calculates an effective charge q of 6 x 10 C and 

an effective charge density at the walls of 3 x 10 C m . This compares 

fairly well with the above mentioned values for plastic vessels 
_g _2 

(fa 6 x 10 Cm , see Table XIII). Therefore, we believe that McMurry's 

observations on aerosol removal from his teflon bag must be attributed 

to stirred electrophoretic deposition. 

Another study of aerosol behaviour in a vessel with non-conducting 

walls is the one by Zalabsky |41| (see pg. 25). He investigated the 

removal of Pt-oxide aerosol formed by heating a Pt-wire in air 
2 

(see pg. 25) in a 24 liters glass vessel (S = 0.5 m ). The aerosol 

was neutralized and will have had an electrical mobility of about 
4 2 - 1 - 1 

2.5 x 10 cm .V .s . Zalabsky has observed a half-life of 27 
-3 -1 

minutes (ß = 4 x 10 s ). From Eq. (85) one obtains a q -value of 
-9 . -8 e -2 

4 x 10 C, and an effective wall charge density of 10 C m which 

again is not unreasonable in view of the afore mentioned values for 

plastic walls (Table XIII). 
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Experiments have been performed with aerosols from Exploding Wires as 

well as with monodisperse particles in aerosol vessels. The aerosol 

behaviour can be treated quantitatively as a case of stirred atmospheres 

where the deposition rate limiting processes occur in the boundary 

layer at the walls. Conditions under which non-stirred settling or 

stratification could arise, are dealt with; experimental support is 

given to the theory developed in section 2.5. 

Stirred deposition in dry, unheated vessels can be due to three 

mechanisms. Larger particles (diameter > several tenths of a um) are 

removed by gravitational deposition. Smaller particles deposit due to 

diffusive deposition; however, in the case of vessels with electrically 

non-conductive walls particles in the size range of 0.01 - 1 um can 

be removed by electrophoresis. For the diffusive deposition in vessels 

with conductive walls a relation is obtained between the diffusion 

boundary layer thickness and the particle diffusion coefficient. The 

effects of aerosol formation parameters, vessel height and initial mass 

concentration have been studied. Higher values of formation energy 

and vessel height, and lower initial mass concentration result in 

higher aerosol stability (lower deposition rate). 

The use of unheated, dry vessels for the investigation of aerodynamic 

properties of aerosols (aerodynamic diameter and dynamic shape factor) 

has been investigated. Experimental results on the relation between 

dynamic shape factor of solid aggregates and their microstructure compare 

favourably with the Stöber-Kops model j 89, 90 j; indications are obtained 

of the better suitability of the vessel decay curve technique for large 

aggregates compared to the centrifuge. 

Application of the model of stirred electrophoresis to experimental 

observations yields reasonable estimates of electrostatic surface 
-7 -9 -2 

charges on vessel walls of some plastics (10 - 10 C m ) under 

certain assumptions. 

Experimental results and discussions on stirred deposition due to 

electrophoresis, diffusion and coagulation will also be given in the 

chapter on smog chambers (4.6). 
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4.4. Aerosol decay in heated dry vessels 

4^4^2i_General_observations and_consiterations 

Heating an enclosed gas atmosphere increases the temperature of the gas 

compared to the enclosing walls. When natural convection is not suppressed 

(see section 4.3.6) the atmosphere will be stirred apart from a bound

ary layer at the walls across which a temperature gradient exists. 

This temperature gradient is the driving force for aerosol transport 

(thermophoresis) to the relatively cold walls in a manner treated 

quantitatively in section 2.2.4. 

In the vessels used for study of the aerosol behaviour under heating 

conditions the generated convective flow velocities have been measured 

in a number of typical cases. These velocities were found to be about 

20 cm.s which agrees with rough calculations |5| yielding 30 cm.s 

Assuming a boundary layer thickness of about 0.5 cm this means that 

inertial deposition of the aerosols used (up to 1 um aerodynamic 

diameter) cannot have played a significant role in aerosol removal 

under these circumstances (relaxation time of a 1 urn particle is 

several microseconds). 

Visual inspection of the transparent walls of the vessels PERVEX 

(plexiglass) and GRACE (Pyrex glass) has revealed that the aerosol 

deposit is usually distributed over the walls. In case of floor heating 

of the PERVEX-vessel it could be established visually that negligible 

deposition takes place at the floor. Altogether, deposition is mainly 

on the cold walls, presumably by thermophoresis. 

Since the heat source has been always located in the lower part of the 

vessels, the other walls should be considered to be a heat sink too. 

However, the thermophoretic force acting on the particles in the 

boundary layer at the top of the vessel is counteracted by the 

gravitational force. Roughly (see next sections) the thermophoretic 
. . . . - 4 - 1 

deposition velocities in our experiments amount to about 5 x 10 cm.s 
Since the gravitational settling velocity of the aerosols used 

-3 -1 (~ 0.5 urn) is much larger (about 10 cm.s ), it is evident that the 

thermophoretic deposition on the ceiling has been strongly hampered 

in most cases. This is consistent with the observation of a much thinner 

deposit on the ceiling compared to the side walls. 
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Fig. 26 depicts the effect of heating the aerosol contained in the 

100-vessel (pg. 101). 

Firstly, the inhomogeneous filling of the vessel when it is not 

heated, during the initial seven hours is remarkable. The occurrence 

of this inhomogeneity at the relatively low (see the previous section) 
-3 

initial mass concentration of 70 mg.m must be explained by the 

intensive thermal insulation of the vessel, viz. apart from the 

(upper) 10% of the vessel wall the vessel had been packed in 3 cm 

thick polystyrene foam. Very probably, most of the random temperature 

fields in the laboratory have been shielded in this way, thereby re

ducing strongly the unintentional thermal convection. 

Heating of the vessel atmosphere with 50 W power of a quartz heater 

completely removes the heterogeneity and considerably increases the 

aerosol removal rate. Fourfold increase of the heating power to 200 W 

further increases aerosol instability such that after about 50 hours 

the mass concentration is about two orders of magnitude below that of 

the unheated case. At increasing heating power the decay curves become 

better exponential. This is due to the thermophoresis being more 

dominant over gravitational settling: the initial curving of the decay 

curves is caused by the initial preponderance of the latter deposition 

mechanism, which looses its importance after removal of the largest 

particles. This picture is supported by additional evidence (see fig. 

30) for the effect of the initial mass concentration c (o) on the 
m 

appearance of the decay curves. Only the largest c (o) results in 

significant curving, which gradually disappears after about 10 hours. 

Then the decay is also exponential and of a rate equal to that of the 

other aerosols. 

The exponential character of the aerosol decay of the heated aerosol 

(apart from deviations owing to additional gravitational settling) means 

that thermophoresis has an insignificant particle size dependence. 

This agrees with those theories on thermophoresis (see section 2.2.4) 

predicting independence of size for larger particles (— < 1). 

As shown above, thermophoretic deposition is an efficient process 

compared to gravitational settling already under moderate heating 

conditions. Consequently, the duration of the initial coagulation 

stage of an instantaneously formed aerosol will be influenced by the 
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Fig. 30. Mass concentration decay of inhomogeneously heated gold 

aerosols in "100"-tank. The curves shown belong to the 

aerosols exploded with different c (o) and Espec. c in 
, m r _m 

mg/m . Time t in hours. Espec ranges from 20 kJ.g to 

250 kJ.g -1 

heating. The same is valid to the aggregate size, which is uniquely 

related to coagulation. Fig. 31 shows the effect of heating on the 

average mass m per aggregate, m reaches a final value (indicating 

vanishing coagulation) at an earlier point of time. This final value 

is lower for higher heating powers. This is caused primarily by the 

interference of thermophores is in the coagulation process due to the 

high efficiency of thermophoretic deposition already when the particles 

are still too small to be removed at a considerable rate by gravita

tional settling. Curve D in the lower part of fig. 20 illustrates 

this once again. 
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Fig. 31. Course of average partiele mass m (in pg) after formation 

of gold aerosol in 100-vessel for various heating power levels 

of heater on vessel floor. Time t in hours. 

4i4i2i_Effect_of_heating_2gwer 

A number of experiments with gold aerosols in various vessels with 

different heating powers is available for analysis. The results are 

given in Table XIV. The analysis of the PERVEX data is taken as an 

example, because two types of heating have been applied. Either a 

quartz heater placed on the floor has been used or the brass floor has 

been heated evenly. In the latter way gravitational deposition of 
-2 

aerosol on the heated floor (120 - 250 W.m ) should be negligible 

according to fig. 4. As argued in the previous section, thermophoretic 

deposition on the top wall is hindered by gravitational settling. Hence, 

an additional correction for this has to be applied amounting to the 

ratio of top wall surface area to the vertical wall surface area 

(~ 20%). Table XIV shows that without the corrections B =0.16 is 
m 

obtained from both experiments with heated floor. A B c o r r value of 0.19 
m 

results when the correction (+ 20%) for the top wall effect is applied. 

B has been calculated from — (see Eq. (26).) taking into account that 



R = 
m 

A p T 
. <* x ? 6 

A n g 

- 1 12 

(86) 

A p T 
where the second factor — ™ — ° — is almost independent of temperature 

T (section 2.2.4). For helium and nitrogen this factor amounts to 
-3 -3 

0.37 J.cm and 0.50 J.cm respectively. 

When Stetter's theory is used (section 2.2.4, Eq. (28a)) it follows 

that n , = con' = 5.3. According to Stetter n , ranges for air from 3 
t h Bm t h 

for small particles (r < I) to n = 8 for large particles (r > I). 

Particles are larger than I (0.065 um) when the aerodynamics or the 

spatial dimensions are considered, but the primary particles constituting 

the aggregates have dimensions smaller than the mean free path of air 
molecules. The n ,-value of 5 indicates that the interaction between 

th 
gas molecules and the primary particles is more or less direct. 

The B values calculated from the results of the three experiments in 
m 

PERVEX with the quartz heater (local heating, Table XIV) are higher 

than obtained from experiments in PERVEX with a heated floor. 

This can be explained by additional gravitational aerosol deposition 

on the floor which is not heated. This effect can be corrected for by 

subtracting the decay constant for settling ß from the measured decay 

constant ß . The decay constant of stirred settling ß has been cai
rn s 

culated from the average mass m per coagulate using Eqs. (47), (71), 

(76) and the relation between K and n as found (pg. 94). This 

correction for gravitational deposition on the floor and for the top 

wall effect gives B values (0.19 - 0.22) which correspond fairly 
m 

well with those found for the case of floor heating (Table XIV). Similar 

analysis of three experiments in the 100-vessel yields B data which 
m _ 

are also similar to those from the floor-heated PERVEX (since the m 
value of the 100 W experiment in the 100-vessel is lacking a ß value is 

-5 -1 s 

used of 0.6 x 10 s , equal to the other 100-vessel experiments report

ed in Table XIV). 

Unfortunately, the experimental results from the GRACE and ENAK vessel 

are not very useful, though for different reasons. The m data for 

correction for ß are lacking for the GRACE experiments. However, the 
uncorrected B values are compatible with those of the PERVEX and 100-

m 
vessel experiments. Therefore, this can be regarded as additional 
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experimental support for the correctness of these GRACE data since 

all cases concern the same kind of aerosols. The ENAK data fit the 
corr 

other results rather badly (B « 0.1). One may speculate whether 
m 

this is due to incorrect Q measurement (voltage/current; but probably 

heat loss from the heater to the floor has played a relatively large 

role) or due to incorrect ß correction (the basic m values used for 
s 

this correction are rather high). 
corr 

The experimental B value of approximately 0.2 can be compared with 

the B-values as calculated from theories of Epstein, Brock, and 

Derjaguin. These B-values (B„, B^ and B„ from Eqs. (27) and (28)) 
, E B Ü 

amount to 1.2 x 10 ,0.18 and 0.36, respectively (see Table XV, 

first line). Evidently, B and B do not correspond with 
E D 

our B value of 0.20. Clearly, Epstein's formula (B„) is not valid 
m E 

for the conductive aerosols like those of gold. Our results do not 

support Derjaguin's model either; the B value is twice too large. 

The B value of 0.18 calculated from Brock's equation is in good 
E 

agreement with our result. However, this is not surprising because 

Brock's equation (28c) is a semi-empirical one containing slip 

coefficients (c and c ) obtained from fitting with experimental data 

on thermophores is in air. 

In conclusion, aerosol behaviour in heated enclosures can be described 

by our model of stirred thermophoretic deposition. In some cases 

corrections for gravitational settling onto the floor or at the top 

of the vessel are required. The B values of 0.2 obtained from our 
m 

experimental data on gold aerosols agree with the models of Stetter and 

Brock and do not support those of Epstein and Derjaguin. 
^^^.3i_Effects_of_aerosol_materiali_temgerature_and_gas_nhase on 

Table XIV also gives experimental results on removal of aerosols of 

materials other than gold. As argued earlier it is sensible to consider 

the floor heated PERVEX experiments firstly. Oil droplets and Exploding 

Wire platinum aerosols appear to be subject to thermophoretic deposi-
corr 

tion characterized by the same value for B : 0.22. This value is 
m 

quite similar to that found for gold aerosols (0.20, see previous 

section). Similar result have been obtained for aerosols of copper 
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oxide and NaCl in the 100-vessel. Although no exact stirred settling 

data are available for making the ß correction, yet a B value can 
s m 

be deduced assuming a negligible g correction (d is low for these 

aerosols). The observed material independence of thermophoresis once 

again favours the theories of Stetter and Brock. 
Table XIV also gives a B value obtained for 0.8 ym polystyrene 

m 

particles. This value of 0.11 deviates considerably. The corresponding 

n , value is 9 which is almost equal to the maximum quoted by 

Stetter |72|, viz. 8. This should be the maximum approached in the 

coarse particle region. 

The experimental observations tabulated in Table XV on the influences 

of temperature and gas phase have limited validity because the data on 

Q (heating power) used for calculation of B (by means of (26) and 
m 

(86)) are uncertain, viz. the Q-measûrements are somewhat too low in 

case of the He experiments. Higher Q-values lead to lower B -values. 

However, a correction of more than a factor of two seems unlikely. 

Consequently, comparing the B -values of about 0.3 in case of He 
m 

with the theoretical B-values as listed in Table XV, it should be con

cluded that there is reasonable agreement between theory and experiment 

as far as the theories of Stetter and Brock are concerned. The tendency 

for B to be larger for He than for air can be explained by the variation 

in n from 3 to 5,dependent on the nature of surface reflection of 

the gas molecules |72|. The value n = 3 corresponds to molecules 

which are rigid spheres, i.e. molecules having only short-range inter

action with the particle surface. In view of the simple and noble gas 

electronic structure of the helium atom, these atoms will tend to behave 

as hard spheres, which means a value of n near to 3. In other words, 

the observed higher B values (lower n values) for helium compared to 

air are in qualitative agreement with these theoretical considerations. 

The thermophoretic deposition is found to be larger for helium than for 

air, analogously to the better thermo-diffusion separation of noble gases 

than of other gases J72|. 

Any temperature effect on stirred thermophoresis is clearly absent in 

Table XV, as was predicted in section 2.2.4. In fact, as shown by Table 

XVI, even experiments performed at temperatures around 500 C show no 

significant temperature effects. 
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In the previous sections it became clear that thermophoresis predominates 

over gravitational settling of particles with diameters of about 0.7 urn 

in heated vessels with heating power densities ̂  larger than about 
-3 . . 

0.1 kW.m . Moreover, the results indicated that heating of the upward 

facing vessel walls could lead to important hampering or even hindering 

of gravitational settling of particles onto these walls. This has been 

studied in more detail using the PERVEX vessel by recording aerosol 

stability as a function of the heating power of its brass floor. Gold 

aerosols formed by explosion of 0.1 mm <£ gold wires at 10 kV capacitor 

voltage have been used. The aerosol decay has been followed by means 

of a condensation nucleus counter. Decay constants ß could be obtained 
' m 

from the exponential part of the long term decay curves after coagula

tion has lost its dominance. The experimental results are displayed 

in fie. 32. 

-4 -1 
Fig. 32. Decay constants ß (in 10 s ) of gold aerosols in the 

PERVEX-vessel. The floor was heated with a variable power Q 

(in Watts). 
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With increasing power of the floor heating Q the decay constant 3 

initially decreases (aerosol stability increases) due to the hampering 

of gravitational settling. At higher levels of heating power, the 

aerosol deposition is enhanced because the thermophoretic deposition 

on the cold walls (except the top wall) becomes overwhelming. The 

6 values of the cases of highest heating levels (34 W and 60 W) 

have been used previously for calculation of B (see Table XIV), 

which calculations have shown that thermophoresis is the governing 

aerosol removal process under these conditions. The measuring data 

are also tabulated in Table XVII. The results can be analysed as 

follows. 

A contribution 3 , to the measured decay constant 3 due to the thermo-
th m 

phoresis to the cold walls (except the top side) can be calculated 

for each heating case because 3 , is proportional to Q and 3 , = 3 

for both 60 W and 34 W. As a result 3 , =0.21 Q. Values of ß „ = 3 ~3 , 
th eff m th 

have been calculated for the various Q levels (Table XVII). This ß 
err 

value shows how deposition on the floor is influenced by the floor 

heating. The low 3 ff: values for Q > 10 W means that for these larger 

heating powers floor deposition is negligible. The decay constant 

3 at Q = 0 corresponds to an average aerodynamic diameter of 0.74 um. 
A negative correction ß (f) can be made to ß , which correction 

th err 

involves the hampering thermophoretic effect. This "decay constant" 

3 h(f) can be assessed assuming the same heat transfer coefficient to 

apply for both the cold vertical walls and the warm floor. Hence, 
Sc 

3 , (f) = 3 . •=— where S = surface area of the cold walls, and S, = 
th th Sf c t 

floor surface area. For the PERVEX-vessel this should lead to 3 cc ~ 
eft 

3 - 3 , (f) = 3 - 5.8 3 , . Consequently, for e.g. Q = 5 W, 3 ,c should 
s th s th eff 

have been negligible, contrary to the observations (Table XVII). Probably, 

the assumption of similar heat transfer at the cold walls and at the 

floor is not very realistic. The floor could have been heated in-

homogeneous ly. However, also eddy convective heat transfer through the 

boundary layer at the floor could have smoothed the temperature gradient 

at the floor and given rise to transport of aerosol to the floor through 

the boundary layer at the places of rising eddy instabilities. Clearly, 

the model given in section 2.2.5 (see also fig. 4) for calculation of 

the diameter of a particle which just floats above a heated plate does 

not apply completely in this case. Nevertheless, there is considerable 
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hampering of gravitational aerosol deposition although less than calcu

lated. The half-life of the aerosol has been increased about two fold 

at Q = 7 W compared to the unheated case. Provided slight heating 

is not undesirable, this floor heating technique could be applied for 

stabilisation of aerosols. This technique is easier to perform than 

the drum rotation treated in section 2.5.4. 

4^4^5i_Summar^ 

Local heating of dry, aerosol containing vessels considerably enhances 

deposition due to thermophoresis. This could be described by a model 

developed for stirred thermophoretic deposition. Observations of the 

independence of the thermophoretic decay constant on aerosol material, 

temperature and (for d > 0.5 pm) particle size are in agreement with 

this model. The theories of Stetter and Brock fit the observations very 

well. Observed effects of gas phase and particle size are of proper mag

nitude. The stability of aerosols in vessels can be considerably en

hanced by moderate heating of the vessel floor. 

4.5. Aerosol decay in vessels with a heated pool of water on the floor 

This section deals with aerosol behaviour in chambers heated from below 

and having some water on the floor. In this case heat transfer by the 

chamber atmosphere is not only by sensible heat but also by latent heat 

transport. This introduces some typical aerosol processes which can 

be used for aerosol studies or need to be reckoned with in evaluation 

of aerosol behaviour under similar conditions. 

A chamber with a heated pool of liquid may show stratification (pg. 58) 

dependent on the liquid/gas system. The system H 0/air, however, 

treated in this section is one of convective stirring enhanced due to 

latent heat transfer by water vapour. 

4_15̂ 2i._§âBÊIâI_°ksêïYât:i°î!£_â!ÎË_ÉiS!:u55i°B§ 

Compared to aerosol behaviour in heated dry vessels treated in the 

previous section 4.4, the instability of an aerosol in heated wet 

vessels is strongly enhanced (fig. 33). Typically, the aerosol decay 

rate of the wet case is not only larger than that of the dry case but 
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also the decay rate increases as time proceeds. Ultimately, this leads 

to a "catastrophic" disappearance of the aerosol at the end of its life. 

~3 
Fig. 33. Mass concentration decay c (in mg m ) of gold aerosol 

m 

in PERVEX with water layer on the floor (o) and under dry 

conditions (0). Time t in hours. 

Visual observation in the glass and perspex vessels (GRACE and PERVEX 

resp.) has shown that a dense fog exists immediately after introduction 

of aerosol (usually Exploding Wire generated) into the chamber atmos

phere. The reduced visibility persists until the dramatic aerosol removal 

occurs. At that time the chamber atmosphere becomes clear within a 

minute. Visual inspection of the fog by means of a laser beam (2 mW 

HeNe laser) has given the impression that the fog consists of droplets 

larger than the particles present in the dry case at the same point of 

time after aerosol formation. These droplets float around in the vessel 

indicating a well-stirred atmosphere. Compared to the wetting of the 

cold walls by the continuous vapour condensation, there is no signifi

cant additional water transport to these walls by depositing droplets. 

The laser beam has revealed also the existence of a layer of slightly 

less than 1 cm thickness, above the warm pool of water where larger 

droplets are seen to settle. It has appeared difficult to measure the 

water vapour content of the atmosphere prior to aerosol formation. A 
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rough measurement of the dew point of the PERVEX atmosphere (60 W) has 

yielded a supersaturation value of a few %. This is slightly less than 

to he expected on the basis of the temperature difference of several 

degrees between pool and atmosphere above it. 

From these observations the following model for aerosol behaviour may 

be deduced. The atmosphere of an aerosol-free chamber with a warm pool 

of water is supersaturated with vapour from this pool. This super-

saturation is the net result of the vapour supply from the pool and 

the vapour removal by condensation onto the cold walls of the chamber. 

Aerosol particles introduced into such atmospheres will act as condensa

tion nuclei (exceptions see below) and grow rapidly to droplet sizes 

until supersaturation has almost disappeared. Allowing some initial 
5 -3 

fast coagulation until c = 5 x 10 cm , this means that droplets of 
n 

a few pm are formed by the removal of the supersaturation of several 

percent (Millikan chamber observations without electric field gave 

droplet diameters of 1 - 5 um). These droplets continue their growth 

due to the supply of water vapour by the warm pool. Deposition of 

droplets of this size will be mainly by gravitational settling (owing 

to additional latent heat transfer the decay constant for thermophoretic 

deposition in PERVEX at 60 W floor heating will be less than 10 s 

(see Table XIV) whereas a settling velocity for 2 ym particles of 
- 2 - 1 

1.3 x 10 cm.s yields a decay constant 3 for settling of about 
- 4 - 1 S 

2 x 10 s ). 

Consequently, the decay rate will increase because of the increasing 

particle size. The growth rate of each droplet will increase further 

due to the decreasing droplet concentration. This in turn gives rise 

to an enhanced decay rate. This is the typical "catastrophic" decay 

displayed in fig. 33. In the next section a relation will be derived 

using this model which will be found to agree with measurements giving 

additional support to the correctness of this model. 

Usually, a dense fog formation is visible after introduction of 

aerosol into a space with a heated pool of liquid on the floor. 

However, a number of exceptions have been noted which are worthwhile 

to mention here. 

Firstly, when liquid/gas systems other than water/air are used, the 

atmosphere heated from below may be stratified (4.3.6.3). Aerosol 
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introduction in these stratified atmosphere shows fog formation only in 

the lower part of that space, signifying that the supersaturation is 

limited to these regions. Additionally, between the cloud and the warm 

pool a clear layer of about 5 cm is present through which under special 

illumination individual droplets are seen raining from the cloud above. 

This has been observed for the three systems CCI,/air, Freon 113/air 

and H 0/He. Each droplet within the fog is in almost complete rest 

which is in accordance with the absence of stirring of these atmospheres 

as proved in 4.3.6.3. Presumably, this also causes the thickness (5 cm) 

of the layer of falling droplets to be larger than in case of stirred 

systems (less than 1 cm). 

Secondly, when aerosols of notorious hydrophobic nature like silicone 

oil or liquid paraffin, are brought into the supersaturated atmosphere 

of the water/air system, there is no dense fog formation. The decay 

of hydrophobic aerosols is insignificantly altered by the presence of 

the warm pool of water. Only a minor fraction of the oil droplets has 

been observed to have a significantly larger size after some time. This 

suggests that only few oil droplets have grown by condensation of water 

vapour. Fig. 34 shows that there is no "catastrophic" decay of these 

hydrophobic aerosols, indicating also negligible condensation. The 

appearance of some larger drops can be explained in two ways. Either 

the oil drops have impurity sites at their surface where water molecules 

can reside and lead to further limited condensation, or the formation 

of the water layer by sorption irrespective of their contact angle j120[ 

is very slow. Provided the latter explanation is correct, the study 

of the appearance of larger droplets in oil aerosols would be valuable 

for the insight in water condensation on small hydrophobic droplets. 

As argued at the end of section 2.2.5, thermophoresis and diffusiophoresis 

contribute nearly equally to the aerosol deposition rate at R.T. in 

a vessel with a heated waterpool. It has been observed in PERVEX that 

addition of water reduces the temperature difference between the 

PERVEX atmosphere and the surroundings to just half its original value. 

As a result, the thermophoretic deposition rate will be halved. The 

rates of deposition by diffusiophoresis and thermophoresis should then 

be nearly equal in order to have almost identical aerosol decay rates 

under wet and dry conditions. This fits the above mentioned theoretical 

conclusion of section 2.2.5. 
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Fig. 34. Decay curves (particle number concentration (c in cm , t 

in minutes) of aerosols of liquid paraffin and silicone oil 

in PERVEX-box with heated floor (60 W). "Dry" and "wet": 

without and with waterlayer on the floor. 

Thirdly, different aerosol behaviour is also found with platinum oxide 

aerosols in PERVEX from a glowing platinum wire of 0.1 mm diameter in 

air. The particles generated in this way are very difficult to observe 

by electron microscopy. The platinum oxide particles are either rather 

volatile or too small. Only a small fraction of the aerosol particles 

is visibly transformed into droplets immediately after aerosol generation. 

This fraction may be enlarged by increasing the glowing time which nor

mally is a few minutes. The number concentration of the droplets 

gradually diminishes until, after about lg hours, no droplets are 

visible. Nevertheless, the condensation nuclei counter measures c 
3 - 3 . n 

still more than 10 cm . The condensation nuclei concentration shows 

an initial fast decay (due to coagulation) followed by two periods 

of different exponential decay. The first period has a larger decay 

rate than the second one. Extending the glowing time (increasing 

aerosol production) shifts the transition between the two periods to 
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later points of time. The transition could be established to coincide 

with the onset of absence of droplets. This can be explained by assum

ing the existence of two aerosol fractions, of which one is active in 

condensation nucleation, the other remaining untouched. Presumably, this 

is on account of the different particle sizes of these fractions, of 

which the larger fraction is formed, by coagulation. The rapid exponen

tial decrease at the longest glowing time (20 minutes) has a half-life 

of about 20 minutes which corresponds to a reasonable droplet diameter 

of 4 ym. The ability of the condensation nuclei counter to detect 

particles after the droplets have disappeared is due to the much 

larger supersaturations (~ 25%, corresponding with a critical diameter 

of 0.01 ym |121|) in these counters compared to that in PERVEX (0.1 -

few %, corresponding with critical droplet diameters of 2 ym - 0.05 ym 

|121|). 

In conclusion, aerosol behaviour in a vessel with a heated pool of 

water on th.- floor depends on the ability of the particles to act as 

nuclei condensation. This aerosol property is known to be a function 

of supersaturation, particle size and material. When the particles 

act as nuclei for condensation a very fast growth takes place followed 

by (stirred) settling with an increasing decay rate due to further 

condensational growth. Non-stirred settling could occur under conditions 

leading to stratification (section 2.5.3). Aerosols on which negligible 

condensation takes place, disappear exponentially with a decay rate not 

very different from dry (thermophoretic) deposition. Very likely, the 

heated wet chambers can be used for study of aerosol formation in 

chemical reactions (smog chambers) by investigating droplet formation 

at a known given supersaturation of the chamber atmosphere. In this 

manner simulation can be achieved of the conditions prevailing in 

clouds, mists and plumes. 

4^5^2^_Theorv 

We shall derive a calculational model of particle growth by condensation 

and subsequent deposition, the fit of which model with the observations 

(to be given in the next section) can be used for better understanding 

of the processes in a vessel with a heated pool of liquid. 

A number of simplifications and approximations, however, is necessary 
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in order to arrive at a set of simultaneous differential equations 

which can be solved. The supersaturation of the vessel atmosphere being 

unknown, it is wise to omit the fog formation at the moment of aerosol 

introduction from the model. Coagulation cannot be treated because 

the resulting equations cannot be solved. The two remaining 

processes governing aerosol behaviour are condensational growth and 

stirred settling. Whether these simplifications and approximations 

are realistic will be considered later on. 

The growth of the droplets due to condensation on the particles of 

the continuous supply of vapour from the warm pool is given by 

c *£ = E (87) 
m dt 

3Q Mm 
with: E = V

ATJ „ (88) 
4TTO AH V 

v 
c = mass concentration of aerosol introduced 
m 

2° = droplet radius 

Q = heat released per second due to condensation on aerosol 
v 

cloud 

M = molecular mass of condensing vapour 

m = average mass of original aerosol material in one droplet 

p = density of liquid 

AH = latent heat of vaporisation 
v 

V = vessel volume 

Assuming all droplets to be in thermodynamic equilibrium with the 

atmosphere, they must have the same size. Hence, the mass concentration 

equivalent for Eqs. (4) and (17) describes the stirred settling of the 

fog 

dc 
~ = - Arc (89) 
dt m 

where: A = |££ 
. 9hn 

p = density of liquid 

g = gravitational acceleration 

h = vessel height 

n = viscosity of the gas atmosphere 
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The set of simultaneous differential equations (87) and (89) can be 

solved if neither Q nor m is a function of time. This will in fact be 
v 

assumed: thus the possible change of m due to coagulation is dis

regarded and Q , about which no information is available, is assumed 

to be constant. Uith these approximations the solution is found 

to be 

2/5 2/5 
c / J = {c (o)}//;> - Gt (91) 
m m 

where: c (o) = aerosol mass concentration at t = o 

G* = f ( f E ) 2 / 5 A 3 / 5 (92) 

E and A are given by Eqs. (88) and (90), respectively. In conclusion, 
2 

when plots of the "F-th power of the mass concentration versus time 

yield straight lines then aerosol decay is likely to be governed by the 

combination of condensational growth and stirred settling. 

4^5^3^_Exgerimental_results_and_diseussions 

Fig. 35 gives the results of the decay of the mass concentration of 

gold aerosol in the GRACE vessel at various heating powers of the 

water pool. These are typical curves all showing the "catastrophic" 

decay near the end of the aerosol life. The life-time of the aerosols 

is inversely related to the heating power level. Comparison with decay 

curves of the number concentration has revealed that the moment at 

which the aerosol has completely disappeared is the same in both cases. 

Provided the model is correct on which Eq. (91) is based, plots of 
2/5 . . . . 

c versus time should yield straight lines. Fig. 36 shows this 
m 

to apply for the experiments performed in GRACE and PERVEX. Only the 

experiments at relatively low heating powers (30 W and 50 W) have an 

initial period which deviates. This initial period will be discussed 

later on in this section. The straight lines of the two-fifth power 

plots of the mass concentration versus aerosol life in the large ENAK 

vessel (cf. fig. 37) are an additional proof of the correctness of the 

model developed in the previous section. From the slopes G of a number 

of such decay lines the corresponding heat Q released per second due 

to condensation on the particles could be calculated. Eqs. (88), (90) 

and (92) have been used for this. An m value of 10 mg was calculated 
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Fig. 35. Mass concentration decay (c in mg.m , t in hours) of gold 
ra 

aerosols formed by means of the Exploding Wire technique in 

the GRACE vessel with a heated layer of water. 

The heating power was varied. 
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Fig. 36. Decay of aerosol mass concentration (c in mg.m ; t in 

minutes) in GRACE and PERVEX for various heating power levels 

of water layer. 
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Fig. 37. Mass concentration decay of gold aerosols under wet conditions 
-3 

in ENAK at various heating power levels, c in mg.m , 

t in hours. 

from the c and c data and used for the Q calculation of which the 
m . n. v Qv 

results are given in Table XVIII. The percentage — x 100% of the pool 

heating power involved in the condensation on the cloud droplets ranges 

from 0.1 to 0.6%. Table XVIII shows the tendency of this percentage to 

increase with increasing heating power Q for a particular vessel. 

In this section attention was given only to those decay curves or parts 

of decay curves which obey Eq. (92). The underlying model assumes 

negligible droplet formation at the point of time of aerosol introduc

tion in the supersaturated atmosphere. The droplets formed by the 

removal of the supersaturation in the case of lower levels of heating 

power should contribute significantly to the aerosol behaviour. This 

explains the deviation from linearity in fig. 36 in the early stage 



128 

of the aerosol life. Only scattered observations are available for 

analysis of this part of the aerosol processes in a vessel with a 

heated pool of water: firstly, a number of experiments in PERVEX at 

low Q values and, secondly, an experimental series in GRACE where the 

water content of the atmosphere is varied at moderate Q by addition of 

NaCl to the pool of water. 

Table XIX represents the measuring data in PERVEX at low heating powers. 

The half-lives in the second column originate from the part of the 

experimental decay curve after coagulation has ceased to dominate the 

aerosol behaviour. A correction ß must be applied for the thermo-

phoretic removal. It is assumed that thermophoresis has an activity 

only half that of the dry system at the same Q since the temperature 

difference between gas atmosphere and the vessel surroundings is also 

halved in the wet case. From the corrected 3 values (ß - B , ) droplet 
ra th 

sizes are calculated using Eq. (71). The resulting droplet sizes look 

reasonable for Q > 10 W, in view of the droplet sizes of a few ym 

observed in the Millikan chamber (pg.119). The diameter obtained at 

Q = 0 nicely agrees with that obtained with the Stöber centrifuge, 

viz. 0.70 um. However, the "droplet" size of 0.64 pm at Q = 5 W must be 

incorrect because the d value of 0.64 urn at Q = 0 should be the smallest. 

This anomaly could be explained by the hampering effect of the warm 

pool of water on the stirred settling of the particles. As shown 

earlier (pg. 116), this effect is most discernible in this Q range. 

It is possible to calculate the supersaturation of the atmosphere from 

these droplet sizes given in Table XIX using the water vapour pressure 

at the gas temperature and the droplet number concentration as well. 

Estimates of these two parameters are available. From a measured gas 

temperature of 22 C the water vapour content c under equilibrium 
. . . - 3 . 2 

conditions is known to be 22 g.m . In this temperature range c _ is 

nearly proportional to temperature. Consequently, an error of a few 

degrees results in a negligible error of about 10% in c . From the 
HoU 

aerosol decay curves one obtains a number concentration of about 
4 - 3 . . 

5 x 10 cm at the moment stirred settling governs aerosol decay. 

From this the percentage of supersaturation %S can be calculated 

according to 
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.3 
c irp d 
n H.O 

%S = x 100 = 0.12 d (93) 
6 CH20 

with the droplet diameter d in um and the density of water p equal 
-3 H 2 U 

to 1 g.cm . The obtained %S values are given in Table XIX. They are 

of the same magnitude as those observed directly (a few %) giving 

support to the correctness of this approach. When care is taken to 

measure both temperature and c , and, moreover, the thermophoretic 

contribution is known, this approach allows assessment of the degree 

of supersaturation of atmospheres above warm pools. The %S values in 

the system studied are comparable to those present in clouds |122] and, 

hence, droplet formation in clouds can be studied in vessels like 

PERVEX. 

Beside the variation of the pool heating power the supersaturation can 

be controlled also by addition of salt to the warm pool. The effect 

of this on aerosol behaviour has been studied in GRACE with the heating 

power held constant at 100 W. The vessel contained 15 liters of water 

of which the salt content has been varied by addition of amounts of 

NaCl ranging from 0.1 kg up to 3 kg. In this case E.W. generated copper 

oxide aerosols have been used. Table XX summarizes the experimental 

conditions and results. In addition, the course of the calculation of 

droplet size d, percentage of supersaturation %S, etc., is given. 

Qualitatively, increase of the salt concentration results in an increased 

aerosol stability (t^ increases and ß shows the inverse effect). 
2 

Assuming stirred settling of the formed droplets to be the major process, 

the Stokes settling velocities v were calculated. However, the v 
-3 -1 S -3 .S 

value of 9.2 x 10 cm.s found for 200 kg NaCl.m (corresponding to 

a droplet diameter of 1.7 um) is unlikely large in view of the visual 

absence of fog formation in these cases of highest salt concentrations. 

This again indicates the additional effect of thermophoresis which 

analogously to the above given analysis of PERVEX results is taken 

to have a decay constant ß , about half that of the dry system: 
-5 -1 . 

3 , = 7.7 x 10 s . The droplet sizes obtained after correction for 
th 

thermophoresis are reasonable in view of the results in PERVEX (Table XIX 

and the earlier mentioned droplet sizes deduced from Millikan chamber 

observations. As a result also the %S values are comparable. A droplet 
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5 - 3 . . . 

number concentration of 10 cm has been used which is indicated by 

the condensation nuclei counter. Obviously, the supersaturation can be 

controlled very accurately by the salt addition in the wide range 

from 0.1% to nearly 2%. Assuming an error of + 10% in the basic t,-
2 

data, the calculated values of d and %S have an error of _+ 20% for 

low NaCl concentrations increasing to nearly +_ 50% for the highest 

NaCl concentrations. 

From the measured degree of supersaturation the effect of adding 

NaCl on the water vapour concentration may be found and compared with 

the calculated value of Ac 
H90 

29 g HO.m 3 per g NaCl.cm at 39 "C 

which is the GRACE pool temperature. Fig. 38 shows that from 7 up to 
-3 

20 kg NaCl.m experimental and theoretical Ac values are propor-
HnU 

tional, the theoretical values being about 75% larger. 

— i 1—;—r 
g N a C I / c m 3 - — 

T - I 1 - , f 
~ \ 

,ctheor 

Fig. 38. Lowering of the water vapour concentration Ac „ (in g HO.m ) 
HoO 2 

in the GRACE atmosphere as a function of the calculated water 
i • * theor ,., , s t- ,̂ 

vapour concentration lowering Ac (lower scale; from the 2 -3 
NaCl concentration (upper scale, g NaCl.cm ) in the pool. 
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This discrepancy can be easily accounted for by an increase of a few 

tenths C of the pool temperature due to a change in the balance between 

latent and sensible heat transfers after the salt addition. Indeed, 

pool temperature increased about 0.5 C after addition of 33 kg NaCl.m 

The discrepancy between theory and experiment for higher salt con-
-3 

centration (a 20 kg NaCl.m ) is not surprising since the experimental 

technique used cannot yield information about the water content of 

atmospheres with supersaturation levels near zero and below. 

In conclusion, it can be established that spaces containing a heated 

pool of liquid are a potential tool for investigation of condensation 

on aerosol particles. When low levels of heating power are used or 

when the evaporation of the pool is suppressed by salt addition to it, 

the droplet sizes and the degree of supersaturation are known. For the 

latter property knowledge of gas temperature and droplet number concen

tration is required. The aerosol decay at higher levels of heating 

power is accelerated, the two-fifth power of the mass concentration 

of the original aerosol decreasing linearly with time. Ultimately, a 

"catastrophic" disappearance is the result,leading to a well-defined 

point of time after which the atmosphere is essentially free of aerosol. 

In this stage the mechanisms governing aerosol behaviour are condensa

tional droplet growth and stirred settling. 

4i5^4i_Summary_ 

The presence of a pool of heated liquid inside an aerosol containing 

vessel leads to condensation on the aerosol particles, followed by gravi

tational settling of the droplets formed. Hydrophobic aerosols (like 

various oils) are not subject to condensation in case of a heated water 

pool with low levels of supersaturation. Assuming 0.1% to 0.6% of the 

heating power from the pool to be involved in the condensation on the 

particles, good agreement is obtained between the experiments and a 

model of the aerosol mass concentration decay. The model allows also 

calculation of droplet sizes and reasonable estimates of the degree 

of supersaturation (a few %) of the atmosphere in absence of aerosols. 

This is also applied to cases of vapour pressure lowering by addition 

of salt to the pool. 
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4.6. Photochemical reaction chambers (smog chambers) 

^~l6^_K_General 

As mentioned in the introduction (section 1.2) of this thesis, one of 

the motives for the study of aerosol behaviour inside an enclosure is 

the influence which the enclosure walls can exert on processes taking 

place in an air parcel brought into an enclosure for the purpose of 

investigation. Such an air parcel can be an atmospheric sample or an 

artificial one. The majority of this kind of research involves the 

photochemistry of air contaminated with various gaseous pollutants 

(photochemical air pollution). In particular, the systems in air of 

unsaturated hydrocarbons/NO and SO / water vapour are subjects of 

intensive research in photochemical reaction chambers (smog chambers). 

Usually, the air is filtered prior to filling the smog chamber but 

recently the role of the particulate matter in the atmospheric photo

chemistry has also attracted attention. In some cases the aerosol formed 

or the condensation of less volatile reaction products on existing 

particles are studied which, obviously, requires insight in the inter

fering interaction between aerosol and the smog chamber walls. These 

effects have received only limited attention as may be clear from 

section 1.2 (though the examples given there are not exhaustive). 

Unfortunately, the possible effects of the illumination of smog chamber 

atmospheres on aerosol behaviour are not mentioned in literature. 

4^6^2^_Thermophoretic_effects 

In the author's laboratory photochemical studies are performed in smog 

chambers. These investigations are focussed on the role which particles 

can play in photochemical reactions in the systems mentioned above. For 

this purpose a twin smog chamber called SUNKIST is used which 
3 

consists of two identical 1 m Pyrex-glass boxes (b x 1 x h = 
3 

0.8 x 1.25 x 1 m ). Between the two boxes a sunlamp battery is located 

which irradiates the box contents simulating a sun-lit atmosphere. By 

comparing the chemical reactions occurring in the box atmospheres, one 

of them being aerosol-free, information on the role of aerosol will be 

obtained. Apart from the window walls (0.8 x 1 m ) , the walls of the 

boxes are covered externally with aluminium foil in order to have 

optimum use and distribution of the light shining into the boxes. 
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In order to assess the effect of thermophoresis the heat transfer by 

the box atmosphere must be determined. Using highly polished thermo

couples the gas temperatures of the box atmospheres of SUNKIST have 

been measured.These temperatures were found to be about 2 C above 

laboratory temperature. From this temperature difference AT (in C) 
-2 -2 

a heat flux Q/S (in W.m ) through the box walls equal to 9 W.m can 

be deduced by using 

| = 4.5 AT (94) 

This rule of thumb (which can be derived from (25)) was obtained by the 
-2 

author for the Q/S range of 10 - 200 W.m from a great number of 
observations on a variety of internally heated vessels of e.g. glass, 
plexiglass and steel, all in a laboratory environment. From the heat 

-2 
flux of 9 W.m and assuming a heat sink surface area of the box 

2 
equal to 5.3 m , one obtains an effective power Q of heat transfer 

from the box atmosphere to the surroundings amounting to 41 W. This 

is about 5% of the total electric power consumed by the sun lamp 

battery (0.8 kW). Using Eq. (26) which relates the thermophoretic 

decay constant 8 , to the heating power density rf, and a B-value c 
tn V 

0.2 (which is the experimental value; see pg.113) one obtains 

0th - 0.4 S (96) 

for larger particles (r > I). Hence, ß amounts to about 1.6 x 10 s 

or the aerosol half-life equals nearly 12 hours. For the small particles 

("transient nuclei" of median size about 0.02 um) formed in smog 

chambers containing filtered air half-lives will be smaller, viz. 

about 7 hours (n , » 3 for r < I; see pg. 38). 

4^6^3^_Photo£horetic_effects 

Usually, in research on photochemistry of the troposphere interest is 

focussed on the reactions induced by near-UV light since this is the 

most energetic part of sun light. Consequently, there is often only 

limited information about the visible spectral light flux simultaneously 

radiated into smog shambers. In some cases black lamps are used which 
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have a relatively small light flux in the visual range. The light in

tensity spectrum inside SUNKIST has not been measured. However, certainly, 

its black lamps provide merely a good simulation of the near UV sunlight 

intensity but the visible light intensity is much less than that of 

sunlight. In order to have a basis for assessment of possible photo-

phoretic effects in smog chambers, we assume here a light flux with a 

spectral distribution and integral flux equal to the sun light. Conse

quently, our considerations apply mainly to those experimental set-ups 

which either use sun lamps or outdoor facilities. This means that we 
-2 

assume that about 0.1 W. cm radiates into the smog chamber, leading 

to a photophoretic velocity (pg. 46) (supposing absorbing particles 

with Kn < 1) of about 0.01 cm.s in the direction of the illuminated 

walls. In the case of boxes like SUNKIST (section 4.6.2) a photophoretic 

decay constant ß results amounting to 8 x 10 s or an aerosol 

half-life of 24 hours. When small particles (nuclei of Kn > 1) as 

formed in irradiated filtered air systems are subjected to this photo-

phoresis one would obtain a half-life of about 15 hours (for Kn > 1 

then -value inEq. (39) should amount to about 3). These half-lives 

are not too short,but it should be kept in mind that actual deposition 

rates due to photophoresis will be even smaller since 

- particles will not be completely absorbing, 

- often the smog chamber radiation sources have total light fluxes 
-2 

lower than 0.1 W.cm because of a lower visual light content than 

in actual sun light, 

- due to application of light reflecting walls the light incidence is 

usually from various directions, resulting in random photophoretic 

forces which partially cancel. 

Consequently, calculated photophoretic deposition rates will be 

maximum values. 

4^6^4i_Diffusional_and_gravitational_effects 

Smog chamber experiments are usually performed without pre-existing 

aerosol. Then sizes of the particles formed are 0. 1 urn or less. Consequently, 

gravitational deposition will be of minor importance compared to e.g. 

diffusive deposition. The constant ß, for the latter removal process 

is given by Eq. (16) where 5, the effective boundary layer thickness 

for diffusive wall deposition, is related to particle size or 
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diffusion coefficient by & = 4.6 D ' (as derived in section 2.2.2 

(Eq. (15)). Consequently, Eq. (14) reduces to 

ßd = 0.22 D0'735 | (97) 

A smog chamber like SUNKIST (1 m" volume, see pg.132) will have diffu

sive wall loss of nuclei of 0.02 um diameter with a decay constant ß, 
- 5 - 1 

amounting to about 2 x 10 s or 10 hours half-life. This is a rather 

low deposition rate. Consequently, diffusive deposition will not play 

an important role in the interpretation of smog chamber data. 

4i6i5i_Coagulation_combined_with_dep_osition 

During irradiation of the contents of a smog chamber three processes 

influence aerosol behaviour: the photochemical production of low-

volatility material, coagulation and wall deposition. Some investi

gators have studied the combined action of the two first-mentioned 

processes, e.g. Friedlander's group |40|. The competition between the 

homogeneous nucleation of the photochemical reaction products and the 

condensation of these products on pre-existing particles or on freshly 

formed nuclei is a rather complicated matter and also goes beyond the 

scope of this study. It should be mentioned, however, that Friedlander 

has shown |1231 that the largest part of the mass of the reaction 

product condenses on a pre-existing aerosol without excluding signif

icant formation of new nuclei. 

Since coagulation and deposition of the pre-existing aerosol have to 

be considered also, this combined effect is treated here. This mixed 

effect has been studied already in early periods of aerosol research 

(see pg. 19). Nolan |13 j explained the observed decay of nuclei in an 

enclosure by assuming that coagulation and (diffusive) deposition occur 

at all concentrations, the former process dominating at higher concen

trations and the latter dominating in the low concentration regime. 

The number concentration decay is then a combination of Eqs. (1) and 

(4) 

(98) 
dc 

d t = Kc 2 

n 
+ ßc 

n 
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Provided K and ß are constants (which is common experience, sections 

1.2 and 2.1), integration leads to 

g c (o) exp(-ßt) 

n ß + Kc (o) {1 - exp(-ßt)} K™' 

^C^ó^Exge^iments^and^d^scussion 

As mentioned earlier, the simultaneous formation and dynamics of new 

particulate material in photochemical systems complicates considerably 

the analysis of aerosol behaviour under these conditions. Consequently, 

experiments discussed here are performed without such a continuous 

aerosol source. Instead, an aerosol has been chosen with a relatively 

small particle size. Aerosols have been produced by nebulizing a salt 

solution (pg. 63) yielding particles with a log-normal size distribution 

of d » 0.06 um and a -1.7 for 1 wt.% solutions, according to analysis 

of electron micrographs. 

Fig. 39 examplifies the decay of two NaCl aerosols decaying in the 

100-vessel due to combined coagulation and stirred deposition. 

Both series of decay data have been used for fitting Eq. (99). This 
-9 3 -1 

fitting leads to coagulation constants K of 1,5 x to 2 x 10 cm .s 

and decay constants ß of 3.2 x to 3.5 x 10 s . Table XXI allows 

comparison between measured and calculated c -values. The standard 
n 

deviation between measurement and calculation amounts to - 2.8% +_ 13% 

and - 7.7% +_ 6% for the two series, which should be regarded to be a 

good fit. From the decay constants obtained in this way one may deduce 

a particle diameter of 0.061 - 0.065 um assuming Eq. (16) for stirred 

diffusive deposition to be valid as well as the relation (15) between 

6 and D obtained in section 4.3.1. Since this particle diameter of 

about 0.06 ym is in good agreement with the above mentioned value for 

the particle size, this proves the correctness of the approach. In 
particular, the fit with the relation between S and D (Eq. (15)) is 

-9 
is obvious. The obtained coagulation constant K of 1.5 - 2.0 x 10 

3 — 1 
cm .s is in agreement with Davies' theory |ll6|. Fig. 40 shows that 

our K-value (Kn = 2) is close to Davies' theoretical relation. Strikingly, 

also the K-values obtained by Nolan and Kennan are in excellent agreement 

with theory. Since their results have been obtained also by analysis 

of decay curves of aerosols in enclosures, this indicates that this 
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100 200 

Fig. 39. Number concentration c (in cm ) as a function of time t 
n 

(in hours) of NaCl aerosols (from l% NaCl solution nebulizing) 

in the 100-vessel. 
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Fig. 40. Coagulation coefficient K of aerosols below Kn = 15 (taken 

from |ll6|). The solid line represents the theoretical 

relation according to Davies |ll6[. 

Experimental results: A Rooker and Davies |163| 

x Mercer and Tillery |l62| 

+ Devir j130| 

• Nolan and Kennan |l3l| 

o Wagner and Kerker |13 2 j 

© Chatterjee [133| 

• Quon |134| 

V Gillespie and Langstroth |24| 

O Fuchs and Sutugin |135| 

* This work 

technique is a powerful tool for coagulation reserach. 

In an attempt to study the effect of irradiation on aerosol behaviour 

in SUNKIST (see section 4.6.2), this box has been filled with Na.SO,-

aerosol produced by nebulisation. Prior to entering the box the 
Q C 

aerosol has been neutralized in a Kr TSI-neutralizer. The aerosol 

decay measurements have been carried out for the illuminated box as 

well as with the UV-lamps switched off. Two measurement techniques have 
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been applied simultaneously. The number concentration c has been 

measured by means of an Environment One Rich 100 condensation nuclei 

counter. For total airborne sulphur a Meloy SA 285 Total Sulphur Monitor 

(TSM) has been used. Zero readings were obtained by both instruments 

at the beginning of the experiments. The lamps have been on for two 

hours prior to aerosol injection. Since the TSM has been calibrated 

for SO», there could be uncertainty as to the absolute value of the 

measuring signal. However, according to literature |l29| the chemical 

state of sulphur influences the TSM reading only in case of combined 

chemical reactivity and volatility at temperatures < 150 C like e.g. 

for H SO,. Evidently, decay constants can be correctly obtained by 

means of the TSM. 

The results of the experiments are given in fig. 41. The total sulphur 

concentration has a half-life of 7.5 hours irrespective of illumination. 
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Fig. 41. Courses of number concentration c (in cm ) and "total sulphur" 

concentration(tot S, in ppb S) of Na.SO, aerosol in SUNKIST: 

comparison between lamps on vs. off, t in hours. 
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A number of important conclusions can be drawn from these results. 

Firstly, there is no significant influence of the irradiation on 

aerosol behaviour inside SUNKIST. This means that the two processes 

treated in sections 4.6.2 and 4.6.3 (thermophoresis and photophoresis, 

resp.) do not play an important role in this case. Very probably, the 

reasons given in 4.6.3 for having low photophoretic deposition apply 

very well to SUNKIST. One of the major effects can be due to multiple 

reflections at the externally aluminized glass walls. Thermophoresis 

probably is less than calculated due to the difficulty of reliable 

temperature measurement of an illuminated box atmosphere like SUNKIST. 

Due to radiative heat transfer the obs 

surroundings could have been too high. 

Secondly, from the half-life of aerosol decay of 7.5 hours it can be 

concluded that diffusive deposition is not dominant. The particles 

of 0.06 pm diameter should disappear by stirred diffusive deposition 

with a half-life of 48 hours. Consequently, diffusive deposition is 

negligible. 

Thirdly, as shown in Table XXII the average particle diameter increases 

with time. Although this is due to a decreasing c decay rate, coagulation 

is not responsible for that as the mass concentration decreases too. 
-9 3 - 1 

Moreover, the related effective coagulation "constant" of 5 x 10 cm .s 
4 -3 

at c = 1 0 cm should be considered too large. Consequently, the 

deposition mechanism responsible for the aerosol decay removes the 

finer particles with a higher rate. 

Now, no stirred deposition process is left from those treated in 

chapter 2 except stirred electrophoretic deposition (2.2) which 

process is also dealt with in section 4.3.7. Consequently, it is 

worthwhile to analyze the half-life of 7.5 hours (ß = 2.6 x 10 s ) 
- 4 2 - 1 - 1 . . 

in a similar way as in 4.3.7. Using u = 10 cm .V .s , this yields 
e —8 

a total effective charge on the SUNKIST-walls of 5 x 10 C or a 
-9 -2 

surface charge density fo 8 x 10 C m . This is a realistic value 

compared to those given in 4.3.7. In particular, the fact that the 

value for SUNKIST is comparable to that calculated for Zalabsky's 
—8 —2 

glass vessel (Table XIII), viz. 10 C m , is very satisfying. 
Qe -9 -2 

However, also the slightly different — values of 7 x 10 C m found 
8 -2 

for our polyethylene vessel and 3 x 10 C m for McMurry's large 

teflon bag all show the coherence of aerosol behaviour in vessels with 
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non-conducting walls. The walls of all these vessels have not been 

cleaned specially prior to the experiments and as a result will have 

had less surface charge than those of Stein and Lieberman (Table XIII). 

From the increase (as shown in Table XXII) of the particle diameter 

during aerosol removal, it is obvious that the smallest particles 

deposit at a faster rate and, consequently, should have a higher 

electrical mobility y . This is in accordance with Eq. (43) provided 

particle size is below 0.1 ym which is the case. 

Finally, some conclusions can be drawn concerning the correctness of 

the "total sulphur" measurement by means of the TSM. The calculated 

diameters represented in Table XXII should be compared with the mass 

averaged diameter which can be calculated from the fact that 

d = 0.06 ym and a = 1.7. These figures are characteristic of a 
g g 6 

count-size distribution which may be converted to a mass median dia

meter (mmd) |97| by 

ln(mmd) = ln(d ) + 3 In2 a (100) 
g g 

Hence, mmd amounts to 0.14 ym. From this a mass-average particle 

diameter d can be calculated |97| with the aid of 

lud = ln(mmd) + 1.5 In2 a (101) 
g 

This yields d = 0.24 ym. Comparison with the measured d-value (0.28 ym) 

at t = 0 of Table XXII shows a reasonable agreement between these dia

meters. This means that the total sulphur monitor is a suitable 

apparatus for sulphate aerosol analysis (confirming |129|) and that 

the analysis of the decay curves of sulphate aerosols by means of the 

total sulfur monitor (flame photometric detector) is very useful. 

^^^^Summary^ 

The effects of thermophoresis and photophoresis from the heat and light 

fluxes present in a photochemical reaction chamber have been calculated. 

Thermophoresis could cause aerosol deposition with a half-life of 

5 - 1 0 hours. Photophoresis can give rise to a half-life of at least 

2 hours. Observations on aerosol behaviour in a smog chamber revealed 
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the relatively great importance of electrophoretic deposition. In this 

chamber thermophoretic and photophoretic deposition are smaller than 

calculated for various reasons. 

Analyses of aerosol decay data in a steel reaction chamber show the 

usfulness of the models for stirred deposition of small particles and 

nuclei. Also the utility of such serosol measurements for assessing 

coagulation constants and diffusion deposition velocities has been 

demonstrated. 
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5. GENERAL SUMMARY 

This thesis treats aerosol behaviour under various conditions in en

closed spaces. Knowledge of this behaviour is of importance for the use 

of aerosol-filled enclosures as a supply of aerosol, as a means for 

aerosol characterization and for so-called smog chambers for air pollution 

research (mainly for the investigation of photochemical processes by 

which usually particles are formed). 

Chapter 1 gives a brief literature survey, indicating the limited 

attention given hitherto to aerosol behaviour in enclosed spaces. 

After decades of almost exclusive interest from meteorologists, 

since the beginning of the sixties, enclosed aerosols have become 

an important research subject in nuclear safety. Nuclear aerosol research, 

however, pertains mainly to high aerosol mass concentrations. 

In chapter 2 a model is given, describing aerosol removal from en

closed spaces. Usually, aerosol deposition on the walls occurs from 

a cloud with homogeneous space distribution due to thermal convection. 

The rate-limiting step of deposition is the transport through the 

boundary layer at the walls. Relations are derived for a number of 

removal mechanisms: sedimentation, diffusion, thermophoresis, diffusio-

phoresis, electrophoresis and photophoresis. From literature data and 

Fuchs' theory a relation is derived for the dependence of the boundary 

layer thickness 6 for diffusive deposition on the diffusion coefficient 

D of aerosol particles in usual containments. Boundary conditions for 

non-stirred deposition of aerosols by sedimentation and diffusion are 

given. 

Chapter 3 summarizes the most important means used for experiments. 

In chapter 4 the experimental results and conclusions are presented. 

It consists of four sections dealing with unheated dry enclosures, 

heated dry enclosures, enclosures with a heated pool of liquid, and 

smog chambers, respectively. 

Observations on the behaviour of monodisperse and polydisperse aerosols 

in unheated dry enclosures support the model derived for sedimentation 

and diffusion. Additionally, the relation between S and D derived in 

chapter 2 is validated. Particles larger than a few tenths of a micron 

are removed by sedimentation; particles smaller than about 0.1 um are 
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subject to diffusive deposition, though often electrophoresis plays an 

important role (particularly, in case of particles of about 0.1 urn). It 

is shown that aerosol measurements in containments can be used for 

determination of dynamic shape factors and aerodynamic diameters. 

Aerosols in heated dry containments are removed by thermophoresis. 

Observations on a large variety of aerosols and enclosures are in 

fair agreement with the model on thermophoretic removal derived in 

chapter 2. Interpretation of the experimental results yields the thermo

phoretic properties of aerosols. The results support the theories of 

Brock and Stetter, and are in disagreement with those of Derjaguin and 

Epstein. In accordance with theoretical predictions, thermophoretic 

decay constants are obtained independent of particle size (> 0.5 ym), 

of particle material and of temperature. Gentle heating of the floor of 

a containment is shown to have a stabilizing effect on the enclosed 

aerosol. 

Introduction of aerosol in a containment with a heated pool of liquid 

on the floor leads to particle growth by vapour condensation followed 

by an accelerating removal by sedimentation. Experimental observations 

support a model describing aerosol behaviour in such systems. The 

knowledge of this aerosol behaviour allows study of condensation on 

aerosol particles and particle growth under conditions of variable 

degrees of supersaturation. The degree of supersaturation can be varied 

by means of the heating power dissipated in the pool of liquid as 

well as by means of solving substances in the liquid. 

Investigations of aerosol behaviour in photochemical smog chambers 

show insignificant deposition due to thermophoresis or photophoresis 

under these conditions. Observed aerosol stabilities could be explained 

by electrophoretic deposition, yielding a coherent picture with electro

phoresis in other investigations. Coagulation constants of aerosol could 

be calculated from measurements on number concentrations of aerosols 

in enclosed spaces. The results obtained agree fairly well with Davies' 

theory on coagulation. Decay curves of number concentration of aerosols 

in metal vessels can be used for assessment of diffusion coefficients. 
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Table I. Thickness S of laminair boundary layer across which diffusive 

deposition of particles and gases on vessel walls occurs. 

"particles" 

in air 

H20 

so2 

CaC03 

"room 

particles" 

NaCl 

"room 

particles" 

"particle" 

diameter 

(pm) 

(5 x lCfV 

(7 x 10~4)a 

0.01 

0.02 

0.06 

0.07a 

6 

(cm) 

3.5 

2.5 

0.4 

0.6 

0.26 

0.23 

diffusion 

coefficient 

(cm .s ) 

0.24 

0.10 

5.2 x 10~4 

1.3 x !0"4 

1.7 x 10"5 

1.2 x I0~5 

literature 

reference 

|61| 

|60| 

|63| 

|62| 

this work 

|58| 

Calculated from D using Eq. (13). 
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Table III. Survey of aerosol vessels used. 

Name 

PERVEX 

100 

200 

300 

ENAK 

GRACE 

SAUNA 

SUNKIST 

Shape 

box 

vertical 

cylinder 

box 

box 

vertical 

cylinder 

vertical 

cylinder 

vertical 

cylinder 

box 

Volume 

(m3) 

0.15 

1.2 

1.0 

0.075 

20 

0.3 

0.15 

1.0 

Height 

(m) 

0.6 

1.7 

1.0 

0.5 

4.2 

1.2 

0.6 

1.0 

Wall 

material 

Lucite 

brass floor 

steel 

steel 

stainless 

steel 

aluminium 

glass 

Incoloy steel 

glass 
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Table IV. Diameters of quasi-monodisperse polystyrene aerosols and their 

decay constants f$ in 200 vessel (2 m height). 

diameter of sphere (d in ym) 

D0Wra' 

1.305 

0.796 

tl 

II 

tl 

0.557 

II 

" 

tl 

0.234 

II 

0. 126 

II 

II 

0.091 

II 

ECN 

1.26 

0.78 

0.52 

0.22 

0. 107 

0.071 

1.09 

0.81 

0.50 

0.53 

0.207 

0.100 

literature 

124|, 1.21 [125| 

126|, 0.77 |124| 

1251, 0.51 |124| 

127 | 

I25|, 0.22 |128| 

! 125 | 

n 

1 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

1 

2 

3 

1 

2 

f 
n 

(b) 

1.19 

1.28 

1.38 

1. 19 

1.28 

1.38 

1.19 

1.19 

1.28 

1.19 

meas

ured 

(îo'V) 

27 

11 

15 

18 

21 

6 

7 

9 

1 1 

2.9 

2.8 

4 

3.6 

3.3 

5 

3.5 

g 

(10"V) 

28 

12 

16 

18 

21 

6 

8 

9 

10 

1.4 

1.8 

0.5 

0.6 

0.7 

0.3 

0.4 

cal-

culated 

( I O ' V 1 ) 

28 

12 

16 

18 

21 

6 

8 

9 

10 

2.3 

2.6 

2.7 

2.4 

2.3 

4 

3.0 

(a) As quoted by manufacturer. 

(b) According to Stöber |94|. 
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Table V. Relationship between specific energies of formation Espec 

and microstructure of gold aerosols. 

Espec 

(kJ/g) 

270 

130 

70 

20 

6 

(ym) 

0.014 

0.018 

0.026 

0.030 

0.032 

alg 

1.5 

1.5 

1.5 

1.5 

1.5 

Specific 

(J/g) 

47 

36 

26 

23 

20 

surface energy 

ratio to Espec 

0.17 x 10~3 

0.28 x 10~3 

0.37 x 10~3 

1.2 x 10~3 

3.3 x 10~3 

-12 
(10 g) 

5.7 x 10~5 

1.2 x 10~4 

3.7 x 10~4 

5.6 x 10~4 

6.8 x 10-4 
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Table VII. Aerosol decay in 200-vessel as a function of vessel height. 

height 

(m) 

2 

1 

0.5 

observed 

half-life 

(h) 

10.5 

8 

5 

decay 

constant 

(h1) 

6.6 x 10~2 

8.7 x 10~2 

13.9 x 10-2 

effective 

aerodynamic 

diameter 

(P.m) 

1.0 

0.81 

0.72 

a calculated from the decay constants using Eqs. (17) and (18). 
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Table VIII. Properties of iron oxide cluster aggregates (basic data 

from Kops |89 | ). 

d a 

(um) 

0 .62 

0 .68 

0.76 

0.80 

0 .93 

1.01 

1.10 

d 
sp 

(um) 

10.4 

12.3 

12.3 

16.6 

17.0 

19. 1 

18.1 

d 
e 

(um) 

0 .97 

1.08 

1. 19 

1.28 

1.47 

1.58 

1.74 

K = 

d 
sp 

d 
e 

F(d )F(d ) 
a e 

16.0 

16.5 

14.3 

17.7 

15.1 

15.6 

13.2 
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Table IX. Measurements on U.0o and Cu oxide aerosols in the 1.2 m 
3 o 

100-vessel. 

d 
a 

(Vim) 

0.39 

0.44 

0.49 

0.57 

0.68 

0.80 

0.92 

1.10 

0.32 

0.35 

0.39 

0.44 

0.49 

0.57 

m 

(Pg) 

0.077 

0.11 

0.21 

0.50 

1.26 

2.60 

3.62 

5.33 

0.10 

0. 16 

0.25 

0.39 

0.66 

1.04 

e 

(pm) 

0.26 

0.29 

0.36 

0.49 

0.66 

0.84 

0.94 

1.07 

0.32 

0.37 

0.43 

0.50 

0.59 

0.70 

b n 

4.9 x 102 

7.0 x 102 

1.3 x !03 

3.2 x 103 

8.1 x 103 

1.7 x 104 

2.3 x 104 

3.4 x 104 

2.0 x 103 

2.9 x 103 

4.6 x 103 

7.4 x 103 

1.2 x 104 

2.0 x 104 

K 

4.30 

4.23 

5.00 

6.28 

7.91 

9. 13 

8.65 

6.83 

6.03 

6.51 

7.02 

7.50 

8.39 

8.48 

< 
F(de) 

2.59 

2.68 

3.60 

4.67 

6.32' 

7.62 

7.35 

5.91 

3.94 

4.46 

5.05 

5.64 

6.55 

6.84 

miscellaneous 

Uo0 aerosols. After 
3 o 

24 hours: d -distribution 
a 

is log-normal with (d ) 

0.78 um and a = 1 .26. 

From decay curves: d =0.78 
a 

pm and m = 2.1 pg. As a 

4 
result: n = 1.4 x 10 , 

< = 8.42 and _,,.* , = 6.95. 

Cu oxide aerosol. After 24 

hours: d -distribution is 
a 

log-normal with (d ) = 0 . 4 1 pm 
a g 

and a = 1 . 2 2 . From decay curve: 
g } 

d = 0.45 pm and m = 0.71 pg. As 

result: n = 1.3 x 10 , K = 10.2 

and * = 8.03. 
e 

a 

-3 -3 
a p = 8.3 g cm and 6 g cm for U,0 

fed, = 0.026 pm and 0.020 pm, a, = 1. 
lg lg 

oxide, resp. 

and Cu oxide, resp. 

,49 and 1.48 for U O and Cu 
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Table X. Increase f of the aerodynamic diameter of U_0„ aggregates 
J o 

due to change to spheres. 

d 
a 

(ym) 

0 .39 

0 .44 

0 .49 

0 .57 

0 .68 

0.80 

0.92 

1. 10 

< 

4 .3 

4 .2 

5.0 

6 .3 

7.9 

9.1 

8.7 

6 .8 

d ' 
a 

(ym) 

0 .89 

0 .98 

1.19 

1.54 

2.05 

2.57 

2.87 

3.00 

f 

2 .3 

2.2 

2 .4 

2 .7 

3.0 

3.2 

3.1 

2.7 
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Table XI. Calculated (using Eq. (84)) and measured half-lives of two 

gold aerosols A and B of different initial mass concentration 
-3 -9 3 -1 

(5 and 80 mg.m resp.) in the 200-vessel. K = 1.5 x 10 cm .s 

time after 

formation 

(h) 

0.25 

2.5 

5 

A 

21 

1 1 

10 

1 T - j a 

calculated 

B 

7.8 

6.3 

6.3 

half-life 

(h) 

measured 

A 

16 

16 

16 

B 

6 

6 

6 

a Using Eq. (84). 

b From fig. 25. 
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Table XV. B values as calculated from Eqs. (27) - (28) [B^, B , B and 

B ] and from measuring data (29) (B ). 

aerosol/gas 

temperature 

Au/air 

R.T. 

Au/N2 

100°C 

Au/He 

R.T. 

Au/He 

100°C 

NaCl/He 

Bcorr 

m 

0.20a 

0.21 

0.41 

0.41 

0.48 

Bs 

0.2fc 

0.2* 

0.2 - 0.3G 

0.2 - 0.3C 

0.2 - 0.3C 

BE 

1.2 x 10~4 

1.5 x 10~4 

7.1 x 10 4 

8.3 x 10~4 

0.72 

BB 

0.18 

0.18 

0.1 8d 

d 
0.18 

0.58d 

BD 

0.36 

0.36 

0.36d 

0.36d 

\.2d 

average B value taken from Table XIV. 
h m 

n , assumed to be 5 for air in view of results from Table XIV. 
th 

G 
n . lies between 5 and 3 dependent on the nature of the interaction 

th v 

between He and particles. 

Eqs. (28c) and (28d) have been used with values of c and c only 

to be used for air in default of accomodation coefficient for He. 
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Table XVI. Effect of temperature (T) on thermophoretic deposition of 

copper oxide aerosol. 

* 
Q 

(W) 

65 

212 

220 

T 

(°C) 

90 

500 

600 

ß 

do-V1) 

1.9 

5 .8 

4 .6 

B 
m 

0 .23 

0 .20 

0.16 

Calculated from temperature differences as measured between 

gas and walls (Eq. (94)). 
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Table XVII. Results on hampered aerosol deposition in PERVEX-vessel 

with floor heating at low power levels. 

Q 

(W) 

0 

5 

6 .6 

7 

10 

15 

34 

60 

t , 
2 

(h) 

5.5 

10 

11 

12 

9 .5 

7 

2.6 

1.4 

ßm 

( Ï O ' V ) 

3.5 

1.9 

1.8 

1 .6 

2 .0 

2 .8 

7.0 

12.8 

* 
ß t h 

(ltfV1) 

0 

1.1 

1.4 

1.4 

2 .1 

3.1 

7.0 

12.4 

** 
ef f 

( l o ' V ) 

(+ 3 .5) 

+ 0 .8 

+ 0 .4 

+ 0 .2 

- 0 .1 

- 0 .3 

0 .0 

+ 0 .4 

th 
= 0.21 x Q. 

3eff " Pm pth-
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Table XVIII. Q values calculated from the aerosol experiments performed 

in condensing water vapour in various aerosol vessels, 

using Sq. (92). 

Aerosol 

vessel 

ENAK 

ENAK 

ENAK 

ENAK 

GRACE 

GRACE 

GRACE 

GRACE 

200 

200 

200 

200 

PERVEX 

Q 

(W) 

8 x 103 

4 x 103 

2 x 103 

103 

600 

300 

200 

100 

900 

600 

400 

200 

60 

G* 
., -3,2/5 -1 
(kg.m ) s 

7.8 x 10"7 

5.5 x 10"7 

4.0 x 10~7 

2.7 x 10"7 

3.0 x 10"6 

1.9 x 10"6 

1.6 x 10"6 

1.2 x lû"6 

1.2 x 10"6 

1.0 x 10-6 

8.3 x 10"7 

5.5 x 10"7 

1.5 x 10"7 

Qv 
(W) 

45 

18 

8.5 

3.2 

2.8 

0.87 

0.57 

0.28 

2.1 

1.3 

0.82 

0.29 

0.067 

Qv 
-y x 100% 

0.56 

0.45 

0.42 

0.32 

0.46 

0.29 

0.28 

0.28 

0.23 

0.22 

0.20 

0.15 

0.11 

* See Eqs. (91) and (92) on pg. 124 
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Table XIX. Droplet size d and percentage supersaturation %S as 

calculated from decay curves of gold aerosols in PERVEX 

with a pool of water on the floor heated with various heating 

powers Q. 

Q 

(W) 

0 

5 

10 

15 

30 

60 

t 
i 
2 

6.8 h 

5.8 h 

130 min 

75 min 

53 min 

28 min 

ß m 

(10-4 s~') 

2.8 

3.3 

8.9 

15 

22 

41 

R a 

ßth 

(10-5 s"') 

0 

0.8 

1.5 

2.2 

4.4 

8.8 

h 
V 

s 

(10~3 cm.s~') 

1.68 

1.50 

4.4 

7.8 

10.8 

20 

d 

(um) 

0.68C 

(0.64) 

1.14 

1.54 

1.83 

2.55 

%sd 

0 

-

0.18 

0.44 

0.73 

2.0 

—?• according to experience that the a From ß , = 0.5 x 0.44 x 
t h 1.5x10-

temperature difference between gas atmosphere and cold walls is 

halved by changing from dry to wet atmospheres. 

s m th m th 
c This value of 0.68 urn corresponds very well with the d value obtained 

by centrifuge viz. 0.70 um. 

d Calculated using Eq. (93). 

e Similar t, values have been obtained with copper aerosols of very 
2 

low mass concentration indicating that the initial aerosol mass plays 

no role in the total droplet mass. 
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Table XXI. Measured and calculated number concentrations c of NaCl 
n 

aerosols produced by nebulizing an aqueous NaCl solution in 

the 100-vessel. 

time 

(h) 

1 

3.5 

6 

24 

26 

31 

48 

55 

72 

79 

96 

103 

168 

175 

192 

222 

c 
n 

measured 
r "3, (cm ) 

2.8 x 104 

2.2 x 104 

1.3 x 104 

3.8 x 103 

2.9 x 103 

2.8 x 103 

1.8 x 103 

1.5 x 103 

1.1 x 103 

9 x 102 

7.2 x 102 

6.4 x 102 

2.7 x 102 

2.4 x 102 

1.8 x 102 

1.2 x 102 

* 
c 
n 

calculated 

(cm ) 

2.4 x 104 

1.7 x 10 

1.2 x 104 

4.1 x 103 

3.7 x 103 

3.! x 103 

1.9 x 103 

1.6 x 103 

1.1 x 103 

9.4 x 102 

6.9 x 102 

6.1 x 102 

2.2 x 102 

2.0 x 102 

1.6 x 102 

1.1 x 102 

time 

(h) 

1 

5.5 

25 

48 

72 

106 

144 

c 
n 

measured 

(cm 

9 x 

3 x 

6 x 

3 x 

1.8 x 

1.2 x 

6 x 

'3) 

104 

.o4 

103 

io3 

103 

io3 

io2 

** 
c 
n 

calculated 

t _ 3 ï (cm ) 

9.5 x 104 

2.8 x IO4 

6.1 x IO3 

2.8 x IO3 

1.6 x IO3 

9 x IO2 

6 x IO2 

assuming: c (o) 

assuming: c (o) 

3 x IO4 cm"3 , K = 2 

2 x 1 0 ' cm"3 , K = 1. 

x 10 cm . s , t 

-9 3 - 1 
5 x 1 0 cm . s , 

= 3 .5 x IO"6 s ~ ' . 

g = 3.2 x i o - 6 s ~ ' . 
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Table XXII. Courses of "total sulphur" (tot S), number concentration 

c and particle diameter d as a function of time t of a 
n 

Na„SO,-aerosol in SUNKIST. 
2 4 

t 

(h) 

0 

1 

2 

4 

11 

14 

15.5 

19.5 

21 

tot S 

(ppb) 

55 

52 

41 

35 

15 

15 

14 

10 

6 

c 
n 

(cm-3) 

1.8 x 104 

1.5 x 104 

104 

8 x 103 

2.3 x 103 

1.8 x 103 

1.6 x 103 

103 

8 x 102 

d* 

(um) 

0.28 

0.29 

0.30 

0.31 

0.35 

0.38 

0.39 

0.41 

0.37 

Calculated from "total sulphur", assuming Na SO present with 

p = 1.5 g cm ". 
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SAMENVATTING . 

*) Dit proefschrift behandelt het gedrag van aerosol onder verschillende 

omstandigheden in afgesloten ruimten. Kennis van dit gedrag is van 

belang voor het gebruik van met aerosol gevulde ruimten als voorraadvat en 

als middel om aerosol te karakteriseren, en van zgn. smogkamers voor onder

zoek van luchtverontreiniging (voornamelijk betreffende fotochemische 

processen waarbij vaak aerosol gevormd wordt). 

Een beknopt literatuur-overzicht (hoofdstuk 1) laat zien dat weinig 

aandacht werd gegeven aan het aerosolgedrag in afgesloten ruimten. Na 

een exclusieve belangstelling van de meteorologen voor het onderwerp, 

werd het sinds het begin van de zestiger jaren een belangrijk onder

werp bij onderzoek in verband met nucleaire veiligheid. Het nucleaire 

aerosolonderzoek richt zich, echter, in hoofdzaak op voor luchtveront-

reinigings-onderzoek irrelevant hoge massaconcentraties. 

In het tweede hoofdstuk wordt een model gegeven voor het aerosolgedrag 

in afgesloten ruimten. Als regel vindt afzetting van aerosoldeeltjes 

plaats op de wanden vanuit de door warmte-convecties geroerde en ge

homogeniseerde ruimte. Het transport door een relatief dunne grenslaag 

op de wand is de snelheidsbepalende stap voor de afzetting. Verbanden 

worden vervolgens gegeven voor een aantal afzettingsmechanismen: sedi

mentatie, diffusie, thermoforese, diffusioforese, electroforese en foto-

forese. Uit literatuurgegevens en een theorie van Fuchs wordt een prak

tisch verband afgeleid tussen de grenslaag-dikte & voor diffusie-af

zetten en de diffusiecoëfficient D van aerosoldeeltjes. Voorwaarden 

voor het optreden van niet-geroerde depositie door uitzakken en diffusie 

worden afgeleid. 

Na een korte beschrijving (hoofdstuk 3) van de belangrijkste experimen

teer-middelen wordt in het vierde hoofdstuk verslag gedaan van de 

waarnemingen en een interpretatie hiervan gegeven. Dit hoofdstuk behandelt 

") 
Onder aerosol wordt verstaan (zie Van Dale's Groot Woordenboek der 
Nederlandse Taal, Nijhof, Den Haag, 1976) "het totaal van in de 
atmosfeer zwevende vaste en vloeibare deeltjes". De deeltjes zijn 
groter dan moleculen maar klein genoeg om meetbaar zwevend te zijn. 
Enkele voorbeelden van een aerosol zijn: nevel, heiigheid, rook, 
mist, wolken en zandstormen. 
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een viertal ruimten : onverwarmde droge ruimten, verwarmde droge 

ruimten, ruimten met verwarmde vloeistof op de bodem en smogkamers. 

Met waarnemingen van het gedrag van monodisperse en polydisperse 

aerosolen in onverwarmde, droge ruimten wordt het afgeleide model voor 

sedimentatie en diffusie ondersteund. De waarnemingen bevestigen groten

deels de juistheid van het in hoofdstuk 2 afgeleide verband tussen 

6 en D. Deeltjes groter dan enkele 0,1 um worden verwijderd door sedi

mentatie; deeltjes kleiner dan ongeveer 0,1 um zijn onderhevig aan 

diffusie-afzetten maar ook vaak speelt electroforese een belangrijke 

rol (vooral bij deeltjes van ca. 0,1 um). Het blijkt mogelijk om met 

behulp van waarnemingen betreffende het aerosolgedrag in onverwarmde 

droge ruimten, dynamische vormfactoren en aerodynamische diameters 

van aerosoldeeltjes te bepalen. 

Thermoforetisch afzetten is het dominerende proces in locaal-verwarmde 

droge ruimten. De waarnemingen gedaan met een groot aantal verschillende 

aerosolen ondersteunen het in hoofdstuk 2 afgeleide model voor thermo

foretisch af::etten. Interpretatie van de waarnemingen levert de thermo-

foretische eigenschappen van aerosolen. De resultaten ondersteunen de 

theorieën van Broek en Stetter betreffende thermoforese maar wijken 

belangrijk af van die van Derjaguin en Epstein. In overeenstemming met 

de theorie wordt een thermoforetische vervalconstante gevonden onaf

hankelijk zowel van de deeltjesgrootte (> 0,5 um), als van het deel

tjesmateriaal en van de temperatuur. Experimenten tonen aan dat lichte 

verwarming van de bodem van een aerosol-bevattende ruimte een belang

rijke verbetering van de aerosolstabiliteit kan opleveren. 

Plaatsing van een hoeveelheid verwarmde vloeistof in een ruimte met 

aerosol, leidt tot deeltjesgroei door condensatie van damp gevolgd door 

versnellende sedimentatie. Een model voor het aerosolgedrag onder 

deze omstandigheden wordt door de waarnemingen ondersteund. Condensatie 

op aerosoldeeltjes bij verschillende graden van oververzadiging kan 

onderzocht worden met dit systeem. De oververzadiging kan berekenbaar 

gevarieerd worden met het in de vloeistof gedissipeerde vermogen en 

door het oplossen van verschillende stoffen. 

Een onderzoek van het aerosolgedrag in een fotochemische smogkamer toonde 

aan dat er geen significante thermoforetische en fotoforetische depositie 

van 0,06 um deeltjes plaatsvindt. De waargenomen aerosolstabiliteit blijkt 
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verklaard te kunnen worden door electroforetische depositie en geeft een 

samenhangend beeld met electroforetisch afzetten bij andere experimenten. 

Coagulatie-constanten van aerosolen kunnen berekend worden uit aantal

concentratie metingen in afgesloten ruimten. De resultaten passen goed 

bij de theorie van Davies voor coagulatie. Diffusieconstanten van 

aerosolen kunnen bepaald worden uit de lange-termijn afneming van de 

aantal-concentratie in metalen vaten. 
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met als uitgebreide specialisaties Kernfysica en Radiochemie. Na voor 

eerste militaire oefening een speciale opdracht te hebben vervuld, werd 

in 1963 als wetenschappelijk medewerker in dienst getreden van het 

toenmalige Reactor Centrum Nederland (RCN). Na enige jaren de thermo-

elektrische eigenschappen van nucleaire brandstof te hebben bestudeerd 

(in verband met mogelijke directe energie-omzetting), werd in 1967 

begonnen met een onderzoek van aerosolen vanwege de veiligheid van 

snelle kweekreactoren. De kennis van aerosolgedrag en de beschikbaar

heid van een aantal onderzoekfaciliteiten leidden in 1972 tot uitbreiding 

van het aerosolonderzoek met onderwerpen op het gebied van luchtveront-
! . . 

Reiniging in het algemeen. Het in dit proefschrift weergegeven experi

mentele onderzoek is verricht bij het voormalige RCN (thans Energie

onderzoek Centrum Nederland). 


