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STELLINGEN 

Bij de door Aprahamian ef al. gegeven bepalingsmethode van de hoeveelheid grensvlak in een 

vloeistof-vloeistof dispersie, gebaseerd op surfaktant depletie, is ten onrechte geen rekening 

gehouden met de verhoging van de grensvlakspanning bij toenemende hoeveelheid grensvlak. 

Aprahamian, E., F.F. Cantwell, en H. Freiser (1985) Langmuir, 1, 79. 

De door Patil ef al. gegeven kreatieve fit van de door hun gemeten stofoverdrachtscoëfficiënten van 

eiwitten in waterige twee fase systemen geeft aan dat deze auteurs meer waarde hechten aan het 

kunnen verklaren van onderzoeksresultaten dan aan statistische betrouwbaarheid. 

Patil, T.A., S.B. Sawant, J.B. Joshi en S.K. Sikdar (1988) Chem. Eng. J., 39, B1. 

Bij de beschrijving van de stofoverdracht van eiwitextrakties in holle vezel membranen door Dahu-

ron en Cussler komt onvoldoende tot uiting dat hierbij afwijkingen tussen experimentele en 

theoretische waarden tot een faktor 20 normaal zijn. Niet in het model meegenomen verschijnselen 

hebben blijkbaar een zeer grote invloed op dit type extraktie. 

Dahuron, L en E.L Cussler (1988) AlChEJ., 34, 130. 

De verklaring dat afschuifkrachten verantwoordelijk zijn voor het feit dat hydrogenase in omge­

keerde micellen sneller wordt geïnaktiveerd indien de vloeistof vaker wordt doorborreld met water­

stof gas gaat voorbij aan een ander effekt van dit gas, nl. het veranderen van de redox toestand van 

het enzym, hetgeen een grote invloed heeft op de stabiliteit van hydrogenases. 

Castro, M.J.M, en J.M.S. Cabrai (1989) Enzyme Microb. Technol., 11, 668. 

Het bestuderen van de water opname kinetiek in omgekeerde micellen d.m.v. turbiditeitsmetingen 

aan een niet goed gedefinieerd systeem, zonder rekening te houden met het effekt van de drup­

pelgrootte op de lichtverstrooiing draagt niet bij tot een beter begrip van het mechanisme van deze 

wateropname. 

Battistel, E. en P.L Luisi (1989) J. Colloid Interface Sei., 128, 7. 



6. Het verlies van surfactant zal de oorzaak zijn van het zeer geringe transport van eiwitten door 

vloeibare membranen van een omgekeerde micel fase, zoals gemeten door Armstrong en Li. 

Armstrong, D.W. en W. Li (1988) Anal. Chem., 60, 86. 

7. Het doen van gedetailleerde voorspellingen over de efficiëntie van een enzymatische reaktie in 

omgekeerde micellen in een continu bedreven holle vezel reaktor op m3 schaal op basis van enkele 

resultaten van batch experimenten in reageerbuizen getuigt van een ernstige onderschatting van de 

mogelijke opschaal effekten van een dergelijk proces. 

Gaathon, A., Z. Gross en M. Rozhanski (1989) Enzyme Microb. Technol., 11, 604. 

8. Door de lange weg die nodig is voor het verkrijgen van bescherming en goedkeuring van routes 

voor de biotechnologische produktie en opwerking van voedingsmiddelen en medicijnen wordt 

bijna altijd gebruik gemaakt van verouderde en niet goed geoptimaliseerde produktie processen. 

9. Het feit dat promovendi in hun wetenschappelijke stellingen meestal aangeven dat er in publikaties 

van anderen bepaalde zaken over het hoofd zijn gezien neemt niet weg dat ze regelmatig ideeën 

tegenkomen waaraan ze zelf nog niet gedacht hebben. 

10. Een flexibel winkelopeningsbeleid zal de kwaliteit van de maaltijden van tweeverdieners verhogen. 

M. Dekker 

Enzyme Recovery using Reversed Micelles 

Wageningen, 2 februari 1990 
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VOORWOORD 

Het in dit proefschrift beschreven onderzoek is tot stand gekomen dankzij de 

inzet van een groot aantal personen die ik hier graag wil bedanken. 

In de eerste plaats wil ik hier noemen Klaas van 't Riet, zijn enthousiaste en sti­

mulerende manier van begeleiden hebben een grote invloed gehad op mijn onder­

zoek. Naast zijn wetenschappelijke en creatieve inbreng ben ik hem ook dankbaar 

voor de manier waarop hij zijn deel van de sektie proceskunde runt. In korte tijd heeft 

hij enkele belangrijke fundamenten voor succesvol onderzoek aangebracht: een 

leuke groep goed gemotiveerde onderzoekers, die voorzien is van een uitstekende 

infrastruktuur. 

Voor mijn onderzoek is de kennis uit meerdere vakgebieden van belang 

geweest. De begeleiding vanuit de vakgebieden Biochemie en Fysische- en Kolloid 

chemie is onmisbaar geweest. Bij de vakgroep Biochemie is in het begin Colja Laane 

bij mijn onderzoek betrokken geweest, later is dit overgenomen door Riet Hilhorst. 

Bert Bijsterbosch zorgde voor de ondersteuning vanuit de vakgroep Fysische- en 

Kolloidchemie. Naast hun begeleidende inbreng zijn genoemde personen ook van 

grote waarde geweest bij het corrigeren van de diverse publikaties die uit mijn 

onderzoek zijn voortgevloeid. 

Binnen het kader van dit onderzoek hebben een aantal analisten een grote 

hoeveelheid werk verzet: bij Biochemie zijn dit in opeenvolgende perioden geweest: 

Jan Baltussen, Ron Wolbert en Peter Fijneman, bij Proceskunde was dit Peter 

Koenen. 

Een groot aantal studenten heeft een bijdrage geleverd aan het omgekeerde 

micellen onderzoek in de vorm van een afstudeervak bij Proceskunde, Biochemie 

en/of Fysische- en Kolloidchemie. Ondanks het grote aantal wil ik ze hier toch allen 

bedanken voor hun inzet en ideeën: Stefan Weijers, Jacobiene Sanders, José Wij-

nans, Nico ter Burg, Eric Jan Reinierse, Libbe Tjalma, Frans den Ouden, Ria Stoop, 
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René Stunnenberg, Frans Roozen, Robbert Slingerland, Gijsbert Voskuilen, Henk 

Nachtegaal, Jens van der Pol, Hans van der Zandt, Jan Wattenberg, Dirk Heering, 

Albert Hamming, Marc Maste en Toine Bovee. 

Het projekt is gefinancierd door de Stichting voor de Technische Weten­

schappen (STW). Met het oog op de industriële toepassingsmogelijkheden van het 

onderzochte proces zijn halfjaarlijkse bijeenkomsten gehouden met vertegenwoor­

digers van een aantal geïnteresseerde bedrijven. Voor de gegeven adviezen en sug­

gesties dank ik de leden van deze gebruikerscommissie: dr. ir. N.W.F. Kossen, dr. 

G.H. Schouten en drs. R.S. Hamstra (Gist-brocades); dr. ir. A.M. Trommelen en dr. 

N.K.H. Slater (Unilever); Dipl. Ing. R. Büchele (ENKA Membrana); dr. ir. K.H. Brunner 

(Westfalia Separator); ir. W.F. Jansen (Servo Delden); drs. N. Boots (STW). 

De medewerkers van de werkplaats, fotolokatie, tekenkamer en magazijnen van 

de Centrale Dienst Biotechnion wil ik bedanken voor hun verrichte diensten. 

Ten slotte een woord van dank aan mijn collega's bij de sektie Proceskunde. De 

prima sfeer die jullie met z'n allen maken heeft er voor gezorgd dat ik in de vier jaar 

van mijn onderzoek (bijna) altijd met plezier naar het Biotechnion ging. 



CONTENTS 

Outline of the thesis 11 

Chapter 1. 

The distribution of proteins between an aqueous phase and a 

reversed micellar phase 13 

Chapter 2. 

Enzyme recovery by liquid-liquid extraction using reversed micelles 27 

Chapter 3. 

Modeling and optimization of the reversed micellar extraction of a-amylase 43 

Chapter 4. 

Mass transfer rate of protein extraction with reversed micelles 63 

Chapter 5. 

Temperature effect on the reversed micellar extraction of enzymes 85 

Chapter 6. 

General discussion 97 

Summary 105 

Samenvatting 107 

Curriculum vitae 109 



11 

OUTLINE OF THE THESIS 

In biotechnology there is a need for new protein recovery processes, which 

combine a high selectivity for the desired product with a substantial concentration 

increase and easy scale-up. In this context, liquid-liquid extraction of an aqueous 

solution with an organic solvent containing reversed micelles presents itself as a 

promising process for the selective recovery of proteins form a fermentation broth. In 

this thesis research results on this recovery process are presented. 

In Chapter 1 an introduction is given on reversed micelles and the factors which 

most predominantly affect the distribution behaviour of proteins between an aqueous 

phase and a reversed micellar phase. The selectivity of the extraction process is dis­

cussed in this part of the thesis. 

Chapter 2 deals with the development of a continuous forward and back 

extraction of an enzyme using two mixer/settler units with the reversed micellar phase 

circulating between the units. 

In Chapter 3 the modeling and optimization of this process is described. The 

optimization has been done with respect to maximum recovery of enzymatic activity 

and mimimum losses of surfactant from the reversed micellar phase. 

The characterization of the mass transfer behaviour of an enzyme between an 

aqueous phase and a reversed micellar phase with respect to diffusional and interfa-

cial processes is reported in Chapter 4. 

In Chapter 5 the use of a temperature change to desolubilize the enzyme from 

the reversed micellar phase by affecting the phase behaviour is presented. This pro­

cedure has been used for the scale-up of the extraction process with centrifugal 

extractors. 

A general discussion of the investigations is given in Chapter 6 of this thesis. 
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CHAPTER 1 

THE DISTRIBUTION OF PROTEINS 
BETWEEN AN AQUEOUS AND A 
REVERSED MI CELLAR PHASE 

1.1. GENERAL INTRODUCTION 

Reversed micelles are aggregates of surfactant molecules containing an inner 

core of water molecules, dispersed in a continuous organic solvent medium. These 

systems are optically transparent and thermodynamically stable. The considerable 

biotechnological potential of these systems is derived principally from the ability of the 

water droplets to dissolve enzymes, without loss of activity, in much the same way as 

does bulk water. The use of these systems in the biotransformation of apolar com­

pounds, present in the bulk oil phase, has been described in a number of publications 

(Luisi, 1985; Martinek and Semenov, 1981; Hilhorst era/., 1983; Laane er al., 1987; 

Fletcher and Robinson, 1985). 

Recently, it has been found that enzymes can be transported from one bulk 

aqueous phase to another via an intermediate reversed micellar phase, the trans­

ported protein molecules being transiently accommodated within the reversed 

micelles in this case. This phenomenon is a consequence of the reversibility of the 

phase transfer process. In addition to transport from a homogeneous solution phase, 

This chapter has been published as part of the review: 

Dekker, M., R. Hilhorst, and C. Laane (1989) "Isolating Enzymes by Reversed Micelles", Analyt. 

Biochem., 178, 217. 
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proteins may also be transported from a solid phase, and even from the cytoplasmic 

compartment of bacteria. The latter phenomenon is based on the prior disruption of 

the bacterial cell wall by surfactant partitioning out of the reversed micellar phase. 

Here, recent advances in separating enzymes by the use of reversed micelles 

are highlighted. The use of these media to convert apolar compounds enzymatically 

have been reviewed elsewhere (Luisi and Laane, 1986). 

1.2. RECOVERY OF ENZYMES FROM AQUEOUS SOLUTION 

The isolation of specific extracellular enzymes from a fermentation broth by 

conventional processes consists of the stepwise removal of undesired compounds 

from the broth. Because these steps are usually not specific for the desired enzymes, 

several steps are necessary to obtain an enzyme preparation of the required purity. 

Consequently, new isolation techniques, more selective for the required enzyme and 

easier to scale up are desirable. Liquid-liquid extraction procedures involving the use 

of reversed micellar systems have some very promising features in this respect. 

The principle of this method is depicted schematically in Fig. 1. Firstly the 

enzyme is extracted from the aqueous phase to the reversed micellar phase under 

conditions such that the extent of phase transfer of the protein is maximal. Secondly 

the enzyme is recovered from the organic phase, by extraction of the reversed 

micellar phase with a second aqueous phase, under such conditions that the transfer 

of the enzyme from the reversed micellar phase to the aqueous phase is maximal. 

By appropriate manipulation of physical parameters such as solution pH and 

ionic strength, which determine the distribution behaviour of the enzyme, it is possible 

to obtain manifold purification, and also concentration, of the required enzyme, in a 

straightforward process. 
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ENZYME 

Fig. 1. Schematic representation of the liquid-liquid extraction of enzymes between 
an aqueous phase and a reversed micellar phase. 

The first reports in literature on the transfer of proteins from an aqueous phase 

to a reversed micellar phase and vice versa were of Luisi ef al. (1977, 1979), who 

illustrated this principle using a range of proteins. These investigations have been 

extended in more recent studies by groups at M.I.T. (Goklen and Hatton, 1985,1986, 

1987; Woll et al., 1987,1989) and in Wageningen (Van 't Riet and Dekker, 1984; Laane 

and Dekker, 1986; Dekker era/., 1986,1987^, 1988, ̂ g a b ) , for the development of 

a recovery process for proteins from aqueous solutions. 

In the remaining part of this chapter the factors affecting the distribution of pro­

teins between an aqueous phase and a conjugate reversed micellar phase will be 

discussed. 

1.2.1. THE DISTRIBUTION OF PROTEINS 

There is a large body of evidence which indicate that electrostatic interactions 

play a very important role in determining the distribution coefficient of a protein 

between a reversed micellar phase and a conjugate aqueous phase. This influence is 
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demonstrated clearly by the effect of aqueous phase pH, ionic strength and surfactant 

type (anionic, cationic or nonionic) on this distribution behaviour. 

The individual effects exerted by each of these parameters will now be discussed 

separately. 

1.2.1.1. Aqueous phase pH 

The aqueous phase pH determines the ionization state of the surface charged 

groups on the protein molecule. Attractive electrostatic interactions between the 

protein molecule and the surfactant head groups, which form the internal surface of 

the reversed micelle, will occur if the overall charge of the protein is opposite to the 

charge of the surfactant head groups. This implies that, for cationic surfactants solu­

bilization of the protein in reversed micelles is favoured at pH values above the iso­

electric point (pi) of the protein, whilst the opposite is true for anionic surfactants. 

Luisi et al. (1979) showed that the aqueous phase pH influences the transfer of 

a-chymotrypsin and pepsin to a reversed micellar phase of the cationic surfactant 

trioctylmethylammonium chloride (TOMAC) in cyclohexane. These results, however, 

could not be interpreted on basis of the pi values of these proteins. 

The phase transfer of the enzyme a-amylase into reversed micelles of 

TOMAC/octanol in isooctane was found to occur only over a narrow pH range, well 

above the pi of the enzyme (Van 't Riet and Dekker, 1984). These results indicate that 

not only the sign of the protein charge is an important factor in protein solubilization, 

but also the surface charge density. 

Using a reversed micellar system consisting of the anionic surfactant sodium 

di-2-ethylhexyl sulphosuccinate (commercial name Aerosol OT or AOT) in isooctane, 

Göklen and Hatton (1987) found almost complete solubilization of the three low mol­

ecular weight proteins (Mr = 12-14 kDal) ribonuclease A, cytochrome c and lysozyme. 

This solubilization took place in a range of 4 to 6 pH units just below the pi's of the 

three proteins (Fig. 2). 

As the molecular weight of the protein increases, phase transfer can only be 

accomplished by increasing the value of (pH - pi). Thus in the case of a-chymotrypsin 

(Mr = 25 kDal) phase transfer was favoured in a pH range approximately 2 to 4 pH 

units below the pi of the protein; Bovine Serum Albumin (Mr = 68 kDal) was not 

transferred at all in the same system. 
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Fig. 2. The effect of pH on the solubilization of lysozyme, cytochrome c and 
ribonuclease A in AOT-isooctane solutions (From Göklen and Hatton, 1987). 

The effect of pH on solubilization for proteins of different molecular weight might 

be explained by taking into account the fact that for larger proteins the size of the 

reversed micelle containing a protein molecule has to be significantly larger than the 

size of the empty reversed micelle. This energetically unfavorable transition of the 

micellar size has to be compensated for by more extensive electrostatic interactions 

in order to make the overall solubilization process feasible. This can be achieved by 

increasing the charge density of the protein by manipulation of the pH. For small 

proteins whose size is smaller than the size of the water pool inside a reversed micelle, 

solubilization occurs as soon as the net proteins charge is opposite to that of the 

reversed micellar interface. 

This behaviour is demonstrated clearly by the linear correlation attained between 

the Mr of a protein and the difference between the pH of solubilization and the pi of 

the protein (Fig. 3, Wolbert et ai, 1989). The correlation holds for reversed micelles of 

both anionic and cationic surfactants. 
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Fig. 3. Relation between the molecular weight of a protein and the difference 

between the proteins pi and the pH of optimal extraction into a reversed micellar 

phase of TOMAC in isooctane (From Wolbert et al., 1989). 

1.2.1.2. Ionic strength 

The ionic strength of the aqueous phase determines the degree of shielding of 

the electrostatic potential imposed by a charged surface. This phenomenon causes 

at least two important effects in reversed micellar extraction. Firstly it decreases the 

electrostatic interaction between the charged protein molecule and the charged 

interface in the reversed micelle. Secondly it reduces the electrostatic repulsion 

between the surfactant head groups, resulting in a decrease in the size of the reversed 

micelles at higher ionic strength. 

Göklen and Hatton (1986,1987) showed the effect of ionic strength on the phase 

transfer of ribonuclease A, cytochrome c and lysozyme in a reversed micellar phase 

of AOT in isooctane. The extent of phase transfer to the reversed micellar phase 

decreases for all three proteins with increasing potassium chloride concentration, but 

the concentration required to initiate this decrease was found to be different for each 
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protein (Fig. 4). No rules can be deduced from these data with respect to the ioniz­

ation state of the proteins used (expressed as the difference between the aqueous 

phase pH (6.7 - 7.1 in this study) and the pi of the proteins). 

•o a> 
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S 
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CO 
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80 -

60 

40 -

20 
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KCl cone. [M] 

Fig. 4. The effect of the potassium chloride concentration on the solubilization of 

lysozyme, cytochrome c and ribonuclease in AOT-isooctane solutions (From 

Göklen and Hatton, 1987). 

Meier etal. (1984) observed an increase in the amount of trypsin and peroxidase 

transferred to a reversed micellar phase of AOT in isooctane, using sodium salts to 

increase the ionic strength, but a decrease when using calcium salts. These effects 

were observed at both pH 7 and 10. 

The fact that an increase in the ionic strength results in a shift in the pH profile of 

the distribution behaviour was demonstrated by Dekker et al. (1987e). The transfer of 

the enzyme a-amylase to a reversed micellar phase of TOMAC/octanol in isooctane 

was studied for different concentrations of sodium chloride as a function of the pH 

(Fig. 5). 
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Fig. 5. Effect of pH on the transfer of a-amylase to a reversed micellar phase of 

TOMAC in isooctane at different ionic strengths (From Dekker et al., 1987e). 

As the salt concentration increased, a higher pH (resulting in a higher charge 

density on the protein) was required for maximal phase transfer. Thus once again, 

electrostatic interactions are implicated as being of primary importance in the phase 

transfer mechanism. For the results shown, it can be seen that increasing the ionic 

strength at pH 10.1, for example, first causes an increase in solubilization of a-amy­

lase in the reversed micellar phase followed by a decrease in solubilization beyond an 

optimal ionic strength. The observation that not only the ionic strength, but also the 

type of ion influences the distribution behaviour of proteins implies specific interaction 

of ions with the protein and/or the surfactant headgroups. 

The differences in the distribution behaviour of proteins on the pH and ionic 

strength of the aqueous phase has been used to advantage in the separation of a 

protein mixture (Göklen and Hatton, 1987). An aqueous solution of ribonuclease A, 

cytochrome c and lysozyme was extracted with a reversed micellar phase of AOT in 

isooctane. By using the results from Fig. 2 and 4 the three proteins could be separated 

by a series of three extractions. 

Woll and Hatton (1987) showed that the aqueous phase pH and ionic strength 
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could be used to selectively extract an alkaline protease from a fermentation broth. By 

performing two series of extractions 42 % of the enzyme was recovered with a 2.2-fold 

increase in specific activity. 

1.2.1.3. Surfactant type 

As shown in the previous two sections, the distribution of proteins is dependent 

primarily on the difference in charge between the protein and the charged surfactant 

head groups. Therefore, in the absence of other effects, an opposite pH dependence 

of the distribution behaviour can be expected for reversed micelles stabilized by 

cationic and anionic surfactants. 

In addition to the surfactant charge, other surfactant-dependent parameters may 

be cited. Among these are the size of the reversed micelles that are formed, the 

energy required to enlarge the reversed micelles, and the charge density on the inner 

surface of the reversed micelle. 

Dekker ef al. (1987a) showed the effect of the addition of a nonionic surfactant 

(Rewopal HV5: nonylphenolpentaethoxylate) to a reversed micellar phase of the 

cationic surfactant TOMAC in isooctane. The partitioning of a-amylase between the 

reversed micellar and the conjugate aqueous phase was found to be a strong function 

of the ratio of nonionic to ionic surfactant. An increase in the proportion of nonionic 

surfactant resulted in increased transfer of the enzyme to the reversed micellar phase. 

Additionally, phase transfer took place over a wider range of pH (Fig. 6). 

This change in distribution behaviour might be explained by two effects; Firstly 

the charge density of the micellar interface will be influenced by the presence of the 

nonionic surfactant. Secondly the size and flexibility of the reversed micelles will be 

changed by the addition of the one-tail nonionic surfactant. 

Until now we have only discussed the use of electrostatic interactions between 

the protein and the surfactant head groups to promote transfer to a reversed micellar 

phase. Another possibility is the use of biospecific interactions between an enzyme 

and a ligand (substrate analogue, product or an inhibitor). In principle, the ligand can 

be confined to the reversed micellar phase by conjugation to a suitable hydrophobic 

tail; in the reversed micelles, such a (polar) ligand would form a sitespecific surfactant 

headgroup. The effect of such an affinity surfactant, octyl-ß-D-glucopyranoside, has 
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been shown for the solubilization of concanavalin A in AOT reversed micelles (Woll et 

al., 1987). The protein was transferred to the reversed micellar phase at pH values at 

which no transfer was observed without the affinity surfactant. This transfer was 

inhibited by the addition of free ligand in the aqueous phase, indicating that an affinity 

interaction was required for the solubilization at these pH values. 
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Fig. 6. Solubilization of a-amylase in a reversed micellar phase of TOMAC in iso-

octane in relation to the pH in the aqueous phase. Effect of the addition of nonionic 

surfactant to the reversed micellar phase (From Dekker er a/., 1987a). 

In this system the solubilization is most likely due to a combination of electro­

static, affinity and possibly hydrophobic interactions. It would be interesting to explore 

this phenomenon further by substituting a nonionic surfactant for the ionic surfactants 

used previously. In this case electrostatic interactions between the protein and sur­

factant head groups are eliminated and affinity interactions, perhaps in combination 

with hydrophobic interactions, become decisive in determining the extent of phase 

transfer. This should result in a very selective extraction process. 
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1.2.1.4. Surfactant concentration 

The concentration of surfactant in a reversed micellar phase that is in equilibrium 

with an aqueous phase has little effect on the size and structure of the reversed 

micelles. The extent of protein uptake from a conjugate aqueous phase therefore 

increases in proportion to the surfactant concentration in the reversed micellar phase 

(Woll et al., 1989; Fletcher and Parrott, 1988). Solubilization of ribonuclease A and 

concanavalin A as a function of the AOT concentration could be described by a model 

based on a thermodynamic equilibrium between the concentration of protein - rev­

ersed micelle complexes and the concentration of free reversed micelles and free 

protein in the aqueous phase (Woll era/., 1989). The distribution of a-chymotrypsin 

and pepsin in AOT reversed micelles has been described (Fletcher and Parrott, 1988) 

by expressing the protein partitioning based on the protein concentration in the water 

pools of the reversed micelles divided by the bulk aqueous phase concentration. This 

approach resulted in a partition coefficient which was independent of the surfactant 

concentration. 

Since the total volume of the water pools varies linearly with the surfactant con­

centration (w0,max. the molar ratio of water to surfactant in the micellar phase is 

approximately independent of the concentration of surfactant), the two descriptions 

are essentially the same. 

In this context, the partitioning behaviour of the enzyme lysozyme proved to be 

exceptional; below a certain surfactant concentration the enzyme precipitated at the 

interface between the two phases. Yet increasing the surfactant concentration above 

this point resulted in the transfer of all of the protein to the reversed micellar phase. It 

was estimated that this concentration was just sufficient to provide a monolayer 

coverage for the total enzyme in the system. 

1.2.1.5. Thermodynamic modeling 

Several models of the distribution behaviour of proteins between a bulk aqueous 

phase and a reversed micellar phase have been developed (Fraaije, 1987; Maestro 

and Luisi, 1986; Woll and Hatton, 1987; Fraaije era/., 1990). They are all based upon 

electrostatic interactions between the charges on the protein molecule and the 
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charges on the inner surface of the reversed micelle due to the ionic head groups of 

the surfactants. In addition to free energy change resulting directly from this interac­

tion, an additional contribution arising from the redistribution of surfactant and pro-

tein-counterions, of other, free, ions, of water and of surfactant, on phase transfer 

must be considered. 

Calculations have been made of the total free energy change upon the uptake of 

a hypothetical small protein in reversed micelles (Maestro and Luisi, 1986); no com­

parisons were made with experimentally determined distribution data. 

In a more phenomenological approach, the distribution behaviour of 

cytochrome c between an aqueous phase and a reversed micellar phase of the 

cationic surfactant TOMAC in isooctane was analyzed with respect to the aqueous 

phase pH and ionic strength (Fraaije, 1987). From the experimental data calculations 

were made on the copartitioning of protons and other small ions accompanying pro­

tein uptake in reversed micelles. Around the optimal pH for protein transfer to the 

reversed micellar phase both protons and surfactant counterions (chloride) were 

found to be redistributed. 

A third approach (Woll and Hatton, 1987) described the partitioning of ribonu-

clease A and concanavalin A as a function of aqueous phase pH and surfactant con­

centration. Four coefficients were used which depend on the reversed micellar system 

and the protein used. 

All of the above models are useful in analyzing experimental data of protein 

partitioning and in indicating the most important system parameters affecting the 

value of the distribution coefficient. However the models cannot presently give accu­

rate predictions of the distribution coefficient of a protein; many parameters are 

unknown or hard to quantify. These include hydrophobic interactions of the protein 

with the apolar phase, specific interactions of ions with the protein and surfactant, the 

free energy changes associated with the change in size of the reversed micelles on 

protein uptake and the distribution of charged groups on the protein molecules. 

This last parameter has been neglected in all three approaches, they all assume 

an equal distribution of surface charge on a globular protein molecule. Wolbert era/. 

(1989) showed a strong effect of the symmetry of the distribution of charged groups 

on the surface of proteins on their distribution behaviour. Proteins with a more 

asymmetric charge distribution were found to partition more easily into the reversed 

micellar phase. 
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1.2.2. PROCESS DEVELOPMENT 

For the large scale recovery of extracellular enzymes, an extraction with an 

organic solvent containing reversed micelles has interesting advantages over existing 

processes. A reversed micellar extraction combines the potential for concentration 

and purification of the enzyme in a single process. The liquid-liquid extraction tech­

nique in general is well known and apparatus and scale-up rules have been estab­

lished for numerous applications, including the use in recovery processes for 

antibiotics and organic acids from fermentation broths. 

The success of the type of extraction processes described here is critically 

dependent on the ability to direct the distribution coefficient of the desired enzyme 

between the aqueous phase and the reversed micellar phase, as discussed in section 

1.2.1. 

The remaining chapters of this thesis will be addressed to the development of 

this liquid-liquid extraction process for enzymes. 
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CHAPTER 2 

ENZYME RECOVERY 

BY LIQUID-LIQUID EXTRACTION 

USING REVERSED MICELLES 

ABSTRACT 

The recovery of a-amylase by liquid/liquid extraction, using a reversed micellar 

phase to transport the enzyme from one aqueous phase to another has been 

investigated. Reversed micelles are aggregates of surfactant molecules in an apolar 

solvent, surrounding an inner core of water. Reversed micelles of the cationic sur­

factant trioctylmethylammonium chloride were used to solubilize a-amylase in iso-

octane. A continuous forward and back extraction of the enzyme has been performed 

in two mixer/settler units, with the reversed micellar phase circulating between the 

two units. During the forward extraction the conditions (pH,ionic strength) favoured 

the transfer of a-amylase from the aqueous phase towards the reversed micellar 

phase. The reversed micellar phase containing the a-amylase was subsequently 

extracted with a second aqueous phase, which favoured the transfer of the enzyme 

towards the aqueous phase. In this way, the concentration of active a-amylase in the 

second aqueous phase was eight times that of the original solution. An enzyme 

This chapter has been published as: 
Dekker, M., K. Van 't Riet, S.R. Weijers, J.W.A. Baltussen, C. Laane and B.H. Bijsterbosch (1986) 
Chem. Eng. J., 33, B27. 
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activity loss of 30 % occurred during the extraction procedure. The forward and back 

extraction could be described in terms of the data on the distribution coefficients and 

the mass transfer rate constants. 

2.1. INTRODUCTION 

The recovery of an extracellular enzyme usually consists of the removal of 

undesirable compounds from the fermentation broth (e.g. microbial cells, debris, 

other proteins, salts and water). The conventionally employed processes are filtration, 

ultra-filtration, precipitation and drying. For more purified enzymes, chromatography 

processes are usually required. It would be very desirable to have access to a 

recovery step that is selective for the desired enzyme, that gives a considerable 

increase in the concentration of the enzyme and that can be scaled up easily. 

A liquid-liquid extraction might serve these purposes. To be able to extract an 

enzyme from an aqueous phase into another liquid phase, one needs an immiscible 

phase, that can solubilize enzymes. A possible way to accomplish this is to create an 

aqueous two phase system, by the addition of certain polymers (Hustedt era/., 1985). 

With this system several enzymes have been successfully recovered but one disad­

vantage is the costs of the polymer(s), which makes the recovery of these compounds 

necessary in a commercial application. Especially in the case of extracellular enzymes 

this will be a particular problem due to the large volumes of fermentation broth that 

are to be handled. 

Another water immiscible phase that can solubilize enzymes is an apolar solvent 

containing reversed micelles. Reversed micelles are aggregates of surfactant mol­

ecules surrounding an inner core of water. Many enzymes have been succesfully 

solubilized by reversed micelles without loosing their catalytic activities (Hilhorst er al., 

1983,1984a, 1984^; Martinekefa/., 1977; Luisi era/., 1977,1979,1984; Wolf and Luisi, 

1979; Bonner et ai, 1980; Meier and Luisi, 1980; Laane and Luisi, 1986). These rev­

ersed micellar systems containing enzymes have been used to study enzymatic 

reactions involving apolar substrates and to study enzymatic reactions at subzero 

temperatures (Douzou er ai, 1979). They might also serve as a model system for 

membrane adsorbed enzymes. Furthermore it has been demonstrated that proteins 
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can be transferred from an aqueous phase to a reversed micellar phase or wee versa 

(Luisiera/., 1979; Meier era/., 1984; Van 't Riet and Dekker, 1984; Göklen and Hatton, 

1985) as shown schematically in Figure 1. 

AQUEOUS PHASE 

enzyme 

APOLAR PHASE: 

: surfactant 
cB! 

Fig. 1. Transfer of an enzyme between an aqueous phase and an apolar phase 
containing reversed micelles. 

All these investigations have been done with either the anionic Aerosol OT (Meier 

ef a/., 1984; Göklen and Hatton, 1985) or the cationic trioctylmethylammonium 

chloride 0"OMAC) (Luisi era/., 1979; Van 't Riet and Dekker, 1984) as surfactant. The 

influence of the apolar solvent, ionic strength and the pH on the transfer of proteins 

has been investigated. We have shown, in the case of the extracellular enzyme 

Q-amylase that the concentration of the enzyme can be increased considerably by a 

forward extraction into a reversed micellar phase followed by a back extraction into a 

second aqueous phase of different composition (Van 't Riet and Dekker, 1984). 

Here we report the performance of a double extraction process that is capable 

of transporting and concentrating a-amylase continuously from one aqueous phase 

to another via a reversed micellar phase (Figure 2). The results of this forward and 

back extraction could be described in a model using the experimentally determined 

distribution coefficients and mass transfer rates during both extractions. 
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reversed mi cellar phase 
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Figure 2: Flowsheet of a combined forward and back extraction, for two mix­

er/settler units with the reversed micellar phase circulating between the two 

extraction units. 

2.2. MATERIALS AND METHODS 

2.2.1. Chemicals: 

a-Amylase (EC 3.2.1.1, crystalline, 950 U mg-1 and crude, 50 U mg-1) from 

Bacillus subtilis (correct name Bacillus amyloliquefaciens (Welker and Campbell, 

1967)) was obtained from Sigma Chemical Co. Trioctylmethylammonium chloride 

(TOMAC) was obtained from Merck and contained 88% (w/w) of the quaternary 

ammonium salt and about 10% (w/w) of a mixture of octanol and decanol. Tris was 

obtained from Boehringer. All other chemicals were obtained from Merck and were of 

analytic grade. 

2.2.2. a-Amylase activity: 

The enzyme activity was determined according to the method described by 

Bernfeld, 1951. One unit is defined as the amount of enzyme that will liberate one mg 

of maltose from starch in three minutes at pH 6.9 at 20 CC. 
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2.2.3. Reversed micellar solution: 

The reversed micellar solution contained 0.4% (w/v) TOMAC and 0.1% (v/v) 

octanol in isooctane. 

2.2.4. Distribution of a-amylase between aqueous and reversed micellar phase: 

The effect of the pH of the aqueous phase on the solubilization of a-amylase in 

the reversed micellar phase was determined as follows: 

(1) To a 5 ml vial 2 ml of an aqueous phase (0.5 M tris adjusted to the desired pH with 

HCl) containing a-amylase (0.25 mg ml"1 pure or 1.0 mg ml-1 crude) and 2 ml of the 

reversed micellar phase were added. (2) The two liquid phases were mixed by rotating 

the vial 2.0 times per second. The time to reach equilibrium was found to be 4 to 5 

minutes. (3) After this extraction the two phases were separated by gravity in 1 to 2 

minutes. (4) Half of the reversed micellar solution was separated (1 ml) and added to 

another vial containing 1 ml of a second aqueous phase (0.5 M KH2PO4/K2HPO4, pH 

6.9.). (5) A second extraction was performed, which was found to reach equilibrium 

within two minutes of shaking. (6) Both phases were separated by gravity and the 

a-amylase activity in the aqueous solution was determined. 

The second extraction was found to be almost complete. This means that the 

a-amylase activity found in the second aqueous phase is a good approximation of the 

amount of active a-amylase solubilized in the reversed micellar phase. 

2.2.5. Mass transfer in mixers: 

The mixers were made of plexiglass (operating volume of 600 ml) and were 

baffled (Fig. 3(a)). The stirrer geometry is described in Fig. 3(b). This type of stirrer was 

used in order to obtain a homogeneous dispersion throughout the entire mixer. A 

standard Rushton turbine stirrer gave a very fine dispersion near the stirrer, but a 

strong coalescence in the top and bottom section of the mixer. 

In a mass transfer experiment 200 ml of reversed micellar phase and 360 ml of 

aqueous phase (0.5 M tris HCl, pH 9.85) without a-amylase were stirred in the mixer 

until the dispersion was homogeneous. Then 40 ml of aqueous phase (0.5 M tris-HCI, 

pH 9.85) containing a-amylase (10.0 mg ml-1, crude) was added. Samples were taken 

and these were settled by gravity. The amount of a-amylase activity that was trans­

ferred to the apolar phase was determined as described above, starting at step 4. 

To study the mass transfer rate during back extraction, 500 ml of reversed 
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micellar phase, containing a-amylase as a result of a first extraction with an aqueous 

a-amylase solution (1.0 mg ml-1 crude, in 0.5 M tris HCl, pH 9.85), was stirred in the 

mixer. Then 50 ml of the second aqueous phase (1.0 M trisHCI, pH 6.9) was added. 

After taking and settling samples the a-amylase activity was determined in the 

aqueous phase. 

fop view; 

to 
z - setter 

holes 
<±::i 10 mm 

5̂mm 

B 

from 
mixer -mi 

8? mm 

c 

Fig. 3. Mixer and settler used for enzyme extraction. A: vessel; B: stirrer; C: settler. 

2.2.6. Continuous extraction: 

Continuous extraction of a-amylase was performed in two mixer/settler units, as 

shown in Fig. 2. The reversed micellar phase was circulated between the two extrac­

tors. The mixers are described above. The settlers (Figure 3(c)) were made of perspex 

(operating volume of 900 and 650 ml respectively). Peristaltic pumps with neoprene 

tubing (Watson-Marlow) were used. 

The flows were set to: Fwi = 1.35 ml s-1, FRM = 0.67 ml s-1, Fw2 = 0.075 ml s-1. 

The total volume of reversed micellar phase was 21. 

W1 ,in contained 1.0 mg mM of crude a-amylase in 0.5 M tris HCl, pH 9.85. W2,in 
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contained 1.0 M tris HCl, pH 6.9. 

During the extraction experiments a-amylase activity was determined as 

described above in W1,out, W2,out, and in the apolar phase in both settlers. 

2.3. EXTRACTION THEORY 

A continuous forward and back extraction of an enzyme in two mixer/settler 

units (Fig. 2) with the reversed micellar phase circulating between the units can be 

described by the following equations: 

2.3.1. mass transfer in mixers 

For batch operation: 

ClC- RMl 

dt 

dC W 2 

: ^ o v , i O i C w l - C R M 1 ) ( 1 ) 

"* o v , 2 C ^ l 2 ^ ' RM2 _ ^ W2 ) K^-J 
dt 

For continuous operation: 

^-RMl ~ ^ - RM2 = ^ - ov,l ^ 1 C ^ l t - Wl.out ~ ^ RMl ) C ^ ) 

^ ' W 2 , o u t = ^ o v , 2 ^ 2 C m - 2 ^ ' R M 2 — ^ - W 2 , o u t ) ( ^ ) 

2.3.2. mass balances 

^ Wl ( ^ _ ^ - W l , o u t J = ^ R M C ^ - R M l — ^ RU2J C ^ J 

^ W 2 ( ^ W 2 , o u t " " ) = r R M C ^ RMl ~ ^ RM2 ) ( ° ) 
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When the value of the distribution coefficients, m-| = C R M V ^ W I and m2 = 

CW2*/CRM
 a n c ' t n e o v e r a " mass transfer rate constants Kov 1 and K0V2 are known, it 

is possible to calculate all the concentrations for a given set of flows and residence 

times. 

If inactivation of the enzyme takes place during the extractions the concentra­

tions in (1) to (6) have to be corrected for this effect. 

2.4. RESULTS AND DISCUSSION 

2.4.1. Distribution of a-amylase between aqueous and reversed micellar phase 

The distribution of pure a-amylase between the aqueous and the reversed 

micellar phase was studied in relation to the pH of the aqueous phase. The amount of 

a-amylase activity transferred towards the reversed micellar phase, as a function of 

the initial pH in the aqueous phase is given in Fig. 4. 

The results clearly indicate that the amount of active a-amylase that can be 

solubilized in the apolar phase by the reversed micelles is strongly pH dependent. At 

the optimal pH 9.90, 90 ± 2% of the a-amylase is solubilized in the reversed micellar 

phase. This would mean that the distribution coefficient of the enzyme in this system 

will have a value of about 10. In fact this value will be even higher, since some inacti­

vation (5 ± 3%) of a-amylase takes place during these extractions. 

When crude a-amylase was used (1.0 mg ml-1) instead of crystalline a-amylase 

the optimal pH for solubilization shifted to pH 9.80 - 9.85, while the relative amount of 

solubilized a-amylase was less. The reason for this is not clear, impurities in the crude 

enzyme preparation might have their effect on the solubilization of the a-amylase in 

the reversed micelles. 

The surfactant we used is a quaternary ammonium salt, which will give the 

interface of the reversed micelles a positive charge. Since a-amylase has a pi of 

around 5.2 (Stein and Fischer, 1960), the enzyme will have a net negative charge at 

pH 9.80 - 9.90, while the surfactant headgroups in the reversed micelle have a net 

positive charge. Maximum solubilization of a-amylase in reversed micelles seems to 

occur at a pH value at which the effective charge of the enzyme will be equal but 

opposite to the effective charge of the interface of the reversed micelle. 
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The buffering system used, tris HCl (pKa = 8.3), will have an increasing ionic 

strength for decreasing pH values, since the unprotonated form has no net charge. 

This will cause less effective charge interactions between a-amylase and surfactant at 

lower pH values. The size of the reversed micelles will also be influenced by this effect. 

% activity in RM 
100n 

Fig. 4. Solubilization of pure (•) and crude (o) a-amylase in the reversed micellar 
phase in relation to the initial pH of the aqueous solution. The amount of the 
a-amylase activity, which is recovered from the reversed micellar phase is 
expressed as percentage of the initial a-amylase activity in the aqueous phase. 

As can be seen from Fig. 4 the distribution coefficient of a-amylase over aqueous 

and reversed micellar phase will be very large at pH 6.9. A back extraction of a 

reversed micellar phase containing a-amylase with 1.0 M trisHCI, pH 6.9 was per­

formed. The distribution coefficient (m2 = CW2*/CRM) was determined by taking dif­

ferent volume ratios of aqueous to reversed micellar phase (Van 't Riet and Dekker, 

1984). This resulted in a value of at least 250. 
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2.4.2. Mass transfer in mixers 

To be able to perform a continuous extraction of a-amylase with a reversed 

micellar phase it is necessary to have data on the mass transfer rate during mixing. 

During the forward extraction of crude a-amylase (volume ratio RM/W1 = 0.5), the 

amount of a-amylase activity which was extracted in the reversed micellar phase was 

determined. The stirrer speed is set to the minimum value at which the dispersion was 

homogeneous throughout the entire mixer (2.8 s-1), resulting in reversed micellar 

phase droplets with diameters of (2-5)x10-4 m (visually estimated). 

Figure 5(a) shows the time course of the forward extraction of a-amylase. The 

observed optimum in the amount of a-amylase activity in the reversed micellar phase 

is due to the opposing effects of mass transfer and inactivation of a-amylase during 

mixing. This decrease in activity could be described by first order kinetics with a rate 

constant (k\) of (2-4)x10-4 s-1. By correcting the observed CRMI values for this inacti­

vation the overall mass transfer rate constant (Kov,i) was determined by using equa­

tion (1) and the mass balance. This resulted in a value of (2-3)x10"3 s-1. 

The mass transfer rate of a-amylase during back extraction was also studied. 

During the extraction (volume ratio W2/RM = 0.1 ) the amount of a-amylase activity in 

the aqueous phase was determined. The stirrer speed necessary to obtain a 

homogenous dispersion, being 4.0 s-1, was higher then during the forward extraction, 

resulting in water droplets with diameters of (5-10)x10-4 m (visually estimated). Figure 

5(b) shows the time course of the back extraction of a-amylase. In contrast to the 

forward extraction of the enzyme no inactivation is observed during mixing. The 

overall mass transfer rate constant (K0V|2) was determined by using equation (2) and 

the mass balance. This resulted in a value of (2-3)x10-4 s-1. 

The ratio of the mass transfer rate constants during forward and back extraction, 

Kov,i/Kov,2 = 1 0 c a n be explained by the ratio in surface areas during both extrac­

tions, A1/A2 = {f--\dà/(egi\) = 4 - 20. A difference in mass transfer rates during for­

ward and back extraction has also been observed by other workers (Göklen and 

Hatton, 1985), they subscribe this difference to energetic effects of the phase transfer 

of the protein. 
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Fig. 5. A: Forward extraction of a-amylase (batch extraction). The relative con­

centration of active a-amylase transferred to the reversed micellar phase 

is plotted versus extraction time, (volume ratio RM/W1 = 0.5). 

B: Back extraction of a-amylase (batch extraction). The relative concen­

tration of active a-amylase transferred to the aqueous phase is plotted 

versus extraction time, (volume ratio W2/RM = 0.1). 
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2.4.3. Continuous extraction of a-amylase 

Knowing the values of the distribution coefficients (m-i and m2) and the overall 

mass transfer rate constants (Kov -i and K0Vi2) during both the forward and back 

extraction it is possible to predict the concentrations in a continuous extraction pro­

cess as described in Figure 2 by using equations (3) to (6). 

We have performed these extractions in two mixer/settler units with the reversed 

micellar phase recirculating between the two extraction units (Fig. 2). The relative 

a-amylase activity in the aqueous and reversed micellar phases during the extractions 

are given in Figure 6. The steady state concentrations in the aqueous and reversed 

micellar phases are listed in Table 1. 

relative a-amylase activity 

8-

6-

4-
/ 

j L » 1 à. j — A »__ RM, (») 
W,.in 

W, ̂ (o ) 
RM; (A) 

6 7 
RM-cirtulations 

Fig. 6. Concentration of active a-amylase in W1,out, W2,out, RM1 and RM2 (all 

concentrations relative to W1,in), versus the number of circulations of the reversed 

micellar phase (one circulation takes 50 min). After 5 circulations an additional 0.2 

% (w/v) TOMAC was added to the reversed micellar phase (arrow). 

The extraction efficiency of the forward extraction is decreasing after 3.5 circu­

lations of the reversed micellar phase, as can be seen by the decreasing a-amylase 

concentration in the reversed micellar phase (Fig. 6). After 5 circulations an additional 
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0.2% (w/v) of TOMAC was added to the reversed micellar phase. This restored the 

extraction efficiency, meaning that the surfactant is lost slowly (< 15% per circulation 

of the reversed micellar phase) during the extractions. 

TABLE 1. Observed and calculated steady-state concentrations of active 
Q-amylase during the continuous forward and back extraction experiment. 

Relative a-amylase 

activity in 

W1,out 

RM1 

RM2 

W2,out 

Observed 

0.25 

1.45 

0.20 

7.80 

Calculated (correc­

ted for inactivation) 

0.23 - 0.31 

0.97-1.34 

0.10-0.22 

6.50 - 9.60 

During the extraction a precipitate is slowly building up at the interface between 

aqueous and reversed micellar phase. This might be a complex of denatured protein 

and surfactant, which is responsible for the decreasing surfactant concentration in the 

reversed micellar phase. This suggestion is supported by the fact that the protein 

balance shows a deficit of 10% - 20%. 

In the steady state the recovery of enzymatic activity was about 45% in the 

second aqueous phase, while the first aqueous phase contained about 25% after the 

extractions. The amount of a-amylase which was inactivated during the extractions 

was thus 30%. 

The concentrations, calculated by using equations (3) to (6), with correction for 

enzyme inactivation during the forward extraction and in the reversed micellar phase 

are also listed in Table 1. The observed concentrations are in good agreement with 

the calculated ones, if corrected for the inactivation. 
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2.5. CONCLUSIONS 

The enzyme a-amylase can be extracted into a reversed micellar phase and vice 

versa. The distribution of the enzyme between aqueous and reversed micellar phase 

is strongly dependent on the pH and/or the ionic strength in the aqueous phase. 

The distribution data of the enzyme has been used to perform a continuous 

forward and back extraction of a-amylase with a recirculating reversed micellar 

phase. The enzyme activity could be concentrated by a factor of eight by these 

extractions. Enzyme inactivation was about 30% during the extractions. The surfact­

ant concentration in the reversed micellar phase is slowly decreasing during the 

extraction (< 15 % per circulation of reversed micellar phase). This might be due to 

the formation of complexes between the surfactant and denatured protein. 

Because of the large increase in enzyme concentration, that can be obtained by 

the continuous forward and back extraction with a reversed micellar phase, the pro­

cess might be very promising for application in the large scale recovery of industrial 

enzymes, although some problems (enzyme inactivation, surfactant loss) still have to 

be solved. 

NOMENCLATURE 

A surface area m2 

C active concentration (relative to concentration in W1 ,in) 
C* active concentration in equilibrium with other phase. 
d drop diameter m 
F flow rate ml s-1 

k\ inactivation rate constant s_1 

Kov overall mass transfer rate constant s_1 

m distribution coefficient of a-amylase 
RM1 reversed micellar phase leaving the forward extractor 
RM2 reversed micellar phase leaving the back extractor 
f time s 
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W1 ,in aqueous phase entering the forward extractor 

W1 ,out aqueous phase leaving the forward extractor 

W2,in aqueous phase entering the back extractor 

W2,out aqueous phase leaving the back extractor 

e hold-up of disperse phase 

r residence time in mixer 

Subscripts: 

1 during forward extraction 

2 during back extraction 

REFERENCES 

Bernfeld, P. (1951) Adv. in Enzymology 12, 379. 

Bonner, F.J., R. Wolf and P.L Luisi (1980) J. Solid Phase Biochem. 5, 225. 

Douzou, P., E. Keh and C. Dalny (1979) Proc. Nat. Acad. Sei. USA 76, 681. 

Göklen K.E. and T.A. Hatton (1985) Biotechn. Progr. 1, 69. 

Hilhorst, R., C. Laane and C. Veeger (1983) FEBS Letters 159, 225. 

Hilhorst, R. (1984a) Ph. D. Thesis, Agric. Univ. Wageningen, The Netherlands. 

Hilhorst, R., R. Spruijt, C. Laane and C. Veeger (1984b) Eur. J. Biochem. 144, 459. 

Hustedt, H., K.H. Kroner, U. Menge and M-R. Kula (1985) Trends in Biotechn. 3,139. 

Laane C. and P.L. Luisi (1986) Trends in Biotechn. 4,153. 

Luisi, P.L, F. Henninger, M. Joppich, A. Dossena and G. Casnati (1977) Biochem. Biophys. 

Res. Comm. 74,1384. 

Luisi, P.L, F.J. Bonner, A. Pellegrini, P. Wiget and R. Wolf (1979) Helv. Chem. Acta 62, 740. 

Luisi, P.L, P. Meier, V.E. ImreandA. Pande(1984) In "Reverse Micelles", Plenum, London, 323. 

Martinek, K., A.V. Levashov, N.L. Klyachko and I.V. Berezin (1977) Doklady Akedemii Nauk 

SSSR 236, 920. 

Meier, P., V.E. Imre, M. Fleschar and P.L. Luisi (1984) In "Surfactants in solution", Vol. II, Ple­

num, New York, 999. 

Meier P. and P.L. Luisi (1980) J. Solid Phase Biochem. 5, 269. 



42 CHAPTER 2 

Stein E.A. and E.H. Fischer (1960) Biochim. Biophys. Acta 39, 287. 

Van 't Riet K. and M. Dekker (1984) In "Proc. 3rd Eur. Congr. Biotechn.", München, Vol III, 541. 

Welker N.E. and L.L. Campbell (1967) J. Bact. 94,1124. 

Wolf R. and P.L. Luisi (1979) Biochem. Biophys. Res. Comm. 89, 209. 



43 

CHAPTER 3 

MODELING AND OPTIMIZATION 

OF THE REVERSED MICELLAR 

EXTRACTION OF Of -AMYLASE 

ABSTRACT 

Enzymes can be concentrated by a continuous forward and back extraction with 

a reversed micellar phase. In this process the enzymes are transferred from one 

aqueous phase to another via a circulating organic solvent containing reversed 

micelles. 

During the extraction of a-amylase, enzyme inactivation and surfactant loss is 

observed. This inactivation is found to be caused mainly by complexation of the sur­

factant with the enzyme in the first aqueous phase. This mechanism is also respon­

sible for the surfactant losses during the extraction. 

This chapter is based upon the publications: 

Dekker, M., J.W.A. Baltussen, K. Van 't Riet, B.H. Bijsterbosch, C. Laane and R. Hilhorst (1987) 
In "Biocatalysis in Organic Media", (Eds. C. Laane, J. Tramper and M.D. Lilly), Elsevier, 
285. 

Dekker, M., K. Van 't Riet, J.W.A. Baltussen, B.H. Bijsterbosch, R. Hilhorst and C. Laane (1987) 
In "Proc. 4thEur. Congr. Biotechnol.", Amsterdam, Vol II, 507. 

Dekker, M., K. Van 't Riet, B.H. Bijsterbosch, R.B.G. Wolbert and R. Hilhorst (1989) AlChE J., 
35,321. 
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In this chapter a model description of the two extraction steps is formulated 

containing the inactivation rate and the mass transfer rate of the enzyme during the 

different stages of the extraction process. 

Since enzyme inactivation mainly takes place in the first aqueous phase, 

reducing the steady state enzyme concentration in this phase leads to an improve­

ment of the extraction efficiency. This reduction can be achieved by increasing the 

distribution coefficient and the mass transfer rate coefficient of the enzyme during 

forward extraction. 

As predicted by this model the enzyme recovery yield in the second aqueous 

phase can be increased to 85% and the surfactant losses can be reduced to 2.5% per 

circulation of the reversed micellar phase. The model predicts that further improve­

ment should be possible with modified extraction techniques. 

3.1. INTRODUCTION 

In biotechnology there is a need for new protein recovery processes, which 

combine a high selectivity for the desired product with substantial concentration and 

easy scale-up. In this context, liquid-liquid extraction of an aqueous solution with an 

organic solvent containing reversed micelles presents itself as a promising process 

for the selective recovery of proteins from a fermentation broth. Another important 

application of reversed micelles in the field of biotechnology is the bioconversion of 

apolar substrates (Luisiand Laane, 1986; Laaneand Dekker, 1986; Laaneer a/., 1987). 

A reversed micelle consists of a spherical aggregate of surfactant molecules in 

an apolar solvent surrounding an inner core of water (Fig. 1a). The polar environment 

inside such a micelle enables polar compounds, such as proteins, to be solubilized in 

a largely apolar solvent (Fig. 1b). 

It has been demonstrated that under certain conditions proteins can be trans­

ferred from an aqueous phase towards a reversed micellar phase and back (Luisi et 

al., 1979; Van 't Riet and Dekker, 1984; Göklen and Hatton, 1985). 
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Fig. 1. a: Schematic representation of a reversed micelle. 

b: Enzyme solubilized in the water core of the reversed micelle. 

The partitioning of proteins between a reversed micellar phase and an aqueous 

phase depends on several factors, among which interactions between the protein and 

the reversed micelle. These interactions can be of an electrostatic nature involving 

charged groups of the protein and the surfactant head groups, or of a hydrophobic 

nature involving hydrophobic parts of the protein and the micellar interface or the 

apolar solvent. The fact that electrostatic interactions play an important role is dem­

onstrated by the effect of the pH and the ionic strength of the aqueous phase on the 

partitioning of proteins between the reversed micellar and aqueous phases (Goklen 

and Hatton, 1986; Dekker era/., 1987b; Göklen and Hatton, 1987). Thermodynamic 

descriptions of the distribution of proteins between a reversed micellar and an 

aqueous phase, based on electrostatic effects have already been introduced (Fraaije, 

1987; Maestro and Luisi, 1986). 

Differences in distribution behaviour have been used to separate a mixture of 

three proteins showing that selective extraction is possible (Göklen and Hatton, 1987). 

To apply the reversed micellar extraction method for the recovery of proteins, a 
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continuous forward and back extraction process can be used. Previously we have 

investigated the performance of this process in two mixer/settler units as shown in 

Fig. 2 (Dekker er al., 1986). 

reversed mi cellar phase 

Wi.i w, 

1—» 
—» c o 

mixer 1 settler 1 

FORWARD 

EXTRACTION 

RM, 

< ' 

—» 

—» C D 

mixer 2 

RM2 

settler 2 

BACK 

EXTRACTION 

T 

1,out W-2, in w. 2,out 

Fig. 2. Flowsheet of the combined forward and back extraction for two mixer/settler 

units, with the reversed micellar phase circulating between the two extraction units 

(see Dekker et al., 1986 for construction details). 

A reversed micellar phase of the surfactant trioctylmethylammonium chloride 

(TOMAC) in isooctane was used to concentrate the enzyme a-amylase by performing 

the forward extraction at a pH value of 9.9, where the distribution coefficient is maxi­

mal, and the back extraction at a much lower pH value. In this way the a-amylase 

concentration was increased eight times. During the extraction a loss of 30% of the 

enzyme activity was observed; 45% of the initial amount of a-amylase was present in 

the second aqueous phase, while 25% remained in the first aqueous phase. 

In this chapter the mechanism of the enzyme inactivation during the extraction 

and the modelling of the extraction is described. As predicted by this model, activity 

recovery can be improved by increasing the distribution coefficient and the mass 

transfer rate during the forward extraction. 
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3.2. MATERIALS AND METHODS 

3.2.1. Chemicals: 

a-Amylase (EC 3.2.1.1, crystalline, 1000 U mg-1 and crude, 90-100 U mg-1) from 

Bacillus amyloliquefaciens was obtained from Sigma Chemical Co. The insoluble 

impurities of the crude enzyme preparation were removed by microfiltration of the 

enzyme solutions. Trioctylmethylammonium chloride (TOMAC) was obtained from 

Merck and contained 88% (w/w) of the quaternary ammonium salt, 10 % (w/w) of a 

mixture of octanol and decanol and 2% (w/w) of water. Rewopal HV5 (nonylphenol-

pentaethoxylate) was obtained from REWO Chem. Group. All other chemicals were 

obtained from Merck and were of analytic grade. 

3.2.2. Temperature: 
All experiments were performed at a temperature of 20 ± 0.5 °C. 

3.2.3. a-Amylase activity and concentration: 

The enzyme activity was determined at pH 6.9 with an auto-analyzer (SKALAR), 

with soluble starch as a substrate. The increase in the concentration of reducing 

sugargroups was determined spectrophotometrically. Enzyme samples were diluted 

to the measurable range with 25 mM K2HP04/KH2P04, pH 6.9. One unit is defined 

according to Bernfeld (1951). 

Protein concentration was determined with an auto-analyzer (SKALAR), using a 

biuret assay. 

3.2.4. Reversed micellar phase: 

The reversed micellar phase contained 0.40% (w/v) TOMAC, 0.088% (w/v) 

Rewopal HV5 and 0.1% (v/v) octanol in isooctane. The reversed micellar phase is 

saturated with buffer during extraction. 

3.2.5. Distribution of a-amylase between aqueous and reversed micellar phase: 

The effect of the pH of the aqueous phase on the solubilization of a-amylase in 

the reversed micellar phase was determined asdescribed before (Dekker ef a/., 1986). 
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The first aqueous phase consisted of 50 mM ethylenediamine (EDA) adjusted to the 

desired pH with HCl. The second aqueous phase was 0.5 M K2HPO4/KH2PO4, pH 5.5. 

The first and second extraction took 2 and 10 minutes respectively. 

3.2.6. Inactivation of enzyme in the aqueous phase: 

The inactivation of a-amylase in the presence of 0.1% (w/v) of either one of the 

components of the reversed micellar phase was studied in an aqueous phase (50 mM 

EDA, pH 10.0), under intensive stirring. Samples were taken at different time intervals 

and analyzed for enzyme activity. 

3.2.7. Surfactant concentration: 

The concentration of TOMAC in the reversed micellar phase was determined by 

dilution of 0.5 ml sample with 2.0 ml isooctane and extraction with 0.5 ml of an 

aqueous solution of colour reagent (1 % w/v 3,5-dinitrosalicylic acid, 0.4 N NaOH and 

30% w/v K,Na-tartrate). The amount of colourreagent extracted in the apolar phase 

was determined spectrophotometrically at 480 nm and showed a linear relation with 

the TOMAC concentration in the reversed micellar phase. This analysis took about 10 

min. 

The concentration Rewopal HV5 was determined by HPLC with a C8 reversed 

phase column which was eluted with 4:1 MeOH/H20 at a flow rate of 0.5 ml min-1. 

Detection was by UV absorption at 280 nm. 

3.2.8. Complexation between protein and surfactant: 

Different concentrations of a-amylase (0 - 2.5 g M; 1000 U mg-1) in 2 ml samples 

of the aqueous phase (50 mM EDA pH 10.5) were extracted with 2 ml reversed 

micellar phase for one hour which always resulted in complete inactivation of the 

enzyme. After settling, the concentrations of surfactant and protein were determined 

in the reversed micellar phase and in the aqueous phase respectively. 

The interfacial precipitate which was formed in the extraction process was iso­

lated from the two liquids. To analyze this precipitate it was extracted for one hour in 

a two phase system consisting of isooctane with 0.1% (v/v) octanol and an aqueous 

phase with 0.5 M NaCI, 50 mM NaAc/HAc pH 6.0. After settling, the surfactant and 

protein concentrations were determined in the apolar and aqueous phase respect­

ively. 
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3.2.9. Mass transfer rate measurement: 

The measurement of the mass transfer rate coefficient was performed in a mix­

er/settler unit, as described by Dekker ef a/., 1986, in continuous mode. In order to 

improve phase separation, the inlet of the settler was modified in such a way that the 

dispersion from the mixer enters the settler horizontally at the level of the interface 

between the two phases. The operating volume of the mixer was 750 ml. The a-amy-

lase concentration (100 U mg-1) in the aqueous phase (50 mM EDA, pH 10.0) of the 

mixer (W1) was 1 g I-1, the reversed micellar phase contained no enzyme before the 

extraction. The flows of the two phases were: Fwi = 1.0 ml s-1 and FRM = 0.5 ml s*1. 

The concentrations CRMI and Cwi.out were measured as a function of time until a 

steady state was reached. 

3.2.10. Continuous extraction: 

The continuous extraction of a-amylase was performed in two mixer/settler units 

(Fig. 2) as described by Dekker ef al. (1986). The flows were: Fwi = 1.0 ml s-1, FRM = 

0.5 ml s-1 and Fw2 = 0.05 ml s-1. The total volume of the reversed micellar phase was 

2.01. W1,in contained 1.0 g I"1 a-amylase (100 U mg-1) in 50 mM EDA, pH 10.0, W2,in 

contained 0.5 M NaCI and 50 mM NaAc/HAc, pH 4.4. The concentration of TOMAC 

was analyzed every 100 minutes and adjusted if necessary. 

3.3. MODELING OF THE EXTRACTION 

In order to describe and optimize the extraction process, a mathematical model 

was formulated, which describes the time dependency of the concentration of active 

enzyme in all the phases. For each phase a differential equation is derived [equations 

1-4]. The first term on the right hand side of each equation represents the concen­

tration change due to flow into or out of the mixer, the second term the transfer of 

enzyme from or to the other phase in the mixer as driven by gradients in the chemical 

potential, and the third the inactivation of enzyme in that phase, by first order inacti-

vation kinetics. 
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Equations 1-4, in combination with descriptions of the residence times of the 

phases in the settlers, can be used to describe the extraction process dynamically, by 

numerical solution, or to describe the steady state of the extraction, by analytical 

solution of the set of equations. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Mechanism of inactivation 

During the reversed micellar extraction of a-amylase inactivation of the enzyme 

takes place (Dekker et al., 1986). This inactivation was observed mainly in the first 

mixer/settler unit during the forward extraction of the a-amylase to the reversed 

micellar phase. 

To investigate in which phase inactivation takes place, a-amylase activity as a 

function of time was studied in an aqueous phase at the extraction conditions (50 mM 

EDA pH 10.0), but which had not been in contact with the reversed micellar phase, 

and in a reversed micellar phase, which was separated from the aqueous phase after 
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the extraction. In both phases no significant inactivation of the enzyme was observed 

(k{ < 10-5 s-1). Since also no inactivation is observed in the reversed micellar phase 

after the extraction, the inactivation has to take place by a component of the reversed 

micellar phase present in the aqueous phase during extraction. 

To establish which component is responsible for the inactivation of the enzyme, 

the components were added separately to an aqueous enzyme solution. The effects 

of these additions on the enzyme stability are shown in Fig. 3. 

6 8 
TIME [MINI 

Fig. 3. Inactivation of a-amylase in an aqueous phase at pH 10.0 caused by the 
addition of 0.1% (w/v) of one of the reversed micellar phase components. 

Only the cationic surfactant TOMAC is effective in inactivating the enzyme. 

Although the equilibrium concentration of free TOMAC in the aqueous phase is 

very low, it can be continuously supplied by mass transfer out of the reversed micellar 

phase during extraction, when complexation between enzyme and surfactant occurs. 

This flow of surfactant out of the reversed micellar phase is visualized in Fig. 4, where 

the amount of TOMAC left over in the reversed micellar phase is shown as a function 

of the amount of a-amylase which has been inactivated in the aqueous phase. 
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A linear relation is observed up to a concentration of 1 g I-1, indicating that 250 

surfactant molecules are bound to one molecule of a-amylase. Literature data on 

complexation of the surfactant sodium dodecylsulfate with proteins show a similar 

ratio (210 - 260) of surfactant molecules to a protein molecule with the size of 

a-amylase (Takagi et al., 1975). These results strongly suggest that the mechanism of 

enzyme inactivation during the reversed micellar extraction is constituted by the for­

mation of complexes between TOMAC and enzyme in the aqueous phase. The 

observed ratio means that in the continuous extraction experiments an inactivation of 

1% of the a-amylase goes along with a 0.17% loss of TOMAC from the reversed 

micellar phase per circulation of this phase. 

100 

2 

Ü 

< 
O 
t-
Ä« 

1 1.5 
AMYLASE IG/L1 

Fig. 4. TOMAC percentage remaining in the reversed micellar phase after extraction 

as a function of the inactivated amount of a-amylase. Extraction for one hour at pH 

10.5 at 20 °C. 

During the extraction process aggregates appear at the interface between the 

aqueous and reversed micellar phase. These could be partly dissociated by extraction 

with 0.5 M NaCI, 50 mM HAc/NaAc pH 6, in the presence of isooctane with 0.1% 

(v/v) octanol, to solubilize the dissociated TOMAC molecules. By performing this 

extraction 60% of both protein and surfactant could be recovered in the aqueous and 
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apolar phase respectively. Of the recovered protein only 20% was enzymatically 

active. This building up of insoluble complexes in the interface lends additional sup­

port to the conclusion that inactivation is caused by complex formation. It is worth 

mentioning that the formation of insoluble interfacial complexes is also observed for 

cytochrome c in reversed micellar systems with AOT (sodium di-2-ethyl- hexylsulfo-

succinate) as anionic surfactant (Göklen and Hatton 1986). 

The inactivation rate of a-amylase by TOMAC in the aqueous phase was found 

to be pH-dependent. In Table 1 the observed first order inactivation rate constants are 

shown for five pH values. These data explain why inactivation of the enzyme pre­

dominantly takes place during the forward extraction and not during the back 

extraction, which takes place at a much lower pH value in the aqueous phase. 

TABLE 1. Inactivation rate coefficients of a-amylase in the aqueous phase in the 

presence of 1 g M TOMAC for different pH values. (Buffers used: 0.5 M NaCI, 50 

mM HAc/NaAcO); 25 mM K2HP04/KH2P04(2); 50 mM EDA0)). 

pH 

4.4(1) 

6.9(2) 

9.5(3) 

10.0(3) 

10.5(3) 

friWl (S"1) 

5-10-5 

MO"5 

8-10"4 

4-10-3 

> 2-10-2 

3.4.2. Optimization of the extraction efficiency 

Because inactivation in the first aqueous phase can be described by a first order 

mechanism, the extraction efficiency is expected to increase by lowering the steady 

state enzyme concentration in this phase. This can be achieved by a high mass 

transfer rate and/or a high distribution coefficient of the enzyme between the reversed 

micellar phase and the aqueous phase. 

Using equations 1 -4 the steady state enzyme concentrations in all four phases 

can be calculated. In Fig. 5 results are shown of the simulation of the activity recovery 
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in W2 as a function of the mass transfer rate coefficient of the forward extraction for 

two values of the distribution coefficient. 

As can be seen from Fig. 5, both an increase in the distribution coefficient, as well 

as an increase in the mass transfer rate coefficient result in a higher enzyme activity 

recovery in the second aqueous phase. 
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Fig. 5- Simulation of the effect of the mass transfer rate coefficient on the activity 

recovery in the second aqueous phase. The activity in W2 is relative to the initial 

activity in W1. 1:/r?i = 10; 2: m-\ = 100. Assumed values based on the experi­

mental conditions: /qwi = 410-3 s-1, JCJRM = 1-10"5 s_1, /qw2 = 5-10-5 s-1, m<i = 

10-3,KO2-A2 = 1.6-10-2 s-1 and FW1 :FRM:FW2 = 20:10:1. 

3.4.3. Effect of the distribution coefficient 

Since the distribution behaviour of a-amylase depends on interactions between 

the protein and the reversed micelle, the composition of the reversed micellar phase 

will have an effect on the distribution coefficient. 

The addition of a nonionic surfactant (Rewopal HV5) to the reversed micellar 

phase was found to cause an increase in both the distribution coefficient of a-amylase 
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as well as in the pH range in which solubilization occurs (Fig. 6). These effects could 

be caused by changes in the structure of the reversed micelles and in their adapta­

bility in size and surface charge density due to the addition of the nonionic surfactant. 

More fundamental studies are necessary to elucidate this effect. 
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Fig. 6. Solubilization of a-amylase in a reversed micellar phase in relation to the pH 

in the aqueous phase. Effect of the addition of nonionic surfactant to the reversed 

micellar phase, (reversed micellar phase: 0.4% (w/v) TOMAC, 0.1% (v/v) octanol in 

isooctane +/- 0.088% (w/v) Rewopal HV5). 

From Fig. 6 it can be concluded that in the presence of the nonionic surfactant 

almost complete extraction of the a-amylase from the aqueous phase can be 

obtained. Consequently the value of the distribution coefficient between reversed 

micellar phase and first aqueous phase, m<\, will be at least 100. This high value of the 

distribution coefficient also reflects that the equilibrium concentration in W1 (C*Wi) 

will be virtually zero. 

The increase in the extraction efficiency of the continuous forward and back 

extraction, predicted by this increase in the distribution coefficient, was observed 

indeed. The addition of the nonionic surfactant to the reversed micellar phase resulted 

in an increase in the activity recovery in the second aqueous phase from 45% to 65%, 
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reaching a concentration of 12 g/l (Fig. 7 (B)). Total activity recovery (W1 and W2) 

was 75%. The loss of TOMAC from the reversed micellar phase was 5% per circulation 

of the reversed micellar phase. The expected TOMAC loss at 25% enzyme inactiva-

tion, using the established ratio of 250 molecules of TOMAC per molecule of a-amy-

lase is 4.3% per circulation of the reversed micellar phase. No loss of Rewopal HV5 

was observed during the extractions. 

• A 

• B 

A c 

100 300 400 
TIME tmin] 

Fig. 7. Activity recovery in the second aqueous phase of the combined forward and 

back extraction. The activity in W2 is relative to the initial activity in W1. 

A: N-\ = 2.8 s-1, A/g = 4.0 s*1, without nonionic surfactant, (results from Dekker er 

a/., 1986, "dip" caused by TOMAC loss from reversed micellar phase); B: A/-| = 2.8 

s-1, A/2 = 4.0 s-1, with nonionic surfactant; C: N-\ = 5.5 s_1, Afe = 4.0 s_1, with non-

ionic surfactant. 

(—) the model prediction by using the independently found values for the mass 

transfer and inactivation coefficients. (—) line fitted through steady state activities 

(fitted on /riW1, values used: A: 4.6-10"3, B: 6.4-10-3, C: 4.3-10-3 s"1) 

The improvement of the continuous extraction upon addition of the nonionic 

surfactant is not solely due to an increase in the distribution coefficient during the 
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forward extraction. The addition of the nonionic surfactant also causes a 30% increase 

in the mass transfer rate, most likely by an effect on the dropsize distribution in the 

mixer. 

3.4.4. Effect of the mass transfer rate 

The mass transfer rate will depend on the stirrer speed in the mixer. When the 

mixer/settler extraction has reached a steady state both the mass transfer rate 

coefficient {KoVA-\) as well as the inactivation rate constant in the first aqueous phase 

(/(iwi) can be calculated by using equation 1 and 2 (/CJRM = 10-5 s_1). 

In Fig. 8 the results of the measurements of the mass transfer rate are given. The 

value of K01 A-\ is proportional to A/123. This power of A/i is in good agreement with the 

empirically expected value of 2.1 found for mass transfer controlled by diffusion in the 

continuous phase (Middleman, 1965; Van Heuven and Beek, 1971). 

w 10 

Nt1/Sl 

Fig. 8. Mass transfer rate and inactivation rate coefficient during forward extraction 
of Q-amylase to the reversed micellar phase as a function of stirrer speed. 
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The inactivation rate constant in the aqueous phase was found to be 4-10-3 s-1 

and independent of the stirrer speed for A/1 > 3 s_1. At N-\ = 2 s-1 a lower value (2 10-3 

s-1) was observed, this cannot be explained by the model, but may be due to limitation 

in the amount of surfactant in the aqueous phase. The mass transfer rate of both 

surfactant and enzyme will be reduced at lower stirrer speed. Because of the higher 

enzyme concentration in the aqueous phase, the disappearance rate of surfactant 

from the aqueous phase by complexation with the enzyme increases, while the mass 

transfer rate of the surfactant to the aqueous phase decreases. These two effects can 

cause the observed decrease in the inactivation rate constant in the aqueous phase 

at lower stirrer speed. This means that the inactivation rate can only be described by 

first order kinetics in case the surfactant concentration in the aqueous phase is not 

limiting. During the continuous forward and back extraction experiments the stirrer 

speed was sufficiently high to permit description of the inactivation by first order 

kinetics. 

As predicted by the model, the total enzyme recovery increases with increasing 

stirrer speed, since the steady-state aqueous phase enzyme concentration, which is 

susceptible to surfactant inactivation, is lower. 

For the back extraction a similar measurement of the mass transfer rate coeffi­

cient was performed at a stirrer speed (A/2) of 4.0 s_1. This resulted in a calculated 

value of 1.6-10-2 s-i for Ko2A2. 

To show that the total extraction efficiency of the reversed micellar extraction is 

improved by a higher mass transfer rate, the combined forward and back extraction 

was performed at N^ = 5.5 s-1 and N2 = 4.0 s-1. The results are shown in Fig. 7 (C). 

The total yield of active a-amylase in the second aqueous phase was about 85% 

giving a concentration of 17 g/l (17 times the initial concentration of the first aqueous 

phase). This concentration factor is in good agreement with the model prediction (Fig. 

5). Only 3% of active enzyme remained in the first aqueous phase after the extraction. 

Surfactant losses were 2.5% per circulation of the reversed micellar phase (67 min). 

The expected TOMAC loss is 2.2% per circulation of the reversed micellar phase, 

using the ratio of 250 molecules of TOMAC per molecule of a-amylase. 
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3.4.5. Comparison between model and experiments 

In Table 2 a summary of the experimental results and the model predictions of 

the steady state performance of the extraction is given. Both the experimental data of 

the steady state of the extraction (Table 2) and the observed dynamic behaviour of the 

extraction (Fig. 7) are in good agreement with the model predictions. This model 

offers the opportunity to predict the effect of changes in the process conditions (effect 

of residence times and mass transfer rate coefficients) and in the composition of the 

aqueous and reversed micellar phase (effect of inactivation rate constants and dis­

tribution coefficients) on the extraction efficiency. 

TABLE 2. Comparison between experimental and predicted values for the con­
centration of enzyme in the second aqueous phase and the loss of TOMAC per 
circulation of the reversed micellar phase. Experimental conditions as described in 
Fig.7. 

exp. 

A 

B 

C 

m 

[-] 

10 

100 

100 

[s-1] 

0.0075 

0.010 

0.055 

Cwi 

exp. 

7.8 

11.5 

17.0 

[g M] 

model 

8.2 

12.7 

17.0 

TOMAC loss [%] 

exp. 

n.d. 

5.0 

2.5 

model 

5-6.5 

4.3 

2.2 

kiwi [S"1] 

fit 

4.6-10-3 

6.4-10-3 

4.3.10-3 

3.4.6. Further improvement of the yield of the extraction 

The results presented above show that the extraction yield of active a-amylase 

can be improved by the increase of the distribution coefficient and the mass transfer 

rate coefficient during the forward extraction. A shorter residence time in the extrac­

tors in combination with a further increase in the mass transfer rate will give a higher 

yield of active enzyme in the second aqueous phase and will reduce the surfactant 

loss (see simulations shown in Fig. 9). The use of centrifugal separators or extractors 

might be valuable in this respect. 
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Fig. 9. Simulation of the effect of the mass transfer rate coefficient on the activity 

recovery in the second aqueous phase. The activity in W2 is relative to the initial 

activity in W1 . The effect of the residence time in the mixers is shown. The used 

values for mass transfer and inactivation rates are the same as in Fig. 5. 

The inactivation rate constant in the first aqueous phase is dependent on the 

temperature of extraction (Dekker and Den Ouden, unpublished results). Performing 

the extraction at lower temperatures will give an increase in the extraction yield. 

Since enzyme inactivation mainly takes place by complexation with surfactant it 

is worthwhile to optimize the choice of surfactant used in the extraction system. 

3.5. CONCLUSIONS 

The recovery of enzymes by a combined forward and back extraction with a 

reversed micellar phase can be described by a theoretical model containing the mass 

transfer rate and inactivation rate of the enzyme during the extractions. The extraction 

performance can be optimized by using this model. 

Enzyme inactivation during the reversed micellar extraction was found to take 

place mainly in the initial aqueous phase by complexation of the enzyme with the 
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cationic surfactant TOMAC. Reducing the steady state enzyme concentration in this 

phase should therefore lead to an improvement of the extraction efficiency. 

Both an increase in the distribution coefficient, by changing the composition of 

the reversed micellar phase, as well as in the mass transfer rate coefficient, by 

increasing the stirrer speed, during the forward extraction have been demonstrated to 

improve the extraction efficiency. 

The enzyme activity recovery in the second aqueous phase was increased to 

85%, amounting to 17 times the initial concentration and surfactant losses were 

reduced to 2.5% per circulation of the reversed micellar phase. 

Further improvement of the extraction yield might be obtained by a further 

increase in the mass transfer rate in combination with shorter residence times, by 

decreasing the temperature during extraction and by optimizing the nature of the 

surfactant. 
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NOMENCLATURE 

/Aj specific surface area in mixer j m2 n r3 

Cj concentration of active enzyme in phase j kg nr3 

C*j equilibrium concentration of active enzyme in phase j kg nr3 

Fj flow rate of phase j ml s-1 

/cjj inactivation rate constant in phase j s_1 

K0j overall mass transfer rate constant in mixer j m s-1 

nij distribution coefficient of a-amylase during extraction j 

RMj reversed micellar phase during extraction j 

t time s 

Wj aqueous phase during extraction j 

£j hold-up of disperse phase in mixer j 

fj residence time in mixer j s 
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Subscripts: 

1 during forward extraction 

2 during back extraction 

in entering extraction 

out leaving extraction 
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CHAPTER 4 

MASS TRANSFER RATE 

OF PROTEIN EXTRACTION 

WITH REVERSED MICELLES 

ABSTRACT 

The rate of mass transfer in the liquid-liquid extraction of the enzyme a-amylase 

between an aqueous phase and a reversed micellar phase has been investigated. 

Mass transfer rate coefficients have been measured in a mixer/settler and in a stirred 

cell. 

The pH of the aqueous phase determines the distribution coefficient of the 

enzyme and thus the direction of transfer. Forward transfer of the enzyme from the 

aqueous to the reversed micellar phase (cationic surfactant) occurs at pH 10.0. The 

mass transfer rate of this process was found to be controlled by the diffusion of the 

enzyme in the aqueous phase boundary layer. 

Back transfer from the reversed micellar phase to the aqueous phase occurs in 

the pH range 4 to 6. In contrast to the forward transfer, this process was found to be 

controlled by the interfacial process of enzyme release from the reversed micelles 

instead of the boundary layer diffusion. 

This chapter has been accepted for publication as: 
Dekker, M., K. Van 't Riet, B.H. Bijsterbosch, P. Fijneman and R. Hilhorst (1990) Chem. Eng. Sei. 
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The same effects have been observed for the transfer of the enzyme ribonu-

clease A to and from a reversed micellar phase with an anionic surfactant. 

A mechanism to explain the different mass transfer behaviour in forward and 

back transfer is suggested. 

4.1. INTRODUCTION 

A reversed micelle consists of a spherical aggregate of surfactant molecules in 

an apolar solvent surrounding an inner core of water. The internal polar environment 

enables polar compounds, such as proteins, to be solubilized in a largely apolar sol­

vent. 

It has been demonstrated that under certain conditions proteins can be 

transferred from an aqueous towards a reversed micellar phase and back (Luisi etal., 

1979; Van 't Riet and Dekker, 1984; Göklen and Hatton, 1985). The partitioning of 

proteins between the two phases depends on several factors. In general, proteins are 

only transferred to a reversed micellar phase at pH values at which their net sign of 

charge is opposite to that of the surfactant headgroups (Dekker et a/., 1989b). The 

difference between the pH value at which transfer occurs and the pi of the protein 

depends on the size of the protein molecule (Wolbert etal., 1989). Because electro­

static interactions between the protein and the reversed micelle are important (Göklen 

and Hatton, 1987; Dekker et al., 1987a), the distribution coefficient of proteins in these 

systems is determined by the pH and the ionic strength in the aqueous phase. Studies 

have been reported concerning the selectivity of the extractions (Wolbert etal., 1989; 

Göklen and Hatton, 1987) and the thermodynamic modeling of the distribution 

behaviour (Fraaije, 1987; Casellief a/., 1988; Bratkoefa/., 1988). 

Extraction of an aqueous protein solution with an organic solvent containing 

these reversed micelles presents itself as a promising process for the selective 

recovery of proteins from a fermentation broth (Rahaman et al., 1988). To apply the 

reversed micellar extraction method for the recovery of proteins, a continuous forward 

and back extraction process can be used. Previously we have investigated the per­

formance of this process in two mixer/settler units (Dekker et al., 1986). By optimiz­

ation of the distribution and mass transfer coefficients the enzyme a-amylase could 

be concentrated 17-fold with a recovery of 85% of enzyme activity (Dekker ef a/., 
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1989a). 

No quantitative data have been published concerning the characterization of the 

mass transfer processes during the transfer of a protein from an aqueous phase to a 

reversed micellar phase (forward extraction) and wee versa (back extraction). For a 

reliable scale up of the extractions more fundamental data are required. The objective 

of this work is to describe the mass transfer behaviour of the enzyme a-amylase dur­

ing forward and back extraction with a reversed micellar phase of the cationic sur­

factant trioctylmethylammonium chloride (TOMAC) in isooctane. The results are 

compared with data for the transfer of the enzyme ribonuclease A from a reversed 

micellar phase of the anionic surfactant AOT in isooctane. 

4.2. MATERIALS AND METHODS 

4.2.1. Chemicals: 

a-Amylase (EC 3.2.1.1) from Bacillus amyloliquefaciens and ribonuclease A (EC 

3.1.27.5) from bovine pancreas were obtained from Sigma Chemical Co. The insol­

uble impurities of the enzyme preparation were removed by microfiltration of the 

enzyme solutions. Trioctylmethylammonium chloride (TOMAC) was obtained from 

Merck and contained 88% (w/w) of the quaternary ammonium salt, 10 % (w/w) of a 

mixture of octanol and decanol and 2% (w/w) of water. Rewopal HV5 (nonylpheno-

Ipentaethoxylate) was obtained from REWO Chem. Group. All other chemicals were 

obtained from Merck and were of analytical grade. 

4.2.2. Analysis: 

a-Amylase activity and concentration were determined on an auto-analyzer with 

a colorimetric assay, as described previously (Dekker et al., 1989a). Ribonuclease A 

concentration was determined by UV spectroscopy, as described by Göklen and 

Hatton, 1987. 

4.2.3. Reversed micellar phase: 

The reversed micellar phase used in the transfer experiments of a-amylase 

contained 0.40% (w/v) TOMAC, 0.088% (w/v) Rewopal HV5 and 0 .1% (v/v) octanol 
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in isooctane. For the transfer of Ribonuclease A 50 mM Aerosol OT (sodium di-2-

ethylhexylsulphosuccinate) in isooctane was used. The reversed micellar phases are 

saturated with buffer during extraction. 

4.2.4. Temperature-

All mixer/settler experiments were performed at 20 ± 0.5 °C. Stirred cell experi­

ments during back extraction were performed at 20 ± 0.1 °C but during forward 

extractions at 10 ± 0.1 °C, in order to decrease the inactivation rate (Dekker et al., 

1989a). 

4.2.5. Mass transfer rate measurements in the mixer/settler: 

The mixer/settler units have been described previously (Dekker er al., 1986). In 

order to improve phase separation, the inlet of the settler was modified in such a way 

that the dispersion from the mixer enters the settler horizontally at the level of the 

interface between the two phases. The operating volume of the mixer was 750 ml. For 

forward transfer the a-amylase concentration in the aqueous phase (50 mM EDA, pH 

10.0) of the mixer (W1) was 1 g I-1 (105 U I"1), the reversed micellar phase contained 

no enzyme before the extraction. The flows of the phases were: Fwi = 1 0 ml s-1 and 

FRM = 0.5 ml s-1. The a-amylase concentrations CRMI and Cwi.out were measured as 

a function of time until a steady state was reached. 

For measurement of the back transfer rate two mixer/settler units, as described 

above, were used. In the first unit a forward extraction of the enzyme was performed 

at a stirring speed of 5.5 s-1. In this way a reversed micellar phase with a constant 

concentration of a-amylase was obtained, which was reextracted in the second mix­

er/settler unit with an aqueous phase containing 0.5 M NaCI and 50 mM HAc/NaAc 

buffer. The flows of the phases were: FRM = 0.5 ml s-1 and Fw2 = 0.05 ml s-1. The 

a-amylase concentrations CRM2 and Cw2,out were measured as a function of time until 

a steady state was reached. 

Back extraction rates for ribonuclease A from AOT reversed micelles were 

measured in rotating vials as described by Dekker era/. (1986). Forward extraction 

was performed from an aqueous phase containing 0.5 g I-1 enzyme, 0.2 M NaCI, and 

25 mM EDA at pH 4.0. Back extraction was performed in the same buffer at higher pH 

values (8-11). Settling of the phases after the extraction was performed by centrifu-

gation for one min at 5000 g. 
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4.2.6. Mass transfer rate measurements in the stirred cell: 

The stirred cell used is shown schematically in Figure 1. The cell has been 

described previously (Scholtens et al., 1979). Additional baffling is provided on the 

lower and upper draft tube in order to obtain a flat interface at all the applied stirring 

speeds. The volume of the cell is approximately 500 ml. The propellers were 

counterrotating, pumping the liquid in inward, mainly radial, direction along the 

interface. In order to achieve comparable hydrodynamics at both sides of the inter­

face, equal values of Re for both phases were established (WW/A/RM = I^W/^RM = 1 -66 

(forward transfer, 10 °C) or 1.25 (back transfer, 20 °C)). In text and figures the value of 

the stirring speed in the aqueous phase (Nw) is given. 

Fig. 1. Schematic representation of the stirred cell (left). Both stirrers are situated 

inside a draft tube, which is baffled on the vertical outsides and on the open side 

facing the interface (for details see Scholtens ef al., 1979). On the right part the 

transfer process is shown. 1 : Diffusion of the enzyme in the aqueous phase to or 

from the interface; 2: Interfacial process of uptake or release of the enzyme in or 

from a reversed micelle; 3: Diffusion of the enzyme containing reversed micelle in 

the organic phase. 
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To measure the forward transfer, the aqueous phase containing 50 mM ethylene 

diamine (EDA) at pH 10.0, was first added to the cell. On top of this phase the reversed 

micellar phase was carefully layered. The two phases were equilibrated by stirring the 

system for two hours, which was found to be sufficient to saturate the reversed 

micellar phase with water (amount of water determined by Karl Fischer titration). The 

experiment was started by injecting a concentrated enzyme solution in the aqueous 

phase (final concentration 2.5x105 U H). The a-amylase content of both phases was 

determined in small (1 ml) samples taken every 15 minutes, over a range of two hours. 

The back transfer measurements were complicated by the fact that the water 

content of a reversed micellar phase is a function of the ionic strength of the conjugate 

aqueous phase; at higher ionic strength less water can be solubilized. If the reversed 

micellar phase containing enzyme from a forward extraction at 50 mM EDA was 

introduced in the stirred cell on top of the aqueous phase containing 0.5 M NaCI and 

50 mM HAc/NaAc buffer, formation of a turbid reversed micellar phase occurred 

because of water expulsion from this phase. In this system no reliable measurements 

of the mass transfer coefficient could be made. To obtain an enzyme containing 

reversed micellar phase in equilibrium with an aqueous phase with the proper ionic 

strength, a continuous extraction in the mixer/settler units was performed with the 

reversed micellar phase circulating between the units. By performing the back 

extraction with an aqueous phase containing 0.5 M NaCI, 50 mM HAc/NaAc at pH 5.0 

a considerable amount of enzyme is not transferred to the second aqueous phase, 

whereas the water content of the reversed micellar phase is adjusted to the ionic 

strength of the second aqueous phase. By using the reversed micellar phase obtained 

in this continuous back extraction in the stirred cell experiments, the phases remained 

clear during the experiments. The enzyme concentration in the reversed micellar 

phase obtained in this way was approximately 1.5x105 U M. The enzyme content of 

both phases was determined as described for the forward transfer over a range of 5 

hours. 

4.2.7. Fitting procedure: 

The mass transfer rate coefficients during the batch stirred cell extractions were 

calculated from the measured concentrations in both phases as a function of time 

using the non-linear fit algorithm of Marquardt, 1963. 
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4.3. MASS TRANSFER THEORY 

The mass transfer rate during liquid-liquid extraction is in general determined by 

three resistances. During forward extraction an enzyme molecule has to diffuse from 

the bulk of the aqueous phase to the interface; at the interface the enzyme is to be 

encapsulated in a layer of surfactant molecules (formation of a protein filled reversed 

micelle); the filled reversed micelle has to diffuse from the interface into the bulk 

organic phase. During back extraction the reverse processes take place (Figure 2). 

organic phase 

reversed micelle 

surfactant 

" enzyme 

MWWWW 

aqueous phase 

Fig. 2. Schematic representation of the transfer process of an enzyme between an 
aqueous phase and a reversed micellar phase. During forward transfer the enzyme 
is at the interface encapsulated in a layer of surfactant molecules, forming an 
enzyme containing reversed micelle (left to right). During back transfer the enzyme 
containing reversed micelle coalesces with the organic-aqueous interface and 
releases the enzyme in the bulk aqueous phase (right to left). 

For most extraction systems the interfacial concentrations of the transferable 

compound are found to be in equilibrium. Therefore in these systems the mass 

transfer rate is only determined by the diffusional processes on either one or both 



70 CHAPTER 4 

sides of the interface. In some cases, however, an interfacial reaction of the com­

pound with a carrier molecule has been found to be rate limiting in the transfer pro­

cess (Nitsch and Roth, 1978; Albery et al., 1984). 

Experiments in a stirred cell can elucidate whether a transfer process is limited 

by diffusion in the boundary layer in one of the phases or by an interfacial resistance. 

Increasing the stirring speed only results in a decrease of the boundary layer thick­

ness, and will not affect the interfacial resistance. 

The extraction process can be described by differential equations that are 

derived by combining the mass transfer equation with the mass balance of the 

enzyme and the inactivation kinetics of the enzyme in each phase (Dekker er al., 

1989a) (See appendix for nomenclature): 

dCi C\in-C, K0A( C2\ 

dt x l - e \ ' m ) " ' 

dC 2 C2,in~C2 K0AI C2 
+ 

dt X e V ' m ' i2 2 C , - — - kl2C2 ( 2 ) 

For a batch extraction the first term on the right hand side of equations (1) and (2) 

equals zero. Solving this set of linear differential equations (Morris and Brown, 1964) 

to obtain the time dependent concentrations in a batch extraction results in: 

C 1 ( 0 = a , e ' " ' l + a 2 e X 2 ' ( 3 ) 

C 2 ( 0 = ß , e X | ' + ß 2 e* 2 ' ( 4 ) 
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The overall process is characterized by two time constants because the process 

of mass transfer and of enzyme inactivation occur simultaneously. 

For the steady state of a continuous extraction (mixer/settler experiments) the 

terms on the left hand side of equations (1 ) and (2) equal zero. Solving these two linear 

equations simultaneously, with C i j n =
 1 and C2,m = 0, results in the description of the 

steady state concentrations in the mixer as a function of mass transfer rate coefficient 

and inactivation rate constants: 
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4.4. RESULTS 

4.4.1. Forward transfer 

4.4.1.1. Mixer/settler extraction 

The mass transfer rate of the forward extraction of a-amylase in the mixer/settler 

unit has been measured as a function of the stirring speed in the mixer. Measuring of 

the concentrations in both phases before and after the extraction gives the oppor­

tunity to calculate an overall mass transfer rate coefficient (KQA [S-1]) as a function of 

the stirring speed (N [s-1]) using equations (14) and (15) (Dekker er al., 1989a). The 

results are shown in Fig. 3. 

10 

< 
o 

1 0 ' -

10 

N[1/S] 

Fig. 3. Effect of the stirring speed on the overall mass transfer rate coefficient (KQA) 
of a-amylase for forward extraction in the mixer/settler unit. 

The mass transfer rate coefficient is found to be proportional to A/2-3. This relation 

is close to the expected empirical relation for mass transfer limited by diffusion in the 

continuous phase (KQA proportional to A/2-1 (Middleman, 1965; Van Heuven and Beek, 

1971)). No quantitative comparison with theoretical data on the mass transfer rate 
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could be made because of the difficult assessment of the specific surface area at the 

very low surface tension of the system (< "ICH mN nrr1) and the non standard stirrer 

blades used. 

4.4.1.2. Stirred cell extraction 

By performing the forward extraction in the stirred cell, measurement of the 

overall mass transfer rate coefficient itself (K0 [m s-1]) is possible, using equations (3) 

and (4). The observed relation between mass transfer rate coefficient and stirring 

speed in Fig. 4 illustrates a clear increase of the mass transfer rate coefficient with 

increasing stirring speed. 

5 

2 

- 6 
0 

5 

2 

-7 

_- - - * ' " mobile ^^ 

S^ 
/ / 

- yS 

J* rigid , _ - - " * " 

— ,--*" 
.--"" . . A -

r m • — • 

• i i i I i i i i 
0.6 0.8 1.0 1.4 

N[1/s] 

1.8 

Fig. 4. Effect of stirring speed on the mass transfer rate coefficient (K0) of a-amylase 
for forward extraction at pH 10 ( • ) and for back extraction at pH 5 (—•—) in the 
stirred cell. See Discussion for calculated ( ) forward transfer rates. 
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4.4.2. Back transfer 

4.4.2.1. Mixer/settler extraction 

For the back extraction rate an unexpected effect of the pH, at constant stirring 

speed, was found (Fig. 5). Since the pH is very unlikely to have a significant effect on 

the diffusion coefficient or on the specific surface area an additional interfacial resis­

tance seems to limit the back transfer rate. 

10 -

< 
o 

10 ~ 

10 
4.2 4.4 4.6 4.8 5.2 

pH W2 

Fig. 5. Back extraction mass transfer rate coefficient (KQA) of a-amylase in the 
mixer/settler unit as a function of the aqueous phase pH (N = 4 s-1). 

4.4.2.2. Stirred cell extraction 

To eliminate any effect of the pH on the dropsize and thus on the specific surface 

area in the mixer (where KQA is measured), the dependence of the a-amylase transfer 

on pH has also been measured in the stirred cell at constant stirring rate. The results 

are shown in Fig. 6. 
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Fig. 6. Back extraction mass transfer rate coefficient (K0) of a-amylase in the stirred 

cell as a function of the aqueous phase pH (A/w = 0.8 s"1). 

Again a large effect of the pH on the overall mass transfer rate coefficient (K0) is 

observed; over a range of two pH units the mass transfer rate coefficient varies by a 

factor of 30. 

Additional proof of the existence of a limiting interfacial resistance during back 

transfer was found in the dependence of the mass transfer rate coefficient on the 

stirring speed. Increasing the stirring speed from 0.8 s-1 to 1.6 s-1 (at pH 5 in the 

aqueous phase) resulted in an increase in the back transfer rate coefficient of only 10 

% (Fig. 4). For the forward extraction over the same range of stirring speeds a tripling 

of the mass transfer rate coefficient was observed. 
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4.5. DISCUSSION 

For the stirred cell extraction the mass transfer rate by diffusion across the 

laminar boundary layer parallel to the flat interface can be calculated using relations 

between the dimensionless numbers Re (Reynolds = vx/v), Sc (Schmidt = v/D), and 

Sh (Sherwood = /CJX/D). These relations are given in equations (24) and (25) for the 

case of a completely mobile or rigid interface respectively: 

Sh = 1 . 1 3 ' Re05- Sc05 ( 2 1 ) 

Sh = 0 . 6 6 4 - Reos • Sc033 (22) 

The diffusion coefficient can be estimated using the Stokes-Einstein equation for 

diffusion of spheres in a liquid: 

D - £f- (23> 
For forward transfer the diffusional mass transfer rate in the aqueous phase is 

calculated. Taking into acount the value of the distribution coefficient (m-| = CRM/CWI 

> 100 (Dekker et al., 1987b)) this resistance will be dominant over the diffusional 

resistance in the reversed micellar phase. For back transfer the diffusional mass 

transfer rate in the reversed micellar phase will be dominant, using the same argu­

ments (m2 = C W 2/CRM > 100 (Dekker era/., 1989a)). Equation (23) gives a value of 

6.0x10-11 m2 s-1 for the diffusion coefficient of a-amylase in water during forward 

extraction and 1.0xl0"10 m2 s-1 for the diffusion coefficient of a reversed micelle con­

taining a molecule of a-amylase in isooctane during back extraction. The effective flow 

area is taken between r = 1 cm and r = 3 cm, giving an effective transfer area of 50% 

of the total interfacial area. 

Equations (21) and (22) combined with the relation between vand N (Scholtens 

ef a/., 1979) give that K0 is proportional to A/O-84. The calculated relations between K0 

and N for a mobile and rigid interface during forward extraction are shown in Figure 

4. The observed dependence of K0 with N indicates that in the stirred cell part of the 

interface behaves rigid and the other part mobile, depending on the stirring speed. 
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Such behaviour has been observed before, in the same range of stirring speeds, with 

adsorption of surface active molecules in the interface (Scholtens etal., 1979). 

For the back extraction, however, the observed K0 are much lower (Fig. 4), while 

the calculated ones are 30-50% higher than for forward transfer. The calculated 

diffusional K0 varies with the same slope with N as the forward K0, the experimentally 

determined K0, however, was found to be independent of N. As can be seen in Figure 

5, below pH 4.7 the observed mass transfer rate coefficients are in the range of a 

diffusion limited transfer in the reversed micellar phase to a rigid interface. At higher 

pH values the observed mass transfer rate coefficients are significantly lower than this 

lower limit of the expected value for diffusion limited transfer. 

The low value for the mass transfer rate coefficient during back extraction, 

together with the strong pH effect, and the absence of a significant influence of the 

stirring speed on the back transfer all lead to the conclusion that an interfacial resis­

tance is limiting the back transfer. 

The additional resistance is probably related to the coalescence of the protein 

filled reversed micelle with the organic/aqueous interface, thereby releasing the pro­

tein molecule to the aqueous phase (Fig. 2). This interfacial process requires the 

breakup of a small organic film between the reversed micelle and the bulk aqueous 

phase. In this process the surfactant molecules stabilizing the film need to be dis­

placed in order to create a connection between the waterpool of the reversed micelle 

and the bulk aqueous phase. The stability of a surfactant-stabilized film depends on 

the phase in which the surfactant is best soluble (Caroll, 1976). During back transfer 

an isooctane film has to break, whereas during forward extraction breaking of an 

aqueous phase film is involved. Since in the present case the surfactant is better sol­

uble in the isooctane, the organic film will be much more stable than the aqueous one. 

This film stability mechanism can explain why back transfer is slower than for­

ward transfer but does not elucidate the observed pH dependence of the mass 

transfer rate coefficient. This might be explained by the interactions of the protein 

molecule with the surfactant head groups which will affect the mobility of the surfact­

ant molecules. Although in the pH range of back transfer, the equilibrium distribution 

(which is also influenced by electrostatic interactions between protein and surfactant 

(Dekker et al., 1989b)) is totally towards the aqueous phase, interactions between 
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a-amylase and a positively charged surface are still possible. The titration curve of 

a-amylase (Fig. 7) shows that the number of negatively charged amino acid residues 

per molecule varies from 20 at pH 4 to 90 at pH 6. 
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Fig. 7. Calculated titration behaviour of a-amylase; number of positively and 

negatively charged amino acid residues and net charge as a function of pH 

(Calculation based upon amino acid composition as reported by Junge ef a/., 

1959). 

These negative charges can interact with the positively charged surfactant 

headgroups, reducing the mobility of the surfactant molecules which, according to 

the film rupture mechanism results in a retardation of the coalescence rate of the 

reversed micelles with the interface between the aqueous and organic phase. 

Coalescence rates between empty reversed micelles have been found to be 

extremely fast (second order rate constant of 106-108 M - V (Fletcher ef a/., 1985)). 

The rates of the coalescence of protein filled reversed micelles, could be much slower, 

according to the theoretical considerations mentioned above, depending on the ion­

ization state of the protein compared to the surfactant charge. It has been shown that 

the nature of a solute in a waterpool can influence the exchange rate (Vos era/., 1987). 



80 CHAPTER 4 

In order to check whether the mass transfer mechanism holds for a pro­

tein/reversed micellar system with a different enzyme and an anionic surfactant as 

well, we also investigated the back transfer of ribonuclease A from AOT reversed 

micelles. This back transfer has been reported to be extremely slow (Woll, 1987) but 

no data with respect to pH of the aqueous phase have been given. Also for this protein 

has the titration curve been calculated (Fig. 8). Since we are now dealing with an 

anionic surfactant, it is relevant to consider the interaction of positively charged 

groups on the protein surface with the surfactant headgroups. 

Ô 
o. 

• charge 

- charge 

net charge 

Fig. 8. Calculated titration behaviour of ribonuclease A; number of positively and 
negatively charged amino acid residues and net charge as a function of pH 
(Calculation based upon amino acid composition as reported by Tanford and 
Havenstein, 1956). 

We have measured KQA for the back transfer to an aqueous phase containing 0.2 

M NaCI and 25 mM ethylenediamine. The results in Figure 9 show that also for 

ribonuclease A the pH of back transfer exerts a large effect on the mass transfer rate 

in the range in which the relative number of positively charged groups varies signifi­

cantly. Again a low value of KQA is obtained. Since visual observation of the dispersion 

during mixing does not reveal a decreased A as compared to the TOMAC reversed 
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micellar system, also for this system an interfacial resistance will be dominant. A 

further increase in the pH might eventually lead to a diffusion controlled process also 

for ribonuclease A, but problems with the stability of the enzyme will be encountered 

at such high pH values. 

pHW2 

Fig. 9. Back extraction mass transfer rate coefficient (K<y4) of ribonuclease A from 

AOT reversed micelles as a function of the aqueous phase pH. 

4.6. CONCLUSIONS 

The forward and back extraction of the enzyme a-amylase between an aqueous 

phase and a reversed micellar phase of the cationic surfactant TOMAC in isooctane 

have different mass transfer resistances. The transfer rate of the enzyme from the 

aqueous phase to the reversed micellar phase (at pH 10.0) is controlled by the diffu­

sion of the protein in the aqueous phase boundary layer. The transfer rate of the 

reverse process (at pH 4 - 6) is much lower and is found to be controlled by an 

interfacial resistance. This additional resistance is probably due to the low coales­

cence rate of a protein containing reversed micelle with the interface caused by 

interactions between the protein surface and the surfactant molecules. Decreasing 
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the pH resulted in a reduction of this interfacial resistance and thereby in an enhanced 

overall mass transfer rate, due to a decrease in protein interaction with the positively 

charged surfactant molecules. The same type of behaviour is observed for the back 

transfer of ribonuclease A from a reversed micellar phase of the anionic surfactant 

AOT in isooctane, in which case an increase in pH resulted in an enhanced back 

transfer rate. 
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NOMENCLATURE 

m-1 
kg n r3 

m2s'1 

ml s-1 

JK-1 

s-1 

m s-1 

m s-1 

s-1 
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s 

K 

A 

Cj 
D 

F\ 
k 

k\ 
k\ 
K0 

N 
m 

r 
Re 

Se 

Sh 

t 

T 

V 

X 

Q j 

specific surface area 

concentration of active enzyme in phase j 

diffusion coefficient 

flow of phase j 

Boltzmann's constant (1.3805-10-23) 

inactivation rate constant 

mass transfer rate coefficient in phase j 

overall mass transfer rate coefficient 

stirring speed 

distribution coefficient (C2/C1 ) 

radius 

Reynolds number {vx/v) 

Schmidt number [v/D) 

Sherwood number (kx/D) 

time 

temperature 

velocity 

characteristic length 

coefficient defined in equations 6 and 7 

m s 
m 

kg m-3 
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kg 

Ns 

rrv 

m -3 

s-1 

s-1 

s-1 
m-2 

s-1 

s 

/3j coefficient defined in equations 8 and 9 

7j coefficient defined in equations 10-13 

€j hold up of receiving phase (phase 2) 

f j coefficient defined in equations 16-20 

Aj coefficient defined in equation 5 

/j dynamic viscosity 

v kinematic viscosity 

r residence time 

sub/superscripts 

1 phase 1: supplying phase 

2 phase 2: receiving phase 

in flowing into mixer 

m mobile interface 

obs observed value 

out flowing out of mixer 

r rigid interface 

RM reversed micellar phase 

W aqueous phase 

W1 aqueous phase of forward extraction 

W2 aqueous phase of back extraction 

o interface 
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CHAPTER 5 

TEMPERATURE EFFECT 

ON THE REVERSED MICELLAR 

EXTRACTION OF ENZYMES 

ABSTRACT 

In "conventional" liquid/liquid extraction of protein solutions with a reversed 

micellar phase, the protein is transferred from an aqueous phase to the reversed 

micellar phase by forward extraction, and subsequently to a second aqueous phase 

during back extraction. This back transfer is a relatively slow process, due to a large 

interfacial resistance for mass transfer. 

I n this paper we report an alternative procedure for the back extraction, using the 

effect of temperature. By increasing the temperature of the reversed micellar phase, 

after it has been saturated with the aqueous phase during the forward extraction, a 

separate aqueous phase is formed in which most of the enzyme is concentrated. This 

excess aqueous phase can be separated easily from the reversed micellar phase by 

centrifugation. The enzyme can be recovered in this expelled phase at extremely high 

concentrations (up to 2000x the initial concentration). This process has been per­

formed in a continuous way with two centrifugal separators, with the reversed micellar 

phase circulating between the two units. For a-amylase a recovery of 73 % of enzyme 

activity was obtained. 

This chapter has been submitted for publication by the authors: 
Dekker, M., K. Van 't Riet, J.J. Van Der Pol, J.W.A. Baltussen, R. Hilhorst, and B.H. Bijsterbosch 
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5.1. INTRODUCTION 

A reversed micelle consists of a spherical aggregate of surfactant molecules in 

an apolar solvent surrounding an inner core of water. The internal polar environment 

of these droplets enables polar compounds, such as proteins, to be solubilized in a 

largely apolar solvent. 

It has been demonstrated that under certain conditions proteins can be trans­

ferred from an aqueous towards a reversed micellar phase and back (Dekker er al., 

1989b). In general, proteins are only transferred to a reversed micellar phase at pH 

values at which their net sign of charge is opposite to that of the surfactant head-

groups. The difference between the pH value at which transfer occurs and the pi of 

the protein depends on the size of the protein molecule (Wolbert ef a/., 1989). 

Because electrostatic interactions between the protein and the reversed micelle are 

important (Göklen and Hatton, 1987; Dekker era/., 1987a), the distribution coefficient 

of proteins in these systems is not only determined by the pH but also by the ionic 

strength in the aqueous phase. Studies have been reported concerning the selectivity 

of the extractions (Göklen and Hatton, 1987; Wolbert ef a/., 1989) and the thermody­

namic modeling of the distribution behaviour (Fraaije, 1987; Caselliefa/., 1988; Bratko 

era/., 1988; Fraaije era/., 1989). 

Extraction of an aqueous protein solution with an organic solvent containing 

reversed micelles presents itself as a promising process for the selective recovery of 

proteins from a fermentation broth (Rahaman ef a/., 1988). To apply this reversed 

micellar extraction method, a continuous forward and back extraction process can be 

used. Previously we have investigated the performance of this process in two mix­

er/settler units (Dekker ef a/., 1986; Dekker ef a/., 1989a). 

The back transfer rate for protein extraction has been reported to be relatively 

slow (Dekker ef a/., 1989°). This slow mass transfer was ascribed to an interfacial 

resistance caused by the low coalescence rate of reversed micelles containing a 

protein molecule with the interface between the organic and aqueous phase. The 

aqueous phase pH was found to have a large effect on this interfacial resistance. 

Decreasing the number of groups on the protein with a charge opposite to that of the 

surfactant headgroups, resulted in an enhanced back transfer rate. 
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In this paper we describe an alternative process for the desolubilization of pro­

tein from the reversed micellar phase, based upon the effect of temperature on the 

phase behaviour of the latter. This procedure circumvents the disadvantageous 

effects of the decreased back extraction mass transfer rate. 

5.2. MATERIALS AND METHODS 

5.2.1. Chemicals 

Q-Amylase (EC 3.2.1.1) from Bacillus amyloliquefaciens was obtained from 

Sigma Chemical Co. The insoluble impurities of the enzyme preparation were 

removed by microfiltration of the enzyme solutions. Trioctylmethylammonium chlor­

ide (TOMAC) was obtained from Merck and contained 88% (w/w) of the quaternary 

ammonium salt, 10 % (w/w) of a mixture of octanol and decanol and 2% (w/w) of 

water. Rewopal HV5 (nonylphenolpentaethoxylate) was obtained from REWO Chem. 

Group. All other chemicals were obtained from Merck and were of analytical grade. 

5.2.2. Analysis 
a-Amylase activity and concentration were determined on a SKALAR auto-ana­

lyzer with a colorimetric assay, as described previously (Dekker et al., 1989a). Sur­

factant concentrations in the organic phase were determined by a spectro-

photometrical assay (Dekker et al., 1989a). The water content of the reversed micellar 

phase was determined by Karl Fischer titration. 

5.2.3. Temperature effect on phase behaviour 

The reversed micellar phase (0.40% (w/v) TOMAC, 0.088% (w/v) Rewopal HV5 

and 0.1 % (v/v) octanol in isooctane) was equilibrated with the aqueous phase (50 mM 

ethylenediamine, EDA, adjusted to pH 10.1 with HCl) by mixing samples for two hours 

at temperatures ranging from 10 to 60 °C. Phase separation was achieved by cen-

trifugation (5 min, 2500 g) at the same temperatures. The upper reversed micellar 

phase was collected and analyzed for water content and surfactant concentration. 

5.2.4. Temperature effect on protein solubilization 

The extraction - desolubilization procedure is shown schematically in Figure 1. 



88 CHAPTER 5 

reversed micelle 

Figure 1: Schematic representation of the extraction/desolubilization procedure, 
showing the transfer of the enzyme from the aqueous phase to the reversed 
micellar phase at low temperature (1-2) and the recovery at high temperature (3-4). 

A forward extraction has been performed at low temperature (10 °C) at pH 10.1 

(aqueous phase: 1 g I-1 a-amylase, 50 mM EDA/HCI), as described by Dekker er al., 

1986. The reversed micellar phase from this extraction, containing the enzyme, was 

separated from the aqueous phase and incubated for 10 minutes at constant tem­

peratures ranging from 10 to 60 °C. Subsequently the samples were centrifuged at 

10000 g for 10 s in order to spin down the separate phase which had formed. The 

supernatant reversed micellar phase was removed and analyzed for water content. 

The expelled aqueous phase was solubilized in an aqueous phase (0.5 M NaCI; 50 mM 

HAc/NaAc at pH 5.0) and analyzed for enzyme activity. 

5.2.5. Continuous centrifugal extraction 

The continuous extraction was performed with two centrifuges (Westfalia Sep­

arator, type TA1) (Figure 2). 
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WWV—< 

W1,ln W1,out 

Figure 2: Flow sheet of the continuous centrifugal extraction. W1 : Aqueous phase 
from which the enzyme is to be recovered; RM: reversed micellar phase; SM: static 
mixer; TA1 : centrifuges. 

The forward extraction was performed at 10 °C in a static mixer (internal diameter: 1 

cm, length: 0.5 m) and in the mixing zone in the first centrifuge. The flow of aqueous 

phase was 60 I lr1 and of reversed micellar phase 30 I h-1. After phase separation in 

the centrifuge the reversed micellar phase passed through a heating coil (internal 

diameter: 1 cm, length: 12 m, T = 35 °C) and into the second centrifuge to discharge 

the excess aqueous phase which had formed. The reversed micellar phase was 

subsequently cooled down to 10 °C and recirculated to the forward extraction unit. 

The second centrifuge was equipped with a solid bowl to collect the enzyme con­

taining phase during the complete run (100 minutes). During the run samples of the 

reversed micellar phase and first aqueous phase were taken. At the end of the run the 

product in the bowl of the second centrifuge was collected and redissolved in 200 ml 

aqueous phase (0.5 M NaCI; 50 mM HAc/NaAc pH 5.0). In all samples the enzyme 

activity was determined. 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Temperature effect on phase behaviour 

The maximum amount of aqueous phase which can be solubilized in the 

reversed micellar phase has been determined as a function of temperature (Figure 3). 

The amount of water solubilized is expressed as the molar ratio of water to surfactant 

in the organic phase (w0 = [H20]/[surfactant]). As temperature increases the amount 

of solubilized water decreases. The TOMAC concentration in the organic phase was 

found to be constant (8 mM) in the tested temperature range. 

E 
o 
5 

20 40 

TEMPERATURE ["Cl 

60 

Figure 3: Maximum solubilization of water in the reversed micellar phase as a 
function of temperature. 

A relation between the radius of the water core in the reversed micelle (rc), the 

headgroup area of the surfactant molecules in the aqueous/organic interface (Ah), the 

volume of a water molecule (Vw), the fraction of surfactant molecules in the interface 

(a = [surfactant]jnterface/[surfactant]totai) and w0 can be derived, based on geometric 

considerations (Assih ef a/., 1982): 
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r c ' ^ h 

wn = a ( 1 ) 
0 3VW 

According to this equation the observed phase behaviour can be caused by 

several phenomena: a decrease of rc, A^, a, or an increase of Vw, or a combination of 

these changes. In the investigated range of temperature the changes in Vw will be less 

then 2%. For several surfactant systems no large effect of temperature on A^ has been 

observed (Zulauf and Eicke, 1979). The observed lowered capacity for solubilizing 

water will therefore mainly be due to a decrease in rc and/or a. 

5.3.2. Composition of expelled aqueous phase 

From Figure 3 it is clear that heating the reversed micellar phase, which is 

equilibrated with the aqueous phase, causes expulsion of part of the solubilized water 

and leads to the formation of a separate phase (desolubilization). If protein is present 

in the reversed micellar phase, it will depend on the composition (pH and ionic 

strength) of this aqueous phase whether or not the protein will also be expelled from 

the reversed micelles. 

For the determination of the composition of the expelled aqueous phase the 

reversed micellar phase contained 10 times the normal concentrations of surfactants 

and cosurfactant in order to obtain samples of expelled aqueous phase sufficiently 

large to be analyzed. It can be assumed that the micellar properties do not change 

significantly upon this increase in surfactant concentration (Eicke and Rehak, 1976). 

This organic phase was equilibrated at low temperature (10 °C) with the forward 

extraction buffer, by gentle mixing of the two phases with a magnetic stirrer for 2 

hours. After phase separation and removal of the bulk aqueous phase the reversed 

micellar phase was heated to 35 °C (this temperature was chosen with respect to the 

enzyme recovery experiments as to be discussed below). After settling the expelled 

aqueous phase was analyzed for pH and buffer concentration. 
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TABLE 1. Composition of the aqueous phase in the forward 

extraction compared to that of the aqueous phase desolubilized 

from the reversed micellar phase. 

Aqueous phase 

Forward extraction buffer 

Forward extraction buffer 

Desolubilized phase 

T(°C) 

10 

35 

35 

PH 

10.10 

9.45 

8.80 

EDA (mM) 

50 

50 

32 

In Table 1 the compositions of the aqueous phase in the forward extraction and 

the desolubilized aqueous phase are given. The expelled aqueous phase contains 

less EDA/EDAHCI than during the forward extraction, which can be explained by the 

low concentration of surfactant co-ions (cations) which will be transferred to the 

reversed micellar phase (Leodidis and Hatton, 1989). The pH of the expelled aqueous 

phase is much lower than in the forward extraction buffer, the shift being much larger 

than the decrease in pH caused by the temperature rise only. These changes in 

composition of the aqueous phase can be caused by the redistribution of buffer 

molecules during both solubilization and expulsion. No data are available on the 

composition of the aqueous phase in the reversed micelles, so that no conclusions 

can be drawn with respect to the exact mechanism of these changes. 

At 35 °C the distribution of a-amylase between the expelled aqueous phase and 

the reversed micellar phase is directed towards the aqueous phase. At this tempera­

ture and a buffer concentration of 32 mM, transfer towards the reversed micellar 

phase could only be observed at pH > 10. It can therefore be expected that during 

desolubilization at 35 °C the enzyme will be expelled together with the excess 

aqueous phase. 

5.3.3. Temperature effect on protein recovery 

The feasability of this temperature desolubilization method for recovering the 

enzyme from the reversed micellar phase was verified experimentally. The a-amylase 

was transferred to the reversed micellar phase by a forward extraction at 10 °C and 
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pH 10.1, which resulted in 95% transfer. The reversed micellar phase was subse­

quently heated and the expelled aqueous phase was removed by centrifugation (Fig. 

1). In Figure 4 the percentage of active a-amylase in the expelled aqueous phase is 

shown as a function of the desolubilization temperature. 

100 

20 30 40 50 

T DESOLUBILIZATION [*C] 

70 

Figure 4: Recovery of enzyme from the reversed micellar phase by temperature 

desolubilization. Recovery of active enzyme expressed as % of starting activity in 

the aqueous phase. 

Over 90% of initial enzyme activity could be recovered by raising the temperature to 

20-40 °C. At higher temperatures inactivation of the a-amylase adversely affects the 

yield of active enzyme. 

This desolubilization procedure thus offers an alternative to the conventional 

way of recovering proteins from the reversed micellar phase by a back extraction with 

a second aqueous phase. The latter was found to be much slower than the forward 

extraction, which was shown to be caused by an interfacial resistance towards 

coalescence of the protein-filled reversed micelles with the interface (Dekker et a/., 

1989e). Desolubilization of the protein at a higher temperature is a much faster pro­

cess, because of an enhanced fluidity of the interface combined with a reduced affinity 

of the surfactants for the interface. 
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5.3.4. Continuous centrifugal extraction 

The combination of a forward extraction with a temperature desolubilization step 

to recover the enzyme a-amylase has been tested on a pilot scale using two Westfalia 

Separator centrifuges (type TA1). The reversed micellar phase was circulated 

between the two units (Figure 2). The aqueous phase leaving the forward extraction 

centrifuge (operated at 10 °C) retained 12% of the initial enzyme activity. From the 

small scale studies less than 5% was expected, indicating that the extraction in the 

static mixer and centrifuge (total mixing time was 5 s) was not complete. 

In the second centrifuge (operated at 35 °C) the desolubilized aqueous phase 

was separated from the reversed micellar phase. The resulting enzyme concentrate 

was collected in the bowl of this centrifuge during the run. The reversed micellar phase 

was recirculated to the forward extraction unit. Less than 5% of active enzyme was 

detected in this phase. In the desolubilization step 83% of active enzyme was recov­

ered, giving an overall yield of active a-amylase of 73%. Since the volume of the 

expelled phase is extremely small (ca. 35 ml) an enormous increase in enzyme 

concentration (ca. 2000x!) was obtained. 

In conventional forward and back extraction a second aqueous phase with low 

pH is used for the recovery of the enzyme from the reversed micellar phase in the 

second centrifuge. Attempts to use this process (back extraction at the same tem­

perature as the forward extraction) with the two centrifuges was not very successful. 

In this process the back extraction was incomplete (about 20-30% of the enzyme was 

re-extracted in the second aqueous phase during back extraction). Due to the high 

interfacial mass transfer resistance during back extraction the mixing time for back 

transfer was insufficient. This resulted in a build-up of enzyme in the recirculating 

reversed micellar phase causing a much lower extraction efficiency (In an extraction 

run of 100 I first aqueous phase, only 30-50% of active enzyme could be recovered in 

the second aqueous phase). 

In Table 2 the results obtained with the two processes are compared. It can be 

concluded that the desolubilization of protein from the reversed micellar phase by 

increasing the temperature is a much more efficient way of recovering proteins from 

this phase. 
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TABLE 2. Comparison between the conventional forward and 

back extraction (FEBE) and the forward extraction with tempera­

ture desolubilization (FETD) both performed in Westfalia Separ­

ator centrifuges. 

Initial activity 

Loss at forward extraction 

Overall recovery 

Concentration increase 

FEBE 

100% 

3% 

30-50% 

10x 

FETD 

100% 

12% 

73% 

2000X 

5.4. CONCLUSIONS 

The water solubilizing capacity of the reversed micellar phase of TOMAC/Re-

wopal HV5/octanol in isooctane is reduced with increasing temperature. This phase 

behaviour can be used to control the solubilization/desolubilization of enzymes and 

thus to create a successful recovery step for enzymes. The recovery of the enzyme 

Q-amylase from the reversed micellar phase was found to be more efficient by using 

a temperature desolubilization step than by a back extraction with a second aqueous 

phase. Using continuous centrifuges for this process was found to be very efficient. 
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CHAPTER 6 

GENERAL DISCUSSION 

The previous chapters have shown that by using reversed micelles enzymes can 

be selectively concentrated in a continuous liquid/liquid extraction process. In this 

chapter some potentials and limitations of the technique are discussed. 

6.1. Concentration increase 

The possibility to vary the distribution coefficient over a wide range enables a 

large concentration increase by using the combined forward and back extraction. The 

concentration increase which can be obtained will depend on the number of stages in 

each extractor, the flow ratios of the phases, and the allowed loss in the forward 

extractor. The theoretical maximum in concentration increase is given by the product 

of the distribution coefficient during the forward extraction (CRMI /CWI) and during the 

back extraction (CW2/CRM2)-

Another important factor is the maximum solubility of the enzyme in the reversed 

micellar phase. This solubility depends on the surfactant concentration. A theoretical 

maximum in protein solubility is obtained if all surfactant is used to cover the surface 

of the protein in the organic phase: 

na- Ae = ns- Ah ( 1 ) 

In which ne is the number of enzyme molecules in the reversed micellar phase, Ae is 

the surface area for one enzyme molecule, ns is the number of surfactant molecules 
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and A^ is the surface area of one surfactant headgroup. For this assumption equation 

2 can be derived for the calculation of this maximum concentration (Cmax) of a 

spherical protein in the reversed micellar phase: 

C = 1 . 5 - 1 0 19 Ml/3-[S]-Ah [kg m ] ( 2 ) 

In which Mr is the molecular weight of the enzyme, and [S] the surfactant concentra­

tion in the reversed micellar phase. 

For a-amylase (M( = 50 kDal) and a reversed micellar phase of 0.01 M TOMAC 

(assumed A^ = 5-10-19 m2) equation 2 results in a maximum solubility of 2.7 kg m-3. 

This value agrees well with the experimentally found value of 2.5 kg m-3 (Van Der Pol, 

1989). Since larger proteins have a lower surface/volume ratio than smaller ones the 

solubility increases with protein size (Figure 1). 

s 
oc 

Molecular Weight [kDal] 

Fig. 1. Maximum solubility of proteins in a reversed micellar phase of 0.1 M sur­
factant with /Ah = 5-10"19 m2. Line calculated with equation 2. 

It should be noted that equation 2 and Fig. 1. predict only the maximum solubility 

and not the distribution coefficient of the protein, which will depend on many other 
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parameters as discussed in Chapter 1. However, if in an extraction system the maxi­

mum solubility of the protein is reached, the distribution coefficient becomes a func­

tion of the enzyme concentration in the aqueous phase. 

6.2. Selectivity 

The reversed micellar extraction with ionic surfactants has been shown to be 

selective for proteins. Each protein has its own optimum pH for transfer to the rev­

ersed micellar phase depending on the pi of the protein and its molecular weight. 

Since protein transfer is characterized by a pH range, given a certain pH other 

proteins might be transferred as well. For reversed micelles of TOMAC/Rewopal the 

observed pH dependency of the fraction of protein transferred to the reversed micellar 

phase {<t>) can be described by the empirical equation: 

- 1 0 ( p H „ „ , - p H ) 4 

<!> = < l w e opt (3) 

Using equation 3 the purification factor of the desired enzyme (the ratio of the 

amount of enzyme to the amount of total protein after the extraction divided by this 

ratio before the extractions) can be calculated for its extraction from a random mixture 

of proteins. In Figure 2 this theoretical purification factor is given as a function of the 

percentage desired enzyme in the starting protein mixture. It has been assumed that 

the number of proteins approaches infinity and that all proteins have <f>max = 1, at 

equally distributed pH values between 0 and 14. 

The calculated relation holds for a mixture containing a very large number of 

proteins. In the case that only two or three proteins are present the purification factor 

will be determined by the optimum pH of transfer for those particular proteins. The 

purification factor might therefore either be much larger or much smaller than pre­

dicted by Figure 2. It should be noted that in practice not all the maximum fractions of 

transferred protein will have a value of one. 
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Fig. 2. Calculated purification factor for a desired enzyme out of a simulated protein 

mixture, with optimum pH values for transfer equally distributed between 0 and 14. 

The selectivity of the extraction might be enhanced by using more specific 

interactions between surfactant and enzyme instead of electrostatic interactions. The 

use of affinity interactions with a substrate analogue coupled to an apolar tail has been 

shown to be feasible for the extraction of concanavalin A (Woll and Hatton, 1989). The 

affinity surfactant was added to a reversed micellar phase of an ionic surfactant, so 

that the transfer to the reversed micelles will be a combination of affinity and electro­

static interactions. 

For Q-amylase affinity surfactants of maltodextrins esterified to fatty acids have 

been used successfully in combination with a cationic surfactant (Van Der Zandt, 

1989). Addition of the affinity surfactant enabled transfer of the enzyme at pH values 

at which normally no transfer occurred. As found for concanavalin A by Woll and 

Hatton (1989) this affinity extraction also appeared to be inhibited by the addition of 

free ligand in the aqueous phase, indicating that affinity interactions are responsible 

for the transfer indeed. 

The use of an affinity surfactant in combination with a nonionic surfactant will 

result in a more selective extraction, since electrostatic interactions will no longer be 

possible. 
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Possible limitations of the reversed micellar extraction 

6.3. Protein size limitation 

The size of a protein determines the difference between the pi of the protein and 

the optimum pH of transfer (Wolbert et ai, 1989). The larger the protein that has to be 

transferred, the larger the difference between pH and pi. This relation limits the size of 

proteins that can be transferred depending on their pi and the surfactant used (Fig. 3). 
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Fig. 3. Maximum molecular weight of a protein in order to be extractable between 
pH 4 and 11 as a function of the pi of the protein, given for the surfactants AOT and 
TOMAC. 

The molecular weight limitations represented in Fig. 3 can only be used for the 

two surfactant systems tested. With other surfactants it might be possible to extract 

larger proteins in the reversed micelles, depending on their size and flexibility. 
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6.4. Salt limitation 

In reversed micellar extraction with ionic surfactants electrostatic interactions 

proved to be most important. This implies that the ionic strength of the aqueous phase 

affects the pH at which the protein can be transferred to the reversed micellar phase. 

For the cationic surfactant TOMAC the pH of transfer shifts towards higher values 

(shift of ca. 1 pH unit per 100 mM NaCI, Dekker era/., 1987). For the anionic surfactant 

AOT this shift is towards lower pH values (shift of ca. 1 pH unit per 150 mM NaCI, 

Leodidis and Hatton, 1989). 

Using these shifts a maximum salt concentration in the aqueous phase can be 

calculated at which a protein can yet be transferred (assuming the transfer has to be 

between pH 4 and 11 considering the pH stability of the protein) depending on the pH 

of transfer without any additional salt (Fig. 4). 
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Fig. 4. Maximum allowable salt concentration in the aqueous phase as a function 

of pH of transfer without additional salt, given for the surfactants AOT and TOMAC. 

The salt limitations depend on the type of salt which is used. Especially variation 

of the surfactant counter-ion can have a large effect on the extraction behaviour. In 

the TOMAC/isooctane system the addition of NaAc leads to a shift of the a-amylase 
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transfer to lower pH values as compared to NaCI. This effect can be explained by a 

five fold increase in the maximum water solubility as compared with the system having 

only chloride ions as surfactant counter-ion (Van Der Zandt, 1989). 

The specific effects of different salt types make it difficult to predict the restric­

tions for the total ionic strength in extracting an enzyme from a fermentation broth. 

Rahaman et al. (1988) have shown that extraction of a protease from a fermentation 

broth with reversed micelles of the surfactant AOT in isooctane is possible. Their broth 

contained 10 kg m-3 sodium carbonate and trace amounts of other salts. 

Further research with respect to the effect of various salts and other components 

present in fermentation broths on the reversed micellar properties and protein solu­

bilization will probably give more information on the potentials of reversed micellar 

extraction for the recovery of enzymes from these broths. 

6.5. Conclusion 

It can be stated that the developments in reversed micellar extraction clearly 

demonstrate that this technology has potentials in biotechnology as a new large scale 

separation tool. The process has been shown to be selective. The extractions can be 

performed continuously, in a process which can be modelled adequately. The activity 

retention of enzymes recovered in this way can be high. Based upon two frequently 

used surfactant systems, some preliminary predictions can be made on the proteins 

and broths for which the extraction process is suited best. Further research will show 

for which proteins it is also economically feasible to use this type of technology in 

industrial processes. 
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NOMENCLATURE 

m2 

kg nr3 

Dal 

M 

A 

C 

M( 

n 

[S] 

<t> 

molecular surface area 

concentration of protein 

molecular weight 

number of molecules 

concentration of surfactant 

fraction of protein in reversed micelles 

sub/superscripts 

e enzyme 

h surfactant headgroup 

RM reversed micellar phase 

W aqueous phase 

W1 aqueous phase of forward extraction 

W2 aqueous phase of back extraction 



105 

SUMMARY 

The objective of this study was to develop a liquid-liquid extraction process for 

the recovery of extracellular enzymes. The potentials of reaching this goal by using 

reversed micelles in an organic solvent have been investigated. 

Reversed micelles are aggregates of surfactant molecules containing an inner 

core of water molecules, dispersed in a continuous organic solvent medium. The 

considerable biotechnological potential of these systems is derived principally from 

the ability of the water droplets to dissolve enzymes without loss of activity. Enzymes 

can be transported from a bulk aqueous phase to a reversed micellar phase and visa 

versa. 

The distribution coefficient of an enzyme between a reversed micellar and an 

aqueous phase depends on the interactions which are possible between the enzyme 

and the reversed micelle. When ionic surfactants are used, electrostatic interactions 

have been shown to be the most important ones. The distribution can therefore be 

controlled by adjusting pH and ionic strength. The optimum pH for transfer depends 

on the size and titration behaviour of the enzyme. The extraction to a reversed micellar 

phase therefore shows enzyme selectivity. 

Using the possibility to vary the distribution coefficient a continuous forward and 

back extraction process has been developed (Chapter 2). In two mixer/settler units 

the enzyme a-amylase is concentrated using a recirculating reversed micellar phase 

of the cationic surfactant trioctylmethylammonium chloride and the cosurfactant 

octanol in isooctane. 

During the forward extraction some inactivation of the enzyme occurs by a 

complexation between the enzyme and the surfactant in the aqueous phase (Chapter 

3). The extraction process has been modelled in terms of mass transfer and inacti­

vation of the enzyme in all phases. As predicted by the model the extraction efficiency 

can be optimized by reducing the concentration of enzyme in the first aqueous phase 
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through increasing the distribution coefficient (by the addition of a nonionic surfactant 

to the reversed micellar phase) and by increasing the mass transfer rate during the 

forward extraction. The observed enzyme recovery values correlate quite well with the 

values predicted by the model. 

An important parameter of the extractions is the mass transfer rate of the enzyme 

to and from the reversed micellar phase. During forward extraction the rate of mass 

transfer is controlled by diffusion in the aqueous phase. The back extraction rate, 

however, is governed by the interfacial process of coalescence of the reversed 

micelles with the bulk interface. This process is strongly dependent on the pH, prob­

ably due to interactions of the surfactant with charged groups on the enzyme (Chapter 

4). 
An alternative process for the recovery of the enzyme from the reversed micellar 

phase uses the temperature effect on the phase behaviour of the system (Chapter 5). 

By increasing the temperature some aqueous phase is expelled from the organic 

phase, enabling the enzyme to be recovered in this phase. This phenomenon was 

applied successfully in an extraction process with two centrifugal extractors. 

The applicability of the process to fermentation broths has to be subjected to 

further investigation, but some established general features are discussed (Chapter 

6). In conclusion it can be stated that reversed micellar extraction of enzymes is a 

selective process with an enormous potential to purify and concentrate proteins in 

one operation. 

The study described in this thesis was performed in a partnership between the 

Departments of Food Science (Food and Bioprocess Engineering Group), Biochem­

istry and Physical and Colloid Chemistry. The project was financed by the Nether­

lands Technology Foundation (STW). 
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SAMENVATTING 

Het doel van het in dit proefschrift beschreven onderzoek was een vloei­

stof-vloeistof extraktie proces te ontwikkelen voor de opwerking van extracellulaire 

enzymen. De mogelijkheden om dit doel te bereiken met een omgekeerde micellen 

bevattend organisch oplosmiddel zijn onderzocht. 

Omgekeerde micellen zijn aggregaten van surfactant molekulen rond een kern 

van watermolekulen in een organisch oplosmiddel. De aanzienlijke biotechnologische 

mogelijkheden van dergelijke systemen zijn gebaseerd op het feit dat enzymen 

opgelost kunnen worden in de waterdruppeltjes zonder aktiviteitsverlies. Enzymen 

kunnen getransporteerd worden van een bulk waterfase naar een omgekeerde 

micelfase en w'ce versa. 

De verdelingscoëfficient van een enzym hangt af van de interakties die mogelijk 

zijn tussen het enzym en de omgekeerde micellen. Bij het gebruik van ionogene sur­

factants zijn elektrostatische interakties het meest belangrijk gebleken. De verdeling 

kan daardoor gestuurd worden door de pH en de ionsterkte aan te passen. De 

optimale pH voor opname in de omgekeerde micelfase hangt af van de grootte en het 

titratiegedrag van het enzym. De extraktie naar de omgekeerde micelfase is hierdoor 

selektief voor het gewenste enzym. 

Gebruikmakende van de mogelijkheid om de verdelingscoëfficient te sturen is 

een kontinu heen- en terugextraktie proces ontwikkeld (Hoofdstuk 2). In twee mix­

er/settler eenheden is het enzym a-amylase geconcentreerd met een recirculerende 

omgekeerde micel fase van het kationogene surfactant trioctylmethylammonium 

chloride en het cosurfactant octanol in isooktaan. 

Bij de heenextrakties vindt inaktivering plaats van een deel van het enzym door 

een komplexatie tussen het enzym en het surfactant in de waterfase (Hoofdstuk 3). 

Het extraktie proces is gemodelleerd in termen van stofoverdracht en inaktivering van 

het enzym in alle fasen. De extraktie efficiëntie kan worden geoptimaliseerd door een 
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verlaging van de enzym concentratie in de eerste waterfase, door de verdelings-

coëfficient te verhogen (door een niet-ionogeen surfactant aan de omgekeerde 

micelfase toe te voegen) en door de stofoverdrachtssnelheid tijdens de heen extraktie 

te vergroten. De waargenomen opbrengst aan aktief enzym komt goed overeen met 

de door het model voorspelde waarden. 

Een belangrijke parameter van de extrakties is de stofoverdrachtssnelheid van 

het enzym naar en van de omgekeerde micel fase. Bij de heenextraktie is de stof-

overdracht gecontroleerd door de diffusie in de waterige fase. De terugextraktie 

snelheid wordt echter bepaald door het proces van coalescentie van de omgekeerde 

micellen met het bulk grensvlak. Dit proces is sterk afhankelijk van de pH, waar­

schijnlijk door interakties die plaatsvinden tussen de surfactants en geladen groepen 

op het enzym (Hoofdstuk 4). 

Een alternatief proces voor het terugwinnen van het enzym uit de omgekeerde 

micel fase maakt gebruik van het temperatuurseffekt op het fase gedrag van het sys­

teem (Hoofdstuk 5). Door verhoging van de temperatuur wordt een deel van de 

waterige fase uit de omgekeerde micel fase uitgestoten, het enzym kan in deze extra 

waterfase worden teruggewonnen. Dit fenomeen is met succes toegepast in een 

extraktie proces met twee centrifugaal extraktoren. 

De toepasbaarheid van het proces op fermentatie vloeistoffen is onderwerp van 

verder onderzoek, maar enkele algemene mogelijkheden en limitaties zijn genoemd 

(Hoofdstuk 6). 

Concluderend kan gesteld worden dat de omgekeerde micel extraktie van 

enzymen een selektief proces is met een enorm potentieel om eiwitten te zuiveren en 

te concentreren in één stap. 

Het onderzoek zoals beschreven in dit proefschrift is uitgevoerd in een geza­

menlijk projekt van de vakgroepen Levensmiddelentechnologie (sektie Proces-

kunde), Biochemie en Fysische en Kolloïdchemie. Het projekt is gefinancierd door de 

Stichting voor de Technische Wetenschappen (STW). 
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