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1 INTRODUCTION 

1.1 THE SN(ANR0RC) MECHANISM 

Investigation of the behaviour of aza- and polyazaaromatics towards nitrogen-

containing nucleophiles continues to remain a major topic at the Laboratory 

of Organic Chemistry in Wageningen. A great variety of different reaction path

ways has been discovered in recent years, depending on the structure of the 

substrate and the nature of the attacking nucleophile. For some review articles 

see references 1-6. 

In the early seventies a new mechanism for nucleophilic substitution was dis-
7 8 9 

covered , the SN(ANRORC) mechanism ' . A reaction exemplifying this mechanism 
is given in scheme 1.1 and shows the conversion of 4-bromo-6-phenylpyrimidine 

7 
(1) into the corresponding 4-amino compound 4 on treatment with potassium 

amide. The process is described by a sequence of reactions, involving Addition 

of the Nucleophile to position 2, resulting in 2-amino-4-bromo-6-phenyl-1,2-di-

hydropyrimidinide (2). Ring Opening subsequently forms the open-chain inter

mediate 3, which undergoes Ring Closure to 4. This mechanism was substantiated 

by N-labelling. 

Ph 

/^B, 

NH2" N 

H 

H2N 

Ph 

/^B, 

Ph 

-Br 

NH2 

Scheme 1.1 



The amide ion is the nucleophile in many conversions involving the SN(ANRORC) 

mechanism and in the overall reaction one nitrogen atom of the heteroaromatic 
o 

ring is replaced by the nitrogen atom of the nucleophile . These reactions are 
classified as degenerate ring transformations 5,10 The term degenerate ring 

transformation is used for a reaction sequence in which the ring system in the 

product is the same type of heterocyclic ring as originally present in the 

starting material . 

At the start of the study described in this thesis only two degenerate ring 

transformations involving move than one atom, had been described . The reaction 

of 1-methylpyrimidinium iodide (5) with benzamidine gives 2-phenylpyrimidine 

(6), with the three atom N.,- C ? - N , fragment of 6 originating from the amidine. 

The reaction sequence is shown in scheme 1.2. In the reaction of 5 with Ci

me thylisourea, yielding 2-aminopyrimidine, the N ? - C 7 fragment also originates 
10 

from the nucleophile 

CH3 

// 
NH2 

* 
I 

CH3 

H 
NH 
C=NH 
R 

C=NH 

H N^C = N-CH3 

H-N 

R = Ph, t-CAH9 

Scheme 1.2 

Other remarkable examples of degenerate ring transformations have recently been 

reported in the literature. N-aminopyrimidinium salts react with hydroxylamine, 
11 

forming pyrimidine N-oxides . 3-Cyanopyrimidinium salts (7) undergo a double 
12 

rearrangement with hydroxide ion to give 2-alkylamino-3-lormylpyridin.es (8) 

as visualized in scheme 1.3. This reaction can be described as an initial addi

tion of hydroxide ion at position 2, followed by ring opening and cyclization by 

attack of the amino lone pair on the carbon atom of the cyano group. A renewed 

http://2-alkylamino-3-lormylpyridin.es


addition of hydroxide ion at position 6, ring opening and ring closure sub

sequently gives the reaction product 8. 

CN 

^ 

OH 
CN 

.OH 

"H 

c=o 

C = N 
-NH 

I 
R 

C=0 
OH 

\ N / ^ N H 
I 
R 

R' 

HO' 

H / 
C-0" 

-NH 

H 
/ _ 

C-0 

NR 
NH2 

Scheme 1.3 

During the last ten years a number of ring transformations have been describ

ed '' ' , in which the ring systems in starting material and product are 

different. Recent examples are the conversions of 1-alkylpyrimidinium salts 

into 2-alkylaminopyridines and N-alkylpyridinium salts into alkylanilines under 
14 

the influence of hydroxide ion and the reaction of 5-nitropyrimidine with 

ketones in which all hetero atoms are lost and replaced by carbon atoms 

The investigation into the occurrence of the SN(ANRORC) mechanism, during the 

reaction of a diaza nucleophile - namely hydrazine - with a vicinal diaza 

substrate - for example 6-L-1,2,4,5-tetrazine (9) - is the central theme 

of the study in this thesis. If this mechanism is operative the two atom NL- NU 

fragment of the 1,2,4,5-tetrazine ring of the resulting 6-hydrazino-1,2,4,5-

tetrazine (10 I) will be replaced by the two nitrogens of hydrazine as visualiz-
19 

ed in scheme 1.4. The alternative pathway of the S (AE) - Addition Elimination 

mechanism (leading to 10 II) is also depicted. 

These two pathways can easily be distinguished by use of N double labelled 

hydrazine as indicated by an asterix in scheme 1.4. If the substitution takes 

place according to the SN(ANRORC) mechanism the label will be incorporated in 

the 1,2,4,5-tetrazine ring (10 I ) , while in a reaction via the SN(AE) mechanism 



the label will be located in the exocyclic hydrazino group (10 II). 

SN 

I 
4N 

N1 * * 
M H2N-NH2 - IK H 

N-H 

R NH-NH2 

N=NH 

N-NH2 * * 
N-NH2 
* * 

L NHNH2 

N-H -HL 

NHNH2 

SN(ANR0RC) 
L= leaving group 

R = alkyl- or aryl 
substituent 

10*1 

H2N-NH2 

* * 
L NHNH2 

-HL 

NHNH2 

N 

I 
N 

10*11 

SN(AE) 

Scheme 1.4 

In scheme 1.4 the symbol L represents the leaving groups. These will also in

clude hydrogen, because we are also interested in a possible occurrence of a 
20 

Chichibabin hydrazination of 1,2,4,5-tetrazines. The only example of this 

kind of reaction is the displacement of hydrogen by hydrazide ion in some 

pyridine derivatives 



1.2 a-ADDUCTS 

The first step in the reaction sequence of nucleophiles with electron deficient 

aromatics is the addition of the nucleophile, forming a covalently bonded 
22 a- or Meisenheimer complex . The formation of these a-complexes can be detect-

22 ed by NMR spectroscopy . 

When the amide ion or ammonia reacts with azaaromatics the formation of the 

a- adduct is characterized by a large upfield shift of the hydrogen or carbon 
1 23 24 13 25 

atom to which addition takes place in both H NMR ' and C NMR . This is 
2 3 due to a rehybridization of the carbon atom from sp to sp . The magnitude of 

the upfield shift is independent of the charge, in that a negatively charged 

and a neutral a-adduct show approximately the same upfield shift ' 

As part of the study of the SN(ANRORC) mechanism we are interested whether a 

a-adduct 12 is formed upon addition of hydrazine to 1,2,4,5-tetrazine (11); 

or - as a model study for this reaction - whether a a-adduct is formed upon 

addition of ammonia to 1,2,4,5-tetrazine (11). 

H NHZ 

N N-H 
Z-NH 

R 
Scheme 1.5 n 12 

Z = H,NH2 

A survey of the upfield shifts of the hydrogens attached to the sp carbon 

atoms in several adducts is presented in scheme 1.6. 

Upfield shifts (A5) result from addition of amide ion to C 7 or CA of 4-phenyl-
27 ?P> 

pyrimidine (13) , to C . in 1,2,4-triazine (14) and to C, of 2-phenyl-1,3,5-
2') 30 

triazine (15) ". Addition of ammonia to C, of pteridine (16) causes a 

similar shift. The magnitude of the upfield shift in these adducts is between 

4 and 5 ppm, compared with the starting materials in usual NMR solvents. 

The covalent hydrazination of 1-methylpyrimidinium iodide (17) has been 
31 

described recently . This is the only example - proven by means of NMR 
spectroscopy - of a a-adduct formed between an azaaromatic compound and 
hydrazine. 



4.26 

A6(H2)= 4.96 ppm A6(H6) =3.98ppm 

9.34 

N ^ N 

9.73 

14 
7.40 
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N - ^ N 

-N' 

is 

N,-"-\ N 

•k JU .Ji::>" N H 5.33 
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Scheme 1.6 
16 

^ 9 . 6 

H NH2 

A6 (H4) = 4.30ppm 

Comparison of the H chemical shift data of the a-adduct 18 with those of the 

product of covalent amination 19 and with those of 17 itself (Scheme 1.7), 

reveals that with both nucleophiles the attack takes place at Cfi and that the 

upfield shifts in both a-adducts 18 and 19 are similar. This indicates that 

in general an upfield shift of 4-5 ppm can be expected upon addition of 
32 

nucleophiles to azaaromatics 

On dissolving 1,2,4,5-tetrazines in liquid ammonia or hydrazine, however, the 

expected A6 value of 4-5 ppm was not found. A very unusual upfield shift was 

observed instead ' 



On comparison with several model compounds it became obvious that the explana

tion for this anomaly can be found in the concept of homoaromaticity 

Scheme 1.7 

9.30 
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19 
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C H 3 

3.04 

6.27 

N \ ^ 4 . 9 1 

NH2 

4.57 AOIHß) = 4 .9 ippm 

1.3 HOMOAROMATICITY 

35 36 

Homoaromaticity as a concept was introduced by Winstein in 1959. He defined 

a species to be homoaromatic if the a-backbone is interrupted either by re

moving the a-bond entirely or by interposition of one or more methylene groups. 

The a-skeleton may be interrupted on one, two or three sides giving rise to a 

monohomo-, bishomo- or trishomoaromatic species. As for aromaticity the 

criteria for homoaromaticity are: a) the compound must obey the Hückel rule 

and possess (4n+2) TT electrons; b) derealization energy due to cyclic electror 

derealization must exist; c) the compounds must be able to sustain an induced 

ring current. 

The overlap between the two ends of the conjugated system to form a (4n+2) 
37 3$ 

cyclic array is brought about by homoallylic participation ' of the cyclo

propane ring, which is visualized in figure 1.1. The overlap is of a type 

intermediate between a and ir . Overlap becomes restricted to single lobes, 

the boundaries of which are limited to that surface of the molecule opposite 

to the bridged atom. 



Al— CK 

4 

3K 

Ai c i \ 

Fig.1.1 Homoallylic participation 

The net level of homoaromatic delocalization will be linked directly to the 

resultant overlap integral. Homoaromatic interactions occur because of stabiliz

ing TT interactions but only at the expense of the energy required to distort the 

a-framework. 

The compound examined most thoroughly is the homotropylium cation (21), obtain-
39 

ed upon deprotonation of cyclooctatetraene (20) 

u© 

-0.73 S.13 

A uB HA„ H 

Scheme 1.8 20 21 

Experimental evidence proving homoaromaticity in 21 is provided by the following 

observations : 

a) The great difference in chemical shift between H (the hydrogen above the 

aromatic ring, which is in the shielding regio) and H° (the hydrogen in the 

exoposition, which is in the deshielding regio) due to the ring current. A 
1 37 

comparison with the H NMR data of several model compounds reveals that none 
of these species offers a better description of the observed phenomena. 



13 
b) The C chemical shift values which give a measure of the derealization 

40 of charge , related - of course - to the electron derealization. 
41 

c) The diamagnetic susceptibility exaltation A , which is a measure of the 
extra anisotropy due to the ring current of aromatic molecules. A A of 20 

42 
was measured for the homotropylium cation, which - on subtraction of the 

contribution of the cyclopropane ring ( A = 5) - is comparable with the A 

of the tropylium cation ( A =16). 

d) The UV spectrum from which the 1,7 resonance integral is calculated. 
43 

The ir-bond order calculated from g..- is 0.56 

It is also possible to optimize the conformation of the homoaromatic molecule 
44 

by theoretical calculations . The last few years these theoretical calculations 

arc the main field of interest in the literature concerning homoaromaticity. 

Only crystal structural data however will give a quantitative estimate of the 

amount of orbital overlap and the importance of homoaromatic contribution. 

This subject is the major theme in a recent review article on homoaromaticity 
47 

An example of a calculated structure which is in good agreement with the 
48 

X-ray structure is found for the smallest homoaromatic compound, the homo-

cyclopropenium cation (23), formed on protonation of cyclobutene (22) . The 

X-ray structure was determined for the aluminiumtrichloride complex of tetra-

methylcyclobutadiene (24)(see Table 1 .1). 

45 

4.12 4.94 

,© 
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22 23 24 

Scheme 1.9 



Table 1.1 Calculated and X-ray structure of the homocyclopropenium cation 

compound 

23 

24 

bond length 

1-2 

140.2 

138.7 

1-3 

173.9 

177.5 

1-4 

150.2 

151 .0 

b 
a 

149.3 

148.5 

a bond length in pm 

b see scheme 1.9 

49 
New ab initio calculations have been carried out recently for the homotro-

pylium cation (21). This compound had already been found to exist in two forms, 

one with the Œ U group pointing upwards, the other with the CH-, group down

wards. Deuteration instead of protonation (see scheme 1.8) showed that the 

interchange between these two forms is a ring inversion with AG = 93 kj/mol. 

T 
'40kJ/mol 

1 

AG 93kj/mol 

Scheme 1.10 

10 



This ring inversion was originally visualized as proceeding through a planar 
43 

form, the classical cyclooctatrienyl cation (26) . It became evident from the 
49 

new calculations of Haddon , that this energy profile contains an extra 

species, a non-planar cyclooctatrienyl cation (25), which lies 40 kJ/mol higher 

in energy than the homotropylium ion. The ring inversion is accompanied by an 

enlargement of the 1,7 interatomic distance - the calculated values of which 

are given in scheme 1.10 - and consequently the methylene bridge is flattened. 

The negatively charged counterpart of the homotropylium cation is the homo-

cyclopentadienyl anion (28). Considerable effort has been undertaken to prove 

the existence of this species, but without success. A recent study definitive

ly proves that on proton abstraction from 1,3- and 1,4-cyclohexadienes (27) a 

planar nonhomoaromatic cyclohexadienyl anion (29) is formed. This was concluded 

from NMR spectroscopic evidence in ND, containing K ND 2' 

3.40 

. X . 30.0 1 J C H 123.7 Hz 
f< > , 1 75.8 75.8 

131.8 

Scheme 1.11 

78.0 

29 

Coupling constants between C and H nuclei are very sensitive to angular 
1 37 

distortion. In the homotropylium cation JQ H is found to be 159 Hz . The 

coupling constant found for 29 ( Jcrfl = 123.7 Hz) however, is comparable with 

that of the benzenium cation (122 Hz) and that of an sp carbon atom in 27 
13 

(126 Hz). According to C NMR the negative charge in 29 is localized on C1, 
C, and e., this is in agreement with the Tr-electron populations calculated by 

o 52 
Birch et al. 

52 
The ST0-3G optimized structure of 29 actually reveals that the ring is planar , 

the ST0-3G structure of 28 reveals that this structure also corresponds to a 

11 



local minimum, but this lies 142 kj/mol above that of 29. 

124 0 H 

Fig. 1.2 ST0-3G optimized structures 
for the homocyclopentadienyl 
anion (28) and the cyclo-
hexadienyl anion (29) 

Ai 110.6 1 = £ H C H =103.0 

A homoaromatic system can be described by an interaction between the conjugated 

system and the methylene group. Olah et al 51,53 explain the absence of the 

expected homoaromaticity of the cyclohexadienyl anion by the stabilizing inter-

action of TT (ŒU) with the HOMO of the pentadienyl fragment (as in figure 1.3), 

which makes the puckering to a homoaromatic structure unnecessary. In contrast 

cations have a low lying HOMO and the interaction with ir (CH?) will be negligible 

and the unfavourable interaction with the filled IT (OU) will dominate. In these 

cases puckering to the homoaromatic conformation will be favourable, since the 

12 



overlap with the ir(CH2) will decrease. 

_ to 8. 

â$ ^ 

<h ™'\ >t ? V 0 

Fig. 1.3 Interaction of linear (4n+2) ir-electron 
systems with a methylene group 

An example of a negatively charged 6TT electron species which has homoaromatic 
57 

properties is the fcishomocyclopentadienide anion (31) , prepared from Na-K 

treatment of the bicyclic diene 30. Comparison with the unsubstituted bicyclic 

diene showed that the most significant difference is the upfield shift of PL 

and H7, due to derealization of negative charge to Cft and C 1' 

0CH3 

Na-K 

30 32 33 

Scheme 1.12 

13 



A neutral heterocyclic analogon of 31 in which the lone pair of the nitrogen 
58 

atom contributes to the 6TT electron system has also been described . Comparison 

of the UV spectrum of N-methyl-2-azabicyclo [3,2,1] octa-3,6-diene (32) 

(Vax 2 4 2 (247°)> 2 7 2 0350)) with that of the partially saturated 33 (248 

(1950)) gives a strong indication of the non-bonded interaction between the 

two chromophores. The downfield shift of 0.2 ppm of the methyl group in 32 

as compared with 33 also indicates that there is a transfer of lone pair densi

ty, due to a contribution of the nitrogen lone pairs to the delocalized system. 

The question remains however whether a homoaromatic contribution is involved 

or actual homoaromaticity. 

Although neutral homoaromaticity is elusive probably because systems designed 

to produce neutral homoaromatic stabilization are somewhat antiaromatic , a 

few examples of possible homoaromatic contributions are found in the literature. 

None of them however has a very pronounced homoaromatic character. Paquette 

has devised a theoretical criterion for homoaromaticity based on a vector 

analysis of overlap calculated from a knowledge of the particular molecular 
59 geometry (X-ray analysis) of the species 

MINDO/3 calculations have shown that in 1,4- and 1,2-dihydropyridine there is 

a homoaromatic stabilization due to a contribution of the nitrogen lone pair 

to the HOMO. These calculated structures are hardly puckered however and show 

a great distance between the termini of the TT-system, so that they cannot be 

regarded as real homoaromatic species. 

Other neutral species, possessing at least some homoaromatic character are: 

cycloheptatriene (34) and 1-cyanosemibullvalene (35) . A controversy exists 

in the literature ' about the homoaromaticity of the methano bridged 

annulenes, for example 1,6-methano [l 0 J annulene (36). 

The parent [10l annulenes do not show aromatic properties and in the iso-

electronic diaza [8J annulenes (37) the aromaticity depends on the substituents 

R present on the nitrogen atoms . In contrast the H NMR spectrum of the 

bridged |_10J annulene derivatives does indicate the presence of a diamagnetic 

ring current. The transannular resonance integral was estimated at about 40°t, 

of that of neighbouring pz orbitals in benzene and the 1,6 distance in the 

11,11-dimethyl derivative of 36 was only 180 pm . The corresponding bridged 

[ 9j annulene anion and m l annulene cation have also been described. 

In the latter the 1,6 distance was found to be 230 pm, by means of X-ray 

diffraction analysis . It was obvious from the C NMR data, that this compound 
68 

can be regarded as a substituted homotropylium cation 

14 



A6=1.« CN 

35 

Scheme 1.13 

Compared with naphthalene these bridged annulenes possess transannular overlap 

and lack the 9,10 a-bond, which is replaced by a sp carbon atom. From this 

point of view they can be regarded as homoaromatic species. 

Thus far no real homoaromatic compounds possessing heteroatoms in the aromatic 

ring have been described. The examples mentioned above ' only show a homo

aromatic contribution. 

1.4 PURPOSE OF THE INVESTIGATION 

The central theme in this study is the investigation of the reactivity of 

1,2,4,5-tetrazines towards hydrazine with the aim to establish whether in 

these reactions an SN(ANR0RC) mechanism occurs. A study on the reaction of 

ammonia with 1,2,4,5-tetrazines and on the character of 1,6-dihydro-1,2,4,5-

tetrazines was also included in the course of our research. 

Chapter 2 describes the one-pot oxidation of the covalent amination products 

of 3-aryl(alkyl)-1,2,4,5-tetrazines. 

Chapter 3 reports on a H-NMR study of 1,6-dihydro-1,2,4,5-tetrazines as model 

compounds for the a-adduct of ammonia or hydrazine to 1,2,4,5-

tetrazine. A new homoaromatic system is discovered. 

15 



Chapter 4 comprises a C NMR investigation of the a-adducts formed between 

ammonia and 1,2,4,5-tetrazines. Evidence is presented that these 

a-adducts are anionic homoaromatic species in liquid ammonia. 

Chapter 5 describes the hydrazinolysis reactions of 6-amino- and 6-bromo-3-

methyl-1,2,4,5-tetrazine. N-labelled hydrazine is used to establish 

the reaction mechanism. 

Chapter 6 presents the finally complete reaction mechanism of hydrazine 

with 1,2,4,5-tetrazines. Both 15N-labelling and 1H- and 1 3C NMR 

spectroscopy are used to elucidate the reaction mechanism. Evidence 

is compiled showing that at least part of the molecules react via 

the S (ANRORC) mechanism. 

Chapter 7 reports on the crystal structure of 6-ethyl-3-phenyl-1,6-dihydro-

1,2,4,5-tetrazine, which is elucidated by means of X-ray structural 

analysis. 

Chapter 8 contains a general discussion of the work described in this thesis. 
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2 A NEW SYNTHESIS OF 6-(ALKYL)AMIN0-3-ARYL(ALKYL) 
-1,2,4,5-TETRAZ INES 

2.1 INTRODUCTION 

There is strong interest in the synthesis of 6-(substituted)amino-3-aryl-1,2,4,5-

tetrazines since some of these compounds exhibit suppressive antimalarial activi-
1-3 ty. Several methods for the preparation of these compounds have been described 

but they all show severe limitations. 

Very recently an attractive synthesis of these compounds has been published by 

Werbel et al. involving: i) the thiobenzoylation of hydrazinecarbohydrazonothioic 

acid methyl ester with (substituted phenyl)thioxomethy1 thio acetic acid into a 

1,2-dihydro-3-aryl-6-(methylthio)-1,2,4,5-tetrazine, ii) oxidation of this com

pound with bromine in acetic acid into 3-aryl-6-(methylthio)-1,2,4,5-tetrazine and 

iii) treatment with amines (Scheme 2.1). 

NH2 

NH X . , , N—N 

Ç > XVC-S-CH2C02H + / - S C H 3 — Ç> \ - ^ ^>-SCH 

Y l H I I I 

NH2 H H 

Br2/H0Ac 

R,N 

-NH X \ / A N — N X. , A N — N X
N M X\, -\ N—N o, 

Scheme 2.1 

In most syntheses of the 6-(substituted)amino-3-aryl-1,2,4,5-tetrazines described 

in the literature so far, the (substituted)amino group is introduced 

by replacement of X in the 6-X-3-aryl-1,2,4,5-tetrazines. 
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2.2 RESULTS AND DISCUSSION 

In this paper we report a new approach to the synthesis of 6-(substituted)amino-3-

aryl-1,2,4,5-tetrazines, which differs from the other methods of preparation in 

this respect that the (substituted)amino group is introduced in a 3-aryl-1,2,4,5-

tetrazine being unsubstituted at position 6. This method is not limited to aryl-

tetrazines, but can also be applied for the preparation of 6-(substituted)amino-

1,2,4,5-tetrazines, containing an alkyl group on position 3. The procedure is 

quite simple and is exemplified with the preparation of 6-amino-3-phenyl-1,2,4,5-

tetrazine (1). 

The red 3-phenyl-1,2,4,5-tetrazine ( 1 equivalent) is dissolved in liquid ammonia. 

The solution becomes yellow. After addition of 1 equivalent of potassium perman

ganate to the liquid ammonia solution and working-up 6-amino-3-phenyl-1,2,4,5-

tetrazine (1) can be isolated in 74°s yield. Use of ferric chloride or dichloro-

dicyanoquinone instead of potassium permanganate also gave 6-amino-3-phenyl-

1,2,4,5-tetrazine but the yields were much lower. With air and oxygen only star

ting material could be retrieved. 

We propose that by dissolving of 3-phenyl-1,2,4,5-tetrazine in liquid ammonia the 

yellow coloured 6-amino-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine is formed (Scheme 

2.2). Dihydro-1,2,4,5-tetrazines are known to be easily oxidized. Potassium 

permanganate added to the liquid ammonia solution is apparently sufficiently 

active to perform the oxidation at the low temperature. Attempts to isolate the 

1,6-dihydrotetrazine derivative met with little success, only the starting mate

rial could be recovered. 

Primary aliphatic amines were found to be as active as liquid ammonia. When 3-

phenyl-1,2,4,5-tetrazine was dissolved in an excess of primary amine at 238 to 

243 K and subsequently potassium permanganate was added the corresponding 6-

alkylamino-3-phenyl-1,2,4,5-tetrazine could be isolated. The yields vary depending 

on the size of the alkyl group (Table 2.1). The reactions with the primary amines 

have to be carried out at low temperature, because otherwise decomposition occurs. 

Attempts to introduce an arylamino group by performing the reaction with aromatic 

amines were not succesful. 

The generality of this reaction can be shown by the 6-(alkyl)amino-1,2,4,5-tetra

zines (1-14) obtained by this amination-oxidation procedure. They are summarized 

in table 2.1, together with the yields, their microanalytical data, melting points 

and H-NMR spectra. The mass spectral data are collected in table 2.2. 
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H 

Ri 

H2NR, 

HNR2 H 

N N 

KMnCH 

HNR2 

I II 

Ri 

Scheme 2.2 
R1 = CH3, A-C4H9,C6H5, p-Br-C6H4 

R2 = H,C2H5, /'-C3H7, n-C4H9, n-C8H17 

Most of the compounds prepared by this method were not described in the literature 

before. The already known compounds 1 and 10 were prepared according to published 
2 

routes and their physical data compared with those of the compounds obtained in 

this study. They proved to be identical. Two compounds, i.e. 6-n-octylamino-3-

phenyl-1,2,4,5-tetrazine (4) and 6-amino-3-t>butyl-1,2,4,5-tetrazine (6) were 

prepared independently according to a different route (Scheme 2.3). 

Synthesis of compound 4 involves hydrazinolysis of 6-amino-3-phenyl-1,2,4,5-

tetrazine (1) into 6-hydrazino-3-phenyl-1,2,4,5-tetrazine, conversion of this 6-

7 
hydrazino compound with bromine in acetic acid into 6-bromo-3-phenyl-1,2,4,5-
tetrazine and amino-debromination with 2 equivalents of n-octylamine at room 
temperature. Compound 6 was prepared from pivaloylchloride and triaminoguanidine 

o 

according to the route given in scheme 2.3. Both compounds proved to be identical 

with those, obtained by the amination-oxidation method. 

Most mass spectra of 1,2,4,5-tetrazines published thusfar comprise 3,6-symmetrical 

Footnotes Table 2.1: 

a)226C.''' b) 171"C.' c) 247"C. 

d) Exact mass measurement gave for C „H „N, (M ) 209.1647 (theoretical 209.1640). 

e) Exact mass measurements gave for C.,H„ N. (M ) 265.2275 (theoretical 265.2266). 

f) Compounds 1,6, 10 and 14 are measured in aceton-dfi, all other compounds in 

CDC1 . 

g) ß-CH. is the total multiplet due to the ß-CH„ and Y~CH„ group in n-C,H„ and ß, 

Y, 6, etc. CH groups in n-C H . 

h) J 
NH-CH„ 

5.8 Hz. 
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Figure 2.1 Mass spectrum of 6-n-octylamino-3-phenyl-l,2,4,5-tetrazine (4) 
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Table 2.2 Mass spectrometry (a) of compounds 1-14 of table 2.1 

C6H5 

t-CAH9 

CH 

p-Br-C6H4 

M+ 

a 

b 

inl.cond. (b) 

M+ 

a 

b-1 (c) 

i-C4H9 

inl.cond. 

M+ 

a 

b 

inl.cond. 

M + 

a 

b 

b-Br 

inl.cond. 

NH2 

173 

42 

103 

probe 

153 

42 

84 

57 

probe 

1 1 1 

42 

41 

h.b. 

253 
251 

42 

183 
181 

102 

h.b. 

11 

1 1 

100 

150°C 

10 

31 

33 

100 

50°C 

13 

97 

100 

180°C 

15 
16 

8 

96 
100 

97 

185°C 

HNC2H5 

201 21 

70 32 

103 100 

h.b. 150°C 

181 12 

70 75 

84 47 

57 100 

h.b. 130°C 

139 27 

70 41 

41 27 

h.b. 140°C 

HNn-

229 

98 

103 

probe 

209 

98 

84 

57 

h.b. 

167 

98 

41 

probe 

^ v ^ H N i - C ^ 

C 6 H 7^\ 

C4H9 

75 

24 

100 

90°C 

10 

11 

53 

100 

150°C 

15 

3 

55 

30°C 

HNn-C0H,_ 
— o 1 / 

285 58 

153(d) 4 

103 73 

probe 90°C 

265 12 

153(d) 6 

84 58 

57 79 

h.b. 170°C 

223 28 

153(d) 3 

41 100 

h.b. 180°C 

inl 

+ 
M 

a 

b 

.cond. 

215 23 

84 25 

103 100 

h.b. 160°C 

(a) Only the most characteristic peaks are given. 
All mass spectra were measured at 70 eV. 
For each compound the first figure is the m/e value, the second figure is the 
intensity of the peak in percentage of the base peak. 

(b) Inlet conditions: inlet system: - all glas heated inlet system (hot box = h.b.). 
- direct inlet (probe) . 

inlet temperature. 

I'c^ fragment b is very small (< 1% for compound 6). 

(d) (a-1), with the n-octylamino group no fragment a is observed. 

25 



9 10 disubstituted 1,2,4,5-tetrazines. ' Like symmetrical disubstituted 1,2,4,5-

tetrazines the unsymmetrical disubstituted compounds 1-14 show a very simple 

splitting pattern. Besides the molecular ion M in nearly all our compounds the 

ion (M-28) is observed, due to loss of I\L. The residual species show cleavage 

between the N-N bond resulting in two different fragments a and b (and a+1, a-1; 

b+1, b-1). Then the characteristic splitting pattern for the ions a and b is 

observed. As an example the mass spectrum of 6-n-octylamino-3-phenyl-1,2,4,5-

tetrazine (4) is given (figure 2.1). 

2.3 EXPERIMENTAL SECTION 

Melting points are uncorrected. Mass spectra were determined on an AEI MS 902 

mass spectrometer. H-NMR spectra were recorded on a Varian EM 390 spectrometer or 

on a Hitachi-Perkin Elmer R-24B spectrometer. TMS was used as internal standard 

(6 0 ppm). Column chromatography was carried out over Merck Silica gel 60 (70-230 

mesh ASTM). 

Preparation of starting materials 

3-Pheny 1-1,2, 4, 5-tetrazine. This compound was prepared according to the synthesis 
11 

described by Lang, Johnson and Cohen. We modifi 

air or oxygen instead of bromine in acetic acid. 

11 
described by Lang, Johnson and Cohen. We modified the oxidation step by using 

3-t-Butyl-l,2,4,5-tetrazine. This compound was prepared analogous to the synthesis 
11 12 

of Lang et al. Accordingly 16 g of pivalimido ethyl ether hydrochloride, 

31 g of formamidine acetate and 50 mL of absolute ethanol were cooled at -10 C, 

70 mL of hydrazine hydrate were added, keeping the temperature below 5 C. The 

mixture was stirred during 3 h at 25°C and then poured into 500 mL of water. The 

water layer was continuously extracted with boiling dichloromethane for 4 days; 

during this period air was bubbled through the boiling dichloromethane in order to 

oxidize the dihydrotetrazine. 

After column chromatography on silica gel using as eluent pentane-dichloromethane, 

successively 0.40 g of 3,6-di-t-butyl-1,2,4,5-tetrazine (4%) was obtained, m.p. 

95-97°C (lit.10 95-99°C); 1H-NMR (CC14): 6 1.57 (s, t-C4Hg) (lit.10 6 1.57) 

and 0.63 g. of 3-t-butyl-!, 2,4,5-tetrazine, a red volatile oil, (4,5°0; 1H-NMR 

(CD3OD): 6 1.58 (9H, s, t-C4Hg), 10.45 (1H, s, H 6 ) ; MS: M+, m/e = 138. Exact mass 

measurements gave for C6H10N4 (M+) 138.0907 (theoretical 138.0905). 

Anal. Calcd. forC6H1()N4: C, 52.15; H, 7.30. Found: C, 52.51; H, 7.59. 
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3-Methyl-l,2,4,E>-tetrazine. This compound was prepared from 6-amino-3-methyl-

1,2,4,5-tetrazine as described previously. The preparation of this compound, 
11 

analogous to the synthesis of Lang et al., was not succesful; the yield was poor 

and it was difficult to separate 3-methyl-1,2,4,5-tetrazine from 3,6-dimethyl-

1,2,4,5-tetrazine. 

3-(p-Bromo)phenyl-l,2,4,S-tetrazine was also prepared analogous to the synthesis 

of Lang et al.,11 overall yield 46%, m.p. 182-184°C; 1H-NMR (CDC13): 6 7.75 

(2H, d, meta H), 8.50 (2H, d, ortho H), 10.25 (1H, s, H 6 ); M+, m/e = 238/236. 

Anal. Calcd. for CgHjBrN^: C, 40.53; H, 2.13. Found: C, 40.61; H, 2.17. 

Amination-oxidation procedure' 

As an example the procedure is given for 3-phenyl-1,2,4,5-tetrazine; the other 

1,2,4,5-tetrazines were treated in a similar way. 

A. With liquid ammonia 

3-Phenyl-1,2,4,5-tetrazine (100 mg=0.63 mmoles) was dissolved in 10 ml of liquid 

ammonia; immediately the yellow colour is observed. After 5 min 67 mg (0.42 

mmole = 1 redox equivalent) of potassium permanganate were added at once. After 10 

min, 25 ml of ethyl acetate was added slowly. The ammonia is evaporated off, the 

solution is filtered through silica gel. The ethyl acetate is evaporated off in 

vacuo and the solid residue is crystallized from ether/pentane. 

B. With alky lamines 

The procedure is the same as described under A) using about 3 ml of liquid alkyl-

amine at low temperature (-35 C to -40 C). However, when using n-octylamine, due 

to the high melting point (0 C) of n-octylamine, a 1:1 mixture of n-octylamine and 

ethanol was used. 

All compounds 1-14 were crystallized from ether/pentane. 

6-n-0ctylamino-Z-phenyl-l, 2,4,5-tetrazine (4) 

A solution of 173 mg (1 mmole) of 1 in 4 ml of ethanol was refluxed with 0.10 ml 

(2 mmoles) of hydrazine hydrate during 1 h. After cooling to room temperature 6-

hydrazino-3-phenyl-1,2,4,5-tetrazine separated out as crystals; they were filtered 

off and washed with 1 ml of ethanol, yield 139 mg (741), m.p. 169-171°C (lit.15 

178 C decomp); MS: M , m/e = 188. It was further characterized as its benzaldehyde 
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hydrazone; m.p. 213-214.5°C (lit.15 211-212°C); M+, m/e = 276. 

Anal. Calcd. for C ^ H ^ N ^ C, 65.20; H, 4.38. Found: C, 65.07; H, 4.25. 

The 6-hydrazino compound was dissolved in 5 ml of acetic acid and oxidized with 
7 

bromine according to the procedure published. We obtained 149 mg of 6-bromo-3-

phenyl-1,2,4,5-tetrazine (85°s), m.p. 126-129°C (lit.1,7 131°C); MS: M+, m/e = 

238/236. To 149 mg (0.36 mmole) of the 6-bromo compound dissolved in 4 ml of 

tetrahydrofuran 0.22 ml (1.3 mmoles) of n-octylamine was added. The mixture was 

stirred at room temperature during 30 min, the solvent was evaporated off and the 

material was filtered through silica gel. Recrystallization from pentane gave 131 

mg of 4, yield 73%, m.p. 105.5-107 C. IR, H-NMR and mass spectrum are the same as 

for compound 4 obtained by the amination-oxidation procedure. Mixed melting point 

determination gave no depression. 

6-Amino-3-i^-butyl-l, 2, 4, 5-tetrazine (6) 

This compound was prepared from pivaloylchloride and triaminoguanidine hydrochlo

ride analogous to the preparation of 6-amino-3-phenyl-1,2,4,5-tetrazine as descri

bed by Takimoto and Denault.2'8 Yield H ('.) m.p. 114-119°C. V l W R and mass 

spectrum are identical with those of compound 6 obtained by the amination-oxida

tion procedure. 
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3 1,6-DIHYDR0-1,2,4,5-TETRAZINE, A NEUTRAL 
HOMOAROMATIC SYSTEM 

3.1 INTRODUCTION 

In a preceding paper we described the formation of 6-amino-3-aryl(alkyl)-1,2,4,5-

tetrazines by reaction of the appropriate 3-aryl(alkyl)-1,2,4,5-tetrazines with 

liquid ammonia and subsequent oxidation with potassium permanganate. As first step 

in this reaction sequence the formation of a a-adduct between ammonia and the 

1,2,4,5-tetrazine, i.e. 6-amino-3-aryl(alkyl)-1,6-dihydro-1,2,4,5-tetrazine (1) 

was proposed. In order to obtain some evidence for the intermediary existence of 

these a-adducts, the H NMR spectrum of 3-phenyl-1,2,4,5-tetrazine in liquid 

ammonia was measured. We observed that the ring hydrogen appeared at 1.51 ppm. 

This means an upfield shift of 8.84 ppm 

when we compare this chemical shift value 

with the one, found for the 6-hydrogen 
' ' 6 H2N H 

of 3-phenyl-1,2,4,5-tetrazine measured ^ X ^ 

in deuteromethanol (10.35 ppm). This || | 

upfield shift clearly points to the N^ ^ N 

formation of 1 (R=Ph) in liquid ammonia. R 

However, it is very interesting that 

this chemical shift is observed at an 

unusually high field (1.51 ppm). The chemical shifts observed for adducts between 

pyrimidines, 1,2,4-triazines, pteridines and amide ion or ammonia are between 
2 

4-5.5 ppm. This seems to indicate that the change of hybridization of Cfi (sp -> 
3 

sp ) which occurs on adduct formation is not the only factor responsible for this 

considerable upfield shift of 8.84 ppm. 

In order to obtain more insight into the structural features of adduct 1 (R=Ph), 

which could possibly explain this unexpected high upfield shift, we synthesized 

some 3-aryl(alkyl)-1,6-dihydro-1,2,4,5-tetrazines (3a-d) and studied the H NMR 

spectra of these compounds, their conjugate bases 4 and conjugate acids 5 at 

various temperatures. 

3.2 RESULTS AND DISCUSSION 

The compounds 3a-d could be obtained in good yield by treatment of 1,2,4,5-tetra-
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zines 2a-d with sodium borohydride. 

The 1,6-dihydro structure was proven by the presence of N-H stretching vibrations 

t 3400 

3.5). 

at 3400 cm 1 and 3200 cm-1 in the IR spectra and by the 1H NMR spectra (Tables 3.1 

R2 H* 

N / N 
I II 
N ^ N 

R' 
2 

a ) R1 = Ph 

b) Ri = Ph 

c ) R' = Ph 

d) R'=CH3 

NaBHz, 

* 

R2=HB 

R2=CH3 

R2 = C2H5 

R 2 = H B 

N 

II 
N-H 
1 

R' 
3 

R2 HA 

R' 
4 

R2 HA 

H-ff N-H 

N 

R' 
5 

Scheme 3. 1 

We observed that, whereas the H NMR spectrum of 3a measured at 306 K gave only 

one signal (4.13 ppm) for both hydrogens at position 6, at low temperature (199 K) 

these hydrogens gave rise to two doublets, one at 2.13 ppm and the other at 6.13 

ppm (Table 3.2). This phenomenon cannot be ascribed to the influence of the phenyl 

group at position 3, since 3-methyl-1,6-dihydro-1,2,4,5-tetrazine (3d) gave anaT 

logous results: at 306 K both hydrogens at position 6 have the same chemical shift 

(3.94 ppm), while at about 199 K both hydrogens appear as doublets with different 

chemical shift (see Table 3.2). Dissimilarity of both hydrogens at position 6 is 

also found in the conjugate base of 3a, i.e. 4a, obtained on treatment of 3a with 

sodium hydroxide. The H NMR spectrum of 4a shows already at 306K two absorp

tions, at 1.37 ppm and 6.18 ppm (Table 3.1); at lower temperature sharp doublets 

appear. When 3a is protonated (see experimental section) the 3-phenyl-1,6-dihydro-

1,2,4,5-tetrazinium ion (5a) also shows dissimilarity of the hydrogens at position 

6: at 306 K the H NMR spectrum shows only a singlet at 4.55 ppm, whereas two 

doublets at 2.87 ppm and 6.23 ppm occur at about 200 K. 

31 



Table 3.1 Chemical shifts of the ring protons of compound 3a-d, 4a-c and 5a at 

306 K in CD OD/DO 4:1 

compound 

3a 

3b 

3c 

3d 

4a 

4b 

4c 

5a 

é 
4.13 (s) 

2.22a 

2.26b 

3.94 (s) 

1.37 (d) 

1.18 (q) 

1.02 (t) 

4.55 (s) 

HB 

4.13 (s) 

-

-

3.94 (s) 

6.18 (d) 

-

-

4.55 (s) 

a) AB system for H and CH 

b) Selective decoupling of CH gives an A B spectrum for VL and CH, 

All these data strongly indicate that in the compound described above we deal with 
7 

a species, having a homoaromatic system. The 1,6-dihydro-1,2,4,5-tetrazme ring 

can be considered as a monohomotetrazole, in which the tetrazole part of the 

molecule has a rather regular five-memebered ring, allowing orbital overlap to 

form an aromatic 6ir system (Hückel rule). Consequently the methylene group has to 

point out of the plane of the ring, orienting one of the hydrogens rT above the 

plane of the aromatic tetrazole ring and placing the other hydrogen H in an exo-

position. 

Figure 3.1 Perspective drawing of 1,6-dihydro-l,2,4,5-tetrazine 
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The chemical shift difference between FT and H in the neutral species 3a and 3d 

(3.80-4.00 ppm) is in good agreement with the expected shift difference of about 

3-4 ppm, which is calculated by approximation from the ring current effects in 
Q 

benzene. From this result we concluded that there exists an induced ring current 
in 3a and 3d, which provides the explanation for the shift difference between FT 

B B 

and H . From the results given in Table 3.2 it can be concluded that H is hardly 

affected by the charge in the ring; FT however, strongly experiences the influence 

of this charge through space, a negative 

charge causing an upfield shift (4a), a 

positive charge causing a downfield shift 

(5a). This result is in accordance with 

the proposed conformation. 

For comparison the H NMR data for FT and 

H of the homotropylium cation (6) ' 

are included in Table 3.2. 

A B 
Table 3.2 Chemical shifts of protons H and H below the exchange temperature 

in 1,6-dihydro-1,2,4,5-tetrazines (in which R =H ) and in homotropy

lium cation (6) 

compound 

3a 

3d 

4a 

5a 

6 

T ,(K) 
coal 

243 

233 

318 

238 

HA 

2.13 (d) 

2.04 (d) 

1.37 (d) 

2.87 (d) 

-0.73 (d) 

HB 

6.13 (d) 

5.84 (d) 

6.18 (d) 

6.23 (d) 

5.13 (d) 

A<5 

4.00 

3.80 

4.81 

3.36 

5.86 

JAB(Hz) 

7.5 

7.5 

6.6 
a 

7.2 

a) In this spectrum the signal remained broadened 

The coupling constant J. R of the homotropylium cation is of the same magnitude 

(7.2 Hz) as J. R of the 1,6-dihydro-1,2,4,5-tetrazine system, thus indicating that 

the angle of NL-C^-Nr is similar to that of C.-CL-C,-,. 

Figure 3.2 shows some H NMR spectra of 3a at different temperatures. An increase 

in temperature (324 K) sharpens the singlet, a decrease (278 K) causes a broade

ning and at very low temperature (199 K) two doublets appear. 
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r= 0.000 000 83 s JUL yy}^ 324 K 

r = 0000 0065 s 298 K 

_yv_ 

278 K 

199 K 

ppm 

Figure 3.2 Measured (right) and calculated (left) line shape of H and H in 

3-phenyl-l,6-dihydro-l,2,4,5-tetrazine (3a) in CD3OD/D20 (4:1) as 

a function of the temperature 

At low temperature, the system is frozen to one conformation, at higher tempera

tures there is a rapid exchange (ring inversion) between the two possible forms I 

and III, Scheme 3.2. This inversion is visualized to proceed through a planar 

form II in which a considerable loss of derealization energy appears. 

The calculated spectra in figure 3.2 were obtained with a programmable pocket 
,11 calculator; from the lifetime T the kinetic parameters were calculated 

of the Eyring equation: log (k/T) = 10.32- (AH /4.S7 T) + (AS /4.S7). The plot of 

by means 

2 plot c 

log (k/T) against (1/T) was calculated with the least square method (Table 3.3). 
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Il H B H* 

Scheme 3.2 

Table 3.3 Kinetic parameters of some 1,6-dihydro-1,2,4,5-tetrazines obtained by 

dynamic NMR measurements 

compound 

3a 

3d 

4a 

5a 

coal 
(K) 

243 

233 

318 

238 

b 
n 

8 

9 

6 

9 

r 

-0.997 

-0.990 

-0.992 

-0.997 

J 
(kJ/mol) 

25.1 + 0.8 

20.4 + 1.1 

37.1 + 2.4 

21.7 + 0.7 

(J/mol K) 

-110+3 

-125 + 4 

-98 + 9 

-123 + 3 

(kJ/mol) 

51.9 + 1.5 

49.5 + 1 .9 

68.1 + 3.8 

51.1 + 1.6 

a) The accuracy of the determination of the coalescence temperature was about 
10 K 

b) n is the number of temperatures used for the calculation 

The entropy of activation is strongly negative and not very different for all four 

compounds; in the transition state the system is more localized and needs more 

solvation, thus decreasing the degrees of freedom. Since TAS is almost constant 

for these four compounds (Table 3.3), AH is linearly related to AG ; so it is 

reasonable to consider scheme 3.2 to explain the differences in enthalpy of acti

vation. These can be visualized by considering the possible resonance structures, 

Scheme 3.3. 
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Scheme 3.3 

Besides the classical resonance structures IV, V and VI the non-classical reso

nance structures VII and VIII are possible. In the neutral compound 3a the contri

bution of all these resonance structures is of less importance than for the anion 

4a, due to a separation of charge in 3a versus derealization of negative charge 

in 4a. Therefore ring inversion of 3a requires less energy than the corresponding 

process of 4a. In the protonated form 5a there is even more separation of charge, 

resulting in a smaller AH . 

One of the possible resonance structures, V, has a negative charge on carbon. In 

3a (R =Ph) this negative charge can easily be accommodated. In 3d (R =CH,) this 

accommodation is impossible, resulting in a lower resonance stabilization in the 

forms I and III of 3d, relative to 3a. Consequently the ring inversion of 3a 

requires more energy due to more initial state stabilization. 

The derealization energy of the 1,6-dihydro-1,2,4,5-tetrazines is between 50 and 

70 kJ/mol. For comparison: the homotropylium cation has a derealization energy of 

93 kJ/mol and is thus more stabilized than the 1,6-dihydro-1,2,4,5-tetrazines. 

In compounds 3b and 3c as well as in 4b and 4c with a methyl or ethyl group next 

to the hydrogen at position 6, the 6 value of FT is found at high field (2.22, 

2.26, 1.18 and 1.02 ppm respectively). 

This result leads to the conclusion that in these compounds the hydrogen is 

oriented above the plane of the ring and that the large group is in the exo 

position. In the other form there will be an interaction between the Van der Waals 

radii of the nitrogens and the hydrogens of the methyl group. A large substituent 

12 

at the homotropylium cation is in the exo position too. An increase in tempera

ture in order to bring about a ring inversion was not successful since these 

species decompose on heating. This indicates that the other conformation cannot be 

obtained. 
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To gain more certainty about the proposed structure (figure 3.1), we have planned 
7 

to obtain an X-ray analysis of compound 3b or 3c. 

With these results in mind the explanation of the high field chemical shift of the 

H, on adduct formation between 3-phenyl-1,2,4,5-tetrazine and liquid ammonia -as 

discussed in the beginning of this paper- is evident. The molecule is in the 

homotetrazole conformation; the amino group being large, is in the exo position 

and the hydrogen is oriented above the plane of the ring, and thus appears at high 

field in the H NMR spectrum. 

To our knowledge the occurrence of homoaromaticity in 1,6-dihydro-l,2,4,5-tetra-
13 14 

zines has never been found and is in general unknown for aza-aromatic systems. ' 
13 

All adducts of amide to aza-aromatics known so far have no homoaromatic proper

ties. The chemical shift of 4-5.5 ppm observed in these systems excludes an orien

tation of the hydrogen attached to the sp carbon atom above the plane of an 

aromatic ring, since this should result in a shift at much higher field. 

3.3 EXPERIMENTAL SECTION 

Melting points are uncorrected. Mass spectra were determined on an AEI MS 902 mass 

spectrometer. H NMR spectra were recorded on a Varian EM 390 spectrometer equip

ped with a Varian EM 3940 variable temperature controller or on a Varian XL-100-15 

spectrometer. TMS was used as internal standard (60 ppm). In liquid ammonia the 

solvent peak was used as standard. The spectra were converted to the TMS scale by 

addition of 0.95 ppm. The pocket calculator was a Texas Instruments Ti-59 program

mable calculator. Column chromatography was carried out over Merck Silica gel 60 

(70-230 mesh). 

Preparation of Starting Materials 

3-ph.enyl~l,2,4,5-tetrazine (2a) and 3-methyl-l,2,4,5-tetrazine (2d). These com

pounds were prepared as described before. ' 

6-Methyl-3-phenyl-l,2,4,5-tetrazine (2b). This compound was prepared analogous to 
15 17 

the procedure of Lang et al. Accordingly 21.1 g of acetamidine hydrochloride, 
17 

13.4 g of benzimido ethyl ether hydrochloride and 50 mL of absolute ethanol were 

cooled at -10 C. Then 51 mL of hydrazine hydrate were added, keeping the tempera

ture below 5 C. The mixture was stirred during 3h at 25 C and then poured into 370 

mL of water. The crystals were filtered off and the water layer was continuously 

extracted with boiling chloroform for 2 days. The crystals were dissolved in the 

chloroform and oxygen was bubbled through this solution during 3 days. After 
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column chromatography on silica gel using as eluent petroleum ether 60-80 /dichlo-

romethane 1.38 g of 2b (1U) was obtained, m.p. 74.5-76°C (Lit.18 75°C); MS : M+, 

m/e= 172; 1H NMR (CDC13) 6 3.01 (3H,s,CH3), 7.38-7.54 (3H,m,m/p Ph), 8.36-8.55 

(2H,m,oPh). Anal.Calcd. for CgHgN.: C, 62.78; H, 4.68. Found: C, 62.60; H, 4.87. 

6-Ethyl-3-phenyl-l3 2,4, 5-tetrasine (2a). This compound was prepared according to 

the same procedure as described for 2b; from 24.2 g of propionamidine hydrochlo

ride 1.74 g of a dark purple oil of 2c (13!) was obtained. MS:M , m/e= 186. Exact 

mass measurements gave for C1QH1C)N4(M+) : 186.0905 (theoretical 186.0905); 1H NMR 

(CDC13): 6 1.54 (3H,t,CH3), 3.36 (2H,q,CH2), 7.39-7.63 (3H,m,m/p_ Ph), 8.40-8.60 

(2H,m,oPh). Anal.Calcd. for C10H1()N : C, 64.50; H, 5.41. Found: C, 64.29; H, 5.48. 

Reductions with sodium borohydride, general procedure 

To a solution of 2 mmol of 1,2,4,5-tetrazine (2a-2d) in 8 mL of ethanol and 4 mL 

of chloroform, a solution of 76 mg of NaBH. in 3 mL of ethanol and 1 mL of water 

was added dropwise. The colour changed from red to yellow. After stirring for 15 

min some solid NaBH. was added in order to complete the reaction. Then water and 1 

g of NH.C1 were added. After extraction of the water layer with chloroform, drying 

of the extract over MgSO. and evaporation of the chloroform, 1,6-dihydro-1,2,4,5-

tetrazine was obtained and purified by recrystallization from ether-pentane or by 

preparative thinlayer chromatography over silica gel PF.-,,-., 2 mm, eluting with SI 

ether in dichloromethane. The yields and physical data are summarized in table 

3.4. For H NMR spectroscopic data see tables 3.1 and 3.5. The compounds were 

stored at -20°C. 

Table 3.4 Physical data of compounds 3a-3d obtained by sodium borohydride 

reduction 

compound 

3a 

3b 

3c 

3da 

yield (%) 

80 

68 

55 

29 

m.P.(°C) 

83-85 

106.5-108 

95-96.5 

oil 

IR (CHC13) 

3390,3210 NH 

3395,3200 NH 

3395,3210 NH 

3405,3220 NH 

Analyses % 

Calcd. 

59.98 

62.05 

63.81 

36.72 

C,H 

5.04 

5.79 

6.43 

6.16 

Found 

60.18 

61.81 

63.52 

38.55 

C,H 

5.17 

5.78 

6.56 

6.76 
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Notes Table 3.4: 

a) This Compound was found to be instable. It was impossible to obtain reproduci

ble micro-analytical data because during weighing the compound evolved gas due 

to decomposition. 

3d was further identified by comparing its UV spectroscopic data: 

pH7.5 x w a t e r 421 (log E 2.70), 306 (3.43); pH 12.9 x w a t e r 339 (3.34), 
max r max , 

with those of 3,6-dimethyl-1,6-dihydro-1,2,4,5-tetrazine : 

PH7.5 x W a t e r 418 (log e 2.66), 305 (3.43); pH 12.9 x w a t e r 347 (3.33). 
max r max 

1 a 
Table 3.5 H NMR data of compounds 3a-d, 4a-c and 5a at 306 K in CD OD/DO 4:1 

compound 

3a 

3b 

3c 

3d 

4a 

4b 

4c 

5a 

6 C H 3 

2.00(m) 

1 .99(d) 

6 CH2 

2.51(m) 

2 . 4 5 ° 

CH3 

1 . 35 ( t ) 

l - 3 3 ( t ) 

o Ph 

7 . 7 9 - 7 . 93 (m) 
t l 11 

II It 

7 . 74 -7 . 88 (m) 

t l It 

II II 

7 . 81 -7 . 95 (m) 

m/p Ph 

7 . 3 4 - 7 . 48 (m) 
II II 

II II 

7 . 16 -7 . 42 (m) 

II II 

II II 

7 . 43 -7 . 55 (m) 

3 CH3 

2 . 4 8 ( s ) 

NHb 

6 . 7 ( b r . s ) 

5 . 3 ( b r . s ) 

6 . 2 ( b r . s ) 

6 . 0 ( b r . s ) 

a) The chemical shifts of the protons on position 6 are in Table 3.1 

b) In CDC1Q 

c) quintet 

b) In CDC1,,; the other protons are in similar positions as in CD,0D/D„0 

Protonation of lj6-dihydro-l,234,5-tetrazines 3a and 3b 

19 
Like tetrazoles , 1,6-dihydro-1,2,4,5-tetrazines are easily protonated as can be 

seen in figure 3.3. 

In figure 3.3 the chemical shift of Fi of 3b is plotted against the mol of sulfu

ric acid added per mol 3b (open circles). For comparison (closed circles) the 

deprotonation of 3b to 4b is also given. After addition of 1 mol of sodium hydro

xide per mol 3b the deprotonation is complete and the chemical shift remains 
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constant. The protonation of 3b to 5b gives about the same lineair increase in 

chemical shift as the decrease in deprotonation. After addition of 5 mol of sul

furic acid the linearity stops and the curve is slowly reaching a maximum. From 

analogy with the deprotonation we concluded that after addition of 5 mol of sul

furic acid a mono-protonated dihydrotetrazine is obtained, 5b. So the pK of 5b is 
19 a 

about 0.4. In the same way 3-phenyl-1,6-dihydro-1,2,4,5-dihydrotetrazine (3a) 
was protonated to 5a. 

mol HTSOA/ITIOI 3 b 
15 20 

3.0 _ 4.0 
mol OH /mol 3b 

Figure 3.3 Chemical shifts of H o f 6-methy1-3-pheny1-1,6-dihydro-l,2,4,5-

tetrazine (3b) upon deprotonation (closed circles) and protonation 

(open circles) in CD OD/DO (4:1) 
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4 1 3 C NMR INVESTIGATIONS OF THE ANIONIC 
HOMOAROMATIC cr-ADDUCTS FORMED BETWEEN LIQUID 
AMMONIA AND 1,2,4,5-TETRAZINES 

4.1 INTRODUCTION 

In a preceding paper we proposed that 6-amino-3-phenyl-1,6-dihydro-1,2,4,5-

tetrazine (2a) formed on addition of ammonia to 3-phenyl-1,2,4,5-tetrazine (1a) is 

a homoaromatic species (Scheme 4.1). a-Adduct 2a is in the homotetrazole confor

mation, containing 6TT electrons in the tetrazole ring and holding the hydrogen at 
3 

the sp carbon atom above the ring and the amino group in the exo position. It 

was found that the derealization stabilization in the parent compound 3-phenyl-

1,6-dihydro-1,2,4,5-tetrazine (3a) was considerably smaller than in the conjugate 

base 4a (Scheme 4.2) (3a: 52 kJ/mol; 4a: 68 kJ/mol). Since these data indicate 

that deprotonation leads to a gain of resonance energy, it induced us to investi

gate whether in liquid ammonia the a-adducts 2 are present as neutral species 2A 
3 

or as anionic species 2B. 

H H2N HA H2N HA 

N ^ "N MU N N-H N N® 

I II J^~* II I ^ II I 
N ^ N N /,H N / ^ N 

R' R1 R l 

1 A 2 B 

a. R'=Ph 

b. R' = CH3 

c. R»= t-CAH9 

Scheme 4 . 1 

42 



4.2 RESULTS AND DISCUSSION 

1 13 
A. H and C Chemiaal Shifts 

In the H NMR spectrum of the homoaromatic a-adduct 2a H, has been found at 1.51 

ppm; compared with the chemical shift of FL- in 1a (10.35 ppm see Table 4.1) it 

indicates that on adduct formation this hydrogen undergoes an "anomalous" large 

upfield shift of 8.84 ppm. 

In an extension of these studies we observed that on dissolving 3-methyl-1,2,4,5-

tetrazine (1b) or 3-jt-butyl-1,2,4,5-tetrazine (1c) in liquid ammonia, FL also 

undergoes an upfield shift of the same magnitude (AS =8.55 ppm for 1b and AS = 

9.15 ppm for 1c) (Table 4.1). These results suggest that also 2b and 2c are pre

sent in the homoaromatic conformation. 

Further evidence for the formation of a-adduct 2a-c was provided by comparison of 
13 

the C chemical shifts of C, in compounds la-c, when dissolved in deuteromethanol 

and in liquid ammonia. In liquid ammonia C, is found to resonate about 65-85 ppm 

at higher field than in methanol; this is due to adduct formation, changing the 
2 3 13 

hybridization of C, (sp -* sp ) . For comparison the C chemical shifts of C, and 
Cft in the model compounds 3-phenyl-1,6-dihydro-1,2,4,5-tetrazine (3a) and 3,6-

4 

dimethyl-1,6-dihydro-1,2,4,5-tetrazine (3d) together with those of their conju

gate bases 4a and 4d (Scheme 4.2) are included in Table 4.1. These chemical shifts 

agree reasonably well with those of C, and Cft in the a-adducts 2a-c; also the 

coupling constants J„ „ are of the same magnitude (see Table 4.1). Variations in 

the coupling constants will be discussed in section B. 

R3 H A 

N' ^ N Q 

OH* 

R3 HA 

. , / * \ , u 
N N-H 
II 1 -
N / ; N 

R2 

/ or NHP 

\ H® 

N __^N 

R2 

4 

R3 H A 

H - i r ^ N -H 

a.R 2 = Ph, R 3 = H B 

b.R 2 = Ph, R3 = CH3 

c .R 2 = Ph, R3 = C2H5 

d .R 2 =CH 3 ,R 3 = CH3 

Scheme 4.2 

R2 

5 
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1 1 3 . . 
Table 4.1 The H and C chemical shifts and the coupling constants J „(Hz) of 

3-phenyl- (la), 3-methyl- (lb) and 3-t-butyl-l,2,4,5-tetrazine (lc) in 

deuteromethanol and of the a-adducts 2a, 2b, 2c in liquid ammonia. The 

chemical shifts and J of the model compounds 3a and 4a and 3d and 4c 
6 

Compound 

la 

2a 

lb 

2b 

lc 

2c 

3a 

4a 

3d 

4d 

Solvent 

CD OD 

NH3 

CD OD 

NH3 

CD30D 

NH 

CD30D/D20 

CD30D/D20a 

CD OD 

NH 3
b 

CD OD/D-O3 

H6 

10.35 

1.51 

A6=8.84 

10.26 

1.71 

A6=8.55 

10.45 

1.3C 

A6 = ̂  9 

4.13e 

f 

1 .83 

-

0.87 

C6 

159.5 

94.4 

Aô=65.1 

159.3 

72.8 

A6=86.5 

158.9 

85.4 

A<5=73.5 

66.3 

78.0 

71.9 

83.5 

JC,H 
6 

215 

156 

213 

156 

213 

156 

159 

153 

156 

144 

C3 

168.0 

155.5 

171.8 

156.5 

179.5 

155.0 

155.2 

156.3 

153. 1 

151 .2 

others 

CH3 3.03 CH3 21.7 

CH3 2.20 CH3 14.3 

CH 1 .58 CH 29.4d 

CH c CH 26.4d 

3CH3 2.38 3CH3 17.4 

6CH 1.83 6CH3 14.2 

3CH3 18.4 6CH3 17.7 

3CH3 2.40 6CH3 1.87 

1.5 eq. sodium hydroxide 

2 eq. potassium amide 

the signals are almost under the signal of NH,; the value cannot be given 
in two décimales 

the quaternary C could not be distinguished because of aliphatic impurities 

ex 
B 

A B 
below the exchange temperature H 2.13 H 6.13 ppm (see reference 1) 

HA 1.37 H 6.18 ppm (see reference 1) 

In order to determine whether in liquid ammonia the a-adducts 2 are present as 

neutral (2A) or anionic species (2B) two approaches were taken. In a previous 
1 1 

paper we have described the preparation and H NMR spectra of the conjugate 

bases of the 1,6-dihydro-1,2,4,5-tetrazines, i.e. 4a-c. The chemical shifts of rL 

(ÔK ) in these anions are linearly correlated (r = 0.96, ta = 3.49 ) with the aT 

values of the geminal group (H,CH,,C?H,-). Substitution of the oT value of 0.022 

for the amino group gives a &VL of 1.S6 ppm for the a-adduct 2a, being nearly 
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equal to the experimentally observed value of 1.51 ppm (Table 4.2). These data 

lead to the tentative conclusion that a-adduct 2a is present in liquid ammonia as 

anionic species 2B. 

Table 4.2 The chemical shift of HA (<5H ) in 2a, 4a, 4b and 4c and the o^ 

values of H, CH3> C ^ , NH2 

Compound 

4a 

4b 

4c 

2a 

al 

0.000 

-0.031 

-0.039 

0.022 

6HA 

1.37 

1.18 

1 .02 

1.51a 

calculated by least square analysis of 4a, 4b and 4c: 1.56 

(r=0.96, ta=3.49) 

The second more reliable method was based on a report ' that in 1 -X,4-\-benzene;-

(6) there exists a linear dependence between the values of the substituent chemi

cal shift of C. (SCS-4) and the electron demand of the substituent X at C,. The 

SCS-4 values are defined as [oC^OtfH) - 6C4(Y=H)J ppm7. The substituents X which 

have been investigated were either neutral of cationic groups. A quantitative 

measure of the electron donating or withdrawing properties of the group X was 

determined from the 13C chemical shift values of C4 (6C4) of the 1-X,4-Y-benzenes 

(6), in which Y=H; 6C4 is linearly related with the ap values. 

We tried to establish whether this relationship could also be applied for Y=Br, 

OCH CH3 and X is the 1,2,4,5-tetrazinyl group (VII), the 6-amino-1,2,4,5-tetra-

zinyl group (VIII), the 1,6-dihydro-1,2,4,5-tetrazinyl group (IX) and the anionic 

1,6-dihydro-1,2,4,5-tetrazinyl group (X), see Scheme 4.3. 
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X = (substituted)-1,2,4,5-tetrazinyl groups V I I - X I 

Y=H, Br, 0CH3lCH3. 

NH2 

I II 

VIII 

H2N HA 

XIA XIB 

Scheme 4 . 3 

Therefore we prepared the 3-(p-Y-phenyl)-1,2,4,5-tetrazines (7) from which by 

reaction with liquid ammonia and subsequent oxidation with potassium permangana

te the corresponding 6-amino compounds 8 were prepared. Sodium borohydride 

reduction of 7 gave the 3-(p-Y-phenyl)-1,6-dihydro-1,2,4,5-tetrazines (9), which 

by treatment with potassium hydroxide gave the corresponding anions 10. 

In table 4.3 <5C. and the SCS-4 values of these compounds are collected. From these 

data we concluded that the (substituted)-1,2,4,5-tetrazinyl groups can be arranged 

according to decreasing electron withdrawing properties X < IX < VIII < VII. 

In figure 4.1 the SCS-4 values are plotted against 6C.(Y=H). This plot shows 
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indeed a linear relationship for the (substituted)-1,2,4,5-tetrazinyl groups (VII-

X), indicating that the continuity of the C. shift variations is an extended 

range, also for substituents being in the anionic form. 

30 

oo 
00 

20 

10 

-10 

Y=0CH3 

Y=CH3 

—' H 
I, 
125 

X 
I 

——*"•""""• 

TY VÏÏT 
h I 
130 

Y = 

I 

rfC4(Y 

Br 

i 

135 
= H) 

Figure 4.1 Plot of SCS-A against 6C4(Y=H) of l-X,4-Y-benzenes (6) (Y=OCH3,CH3>Br) 
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Table 4.3 C chemical shifts for C, (6C.) and substituent chemical shifts ' 
4 4 

(SCS-4) of l-X,4-Y-benzenes (6) 

subst. 

xd 

VII 

VIII 

IX 

X 

XI 

Substituent Y 

Br 

SC, 
4 

128.63 

123.98 

123.27 

120.04 

116.53 

SCS-4 

-4.61 

-6.44 

-6.45 

-7.13 

-8.22 

0CH3 

6C4 

164.01 

161.28 

161.22 

159.44 

157.00 

SCS-4 

+30.77 

+30.86 

+31.50 

+32.27 

+32.25 

CH3 

SC. 
4 

143.96 

140.15 

139.88 

136.71 

133.58 

SCS-4 

+10.72 

+ 9.73 

+10.16 

+ 9.54 

+ 8.83 

H 

6C4 

133.24 

130.42 

129.72 

127. 17 

124.75 

Solvent 

CDC13 

DMSO-d, 
6 

CD 0D/D20 

CD OD/D2Oe 

NH3 

a the complete spectra are in table 4.7 

b SCS-4= [óC4(Y5*H)-6C (Y=H)] ppm 

c positive values correspond to downfield shift 

d for an explanation of symbols VII-XI, see Scheme 4.3 

e 1.5 eq. sodium hydroxide 

The SCS-4 values of the 6-amino-1,6-dihydro-l,2,4,5-tetrazinyl group XI of the o-

adduct 11 and its <5C.(Y=H) nicely fit in these plots. From this plot it is evi

dent that group XI resembles mostly the anionic 1,6-dihydro-1,2,4,5-tetrazinyl 

group (X), strongly suggesting that in a-adduct 11 the heterocyclic substituent is 

present in the anionic form JIB. Since the oT values of the hydrogen and the amino 

group are only slightly different (see Table 4.2) we had expected to find that the 

electron demand of group XJB in the anionic a-adduct will be about equal to that 

of the anionic 1,6-dihydro group X. However, from our measurements group XIB 

seems to be a stronger electron donor than group X. To prove that this difference 

is due to a solvent effect, the C chemical shift data of 3-phenyl-1,6-dihydro-

1,2,4,5-tetrazine (9,Y=H) when dissolved in liquid ammonia (tetrazine ring: C, 

80.5; C3 154.7; benzene ring: C, 139.3; C2 121.7; C3 128.5; C4 124.4 ppm), were 

compared with those of 9 (Y=H) and 10 (Y=H) in CD3OD/D20 (see Table 4.7, experi

mental section). The chemical shift differences between 10 (Y=H) and 9 (Y=H) and 

between ["9 (Y=H) in NH,] and 9 (Y=H) are in scheme 4.4. From these data it is 

evident that [~9 (Y=H) in NH,] is deprotonated and present as anionic species 10 

(Y=H) with more negative charge localized on the ortho and para positions; this 
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results in a larger upfield shift in liquid ammonia than for 10 (Y=H) measured in 

CD3OD/D20. 

Scheme 4.4 
io(Y = H)-9(Y = H) [9(Y=H)inNH3]-9(Y=Hl 

Comparison of SC. of 10 (Y=H) in liquid ammonia (124.4 ppm) with ôC. of the a-

adduct 11 (Y=H) (124.8 ppm) shows that the effect of the 6-amino-1,6-dihydro-

1,2,4,5-tetrazinyl group XI is very much like that of the anionic group X. All 

these results lead to definitive conclusion that in the a-adducts 11 the 1,2,4,5-

tetrazinyl group is present in the anionic form (XTB). 

A least square analysis of the SCS-4 as a function of 6C. is given in table 4.4 
7 8 

and compared with the literature values. ' For all three substituents Y, i.e. Br, 

OCH, and CH, we obtained a straight line with a good degree of probability (ta) 

and a reasonable correlation coefficient. For Y=0CH, the slope and the intercept 
7 

are in reasonable agreement with the data obtained by both Hügel et al. and 
o 

Membrey et al. , for Y=CH, there is a reasonable agreement with Hügel, for Y=Br we 

obtained a steeper slope. 

B. Coupling constants J„ „ 

3-Phenyl-1,6-dihydro-1,2,4,5-tetrazine (3a=[9 (Y=H)1 ) , its conjugate base 4a= 

[~10 (Y=H)1 and conjugate acid 5a exist in two homotetrazole conformations, one 

with the CH? group pointing upwards and the other with the Œ L group downwards. In 

these systems is a rapid inversion between these two forms, which is frozen on 

lowering the temperature. This phenomenon is not changed by the presence of a 
13 

substituent Y at position 4 of the aryl ring. 

The 13C NMR measurements of the compounds (9 (Y=H,OCH3), 10 (Y=H,Br,OCH3,CH3), and 

5a), were carried out at 273K. At this temperature only the conjugate bases 10 
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Table 4.4 Least square analysis of <5(C.) as a function of SCS-4 comparison 

with literature values 7,8 

Y=Br 

Y=OCH3 

Y=CH3 

r 

slope 

intercept 

n 

r 

slope 

intercept 

n 

r 

slope 

intercept 

n 

this work 

0.977b 

0.40+0.05 

-58+10 

5 

0.919° 

-0.21+0.05 

58+4 

5 

0.948d 

0.21+0.04 

-17+6 

5 

Hügel et al 

0.984 

0.28+0.01 

-42.2+1.7 

24 

0.896 

-0.18+0.02 

55.2+1.6 

24 

0.947 

0.30+0.02 

-25+4 

25 

Membrey et 

0.975 

0.24 

-36.7 

25 

0.825 

-0.13 

48.4 

52 

0.975 

0.35 

-35.1 

56 

ala>8 

The values of the intercept were converted to the same scale by substituting 
128.6 (value of benzene) for S , X in fig. 2 of Membrey et al. 

because of the lack of data no standard deviations could be calculated 

t =7.88 
a 

t =4.04 
a 

t =5.19 
a 

exist in one form and two different coupling constants were observed for C, of 

10. By selective decoupling in 10 (Y=Br) it was established that the smaller one 

(147 Hz) originates from coupling with rT (i.e. the hydrogen above the plane of 

the ring) and the larger one (159 Hz) with H (i.e. the hydrogen in the exo posi

tion) (see Table 4.5). In 1,6-dihydro-3-phenyl-1,2,4,5-tetrazine (3a), measured at 

223 K (this is below the exchange temperature), two identical coupling constants 

were observed (JpuA = J^B = 159 Hz). The difference of J Q A between the neutral 

and anionic species is 12 Hz and is equal to the one observed between 3,6-dime-

thyl-1,6-dihydro-1,2,4,5-tetrazine (3d) and its conjugate base 4d. Nearly the same 

difference but in the opposite direction is found between J Q A in 3d and in its 

conjugate acid 5d (156 and 169 Hz). 3-phenyl-1,6-dihydro-1,2,4,5-tetrazinium ion 

(5a) has an average coupling constant of 165 Hz; however, below the exchange 

50 



temperature it was not soluble enough to measure the coupling constants separate

ly. Since the positive charge in 5d caused the coupling constant JpiA to be larger 

and since JrHB is constant in 3a and 4a, this average coupling constant of 165 Hz 

makes it plausible that JpriA in 5a is about 170 Hz. 

Table 4.5 Coupling constants (Hz) J „..A and J„„B in the various homoaromatic 
Ln Crl 

compounds 

Compound 

2a=[ll (Y=H)J 

2b 

2c 

11 (Y=0CH3) 

3d 

4d 

5d 

3a=[9 (Y=H)] 

9 (Y=OCH3) 

4a=[j0 (Y=H)| 

10 (Y=Br) 

10 (Y=0CH ) 

10 (Y=CH3) 

5a 

J CH A 

156 

156 

156 

156 

156 

144 

169 

159° 

147 

147d 

148 

170e 

J CH B 

159° 

160 

159 

157 

T b 

159 

159 

153 

153 

153 

153 

165 

Temperature 
(K) 

223 

223 

223 

223 

308 

223 

273 

273 

273 

273 

273 

273 

273 

308 

a A B 
H is above the plane of the ring, H is in the exo position 

b 1 ! rH f T J CH A + J CH B 

calculated from: J., „ average= — 0 

c A B 
measured below the exchange temperature (223K) irradiation of H or H leaves 
a doublet 

d A 
irradiation of H leaves a doublet with the largest coupling constant, irra
diation of H leaves a doublet with the smallest coupling constant 
This compound did dissolve very poorly below the exchange temperature, so the 
coupling constants could not be determined separately 

Tha t JprA depends on the charge of the tetrazole ring, whereas JC„B remains 

constant can be explained as follows : in case of the anionic species, FT is 

attracted by the negative charge, the electrons of the O F T bond are released to 
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carbon leading to a decrease of the percentage of s-character of the bond and a 

decrease of the JprA- Reversely JrHA is increased in case the homoaromatic species 

is positively charged. The influence-through-space of the charge in the tetrazole 

ring on ET whereas H is hardly influenced, has also been observed with the H NMF 

chemical shift data. 

Comparison of J ^ A of the a-adducts 2a-c with those of 4a and 4d shows that there 

is a linear relationship with the aT values of the substituents (NH,, H, CH,) 
A 

geminal to ¥T (r=0.93, tct=2.52), but that there is no linear dependence with the 

neutral compounds 3a and 3d. This is another additional proof of the anionic 

character of the a-adducts and implies that also 2b and 2c, when dissolved in 

liquid ammonia, are present in the anionic form 2B. 

CONCLUSION 

From all spectroscopic data available we conclude that the o-adducts of ammonia to 

(substituted)-1,2,4,5-tetrazines are anionic species. The driving force for the 

deprotonation is probably the greater resonance stabilization of the homoaromatic 

anion with respect to the homoaromatic neutral compound. 

4.3 EXPERIMENTAL SECTION 

Melting points are uncorrected. Mass spectra were determined on an AEI MS 902 mass 

spectrometer. H NMR spectra were recorded on a Varian EM 390 spectrometer or on a 

Varian XL-100-15 spectrometer. TMS was used as internal standard (6 0 ppm). In 

liquid ammonia the solvent peak was used as standard. The spectra were converted 
13 

to the TMS scale by addition of 0.95 ppm. C NMR spectra were recorded on a 

Varian XL-100-15 spectrometer. TMS was used as internal standard (6 0 ppm). In 

liquid ammonia trimethylamine (6 47.5 ppm) was used as internal standard. The 

solutions were about 0.4 molair. Typical spectral parameters for C NMR were as 

follows: spectral width 5120 Hz (1.25 Hz/point), acquisition time 0.8s, pulse 

delay 0-1.2s, pulse width 10-20 ys. UV spectra were measured on a Perkin Elmer 550 

spectrophotometer. Column chromatography was carried out over Merck Silica gel 60 

(70-230 mesh). 
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Table 4.6 H-NMR chemical shift data of 3-(p-Y-phenyl)-l,2,4,5-tetrazines 

7-11 (Y=Br,OCH ,CH ) a 

Influence of the (substituted)-!,2,4,5-tetrazinyl groups VII-XI on 

the ortho and meta H-chemical shifts of benzene 

Compound 

7 (Y=Br) 

7 (Y=OCH ) 

7 (Y=CH ) 

8 (Y=Br) 

8 (Y=OCH ) 

8 (Y=CH3) 

9 (Y=Br) 

9 (Y=OCH ) 

9 (Y=CH3) 

10 (Y=Br) 

10 (YOCH ) 

10 (Y=CH ) 

11 (Y=Br) 

11 (YOCH ) 

1 1 (Y=CH3) 

solvents as 

HA HB 

10.25 

10. 1 1 

10. 16 

-

-

-

4. 15 

4.08 

4. 1 1 

1.37 6.19 

1.34 6.13 

d 

1.59 

1.50 

1.55 

in table 4.7 

OCH3/CH3 

3.93 

2.47 

3.87 

2.40 

3.85 

2.37 

3.85 

2.35 

3.68 

2.28 

H2 

8.50 

8.55 

8.49 

8.18 

8.21 

8.16 

7.77 

7.82 

7.75 

7.67 

7.69 

7.64 

7.71 

7.63 

7.65 

H3 

7.75 

7.07 

7.38 

7.75 

7.11 

7.36 

7.57 

7.02 

7.24 

7.47 

6.95 

7.15 

7.47 

6.83 

7.10 

X 

VII 

VIII 

IX 

X 

XI 

A6 ortho 

-1.34 

-1.04 

-0.61 

-0.48 

-0.47 

c 
AS meta 

-0.26 

-0.26 

-0.13 

-0.05 

+0.01 

benzene ô 7.277ppm; the effects of Br, 0CH„ and ClU were taken from Jackman 
and Sternhell negative sign denotes downfield shift; no correction was 
made for the change in solvent 

the accuracy is + 0.05 ppm 

for this compound 307 K is apparently the coalescence temperature, no signals 
were observed 

Preparation of starting materials 

17 1R 

3-Phenyl-l,2,4,5-tetrazine (la), 3-methy I-1,2, 4, 5-tetrazine (lb), 3-t-butyl-
1,2,4,5-tetrazine (la), 3-(p-bromophenyl)-l,2,4,5-tetrasine (7, Y=Br), S-(p-

~~ 17 3 

methoxyphenyD-1,2,4, 5-tetrazine (7, Y=0CH ) , 6-R -3-phenyl-l,6-dihydro-l, 2,4,5-

tetrazine (3a, R3=H)2 (3b, R3=CH3)
2 (3a, 1f=C2H^ and 3,6-dimethyl-l,6-dihydro-

-1, 2,4, 5-tetrazine (3d) were prepared according to known synthetic procedures. 
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Table 4.7 C NMR data of compounds 7 , iC, 9d, 10 11 f and 5a8 

Compound 

7 (Y=H) 

7 (Y=Br) 

7 (Y=0CH3) 

7 (Y=CH3 

8 (Y=H) 

8 (Y=Br) 

8 (Y=0CH3) 

8 (Y=CH ) 

9 (Y=H) 

9 (Y=Br) 

9 (YOCH ) 

9 (Y=CH3) 

10 ( Y ^ ) 1 

10 (Y=Br) 

10 (Y=0CH3) 

10 (Y=CH ) 

1 1 (Y=H)J 

11 (Y=Br) 

11 (Y=0CH3) 

11 (Y=CH3) 

5a 

tetrazine ring 

C6 

158. 1 

158. 1 

157.5 

157.9 

159.4 

158.7 

159.3 

159.4 

66.3 

66.6 

66.5 

66.4 

78.0 

78.2 

78.1 

78.0 

94.4 

94.9 

94.2 

94.6 

62.4 

C3 

166.7 

166.2 

166.1 

166.3 

163.1 

162.9 

162.9 

163.0 

155.2 

154.4 

155.2 

155.4 

156.3 

155.4 

156.2 

156.4 

155.5 

154.7 

155.2 

155.5 

156.0 

benzene ring 

Cl 

131 .8 

130.8 

124.2 

129.2 

133.2 

132.4 

125.6 

130.5 

134.2 

133.9 

127.0 

131 .7 

137.2 

136.6 

130.7 

134.6 

138.7 

138.3 

131.7 

136.2 

130.5 

C2 

128.5 

129.8 

130.3 

128.4 

125.7 

127.6 

127.3 

125.6 

125.4 

127.1 

127.0 

125.5 

123.6 

125. 1 

125.1 

123.7 

122. 1 

123.7 

123.3 

122.2 

126.1 

C3 

129.5 

132.9 

115.0 

130.2 

129.1 

132. 1 

114.6 

129.7 

129.7 

132.8 

115.1 

130.4 

129.5 

132.3 

114.8 

130.0 

128.6 

131 .2 

113.6 

129.0 

129.9 

C4 

133.2 

128.6 

164.0 

144.0 

130.4 

124.0 

161.3 

140.2 

129.7 

123.3 

161.2 

139.9 

127.2 

120.0 

159.4 

136.7 

124.8 

116.5 

157.0 

133.6 

131 .2 

others 

55.5 

21.7 

55.3 

21.0 

55.9 

21.4 

55.9 

21 .2 

55.3 

20.8 

0CH3 

CH3 

0CH3 

CH3 

0CH3 

CH3 

OCH 

CH3 

0CH3 

CH3 

For each series of compounds in at least one compound the shifts were assigned 
by selective decoupling. The other chemical shifts could be assigned by the 
coupling patterns and the empirical parameters for the chemical shifts in sub
stituted benzenes. 

in CDC1 

d in CD3OD/D20 4:1 

i n NH 

h [9 (Y=H)]=3a 

J [ l l (Y=H)]=2a 

in DMS0-d6 

in CD30D/D20 4:1 with 1.5 eq sodium 
hydroxide 

in CD 0D/D20 4:1, 0.61M sulphuric 
acid 

1 [lO (Y=H)]=4a 
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3-(p-Methylphenyl)-l,2,4,5-tetrazine (7, Y=CH ) . This compound was prepared 
— 17^ 

analogously to the procedure of Lang et al. After column chromatography on 

silica gel using as eluent petroleum ether (60-80 )/dichloromethane, 7 (Y=CH,) was 

obtained in a yield of 8°s; mp 86-88°C (lit. 1984.5°C) ; MS:M+, m/e = 172. Anal.Calcd. 

for CgHgN4: C, 62.78; H, 4.68. Found: C, 62.97; H, 4.82. In addition 5% of 3,6-di-

(p-methylphenyl)-1,2,4,5-tetrazine was obtained m.p. 248.5-249°C (lit.20 235°C); 

MS:M+, m/e = 262. Anal.Calcd. for C^N.,^: C, 73.26; H, S.38. Found: C, 73.41; H, 

5.52. 

6-Amino-3-(p-Y-phenyl)l,2,4,5-tetrazine (8, Y-H,Br,OCH ,CH ) . Compound 8 (Y=H,Br) 
- IQ Ó Ó 

was prepared as described before and compound 8 (Y=0CH,, CH,) was prepared 
10 o j 

according to the procedure described before by dissolving 7 (Y=0ŒU, CH,) in 

liquid ammonia and subsequent oxidation with potassium permanganate. 

8 (Y=OCH3): yield 86?
0; mp 262-264°C (lit.21 257-259°C) ; MS:M+, m/e=203. Anal. 

Calcd. for CgHgN50: C, 53.19; H, 4.40. Found: C, 53.19; H, 4.42. 

8 (Y=CH3): yield 82% mp 242-243°C (lit.21 233-234°C); MS:M+, m/e=187. Anal. Calcd. 

for CgHgN5: C, 57.74; H, 4.85. Found: C, 57.53; H, 4.89. 

3-(p-Y-Phenyl)-l,6-dihydro-l,2,4,5-tetrazines (9, Y=Br,0CH,,CH J. The compounds 

were prepared by sodium borohydride reduction of 7. They were purified by recry-

stallization from benzene or by preparative thin-layer chromatography over silica 

gel PF2i;4' 2mm' élûtes with dichloromethane with 5 % ether. 

As mentioned before, these compounds decompose during mass spectrometric measu

rements and do not show a M peak. 

9 (Y=Br): yield 42V, mp 115-117°C, IR (chloroform) 3410, 3220 NH-stretch. Anal. 

Calcd. for CgF^Brl^: C, 40.19; H, 2.95. Found: C, 40.66; H, 3.12. 

9 (YOCPy: yield 35°6; mp 99-101°C, IR (chloroform) 3400, 3210 NH-stretch. Anal. 

Calcd. for CgH1QN40: C, 56.83; H, 5.30. Found: C, 57.02; H, 5.40. 

9 (Y=CH,): yield 441 ; from thin-layer chromatography of the mother liquor an 

additional 221 was obtained. Melting range 100-104°C, IR (chloroform) 3400, 3220 

NH-stretch. Anal. Calcd. for CgH1()N4; C, 62.05; H, 5.79. Found: C, 62.23; H, 5.83. 

3 
Determination of the pK of 6-R -3-phenyl-l,6-dihydro-l,2,4,5-tetrazines (3a, 

R3=H) (3b, RZ=CHJ (3C, R3=C„HJ. Calculation of the pK of 2a. o z o a 

23 
The pK was determined by UV spectroscopy. Each compound was measured in seven 

a 24 
buffer solutions of different pH and in a buffer solution of pH 7.5 (neutral 
species) and pH 12.9 (conjugate base). A stock solution in 10 mL of ethanol was 
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prepared from which 1 mL was added to the buffer solutions. The pK values are: 

3a, 10.01+0.03; 3b, 9.77+0.09; 3c, 9.92+0.08. UV spectroscopic data: pH 7.5 A 

3a: 432 (log e 2.93), 275 (4.05); 3b: 431 (2.86), 275 (4.06); 3c: 433 (2.91), 277 

(4.08). 

pH 12.9 A 4a: 389 (log e 3.28), 303 (4.15); 4b: 385 (3.30), 303 (4.17); 4c: 390 
ITlciX 

(3.26), 304 (4.17). 

The pK value of 2a was approximated by averaging the pK values of 3a, 3b and 3c, 

which results in 9.90+0.12.25 
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DEGENERATE RING TRANSFORMATIONS IN 
REACTIONS OF 1,2,4,5-TETRAZINES WITH HYDRAZINE 

5.1 INTRODUCTION 

In our laboratory there is a continuing interest in the mechanism of reactions 

between nucleophiles and nitrogen-containing aromatics . The nucleophiles used 
2 3 4 

in these studies are the amide ion , lithium piperidide , carbanions , phenyl-
r /- *7 Q Q 

lithium , ammonia , hydrazine , hydroxylamine and amidines . On studying the 

amino-dehalogenation in N-labelled halogenopyrimidines we have discovered 

that, when potassium amide in liquid ammonia is used as aminating agent, as a 

general reaction pattern one of the ring nitrogens becomes exocyclic in the 

amino group and the nitrogen of the amide ion is built into the ring. An 

example of this degenerate ring transformation is the formation of 2-amino-
x x 11 

4-phenylpyrimidine (4 ) from 2-bromo-4-phenylpyrimidine (1 ) (Scheme 5.1). 

Br 

C 6 H 5 

-"NH, 

C6H5 C 6 H 5 C 6 H 5 

-HBr 
,->* 
0N 

CN * ~NH H2N' 

Scheme 5.1 

The reaction can be described to occur by attack of the amide ion on Cft, yield-

ing the anionic 1:1 a-adduct 2 . This adduct undergoes a base-catalysed ring 
x x 

opening into the N-cyano derivative 3 , which cyclizes into 4 . This mechanism 
1 2 

is called the S (ANRORC) mechanism . This mechanism is also found to occur N' 13 - although to a lesser extent - with the weak nucleophile ammonia . All 

S .(ANRORC) reactions which occur with potassium amide and/or ammonia have in 

common that a one-atom piece of the original ring is replaced by the nitrogen 

atom of the nucleophile. Very recently examples of degenerate ring transforma-
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tions became known in which a replacement of a two- and even a three-atom seg

ment of the ring by two or three atoms of the nucleophile takes place. Thus it 

has been proven that in the reaction of 1-methylpyrimidinium iodide with benz-
9 

amidine in the formed 2-phenylpyrimidine the N..- C?- N, fragment of the ring 

originates from the amidine. With these results in mind we became interested 

whether hydrazine would be able to perform nucleophilic substitutions according 

to the SN(ANRORC) mechanism. For this reason a study was started on the reaction 

of substituted 1,2,4,5-tetrazines with hydrazine hoping to obtain evidence that 

during the hydrazinolysis two vincinal nitrogens of the ring of the substrate 

could be replaced by two nitrogens of hydrazine. 

In this preliminary communication we would like to present the first results 

obtained in our study of the reactions of 3-amino-6-methyl-1,2,4,5-tetrazine 

(5) and 3-bromo-6-methyl-1,2,4,5-tetrazine (7) with hydrazine. 

5.2 RESULTS AND DISCUSSION 

Hydrazinolysis of 3-arnino-6-methyl-l,2,4,5-tetrazine (5) 

3-Amino-6-methyl-1,2,4,5-tetrazine (5) was prepared as described in the litera-
14 

ture . Refluxing an ethanolic solution of 5 containing two equivalents of 

hydrazine hydrate gave in about 50% yield 3-hydrazino-6-methyl-1,2,4,5-tetra-
15 zine (6), characterized as its benzaldehyde hydrazone , besides a small 

amount of unreacted 5 (reaction a, Scheme 5.3). In order to investigate if in 

N'' 

N v 

NH2 

CH3 

* * 
H2N-NH2 

» • 

NH2 

II *l 

H3C NH-NH2 * * 

NH2 

N > \ ,NH-NH2 \ ^ / * * 
CH3 

Scheme 5.2 

NH2 

N I C.N_NH! 

II v -—- — 
N / N - N H 2 

CH3 

H 2 N ] NHNH2 

II 1 * 

— Il L N / - N * 

CH3 

NHNH2 

-NH 3 
H/ N 
I II 

CH3 

* 

* 
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this hydrazinodeamination a ring-opening is involved [s.,(ANRORC) mechanism] , 

we studied this reaction with N-labelled hydrazine 

N — N 

N = N 
5 

ethanol 
reflux 

Scheme 5 . 3 

4 eq.N2H t.H20 
ethanol 
20°C 

H3C-(/ V N H 2 H3C-// 
\ / 2eq.N2Ht-H20 \ 

N N 2 eq.Br; 

HOAc 
NHNH2 2°°C 

6 Mn02/C 
CHCI3 u r 

ref lux " 3 L 

N N 

f >" 
8 

It is evident from Scheme 5.2 that in case the S.,(ANRORC) mechanism is 
x 15 

operative the tetrazine ring in the final product 6 will contain N. To 
measure the amount of N in the tetrazine ring we had to remove the hydrazino 

x 
group in 6 . Because 3-hydrazino-6-methyl-1,2,4,5-tetrazine (6) is unstable 

and thus difficult to purify we used the crude reaction mixture containing 

unreacted 5 and the labelled product 6 and converted 6 into 3-bromo-6-methyl-
x 17 

1,2,4,5-tetrazine (7 ) by treatment with bromine in glacial acetic acid 

(reaction b, Scheme 5.3). 3-Amino-6-methyl-1,2,4,5-tetrazine (5) did not react 

with bromine under these conditions as was checked in a control experiment. 

To be absolutely sure that in this oxidative bromination no ring-opening was 

involved we also applied a second method i.e. the oxidative removal of the 
X 10 

hydrazino group on 6 by manganese dioxide on carbon , yielding 3-methyl-

1,2,4,5-tetrazine (8 )(reaction c, Scheme 5.3). Also this second method leaves 

5 unchanged under the reaction conditions applied. 
1r X X X 

The percentage of N in 6 , 7 and 8 was determined by quantitative mass 
15 x 

spectrometry comparing the M+2 peak of the double N-labelled compounds 6 , 
x x 19 

7 and 8 with that of the unlabelled reference compounds 6, 7 and 8 . The 
percentage of compound 5 which reacts according to the SN(ANRORC) mechanism 

1S x x x 

was calculated by dividing the percentage of N in 7 and 8 by that of 6 . 

The results of these measurements are summarized in Table I (see reaction 

sequence 1 and 2). 
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From these data it is evident that the hydrazinolysis of the aminotetrazine 

5 into 6 occurs for about 25% according to an SN(ANRORC) process. The remain

ing 75°ê must react by the AE (Addition-Elimination) mechanism. The fact that 

by both degradation methods (6 into 7 as well as 6 into 8 ) nearly the same 

ANRORC-percentage is found, ensures us that in the oxidative bromination no 

ring-opening is involved. 

Hydrazinolysis of 3-bromo-6-methyl-l,2,4,5-tetrazine (7) 

3-Bromo-6-methyl-1,2,4,5-tetrazine (7) was prepared by the reaction pathway 

a,b of Scheme 5.3 . Hydrazinolysis of 7 with N-labelled hydrazine gave the 

3-hydrazino compound 6 (reaction d, Scheme 5.3). The 3-bromo compound 7 

reacts faster than the 3-amino compound 5, since 7 was found to be completely 

converted into 6 . After removal of the hydrazino group in 6 by oxidative 

bromination (Scheme 5.3) and measuring the N content in 6 and 7 by mass 

spectrometry we found that the hydrazinolysis of 7 occurs for 20.5 _ 2.4% 

according to the S,,(ANRORC) mechanism (reaction sequence 3, Table I). In a 
3E 

duplicate reaction labelled 3-bromo-6-methyl-1,2,4,5-tetrazine (7 ) - obtained 

in the reaction sequence 1 (Table I) and containing 1.77 - 0.09°s N - was used 

as starting substance. Reaction with unlabelled hydrazine gave results which 
20 

are shown in reaction sequence 4 (Table I). In this reaction we found that 
18 t 8°s of 7* reacted according to the S.,(ANRORC) mechanism. Although this 

Nv 
15, last measurement is inaccurate due to the low percentage of N in the ring of 

the starting bromide 7 we can conclude that the hydrazinolysis of 3-bromo-6-

methyl-1,2,4,5-tetrazine (7) occurs for about 20% by the SN(ANR0RC) mechanism. 

With these few examples we have shown that in the hydrazinolysis of some 

1,2,4,5-tetrazines ring-opening reactions occur. 

Table I. N excess in compounds 6 , 7 and 8 

Reaction 
sequence 

1 

2 

3 

4 

Starting 
material 

5 

5 

7 

7* 

in 

6* 

6* 

6* 

6* 

compounds 6 , 

7.12 Î 0.31 

6.60 i 0.42 

5.76 t 0.54 

1.79 t 0.03 

7 and 

7* 1 

8* 1 

7* 1 

7* 1 

8* 

.77 ± 0.09 

.70 ±0.11 

.18 - 0.09 

.63 t 0.06 

% Reacting by 
SN(ANRORC) 

24.9 ± 1.6 

25.8 + 2.3 

20.5 i 2.4 

18 ± 8 
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Table II. Mass spectrometry at high resolvent power 

Compound 

5 (2H)(a) 

(213N)(b) 

6 (2H) 

( 2 % ) 

7 (2H) 

(215N) 

8 (2H) 

(215N) 

Formula 

C3H7N5 
C 3 H 5 1 5 N 2 N 3 

C3H8N6 
C 3 H 6 1 5 N 2 N 4 

3 5 4 
C3H3Brl5N2N2 

C3H6N4 
C 3 H 4 1 5 N 2 N 2 

Experimental 

113.0697 

128.0804 

128.0592 

177.9661 

177.9459 

98.0583 

98.0369 

Theoretical 

113.0701 

113.0486 

128.0810 

128.0594 

177.9678 

177.9462 

98.0592 

98.0370 

(a) (2H) refers to the dihydro compound 

(b) (2 N) refers to the double N-labelled product 

5.3 EXPERIMENTAL SECTION 

Melting points are uncorrected. N contents were determined on an AEI MS 902 

mass spectrometer. Pmr spectra were recorded on a JEOL C-60 spectrometer or on 

a Hitachi-Perkin Elmer R-24B spectrometer. TMS was used as internal standard. 

Column chromatography was carried out over Merck Silica gel 60 (70-230 mesh 

ASTM). 

Double N-labelled hydrazine hydrate 

Since double N-labelled hydrazine hydrate was not commercially available it 

was prepared from N-labelled hydrazine sulphate (from VEB Berlin-Chemie, 

Berlin Adlershof). 

N-labelled hydrazine sulphate (1.3012 g., 10 mmoles) were dissolved in 10 ml 

of distilled water at 80°. During 1.5 hours, 2.9970 g. of barium hydroxide 

octahydrate (9.5 mmoles) were added portionwise; then the mixture was refluxed 

for 1.5 hours. The precipitated barium sulphate was filtered off. Water was 

removed by azeotropic distillation with 146 ml. of benzene and 59 ml. of ethanol, 

the excess of benzene was also removed (azeotrope benzene-ethanol). The solu

tion of N-labelled hydrazine hydrate in ethanol was stored at -20°. By a 
21 

redox-titration with potassium iodate the ethanolic solution was found to 

contain 9.4 mmoles of hydrazine hydrate (yield 99°s). 
1 S 

The reactions with N-labelled materials were carried out as described below 
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for the reactions with unlabelled compounds. 

Hydrazinolysis of 3-amino-6-methyl-l,2,4,5-tetrazine (5)(Reaction a, Scheme 

5.3) 

A solution of 111 mg. (1 mmole) of 5 in 4 ml. of ethanol was refluxed with 100 

pi. of hydrazine hydrate (2 mmoles) during 1.S hours. After evaporation of 

the solvent the residue was extracted with hot benzene (3x). The benzene layer 

was dried over magnesium sulphate and evaporated. 3-Hydrazino-6-methyl-1,2,4,5-

tetrazine (6) was characterized by mass spectrometry; M , m/e = 126 and as 

benzaldehyde hydrazone; M+, m/e = 214 ; m.p. 190.5-191°(lit.15 196-198°); 

pmr (DMS0-d6): 6 2.78 (s,3H,CH3), 7.30-7.86 (m,5H,phenyl), 8.45 (s,1H,C-H), 

12.40 (s,1H,N-H). 

3-bromo-6-methyl-l32,4,5-tetrazine (7)(Reaction sequence a,b,Scheme 5.3) 

A solution of 111 mg.(1 mmole) of 5 in 4 ml of ethanol was refluxed with 100 

yl. of hydrazine hydrate (2 mmoles) during 1.5 hours. After evaporation of 

the solvent the residue was extracted with hot benzene (3x). The benzene layer 

was dried over magnesium sulphate and evaporated. This crude residue (contain

ing unreacted 5 and 6) was dissolved in 2.6 ml. of glacial acetic acid and 

68 pi. of bromine were added. This solution was stirred at room temperature 

during 1 hour; 5.2 g. of crushed ice, about 30 ml. of ether and sodium carbo

nate - until the solution became basic - were added. The water layer was ex

tracted with ether; the ethereal extracts were washed with some ml. of a 5°s 

sodium bicarbonate solution and then with a few ml. of a saturated sodium 

chloride solution. After drying over magnesium sulphate and evaporating off 

the ether, the bromo compound 7 was separated from 5 by column chromatography 

on silica gel elution with benzene. After recrystallization from petroleum 

ether (40-60 ) we obtained 63 mg. of 3-bromo-6-methyl-1,2,4,5-tetrazine (7), 

yield 36%, m.p. 86-88°; pmr (perdeuteriomethanol): 6 3.00 (s,CFL); M , m/e = 

176/174. Anal. Calcd. for C3H3BrN4: C, 20.59; H, 1.73. Found: C, 20.74; 

H, 1.67. 

3-methyl-l3 2,4j5-tetrasine( 8) (Sequence a,c. Scheme 5.3) 

This compound was prepared from 5 by hydrazinolysis and subsequent oxidation. 

The hydrazinolysis of 5 occurs in the same way as described above. After evapora

tion of the benzene-layer obtained by extraction of the reaction mixture ( 2 

mmoles of 5 with hydrazine hydrate), the residue was dissolved in 10 ml of 
18 

chloroform and 525 mg. of manganese dioxide on carbon were added. After re-
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fluxing this mixture during 1 hour the manganese dioxide on carbon was filtered 

off and the product was adsorbed on silica gel. 3-Methyl-1,2,4,5-tetrazine (8) 

was obtained by column chromatography on silica gel using ether-petroleumether 

(40-60 ) as eluent. After careful removal of most of the solvent we obtained a 

red, highly volatile oil, still containing some eluent. Pmr (deuteriochloroform) : 

6 3.10 (s,3H,CH,), 10.27 (s,1H,H); M , m/e = 96. Exact mass measurements gave 

for C3H4N. (M+) 96,043608 (theoretical 96.043594). Attempts to characterize 8 

by a picrate, a chloroaurate or a quaternary salt failed. 

Anal.Calcd. for C j H ^ : C, 37.49; H, 4.20. Found: C, 36.98; H, 3.96. 
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N-labelled product made it necessary to measure the mass spectrum at 
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be opened in two ways leading to a or b (see Scheme 5.4). 

Br 

H 2 N - N ^ 

H 2 N - N ^ 

CH3 

a 

IL 
Nv. 

Br 

^ N - N H 2 

/ ^ N - N H 2 

CH3 

b Scheme 5.4 
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65 



6 THE OCCURRENCE OF THE SN(ANRORC) MECHANISM 
IN THE HYDRAZINATION OF 1,2,4,5-TETRAZINES 

6.1 INTRODUCTION 

In a preceding paper we obtained firm evidence that the anion 6-amino-1,6-dihy-

dro-3-phenyl-1,2,4,5-tetrazine (2), formed upon addition of ammonia to 3-phenyl-

1,2,4,5-tetrazine (1) is homoaromatic. This a-adduct is in the homotetrazole 

conformation, containing 6TT electrons in the tetrazole ring, holding the amino 

group in the exo position and the hydrogen at the sp carbon atom above the ring. 

This hydrogen is located in the shielding regio, resulting in a chemical shift at 

high field (6=1.51 ppm). 

Scheme 6.1 
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In the literature it is described that addition of ammonia to the CL-N.. bond in 

1-methylpyrimidinium iodide (4) is accompanied by an upfield shift of H 6 (A6=4.91 

ppm). In hydrazine-hydrate about the same upfield shift (A6=4.S-5 ppm) was 

observed, from which it was concluded that in hydrazine an analogous a-adduct, 

i.e. 6-hydrazino-1-methyl-1,6-dihydropyrimidine (6) was formed. 

From the a-adduct 2, 6-amino-3-phenyl-1,2,4,5-tetrazine (3) was obtained upon 

oxidation with potassium permanganate ; the reaction of 1 -> 3 can be considered as 
7 

a Chichibabin amination. It has been published that the Chichibabin amination of 
8 9 

4-phenylpyrimidine and phenyl-1,3,5-triazine occurs according to the SN(ANRORC) 
10 

mechanism, describing a reaction sequence involving Addition of the Nucleophile 

to the heterocycle, Ring Opening and Ring Closure. 

In an extension of our studies on the amination of 1,2,4,5-tetrazines by liquid 

ammonia, we became interested whether 1,2,4,5-tetrazines are also appropriate 

systems for Chichibabin hydrazination by hydrazine-hydrate. The use of sodium 

hydrazide in the Chichibabin hydrazination of some azaaromatic systems has been 

reported. We were particularly interested whether the hydrazination -if it 

occurs- is accompanied by the intermediate formation of a 1:1 a-adduct having 

homoaromatic (and anionic) properties and whether the hydrazination would occur 

according to the S..(ANR0RC) process. 
1 2 In a previous paper we already presented some evidence that in the hydrazi-

nolysis of 6-amino- and 6-bromo-3-methyl-1,2,4,5-tetrazine an SN(ANRORC) mechanism 

is operative. In this paper we wish to present an extension of these hydrazino-

deamination and hydrazino-dehalogenation reactions and especially the results of 
15 

our study with N-labelled hydrazine and the NMR spectroscopy of the interme
diates in the hydrazination involved. 

6.2 RESULTS AND DISCUSSION 

A. Chichibabin hydrazination of 1, 2,4, 5-tetrazines 

On treatment of 1 equivalent of the 1,2,4,5-tetrazines 7 with 3 equivalents of 

hydrazine-hydrate in ethanol at 298 K the corresponding hydrazino compound 8 is 

formed (yields between 9-15%) together with a number of unidentified coloured (not 

red) and colourless products; 10-15% of starting material 7 is retrieved (Table 

6.6). To make separation of the hydrazino compounds 8 from the rest of the complex 

reaction mixture possible, they were converted into the more stable acetone-

hydrazones 9. 

To investigate whether in the formation of 8 the S.,(ANRORC) mechanism is operative 
15 

the hydrazinations were carried out with N double labelled hydrazine. If an 
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SN(ANRORC) process occurs, it may lead to the incorporation of N into the 

1,2,4,5-tetrazine ring; if not, the label will only be present in the exocyclic 

nitrogens of the hydrazino group. To establish which percentage of the N-label 

is present in the tetrazine ring or in the hydrazino group of the hydrazino com-
X 13 15 X 

pounds 8 , the excess of N-label in the acetone-hydrazones 9 and in the 
x x 

corresponding bromo compounds 10 -obtained by oxidation of 8 with bromine in 
14 

acetic acid- was measured. The mass spectrometric measurements were carried out 
at high resolving power, the results are given in table 6.1. No label was found 
in the recovered starting material 7. 

/ 
CH3 

HN-N=C 

\ 
H3C-C-CH3 

N2H4.H20 

CH, 

Br 

HOAc 

R = CH3, C2H5, t-C4H9 , C6H5 , p-0CH3-C6H4 R 

10 

Scheme 6.3 

From the data in table 6.1 it is evident that during the formation of the hydra-
x 15 

zino compounds 8 (R=CH,,C7Hr) at least part of the N-label of hydrazine is 

incorporated into the 1,2,4,5-tetrazine ring. 

In order to obtain additional evidence for the reaction mechanism we tried to 

establish by H and C NMR spectroscopy which intermediary species are present 

during the reaction. 

Comparison of the proton chemical shifts of 1,2,4,5-tetrazines 7 dissolved in 

deuteromethanol with those observed upon dissolving 7 in a 1:1 mixture of hydra-

zine-hydrate and deuteromethanol at 233 K (table 6.2) shows that FL undergoes a 

large upfield shift (Aó between 8.25 and 8.92 ppm). This considerable upfield 
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15 * * 
Table 6.1 N excess in acetone-hydrazones 9 and in the 6-bromo compounds 10 

R 

CH3 

C2H5 

t-CAH9 

C6H5 

S.D. 
average 

% 15N 

9* 

6.5 

24.6 

5.7 

6.3 

8.0 

20.7 

10.6 

9.3 

0.4 

% 15N 

10* 

1.70 

5.7 

1.60 

1.82 

0 

0 

0.44 

0.27 

0.15 

ANRORC 

% 

26.2 

23.0 

28.0 

28.9 

0 

0 

4.2 

2.9 

2.6 

ANRORC 

average 

24.6 

28.5 

0 

3.5 

2.6 

shift, being of the same magnitude as observed in liquid ammonia (h6=^8.7 ppm), 

can only be explained if we assume the formation of the a-adducts 11, present in 

the homoaromatic conformation (scheme 6.4). No II NMR signals of the starting 

material 7 could be detected. 

The formation of a-adducts 11 was further proven by comparison of the C chemical 

shifts of C,. in 7 dissolved in deuteromethanol and in a 1:1 mixture of hydrazine-

hydrate and deuteromethanol. The upfield shift of A6=59-62 ppm observed for C, in 

the last mentioned solvent system confirms the formation of 11 ; this upfield shift 
2 3 

confirms the change in hybridization of C, (sp -+ sp ). Also the decrease of 

the coupling constant Jf „, from 213-215 Hz in 7 to 159-160 Hz in 11 is in agree

ment with the adduct formation; the value of 159 Hz is of the same magnitude as in 

the ammonia adduct 2 (156 Hz). 

The question whether the a-adducts 11 are present as neutral species 11A or as 

anionic species 11B was answered by applying the method discussed in a previous 

paper. 

For 3-(£-Y-phenyl)-1,2,4,5-tetrazine derivatives (Y=Br,0CIL,CH7;) there exists a 
13 

linear relationship between the C substituent chemical shift at C. of the aryl 
17 ring (SCS-4) and 6C,(Y=H), which is a measure of the electron demand of the 

(substituted)-1,2,4,5-tetrazinyl groups. Therefore we determined the &C. values 

of the a-adducts 11 (R=C&H p_-0CH3-C6H4) . 
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1 13 
Table 6.2 H and C chemical shifts and the coupling constants J „(Hz) of 7 

and 16 in deuteromethanol and in a mixture of hydrazine-hydrate and 

deuteromethanol at various temperatures 

R 

7 CH3 

1 1 

13 

7 C 2 H 5 

1 1 

13 

7 £-C4H9 

1 1 

13 

7 C6H5 

1 1 

13 

13 

1 1 

7 p-OCH3-

"C6H4 

16 

17 

solvent 

CD OD 

a 

a 

CD OD 

a 

a 

CD OD 

a 

a 

CD OD 

N2H4.H20 

N2HA.H20 

f 

a 

CDC1 

a 

CD OD 

a 

a 

temp. 
(K) 

308 

233 

253 

308 

233 

253 

308 

233 

273 

308 

253 

308 

308 

233 

308 

233 

308 

233 

273h 

H6 

10.26 

1.71 

A6=8.55 

6.92 

10.32 

1.65 

A6=8.67 

6.98 

10.45 

1.53 

A6=8.92 

6.95 

10.35 

2. 10 

A<5=8.25 

7. 15 

6.84 

2.05 

A6=8.30 

10. 11 

-

C6 

159.3 

98.9 

A6=60.4 

143 

159.5 

97.5 

A5=62.0 

141.7 

158.9 

97.3 

A6=61.6 

141.6 

159.5 

100. 1 

A<5=59.4 

142.5 

142.2 

99.7 

A6=59.8 

157.5 

99.7 

A6=57.8 

-

JC,H 
6 

213 

159 

200 

213 

159 

200 

213 

160 

200 

215 

159 

201 

201 

213 

-

C3 

171 .8 

153.6 

152 

175. 1 

158.4 

153.8 

179.5 

160. 1 

163.6 

168.0 

156.5 

150 

150.4 

156.8 

166.1 

156.6 

166.3s 

150.61 

others 

CH 3.03 CH3 21.7 

CH 2.42 CH3 18.2 

CH 1.88 CH3 16.9 

CH 3.26 CH 1.44 

CH 29.7 CH 12.3 

CH2 2.76 CH 1.19 

CH 24.8 CH b 

CH 2.22 CH,° 
h 

CH 23.7 CH 

CH3 1.58 CH3
d 29.4 

CH 1.31 CH d 27.1 

CH3 1.20 CH 3
d 27.3 

Ph: C 133.6 C 2 129.3 

C_ 130.6 C. 134.1 
3 4 

C 136.8 C 2 122.7 

C, 129.5 C, 126.6 
3 4 

C e C 2 127.0 

C, 129.6 C. 131.4 
3 4 

C e C 2 127.5 

C, 129.7 C. 131 .6 
3 4 

C 137.2 C 2 123.3 

C_ 129.7 C, 127.1 
3 4 

C 124.2 C 2 130.3 

C, 115.0 C. 164.0 
3 4 

C 130. 1 C 2 124.7 

C„ 114.8 C. 159.0 3 4 

CH 2.98 CH3 20.5g 

CH 3.02 (broad) 

CH3 1.87 CH3 16.1 

70 



Notes Table 6.2: 

a N.H,.H.O/CD.OD (1:1) 
z 4 z 3 

b CH was not determined, 15.0 ppm was set at 0 ppm 

c due to contamination with ether it is difficult to assign the CH, shift with 
certainty 

d the quaterny C could not be observed because of aliphatic impurities 

e C could not be observed 

f 2 equivalents N H..H 0 in CD OD 

g in CDC1„, see reference 23 

h at intermediate temperatures 3.02 disappears, while 1.87 is formed 

i also starting material present; minor peaks: 166.9; 20.8 ppm 

The SCS-4 value and the 6C.(Y=H) value for the 6-hydrazino-1,6-dihydro-1,2,4,5-

tetrazinyl group nicely fit in this plot (r=0.923, t =4.16) (table 6.3). From this 

plot it is evident that the electron demand of the 6-hydrazino-1,6-dihydro-1,2,4, 

5-tetrazinyl group resembles mostly that of the 1,6-dihydro-1,2,4,5-tetrazinyl 

18 
anion. As the aT values of the hydrazino group and hydrogen are not very diffe
rent, we concluded that the a-adducts 11 are present as anionic homoaromatic 
species in hydrazine-hydrate/methanol. 

Table 6.3 SC, and SCS. 
4 4 

(Y=H,0CH3)C 

a,b 
for 3-(p-Y-phenyl)-l,2,4,5-tetrazine derivatives 

substituted 

1 ,2,4,5-tetrazinyl group 

tetrazinyl-

6-aminotetrazinyl-

1 ,6-dihydrotetrazinyl-

1,6-dihydrotetrazinyl-anion 

6-hydrazino-1,6-dihydrotetra

zinyl-anion 

Y=0CH 3 

<5C, 
4 

164.01 

161.28 

161.22 

159.44 

159.03 

SCS-4 

30.77 

30.86 

31.50 

32.27 

31.98 

Y=H 

<5C, 
4 

133.24 

130.42 

129.72 

127. 17 

127.05 

solvent 

CDC1 3 

DMSO-d, 
o 

CD 3 OD/D 2 0 

CD 0 D / D O 

N 2 H 4 . H 2 0 / C D 3 O D 

(1:1) 

a SCS-4 = SC,(Y^H)-óC,(Y=H) ppm, positive value corresponds to downfield shift 

b r=0.923; slope 0.24+0.06; intercept 62+7; t =4.16 
- - a 

c values are from reference 1 

d 1.5 equivalent NaOH 
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On warming the solutions of 11 in hydrazine-hydrate/methanol (from 233 K to 253 K 

(R=CH3, C2H5) or to 273 K (R=t-C4Hg) or to 308 K (R=C6H5)), both the 1H and 1 3C 

NMR adduct signals slowly disappear and new signals with completely different 

chemical shifts come up. They could be attributed to open-chain intermediates 13. 

H 

I II, 

R 

H2N-NH2 

, H2N-NH2 

H NH-NH2 

N N-H 

II I 
N. /.N 

u*A 

* * 
H NH-NH2 

Il B 

N 

N-H 

R NH-NH2 * * 

* * 
H NHNH2 

N' V ^ N - N H 2 

II 
N. ^ N - N H 2 

N-H 

I 
-N 

R 

14*1 

H 

N' \\N-NH 2 

il v.. 
N^ ^^N-NH2 * * 

12* 

R 

13*11 

H NHNH2 

* 
N-H 

N 

R 

14*11 

NHNH2 

R 

8*1 

NHNH2 

N ^ N 

N^\ M' 

R 

8*11 

Scheme 6.4 

Evidence for the formation of 13 is based on two facts a) in all these open-chain 

intermediates 13, with different groups R, both H, and CV are found in a narrow 

chemical shift range (IL between 6.92-7.15 ppm; C, between 141-143 ppm) and b) the 

chemical shifts of IL are of the same magnitude as found for the H-C=N-group in 
19 1 

N,N-dLmcthylacetaldehyde-hydrazone (15). The H chemical shift of the methyl 

group in 13 (R=CIL) at 1. ppm is also in surprising good agreement with that 
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found for the C-methyl group in 15 (1.90 

ppm). 

Moreover, when 3,6-dimethyl-1,2,4,5-

tetrazine (16) was dissolved in a 1:1 

mixture of hydrazine-hydrate and deutero-

methanol at 273 K and the 1H and 1 3C NMR 

H3C 

c = N 
\ / H 3 

N 

\ H 3 spectra of these solutions were measured, 15 

chemical shifts were found, which could 

only be attributed to the di-hydrazone 

17. Species 17 showed only one methyl 

group indicating that in 17 both methyl groups are identical. The H chemical 

shift for the hydrogens of the methyl group (CH,=1.87 ppm) is about the same as 
13 

found for 13 (R=CH,, 1.88 ppm). Also nearly identical C chemical shifts were 

observed for C, =150.6 ppm and CH,=16.1 ppm compared with those in 13 (R=CII,) 
15 15 

(table 6.2). If 16 is treated with N double labelled hydrazine [1% " N ) , part of 

the label is found in the 1,2,4,5-tetrazine ring of the recovered 16 (0.6°s * N ) . 

This can be explained by ring closure of the symmetrical open-chain intermediate 17 (scheme 6.5). 

CH3 

N 

Scheme 6.5 

N 

CH3 

16 

H2N-NH2 

H3C_ NH-NH2 

N N-H 

II I 

CH3 

No NMR evidence has been obtained for the intermediacy of 12 . Its occurrence is 

necessary however to explain the formation of 8 II from 7 (R=CH,, R=C2Hr) having 

both labelled nitrogens in the 1,2,4,5-tetrazine ring. 

All NMR data and the results of N-labelling are in agreement with the mechanism 

proposed in scheme 6.4. Attack at C, (route I) is yielding the initial homoaroma-
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tic a-adduct anion 11 B, which on opening of the 1,2,4,5-tetrazine ring yields 

13 1. Attack at C,, in route II, gives an unstable adduct 12 , which is not obser-
x 

ved by NMR. Ring opening yields open-chain intermediate 13 II, being identical 
X 15 

with 13 I, except that the N-label is present in a different position. The ring 
closure takes place by attack on Cft, leading to the most stable adduct 14 , which 

20 
is oxidized by hydrazine present in the reaction mixture. 

That ring closure occurs by attack of the hydrazino nitrogen on C. and not on C,, 

to which R is attached, is probably due to the homoaromatic stabilization of in

termediate 14. Homoaromaticity is less likely, when two large groups (R and hydra-
x 21 

zino as in 12 ) are present at the methylene bridge. This mechanism is in 

agreement with the fact that 7 (R=C,Hr, t-C.fL) does not, or only to a very small 

extent, react with formation of ring labelled 8XII (R=C6HS, t-C.IL). Both groups 

are blocking groups and probably retard or prevent addition at C.,, to which these 

substituents are attached. 

The fact that in all reactions the recovered starting material 7 is unlabelled 

indicates that 14 I or 14 II do not decompose into 7 or 7 . The recovered starting 

material 7 is probably unreacted starting material. 

From all the data presented we concluded that both routes (I and II) of scheme 
x 6.4, leading to the ring-labelled hydrazino compound (8 II), as well as to the 

ring-unlabelled hydrazino compound (8 I) occur with an opening of the 1,2,4,5-

tetrazine ring. Both substitutions can be considered as an S,,(ANR0RC) mechanism. 

The only difference between the two routes is the place of initial attack (C, or 

C-J. If a blocking group is present on C,, attack only takes place at C, and no 

label is found to be built into the ring. 

To our knowledge this is the first example of a reaction in which both the ring-

labelled and the exocyclic-labelled compound follow the SN(ANRORC) pathway. Thus 

in these reactions no evidence for an SN(AE) mechanism has been obtained. 

B. Eydrazino-deamination and hydvazino-dehalogenation of 1,2,4,5-tetrazines 

On refluxing 18 (L=NH2) in ethanol containing 2 equivalents of hydrazine-hydrate 

6-hydrazino-3R'-1,2,4,5-tetrazines (19) are obtained in yields between 40 and 70% 

(depending on substituent R ' ) , together with recovered starting material 18. The 

yields and reaction conditions are mentioned in table 6.6. 

When the leaving group L is Br or CI, compounds 18 (L=Br,Cl) react in ethanol 

containing 3 equivalents of hydrazine-hydrate much faster; already at 293 K they 

are quantitatively converted into 19 (table 6.6). 

In order to investigate whether also in the formation of these hydrazino compounds 
15 19 the SN(ANRORC) mechanism is operative, the reactions were carried out with N 
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double labelled hydrazine. After extraction with benzene, the crude reaction 

product was not further purified and directly measured in the mass spectrometer. 

To establish which percentage of N was present in the 1,2,4,5-tetrazine ring or 

on the exocyclic nitrogens of the labelled hydrazino compounds 19 , these com

pounds were converted to the corresponding 6-halogeno-3R'-1,2,4,5-tetrazines 
* 14 

(20 , X=Cl,Br,I) by oxidation with halogen in acetic acid; or -in some cases- to 
the corresponding 3R'-1,2,4,5-tetrazines (21 ) by oxidation with manganese dioxide 

, 22 on carbon. 

Scheme 6.6 

L 

N^/ N 

I II 
N \ N 

R' 

IS 

R'=H,CH3lC2H5 

L = NH2,Cl,Br 

X = Cl,Br, I 

N2HvH20 
» 

t-C^Hg.CgHs 

NHNH2 

I II 

R' 

19 

R' 

20 

tMnQ2/C 

R 

21 

15 % X 3t 

The excess of N in compounds 19 , 20 and 21 as found by mass spectrometric 

measurement at high resolving power is given in table 6.4. No label was found in 

the recovered 6-amino-3R'-1,2,4,S-tetrazines (18, L=NH?). 

From these data it is evident that part of the hydrazino compounds 19 is formed 

from 18 by the S (ANRORC) mechanism in a decreasing order: L=NFL>L=Br>L=Cl. 

In order to gain more insight in the reaction course of the hydrazinolysis we 
1 13 

investigated by H and C NMR spectroscopy which intermediary species are pre
sent. 

The reactions of 18 (L=Br,Cl) could not be followed by NMR spectroscopy, since 

these compounds react very fast with hydrazine. 

On dissolving 6-amino-1,2,4,5-tetrazine (18, R'=H; L=NFL) in hydrazine-hydrate/ 

deuteromethanol (1:3) at 273 K, the formation of the a-adduct 22 (R'=H) was not 

observed (see table 6.5). The H NMR signal 6=6.98 ppm was attributed to the open-
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Table 6.4 N excess in compounds 19 , 20 and 21 

Starting mat. 18 

R' 

H 

CH3 

C2H5 

i"C4H9 

C6H5 

CH3 

CH3 

C2H5 

L 

NH2
a 

NH 2
3 

NH2
3 

NH 2
a 

NH 2
a 

CI 

Br 

Br 

S.D. 
average 

1 1 5 N 

19* 

6.4 

6.1 

7. 1 

6.6 

6.1 

6.3 

6.4 

6.4 

5.0 

5.5 

5.3 

19.4 

5.8 

5.2 

5.2 

0.4 

% 15N 

20*/21* 

1.27 X=I 

1.42 X=I 

1. 77 X=Br 

1.70 21* 

0.99 X=Br 

1.22 X=Br 

0 X=Br 

0 X=Br 

0 21* 

0 21* 

0.22 X=Br 

1.71 X=Br 

1.18 X=Br 

0.19 X=Br 

0.05 X=Br 

0.15 

ANRORC 

% 

20.0 

23.2 

24.9 

25.8 

16.3 

19.5 

0 

0 

0 

0 

4.1 

8.8 

20.5 

,8b 

3.6 

1.0 

2.6 

ANRORC 

average 

21.6 

25.3 

17.9 

0 

0 

6.5 

19.3 

2.3 

2.6 

a no label was found in recovered starting material 

b see reference 12 

chain intermediate 23 (R'=H). This conclusion was based on comparison with the 

chemical shift of H, in 13 (6.92-7.15 ppm), table 6.2. About the same shift for 23 

is also found in a mixture containing 1 equivalent of 18 (R'=H; L=NH?) and 2 

13 

equivalents of hydrazine-hydrate in deuteromethanol. The values of the C chemi

cal shifts of C, of 23 (6=144.9 ppm) and Jc H of 23 (199 Hz) (table 6.5) also 

correspond nicely with those of C,. (5=141-143 ppm) and J„ „ (200 Hz) of the open-

chain compounds 13, see table 6.2. 
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1 13 
Table 6.5 H and C spectroscopic data of 6-amino-3R'-1,2,4,5-tetrazines (18 

R'=H,CH ,C?H,-;L=NH?) in deuteromethanol and in a mixture of hydrazine-

hydrate and deuteromethanol 

R' 

18 H 

23 

18 CH 

23 

18 C2H5 

23 

solvent 

CD OD 

a 

c 

c 

CD OD 

a 

a 

CD OD 

a 

a 

temp.(K) 

308 

b 

233 

273 

308 

e 

g 

308 

h 

g 

H3 

9.70 

6.91 

9.70 

6.98d 

C3 

154.2 

144.9 

162.7 

153.3f 

166.4 

157.7 

JC3H 

213 

199 

C6 

166.7 

154.3 

165.0 

155.0f 

165.0 

155.2 

others 

CH3 2.73 CH3 19.9 

CH3 1 . 85 _CH3 15.9 

CH3 1.85; 2.32; 

2.68 

CH2 3.12 CH3 1.45 

CH 28. 1 CH 12.9 

CH2 2.22 CH 1.18 

CH 24.4 CH 11.3 

CH2 2.22, 2.77, 

3. 14 CH 1.18, 

1.33, 1.40 

a 2 equivalents N„H,.H O in CD.OD 
z 4 Z 3 

b 45 min. at 208 K, measured at 263 K 

c N2H4.H20/CD3OD (1:3) 

d at intermediate temperatures 9.70 is broadened and disappears, while 6.! 
formed 

e 3h at 323K, measured at 303 K 

f signals may be interchanged 

g measured at 323K during 8h 

h 3h at 323K, measured at 258K 

The ]H NMR spectra of 6-amino-3-methyl-1,2,4,5-tetrazine (18 R'=CH3; L=NH7) with 

2 equivalents of hydrazine-hydrate measured at 323 K during 8 hours were analyzed 

carefully. Four different stages could be discerned, showing the appearance and 

disappearance of signals. The chemical shifts observed for the methyl group in 

these four stages indicated by i, ii, iii, iv are: i) 2.73 and 1.85; ii) 2.73, 

1.85 and 2.32; iii) 1.85 and 2.32; iv) 2.32 and 2.68 ppm. The peaks at 2.73 and 
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2.68 ppm were assigned to starting material 18 (R'=CH • L=NH~) and hydrazino 

product 19 (R'=CH,) respectively. The peak at 1.85 ppm is attributed to R'=CH, in 

open-chain intermediate 23, because it is in agreement with 1.88 ppm, found for 

the open-chain intermediate 13 (R=CTL), table 6.2. The resonance signal at 2.32 

ppm can probably be attributed to compound 24-1,11 (R'=CH,). Compound 24-11 is 

obtained by ring closure of 23-11 according to route b and 24-1 by attack of 

hydrazine on CV of 18 (R'=CH,; L=M-L) (route I, scheme 6.7). This shift is resem

bling the one at 2.42 ppm found for the CH, group of a-adduct 11 (R=CH,). 
13 13 

From stage i) the corresponding C NMR spectra were measured; the C chemical 
shifts of 23 are resembling those of the open-chain intermediates 13 in table 6.2. 

1 13 
The same results were obtained on measuring the H and C NMR spectra of 6-amino 

3-ethyl-1,2,4,5-tetrazine (18, R ' K U L ; L=NH7), see table 6.5. All the NMR data 
15 

J2 5 
and results of N-labelling support the mechanism proposed in scheme 6.7. 

NH2 

5 N ^ ^ N ' 

R' 

i s 

Scheme 6 .7 

* * 
H2N NHNH2 

* * N 
H2N-NH2 V 

* * 
|H2N-NH2 

N-H 

I 
N 

R' 

24*1 

NH2 

N \ N 

II I 
N N-H 

R' NH-NH2 

-NH 3 

* * 
NHNH2 

R 

19*1 

-*r 

NH2 

H2N NHNH2 

N N-H 

Il L 

N / N * 

R 24*11 

R' 

18* 

• 

NHN^ 

1 

R' 

19*11 

In contrast to the reaction course presented for the Chichibabin amination of 7 

(scheme 6.4), we have to conclude that in the hydrazino-deamination a somewhat 

different reaction sequence takes place (scheme 6.7). The ring-labelled hydrazino 

compound 19 II is obtained by an SN(ANRORC) mechanism (route II) and the hydra-
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15 X 

zino compound with N-label in the side-chain, i.e. 19 I, is formed by the S^(AE) 

mechanism (route I). Compound 19 II is formed via the open-chain intermediate 

23 II. The possible occurrence of 23 I as intermediate can be excluded, since then 

ring labelled 18 would have been formed; this is however not the case. 

That no SN(ANRORC) mechanism is involved in the formation of the hydrazino com

pounds 19 (R'=C6H5, t-C4Hg) from 18 (R'=C6H5,t-C4Hg) is in agreement with the 

proposed mechanism since addition to position 3, leading to 22 , is prevented due 

to the blocking effects of these groups. 

6.3 EXPERIMENTAL SECTION 

Melting points are uncorrected. Mass spectra were determined on an AEI MS 902 mass 

spectrometer. Exact mass measurements and intensity ratio measurements of the M 

and (M+2) peaks were carried out at a resolving power of 10000. H NMR spectra 

were recorded on a JEOL NM C-60H, a Varian EM 390 or on a Varian XL-100-15 spec-
13 

trometer. TMS was used as internal standard (6=0 ppm). C NMR spectra were recor
ded on a Varian XL-100-15 spectrometer. TMS was used as internal standard. Typical 

13 
spectral parameters for C NMR were as follows: spectral width 5120 Hz (1.25 

Hz/point), acquisition time 0.8 s, pulse delay 0-1.2 s, pulse width 10-20 us. UV 

spectra were measured on a Perkin Elmer 550 spectrophotometer. Column chromato

graphy was carried out over Merck Silica gel 60 (70-230 mesh). 

Preparation of starting materials 

19 R 94 94 
3-R-l,2,4,5-tetrazines (7, R=CH , t-C H C' H\, p-OCH -C H ) and 6-amino-

9^ 9S 9V fi o o 4 

1,2,4,5-tetrazines (18, R'=H, CE,, C Ji ^, ceH^ L=NHJ were prepared accor

ding to known synthetic procedures. Compounds 18 (R'=H, C^KL; L=NHL) were only 

mentioned in reference 25, but no physical data were given. 

3-Ethyl-l,2,4,5-tetrazine (7, R=C„HJ was prepared by hydrazinolysis of 6-amino-3-

ethyl-1,2,4,5-tetrazine (18, R'=C2H,-; L=NH2) and subsequent oxidation of the 

hydrazino compound with manganese dioxide on carbon, analogously as described 
1 2 

before. This oxidation reaction is almost quantitative. 

6-Bromo-l,2,4,S-tetrazines (10, R=CJ1 , t-C M J were prepared by hydrazinolysis of 
2D — 4 y 

6-amino-1,2,4,5-tetrazines (18, R'=C2H,-, t-C.H„; L=NH2) and subsequent oxidation 

of the hydrazino compounds with two equivalents of bromine in acetic acid accor

ding to the procedure described before for 6-bromo-3-methyl(phenyl)-1,2,4,5-
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tetrazine (10, R=CH_, Q i L ) . These reactions give almost quantitative yields. 

6-Ealogeno-l,2,4,b-tetrazines (20, X-Cl, Br, I; R'=H, CHV, C Jl„ t-C .HQ, CE) 
o 2 o — 4 J OD 

were prepared from the corresponding 6-amino compounds 18 (R'=H, CH,, CJi-, t> 

C.Hg, C.T-L; L=NH2) analogously to the preparation of the 6-bromo compounds 10. 

With the other halogens the oxidation reaction is also almost quantitative. 

The hydrazinolysis reactions 

These were carried out under conditions and with results as given in table 6.6. 

The hydrazino compounds 8 and 19 were identified as their benzaldehyde-hydrazo-

nes ' or as their acetone-hydrazones 9. 

Aoetone-hydrazones 9 (R=CH , C'H,, t-C,Hq, C'H') were prepared by reflux of 1 mmol 

of pure hydrazino compound 8 or of a mixture containing hydrazino compound 8 with 

2 mL of acetone during 5 min. This reaction is quantitative. 

Table 6.6 Reaction conditions and yields of the hydrazinolysis of 1,2,4,5-tetra-

zines 7 and 18 

starting material 

7 R=CH 

7 R=C2H5 

7 R=t-C,Hn 

— 4 y 
7 R=C,HC 6 5 

18 R'=H L=NH 

18 R'=CH L=NH„ 

18 R'=C2H5 L=NH2 

18 R'=t-C,H- L=NH„ 
— 4 y i 

18 R'=C.HC L=NH„ 
6 5 z 

18 R'=CH L=C1 

18 R'=CH3 L=Br 

18 R'=C2H5 L=Br 

N2H4.H20 

equivalents 

3 

3 

3 

3 

2 

2 

2 

2 

2 

3 

3 

3 

temp. 

(K) 

298 

298 

298 

298 

351 

351 

351 

351 

351 

293 

293 

293 

time 
(min) 

45 N 2 

45 N2 

45 N 2 

45 N 2 

90 

90 

90 

90 

90 

20 

20 

20 

hydrazino 
,B,c 

compound 
% 

12 

15 

12 

9 

62 

47 

50 

34 

70 

>90 

>90 

>90 

,b 
recovered 
start.mat. 

10 

14 

12 

15 

2 

35 

27 

33 

2 

0 

0 

0 

% 

a reactions were carried out on 1 mmol scale in 4 ml of ethanol 

b yields were determined by UV measurement 

c the hydrazino compounds were converted to the acetone-hydrazones 
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Table 6.7 Physical data of the new 1,2,A,5-tetrazines, prepared in this study 

compound mp mass 
spectra 

m/e 

H NMR 
spectra 

6 

Analyses % 

Calcd. C Found C 
H H 

7 R=C2H5 

<C4H
6V 

8 R=C2H5 

8b R=C2H5 

( C n H ] 2 N 6 ) 

8 R=tC,H„ 
— 4 y 

8 R=C,HC 6 5 

9 R=CH3 

(C6HloV 
9 R=C2H5 

(C7H]2N6) 

9 R=t-CAHg 

(C9H]6NA) 

9 R=C6H5 

(CUH ]2V 
R=C2H5 

(C4H5BrN4) 

R=t-C4H9 

(C6H9BrN4) 

18 R'=H, 

L=NH2
C 

(C2H3N5) 

18 R'=C2H 

L=NH C 

(CAH;N5) 

18 R'=CH3 

L=C1 
(C3H3C1N4) 

19 R'=H 

19b R'=H 

(C9H8N6) 

10 R'=H 
X=I 

(C2HIN4) 

oil 

161-162.5 

10 

10 

112-115 

106-109 

72.5-77.5 

180-182 

34.5-35.5 

oil 

170-170.5 

126.5-127 

83.5-84.5 

187-187.5 

oil 

M 110 

M+140 

M+228 

M+168 

M 1Ï 

M+166 

M+180 

M 208 

M+228 

M+190/ 
188 

M+218/ 
216 

M+97 

M+125 

M+132/ 
130 

M+112 

M+200 

M+208 

table II 

1.47(t,CH )3.15(q,CH )7.31-
7.90(m,Ph) 8.33(s,CHJ 12.33 
(NH) DMSO-d, 

3 .63 

5 .49 

7 .88 

5 .30 

44 .41 

5 .71 

57 .84 

5 .19 

1.41(S,CH )5.0 (NH) DMSO-d 

4.69(s,NH ) 9.70(s,NH) 7.50-
7.64(m,m/£Ph) 8.20-8.35(m, 
oPh) DMSO-d 

2.02(s,(CH3)2)2.74(s,CH ) 
10.71(NH) DMS' 3-
1.33(t,CH )2.00(s,(CH ) ) 
3.07 (q,CH ) 10.76NH DMSO-d 

1.44(s,CH3) 203(s,(CH.)„) 
10.86 (NH) DMSO-d 

2.07(s,(CH ) ) 7.52-7.61 
(m,m/pPh) 8.22-8.36(m,oPh) 
11.06 (NH) DMSO-d, 
1.46(t,CH ) 3.25(q,CH?) 

CDC1, 

1.57(s,CH3) CDC1, 

7.20(NH) 9.66(s,H) CD C0CD3 

1.49(t,CH3) 3.09(q,CH2) 
7.08 (NH) 

3.00(s,CH3) 

CD COCD 

CD30D 

43.36 

6.07 

46.65 

6.71 

51.90 

7.74 

57.88 

5.30 

25.41 

2.67 

33.20 

4.18 

24.74 

3.11 

N72.14 

38.39 

5.64 

27.60 

2.32 

7.31-7.82(m,Ph) 8.30(s,CH) 
9.92(s,H) 12.35 (NH) DMSO-d, 

10.25(s,H) CDC1, 

43.65 

6.25 

46.85 

6.86 

51.60 

7.86 

57.68 

5.31 

25.62 

2.52 

33.34 

4.02 

24.99 

3.11 

N72.04 

38.58 

5.33 

27.94 

2.27 

53 .99 

4 . 03 

11.55 

0 . 48 

54 .11 

3 .81 

d 



Notes Table 6.7: 

a exact mass measurements gave for C,H,N,(M ) 110.0596 (theor. 110.0592) 

b benzaldehyde-hydrazone 

c compound is mentioned in reference 25, but no physical data are given 

d exact mass measurements gave for C2HIN,(M+) 207.92478 (theor. 207.92478) 
this compound is unstable and can be stored for short time at -20 C 

The melting points, the H NMR data, the mass spectrometric measurements and the 

microanalyses of the new compounds are summarized in table 6.7. 
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7 THE CRYSTAL STRUCTURE OF HOMOAROMATIC 
6-ETHYL-3-PHENYL-1,6-DIHYDRO-1,2,4,5-TETRAZINE 

7.1 INTRODUCTION 

As described in this thesis 1,6-dihydro-1,2,4,5-tetrazines can be considered as 
1 2 

homoaromatic ' species. The aromatic sextet is formed by the two double bonds 

and the lone pair of N,. In order to make the electron derealization in the 

aromatic ring possible homoaromatic compounds are puckered and consequently the 

p orbitals of the atoms adjacent to the methylene bridge are canted. The over

lap becomes restricted to single lobes at the side of the molecule opposite to 

the bridging atom. For this reason the conformation of the 1,6-dihydro-1,2,4,5-

tetrazines can be imagined as containing an approximately planar tetrazole 

ring (figure 7.1) with a shortened N(1)- N(5) distance with respect to the 

corresponding distance in 1,2,4,5-tetrazine, so that the above mentioned over

lap and derealization is possible. 

Figure 7.1 Perspective drawing of 
1,6-dihydro-1,2,4,5-
tetrazine 

Since the title compound is easily obtained in crystalline form, it is possible 

to obtain direct information about the correctness of this assumption by a 

crystal structure determination. This work was carried out by Dr.C.H.Stam at 

the Laboratory of Crystallography of the University of Amsterdam. 

b-Ethyl-3-phenyl-1,b-dihydro-1,2,4,5-tetrazine (1) was found to exist in one 
3 3 

conformation in solution . The hydrogen at the sp carbon atom is above the 

tetrazole ring and the alkyl group is in the exo position. In contrast, in 

3-phenyl-1,6-dihydro-1,2,4,5-tetrazine (2) there is an inversion between two 



conformations, one with the methylene group pointing upwards and the other with 
3 

the methylene downwards . 

Scheme 7. 1 

H° HD 

7.2 RESULTS AND DISCUSSION 

The measurements were carried out at 223 K (because the compound decomposes at 

room temperature). The crystals are orthorhombic with cell constants a = 8.3489 

(8), b = 10.2516 (S) and c = 23.041 (2) A. The space group is P b c a with 8 

molecules per unit cell. 1454 independent reflections were collected, using 

graphite monochromated CuKa radiation. The structure was solved by a straight

forward application of the symbolic addition program set SIMPEL and refined 

to a R value of 0.053. 

The fractional coordinates are listed in table 7.1. 

The conformation of the moleculs is shown in figure 7.2 
o 

The nitrogen atoms I\L , No, N. and Nr are coplanar within 0.005 A. A projection 

onto this plane is presented in figure 7.3. The bond length and interbond angles 

are listed in table 7.2; the most important of these are indicated in figure 

7.4 . 

From figures 7.2 and 7.3 it is clear that the molecule is boat shaped with 
3 

both C, and Cfi upwards, and not as in figure 7.1. The sp carbon atom is 

pointing upwards with a dihydral angle of 49.3 between the N(1)- C(6)- N(5) 

and the N(1)- N(2)- N(4)- N(5) planes; C, is tilted 26.7° as indicated in 
2 

figure 7.3. Figure 7.3 reveals also that C, is not purely sp hybridized, but 

it is slightly umbrella shaped. The reason why C, is also upwards is not clear. 

It might be due to a Van der Waals repulsion'between nitrogens I\U and N. and 

Hg and FL2 of the phenyl group, although the crystal structure of 3,6-diphenyl-

1,2,4,5-tetrazine is planar . 



H U I 

H10 

Hll 

Figure 7.2 Three dimensional structure of 1 

26-7'%N- -N;^93* 

M 

-li 

Figure 7.3 Projection onto the N(l)- N(2)- N(4)- N(5) plane 
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Table 7.1 Fractional coordinates in 6-ethyl-3-phenyl-

1,6-dihydro-l,2,4,5-tetrazine (1 ) 

N ( l ) 
N(2) 
C(3) 
N(4) 
N(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C ( l l ) 
C(12) 
C(13) 
C(14) 
H ( l ) 
H(6) 
H(8) 
H(9) 
H(10) 
H ( l l ) 
H(12) 
H(131) 
H(132) 
H(141) 
H(142) 
H(143) 

X 

. 3181 (3 ) 

. 3 581 (3 ) 

. 4 149 (3 ) 

. 3601 (3 ) 

. 3 204 (3 ) 

. 3 807 (4 ) 

. 4 924 (3 ) 

. 5 496 (4 ) 

. 6 262 (5 ) 

. 6527 (4 ) 

. 6 001 (4 ) 

. 5 202 (3 ) 

. 3 289 (3 ) 

. 4 064 (5 ) 

.247 (5) 

. 508 (4) 

.530 (5) 

.677 (5) 
•713 (5) 
. 623 (5) 
. 475 (4) 
. 355 (4) 
. 208 (6) 
.526 (7) 
. 373 (5) 
.379 (6) 

Y 

. 3972 (2 ) 

. 3 482 (2 ) 

. 2 269 (3 ) 

. 1478 (3 ) 

. 1982(2) 

. 3 347 (3 ) 

. 1 679 (3 ) 

. 2464 (3 ) 

. 1920 (3 ) 

. 0 565 (3 ) 
- . 0201 (3 ) 

. 0329 (3 ) 

. 3964 (3 ) 

. 3 314 (4 ) 

. 468 ( 4 ) . 

. 3 32 (3) 

.341 (4) 

.240 (4) 

. 018 (4) 
- . 120 (4) 
- . 023 (4) 

.496 (4) 

.389 (4) 

.347 (5) 

.374 (4) 

. 246 (5) 

Z 

. 5544 (1 ) 

. 6053 (1 ) 

. 6022 (1 ) 

. 5 575 (1 ) 

. 5092 (1 ) 

. 5 035 (1 ) 

. 6529 (1 ) 

. 6980 (1 ) 

. 7 453 (2 ) 

. 7475 (2 ) 

. 7028 (2 ) 

. 6 559 (1 ) 

. 4471 (1 ) 

. 3954 (1 ) 

. 550 (1) 

.510 (1) 

.696 (2) 

.777 (1) 

.785 (2) 

.704 (2) 

.625 (1) 

. 448 (1) 

.444 (2) 

.394 (2) 

.355 (2) 

.394 (2) 

The estimated standard deviations are in parentheses 

1 3 

As predicted from the H NMR spectroscopic data , iL is indeed found above the 

tetrazole ring and the ethyl group is in the exo position. 

The phenyl group is planar within 0-02 A and the plane of the phenyl group is 

twisted with respect to the N(2)- C(3]- N(4) plane by 8 , C,2 is rotated towards 

N., Co is rotated away from I\L. This can be seen from the Newman projection 

along the C(7)- C(3) bond (figure 7.5a). 

Another important piece of information from this X-ray structural determination 
2 

is the fact that N,, which carries the hydrogen, is sp hybridized. This can be 
concluded from the Newman projections along the N(1)- N(2) and the N(1)- C(6) 
bonds in figure 7.5 b,c. 



Table 7.2 
o o 

Bond distances (A, IA 100 pm) and interbond angles 
in 6-ethyl-3-phenyl-l,6-dihydro-l,2,4,5-tetrazine (1) 

N(D -
N(l) -
N(2) -
C(3) -
N(4) -
N(5) -
C(6) -
C(6) -
C(6) -
C(3) -
C(7) -
C(8) -
C(9) -
C(10)-
C(ll)-
C(12)-
C(8) -
C(9) -
C(10)-
C(1D-
C(12)-
C(13)-
C(13)-
C(13)-
C(14)-
C(14)-
C(14)-

N(2) 
H(l) 
C(3) 
N(4) 
N(5) 
C(6) 
N(D 
H(6) 
C(13) 
C(7) 
C(8) 
C(9) 
C(10) 
cci 0 
C(12) 
C(7) 
H(8) 
H(9) 
H(10) 
HCl O 
H(12) 
H(14) 
HC131) 
H(132) 
HC141) 
H(142) 
HC143) 

1.319C4) 
.94 (4) 

1.333(4) 
1.388(4) 
1.271(4) 
1.493(4) 
1.435(4) 
1.07 (4) 
1.509(4) 
1.466(4) 
1.398(4) 
1.381(5) 
1.408(5) 
1.368(6) 
1.381(5) 
1.405(4) 
.99 (4) 
.98 (4) 

1.08 (5) 
1 .04 (4) 
.98 (3) 

1.511(4) 
1.04 (4) 
1.01 (5) 
1.01 (6) 
1.07 (5) 
•91 (6) 

N(l) -
N(2) -
CC6) -
N(2) -
NC2) -
C(6) -
CC3) -
NCO -
NC2) -
NCI) -
N(5) -
NC5) -
C(13)-
N(l) -
N(4) -
CC3) -
C(3) -
C(8) -
C(7) -
C(8) -
C(9) -
C(10)-
C(7) -
C(6) -

NC2) 
NCI) 
N(l) 
CC3) 
C(3) 
N(5) 
N(4) 
C(6) 
N(l) 
C(6) 
C(6) 
C(6) 
CC6) 
CC6) 
C(3) 
C(7) 
C(7) 
C(7) 
C(8) 
CC9) 
C(1C 
c(i 
C(li 
cci: 

- C(3) 
- HCl) 
- H(l) 
- N(4) 
- C(7) 
- N(4) 
- N(5) 
- NC5) 
- C(6) 
- H(6) 
- C(13) 
- H(6) 
- H(6) 
- C(13) 
- C(7) 
- C(8) 
- C(12) 
- C(12) 
- C(9) 
- C(10) 

))- CCI O 
)- CC12) 
)- C(ll) 
)- C(14) 

113.4(3) 
123 (2) 
119 (2) 
117.9(3) 
120.0(3) 
111.7(3) 
1 19.9(3) 
102.9(3) 
117.7(3) 
105 (2) 
111.9(3) 
107 (2) 
115 (2) 
114.4(3) 
119.7(3) 
120.4(3) 
121.2(3) 
118.3(3) 
120.8(3) 
120.0(4) 
119.3(4) 
121.2(3) 
120.4(3) 
111.8(3) 

the average value of the C(n) - C(m) - H(m) bond angle is 120 
in case C(m) is sp and 109 in case C(m) is sp hybridized 
the estimated standard deviations are in parentheses 
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Figure 7.4 Bond distances (A) and 
interbond angles of 1 

5 N j « — 2.29 
1̂12 118 

tî̂ Hl 

The sp hybridization of N, is essential to the proper orientation of the lone 

pair electrons, necessary for overlap and electron derealization. Connection 

of the Newman projections along the N(1) - N(2) and the N(5) - N(4) bond results 

in figure 7.6. The p orbitals of the nitrogen atoms are perpendicular to the 
2 Z 

plane of the sp hybridized orbitals as indicated in figure 7.6. From this 

figure it is clear that the p orbitals of N1 and Nr are pointing towards each 
1 f\ 

other and that consequently the homoallylic participation ' is probable. 

We observed in the frozen conformation of 3-phenyl-1,6-dihydro-1,2,4,5-tetrazine 
1 A 

(2) a H chemical shift difference between H (the hydrogen above the tetrazole 
B 2 

ring) and H (the hydrogen in the exo position) of A<5 = 4 ppm . This shift 
difference was attributed to the presence of a ring current. 



N, 162 
3~ 

Cl2 
a 176 

N: 

Figure 7.5 Newman projections 
a. along the C(7)- C(3) bond 
b. along the N(l)- C(6) bond 
c. along the N(l)~ N(2) bond 

Figure 7.6 Newman projections along the N(l)-N(2) and the N(5)-N(4) bonds 
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If wc assume that the conformation of 2 is the same as for 1 and that the 

conformation in solution is the same as in the crystal, we can approximate the 
A B 7 

difference between H and H by using the ring current effects in benzene . 

A projection of these ring current effects on figure 7.3 indicates that H is 

in the shielding - and H in the deshielding regio; A6 = ̂  6 ppm. The observed 

value is lower, probably because the ring current in this puckered homoaromatic 

system is not as efficient as in benzene. 

A review of the relation between bond lenghts and bond order for bonds between 
7 o 

sp hybridized carbon- and nitrogen atoms was found in the literature ,see 

table 7.3. A localized single bond has a bond order of 1.0; a localized double 

bond of 2.0. 
Table 7.3 Bond lengths (A) and bond orders for bonds between 

C and N atoms in which both atoms are assumed to 
have sp hybridization 

Bond t ype 

c-c 
C-N 

N-N 

Bond o r d e r 

1 . 0 

1.48 

1.45 

1.41 

1 . 5 

1 .39 

1 .34 

1.31 

2 . 0 

1.34 

1 .27 

1.23 

The dimensions of 1 ,2,4,5-tetrazine are9: C-N 1.33 A; N-N 1.32 A; C-N-N 115° 

and N-C-N 127°. 

Comparison with the bond angles and distances in 1 (figure 7.4) reveals that 

both the N(1) - N(2) (1.32 %) and the N(4) - N(5) (1.27 %) distance are larger 

than in the localized double bond (1.23 A) and smaller than in the single bond 

(1.41 A). Especially the N(1) - N(2) distance is of the same magnitude as in 

1,2,4,5-tetrazine (1.32 A). Also the N(2) - C(3) (1.33 A) and the N(4) - C(3) 
o 

(1.39 A) bond lengths are between single and double. These intermediate bond 

lengths (between single and double) are in agreement with the derealization 

of electrons over the aromatic tetrazole ring. There exists a relationship 
o 

between the bond length and bond order for N-N and C-N bonds . From these the 

approximate bond orders were estimated: N(1) - N(2): 1.45; N(2) - C(3): 1.55; 

C(3) - N(4): 1.23; N(4) - N(5): 1.78. It is striking that especially the 

N(1) - N(2) bond is so aromatic. 
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Only the N(1) - N(5) distance is rather long (2.29 A ) , this is not necessarily 

in conflict with the homoaromatic character, however, because in some homo-

aromatic systems a similar distance is observed by X-ray crystal analysis. 

For example in 1,6-methano Pio] annulene-2-carboxylic acid (3) the 1,6 distance 
o i o ° 11 

is 2.26 A and in 4 the 1,6-distance is 2.30 A ; yet in these compounds a 
12 

considerable 1,6 overlap was established . It is regrettable, however, that 
there are not more crystal structural data available for comparison. 

Scheme 7.2 

As the tetrazine part of 1 is boat shaped, the tetrazole ring of the homotetra-

zole is not planar, but puckered. There are some examples of 'bent aromaticity' 

in the literature. A nice example is the |2,2J paracyclophane system (5) 

In this strained molecule the benzene rings are boat shaped. Although the 

gradients amount to 13 , yet the benzene rings preserve their normal aromatic 

properties. 

Other examples are the species 3 and 4 in which 

the ten and eleven carbon atoms of the annulene 

part of the molecule are not coplanar ' , but 

puckered as shown in figure 7.7. 

From these examples it is clear that electron 

derealization occurs also in a not perfectly 

planar system. 

It is obvious then that the crystal structure of 

1 is in good agreement with the homoaromatic 

description presented in this thesis. 

A compound that is very similar to 1,6-dihydro-

1,2,4,5-tetrazine is 2,4,6-triphenylverdazyl (6) 14 
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Figure 7.7 Puckered structure of 3 

The structure of this crystalline radical has been 

elucidated by X-ray analysis . The most important 

bond lengths and bond angles are indicated in 

figure 7.8. The dihedral angle between the planes 

N(2) - C(3) - N(4J and N(1) - N(2) - N(4) - N(5) 

is 42.9°, C, is tilted 9.5°. The phenyl group at 

C, is essentially coplanar with the plane through 

N-. , Np and C,, but the other phenyl groups arc 

twisted by 23° (at N2) and 13° (at N 4 ) . 

So compound 6 is also in a ooat conformation. The nitrogen atoms N? and M. are 
2 

sp hybridized. This is in agreement with the equal sharing of the unpaired 

electron among the four nitrogen atoms observed by ESR spectroscopy 
17 3 

Compound 6 shows a ring inversion , like the 1,6-dihydro-1,2,4,5-tetrazincs ; 
kinetic parameters were not determined however. 

H H 

•y 

Ph-N N-Ph 

Ph 

6 

C 
Scheme 7.3 
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Figure 7 .8 
o 

Bond distances (A) and 
interbond angles of 6 

A comparison of the bond lengths and angles of 1 and 6 (figures 7.4 and 7.8) 

reveals that there is considerable similarity between these structures. The 

verdazyl 6 is a 7IT electron system, whereas 1,6-dihydro-1,2,4,5-tetrazine 1 

is a 6TT electron homoaromatic system. 

An example of a 9TT electron system, the monohomocyclooctatetraene anion radical 

(7), having homoaromatic properties has been described 

The C„ protons reveal very different a values in the ESR spectrum, indicating 

that Cg is tilted out of the plane of the molecule. The tilting of the p orbitals 

results in 1,8-interaction, which necessitates the decription of this species 

as a homoconjugated cyclooctatetraene. 
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As a consequence one may wonder why the methylene group in the verdazyl 6 points 

out of the N(1) - N(2) - N(4) - N(5) plane and why also the rest of the crystal 

structure of 6 resembles that of the homoaromatic 1,6-dihydro-1,2,4,5-tetrazines 

described in this thesis. Either this conformity is accidental, or it may lead 

to the conclusion that homoaromatic properties must be ascribed to this 7TT 

electron system. This could be investigated by measurement of the a^ values 

of the protons at C, at a temperature, where the ring inversion is frozen. 
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8 GENERAL DISCUSSION 

The centra] theme in the study described in this thesis was the investigation 

into the occurrence of the S.,(ANRORC) mechanism during the reactions of hydrazine 

with the red coloured 1 ,2,4,5-tetrazines. As a part of this study we were interest

ed whether a o-adduct is formed as first step in this process. 

8.1 HOMOAROMATICITY AND a-ADDUCTS 

Measurement of the H chemical shifts of the yellow solutions of 3-aryl(alkyl)-

1,2,4,5-tetrazines (1) in hydrazine-hydrate/methanol or in liquid ammonia at 

230 K revealed an upfield shift of A6= ̂  8.S ppm in hydrazine and A6= 8.7 ppm 

in liquid ammonia" [chapters 4 and 6). This upfield shift is extraordinary 

large in comparison with the upfield shift (A6) of 4-5 ppm usually observed on 

addition of liquid ammonia to heteroaromatics (see for example scheme 1.6). 

3-Aryl(alkyl)-l,2,4,5-tetrazine (1) is (almost quantitatively) converted into 

the 0-amino compound 5 on dissolving it in liquid ammonia and addition of an 

oxidizing agent' to this solution (chapter 2). This indicates that 6-amino-

3-aryl(alkyl)-l,0-dihydro-1,2,4,5-tetrazine (2), the same species as the ex

pected a-adduct, must exist as intermediate in liquid ammonia. 

H 
is 

b N ^ ^ N ' 

4 N \ N2 

NH3 

R 

Scheme 8.1 l 

H2N H A 

N ^ N © 

N ^.H 

R 

2 

KM -1O4 

NH2 

N C / ^ N 

1 II 
Nc\ M 

R 

3 

A H NMR study of the yellow coloured 1,6-dihydro-1,2,4,5-tetrazines as model 

compounds for these a-adducts was undertaken (chapter 3). These compounds could 

easily be prepared by sodium borohydride reduction of the corresponding 1,2,4,5-

tetrazines. At low temperature we observed a great difference between the 

chemical shifts of H A and H B for 3-phenyl-1,6-dihydro-1,2,4,5-tetrazine (4a). 
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This difference can be explained if we assume that this species is present in 

the monohomotetrazole conformation. The tetrazole part of the molecule was 

supposed to be approximately planar, in analogy with the calculated structures 

of the isoelectronic homocyclopentadienyl anion (see fig.8.1 J and the homo-

tropylium cation . 

" P T H , 2 î l ^ ^ tC6C,C2C3-60.0 

Figure 8.1 Calculated structure of homocyclopentadienyl anion 

The aromatic sextet is formed by two double bonds and the lone pair of NL . The 

methylene group points out of the plane of the tetrazole ring. The p orbitals 

of the atoms adjacent to the methylene bridge are canted by this puckering, 

making overlap and electron derealization possible. Hydrogen H is above the 

ring current of the tetrazole ring, in the shielding regio and resonates at high 

field (6 = 2.13 ppm) and hydrogen H is in the expo position, in the deshielding 

regio (6 = 6.13 ppm)(see scheme 8.3). This homoaromatic species shows a ring 

inversion at normal NMR temperature (308 K ) . The kinetic parameters of 4a and 

4d and the conjugate base 5a and conjugate acid 6a were determined by dynamic 

NMR measurements (chapter 3). 

AG was visualized as the difference in free energy between the homotetrazole 

conformation I and a planar species II in which a considerable amount of 

resonance energy is lost; although the bridge-flipping process may contain more 

intermediates, as was found for the homotropylium cation (see scheme 1.10). 
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It was obvious from these kinetic parameters that the resonance energy of the 

anionic homoaromatic species 5a (68 kJ/mol) is larger than that of the neutral 

- 4a (52 kJ/mol) and the cationic species 6a (51 kJ/mol). This can be ascribed 

to the fact that separation of charge (in 4a and 6a) is energetically less 

favourable than derealization of negative charge (in 5a). 

An interesting extension of this topic would be the investigation into the 

influence of substituents attached to N' on the homoaromaticity. The more so 

as the aromaticity of diaza [8 ] annulenes (7), in which the 10 w electron 

system is formed by three double bonds and two nitrogen lone pairs, depends on 

the substituents attached to the nitrogen atoms. Donor-substituted derivatives 

have a planar structure 7a with strong 10-electron derealization, whilst 

acceptor-substituted derivatives prefer the twist-boat-chair conformation 7b, 
7 

and are therefore not diatropic . 

V 

Scheme 

N 

R 

7a 7b 

Annellation on positions adjacent to the methylene bridge of homotropylium 

cation (8), causes a decrease of A6, due to the rigidity of the benzene rings, 
o 

which hinders the optimal tilting of the methylene bridge . 

The ring inversion of the homotetrazole (scheme 8.3) 

is no longer possible if one of the hydrogens of the 

methylene group is replaced by an alkyl group. These 

compounds were found to exist in one sole conforma

tion. As the hydrogen H resonates at high field 
( 4 b 

6HA 

<SHA = 2 . 2 2 ppm; 4 c : <5HA = 2 . 2 6 ppm; 4 e : 

1.94 ppm) we concluded that it is oriented 

above the tetrazole ring and the alkyl group is in 

the exc position (chapter 3). 
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9 10 A large substituent at the homotropy1ium cation is in the exo position too ' 

The amino- and hydrazino group of the a-adducts of 1,2,4,5-tetrazines, arc also 

large substituents; so they will be found in the exo position. Consequently 

hydrogen H is above the tetrazole ring, in the shielding regio. This explains 

the "anomalous" large upfield shift (AS between 8-9 ppm), observed for H . 

Another interesting aspect, that became obvious from our NMR study, is that the 
\ 

charge of the tetrazole ring exerts an influence through space on H' , above 
H A 

the tetrazole ring and that H , in the exo position, is hardly affected. II was 

shifted upfield by a negative charge and downfield by a positive charge (chapter 

3). The C - H coupling constant JrHA w a s smaller when the ring was negatively 

charged and larger when the ring carried a positive charge (chapter 4). 

8.2 ANIONIC CHARACTER OF H0M0AR0MATIC a-ADDUCTS 

In chapter 3 it was found that the derealization energy of the parent compound 

3-phenyl-1,6-dihydro-l,2,4,5-tetrazine (4aJ is considerably smaller (52 kJ/mol) 
2 

than that of the conjugate base 5a (68 kJ/mol). The pKa value of d-R -3-phenyl-

1,6-dihydro-1,2,4,5-tetrazines (4a, 4b and 4c) is approximately 10 (chapter 4 ) ; 

so they possess fairly acidic properties. The fact that deprotonation leads to 

a gain in resonance energy induced us to investigate whether a-adducts 2 arc 

present as neutral or as anionic species in liquid ammonia. This problem was 
13 

solved by an extension of a "C NMR procedure described in the literature 

(chapter 4). In 1-X-4-Y-benzenes the substituent chemical shift of C. (SCS-4 = 

[ôC,(Y * H) - ôC.(Y=H)] ppm ) is linearly related with the electron demand of 

the substituent X at C. . The substituents X which have been investigated were 
1112 

either neutral or cationic groups ' . We established that this relation can 

be extended to anionic substituents X, in that for X the (substituted)-l,2,4,5-

tetrazinyl groups and for Y the substituents Br, OCH, and CH, were taken. A 

linear dependence was found for the (SCS-4) values and the electron demand of 

the (substituted)-!,2,4,5-tetrazinyl groups. From this relationship the a-adduct 

2 was found to be an anionic species. This indicates that the gain of resonance 

energy is actually so large that the proton is released to ammonia. 

A homoaromatic a-adduct anion is even formed in hydrazine-hydrate/methanol, which 

is a weaker basic system than ammonia (chapter 6). 
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8.3 HYDRAZINOLYSIS AND SN(ANRORC) 

As mentioned above hydrazine forms a a-adduct 9 with 3-alkyl(aryl)-1,2,4,5-

tetrazines at low temperature (230 K ) . 

R 

l 

Scheme 8 . 5 
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When the temperature of the mixture of 3-alkyl(aryl)-1,2,4,5-tetrazine and 

hydrazine-hydrate/methanol in the NMR tube is raised (to values between 273 and 

295 K ) , NMR evidence was obtained for the opening of the dihydrotetrazine ring 

(chapter 6). An open-chain compound 10 is formed, which is probably stabilized 

by four intramolecular hydrogen bonds, as indicated in figure 8.2. 

I T " " H-7 N 

/ 

Figure 8.2 Intramolecular hydrogen bridges of 10 
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Subsequently, ring closure and oxidation to the 6-hydrazino product 11 takes 

place during the working up. 

This reaction can be considered as an S..(ANRORC) process. It is exceptional 
15 

that the reaction in which N-label is found in the exocyclic hydrazino group 

(upon attack at C,) as well as the one that builds the N-label into the 1,2,4,5-

tetrazine ring (upon attack at C,) proceed by a Ring Opening - Ring Closure 

process (see scheme 6.4). If the substituent on C, is a phenyl- or a t-butyl 

group this position is blocked and the reaction sequence starts with an attack 

at C,-. If the substituent at C, is a (m)ethyl group both C, and C, may be attack

ed. No evidence for an S (AE) mechanism has been obtained in these reactions. 

The occurrence of the SN(ANRORC) mechanism was also observed during hydrazino-

deaminations and hydrazino-dehalogenations of 6-amino- and 6-halogeno-3-alkyl 

(aryl)-1,2,4,5-tetrazines ' . The influence of the leaving group L, at position 

6 (see scheme 6.6) on the fraction of hydrazino compounds formed by the SN(ANRORC) 

mechanism was found, in decreasing order, to be : L = Nil-, > L = Br > L = CI. 

The influence of the substituent R', at position 3, is as follows: If R' is the 

phenyl- or t-butyl group attack at C, is blocked. In these cases the reaction 

takes place by the SN(AE) mechanism. The influence of H, CH, and C J L is almost 

the same, when L = NIL, approximately 20-25% of the hydrazino compounds is formed 

by the SN(ANRORC) pathway. When L = Br steric hindrance due to the ethyl group is 

more pronounced compared to that of the methyl group (chapters 5 and 6). 

8.4 CRYSTAL STRUCTURE AND H0MOAROMATICITY 

The crystal structure of 6-ethyl-3-phenyl-1,6-dihydro-1,2,4,5-tctrazine (4c) was 

elucidated by X-ray structural analysis (chapter 7). This reveals that the 
3 

compound is in a boat conformation. The sp carbon atom (C,) is pointing upwards 

with a dihedral angle of 49.3° between the N(1)- C(6)- N(5) and the N(1)- N(2)-

N(4)- N(5) planes; Cj is tilted 26.7° (see figure 8.3). The ethyl group at C6 

is in the exo position and H, is above the tetrazole ring; in agreement with the 
2 

structure predicted by NMR spectroscopy (chapter 3). N, is sp hybridized. This 
2 

sp hybridization of N, is essential for proper orientation of the lone pair 

electrons, necessary for overlap and electron derealization. 

Both the N-N and C-N distances in the tetrazole ring were found to be intermediate 

14 

between single and double bond length , in agreement with the delocalizcd charac

ter. Only the N(1)- N(5) distance was found to be rather long (2.29 A ) . This is 

not necessarily in conflict with homoaromaticity however, because in some homo-
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-er -y f. 

aromatic systems a similar distance was observed ' . As the tetrazine part 

of 4c is boat-shaped, the tetrazole ring of the homotetrazole is not planar, 

but puckered. 

Figure 8.3 Projection onto the N(1)-N(2)-N(4)-N(5) plane 

There are several examples in the literature however, from which it is clear 

that cyclic electron derealization is also possible in a not perfectly planar 
_ 15-17 

system 

I-'rom this crystal structure we came to the conclusion that the observed conforma

tion is in agreement with the H NMR spectroscopic data, from which the presence 

of a ring current and consequently the homoaromatic model was proposed. 

8.5 HOMOAROMATICITY AND OTHER DIHYDROHETEROAROMATIC COMPOUNDS 

One may wonder whether homoaromaticity is found in general for dihydrohetero-

aromatic species of structure A. 

H H 
i i 

'N\ H / N ^ ^ X X = CH3,NH2,Ph 

ÎI > 
Scheme 8.6 
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This question can be answered by comparing the H chemical shifts of the 

hydrogens at the sp carbon atom of A with that of B, in which one of the 

-ŒL- hydrogen atoms is replaced by a large substituent X. 

As we have seen from the literature 9,10 and from the results described in this 

thesis, the large substituent X in structure B will be found in the exo position 
3 

of a possible homoaromatic conformation. The hydrogen at the sp carbon atom 

will consequently be located above the ring current and will be found at high 

field. The shielding constant of the group X (CH,: 0.47 ppm; NR7: 1.57 ppm; 

Ph: 1.85 ppm) must be* taken into account. In a structure like A, there may be 

an equilibrium between two forms, like we found for 3-phenyl-1,6-dihydro-

1,2,4,5-tetrazine (chapter 3), which may result in an average value of 3-5 ppm. 
1 19-22 

A survey of several H NMR data from the literature is given in scheme 8.7. 

The H NMR data of the o-adducts formed between liquid ammonia or amide ion 

and several heteroaromatics (see scheme 1.6) may also be drawn into this 

comparison. 
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None of the H NMR values of structures B is found at extraordinary high field, 

and consequently there is no indication that other dihydroheteroaromatics display 

homoaromatic properties. 
23 

The calculations of Bodor and Pearlman revealed that the stability of 1,4-

dihydropyridine is due to a homoaromatic contribution. Some highly substituted 
24 25 

1,4-dihydropyridines were found to exist in a boat conformation ' . Although 

these two facts indicate that there is a possible similarity between 1,4-dihydro

pyridines and 1,6-dihydro-1,2,4,5-tetrazines, a simple 1,4-dihydropyridine - N-
9 A 

benzyl-1,4-dihydronicotinamide - is perfectly planar with localized double 

bonds and is not homoaromatic. 

Finally, the question remains why homoaromaticity is observed with 1,6-dihydro-

1,2,4,5-tetrazines and not with other dihydroheteroaromatic compounds. The 

following may be an explanation : It is obvious from the possible resonance 

structures of 1,6-dihydro-1,2,4,5-tetrazines, as shown in scheme 8.8, that the 

negative charge is located on the carbon atom once (V) and on one of the nitrogen 

atoms (VI, VII and VIII), which are more capable of accommodating the negative 

charge, three times. 

Scheme 8.8 VII VIII 

The resonance structures V I , VII and VIII will consequently be of more importance 

for the homoaromatic stabilization. In contrast, substitution of nitrogens by 

carbon atoms in the heteroaromatic ring results in a larger amount of resonance 

structures with negative charge on carbon and thereby in less stabilization. 

The gain in resonance energy, due to electron derealization in a possible homo

aromatic species, is then probably cancelled by the dest-abilization due to the 
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negative charge on carbon. 

Secondly, the ring current in an aromatic species, containing hetero aroms, is 

not a perfect cycle as in aromatic species with equal atoms. The tetrazole ring 

of 1,6-dihydro-1,2,4,5-tetrazine contains four nitrogen atoms and one carbon 

atom, making a reasonable symmetry of the ring current possible. Replacement of 

some nitrogens by carbon atoms results in a decrease of symmetry and thereby 

probably in a decrease of the efficiency of the ring current. 

Both effects possibly explain why 1,6-dihydro-1,2,4,5-tetrazines are and other 

dihydroheteroaromatic compounds are not (or hardly) homoaromatic. 

In the future we hope to obtain more solid arguments by theoretical calculations 

on these systems. 
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SUMMARY 

This thesis describes some nucleophilic substitution reactions between the red 

1,2,4,5-tetrazines and hydrazine-hydrate or ammonia. Special attention was paid 

to the occurrence of the SN(ANRORC) mechanism in these substitution reactions. 

This mechanism comprises a sequence of reactions, involving the Addition of a 

Nucleophile to a heteroaromatic species, followed by a Ring-Opening and 

Ring Closure reaction to the substitution product. 

a-Adducts, namely 6-hydrazino- and 6-amino-3-aryl(alkyl)-1,6-dihydro-1,2,4,5-

tetrazines, are formed upon addition of hydrazine or ammonia to 3-aryl(alkyl)-

1,2,4,5-tetrazines. This is accompanied by a change in colour from red to yellow. 

These adducts can be observed by NMR spectroscopy. In heteroaromatics in liquid 

ammonia, an upfield shift (A6) of 4-5 ppm is usually measured for the hydrogen 

atom, attached to the carbon atom to which addition takes place. An extra

ordinary large upfield shift is observed however upon addition to 1,2,4,5-

tetrazines; A6 = ̂  8.5 ppm in hydrazine and AS =^8.7 ppm in liquid ammonia 

(at 230 K, chapters 4 and 6). 

The fact that 3-aryl(alkyl)-1,2,4,5-tetrazines are converted into the 6-amino 

compounds by oxidation of the intermediate in liquid ammonia (chapter 2 ) , 

indicates that an intermediary 1,6-dihydro-6-amino structure must exist. 

H NMR measurements at various temperatures of 1,6-dihydro-1,2,4,5-tetrazines 

as model compounds for these a-adducts gave an explanation for the large up

field shift (A6). 1,6-Dihydro-l,2,4,5-tetrazines and their conjugate acids and 

bases were found to be homoaromatic and they are present in the monohomotetrazole 

conformation. The hydrogens at the sp carbon atom have a different orientation 

towards the tetrazole ring. One (H ) is oriented above the aromatic ring, in 

the shielding regio; H is in the exo position, in the deshielding regio; thus 

resulting in a large difference in chemical shift. The homoaromatic species show 

a ring inversion. The kinetic parameters (AH , AS and AG ) were determined by 

dynamic NMR measurements (chapter 3). Since a large substituent at Cft of the 

homotetrazole (e.g. methyl or ethyl) is found exclusively in the exo position, 

the hydrogen of the above mentioned a-adducts is oriented above the ring current 

of the tetrazole ring, resulting in a chemical shift at high field. 
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The charge of the tetrazole ring exerts an influence through space on Fi , H 

is hardly influenced. This became obvious from 6FT in H NMR and JpuA in 

C NMR (chapters 3 and 4). 

The homoaromatic a-adducts in liquid ammonia and even in hydrazine-hydrate/ 

methanol are anionic species, as was primarily proven by a C NMR study 

(chapters 4 and 6). The driving force for the deprotonation is probably the 

larger resonance stabilization of the homoaromatic anion with respect to the 

neutral homoaromatic species. 

3-Alkyl(aryl)-1,2,4,5-tetrazines were found to undergo a Chichibabin hydrazina-

tion into 6-hydrazino-3-alkyl(aryl)-1,2,4,5-tetrazines on treatment with 

hydrazine-hydrate. The first step in this reaction sequence was the formation 

of a homoaromatic a-adduct. Subsequently an open-chain intermediate was observ

ed by NMR, on raising the temperature. Finally the hydrazino compound is form

ed by ring closure. This reaction sequence can be considered as an S (ANRORC) 

process. With N-labelled hydrazine, only part of the label was found to be 

built in the 1,2,4,5-tetrazine ring of the 6-hydrazino compounds. This is the 

first example of a reaction in which both the hydrazino compound with the 

N-label in the ring and with the N-label in the exocyclic hydrazino group 

are formed according to the SN(ANRORC) mechanism (chapter 6). 

During the hydrazino-deamination and hydrazino-dehalogenation of 6-amino- and 

6-halogeno-1,2,4,5-tetrazines only a part of the molecules was found to react 

according to the SN(ANRORC) process. The other part followed the alternative 

S ^ A E ) , Addition-Elimination, pathway (chapters 5 and 6). 

The crystal structure of 6-ethyl-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine was 

elucidated by X-ray structural analysis very recently. This analysis revealed 

that the molecule is in a frcai-conformation. Cfi points upwards with a dihedral 

angle of 49.3 and C3 with an angle of 26.7°. N-| was found to be sp hybridized 

and the N(1)-N(2), N(2)-N(3), C(3)-N(4) and N(4)-N(5) bond distances were 

found to be between single- en double bond length, in agreement with the 

expected electron derealization. Therefore we came to the conclusion that 

the crystal structure agrees with the homoaromatic character of the compound 

(chapter 7). 
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SAMENVATTING 

In dit proefschrift worden enige nucleofiele substitutie-reacties beschreven 

van de rode 1,2,4,5-tetrazines met hydrazine-hydraat en ammoniak. Daarbij werd 

vooral aandacht geschonken aan de vraag of tijdens deze reacties het SN(ANRORS) 

mechanisme optreedt. Dit mechanisme beschrijft een serie opeenvolgende reacties 

die bestaat uit de Additie van een Nucleofiel aan de heteroaromaat, gevolgd door 

Ring Opening en Ring Sluiting tot het substitutieprodukt. 

Bij de additie van hydrazine of ammoniak aan 3-aryl(alkyl)-1,2,4,5-tetrazines, 

die gepaard gaat met een kleurverandering van rood naar geel, worden de 

a-adducten 6-hydrazino- en 6-amino-3-aryl(alkyl)-1,6-dihydro-1,2,4,5-tetrazines 

gevormd. Deze kan men waarnemen met NMR spectroscopie. Bij de meeste hetero

aromaten vindt men in vloeibare ammoniak voor het waterstofatoom, gebonden aan 

het koolstofatoom waaraan de additie plaats vindt, een verschuiving naar hoger 

veld (A6) van 4-5 ppm. Bij de additie aan 1,2,4,5-tetrazines treedt echter een 

veel grotere verschuiving naar hoger veld op;AS = % 8.5 ppm in hydrazine en 

A<5 = ̂  8.7 ppm in vloeibare ammoniak (bij 230 K, hoofdstuk 4 en 6). 

Uit het feit dat 3-aryl(alkyl)-1,2,4,5-tetrazines in vloeibare ammoniak door 

toevoegen van een oxydator omgezet kunnen worden in 6-aminoverbindingen 

(hoofdstuk 2 ) , blijkt dat er een 1,6-dihydro-6-aminoverbinding als intermediair 

aanwezig moet zijn. 

Door bij verschillende temperatuur de H NMR spectra te meten van 1,6-dihydro-

1,2,4,5-tetrazines als modelverbindingen voor de a-adducten, konden we een 

verklaring vinden voor de grote A6 waarde. 1,6-Dihydro-1,2,4,5-tetrazines en 

hun geconjugeerde base en - zuur blijken een nieuw soort homoaromaten te zijn. 

Ze komen voor in de monohomotetrazool conformatie. De waterstofatomen aan het 

sp koolstofatoom zijn verschillend georiënteerd ten opzichte van de tetrazool 
A B 

ring. H ligt boven de aromaat, in het shieldinggebied en H neemt de exo-
positie, in het deshieldinggebied, in. Dit veroorzaakt een groot verschil in 

A B 
chemische verschuiving tussen H en H . De homoaromatische deeltjes vertonen 

een ringinversie. Met dynamische NMR metingen konden de kinetische parameters 

(AH , AS en AG ) bepaald worden (hoofdstuk 3). 

Aangezien een grote substituent aan C,. van de homotetrazool (bijvoorbeeld 

methyl of ethyl) de exopositie blijkt in te nemen, ligt bij de bovengenoemde 
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a-adducten het waterstofatoom boven de kringstroom van de tetrazool ring en 

resoneert bij hoog veld. 
A 1 13 

Uit de 6H waarden van H NMR en de koppelingsconstanten J Q ^ A bij C NMR 

blijkt dat H - door de ruimte - beinvloed wordt door de lading van de tetra-

zool ring. H ondervindt daar in de exopositie nauwelijks invloed van (hoofd

stuk 3 en 4). 
13 Zoals vooral uit een studie met C NMR blijkt, zijn de homoaromatische 

a-adducten in vloeibare ammoniak en zelfs in hydrazine-hydraat/methanol als 

anionen aanwezig (hoofdstuk 4 en 6). Zij worden waarschijnlijk gedeprotoneerd 

doordat de resonantie stabilisatie in een homoaromatisch anion groter is dan 

in een neutrale homoaromaat. 

3-Alkyl.(aryl)-1,2,4,5-tetrazines kunnen met hydrazine-hydraat omgezet worden 

in 6-hydrazino-3-alkyl(aryl)-1,2,4,5-tetrazines. Met NMR werd vastgesteld dat 

het eerste stadium van deze Chichibabin reactie de vorming van een homoaroma

tisch a-adduct is, dat bij hogere temperatuur in een open-keten intermediair 

overgaat. Ringsluiting levert de hydrazinoverbinding. Deze opeenvolgende reac

ties kunnen beschouwd worden als een S..(ANRORS) proces. Wanneer deze reacties 
15 

met N-gelabeld hydrazine worden uitgevoerd, blijkt het label slechts voor 

een deel te worden ingebouwd in de 1,2,4,5-tetrazine ring van de 6-hydrazino-

verbindingen. Met dit resultaat hebben we het eerste voorbeeld gevonden van 

een reactie waarbij zowel de hydrazinoverbinding met het N-label in de ring, 

als de verbinding met het N-label in de exocyclische hydrazinogroep volgens 

het SN(ANRORS) mechanisme wordt gevormd (hoofdstuk 6). 

De hydrazino-deaminering en hydrazino-dehalogenering van 6-amino- en 6-halo-

geno-1,2,4,5-tetrazines verlopen slechts voor een deel volgens het SN(ANRORS) 

mechanisme. Naast het SN(ANRORS) proces treedt het concurrerende SN(AE), 

Additie-Eliminatie, mechanisme op (hoofdstuk 5 en 6). 

Zeer recent werd de kristalstructuur van 6-ethyl-3-fenyl-1,2,4,5-tetrazine 

opgehelderd. Er werd voor dit molecuul een bootvormige structuur gevonden, 

met zowel C,- als C, omhoog. Cfi staat 49.3 omhoog, C, 26.7 . N. blijkt sp -

gehybridiseerd te zijn en de bandlengtes van de N(1) - N(2) , N(2) - C(3) , 

C(3) - N(4) en N(4) - N(5) bindingen liggen tussen die van enkele en dubbele 

bindingen in. Dit is in overeenstemming met de verwachte delokalisatie van 

elektronen. Daardoor konden we concluderen dat de kristalstructuur overeen

stemt met het homoaromatisch karakter van de verbinding (hoofdstuk 7). 
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