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STELLINGEN 

1. De taakverdeling tussen de kauwspieren van de karper is analoog aan die tussen 

vliegspieren van insekten: grote lichaamsspieren leveren indirekt het vermogen, 

te rw i j l d irekt aangehechte kleinere spieren de beweging vooral sturen. Deze 

analogie komt voort uit architekturale en kinematische principes. 

2. Naamgeving van spieren op grond van hun verwachte rol (b.v. levator, retractor) 

zonder dat deze fe i te l i jk is onderzocht leidt tot lang doorwerkende misvattingen 

over hun funkt ie en geeft b l i jk van een onderschatting van de p last ic i te i t waarmee 

spieren worden ingezet. Een nomenclatuur die gebaseerd is op origo en insertie 

van de spier verdient de voorkeur. 

3. De uitstulpbaarheid van de gesloten bek bij veel cypriniden maakt een getrapte 

zuivering van het voedsel mogelijk en speelt zo een wezenli jke rol in de selektie 

van bodemvoedsel. Dit proefschrift. 

4. Op grond van de vele funkties die aan sl i jm in biologische systemen worden 

toegeschreven is meer onderzoek naar zi jn chemische en fysische eigenschappen 

dringend gewenst. Dit proefschrift. 

5. Het samenvallen van het moment van gereedkomen van het kauwapparaat bij 

de karper (na drie weken; Geyer, 1937) met de overgang naar groter voedsel 

(Uribe-Zamora, 1975) is begri jpeli jk vanuit de eisen die aan de groter wordende 

vis worden gesteld. 

6. De bouw en fysiologie van een soort stellen grenzen aan haar gedrag, en daarmee 

aan haar positie in een oecosysteem. Deze grenzen vormen belangrijke oecolo-

gische parameters maar zi jn nauwelijks bekend. 

7. Dat het afsterven van bossen pas een pr ikkel vormt die de aktiedrempel overschrijdt 

geeft de inf lat ie in de waardering van mi l ieu-indikatoren schrijnend weer. 

8. Optel len, af t rekken, vermenigvuldigen en wortel t rekken hebben we goed geleerd. 

Voor de toekomst moeten we opnieuw leren delen. 
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9. Onderzoek zou moeten worden gestimuleerd naar optimale organisatievormen 

om visteelt op ondergelopen landbouwgronden, in waterreservoirs en in i r r igat ie­

kanalen een maximale bijdrage te laten leveren aan produkt-diversi f ikat ie en 

aan de stabil isatie en verdeling van inkomen. D i t zou de plattelandsontwikkel ing, 

met name in ontwikkelingslanden, sterk bevorderen. 

10. Het opnieuw inbrengen van de wi ld-vorm verhoogt de smaak en v i ta l i te i t van 

de karper (Balon, 1974). Er zi jn aanwijzingen dat d i t ook voor de kuituur van 

de mens geldt. 

11. De fraaie ui tvoering van postzegels ui t ontwikkelingslanden is vaak evenredig 

met de armoede die er heerst en past binnen het verhullende beeld dat het 

lokale regiem exporteert . 

12. Het ontbreken van het jaar van u i tg i f te op de t i telpagina van een wetenschap­

peli jk boek doet vermoeden dat de uitgever nauwelijks pr i jst stelt op de referent ie 

ervan. 

13. De voorgestelde taakverdeling voor UHD's en UD's in het nieuwe rangenstelsel 

voor wetenschappelijk personeel betekent een achteruitgang voor de benutt ing, 

ontplooiing en samenwerking van het personeel. 

14. Aanwijzingen dat smaakknopjes van de karper gevoeliger zi jn voor menselijk 

speeksel dan voor een standaardspektrum smaakstoffen (Konishi & Zot terman, 

1963) werpt nieuw l icht op het met speeksel samenkneden van de deegpluim 

door hengelaars. 
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Konishi, J . & Zotterman, Y. (1963). Taste functions in fish. In: Olfaction and Taste: 215-233. Y. Zotterman (Ed). 

New York: McMillan. 
Uribe-Zamora, M. (1975). Selection des proies par le f i l t re branchial de la carpe miroir (Cyprinus carpio L.). Thesis, 

Univ. of Lyon. 

Stellingen behorende bij het proefschri f t "Food handling and masticat ion in the 

carp (Cyprinus carpio L.)" door F.A. Sibbing. Wageningen, 11 december 1984. 



-5-

Voorwoord 

Het verschijnen van dit proefschri f t biedt mij een welkome gelegenheid allen 

te danken die aan zijn wording hebben bijgedragen. 

Al lereerst w i l ik mi jn ouders bedanken voor de stimulerende vorming en de 

waardevolle huiselijke sfeer waarin deze plaats vond. Geen inspanning was ju l l ie -

ooit te veel. Het baanbrekende werk van mijn oudere broers en zusters waardeer 

ik zeer. 

Jan Osse, de belangstelling voor dit vak moet zeker zi jn oorsprong hebben 

in het niet aflatende enthousiasme waarmee je het vanaf mijn studententi jd en 

ook nu nog steeds ui tdraagt. Onze diskussies over de diverse manuskripten hebben 

in belangrijke mate tot verheldering, relat ivering en verscherping van hun inhoud 

bijgedragen. Ik w i l je hier graag bedanken voor de stimulerende begeleiding als 

promotor en voor het in i t iëren van dit onderzoek. 

Ar ie Terlouw, jouw deskundige en plezierige ondersteuning bij de voorbereiding 

en uitvoering van experimenten stel ik erg op pri js. Onze röntgenfilm-sessie in 

Leiden heeft z'n vruchten afgeworpen. Ook de hulp van Ben van Schie en Albert 

Ramakers wi l ik hier noemen. Rosario Ur ibe, dank voor de toewijding en kr i t ische 

zin waarmee je veel histologisch werk hebt ingebracht. 

Wim Valen, jouw vakmanschap is aan de i l lustrat ies in dit proefschri f t af 

te lezen en onmisbaar bij het beschrijven van de morfologie. Bedankt voor je 

inzet, je mee-denken en voor de plezierige samenwerking. 

Als student hebben R ië t te van Beek, Tonnie te Brinke, Jeannet Ennik, Peter 

Vossen, Paul van Zwieten en Peter Roessingh steeds een verfrissende en k r i t i ­

sche rol vervuld in het onderzoek, dat zich door ju l l ie ook tot andere karperachtige 

vissen kon ui tstrekken. De samenwerking met studenten uit de sectie ethologie 

(vakgroep Veehouderij), Hans Manni en Arno Brunink, heeft ook mi jn kijk op de 

karper verbreed. 

Mi jn kollega's van de sektie Funktionele Morfologie, Rie Akster, Mees Mul ler, 

Johan van Leeuwen, Maarten Drost en Annet Kroon, dank ik voor de diskussies 

over het onderzoek en voor de vriendschap waarin wordt samengewerkt. Ook de 

andere medewerkers van de vakgroep Experimentele Diermorfologie en Celbiologie 

moeten zich hierin aangesproken weten. Prof.dr. Lucy Timmermans w i l ik speciaal 

bedanken voor de stimulerende kontakten en voor de behartiging van al ler lei perso­

nele en materiële zaken waarmee zij de laatste jaren de voortgang van onder­

zoek en onderwijs heeft gewaarborgd. 
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Sietze Leenstra, Piet van Kleef en Ar thur Rep ben ik erkentel i jk voor hun 

zorg voor de proefdieren. De Organisatie ter Verbetering van de Binnenvisserij 

dank ik voor de levering van de eerste karpers. 

Lies van Beek, de inzet en kwal i te i t waarmee j i j de teksten verwerkt hebt 

is me tot grote steun geweest. Ook Mw. E.A.Scheffers dank ik voor haar bijdragen. 

Gerda van Malsen, jouw organisatie van al lerlei administratieve zaken heeft, 

vaak onopgemerkt, de voortgang van mijn werk zeker bespoedigd. Hulp van Amy 

Tiemessen en technische steun van Sytse van den Berg waren er a l t i jd wanneer 

dat nodig was. 

De afdeling scanning electronen microscopie van de TFDL wordt bedankt voor 

hun bijdragen aan dit proefschr i f t . In het bijzonder wi l ik hier Felix Thiel noemen. 

De kollega's van de sektie Morfologie van het Zoölogisch Laborator ium te 

Leiden hebben ons gastvri j ontvangen voor het maken van de röntgenfi lms. Voor 

het vr i jmaken van hun apparatuur en de technische ondersteuning dank ik hen 

zeer. Wim Weijs stelde de radiopaque voedselpellets to t mi jn beschikking. 

Gesprekken met de oecologen van het Limnologisch Inst i tuut te Oosterzee 

(Fr.) hebben mijn blik op de rol van de vis in het aquatisch systeem verruimd. 

Eddy Lammens en Koos Vi jverberg, ik hoop dat onze samenwerking in het brasem-

projekt een tussenfase naar verdere uitbouw is. Wim van Densen (vakgroep Visteelt 

en Visserij), ik verwacht dat we de interakt ie tussen het onderzoek naar de voedsel-

opname en -verwerking van vissen en de visserijbiologie, nu dit proefschr i f t is 

afgerond, verder kunnen ui twerken. 

Cyprinus carpio, dank voor je sl i jmerige medewerking en de eetlust die je 

ondanks enige prikakties a l t i jd weer snel aan de dag legde. Onze verschillen in 

afkomst en mi l ieu hebben een goede samenwerking nooit in de weg gestaan. 

Mieke, het is niet makkeli jk schijnbaar machteloos toe te zien wanneer ik 

me wéér in m'n werk terugtrek. Weet dat de vr i jheid en rust thuis het to t stand 

komen van dit boekje sterk heeft ver l icht . Bouke en Sjoerd, ju l l ie vraag naar 

aandacht heeft voor de nodige ontspanning en relat iver ing gezorgd. 
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HOOFDSTUK 1 

DOEL VAN HET ONDERZOEK EN SAMENVATTING VAN DE RESULTATEN 

Achtergrond van het onderzoek 

Vissen vormen een belangrijke schakel op verschillende niveau's in het voedsel-

web, als prooi maar ook als konsument. De c irca 20.000 recente soorten (Nelson, 

1976) vormen de grootste groep van de gewervelde dieren en het scala voedseltypen 

dat zi j benutten is groter dan voor elke andere vertebraten groep (Nikolsky, 1963). 

Maagonderzoek aan vissen, mits uitgevoerd over een groot deel van hun biotoop 

en zich uitstrekkend over etmaal en seizoenen, geeft een beeld van het dieet van 

de soort. Het dieet wordt bepaald door de selektieve opname uit een variabel voed­

selaanbod, vermoedelijk op grond van de smaak en nutr iënten van een voedseltype, 

de t i jd die haar verwerking vereist en de verhouding tussen bestede en verworven 

energie. Verschil len in plaats, groot te, vorm, beweegli jkheid, chemische en mecha­

nische samenstelling van het voedselaanbod doen ons specialisaties verwachten 

in bouw, funkt ioneren en gedrag van de vis. Deze bl i jken mede uit het naast elkaar 

aanwezig zi jn van vele vissoorten in één levensgemeenschap. Welke deze special i ­

saties z i jn , hoe z i j het dieet begrenzen en hoe zij de konkurrentieposit ie van de 

vis bepalen is nauwelijks bekend. De gevolgen van opzettel i jke of toevall ige ecolo­

gische veranderingen in het mi l ieu op de trof ische relaties en samenstelling van 

de visfauna zi jn dan ook niet voorspelbaar. D i t b l i jk t ondermeer bij introdukt ie 

van uitheemse vissoorten. Inzicht in de relaties tussen de vis en zi jn omgeving 

vereist een gekombineerde aanpak van funktionele morfologie, ethologie en ecologie. 

Kennis hiervan kan r icht ing geven aan de beheersing van natuurl i jke en kunstmatige 

aquatische systemen. 

Door de bovengenoemde specialisaties te onderzoeken wordt inzicht verkregen 

in de grondslagen van bouw en werking van het sensorisch, het motorisch en het 

regelapparaat voor de voedselopname. Deze dragen tesamen zorg voor zoeken, 

detekt ie , opname en verwerking van het voedsel. 

Karperachtiqe vissen 

De karper (Cyprinus carpio L.) werd als onderzoeksobject gekozen op grond van 

de volgende argumenten. 

1) Karperachtigen (Cyprinidae) vormen met 1600 soorten de grootste fami l ie van 

vissen (Nelson, 1976). Over hun voedselverwerkingsmechanisme is v r i jwel niets 

bekend. 
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2) In Nederland is deze fami l ie in het zoete water het sterkst vertegenwoordigd 

in aantal soorten (20) en biomassa. 

3) Z i j tonen een grote var iat ie in ecologische en t rof ische typen. Zo worden voor 

een maximale benutting van het voedselaanbod in v i jverkul turen zoöplanktivoren, 

fy toplankt ivoren, macrofytofagen, Omnivoren en bodemvreters gemengd geteeld 

(Bardach et a l . , 1972). De graskarper wordt ingezet bij de biologische kontrole 

van plantengroei in watersystemen. 

4) De karper wordt op grote schaal gekweekt en vormt enerzijds een gewaardeerd 

voedsel (Oost-Europa, Azië), maar kan door explosieve aantalsvermeerdering 

ook to t plagen leiden (N-Amer ika, Austral ië). 

5) De karper is als proefdier de ' laborator ium-rat ' onder de vissen. Een synthese 

van gegevens met die uit andere vakgebieden verdiept onze kennis over deze 

zeer algemeen voorkomende vis. Gegevens over darminhoud zi jn in de l i teratuur 

op ruime schaal voorhanden. 

Cypriniden vormen ook uit morfologisch oogpunt een bijzondere fami l ie . Tanden 

op de kaken en in de mondholte ontbreken; de laatste kieuwbogen zi jn to t sterk 

ontwikkelde tandendragende keelkaken omgevormd die samen met een hoornplaat 

in de schedelbasis een krachtig kauwsysteem vormen (Eig. 1, pag.129). De maag 

ontbreekt bij alle soorten. De sterke ontwikkeling van het kauwapparaat in de 

keel ontlast de mondkaken van een b i j t funkt ie en heeft mogelijk zo bijgedragen 

to t de ontwikkeling van een uitstulpbaar mondapparaat, dat uniek is onder de lagere 

beenvissen (slot hoofdstuk 2). 

Samen met de vier andere suborden van de Ostariophysi (Chanoidei, Gonorynchoidei, 

Characoidei, Si luroidei; Roberts, 1973; Fink and Fink, 1981) bezi t ten de Cyprinoidei 

alarmcellen (p. 110) en het apparaat van Weber, een verbinding tussen zwemblaas 

en gehoorstreek die voor geluidswaarneming dient (Alexander, 1967). 

Probleemstell ing en methoden 

De funktionele morfologie onderzoekt de samenhang tussen bouw en funkt ie 

in een biologisch systeem, er van uitgaand dat hierop, op grond van fysische wet ten, 

in de natuur wordt geselekteerd. De vorm-funkt ie re lat ie kan door vergeli jking 

van bestaande strukturen en hun funkties worden bepaald ( induktie). Z i j kan ook 

door deduktie van een theoretisch fysisch model, dat aan bestaande vormen wordt 

getoetst, vanuit de funkt ie worden vastgesteld (Dul lemeijer, 1974). Vaak worden 

beide en de experimentele methode (bi jv. aanbod van verschillende voedseltypen) 

in kombinatie toegepast. 
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Ofschoon de vis als samenhangend geheel funkt ioneert , wordt hij bij vormanalyse 

opgedeeld in strukturen van verschillend weefseltype (bv. beenelementen, spieren, 

l igamenten). Struktuurkomplexen die een specifieke funkt ie uitoefenen noemen 

we funktionele komponenten (van der Klaauw, 1945; Dul lemeijer, 1974). Deze kunnen 

zich to t het hele organisme ui tstrekken (bv. voortbewegingsapparaat) maar men 

kan dit begrip ook toepassen op niveau van een spiervezel (cf. Akster, 1981). Inzicht 

in de vorm-funkt ie relat ies binnen een funktionele komponent is pas goed mogeli jk 

wanneer ook de wederzijdse afhankeli jkheid van zulke komponenten in het onderzoek 

worden betrokken. Zo maken strukturen van het voedselopname apparaat van de 

karper (bv. de sternohyoideus spier) tevens deel uit van het ademhalingssysteem 

en het kauwapparaat (p.149). Bij deze integrat ie stellen verschillende funkties eisen 

aan eenzelfde struktuur. Integrat ie van struktuurkomplexen voor deelfunkties in 

het geheel van de vis betekent dan ook vaak een inperking van de vr i jheid om deel­

funkties opt imaal te realiseren (cf . Barel, 1983). Een holistische benadering vormt 

daarom het uitgangspunt voor de analyse van het voedingssysteem en z i jn deel­

funkt ies. 

Opvatt ing van het begrip ' funkt ie ' als de 'biologische betekenis van een akt ie in 

de natuurl i jke omgeving' is impl ic iet aan het onderzoeksthema van de sektie funk­

tionele diermorfologie van de Landbouwhogeschool: 'Voedselopname en -verwerking 

bij vissen: e co-morfologische aspekten'. D i t betekent voor de toekomst van het 

onderzoek dat de wi jze waarop de vis het voedselaanbod in zi jn natuurl i jke omgeving 

benut een noodzakelijk onderdeel van de studie moet z i jn, meer dan tot nu toe 

gerealiseerd kon worden. 

Vergeli jking van de vormenri jkdom in het voedselopname-apparaat der cypriniden 

en hun leefwijze leidde to t gewaagde uitspraken over specialisaties waarbij de 

funkt ie vooral u i t de bouw werd afgeleid (Suyehiro, 1942; Al-Hussaini, 1949; Matthes, 

1963; Verighina, 1969; Kapoor et a l . , 1975). 

Een gedetail leerd onderzoek van bouw èn funct ie van het voedselopname-apparaat 

werd gestart bij vissen van het baars-type (Percoidei) (Osse, 1969; L iem, 1973). 

Het zuigproces bi j de voedselopname van cypriniden werd voor het eerst via meting 

van waterdruk in de mondholte door Alexander (1969) bestudeerd. Het gekompliceer-

de proces van voedselverwerking nâ opname vindt binnen de mond- en keelholte 

plaats. Een analyse van de reeks van deelprocessen, die hierbi j optreedt werd niet 

eerder ui tgevoerd. De opvallend gevarieerde keelkaken en -tanden (Fig. 1) worden 

bi jvoorbeeld als determinat ie sleutel gebruikt en hun overeenkomst in bouw als 

argument voor verwantschap gehanteerd (Hensel, 1970). De samenhang tussen bouw 

en funkt ie van het kauwapparaat en de wisselwerking tussen deze en andere funkt io­

nele komponenten in de kop is niet onderzocht. Met andere woorden, keelkaken 
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view A 

Cyprinuscarpio Abramis brama Blicca bjoerkna Barbus barbus Carassius Chondrostoma 
Karper brasem kolblei barbeel carassius 

kroeskarper 
nasus 

sneep 

view A to illustrate trje dental formula as a plan 

Gobiogobio Leuciscus leuciscus Leuciscus cephalus Rutilus rutilus Scardinius 
grondel serpeling kopvoorn blankvoorn eiythrophthalmus 

rietvoorn 

Tinea tinea 
zeelt 

naar Wheeler ( I978) 

FIG. 1. Rechter-keelkaken met keeltanden van enkele der 20 karperachtige vissoorten, die in de Nederlandse 
binnenwateren voorkomen. Let op de verschillen in tandbouw en tandformule. De keelkaken werken als paar tegen 
een verhoornde kauwplaat (vgl. Plaat I) in het gehemelte van de vis. Zij zijn in grootte, stevigheid en ruimteli jke 
bouw (uitstekende armen) sterk gevarieerd. 
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PLAAT I, SEM-beeld van de keelkaken van de rietvoorn (16.1 cm; boven) en van de keeltanden en verhoornde 
kauwplaat van de blankvoorn (21 cm; onder). De detaillering in de tandsculptuur verschilt vooral vooraan sterk 
en houdt verband met het uiteenlopende dieet van deze uitwendig op elkaar gelijkende vissen. Terwijl beiden onder­
meer insektelarven en plantedelen eten, heeft de blankvoorn ook vooral slakken op het menu. 
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van cypriniden worden algemeen als kenmerk gebruikt maar hun invloed op het 

bouwplan van de hele vis en hun specifieke ro l in de kompet i t ie tussen soorten 

is onbekend. 

De vraagstell ing die aan di t proefschr i f t ten gronde l ig t is v ier ledig: 

1) Uit welke delen bestaat het proces van de voedselopname en -verwerking bij 

de karper? 

2) Welke strukturen zijn bij elk deelproces betrokken en hoe is de samenhang 

tussen hun bouw en funktie? 

3) Hoe beVnvloeden de deelprocessen elkaar en vindt afstemming van het totaal­

proces plaats in relatie tot de aard van het voedsel? 

4) Welke beperkingen in het gebruik van het voedselaanbod zijn het gevolg van 

de 'omnivorie' van de karper en de daarbij horende aanpassingen in bouw en 

funktie ? 

De vraagstelling r icht zich op het niveau van het totale funktionerende dier. 

Het onderzoek is er op gericht om de funkt ie uitoefening aan de zoveel mogelijk 

ongestoorde vis te meten. 

Gedetail leerde gegevens omtrent bouw en funktioneren werden verkregen met 

de volgende technieken: 

- macroscopische, microscopische en scanning-electronen-microscopische (SEM) 

vormanalyse. U i t coupe-series werd het verspreidingspatroon van smaakknopjes, 

s l i jm, spierweefsel en alarmcellen in de mond-keelholte gemeten. Het s l i jm werd 

histochemisch onderzocht. 

- af leiding van spieract iv i te i ten via e lectromyograf ie (9 kanalen), al dan niet in 

kombinatie met gewone of röntgen- f i lm. 

- meting van uitwendige en inwendige bewegingen van kopdelen bij aanbod van 

verschillende voedseltypen: pellets, gerstkorrels, regenwormen, tubi fex, water­

vlooien en bodem-tubifex mengsels. Door het aanbrengen van bariumsulfaat in 

pellets en wormen kan de procesgang van di t voedsel in de röntgenf i lm worden 

gevolgd. 

Analyse heeft dus ook plaatsgevonden op het niveau van weefsel en cel alsmede 

op het niveau van de motorische ak t i v i te i t binnen afzonderl i jke spieren. Anderzijds 

vereist inzicht in de re lat ie tussen bouw van het organisme en z i jn funkt ioneren 

in een natuurl i jke omgeving, zoals eerder aangegeven, diepgaande analyse van het 

natuurl i jk gedrag en zi jn ecologische niche. N ie t elk van deze aspekten kon op 

gewenste diepte worden onderzocht, vaak werd hiervoor naar l i teratuurgegevens 
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teruggegrepen. 

De gegevens worden benut om ook de vraag naar de evolutie van de strukturele 

kenmerken te behandelen. 

De verkregen kennis geeft een samenhangend beeld van de zich voedende karper 

en levert een nieuw vertrekpunt op voor gespecialiseerd onderzoek naar aanpassingen 

in bv. zintuigen en s l i jm, naar de neurale regulatie van de voedselverwerking en 

naar de ef f ic iency waarmee verschillende voedselbronnen in een natuurl i jke s i tuat ie 

worden benut. 

De resultaten van het onderzoek zi jn verwerkt in de hoofdstukken 2, 3 en 4, waarvan 

de inhoud hieronder kort wordt genoemd. 

In Hoofdstuk 2 wordt de totale procesgang en de afzonderli jke mechanismen 

voor de opeenvolgende fasen van voedselverwerking tesamen met zi jn p last ic i te i t 

en beperkingen besproken. 

Hoofdstuk 3 geeft een macro- en microscopische analyse van de mond-keelholte 

bekleding en re lateert deze aan deelfunkties van het voedingssysteem. 

In Hoofdstuk 4 worden vorm-funkt ie relaties binnen het kauwsysteem van de 

karper in detail u i tgewerkt . H ier in is ook een globaal beeld van het dieet van de 

karper opgenomen (pag. 138). 

Voedselopname en voedselverwerking door de karper 

Het voedselopname en -verwerkingsproces valt uiteen in een aantal herkenbare 

deelprocessen (Fig. 2) die, aangepast aan het type voedsel, in herkenbare volgorde 

worden ingezet: zoeken, detekt ie, opname, selektie door proeven en reiniging, 

t ransport, kauwen en slikken (hoofdstuk 2). Vertering valt buiten het bestek van 

deze studie maar werd eerder voor cypriniden overzien en bij de graskarper bestu­

deerd door Stroband (1980). 

Wat eet de karper? 

Resultaten voortkomend ui t darminhoud onderzoek worden met hoge f rekwent ie 

gerapporteerd. Ur ibe-Zamora (1975) stelde hierin de grote l i jn vast (p.130- De volwas­

sen karper b l i j k t een omnivore vis, die z ich, afhankelijk van het watersysteem 

en seizoen, vooral met de volgende organismen voedt: 1) bodem-evertebraten (mugge-

larven, tubi fex, copepoden, mollusken, andere insektenlarven), 2) zoöplankton (de 

grotere soorten watervlooien en copepoden), 3) l i t to ra le vegetatie (vooral zachtere 

waterplanten als eendenkroos) en dieren die zich daartussen bevinden (slakken, 

copepoden, kokerjuffers en wormen). 
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Hoe en wanneer zoekt de karper zijn voedsel? 

Jönsson (1967) heeft in laboratorium-studies het voedselopname gedrag van 

éénzomerige karpers uitvoerig onderzocht. Het door interne faktoren bepaalde 

deel van de zoekakt iv i te i t heeft een hoge piek in de schemering en 's nachts. Kondi-

t ionering op uitwendige faktoren als voederti jd en -plaats v indt, ook overdag, gemak­

keli jk plaats. Detect ie van voedsel gebeurt vooral met behulp van smaakzintuigen 

op baarddraden en l ippen, die hij in kontakt met de bodem brengt. Geleiding naar 

voedsel over langere afstand vindt waarschi jnl i jk via de reuk plaats. Het oog speelt 

vooral bij bewegende prooi een ro l , voor zover de troebeling van het water d i t 

toelaat. De ondergrens van de l icht intensi te i t voor ef fekt ieve lokalisatie van voedsel 

l igt voor de meeste vissen bij 10 me (meter-candela), overeenkomend met late 

schemering (Blaxter, 1970). Hele graankorrels, vaak gevoerd in de karperteel t , 

werken niet of nauwelijks st imulerend. Kondit ionering of bijmenging van stimulerend 

voedsel verhoogt de opname. Zelfs van de karper b l i jken weinig gegevens bekend 

over zi jn voedselopnamegedrag in het natuurl i jk mi l ieu. D i t hangt samen met proble­

men van waarneming. 

Baarddraden en lippen zi jn bezet met hoge dichtheden smaakknopjes (ca. 380 

per mm 2 ; Plaat I, pag. 88 )• De hoge lichaamsbouw - die in snelstromend water 

to t a fdr i jven zou af leiden - en de overheersing van rode, langzaam kontrahierende 

maar niet snel vermoeibare spiervezels in de romp passen bij het langzaam zwem­

mend zoeken, dat zich over lange periodes u i ts t rekt (stayer; Boddeke, Slijper en 

van der Ste l t , 1959). Snelle prooien hebben hierdoor een re lat ief grote ontsnappings­

kans. 

Hoe vindt voedselopname plaats? 

Afhankel i jk van het type voedsel treden verschillende mechanismen voor opname 

in werking. A fb i j ten van voedselbrokken is met de tandeloze kaken vr i jwel onmoge­

l i jk , de verhoornde kaakranden (Plaat III a, pag. 92) spelen een rol bij het manipule­

ren van groter mater iaal (macrofyten, steentjes). 

Opname van deeltjes (Part iculate feeding, F ig . 5, pag. 60). Moeil i jk bereikbaar 

en zwaar voedsel, door de maten van de mondopening beperkt to t deeltjes met 

een diameter kleiner dan ca. 9% van de standaardlengte van de vis, wordt opgeno­

men door aanzienlijke expansie van de mond- en kieuwholte ( terminologie in F ig . 

1, pag. 37 ) onder gel i jkt i jd ige protrusie (uitstulping) van de bovenkaak. D i t bewe­

gingspatroon wekt een grote snelheid van het water op in de mondopening (ca. 

60 cm /sec ) , sterk gericht op het voedsel. Modi f ikat ie van de protrusiericht ing 

laat bi jregeling van de zuigricht ing t .o.v. het voedsel toe. Protrusie kan de mond­

opening van een vr i jwel eindstandige in een onderstandige posit ie brengen, hetgeen 
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de vis in staat stel t de bodem al zwemmend af te zoeken, zonder dat een voort­

durende standsverandering van het l ichaam nodig is. 

Slokken (Gulping, F ig . 6, pag. 60). Gesuspendeerd materiaal wordt met kleine 

slokjes over langere periodes herhaald opgenomen (vgl . Janssen, 1976). De expansie 

van de kieuwholte speelt nu voor de opname zelf een ondergeschikte ro l , de suspen­

sie wordt vooral door depressie van de mondholte langzaam opgenomen en kan 

ook via de mondhoeken binnentreden. De karper stulpt zi jn bovenkaken pas laat 

en naar beneden u i t , vormt daarmee een kap over de suspensie en sluit zo zi jn 

bek. U i ts tot ing van deeltjes bi j de nu volgende kompressie van de mondholte wordt 

zo voorkomen. Gulping wordt vooral bij het grazen van plankton toegepast maar 

ook bij bodemvreten wanneer materiaal door spuwen in suspensie raakt. Grote 

volumina water worden over lange periodes verwerkt zonder dat het water sterk 

versneld wordt. De afzonderl i jke slok kost hoogstwaarschijnli jk minder energie 

dan gerichte opname van part ikels, omdat de expansie in omvang en snelheid beperkt 

is en de kieuwdekselklep vroeg opengaat. 

Op grond van observaties van het opnamegedrag van zoöplankton, de detect ie-

mogelijkheden van de z intuigen, en berekeningen die aangeven dat de vis gedurende 

24 uur 1.000.000 maal z i jn bek zou moeten openen en sluiten om in zi jn voedsel-

behoefte te voorzien, wordt het sterk betwi j fe ld of de karper bij opname van zoö­

plankton gericht partikels ui tkiest (Jönsson, 1967). Opname via slokjes met een 

grote part ikeldichtheid l i j k t , gezien de voor opname benodigde t i j d en energie, 

voor de karper het meest e f f i c iënt . Ook bij andere vissen is het gedrag bij selektieve 

opname van zoöplankton in re lat ie to t de energie opbrengst een belangrijk onder­

zoeksthema (cf. Wright and O'Brien, 1984). 

Retentie van partikels in de keel 

Grote partikels worden bij opname gevangen in de nauwe doch brede keelspleet, 

die in tegenstell ing t o t de s i tuatie bi j veel n iet-cypr in iden, slechts beperkte volume-

veranderingen ondergaat. F i jn verdeeld voedsel dr ingt verder in de keelspleet door 

en verzamelt zich op de kieuwzeef (Plaat I, pag. 98 ), die part ikels kleiner dan 250 

um (karpers 150-1500 gram; Ur ibe-Zamora, 1975) met het water naar buiten laat. 

De werking en ef f ic iency van de kieuwzeef val t buiten het bestek van dit 

proefschr i f t en wordt bi j de brasem onderzocht door A.G.Kroon via een BION/ZWO-

project in samenwerking met het Limnologisch Inst i tuut van de KNAW. 

Hoe vindt scheiding van eetbare en niet-eetbare deeltjes plaats? 

Bij het bodemvreten van de karper vindt waarschijnl i jk wel een grove keuze 

van het substraat plaats, doch de fe i te l i jke selektie tussen voedsel en onbruikbaar 



opname van partikels slokken 

voedselbrok 
zand /steentjes' 
organisch vui)-^ 

transport 

vertering 

FIG. 2. Bewegingspatronen van de karper behorende bij de mechanismen voor opname en verwerking van verschillende 
typen voedsel (b.v. bodemmateriaal, zoöplankton). Afhankelijk van plaats, grootte, smaak, verontreiniging en mechanische 
eigenschappen van het voedsel worden de patronen met wisselende frekwenties in het totaalproces geïntegreerd (vgl. 
resp. deeltjes opname - slokken, spuwen - terugspoelen en lokale se lekt ie- wassen, p le t ten-malen) . De volgorde der 
fasen is bij elk patroon aangegeven. Verdere toelichting bij de figuren in hoofdstuk 2. 
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mater iaal t reedt né opname in de mondkeelholte op. Welke aspekten in bouw en 

akt ie stellen de karper to t een zo gespecialiseerde voedselexploitatie in staat? 

Het palataal orgaan van de karper, een omvangrijk en complex gebouwd spierkus-

sen in het gehemelte, is bezet met welhaast maximale dichtheden smaakknopjes 

(820/mm2 ; hoofdstuk 3). D i t s t i jgt ver uit boven waarden bij andere vissen, voorzover 

gemeten. Reeds in 1827 werd di t orgaan door Weber een rol bij selektie toegeschre­

ven. Regionale analyse van bouw en ak t i v i te i t van het palataal orgaan en z i jn analo-

gon in het midden van de keelbodem, het postlinguale orgaan (Plaat II d, pag.90), 

toont hun funkties in de voedselverwerking. Drie niveau's van beweging worden 

voorgesteld (pag. 113): 1) beweging van het palataal orgaan als geheel als gevolg 

van ak t iv i te i t in de dorsale kieuwboogspieren, 2) regionale zwell ingen en per istal t iek 

en 3) zeer lokale beweging van gespierde papillen in het palatale oppervlak. D i t 

leidt t o t het volgende beeld voor het selektiemechanisme tussen voedsel en n iet-

voedsel. 

Zware anorganische part ikels als zand en grind zinken wel l icht voor het grootste 

deel d irekt door de wijde eerste kieuwspleet, l ichte organische verontreinigingen 

komen met het voedsel in de keel. De grote dichtheid aan smaakknopjes en spierve­

zels, vooral in het palataal orgaan maar ook op de kieuwzeef, vormen de basis 

voor een mechanisme waarbij voedsel waarschijnl i jk door lokale buitvorming tussen 

keeldak en keelbodem kan worden vastgezet. Niet-eetbare part ikels worden niet 

vastgezet en bij kompressie via de kieuwspleten met het water naar buiten gespoeld. 

De nauwe keelspleet levert een groot selektie oppervlak. De grote dichtheid aan 

smaakknopjes, het papi l len- prof ie l van zowel spierkussenoppervlak als kieuwzeef, 

en de gemeten d i f ferent ia t ie in lokale ak t iv i te i t van het palataal orgaan duiden 

op een groot scheidend vermogen. De laminaire cyto-archi tektuur van de vagus 

lob in de nauw verwante goudvis suggereert bovendien palatotopie. Deze ru imte l i jke 

afbeelding van de in format ie ui t het palatale orgaan in de hersenen is vermoedeli jk 

een voorwaarde voor een zeer lokale bewegingssturing (cf. Finger, 1981). Dat d i t 

mechanisme niet d irekt een volledige scheiding teweeg brengt b l i j k t u i t de herhaalde 

terugspoelbewegingen naar de mondholte (back-washing), waarin resuspensie van 

het materiaal voor een volgende selektiefase plaatsvindt, en u i t de geringe veront­

reinigingen in de darm. Protrusiebewegingen met gesloten bek veroorzaken het 

terugspoelen naar de mondholte en z i jn bij dit getrapte zuiveringsproces van essen­

t ieel belang. Z i j maken de mondholte to t een spoelkamer (Fig. 8, pag.64). 

Grove zuivering van grote voedselbrokken, die het kontakt tussen keelbodem en 

keeldak beperken, kan ook door intensief wassen via pompbewegingen met een 

van mond- naar kieuwholte gerichte waterstroom plaatsvinden (rinsing). Bij sterk 

verontreinigd of moei l i jk hanteerbaar voedsel t reedt meestal resuspensie door spuwen 
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en her-opname op. 

Uitspuwen van onsmakelijk of zelfs toxisch voedsel (bv. watermi j ten) is een 

bekend fenomeen, ook bij vissen. Part ikels worden bij gesloten bek door expansie 

van de mondholte naar voren gespoeld en daarna door adductie van de kieuwdeksels 

via de mond uitgestoten (Fig. 9, pag.66). 

Sl i jmkleuringen in de mond-keelholte tonen de aanwezigheid van minstens 

twee verschillende typen sl i jm aan (hoofdstuk 3): sialomucines met re lat ief lage 

viskositeit in de mond en voorste keelholte, sulfomucines met re lat ief hoge viskosi-

te i t (Hunt, 1970) achter in de keelholte. Het weinig viskeuze s l i jm langs de weg 

van het water dient behalve als bescherming waarschijnl i jk ook om turbulenties 

in de grenslaag langs de wand te verminderen en daarmee de weerstand voor water­

transport te verkleinen (Rosen & Cornford, 1971). Sterk viskeus sl i jm achterin 

de keel bevordert waarschijnl i jk het vangen van kleine partikels en hun samenklonte­

r ing. De afwezigheid van dit s l i jmtype in het voorste deel van de mond-keelholte 

laat ef fekt ieve resuspensie van het materiaal bij zuivering toe. Deze en andere 

funkt ies van sl i jm (bv. smering bi j transport) komen ter diskussie in hoofdstuk 3. 

Hoe wordt geselekteerd voedsel naar de kauwholte getransporteerd? 

Voor zover het voedsel nog niet achter in de keelholte tussen palataal en post-

linguaal orgaan l igt wordt het door gesloten protrusiebewegingen teruggespoeld 

en door gekoördineerde aktie van het palataal orgaan en de keelbodem in deze 

transportposit ie gemanoeuvreerd (repositioning). Voedselpartikels uit de kieuwzeef 

worden welhaast zeker op eenzelfde wijze door terugspoeling verzameld. 

Tandendragende kieuwboogelementen in het keeldak zorgen voor transport bi j de 

meeste niet-cypriniden (L iem, 1973; Lauder, 1983), maar ontbreken bij karper­

achtige vissen. Gekoördineerde kontrakt ies in het achterste deel van palatale en 

postlinguale orgaan dr i jven het voedsel langzaam (2-3 cm/sec.) met peristalt ische 

golven to t in de kauwholte voort (Fig. 10, pag. 67). De rol van de sterk toegenomen 

sl i jmproduktie in dit gebied (sulfomucines) werd reeds vermeld. De dichtheid aan 

smaakknopjes neemt in deze zelfde r icht ing af (Fig. 7 , pag. 107). 

Hoe vindt de mechanische verkleining van het voedsel plaats? 

Het kauwsysteem dient er toe het voedsel zodanig te vervormen, dat het opper­

vlak voor de inwerking van spijsverteringsenzymen wordt vergroot en om slecht 

doordringbare kapsels te breken. Gezien het ontbreken van een maag is d i t van 

groot belang bij karperachtigen. 

In tegenstelling t o t zoogdierkaken hebben de keelkaken van de karper een 



-21-

groot aantal vrijheidsgraden (4) in beweging. Ze zijn onderling beweeglijk en via 

negen paar spieren aan schedel, schoudergordel en kieuwkorf opgehangen. Een glij-

koppeling tussen keelkaken en kieuwbogen laat rostro-caudale translatie toe. De 

beweging van deze kaken tegen de kauwplaat van de schedel is verder samengesteld 

uit rotaties om vier verschillende anatomische assen (hoofdstuk 4). Het kauwproces 

verloopt bilateraal synchroon en is opgebouwd uit een of meer kauwtreinen, elk 

samengesteld uit series kauwslagen. Op grond van bewegings- en aktiviteitspatroon 

van de kauwspieren worden plet- en maalslagen (resp. crushing en grinding) van 

elkaar onderscheiden. 

De belasting van het voedsel (kompressie, rek, afschuiving, torsie en buiging) 

hangt af van de profielen van de occlusievlakken (tanden en maalplaat) en de rich­

ting waarin zij ten opzichte van elkaar bewegen. Het heterodonte kauwapparaat 

van de karper (Fig. 2, pag.12^ is slecht uitgerust voor snijden, knippen en uiteentrek-

ken van voedsel maar biedt goede mogelijkheden tot pletten en malen (p.15^. Het 

kauweffekt hangt af van de mechanische eigenschappen van het aangeboden voedsel. 

Brosse en stijve materialen worden verbrijzeld, meer elastisch, taai en/of vezelig 

voedsel wordt vooral geplet. De kauwholte kan slechts beperkt expanderen, delen 

met een diameter groter dan ca. 3% van de lichaamslengte kunnen er niet in. 

Het grote kauwoppervlak, de lengte van de kauwslag en ook de aanwezigheid van 

zandkorrels in de tandgroeven bevorderen de vermaling van kleine partikels, kwantita­

tief en kwalitatief. 

Welke kauwdruk kan dit systeem produceren? Dit hangt in de eerste plaats 

af van het kontaktoppervlak tussen occlusievlakken en voedsel en zal dus met 

de vorm en grootte van het voedsel variëren. Ofschoon de positie van de kauwholte, 

midden in de kop, kauwdrukmetingen in de weg staat, geeft vorm-funktie onderzoek 

aan dat de kauwkracht groot is. Als argumenten hiervoor gelden ondermeer: 

1) De direkt op de keelkaken aangehechte spieren stralen wijd uit naar omringende 

beenelementen, maar hun werklijnen vormen gunstige rotatie-koppels rond de 

onderhavige assen. Hierdoor worden de krachten van de afzonderlijke spieren 

sterk gebundeld (vgl. Fig. 7 pag.134). 

2) De keelkaken vormen lange uitsteeksels en vleugels die, behalve dat zij spieren 

een groot oppervlak voor aanhechting bieden, grote momentarmen leveren. De 

kauwvlakken liggen dicht bij de rotatie-assen van de keelkaken en brengen zo 

vergrote krachten op het voedsel over. Alleen de transversale as, voorin door 

de symfysis van de keelkaken, ligt ver van de tanden verwijderd en laat grotere 

amplitudes van de keelkaken toe. Dit is van belang tijdens expansie van de kauw­

holte bij het opladen van het voedsel. 

3) De rug- en buikspieren van de karper zijn tijdens het kauwen actief en dragen 
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hun krachten op de kauwplaat en keelkaken over via resp. de schedel en de 

schoudergordel en via kauwspieren met pezige komponenten. Vergeleken bij 

de d irekte kauwspieren leveren zij een zeer groot vermogen (vgl . F ig . 20, pag.155). 

4) De hoge schedel en lange schoudergordel vormen grote momentarmen voor deze 

l ichaamsspieren. De ligging van de kauwplaat vlak onder het ro ta t iecentrum 

van de schedel resulteert in een kleine doch zéér krachtige beweging van de 

kauwplaat, tegengesteld aan die van de tanden. De kauwplaat werd in de l i te ra­

tuur to t nu toe door haar f ixat ie in de schedelbasis zonder uitzondering van 

de kauwbeweging uitgesloten. 

De grote kauwkracht stelt eisen aan het kauwapparaat wat be t re f t s tur ing, stabil isa­

t ie en absorbtie van reakt iekrachten. D i t is des te meer van belang daar de keelka­

ken in spieren zi jn opgehangen en het hart van de vis d irekt tussen de keelkaken 

l igt en door deze overdekt wordt (Plaat II d, pag.90 ). Sturing en stabil isatie wordt 

behalve door l igamenten tussen en achter de keelkaken vooral ook bereikt door 

de geprogrammeerde aktie van de kauwspieren, die elkaar door antagonistische 

werking in e f fekt balanceren (F ig. 15, p. 147). De pharyngo-cleithral is externus spier 

speelt hierbij een s leutelrol . Beenbalkjes die zowel vanuit de tanden over de keel­

kaken als vanuit de kauwplaat-kom over de schedelbasis u i tstralen zorgen voor 

een gel i jkmatige spreiding van reakt iekrachten en voorkomen zo te sterke belasting 

van het eigen systeem. 

De vereiste rotatieslag van de keelkaken is ondermeer mogeli jk dankzij de gl i jkoppe-

ling in de basis van de k ieuwkorf. De ak t iv i te i t van de spierketen in de bodem 

van de kop draagt zowel bij in voor- en achterwaartse bewegingen van de schouder­

gordel bij het kauwen, als to t het vergroten van de slagruimte van de keelkaken. 

De sterke expansie van de kop en het open gaan van de bek bij het kauwen is 

meer een gevolg van het kauwproces dan dat het to t voedselopname of respiratie 

dient. Het kauw- en ademhalingsritme verschil len overigens niet belangri jk. 

Het kauwapparaat beperkt zich dus niet t o t de keelkaken en de daarop aange­

hechte spieren. Kauwen vereist bewegingen van de kop als geheel en van de rug 

en buik van de vis en beperkt daarmee het ge l i jk t i jd ig ui tvoeren van andere funkties 

(bv. respirat ie, opname, selektie). De ro tat ie van de schedel to t ca. 15° maakt 

tevens de loop van de botjes van Weber, dicht langs het rotat iecentrum van de 

schedel welhaast to t een strukturele noodzaak. De opbouw van deze verbinding 

tussen middenoor en zwemblaas uit vele elementen l i j k t een kompromis, dat zowel 

het overbrengen van t r i l l ingen als de beweging van de schedel bij het kauwen toe­

laat. Het is te verwachten dat de f rekwent ie gevoeligheid van het gehoor en de 

bij het kauwen geproduceerde t r i l l ingen weinig overlap hebben. Bij het breken van 

maiskorrels z i jn de kauwslagen van de karper to t buiten het aquarium hoorbaar! 
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Het doorslikken van het voedsel 

Transport van verkleind voedsel naar de darm geschiedt door middel van kom-

pressie van de kauwholte door de constr ictor pharyngis spier, ondersteund door 

een kleine beweging van de keelkaken. Het palataal en postlinguaal orgaan sluiten 

door opzwelling de toegang to t de kauwholte af en r ichten daarmee het transport 

naar de slokdarm. Ak t i v i t e i t van de constr ictor pharyngis zet zich wel l icht per ista l ­

t isch in de slokdarm voort . 

Hoe stemt de karper zijn gedrag af op de eigenschappen van het voedsel? 

De procesgang bij verwerking van verschillende typen voedsel (pellets, gerst, 

wo rm, tubi fex, watervlooien, bodem-tubifex mengsels) duidt er op dat bovengenoem­

de deelprocessen een in beweging en ak t iv i te i t stereotyp karakter dragen ( ' f ixed 

act ion patterns'?; Baerends, 1979). Z i j kunnen als herkenbare eenheden van gedrag 

worden onderscheiden. Afhankeli jk van positie, groot te en aard van het voedsel 

worden zij in herkenbare volgorde maar met wisselende f rekwent ie ingezet (bv. 

part ikel opname-slokken, p letten-malen), hetgeen leidt to t variaties in het totale 

verwerkingsproces (hoofdstuk 2, pag. 56 ). De voor de totale voedselverwerking bij 

één opname benodigde t i jd (handling t ime) kan direkt uit de electromyogrammen 

worden afgelezen en b l i jk t voor verschillende voedseltypen sterk te verschillen 

(Fig. 3-4, p. 53 ). Z i j wordt vooral bepaald door herhaling van voor een voedseltype 

specif iek benodigde deelprocessen. Zo is de 'handling t ime' voor grote part ikels 

vooral door herhaald kauwen lang, te rwi j l bi j verontreinigd voedsel voortdurend 

terugspoelen bij selektie veel t i jd vergt. Gesloten protrusie b l i jk t een kernpatroon, 

dat aan de basis l igt van meerdere deelprocessen (positioneren, terugspoelen, verza­

meling voedsel van de kieuwzeef), die op grond van hun ef fekt op het voedsel 

worden onderscheiden. Spuwen en monsteren van bodemmateriaal (probing) leiden 

niet to t opname in het darmkanaal en worden als aparte seguenties onderscheiden. 

De mechanismen die deze gedragskomponenten opwekken, vasthouden en stoppen 

z i jn onbekend, evenals de regulatiemechanismen die de deelpatronen to t een e f f i ­

ciënt voedingsproces samenvoegt. Afstemming van de kauwdruk op de momentane 

eigenschappen van het voedsel en registrat ie van de kondit ie van het voedsel, zodat 

sl ikken op het ju iste moment begint, z i jn bijvoorbeeld noodzakelijk voor een e f f ic iënt 

verloop van het kauwproces. Of proprioceptoren in de spieren, dan wel zintuigen 

in de weefselflappen die tussen tanden en kauwplaat uitsteken en hen waarschijnl i jk 

schoonvegen, hierbij een rol spelen is onbekend. Smaakknopjes en ol igovil le cel len 

hebben mogelijk mechanoreceptieve funkt ies en z i jn de enige sensoren die vooralsnog 

in de mond-keelholte van de karper struktureel werden aangetoond (hoofdstuk 3). 
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Over funktionele verbindingen tussen proprioceptoren en het centrale zenuwstelsel 

is alleen voor de ademhalingsregulatie een en ander bi j de karper bekend (Bal l in t i jn , 

1972; Lu i ten, 1977). 

Welke mogelijkheden en beperkingen heeft de karper om de beschikbare voedselbron­

nen te benutten? 

Naar de aard van het voedsel worden algemeen carnivore, herbivore, det r i t ivore 

en omnivore vissen onderscheiden (Nikolsky, 1963). Dat de vis zich niet in een 

dergelijk schema laat ordenen wordt overtuigend geïl lustreerd aan de Afrikaanse 

Haplochromis soorten (cichliden) waarin de trof ische d i f ferent ia t ie zich zo sterk 

manifesteert , dat een verregaande opsplitsing van deze trof ische hoofdgroepen 

noodzakelijk is. Ook sterk gevarieerde mengvormen komen voor. Barel (1983) laat 

voor deze groep zien, dat binnen eenzelfde voedselkategorie de funktionele eisen 

aan het voedingsapparaat zeer verschil lend kunnen zi jn (eieren zuigen van de bodem 

- eieren zuigen uit een bek-broedend vrouwtje), t e rw i j l ook verschillende kategorieën 

dezelfde eisen kunnen stel len (inwendig transport van zoöplankton en eieren). Het 

zal duidelijk zi jn dat ook de mechanische eigenschappen van het voedsel niet eenvou­

dig met de vermelde voedselkategorieën overeenkomen (vgl . s lak-worm; slak-planten-

zaden). Bovendien wordt de darminhoud bij voedselovervloed sterk bepaald door 

het voedselaanbod. Ook het voederen met pellets in de visteelt maakt de vis nog 

niet to t een gespecialiseerde pel letfeeder. 

De ef f ic iency van de voedselopname wordt waarschi jnl i jk vooral bepaald door 

de vereiste behandelingstijd ('handling t ime') en de verhouding tussen bestede en 

verworven energie. In een si tuatie van voedselschaarste spelen specialisaties in 

bouw en gedrag een belangrijke ro l . De soortspecifieke komponent in het dieet 

van de vis wordt waarschijnl i jk bepaald door specialisaties voor dat voedsel waarmee 

ze in ef f ic iency van opname en verwerking boven andere soorten u i ts t i jg t . Zo b l i jk t 

de graskarper beter dan de andere vissen in staat planten als voedselbron te benut­

ten. Well icht speelt de gespecialiseerde bouw van het kauwapparaat hierin een 

beslissende ro l . Het is te verwachten dat specialisaties voor het ene deelproces 

die voor andere beperkt. Zo vereist de selektie tussen voedsel en niet-voedsel bij 

de karper een nauwe keelspleet en reduceert daarmee de rol van de keelholte bij 

het zuigen. 

De specialisaties voor deelprocessen in de karper en de beperkingen die hier 

voor de benutting van het voedselaanbod u i t voortvloeien worden voor elk deelproces 

zo goed mogelijk aangegeven in hoofdstuk 2. Optel l ing van deze restr ikt ies le idt 

t o t het volgende beeld. Slechts langzame en kleine voedseldelen (< ca. 9% van 
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de l ichaamslengte van de karper (SL) in diameter) kunnen worden opgenomen en 

deze hebben slechts gedeeltel i jk to t de kauwholte toegang (< ca. 3% SL). Fi jne 

part ikels ( < 250 urn) gaan door de kieuwzeef verloren. Taaie en vezelige mater ialen 

kunnen slecht worden gebroken, waardoor de e f f ic iënte vertering van plantaardig 

voedsel sterk wordt beperkt. D i t vernauwt het e f f ic iënt te benutten voedselskala 

van deze 'omnivore' vis goeddeels to t plantenzaden, macro- en micro-evertebraten 

(250 ym - 3% SL). 

Als voornaamste specialisaties gelden het benutten van harde, brosse en st i jve 

voedselobjekten (plantenzaden, mollusken) en het exploiteren van voedsel dat met 

bodemmateriaal is vermengd. U i t de l i teratuur b l i jk t opvallend genoeg dat de darm-

inhoud van deze euryfage vis soms meer (weliswaar zachte) macrofyten bevat 

dan verwacht. Gebrek aan ander voedsel kan hier mede oorzaak van z i jn. 

Deze konklusies strekken zich niet u i t to t jonge karpers. Over het verband 

tussen hun specifieke dieet (vg l . Ur ibe-Zamora, 1975) en de relat ieve groei van 

de verschillende kopelementen ti jdens de kr i t ieke juveniele fase is nog weinig be­

kend. Het mechanisme van prooivangst in relat ie to t de groei wordt momenteel 

aan juveniele karpers onderzocht (M.Drost). 

Ontwikkel ing van het protrusie-systeem van de bovenkaak, het palatale en 

postlinguale orgaan in de keel, en de kauwplaat in de schedelbasis hebben waarschijn­

l i jk door het exploiteerbaar worden van de bodem belangrijk bijgedragen to t het 

grote succes van de cypriniden in het zoete water. De set van unieke strukturele 

kenmerken die de cypriniden en catostomiden karakteriseert en ver uiteen liggende 

delen van de kop omvat wordt vanuit een sterke ontwikkeling van het keelmaalappa-

raat in een funktioneel verband geplaatst (p. 7 5 ) . In hoofdstuk 3 wordt het plausibel 

gemaakt dat de karperachtigen zich door specialisatie op de bodem-voedselbronnen 

u i t predatoire voorouders hebben ontwikkeld. 

Een verdere ui twerking van ethologische en ekologische aspekten en vergeli jking 

met andere soorten cypriniden zal t o t toetsing en verf i jning van gestelde hypotheses 

en konklusies bi jdragen. D i t zal ook t o t meer inzicht leiden in de t rof ische segrega­

t ie van verschillende soorten, die naast elkaar in één levensgemeenschap voorkomen. 
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Samenvattinq en konklusies 

In dit proefschr i f t worden de onderdelen beschreven van het proces van voedsel-

opname en -verwerking bij de karper (Cyprinus carpio L.), de bouw van de l ichaams­

delen die hierbij betrokken zi jn en de funkties van de afzonderli jke deelprocessen 

en s t rukturen. Het doel is de samenhang tussen de architektuur van de karperkop 

en zi jn funkt ies te bepalen en inzicht te geven in het naast elkaar bestaan van 

verschillende vissoorten in een levensgemeenschap door naast de specialisaties 

van deze vis voor bepaalde voedselsoorten de daaruit voortvloeiende beperkingen 

voor andere vast te stel len. 

- De cypriniden of karperachtige vissen bezi t ten to t keelkaken gemodificeerde 

v i j fde kieuwbogen, die tegen een kauwplaat worden bewogen door oorspronkelijke 

kieuwboogspieren. De bek draagt geen tanden. Een maag ontbreekt. De bovenkaak 

van de karper is uitstulpbaar, waardoor een ronde zuigmond gevormd kan worden. 

De mond- en kieuwholte kunnen sterk in volume veranderen. De keelholte wordt 

v r i jwel geheel ingenomen door een dorsaal gespierd palataal orgaan. Ventraal 

l ig t het postlinguaal orgaan en de kieuwzeef. He t oppervlak van keeldak en 

bodem is bijna geheel bedekt met smaakknoppen ( to t 820/mm2) en s l i jmcel len. 

De spleetvormige keelholte kan maar zeer beperkt in volume variëren, in tegen­

stell ing t o t bi j de meeste andere vissen. Het bij dit pharyngeaal systeem behoren­

de hersencentrum l igt in het verlengde merg en benadert in omvang de grote 

hersenen. 

- De ro l , die deze structuren bij de opname en verwerking van voedsel vervullen 

is bij de karper onderzocht m.b.v. gewone- en röntgenfi lmopnamen van levende 

vissen. Meting van ak t iv i te i t in de bi j d i t proces betrokken spieren werd, syn­

chroon op negen kanalen, gekoppeld aan deze bewegingsstudies. Het voedsel 

bestond uit visvoerpellets, graan, wormen, watervlooien, tubifex en bodemma­

ter iaal vermengd met tubi fex. Door impregnatie van voedsel met BaSO^ werd 

de weg van het voedsel op de röntgenf i lm zichtbaar gemaakt. Struktuur onderzoek 

geschiedde op macroscopisch, l ichtmicroscopisch en scanning-electronenmicro-

scopisch niveau. 

- Elk eetproces b l i jk t uit een wisselend aantal stereotype bewegingspatronen opge­

bouwd: deeltjes opname (part iculate intake) of slokken (gulping), selektie tussen 

eetbare en niet-eetbare delen (wassen, positioneren of terugspoelen), verzamelen 

van het door de kieuwzeef gevangen mater iaal , transport van voedsel en het 

vullen van de kauwholte, p le t - en/of maalbewegingen afgesloten door sl ikken. 

Monsteren van de bodem en spuwen worden apart beschouwd. 
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Het moment en de mate en snelheid van bekopening, protrusie van de bovenkaak, 

opening van de kieuwdekselklep, en van de volumeveranderingen in mond-, keel-

en kieuwholte bepalen samen het e f fect van elk patroon. Opname, selektie, 

transport en kauwen stel len verschillende eisen aan de kop en zijn alleen los 

van elkaar e f fekt ie f uitvoerbaar. 

De opbouw van het voedselopname proces uit de genoemde stereotype bewegings­

patronen varieert met de grootte, aard en verontreiniging van het voedsel. De 

totale hanteert i jd van een voedseltype, te meten aan het e lectromyogram, var i ­

eert vooral door herhaling van voor dót voedsel specifiek vereiste bewegings­

patronen. 

De kwant i tat ieve verdeling van smaakknoppen, s l i jmcel len, clubcellen en spier­

vezels is in mond- en keelholte gemeten. Op grond van deze verdeling en andere 

morfologische kenmerken worden zes gebieden in de mond-keelholte onderscheiden 

en aan de deelprocessen voor voedselopname en -verwerking gerelateerd. Scan­

ning E.M. beelden worden gegeven van gewone epitheelcellen met microrichels, 

verhoornde cel len, s l i jmcel len, smaakknoppen en ol igovi l le (sensorische ?) cel len. 

Ger ichte opname van deeltjes (part iculate intake) wordt bereikt door een snelle 

en volumineuze zuigbeweging, opgewekt door vergroting van de mond- en kieuw­

holte. De bovenkaken worden hierbij vooruitgestulpt (protrusie) waardoor een 

snelle en naar het voedsel gerichte waterstroom (ca. 60 cm/sec.) ontstaat. 

'Gulping' , het langzaam en ongericht opslokken van water met gesuspendeerd 

voedsel, geschiedt door vergroting van alleen de mondholte. Door het naar bene­

den stulpen van de bovenkaak sluit de vis de suspensie in. Kompressie van de 

mondholte perst de suspensie door de kieuwzeef. De energie nodig voor een 

slokbeweging zal beduidend minder zi jn dan die voor deeltjes-opname. 

Grote dichtheden clubcellen, die in de huid een voor cypriniden kenmerkende 

alarmstof produceren, komen ook en alleen in de mondholte voor. Hun a larmfunk-

t ie op deze plaats wordt in tw i j fe l getrokken. 

Selektie vereist het vasthouden van eetbare en de afvoer van niet eetbare deel­

t jes. U i t e lectromyogrammen en electrische s t imulat ie val t af te leiden dat 

deze scheiding plaats vindt door de vorming van bultjes op het palataal orgaan. 

Tussen dit orgaan en de kieuwzeef zullen eetbare delen worden vastgezet; n ie t -

eetbare worden weggespoeld. De complexe bouw van het palataal orgaan, de 

bijna maximale dichtheden van smaakknopjes en de cyto-archi tektuur van het 

hierbij betrokken regelcentrum in de achterhersenen wi jzen op een groot schei­

dend vermogen. De brede spleetvormige keelholte waarborgt een groot kontakt-

oppervlak tussen dak en bodem maar beperkt tevens haar ro l bij het zuigen. 
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De vergroting van de mondholte door protrusie met gesloten bek speelt bi j selek-

t ie een belangrijke rol door het mengsel van voedsel en niet-voedsel in de mond­

holte te resuspenderen. Door afwisselend expanderen en komprimeren van de 

mondholte wordt een op en neer gaande stroming door de kieuwspleet en kieuw-

zeef bereikt. Voortdurende herhaling van 'gesloten protrusie' en selektie leidt 

to t steeds verdere zuivering van het voedsel. Gesloten protrusie speelt ook een 

rol bij het positioneren van grotere delen en bij het verzamelen van het f i l t r aa t 

u i t de kieuwzeef. 

Sl i jm met lage viskositeit (sialomucinen) wordt aangetroffen in de voorste delen 

van mond- en keelholte. Het dient mogelijk voor de verlaging van de stromings­

weerstand langs de wand en beschermt het onderliggende weefsel. Achter in 

de keelholte waar aggregatie van voedseldeeltjes voor verder transport verwacht 

moet worden, vinden we cellen die veel en sterk viskeus sl i jm (sulfomucinen) 

produceren. In s l i jm gevat voedsel wordt via een gekombineerde per istal t iek 

in palataal en postlinguaal orgaan naar en in de kauwholte getransporteerd. 

De keelkaken zijn onderling beweeglijk in spierlussen opgehangen en door een 

gl i j-koppeling met de kieuwkorf verbonden. Voedsel wordt geplet en/of gemalen 

tussen de keeltanden en de verhoornde maalplaat aan de schedelbasis. Bij het 

maalproces kunnen mais en gerstekorrels worden verbri jzeld met een buiten 

het aquarium hoorbaar geluid. 

Aangetoond is dat de rugspieren via schedelrotatie belangrijk bijdragen aan de 

p le t - en maalkrachten. Via de schoudergordel dragen ook de buikspieren hun 

krachten met een grote momentarm op de keeltanden over. De konstruktie van 

het maalapparaat is er op gebouwd hoge kauwdrukken te produceren en te weer­

staan. 

In tegenstell ing t o t deze 'kracht-spieren' , 'zijn de direkt op de keelkaken aange­

hechte spieren meer 'stuur-spieren'. Z i j r ichten en stabiliseren de beweging 

van de keelkaken om vier anatomische assen. 

De werking van het maalapparaat met de beweeglijke schedel maakt een starre 

keten van 'gehoorbeentjes' tussen zwemblaas en het inwendige oor onmogeli jk. 

De vele beentjes van Weber en hun loop langs de rotat ie-as van de schedel l i j k t 

daarom een konstruktieve noodzaak. 

Slikken geschiedt door kompressie van de kauwholte, waarbij afslui t ing van haar 

toegang door het palatale en postlinguale orgaan het transport naar de slokdarm 

r ich t . Beweging van de keelkaken ondersteunt d i t t ransport. 

Het voedselopname-apparaat van de karper b l i j k t gespecialiseerd voor het ver­

werken van kleine voedseldelen (van 250 urn tot ca. 3% van de l ichaamslengte) 

en voor voedseldelen die vermengd met oneetbare delen voorkomen. K le in en 
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hard voedsel wordt e f fekt ie f verwerkt (zaden, mollusken). Snelle, grote en sparte­

lende prooien en grote p lat te delen van planten kunnen niet e f fekt ie f verwerkt 

worden. Dus ook de 'omnivore' karper is door specialisaties voor bodemvoedsel 

gel imi teerd in het benutten van andere typen. 

De unieke set van kenmerken die cypriniden karakteriseert kan worden uitgelegd 

als aanpassing aan het leven en zich voeden op de bodem. Het kauwapparaat 

speelt hierin een centrale ro l . 

D i t onderzoek biedt een nieuw startpunt voor onderzoek naar de regulatie van 

de voedselverwerking en voor vergeli jkend onderzoek aan inheemse karperachtigen 

als brasem, blankvoorn, zeelt e.a.. Door inzicht in de mogelijkheden en beper­

kingen van het voedselopname en -verwerkingsapparaat kan duideli jker worden 

aangegeven welke de p last ic i te i t van de vis in de benutting van verschillende 

voedseltypen is. Deze p last ic i te i t bepaalt mede de overlevingskans van de be­

tref fende vissoort in situaties met een beperkt voedselaanbod en daarmee de 

konkurrentieposit ie van de soort. De verkregen kennis draagt zo bij t o t het 

voorspellen van het e f fekt van veranderingen in het mi l ieu op de trof ische inter-

akties en de samenstelling van de visfauna. 
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SUMMARY 

The oro-pharyngeal feeding mechanism of the carp was analyzed as a case 

study for cyprinids. L ight and X-ray cinematography combined w i th e lectromyo­

graphy allowed a detailed analysis of the external and internal events during pro­

cessing of the fol lowing food types: radiopague pellets, earthworms, barley, tub i -

f ic ids, cladoceran suspensions and food-soil mixtures. In feeding twelve funct ional 

patterns of headmovements and act iv i t ies are d ist inct . Part iculate feeding and 

gulping for intake; r insing, repositioning or back-washing and spit t ing for selection; 

recol lect ion f rom the branchial sieve, t ransport, loading of the teeth, crushing, 

grinding and deglut i t ion. The mechanism of each single pattern is discussed. The 

expansion mechanism of the head is versati lely used in food handling by the ade­

quate t iming of upper jaw protrusion, volume changes in the oral, buccal and oper­

cular cavit ies and of the opening of the mouth and opercular valves. Muscular 

cushions in the pharyngeal roof (palatal organ) and f loor (postlingual organ) play 

a prominent role in internal selection between food and non-food and in transport. 

They permit postcapture selection of food. Protrusion of the upper jaw is crucial 

in food processing and serves d i f ferent functions in part iculate intake, gulping 

and in selection between food and non-food part icles inside the pharynx. 

The effects of the separate movement patterns on the food and the impl icated 

restr ict ions for processing d i f ferent types of food are discussed. Tentat ive l imi ts 

are set to the feeding on the available food types in the environment. The feeding 

apparatus appears to be i l l constructed for exploit ing very small part icles (<250ym), 

plant and other materials of f ibrous context. Only slow and immobile food part icles 

w i th a diameter up to ca. 3% of the carps body length are e f fect ively processed. 

The carp appears to be a generalist in its diet w i th specializations for the exploi­

tat ion of food and non-food mixtures f rom the bot tom, even if the contained food 

is of considerable density and hardness. 

The distinct elements of feeding behaviour are considered to be stereotyped 

act ion patterns. They are released and steered according to the actual size, d istr ibu­

t ion , consistency and contamination of the food and integrated into varied feeding 

sequences. D i f fe rent food types require d i f ferent 'handling t imes' due to the varied 

repet i t ion frequency of specific patterns wi th in one feeding sequence, related to 

the properties of the food. Probing and spit t ing do not lead to ingestion and are 

employed in search and re ject ion. Protrusion w i th closed mouth appears to be a 

core pat tern in food handling as i t is basic to repositioning and back-washing during 

pur i f icat ion of food. I t w i l l also serve recol lect ion of retained food f rom the bran­

chial sieve. 
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Protrusion and the palatal and postlingual organs in this lower teleost are 

discussed in re lat ion to the hypertrophy of the pharyngeal masticatory apparatus, 

the recru i tment of body power for masticat ion and to the evolutionary loss of 

toothed upper pharyngeal transporting bones. Protrusion as well as these sensory 

muscular organs are basic to the substrate feeding habits for many cyprinoids. 

The significance of funct ional morphology, ethology and ecology for the study 

of l imi tat ions in the exploi tat ion of available niches is emphasized. 
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INTRODUCTION 

Abundant reports exist on feeding structures, pointing to their adaptive charac­

ter. Paradoxically, few experimental evidence assess their role in feeding. 

Over the last decades gradually more detailed analyses of funct ion have been per­

formed in f ish to supply evidence for such feeding adaptations (Alexander, 1969; 

Osse, 1969; L i em, 1973; Lauder, 1983). The specializations for food intake have 

been focal points for functional anatomists but an overall theory providing testable 

hypotheses was lacking. A recent model for suction-feeding (Muller, Osse and Ver­

hagen, 1982; Muller and Osse, 1984; van Leeuwen and Muller, 1984) presents the 

options which a f ish has to manipulate the f low of prey and water into the mouth. 

However intake is only a f i rs t step in food processing, especially in benthic feeding 

as employed by cyprinids. Enquiries into the funct ional aspects of dent i t ion and 

food processing have been l im i ted in scope and are largely descriptive (Hyat t , 

1979). The need to develop precise, experimental ly based assessments of the mecha­

nisms control l ing food exploi tat ion in fishes is apparent. The concealed character 

of food processing, occurring inside the complex orobranchial cavi ty, largely obstruc­

ted a detailed analysis of food handling once i t is entered the mouth. 

This paper studies the external and internal food processing in the carp. X-ray 

cinematography combined to electromyography recently allowed a detailed funct ional 

analysis of pharyngeal mastication in the carp (Sibbing, 1982). Similar techniques 

are applied here to analyse movement and act iv i t ies of the head parts, and the 

path fol lowed by part icles f rom intake to deglut i t ion. We seek for dist inct move­

ment patterns in feeding behaviour, to analyse their mechanism and to explain 

their e f fect for food handling. This knowledge is used to describe optimizations 

and restr ict ions of the feeding apparatus to exploit part icular food types in the 

environment. 

The fol lowing feeding elements are dist inct for the carp. Search and detection 

of food, intake, gustation and selection between food and non-food, recol lect ion 

of food f rom the branchial sieve, t ransport, mast icat ion, deglut i t ion and digestion. 

Each single species w i l l have i ts specific set of structures and actions contr ibut ing 

to the specif ic i ty of its feeding behaviour. Detai ls of the oro-pharyngeal l ining 

and their role in food processing is presented in a concurrent paper (Sibbing et 

a l . , 1984). 

Selective pressure acts through the ef f ic iency of behaviour. Structures and 

their actions allow as well as l im i t the exploi tat ion of the environment by the 

f ish. The mechanisms of food processing in cyprinids should be understood to deter­

mine their e f f ic iency. L im i ts thus set on the usable food are important to distinguish 



-35-

the exploitable niches in the aquatic ecosystem. 

Such knowledge is required when studying f ish-food and f ish-f ish interactions or 

even exploit ing them in management and control of natural , or a r t i f i c i a l , f ish re­

sources. Cyprinids have a high impact on aquatic systems and f isheries. 

The Cyprinidae assemble the largest (freshwater) f ish family w i th a wide ecolo­

gical and trophical d i f ferent ia t ion. Contrary to non-cyprinoid teleosts cyprinids 

lack teeth on the jaws but instead have strong pharyngeal teeth impacting on a 

corni f ied chewing pad (Sibbing, 1982). They include many bottomfeeders which 

take portions of soiled food. The actual separation between food and non-food 

proceeds in the orobranchial cavi ty. 

St imulat ing studies on the buccopharyngeal feeding mechanism in cyprinids (Girgis, 

1952; Matthes, 1963; Robotham, 1982) lack funct ional data to veri fy hypotheses. 

For example, the size-selective ef fect of the branchial sieve w i th i ts g i l l rakers 

is generally agreed upon (Zander, 1906; Iwai , 1964). The detailed mechanism of 

size-selection and i ts ef f ic iency is however s t i l l unclear. 

The omnivorous common carp (Cyprinus carpio L.) is a pract ical choice for this 

study. Extensive data are available on its feeding habits and also f r om other d isci­

plines, affording a wide p la t form of knowledge necessary for relat ing the s t ruc­

tures of the feeding apparatus to the usable food in i ts habi tat . 

MATERIALS AND METHODS 

A l l mirror-carps (Cyprinus carpio L.) hatched in our laboratory culture and 

were selected between 28 and 35 cm SL for the experiments. Records of the feeding 

events were made at room temperature (+_ 2fJ°C). Care was taken to maintain the 

proper pH and n i t r i te content of the water. 

Detai ls of operation techniques, the experimental set-up, electromyography and 

simultaneous X-ray cinematography have been described in a previous paper (Sibbing, 

1982). Shortly summarized, electrodes and radiopaque markers were inserted in 

the anaesthetized carp which had been trained to feed in a small cuvet w i th c i rcu la­

t ing water. The cuvet keeps the head of the animal w i th in the X-ray beam and 

paral lel to the image-intensif ier. I t fur thermore restr icts the volume of water 

which would otherwise absorb most X-rays and thereby cause the image of the 

carp to be vague or even absent. P lat inum markers allowed accurate measurements 

of the movements of the jaws, the orobranchial roof and f loor and many other 

s t ructural components of the head (cf. Plate I). 

L ight-movies were taken f rom a large tank (80x50x40 cm) using a 16 mm Tele-

dyne DBM 54 camera at f i l m speeds between 24-60 frs/sec. This allowed sustained 
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recording of feeding behaviour over prolonged periods and at the same t ime per­

mi t ted detailed analysis of the single frames. Feeding movements in the omnivorous 

carp are slow compared to those of predaceous f ish. The procedure for measuring 

was based on exter ior marks and contours of the fish in simultaneously taken lateral 

and ventral views (cf. Plate I). 

About seventy feeding performances, f rom f ive experiments, were studied 

w i th a single-frame projector (Analector 6, Oldel f t ) . Three representative examples 

of each of the described movement patterns were measured in deta i l . These patterns 

were recognized in other f rame seguences, l ike those depicted in this paper (cf . 

Plate II). F rom the X-ray movie one i l lustrat ive food handling sequence was mea­

sured in detail over more than 15 seconds (cf. F ig . 2). Many short actions were 

analyzed f rom other scenes. Eight EMG-experiments, of ten combined w i th movies, 

ver i f ied the role of palatal and postlingual organs in feeding. Representative recor­

dings were selected for i l lustrat ion. The variable t ime course of the feeding se­

quence renders the averaging of patterns inadequate. Movement patterns are named 

af ter their role in food handling. Note that one type of movement (e.g. closed 

protrusion), due to its d i f ferent role in handling d i f ferent food types, may belong 

to several patterns (e.g. reposit ioning, backwashing and recol lect ion, cf . F ig . 8). 

Pressures in the opercular cavit ies were recorded in a series of feeding se­

quences f rom a single experiment. This was done w i th Mi l lar micro- t ip catheter 

pressure transducers (van Leeuwen and Muller, 1983). The pressure is expressed 

in pascals (1 kPa corresponds to ca. 10 cm water). 

Carps were of fered foods d i f fer ing in locat ion, dispersion, movement, size, 

shape, consistency and soilure v iz: f ine and coarse pellets (diameter resp. 0.5 and 

5 mm), barley, earthworms (cleaned or sl ightly soiled), tubi f ic ids (lumps or mixed 

through pond soil) and cladocerans (Daphnia magna). During the experiments com­

bining electromyography and X-ray cinematography, coarse radiopaque (BaSO,, 

impregnated) pellets provided a dynamical view of the internal processing by carp. 

RESULTS 

Subdivisions of the headqut (Fig. 1) 

D i f ferent parts of the headgut per form their own part icular movements during 

feeding. A clear d ist inct ion between them is a prerequisite for correct in terpretat ion 

of the results. Therefore the nomenclature of the compartments is shortly given 

(Fig. 1). 
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oral cavity 

buccal cavity 

ope 
anterior pharynx 

posterior pharynx 

esophagus 

FIG. 1. Nomenclature of the cyprinid headgut. Palatal organ (pal) in the roof and postlingual organ (plo) 
in the floor of the anterior pharynx are shaded. The opercular cavity (ope) is black. Further explanation in text . 

The oral cavity extends between the lips and the art iculat ions of the lower 

jaw. Depression of the lower jaws thus lowers the oral f loor completely (cf. Plate I). 

The buccal cavity l ies between the lower jaw-art iculat ions and the f i rs t branchial 

s l i ts. The buccal f loor is depressed by lowering of the basal hyoids. The anterior 

pharynx is bordered by the g i l l arches and a common synonym reads branchial 

cav i ty . I t has a muscular roof, the palatal organ. The midventral f loor between 

the arches is covered by a muscular pad, the postlingual organ. The posterior pha­

rynx l ies between pharyngeal teeth and chewing pad and is o f ten referred to as 

chewing cavi ty. Caudally i t converges into the narrow esophagus. The pyloric sphinc­

ter separates the esophagus af ter short distance f rom the wide intestinal bulb 

(cf. ib F ig. 12). The opercular cavities connect the anterior pharynx w i th the exte­

r ior of the f ish. They contain the respiratory f i laments projecting f rom the branchial 

arches. 

Twelve movement patterns compose the food processing sequences. 

Upper and lower jaw movements, depression of the buccal and pharyngeal 

f loor, and the events of the food were measured in X-ray movies of carps feeding 

on radiopaque (BaSO^ impregnated) pel lets. Note that the distances measured (Plate 

I) do not correspond d irect ly to the orobranchial lumen between the fleshy parts. 

For comparing respiration and masticat ion at the same t ime act iv i t ies were r e ­

corded in the levator operculi muscle (LOP) depressing the lower jaw (Bal l in t i jn , 
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^ PCE , 

orale. \ buccale. \ ant.phar. \p.phar.\ 

PLATE I. X-ray picture of the common carp. Subdivisions of the oro-pharynx correspond to Fie. 1. Note the metal 
markers inserted into the skull, jaws, buccal f loor, anterior pharyngeal floor, pectoral girdle, opercula and pharyngeal 
laws to allow detailed analysis of movements. The pharyngeal jaws and teeth as well as the opposed projection 
from the skull (solid arrows) accomodating the chewing pad are conspicuous in front of the swimming-bladder (sb). 
Open arrows indicate the action lines of two pharyngeal jaw muscles connecting them to the skull (LAB V) and 
pectoral girdle (PCE); a, x, y and z indicate the distances measured in the X-ray frames (cf. Fig. 2). 

Parameters measured from the l ight-movies (cf. Plate II) correspond to the distances between the surface-mark 
on the frontal skull and the t ip of the upper jaw (protrusion), between the tips of lower and upper jaw (mouth open­
ing), between the frontal skull and the lower jaw t ip (depression lower jaw), between the sharp circumorbital edge 
and the external skin mark below the hyoid (depression buccal floor) and, in ventral view, between the caudal edees 
of left and right opercula (opercular abduction). 

1969) and in two muscles characterist ic for the t ime course and e f fo r t during mast i ­

cat ion (Sibbing, 1982). These were the levator arcus branchialis V muscle (LAB 

V) e f fect ive in crushing and grinding during the power stroke, and the pharyngo-

clei thral is externus muscle (PCE) re f lect ing the preparatory and recovery stroke 

(Plate I). Similar and opercular movements were measured f rom the l ight movies 

in lateral as wel l as in ventral view. 

Combination of data f r om the inter ior and exter ior of the f ish and EMG results 

show twelve dist inct movement patterns in feeding, applied in dependence of the 

type and condit ion of the food, a) Food intake proceeds by particulate feeding 

or gulping, b) Selection is e f fected by d i f ferent patterns, meanwhile tasting the 

part ic les. I t proceeds by rinsing when a f i xed part ic le is flushed w i th a rostro-caudad 

f low of water. Closed protrusion may result in repositioning, back-washing or re­

collection of part ic les. Unwanted part icles may be ejected by spitting, c) Transport 

indicates movement of selected food f rom the anterior pharynx to the chewing 
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cavi ty . Loading f inal ly brings the food between teeth and chewing pad. d) Mast ica­

t ion involves crushing and grinding, e) Deglutition is the passage of ground food 

into the digestive t rac t . 

As size and consistency of a pellet allow a clear d ist inct ion of the subsequent 

patterns in food processing, contrary to long or suspended food, such a pel let-

sequence is described in detai l referr ing to the X-ray results f rom Figure 2. Each 

movement pattern is separately depicted in graphs and a series of frames (Plate 

II-VI), and characterized in Table 1 (pag. 46 ). 

intake of particles 

PR 

MO 

DLJ 

K l / 

DBF : 

ABOP 

/ \ \ 

V 
\ 

\ \ 
\l 

^.y 
A-—--v 

sb-rt v 
5 10 

Olsec. 

\ 

/ 
. / 

/ 

A/' 
15frs 

PLATE I I . Particulate feeding. Food intake movements of the carp and the internal path of the (black) particle. 
(IIa) Movement graphs of the headparts. (Hbc) Corresponding internal and external views from two other particulate 
intakes. Numbers at the X-ray frames (24/sec.) correpond to Fig. 2. The approximate t iming of the others has been 
indicated (•) at the frame-scale in the graph. 

Combination of data shows that food enters (*) the widely opened mouth after depression of the orobuccal f loor 
and opercular abduction have caused a suction flow (Ha. frs. 4-8). The opercular valves only open (f) once oral com­
pression starts. Note that protrusion is maintained during mouth closure (IIa frs. 6-10). The radiopaque food is immedi­
ately trapped in the narrow pharyngeal cavity (lib). 
PR protrusion upper jaw MO mouth opening DLJ depression lower jaw 
DBF depression buccal floor ABOP abduction opercula 
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Particulate intake (Plate II) 

Offer ing carps large part icles e l ic i ts 'part iculate feeding', characterized by 

the aiming of the fish to the food (cf. Janssen, 1976) and the fol lowing features. 

Fast intake (ca. 60 cm/sec.) occurs at sudden expansion of the fu l ly compressed 

oro-pharyngeal cavit ies (F ig. 2). The large part ic le is f inal ly trapped in the s t i l l 

narrow horizontal sl it between roof and f loor of the anterior pharynx (cf. Plate 

l ib). The large size of the pellet even obstructs its fu l l recompression (Fig. 2, 

mark p). The levator operculi (LOP) muscle is highly active during fast depression 

of the lower jaw. The combined action of the LAB V and PCE muscles support 

expansion by moving the posterior wal l of the pharynx caudad (Sibbing, 1982) while 

the pectoral girdle is sl ightly ret racted (2°; not depicted). 

Analysis f rom the exterior of the f ish (Plate Ilac) shows that lower jaw depression 

in i t iates mouth opening, later aided by protrusion of the upper jaws. Within short 

t ime depression of the buccal f loor, elevation of the cranium (ca. 10°) and abduction 

of the opercula cause the food to be sucked into the widely opened mouth (Plate 

Ha,*). The closed opercular and branchiostegal valves open once l i f t ing of the lower 

jaw reduces the gape of the mouth. Protrusion maintains during this increasing 

oral compression unt i l the mouth has almost closed. 

The negative opercular pressures measured during intake of particles in the 

carp (5-9 kPa) l ie in the same range as recorderd in the buccal cavi ty of goldfish 

and orfe (resp. maximal 9 and 10.5 kPa; Alexander, 1970). 

Selection - rinsing (Plate IVa) 

The trapped food pellet is subsequently gustated and rinsed (Fig. 2) by repet i t ive 

pumping of water through the orobranchial cavi ty. Protrusion does not occur (cf. 

Plate IVa) and, contrary to food intake, mouth opening amply preceeds buccal 

expansion (Fig. 2; compare trace 1 and 3 at intake and r insing, mark q). Due to 

this delay the suctionflow w i l l be slow, but because of i ts high amplitudes vo lumi­

nous compared to respirat ion. Note the steady state in the anterior pharynx as 

i t f ixes the pel let (Fig. 2; traces 4,5). 

Selection - repositioning and back-washing (Plate III) 

A character ist ic fast protrusion of the upper jaw wi th closed mouth (Fig. 2; 

arrows) follows r insing. The fu l ly compressed orobuccal cavity is expanded by con­

spicuous depression of lower jaw and buccal f loor, while simultaneously extensive 

protrusion of the upper jaws keeps the mouth closed (Plate IIIa,c). This 'closed 

protrusion' movement creates a rostrad f low through an anterior volume increase, 
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closed protrusion 
mm_, 

1 l i 
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PLATE HI. Closed protrusion and its effects on the internal path of the food, (a) Movement graphs, (bed) Correspon­
ding internal and external views from three other closed protrusions i l lustrating its role in repositioning (b) and 
back-washing (d) of food. Frame numbers in IHb (2<t/sec.) correspond to Figure 2. The approximate t iming of the 
others has been indicated (•) at the frame-scale in the graph. 

Orobuccal expansion occurs by depressing the lower jaw and buccal floor, while protrusion of the upper jaws keeps 
the mouth closed (frs. 4-7). This causes a rostrad suction flow from the open opercular slits (arrow marks closing), 
repositioning (b) or even washing the particles rostrad (d). Opercular adduction supports this rostrad f low (frs. 5-7). 
Abbreviations as in Plate I I . 

while at the same t ime water enters through the early opened opercular sl i ts. 

I t e f fects a repositioning of the food (Plate IHb) set f ree by slight expansion of 

the anterior pharynx (Fig. 2). I t is evident f rom other X-ray scenes that closed 

protrusion of ten washes back food part icles f rom the posterior area of the pharynx 

to the orobuccal cavity (Plate Hid). In the second half of buccal expansion (Plate 

I l ia , f rs . 5-7) the opercula even support the rostrad f low by adduction. Eventually 

orobuccal and opercular compression reverse the f low and expel the water only 

through the opercular sl its ( f rs. 7-10). Part icles may now have been flushed through 

the branchial sieve or been retained in the pharynx. In such a way closed protrusion 

forms also part of the mechanism for selection between food and non-food leading 

to pur i f icat ion (see discussion). Closed protrusion occurs f reguent ly, but i rregularly 

during food processing and is character ist ical ly accompanied by a short burst of 
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act iv i ty in the LOP muscle, fast ly depressing the lower jaw. Bal l int i jn et a l . (1972) 

reported such jaw movements in the carp and supposed that the reversed f low 

over the gills permi t ted the fish to breath during food processing, wi thout loosing 

the food through its mouth. The irregular frequency of closed protrusion and the 

simultaneous repositioning of food, occurring more frequent as the food is less 

manageable or more soiled, renders i ts significance for respirat ion doubtful . 

a rinsing transport loading 

PLATE IV. Rinsing, transport and loading of food on the pharyngeal teeth in the carp, depicted from X-ray movies 
(2^ f rs. /seo). At rinsing (IVa) alternatively compressed and expanded stages of the head show the bucco-opercular 
pumping causing a rostro-caudad f low of water that cleans the food, f ixed between pharyngeal roof and f loor. Protru­
sion hardly occurs. Transport of food (IVb) proceeds at compression of the orobranchial cavity and simultaneous 
expansion of the chewing cavity. Palatal and postlingual organs propel the food by a caudad peristaltic wave 
(cf. Fig. 3a). Loading of the chewing cavity (lVc) proceeds similarly during ful l contraction of the anterior pharynx 
and wide expansion of the chewing cavity. Frame numbers (24/sec.) correspond to those in Figure 2. 

Transport (Plate IVb) 

Food transport towards the chewing cavity proceeds slowly (ca. 2-3 cm/sec.) 

(Fig. 2). The actual transport of the large pellet occurs during the compressive 

phases of pumping movements. More generally, transport proceeds wi thout such 
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pumping and is e f fected by the palatal and postlingual organs only (cf. F ig . 3a), 

as discussed later. The chewing cavity is at the same t ime moderately expanded 

(Plate IVb). Transport is a more regular movement pat tern than selection. A period 

of guiet respiration may interrupt the seguence of feeding actions, l ike in F ig . 

2. The food is then hold at the entrance of the chewing cavi ty. 

Loading (Plate IVc) 

The f inal transport phase is called loading as i t is characterized by manoeuvring 

the food between pharyngeal teeth and chewing pad into the ful ly expanding chewing 

cavi ty, as appears f rom the X-ray frames (Plate IVc). The sustained high act iv i ty 

in the PCE muscle (Fig. 2) indicates depression and abduction of the pharyngeal 

teeth (Sibbing, 1982). Meanwhile the orobranchial cavity remains fu l ly compressed. 

During loading hardly any external head movements are observed, thus stressing 

the role of the palatal and postlingual organs (see below). 

mm. 

PR 

f MO 

DLJ 

DBF 

ABOP 

mastication 
crush, grind. 

PLATE V. Mastication of pellets in the carp, (a) Movement graphs, (be) Corresponding internal and external views of 
two other masticatory cycles. Note that the pellet is successively crushed (c) and ground (g). Note also the terminal 
mouth, the minor role of protrusion and the elevation of the skuli in grinding. The approximate t iming of the frames 
(24/sec.) has been indicated (•) at the frame-scale in the graphs. 

These data show that during the crushing phase of the power stroke the buccopharyngeal floor remains st i l l ad-
ducted. In the grinding phase the orobranchial floor is extensively depressed and the mouth fully opened, without 
causing high negative pressures (0.5-1 kPa). Opercular abduction lags behind mouth opening. Overall compression 
marks the recovery stroke (Plate Va, frs. 10-18). Arrows mark opening ( t ) and closing (J) of the opercular valves. 
Abbreviations as in Plate I I . For further explanation see text. 
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Masticat ion: crushing and grinding (Plate V) 

Loading of the teeth is immediately fol lowed by a series of masticatory cycles, 

which are best characterized by the repet i t ive bursts of ac t iv i ty in the LAB V 

muscle ef fect ing the power stroke (Fig. 2). In the crushing phase of the power 

stroke (Plate V, f rs . 3-6) the buccal cavity is fu l ly compressed, whereas grinding 

( f rs . 6-10) requires extensive expansion of the head (Sibbing, 1982). The restr ict ions 

which such vigorous movements impose on other functions are discussed later. 

During mastication of a large pellet the mouth opens widely w i th hardly or no 

protrusion. A corresponding act iv i ty in the LOP muscle is evident (Fig. 2). The 

extensive expansion during grinding resembles the events at food intake. Its e f fect 

on f low is l imi ted as i t proceeds much slower. This was conf irmed by pressure 

measurements in the opercular cavit ies, which gave a negative water pressure 

of 0.5-1 kPa during mastication instead of 5-9 kPa during intake. The t iming of 

opercular abduction rather varies and may considerably lag behind mouth opening 

(Plate IV a). L i f t i ng the cranium and re t ract ion of the pectoral girdle mediate 

the transmission of forces f rom the bodymuscles to the masticatory surfaces (Sib­

bing, 1982). These movements are readily observed in a chewing carp. 

Deglutition (Plate VI) 

fe,' - ^ 

lx* 

The masticatory t ra in is completed 

by a deglut i t ion stroke, which is not 

recognized f rom the exterior of the 

f ish. Its EMG and movement pat tern 

resembles a masticatory cycle of low 

amplitude (Sibbing, 1982). During deglut i ­

t ion the ground food is transported 

f rom the posterior pharynx into the 

esophagus (Plate VI , f rs . 1-2) and f inal ly 

passed through the pyloric sphincter 

into the intestinal bulb ( f rs . 2-5). 

PLATE VI. X-ray frames (24/sec.) visualize deglutition in the carp. Ground food is seen moving from the chewing 
cavity into the esophagus towards the intestinal bulb (arrows). Smaii pharyngeal jaw movements play a role in deglu­
t i t ion. Frame numbers indicate t ime sequence. 
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TABLE 1 CHARACTERISTIC FEATURES BELONGING TO THE 

Function of 
behavioural 
elements 

Movement 
pattern 

Effects 

Reference 
EMG 

Anterior 
palatal 
organ 

Posterior 
palatal and 
postlingual 
organ 

Particulate 
intake 

-mouth opens by 
lower jaw and 
early protrusion 

-orobuccal and 
opercular 
cavities expand 

-opercular valves 
open late 

-skull is lifted 
-lower jaw closes 

protruded mouth 
and initiates 
compression 

-fast suction 
flow directed 
to the particle 

-food trapped 
into the 
pharyngeal slit 

-long LOP burst 
-low PCE and 

LAB V activity 

-narrows the 
pharyngeal 
lumen 

-close off 
posterior 
pharynx and 
esophagus 

Gulping 

-mouth opens 
without 
protrusion 

-oral depression 
mainly 

-opercular 
valves open 
early in 
abduction 

-late protrusion 
closes 
depressed 
lower jaw 

-bite of 
suspension 
enters the 
mouth slowly, 
suction even 
from the jaw 
angles 

-maximal 
suspension 
enclosed prior 
to oral 
compression 

-long LOP burst 
-low PCE and 

LAB V activity 

-narrows the 
pharyngeal 
lumen 

-close off 
posterior 
pharynx and 
esophagus 

Selection 
Rinsing 

-mouth opens 
without 
protrusion 

-orobuccal and 
subsequently 
opercular 
expansion 

-pumping of 
water along the 
fixed particle 

-washing waste 
through the 
opercular slits 

long LOP burst 

-fixes the 
particle 

-

Repo s i t ioning 
Back-washing 

-orobuccal 
depression 

-protrusion keeps 
the mouth closed 

-late opercular 
adduction 

-compression 
orobuccal 
cavity 

-inflow of water 
through the 
branchial slits 
a)merely 

repositioning 
the particle 

b)washing 
particles back 
into the 
orobuccal cav. 

-expulsion of 
waste through 
opercular slits 

-local retention 
of food in the 
pharyngeal slit 

-short LOP burst 

-manipulates and 
retains food 
particles 
locally 

-



-47-

DISTINCT BEHAVIOURAL ELEMENTS IN FOOD HANDLING 

Spitting 
Transport Loading Mastication Deglutition 

-orobuccal 
expansion 
few protrusion 

-mouth opens 
hardly 
protrusion 

-opercular and 
buccal 
compression 

-posterior 
pharynx 
gradually 
expands 

-posterior 
pharynx 
spaciously 
expands 

-overall expansion of 
oropharyngeal and 
opercular cavities 

-elevation of 
the skull 

-retraction 
pectoral girdle 

-mouth widely open 
without protrusion 
in part, feeding 

-mouth closed by 
protrusion in 
suspensionfeeding 

-compression 
of the 
posterior 
pharynx 

-small 
movement 
resembling 
mastication 

-particles sucked 
into the 
orobuccal cavity 
and rapidly 
spat 
through the 
mouth 

-food is 
propelled to 
the chewing 
cavity 

-food is 
loaded into 
the chewing 
cavity 

-the fixed food 
is crushed and 
ground 

-particles are 
prevented from 
escape to the 
anterior pharynx 

-anteriorly stored 
suspensions are 
prevented from 
escape through 
the mouth 

-ground food 
is directed 
into the 
esophagus 

-high LOP 
activity 

-increasing -high PCE -high LAB V activity -low LAB V 
PCE activity activity -high PCE activity activity 

-high LOP activity 
open mouth: long 
closed mouth: short 

-occasionally 
active 

-peristaltic 
waves 
propell the 
food 
caudally 

-manoeuvre 
food between 
teeth and 
chewing pad 

-fix the particle 
to be masticated 

-close off the 
entrance of the 
chewing cavity 

-close off the 
entrance of 
the chewing 
cavity 
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Two other movement patterns in food handling. 

Besides the part icular sequence of movement patterns in Figure 2 gulping 

and spi t t ing are regular components of feeding. 

mm 
PR -

MO -

DLJ -

DBF 

ABOP-

gulpmg 
suction enclos compress. 
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-,j\/~f~-^. 
5 10 frs 

01 sec 

PLATE VII. Gulping a cladoceran suspension, (a) Movement graphs, (b) External views (2^ f rs. /seo). The approximate 
t iming of the frames has been indicated (•) at the frame-scale in the graphs. 

Suction is caused by oral depression mainly (frs. 2-5). Buccal and opercular expansion play a minor role. Protrusion 
only aids in mouth closure enclosing the bite of suspension (frs. 5-9) before l i f t ing of the lower jaw causes oral 
compression (frs. 9-12). Opercular abduction occurs only at mouth closure (frs. 5-8) and for the most of i t w i th 
open slits (t). Abbreviations as in Plate I I . 

Gulping (Plate VII) 

Carps fed on zooplankton (e.g. Daphnia magna of varied size) show a 'gulping' 

mode of feeding (cf. Janssen, 1976). In the carp i t is characterized by 

a) aiming of the f ish at high density spots in the cloud of zooplankton and 

b) repet i t ive low intensity suction acts over long periods. 

Contrary to part iculate intake (Plate I I), depression of the buccal f loor is hardly 

involved (Plate V I I ; t race 4). Opercular abduction only occurs at mouth closure 

and for the most of i t w i th open opercular sl its ( f rs. 5-8).Therefore suction is 

mainly caused by oral expansion, abduction of the cheeks and opercula play a minor 

ro le. Protrusion only starts when the mouth is widely opened and aids in mouth 
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closure even before the lower jaw is l i f ted ( frs. 5-9). The upper jaws form a rostral 

hood over the enclosed suspension. The volume of the gulp is thus maximized by 

preventing its forward expulsion through the early l i f t ing of the lower jaw. Bal l int i jn 

et a l . (1972) demonstrated the d i f ferent roles of the adductor mandibulae parts 

in such jaw movements. In gulping bites of water w i th suspended food part ic les 

are taken whereas at part iculate feeding one specific part ic le is chosen. F i l te r 

feeding, the swimming around w i th the mouth kept fu l ly agape over long periods, 

has never been observed in carps of yearclass I—III under laboratory conditions. 

spitting 

PR 

MO -

DLJ 

DBF 

ABOP 

in, au t f low 

20 frs 

0.1sec 

PLATE VIII. Spitting, (a) Movement graphs, (b) Successive views on the carp during an other spitting (2* f rs. /sec). 
The approximate t iming of the frames has been indicated ( • ) at the frame-scale in the graphs. 

Following full orobuccal compression with widely open opercular valves (frs. 1-3) and subsequent inflow of water 
by closed protrusion (frs. 3-*), the mouth is rapidly opened and the unwanted particle expelled ( * ) by strong compres­
sion of the opercular and orobuccal cavities (frs. <t-9). Note the re-expansion with closed opercular valves ( > ) once 
compression is halfway (frs. 9-1*), possibly reversing the f low into rostro-caudad direction. Abbreviations as in Plate I I . 

Spitting (Plate VIII) 

Spitt ing starts by closed expansion of the fu l ly compressed orobuccal cav i ty , 

through lowering and protrusion of the jaws (Plate VII I , f rs . 3-4). This rostral ex­

pansion effects inf low of water through the widely open opercular sl i ts. As soon 



-50-

as the opercula adduct the mouth opens ( f r . 4) and fast compression of opercular, 

and subsequently the orobranchial chambers ef fects a pressure wave expelling water 

and part icles through the widely opened mouth (asterisk). Following spi t t ing, com­

pression is of ten interrupted by a second expansion. In this way the f ish may reverse 

the d i rect ion of f low to the usual rostro-caudad pat tern. Spitt ing movements of 

lower intensity w i th half open mouth occur and specific parts of the adductor 

mandibulae muscle (A 1a) may even direct the mouth opening ventrad by protrusion 

(Bal l int i jn et a l . , 1972). 

The role of the palatal and postlingual organ in food handling 

The above elements of feeding can not fu l ly explain the to ta l path of par t ic le 

movement, neither the ref ined selection between food and non-food as apparent 

f rom gut contents (Wunder, 1936; Ur ibe-Zamora, 1975). Whereas anteriorly the 

transport is e f fected by a f low of water, manipulated by the varied movement 

patterns of the head parts, such volume changes play a minor role in posterior 

transport (Fig. 2). 

The contributions of the muscular palatal and postlingual organs in feeding have 

been investigated by recording their local act iv i t ies at six distant spots (Figs. 3,4). 

Note f rom these f igures that the act iv i ty in these complex organs, wi thout con­

spicuous subdivisions in their gross morphology, can be very local . This emphasizes 

their role in the precise proces of re ject ion and retent ion of part ic les. Their abun­

dant supply w i th taste buds (up to 820/mm2), mucus and peculiarly arranged muscle 

f ibers is discussed elsewhere (Sibbing et a l . , 1984). Local bulging of the palatal 

and postlingual organ was readily observed at mechanical or e lectr ical s t imulat ion, 

and has been used for localizing the electrode-tips during anaesthesia. In a freshy 

k i l led carp st imulat ion may even e l ic i t a per istal t ic wave t ravel l ing posteriorly. 

Similar observations have been reported by Berghe (1929) and Jara (1957). 

To determine the role of the palatal and postlingual organ during all separate move­

ment patterns of food handling each pattern must be recognized f rom the mu l t i ­

channel EMG records. For this aim the simultaneous act iv i t ies in the LAB V, LOP 

and PCE reference muscles have been recorded (Figs. 3,4). Also l ight-c inemato­

graphy served this goal. The movement patterns and their characterist ic reference 

EMG have been summarized in Table 1. 

Large food pellets allow a clear d ist inct ion of the subsequent feeding actions 

in the palatal and postlingual organs (F ig. 3a). Food-soil mixtures, which closely 

resemble the natural feeding conditions, evoke a high and widely d i f ferent iated 

ac t iv i ty pattern (F ig. 4b). 
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Intake 

The act iv i ty in the palatal and postlingual organs at intake (F ig. 3a) may close 

of f the narrow entrance to the posterior pharynx and prevents that the high suction 

force is also applied to the contents of chewing cavity and esophagus. They thus 

aid in directing the suction f low. 

Selection 

Once the pellet has been trapped in the narrow pharyngeal lumen, act iv i ty 

in the rostral and lateral parts of the palatal organ (traces 1-4) indicates gustation 

and internal selection. Synchronous bursts in the levator operculi muscle indicate 

lower jaw depression. Long LOP bursts point to rinsing whereas short LOP bursts 

character ist ical ly belong to closed protrusion movements (cf. F ig . 2). As the internal 

e f fects of closed protrusion on the food are invisible i t is only indicated by the 

general term positioning. L ikewise has been done for the other EMG records (Figs. 

3,4). The act iv i ty of the palatal organ may also serve for a repeated test of the 

palatabi l i ty of the par t ic le . 

Transport and loading 

Progression of ac t iv i ty f rom the anterior to the posterior parts of the palatal 

and postlingual organ (traces 4-6) corresponds to propulsion of the pellet to the 

chewing cavity in the X-ray movies. Most of ten propulsive waves rapidly succeed 

(F ig. 3a, arrows). They become gradually accompanied by act iv i ty in the PCE muscle 

( lower trace) in i t ia t ing expansion of the chewing cavi ty. 

Note that the postero-lateral part of the palatal organ (Fig. 3a, t race 4) acts in 

selection as wel l as in transport and mast icat ion, indicating i ts boundary-position 

between the funct ional ly d ist inct antero- lateral and posterior areas. 

The end of anterior palatal ac t iv i ty announces loading of the pellet on the 

pharyngeal teeth (Fig. 3a, Id.). The PCE muscles spaceously expand the chewing 

cavity while the posterior parts of the palatal and postlingual organs continue 

their propulsion of food on to the now depressed teeth. 

Mast icat ion and deglut i t ion 

The posterior parts of the palatal and postlingual organs are highly act ive, 

f ix ing the pellet to be masticated (cf. Plate Vb) during the successive power strokes. 

They w i l l also obstruct the escape of ground food back to the anterior pharynx. 

Similar act iv i ty is observed at deglut i t ion (Fig. 3a, dgl.) whereby the constr ictor 

pharyngis muscle aids in compressing the chewing cavity (Sibbing, 1982). Their 
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combined actions direct and propel the ground food into the esophagus. Ac t iv i ty 

in the expansion muscles of the chewing cavity (PCE) is now conspicuously lacking. 

Reloading 

Prior to mastication of a second b i te, the pel let is repositioned by palatal-

postlingual act iv i ty and closed protrusion (short LOP bursts) (Fig. 3a, reloading). 

When food part icles are washed back into the orobranchial cavi ty, as of ten seen 

in the X-ray movies (cf. Plate Hid), fur ther masticat ion requires transport and 

loading. The reloading pattern then even more resembles the events after intake. 

The palatal and postlingual organs display an apparent regional d i f ferent ia t ion 

in funct ioning. The anterior and lateral parts are active in t rapping, gustation, 

selection and positioning, whereas the central and posterior parts are involved 

in t ransport, loading, masticat ion and deglut i t ion. Contrary to Jara's hypothesis 

(1957) the palatal or postlingual act iv i ty was never measured during respirat ion, 

even if i t was forced to be intensive. 

Adjustment of the feeding sequences to the type of food 

To determine the adjustments of the movement patterns and the palatal-post-

lingual act iv i t ies to the type of food, d i f ferent types have been fed. 

Movie and EMG-records showed conspicuous differences in the presence and 

repet i t ion of the dist inct food handling patterns. The feeding sequences are analyzed 

below and characterized in Table 2. Only the major differences w i th the discussed 

pellet sequence are reported. They occur mainly in intake, selection and mast icat ion. 

Barley 

Grains of barley generally demand frequent repositioning to manoeuvre the 

small dense part ic le f rom the branchial to the medial area, providing an appropriate 

grip for transport. Back-washing movements prevent loss of the heavy part ic le 

through i ts sinking f rom the lateral depressions in the buccal cavity into the large 

f i rs t branchial s l i ts. Rinsing is never observed. Mastication may last for several 

minutes and requires crushing pr ior to grinding (cf. Sibbing, 1982, f i g . 15). 

Earthworm (Fig. 3b) 

The earthworm-sequence shows that the palatal ac t iv i ty locally changes (F ig. 

3b; arrows) and is even maintained in the anterior parts during masticat ion. This 



-53-
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FIG. 3a. Palatal and postlingual act ivi ty during pellet feeding. Act iv i ty pattern of the muscular palatal and 
postlingual organs at six indicated places during eventually succesful intake (large arrow) and internal processing 
of a pellet. The three muscles below monitor jaw movements (LOP) and mastication (LAB V, PCE). 

The anterior half of the palatal organ (traces 1-3) is active during intake and selection and involved in gustation, 
rinsing and positioning (pos). Then the act ivi ty passes away from the anterior to the posterior parts of these organs 
(traces t -6) which serve transport (tr), loading (Id), mastication and deglutition (dgl). The postero-lateral area (trace 
U) overlaps most of these actions. The repetitive arrows mark the peristaltic waves in transport. The patterns 
are discussed in the text. 

FIG. 3b. Act iv i ty pattern in earthworm feeding (same experiment). Note the overall similarity in the pattern, 
compared to Fig. 3a. Act iv i ty in the anterior palatal organ (traces 1-3) is however maintained during mastication. 
Palatal and postlingual act ivi ty vary locally (arrows), reflecting the local manipulation of the sprawling worm during 
mastication. In a later stage of processing masticatory cycles (LAB V act ivi ty) alternate with positioning-transport 
actions (short LOP bursts and overall palatal activity) suggesting an intermittant transport of the masticated worm 
through the chewing cavity. 

http://pos.tr
http://pos.tr
http://pos.tr
http://pos.tr


-54-

ref lects more the length of the sprawling worm, being masticated at one end and 

immobi l ized by the palatal organ at the other, than an essentially d i f ferent type 

of processing. Due to the length of the worm feeding actions overlap. No rinsing 

occurs. Closed protrusions aid in positioning to improve the grip on the long prey. 

Transport of the worm through the chewing cavity may al ternate w i th masticat ion 

(Fig. 3b). Such an i n te rmi t tan t transport was actually seen in an X-ray scene, 

a f ter the worm had been injected w i th barium sulphate in its coelomic compart­

ments. Masticat ion proceeds merely by grinding (Sibbing, 1982; F ig . 15). 

A soft lump of tubi f ic ids was taken by forcefu l suction. The carp apparently 

could not achieve a proper grip on the lenient mass and t r ied to disperse i t in 

smaller clusters. This is concluded f rom the abundant repet i t ion of closed protrusion 

movements, positioning the food and washing i t through the orobranchial cav i ty . 

Even spit t ing and re- intake are applied for renewing the gr ip. During grinding p ro t ru­

sion of the upper jaws kept the mouth closed, preventing tubi f ic ids f rom being 

expelled through the mouth. 

Zooplankton (Fig. 4a) 

Whereas the above larger food i tems e l ic i ted 'par t iculate feeding' sequences, 

cladocerans were taken by repet i t ive 'gulping' (cf. Plate VI I ; F ig . 4a, long LOP 

bursts wi thout high LAB V ac t iv i ty ) . While suspending ground pellets into the tank 

an eager carp attained frequencies of even eight gulps w i th in a second. This accumu­

lates part icles f rom small volumes of suspension into the pharynx. Selection typical ly 

proceeds by palatal act iv i ty and closed protrusion (short LOP burst wi thout LAB 

V ac t iv i ty ) . This movement w i l l however also serve to wash part icles f rom all 

over the branchial sieve back to the medial area between palatal and postlingual 

organ. In this way closed protrusion serves recollection of the f i l t r a te for t ransport. 

Also here protrusion of the upper jaws generally keeps the mouth closed during 

mast icat ion, preventing the escape of f ree f loat ing part icles through the mouth. 

Thus the external prof i le of the masticat ing f ish w i l l markedly d i f fer at part iculate 

feeding and gulping. The separate gulping sequences are of short durat ion. 

Tubifex-soil mixtures (Fig. 4b) 

Substrate feeding was analyzed by offer ing a peaty pond soil intermingled 

w i th tubi f ic ids. Gulping as wel l as part iculate intake was observed. 

Feeding on food-soil mixtures asks increased act iv i ty in the palatal organ (Fig. 

4b, traces 1-3) overlapping most other feeding actions. Closed protrusions (short 

LOP bursts) in combination w i th anterior palatal ac t iv i ty are conspicuously frequent 
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FIG. 4a. Act iv i ty pattern in zooplankton feeding (cf Fig. 3a). Intake of the cladoceran suspension proceeds 
by repetit ive gulping (merely long LOP bursts). Subsequent anterior palatal act ivi ty (traces 1-3) and closed protrusions 
(arrow) wi l l wash the cladocerans back from the branchial sieve recollecting them for transport (traces 4-6) and 
mastication (LAB V act iv i ty). Such short sequences are repeated over long periods. Further discussion in text . 

FIG. 4b. Substrate feeding. Act iv i ty pattern during processing of a peaty pond soil containing tubificids (same 
experiment as Fig. 4a). The anterior palatal organ (traces 1-3) has a prominent role in selection between food 
and non-food particles, frequently accompanied by closed protrusion (arrows). 
Selection overlaps mastication (LAB V) and transport and takes much handling t ime. Further discussion in text. 

http://rn.lev.arcbranch.3Z
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in selection (Fig. 4b; arrows), gradually puri fying the mixture (see discussion) and 

recol lect ing small food part icles f rom the branchial sieve. Note that processing 

of such mixtures requires a considerable handling-t ime (cf. F ig . 4b). Spitt ing is 

generally employed for coarse selection, allowing choice at re- intake, often by 

gulping the suspended part ic les. A s imilar behaviour is observed at searching when 

the carp keeps sampling the substrate by a short sequence of intake, gustation 

and spi t t ing i.e. probing. 

FOOD 

pellets 

barley 

earthworm 

lump of tul 

cladoceran 

>if icids 

suspension 

tubifex-soil mixture 

P 

P 

P 

P 

P 

E 
or G 

UNITS 

RI RP 

|RP 

RP 

|RP 

OF 

-BW 

-Bw| 

-BW 

-Bwj-

BW-

E-

BEHAVIOUR 

RC 

RC 

RC 

T 

T 

T 

T 

T 

T 

L 

L 

L 

L 

L 

L 

c [GR] 

0 S 

c 

c 

[GR] 

GR 

GR 

D 

D 

D 

D 

D 

D 

TABLE 2. Composition of feeding sequences according to the type of food. Conspicuously repeated patterns are 
indicated by a square. Probing and spitting do not lead to food consumption and are considered separately from 
the feeding sequence (see text). 
P particulate intake RP repositioning T transport GR grinding 
G gulping BW back-washing L loading D deglutition 
RI rinsing RC recollection C crushing 

FOOD HANDLING MECHANISMS AND THEIR LIMITATIONS 

Postcapture feeding behaviour, divided into buccal manipulat ion, pharyngeal 

manipulation and pharyngeal transport in generalized euteleosts (Lauder, 1983) 

is at least in cyprinids split into a chain of d ist inct funct ional patterns, wherin 

the buccal, pharyngeal and opercular mechanisms closely in teract . (Table 1). The 

t iming and sequence of protrusion, orobuccal and opercular expansion and the mo­

ment of opening of the mouth and opercular-branchiostegal valves allows a high 

p last ic i ty in movements. 

F rom its feeding ecology and diet the adult carp appears to be an omnivorous 

f ish, feeding at d i f ferent levels of the watercolumn and the food chain, whenever 

and wherever food is available (Uribe-Zamora, 1975; in Sibbing, 1982). In Table 

4 a l ist of generally available food types is given. From these bot tom invertebrates 

(chironomids and other dipteran larvae, tubi f ic ids, copepods), zooplankton (preferably 

large cladocerans and copepods) and soft l i t t o ra l vegetation (Lemna minor, Glyceria 

fluitans), but especially i ts fauna (gasteropods, oligochaets, t r ichopter larvae, cope­

pods), according to season and avai labi l i ty , are exploited. Even aerial insects are 



-57-

engulfed f rom the watersurface. 

The omnivorous feeding habits of the carp raise the fol lowing questions. Does 

the feeding ef f ic iency, taken as t ime expenditure to obtain and handle a food type, 

or taken as the energy costs-gain rat io in feeding, widely d i f fer for d i f ferent types 

of food? Do specializations for one type necessarily lower the feeding ef f ic iency 

for others? 

These questions demand a quant i tat ive approach and much more knowledge than 

now is available. However the present qual i tat ive data about the type and sequence 

of movement patterns employed in food processing allow an analysis of their e f fec t 

on the food. Which optimizations in s t ructural tools and their application character­

ize the separate feeding elements and which restr ict ions fol low for others? In 

such a way the relations between s t ructure-funct ion components and their impact 

on the available food and ecology of a f ish type can be deduced. Comparisons 

between closely a l l ied species may then provide insight in the extent of their niches. 

As the ef f ic iency and l imi tat ions of feeding is bound to its component parts the 

dist inct feeding elements are discussed, start ing at the search for food. 

Search and detection of food, a survey 

Carps in search for food are typical stayers (Boddeke, Slijper et a l . , 1959) 

feeding continuously on pelagic or benthic organisms, repet i t ively probing and scan­

ning the substrate. Wunder (1927) investigated a variety of teleosts, including the 

carp, to determine which of the diversif ied sense organs are involved in food detec­

t ion . Jönsson (1967) elaborated Wunders experiments on one year old carps and 

included an analysis of their daily rhy thm. Carps have a high endogenous ac t iv i ty 

level at dusk and night. They are, however, readily t rained to feed at any t ime 

of the day. Other major conclusions f rom this author are incorporated below. 

Abiot ic conditions such as l ight and turbidi ty of the water as wel l as the st imul i 

produced by the food determine which sense organs are involved in detect ion. 

A t pelagic feeding the carp reacts on and is guided to its food by vision. Size, 

shape, contrast, colour and motion of the prey w i l l fur ther d i f ferent ia te visual 

d iscr iminat ion and the reactive distance. A l ight intensity of 10 mc (meter-

candle), corresponding to late dusk, marks the lower threshold for e f fect ive visual 

locat ion of food by most fishes (Blaxter, 1970), w i th some notable exceptions. 

The lateral l ine organ senses act ively moving preys in laboratory tanks but i ts 

capacity to d iscriminate prey over long distances f rom other moving s t imul i , as 

in a natural s i tuat ion, is doubtful . In the pike the lateral l ine is e f fect ive in detec­

t ing water turbulence at distances less than 10 cm (Wunder, 1936). When vision 
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is poor or the food inactive smell guides the carp by t r ia l and error to the food. 

O l factory organs generally have a high sensitivity and are long-range chemorecep-

tors. In f ish they are reported to be more of ten associated w i th social contacts 

than w i th feeding (Hara, 1971). When carps feed on cereals or other encapsulated 

seeds, of ten offered in f ish farms, smell s t imul i w i l l be low. 

A t bottom feeding taste is the main detector in search for food. The fish 

is alert on prey even at some distance f rom the mouth as taste buds are exposed 

on barbels and f ins, and are spread even over the head and general body surface 

(Herr ick, 1904). Contrary to reports of Jönsson (1967) the expected role of touch 

in detecting of food has not been demonstrated in the carp , neither by experimental 

nor by s tructural data. 

Within the oropharyngeal cavity taste buds fur ther serve control and selection 

of part icles to be swallowed (cf. Sibbing et a l . , 1984). The decision for processing 

requires this internal evaluation. To distinguish between the external and internal 

moments of choice the terms 'choice' and 'select ion' are respectively used. 

The probing mode of searching and the abundant supply of external and internal 

taste buds allows intensive substrate feeding. This extends the exploi tat ion of 

the available area w i th its depth. Experiments f rom Suietov (1939) show carps 

to penetrate more than 12 cm into a si l ty bo t tom. No general ecological areas 

(bot tom, open water, surface, l i t tora l ) seem to be excluded f rom exploitat ion by 

the carp due to its searching behaviour, except the open water at dark. 

The sensory abi l i t ies seem hardly to exclude major categories of food f rom detection 

by the carp (cf. Table 4). Detai led knowledge of d iscr iminat ion by the individual 

senses of the carp is scarce in l i terature. 

Food intake behaviour 

The dominant mode of prey capture in teleosts consists of a combination of 

suction (by rapid expansion and compression of orobuccal and opercular cavities) 

and forward motion (by forward suction of the f ish i tself , protrusion and swimming) 

(Muller and Osse, 1984). They distinguish a series of feeding types, based on the 

re lat ive contributions of these components w i th the moment of opercular valve 

opening as an important character ist ic. Optimizations of prey capture techniques 

are discussed by van Leeuwen and Muller (1984), focussing on predator-prey distance 

and prey velocit ies. These studies provide a f rame for analysis of food intake in 

the carp. 

In the carp swimming hardly contributes to food intake.This is readily observed 

f rom its deep body shape and the slow approach to the food. At bot tom feeding 
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the substrate even prohibits overswimming the food. Swimming is not an essential 

component in feeding on stationary preys. Drenner et a l . (1978) has however demon­

strated that copepods are far more able in escaping prédation than cladocerans. 

Grasping large part icles w i th the lips was occasionally observed and served 

to remove gravel f rom underlying tubi f ic ids. It may wel l be applied in a natural 

s i tuat ion e.g. for taking snails f rom macrophytes. No bit ing occurs in the carp, 

as the only teeth of cyprinids lie posteriorly in the pharynx. 

Two dist inct patterns of food intake are evident in the carp. Their mechanisms 

and ef fects are compared in Table 3. 

Particulate intake (F ig. 5) 

During expansion of the slow swimming fish the late opening of the opercular 

and branchiostegal valves w i l l prevent inf low through these valves and thus increase 

the water velocity in the mouth. Expansion is however slow (ca. 160 msec.) com­

pared to predacious f ish as a pike (ca. 40 msec, van Leeuwen and Muller, 1984). 

Water velocity in the mouth opening is fur ther increased by protrusion of the upper 

jaw creating a small rounded aperture of the mouth. Besides protrusion brings 

the mouth closer to the food wi thout cost for adding impuls to the water or the 

f ish and thereby causes a directed f low w i th respect to the mouth aperture. Combi­

nation of these characters results in a fast and directed suction f low applied close 

to the par t ic le. Such f low velocit ies allow intake of part icles w i th higher densities 

than the water and increase the distance f rom which can be sucked. Forward suction 

of the fish may wel l contr ibute to penetration into the bot tom substrate. 

Sustained opercular abduction and the impuls of the water maintain the f low caudad 

during oral compression. The part ic le w i l l be trapped in the narrow slit between 

pharyngeal roof and f loor whereas the water is expelled through the branchial 

and opercular sl i ts. I t is supposed that the main f low passes through the f i rs t bran­

chial s l i t , serving as a shunt (hyoid-shunt cf . van Leeuwen, 1984). The gi l l f i laments 

may be adducted to reduce the g i l l resistance in the suction f low, as during strong 

vent i lat ion (Bal l int i jn et a l . , 1972). 

Protrusion also permits the carp to apply i ts mouth ventrad and closely to 

the bot tom without need for vert ical position of the body axis at intake. In the 

spindle-shaped gudgeon this wi l l serve to maintain i ts position in fast f lowing 

streams (Alexander, 1970). In the deep bodied carp, l iving in stagnant waters, i t 

allows a continuous probing of the bot tom by slow swimming. Besides i t permits 

a rapid escape f rom a predator during bot tom feeding. Protrusion is thus highly 

funct ional . The mechanism of protrusion in the carp was investigated by Bal l in t i jn 

et a l . (1972). D i f ferent parts of the adductor mandibulae muscle e f fec t forward 
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PARTICULATE INTAKE a 

food 
small gravel, 

organic waste 

<?#" 

PIC 5. Particulate ieeding, intake. Following ful l compression (line image), overall expansion of the head 
and'protrusion (dark image) cause a fast flow and directed suction in the small opening of the mouth, aimed to 
the part icle. During suction the posterior chewing cavity is closed off by the muscular palatal and postlingual 
organs. Food and light organic waste are trapped in the narrow pharyngeal cavity whereas heavy particles sink 
into the f i rst branchial sl i t. The protruded mouth is closed by the lower jaw. Sequence of images at the top. Further 
explanation in Table 3 and text . 

GULPING a i 

FIG. 6. Gulping proceeds by oral depression mainly (line image). It causes a slow flow of small volumes 
from all directions into the wide slit-shaped mouth. Late protrusion encloses the maximal volume taken. Opercular 
abduction only occurs as the mouth closes. Buccal compression (dark image) passes particles through a narrow 
pharyngeal slit to the branchial sieve. Recollection for transport proceeds later. Repetitive gulping accumulates 
particles and is employed for intake of suspensions over long periods. Sequence of images at the top. Further expla­
nation in Table 3 and text. 
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PARTICULATE INTAKE GULPING 

protrusion renders mouth cavity 
tube-like, directing the flow to 
a particular particle 

protrusion allows ventrad aiming 
of the mouth to the particle 

fast and voluminous flow by 
protrusion and extensive 
depression of oral and buccal 
floor; closed opercular abduction 
important 

particle sucked into the anterior 
pharynx 

mouth closure by lifting the 
lower jaw, compressing the open 
oral cavity 

water expelled caudally; particle 
retained in the central pharynx 

single actions at high energy-
costs 

suited for suction of dense or 
less accessible particles 

mouth cavity with open jaw angles; 
causing inflow from all directions 

mouth opening generally terminal; 
initially hardly protrusion 

slow flow of small volumes by 
depression oral floor; buccal and 
opercular expansion play a minor 
role; valves open early 

particles sucked into the oral 
cavity 

mouth closure by late protrusion; 
oral cavity not compressed 

maximal volume of water with 
particles is enclosed by a rostral 
hood and pressed slowly to the 
branchial sieve by oral compression 

repeated low energy-costs actions 
over long periods 

suited for gulping of suspensions 

TABLE 3. Intake patterns and their effect on the food, explaining the 
differences between particulate intake and gulping. 

protrusion (A 1 R ) , downward protrusion (A 1 ) and l i f t ing of the lower jaw ( A , and 

A „ ) . The variable coordination of their actions allows a versatile aiming of p ro t ru­

sion to the food. The mechanics of head expansion for creating a suction f low 

has been studied f i rs t ly by L iem (1967) using cinematography and Osse (1969) adding 

electromyography. Such studies are s t i l l lacking for the carp. The mechanical coup­

lings in its head have however been studied (Bal l in t i jn , 1969). 

Gulping (F ig. 6) 

Low intensity suction and the early opening of the opercular valves reduce 

volume as wel l as velocity of the water and suspended part icles at each gulp and 

lowers its energy costs. The in i t ia l absence of protrusion causes a less directed 

f low even f rom the jaw angles. As suspended part icles are of about the same density 
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as the water, have a l imi ted movement and are widely dispersed neither high velo­

ci ty nor directed f low are demanded. Therefore gulping is appropriate to take 

suspensions over long periods. Small volumes at each gulp may be demanded for 

f i l te r ing the suspension ef fect ively over the branchial sieve maintaining l imi ted 

and about equal branchial s l i ts. Food-soil mixtures and part iculate intake probably 

require a large f i rst branchial sl it for shunting large volumes of water and debris. 

Movement analysis of the branchial arches could falsify such hypotheses. 

Late but extensive protrusion encloses the ingested suspension by forming a charac­

ter ist ic rostral hood prior to oral compression. The maximal retainable suspension 

is pressed caudad through the narrow buccopharyngeal s l i t , which improves par t ic le-

wal l contact for gustation and enhances the even spreading of the suspension over 

the branchial sieve. 

Limitations (cf . Table 4). Size, density, veloci ty, distance and location of the food 

in the habitat impose d i f ferent demands to the f ish and are d irect ive characters 

in the opt imizat ion of food capture techniques. 

Large preys are excluded f rom intake by a carp (SL 22 cm) due to its short 

jaws and the small gape of the mouth at protrusion. The maximal diameter of 

the protruded circular mouth is about 9% of the standard body length (SL) for 

carps ranging between 10-25 cm SL. The values for larger carps decrease to about 

7% SL. The f ish is also unable to take bites f rom larger food objects l ike f ish 

and macrophytes as oral teeth are absent. This also fac i l i ta tes the escape of s t rug­

gling prey. 

Fast preys easily escape. The deep body shape as wel l as the predominance 

of red muscle f ibers in the trunk (Boddeke, Slijper and Van der Stel t , 1959) and 

headmuscles (Akster, 1981; Akster and Sibbing, 1982), al lowing prolonged ac t iv i ty 

but contract ing slowly, render the carp a slow swimming and slow feeding stayer. 

Though its maximal burst speed is around ten body lengths per second (Blaxter, 

1969), no reports of such velocit ies in feeding have been found. The endurance 

or cruising speed of the carp is around 1.5 body lengths per second. These features 

exclude hunting a f ter fast preys, even in open water. The small aperture of the 

mouth makes f i l ter - feeding by overswimming the water inef f ic ient . 

Foods of high density, such as some plantseeds, l ie w i th in reach for intake 

due to the large velocity of f low. Part icles of low density may be taken f rom more 

distant, less accessible locations l ike crevices due to the highly directed and fast 

suction f low during protrusion. 
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Selection (Figs. 7,8) 

Size selection between particles should be distinguished f rom selection between 

food and non-food, as they are achieved by d i f ferent mechanisms. 

The minimal mesh-width of the carps branchial sieve lies between 400-500 urn, 

minimized to 250 vim if only smaller plankton is abundant (Uribe-Zamora, 1975). 

Only the width of the plankton determines its retent ion, thus irrespective of i ts 

length. The actual mechanism of the branchial sieve is not known which l imi ts 

the insight in selective prédation on zooplankton (cf. Wright et a l . , 1983). I t is 

important for many other planktivorous fish species (e.g. s i lvercarp, big head, 

herr ing, menhaden). 

A t bot tom and substrate feeding, mixtures of food, anorganic sediment and organic 

debris impose high demands on the selection mechanism prior to fur ther processing. 

Fine anorganic sediment ( < 2 mm) contains mainly part icles below 250 y m which 

are passively lost through the branchial sieve (Uribe-Zamora, 1975). Though she 

reports larger inorganic part icles to be not ingested, due to their size and density 

(2.6), this is certainly not true at bot tom feeding. Ingested heavy medium sized 

part icles such as sand grains and small gravel w i l l readily sink into the large f i rs t 

branchial slits by gravi tat ional deposition (Fig. 5). Larger part icles are expelled 

by spit t ing (see below). Act ive selection thus appears mainly to involve the separa­

t ion of small to medium sized organic waste (250 y m - 9% SL) w i th densities 

comparable to water. Though the separation of food and non-food is not complete 

(Wunder, 1938; Ur ibe-Zamora, 1975) i t is s t i l l highly e f fect ive. The la t ter author 

found only 3% of the f ine sediment to be retained w i th the food. 

How is active selection internally achieved? It is commonly accepted that selection 

between food and non-food proceeds w i th in the buccopharynx. Abundant taste buds 

l ine this cavity (up to 820/mm2 c f . Sibbing et a l . , 1984) and allow gustation as 

long as part icles ro l l along its walls. Matthes (1963) supposes cyprinids to select 

by spi t t ing, retaining food part icles by entangling them in mucus. Spitt ing is however 

a coarse mode of selection. Robotham (1982) presumed also buccal mucus to e f fect 

selection at detr i tus intake of the spiny loach. More dense part icles would escape 

mucous entrapment as they are given higher velocit ies (in our view impulse). Our 

results show that the palatal organ is hardly involved in spit t ing and that palatal 

ac t iv i ty as wel l as closed protrusion appear basic in separation and refined selection 

between organic waste and food. This has been overlooked completely. 

According to the size of the soiled food and the amount of organic waste 

d i f ferent mechanisms of separation and selection are employed by the carp. These 

are discussed below and i l lustrated in the Figures 5-9. 
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SELECTION D 
RINSING 

2 3 
SELECTION 

REPOSITIONING 
BACK-WASHING 

FIG. 7. Large immobile particles may be coarsely 
rinsed by repetit ive and intensive pumping, washing 
away the waste and possibly fine food particles through 
the branchial slits. In the meantime the palatal organ 
clamps the large food to be retained. Sequence of 
images at the top. 

FIG. 8. Selection and graded purif ication of soiled 
items is achieved by repetitive repositioning and even 
backwashing movements. Particles are resuspended 
in the oral cavity by orobuccai expansion, aided by 
inflow of water (arrows) through the opercular valves, 
i.e. closed protrusion. Subsequently (pecked arrows) 
orobuccal compression wi l l expell the waste through 
the branchial slits, whereas food wi l l be retained by 
local and selective f ixing between palatal organ and 
branchial f loor. The ability for refined selection de­
creases with increasing food size. Closed protrusion 
is also employed for mere repositioning to improve 
the grip on the food and furthermore for recollecting 
food from the branchial sieve for transport. Sequence 
of images at the top. 

Rinsing: cleaning a large immobile food part ic le f rom few waste (Fig. 7) 

Large food, trapped in the anterior pharynx (cf. Plate IVa), is cleaned f r om 

waste particles by some regular strong pumping movements (cf. F ig . 2), f lushing 

water along the f ixed part ic le and simply expelling waste (and f ine food particles) 

w i th the water through the branchial s l i ts. Absence of such rinsing movements 

in the processing of small suspended food w i l l be related to the large risk of loosing 

food in the f low of water. The same applies to handling larger act ively moving 

preys (e.g. earthworm). 

Repositioning and back-washing: ref ined selection between food and non-food (Fig. 8) 

Closed protrusion (Plate III) has d i f ferent e f fects, depending on the food. In 

mere repositioning i t e f fects an improved grip for fur ther transport (e.g. at large 
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particles). Back-washing allows a sustained gustation by rol l ing the particles along 

the sensory orobranchial walls, possibly dissolving taste substances to reach the 

taste buds. During compression it serves to expel waste through the branchial 

s l i ts. 

In substrate feeding (Fig. 4b), back-washing effects a resuspending of food and 

non-food part icles in the orobuccal cavi ty, improving their separation, aided by 

differences in specific gravi ty. Food is gradually pur i f ied, accompanied by expulsion 

of waste through the opercular sl i ts. During expulsion of waste the g i l l f i laments 

are supposed to be actively adducted for their own protect ion as wel l as to reduce 

the g i l l resistance in the f low of water. The large f i rst branchial sl it may wel l 

shunt the waste. 

During repositioning and back-washing the antero- lateral part of the palatal 

organ, and the same probably holds for the muscular l ining and g i l l rakers of the 

branchial arches, plays an active role in the compressive phase (cf. Figs. 3,4). 

Local bulging by muscular act iv i ty w i l l clamp and retain food part icles between 

roof and f loor whereas waste is expelled w i th the f low of water. Frequency as 

wel l as amplitude of repositioning and back-washing are highly variable and most 

probably related to the actual location of the food and non-food. This mechanism 

largely explains the s l i t - l ike construction of the pharyngeal cavity w i th i ts small 

distance between roof and f loor ef fect ing close contact and e f fect ive selection. 

The morphological substrate for such a local and selective act ion, including the 

role of mucus, is discussed separately (Sibbing et a l . , 1984). The branchial surface 

appears to play an important active role in selection and pur i f icat ion as a counter­

part of the palatal organ. This aspect should be distinguished f rom its funct ion 

as just a branchial sieve. Closed protrusion is basic to repositioning and back-

washing and this movement pattern appears of pr imary importance at internal 

manipulation and pur i f icat ion of food in cyprinids. I t is of crucial importance in 

substrate feeders where internal gustation is not merely a f inal control but the 

decisive point of selection in food acquisit ion. 

Spitting: e ject ion of any unwanted mater ia l (F ig. 9) 

Spitt ing serves to expel unpalatable (e.g. watermites) or even harmful part icles 

(note the vulnerable g i l l f i laments), to expel heavily soiled mouthful ls, to disperse 

unmanageable large humps into clusters (e.g. a lump of tubif icids) before re- intake 

and to expose hidden food during bot tom inspection. Protrusion may direct the 

water je t in the la t ter process. 



SPITTING a 

FIG. 9. Disliked particles, heavily soiled food and less manageable humps of food are rejected by spitting. An 
in i t ia l closed protrusion washes the particle back into the orobuccal cavity, sucking water from the open opercular 
cavity (open image). A pressure wave by sudden adduction of the opercular and buccal walls drives the particles 
rapidly through the widely opened mouth (dark image). Spitting may also serve exposure of food hidden in the sub­
strate. Sequence of images at the top. Further explanation in text. 

Spitt ing is a reversed suction pump action of the orobuccal and opercular cavit ies 

(cf. Plate VIII), in i t ia l ly sucking water and particles f rom the pharynx back to 

the oral cavity and then propelling i t through the mouth by compression. The palatal 

and postlingual organs are occasionally active but, contrary to Matthes' opinion 

(1963), do not play an essential role in spi t t ing. Spitt ing di f fers f rom coughing 

which occurs at the end of the compressive phase of a respiratory cycle and ef fects 

a reversed f low over the gills cleaning them f rom adhering part icles deposited 

by the respiratory f low (Bal l int i jn, 1969; Osse, 1969). Coughing occurs at regular 

but long intervals and is not involved in feeding. I t is f requently observed during 

stress of the f ish e.g. a f ter anaesthesia. 

Limitations (cf . Table 4). The carp has highly developed structures and mechanisms 

for selection between food and non-food, allowing i t even to exploit heavily soiled 

food areas. Refined selection requires the cooperation of roof and f loor of the 

anterior pharynx. Large and f la t objects (e.g. macrophytes and fish) impede such 

contact and are therefore not suited for such processing. Rinsing appears to repre­

sent a coarse a l ternat ive mode of selection. L imi ta t ions of food resources fur ther 

focus on the inabil i ty to retain f ine particles (< 250 y m ) . This should also exclude 

the smaller part of detr i tus, benthic diatoms and small plankton f rom the diet 

of the carp. 
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a TRANSPORT • 1 b LOADING TEETH a % 

FIG. 10. (a) Transport of the purified food results from a peristaltic propulsive wave in the palatal and postlingual 
organs which cooperate like a piston. Whereas the anterior pharynx remains fully compressed, the pharyngeal teeth 
are slightly depressed allowing easier passage towards the chewing cavity, (b) Loading of the chewing cavity requires 
and additional large expansion of i t to make way for the food. Sequence of images at the top. 

Transport and loading (Fig.10) 

These actions are hardly recognized f rom the exter ior of the f ish. 

Transport of the largely pur i f ied food towards the chewing cavity is e f fected by 

the posterior half of the palatal and postlingual organ (cf. Plate IVb; F ig . 3a). 

These opposed muscular pads cooperate l ike a piston and transport the food caudad 

by a repet i t ive per istal t ic propulsive wave (Fig. 10a). Transport marks the t ransit ion 

of food movement by a f low of water into food movement by muscular peristalsis. 

Loading the chewing cavity w i th food (cf. Plate IVc) requires continued propulsion 

by the palatal and postlingual organ and extreme depression and abduction of the 

pharyngeal bones making way for the food (Fig. 10b). 

How are small part icles, trapped in the branchial sieve, manoeuvred into the 

esophagus? This appears one of the many unsolved problems in plankton straining. 

Our records of carps gulping cladocerans (Fig. 4a) show repet i t ive closed protrusion 

movements, accompanied by palatal ac t iv i ty , pr ior to fur ther processing. As the 

suspensions of fered where free f rom waste these movements w i l l mainly serve 

for recol lect ion of part icles by washing them back f rom the branchial sieve. The 

palatal organ aids recol lect ion by f ix ing them in the central pharyngeal area for 

t ransport. The type of local mucus and i ts role in aggregating small part icles into 

clusters for fac i l i ta t ing transport is discussed in Sibbing et a l . (1984). The spatial 
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and funct ional separation of the branchial sieve and the postlingual organ (Fig. 

1) requires such a recol lect ion of part icles to the medial area for t ransport. In 

most teleosts re t ract ive movements of toothed branchial elements in roof and 

f loor are responsible for transport (e.g. L i em, 1973; Lauder, 1983). Neither analysis 

of the X-ray movies of the carp nor act iv i ty in the re t ractor muscles of the pharyn­

geal jaws (Sibbing, 1982; F ig . 15) support such a mechanism in the carp. Only the 

pharyngeal jaw movements may aid in transport of long preys through the chewing 

cavity (F ig. 3b). The s l i t l ike configurat ion of the pharynx, essential for selection, 

almost necessitates a per istal t ic type of transport system. 

Limitations (cf . Table 4). The lack of opposed toothed elements seriously l imi ts 

transport of long and struggling food (e.g. f i lamentous algae, macrophytes and 

fish) in cyprinids. Earthworms e l ic i t f requent repositioning for transport and long 

worms (>8 cm) are of ten spat to improve the grip by re- intake. The maximal 

distance between chewing pad and pharyngeal teeth w i l l obstruct entrance of food 

items larger than ca. 3% of the carps body length in diameter. 

MASTICATION i l 

FIG. 11. The power stroke of mastication is characterized by extensive overall expansion of the head and elevation 
of the skull. The mouth is terminal and opened widely, whereas protrusion is l imited, unless loss of suspended part i ­
cles makes closure by protrusion necessary. Particles are successively crushed and ground. The palatal and postlingual 
organ hold the food to be masticated and prevent escape of particles to the anterior pharynx. The flow of water 
through the head is small and slow. Sequence of images at the top. 

Masticat ion. (Fig. 11) 

Masticat ion of large part icles generally proceeds as a continuous long series 

of crushing and grinding cycles (cf. F ig . 3). The skull is l i f ted in each powerstroke, 

t ransmit t ing high forces of the epaxial body muscles to teeth and chewing pad. 
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Retract ion of the pectoral girdle by the hypaxial bodymuscles plays a similar im ­

portant role. D i rect masticatory muscles that suspend and connect the pharyn­

geal bones steer and stabil ize the masticatory movements (Sibbing, 1982). The 

posterior parts of palatal and postlingual organ clamp the food to be masticated 

in f ront of the chewing pad (Fig. 3; Plate Vb) and obstruct the passage of ground 

food to the anterior pharynx. 

The extensive expansion of the orobuccal cavity which is essential for the grinding 

stroke ef fects the opening of the mouth as a consequence. Due to the slow expan­

sion (compare Plates II and V) and the variable opercular abduction, of ten only 

increasing at mouth closure and w i th open valves, this movement pattern does 

not e f fect e f f ic ient suction (0.5-1 kPa). When suspended food (e.g. zooplankton 

or bot tom material) is stored in the orobranchial cavity during mastication the 

lower jaw is less depressed (short LOP bursts) and the mouth act ively closed in 

the powerstroke by protrusion of the upper jaw (Fig. 4). This prevents the loss 

of suspended food. Thus, whereas mastication after feeding large part icles is readily 

recognized by the repet i t ive opening of the terminal mouth at regular intervals, 

mast icat ion of small part icles proceeds w i th the mouth closed and may wel l be 

confused wi th closed protrusion in selection. In selection i t serves a d i f ferent goal, 

occurs more i r regular ly, usually faster and involves less skull and pectoral girdle 

movements. 

The consequences of the powerful and extensive pharyngeal jaw and skull 

movements for respiration and for the functioning of the heart and Weberian ossicles 

have been discussed in Sibbing (1982). The movement pat tern of the head during 

masticat ion excludes e f f ic ient food intake or selection at the same t ime. 

Limitations (cf . Table 4). Mastication serves comminut ion, rupturing and puncturing 

food to fac i l i ta te the access of digestive enzyms. It is of major importance in 

cyprinids, which character ist ical ly lack a stomach and oral teeth. The previous 

study on mastication of the carp (Sibbing, 1982) showed that the profi les and 

movements of the horny chewing pad and the opposite teeth allow powerful crushing 

and grinding, whereas there is no abi l i ty for cut t ing and shearing. The masticatory 

apparatus is bui l t for t ransferr ing high forces to the occlusal surfaces. This allows 

e f fect ive comminution of s t i f f and b r i t t l e hard materials and even soft i tems of 

f ibrous context, whereas tough and elastic food (e.g. macrophytes, worms) is mainly 

f la t tened. Arthopod skeletons w i l l part ly be crushed, ruptured and punctured (cf. 

also Klust , 1940). I t should be noted that comminution is not a prerequisite for 

e f fect ive digestion of fleshy prey, as long as enzymes can easily penetrate. Fur ther­

more masticat ion w i l l enhance autolysis. Macrophytes (e.g. common grass) are 
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only part ia l ly a f fected by locally disrupting their f ibrous context , washing out 

the cells (Sibbing, 1982). Even the grasscarp (Ctenopharyngodon idella) which has 

interdigi tat ing rasping teeth appears to have low abi l i t ies for damaging the indiv i ­

dual cells (Hickl ing, 1966). Though grinding w i l l d iminute smaller part icles, the 

large area of occlusion reduces the compressive pressures. They are probably not 

suf f ic ient for e f fect ive mast icat ion of phytoplankton and diatoms, due to their 

small size and of ten f i r m coat. Contaminat ion of the food w i th sand grains may 

enhance grinding, but the horny chewing pad is re lat ively soft and w i l l be easily 

worn. No experimental data are available on the lower size l imi ts for e f fect ive 

comminut ion of such small hard part icles. Neither i t is known what part ic le size 

or surface f ractures are required for e f fect ive digestion. 

The masticatory apparatus of the carp thus has high abi l i t ies for e f f ic ient comminu­

t ion of hard medium sized food i tems such as mollusks and seeds and low abi l i t ies 

for mechanical breakdown of vegetable mat ter and fleshy prey (cf. Table 4). In 

view of the tremendous var iat ion in pharyngeal bones and teeth in cyprinids a 

closer analysis of their role and ef fects is required to comprehend their re lat ion 

w i th diet and habitat. It is fur thermore evident that the food-categories of Table 

4 do not simply match categories of mater ia l properties. Benthic invertebrates 

e.g. may include soft small worms as wel l as molluscs. Detr i tus comprises decaying 

mater ia l of al l categories and is not evaluated separately. This not only renders 

the evaluation in Table 4 generalized, but also shows that dist inctions such as 

between carnivorism and herbivorism are not adequate for characterizing modes 

of food handling. 
1 2 

DEGLUTITION â * 

FIG. 12. Deglutit ion. Ground food is propelled from the chewing cavity towards the esophageal sphincter at the 
entrance of the intestinal bulb (ib). Deglutit ion is init iated by the joined act ivi ty in the palatal and postlingual 
organs. This wave propagates through the wall of the chewing cavity into the esophageal muscles. Small movements 
of the pharyngeal bones aid in transport. Sequence of images at the top. 
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Deqlut i t ion is summarized in F ig . 12 (Sibbing, 1982). The small concomit tant stroke 

of the pharyngeal bone may aid in transport part icular ly of long objects (e.g. worms, 

macrophytes) into the esophagus, much l ike the transport system of a sewing ma­

chine. Deglut i t ion w i l l impose no fur ther l imi tat ions on food available to the carp 

than already imposed by t ransport, loading and mast icat ion. The distensibi l i ty of 

the esophagus should allow passage of part icles that already entered the chewing 

cavi ty ( <3% 5L). 

L imi ta t ions of the adult carp on the exploi tat ion of food 

The above survey of movement patterns, their mechanisms, e f fects and inter­

actions a f fect the process of food handling as a whole. As food has to match all 

subsequent restr ict ions of handling prior to its chemical breakdown the fol lowing 

tentat ive conclusions are proposed for the carp (cf. Table 4). 

1) Retent ion of phytoplankton and diatoms is restr ic ted to their large-sized f rac t ion 

(>250 pm) which excludes most species (Moss, 1980). Their use w i l l be fur ther 

l im i ted by the low abi l i ty of the carp for their mechanical breakdown by mastica­

t ion. 

2) Use of long f i lamentous algae and vascular plants is l im i ted by their intake, 

and transport, whereas damage to hard single cells by masticat ion wi l l be smal l . 

Pur i f icat ion is rest r ic ted. Small thallose algae may wel l be taken. 

3) Zooplankton (>250 ym), benthic invertebrates (< 3% SL diameter) and surface 

f loat ing insects are e f fect ive ly handled. 

4) Exploi tat ion of f ish is excluded for the carp due to their escape at intake and 

their struggling at t ransport. Large fish (> 9% SL predator in diameter) can 

not even enter the mouth. No devices for laceration are available. 

5) Only coarse detr i tus (>250 ym) is retained by the fish and is further handled 

w i th varied e f fec t i v i t y , depending on its component parts belonging to previous 

categories. I t is largely composed of vegetable mat ter (Darnel l , 1964). 

These conclusions largely match the actual diet of the carp qual i tat ively (see page 138 

and Sibbing, 1982) and support its wide though l im i ted array of feeding potentials. 

The f ish appears however much less able to handle vegetable matter e f f ic ient ly , 

excluding seeds, than animal prey. No reports on the presence of cellulases in 

the intestinal juices of the carp have been found. They occur only rarely in other 

f ish (Fänge and Grove, 1979). This compi lat ion renders the herbivorism of the carp 
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FOOD TYPES AND THE ABILITIES OF THE ADULT CARP TO PROCESS THEM EFFECTIVELY 

..Food handling 
—^^elements 

Trophic"""—«^.^ 
categories*« ̂""~-~ 

detection 
(ext.+int.) 

intake retention* transport 
loading 

mastication suitability 
as food 

phytoplankton 
(<250 ym) 

benthic diatoms 
(<250 um) 

filamentous algae 

vascular plants 
an thallose algae 

detritus 

Zooplankton 

benthic 
invertebrates 

aerial insects 

fish 

short 
+<9%SL 

+ 

+ 

+<9%SL 

+ 

-<9%SL 

+ 

+>250ym 

+>250Um 

+ 

+ 

+ 

+<3ZSL 

+ 

+ 

+<3%SL 

+ 

+<3%SL 

Purification ability decreases with increasing surface area of the food. 
** Hyatt (1979) for aquatic feeding. 

TABLE 4. Tentative limitations in food exploitation due to the separate components 
of the feeding sequence. Measures refer to the smallest diameter of the food. 
SL refers to the standard length of the fish. Measures of retention belong to 
carps between 150-1500 gr. (Uribe-Zamora, 1975). Further explanation in text. 

doubtful in terms of e f f ic iency. I t may wel l be explained by abundance of vegetable 

food and scarcity of animal prey. Besides such herbivorism may focus on the inges­

t ion of small animals l iving on and between macrophytes. The quant i tat ive food 

exploi tat ion pat tern w i l l largely vary and depends on the avai labi l i ty and abundancy 

of the separate food categories. Abundancy of varied gastropod molluscs even 

results in positive intratrophic selection of unsculptured thin shells (Stein, K i tche l l 

et a l . , 1975), which are readily crushed. The f inal choice of a f ish is expected 

to be a compromise between avai labi l i ty, energy costs-gain rat io and handling 

t ime (see below) of a part icular food type. Search, detect ion and prédation s t rate­

gies play a substantial role in the overall e f f ic iency of feeding. 

Many of the above hypotheses need fur ther experiments to detai l the above l im i t a ­

tions, combined w i th a refined analysis of the carp's ethology and ecology. 
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BEHAVIOURAL ADJUSTMENTS IN FOOD PROCESSING AND HANDLING TIME. 

Feeding sequences d i f fer according to the type and puri ty of the food (Figs. 

3,4; Table 2). They are composed of d ist inct and of ten al ternative elements, in ­

corporated in a programmed order (Fig. 13). The composition of the feeding se­

quence wi l l re f lect i ts adjustment to changing external (environmental, oropharyn­

geal) and internal s t imul i (drive or mot ivat ion). 

The dist inct elements of feeding behaviour may wel l be considered as f ixed 

action patterns i.e. stereotyped and readily recognized units of behaviour (Baerends, 

1971). L ike in non-behavioural characters there is some var iabi l i ty . The stereo­

typed component of the pat tern (e.g. part iculate intake) is t r iggered by external 

s t imul i (e.g. s t imul i of the food), the or ientation component (cf . Baerends, 1971) 

steers the ac t iv i ty according to external cues (e.g. d i rect ion of protrusion). Reposi­

t ioning, back-washing and recol lect ion f rom the branchial sieve have been d ist in­

guished by their e f fect on the food. These elements are however expressions of 

the same action pattern i.e. closed protrusion. In the electromyograms they were 

all consequently referred to as posit ioning, because the events of the food were 

not always recorded. Closed protrusion seems to be a core motor pat tern (cf . core 

funct ion in Barel, 1983) common to a more complex set of functions in feeding. 

Internal factors determine the drive or mot ivat ion for feeding and cause var iat ion 

in the release threshold for the patterns. Thus an increased drive for feeding due 

to persistent lack of animal prey may lower the threshold for feeding on vegetable 

mat ter and increase the tendency for the consuming act. Combination of external 

and internal factors determine if and what food is chosen and how i t is fur ther 

handled. 

When feeding is interrupted by spit t ing and immediately fol lowed by re-intake 

of other part icles, which of ten occurs at bot tom inspection, this is considered 

a searching sequence extended into the oropharyngeal cavity and referred to as 

'probing' (F ig. 13), an appetit ive behaviour largely driven by internal factors. Spit­

t ing also occurs as a u l t imate reject ion pat tern involved in search for food. I t 

may even be used quite d i f ferent ly by exposure of hidden food through a je t of 

water at searching. 

The releasing, maintenance and stopping of the component action patterns, 

their adjustment to the momentaneous si tuation of part icles and their integrat ion 

into an e f fect ive feeding sequence requires ref ined sensory and regulatory mecha­

nisms and probably involves positive and negative feedback loops. The enormous 

differences in handling d i f ferent types of food (Figs. 3,4) show the uni formi ty of 

the const i tut ing movement patterns but also the considerable d i f ferent ia t ion at 
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probing 
sequence 

I rinsing —-Î gustatory and •— 
— . £actMescanningj-*-

spitting 

BW 

— | back-washing | 

— | grinding 

* . p. 
I deglutition I 

SEARCH 
AND 

CHOICE 

I 
INTAKE + 

SELECTION 
AND 

PURIFICATION + 
TRANSPORT 

I 
MASTICATION 

4-
DEGLUTITION 

FIG. 13. Interrelations between the distinct elements of food handling. These stereotyped patterns are integrated 
into effective feeding sequences adjusted to the type of food (cf. Table 2). Probing refers to the repetit ive particu­
late intake of bottom-material for inspection without completion of the feeding act. 

the level of the individual muscle ac t iv i ty . The great variat ion in the palatal ac t i v i ­

ty is an other example. 

Handling t ime is an important parameter for feeding ef f ic iency and should 

include the to ta l t ime spent in food processing. The electromyograms of feeding 

sequences for d i f ferent food types show considerable differences in handling t ime . 

Whereas handling t ime for a large part ic le is long and largely determined by mastica­

t ion, suspended and soiled food require more t ime for respectively intake and selec­

t ion (Figs. 3,4; Table 2). The t ime needed to handle equivalent volumes of food 

depends on the food properties (e.g. grains of barley takes of ten several minutes; 

Sibbing, 1982). I t w i l l be short for large pure i tems. The use of electromyography 

for analyzing handling t imes and the determination of food volumes taken could 

fur ther test such hypotheses. 
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GENERAL DISCUSSION 

Retracing the cyprinid feeding mechanism 

Detai led analysis of food handling revealed ten stereotyped act ion patterns 

and involves a considerably higher d i f ferent ia t ion than already demonstrated for 

euteleosts (cf. in i t ia l s t r ike, buccal and pharyngeal manipulation, and pharyngeal 

t ransport (Lauder, 1983)). Though this analysis applies only to the carp, i t never­

theless raises the question how such a complex biological design could have evolved 

among the lower teleosts. No knowledge on fossils of the Cyprini formes exists 

(Roberts, 1973). Eink and Eink (1981) recently provided a cladogram of the groups 

of Ostariophysean fishes about the in terrelat ion between cyprinoids and the other 

suborders. H is tor ica l data about the origin of their feeding mechanisms are lacking. 

The present morphological and funct ional knowledge can be used to reconstruct 

a possible evolutionary scheme. 

The cyprinoids (Cyprinidae and Catostomidae) share, among others, the fol lowing 

unique characters (Roberts, 1973). 

1) A protrusi le mouth, comparably specialized as in Acanthopterygi i . 

2) Toothless jaws. 

3) Tootless palate 

4) No upper pharyngeal elements of the f i f t h branchial arch. 

5) Enlarged f i f t h ceratobranchials. 

6) Basioccipital bony processes unit ing below the aorta. 

7) Exceptionally deep subtemporal fossae. 

The palatal organ appears s imi lar ly shared by cyprinoids and few other fishes, 

the al l ied Cobit idae and some Salmonidae) (Kapoor et a l . , 1975). 

The general p r imi t ive euteleostean pattern f rom which the Cyprini formes 

deviated shows a grasping type of dent i t ion on small tooth plates fused to the 

oral jaws and upper as wel l as lower branchial elements (Nelson, 1969). These bran­

chial elements commonly funct ion in seizing and swallowing prey as mentioned 

above (Lauder, 1983) and belong mostly to predaceous f ish w i th a wel l developed 

prehensile and a simple selective apparatus. A plausible tentat ive scheme for the 

development of the unique character-set of cyprinids could be visualized as fol lows. 

Cyprinid ancestors could have chosen the bot tom areas, using the h i therto 

rather unexploited vegetable mat ter as food. Recent cyprinids comprise a large 

proport ion of herbivores compared to other teleost famil ies (Howes, 1978). The 

hard and f ibrous consistency of plant mater ia l requires higher masticatory pressures 

for r each jng the cel l contents than fleshy prey does. This could have induced 
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a hypertrophy of the f i f t h branchial arches and their associated muscles. A specia­

l isation at this locat ion would l i t t l e in ter fer w i th respiratory functions of the bran­

chial basket. Their posterior position fur thermore allowed the unique insertion 

on these pharyngeal jaws of a sphincter oesophagi derivate, the ret ractor dorsalis 

muscle (Holstvoogd, 1965), thus fur ther increasing masticatory abi l i t ies (cf. Sibbing, 

1982). Another drastic change in this region of the skull is the vast subtemporal 

fossa containing the massive levator muscle of the lower pharyngeal jaw. The reduc­

t ion of movable upper pharyngeal elements may wel be explained by their l im i ted 

abi l i ty to resist the high forces thus produced. Corni f icat ion of the pharyngeal 

epithel ium and the underlying occipi tal region of the skull now serve in absorbing 

the high masticatory forces. The functioning of the skull base as occlusal surface 

in mastication forms part of this key-adaptation in the chewing apparatus, and 

even permits epaxial body muscles to t ransmit their large forces ef fect ively to 

the chewing pad. 

The role of the pharyngeal masticatory apparatus may wel l have released the oral 

jaws f rom their b i t ing funct ion. Reduction of the associated need for a f i r m upper 

jaw abutment could wel l have allowed the development of the unique kinetics 

in the cyprinid mouth apparatus (cf. Gosline, 1973) for bot tom feeding. The lack 

of oral grasping teeth might be related to the feeding on immobile soiled prey 

and probably required space for taste buds on the lips (ca. 380/mm2 in the carp, 

c f . Sibbing et a l . , 1984), appropriate for bot tom inspection. One of the consequences 

of such structural t ransformation is the exclusion of p iscivory, as fast and struggling 

large prey can not e f fect ively be taken nor transported, due to the reduction of 

posterior upper pharyngeal toothed elements. Predators are rarely met among cypr i -

nids. Hypertrophy of the pharyngeal wall into the palatal and postlingual organs 

provides a substitute for the transport funct ion, lost w i th the upper pharyngeals. 

Their sensory and e f fector abi l i t ies (cf . Sibbing et a l . , 1984) and the closed pro­

trusion pattern of movement are crucial in selection between food and non-food 

and character ist ic for cyprinids as wel l as catostomids. Due to protrusion volume 

changes in the oral cavity increases in the carp for manipulating the f low of pa r t i ­

cles whereas volume changes in the pharynx are reduced in the carp for maintaining 

a large contact area at selection. Even if such a scheme for the origin of the 

cyprinoid feeding mechanism proves to be incorrect i t s t i l l provides a f rame for 

understanding the interrelat ions of their unique set of characters. These structures 

are in t imate ly funct ional ly l inked and together provide the complex requirements 

for the subsequent movement patterns in feeding actions. In such a view the p isci­

vorous cyprinids are not the p r imi t ive members of the fami ly but are secondarily 

derived f rom bottomfeeding species because the above sequence of events explains 
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the early loss of characters appropriate for piscivory. 

Protrusion 

The important roles of premaxil lary protrusion in food handling of the carp 

may be summarized shortly. 1) Protrusion directs the suction f low to a small area 

in f ront of the mouth opening. I t increases the velocity of f low through the reduced 

aperture of the mouth, allowing dense, distant and less accessible food to be taken. 

2) By extending the length of the mouth, protrusion simply reduces f ish-food dis­

tance wi thout adding impulse to the water or the f ish. 3) Ventrad protrusion main­

tains a wider f ie ld of vision at bot tom feeding and fac i l i ta tes rapid escape f rom 

predators. 4) Protrusion allows the aiming of the f ish at the food wi thout the need 

for a sudden change of the body. This permits prey suction under variable small 

angles w i th the body axis. 5) This fur thermore allows continuous probing of the 

bot tom substrate while extending the search area by swimming. 6) Protrusion ef fects 

a rostral hood at mouth closure during gulping thereby maximizing the volume 

taken and preventing the loss of suspension. 7) Closed protrusion aids in resuspension 

of food part icles in the orobuccal cavi ty, essential for the internal selection and 

pur i f icat ion of food. 8) Closed protrusion allows part icles to be washed back for 

repositioning and recol lect ion f rom the branchial sieve. 

Whereas the f i rs t four advantages of protrusion for part iculate feeding in the carp 

have been noted previously for other teleosts (cf. Alexander, 1970; van Leeuwen 

and Muller, 1984; see Mot ta , 1984), the la t ter roles have been unknown but are 

of crucial importance in bot tom feeding on mixtures of food and non-food. Thus 

the contr ibut ion of protrusion to mechanisms for internal selection may have added 

to the accessibil ity of the bot tom substrate as a possible food source in cyprinoids. 

The comparison of s tructure and functioning wi th in several trophic types of 

cyprinids (and other cypriniforms) is important to provide more data about the 

above tentat ive scheme. The elegant comparison between trophic specialists in 

cichlids by Barel (1983), though by its wide comparison necessary l imi ted in i ts 

analysis of functions, provides a promising example of the impact that feeding 

habits may have on the constructional morphology of f ish. 

Detai led and quanti f ied knowledge of the feeding mechanisms and structures 

combined w i th the ecological and ethological details of sympatric species w i l l 

aid in predicting the probable e f fect of habitat changes for the natural f ish fauna. 
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SUMMARY 

The structure of the oro-pharyngeal wall of the bottomfeeding common carp 

is investigated using l ight-and scanning electron microscopy. Densities of taste 

buds, mucus, club cells and the thickness of muscular layers are measured. D is t r i ­

bution patterns of these elements over the oro-pharyngeal surface are reconstructed 

f rom local counts. Six areas characterized by a specific combination of morpholo­

gical features are distinguished and related to twelve movement patterns com­

posing the process of food intake and handling in the carp. These areas are the 

lips (detection and oral manipulation of food), the orobuccal cavity (suction and 

resuspension chamber of ingested food and non-food particles), the most anterior 

pharynx (coarse selection of large food particles), the lateral pharynx (selection 

of small food particles), the posterior part of the anterior pharynx ( formation of 

boluses, transport and loading of food into the chewing cavity) and the posterior 

pharynx (mastication and deglutit ion), The conical shape of the orobuccal cavity 

and the slit-shaped anterior pharynx ref lect two d i f ferent mechanisms for part ic le 

handling v iz. by suction and by muscular bulging respectively. The opercular cavities 

serve large volume changes for suction feeding. 

Protruding types of taste buds and ol igivi l lous epithel ial cells may well serve 

mechanoreceptive functions required for steering the process. Otherwise, specialized 

mechanoreceptors have not been recognized. Mucous cells producing low-viscosity 

sialomucines occur in the anterior part of the oro-pharynx. They wi l l serve main­

taining a laminar f low during suction and lubricat ion of part icle handling in the 

pharynx. Epithel ial microridges may aid in holding the mucus. High-viscosity sulfo-

mucines only appear in the posterior part of the pharynx and wi l l aid in trapping 

small part icles and st icking them into boluses. The commonly accepted alarming 

funct ion of club cells and their meachanism for release is questioned in view of 

their abundancy in the orobuccal cavi ty. 

The structure of the muscular palatal organ is discussed wi th respect to its 

role in selection between food and non-food part icles. The available information 

on the af ferent, e f ferent and central neural pathways of this system is br ief ly 

reviewed. Three levels of movement, related to the part icle size to be handled, 

are proposed. Movement of the palatal organ as a whole, local outbulging of its 

surface into the pharyngeal sl it and a possible very local movement of the muscular 

papillae in its anterior part. These hypotheses are based on the almost maximal 

taste bud densities (820/mm2) in the palatal organ, the known complex laminated 
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cyto-archi tecture of the enormous vagal lobes processing its input and suggestive 

of a palatotopic mapping, and on the complex muscle f iber systems in this organ. 

The movable gi l l rakers of the branchial sieve, each supplied wi th a muscular pad 

and numerous taste buds (325-625/mm2), suggest their additional active role in 

selection. 

Muscle f iber systems in the posterior part of the palatal as wel l as in the closely 

appressed postlingual organ serve a peristalsis-l ike transport to the chewing cavity. 

Both are copiously supplied wi th sulfomucines f rom their deep crypts. 

Together these morphological and physiological features allow the carp a bot tom 

feeding behaviour requiring the e f fect ive separation of food f rom soiled mixtures. 
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INTRODUCTION 

The trophic diversity among cyprinids st imulated many studies on the adaptive 

characters in the al imentary t ract of this largest teleost fami ly . Suyehiro (1942) 

and Kapoor et a l . (1975) have presented reviews on this subject for teleosts in 

general. Verigina (1969) has done so for cyprinids. Structural data on the carp 

are reported by Curry (1939) and Al-Hussaini (1949). In the last decades new tech­

niques revealed additional types of specialized sensory and secretory structures 

in f ish epidermis (cf. Whitear, 1971; Fox et a l . , 1980; M i t ta l et a l . , 1980). 

Bottomfeeding cyprinids suck mixtures of food, detri tus and inorganic materials 

w i th their toothless protrusile mouth. Af terwards they select between food and 

non-food wi th in their oro-pharyngeal cavi ty. The muscular palatal organ in the 

pharyngeal roof, most developed among cyprinids in the carp (Weber, 1827; Herr ick, 

1904; Dorier and Bellon, 1952) and even larger in catostomids (Weisel, 1962; East­

man, 1977), is a conspicuous cyprinoid feeding s tructure. Its size, complicated 

structure and abundant taste buds has led to a variety of hypotheses about its 

role in food selection and respiration (cf. Kapoor et a l . , 1975). Its innervation by 

a huge vagal lobe in the brain fur thermore suggests an important role in feeding 

(Evans, 1952). 

The lack of a functional analysis of the actual events during feeding l imi ted 

the explanation of the varied structural components as adaptive characters. There­

fore previous papers on the common carp present an analysis of the feeding me­

chanism using electromyography, l ight and X-ray cinematography (Sibbing, 1976, 

1979, 1982; Sibbing et a l . , 1984). The feeding sequence of this species appears 

to be composed of twelve stereotyped movement patterns serving intake, selection, 

t ransport, mastication and deglut i t ion. The feeding sequences are adjusted to the 

locat ion, size, movement, contamination and consistency of the food by the appro­

pr iate employment and repet i t ion of these specific movement patterns. 

The aim of the present study is to analyze the sensory and e f fector structures 

in the oro-pharyngeal wal l which determine the ef f ic iency of internal food pro­

cessing. To understand the s t ructure-funct ion relationships the macroscopical and 

(electron) microscopical morphology of the oro-pharyngeal wal l are related to the 

actual events during feeding. Detai ls of taste buds, oligovillous cells, mucus, micro-

ridges and muscle f iber arrangment can now be f i t t ed in one comprehensive view 

of food handling and food processing. As the funct ional d i f ferent ia t ion is now known 

into great detai l also quant i tat ive measurements of the above elements and their 

reconstruct ion into distr ibution patterns are required to establish form-funct ion 

relationships. For example, disagreement between Curry (1939) and Al-Hussaini 
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(1949) on the presence and number of part icular cell types and taste buds in the 

carp is largely due to their inadequate descriptive terms. 

The present data and a c r i t ica l review of carp feeding show a considerable 

gap in our knowledge. This concerns mainly the lack of information on the presence 

and properties of the involved sensors and the way the fish manages to integrate 

and use their enormous input to regulate its feeding behaviour. We hope this study 

to be a s t imulat ing factor for such research. Another aim of this study is to provide 

a general f rame for comparing feeding in cyprinid species. This w i l l improve our 

insight into the trophic segregation of cyprinid species l iving together in one com­

munity. 

MATERIALS AND METHODS 

A l l mirror-carps (Cyprinus carpio L.) were reared in our laboratory and fed 

on small Trouvit grains (Trouw and Co., Put ten, The Netherlands). 

Histology 

Eor histological examination descaled carps of 58 mm SL were f ixed in Bouin's 

f lu id (Romeis, 1968) and decalcif ied over two weeks in a mixture of 200 ml formic 

acid, 200 ml ethanol (70%) and 40 gr. sodiumcitrate, renewed every three days. 

A f te r dehydration over a graded ethanol series the specimens were embedded over 

amylacetate in paraf f in. Serial sections of the head (7 pm) were stained after 

Crossmon (Romeis, 1968) allowing a clear dist inct ion between connective tissue, 

muscle f ibers, mucous cells, club cells and taste buds. 

Neutral as well as acid mucus is stained wi th Periodic Acid Schiffs reagens 

(PAS; McManus et a l . , 1963). Acid mucopolysaccharides and glycoproteins have 

been localized by positively staining w i th Alcian Blue (AB) at pH 2.5 (McManus 

et a l . , 1963). A reaction w i th High Iron Diamin (HID; Spicer, 1965) fur ther d ist in­

guished acid sulfomucines (pos. staining) f rom acid sialomucines (neg. staining). 

Morphometry 

Four parameters were measured at 980 ym or smaller intervals through the 

length of the oro-pharyngeal cavi ty (ca. 15 mm). 

The density of taste buds was measured by counting in the 7 y m transverse 

sections each taste bud intersection that was clearly dist inct f rom the common 

epithel ial cells. Because the mean diameter at the centre of the taste bud, measured 

f rom di f ferent regions, was 32.5 _+ 5.1 ym (n=60), the actual number of taste buds 
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in a transverse section was determined by mult iply ing the number of intersections 

by 7/(32.5 + 7) (Abercrombie, 1946). F rom this number the density of taste buds 

per mm 2 oro-pharyngeal surface was calculated. The surface was measured as 

its project ion on a horizontal plane, thus not accounting for folding of the epithe­

l ium. The head elements were in a resting stage (cf. Plate l id). As the pear-shaped 

taste bud (height 44.0 +_ 7.5 u rn , n=60) was considered as a globe in the calculations, 

their number may be an over-est imation, due to the inclusion of intersections 

of their extraglobular top. Such intersections are scarce because taste buds were 

generally cut sagital ly. Similar measurements of a second carp of the same size 

and origin gave an identical d istr ibut ion pat tern. The absolute number of taste 

buds was however about 10% lower. 

Whereas taste buds were quanti f ied over large areas (Fig. 1), an accurate 

determinat ion of the amount of mucus, occurring in several small cel l types, re ­

quires detailed measurements at high magnif icat ion. Therefore only small areas 

in each cross-section were measured by point-counting all mucous mater ial in the 

epithel ium (7245 points/ mm2 gr id). Thus the longitudinal mucus distr ibut ion was 

determined f rom a medial 300 y m width area (Fig. 1). So a relat ive measure for 

the mucus in this medial tissue strip is obtained, i rrespective of the size or number 

of mucous cells and their secretion k inetics. 

The muscle layer development over the length of the oro-pharynx was deter­

mined by measuring i ts thickness in the median of the f ish. Due to shrinkage by 

f i xa t ion these values are low compared w i th a fresh carp. 

tastebuds and clubcells measured 
mucus and muscle fibres measured 

FIG. 1. Roof ( left) and floor (right) of the oro-pharyngeal cavity of a carp, indicating the areas used in 
quantifying taste buds, club cells, mucus and muscle layers. The pecked line marks subdivisions measured. 
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Th e density of club cells was determined by counting the number of their 

intersections over large areas (Fig. 1). These are expressed per horizontal m i l l imeter 

transverse section. Only those intersections of club cells were counted which had 

the unmistakable central nucleus as a character ist ic. So the numbers in the graphs 

provide a re lat ive measure of their intersections, the actual number being higher. 

Detai led measurements of taste buds, mucus and muscle layer over the fu l l 

w idth of the pharyngeal roof have been made in the posterior part of the palatal 

organ (Fig. 1) where a varied transverse distr ibut ion was most conspicuous. Further­

more, transverse differences in taste bud densities at other sites have been inferred 

f rom comparison between counts of the to ta l and the medial areas (Fig. 1). As 

at the level of the branchial arches and the chewing cavity an accurate measure­

ment of the surface is impossible, data on these areas have been estimated f rom 

the SEM photographs and f rom the microscopic slides respectively (dotted lines 

in the f igures). 

Semi-quanti tat ive measurements by distinguishing four density levels of taste 

buds, mucous cells and club cells in an older carp (SL 20 cm), prior to accurate 

counting in sections of small carps (SL 58 mm), provided a corresponding p icture 

of their d istr ibut ion. 

Scanning electron microscopy 

For scanning electron microscopy (SEM) carps of similar size (53-58 mm SL) 

were decapitated after anesthesia by an overdose of 2Ü0 mgr MS 222/l i ter (Sandoz, 

Basel). The specimens were careful ly washed in buffered physiological saline to 

remove mucus adhering to the surface and f ixed for eight days at 5 C in 3% glutar-

aldehyde, buffered at pH 7.2 in 0.1 M sodiumcacodylate containing 2.5% glucose 

(Reutter et a l . , 1974). Subsequently the heads were cut horizontal ly in a dorsal 

and ventral half, each reduced to a slice of few mi l l imeters to f i t in the micro­

scope. This material was washed repeatedly in a buffered saline solution prior 

to f inal f ixat ion for six hours in 1% osmiumtetroxide, buffered in 0.1 M sodium­

cacodylate. A f te r repet i t ive washing in the buffer, dehydration in a graded series 

of ethanol (10-100%) and c r i t i ca l point drying, the specimens were mounted on 

a stub and coated wi th a f i lm of gold. For examination a JEOL JSM-35C scanning 

electron microscope operating at 25 KV and magnifications of 10 - 10.000 t imes 

was used. The large specimens could be stored for three weeks over a si l ica gel 

wi thout damage. 

Though SEM photographs may seem to provide an excellent base for fastly 

measuring the taste buds densities (they give closely similar results for the buccal 

roof, ca. 40-50/mm2) these SEM measurements become increasingly inaccurate 



a. roof ! b. floor ! 

1mm 

PLATE I. (ab) SEM-view on the roof (a) and floor (b) of the oro-pharynx of the carp (SL 58 mm). Subdivisions 
of the oro-pharynx are indicated. Levels of sections in Plate Ila-d are given ( l - ' i ) . 

(cd) Fronto-lateral (c) and ventral SEM-view (d) of the snout. Lips (1), barbels (b) and oral lining bear abundant 
taste buds. The external skin shows conspicious neuromasts (n), lateral line (11) and olfactory organs (ol). Abbrevi­
ations on page 122. 
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in posterior folding areas where taste buds are densily packed and protrude less 

f rom the surface. Abundant mucus may also render them less conspicuous. Besides 

SEM techniques do not allow measurements of taste buds as wel l as mucous cel ls, 

muscle f ibers and club cells w i th in the same f ish. 

RESULTS 

Gross anatomy 

Subdivisions and volume changes in the oro-pharynx. 

The oral cavity extends f rom the lips to the level of a r t icu lat ion of the lower 

jaw, the buccal cavity f r om here to the base of the f i rs t branchial arches (Plate 

I ab). 

The pharyngeal cavity in cyprinids is divided into the anterior pharynx (syn. bran­

chial cavity) containing the g i l l arches and involved in respiration and selection 

and the posterior pharynx (syn. chewing cavity) between pharyngeal teeth and che­

wing pad, involved in masticat ion (Plates lab). The respiratory f i laments of the 

g i l l arches project into the opercular cavity. 

The maximal diameter of the protruded mouth is about 10% of the standard 

length (SL) in carps between 10-15 cm. SL. It decreases to about 7,5% for carps 

of 50 cm. SL. The concave buccal roof and its convex f loor (Plate II a) closely 

f i t at compression of the head. During expansion the oro-buccal cavity becomes 

conical whereas the anterior pharyngeal cavity broadens but remains s l i t - l i ke , 

being subjected to minor volume changes (Plate II b). Whereas in a fresh carp the 

muscular palatal organ almost fu l ly occupies the pharyngeal lumen, its shrinkage 

by f ixat ion leaves an exaggerated sl i t in the micrographs. Volume changes in the 

opercular cavit ies by far exceed those in the pharyngeal cavi ty. 

Oro-buccal cavity 

Snout 

The carp bears four maxi l lary barbels around the terminal mouth (Plate I 

cd), a lower pair at each jaw angle and a smaller dorsal pair. Each barbel is studded 

w i th taste buds, increasing in number towards i ts f ree end. Ol factory organs, open­

ings of the lateral l ine system and free neuromasts are evident on the snout. Eew 

taste buds are found on the skin, as appears f rom microscopic sections. 
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PLATE II. (abc) Transverse sections through the head of a carp (SL 60 mm). Levels are given in Plate lab and 
lid. Note the cylindrical shape of the buccal cavity (a) changing into a broad flattened slit in the anterior pharynx 
(b). The volume of the anterior pharynx is exaggerated due to shrinkage of the palatal and postlingual organ by 
fixation. The pharyngeal floor is perforated by the branchial slits. The posterior pharynx (c) has a small volume. 
Note the tissue flaps (tf) projecting between pharyngeal teeth (pt) and chewing pad (cp). 

(d) Medial section showing the alimentary tract from mouth to intestinal bulb (ib). Palatal organ (po) and postlingual 
organ (plo) are conspicuous. Abbreviations on page 122. 
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The protrusile toothless mouth is bordered by thick lips bearing rows of longitu­

dinally arranged taste buds (ca. 360/mm2 , Plate Il ia) on the f la t tops of closely 

packed epithelial folds. Taste buds are absent at the mouth angles. 

Inwards f rom the lips the taste bud area is interrupted by a small crescent shaped 

cel lular area of cornif ied epithel ium, the area of contact between upper and lower 

jaw. These horny single cells (Plate Il ia) may be similar to the 'uncul i ' described 

for loricarids by Roberts (1982). The corni f ied area is devoid of taste buds. 

Oro-buccal roof 

A crescent shaped respiratory valve projects f rom the oral roof at the inner 

horny edge of the upper jaw (Plate lac). Wide papillae (ca. 150 x 200 urn) w i th 

abundant taste buds (ca. 250/mm2) are found in its basal part , its distal half is 

smooth and taste buds are almost lacking. The roof of the oral cavi ty is p l icated. 

Anter ior ly deep papil lated folds run transversad and follow the contours of the 

protrusi le upper jaw (Plate la). Behind the jaw art iculat ion buccal plicae run in ­

creasingly longitudinally and bear few small papillae (30x40/70 p m , Plate I l lb). 

Papillae and taste buds (ca. 50/mm2) merely occur on top of the folds. 

Oro-buccal floor 

Papillae similar to those on the base of the maxi l lary valve (ca. 250 tb /mm 2 ) 

extend inwards f rom the horny area of the lower jaw (Plates I b, III a). A mandibular 

valve is absent. Whereas the transverse folds along the lower jaw are less pro­

nounced, the lower jaw being non-protrusile, longitudinal folds at the level of the 

cheeks are deep and run caudo-laterad towards the f i rs t branchial sl it (Plate lb). 

These folds allow considerable extension of the buccal walls. Few taste buds l ie 

on their tops (ca. 40/mm2) . The central convex area of the buccal f loor, of ten 

referred to as tongue, is supported by the mobile glossohyal, connected to the 

ventral elements of the hyoid arch. A war t - l ike protuberance marks the posterior 

end of the glossohyal. Medium-sized papillae (ca. 100x160 urn) w i th taste buds 

(ca. 75/mm2) are conspicuous over al l this area. 

Pharyngeal cavity 

Anterior pharynx 

The roof of the anterior pharynx is formed by a thick muscular cushion, the 

palatal organ, covering the base of the skul l , the epibranchials and the pharyngo-

branchials (Plate II b). The surface of the slightly bilobed palatal organ closely 

f i t s the pharyngeal surface and curvature of the gi l l arches. Thus the V-shaped 



-92-

m 

PLATE HI. (abed) SEM-survey of the lower jaw (a), buccal roof (b), anterior palatal organ (c) and gi l l arches (d). 
(a) Rows of taste buds (arrows) on the lips are interrupted by cornified cells at the contact area of the jaws. 
(b) Note the few taste buds more or less protruding from the f lat buccal roof, 
(cd) Their number is increased in the anterior pharynx. 
' (ef) Details of the anterior pharynx. The lateral part of the palatal organ (e) shows papillae each containing nume­
rous taste buds (arrows), (f) Small conical papillae, each exposing a receptor area of a single taste bud, radiate 
f rom a gi l l rakers. Abbreviations on page 122. 
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rostral border of the organ follows the at tachment of the g i l l arches (cf. Plates 

Ia,b) and the organ bends postero-lateral ly dorsad along w i th the epibranchials. 

The sl it between roof and f loor is broad but narrow and even vanishes close to 

the chewing cavity in a fresh carp. 

The surface of the palatal organ is i rregularly but heavily papil lated (Plates la , 

l ib , I l lce, IVb) and densily packed w i th taste buds on the f la t tops, even more dense 

in the la teral areas (average up to 670 tb/mm2 ) than in the medial region (av. 

up to 400 tb /mm 2 ) . Papillae in the lateral areas are smaller (ca. 90 pm diameter) 

than in the medial region (ca. 140x150/550 pirn). In the posterior part of the palatal 

organ, the tr iangular area enclosed between the last g i l l arches and the chewing 

pad, the papillae lengthen into deep longitudinal folds (Plate la, IVc) w i th a markedly 

reduced number of taste buds (av. up to 200/mm2). 

The floor of the anterior pharynx (Plates lb, l ib) is largely composed of the 

g i l l arches and their rakers. From these plates i t is clear that the g i l l arches and 

their double rows of rakers fo rm a perforated plane that can be closely applied 

to the palatal organ. 

The pharyngeal surfaces of the g i l l rakers bear numerous small radiating conical 

papillae (ca. 30-50 pm diameter), each w i th a taste bud (av. up to 480/mm2 in 

the horizontal part of the g i l l arches; Plates III d f) . The tapering gi l lrakers f rom 

subsequent arches in terdig i tate in a fresh carp and play a role in food selection 

(Zander, 1906). Between the two rows of gi l l rakers the pharyngeal surface of 

each g i l l arch (Plates l ib , Hid) is covered by a thin muscular str ip of tissue w i th 

few low papillae and taste buds (ca. 100/mm2). 

The midventral f loor of the branchial basket, widening caudally into a t r iangular 

area, is covered by the "postlingual organ" (a f ter Dorier and Bellon, 1952; P late 

lb, l ib). This f leshly muscular organ is supported by the anterior cart i lage (fused 

basibranchials I I I and IV), and the pharyngeal jaws (cf . P late l id). The surface arch i ­

tecture of the postlingual cushion parallels that of the palatal organ in this area 

(cf. Plate Vllcd). Posteriorly deep longitudinal folds run towards the teeth. Taste 

buds density in the postlingual organ f luctuates around an intermediate level (ca. 

200/mm2). 

The posterior pharynx 

The morphology and functioning of the tr iangular horny chewing pad in the 

roof and the heterodont pharyngeal teeth in the f loor of the posterior pharynx 

have been subject of a previous paper (Sibbing, 1982). Between the teeth of l e f t 

and r ight pharyngeal jaw the pharyngeal mucosa is shaped into protruding foliaceous 

papil lae w i th few taste buds near their tops (Plates lb,He). Two lateral ly f ixed 
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PLATE IV. Transverse sections through the medial area of oro-pharyngeal wal l , (a) The buccal roof with club 
cells (cc) and taste buds (tb). (b) The anterior palatal organ and (c) the posterior palatal organ. 

Note the obliquely oriented muscle fibers (mf) in the medial part of the palatal organ. Insets in (b) show their 
longitudinal and transverse orientation in the lateral parts. Note the large amount of sacciform mucous cells (sm) 
posteriorly. Abbreviations on page 122. 
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tissue flaps extend mediad between teeth and chewing pad. 

Caudally f rom the teeth the posterior pharynx tapers ventrad into the, almost 

ver t ica l , short esophagus, separated f rom the intestinal bulb by a pyloric sphincter 

(Plate l id). Cyprinids lack a stomach. Rare taste buds do occur in the f i rs t few 

sections of the pl icated esophageal wa l l . 

L igh t - and scanning electron microscopy of the oro-pharynqeal wal l 

Tissue layers 

The general composition of the oro-buccal wall (Plate IVa), being a derivate 

of the stomodaeum, closely resembles that of the scaleless skin. I t is covered by 

a s t ra t i f ied epithelium (50-120 y m thick). The underlying connective tissue stroma 

consists of 1) stratum compactum, a compact coat of collagen f ibers (5-7 ym), 

2) a less dense fibrous layer (10-30 ym) w i th interposed nuclei of f ibroblasts, 3) 

a loose areolar connective tissue w i th blood vessels and nerves. A d ist inct muscular 

coat as reported by Curry (1939) has not been found in the buccal cav i ty . 

The wal l of the pharynx (Plate IV be) mainly d i f fers by the gradually vanishing 

of the s t ratum compactum and the f ibrous layer in la teral and posterior d i rect ion. 

A thick muscular layer is now interposed between the f ibrous and the areolar con­

nective tissue. 

Labels such as lamina propria and submucosa are confusingly used (Curry, 

1939; Al-Hussaini, 1949; Eastman, 1970). They have been avoided because they 

are derived f rom intestinal nomenclature, which is inappropriate to describe the 

area between skin and esophagus. A muscularis mucosae, separating the lamina 

propria and the submucosa in the mammal intestine, is absent in fishes (cf. McVay 

and Kaan, 1940). 

The palatal organ 

The pharyngeal walls show conspicuous specializations. The palatal organ has 

a highly p l icated mucous epithel ium (Plate IVbc). Taste buds abound on the f la t 

papil lär tops, mucous cells dominate along the narrow crypts. The underlying f ibers 

f o rm muscular cores for the papillae and p lat forms for taste buds. The thick muscu­

lar layer backing the papillae is composed'of roughly longitudinally and transversely 

or iented str iated f ibers. In the medial part of the palatal organ however muscle 

f ibers run obliquely to the body axis (Plate IV b). The scattered fascicul i l ie inter­

mingled and gradually merge w i th the deep layer of areolar tissue. The palatal 

organ covers the upper branchial arch elements and is at i ts edges attached to 
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PLATE V. (a) Transverse section through the postero-lateral part of the palatal organ. I t is hardly plicated 
and contains an almost maximal density of taste buds (arrows). Some pyriform mucous cells are conspicuous (pm). 
(b) Transverse section through a gi l l raker bearing taste buds (arrows) onamuscular pad (mp). It is supported by 
a bony rod (br). 
(c) Survey of the medial part of the postlingual organ with the epithelium (ep) at the top, separated by a stratum 
compactum (sc) f rom longitudinal and more ventrally transverse muscle fibers. 
(d) Transverse section through the dorso-lateral wall of the chewing cavity, showing chewing pad (cp), foliaceous 
papillae and the constrictor pharyngis muscle fibers (cph) radiating into the lateral tissue flap (tf) (cf PI. l ie). 
Some masticatory muscles are at the top of the plate. Abbreviations on page 122. 
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bony elements and connective tissue plates (Plate l lb,d). 

Outwards f rom the median the papillae (up to 150 y m high) become gradually 

lower (Plate lib) and their supporting connective tissue layers decreases f rom 12 urn 

to 2 y m . In the posterior medial part of the palatal organ, on the contrary, the 

papillae lengthen and form high folds (up to 300 u rn high) w i th few connective 

tissue (5 p m layer). Their small mainly longitudinally arranged muscular core is 

bordered by abundant mucous cells (Plate IVc). 

The postlingual organ and the branchial arches 

The medial postlingual organ and the pharyngeal l ining of the branchial arches 

(omit ted in the studies of Curry (1939) and Al-Hussaini (1949)), show a similar 

regional d i f ferent iat ion as the palatal organ and may even be considered to fo rm 

a tubular ent i ty wi th i t . However, the muscle layer f ibers over the branchial arches 

is thin (cf. Plate lib) and runs along the length of the arches, oblique to the body 

axis, whereas it is voluminous in the postlingual organ and runs mainly paral lel 

to the body axis (Plate Vc). Thus the arrangement of muscle f ibers in the pharyngeal 

f loor remains oblique w i th respect to opposing fibers in the pharyngeal roof, despite 

the regional differences. The functional implications of such a peculiar arrangement 

is discussed later. The core of the gi l l raker is supported by a basal bony rod and 

density packed wi th muscle f ibers running in various directions, suggesting movabi l i ty 

(Plate Vb). The bony rod i tself has a f ibrous at tachment to the branchial arch. 

The chewing cavity 

The foliaceous mucous l ining of the posterior pharynx forms two large lateral 

flaps projecting between teeth and chewing pad and high branching papillae between 

and around the teeth (Plates lab, l ie , Vd). The underlying s tr iated muscles are 

continuous wi th those of the esophagus and distinct f rom the palatal and postlingual 

organ. They are composed of criss-cross running fascicul i , radiating into the above 

flaps and papillae, and a peripheral sphincter oesophagi, connecting pharyngeal 

jaws and basioccipital process. 

The roof of the posterior pharynx is formed by the corni f ied chewing pad (Plates 

la, l ied, Vd) which is continuously renewed and rests on a th ick intruding layer 

of connective tissue. Its histology has been described by Curry (1939) and Al -Hus­

saini (1949). Sporadic muscle f ibers occur between the chewing pad and the basi­

occip i ta l process. 

The l ining of the esophagus closely resembles that of the posterior pharynx, except 

for the area close to the pyloric sphincter (cf. Curry , 1939; Al-Hussaini, 1949). 
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PLATE VI. SEM-views of (a) The edge of a papil from the anterior palatal organ exposing the receptor area 
of a taste bud (tb), composed of large and small v i l l i . Note the microridge-pattern of the common epithelial cells 
which cover most of the taste bud. Transitional stages of an epithelial cell suggest cell-sloughing (1-5). 
(b) Top surface of palatal folds just in front of the chewing pad. Note the microridge pattern, conspicuously different 
f rom (a). 
(c) Oral roof area showing groups of small v i l l i (arrows) protruding from between epithelial cells. The smooth apical 
surface of mucous cells is visible (mc). 
(d) Detai l of a groups small microvi l l i from (c). 
(e) The buccal floor shows ruptured mucous cells (mc). The membrane-bound mucous packages are exposed. In ad­
dition groups of small v i l l i are seen (arrows). 
(f) In the area of the teeth bundles of long v i l l i (arrows), different from the taste buds (tb), protrude from the 
folded epithelial surface. The microridge pattern is intermediate between that in (a) and (b). 
(g) Cells widely spread over the internal opercular l ining, suggestive of some secretory role. Abbreviations on page 122. 



-99-

Connective tissue layers are thicker than in the chewing cavi ty, where they are 

generally hardly recognizable in the papil lae. 

Specializations of the oropharyngeal epi thel ium 

The s t ra t i f ied oro-pharyngeal epithel ium contains specialized cells l ike horny 

cells, mucous cells, club cel ls, chloride cells, sensory cells and 'round cel ls' as 

in f ish epidermis (Whitear, 1971; M i t ta l et a l . , 1980). Their abundancy varies locally 

and they serve a mult i tude of functions. 

The surface of the common epithelial cells (5-10 urn, diameter) is common­

ly in t r icate ly sculptured by microridges (Reutter, 1973, 1974; Hawkes, 1974; Hughes, 

1979; M i t ta l and Banerjee, 1980; Ono, 1980). In the carp the microridges (width 

0,17 - 0,23 urn) generally have a f ingerpr int pat tern (Plate VI). The bordering 

microridges of adjacent cells run parallel and leave a narrow space between (ca. 

0,05 urn). I t is suggestive to interprète the cells 1-5 in Plate Via as successive 

stages in the cast off of an old ce l l . 

In l i fe the whole epithel ial surface is covered by a slimy and f ibrous layer, 

a cut ic le (about 1 pm th ick), which is secreted f rom the underlying common epithe­

l ia l cells as has been demonstrated by Whitear (1970) in Phoxinus and some other 

teleost fishes. This external coat continues over the aperture of taste buds and 

mucous cells and is most probably composed of glycoproteins. I t was e l iminated 

during preparation of the SEM sample by washing the specimen w i th buffered saline, 

and i t is f requently lost during preparation of histological sections. The mucus 

of the mucous cells forms a layer on top of this cut ic le (Whitear, 1970). 

Local corni f icat ion is common among terrestr ia l vertebrates, not in f ish (M i t ta l 

et a l . , 1980). Horny cells are found in the carp at the r ims of the upper and lower 

jaw (Plate Il ia) and in the chewing pad (Plate Vd). 

Effector specializations 

Mucous cells 

Mucous cells, usually called goblet cells, are the most common unicellular 

glands of f ish epidermis. They have their secretory product packed in membrane-

bound vesicles, which displace the nucleus to the base of the cel l (cf. Plates IV, 

V). During maturat ion they force the surrounding cells apart (Henrikson and Mato l t -

sy, 1968) and eventually expose their smooth top (diameter 3-7 pm) at the surface 

(cf. Plate Vice). A t rupture of the cel l the membranes break down and the mucus 

is released. Plate Vie shows most probably the surface morphology of part ly ruptured 
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PLATE VII. (ab) Successive cross sections through the buccal cavity, (cd) Successive cross sections through the 
pharyngeal cavity in front of the chewing pad. 

AB-staining at pH 2.5 (a, c) shows al l acid mucus, sialomucines as well as sulfomucines, present. HID-staining 
(bd) only shows the acid sulfomucines. The almost absence of sulfomucines in (b) and the nearly only presence 
of sulfomucines in (d) is apparent, (a'), (b') and (d') are details of the corresponding sections. 

(ef) Mucus in the central part of the palatal organ (e) contains a decreasing proportion of sialomucines (light) 
whereas the volume of sulfomucines (dark) has increased ( i). Abbreviations on page 122. 

mucous cells; the individual vesicles of mucus are d ist inct . Other probably secretory 

cells occur scarcely in the opercular l ining of the carp (Plate VIg). No reports on 

such cells have been found and i ts underlying structure is not known. 

The str iking differences in size, shape and position of mucous cells in the 

epi thel ium makes a d ist inct ion between superf icial small and elongated pyr i fo rm 

cells (Plate IVab), large sacciform cells (Plates IVc, Vd) and typical goblet-shaped 

mucous cells helpful l (cf . Al-Hussaini, 1945). These are characterized in Figure 2. 
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FIG. 2. Approximate shape and size of three types of cells producing mucus as they appear in the microscopic 
slides of the alimentary tract in the carp. Note that the sacciform cells produce sulfomucines. 

C o m p a r i n g t h e r esu l t s o f PAS and A B ( a l c i a n b lue a t p H 2.5) s t a i n i n g r evea ls t h a t 

a l l t hese mucous ce l l s s e c r e t e ac i d mucus . The s a c c i f o r m mucous ce l l s a re a l l 

h e a v i l y s t a i ned w i t h H I D ( P l a t e V l l d , d') and thus c o n t a i n s u l f o m u c i n e s . P y r i f o r m 

ce l l s l i n i ng t h e o r o b u c c a l as w e l l as t h e p h a r y n g e a l l u m e n appear t o c o n t a i n m u c h 

s i a l o m u c i n e s as t hey a re a l m o s t H I D n e g a t i v e ( P l a t e V l l b ) . The same app l ies t o 

t he i n t e s t i n a l g o b l e t c e l l s . 

The s a c c i f o r m mucous ce l l s a re d i s t i n c t f r o m o t h e r s a c c i f o r m g l andu la r ce l l s in 

f i s h e p i d e r m i s w i t h a homogeneous m a i n l y p r o t e i n a c e o u s c o n t e n t ( M i t t a l e t a l . , 

1981). 

Club cells 

The c l ub c e l l is a n o t h e r t ype of u n i c e l l u l a r g l a n d . These l a rge ce l l s ( ca . 18 u m 

d i a m e t e r ) a lways o c c u r in t he m i d l aye rs of t h e e p i d e r m i s of m a n y t e l e o s t s ' e x t e r n a l 

s k in ( W h i t e a r and M i t t a l , 1983). They a re absent in t he c r y p t s and on top o f t h e 

f o l d s . They p roduce a m a i n l y p r o t e i n a c e o u s subs tance in O s t a r i o p h y s i ( P f e i f f e r , 

1971) w h i c h e l i c i t s t h e ' f r i g h t r e a c t i o n ' ( v . F r i s c h , 1941). In t h e ca rp t hey do no t 

s t a i n w i t h P A S . They have a consp icuous c e n t r a l l y l o c a t e d nuc leus in a c l e a r c y t o ­

p l a s m ( P l a t e IVa ) . In t he ca rp t hey a re no t on ly f r e q u e n t in t he s k i n , b u t t h e y 

also abound in t h e o r o - b u c c a l l i n i n g . They have no t been m e n t i o n e d he re by C u r r y 

(1939) and A l - H u s s a i n i (1949) . 

Sensory special izat ions 

F r e e ne rve end ings , c h e m o r e c e p t i v e s ing le c e l l s , t a s t e buds, l a t e r a l l i ne o rgans 

and f r e e neu romas ts have been f o u n d i n t he e p i t h e l i u m o f f i sh ( F o x , L a n e e t a l . , 
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1978). Small 'round cel ls ' , in the opercular valve epithel ium of Phoxinus and Ic-

talurus (Whitear, 1971) resemble the possibly mechanoreceptive Merkel cells of 

tetrapod vertebrates (Lane and Whitear, 1977). 

Villous cells 

In the buccal roof and opercular l ining of the carp small groups (2-6) of short 

m icrov i l l i (diameter 0,17 - 0,23 urn) protrude between adjacent epithel ial cells 

(Plate VIcdeg). They closely resemble the v i l l i of rodlet cells w i th speculated re ­

ceptive or osmoregulatory funct ion (cf. Karlsson, 1983). In f ront of the chewing 

pad larger f ields of longer v i l l i occur, d ist inct f rom taste buds (Plate V l f ) . These 

v i l l i might wel l be part of ol igovil lous chemosensory cells (cf. Whitear, 1971; Whitear 

et a l . , 1983). An u l t rast ructura l study of these villous cells should fur ther elucidate 

their ident i ty . 

Taste buds 

The structure, or igin, development and location of taste buds is reviewed by 

Kapoor, Evans and Pevzner (1975) and updated by Reutter (1982). Taste buds are 

pear-shaped organs extending f rom the basal membrane to the f ree surface of the 

epi thel ium. L ight and dark sensory cells run through their length and taper towards 

the f ree apical end into a pore (Plate Va). An intragemmal nerve plexus provides 

contact between the disc-shaped basal cel l and the sensory cells. The l ight ly coloured 

receptor cells bear one or two long apical processes (diameter in the carp ca. 0.4 

(im), the dark cells have a larger number of small m icrov i l l i (diameter ca. 0.17 

pm) (Plate Vlab). Only recently the demonstration of synaptic connections (Reutter, 

1982) proved that also the dark cells are sensory instead of supporting as was pre­

viously assumed (Hi rata, 1966). 

Taste buds in the carp measure 32.5 +_ 5.1 urn (width) and 44.0 +_ 7.5 pm (height) 

averaged over all the oro-pharyngeal l ining (n=60). In a second 58 mm fish the width 

of taste buds measured 34.5 +_ 5.3 pm and the height 47.1 +_ 10.4 pm (n=80). These 

values l ie w i th in the range reported by Iwai (1964) and H i rata (1966) for the carp. 

Taste buds increase in height w i th increasing height of the epi thel ium, their w idth 

appears more constant and has been used in calculating their density. The exposed 

receptor area of the taste bud measures 6.9-11.5 pm in diameter and generally 

protrudes between mostly four epithel ial cells (Plate Via). In l i fe the mucous cut ic le 

that covers the receptor area w i l l only be penetrated by the large v i l l i (Reutter, 

1980). 
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Quant i tat ive distr ibution patterns of taste buds, mucus, club cells and muscle f ibers. 

The distr ibution of these elements over the oro-pharynx is presented graphically 

in Figs. 3-6 and reconstructed in Figure 7. 
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FIG. 3. Distribution of taste buds over the roof and floor of the oro-pharynx of a carp. ( • ) indicates averaged 
numbers over whole cross sections, ( o ) gives counts in the medial strip (cf Fig. 1), depicted as a pecked line. The 
dotted line indicates the part of the graph which is based on estimations from SEM-pictures and cross sections. 
The corresponding parts of the oro-pharynx are indicated at the bottom. 
I l ips, h horny area, mv maxillary valve, pph posterior pharynx, es esophagus. 

Taste buds 

In fishes taste buds also occur on the general body surface (Herr ick, 1904; 

Moore, 1950; Sato, 1977; A tema, 1971). In the carp their number sharply decreases 

wi th in short distance f rom the lips, except on the barbels. 

The density of taste buds over the oro-pharyngeal surface, averaged over whole 

transverse sections shows two maxima in roof as wel l as in f loor (Figs. 3,7). A narrow 
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peak occurs in the oral area (ca. 370/mm2) and a wider peak coincides w i th the 

palatal organ and the g i l l rakers, w i th the highest mean density of taste buds in 

the widest, central th i rd of the palatal organ (ca. 580/mm2). Due to extensive and 

complex folding of f loor and walls in the posterior pharynx the density of its taste 

buds can not be measured accurately, but crude analysis shows that they have a 

decreasing low density, comparable to that in the buccal cavity (50-80/mm2). No 

taste buds have been observed posterior to the entrance of the esophagus. 

Also a conspicuous transverse gradient exists in the posterior part of the palatal 

organ (Fig. 6) w i th the highest densities (ca. 820/mm2) of smaller taste buds (ca. 

29 urn width) at the sides and lowest densities (ca. 200/mm2) of larger width (ca. 

35 pm) in the median. Comparison of the mean densities in the medial th i rd and 

the to ta l area (Fig. 3), shows that this gradient arises in the anterior part of the 

pharyngeal roof as wel l as in its f loor. 

In the pharyngeal f loor taste buds are, as estimated f rom SEM-photographs, densily 

packed on the g i l l rakers (ca. 325-625/mm2), especially at their f ree tops. They 

are less numerous on the pharyngeal surface of the arches (ca. 140/mm2), contrary 

to Iwai (1964). Densities in the postlingual organ measure between 120-290/mm2 . 

Mucous cells 

The distr ibut ion of the re lat ive volume of mucus over the medial oro-pharyngeal 

surface, i rrespective of the number or type of mucous cells (see mater ia l and meth­

ods), is p lot ted in Figure 4. The orobuccal surface, only containing pyr i form cells 

has a small amount of mucus, mainly sialomucines. Hardly or no mucus is found 

on the maxi l lary valve and l ips. 

In the pharyngeal roof two peaks are present, a small one of exclusively pyr i form 

cells containing sialomucines in the anterior and widest half of the palatal organ, 

and an extremely high peak by addit ion of large and numerous sacciform cells, 

containing sulfomucines, in f ront of the chewing pad (Figs. 4,7). 

In the pharyngeal f loor a s imilar medial d istr ibut ion pat tern is present, the two 

peaks however part ly overlap. A t the rostral border of the postlingual organ the 

volume of sulfomucines f rom sacciform cells gradually increases to a high peak. 

Highest volumes of sacciform mucous cells are found in the posterior pharynx and 

most of the esophagus. As the chewing cavity merges into the esophagus pyr i form 

cells increase and tend to equalize the decreasing sacciform cells. Both types sudden­

ly disappear in favour of few goblet cells, typical for the intestine, close to the 

pyloric sphincter. 
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FIG. lt. Distribution of mucines over roof and floor (shaded) of the oro-pharynx, measured in the medial 
300 urn strip (cf Fig. 1). The dotted line separates relative volumes of sialomucines (sim) from sulfomucines (sum) 
as estimated from sections with dif ferent staining (cf Plate VII). 

A transverse picture in f ront of the chewing pad shows a small amount of 

py r i fo rm cells lateral ly and increasing quantit ies of sacciform mucous cells towards 

the median (Fig. 6). The distr ibut ion in the pharyngeal l ining covering the g i l l arches 

and postlingual organ closely parallels that in the palatal organ. Measurements 

in the second carp gave an identical d istr ibut ion pat tern w i th the same level of 

mucus. 

Club cells 

Though club cells have never been related to feeding, their presence in the 

orobuccal cavity is conspicuous. Determinat ion of their d istr ibut ion pattern may 

point to their role in the headgut. Club cells merely occur deep in the orobuccal 

l ining (Plate IVa; F ig . 5). They at ta in densities which locally approach those in the 

external skin. The distr ibut ion of club cells in orobuccal roof and f loor is inverse 
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FIG. 5. Distribution of club cells over roof and floor of the oro-pharynx. Counts indicate number of inner-
sections (with cell-nucleus) in the to ta l areas (cf Fig. 1). 

for the most part (cf. Figs. 5,7). The orobuccal roof has a high peak of club cells 

in its central part , whereas the orobuccal f loor shows two smaller peaks in the 

most anterior and posterior zone. Measurements on a second carp of same origin 

and length gave a s imilar d istr ibut ion pat tern, but the absolute level of club cells 

was only half . 
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3. taste buds C. club cells/muscle fibres 

roof 

floor 

FIG. 7. Distribution patterns in oro-pharyngeal roof and floor of (a) taste buds (b) mucus and (c) club cells 
and muslce fibers. These drawings show the densities as depicted in Figures 3-6. Sulfomucines occur exclusively 
at areas with abundant mucus and cause those high densities. The low level of mucus corresponds to the presence 
of sialomucines. 
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Muscle fibers 

The thickness of the shrinked muscular layers in the median is readily observed 

f rom Plate l id and measures up to 850 ym in such a small carp. It is only sl ightly 

thinner in the lateral area of the palatal organ (Fig. 6). In the postlingual organ 

the muscular layer only gradually increases towards the chewing cavi ty, contrary 

to the palatal organ. The gi l l arches at both sides of the postlingual organ have 

a thin muscular layer (cf. Plate l ib) 

The density of muscle f ibers contained in these layers increases posteriorly (cf. 

Plate lid) and renders thickness a rough measure. The complex structure of the 

wal l of the posterior pharynx prevented measurement of its muscular content. 

This part is only roughly indicated in F ig. 7. 

The distr ibution pattern of taste buds, mucous cells, muscle fibers and club 

cells allows a d ist inct ion of the oro-pharyngeal wal l in six zones (Fig. 9; Table 1), 

each characterized by a specific combination of specialized features. 

Their re lat ion wi th the separate feeding actions which compose food handling and 

food processing in the carp are discussed later. 

DISCUSSION 

The role of mucus, microridges, club cells and sensory elements in the oro-pharynx 

Mucus 

The chemical properties of mucus were reviewed by Hunt (1970). Two main 

components are d ist inct , glycoproteins and mucopolysaccharides, organized into 

an entangled network. Glycoproteins are complexes of proteins covalently l inked 

w i th varied low molecular weight saccharides. Protein properties are dominant. 

Sialic acid is a character ist ic saccharid. Mucopolysaccharides are similar conjugates. 

Except chit ine and few other s tructural compounds they are characterized by highly 

charged, high molecular weight polysaccharides of less varied nature. Polysaccharide 

properties dominate those of the proteins. Sialic acid is lacking, whereas sulpho-

groups abound. Mucus may comprise s t i l l other components (e.g. elastine). Also 

do glycoproteins and mucopolysaccharides occur in other, mainly supporting, tissues 

(cf. Plate VIIb,d). Mucus w i th mainly glycoproteins are referred to as sialomucines, 

mucus wi th mainly mucopolysaccharides as sulfomucines. 

Physically, mucus is a weak and reversible gel (Denny and Gosline, 1980; Silber-
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berg and Meyer, 1982), best characterized by its viscosity and e last ic i ty. Though 

sialic acid makes sialomucines rather viscous (Hunt, 1970), the highly acid sulfo-

mucines confer mucus a high viscosity (Hunt, 1973). The carbohydrate component 

largely determines the Theological properties of mucus. Denny and Gosline (1980) 

demonstrated that large strains reduce the viscosity of pedal mucus in gastropods. 

The mucus recovered its solidity if al lowed to heal for some period. 

Mucus may perform a mult i tude of roles in a wide array of biological systems 

(Whitear, 1970; M i t ta l & Banerjee, 1980; Cook & Shirbate, 1983) e.g. 1) forming 

a mechanical barrier to foreign bodies and pathogens (it has no ant ibiot ic e f fect 

in the carp (Hatt ingh and van Warmelo, 1975)); 2) forming a chemical barrier sup­

port ing osmoregulation and preventing f lux of mater ia l over steep chemical or elec­

t r ica l gradients; 3) reducing of f r i c t ion ; 4) providing a mechanical buffer which 

protects the epithelium f rom damage and abrasion; 5) aiding in precipi tat ion of 

suspended mud by entrapment and cleaning of the epithelium (of ten by c i l ia); 6) 

st icking together part iculate food; 7) preventing of desiccation by binding of water; 

8) enhancing adhesion in sluggish locomotion; 9) serving means of communication 

and navigation (e.g. molluscs); 10) feeding and attachment of young; 11) format ion 

of cocoons and other envelopes for temporary shelter. 

The orobuccal wall produces mainly sialomucines (cf. F ig. 4). This type of mucus 

is common to the respiratory and al imentary t ract of vertebrates, probably serving 

protect ion and lubrication (Hunt, 1970). Besides soluble fish slimes on the outer 

skin e f fect ively minimize the boundary layer and f r i c t ion in swimming (Rosen and 

Cornford, 1971). Sialomucines may thus well aid in orobuccal water transport, es­

pecially at high suction velocit ies, when turbulent f low brings small amounts of 

mucus in solution. 

Many sulfomucines are added posteriorly in the anterior pharynx (Figs. 4,7). This 

high-viscosity mucus is almost certainly related to the pure muscularly processing 

of food serving lubricat ion and reduction of the high mechanical stresses on the 

epi thel ium. They wi l l also aid in recol lect ion and aggregation of part icles into bo­

luses, during transport as wel l as during masticat ion and deglut i t ion. Movement 

of the lateral tissue flaps in the chewing cavi ty, secreting a large volume of sulfo­

mucines, might serve cleaning the occlusal surfaces. A background volume of low-

viscosity sialomucines wi l l pr imari ly serve lubricat ion and i t increases indeed in 

the esophagus. 

As compared to sulfomucines, the sialomucines in the orobuccal cavity and antero­

lateral part of the pharynx are expected to have a reduced tendency to bind par t i ­

cles, as this area is largely concerned wi th selection between food and non-food 

part icles by repeated resuspension (Sibbing et a l . , 1984). 
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An analogous combination of similar secretory cells cleans the mantle cavity f rom 

suspended d ir t in snails (Hunt, 1973). Interactions between the two secretory products 

confers the mixture even a higher visco-elasticity and structural integri ty than 

its component parts. 

No tests have been performed yet to ascertain the physical properties and 

secretion kinetics of oro-pharyngeal mucus in f ish. I t is expected that the release 

of mucus is somehow regulated in accordance w i th the feeding act iv i t ies of the 

f ish. 

Microridges 

Mucus secreting epithelia in f ish are commonly provided w i th microridges ar­

ranged in varied patterns. Their possible functions (Hawkes, 1974) are 1) a mechanical 

defense to t rauma, 2) an increase of the surface area for absorbtion and gas ex­

change, 3) an aid in holding mucus to the cel l surface. Sperry and Wassersug (1976) 

concluded microridges to guide the even spreading of mucus through their channels. 

Few of these physiological and mechanical functions have been investigated experi­

mental ly. 

The differences in microridge pat tern at areas of d i f ferent mechanical stresses 

(cf. Plate VIa,b) suggest an additional mechanical funct ion in the carp. On the l ips, 

devoid of any specialized mucous cells, as wel l as in the area of the chewing cavi ty 

more microridges per unit of cell surface are found than elsewhere. Both on the 

lips and in this chewing area their principal role may be similar to that of the corni -

f ied cells in absorbing high forces and spreading them over the cell surface. 

Club cells 

These conspicuous cells never reach the surface of the epi thel ium, lack pores 

and do not contact blood vessels. They are supposed to be holocrine glands producing 

the alarm substance in ostariophysans and releasing this stored pheromone by damage 

(Pfe i f fer , 1960). A l ternat ive club cel l functions which are suggested in the l i terature 

are antipathogenous act ion, vehicles for antibodies, toxic cells, mechanical protec­

t ion and lubricat ion (Whitear and M i t t a l , 1983). Club cells do also occur in some 

non-ostariophysan teleosts (cf. Whitear, 1981) e.g. the eel where they are said to 

be involved in f ibrous mucus production (Reid, 1894). 

In the carp, club cells extend f rom the outer skin into the orobuccal cavity 

(Fig. 7). Their mid-epithel ial locat ion neither at the top of folds nor in the crypts 
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where taste buds and mucous cells respectively abound, points to a rather indi f ferent 

role of their posit ion. I f these club cells have alarming functions they should be 

selectively emptied due to st imuli by harmful objects, not by those of the food 

to prevent false a larm. Large damage w i l l impede the functions of the orobuccal 

epithel ium in feeding. These arguments makes their alarming funct ion in this area 

doubt fu l , even though club cel l densities are highest at areas of most probable 

mechanical impact e.g. inside the lower jaw (Fig. 7). They may wel l serve other 

unknown functions, possibly released by neural or hormonal mechanisms. Their ab­

sence f rom the pharyngeal l ining suggests a direct relat ion between club cells and 

the f low of water. Their sl ightly positive reaction on HID staining (Plate Vllb') 

indicates the presence of some sulfomucines in their cytoplasm in addition to the 

commonly known proteins. 

Sensory structures 

Mechano- and chemoreceptors are required to sense the qualit ies of the ingested 

mater ia l during the subsequent actions in food processing. Besides the fish needs 

constant monitoring of the quality and velocity of the water during respiration 

and feeding. 

Mechanoreception 

Apart f rom the lateral l ine system and free neuromasts (cf. Plate led) few 

evidence on mechanoreceptive organs in teleost skin is available (Fox et a l . , 1980). 

Many types of nerve plexuses in or below the epithel ium are a t t r ibuted mechano­

receptive functions (Grzycki , 1954; Whitear, 1971; Ono, 1979). Specialized epidermal 

cells resembling Merkel cells of higher vertebrates have been described (Lane and 

Whitear, 1977) but nothing is known of their physiology. As these cells are charac­

ter ized by few apical f inger- l ike v i l l i , the presence of small groups of short v i l l i 

in the buccal and opercular l ining (Plate VI) may well suggest here mechanoreception 

in the carp. 

Reut ter (1974) investigated previous hypotheses (Kolmer, 1927; H i ra ta , 1966) that 

taste buds could also serve mechanoreceptive functions. He distinguished three 

types of taste buds in the headgut of the swordtail based on their position w i th 

respect to the surrounding epi thel ium. This dist inct ion was supported by neurohisto-

chemical characters (Reutter, 1973). Accepting Reutter 's theory most protruding 

taste buds (type I), which would be most e f fect ive in mechanoreception, in the 

carp occupy the gi l l rakers (Plate III). Less protruding buds (type II) l ine the buccal 
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folds. The other taste buds never rise above the normal level of the epithel ium 

and their mechanoreceptive role is improbable. McGlone (1977) reports the palatal 

organ to respond to tact i le st imul i at all stages of denervation w i th local bulging, 

possibly caused by proprioceptive reflex loops. Konishi and Zot terman (1963) found 

some glossopharyngeal nerve f ibers in the palatal organ of the carp reacting ex­

clusively to mechanical s t imulat ion. Whether these f ibers originate f rom taste buds 

w i th mechano- as well as chemoreceptive properties, or f rom separate mechano-

receptors is unclear. Processes l ike the adjusting of force, d i rect ion and amplitude 

of masticatory movements to the mechanical properties and momentaneous size 

of the food as well as decisions whether the main f rac t ion of part icles is suited 

for deglut i t ion, require detailed information and feed back regulation. I t is supposed 

that proprioceptors in the masticatory muscles and in the tissue flaps projecting 

between teeth and chewing pad are the main sensors in masticat ion. Proprioceptors 

in the gills of teleosts appear to respond to displacement of the gi l l rakers and 

gi l l f i laments (Sutterl in and Saunders, 1969). Bal l int i jn demonstrated that tension 

and length receptors in respiratory muscles play a role in steering the respiratory 

movements in f ish (Bal l in t i jn , 1972; Bal l in t i jn and Bamford, 1975; Ba l l in t i jn , 1982). 

The few unexpected muscle f ibers between the chewing pad and its bony socle may 

wel l play a sensory role. 

Che more ception 

The chemoreceptive properties of taste buds are evident. They have varied 

sensivity spectra. Konishi and Zot terman (1963) recorded responses f rom the glosso­

pharyngeal nerve f ibers in the carp and subdivided them into seven groups according 

to their response on a wide array of sapid solutions including human saliva, enabling 

the f ish a high level of gustatory d iscr iminat ion. Some appeared to have a wide 

gustatory spectrum, others a narrow one. 

The important role of such sensors in a bot tom feeder l ike the carp is evident, 

but their d istr ibut ion pat tern remains to be explained. In fact a density of 820 taste 

buds/mm2 , as found in the lateral part of the palatal organ, has not been reported 

previously. Given the mean width of a taste bud, about 1200/mm2 is the maximal 

number (cf . Plate Va). Iwai (1964) reports a maximum of 285/mm2 on the branchial 

arches of the cyprinid Biwa zezera. 

Besides taste buds the peculiar vil lous cells in the oro-pharyngeal l ining of the carp 

(Plate VI) might be involved in chemoreception. 
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The pharyngeal wal l and i ts mechanisms for selection between food and non-food 

Details of the way the perpendicular crossing muscle f iber systems (cf. Plates 

IVb, Vc; F ig . 8) react on st imul i to f ix food particles at part icular spots, at the 

same t ime allowing the flushing away of non-food particles, are unknown. The 

present and previous studies have accumulated important indirect evidence for 

such a role of the palatal organ. 

Present data show an enormous density of taste buds up to maximal values in view 

of their size. It is hard to conceive that such a sensor density is not paralleled 

by a comparably detailed output processing of the ef fector system. Analysis of 

gut contents of carps demonstrates that few unedible material is present (Wunder, 

1936; Uribe Zamora, 1975), so the system selecting between food and non-food 

works. Local e lectr ical or tact i le s t imulat ion of the palatal organ results in local 

outbulging of its wa l l . Carps of 20-30 cm can handle e f fect ively particles of about 

500 y m in diameter (Uribe-Zamora, 1975). Based on these as well as the present 

s t ructural details it seems just i f ied to formulate some hypotheses as to the actual 

mechanism that ef fects selective retent ion of part icles. 

Three levels of movements of the palatal organ are suggested, related to size 

differences in particles of fered to the system. 

FIG. 8. Main directions of muscle fiber systems in the palatal organ are indicated by solid lines. Pecked 
lines show main muscle fiber directions in the pharyngeal f loor. Perpendicular to these lines another not depicted 
fiber system is present in palatal and postlingual organ. 

a) Movements of the palatal organ as a whole 

The palatal organ lies closely to the series of four paired epibranchials and 

three paired pharyngobranchials belonging to the four gi l l bearing arches. These 

are suspended f rom the braincase by series of external and internal levator muscles 
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as well as interconnected by oblique muscles. During respiration part of these 

dorsal gi l l arch muscles are active (Bal l int i jn et a l . , 1984). The combined act iv i ty 

of the gil l arch muscles wi l l be able to expand, depress and l i f t the palatal organ 

as a whole or locally. The expected palatal movements w i l l be minute in ampl i ­

tude. Slight antero-ventral movements seem possible. Through these movements 

large areas of the palatal organ could be closely approached to parts of the bran­

chial basket w i th its numerous gi l l rakers. This hypothesis w i l l be ver i f ied by elec­

t r ica l st imulations of the involved muscles and by electromyography. 

b) Local movements in the palatal organ, areas of several square mm. 

Such local bulgings of the palatal organ do occur (Jara, 1957; McGlone, 1978). 

Simultaneous contractions in the posterior area of the palatal and postlingual organ 

even propel the food by peristalsis-l ike movements in transport (Sibbing et a l . , 

1984). Contract ion of the grid of muscle f ibers in a part icular area wi l l exert 

compression on the local in terst i t ia l f luid and so cause bulging of the epithelium 

into the pharyngeal s l i t . Whether or not the papillae are involved, is not known. 

The differences in main directions of the muscle f ibers in pharyngeal f loor and 

roof, except in the posterior transport area (Fig. 8), might even lead to the local 

production of ridges which cross at roughly 45° angles in roof and f loor. Here pa r t i ­

cles could be f ixed. This hypothesis assumes equal contractions of the perpendicular 

crossing muscle f ibers for bulging and unequal contractions for r idging. 

c) Minute local movements of areas below one square mm. 

Especially anteriorly the palatal folds fo rm papillae w i th a conspicuous muscular 

core. In areas w i th an increased pressure on the in terst i t ia l f luid the local e f fect 

of the pressure on shape and size of these minute projections depends upon the 

ac t iv i ty of the muscle f ibres in their core and on the arrangement of the connective 

tissue f ibers below the papillär epi thel ium. In these circumstances f lu id pressure 

and muscle f ibre force act antagonistically and can so determine shape and size 

of projections. The size of such papillae varies f rom ca. 150 x 550 urn anteriorly 

to a c ircular form w i th a 90 urn diameter more lateral ly. Posteriorly, at the lateral 

edges of the palatal organ and branchial sieve, papillae are v ir tual ly absent and 

the connective tissue coat vanishes (Plate Va). 

The la t ter hypotheses can be tested wi th small canulae and pressure transducers 

combined wi th photographic data. The muscles of the branchial basket, the muscular 

strips over the gil l arches, the muscular pads on the gi l l rakers and their movable 

connection w i th the gi l l arches may all contribute or even solely be responsible 
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for local retent ion of part icles. The papillae can also be explained as a surface 

increase for mucus supply. The huge vagal lobes and their complex cyto-archi tecture 

(see below) seem to be in accordance w i th the detailed movements suggested above. 

The bot tom feeding habits of carps have profound influences on structures and 

functions in the oro-pharynx. 

Pathways connecting oro-pharynqeal sensors and ef fectors 

To obtain a more complete picture of food processing some important facts 

f rom the l i terature on this subject have been compiled in the fol lowing lines. 

Peripheral pathways 

Herr ick (1899, 1901, 1906) concluded f rom his extensive studies on the senses 

of touch and taste in fishes that the nervus tr igeminus (V) is the main pathway 

for touch impulses f rom the orobuccal skin, whereas the facial nerve (VII) mainly 

carries the sensory input f rom taste buds f rom the same area. The posterior buccal 

taste buds send their information through the glossopharyngeal nerve ( IX), the 

pharyngeal taste buds through the large vagal nerve (X). Nerves VII , IX and X pro­

ject on distinct regions in the brain, respectively the fac ia l , glossopharyngeal and 

the vagal lobes. L i t t l e detailed knowledge exists on the origin and terminat ion 

of their motor components. 

Evans (1952) suggested that feeding behaviour is expressed in the morphology of 

the brain. When taste buds abound on the external skin, barbels and lips such as 

in skin tasters l ike catfishes and minnows, the facial lobe is conspicuous. In mouth 

tasters such as the carp and goldfish the vagal lobe is greatly enlarged. Sightfeeders 

have large mesencephalic optic lobes. Evidence now exists f rom the catf ish that 

the facial gustatory system is involved in locating and sensing an external food 

source while the vagal gustatory system determines the palatabi l i ty of the food 

(Atema, 1971) 

Contrary to the facial lobe, the vagal lobe in cyprinids has a highly organized 

laminar structure (Herr ick, 1906; Ozawa, 1951; I to, 1971). The ascending projections 

were found to be topographically arranged (Mori ta et a l . , 1983). McGlone's physio­

logical studies on the goldfish suggest some degree of somatotopy wi th respect 

to the palatal organ. Appl icat ion of the horseradish peroxidase technigue (Lui ten, 

1975b) by Finger (1981b) labeled only restr icted small areas in the palatal organ 

and in the vagal lobe, supporting the palatotopic mapping in the vagal lobe. This 

suggests a gustatory reflex mechanism regulating local palatal muscular contrac­

tions. As the palatal organ performs its functions in close coordination w i th the 
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postlingual organ in the carp (Sibbing et a l . , 1984) we hypothesize that the post-

lingual organ is s imilarly mapped in the vagal lobe. 

Generally the pharyngeal taste buds of teleosts are innervated according to 

the fol lowing pat tern. The glossopharyngeal nerve (IX), after supplying the anterior 

branchial levator muscles, sends a ramus into the most anterior part of the palatal 

organ. More ventrally it divides into a sensory pretrematic branch to the hyoid 

area and a posttrematic branch to the f i rst hemibranch, supplying mucous epi­

thel ium, taste buds, g i l l rakers and the gil l arch musculature. This suggest that 

opposed areas of the pharyngeal roof and f loor are locally innervated by the same 

branch. In a similar way four rami of the huge vagal nerve (X) innervate corres­

ponding areas around each of the subsequent four g i l l s l i ts. Posterior vagal rami 

innervate the sensory and ef fector components of the pharyngeal masticatory ap­

paratus and one runs caudad into the esophageal wal l . 

The scattered chemosensory single cells in the buccal and opercular l ining 

may well belong to the general cutaneous chemosensory component (Whitear, 1971). 

No evidence exists on their innervation and specific role. The common chemical 

sense in the skin generally detects the qualit ies of the water (avoiding reactions) 

and is only exceptionally (e.g. in Triglids) used in food-seeking (Scharrer, 1963). 

Central pathways 

Steering the whole concert of movements in food uptake, selection, t ransport, 

mast icat ion and deglut i t ion for e f f ic ient food processing as a whole, tuned to the 

type of food (Sibbing et a l . , 1984) requires integrat ion of enormous sensory inputs 

on a higher level in the brain. Dist inct central connections exist between projections 

of nerves V, VII , IX and X in the carp (Lui ten, 1975a). These areas process not 

only taste informat ion but also signals f rom other sources e.g. touch, proprioception 

f rom the gills and jaw muscles. The central gustatory paths in the closely al l ied 

crucian carp {Carassius carassius) (Mori ta et a l . , 1980) also suggest complex integra­

t ion mechanisms between sensory input and motor output regulating cyprinid feeding. 

Six specialized areas in the oro-pharynx related to food handling in the carp 

This summarizing section relates distinct areas in the oro-pharynx which are 

characterized by a part icular combination of s t ructural specializations (Figs. 9; 

Table 1) to their sensory and ef fector roles in feeding. The mechanisms and stereo­

typed movements of twelve dist inct actions composing a feeding sequence have 
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been discussed previously (Sibbing, 1982; Sibbing et a l . , 1984). These actions are 

part iculate feeding and gulping for food intake; r insing, repositioning, back-washing 

and spitt ing for food selection; recol lect ion of food f rom the branchial sieve, trans­

port and loading; crushing and grinding; deglut i t ion. 

In this paragraph the structures of young fish (5.8 cm SL) are related to the 

feeding mechanisms of adult f ish (ca. 30 cm SL). It is well known that the feeding 

habits and mechanisms of f ish larvae d i f fer f rom the adult f ish (Stroband and Da-

browski, 1980). So could do their structures associated w i th feeding. Campos (1969) 

calculated that during the development of Phoxinus larvae taste buds in the pharynx 

are increased in number f i rs t ly , those in the buccal cavity fol low later. The adult 

d istr ibut ion pattern is established at 10 mm length of the larvae. A review on 

the feeding habits on larval and adult carps (Uribe-Zamora, 1975) shows that dietary 

changes occur in the early larval stages mainly (the f i rs t three weeks after hatching) 

and that carps of the two size classes already have similar feeding habits. No 

conspicuous differences have been found in the oro-pharyngeal wall in a comparison 

w i th a larger carp (20 cm SL). 

DISTINCT AREAS IN THE O R O - P H A R Y N G E A L WALL A N D THEIR ROLE IN FOOD H A N D L I N G 

taste buds 
per m m 1 

mucines 
sialo sul fo 

muscle 
layers 

c lub 
ce l ls 

c o r n i f i -
ca t ion 

s t r .comp. 
f ib r . layer 

expanded 
shape 

ro le in food 
processing 

lips 370 

B. 

C. 

D. 

E. 

F. 

orobuccal 
cav i t y 

ant.zone 
ant .pharynx 

l a t . area 
ant .pharynx 

post, zone 
ant .pharynx 

poster ior 
pharynx 

60 

100+520 

580 

570*200 

200-0 

37 pm 

26 um 

12 um 

2 um 

5 um 

1 pm 

coarse slit 

fine slit 

appressed 

bulb 

de tec t ion 
manipulat ion 

suct ion and 
resuspension 
chamber 

coarse select ion 
of large par t ic les 

se lect ion 
o f f ine par t ic les 

aggregat ion 
t ranspor t 
loading tee th 

mas t ica t ion 
deg lu t i t i on 

TABLE 1. D is t inc t areas in the oro-pharyngeal wa l l charac ter ized by a speci f ic combinat ion of specia l izat ions, 
as depicted in Figs. 7, S. The role of these areas in food processing is i nd icated (Sibbing e t a l . 19S<t). 
Fur ther exp lanat ion in t e x t . 
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Detection and oral manipulation (area A) 

The taste buds on barbels and lips (380/mm2) are the primary sensors detecting 

food at bot tom feeding. They repet i t ively contact and scan the substrate at probing. 

Taste informat ion is passed through the facial nerve (VII) to its large lobe in the 

brain. Free neuromasts possibly aid in detection of moving food objects. No mechano-

receptors for recording the velocity of f low or for touch could be recognized. 

Though carps are pr imari ly night and bottomfeeders additional visual cues alarm 

and guide the fish to pelagic and surface dwelling prey at daytime. 

Pressures on the lips w i l l be considerable and taste buds lay sunken in a thick 

epithel ium wi th dense microridges and without mucous cells, backed by a f i r m 

coat of collagen. At the contact area of the jaws the epithel ium is corni f ied and 

devoid of taste buds, resisting abrasion during manipulation of gravel, bot tom sub­

strate and macrophytes. 

Ventrad protrusibi l i ty of the upper jaws allows the fish to exploit the bottom sub­

strate in depth while it at the same t ime can extend its search area by swimming 

w i th an oblique angle of the body axis. Soiled food is taken, requiring internal 

selection between food and non-food particles. As the protruded mouth is small 

and cyl indr ical a high and directed suction force can be achieved to increase the 

water velocity for ingestion of large (up to 9% of i ts bodylength), heavy, deeply 

hidden or otherwise less accessible part icles. The small suction area and the type 

of swimming almost excludes capture of large and rapid prey. The lack of oral 

teeth excludes bit ing large objects (e.g. macrophytes). The d irect ion of protrusion 

is readily adapted to the specific location of the prey. Proprioceptors w i th in the 

jaw muscles are known to assist in steering the jaw movements. 

Flow and resuspension of water and particles (area B) 

Expansion of the orobuccal cavity occurs during food uptake. Unfolding by 

protrusion enlarges the anterior part of the oral cavity considerably. Suction of 

part icles is however mainly caused by voluminous opercular expansion, pharyngeal 

widening plays a minor role. The posterior part of the buccal cavity gradually 

widens and f lat tens, thus spreading and retarding the f low and retaining large ob­

jects f rom the water to be expelled. Pyr i fo rm mucous cells produce low-viscosity 

sialomucines for physiological and mechanical protect ion, and ef fect a considerable 

reduction of f r i c t ion at large velocit ies of suction by maintaining a laminar f low 

along the buccal wal l . Widely spaced microridges on its surface may assist in holding 

the mucus. The orobuccal cavity fur thermore functions as a chamber for gustation 
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and resuspension of particles in selection. Part icles are washed back- and forward 

by closed protrusion movements and compression. Highly viscous sulfomucines 

that would aggregate small particles are conspicuously absent in this area. Oligo-

villous cells and taste buds in the buccal l ining, though of low density (50 tb /mm 2 ) , 

are probably more important in scanning the f low of water and particles during 

resuspension, than at part iculate intake. At part iculate intake this cavity is rapidly 

passed by food i tems. Club cells appear related to the f low of water because they 

occur almost exclusively in the oro-buccal l ining. Their position in the oro-buccal 

epithel ium and the supposed release of their contents by damage renders their 

alarming funct ion in this area doubtful. No definite mechanoreceptors monitoring 

the f low have been found, but the slightly protruding taste buds or the oligovillous 

cells may have some mechanoreceptive functions. 

FIG. 9. Areas in oro-pharyngeal roof and f loor, characterized by a specific combination of morphological 
characters and employed in the separate actions which together compose feeding sequences (cf Table 1.). Pecked 
lines indicate less sharply demarcated areas. 

Coarse selection of large particles (area C) 

The presence of a thick muscular l ining in the pharynx, and its absence f rom 

the orobuccal cavity evidently ref lects the d i f ferent mechanisms of part icle trans­

port v iz. by f low or by muscular bulging. The conspicuously d i f ferent profi les of 

the orobuccal cavity, cy l indr ical , and the pharyngeal cavi ty, narrow and s l i t - l ike, 

are adjusted to these d i f ferent mechanisms. The most anterior part of the pharynx 

(area C in F ig . 9) traps large particles between roof and f loor. The average taste 

bud density increases sharply f rom 100 to 520 per mm2 providing the sensory infor­

mation required for decisions how further processing should occur. The increased 

amount of sialomucines in the epithel ial crypts faci l i tates handling of part icles. 
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Water and small particles are further spread between palatal organ and branchial 

sieve. This area is controled by the glossopharyngeal nerve IX and the anterior 

rami of the vagus (X). 

Selection of small particles (area D) 

A t bottom feeding food must be selected f rom non-food. The opt imizat ion 

of the abi l i ty to use tiny dispersed food particles present among non-food particles 

is decisive in the exploi tat ion of this habitat. Repet i t ive back-washing movements 

resuspend ingested particles and suggest a graded pur i f icat ion in the pharynx (Sibbing 

et a l . , 1984). The lateral areas in the anterior pharynx are almost maximally packed 

w i th taste buds (up to 820/mm2) and indicate a high resolving power in the gustatory 

system. Local bulging of the palatal organ, possibly combined w i th act iv i ty of 

the movable gil l rakers and their muscular pads, most probably clamp food particles 

between roof and f loor, while waste is drained wi th the water. Few pyr i form mucous 

cells (sialomucines wi th low viscosity) w i l l aid in part ic le handling. Locally varied 

ac t iv i ty in the palatal organ has been recorded (Sibbing et a l . , 1984) and the palatal 

bulging can readily be s t imulated. The arrangement of f ibers in the pharyngeal 

roof and f loor as well as the interspersed connective tissue and f lu id might wel l 

allow quite local f ixat ion of part icles. Taste information is carried to vagal lobes 

of enormous size. Their laminated organization suggest a palatotopic mapping of 

the pharyngeal wa l l . The muscular papillae covering the anterior surface of the 

palatal organ serve very local retent ion of particles or merely increase the sialo­

mucines supply. They are larger in the area for trapping and selection of large 

part icles (area C). 

The protruding position of taste buds on the gi l l rakers might confer them mechano-

receptive functions. The importance of f low regulation during size-selection, clea­

ning of the branchial sieve and recol lect ion of food part icles for transport seems 

without doubt. The papillae provide the gi l l rakers w i th profi les most probably 

a f fect ing the mesh-width of the branchial sieve in selection between size-classes 

of food part icles. Proprioceptors are known to occur in gi l l f i laments and rakers. 

The s l i t - l ike prof i le of the anterior pharynx is a s t ructural necessity for the present 

selection process and is probably influenced by palatal movements as a whole and 

assures a large contact area. Large food objects can not pass. 
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Transport of food and loading of the chewing cavity (area E). 

The tr iangular postlingual area in f ront of the chewing cavity is excluded 

f rom the lateral paths of f low. The massive muscular roof and f loor f i l l the pharyn­

geal s l i t . The arrangement of the muscle fibers and the act iv i t ies in this area, 

coordinated in roof and f loor, take care of food transport (Sibbing et a l . , 1984) 

and its propulsion into the chewing cavity. They also prevent loss of food f rom 

the chewing cavity during mastication and deglut i t ion. High longitudinal folds direct 

the movement of the food, lubricated by a copious mucus supply. This mucus is 

largely composed of highly viscous sulfomucines, which now also wi l l aid in aggre­

gation of food particles st icking together into boluses for further transport. Though 

taste buds are s t i l l numerous (ca. 200/mm2) their density as well as the muscular 

content of the folds is less than in the anterior areas (C, D). Taste buds do not 

protrude f rom the epi thel ium. Mechanoreceptors steering transport have not been 

recognized. 

Mastication and deglutition (area F) 

Movement of the pharyngeal teeth w i th respect to the cornif ied chewing pad 

reguires extensibi l i ty of the posterior pharyngeal wa l l . Part icles larger than ca. 

3% of the body length of the carp can not enter the chewing cavi ty. The composi­

t ion of the epithelium is however closely similar to that of the postlingual area 

(E). Foliaceous papillae crowded wi th cells producing sulfomucines lubricate mastica­

t ion and aggregate ground particles into boluses. Lateral muscular tissue flaps 

may clean the occlusal surfaces f rom part icles, acting l ike a tongue. Muscle f ibers 

are part of the sphincter oesophagi. This muscle supports masticatory movements 

and is the prime ef fector in deglut i t ion, propelling the food into the esophagus 

(Sibbing, 1982). 

Taste buds control the contents of the masticated food and their anterior density 

(200/mm2) decreases sharply in the direct ion of t ransport. They vanish on the folds 

converging into the esophagus. Proprioceptors in the pharyngeal jaw muscles are 

supposed to play a prominent role in steering masticatory movements. Mechano­

receptors have not been recognized. 

The complex central pathways in the posterior brain are supposed to f u l f i l l 

the integrat ion of the subseguent actions into an e f f ic ient feeding sequence, adjusted 

to the type of food. 
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The combined mechanisms for uptake, selection and mastication although specia­

l ized for bottom feeding allow also other food sources to be exploited (e.g. pelagic). 

L imi tat ions on these have been outl ined previously. That carps may even be con­

sidered as pests is most probably also due to the features discussed in this paper. 

ABBREVIATIONS 

ac 
ad 
am 
ap 
at 
b 
be 
c 
cc 
cp 
ep 
es 
f 
fl 
fn 
ga 

gf 
gh 

anterior cartilage 
aorta dorsalis 
adductor mandibulae 
anterior pharynx 
adipose tissue 
barbel 
buccal cavity-
cornified area 
club cell 
chewing pad 
epithelium 
esophagus 
fibrous layer 
facial lobe 
facial nerve 
gill arch 
gill filament 
geniohyoid muscle 

g r 

h 
ib 
1 
lj 
11 
mf 
mv 
n 
ob 
oc 
occ 
ol 
op 
ope 
p 

gill raker 
hart 
intestinal bulb 
lip 
lower jaw 
lateral line system 
muscle fibers 
maxillary valve 
free neuromast 
olfactory bulb 
oral cavity 
occipital skull area 
olfactory organ 
oral papillae 
opercular cavity 
papillae 

pb 
Pi 
plo 
pm 
po 
PP 
Pt 
ropi 
rops 
sc 
sm 
st h 
tb 
tf 
uj 
V 

pharyngobranchials 
pharyngeal jaw 
postlingual organ 
pyr i form mucous cell 
palatal organ 
posterior pharynx 
pharyngeal teeth 
inf. retractor phar. jaw 
sup. retractor phar. jaw 
stratum compactum 
sacciform mucous cel l 
sternohyoid muscle 
taste bud 
tissue f lap 
upper jaw 
vertebrae 
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ABSTRACT Cyprinids constitute the largest fish family and are character­
ized by their pharyngeal teeth. The masticatory mechanism is still poorly under­
stood. The complex of structures that determine the movements of pharyngeal 
teeth and chewing pad in the carp (Cyprinus carpio L.) is analyzed. Activities in 16 
head muscles of a free-swimming carp were recorded. X-ray cinerecordings, syn­
chronized with electromyograms, were made of the intake, transport, mastication, 
and deglutition of radiopaque food pellets. Metal markers allowed a detailed move­
ment analysis. 

Masticatory cycles are bilaterally synchronous and show distinct crushing and 
grinding patterns. Direct masticatory muscles that suspend and connect the 
pharyngeal bones steer and stabilize the masticatory movements. Baudelot's liga­
ment, between skull and pectoral girdle, is applied as fulcrum, effects a crucial 
shift of the rotation axis of the pharyngeal jaw, and transforms crushing into 
grinding; simultaneous abduction lengthens the grinding stroke. Body muscles 
supply indirectly the power for mastication; they also appear to be regulated more 
distantly. The epaxial muscles lift the skull and thereby the levators of the 
pharyngeal bones, thus t ransmitting high forces to the teeth. They also stretch 
the levator of the bone as soon as occlusion is reached and thus optimize its pro­
duction of forces during grinding. The hypaxial muscles retract the pharyngeal 
bones indirectly during grinding and power the teeth in sliding. The chewing pad, 
previously assumed to be motionless, rotates rostroventrad with the skull and in­
tensifies grinding. 

Respiration and mastication are mutually related. The extensive movements of 
the pharyngeal bones are permitted only by the simultaneous expansion of the 
buccopharynx and a slide-coupling in the branchial floor. Muscular pads that line 
the pharynx are shown to transport food toward the teeth. The constrictor pharyn-
gis effects deglutition. 

Natural food, intestinal contents, and feces of the carp were analyzed with re­
spect to the capacity for distinct masticatory operations. During the experiments 
pellets, barley, and worms were fed. The carp is specialized for polyphagy and this 
appears to be based on the profiles of the heterodont teeth rather than on drastic 
changes in the two preprogrammed activity patterns. Comparison of the pharyn­
geal jaw system in the carp and higher teleosts emphasizes the structural design 
for the application of large forces in this cyprinid. 

The Cyprinidae, with 275 genera and about cyprinids (Hensel, 70). The mechanism of 
1,600 species, is by far the greatest family of mastication in carps and its bearing on other 
teleost fishes, characterized, among other fea- components in the head have never been fully 
tures, by pharyngeal teeth in one to three rows elucidated. 
with never more than eight teeth in a single The morphology of pharyngeal bones and 
row (Nelson, 76). Pharyngeal teeth and bones teeth in the cyprinids is tremendously varied 
are important characters in phyletic studies on (Heincke, 1892; Chu, '35). Teeth are large or 
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small, and arranged widely spread or closely 
together in multiple short or in single long 
rows. In the grasscarp (Ctenopharyngodon) 
they interdigitate from left and right sides, in 
the carp they do not. This variety is assumed 
to reflect an adaptation of cyprinid species to 
diversified trophic conditions. 

There are scattered descriptions of the lower 
pharyngeal bones and teeth (Jurine, 1821; 
Owen, 1840-1845; Heincke, 1892; Shepherd, 
'12; Stoss, '21; Chu, '35; Vasnecov, '39; Rutte, 
'62), the horny chewing pad opposite the teeth 
and fixed at the posterior base of the skull 
(Gratzianow, 1900; Haempel, '07), and of the 
pharyngeal bone musculature (Haempel, '09; 
Takahasi, '25; Girgis, '52; Eastman, '71) of dif­
ferent cyprinids. For a review of literature on 
pharyngeal masticatory elements in the carp, 
the reader is referred to Eastman ('70). The 
studies mentioned treat only disjoined ele­
ments, are mainly comparative, and do not 
evaluate the whole set of masticatory ele­
ments, let alone their interrelations. Such a 
holistic approach is essential in explaining the 
relationships between structural elements of 
the feeding mechanism and the ecological con­
ditions of some African cyprinids. In addition 
to the pharyngeal masticatory apparatus, ex­
ternal features and prehensile, selective, and 
digestive s t ructures were studied also. 
Matthes ('63) distinguishes three basic types of 
African cyprinids: a Labeo (microphytopha-
gous), a Barbus (omnivorous), and a Barilius 
(carnivorous) type. Eastman ('70) treated the 
pharyngeal masticatory apparatus in the carp 
and in the River Redhorse (Moxostoma carina-
tum), made some comparison with other Min­
nesota cyprinids and catostomids, and used 
pharyngeal bones and teeth to establish taxo­
nomie keys for these fishes. Until now no func­
tional study of mastication in cyprinids has 
been performed and the function and interac­
tion of the separate and varied elements, such 
as teeth, chewing pad, bones, muscles, and 
ligaments, are still unknown. The present 
study demonstrates that, besides these direct­
ly involved elements, skull and pectoral girdle 
also participate in mastication. 

The aim of this study is to determine which 
elements of the head are involved in pharyn­
geal mastication, their actual role, the rele­
vance of topography, form, and structure, and 
how the various actions are integrated into ef­
fective masticatory movements. Owing to the 
integration of a multiplicity of functional com­
ponents in the head, attention should be paid 
to competitive demands of other than mastica­

tory functions on the pharyngeal structures 
(Dullemeijer, '58, '74). The present analysis 
comprises form as well as action. I t includes 
the recording of activities in the small and less 
accessible pharyngeal muscles in free-swim­
ming and feeding carps (Cyprinus carpio L.), 
with simultaneous X-ray cinematography of 
pharyngeal bone movements. 

A study of the relation between form and 
function of the masticatory apparatus should 
also involve an analysis of the natural food and 
a differentiation according to its shape, size, 
and mechanical properties. Cyprinids are high­
ly suitable for studying the relation between 
mastication and diet in fishes, because the ab­
sence of any other teeth and the lack of a stom­
ach might well increase the demands on the 
pharyngeal masticatory construction. The 
presence of a flat and fixed chewing pad in 
cyprinids instead of complex and movable 
suprapharyngeal teeth, as in most other tele-
osts, simplifies the mechanical events between 
the diminutive surfaces and facilitates the 
search for relations between properties of the 
food and the morphology of the teeth. 

The common carp {Cyprinus carpio L.) was 
selected because it is readily available and 
withstands experimental manipulation. I ts 
respiratory pump was studied by Ballintijn 
('69 a,b); thus, there is a solid basis for 
evaluating the anticipated relations between 
mastication and respiration. Because the carp 
is extensively cultured, knowledge of its 
feeding mechanism might prove valuable for 
pisciculture. 

The present study provides a standard of 
comparison to be used in future comparative 
studies within this family. 

MATERIALS AND TECHNIQUES 

Dissection and experiments were carried out 
with 3-year-old mirror-carps (Cyprinus carpio 
L.), standard length 28-38 cm. obtained from 
the OVB (Organisatie ter Verbetering van de 
Binnenvisserij, Utrecht, the Netherlands). 
Some were dissected fresh; others were fixed in 
formalin or Vin d'Alsace (Zweers, '74). 

Prior to inserting electrodes and platinum 
markers, the animals were superficially anes­
thetized with a solution of 125 mg/liter MS 222 
(Sandoz, Basel); the lower jaw kept slightly 
moving. Electromyograms were recorded as 
soon as the actively swimming fish started to 
feed, in most cases half a day after being re­
turned to the experimental tank (80 X 50 X 40 
cm), at about 20°C. Damage to the fish was 
only slight and restricted to the last gill arch; 

> structure of the parts (Dullemeijer, '58) and was made by Matthes ('63) who analyzed the 
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within a week the injury disappeared. Never­
theless, no fish was used more than twice for 
experiments. 

The food usually consisted of industrial 
t rout pellets (Trouvit 4, diameter 5 mm; Trouw 
and Co., N.V., Putten, the Netherlands), and 
occasionally of worms and barley. 

Elec tromyograp hy 

In order to measure the activity of the mus­
cles involved in respiration, food transport and 
mastication in a single experiment, up to nine 
pairs of insulated copper wire electrodes 
(Povin D, 100-ftm diameter; Pope, Venlo, the 
Netherlands) were inserted with a modified 
fork-tipped hypodermic needle (Osse et al., '72). 
The distance between the two bared electrode 
tips was about 4 mm in each muscle; in very 
small muscles the electrodes were inserted 
simultaneously with one needle. The electrode 
positions were checked in lateral and dorso-
ventral X-ray photographs and in later ex­
periments even during the operation by short 
stimulation (square waves, 50 Hz, 2-10 
V). Three experiments included bilateral 
measurements. 

The bundle of electrode wires was pulled 
through a flexible rubber tube (2-mm inner di­
ameter) that was closed at both ends with nail-
polish. The tube protects the leads, largely pre­
vents contact with water, prevents the fish 
from being entangled in the wires (the air-filled 
tube floats), and transmits the movements of 
the fish better to the collector. The cable was 
fixed to the first spine of the dorsal fin by 
means of a small clamping screw. 

The instruments for amplification and regis­
tration, including an ink-jet recorder (Siemens; 
type S), are similar to those used by Osse ('69), 
who described details of the measuring proce­
dure. Filters of low and high cutoff were set at 
0.08 and 10 kHz; amplification varied from 103 

to 10". An instrumentation tape recorder (Bell 
and Howell; type CPR 4010) was added. The 
connection between fish and apparatus was 
modified by applying a 14-pole miniature slip 
ring and brush collector (I.D.M. Electronics 
Ltd., Reading, England). This plug-in collector 
improves the transmission of the signals 
through its stable gold contacts, and rotates 
easier with the movements of the fish. 

X-ray cinematography 

Lateral and dorsoventral X-ray images (Sie­
mens Gigantos X-ray apparatus; 100 kV lat­
eral/75 kV dorsoventral, 125 m A, and 2 msec) 

of the moving elements of the head were inten­
sified (Siemens 50-kV image intensifier) and re­
corded with an Arriflex 35-mm motion picture 
camera (Agfa-Gevaert Copex Pan film) at 26 
frames per second. The distances between 
X-ray tube and fish and between the fish and 
the image intensifier were 195 cm (in dorsoven­
tral projection, 135 cm) and 5 cm, respectively. 

In order to penetrate water with X-rays a 
high X-ray tube voltage is required, but a high 
voltage gives low contrast between the bony 
elements and the water. In order to reduce the 
water layer around the fish as much as possi­
ble, the fish was trained to feed in a narrow, 
2.5-mm perspex cuvet (32 X 9 X 27 cm), 
equipped with a movable curtain behind the 
tail. This design also keeps the head of the fish 
above the image intensifier and tends to main­
tain the fish parallel to the plane of the film. In 
lateral view the fish was 4 cm thick at the pec­
toral girdle, and the water layer (progressively 
replaced by tempex) 2.5 cm; in a dorsoventral 
view these values were 6 and 1.5 cm, respec­
tively. The necessary use of an image intensi­
fier limits the definition of the images. To 
improve contrast and to allow accurate-mea­
surements, pieces of 0.5-mm platinum wire 
were inserted on selected places (Figs. 8, 17b). 
Markers on the skull facilitated the elimina­
tion of distorted projections. X-ray movies 
were evaluated and the appropriate mastica­
tory scenes selected on a Vanguard (type 16C) 
motion analyzer. Measurements were made in 
three-times enlarged individual frames, with a 
Leitz Makro Promar projector provided with a 
film-transport adaptor. With this procedure 
the required accuracy was obtained for mea­
suring the minute changes in position between 
successive frames. 

Simultaneously with X-ray cinematography, 
the activity of selected muscles was recorded. 
X-ray frames and electromyograms were syn­
chronized by pulse trains produced at random 
and registered both on the film (by flashes of a 
diode bulb built into the camera body) and on 
the EMGs. Movements were analyzed of two 
trained carps; from the large quantity of mate­
rial about 60 of the most stably projected 
chewing cycles of eight masticatory sequences 
were selected. Measurements corresponded 
very well for the two fishes. At least 30 EMG 
experiments supplied the data for the activity 
pattern of the muscles during mastication and 
respiration. The processing of movement 
analysis and EMG data will be discussed later, 
because the necessary anatomical data have 
not yet been provided. 
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RESULTS 

Description of the 
anatomical construction 

The following anatomical details are essen­
tial to understand the functional-morphologi­
cal analysis of mastication. Previous descrip­
tions (Eastman, '70, '71) do not show the 
elements in their positions relative to the skull, 
pectoral girdle, and branchial basket. Besides, 
some erroneously given names need correction 
and some pharyngeal bone muscles were omit­
ted. Knowledge of the possible effects of single 
muscle contraction on the position of the pha­
ryngeal bones is a prerequisite for understand­
ing the recorded patterns of muscle activity. 
Previous studies do not mention the ligament 
of Baudelot, which plays a crucial role in the 
mechanics of mastication in the carp. 

1. The bony elements (Fig. 1,2) 

The nomenclature of the skull and visceral 
bony elements in cyprinids follows Ramas-
wami ('55) and Harrington ('55). 

The os pharyngea or pharyngeal bone repre­
sents the ceratobranchial of the fifth (V) 
branchial arch (Fig. 1), bears the pharyngeal 
teeth on the medial side (Fig. 2a), and is 
covered dorsally by a thick mucosa (cf. Fig. 4). 
The posteroventral apex, the anterior angle in 
Chu's terminology ('35), divides the bone into 
an anterior limb, contributing to the floor of 
the pharynx and the roof of the pericardial cav­
ity, and a posterior limb, curving dorsad 
around the entrance to the esophagus (cf. Fig. 
5). The dorsal process of the posterior limb 
reaches into the subtemporal fossa of the skull. 
Medially, the pharyngeal bones are connected 
by the interpharyngeal ligaments, and these 
extend rostrad into a ligamentous symphysis 
(Fig. 6). The pharyngeal bones are joined to the 
branchial basket by the anterior cartilage, a 
large copula extending caudad from the basi-
branchial I II (Fig. 5). 

Each pharyngeal bone bears three rows of 
heterodontpharyngeal teeth (Fig. 2). The tooth 
formula is 1(C)-1(B)-3(A) : 3(A)-1(B)-1(C). 
Yang ('64) found about 11% of 260 Korean 
carps to have variant formulas; Eastman ('70) 
reported less than 6% for 380 Minnesota carps. 
Developing teeth, embedded in the mucosa at 
the base of the functional teeth, are often pres­
ent (Fig. 6). They ankylose to the bony proces­
ses supporting the functional teeth after these 
have been shed (Geyer, '37). The same author 
and others (Evans and Deubler, '55; Schwartz 
and Dutcher, '62) discussed the sequence and 
frequency of their repetitive replacement. 

All teeth are molariform, except the rostral 
(I) tooth of the medial (A) row, which has a 
dome-shaped smooth crown with a pointed 

center (Fig. 2); this crown lies lower than those 
of the other teeth and is covered by mucosal 
folds. All flat molariform crowns are character­
ized by caudomediad running, slightly sinuous 
furrows; at approximately right angles to 
these, abrasion scratches are observed. Teeth 
of larger fish have more furrows. The closely 
packed crowns point slightly dorsocaudad and 
mediad when not involved in mastication, as 
appears from X-ray photographs of an anes­
thetized carp. 

The pharyngeal teeth oppose a horny chew­
ing pad, firmly embedded in and supported by 
the basioccipital process of the skull (Figs. 1, 
2b); this process continues caudad between the 
anterior vertebrae and the esophagus as the 
pharyngeal process. Following Nusbaum ('08), 
the basioccipital process develops from the 
ventral arches of the first three vertebrae, 

Abbreviations 
aa, anterior angle 
ac, anterior cartilage 
al, anterior limb 
ar, articular 
bbr, basibranchial I I I 
bocc pr, pharyngeal process of the basioccipital 
brr, branchiostegal rays 
cbr, ceratobranchial I - IV 
chy, ceratohyal 
chp, chewing pad 
clthr, cleithrum 
d. dental 
dp, dorsal process 
ebr, epibranchial 
ecpt, ectopterygoid 
ehy, epihyal 
enpt, entopterygoid 
ghy, glossohyal 
hhy, hypohyal 
hmd, hyomandibular 
ih, interhyal 
ipl, interpharyngeal ligaments 
k, kinethmoid 
mpt, metapterygoid 
mx, maxilla 
ns, neural spines vertebrae I I - IV 
opj, opercular joint of hyomandibular 
osu, os Suspensorium 
pal, palatine 
pmx, premaxilla 
phb, pharyngeal bone 
ppb, pharyngeal process of the basioccipital 
pr, pleural rib 
pi, posterior limb 
pt, posttemporal 
qu, quadrate 
sc, submaxillar cartilage 
scl, supracleithrum 
soc, supraoccipital 
sy, symphysis 
sy, symplectic 
tr, trabecula 
uhy, urohyal 
v, vertebra 
A2A3, m. adductor mandibulae 
LOP, m. levator operculi 
PRH, m. protractor hyoidei 
STH, m. sternohyoideus 
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Fig. 1. Skeleton of the carp, showing the position of the 
pharyngeal bones and chewing pad among other compo­
nents in the head (opercular and circumorbital bones re­

moved). Only left-side elements are depicted. Heavy lines in­
dicate muscles. Modification of Ballintijn ('69a|. 

DORSO- ROSTRAL VIEW 

CAUDAL VIEW LATERAL VIEW 

/ 

• > > 

Fig. 2. a. Pharyngeal bones and teeth, b. Ventral view of 
the chewing pad and the pharyngeal process. A dorsal view 
of pharyngeal teeth for comparison at the same scale. Note 

*>s/ 

the pitted anterior surface of the chewing pad, reflecting the 
crushing action of the A I teeth, and the grinding facets of 
the corresponding furrowed teeth. 
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which are absorbed in the base of the skull. The 
dorsal arches give rise to the Weberian 
ossicles. 

The occlusal surface of the chewing pad is di­
vided into slightly concave halves by a medial 
ridge that projects most ventrad posteriorly. 
Both areas show distinct traces of abrasion by 
the corresponding A II, A I I I , B, and C teeth. 
Owing to the low position of A I, occlusal con­
tact of this tooth with the chewing pad is com­
monly denied in the literature (e.g., Geyer, '37); 
a rough rostral region on the chewing pad is, 
however, conspicuous. 

2. Ligaments, articulations, and movement 
restrictions 

Ligaments. A meshwork of interpharyngeal 
ligaments connects the pharyngeal bones 
along their anterior limb in the midline (Fig. 6). 
The ligaments extend from the symphysis and 
the rostromedial part of the one bone to the 
caudomedial part of the other, intercrossing 
from both sides at 30-40°. Caudal ligaments 
are continuous with the rostral aponeurosis 
and the medial raphe of the transversus ven-
tralis V muscles, which interconnect the bones 
at their anterior angles. 

The ligament of Baudelot, a stout and flat 
upright ligament, runs in transverse and 
slightly caudal direction from the ventrome­
dial part of the skull (at the rostral margin of 
the basioccipital process) to the medial surface 
of cleithrum and supracleithrum (Figs. 3, 5). It 
lies posterior to the dorsal process of the pha­
ryngeal bone and is continuous with the most 
anterior myosept of the epaxial muscles. 

The membrane covering the free lateral sur­
face of the pharyngeal bones thickens toward 
the cleithrum, especially along the posterior 
limb. I t will be called the pharyngocleithral 
membrane. 

Articulations. The only "articulation" of the 
pharyngeal bones is their fibrous connection to 
the anterior cartilage (Figs. 1, 5). The oval pos­
terior head of this copula fits into a shallow pit, 
formed by the joined dorsomedial surfaces of 
the pharyngeal bones and the interconnecting 
tissues (Fig. 2a); the smooth anterior head of 
the cartilage slides rostrocaudad over the pos­
terior slope of basibranchial I I I ; the rostral 
part of the latter limits these movements 
(Fig. 5). 

Movement axes and limitations. Extrinsic 
movements of the pharyngeal bones (joint 
movements with respect to surrounding ele­
ments) are limited most directly by the attach­
ed branchial basket, the pharyngocleithral 

membrane, and the collagen components in the 
pharyngeal muscles. If a fixed position is as­
sumed for the branchial basket, translation of 
the bones can only be small; it depends largely 
on the sliding of the anterior cartilage over 
basibranchial I I I , and on the slack in the 
branchial interconnections and the pharyngo­
cleithral membrane. As soon as this slack is ab­
sorbed, increasing forces on the pharyngeal 
bones lead to rotation around a transversal 
axis R1 (Fig. 3). This rotation is limited by tis­
sue connecting the pharyngeal bones and the 
branchial basket. Caudad translation of the 
pharyngeal bones is ultimately obstructed by 
Baudelot 's ligaments (Fig. 3); continued retrac­
tion produces an almost sagittal rotation with 
the point of abutment as the new center. The 
ligament as a whole becomes the transversal 
R4 axis. (During mastication of large food par­
ticles the instantaneous center of rotation may 
well lie between teeth and chewing pad.) Large 
excursions of the pharyngeal bones around R4 

can only proceed with concomitant movement 
of both the branchial basket and the pectoral 
girdle. 

Movements of the pharyngeal bones with re­
spect to each other are the intrinsic move­
ments. Intrinsic translations are virtually im­
peded by the symphysis. Rotations are permit­
ted around a rather longitudinal hinge-like axis 
through symphysis and interpharyngeal liga­
ments (R2 in Fig. 3). (A reconstruction of pha­
ryngeal bone movements in lateral projection 
shows the anterior angle (B in Fig. 8a) to move 
at right angles to this R2 axis and confirms its 
assumed position.) In order to analyze and de­
scribe other intrinsic movements, the defini­
tion of further axes is useful. Other rotations of 
the two bones are small and only possible as far 
as permitted by the interpharyngeal liga­
ments; when they occur in the plane of these 
ligaments, the excursion is maximal, and an 
axis R3 can be postulated at right angles to R2 

and R1. 

3. Myology (Figs. 4-7) 

Eastman ('71) reviewed the nomenclature of 
the pharyngeal bone muscles of previous au­
thors. Following his description in detail, the 
m. coraco-branchialis posterior and the m. 
cleithro-pharyngeus profundus evidently cor­
respond, respectively, to the m. coraco-branchi­
alis anterior and posterior as described by 
Matthes ('63) and others (see Table 1). This 
error crept into the literature review and 
renders it highly confusing at this point. In 
this paper the nomenclature as used by East-
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LATERAL VIEW CAUDAL VIEW 

skull 

subtemporal fossa _ 

Baudelot's ligament 
pharyngeal process 
chewing pad 
C,B, AH, AH , teeth 
pharyngeal bone 
anterior cartilage 
hypobranchial HI 

cleithrum 

symphysis cleithri 

J R1 

Fig. 3. Rotation axes in the masticatory construction. 
The range of pharyngeal bone movements and their limita­

tions are described in the text. This scheme serves Figure 7 
also. 

skull 

subtemporal fossa 

opercular joint 

epibranch. I-EZ 

pharyngeal pad 

ceratobranch. I -ÏÏ 

m.transv. venir. EZ 

hypobranch. lu 

m.subarc. rect.comm. 

m.phar.-cleithr. infant, 

m.sternohyoideus 

m.lev. arc. branch. 3£ 

m.lev.ext.nr 

m.attr. arc. branch.3Z 

m.protr. pectoralis 

gill rakers 

pharyngeal bone 

cleithrum 

m.phar.-cleithr. int. post. 

m.phar.-cleithr.ext. 

Fig. 4. Lateral view into the anterior pharynx showing 
the left pharyngeal bone and its musculature; the opercula 
and most of the branchial arches have been removed. At 
rest, the thick dorsal pharyngeal pad almost fills the pha­

ryngeal lumen; it is muscular and covered with mucous cells 
and tas te buds. Full names of the muscles in the descriptive 
part of the text. 
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skull 

subtemporal fossa 

opercular joint 

epibranchial I - E 

anterior cartilage 

basibranchial m 

ceratobranch.I 

hypobranchialH 

m.sternohyoideus. 

m. lev. arc. branch. 3Z 

supracleithrum 

4th vertebra 

Baudelot's ligament 

phar. process basioccipital 

m.retr. os phar. sup. 

m.obliquus posterior 

chewing pad 

m.retr.os phar.inf. 

pharyngeal teeth 

oesophagus 

pharyngeal bone 

cleithrum 

m.phar. -cleithr. int. post. 

m.phar.-cleithr. int. ant. 

Fig. 5. Deep dissection of the anterior pharynx. Partial 
removal of the lateral body wall permits a view on the wall of 
the posterior pharynx, between teeth and chewing pad. Note 

the stout ligament of Baudelot, the slide-coupling between 
the anterior cartilage and basibranchial III , and the tendi­
nous character of the LAB V and PCIP muscles. 

man (71) is further followed. The coraco­
b r a ch i a l muscles, however, are incorporated 
in the m. pharyngo-clavicularis (Winterbot-
tom, '74; this author gives an excellent syn­
onymy of teleost muscles), modified to m. pha-
ryngo-cleithralis (following Liem, 70) because 
a clavicle is absent in teleosts. 

Brief descriptions of all pharyngeal bone 
muscles are given below. For details the reader 
is referred to the figures. The contraction ef-

Abbreuiations 

CP, m. constrictor pharyngis 
OES, oesophagus 
PB, pharyngeal bone 
PCE, m. pharyngo-cleithralis externus 
PCIP, m. pharyngo-cleithralis internus posterior 
ROPI, m. retractor os pharyngeus inferior 
RTP, replace-tooth patch 
TV V, m. transversus ventralis V 

Fig. 6. Ventrocaudal view of the pharyngeal bones and 
related structures. Broken lines indicate the pharyngeal 
bones as figured with the chewing pad at the upper right. 
Note the cruciate pattern of the interpharyngeal ligaments. 
The constrictor pharyngis muscle is part of the wall and 
floor of the posterior pharynx. 
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m. lev. arc. branch. S 

(w) — (R») • 

33% 

m. retr.osphar.inf. 

(iiî) ® (R^I (R3) 

3 8 % 

m. retr. os phar. sup. 

® - ® c» 
2.5% 

m. transversus 2 

!R2,: I R > ) 

6 % 

Fig. 7. a (left) and b (right). Separate contraction effects 
of the single pairs of muscles on the position of the pharyn­
geal bones and teeth (grey image), based on anatomical data. 
White image indicates rest position. Skull, branchial basket, 
and pectoral girdle are maintained motionless. Effects de­

picted in three planes, at right angles to the separate axes. A 
caudal view on the construction aids visualization. Percent­
ages indicate the share of each muscle pair in the total 
weight of pharyngeal bone muscles. Forces correspond to 
the lines of action, and are resolved in rotation components 
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m. phar.-cleithr. ext. 

7% 

m. phar.-cleithr. int. post. 

® © — (i'Ra)) 'r ' 
8.5% 

m. subarc. rect.comm. 

'nO, _ _ _ 

2% 

around the individual axes, and in remaining translation to be traced from the schemes. Translational forces may 
components. Rotation effects have been noted in code: Ar- load the symphysis of the pharyngeal bones by compression 
rows around "R" indicate direction and intensity of rotation. or tension (cf. TV V, PCE). For further details, see text. 
The direction of simultaneous translation components are Structures and axes indicated in Figure 3. 
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fects of the separate pairs of muscle on the 
position of the pharyngeal bones and teeth, 
based on anatomical data as action-lines and 
movement restrictions, are shown in Figure 7. 
These effects will differ from the actual effects 
in the living fish because simultaneous actions 
of other muscles have not been taken into con­
sideration; the position of the branchial basket 
and pectoral girdle, for example, is kept fixed. 
For most muscles the wet weight as a percent­
age of the total weight of the pharyngeal bone 
musculature is indicated; differences in their 
share are large. 

M. levator arcus branchialis V (LAB V; Figs. 
4, 5, 7). The fan-shaped LAB V is large (33%), 
originates from the deep subtemporal fossa of 
the skull, and inserts on the posterior surface 
of the dorsal process of the pharyngeal bone. 
I ts anterior part is highly aponeurotic. 

Action. The LAB V muscles rotate the pha­
ryngeal bones powerfully anticlockwise 
around the R1 axis; at the same time they move 
them right to the chewing pad. They also ab­
duct the bones around Rz. The pharyngeal 
teeth move dorsad and slightly rostrad toward 
the chewing pad; they are abducted. 

M. retractor os pharyngeus inferior (ROPI; 
Figs. 5-7). The ROPI originates tendinously 
from the posterior part of the basioccipital 
pharyngeal process. I t is inserted on the poste­
rior limb of the pharyngeal bones, ventral to 
the LAB V insertion. This large muscle (38%) 
contains many aponeurotic elements. Neither 
this muscle nor the ROPS (see below) is homol­
ogous with branchial muscles, because they 
arise from the sphincter oesophagi (Holst-
voogd, '65; Nelson, '67). 

Action. The pharyngeal bones are retracted 
and rotate slightly anticlockwise around the R1 

axis. Because retraction is blocked by Baude-
lot's ligaments, powerful rotation is induced 
around this ligament (R4) (broken vectors in 
Fig. 7). Translation toward the chewing pad is 
small. The powerful ROPI is the main adduc­
tor (around R3 and R2) of the bones. Pharyngeal 
teeth are adducted and move dorsocaudad 
against the chewing pad. 

M. retractor os pharyngeus superior (ROPS; 
Figs. 5, 7). The long but thin ROPS (2.5%) 
originates just anterior of the ROPI on the 
pharyngeal process. Fibers converge on tendi­
nous strands that run rostrad, medial of the 
dorsal process of the pharyngeal bone, and are 
inserted with a dorsad curving tendon on its 
dorsal tip. 

Action. The pharyngeal bones rotate mainly 
clockwise around the R1 axis; this is accom­

panied by adduction around R2 and R3. Pha­
ryngeal teeth are adducted. They move caudad 
and slightly away from the chewing pad. 

M. transversus ventralis V (TV V; Figs. 6, 7). 
The paired TV V (6%) spans the pharyngeal 
bones ventrally at their anterior angles, jus t 
anterior to the teeth. Fibers of both sides meet 
in a medial "raphe," which has a connection 
with the interpharyngeal ligaments. These are, 
together with the constrictor pharyngis, the 
only intrinsic muscles of the pharyngeal bones 
and they form a part of the pericardial roof. 
Muscle fibers originating from the medial as­
pect of the anterior limb as described by East­
man ('71) have not been found. 

Action. Some components adduct the pha­
ryngeal bones around the R2 and the R3 axis. 
Other components press them together at the 
symphysis. Pharyngeal teeth are adducted. 

M. pharyngo-cleithralis externus (PCE; Figs. 
4, 6, 7). The thin, parallel-fibered PCE (7%) in­
terconnects the horizontal limb of the cleith-
rum and the ventromedial edge of the pharyn­
geal bone, anterior to the teeth. Some deeper 
fibers are inserted more anteriorly on the bone 
and cross below the superficial fibers at an 
angle of about 30°. In the carp the distinction 
between a separate superficialis and profundus 
part is less conspicuous. 

Action. The PCE muscles protract and si­
multaneously rotate the pharyngeal bones 
clockwise (R1). Abduction of the pharyngeal 
bones proceeds around the R3 axis mainly. 
Pharyngeal teeth abduct and move away from 
the chewing pad. 

M. pharyngo-cleithralis internus anterior 
(PCIA; Figs. 4, 5). The small, conical PCIA 
(1.5%) originates from the medial part of the 
pectoral girdle, passes along the symphysis of 
the pharyngeal bones, and is inserted through 
a tendon to the ventral surface of the anterior 
cartilage between the ceratobranchials IV. 

Action. By lowering the anterior cartilage, 
the PCIA muscles only indirectly move the 
pharyngeal bones (therefore not shown in Fig. 
7); the PCIA might even depress the symphy­
sis, held between the PCIA tendons. Contrac­
tion causes a minor anticlockwise rotation in a 
sagittal plane. Pharyngeal teeth move slightly 
toward the chewing pad. 

M. pharyngo-cleithralis internus posterior 
(PCIP; Figs. 4-7). The PCIP (8.5%) lies medial 
to the sternohyoid muscle, posterior to the 
PCIA. It has an extensive origin on the dorsal 
cleithral surface at the bending of the horizon­
tal into the vertical limb. Muscle fibers sharply 
converge through aponeuroses on a heavy ten-
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don that continues rostromediad and is insert­
ed on the symphysis of the pharyngeal bones. 
Some medial fibers originate medial to the 
cleithrum from the hypaxial body muscles (in­
tercostal fibers; cf. Brousseau, 76) with which 
they are continuous; only aponeurotic ele­
ments are interposed. 

Action. The anticlockwise rotation of the 
pharyngeal bones around the R1 axis is soon 
limited by their attachment to the branchial 
basket; the PCIP muscles, then, are pure re­
tractors. Jus t as described for the ROPI mus­
cles, the presence of Baudelot's ligaments 
transforms the retraction of the bones into a 
rotation around R4 (broken vectors in Fig. 7). 
Because the lateral attachments of these liga­
ments lie posteriorly to the medial ones, the 
dorsal processes of the bones are forced to slide 
laterad. This causes abduction around R3. Pha­
ryngeal teeth move dorsocaudad against the 
chewing pad and will be abducted. 

M. obliquus posterior (OP; Figs. 5, 7). The 
OP (less than 1%) originates medially on the 
basioccipital process just dorsal to the anterior 
margin of the chewing pad. It runs laterad 
along the medial surface of the posterior limb 
of the pharyngeal bones and is attached on its 
posterior surface between the LAB V and 
ROPI insertions. Both origin and insertion of 
this small muscle are fleshy. 

Action. The OP muscles adduct the pharyn­
geal bones around R3 and cause compression in 
the symphysis. Teeth are adducted also. 

M. subarcualis rectus communis (SRC; Figs. 
4, 7). This long, cylindrical muscle (2%) lies 
midventral in the branchial basket, parallel to 
the anterior cartilage. It connects the antero­
lateral surface of the pharyngeal bone to the 
posterior surface of hypobranchial I I I . Some 
internal aponeuroses occur. Few fibers may 
well be attached to the ventral surface of 
ceratobranchial IV; fibers to basibranchial I I I , 
as reported by Eastman (71), have not been 
found. 

Action. Apart from clockwise rotation of 
the pharyngeal bones around the R1 axis, the 
SRC muscles protract and slightly depress 
them. The pharyngeal teeth move away from 
the chewing pad. 

M. constrictorpharyngis (CP; Fig. 6). As the 
anterior part of the sphincter oesophagi, the 
CP contributes to the wall and floor of the pos­
terior pharynx between teeth and chewing pad. 
The CP lies medial to the ROPI and consists of 
multiple fiber groups running in various direc­
tions. Anteriorly, they are inserted on the me­
dial aspects of the pharyngeal bones and on the 

basioccipital process along the chewing pad. 
Posteriorly the CP is continuous with the 
esophagus. (Patches of lightly colored tissue 
between the fibers indicate new teeth, develop­
ing in the floor of the posterior pharynx.) 

Action. They constrict the posterior phar­
ynx. In addition, the CP action resembles that 
of the ROPI muscles. 

M. attractorarcus branchialis V(AAB Vjand 
M. transversus ventralis IV (TV IV) (Fig. 4). 
The AAB V and TV IV (both less than 1%) are 
short, parallel-fibered muscles with their origin 
on the pharyngeal bones. The AAB V runs ros-
trad from the dorsal tip of the pharyngeal bone 
to the epibranchial IV. The TV IV passes ros-
trodorsad from the anterolateral surface of its 
horizontal limb, dorsal of the SRC, to the cera­
tobranchial IV. They play a minor role in posi­
tioning them and therefore have been omitted 
in Figure 7. 

Head muscles other than the pharyngeal 
bone musculature are mentioned in the text. 
These are described by Ballintijn ('69a), who 
determined their role in the respiration of the 
carp. The lines of action of the most relevant 
muscles are indicated by bold lines in Figure 1. 

Feeding ecology of the carp 

The carp typically ingests the food by suc­
tion (pipette-feeding; Gosline, 73) with the 
highly protrusible, subterminal, and toothless 
mouth. The fish can penetrate more than 12 cm 
into a silty bottom (Suietov, '39). Apart from 
food, inert and anorganic material enters the 
mouth as a part of the ingested medium, and 
only a part of this is prevented from entering 
the digestive tract, as indicated by the sandy 
intestinal contents. Thus, pharyngeal selec­
tion is restricted. Expulsion of waste material 
takes place through the branchial sieve or 
through the mouth by a spitting movement, 
causing a fast and reversed water current. The 
thick dorsal pharyngeal roof (Fig. 4) (called by 
some the pharyngeal pad, and by others the 
palatal organ), provided with numerous taste 
buds and mucous cells, may play an active role 
in selecting food by a lesser affinity of inor­
ganic compounds to its mucus as a result of 
surface-tension phenomena (Matthes, '63) and 
by its contractility. The branchial filter can re­
tain particles larger than 500 /un and plays a 
major role in straining algae (Uribe-Zamora, 
75). After mastication the food is swallowed 
and digested in an alimentary tract lacking a 
stomach; the esophagus passes through a 
sphincter directly into the intestine, as in all 
other cyprinids. 
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Food of the carp 

The carp's diet has been investigated repeat­
edly, mainly in fish ponds, in many parts of the 
world. Uribe-Zamora ('75) reviewed these data 
for larval and adult fish. 

The diet of the adult carp varies according to 
the season: 

Winter: Feeding activity is reduced and re­
stricted to the benthos that is most abundant 
at that time and includes chironomid larvae 
and tubificids. At temperatures below 8°C, 
feeding is minimal or ceases completely. 

Spring: The zooplankton proliferates; the 
carp leaves the bottom areas and feeds on the 
larger crustaceans (Diaptomus castor, Daph-
nia longispina, and Cyclops bohater). 

Summer: Large-sized zooplankton are less 
abundant and the carp feeds on littoral vegeta­
tion, especially soft species such as Lemna 
minor and Glyceria fluitans, and on the fauna 
between these macrophytes: molluscs, cope-
pods, trichopter larvae, and phytophyl oligo-
chaets such as Lumbricus variegatus. 

Autumn: When the oxygenation of open 
water increases again, the carp returns to the 
benthic areas to feed on dipters such as Chao-
borus flavicans, t hat reaches maximal abun­
dance at the end of the summer, and on oligo-
chaets. The diet may include small planktonic 
crustaceans, larger zooplankton is scarce. 

Thus, carps are omnivorous, euryphagous 
and opportunistic fishes, feeding in diversified 
ecological areas and at different depths. A dif­
ferentiation of the diet into basic, secondary 
and incidental food (Nikolsky, '63) is hardly 
justified. 

Effect of mastication on food items 

Examination of the intestinal contents and 
feces by Klust ('40) and by the present author 
reveals that earthworms usually are squashed 
and punctured, thereby exposing the internal 
organs of the worm to the digestive juices of 
the carp. This suggests action of the pointed A I 
teeth. Tubificids are partly squashed if offered 
individually; when ingested as a mass they 
are hardly damaged (Klust, '40). According to 
Klust ('40) chironomid larvae are not damaged, 
owing to their tough chitinous skeletons. Ex­
amination of feces shows, however, holes be­
tween the segments of the flattened and 
crumpled larvae; this permits digestive fluids 
to enter the larva. Usually the separate skele­
tons are identified easily. The carapace of 
Daphnia and other planktonic crustaceans ap­
peared to be crushed (Klust, '40). Fecal pellets 
of carps fed on bivalved molluscs (sphaeriids) 

mainly contain shell fragments. Ordinary 
grass, ingested by young carps in our labora­
tory, shows disruptions of the fibrous context; 
the grass appears to be repeatedly squashed 
and cells are washed out. Considerable areas 
remain unaffected. Barley fed to carps of year-
class-II and stored hard maize fed to yearclass-
III carps are pulverized. Intestinal examina­
tion reveals large and minute fragments. The 
feces contain mainly indigestible seed capsule 
elements. 

Experimental results 

1. Measuring procedure 

Movement analysis. Movement analysis in­
cluded the measuring of distances and angles 
in sagittal and horizontal X-ray projection, as 
illustrated in Figure 8. Positional changes of 
the markers in successive X-ray frames are the 
resultant effect of both translations and rota­
tions around the R1, R2, R3, and R4 axes. In 
order to determine these components in the 
small movements recorded, the location of the 
measuring marks and the procedure of measur­
ing were designed to produce high excursions 
for the component to be measured, a low sensi­
tivity for other movements, and a maximal ex­
pression in the plane of projection. For the 
measuring marks A, B, and C on the pharyn­
geal bone (Fig. 8) each of the possible move­
ment components has been simulated and the 
effects in projection evaluated for obtaining 
selective measurements. 

Skull movements around a center shifting 
between the first and the fourth vertebra (Rv in 
Fig. 8a) play a major role in mastication. There­
fore, a distinction is made between relative 
movements of teeth and other head structures, 
those with respect to the skull, and absolute 
movements, related to the axis of the body. 
This axis is always approximated by the posi­
tion of the swimm-bladder and the vertebrae 
lying above, because these structures contrast 
well in X-ray images and their projections are 
not distorted by roll of the fish. To obtain the 
absolute pharyngeal bone rotation, rotation of 
the skull (ACT in Fig. 8a) is subtracted from Aa; 
the same applies to the absolute rotation of the 
pectoral girdle; however, owing to the caudad 
movement of RP when the skull is lifted (Fig. 
8a), only V2A0 is to be subtracted from A/3 (de­
termined empirically). 

Electromyograms. To obtain a typical and 
complete pattern of masticatory activity, the 
electromyograms of different muscles in vari­
ous experiments were combined; this was done 
by recording permanently three masticatory 
muscles (LAB V, PCE, and SRC), active in dif-
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filmplane 

Fig. 8. Corresponding sagittal (a) and horizontal (b) pro­
jection schemes as framework for selectively measuring 
movements. Reference elements are heavy; measuring lines 
dotted. ( - , reference mark; •, measuring mark). Rotation 
axes indicated. 

a. Symbols:0. skull movement relative to the body (Rv); a, 
angle between pharyngeal bone and skull (Rl and R4); (3, 
angle between pectoral girdle and skull (RP); x, distance 
lower jaw to the skull; y, compression buccal cavity; z, com­
pression anterior pharynx; h, adduction phar. bones (R2); 1, 
adduction phar. bones (R3). 

b. Symbols: 7, rotation phar. bone in the sagittal plane; a, 
adduction phar. bones (R2 + R3): b, adduction opercula: c, 
adduction pectoral girdle. 

ferent phases of the masticatory cycle (see 
below). Variation in the duration of the masti­
catory cycle is caused to a large extent by vari­
ation in the PCE activity between successive 
power strokes (Fig. 9). Activity periods of dif­
ferent cycles, therefore, have been compared 
with respect to the LAB V activity period in 
the corresponding power stroke. Durations of 
the activity periods in Figure 14 represent 
mean values. During X-ray cinematography, 
the activity of the LAB V, PCE, SRC, and LOP 
(levator operculi) muscles was recorded in 
order to correlate movements to the overall 
EMG pattern. 

2. Terminology 
A masticatory sequence comprises all activi­

ties involved in the mastication of a food bolus 
(Fig. 9), and is composed of one or more trains 
of rhythmic masticatory cycles, separated by 
masticatory pauses. Within a continuous train 
(e.g., cycle I -X in Fig. 10) the profile of the indi­
vidual cycles may change, resulting in differ­
ent masticatory series (cycles I-V and VI-X in 
Fig. 10). 

For the masticatory cycle of the carp the fol­
lowing definitions will be used: 

a. During the preparatory stroke the inter­
mediate gape between the occlusal surfaces 
increases to a maximum to allow the food 
to be masticated, and the occlusal surfaces 
are brought in a favorable position for 
comminution. 

b. In the power stroke the occlusal surfaces 
approach each other, resulting in tooth-food-
chewing pad contact and the oft-sustained ap­
plication of high forces on the food. Given their 
morphology (Fig. 2) crushing is effected when 
the occlusal surfaces approach each other per­
pendicular to these surfaces, grinding when 
the occluded surfaces move parallel to each 
other. 

c. The recovery stroke s tarts when tooth-
food-chewing pad contact is broken. The dis­
tance between the occlusal surfaces increases 
and the pharyngeal bones and teeth move to an 
intermediate rest position, thus not obstruct­
ing other movements of the branchial basket. 

Contrary to the usage in papers on mammali­
an mastication (Hiiemae, 78), fast closing of 
the occlusal surfaces is included in the power 
stroke. 

3. Masticatory movements 

The power stroke of the masticatory cycle 
(cycle VII in Fig. 10) is an anticlockwise rota­
tion of the pharyngeal bones with respect to 
the skull (increase of a; see Fig. 8a), which 
moves the teeth vertically as well as in a direc­
tion parallel to the chewing pad. Between two 
power strokes, we find the recovery and the 
preparatory stroke of the two successive 
cycles; the transition is marked by changes in 
the rotation velocity (a) and, later in the se­
quence, by the arise of a pause in the PCE ac­
tivity (Fig. 10; cycle VII I - IX) . This interpreta­
tion is supported by the EMGs of more iso­
lated cycles, in which a complete pause is 
noticed in the PCE activity (D, • in Fig. 9). 

Two related profiles of masticatory cycles 
are distinguished by movement and EMG pat­
tern; a crushing cycle (Fig. 10; I-IV) and a 
grinding cycle (VI-X). The latter will be dis­
cussed first, in relation to Figures 11 and 12, 
which summarize movement data from sagit-
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tal and horizontal projections. Some original 
recordings will be referenced. 

Grinding cycle. Starting from an inter­
mediate rest position during the preparatory 
stroke (p), the pharyngeal bones are slightly 
protracted and they rotate clockwise with re­
spect to the skull (Figs. 11a, 12), thus expand­
ing the posterior pharynx between teeth and 
chewing pad to admit or adjust the food to the 
occlusal surfaces. At the same time the an­
terior pharynx is compressed (Figs, l i e , 12) 
and this causes a caudad pumping action. 
Apart from the rotation of the pharyngeal 
bones, facilitated by a slight protraction of the 
pectoral girdle (Figs, l i b , 12), a down-rotation 
of the skull contributes to these effects. Mean­
while the pharyngeal bones are fully abducted 
and they finally initiate an adduction, turning 
the mediad-pointing teeth dorsad for crushing. 
The preparatory effect of these movements is 
demonstrated distinctly in a masticatory se­
quence (Fig. 13) in which the fish, with the pha­
ryngeal bones kept abducted, fails to bring a 
large food pellet on the teeth (revealed by the 
X-ray movie). At a second at tempt the prepara­
tory stroke is intensified: The anterior pharynx 
is fully compressed and the posterior pharynx 
expanded (very small a). 

The transition from the preparatory stroke 
(p) into the power stroke is initiated by the ad­
duction, lifting, and moderate anticlockwise 
rotation (R1) of the pharyngeal bones, thus 
bringing the teeth closer to each other and to 
the chewing pad (Figs. 11, 12). Up-rotation of 
the skull contributes significantly to occlusion 
by the dorsad movement of the skull-suspend­
ed pharyngeal bones and their teeth. Because 
the chewing pad lies close and ventral to the ro­
tation center of the skull (Rv in Fig. 8), it is not 
lifted but rotates slightly rostrad. As the 
movement of the teeth is perpendicular to the 
chewing pad, this part of the power stroke is 
the crushing phase (c). Although the skull is 
lifted, the anterior pharynx remains fully com­
pressed (cf. Fig. 13, cycle I); this implies the 
lifting of the pharyngeal floor during the 
crushing phase, thus fixing the food to be 
crushed. Also the pectoral girdle is slightly 
lifted with the skull (Fig. 12). 

As the power stroke proceeds, skull-rotation 
and thus lifting forces on the teeth perpendicu­
lar to the chewing pad continue (Figs. 11a, 12). 
The pharyngeal bones move at the same time 
caudad, but their dorsal tips are blocked soon 
by Baudelot's ligaments (cf. Sibbing, '76; mas­
ticatory orbit of the pharyngeal bone); this 
forces the bones into an increasing anticlock­

wise rotation (a), but now around R4. The pha­
ryngeal teeth describe a circle segment around 
R4 and move more parallel to the chewing pad. 
This represents the grinding phase (g) of the 
power stroke. Because the chewing pad de­
clines ventrad posteriorly, the food is increas­
ingly compressed and wedged more and more 
between teeth and chewing pad during the 
grinding phase. The pharyngeal bones may re­
main adducted now, but often abduct to a 
varied extent. The extensive rotation of the 
pharyngeal bones around Baudelot's liga­
ments is permitted and supported by a distinct 
retraction of the pectoral girdle and a depres­
sion of the pharyngeal floor (Figs. 11,12). With 
progressive lifting of the skull, this produces 
an explosive expansion of the anterior pharynx 
during the grinding stroke. The angular veloc­
ity of the pharyngeal bones with respect to the 
skull is about 60°/sec during the power stroke 
and resembles the value of 64°/sec found by 
Hiiemae (76) for the opossum lower jaw. 

The recovery stroke (r) s tarts with the loss of 
occlusal contact and the lowering of the pha­
ryngeal teeth by clockwise rotation and de­
pression of the pharyngeal bones (Figs. 11, 12), 
accompanied by down-rotation of the skull, 
and leads to compression of the anterior and 
expansion of the posterior pharynx, to an ex­
tent comparable to quiet respiration. Abduc­
tion of the pharyngeal bones continues in the 
recovery stroke and the pectoral girdle returns 
forward. 

Crushing cycle. The typical crushing cycle 
differs from the grinding cycle mainly by the 
predominance of the vertical movements of the 
teeth, whereas parallel grinding and its con­
comitant rotation of the pharyngeal bones and 
pectoral girdle are almost absent (Figs. 10, 11). 
Skull rotation is only half as extensive as dur­
ing grinding. Many cycles are intermediate be­
tween crushing and grinding. 

4. Muscle activity patterns and movements 

The interpretation of EMGs (Fig. 14) with 
movement data (Fig. 11) is based on the sepa­
rate effects of the single muscle contractions 
(Fig. 7). However, because skull, branchial bas­
ket, and pectoral girdle have been proved to 
move, these effects are evaluated carefully. In 
addition the position of the pharyngeal bone it­
self changes continuously. In three experi­
ments, the activity of the PCE, PCIP, and 
ROPI muscles were recorded bilaterally; occa­
sional differences in timing of at most 20-30 
msec were found. These differences are small 
in comparison with the long activity periods in 
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Fig. 11. Summarized data on the movement of head ele­
ments in crushing and grinding. The share of skull move­
ments in the total effects is so essential, in providing masti­
catory power, that it is separately indicated. These data are 
visualized in Figure 12. The activity period of the LAB V 
muscle (black bar at the top) allows a comparison with the 
overall EMG pattern (Fig. 14). Consequences of masticatory 

movements for respiration (e) are inferred from the opercu­
lar movements during normal respiration (Ballintijn, '69b). 
Symbols as in Figure 8. For further explanation, see text. 
(Dorsad translation of the pharyngeal bones (a) is small and 
could not be measured free from other movement compo­
nents. To complete this picture it is inferred from the LAB V 
activity.) 
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preparatory stroke 

power stroke 
crushing phase 

grinding phase 

recovery stroke 

Fig. 12. A grinding cycle of the carp in lateral view, 
based on movement data of Figure 11 and X-ray images. 
Amplitudes exaggerated about 50% to show movements 
more clearly (such amplitudes probably do occur). The insets 
offer a half-sized rostral view on the pharyngeal bones and 
chewing pad to show adduction or abduction. For each of the 
four strokes, s tar t (solid lines; white field) and final position 
(dashed lines; dark field) are indicated. The lines marking the 
pharyngeal lumen indicate bony parts; the actual lumen is, 
at the end of the preparatory stroke, fully occupied by the 
pharyngeal pad (cf. Fig. 4). Note the lifting of the pharyngeal 
floor and bones in the crushing phase, whereas the chewing 
pad remains in about the same position. In the grinding 
phase the teeth as well as the chewing pad move in opposite 
directions, wedging the food. Rotations of pharyngeal bones 
are distinct; pure retraction is hardly noticed. Skull and pec­
toral girdle movements contribute conspicuously to grind­
ing; the pharyngeal lumen is extensively expanded. The pic­
ture of a crushing cycle differs by domination of the crush­
ing phase over the grinding phase. 
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Fig. 13. Movements and EMGs during a failing crushing 
action and the subsequent repair activity. The terminations 
of the preparatory (p), crushing (ch grinding (g), and recov­
ery strokes (r) are marked. Cycle I is a crushing, cycle III a 
grinding cycle with conspicuous pharyngeal bone abduction 
in the power stroke. The carp initially fails to bring a large 
food pellet between teeth and chewing pad (X-ray movie). 
This reveals, by accident, some of the regulatory mechanism 
(see text). Note that the skull rotates as if crushing were to 
follow, but that activity in the LAB V and SRC, and adduc­
tion of the pharyngeal bones, are omitted. Subsequently, the 
PCE and SRC muscles intensify the preparatory stroke, the 
buccopharynx is extremely compressed, and food is allowed 
to the teeth. In this first crushing cycle the pellet is broken 
into pieces (arrow). Vertical lines as in Figure 10. Symbols 
correspond to Figure 8a. 

mastication. 
Grinding cycle. Clockwise rotation (R1) as 

well as protraction of the pharyngeal bones in 
the preparatory stroke is caused by activity in 
the PCE and SRC muscles (Fig, 10); the PCE 
also abducts (R2 and R3) the pharyngeal bones. 
The protraction is supported by activity in the 
muscular chain adductor mandibulae (A2A3)-
protractor hyoideus (PRH)-sternohyoideus 
(STH) (Fig. 14) in the pharyngeal floor, which 
protracts the hyoid and the pectoral girdle and 
moves the pharyngeal floor to the food and the 
lowered base of the skull. The PCI A and PCIP 
muscles cooperate in these actions. Activity in 
the posterior pharyngeal roof (Fig. 9) will aid in 
the manipulation and transport of food caudad 
into the expanding posterior pharynx. The de­
pression of the skull is mainly effected by ac­
tivities in the A2A3 and probably also by other 

http://compnant.phar.tz
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Fig. 14. Typical activity pattern of pharyngeal bone, 
head, and body muscles during a grinding cycle as computed 
from more than 30 experiments, each with numerous masti­
catory sequences. Where the activity in crushing cycles (c) is 
different from grinding cycles, this is indicated. Timing of 
the activity periods was related to the limits of LAB V 
activity (réf.). Three intensity levels are distinguished by the 
height of the blocks. Black bars indicate regular activity 

(>67%), dotted bars frequent (67-33%), and open bars oc­
casional or maximal activities (<33%). Subdivision of the 
grinding cycle is extrapolated from simultaneous 
movements. The transition from the crushing phase into the 
grinding phase during the crushing cycle is marked by thin 
vertical bars. Note the sustained activity of the PCE in the 
powerstroke; this muscle balances the activities of multiple 
masticatory muscles. 
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head muscles compressing the buccopharynx. 
At the end of the preparatory stroke, the activ­
ity in the PCE decreases in favor of the antago­
nistic TV V muscle (Fig. 18); this results in ad­
duction of the pharyngeal bones and in a more 
functional dorsad, instead of mediad, pointing 
of the crushing A I and other teeth. Consider­
able variation in the presence and timing of low 
activity periods was observed. 

During the power stroke nearly all muscles 
are highly active. First, during the crushing 
phase, the pharyngeal bones are lifted by the 
LAB V and to a lesser extent by the CP mus­
cles. This crushing movement is extended and 
powered by moderate activity of the epaxial 
muscles (EPAX) that lift the skull. Thereby, 
also the origin of the LAB V is lifted but not 
the chewing pad, because this pad lies close to 
and directly ventral of Rv. In addition the LAB 
V, ROPI and CP muscles rotate (R1) the pha­
ryngeal bones slightly anticlockwise. Increas­
ing retraction components of the ROPI are in­
itially counteracted by the SRC, ensuring 
occlusion of the A I teeth at the anterior zone 
of the chewing pad (see Fig. 2b, the impres­
sions of the A I teeth). The posterior part of the 
pharyngeal roof (Fig. 9) acts in fixing the food 
in front of the teeth (Fig. 17b; frames 422-441) 
and in preventing the escape of crushed bits to 
the anterior pharynx. Both TV V, ROPI, and 
ROPS and probably the obliquus posterior 
muscles (not measured) strongly adduct (R2 

and R3) the pharyngeal bones and thus support 
the crushing. The PCE muscles remain active 
throughout the power stroke though the ampli­
tude is reduced (Fig. 9) and they oppose lifting, 
rotation, and adduction movements of the pha­
ryngeal bones. 

During the grinding phase of the power 
stroke, the LAB V and CP remain active; the 
activity in the EPAX increases, thus maintain­
ing a strong lifting force on the skull and pha­
ryngeal teeth. When the activity in the SRC 
ceases, the retraction components of the ROPI 
predominate and the dorsal processes of the 
pharyngeal bones abut and then rotate against 
Baudelot's ligaments between skull and pec­
toral girdle. Thus a new rotation axis R4 is 
created (see ROPI in Fig. 7). The LAB V and 
ROPS muscles maintain the dorsal tips of the 
pharyngeal bones against the ligaments. This 
rotation around R4 is intensified by activity of 
the PCIP muscles, which apply the pharyngeal 
bones as levers, and it is facilitated by depres­
sion of the pharyngeal floor by the STH and oc­
casionally the PCIA muscles (Figs. 14,15). The 
caudodorsad grinding movements of the teeth 

oppose the rostroventrad rotating chewing 
pad (Fig. 12) and are powered by the hypaxial 
body muscles (HYPAX; see Fig. 9). The latter 
retract the pectoral girdle and thus transmit 
their force through the PCIP to the pharyngeal 
bones and teeth. A shift in activity from the 
TV V to the PCE muscles (Fig. 18) and the slid­
ing of the dorsal processes laterad along 
Baudelot's ligaments (see Fig. 7, action PCIP) 
may well cause abduction of the pharyngeal 
bones. This lengthens the grinding stroke of 
the teeth, as shown by the abrasion facets on 
the chewing pad (Fig. 2b). Adducting compo­
nents of the ROPI, ROPS, and CP muscles in 
the grinding phase counteract this effect. In 
contradistinction to the name and to the com­
mon opinion, the main function of the ROPI is 
adducting the pharyngeal bones (crushing 
phase) and rotating them, owing to the pres­
ence of Baudelot's ligaments (grinding phase). 
Pure retraction of the dorsal tips has hardly 
been measured during mastication (cf. Sib-
bing, '76: Fig. 1). 

Termination of activity in most masticatory 
muscles indicates the s tart of the recovery 
stroke (Fig. 14), but some muscles (PCIA, 
PCIP, STH, HYPAX, EPAX) may continue to 
be active for another 20-30 msec. The rotation 
of the skull and pharyngeal bones lasts even 
longer (Fig. 10), owing to a delay between the 
action potentials measured and the resulting 
tension or mechanical output in the construc­
tion. This is discussed later. Return of the pha­
ryngeal bones during the recovery stroke to an 
intermediate position that permits reorienta­
tion or transport of food is effected by the PCE 
that acts as a key antagonist and by the elastic 
recoil in muscles and ligaments. The return is 
accompanied by protraction of the pectoral 
girdle and depression of the skull. Apart from 
the A2A3 and PRH, other adductors in the 
buccal and pharyngeal walls will participate in 
these effects, but these have not been 
investigated. 

Crushing cycle. The movement and EMG 
profile of the crushing cycle can easily be de­
rived from the grinding cycle, through an ex­
tension of the crushing phase and shortening 
the grinding phase (Figs. 10, 11, 14). During 
mastication of hard maize, the crushing by the 
fish can even be heard. Lifting of the pharyn­
geal bones in the crushing phase is preceded by 
powerful protraction of the hyoid and pectoral 
girdle and compression of the anterior pharynx 
(A2A3-PRH-STH, and PCIP-PCIA) in the 
preparatory stroke (Fig. 13, cycle I; Fig. 14). 
This mechanism also expands the posterior 
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Fig. 15. In contrast to the mastication of worms, masti­
cation of barley starts, in the same experiment, with a series 
of crushing cycles (c); these lack high activity in the PCIP, 
STH, and PCE muscles in the power stroke (arrows) and 
show increased PCIA activity in the preparatory stroke. Ac­
tivity patterns in grinding worms or barley are similar. The 

short interruptions in the LAB V and ROPI activities (see 
• ) probably reflect momentary adjustments to the food. 
Note the repetitive activity in the LOP and pharyngeal floor 
muscles (PCE, PCIA, PCIP, STH), prior to the first mastica­
tory cycle of worm and accompanying the transport of food 
to the teeth. 
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pharynx widely and thus allows the passage of 
large particles between teeth and chewing pad. 
Adduction of the pharyngeal bones (R2 and R3) 
is as extensive as during grinding, but abduc­
tion scarcely occurs in the power stroke; this 
explains the sustained TV V activity and the 
lack of high activity in the PCE and PCIP in 
the power stroke (Figs. 14, 15). During the 
grinding phase of the crushing cycle, rotation 
of the pharyngeal bones around Baudelot's 
ligaments (R4) hardly occurs; this agrees with 
the absence of high PCIP activity. In addition, 
the retraction of the pectoral girdle (HYPAX), 
depression of the pharyngeal floor (STH and 
PCI A), lifting of the skull (EPAX), and conse­
quently expansion of the anterior pharynx are 
only small in the crushing cycle (Fig. 11). 

During the preparatory stroke of the crush­
ing cycle, the STH and PCIP muscles can act 
as protractors of the pectoral girdle, because 
the jaws are adducted and the hyoid arch and 
pharyngeal bones are protracted. In the power 
stroke of the grinding cycle, these muscles act 
as retractors of the hyoids and depressors of 
the pharyngeal floor, as the pectoral girdle is 
retracted. 

A time lag occurs between the end of electri­
cal activity and the peak of mechanical events 
(e.g., pharyngeal bone/skull rotation in Figs. 
10, 11). Miller ('66), and Ahlgren and Öwall 
(70) reported 100 msec for such a lag during 
mastication in man. Desmedt ('58) observed 
that muscular tonus lasts 150 msec longer 
than electrical activity. Inman et al. ('52) found 
a value of 80 ± 20 msec, and Hannam et al. 
(75) 73 ± 12 msec for the delay in man between 
the peak of electrical activity and the peak of 
muscular tension. The value measured for mas­
tication in the carp, a time lag of 40-80 msec, 
fits these data. Because masticatory cycles 
commonly last between 600 and 900 msec, this 
delay does not affect the interpretation of the 
EMGs by more than other factors, such as 
elastic recoil. 

5. EMG variations in the course of 
mastication 

As the particle size and consistency of the 
food change continuously during mastication, 
adjustments in the processing of food are ex­
pected. 

Crushing precedes grinding in a mastica­
tory sequence (Figs. 9, 10, 13, 15) as well as 
within the individual cycle. Many cycles with 
an intermediate profile occur. Crushing is far 
less frequent and even absent during mastica­
tion of soft food (Fig. 15), whereas grinding 
is common. 

During the early part of a masticatory train, 
much power is needed. Masticatory cycles are 
short and muscles are highly active (Fig. 9). 
Muscles that contract in the preparatory 
stroke may already be active in the recovery 
stroke. In the course of the masticatory se­
quence the activity diminishes to an intermedi­
ate level (shown in Fig. 14) characterized by 
continuous activity in the PCE only. Finally 
the activity of the PCE between successive 
power strokes breaks up and a masticatory 
pause is interposed (Fig. 9). Overall reduction 
of the activity level is seen in this final part of 
the masticatory sequence, accompanied by the 
more frequent occurrence of isolated cycles 
and masticatory pauses. Only periods of activ­
ity with high amplitudes in the early phase of 
mastication are still observed. This probably 
reflects the diminished force in the individual 
cycle and the smaller velocities of movement, 
as the desired particle size is attained. 

6. The influence of the type of food on 
mastication 

Feeding various foods in the same experi­
ment produced different EMGs (Fig. 15), and it 
further justified the distinction of crushing 
and grinding cycles. Mastication of soft worms 
requires only grinding cycles with activity of 
the PCIP, PCIA, STH, and HYPAX muscles 
in the power stroke. If hard and compact bar­
ley is fed, grinding cycles are preceded by 
crushing cycles, without the activity of these 
specific muscles. The grinding cycles after 
feeding of worms and barley are similar and 
correspond to the typical pattern. Fewer cycles 
are observed in mastication of soft worms, 
compared with hard barley, which may cause 
mastication to last for minutes. No detailed 
knowledge exists about the sensory system 
t h a t d e t e c t s t he differences in food 
consistency. 

7. Mastication and respiration 

Mastication incorporates the respiratory 
movements. This is concluded from a compari­
son of the opening of the mouth, the volume 
changes in the buccopharyngeal cavities, the 
abduction of the opercula, and the activities in 
the LOP and pharyngeal floor muscles during 
mastication and normal respiration (Figs. 11, 
16). Expiration coincides with the recovery 
and preparatory strokes and even continues in 
the crushing phase of the power stroke; this is 
inferred from the pharyngeal compression and 
opercular adduction (Fig. l lc,d,e) (Ballintijn, 
'69a). Inspiration coincides with the remainder 
of the power stroke. The duration of the masti-
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catory and the normal respiratory cycle lie in 
the same range (about 0.8 second). Compared 
with normal respiration, the inspiratory phase 
during mastication is halved, and the expira­
tory phase is doubled (Fig. 1 le). The kinetics of 
mastication dominate respiration (compare 
Figs. 10, 16). 

These data are explained by the structural as 
well as the functional coupling between respi­
ration and mastication. The extensive rota-
tations of the pharyngeal bones during masti­
cation, especially in grinding, can only be 
realized through concomitant movement of the 
pharyngeal floor. This movement triggers the 
volume changes in the buccopharyngeal and 
opercular cavities that are larger than in nor­
mal respiration (Fig. 16). The functional 
coupling between mastication and respiration 
is also demonstrated by the activity in 
pharyngeal bone muscles during strong inspi­
ration (ROPI often, LAB V frequently, and 
PCE-PCIP occasionally active), and by the 
activity of muscles that function in hyperven­
tilation (Ballintijn, '69a) during the power 
(LOP, STH, HYPAX) and the preparatory 
strokes (A 2A 3 -PRH-STH-TV IV) of mastica­
tion (cf. Fig. 17a). 

During quiet respiration the fifth branchial 
or masticatory arch acts as an integrated part 
of the branchial basket and moves only slight­
ly (Fig. 16). The pharyngeal bones perform no 
intrinsic movements. At hyperventilation, the 
pectoral girdle and hyoid arch are retracted, 
the pharyngeal floor is depressed, and pharyn­
geal bone rotation is more extensive. The skull 
rotates only slightly (1.5°) and plays a minor 
role in the large buccopharyngeal expansion. 
During mastication this expansion is equally 
large but results from the lifting of the skull 
(7°) rather than from lowering of the pharyn­
geal floor. The absence of activity in the E PAX 
and strong activity in the STH at hyperventi­
lation fits in this picture. During mastication 
the pectoral girdle and pharyngeal bones ro­
tate further; only then the bones perform ad-
ducting movements. 

8. Food intake, transport, and deglutition 

Transport of food to the teeth, documented 
by X-ray movies with radiopaque (barium sul­
fate impregnated) food pellets (Fig. 17), is sub­
divided into three distinct phases: 

a. The rapid intake (50 cm/sec) by suction, 
which passes the food through the buccal cav-
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Fig. 16. Comparison of quiet respiration (R), hyperventi­
lation (HV), and mastication (M). Symbols correspond to 
Figure 8a. Bars at the right aid in comparing the ampli­
tudes; black parts indicate the share of the skull. Note the 
equally large expansion of the buccopharyngeal cavities, 

caused by floor movements in hyperventilation, and by skull 
movements mainly in mastication. The shape of these 
curves differs from those during mastication (cf. Fig. 10). 
Pharyngeal bone movements participate in hyperventila­
tion, in, inspiration; ex, expiration. 
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ity until it is caught between the roof and floor 
of the anterior pharynx (Fig. 17; frames 15-20). 
The flow of water continues laterad through 
the branchial filter. 

b. Further caudad, t ransport is effected by 
the peristaltic bulging of the pharyngeal pad 
(frames 81-115), observed in a freshly killed 
fish, and caused by repetitive activity in the 
pharyngeal roof (Fig. 9). The only area in the 
pharyngeal floor that is markedly muscular 
lies right in front of the teeth and cooperates in 
this propulsive action. Mucus produced by the 
pharyngeal epithelium reduces the transport 
resistance. During this second transport phase 
the pharyngeal floor often makes repetitive 
vertical movements and the transport of food 
occurs only stepwise, when the depressed pha­
ryngeal floor is lifted (measured from X-ray 
movies). The simultaneous repetitive activity 
of the PCE and other pharyngeal floor muscles 
(Figs. 9, 15) and the clockwise rotation of the 
pharyngeal bones indicate that the posterior 
pharynx tends to expand. (Repetitive expan­
sion of pharyngeal and opercular cavities prior 
to the food transport functions probably in 
cleaning the food, because waste particles ap­
pear from the opercular slits.) The food finally 
reaches the rostral margin of the chewing pad 
(see frame 115), wedged between the two mus­
cular pads, and is stored there. 

c. Usually food is propelled directly into the 
expanding posterior pharynx between teeth 
and chewing pad (see frames 232-272). This 
transport phase is continuous with the in­
tensive preparatory stroke of the first mastica­

tory cycle and effected by the same mechanism 
(cf. PCE activity in Fig. 17). 

Food pellets that are too large to chew as a 
whole, are crushed first, then ground as sepa­
rate bits (last cycle, frames 422-430) and trans­
ported into the esophagus (frames 436-441). 
The remainder of the pellet lies at the rostral 
margin of the chewing pad, or occasionally 
further rostral in the pharynx, where it is 
stored to be crushed later. 

Masticatory trains are usually completed by 
some short masticatory cycle, in activity as 
well as in movement of low amplitude (Figs. 9, 
10, 17). This typical pattern (Fig. 18) always 
coincides with food transport into the short 
vertical esophagus (compare Fig. 17; frames 
436-441) and characterizes the deglutition 
stroke. Most distinct, in comparison with a 
crushing cycle of low amplitude, is the sustain­
ed high activity in the posterior part of the 
pharyngeal roof (Fig. 9) and the even higher 
activity in the constrictor pharyngis muscle 
(Fig. 18). Thus, deglutition of the ground and 
lubricated food probably results from contrac­
tion of the wall of the posterior pharynx, facili­
tated by a small concomitant movement of the 
pharyngeal bones. Activity in the constrictor 
pharyngis muscle might continue into the 
esophageal peristalsis. Escape of the food to 
the anterior pharynx is blocked by the bulging 
of the muscular pads in front of the chewing 
pad and the teeth. The deglutition stroke is 
commonly followed by the recovery activity of 
the PCE and a short masticatory pause; then 
another train is initiated, breaking off another 

> scenes, b. X-ray cinerecording of the successive feeding ac 

Pig. 17. a. EMG record of the feeding process depicted in 
panel b (numbers refer to the X-ray frames). The activity 
pat terns are characteristic for food intake, transport, and 

. j ieglutition, as appears from Figure 17b and many other 
MJons in the carp (26 frames per second). Black markers cor­

respond to Figure 8a. Feeding s tar ts with rapid intake (50 
cm/sec) of the radiopaque (BaSO(-impregnated) food by suc­
tion. Note the expanding buccopharynx (frames 15-20). 
Later, the food is transported more slowly through the ante­

rior pharynx to the rostral margin of the chewing pad 
(frames 81-115), and finally into the expanding posterior 
pharynx, between teeth and chewing pad (frames 232-272). 
The latter t ransport is continuous with the intensive prepar­
atory stroke of the first masticatory cycle. After the last 
grinding cycle (frames 422-430) the masticatory train is 
completed by deglutition (frames 436-441) (see arrows). The 
remainder of the pellet s tays at the rostral margin of the 
chewing pad. 
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Fig. 18. Activity pattern of the pharyngeal bone muscles 
during deglutition, following a grinding series. Deglutition 
resembles a crushing cycle of low amplitude. Note, however, 
the sustained high activity in the PCE and the increased ac­
tivity in the constrictor pharyngis muscle. 

piece. Occasionally the masticatory pause 
lasts longer and repetitive activity is observed 
that resembles the pattern after initial suction 
of the food. This indicates that food, stored in 
the anterior pharynx, is transported towards 
the chewing pad. 

DISCUSSION 

The primary functions of a masticatory ap­
paratus are to reduce the particle size of the 
food, in order to expose a larger area to the di­
gestive enzymes, and to reach nutritive mate­
rials contained within hard or indigestible 
shells. The masticatory apparatus is also in­
volved in mixing, lubricating, and transport­
ing food. I ts supporting role in respiration is 
discussed. 

The masticatory effect depends mainly on 
the hardness, the profiles, and the relative 
movements of the occlusal surfaces, and on the 
properties of the food. A multiplicity of terms 
is used to characterize the masticatory process 
(tear, crush, grind, grasp, mince, lacerate, cut, 
penetrate, shear, puncture, triturate). Defini­
tions, however, are mostly insufficient or even 
lacking. Therefore, some principal operations 
are defined below and, in advance, terms that 
describe material properties are outlined 
briefly. 

Definitions of masticatory terms 

The profile of the occlusal surfaces and the 
direction of their relative movement determine 
the type of load: compression, tension, sliding, 
bending, or torsion. Materials are unequally re­
sistant to the different loads; qualifications as 
hard and soft indicate the amount of stress 
that a material can bear before fracturing, but 
they require load specification. If the strain at 
a given stress is high, the material is elastic; if 
it is low the material is stiff. When it yields ex­
tensively before fracturing it is tough; other­
wise it is known as brittle. The high strain that 
elastic and tough materials require for fractur­
ing demands extensive excursions in the 
comminuting machinery. 

Material properties of natural foods have 
never been specified and the properties of com­
posite materials cannot simply be deduced 
from the separate components. Therefore, only 
a rough deductive approach can be made to the 
relation between the masticatory construction 
and food properties. 

Masticatory operations 

In accordance with Rensberger ('73) four 
masticatory operations are distinguished 
(Fig. 19): 

Crushing. One or both parallel smooth areas 
approach at right angles to their surfaces. 
Compression is the main load. Stresses are in­
versely related to the area of contact. Crushing 
is applied to stiff and brittle materials of differ­
ent hardness and shape. 

Cutting. One or both parallel areas, one 
smooth and the other provided with ridges, ap­
proach at right angles to their surfaces. Com­
pression is the main load. Stresses are high 
because of the small area of contact. The 
deformation capacity is proportional to the 
height of the ridges. Cutting is applied to hard 
ma te r i a l s of mode ra t e e l a s t i c i ty and 
toughness. 

Shearing. One or both parallel areas, each 
provided with ridges, approach at right angles 
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Fig. 19. Four types of diminution, distinguished by the 
occlusal profiles and their movements (arrows). They in­
volve different loads (see text). At the bottom the occlusal 
system of the carp is schematized. Note the structural and 
functional ability to crush and grind in the carp, and the in­
ability to shear. 

to their surfaces. Opposite ridges closely pass 
each other and effect compression, sliding, and 
tension. Owing to the very small area of con­
tact, stresses are extremely high. Deformation 
capacity is large and proportional to the sum­
marized height of the ridges. Shearing is ap­
plied to hard, elastic, and tough materials. 

Grinding. One or both contacting rough 
areas move parallel to each other. Sliding and 
tension are the main loads. Compressive 
stresses are moderate, owing to the numerous 
but small areas of contact, and they play a sec­
ondary role. Contacts change continuously; 
the deformation capacity is high and propor­
tional to the extent of parallel movement. 
Grinding is applied to soft, elastic, tough, and 
fibrous materials or to a multiplicity of small 
particles of varied consistency. 

The almost continuous variation in cyprinid 
pharyngeal teeth and the varied masticatory 
operations that will be performed illustrate 
that the above distinction, in four types, is but 
a first approach. A further differentiation has 
to be made in a future comparative study. 

Occlusal surfaces and types of food 

In the occlusal surfaces of the carp and their 
movements, both crushing and grinding opera­
tions are evident (Fig. 19). There is no ability 
for cutting and shearing, owing to the exten­
sive contact with the smooth chewing pad; 
teeth on both sides do not interdigitate. 

Furrows in the occlusal surfaces and the 
open areas between adjacent teeth permit ex­

tensive deformation, provide a firmer grip on 
the food, and improve fracturing. The sinuous 
shape of the furrows, and their orientation at 
right angles to the direction of grinding (Fig. 
2b), improve grip during transport. The en­
largement of successive generations of crowns, 
from young to old carps, is not accompanied by 
an increase of grip-distance between furrows 
but by a larger number of furrows and it does 
not affect the masticatory operations. The 
pointed center in the crown of the A I teeth 
acts as a chisel for brittle materials and punc­
tures tougher material prior to crushing (see 
Results). Few authors attribute a role in masti­
cation to the A I teeth, because they are dis­
tant from the chewing pad and largely covered 
by mucosal folds. These teeth function, how­
ever, in the vertical movements and crush 
large particles. Besides, the mucosa has been 
proved to contract during the power stroke. 

The flat chewing pad is essential in both 
crushing and grinding. I ts horny substance is 
not so hard and is more easily eroded than the 
dentine of the teeth; the chewing pad, however, 
is renewed continuously by the epithelium 
(Eastman, '70). The grinding path on the chew­
ing pad runs caudolaterad and the effective 
stroke is almost twice as large as the crowns 
(Fig. 2b). Large and stiff food objects are bent 
and fractured by compression at both sides of 
the medial ridge. The chewing pad previously 
was assumed to be motionless; it moves, how­
ever, with the skull. I ts small but powerful ros-
troventrad movement is opposite to that of the 
teeth and intensifies grinding considerably. 

Analysis of occlusion, intestinal contents, 
and feces shows that comminution of arthro­
pods, molluscs, and seeds occurs mainly by 
crushing, followed by grinding the interior 
parts. Fibrous and tough higher plants are 
wedged between teeth and chewing pad; the 
numerous local and continuously changing 
contacts during grinding disrupt the texture 
and wash out the cells. Sand grains that are fre­
quently present in the occlusal furrows aid this 
action. Elastic food such as worms is largely 
resistant to crushing and grinding. Puncturing 
by the A I teeth allows penetration of digestive 
enzymes. I t is highly probable that proteolytic 
enzymes in the crushed cells of invertebrates 
aid in digestion by autolysis (Dabrowski and 
Glogowski, 77). 

The position of the crushing A I teeth, ante­
rior to the grinding teeth, and the timing of the 
crushing movement, prior to grinding in the 
masticatory series and within the individual 
cycle, assure a gross reduction by crushing 
prior to the finer reduction by grinding. In 
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technology, different types of machinery are 
used for diminution of diverse materials and 
even for unequally sized particles of a single 
material. The heterodont carp is provided with 
a masticatory apparatus that integrates crush­
ing, grinding, and puncturing, and fits the 
omnivorous feeding habits. The apparatus evi­
dently is specialized for polyphagy. 

Effective mastication in the larval fish de­
pends on the development of the anatomical 
features and is only possible from the 20th day 
after hatching (Geyer, '37). Subsequently, the 
diet changes and successive generations of dif­
ferently shaped teeth occur (Vasnecov, '39). 
The final shape, as described here, is attained 
only after 10 months. Examination of the ex­
tent to which changes in the diet and in the oc­
clusal morphology, the latter being partly de­
termined by the evolutionary history of the 
species, are functionally coupled is in process. 

There remains the important question: To 
which degree is diminution required for effi­
cient feeding? It has been shown that the lack 
of a stomach in cyprinids. does not affect the 
capability for digestion, at least of proteins 
(Shcherbina et al., '76; Stroband et al., '81). 

Structural and functional design of 
the masticatory construction 

Mastication depends on the mechanism that 
drives the occlusal surfaces. A discussion of 
the force, direction, and extent of the occlusal 
movements, and an examination of the con­
struction driving them, will extend the analy­
sis of form and function to the apparatus as a 
whole. 

Crushing 

Forces at right angles to the chewing pad are 
essential in all masticatory operations. They 
predominate in crushing and are imposed 
mainly through lifting of the pharyngeal 
bones, partly by the LAB V and partly by the 
EPAX muscles (Fig. 20). The transmission of 
forces from the body muscles to the pharyn­
geal bones and teeth explains the conspicuous 
aponeurosis in the interposed LAB V muscle 
(Fig. 5). 

Initially, the LAB V and EPAX contract and 
effect a powerful acceleration of the teeth at 
right angles to the chewing pad. Following the 
length-tension diagram, production of forces in 
the LAB V will decrease if it shortens. Lifting 
of the pharyngeal bone is blocked by occlusion 
at the end of crushing. Continued lifting of the 
LAB V origin with the skull prevents shorten­
ing and must even stretch the LAB V, bringing 

it again to i ts resting length and thereby in­
creasing force production. Owing to the tendi­
nous elements in this muscle, passive tensions 
get increasingly higher during the grinding 
phase and forces imposed on the food are maxi­
mal. Hill ('70) found that the tension produced 
by stretching an active toad muscle, during a 
tetanus, was substantially higher than the 
maximum isometric tension at the stretched 
length. If this applies to the LAB V, forces on 
the food are even higher than already argued. 
The skull provides an extensive origin for the 
LAB V, which has a 33% share in the total wet 
weight of pharyngeal bone muscles and a large 
moment with respect to R1. The high skull pro­
vides an effective lever, and the medial supra-
occipital crista extends the insertion area for 
the epaxial muscles. A similar device on the 
supraoccipital is observed in predatory mam­
mals that use their nuchal muscles in tearing 
pieces off their prey. The mentioned characters 
make the LAB V-EPAX combination an effec­
tive and unique power-providing system in 
mastication. 

Crushing power is further added by adduc­
tion (R2 in Fig. 7) of the pharyngeal bones by 
the ROPI, ROPS, and to a lesser extent the TV 
V muscles, which turn the dorsomediad facing 
occlusal surfaces dorsad. Teeth movements 
are small, owing to their position close to the 
R2 axis, but they increase the imposed force. 

Grinding 

Forces parallel to the chewing pad, essential 
in grinding, are provided by the ROPI, PCIP, 
and the body muscles. Compressive forces are 
maintained during grinding by the lifting and 
adduction of the pharyngeal bones, as dis­
cussed above. 

Parallel forces are exerted as soon as retrac­
tion of the pharyngeal bones is obstructed by 
Baudelot's ligaments. These ligaments were 
never before mentioned in relation to mastica­
tion, but they play a crucial role by forcing the 
bones into rotation (R4; Fig. 7). Owing to the 
position of the teeth ventral to R4, their move­
ment changes from at right angles to the chew­
ing pad in the crushing phase (around R1) into 
parallel to this pad (around R") in the grinding 
phase. Because the teeth lie close to the ful­
crum their excursion is reduced but the applied 
force amplified. (Owing to the muscular sus­
pension of the pharyngeal bones, a large food 
particle may well be the instantaneous center 
of rotation.) The ROPI and PCIP muscles are 
the main instigators of the rotation around 
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Fig. 20. The body muscles of the carp provide the power 
in crushing and grinding (indirect masticatory musclesl. 
Epaxial muscles rotate the skull effectively dorsad, and 
thereby lift the pharyngeal bones and teeth to the chewing 
pad through the interposed tendinous LAB V muscles 
(heavy dotted). The pad itself is not lifted and moves mainly 
rostrad. (Black center of rotation, black arrows.) The hypax-
ial muscles retract the pectoral girdle effectively. Their 
forces are transmitted to the pharyngeal bones and teeth by 
the tendinous PCIP muscles and are added in grinding. The 
ligament between skull and pectoral girdle obstructs pha­

ryngeal bone retraction dorsally, acts as a fulcrum, and ef­
fects rotation with the bones as long levers. (Open centers of 
rotation, open arrows). As a combined result, teeth and 
chewing pad move parallel, but in opposite directions, and 
wedge the food under high compression. Grinding move­
ments are small but powerful. The extensive movements of 
the pharyngeal bones are permitted by simultaneous expan­
sion of the buccopharynx and a slide-coupling in the 
branchial floor. Direct masticatory muscles that suspend 
the pharyngeal bones in muscular slings and steer these 
movements are omitted in this scheme. 

Baudelot's ligament (R4). The PCIP muscles 
apply the horizontal limb of the pharyngeal 
bone as lever and these limbs extend ventrad 
even under the basibranchials. The effect of 
PCIP action is greatly extended in force and 
amplitude by the powerful hypaxial body mus­
cles that most effectively retract the pectoral 
girdle (Fig. 20) and thereby the origins of the 
PCIP muscles. The medial part of the PCIP is 
even continuous with the HYPAX. The trans­
mission of body power to the pharyngeal bone 
and teeth is reflected in the massive PCIP 
tendon (Fig. 5) and in the extensive cross sec­
tion at the origin on the cleithrum; this is 
analogous to the role and architecture of the 
LAB V (see above). 

The excessive rotation of the pharyngeal 
bones is allowed by the slide-coupling between 
basibranchial I I I and the anterior cartilage 
(Figs. 5, 20) and is supported by concomitant 
depression and retraction (PCIA, STH, 
HYPAX) of the pharyngeal floor. Gosline (77) 
supposes the cleithra in cyprinids to be rela­
tively motionless; these data prove that they 
rotate (8°) with respect to the skull. These re­
sults also exemplify the idea of Nelson ('69) 
that the consistent division in the basi­
branchial series between the third basi­
branchial and the posterior copula in lower 

teleosts increases the potential of lower pha­
ryngeal bone mobility. 

Rotations around R2 and R3 add forces paral­
lel to the chewing pad; initially these act 
mediad (ROPI, ROPS, TV V, and OP) but, as 
grinding proceeds, more laterad. The caudo-
laterad sliding of the dorsal processes along 
Baudelot's ligaments guides the pharyngeal 
bones into abduction (Fig. 7), especially by ac­
tion of the PCIP; this lengthens the effective 
stroke. Retraction of the lateral at tachments 
of these ligaments with the pectoral girdle co­
operates in generating this abduction. 

The epaxial muscles rotate the posterior part 
of the chewing pad increasingly rostroventrad 
(Fig. 20); in combination with the opposite 
teeth movements this intensifies sliding and 
compression in grinding. 

I t is evident tha t the design of the mastica­
tory apparatus favors the transmission of 
forces of the dorsal and ventral body muscles 
to the small contact areas between food, teeth, 
and chewing pad. The pharyngeal bone mus­
cles in the carp steer the masticatory move­
ments and adjust the application of forces. 

Analysis of the anatomical data is basic in 
defining the action of the pharyngeal bone 
muscles (Fig. 7), but their role in mastication 
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appears only from a functional analysis. The 
concert of pharyngeal bone, skull, and pectoral 
girdle movements affects the lines of action 
and the range of movements. Besides, axes of 
rotation may shift. Moments of the PCIP and 
TV V muscles, for example, increase during the 
motion they aid to perform. The STH muscles 
act as protractors in the preparatory stroke 
and as retractors during the grinding stroke. 
Furthermore, the ROPI muscles rather rotate 
and adduct the pharyngeal bones, more than 
their name would suggest. The PCIP appears 
to be one of the major, though indirect, ab­
ductors. The ROPS and TV V muscles play a 
concealed role in stabilizing the masticatory 
movements. 

Suspension and structure of the pharyngeal 
bone 

The pharyngeal bones are suspended from 
the skull in muscular slings (Kallen and Gans, 
72; Liem, 78) held in constant tension by some 
of the muscles (e.g., the PCE in Fig. 9). Com­
bined with a movable symphysis and a slide-
coupling in the pharyngeal floor, this suspen­
sion permits highly versatile and complex 
movements. The LAB V, ROPI, PCIP, PCE, 
and SRC muscles control the pharyngeal bone 
movements in the sagittal plane, whereas the 
LAB V, ROPI, TV V, PCE, and OP muscles co­
operate in the transversal plane. The essential 
role of the ROPI in each of these systems may 
account for the unique presence of such retrac-
tores in cyprinids among lower teleosts (Holst-
voogd, '65; Rosen, 73). 

In the grinding phase Baudelot's ligament 
acts as a fulcrum and the pharyngeal bone is 
applied as lever. The pharyngeal bones provide 
areas of insertion and rotation axes at such 
sites that muscles form effective rotation 
couples. This renders the shape of the pharyn­
geal bone suited to accumulate power in masti­
cation. Thus the LAB V, ROPI, and PCIP 
muscles, for example, although having com­
pletely different positions and lines of action, 
all contribute to rotation (R4) of the bones in 
the grinding stroke. Because teeth are close to 
the R2 and R4 axes during grinding their move­
ment is small but forceful. 

The direction of the trabeculae in bony ele­
ments will reflect the direction of loading 
(Kummer, '62). The orientation of the distinct 
trabeculae in the basioccipital process sug­
gests that they spread forces, imposed on the 
chewing pad, over the base of the skull and the 
exoccipitals and thus reduce excessive local 
stresses. In a similar way the trabeculae radi­

ating from the toothed center of the pharyn­
geal bone (Fig. 2a), as well as the anterior limb 
extending rostroventrad from the A I teeth, 
spread reaction forces on the occlusal surfaces 
of the teeth over the bone. The angle of about 
65 ° between the anterior limb and the occlusal 
surfaces of the teeth may well be a compromise 
in absorbing loads varying between perpen­
dicular and parallel to the occlusal surfaces. 

The free suspension of the pharyngeal bones 
raises the need for stabilizing the powerful 
movements. Muscles act bilaterally and antag­
onistic muscles are synchronously active. A 
disturbed balance in the movement and load of 
left and right pharyngeal bone, induced by ir­
regularities of the food, will be corrected by the 
adjustments in the muscular sling (e.g., ROPI 
and LAB V against PCE in Fig. 15). Such an 
unbalance loads the symphysis mainly by slid­
ing. Because the interpharyngeal ligaments lie 
almost parallel to the longitudinal axis (Fig. 6, 
max. 30°), they provide more resistance to 
such sliding load than to tensile forces bring­
ing the pharyngeal bones apart. Rotation 
around the R2 and R3 axes (Fig. 3) causes com­
pression and tension in the symphysis; these 
stresses will be absorbed by the symphyseal 
tissue. Owing to the movable symphysis, tor­
sion of the bones will hardly occur. Excessive 
rotations around R2 and R3 are prevented by 
the interpharyngeal ligaments, by TV V activ­
ity, and by the closely joined, flat medial sides 
of the symphysis, which abut at large rota­
tions. Some other muscles may aid in stabi­
lizing by effecting compression or tension in 
the symphysis (see A2 and A3 axes in Fig. 7). 
The role of the TV V in the carp appears to 
be analogous to that of the transversus man-
dibularis muscle in the rat (Beecher, 79) in re­
ducing the loading of the symphysis. The long 
symphysis in the carp, in comparison with 
most other cyprinids, may emphasize the large 
forces applied in this fish. 

Differentiation and regulation of 
masticatory activities 

Direct and indirect masticatory muscles 

The different roles of the masticatory mus­
cles are analogous to those of the direct and in­
direct flight muscles of insects: Muscles direct­
ly attached to the bony (chitinous) elements 
steer the movement, and the power is supplied 
indirectly by body muscles. Among steering 
muscles a further differentiation is made. The 
LAB V and ROPI still add significant power, 
as appears from their weight. In addition, the 
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LAB V and PCIP have a conspicuous role in 
t ransmitting forces from the body muscles to 
the pharyngeal bones. Other direct mastica­
tory muscles, and especially the ROPS, rather 
stabilize and steer. Free recovery movements 
of the unloaded pharyngeal bone are achieved 
by the PCE; this muscle counteracts a multi­
plicity of movement components and func­
tions as a prime antagonist in pharyngeal mas­
tication. Masticatory movements are guided 
passively also by Baudelot's ligaments. A 
comparison of the fiber types in the pharyn­
geal bone, head, and body muscles in relation 
to their different roles in mastication is made 
(Akster and Sibbing, in press). 

The time sequence in recruitment of the mas­
ticatory muscles in crushing and grinding 
shows a stable pattern and is independent of 
the particle size and the type of food (Figs. 9, 
15). The duration of the cycle is negatively re­
lated, and the forces generated (as judged from 
the EMG amplitude) are positively related, to 
the intensity of crushing and grinding. The 
ability to chew various foods is determined by 
the multifunctional structure of the occlusal 
surfaces (Fig. 19) and by the two preprogram­
med activity patterns rather than by drastic 
changes in these patterns. The experiments do 
provide examples of detailed neural regulation 
within a masticatory cycle. The balancing of 
activities between antagonistic muscles 
functions to improve the masticatory efficien­
cy by maintaining a critical pressure that 
needs not be higher than required by the mate­
rials and must be instantly reduced when frac­
turing is reached. Transition from crushing 
into grinding, balancing of antagonistic activi­
ties, and instantaneous adjustments to the 
food (Fig. 15) thus are the active modulations 
in the stereotyped pattern. 

The intensity and duration of the mastica­
tory sequence should be regulated by sensory 
information; mastication of worms lasts only 
seconds, whereas chewing of barley lasts min­
utes. Regulation is mediated by the nervus 
vagus innervating all pharyngeal bone mus­
cles. Proprioceptive reflex chains, similar to 
those demonstrated for respiration in the carp 
by Ballintijn ('72), may include pressure recep­
tors; these are expected to be present, for ex­
ample, in the connective tissue between chew­
ing pad and the basioccipital process. Sensors 
in the ROPI muscles or in Baudelot's liga­
ments might trigger the initiation of the grind­
ing pattern. 

Experiments in which the fish accidently 
fails to bring a large food pellet between teeth 

and chewing pad reveal some of the normal 
regulatory mechanism. The LAB V and SRC 
muscles are not activated (Fig. 13), as would be 
expected in a normal cycle, and the activity in 
the PCE muscles is prolonged; adduction of 
the pharyngeal bones does not start. Appar­
ently, proprioceptive information prevents a 
normal continuation of the cycle. Lifting of the 
skull takes place, however, as if crushing were 
to follow. The powerful indirect masticatory 
muscles, innervated by spinal nerves, appear 
more distantly involved and continue their 
preprogrammed activity once this has been 
initiated. 

Interaction of mastication with food 
transport, respiration, and other 

functions in the head 

It has been postulated that "the pharyngeal 
mechanism moves independently of the sur­
rounding cavity" (Gosline, 77:334) and that 
mastication "need not interrupt respiration" 
(Alexander, '67:108), since the pharyngeal 
teeth in the carp lie posterior to the gills. How­
ever, it is clear that mastication and respira­
tion are intimately coupled; they permit and 
even support each other. The kinetics of masti­
cation dominate respiration (Figs. 10, l i e , 16). 

During grinding, the vertical buccopharyn­
geal expansion largely results from the lifting 
of the skull; during hyperventilation the ex­
pansion is equally large but is mainly caused 
by depression of the pharyngeal floor. The lat­
ter consists of multiple components and per­
mits a more accurately adjusted flow of water 
along the buccopharynx than movements of 
the rigid skull could provide. Large volume 
changes are considered to be more a conse­
quence than an aim in mastication. 

The frequency of masticatory movements in 
the carp is about equal to the frequency of 
respiration and probably is triggered by a simi­
lar central generating center. The functional 
coupling between these two processes in the 
carp may have been facilitated by the common 
origin of respiratory and masticatory elements 
in the branchial arches. 

Transport of food to the pharyngeal teeth 
and esophagus is effected by different mecha­
nisms (see Results, Fig. 17). Food is sucked in 
with water and trapped between the pharyn­
geal pads, which act like a muscular tongue 
and propel it caudad to the teeth. No teeth oc­
cur in the anterior buccopharynx. The repeti­
tive movements of the pharyngeal floor proba­
bly act in gustation, selecting and cleaning the 
food. The transport of food from the teeth to 
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the esophagus, deglutition, is effected by the 
constrictor pharyngis aided by the pharyngeal 
bone muscles; this was not previously recorded 
and depicted in fishes. 

Cardiac function and pharyngeal bone move­
ments may well be coupled, as the horizontal 
limbs form the pericardial roof. Furthermore, 
the proximity of the Weberian ossicles "impose 
even greater than usual restriction on the flexi­
bility between head and anterior vertebrae" 
(Gosline, 77:332). The Weberian ossicles, how­
ever, almost coincide with the rotation center 
of the skull and this minimizes their move­
ment. The chain-like arrangement of the ossi­
cles will be a necessity allowing skull move­
ments during mastication and yet maintaining 
a connection between perilymph? and swim-
bladder. The position of the os Suspensorium 
(Fig. 1) and the attached swimbladder pre­
vents a further caudad extension of the basioc-
cipital pharyngeal process and thus restricts 
the area of attachment for the ROPI muscles. 
The laterad movements of the molars against 
the chewing pad might be seen as a lengthen­
ing of the effective grinding stroke, given this 
restriction in space of the pharyngeal 
apparatus. 

Thus the localization of the masticatory ap­
paratus among those for respiration, hearing, 
and blood transport in the structural pattern 
of the head necessitates their functional and 
structural coordination during evolution. 

Pharyngeal mastication in cyprinids 
and higher teleosts 

It is assumed that the buccopharyngeal cav­
ity was primitively covered by numerous small 
tooth plates that functioned in seizing and 
swallowing large prey. Fusion subsequently 
led to enlarged tooth plates in areas of particu­
lar functional significance such as jaws, basi-
branchials, and the posterior gill arches (Nel­
son, '69). In lower teleosts a grasping type of 
dentition that includes separate upper pharyn­
geal tooth plates 4 and 5 seems to be normal. 
Subsequently, in higher teleosts, tooth plates 
fused to the gill arch elements and the den­
tition specialized (Nelson, '69). This trend re­
sulted in a single pair of toothed areas, mainly 
the infrapharyngobranchials 3, which were 
equipped with retractores arcuum branchial-
ium muscles, typical for all higher teleosts 
(Neoteleosts; Rosen, 73). 

However, some Ostariophysi deviated from 
the general lower teleostean pattern (Nelson, 
'69). The pharyngeal jaw system in cyprinids, 
for example, is highly advanced and toothed 
upper pharyngeals are completely lacking. 
Retractor muscles, commonly absent in lower 
teleosts, insert on the lower pharyngeals. 

These muscles are not homologous to the re­
tractors found in higher teleosts (Holstvoogd, 
'65; Rosen, 73). 

Liem and Greenwood ('81) recently treated 
pharyngeal jaws in several acanthopterygian 
assemblages. The pharyngeal jaw system in 
the carp, a lower teleost, is based on a struc­
tural and mechanical pattern that differs 
widely from systems found in cichlids, embi-
otocids, labrids, odacids, and scarids, and is at 
least as specialized. This is concluded from the 
following comparison: 

1. The shift of the insertion of the major 
levator components from the upper to the 
lower pharyngeal jaw is considered a key adap­
tation in the higher teleosts mentioned above 
(Liem, 73 ; Liem and Greenwood, '81). In the 
carp the huge subtemporal fossae contain 
bulky levator muscles that attach directly to 
the lower pharyngeal jaw. In addition, these 
muscles transmit forces of the epaxial body 
muscles to the lower pharyngeal jaw. Retrac­
tor muscles are inserted on the lower pharyn­
geals also. 

2. The absence of upper pharyngeal jaws in 
cyprinids and the presence, instead, of a fixed 
chewing pad supported by the skull allows the 
recruitment of power from epaxial and hypax-
ial body muscles for pharyngeal mastication. 
Summation of these indirect forces with those 
of the direct pharyngeal bone muscles effects a 
large load increase on the occlusal surfaces. 

3. The muscular sling characterizes the sus­
pension of the pharyngeal jaws in Embiotoci-
dae and Cichlidae, whereas the lower pharyn­
geal j aw has been transformed into a lever that 
articulates with the cleithrum in Labridae 
(Liem, 78 ; Liem and Greenwood, '81). In the 
carp both characters are found. The muscular 
sling is kept in constant tension during crush­
ing, and in the grinding phase of the power 
stroke muscles rotate the pharyngeal bone as a 
lever with the ligament of Baudelot as the ful­
crum. In this way crushing is transformed into 
grinding. Thus, fine control, versatility, force, 
and stabilization are combined effectively. 

4. The lack of upper pharyngeal jaws, which 
perform intrinsic movements and function in 
mastication as well as food transport in higher 
teleosts, seems to be compensated by the 
movable symphysis and intrinsic musculature 
between the lower pharyngeals in the carp and 
by the thick pharyngeal pad, which acts as a 
muscular tongue. These features do not occur 
in the higher teleosts mentioned. 

These characters render the pharyngeal jaw 
apparatus of the carp both versatile and ex­
tremely powerful and, owing to the heterodont 
dentition, suited for comminution of a variety 
of food items. The retention of three rows of 
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pharyngeal teeth, considered a primitive char­
acter in cyprinids (Chu, '35; Vasnecov, '39; 
Hensel, '70), and the occlusion exclusively with 
the chewing pad, enlarge the grinding area in 
this specialized cyprinid. 

From a functional point of view there ap­
pears to be a close association between the spe­
cialized pipette system of feeding, the devel­
opment of the pharyngeal jaws, the loss of 
teeth in the jaws, and the development of pre-
maxillary protrusion in cyprinids (Gosline, 
73). The unique combination of these speciali­
zations may well have contributed to the devel­
opment of the cyprinids as the largest family of 
freshwater fishes. 

Catastomids resemble cyprinids to a great 
extent. The palatal organ is even more develop­
ed in catastomids; this is related to its promi­
nent role in gustation, selection, and separa­
tion of organic and anorganic food items in 
these bottom-feeders (Eastman, 77). They, 
however, lack a chewing pad, except for two 
mollusc-crushing species, and effective masti­
cation of food against the soft palatal organ 
will hardly be possible. Pharyngeal teeth are 
supposed to manipulate, strain, and masticate 
the food (Eastman, 77). 

Among cyprinids a broad spectrum of ana­
tomical features and dietary characteristics is 
found. Howes ('81) defines a squaliobarbine 
group of cyprinids involving apomorph charac­
ters that lie for the most part in the occipital 
region of the skull, and he relates them to the 
increased evolutionary development of the 
levator of the lower pharyngeal j aw. Following 
this author, these specializations could be 
associated with the essentially phytophagous 
habits of the squaliobarbine taxa. A functional 
analysis is in progress of pharyngeal mastica­
tion in the grasscarp, Ctenopharyngodon, a 
member of this squaliobarbine group that has 
teeth that, unlike the carp, interdigitate from 
left and right. Such analyses improve the defi­
nition of character complexes belonging to the 
masticatory system. They also provide a bet­
ter view on parallel developments in its evolu­
tion. This will enhance the tracing of interrela­
tionships between the diversified cyprinid 
taxa. The present paper demonstrates that the 
complex of structures involved in mastication 
extends, at least in carp, far beyond the pha­
ryngeal bones and teeth. 
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General summary 

The process of food handling in the common carp (Cyprinus carpio L.) and 

i ts structures associated w i th feeding are analyzed. The aim of this study is to 

explain the relat ion between the the archi tecture of the head and its functions 

in food processing and to determine the specializations for some food types and 

the consequent restr ict ions for others. Such in format ion improves our understanding 

of the trophic interrelat ions between d i f ferent f ish species l iving together in one 

community. 

- Cyprinids possess pharyngeal jaws, which are modif ied f i f t h branchial arches. 

These are moved by the modif ied branchial arch muscles against a horny chewing 

pad in the skul l . Oral teeth and a stomach are absent. The upper jaws are pro-

trusi le and so aid in the format ion of a round suction mouth. The oral and oper­

cular cavity are highly variable in volume. The pharynx is almost fu l ly occupied 

by the dorsal palatal organ. The pharyngeal f loor is composed of the postlingual 

organ and the branchial sieve. Fibre systems of s t r iated muscles form the bulk 

of these organs. The branchial arches bear numerous gi l l rakers. The surface 

of the pharyngeal roof and f loor is almost fu l ly covered by taste buds (up to 

820/mm2) and mucous cells. The medullar nervous centre of these organs is 

of about equal size as the forebrain. The narrow s l i t - l ike space between both 

organs has a restr ic ted capacity for volume change, contrary to the s i tuation 

in most other fishes. 

- The role which these structures per form during food uptake and processing in 

the carp was investigated using c ine- and X-ray f i lming techniques and by syn­

chronously recording the electromyograms of the involved muscles (9 channels). 

The morphology was studied on the macroscopical and on l ight- and e lectron-

microscopical level. Food types included commercial f ish pellets, barley, ear th­

worms, tubi fex, cladocerans and tubifex-soi l mixtures. BaSC^ - impregnated food 

was used to fo l low i ts path in the X-ray movies. 

- Each feeding process is composed of a variable number of stereotyped movement 

patterns, v iz: part iculate intake and gulping, selection between food and non-food 

mater ia l (through r insing, repositioning and backwashing), recol lect ion f rom the 

branchial sieve fol lowed by food transport and f i l l ing of the chewing cavi ty, 

crushing, grinding and deglut i t ion. Probing of the soil and spit t ing are considered 

separately. 

- The t iming, amplitude and velocity of mouth opening, protrusion of the upper 

jaws, opening of the opercular valve and of the volume changes in the oral , 
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buccal, pharyngeal and opercular cavit ies determine the ef fects of each single 

pat tern. Food intake, selection, transport and masticat ion impose d i f ferent de­

mands on the head and can not be combined e f fec t ive ly . 

D i f fe rent food types are processed in sequences of movement patterns varying 

in frequency and type according to the specific size, consistency and soilure 

of the food. Handling t imes are read f rom the electromyograms and may d i f fer 

widely. 

The quanti tat ive distr ibution pat tern of taste buds, mucous cells, club cells 

and muscle f ibers over the oro-pharyngeal surface is measured. Based on these 

patterns and on other s t ructural characters six areas are distinguished in the 

oro-pharynx and related w i th the functions of the above movement patterns 

for food intake and processing. Scanning E.M. pictures are presented of the 

common epithel ial cells w i th microridges, corni f ied cells, mucous cells, taste 

buds and sensory (?) ol igovil lous cells. 

Par t iculate intake is accomplished by fast and voluminous suction, caused by 

expansion of the orobuccal and opercular cavit ies. The upper jaws are protruded 

to produce a fast suction f low (>60 cm/sec), aimed to the par t ic le . 

Gulping, the slow and less aimed uptake of a mouthful of water w i th suspended 

foodpart icles is accomplished by size increase of the oral cavity mainly. The 

carp f inal ly encloses the suspension by protruding its upper jaws downward. 

Oral compression drives the water and food part icles over the branchial sieve. 

The energy required for each gulp w i l l most probably be considerably less than 

that needed for part iculate intake. 

High densities of club cells, which produce the cyprinid alarming substance in 

the skin, also occur in the orobuccal l ining. Their alarming funct ion in this area 

is doubted. 

Selection between food and non-food requires the retent ion of edible part icles 

and the expulsion of waste. The electromyograms and e lectr ical st imulations 

indicate that this separation is achieved by momentary bulgings on the palatal 

organ, f ix ing edible part icles between pharyngeal roof and f loor. Waste part icles 

are flushed through the branchial s l i ts. The complex structure of the palatal 

organ, the almost maximal densities of taste buds and the cyto-archi tecture 

of its regulatory centre in the hindbrain suggest a high level of d iscr iminat ion 

in this selection process. The slit-shaped pharynx guarantees a large contact 

area for selection, but l imi ts its role in suction. 

Protrusion of the upper jaws w i th the mouth closed plays a crucial role in selec­

t ion by resuspending food and non-food in the expanding oral cav i ty . A l ternat ive 

expansion and compression of the oral cavity creates a fo r - and backward f low 
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through the pharyngeal sl it and the branchial sieve. Repet i t ion of such 'closed 

protrusions' and selection effects are graded increasing pur i f icat ion. Closed 

protrusion movements also serve for merely repositioning of large part icles 

and for recol lect ion of the f i l t ra te f rom the branchial sieve. 

Cells producing low-viscosity mucus (sialomucines) are found rostral ly in the 

oro-pharynx. I t probably serves in lowering the resistance of the wal l for the 

f low of water and in protect ion of the underlying tissue. 

Cells producing large guantit ies of highly viscous mucus (sulfomucines) are found 

in regions were aggregation and clustering of food particles prior to transport 

is expected. 

Transport of food enveloped in mucus is e f fected by a per istal t ic type of move­

ment in the palatal and postlingual organs. These also propel the food into the 

chewing cavity being enlarged by depression of the pharyngeal jaws. 

The pharyngeal jaws are suspended in muscular slings f rom the caudal part of 

the skull and pectoral g irdle. Except an antero-ventral gliding jo int w i th the 

branchial basket no art iculat ions are present. The symphysis of the jaws allows 

intr insic movements. Food is crushed and ground between the pharyngeal teeth 

and a corni f ied chewing pad, f ixed to the base of the skull . Masticat ion of grains 

of maize produces dist inct sounds, even dist inct close to the experimental tank. 

The epaxial muscles of the carp contr ibute through rotat ion of the skull high 

forces to crushing and grinding. The hypaxial muscles transfer their forces to 

the pharyngeal teeth by re t ract ion of the pectoral g i rdle, which provides a large 

moment-arm. The pharyngeal masticatory apparatus is bui l t for producing and 

resisting high forces. 

Contrary to these 'power muscles', the hypertrophied pharyngeal jaw muscles 

act more l ike 'steering muscles'. They direct and stabil ize the pharyngeal jaw 

movements around four anatomical rotat ional axes. 

The chewing construction w i th the rotat ing skull renders a single Weberian ossicle 

connecting the sound receiving swimming bladder and the internal ear inside 

the skull almost impossible. The chain of Weberian ossicles running close to 

the rotat ion centre of the skull seems to be a constructive necessity. 

Deglut i t ion is accomplished by compression of the chewing cavi ty. Bulging of 

the palatal and postlingual organs closes the entrance and thus d irect the trans­

port to the esophagus. Movements of the pharyngeal jaws support t ransport. 

The apparatus for food uptake and food processing of the carp appears to be 

specialized to deal w i th medium-sized and hard food part icles (e.g. seeds and 

shelled mollusks), f rom 250 ym to about 3% of i ts standard body length, but 

also for food items mixed w i th unedible mater ia l . These specializations for 
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bottomfeeding are most l ikely basic to the present wide d istr ibut ion of the com­

mon carp and fac i l i ta te f ish farming. 

Large, fast and struggling preys as wel l as large and f la t plant material can 

hardly be ut i l ized by the carp. Thus, also this 'omnivorous' f ish is l imi ted by 

i ts specializations in the u t i l izat ion of the available food items in its environment. 

A tentat ive scheme relates characters f rom d i f ferent parts of the head and 

unique to the cyprinid fami ly in a funct ional and s t ructural context. The develop­

ment of the masticatory apparatus may wel l have been a key adaptation in 

the origin of the cyprinid feeding mechanism. 

The present research of the carp provides a new and detai led start ingpoint for 

investigation of the regulatory mechanisms in feeding and for comparisons w i th 

native cyprinids l ike bream roach, tench etc. Knowledge of abi l i t ies and restr ic­

tions of their s t ructural specializations associated w i th feeding eludidates which 

p last ic i ty the f ish has to u t i l ize d i f ferent types of food. This p last ic i ty is a 

crucial factor for the survival of the species in conditions of food scarcity and 

co-determines its position in compet i t ion. The obtained knowledge thus aids 

in predicting the ef fects of environmental changes on the trophic interactions 

and composition of the f ish fauna. 
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3) Funktionele verschil len tussen het oog van de gele aal en de z i lveraal (Aguilla 

anguüla L.) en de betekenis van deze verschillen voor de migrat ie van de 

z i lveraal . (dr. F.J. Verheijen, Lab. Verg. Fysiologie, U t recht ) . 

Het doctoraalexamen biologie werd in januari 1973 (cum laude) behaald. De onder­

wijsbevoegdheid aantekening bleef steken op de hospiteerstages, die door mijn 

tewerkstel l ing aan de Landbouwhogeschool te Wageningen niet meer konden worden 

vervuld. 

Sinds maart 1973 ben ik als wetenschappelijk medewerker aangesteld bij de 

Vakgroep Experimentele Diermorfologie en Celbiologie (toen nog Dierkunde geheten). 

De eerste drie jaren werden geïnvesteerd in de organisatie en opbouw van het 

biologie onderwijs. Het onderzoek kreeg hierna geleideli jk meer ru imte en leidde 

to t de bewerking van dit proefschr i f t . Taken in onderwijs, organisatie en beheer 

vormen nog steeds een belangrijk bestanddeel. 


