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Stellingen 

1 Het doen van sensorisch onderzoek naar de bitterheid van witlofwortel 

extract, verkregen door extractie met water, waarbij naar de bitterstoffen 

lactucine en lactucopicrine wordt gerefereerd, is zonder enige chemische 

analyse een hachelijke zaak. 

Dit proefschrift. 

Voirol, E. et al., 1987. Sensory analysis of chicory bitterness. In 

Martens, H., Dalen, G.A. & Russwurm Jr, H. (Eds.) Flavour Science 

and Technology. John Hiley & Sons, Chicester, p. 341-345. 

2 Bij de sensorische analyse van witlof wordt te weinig rekening gehouden met 

de hydrolyse van sesquiterpeenlactonglycosiden door endogene witlofenzymen 

tot hun bittere aglyconen en een suikerrest. 

Price, K.R. et al., 1990. Relationship between chemical and sensory 

properties of exotic salad crops - coloured lettuce (Lactuca sativa L.) 

and chicory (Cichorium intvbus L.). J. Sei. Food Agric, 53 (2) 185-192. 

Dirinck, P. et al., 1985. Objective measurement of bitterness in chicory 

heads (Cichorium intvbus L.). In Baltes, H. et al. (Eds.) Strategies in 

Food Quality assurance: analytical, Industrial and Legal Aspects. De 

Sikkel, Antwerpen, p: III, 62-68. 

3 Er kunnen vraagtekens worden gezet bij de vergelijking van een chemische 

analyse van bitterstoffen van een gekookt witlofmonster met de sensorische 

analyse van het equivalente niet gekookte monster. 

Van der Heer, H.A. et al., 1985. De bitterheid van witloof. Proc. 8th 

International Biennal on chicory, 6 september, 1985, Geneve- Vaud, 

België. 

4 Door het toevoegen van de titel van een referentie in de literatuurlijst 

van een publikatie, wordt de waarde van die referentie vergroot. 

5 Halfvolle en vetarme levensmiddelen anders dan in melkproducten 

worden door de consument niet voor vol aangezien. 



6 Het propageren van regels ten aanzien van gezonde voeding en het naleven 

ervan valt ook bij voedingsvoorlichters niet altijd samen. 

Voedingsmagazine, 4 (3) 22-23 {1991). 

7 Het is verbazend dat planten met dezelfde inhoudsstoffen, zoals cichorei 

{Cichorium intybus L.) en gifsla (Lactuca virosa L.) in de 

volksgeneeskunst voor zeer verschillende werkingen worden aanbevolen. 

8 Het toepassen van witlofwortelextract als gewasbeschermingsmiddel tegen 

luizen dient in overweging te worden genomen, aangezien L. virosa, dat een 

hoog gehalte aan bittere sesquiterpeen lactonen heeft, niet door luizen 

wordt aangetast. 

Eenink, A.H. & Dieleman, F.L., 1982. Resistance of Lactuca accessions 

to leaf aphids: components of resistance and exploitation of wild 

Lactuca species as source of resistance. Proc. 5th int. Symp. Insect-

Plant Relationships, Mageningen. Pudoc, Mageningen, p. 349-355. 

9 Research aan glycosidisch gebonden aromastoffen in planten zou niet alleen 

gericht moeten zijn op de vluchtige componenten, maar ook op alle niet 

vluchtige verbindingen. 

Edith Leclercq 

Sesquiterpene lactones and inulin from chicory roots: extraction, 

identification, enzymatic release and sensory analysis 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical background 

Chicory {Cichorium intybus L.) is one of the many species of the Compositae 

family. It is a relative of the endive (C. endivia L.), the leaves of which 

are used as a vegetable, and the wild lettuce (Lactuca virosa L.). Chicory 

has been cultivated for the production of chicory leaves since approximately 

300 BC. In classical antiquity roots as well as leaves of wild chicory were 

used in salads and as a vegetable. Aristophanes (450-380 BC) and Theophrastus 

(372-287 BC) mention the chicory plant and its use. Both Dioscorides and the 

elder Plinius discuss the healing power of chicory. It was said that the 

leaves and roots were stomachic and the juice was used against eye disease 

and poisoning. Infusions of the plant are said to be healthy for the liver, 

kidneys, and stomach. All of its parts (leaves, stems, flowers, seeds, and 

roots) have been employed as infusions for pharmaceutical purposes (Maier, 

1987; Schmiedeberg, 1912). 

During the Middle Ages the Arabs used chicory as a remedy and foodstuff, and 

in Europe it was used as a medicine, and as a magic potion (Maier, 1987). 

It is not known when chicory was roasted for the first time for use as coffee 

substitute. Coffee-like brews made from chicory were used in Italy and 

Belgium in the 16th century. In 1592 Prosperus Alpinus described such 

beverages. In 1690, the beverage is mentioned in Holland, and it seems that 

it was used as a coffee substitute. In the 17th century the use of coffee 

became quite common in Europe, and simultaneously also the use of chicory 

roots as a coffee substitute increased (Maier, 1987; Schmiedeberg, 1912). 

At the end of the 18th century large plantations of chicory had been 

established in France and Prussia. The first factory for roasting chicory was 

founded in Holzminden, Germany. During the Continental System (1806-1813) 



almost no coffee was imported into Europe. As a consequence the cultivation 

of chicory and the use of the roasted root as coffee substitute spread over 

the continent. 

In 1882 more than 125000 tons of roasted chicory were produced in Europe. The 

annual world production of fresh roots during the first decade of this 

century for roasting purposes was estimated at 700000 t. In 1985 the world

wide consumption of dried roots was approximately 128000 t (ca. 450000 t 

fresh roots). Of this amount 57% was consumed in Western Europe, 20% in 

Eastern Europe, 2% in the United States, and the rest in South Africa and 

India (Maier, 1987). 

Nowadays the consumption of roasted chicory as a coffee substitute in the 

Netherlands is practically limited to vegetarians. Today chicory leaves 

(Belgian endive, witloof chicory) are cultivated for vegetable consumption, 

and the roots constitute a waste product. Chicory is no longer used for major 

pharmaceutical purposes, but may still constitute a folk medicine (Cecchini, 

1976). 

Chicory may also be used as a raw material for the alcohol industry (Saryanov 

et al., 1938), because of its inulin content, the main polysaccharide of 

chicory roots. The advantages of chicory over potatoes as a raw material in 

the alcohol industry was critically evaluated by Garger (1938). In 1986 a 

patent was filed in which a procedure is described for liberation of 

fermentable sugars present in chicory roots by an enzymatic process. These 

sugars may be used for alcoholic fermentation (de Baynast de Septfontaines, 

1986). 

Gupta and co-workers (1988, 1989) used an aqueous extract of chicory root as 

starting material for the production of inulinase (ß-fructofuranosidase, EC-

3.2.1.7) and fructose. 

Chicory is also used as ingredient for the preparation of soft drinks 

(Leroux, 1987b; Vonasek et al., 1986; Stat. Cultura Sfecle, 1985). Eres'ko et 

al. (1987) prepared condensed milk with chicory. Nachmedov & Kuljasova (1988) 

defined a juice made from a chicory-apple mixture as a coffee substitute, but 

according to their description it is more like a soft drink. 



1.2 Production of chicory 

Chicory is cultivated for the production of chicory leaves or heads (Belgian 

endive, witloof chicory) for use as a vegetable. It is appreciated because of 

its fine, slightly bitter taste. The production of witloof is mainly 

concentrated in Northern Europe. 

Production comprises of two phases, the cultivation of the roots in the 

field, and the forcing of the heads (chicons) in so-called trenches or pits 

(Huyskes, 1962). In the Netherlands the seed is sown in May or early June, 

and the carrot-like roots are harvested from late September to the end of 

November. After removing the foliage, the roots are embedded in pits. They 

are placed very close together in soil of good structure and provided with 

ample supplies of water. The roots are covered with a layer of soil. After 10 

or more days a heating system underneath the roots is turned on. A few weeks 

later the well-known white heads are being produced. 

At harvest the root and head are taken out of the pit in their entirety. The 

heads are cut off, cleaned, graded, and packed. 

The roots are considered as waste. In the Netherlands about 10 tons of 

chicory roots are produced annually. They may be used as cattle feed. 

However, they contain both the valuable fructose polymer inulin and bitter 

principles. 

The food industry is interested in inulin and new bitter compounds, such as 

sesquiterpene lactones from chicory. Additionally there is a demand in the 

Netherlands for the evaluation of new crops to incorporate into the Dutch 

cropping plan (Koster & Schneider, 1989) due to stagnation on agricultural 

markets in the food sector, and problems associated with intensive 

agricultural production. 

According to Fuchs (1989) a few crops, among them chicory and Jerusalem 

artichoke, have been considered for introduction. Both of these are inulin 

containing crops, and can be used for the production of high-fructose syrup 

as sweetener, or as raw material for the production of 5-

hydroxymethylfurfural (HMF). HMF can be used as starting material for the 

synthesis of many other products, among them dyes, flavours, and antibiotics 

(Küster, 1989). 

Recent data suggest that chicory can give higher inulin production compared 



with Jerusalem artichoke, and that chicory can be produced for the same price 

as sugar beets when the more intense sweetness of fructose is taken into 

account (Meyer & Borm, 1990). 

1.3 Specific constituents of chicory roots 

The bitter compounds isolated from chicory roots are sesquiterpene lactones 

with a guaiane skeleton (Fig. 1.1) (Leclercq, 1984; Pyrek, 1985; van Beek et 

al., 1990). Seto et al. (1988) identified also sesquiterpene lactones with a 

germacrane and eudesmane skeleton in chicory roots (Fig. 1.1), but until now 

these compounds have not been evaluated for their probably bitter taste. 

Ç Y V W y o ^ 
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guaiane germacrane eudesmane 

Fig. 1.1 Structural formulas of types of sesquiterpene lactone skeletons 
identified in chicory root. 

Chicory, like other members of the Compositae family, is distinctive in 

containing inulin (fructan, fructosan) as the main carbohydrate. Inulin is a 

fructose polymer with a Degree of Polymerisation (DP) in excess of 30 

(McKellar & Modler, 1989). The molecule is terminated by a glucose molecule 

(Fig. 2.6). Inulin may be used as raw material for fructose production. 

Fructose is 1.3-1.6 times sweeter than saccharose (Hyvönen et al., 1977) and 

can thus help to reduce the caloric value of the diet. It seems also to be 

less cariogenic when compared with saccharose. 



Inul in as such can not be digested by human beings due to the absence of the 

appropriate enzymes. Bifidobacterium sp. are present in the intestine, which 

have inulinases that can only hydrolyse neosugars, fructosans with a DP of 3-

6 and not fructosans with higher DP (McKellar & Modler, 1989). 

In addition to the bitter taste and the presence of inulin, brews made from 

roasted chicory roots have coffee-like characteristics. Such brews have been 

consumed in Western Europe for almost as long as coffee itself. They have 

generally been and still are regarded as substitutes for coffee. This is 

especially true in times of restricted supplies (Clarke & Macrae, 1987). 

A brew made from roasted chicory does not contain any caffeine as a 

stimulant. This lack of caffeine is considered to be an advantage to 

particular consumer groups, for example vegetarians. Chicory has also been 

attributed with other physiological benefits, among others stimulating the 

appetite, and aiding the digestion (Leroux, 1987a). The constituents of 

chicory roots will be discussed with more detail in Chapter 2. 

1.4 Processing of vegetables 

Chicory roots are considered a waste. They are produced at the harvest of the 

edible chicory leaves. The roots contain inulin as well as bitter 

sesquiterpene lactones. As a very cheap raw material it may be used for 

isolation of both types of compounds in order to obtain a bitter, sweet 

liquid. This liquid might be of use as an ingredient in alcoholic and non

alcoholic beverages. The bitter compound quinine could be replaced by the 

bitter principles from chicory roots. Quinine is a pharmaceutical product 

used against malaria and should therefore not be applied to food products. 

Some people suffer from adverse reactions when quinine is included in the 

diet. 

As part of the Biotechnology Research Progamme of the Ministry of Agriculture 

and Fisheries, a project was formulated to isolate both the bitter compounds 

and inulin from chicory roots with the use of enzymes and/or starter 

cultures. 

Usually the isolation of interesting compounds from plant material is carried 

out with a solvent. Simultaneous extraction of both bitter substances and 



inulin from chicory roots with one solvent is not possible. Inulin is 

extracted with (hot) water using countercurrent diffusion. The sesquiterpene 

lactones are rather apolar and will therefore remain in the pulp. Extraction 

with a more apolar solvent gives only the bitter compounds as solvent 

solubles, and inulin remains in the pulp fraction. This waste material will 

also contain a large amount of organic solvents. To reduce the inherent 

risks, general safety and environmental measures would have to be taken, 

which induce extra costs. 

Enzymatic liquefaction of plant material will release all its substances. 

The amount of waste material is reduced, and the liquid phase contains all 

interesting compounds. A liquid is easy to handle during processing. 

The application of enzymes is common in the fruit industry (see below). The 

possible use of enzymes in vegetable processing by various groups was 

evaluated. 

For instance sauerkraut is the product of a lactic acid bacterial 

fermentation of cabbage. It is made by adding salt to shredded cabbage, 

followed by packing the salted cabbage into containers allowing subsequent 

fermentation. Other vegetables are also known to undergo fermentation 

processes, e.g. cucumbers, olives, and on a smaller scale cauliflowers, 

carrots, beans, celery, and onions. Lactic acid fermentation of vegetables is 

described in more detail by Pederson (1980) and Vaughn (1982). 

The application of enzymes in fruit processing originates from the use of 

pectolytic enzymes for treatment of soft fruit to ensure high yields of juice 

and pigments and for the clarification of raw press juices. Technical enzyme 

preparations in use for these processes have mainly pectolytic activities 

along with other enzymes such as xylanases and arabinases (Voragen, 1989). 

Press juices obtained from for instance apples, are rather viscous due to 

dissolved pectin and have persistent turbidity, because of cloud particles. 

Addition of a pectinase preparation to the juice decreases viscosity and 

also degrades the negatively charged pectin coating of the suspended 

particles. As a consequence destabilised particles coagulate to larger units 

and precipitate (Voragen, 1989). A centrifugation and/or filtration step to 

remove these particles is necessary to obtain a clear juice, in many cases 

after addition of gelatin to remove polyphenols. 

Pectinases are also used for the preparation of vegetable juice, especially 

carrot juice. Juice yield as well as the carotene content of the juice 



increase when pectinases are involved (Leclercq, 1985). 

When enzymatic treatment of fruit or vegetable pulp with pectolytic enzymes 

is carried out together with cellulolytic enzymes, an almost complete 

liquefaction can be obtained. This process reduces solid waste and seems 

especially suited for products for which no juice extraction equipment has 

been developed, e.g. tropical fruit (Voragen, 1989). Yield of the obtained 

juice increases up to 90%, and almost all dry matter content is found in thei 

liquid phase. In theory the whole cell content is present in the juice, which 

otherwise would be lost with the pulp fraction. Only a few insoluble residue 

particles remain (Pilnik & Rombouts, 1979). 

Enzymatic liquefaction is an unusual process for isolation and extraction of 

flavour compounds from plant material. Only a few publications are known in 

which the use of enzymes ((hemi)cellulases) has been applied in order to 

increase the yield of aromatic or antimicrobial compounds (e.g. Tateo and co

workers, 1979, 1977, 1982; Chuyen et al., 1982; Szakâcs-Dobozi et al., 1988). 

Nitz et al. (1985) incubated Majorana hortensis first with pectinase or 

glucosidase preparations before extraction by steam distillation under 

reduced pressure. They compared these extracts with those from untreated 

plant material. Enzymatic treatment increased the yield of flavour compounds 

and affected the composition of the extracts when compared with the control. 

They suggested that bound precursors are present in the plant, which may be 

transformed to different components (aglycons) depending on the extraction 

method used. 

Flavour compounds in the plant are present in the cell in free form, and as 

glycosidic non-volatile precursors which are rather polar (see e.g. Wilson et 

al., 1984). Beta-glucosidases might be used for the hydrolysis of monoterpene 

glycosides to enhance the aroma of grape juices and wines through the release 

of volatile monoterpenes (Voragen, 1989). The same mechanism might be 

expected for sesquiterpene lactones glycosides, which were isolated from 

chicory roots for the first time by Seto et al. (1988). These enzymes are 

present in commercial enzyme preparations containing cellulolytic activities. 



1.5. Outline of this study 

As a part of the Biotechnology Research Programme of the Dutch Government 

(Four Million Guilder Fund) we planned to isolate bitter substances as well 

as inulin from chicory roots in a one step enzyme treatment using a 

commercial enzyme preparation containing both pectinases and cellulases to 

obtain complete liquefaction of the roots. As a consequence more bitter 

compounds and sugars (inulin) would pass into the liquid phase. No second 

extraction step would be required, and no heat treatment involved, which 

might otherwise alter the amount of isolated compounds and give undesirable 

off-flavours. The completely liquefied root suspension can be used as raw 

material in the manufacture of soft drinks. 

As a consequence analytical methods had to be improved, and studies on 

isolation, identification, and last but not least on the bitterness of 

sesquiterpene lactones were carried out. 

The results of experiments presented in this thesis were obtained in the 

various laboratories involved in this project. The project was started at the 

former Sprenger Institute (now part of ATO Agrotechnologie), Wageningen, in 

co-operation with the Agricultural University, Wageningen, Section Food 

Chemistry. For identification of the bitter compounds we could rely on the 

experience of scientists from the Department of Organic Chemistry of the same 

University. During the second part of the project the co-operation with 

Organic Chemistry intensified, and also Quest International became involved 

with respect to sensory analysis. 

During a part of the project a lively exchange of ideas with Prof. Gensch, 

Freie Universität, Berlin, working in the same field, took place. 
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CHAPTER 2 

THE COMPOSITION OF CHICORY 

2.1 Fresh chicory roots 

2.1.1 Sesquiterpene lactones 

Schmiedeberg (1912) isolated the bitter principle from chicory roots, a 

compound he named intybin. Gräfe (1915) found that intybin was neither an 

alkaloid, nor chlorogenic acid or tannin, and that by roasting the bitter 

compounds were destroyed. Gräfe showed intybin to be a glycoside with 

fructose, and not toxic to animals. However, experiments with animals were 

not clearly described. 

Gräfe (1915) did not structurally characterise the intybin, because his 

material was not pure. However, in 1936 he determined an empirical formula: 

CjH-Op (Gräfe, 1936). He also found that intybin was composed of 25% proto 

catechuic aldehyde and 75% inulin, the main polysaccharide present in chicory 

root. When inulin was included in the calculation Gräfe found a molecular 

formula C24H32^16' P r 0 D a D l y tne isolated compound was not pure enough, 

because both formulas subsequently have been proved false. Earlier Zellner & 

Richling (1926) found that intybin is identical with lactucin. 

Lactucin is also one of the components found in lactucarium, the dried milky 

juice of Lactuca virosa L. (Schenck & Graf, 1936). It was isolated from 

lactucarium by extraction with water. Lactucin as bitter compound was 

described for the first time by Buchner in 1833 (Schenck & Graf, 1936). A 

second bitter tasting compound in lactucarium, lactucopicrin, was mentioned 

by H. Ludwig & A. Kromayer (Arch. Pharm., 161, 1-3 (1862), cited by Schenck & 

Graf, 1936). They did not show which type of compound lactucopicrin was nor 

did they give the molecular formula. For lactucin two formulas were given: 

C23H,.0g and C22H13°7' ̂ ut k ° t n are incorrect-

11 



Lactucarium had the interest of scientists because of its potential 

pharmaceutical properties. Lactucarium has been used as a hypnotic and for 

sedative purposes. It tasted very bitter, as does its aqueous extract. In the 

19th century it was proposed that the bitter compound of lactucarium was 

responsible for its sedative properties (Schenck & Graf, 1936). Much 

attention was therefore given to identification of the bitter (and possibly 

sedative) component of lactucarium. 

Bauer & Schub (1929) and Bauer & Brunner (1936, 1937, 1938) identified in 

lactucarium in addition to lactucin also lactucerol (C,0H4gOH) and 

lactucerin, which are resinous compounds, and neolactucin (C? 3H2 S07, m.p. 

147-148 °C) in the fresh latex of Lactuca virosa. Two enzymes (oxidases) were 

also identified. The primary bitter compound of lactucarium and of the fresh 

milky juice of L. virosa was named neolactucin. Späth et al. (1951) suggested 

that neolactucin is the same component as lactucopicrin. No further work has 

been reported to identify the resinous compounds of lactucarium mentioned by 

Bauer and co-workers. 

In 1939 Späth et al. published an extraction method to isolate lactucin from 

lactucarium with diethyl ether. It is a rather difficult method, and time 

consuming, but pure lactucin (m.p. 220-223 °C) was obtained. 

After World War II publications on lactucarium concern only the 

identification of lactucin, lactucopicrin and other sesquiterpene lactones 

from Lactuca species. No publications are known in which the relationship 

between the sedative properties and bitter principles of lactucarium is 

establised. 

Späth et al. (1951) isolated pure lactucin from lactucarium and obtained the 

correct molecular formula: ci5Hiß°5" P r e v i o u s l y published formulas of 

lactucin have been incorrect, because of the low solubility of lactucin 

(Späth et al. 1951). They argued that different methods for determination of 

the molecular weight of lactucin give variable results, because several types 

of solvents were used. 

Wessely et al. (1951) proved that lactucin has an unsaturated character with 

an absorption maximum at 255 nm (log e=4.17). They did not mention the 

solvent in which lactucin was dissolved for UV measurement. 

In 1940 Schmidt showed that Compositae other than L. virosa contained 

lactucin and/or lactucopicrin, including Cichorium intybus L., chicory. A 
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quantitative method for determination of lactucin and lactucopicrin from the 

latex of L. virosa was published (Schmidt, 1940). Lactucin and lactucopicrin 

were determined after reaction with potassium cyanide (KCN) dissolved in 

methanolic NaOH in light (photochemical reaction) or in dark (so-called 

fluorescence reaction). After reaction with KCN in light a yellow product was 

obtained from lactucin (Lc) and a red product from lactucopicrin (Lp). Both 

products were measured by UV spectroscopy. The reaction of Lc and Lp with KCN 

in dark gave products with an intensive blue fluorescence character. No 

further details were given on the structure of the obtained products. The 

cyanide ion is able to add to (a,ß-unsaturated) carbonyl groups not only from 

Lc and Lp, but also from other compounds present in the extract. 

Zinke & Holzer (1953) and Holzer & Zinke (1953) isolated lactucin as well as 

lactucopicrin from the milky juice of chicory. They showed lactucopicrin to 

be the same as neolactucin, and determined the molecular formula as C23^22^7' 

A lactone ring was shown to be present in both compounds. Lactucopicrin (m.p. 

148-151 °C) is the p-hydroxyphenyl acetic acid ester of lactucin (m.p. 220-

223 °C) (Zinke & Holzer, 1953). 

Dolejs et al. (1958) and Barton & Narayanan (1958) published independently 

the structure and absolute configuration of lactucin (Fig. 2.1). They proved 

it to be a sesquiterpene lactone with a guaianolide skeleton and with the 

unsaturated lactone group attached to the 6-position. One of the two hydroxyl 

groups is secondary; it is in the 8-position. It is the first sesquiterpene 

lactone of the azulene series with a carbonyl group at C-2 (Barton & 

Narayanan, 1958). 

In 1960 Michl & Högenauer published the chemical structure of lactucopicrin. 

They thought that the p-hydroxyphenyl acetic acid part of lactucopicrin is 

esterified to lactucin at C-14. However, Pyrek (1977) proved with NMR, IR, 

and MS that the site of esterification of lactucopicrin with p-hydroxyphenyl 

acetic acid is at C-8 in the lactucin molecule (Fig. 2.1). 

A third sesquiterpene lactone identified in chicory was 8-deoxylactucin 

(8dLc)(Leclercq, 1984; Pyrek, 1985). This compound was also detected in L. 
serriola (Pyrek, 1977). The secondary hydroxyl group at C-8 is reduced 

compared with Lc (Fig. 2.1). 

In 1988 Japanese scientists (Seto et al., 1988) isolated four new components 

together with known sesquiterpene lactones from Cichorium intybus and C. 
endivia roots. The following compounds were identified in C. intybus: 8-
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Fig. 2.1 Sesquiterpene lactones with a guaiane skeleton isolated from chicory 

roots. 
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Fig. 2.2 Sesquiterpene lactones with an eudesmane and a germacrane skeleton 

isolated from chicory roots. 

deoxylactucin, crepidiaside B (glycoside of ll(S),13-dihydro-8-deoxylactucin 

(syn. jacquilenin)), and cichorioside B (glycoside of 11(S),13-

dihydrolactucin), all having a guaiane skeleton (Fig. 2.1); sonchuside A, and 

cichorioside C, having a germacrane skeleton (Fig. 2.2); and sonchuside C, 

and cichoriolide A, having a eudesmane skeleton (Fig. 2.2). Surprisingly they 

did not identify lactucin and lactucopicrin in chicory. 

Van Beek et al. (1990) isolated lactucin, 8-deoxylactucin and lactucopicrin 

from chicory roots, together with their respective ll(S),13-dihydro 

derivatives. The ll(S),13-dihydrolactucopicrin was isolated and identified 
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Fig. 2.3 Sesquiterpene lactones isolated from Cichorium endivia (after Seto 
et al., 1988). 
l=crepidiaside A; 2=crepidiaside B; 3=picriside B; 4=cichorioside A. 

from C. intybus for the first time (Fig. 2.1). 

Related sesquiterpene lactones were isolated and identified from Cichorium 
endivia L. and C. pumilum Jacq. (Seto et al., 1988; El-Masry et al., 1984; 

see Fig. 2.3 and 2.4 respectively). 

Lactucin and lactucopicrin are, according to Schenck & Graf (1936) 

responsible for the bitter taste of lactucarium. Both compounds have been 

identified in chicory (Schmidt, 1940). They are held responsible for its 

bitter taste. However, analytical methods have become more sensitive enabling 

more components to be detected in chicory root. Van Beek et al. (1990) 

reported for the first time that 8-deoxylactucin and the ll(S),13-dihydro 

derivatives of lactucin, 8-deoxylactucin, and lactucopicrin also taste 
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Fig. 2.4 Sesquiterpene lactones isolated from Cichorium pumilum (after El-
Hasry et al., 1984). 
l=10(S)-hydroxycichopumi1ide; 2=10(S)-hydroxy-ll(S),13-dihydrocichopumi1ide. 

••« OH and/or OH 

Fig. 2.5 Proposed reaction scheme for the addition of water to lactucin 

(after Schenck et al., 1964). 
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bitter. 

Schenck et al. (1953, 1963, 1964) reported that lactucin and lactucopicrin, 

when dissolved in water, are not stable in light. Under the influence of 

daylight, addition of water to lactucin and lactucopicrin occurs. Schenck and 

co-workers (1964) gave an explanation for this reaction (Fig. 2.5). 

Leclercq et al. (1988) proved that 8-deoxylactucin is also not stable in 

daylight when dissolved in water. However the end products were not analysed 

or tasted for bitterness. 

Lactucopicrin as well as 8-deoxylactucin proved to be an antifeedant for the 

locust {Schistocerca gregoria) at levels comparable to those present in 

chicory (see also Chapter 2.1.3.7)(Rees & Harborne, 1985). 

2.1.2 Carbohydrates 

The main carbohydrate in chicory roots is inulin, a linear B-(2-l) linked 

fructose polymer terminated by a sucrose unit residue (Fig. 2.6). Its average 

molecular weight is about 6000 Daltons (35 DP). Inulin is only slightly 

soluble in water at 15 °C (225 mg/100 ml), but more so at 50 °C (1737 mg/100 

Fig. 2.6 Inulin. 
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ml)(Yanovsky & Kingsbury, 1933). The inulin content of chicory roots is 

approx. 16% (w/w), but the exact percentage depends on storage conditions. 

Inulin can be used as raw material for fructose production. Fructose is an 

interesting sweetener. The sweetness and functionality of fructose syrups are 

considered satisfactory for complete or partial replacement of sucrose 

(Zittan, 1981). 

The use of inulins as raw material is connected with their molecular weight 

distribution. For the production of fructose long-chain inulins are 

advantageous because after hydrolysis only little of the crystallization 

inhibitor glucose is obtained. Short-chain oligosaccharides are easily 

fermented by microorganisms, and thus are favourable for fermentation (Beck & 

Praznik, 1986). 

Gupta and co-workers (1986) elucidated the fructosan metabolism in chicory 

roots. Different fructosyl transferases seem to be responsible for the 

various fructosylation steps in fructosan (inulin) synthesis. 

Inulin is hydrolysed during storage of chicory roots. The extent of 

hydrolysis depends on time and temperature. After 5-6 weeks of storage at 3 

°C, 90% of insoluble inulin (DP>10) is hydrolysed by an inulin degrading 

enzyme, increasing the soluble sugars (DP<10) (Rutherford & Jackson, 1965). 

These results have been confirmed by Rutherford & Weston (1967) and Fiala & 

Jolivet (1980). 

Forcing of the chicory roots also influences its carbohydrate content . Total 

carbohydrate content decreases considerably whilst the amount of reducing 

sugars increases. The duration of cold storage of the roots is found to have 

little effect on the carbohydrate changes which occur during forcing 

(Rutherford & Phillips, 1975). 

Extraction of inulin from plant material is possible by diffusion at elevated 

temperatures, or by enzymatic liquefaction (Chapter 7 ) . Besides chicory 

roots, Jerusalem artichoke and dahlia can also be used for inulin production 

(Praznik & Beck, 1986; Fleming & Groot Wassink, 1975). 

Inulin can be hydrolysed by acid under relatively mild conditions: pH 1 to 2 

for 1-2 h at 80-100 °C (Zittan, 1981). Since fructose is easily degraded by 

acid through the processes of enolization and dehydration, flavoured and 

coloured compounds are produced which are undesirable in a syrup. Therefore 
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the pH, temperature, and time must : adjusted to minimize fructose 

degradation (Fleming & Groot Wassink, 1975). 

Several enzymes capable of hydrolysing inulin have been described in the 

literature. Microbial enzymes originate mainly from yeasts and moulds, for 

example Kluyveromyces fragilis, Aspergillus sp. (Zittan, 1981). Complete 

enzymatic hydrolysis of inulin could be obtained at 50 °C in 3 h. Colour and 

flavour changes in the enzyme hydrolysate were minimal. So enzymatic 

treatment of inulin for fructose production is preferable to hydrolysis by 

acid (Fleming & Groot Wassink, 1979). 

Gupta and co-workers (1988, 1989) studied the possibilities for using an 

aqueous extract of chicory roots containing fructosan (inulin) as raw 

material for fructose and inulinase production. They cultivated Fusarium 
oxysporum on a medium prepared from chicory roots, and the produced 

inulinases from F. oxysporum hydrolysed inulin giving primarily fructose. 

Other carbohydrates present in chicory roots, besides sucrose, fructose and 

some glucose (Pazola, 1987), are cellulose, hemicelluloses, and pectin. These 

components provide the structural skeleton of both individual plant cells and 

the plant as a whole, unlike inulin, which is a storage carbohydrate. Pazola 

(1987) and Leroux (1987a) mentioned a crude fiber (cellulose) content of 

chicory roots of 5% and 4% (based on dry weight) respectively. 

Hageman (1983) found a cellulose content of 3.4 to 5.5% in chicory roots 

dependent on forcing of the roots. Pectin content varied from 6 to 10%. All 

data are expressed as percentage of dry weight. Kim et al. (1978) found in 

dried chicory root 6.9% "crude fiber". 

2.1.3 Other components 

2.1.3.1 Nitrogenous compounds 

The amounts of nitrogenous compounds (free amino acids and proteins) in 

chicory roots are not very high. Pazola (1987) mentioned a total nitrogen 

content of 6-9% (dry weight), which was confirmed by Leroux (1987a). Kim et 

al. (1978) found for dried chicory roots a "crude protein" content of 8.6%. 
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2.1.3.2 Lipids 

Lipids are present in chicory roots in small amounts, 0.1-0.2% (dry weight) 

(Pazola, 1987). A crude fat content of 1.6% based on dried chicory root was 

found by Kim et al. (1978). The amount of unsaturated fatty acid is 65.4% of 

the total fat of the roots, of which linoleic acid represents the main part. 

The essential oil (0.007%) obtained from air-dried chicory root consists of 

60% palmitic acid, 31.5% linoleic acid, 2.9% linoleic acid, 1.8% n-

pentadecanoic acid, and 0.9% oleic acid (Sannai et al., 1982). 

2.1.3.3 Minerals 

The ash content of chicory roots is 4-6% (dry weight) (Pazola, 1987). The 

most important mineral components are potassium, sodium, calcium, and 

magnesium. Kim et al. (1978) identified phosphorus, and iron in chicory 

roots, and traces of other mineral compounds (zinc, copper). 

2.1.3.4 Organic acids 

Recently Gaber & Maier (1989) analysed and identified the acids of the 

chicory roots using HPLC. Dried and roasted samples were analysed. The main 

acids found in the roots were citric (9.80-10.00 g/kg) and malic (8.96-9.56 

g/kg). These are also mentioned by Pazola (1987), but the amounts are much 

lower. Other acids detected in chicory roots are: formic, acetic, quinic, 

lactic, hydroxyacetic, phosphoric and pyroglutamic acid. 

2.1.3.5 Alkaloids 

No alkaloids were isolated from fresh chicory roots contrary to roasted roots 

(see Section 2.2.3.5) 

2.1.3.6 Chlorogenic acids 

Chlorogenic acid is a polyphenolic compound, which is a substrate for 

phenolases. The brown pigments that develop on the cut surface of fruit and 

vegetables is caused by the activity of this enzyme. 

The term chlorogenic acid is used for in fact a mixture of various 

caffeoylquinic acids (CQAs). In chicory are determined 3-CQA (Fig. 2.7), 4-

CQA, 5-CQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA (Haffke & Engelhardt, 1986; 

Clifford et al., 1987). 

The chlorogenic acid content of unroasted chicory root, as well as coffee 
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Fig. 2.7 Chlorogenic acid (3-caffeoylquinic acid, 3-CQA). 

Substitutes containing a mixture of roasted chicory and dandelion was 

determined by Clifford et al. (1987). Macrae et al. (1987) reported a total 

chlorogenic acids content of 3.5% in fresh chicory roots. This rather high 

value is probably due to the non specific spectrophotometry method used. 

Determination of chlorogenic acid is one of the methods for quantitative 

analysis of the composition of coffee mixtures containing coffee substitutes. 

Coffee, in the form of roast beans or as instant powder, will contain 

significant amounts of chlorogenic acid. Most coffee substitutes do not 

contain appreciable levels of CQA. This provides the basis for a quantitative 

method for determining the proportion of coffee in mixtures (Macrae et al., 

1987). 

2.1.3.7 Coumarins 

According to van Hee (1965) coumarins are also bitter. Already in 1876 

Nietzki isolated a coumarin from the flowers of chicory, and named it 

cichoriin (Fig. 2.8 [3])(van Hee, 1965). Cichoriin is a glycoside of 

esculetin or dihydrocoumarin [1]. A third coumarin esculin [2], which is an 

isomer of cichoriin has been isolated from chicory. The three coumarins are 

mainly found in the leaves and flowers of chicory (Fedorin et al., 1974; Rees 

& Harborne, 1985). Only cichoriin is found to be present in the roots 

(Pazola, 1987; Rees & Harborne, 1986). 

Rees & Harborne (1985) investigated coumarins isolated from chicory roots as 

antifeedant for locusts (Schistocerca gregaria). It was found that cichoriin 
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Fig. 2.8 Coumarins from chicory. 

l=esculetin; 2=esculin; 3=cichoriin. 

is still a significant antifeedant at low concentrations (0.006% (w/w)), 

while esculetin and esculin were inactive at this concentration. 

According to Rees & Harborne (1985) these results are contrary to other 

findings. Coumarin itself inhibits feeding of some insect species only in 

relatively high concentrations (0.4% (w/w)). Hydroxycoumarins and/or their 

derivatives had no antifeedant properties (Rees & Harborne, 1985). However, 

these findings explain in part the recognized pest resistance of the chicory 

plant. 

2.1.3.8 Volatile compounds 

Until now no literature is known on volatile components of fresh unroasted 

chicory roots. Research on volatile compounds of chicory leaves has been 

carried out at the State University of Gent (Belgium)(P.J. Dirinck, pers. 

comm., 1990). Among other compounds n-hexanal and cis-3-hexenol were 

identified, which are responsible for the "fruity" and "green" flavour 

respectively. 

Sannai et al. (1982) analysed the essential oil obtained from air-dried 

chicory roots. This oil consisted mainly of palmitic acid and linoic acid 

(see Section 2.1.3.2). 
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2.2 Roasted chicory roots 

2.2.1 Sesquiterpene lactones 

Roasting of chicory roots is carried out at 160-170 °C for 1-1% h (Stoltze, 

1987). Gräfe (1915) could not isolate any bitter sesquiterpene lactones from 

the roasted roots. He assumed that during the roasting process these 

compounds are degraded. Also Pazola (1987) suggested that the natural bitter 

substances of chicory are destroyed during roasting. No recent literature was 

found which described the extraction and analysis of sesquiterpene lactones 

from roasted roots, and whether they are degraded during roasting or not. 

2.2.2 Carbohydrates 

The main constituents of chicory roots, i.e. the carbohydrates inulin, 

sucrose and the monosaccharides fructose and glucose, are subjected to 

hydrolysis and/or depolymerisation (inulin) or caramélisation (sucrose, 

monosaccharides) during the roasting process. Cyclisation and condensation 

reactions with nitrogenous components (proteins, amino acids) occur (Maillard 

reaction). Reactions with lipid degradation products are possible. Volatile 

and non-volatile products, water soluble and insoluble, are produced, for 

example furfural and 5-hydroxymethylfurfural (Pazola, 1987). 

Glucose and fructose were found to be present at all roasting temperatures. 

Their content increased up to 160 °C due to degradation of inulin, but 

decreased at higher roasting temperatures. The content of oligosaccharides 

from inulin decreases steadily during roasting: from 35% (based 'on dry 

matter) in the starting material to 5% in chicory roasted at 190 °C. The 

optimum roasting temperature was 160-170 °C, when the reducing sugar content 

reached a maximum value (Pazola, 1987). 

2.2.3 Other compounds 

2.2.3.1 Nitrogenous compounds 

Chemical processes, which affect proteins during roasting are: Maillard 
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reactions, i.e. carbonyl-amino reaction between amino acids, proteins and 

sugars, hydrolysis of proteins to peptides and amino acids, and pyrolytic 

decompositon of amino acids. Thus volatile compounds are generated, but also 

water-soluble and insoluble coloured products are formed from above reactions 

(Pazola, 1987). No free amino acids were found in chicory roots roasted at 

180 °C or higher temperatures. Water is also a byproduct of the Maillard 

reaction. 

2.2.3.2 Lipids 

No literature was found on the lipid content of roasted chicory roots. Lipids 

undergo some degradation reactions during roasting, which affect the volatile 

composition and taste of the roots after thermal treatment. 

2.2.3.3 Minerals 

Ash content of roasted chicory root is affected by the roasting temperature: 

an increase is seen. Due to water loss, dry matter content increases during 

roasting; the increase in ash content can be explained by the increase in dry 

matter content. 

2.2.3.4 Organic acids 

The amount of malic, citric, and tartaric acids decreases during roasting of 

chicory roots, and is dependent on the roasting temperature (Pazola, 1987; 

Gaber & Maier, 1989, 1990). Pazola (1987) found more acetic, formic, 

propionic, and lactic acids after roasting. 

Gaber & Maier (1990) also determined the changes in percentage of the main 

acids of roasted chicory roots during wet storage, and during storage of 

chicory brews at elevated temperatures. In all solid samples and in all brews 

the titratable acidity and the contents of all organic acids measured, 

increased during storage. 

2.2.3.5 Alkaloids 

Proliac & Blanc (1976) isolated and identified from roasted chicory roots two 

beta-carbolines, namely harman and norharman (Fig. 2.9). They gave no 

evidence that these compounds contribute to the taste of roasted chicory. 
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Fig. 2.9 Alkaloids isolated from roasted chicory roots. 

2.2.3.6 Chlorogenic acids 

Chlorogenic acids (CQAs) are partly degraded during roasting. In coffee beans 

50-80% of the total CQAs may be destroyed during the roasting process (Macrae 

et al., 1987). 

Haffke & Engelhardt (1986) determined chlorogenic acids in roasted chicory 

roots with HPLC. The concentrations ranged from 0.08 to 0.33 g/kg dry weight. 

In dried chicory a total amount of CQA of 1.93 g/kg was determined. This 

means a loss of CQAs during roasting of chicory roots between 83-96%. 

Haffke & Engelhardt (1986) found one isomer in roasted chicory, namely 3-CQA, 

the other CQAs were below the detection limit. Clifford et al. (1987) found 

5-CQA, and occasionally 4-CQA. 

2.2.3.7 Coumarins 

The effect of roasting on the coumarin content has not been studied, but it 

is likely that coumarins are not stable during the roasting process. 

2.2.3.8 Volatile compounds 

The first analysis of roasted chicory flavour compounds was published in 1930 

by Reichstein & Beitter (Pazola, 1987). A distillate of fresh roasted chicory 

root was investigated, in which 15 compounds were detected. High amounts of 

furfural and 5-hydroxymethylfurfural (HMF), characteristic products of 

Maillard reactions, were found in the distillate. 

Kawabata & Deki (1977) steam distilled roasted chicory roots and the 

composition of the distillate was detected by gas chromatography-mass 
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spectroscopy (GC-MS). Three pyrazines, 3 benzothiazoles, 6 aldehydes, 5 

furans, 5 aromatic hydrocarbons, 3 phenols, 6 organic acids and 2 other 

components were identified. They stated that acetophenone was characteristic 

for roasted chicory root. In 1982 Sannai et al. identified 32 components in 

the extract of roasted chicory roots after steam distillation, 23 of which 

are reported as novel. They found a high amount of HMF and furfural in their 

chicory extract. In addition, palmitic acid, linoleic acid, and their methyl 

esters were found in large quantities in the roasted roots. However, no 

acetophenone was found in their distillate. 

The flavour of a chicory brew is composed of volatile compounds and non

volatile taste components. Both are formed during the roasting process. A 

typical "spicy-peppery" flavour note has been described for chicory brews, 

but to date this does not appear to be related to any particular compound. 

With respect to the basic taste sensations, the acidity can be related to the 

organic acids present. The bitter taste of roasted roots is not so easily 

related to a specific compounds, since the bitter sesquiterpene lactones are 

assumed to be degraded during the roasting process (Pazola, 1987). 
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CHAPTER 3 

BITTERNESS IN FOODS 

3.1 Introduction 

Bitterness is one of the four major taste sensations which are identified 

with the tongue and other parts of the mouth. The other sensations are 

saltiness, sourness, and sweetness. The mouth is also the major site of the 

responses to astringency, pungency, and "meatiness". The substances involved 

in all these sensations have a number of characteristics in common that 

distinguish them from substances commonly associated with odours. Taste 

substances are usually polar, water-soluble, and non-volatile. Besides their 

necessary volatility, odour substances are generally far less polar and 

elicit a much broader range of flavour sensations (Coultate, 1989). 

Some naturally occurring bitter compounds known since antiquity have been 

used in certain healing herbal recipes and medicines. Therefore, bitterness 

is sometimes associated with medicines and pharmacological efficiency 

(Brieskorn, 1990). 

By tasting bitter substances in foods and beverages, aversion arises because 

bitterness is perceived as a danger signal. Alkaloids present in many plants 

taste bitter and are toxic (Coultate, 1989). 

However, it should be pointed out that all bitterness is not objectionable. 

In food products such as beverages (tonic water, beer or grapefruit juice), 

some bitterness is desirable. If these products exhibit no bitterness, they 

are usually judged as unacceptable. Furthermore bitterness at very low levels 

can impart a certain "cleanness", particularly to sweet flavours (Rouseff, 

1990). 

Bitter compounds may also be produced during processing of foods. For 

instance, amino acids and/ or peptides, which are formed during the 

proteolysis of milk proteins are primarily responsible for bitterness in for 
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example hypoallergenic infant formulas. Bitterness in cheese is an off-

flavour and is thus regarded as a sensory defect. Maga (1990) reviewed both 

thermally promoted Maillard-type reactions and the interaction of enzymes in 

relation to bitterness in food as well as in model systems. 

It has also been observed that the ability to detect bitterness varies widely 

within the population. Some individuals are extremely sensitive to 

bitterness, whereas others can detect bitter compounds only at very high 

concentrations. Since many naturally occurring toxins are bitter, one can 

speculate that the universal aversion to bitterness is the result of a 

primeval survival trait (Rouseff, 1990). 

Bitterness of foods can be expressed by a wide range of molecules, with 

varying sizes and functional groups. Bitterness can be found in aliphatic or 

aromatic compounds, straight chained or polycyclic compounds, glycosides or 

aglycons with just about every functional group. Some inorganic salts and 

oxides, such as CaO, KCl, MgSO., have also a bitter taste. 

In theory any type of molecule can exhibit bitterness, yet a slight 

structural modification of a bitter molecule can render it nonbitter. 

Therefore the ability to predict bitterness from molecular composition is 

rather limited. 

Recently Belitz & Wieser (1985) reviewed the most important types of bitter 

compounds of plant origin. Among the naturally occurring bitter principles, 

these are by far the larger group. 

3.2 Taste receptors 

Human taste sensing organs are found on the surface of the tongue. 

Bitterness receptors are particularly concentrated on the back of it. Taste 

sensing organs are also found in the mucosa of the cheeks (primarily in young 

children), in the anterior part of the soft palate, in the retropharyngeal 

wall, in the inner surface of the epiglottis and on the tip of the larynx 

(Brieskorn, 1990). 

The sense organs of the tongue can be visualized as different types of little 

hills called papillae. The papillae contain clusters of taste buds. The taste 
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buds cannot further be subdivided into different types. They are constantly 

depleted and renewed. The avarage lifetime of a taste cell is approximately 

250 hours. 

The sensation of bitterness requires a reaction between the bitter compound 

(stimulant) and the taste cell. Within the taste cell receptors can be 

characterized. A receptor has functional groups and a certain specified 

conformation to bind the active (bitter) compound. If the conformation of a 

compound which comes in contact with the cell, is sufficiently specific and 

has sufficient binding energy, then the microstructural conformation of the 

receptor membrane undergoes a rapid, short term (1 msec) change. This is 

converted into an electric signal, because the potential of the cell membrane 

is changed by the interaction between stimulant and receptor cell. 

Taste thresholds for most bitter compounds show a Gaussian distribution, but 

those for phenylthiocarbamide (PCT), containing the N-C=S group, are bimodal. 

Thus people can be grouped into either taster or nontaster population 

according to their ability to recognize PCT as bitter. This strongly suggests 

that there are at least two different types of bitterness receptors (Gardner, 

1979). Probably PCT tasters have both types of receptors, whilst one of the 

receptors is absent with non PCT tasters. 

The same sort of model accounts for the observations that the population in 

general can also be divided into bitter sensitive and insensitive tasters, 

where the insensitives could have fewer of the receptors near the surface and 

hence require higher concentrations of the tastant to ensure penetration into 

the deeper-lying receptor (Gardner, 1979). 

3.3 Theories on bitterness 

Bitterness can be expressed by a wide range of molecules with varying sizes 

and functional groups. There is a relationship between the bitterness and 

structure of selected molecular families. However, they are generalizations: 

a. Molecular size. Sodium chloride has a salty taste, whereas sodium iodide 

is bitter; 

b. Functional group. Electron-withdrawing groups such as nitro group may 
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cause bitterness; 

c. Sugar position. Naringin and neohesperidin are both citrus flavanone 

glycosides. The bitterness of these compounds depends on the amount of sugar 

units (two or one) in the carbohydrate part of the molecule, and on the place 

of the glycoside bond between the two sugar residues; 

d. Decrease of hydrophilic character of the molecule; 

e. Stereochemistry. L-Amino acids taste bitter whereas their corresponding D-

enantiomers are sweet (Brieskorn, 1990). 

Hydrophobicity of molecules correlates with intensity of bitter taste (Belitz 

& Wieser, 1985). Surface tension seems to be inversely related with the 

bitter taste of aqueous solutions. Also Gardner (1979) related 1ipophi1icity 

of a molecule, the lipid solubility of the molecule as a whole, with their 

relative bitterness. 

Some workers have tried to give a more fundamental basis to relate bitterness 

with chemical structure. Especially amino acids and sugars have been 

investigated, because these compounds possess sweet as well as bitter taste. 

3.3.1 Q-vaTue 

In 1962 Tanford proposed a model for calculation of the difference in free 

energy (6F) between the native and unfolded forms of a protein molecule in 

solution. The major term in the expression for 6F arises from the increase in 

entropy which accompanies unfolding; then 6F is negative. In water where a 

compact globular conformation is stable, intramolecular interactions exist 

which give a positive contribution to 6F. When amino acids with non-polar 

side chains are dissolved in water, the same interactions occur. The 

magnitude of these interactions can then be estimated from relative 

solubilities of appropriate amino acids in water and other solvents, such as 

ethanol (Tanford, 1962). It is a measure for hydrophobicity. The 6f value of 

an amino acid (in cal/mol) can be calculated from these solubility data. The 

factor 6F of a peptide is calculated from the sum of the contributions of the 

single amino acid residues: 
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6F = Uf 

Ney (1971) adapted this value to study bitter peptides. He defined a value Q, 

the average hydrophobicsty of the peptide: 

ttf 
Q = — 

n 

in which n is the number of amino acid residues in the peptide, and 6f 
represents the contribution of a single amino acid side chain to the 

hydrophobic interaction of the protein (Ney, 1971; 1979). Peptides with Q-

value lower then 1300 were found non-bitter, whereas bitter peptides had a Q-

value greater then 1400. However, this principle is valid for peptides with 

molecular weights up to approximately 6000 Daltons; above this limit peptides 

with a Q-value above 1400 are also not bitter (Ney, 1979). 

Wieser & Belitz (1975) investigated the bitter taste of various amino acids, 

amino acid esters, and N-acyl amino acids. They found for amino acids and 

derivatives that the amino group is essential for the bitter taste, which 

interacts with the nucleophilic groups of the receptor cells. The influence 

of the carboxylic group was negligible. Not only hydrophobicity of the 

molecule is important for the bitter taste, but also steric factors, which 

influences the interactions with the receptor cells. 

The same model was proposed for peptides (Wieser & Belitz, 1976). The amino 

group acts as polar group which interacts with the receptor cell. 

Hydrophobicity of the peptide, and the number and nature of the side chains 

of the molecule are related with bitterness intensity (Wieser & Belitz, 

1976). 

They postulated that one polar (electrophilic) group and one hydrophobic 

group are essential requirements for the bitter taste of amino acids, amino 

acid derivatives, and peptides (Wieser & Belitz, 1975, 1976). For amino acids 

both groups must be arranged in a defined manner. The model corresponds to 

the bitterness of all hydrophobic peptides, and is independent on the amino 

acid sequence and configuration. 

Wieser & Belitz (1976) calculated the hydrophobicity of the side chain of an 

amino acid as the difference between the free energy of the amino acid and 
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that of glycin. The mean hydrophobicity of a peptide was then calculated from 

the sum of the hydrophobicities of the amino acids of the peptide and the 

hydrophobicity of the corresponding peptide consisting of only glycine: 

peptide (glycin)n " amino acid 

which gives according to Wieser & Belitz (1976) a more accurate value for 

hydrophobicity of a peptide and an estimate for bitterness. 

Adler-Nissen (1988) studied bitterness intensity of protein hydrolysates as 

function of degree of hydrolysis, and demonstrated that Ney's Q-rule is 

theoretically unfounded. 

He found that hydrophobicity of bitter peptides is not a simple function of 

the average hydrophobicity of the amino acids. The bitterness level of 

protein hydrolysates could be predicted and calculated from the molar 

concentration and the average hydrophobicity of the hydrophobic, i.e. 2-

butanol extractable, peptides. The degree of hydrolysis, defined as the 

percentage of peptide bond cleaved, is the third variable which influences 

bitterness (Adler-Nissen, 1988). 

A hydrophobic amino acid gives rise to the strongest bitterness when it is 

positioned in the interior of the peptide, depending on chain length. For 

instance, hydrophobic side chains of a protein (polypeptide) are physically 

hindered in interacting with the taste receptors and thus cannot cause 

bitterness. A slightly weaker bitterness is observed when the hydrophobic 

amino acid is situated in the terminal position, and the lowest bitterness 

intensity is found as free amino acid. Thus, a dipeptide composed of two 

hydrophobic amino acids will taste much more intense than an equimolar 

solution of the same amino acids (Adler-Nissen, 1988). 

3.3.2 AH-B theory 

Shallenberger and co-workers studied the relationship between carbohydrate 

structure and sweet taste. They assumed that two adjacent hydroxyl groups in 

the sugar molecule are responsible for the sweet taste, and that the taste 

intensity is inversely related to the extent of hydrogen bonding between 
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these groups and, consequently that it depends upon their mutual 

conformation. 

In 1967 Shallenberger & Acree postulated a molecular theory of sweet taste, 

in which all sweet agents (stimulants) possess a system of the type AH-B 

(proton-donor respectively proton-acceptor) in their structures, wherein A 

and B are electronegative atoms separated by a distance of 0.24-0.4 nm 

(Scheme 3.1). 

stimulant 

S--A--H B---R 

0.3 nm receptor site 

S--B H--A---R 

Scheme 3.1 AH-B model for sweet taste according to Shallenberger & Acree 

(1967). 

The theory further assumes that receptor sites, which are involved in the 

interactions contributing to the generation of sweet taste, also possess a 

complementary AH-B system, and thus that the interaction between the two 

systems is based upon the simultaneous formation of two inter-system hydrogen 

bonds (Beets, 1978). 

In the AH and B system two different molecules may contribute to the sweet 

taste by one acting as proton-donor to the receptor site and the other as 

proton-acceptor (Belitz & Wieser, 1985). 

Kubota & Kubo (1969) postulated a similar AH-B system involved in the 

generation of bitterness (Scheme 3.2). They examined the taste and structure 

of a large number of bitter and tasteless diterpenes from Isodon species. In 

each bitter compound they investigated, proton donor and proton acceptor 

moieties were present, however the intramolecular distance between one AH-B 

pair is 0.15 nm. Also proton donors and proton acceptors of the taste bud can 
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act as receptor site, and these probably form hydrogen bonds with the bitter 

unit. In case of bitterness, however, the proton donor at the receptor site 

must be strong enough to sever the hydrogen bonding in the substrate site 

(Kubota & Kubo, 1969). For the bitterness of diterpenes from Isodon an 

intramolecular hydrogen bond was a requisite. 

S--A 
I i 
1 1 
1 H 

stimulant | 

1 

B- --R 
l 
1 

|receptor 

1 

S--A-H 
i 

1 

1 
stimulant | 

1 

B---R 

|receptor 

1 
S--B H-A---R S--B H-A---R 

Scheme 3.2 AH-B model for bitter taste according to Kubota & Kubo (1969). 

In the AH-B system two polar groups with definite steric arrangement are 

postulated as essential groups for sweet-tasting molecules, which may be 

supplemented by a hydrophobic group for intensifying the sweet taste. In 

contrast, bitter compounds need only one polar group (electrophilic or 

nucleophilic), and a hydrophobic group. The taste threshold of bitter 

compounds depends mainly on the apolar moiety, but is also related to steric 

factors and to the charge distribution within the molecule (Belitz et al., 

1988). 

The proposed proton-donor proton-acceptor system (AH-B) by Shallenberger & 

Acree (1967) gives evidence to the hypothesis that sweet and bitter receptors 

are strongly related. Based on investigations of aspartame analogues it is 

assumed that the bitter and sweet qualities are recognized by the same taste 

receptor and that the receptor site easily discriminates between bitter and 

sweet taste by the different combinations between AH-B (Belitz & Wieser, 

1985). 

However, this model is not fully supported by studies on bitterness in other 

compounds (Gardner, 1979). He postulated that lipophilicity is an important 

parameter in inducing a bitter taste. For example intramolecular hydrogen 

bonds correlate with bitterness because they increase the relative 
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lipophilicity of a molecule. Fewer groups are then available to form inter-

molecular hydrogen bonds to the aqueous medium of saliva. Hence the degree to 

which the molecule will penetrate into the cell membrane will increase, 

giving it a better chance of reaching the bitterness receptor. 

3.4 Bitterness of sesquiterpene lactones 

The bitter taste of sesquiterpene lactones present in chicory roots, 

lactucin, lactucopicrin, 8-deoxylactucin, and their dihydro derivatives can 

in part be explained by above mentioned theories. 

The bitter components are usually extracted from the roots with an apolar 

solvent. They are slightly soluble in water except Lp. This compound can be 

purified by recrystallisation in water (Holzer & Zinke, 1953). 

Lp and its dihydro analogue are the largest molecules of the sesquiterpene 

lactones investigated. Both molecules elute with RP-HPLC after Lc and 8dLc. 

With this chromatographic method only hydrophobic interactions of the solutes 

with the stationary phase are possible (Fallon et al., 1987). 

Lc has at C-8 a hydroxyl group and 8dLc a hydrogen atom (see Fig. 2.1). 

Lp has the largest substituent at C-8, a p-hydroxyphenyl acetic acid group. 

Therefore Lc is the most polar and should have the lowest bitter intensity, 

and Lp the highest. Similar bitterness scores are expected for the dihydro 

analogues. 

Intramolecular AH-B interactions are theoretically possible in the 

sesquiterpene lactones investigated between the 0-atom of the lactone ring 

and the -OH group at C-14, and between the carboxylic group at C-2 and the 

methyl group at C-15. These interactions are similar for the three 

components, and should not give any difference in bitter intensity. 

According to Beets (1978) a single lactone group in a sesquiterpene molecule 

seems to suffice for bitter taste. He proposes a modified AH-B theory or 

interaction complex, in which the donor functions are entirely supplied by 

the accommodating receptor site (Scheme 3.3). 

The lactone group is a possible partner in above interaction complex. He 

states that bitterness must be due to the presence of more or less polar 

moieties in the structure, possible in combination with lipophilic centres 
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stimulant receptor site 

S -

Scheme 3.3 AH-B model for bitter taste as proposed by Beets (1978). 

(Beets, 1978). 

Also the lactone group is identical for the three sesquiterpene lactones, and 

should therefore not contribute to different bitterness intensities of the 

compounds. 

The conclusion is that the bitter taste of sesquiterpene lactones from 

chicory root, especially lactucin, lactucopicrin, and 8-deoxylactucin, can be 

explained by their hydrophobic character, and partly by the AH-B theory. 

Difference in bitter intensity will be caused by the difference of the 

substitutes at the C-8 atom. 
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CHAPTER 4 

EXTRACTION OF SESQUITERPENE LACTONES 

4.1 Introduction 

Various extraction solvents have been used for the isolation of bitter 

compounds from lactucarium obtained from Lactuca vi rosa as well as other 

Lactuca sp., and from chicory roots. There are many publications in this 

area. 

Späth et al. (1939) isolated lactucin (Le) from dried lactucarium by soaking 

the powder in water, adjusting to pH 1, and partitioning into diethyl ether. 

Others used this method too for the isolation and purification of lactucin 

(Barton & Narayanan, 1958; Schenck et al., 1964). 

Schenck & Wendt (1953) isolated lactucopicrin (Lp) from lactucarium by 

Soxhlet extraction using chloroform (30 h). Schmidt (1940) used methanol to 

isolate lactucopicrin and lactucin from fresh and dried milky juice of 

Lactuca virosa and for the isolation of these sesquiterpene lactones from 

other Compositae, including Cichorium intybus. 

Schenck et al. (1961) isolated both lactucin and lactucopicrin from 

whole Lactuca virosa plants with 50% methanol acidified with 38% HCl (1 ml 

per 100 ml of 50% MeOH). They claimed that extraction at low pH (pH 2) 

prevented the oxidation of Lp by endogenous Lactuca enzymes, and that 

consequently at this pH the highest yield of Lp was obtained. Pyrek (1977) 

extracted Lactuca serriola roots with methanol and isolated Lc, Lp, 8-

deoxylactucin (8dLc) as well as ll(S),13-dihydro-8-deoxylactucin (dH8dLc). 

Mahmoud et al. (1986) extracted the aerial parts of L. sativa with EtgO-

petrol (1:2) and isolated Lc, Lp and ll(S),13-dihydrolactucin (dHLc). 

Lactucopicrin, dHLc, and lactucopicriside (glycoside of lactucopicrin) were 

extracted from Lactuca laciniata roots with water (Nishimura et al., 1986). 

Holzer & Zinke (1953) and Zinke & Holzer (1953) extracted lactucin and 

lactucopicrin with ethanol from the milky juice of fresh chicory roots, which 
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was stabilized with methanol. Dolejs et al. (1958) and Rees & Harborne (1985) 

used this method for isolation of lactucin, lactucopicrin as well as 8-

deoxylactucin from chicory. 

Pyrek (1985) used fresh chicory roots, extracting them with methanol or 

acetone. El-Masry et al. (1984) isolated from the roots of Cichorium pumilum 
(a subspecies of C. endivia) two new sesquiterpene lactones of the 

guaianolide type, 10(S)-hydroxycichopumilide (Fig. 2.4) and its 11(S),13-

dihydro derivative (ratio ca. 5:3) with a mixture of diethyl ether-petrol. 

Seto et al. (1988) isolated several sesquiterpene lactones, including 

lactucin and lactucopicrin from fresh Cichorium endivia and C. intybus roots, 

using methanol under reflux. 

The influence of different forcing methods on the bitter constituents of 

chicory was studied using freeze dried roots and heads, by extraction with 

50% methanol acidified with HCl. No concentration of HCl was given (Dolezal, 

1976). Chicory heads proved to have a maximum of bitter components after 

forcing of the roots in synthetic foam flakes without cover. In the chicory 

roots an increase of bitter compounds was found during forcing. 

Although various extraction procedures are described, only Pyrek (1985) 

compared an acetone extraction with a methanol extraction of chicory roots. 

The composition of both extracts was similar, however the methyl ester of 

lactucopicrin was only present in the MeOH extract. The other sesquiterpene 

lactones did not give analogue compounds during methanol extraction. 

Lactucopicrin therefore is particularly susceptible towards lactone ring 

opening in methanol. 

We wanted to isolate the sesquiterpene lactones from chicory roots. HPLC 

methods were first developed to analyse, separate and identify the isolated 

compounds. 

Sesquiterpene lactones isolated from chicory have a rather apolar character. 

High extraction yields are therefore expected when the roots are extracted 

with relatively apolar solvents. However, literature data are not clear: 

polar and more apolar solvents have been used. No yields were given and no 

comparison between different extraction solvents were made. 

In this study various extraction solvents were evaluated for their ability to 

isolate sesquiterpene lactones from chicory roots. The effect of storage 

conditions of the chicory roots was also investigated. Special attention was 
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given to storage at various temperatures, and the effect of drying and 

milling on the extraction efficiency. 

4.2 Results and discussion 

4.2.1 Analysis 

Initially a rapid and simple procedure for analysing sesquiterpene lactones 

from chicory roots with reversed phase HPLC was developed with a water-

methanol mixture as eluent (isocratic method). Three major peaks were 

characterized with MS and NMR: lactucin, 8-deoxylactuc1n, and lactucopicrin 

(Fig. 4.1 A ) . The spectra were identical with those of Pyrek (1977). 

However, at least one of the peaks consisted of two components as 

distinguished by MS: 8dLc and a compound with molecular formula ^15^20^3 

(mass spectrum m/e (70 eV) 248 (M+), 233, 230, 204, 191, 175, 163 and 141). 

This mass spectrum was compared with that of cichoriolide A (Fig. 2.2) 

described by Seto et al. (1988). It seems not unlikely that the two compounds 

are identical. This compound was not further identified. 

It was also not possible to explain the increase of Lc and 8dLc during 

enzymatic liquefaction of chicory roots (see Chapter 5 ) . Therefore a gradient 

HPLC method (water-methanol gradient) was developed for accurate 

determination and identification of the compounds present in chicory roots. 

Fig. 4.1 shows HPLC chromatograms of chicory root extract obtained by the 

first method (Fig. 4.1 A) and by gradient elution (Fig 4.1 B), the latter 

consisting of a large number of components many of which have not been 

identified. Two of the components were investigated further: one before dHLc 

(peak Q) and one before 8dLc (peak T) (see Chapter 5). 

With the second developed HPLC method (gradient elution) the three major 

peaks of Lc, 8dLc and Lp obtained by the first method could be separated in 

two new ones: the already mentioned compounds and their dihydro derivatives; 

11(S), 13-dihydrolactucopicrin (dHLp) was identified and described for the 

first time. The MS and NMR spectra of dHLc and dH8dLc were identical to those 

of Seto et al. (1988) and Pyrek (1977). The spectral data for dHLp are 

described in Chapter 4.4.3. 

The reproducibility of both HPLC methods for the sesquiterpene lactones 
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analysed was satisfactory: the coefficient of variation of both methods was 

between 2 and 5% for all sesquiterpene lactones investigated (Leclercq, 1984; 

van Leeuwen, 1989; number of replicates of one run was n=ll and n=7 

respectively). 

4.2.2 Extraction solvents 

The extraction of the bitter constituents of the roots was first carried out 

according to Späth et al. (1939) with diethyl ether for 30 h, combining a 

solid-liquid (roots-water) and liquid-liquid (water-diethyl ether) 

kJL 

4 8 12 16 

retention time (min) 

~l 1 1 1 1 
10 20 30 

retention time (min) 

Fig. 4.1 Reversed phase HPLC (A) and gradient HPLC (B) chromatogram of 

chicory root extract. 

l=Lc; 2=8dLc; ; 3=Lp; 4=dHLc; 5=dHLp; 6=dH8dLc Q=peak Q; T=peak T; N=peak N. 
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extraction. However, this extraction procedure has a number of disadvantages: 

1. The extraction with diethyl ether is time consuming, thus the method is 

not suitable for rapid quantification of sesquiterpene lactones in chicory 

roots or the residues formed after enzymatic liquefaction. 

2. Relatively large samples of roots or residues are needed with the 

apparatus used (100-200 g ) . 

3. Further extraction of the chicory roots after 30 h with a fresh portion of 

diethyl ether using the method developed by Späth et al. (1939) enabled the 

isolation of more sesquiterpene lactones, so the extraction was not 

exhaustive. 

4. The amount of sesquiterpene lactones extracted from the roots with the 

above mentioned method did not correspond with the amount of these compounds 

obtained after enzymatic liquefaction: more lactucin and 8-deoxylactucin was 

found after liquefaction than in the untreated raw material. This phenomenon 

was the reason for improving the extraction procedure of sesquiterpene 

lactones from chicory roots (as described further in this Section), for 

improving the method of analysis (see Section 4.2.1), and for concentrating 

on the precursors of Lc and 8dLc and the enzyme system of chicory roots 

(Chapter 5, 6 ) . 

The extraction solvents water, MeOH, EtOH, chloroform, and acetone, were 

evaluated for their ability to isolate sesquiterpene lactones from chicory 

roots. All extracts, except the chloroform extract, consisted of mainly polar 

compounds eluting before Lc in the HPLC chromatogram. The amount of Lc was 

less compared with an diethyl ether extract prepared according to Späth et 

al. (1939). No 8dLc and Lp could be detected (Netjes, 1985). Satisfactory 

results were obtained with repeated extraction with chloroform, however, 

lactucin was not completely extracted with this solvent from the roots nor 

from the residues of the roots after enzymatic liquefaction. 

In a subsequent experiment four different solvents for extraction and 

isolation of the bitter compounds of fresh chicory roots were tried and 

compared qualitatively with TLC: ethyl acetate, ethyl acetate with 10% iso-

propanol, butanol, and chloroform. Ethyl acetate gave the highest yield of 

the three sesquiterpene lactones investigated. Analysis with gradient HPLC 

showed that this extract contained also the ll(S),13-dihydro analogues of the 
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sesquiterpene lactones investigated. 

The effect of polarity of the extraction solvents on the quantitative 

recovery of sesquiterpene lactones from chicory roots was measured with 

gradient HPLC. Extraction solvents used were ethyl acetate (with and without 

addition to the roots of 2% Na-SO-), acidic ethyl acetate, methyl acetate, 

and a MeOH/H20 (55-45 or 80-20) mixture. 

Addition of salt (NagSO.) during the ethyl acetate extraction decreases the 

yield of lactucin and its ll(S),13-dihydro analogue. The salt was added to 

the fresh roots prior to extraction, thus probably lowering the activity of 

native enzymes of the roots, to give a lower yield of these compounds. 

In the acid ethyl acetate soluble fraction more ll(S),13-dihydrolactucin was 

found compared to the ethyl acetate alone, and peak Q decreased. Peak Q, 

eluting before dHLc, is one of the components which was investigated further 

(Chapter 5). 

Methyl acetate as solvent gave a similar extract as EtOAc, however, all peaks 

were smaller. 

The extractions with MeOH-HpO mixtures were less selective and gave extra 

peaks compared with the ethyl acetate extraction, especially polar compounds 

eluting at the beginning of the HPLC chromatogram. 

Ethyl acetate appeared to be the best extraction solvent for the isolation of 

sesquiterpene lactones from chicory roots. The reproducibility of the 

extraction of these compounds from chicory roots with EtOAc was established 

by four replicate analyses of the same sample. For Lc, dHLc, 8dLc and dH8dLC 

a satisfactory precision was obtained after combining two successive extracts 

(coefficient of variation between 9 and 21%). However, the coefficient of 

variation increased with apolarity of the compounds, which might be due to 

the decreasing solubility of the apolar compounds in the MeOH/H-0 solvent in 

which the EtOAc solvent solubles were dissolved. The peak height of apolar 

compounds eluting in the end of the chromatogram, for example lactucopicrin, 

is relative small compared to more polar components measured, and more 

tailing occurs, both increasing the coefficient of variation. This decrease 

in precision of especially apolar compounds is also seen for other extraction 

solvents. 
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4.2.3 Effect of processing of raw material 

Until now there are no publications on the effect of processing (i.e. 

freezing, milling degree, drying) on the extraction of sesquiterpene lactones 

from chicory roots. Therefore the effect of storage, milling, and drying on 

the extraction yield was investigated. 

First storage conditions of the roots were investigated. The extraction of 

fresh chicory roots was compared to chicory roots which were extracted after 

, % of standard (=100%) 

dHLc Lc 8dLc/dH8dLc dHLp 

E31 E32 EB33 f ^ 4 

Fig. 4.2 Effect of storage conditions and milling on extraction efficiency of 

chicory roots. 

1 Standard extraction procedure, no storage 
2 Extraction after an extra milling step with sand 
3 Extraction after 1 month storage at -30 °C 
4 Extraction after 1 month storage at 1 °C 
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storage at 1 °C for one month, and chicory roots which were stored frozen for 

one month (-30 °C). 

the amount of extracted sesquiterpene lactones is influenced by storage (1 °C 

or frozen): an increase is seen for 8-deoxylactucin, its ll(S),13-dihydro 

derivative, and lactucopicrin, while the amount of ll(S),13-dihydrolactucin 

decreases (Fig. 4.2). 

During storage of the chicory roots at low temperature native enzymes could 

possibly convert polar compounds, e.g. glycosides of the sesquiterpene 

lactones investigated, into less polar aglycons, which elute later in the 

chromatogram. Freezing breaks the cell membranes of the chicory roots, thus 

increasing the extraction efficiency. 

In a second experiment chicory roots were first milled with sand before 

extraction with EtOAc. The additional milling of the roots decreased the 

amount of dHLc, but increased that of Lp (Fig. 4.2), however, the latter 

amount falls within the error of analysis. 

Milling with sand increases the total surface of the roots exposed to the 

solvent and thus the extraction might be more efficient. However, the total 

dry matter of material to be extracted increases substantially when sand is 

added. Therefore no increase in extraction efficiency is seen (see next part 

of this section). Thus a similar extraction efficiency with regard to 

isolation of sesquiterpene lactones is obtained compared to the standard 

extraction procedure. 

An EtOAc extract of air dried chicory roots (70 °C, 24 h) contained almost no 

sesquiterpene lactones. The procedure decreased tremendously the compounds of 

interest. After roasting of chicory roots (1 h at 130 °C), no bitter 

sesquiterpene lactones could be detected: presumably they were degraded 

(Stoltze, 1987; Pazola, 1987). 

After steam blanching of the chicory roots (for 1 min) no sesquiterpene 

lactones could be extracted with a chloroform extraction. 

A low extraction yield was also obtained from freeze dried chicory roots 

extracted with ethyl acetate: almost all components decreased by about 50% 

compared to fresh roots (Fig. 4.3). 

The use of freeze dried chicory samples is not unusual: Dolezal (1976) used 

freeze dried samples of chicory roots and heads and extracted them with 50% 
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Fig. 4.3 HPLC chromatograms of EtOAc extracts from fresh chicory root (A) and 

freeze dried chicory root powder (B). 

l=Lc; 2=8dLc; 3=Lp; 4=dHLc; 5=dHLp; 6=dH8dLc; Q=peak Q; T=peak 7. 
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Fig. 4.4 HPLC chromatograms of EtOAc extract from freeze dried chicory root 

powder after soaking with water. 

1=H20 layer; 2=EtOAc layer. 

l=Lc; 2=8dLc; 3=Lp; 4=dHLc; 5=dHLp; 6=dH8dLc; Q=peak Q; T=peak T; N~peak N. 
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Fig. 4.5 Flow diagram for extraction of sesquiterpene lactones from chicory 
roots via a freeze drying step. 
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methanol acidified with HCl at 70 C. No problems were mentioned with this 

extraction, probably because a sufficient amount of water was available. 

Therefore freeze dried chicory root powder was first soaked with water (15 

min) before extraction with ethyl acetate (see Fig. 4.5 for flow diagram). 

The yield of sesquiterpene lactones increased. The amount of water added to 

the dried chicory root powder was also found to be important: higher yields 

were obtained with twice the natural quantity of water added to the dried 

powder. The obtained water layer consisted mainly of (unknown) polar 

compounds, probably precursors of bitter sesquiterpene lactones (Fig. 4.4). 

This increase of total yield of sesquiterpene lactones could be due to a 

moisturizing effect of the dried roots, by which the extraction with ethyl 

acetate is improved. Carbohydrates are the main components of chicory roots. 

They do not dissolve in EtOAc, so that they prevent the sesquiterpene 

lactones to come into contact with the solvent. In an aqueous solution more 

Lc, 8dLc and Lp could be detected in the presence of polysaccharides 

(Leclercq et al., 1988). Späth et al. (1939) stated that soaking of 

lactucarium with water gives a considerable amount of sesquiterpene lactones 

in the water phase before extraction with diethyl ether, and thus suggests 

that soaking with water gives a higher yield of bitter compounds and/ or an 

increase in extraction efficiency. Water appeared to be necessary for 

extraction of the sesquiterpene lactones present in the roots. 

Native enzymes can be activated during soaking of the dried roots with water. 

Sugars present in the roots will protect enzymes against activity losses, 

which is described for other, pure enzymes (Carpenter & Crowe, 1988). The 

effect of native enzymes on yield of sesquiterpene lactones is discussed in 

more detail in Chapter 5 and 6. 

4.3 Conclusions 

Ethyl acetate is the best extraction solvent of those tested for the 

isolation of sesquiterpene lactones from chicory roots, giving a simple 

procedure and giving reproducible extracts. However, the precision of the 

analysis of the apolar compounds (such as lactucopicrin) is less than that of 

the more polar compounds (e.g. lactucin). 
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Chicory roots extracts obtained from polar solvents, such as water, methanol, 

and acetone, consist of more polar components than ethyl acetate or diethyl 

ether extracts. Less Lc, 8dLc and Lp are found. Seto et al. (1988) used MeOH 

for chicory root extraction and found many (more polar) glycosides in the 

solvent solubles. It might be expected that glycosides are present in above 

described "polar" extracts, and that they elute at the beginning of the HPLC 

chromatogram. 

Depending on which compounds have to be extracted from chicory roots, a 

suitable extraction solvent can be chosen. For polar compounds methanol/water 

mixtures are appropriate, for apolar compounds ethyl acetate or diethyl 

ether. The extraction with diethyl ether as solvent is not useful when a 

rapid assay of a sample is necessary, and is not exhaustive. Therefore the 

use of ethyl acetate is preferable. 

Gradient elution with reversed phase HPLC is the most suitable method for 

determination and identification of sesquiterpene lactones from chicory roots 

(Fig. 4.IB). The first developed, isocratic method for rapid determination of 

bitter compounds (Fig. 4.1A) appears to be useful for screening of a chicory 

extract, for presence and elucidation of compounds, and might also be 

appropriate to associate sensory analysis of bitter sesquiterpene lactones 

with HPLC analysis. However, the three major peaks obtained with this rapid 

method consisted of at least two (and probably more) components. 

Storage conditions, freezing, thawing, and the degree of milling, all 

influenced the total yield of sesquiterpene lactones investigated, and thus 

partly effected the reproducibility of chicory extraction. Especially the 

milling step is crucial for obtaining reproducible extracts. To inhibit 

enzyme activity it is recommended to grind the chicory roots at the lowest 

possible temperature, and to do it in the shortest time possible. Cryomilling 

seems to be the best option. A heat treament, for instance blanching, or 

drying at high temperature, (partly) degrades the compounds of interest. 
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4.4 Experimental section 

4.4.1 Raw material 

Fresh chicory roots (Cichorium intybus L.) were obtained from a grower in 

Veenendaal, the Netherlands, and stored at 1 °C before use. The roots were 

divided in several portions at random. 

i. After arrival and milling fresh roots were immediately extracted, and the 

extracts obtained were compared with those from roots, which were stored at 1 

°C or frozen for one month before use. 

ii. Part of the chicory roots were milled, and the pieces obtained were 

frozen (-30 °C), freeze dried or dried in a hot-air oven with forced 

ventilation for 24 h at 70 °C. 

iii. Chicory roots were cut into small pieces, and further reduced in size by 

milling with sand. 

Chicory roots used for the extraction with diethyl ether, water, MeOH, EtOH, 
3 

acetone and chloroform were cut into small pieces (about 4 mm ) under liquid 

nitrogen and stored in portions of 100 g each at -60 °C. 

Before use all chicory roots were cleaned to remove adhering soil. 

4.4.2 Extraction procedures 

A portion of milled and frozen chicory roots (200 g) was suspended in 600 ml 

of water at room temperature, and sodium chloride (20 g) was added. After 30 

min, the suspension was extracted continuously for 30 h with diethyl ether in 

a liquid-liquid extractor according to Späth et al. (1939). After extraction, 

the diethyl ether was removed by evaporation and the residue dissolved in 50 

ml of 95% ethanol. 

Extraction of the chicory roots with methanol, ethanol, acetone or water was 

carried out as follows. Frozen chicory root pieces (10 g) were successively 

extracted for 5 x 4 h with one of the above mentioned solvents (20-25 ml) at 

room temperature. After each period of time the solvent was removed by 

filtration and replaced by a fresh portion. The five extracts were combined 

and the solvent was removed by evaporation. The residue of the extract was 
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dissolved in 1 ml of MeOH. This extraction was also carried out at the 

boiling temperature of the respective solvent. The eight thus obtained 

extracts were analysed for the sesquiterpene lactones (first method). 

Extraction of chicory roots (10 g) with chloroform (20 ml) was carried out at 

room temperature. The material was extracted four times for 16, 4, 4, and 16 

h respectively by shaking continuously. After each period of time chloroform 

was removed by filtration and replaced by a fresh portion. The four extracts 

were combined and the chloroform was removed by evaporation, after which the 

residue of the extracts was redissolved in 1 ml of MeOH. 

Ethyl acetate extraction was carried out by boiling chicory roots (1 g) twice 

with a fresh portion of solvent (10 ml) for 15 min. The two extracts were 

combined and evaporated in vacuo. The residue obtained was redissolved in 10 

ml of MeOH/H20 (50-50). 

Extraction with a mixture of methanol-water, methyl acetate, and acidified 

ethyl acetate, was performed as described for ethyl acetate. Acidified EtOAc 

was a mixture of 0.1 N HCl and EtOAc (10-90). 

Unless stated otherwise ethyl acetate was used as the extraction solvent. 

Extraction of freeze dried chicory root powder is described in Section 5.3.2. 

All solvents were obtained from Merck, Darmstadt, Germany. 

4.4.3 Analysis 

Extracts obtained by diethyl ether, acetone, water, ethanol or chloroform 

extraction were analysed by isocratic, reversed phase HPLC (RP-HPLC) using a 

10 cm x 8 mm Radial PAK C18 cartridge (Waters Assoc, no. 84720) with a C18 

Guard-PAK pre column (no. 85824), which were pressurized in a radial 

compression Z-Module before use. The solvent was water-methanol (50-50) and 

the flow-rate was 2.0 ml/min. UV detection at 258 nm was used. 

The extracts obtained by using EtOAc, acidified EtOAc, MeOAc, and Me0H-H20 as 

solvent, were analysed by gradient HPLC using a Spherisorb C-18 column (250 x 

4.6 mm, particle size 10 pm). Eluent A was methanol-water (5-95); eluent B 

was methanol-water (70-30). During one run of 25 min 100% eluent A decreased 
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linearly to 0%, and eluent B increased from 0% to 100%. The flow rate was 1 

ml/min, and UV detection at 258 nm was used. 

Deionized, double distilled water was used. The other solvents were of HPLC 

grade. 

Ready-made silica gel TLC plates (60 F-254, Merck, no. 5719) were used with 

EtOAc as solvent. Detection was carried out by viewing under 254 nm UV light. 

Mass spectra were obtained on an AEI MS-902 at 70 eV in the electron impact 

mode. 

NMR spectra were recorded in CDC13 or CDC13-CD3OD on a Bruker CXP300. 

Spectral data for ll(S),13-dihydrolactucopicrin are as follows. UV (MeOH) 

absorbance maximum at 255 , 230 (sh) nm. 

Mass spectrum (70 eV) m/e (relative intensity): 412 (M+, 1), 322 (1), 260 

(8), 231 (6), 198 (19), 187 (48) 152 (41), 107 (100). 

*H-NMR (300 MHz, CDC13) 6 1.20 (H-13, d, J = 7 Hz), 2.32 (H-7, ddd, J = 11.5, 

10.4, 10.3 Hz), 2.36 (H-9B, dd, J = 13.7, 2.5 Hz), 2.44 (H-15, s), 2.46 (H-

11, dq, J = 11.5, 7 Hz), 2.70 (H-9a, dd, J =13.7, 10.7 Hz), 3.55 (H-a', d, J 

= 15 Hz), 3.58 (H-5, br d, J = 10 Hz), 3.61 (H-a", d, J = 15 Hz), 3.69 (H-6, 

dd, J = 10.3, 10 Hz), 4.53 (H-14a, br d, J = 17.6 Hz), 4.82 (H-8, ddd, J = 

10.8, 10.4, 2.5 Hz), 4.85 (H-14b, br d, J =17.6 Hz), 6.44 (H-3, m), 6.81 (H-

3', H-5', d, J = 9 Hz), 7.13 (H-2', H-6', d, J = 9 Hz). 
13C-NMR (75 MHz, CDC13-CD30D) 5 14.5 (C-13), 21.2 (C-15), 40.5* (C-ll), 40.8* 

(C-o), 44.5 (C-9) 48.8 (C-5), 58.5 (C-7), 61.9 (C-14), 70.6 (C-8), 80.6 (C-

6), 115.5 (C-3'), 115.5 (C-5'), 123.8 (C-l'), 130.1 (C-2'), 130.1 (C-6'), 

132.5# (C-l), 133.1# (C-3), 146.5 (C-10), 156.1 (C-4'), 171.0 (C-ß), 172.8 

(C-4), 177.0 (C-12), 195.0 (C-2). 
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CHAPTER 5 

ENZYMATIC LIQUEFACTION OF CHICORY ROOTS: RELEASE OF SESQUITERPENE LACTONES 

5.1 Introduction 

The application of enzymes in the fruit industry has been described in 

literature for flavour enrichment of wine and fruit juices. In several fruits 

and fruit juices taste and aroma are associated with the presence of various 

free volatile monoterpene compounds (see for instance Wilson et al., 1984; 

Engel & Tressl, 1983). In addition to these free terpenes non-volatile water-

soluble precursor compounds are present in these juices. In grape juice these 

precursors have been elucidated as a mixture of disaccharide glycosides of 

several monoterpene alcohols (Wilson et al., 1984). This was also found for 

passion fruit (Engel & Tressl, 1983), and papaya, apricot and mango (Salles 

et al., 1988). An extra enzymatic or acid hydrolysis of the fruit pulp or 

juice is necessary to obtain the volatile aglycons for improving the flavour 

(Wilson, etal., 1984; Engel & Tressl, 1983; Salles et al., 1988). The 

flavour of passion fruit juice was improved after treatment of the juice with 

ß-glucosidase; the press juice was used as substrate (Shoseyov et al., 1990). 

Monoterpene glycosides have a function in the biosynthesis of terpenes as 

reactants. They are also the transport form of the free monoterpenes in 

plants (Stahl-Biskup, 1987). Similar observations might be expected in the 

biosynthesis of sesquiterpene lactones in chicory roots. 

Few publications are known in which the use of enzymes has been applied in 

order to increase the yield of flavours or antimicrobial compounds after 

partial maceration of plant material with (hemi)cellulase (e.g. Tateo and co

workers, 1979, 1977, 1982; Chuyen et al., 1982; Szakâcs-Dobozi et al., 1988). 

Nitz et al. (1985) incubated Majorana hortensis first with pectinase or 

glucosidase before extraction by steam distillation under reduced pressure. 

They compared these extracts with those obtained from untreated plant 
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material. Enzymatic treatment increased the yield of flavour compounds. This 

increase is probably due to precursors present in the plant as glycosides, 

which are released depending on the extraction method and the use of enzymes. 

The reproducibility of the extraction of the bitter sesquiterpene lactones 

from chicory root was influenced by the history of the sample (Chapter 4 ) . 

Storage and process conditions during drying and milling affected the yield 

of these compounds. Also the type of solvent used for the extraction, had an 

effect on the extraction efficiency. 

In this Chapter the complete liquefaction of chicory roots with commercial 

enzyme preparations is described. These preparations are sold for their 

pectolytic and cellulolytic activities. The advantage of this process could 

be that more bitter compounds would pass into the liquid phase, than by a one 

step solid-liquid extraction. The liquefied root suspension should also 

contain inulin and other carbohydrates, which as a whole might be used as raw 

material in the manufacture of soft drinks. 

5.2 Results and discussion 

5.2.1 Enzymatic liquefaction of chicory roots 

The release of lactucin, 8-deoxylactucin, and lactucopicrin has been studied 

during enzymatic liquefaction of chicory roots with commercial enzyme 

preparations, containing both pectinases and cellulases (see Fig. 5.1 for 

flow diagram). During 24 h of liquefaction, samples were taken and analysed 

by HPLC. The isocratic HPLC method was used, so no distinction between Lc, 

8dLc, Lp and their dihydro derivatives was made. As control the same mixture 

was stirred without added enzymes. Both mixtures were kept at pH 4. 

In the liquefaction mixture more Lc and 8dLc (and/or their dihydro analogues) 

could be detected compared to the control mixture. The total amount of 

sesquiterpene lactones investigated was rather constant for the control; in 

the enzyme treated sample the amount of lactucin and 8-deoxylactucin 

increased continuously over the investigated period (Fig. 5.2). No increase 

of lactucopicrin was found during enzymatic liquefaction of the roots. 

Several hypotheses are formulated to explain the increase in bitter 
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Fig. 5.1 Flow diagram for enzymatic liquefaction of chicory roots with 

commercial enzyme preparations. 

constituents during enzymatic liquefaction. 

Enzymatic hydrolysis of lactucopicrin into lactucin and p-hydroxy-

phenylacetic acid using commercial enzyme preparations might partly explain 

the increase of lactucin during liquefaction. However, it was found that 

this reaction did not occur with the enzyme preparation used (Leclercq et 

al., 1988). 

Unblanched chicory roots were used during enzymatic liquefaction. Therefore 

native chicory root enzymes could still be active during this liquefaction, 

and convert precursors into lactucin and 8-deoxylactucin. 

On the other hand enzymes present in the used enzyme preparation might also 

be able to catalyse the formation of sesquiterpene lactones from precursors, 

e.g. glycosides. An unpurified commercial preparation consisting of many 

different activities was used for liquefaction of chicory roots. Prevalently 

pectolytic and cellulolytic activities were present, but also glycosidase 

activity might be expected in this preparation. 

Therefore a chicory root extract with inactivated endogenous enzymes was used 

57 



. arbitrary units 

•A-

$z 

ïsi 

% 
I 

^ 

l ? 3 sm 

1 
t 
^ 

2 5 
time |h| 

E3Lc/dHLc ^BdLc /dHBdLc ^ L p / d H L p 

24 

. arbitrary units 

•B-

EST"" ^m ^ f f l fcfea K ̂ M 
0 J 2 5 8 24 

time In) 

K3Lc/dHLc ZZ2 8dLc/dHBdLc raiLp/dHLp 
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roots (A) and control mixture (B). 

58 



as a substrate for a commercial enzyme preparation to elucidate, whether the 

increase of sesquiterpene lactones is due to the liquefaction process 

resulting in improved extraction efficiency, or to the conversion of 

precursors into known compounds (Section 5.2.2). All unknown compounds in the 

HPLC chromatogram, especially the polar compounds, were theoretically 

considered to be precursors. 

The enzyme activity of chicory root was also investigated. Native enzymes 

might be active during liquefaction process, and thus be able to transform 

precursors into sesquiterpene lactones (Chapter 5.2.3). 

5.2.2 Enzymatic treatment of chicory root extract 

An aqueous chicory root extract (with inactivated endogenous enzymes) was 

incubated with Hemi II, a commercial enzyme preparation, having high 

pectolytic and cellulolytic activities. This solution was analysed 

qualitatively by gradient HPLC before and after enzyme treatment. 

When compared with the control, some peaks in the chromatogram disappeared 

(peak N, T ) , or decreased (peak Q ) , while peaks of dHLc and dH8dLc increased 

(Fig. 5.3). Thus the commercial enzyme preparation is able to influence the 

composition of a chicory root extract. During enzymatic liquefaction of the 

chicory roots more polar compounds, which elute before peak N in the 

chromatogram, might also be converted into the known sesquiterpene lactones 

(dHLc, dH8dLc), and thus explain their increase. However, this was not 

further investigated. 

With the above described experiment it is not possible to explain these 

results. Therefore the experiment was repeated with chicory root extract, 

which was partly purified on a small scale qualitatively with a Sep-Pak 

reversed phase C-18 column. The eight fractions obtained were treated with 

the same commercial enzyme preparation in a similar way as the whole extract, 

and analysed with HPLC before and after enzymatic treatment. 

Peak N disappeared following enzymatic treatment and peak Q appeared (Fig. 

5.4). In the fraction consisting of compound Q, peak Q decreased by enzymatic 

treatment, but did not disappear completely, while the peak of dHLc (peak 4) 

increased. The same was found in the fraction with compound T: peak T 

decreased, and the peak attributed to dH8dLc (peak 6) appeared in the HPLC 
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chromatogram after enzyme treatment. It was assumed that the molecular 

extinction coefficient did not change during enzymatic treatment, and thus 

that the decrease of for instance compound N is equal to the increase of 

compound Q. 

No increase of Lp was seen after incubation of the chicory root extract with 

a commercial enzyme preparation. 

As a result of above experiments a hypothesis is proposed: compound N 

(corresponding with peak N) is a precursor of compound Q (corresponding with 

24 

retention time (min) 

Fig. 5.3 HPLC chrotnatograms of chicory root extract before (A) and after (B) 

incubation with Hemi II enzyme preparation. 

l=Lc; 2=8dLc; 3=Lp; 4=dHLc; 6=dH8dLc; Q=peak Q; T=peak T; N=peak N. 
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Fig. 5.4 Superimposed HPLC chromatograms 

of chicory root extract fractions before 

( — ; solid line) and after (- - -; dotted 

line) incubation with Hemi II enzyme 

preparation. 

A=fraction MeOH-HJ3 20-80; B=fraction 

HeOH-H20 40-60; effraction HeOH-H^ 100-0. 

2=8dLc; 3=Lp; 4=dHLc; 6=dH8dLc; Q=peak Q; 

T=peak T; N=peak N. 

peak Q), compound Q is a precursor of dHLc, and compound T is the precursor 

of dH8dl_c: N --> Q --> dHLc; T --> dH8dLc. 

5.2.3 Endogenous enzyme activity of chicory roots 

The experiment described in the previous Section was repeated with chicory 

root as the enzyme preparation. An aqueous chicory root extract (prepared 

according to Section 5.3.2 and thus free of active endogenous chicory 

enzymes) was incubated with a suspension of freeze dried chicory root powder. 

This crude enzyme preparation contained next to endogenous enzymes, also 

sesquiterpene lactones. This amount is neglected, because it will be far less 

than the amount of sesquiterpene lactones in the extract. The mixture was 

61 



incubated at 30 C for 24 h (pH 6) and the changes in the extract were 

investigated by HPLC. The control was inactive chicory root powder, obtained 

by boiling the suspension for 8 min before it was added to the extract. 

Compound Q and N decreased during incubation of the extract with a chicory 

root suspension, and Lc, dHLc, and dH8dLc increased. This suggests that 

native enzymes are able to form new compounds from an aqueous suspension of 

chicory root extract consisting of various known and unknown compounds 

detectable at 258 nm. Compound Q did not disappear completely after 

incubation with endogenous chicory enzymes, contrary to compound N which 

could not be identified after enzymatic treatment. Lp did not increase during 

enzymatic treatment with endogenous enzymes of the chicory extract. 

These results are similar with those obtained by incubation of chicory root 

extract with commercial enzymes concerning decrease of compound N and Q, and 

increase of dHLc and dH8dLc. However, an increase of Lc is seen during 

incubation with endogenous enzymes. 

A chicory root suspension incubated with inactive chicory root enzymes, did 

not change the composition of this extract. The amount of Lc, dHLc, and 

dH8dLc did not increase after incubation, and peak N and Q did not decrease. 

Therefore the above mentioned hypothesis was extended. The enzymes from the 

chicory root as well as enzymes originated from a commercial enzyme 

preparation are able to convert precursors into other precursor compounds 

(compound N -> compound Q), and into known sesquiterpene lactones (compound Q 

-> dHLc; compound T -> dH8dLc). Chicory enzymes are able to convert the 

precursor(s) into Lc. 

The fractions consisting of component Q and T were analysed and characterized 

in order to confirm this hypothesis. 

5.2.4 Identification of precursors 

5.2.4.1 Compound Q 

Various fractions of compound Q with different concentrations of compound Q 

were analysed for total sugar content according to Dubois et al. (1956). Also 

"bound" sugars (as glycosides) and sugars present as polymers were 

determined. It was found that a higher amount of compound Q present in the 
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extract gave a more intense colour after reaction with phenol and sulphuric 

acid, which indicated that compound Q is indeed a glycoside. The sugar unit 

obtained after enzymatic hydrolysis of compound Q with Hemi II was found to 

be glucose as measured by HPLC. 

Glycosides in chicory roots are already identified and described by Seto et 

al. (1988). They identified glycosides of sesquiterpene lactones of both the 

guaiane type, such as lactucin, and of the germacrane and eudesmane type not 

yet identified in our chicory root extract (Fig 1.1). In other Compositae, 

especially Lactuca sp., glycosides from Lc, dHLc, Lp, and 8dLc were found 

(Mahmoud et al., 1986; Nishimura et al., 1986a; Nishimura et al., 1986b; 

Adegawa et al., 1985). 
13 Component Q was first analysed and characterized with C-NMR. It was found 

that this compound consisted of two sesquiterpene lactone glycosides. 

Therefore this fraction was further purified with normal-phase HPLC. The H-
13 

NMR, C-NMR and MS spectra of the two fractions, Ql respectively Q2, were 

compared with those of pure crepidiaside A, cichorioside B, cichorioside C, 

and sonchuside A. It was found that compound Q is a mixture of cichorioside B 

and cichorioside C. Cichorioside B is the glycoside of dHLc, and 

cichorioside C is a glycoside of a germacranolide (Fig. 5.5). Both components 

have also been identified in Cichorium intybus roots by Seto et al. (1988). 

OH 

OH 

.>•«•« 

cichorioside B (Ql) cichorioside C (Q2) 

Fig. 5.5 Structures of compounds in peak Q. 
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5.2.4.2 Compound T 
11 The fraction consisting of compound T was analysed and characterized by H-

13 
NMR and C-NMR. The data were compared with those of pure crepidiaside A, 

cichorioside B, cichorioside C, and sonchuside A, and with those published by 

Seto et al. (1988). They were found similar to the data of crepidiaside B, 

the glycoside of ll(S),13-dihydro-8-deoxylactucin (Fig. 5.6). This was 

confirmed by MS. The presence of crepidiaside B was reported in C. endivia 
and C. intybus by Seto et al. (1988). 

For structure analysis Seto et al. (1988) and Adegawa et al. (1985) 

hydrolysed cichorioside B, cichorioside C respectively crepidiaside B with 

acid as well as with enzymes (cellulase respectively hesperidinase for 2 h at 

38 °C; ratio enzyme-substrate was 1). Conversion of the glycosides was found 

into their respective aglycons and sugar unit. It might therefore be expected 

that above components are subjected to enzymatic hydrolysis during 

liquefaction of chicory roots. 

crepidiaside B 

Fig. 5.6 Structure of compound T. 

5.2.5 Conclusions 

The release of lactucin, 8-deoxylactucin and lactucopicrin during enzymatic 

liquefaction of chicory roots is described. More lactucin and 8-deoxylactucin 

are detected in the liquefaction mixture. No increase is observed in Lp 
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content during the liquefaction. However, analysis was carried out with the 

isocratic HPLC method, which can not distinguish Lc, 8dLc and Lp from their 

dihydro derivatives. Therefore the increase of Lc as seen during enzymatic 

liquefaction of chicory roots is due to an increase of Lc, dHLc, or both. The 

same can be stated for 8dLc and dH8dLc. 

It was found that some commercial enzyme preparations, which are used for 

liquefaction because of their pectolytic and cellulolytic activities, are 

also able to hydrolyse cichorioside B and crepidiaside B, into their 

aglycons dHLc and dH8dLc respectively (Fig 5.7 and Fig. 5.8). The same 

phenomenon is observed when chicory root powder was used as crude enzyme 

preparation, indicating that chicory contains enzymes with glycosidase 

activity. 

After incubation of purified chicory root fractions with commercial enzyme 

OH glycosidase OH 

Fig. 5.7 Enzymatic conversion of cichorioside B into dHLc. 

glycosidase 

Fig. 5.8 Enzymatic conversion of crepidiaside B (compound T) into dH8dLc. 
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preparation only an increase of dHLc and dH8dLc peaks is found in the 

gradient HPLC chromatogram. So the increase of lactucin and 8-deoxylactucin 

peaks in the isocratic HPLC chromatogram during enzymatic liquefaction of 

chicory roots is due to an increase of their dihydro analogue. 

It is not unlikely that other polar compounds eluting at the beginning of the 

HPLC chromatogram are also involved in the enzymatic conversions during 

incubation of chicory roots with commercial enzyme preparations. 

Compound N is converted into compound Q when incubated with a commercial 

enzyme preparation. The structure of compound N is not yet elucidated. 

However, the first results indicate that compound N is a disaccharide 

glycoside of dHLc. 

In Chapter 4 the solvent extraction of sesquiterpene lactones from chicory 

roots is discussed. Storage conditions, milling, freezing, thawing, all 

influenced the total yield of these compounds. These observations can now be 

explained as a function of endogenous chicory enzyme activity, depending on 

the "history" of the sample. The quality, i.e. bitter taste of a chicory 

suspension after liquefaction, can therefore probably also be affected by the 

type of enzyme used for liquefaction and by the activity of endogenous 

enzymes from the roots. This will be discussed further in Chapter 8. 

Compound Q appeared to be a precursor of dHLc. It consists of two compounds: 

cichorioside C, a glycoside of a germacranolide, and cichorioside B, the 

glycoside of dHLc. Also crepidiaside B is identified in chicory roots. This 

compound is the glycoside of dH8dLc. Both cichorioside B and crepidiaside B 

can be hydrolysed into their sugar unit and respective aglycons. These 

conversions have now been proven to occur during enzymatic liquefaction of 

chicory roots. Crude chicory enzymes are also able to hydrolyse cichorioside 

B and crepidiaside B. 

The hydrolysis of cichorioside C into its (unnamed) aglycon and sugar unit 

has yet not been proven during enzymatic liquefaction of chicory roots, but 

it is not unlikely. 

It is yet not known whether commercial enzyme preparations consisting of many 

activities are able to convert a germacranolide into a guaianolide, for 

instance cichorioside C -> cichorioside B. Probably the pH plays also a role 

in this conversion. New experiments are necessary to verify both options. 
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Although still not proven, it is plausible that chicory enzymes are also able 

to perform the above reaction. Both types of sesquiterpene lactones are 

characteristic for the chicory roots. Many endogenous enzymes are involved in 

their synthesis. It is thus not unlikely that endogenous enzymes are able to 

catalyse the reaction cichorioside C -> cichorioside B. This may be a subject 

for further investigations. 

5.3 Experimental section 

5.3.1 Materials 

Fresh chicory roots were obtained from a grower in Veenendaal, the 

Netherlands. The roots were used as such, or first frozen (-30 °C), freeze 

dried, and crushed by sieving (4 mm). The powder was stored at 4 °C in dark. 

Before use the chicory roots were first washed to remove adhering soil. 

Crepidiaside A, cichorioside B, cichorioside C, and sonchuside A, were a gift 

from T. Myase, School of Pharmaceutical Sciences, University of Shizuoka, 

Japan. 

5.3.2 Preparation of chicory extract 

Freeze dried chicory root powder (4.5 g) was soaked (15 min) with twice the 

natural quantity (60 g) of water added to the dried powder. This was 

extracted with ethyl acetate by boiling twice under reflux with a fresh 

portion of solvent for 15 min. The water layer and EtOAc layer were separated 

(Fig. 4.5). The chicory root powder was removed from the water layer by 

filtration, and the residue resuspended in water (60 g ) , and a second 

extraction with EtOAc as described above, was carried out. The two water 

layers were combined. The remaining EtOAc was removed by evaporation. The 

final volume of the water extract was 100 ml. Endogenous chicory root enzymes 

were inactivated during this process. 
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5.3.3 Enzymatic treatment with commercial enzyme preparation 

Portions of fresh chicory roots (150 g) were suspended in 150 ml of 22 mM 

citric acid, to which 150 mg of Rapidase C600 (pectolytic and cellulolytic 

enzymes (Gist-brocades, the Netherlands)) was added as a dry powder. The 

suspension (pH 4) was stirred continuously at 40 °C. After various periods of 

time (0, 1, 2, 5, 8 and 24 h) samples were removed with a pipette with a wide 

orifice (9 mm I.D.) and centrifuged for 30 min at 10000 g to obtain residue 

(pellet) and supernatant (liquid phase). The control was the same mixture 

without added enzymes but using 73 mM citric acid instead of 22 mM to 

maintain the pH at 4, since no galacturonic acid is liberated. 

The supernatant obtained after liquefaction of the roots (as well as of the 

control mixture) was diluted with methanol (1-1 v/v) and after filtration of 

the suspension injected into the liquid Chromatograph for determination of 

Lc, 8dLc and Lp. The isocratic HPLC method was used as described in Section 

4.4.3. 

From the solid material, i.e. residue obtained after liquefaction or solid 

material obtained from incubation mixture without enzymes, the sesquiterpene 

lactones were extracted with chloroform as described in Section 4.4.2. The 

obtained extract was injected into the liquid Chromatograph. Similar 

equipment and procedures were used as described for the supernatant. With 

this HPLC method Lc, 8dLc, and Lp could not be distinguished from their 

dihydro derivatives. 

Chicory root extract (prepared as deeribed in Section 5.3.2) was incubated 

with enzyme preparation Hemi II (Gist-brocades, the Netherlands), consisting 

of hemicellulolytic, cellulolytic and pectolytic activities (Militz, 1990). 

Before use this enzyme was purified by dialysis in order to decrease the 

sugar content (the enzyme preparation contains sugar as drying aid). The 

enzyme concentration used was 50 mg enzyme/10 ml 0.05 M sodium acetate 

buffer, pH 5. Incubation of the sample (250 /il in 750 /tl 0.05 M NaOAc buffer, 

pH 5) was carried out at 30 °C (water bath) during 6 min with 50 /il of Hemi 

II suspension; final volume was 1050 /il. The enzymes and extract were mixed 

thoroughly before incubation. After incubation the enzymes were inactivated 

by heat treatment (water bath, 100 °C, 10 min). Blank was 250 /il sample 

dissolved in 800 /il buffer solution. 
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Chicory root extract was obtained as described in Section 5.3.2. This extract 

was fractionated on a Sep-Pak RP-18 column (10 x 5 mm) (Waters A s s o c ) . A 

sample (1 ml) was fractionated by gradient elution (100 % H20 to 100 % MeOH) 

in 8 steps of 1 ml each. The 8 fractions obtained were incubated with Hemi II 

at pH 5: a 200 p^ sample was treated with 50 /tl of enzyme in 750 /fl NaOAc 

buffer (0.05 M) at 30 °C during 10 min. The enzymes were inactivated by heat 

treatment after incubation (100 °C, 10 min). The control experiment was 

carried out with 250 /il sample and 750 /il 0.05 M NaOAc buffer at pH 5. 

5.3.4 Chicory root as enzyme preparation 

Chicory root extract was prepared according to Section 5.3.2. This substrate 

(2 ml) was diluted with buffer (pH 6; 17.5 ml) made according to Mcllvaine 

(1921). The total mixture was incubated with 0.5 ml of an aqueous suspension 

of freeze dried chicory root powder (4% (w/v)) at 30 °C for 24 h. After 

incubation the enzymes were inactivated by boiling, and the samples were 

analysed by gradient HPLC. 

A control experiment was carried out by dissolving the chicory root powder in 

boiling water (100 °C, 8 min) to inactivate endogenous chicory enzymes. After 

cooling, the incubation and analysis was carried out as described above. 

5.3.5 Isolation and purification of compound Q 

Fresh chicory roots (7.5 kg) were extracted twice with 10 1 of MeOH-iLO (80-

20) under reflux for 20 min. The two extracts were combined and concentrated 

under reduced pressure until all MeOH was removed. The combined extract (5.3 

1) was partitioned twice with BuOH (1.7 resp. 2.3 1). The BuOH fraction was 

concentrated under reduced pressure, and 64.18 g of residue was obtained. 

This fraction was washed twice with MeOH. The obtained MeOH solubles (42.10 

g) were fractionated by gelfiltration using a Jobin Yvon 500 x 40 mm 

Modulprep column filled with 300 g of Sephasorb HP ultrafine (Pharmacia), the 

eluent was Me0H-H20 (80-20), the flow rate was 10 ml/min, UV detection at 

254 nm was used. Fractions (5-20 ml) were collected and analysed by gradient 

RP-HPLC as described in Section 4.4.3. The fractions consisting mainly of 
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compound Q and compound T were combined (total 1.09 g) and separated with RP-

MPLC and RP-HPLC respectively (RP-MPLC: a Jobin Yvon 500 x 20 mm Modulprep 

column filled with 60 g Spherisorb C-18, particle size 40 /an, flow rate 5 

ml/min, detection at 254 nm, eluent MeOH-H-O (50-50); RP-HPLC was carried out 

on a 250 x 10 mm column filled with Microsorb C-18, particle size 5 im 
(Rainin C-18, 80-299-C5, s/n 10027), flow rate 4 ml/min, detection at 258 nm, 

eluent Me0H-H20 (30-70)). Pure compound Q (13.9 mg) and compound T (13.3 mg) 

were obtained. 
13 After analysis of compound Q with C-NMR it was apparent that compound Q 

consisted of two sesquiterpene lactones. Therefore compound Q was dissolved 

in BuOH and separated and purified with normal-phase HPLC (Microsorb silica 

gel column, particle size 3 /an, flow rate 1 ml/min, eluent tBuMeO-MeOH (90-

10)). The compounds were detected by their UV absorbance at 215 and 258 nm. 

Two fractions were obtained, consisting of cichorioside B (3.0 mg) 

respectively cichorioside C (3.1 mg), were investigated by H-NMR and MS. The 

obtained spectra were compared with those of Seto et al. (1988). 

5.3.6 Isolation and purification of compound T 

Pure compound T (13.3 mg) from fresh chicory roots (7.5 kg) was obtained as 

described in Section 5.3.5. It was characterized with ^-NMR, 13C-NMR and MS. 

The structure was found to be crepidiaside B. The obtained spectra were 

compared with those described by Seto et al. (1988). 

5.3.7 Analysis 

EtOAc extracts were analysed by HPLC as described in Section 4.4.3. However, 

a different gradient elution pattern was used. Eluent A was water, eluent B 

was MeOH. In 26 min 90% eluent A decreased to 20%, and 10% eluent B increased 

to 80%. Flow rate was 1.5 ml/min. H-NMR and C-NMR spectra were recorded in 

D20 on a Bruker CXP300 (200MHz and 50 MHz respectively). 

Mass spectra were obtained on an AEI MS-902 at 70 eV in the electron impact 

mode. 

The total amount of sugar present in the fractions containing only compound Q 
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were analysed according to Dubois et al. (1956). Glucose was used for 

calibration. 

HPLC analysis of sugars was carried out using a CHPB column (Merck) connected 

in line with a guard column filled with 35% AG50^WX4 (minus 400 mesh, H+-

form) and 65% AG3-X4A (200-400 mesh, 0H"-form) both from Bio-Rad. Eluent was 

double distilled water, degassed by filtration through a Millipore-filter of 

pore size 0.45 /an for aqueous solutions. A RI (refractive index) detector was 

used. The column and detector were kept at 85 and 40 °C respectively. The 

flow rate was 1 ml/min. Before analysis 1 ml of sample was treated with 50 //l 

of 1 M Pb(N0-)2 to avoid precipitation in the column. 
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CHAPTER 6 

ENZYMATIC LIQUEFACTION OF CHICORY ROOTS: ROLE OF ENDOGENOUS ENZYMES 

6.1 Introduction 

During enzymatic liquefaction of chicory roots glycosides of known 

sesquiterpene lactones are hydrolysed into their aglycons and carbohydrate 

unit. The added commercial enzyme preparation as well as endogenous enzymes 

from chicory are likely to be responsible for this phenomenon. There are also 

indications that germacrane type sesquiterpene lactones are converted into 

guaiane type during enzyme treatment (see Chapter 5). 

The use of isolated enzymes from plants to generate interesting Secondary 

metabolites (for instance flavours) is still in its infancy (Drawert, 1988). 

Plant enzymes are only used in cell and tissue cultures, but to date 

industrial attempts to establish these techniques for the production of 

biochemicals have been hampered by low yields of the desired substances 

(Constable, 1988). 

The only publications on chicory enzymes known to the author are those about 

enzymes involved in the fructose metabolism in chicory root. Singh and 

coworkers investigated glucofructosan metabolism and isolated also fructosyl 

transferase, the enzyme responsible for the synthesis of fructosan (inulin) 

(Singh & Bahtia (1971a,b); Gupta et al. (1986)). 

Other enzyme systems of this plant have not been reported so far. 

Chicory roots contain interesting enzymes (see Section 5.2.3). Therefore 

endogenous chicory root enzymes were studied in more detail. The release of 

sesquiterpene lactones during incubation with chicory root powder as enzyme 

preparation was investigated. Chicory root extract was used as substrate. The 

properties of chicory root enzymes obtained after salt extraction of the 

chicory powder, and after further purification were also studied, and 

73 



compared with commercial enzyme preparations. 

6.2 Results and discussion 

6.2.1 Release of sesquiterpene lactones 

Enzymes from chicory roots can convert precursor compounds into known 

sesquiterpene lactones, without any other enzymes involved (see Section 

5.2.3). This indicates that endogenous enzymes from the roots might also be 

responsible for the increase of lactucin during liquefaction. The experiment 

as discussed in Section 5.2.3 was carried out for only one incubation time 

(24 h ) . Chicory root extract (free of active endogenous enzymes) was used as 

substrate and freeze dried chicory root powder as the enzyme preparation. 

The release of Lc, dHLc, and Lp was investigated with chicory root enzymes 

during incubation, and compared the results with those obtained from 

enzymatic liquefaction of the roots with commercial enzymes (described in 

Section 5.2.1). During 24 h samples were taken and analysed by gradient HPLC. 

The control with inactive chicory root enzymes was carried out 

simultaneously. 

An increase in Lc and dHLc is seen during incubation of chicory root extract 

as substrate and chicory root powder as crude enzyme preparation (Fig. 6.1). 

This increase is significant compared with the inactivated control. Also an 

increase is observed for dH8dLc during incubation with chicory root compared 

with control (data not shown). The amount of Lp remains constant over the 

period investigated. In the control mixture Lc and Lp increased somewhat, but 

this might be due to a solubility effect. 

Precursors of Lc, dHLc and dH8dLc are hydrolysed by chicory enzymes into the 

sugar moiety and aglycons. The precursors of dHLc and dH8dLc are cichorioside 

B respectively crepidiaside B. The glycoside of Lc is expected as precursor 

in view of the results above mentioned. This compound, picriside A (Fig. 6.2) 

is to date only identified in Picris hieracioides L., like chicory also a 

member of the Compositae family (Nishimura et al., 1986b). The increase of Lc 

during enzymatic treatment with chicory enzymes proves indirectly that 

picriside A is a constituent of chicory roots. However, the best experiment 
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Fig. 6.1 Increase of sesquiterpene lactones during incubation of chicory root 
extract with crude chicory root enzyme preparation (A) and control (B). 
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OH 

Fig. 6.2 Structure of picriside A. 

in this matter is extraction and identification. 

Above results confirm our earlier findings using commercial enzyme 

preparations and crude chicory enzymes (see Chapter 5 ) . The increase of Lc 

during incubation with enzymes is similar, compare Fig. 5.1 with Fig. 6.1. 

However, the increase of Lc as shown in Fig. 5.1 is in fact an increase of 

Lc, dHLc or both. This increase seems less compared to the increase of Lc and 

dHLc as shown in Fig. 6.1. The differences found in the two experiments are 

due to different substrates and different enzymes. The experiment described 

in Section 5.2.1 (see Fig. 5.1) was carried out with fresh chicory root as 

substrate, and this new experiment with chicory root extract. 

In the extract only precursors were available as substrate for the endogenous 

enzymes. During the liquefaction of chicory, also cell wall components are 

present in a higher amount than the precursors of the sesquiterpene lactones. 

The used commercial enzyme preparations are selected for hydrolysing the 

plant cell wall and not precursors. 

Additional the experiments with commercial enzymes were carried out using a 

different extraction procedure for roots and pellet: chloroform was used as 

solvent instead of EtOAc. This should influence negatively the results 

obtained with liquefaction with exogenous enzymes. A less specific isocratic 

HPLC method was used in the experiments as described in Section 5.2.1; the 
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above mentioned results were obtained with the gradient HPLC method described 

in Section 4.4.3. 

When incubation with endogenous enzymes is continued (up to 3 weeks), only 

Lc, dHLc, and dH8dLc are found in the chicory root extract. This indicates 

that endogenous enzymes seem also to be able to convert germacranolide 

precursor into a guaianolide. All other constituents of the chicory root 

extract, polar as well as apolar (Lp), have thus been used as substrate. 

6.2.2 Enzyme characteristics 

6.2.2.1 pH and temperature optimum 

The effect of pH (pH 3-8) on the release of three bitter sesquiterpene 

lactones by endogenous chicory root enzymes was investigated (30 °C, 24 h). 

Chicory root extract free from endogenous enzyme activity, was used as 

substrate. The results are shown in Fig. 6.3. 
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Fig. 6.3 Effect of pH on the release of sesquiterpene lactones during 
incubation of chicory root extract with crude chicory enzyme preparation. 
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Fig. 6.4 Effect of temperature on the release of sesquiterpene lactones 
during incubation of chicory root extract with crude chicory enzyme 
preparation. 

For Lc, dHLc as well as dH8dLc the pH optimum was between pH 5 and 6. Hardly 

any chicory enzyme activity could be detected at pH 3-4 and 8. The rate at 

which the hydrolysis of precursors into the sesquiterpene lactones 

investigated occurred, was higher at pH 6 than at pH 5. So all further 

experiments were carried out at pH 6. 

The effect of temperature on the formation of sesquiterpene lactones when 

incubated with a crude chicory root enzyme preparation at pH 6, is 

illustrated in Fig. 6.4. In this experiment chicory root extract was also 

used as substrate. The optimum temperature giving maximum release for all 

sesquiterpene lactones investigated, is 30 °C. The temperature used during 

enzymatic liquefaction of chicory roots with commercial enzyme preparations 

(40 °C) is not optimal for the chicory root enzymes. Especially the formation 

of Lc has been decreased. 
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6.2.2.2 Conversion of compound N and compound Q 

The conversion of precursors, especially compound N and compound Q 

(consisting of cichorioside B and cichorioside C) was investigated during 

incubation of chicory root extract (free of endogenous enzyme activity) with 

chicory root powder as crude enzyme preparation for 24 h at 30 °C and pH 6. 

Fig. 6.5 shows the pH optimum for conversion is pH 6 for compound N; no pH 

optimum could be detected for compound Q. This might be due to the character 

of compound Q, which consists of two glycosides: cichorioside B and 

cichorioside C, which are both different sesquiterpene lactone type (guaiane 

respectively germacrane). The hydrolysis of compound Q into its aglycons may 

need at least two enzymes with different properties. 

Other precursor compounds, among them crepidiaside B, also decrease after 

incubation of an chicory extract with crude chicory root enzymes (data not 

shown). 

For endogenous chicory root enzymes the optimum conditions for the conversion 
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Fig. 6.5 Effect of pH on the decrease of compound Q (cichorioside B, 
cichorioside C) and compound N during incubation of chicory root extract with 
crude chicory root enzyme preparation. 
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of precursors into known sesquiterpene lactones are: pH 6 and 30 C. The rate 

of these reactions is less than that of commercial enzyme preparations. After 

2 h incubation with chicory root enzymes hardly any difference between the 

incubation mixture and control mixture is seen, contrary to the commercial 

enzymes. The optimum pH and temperature for the commercial preparation is pH 

4 and 40 °C (Chapter 5 ) . These conditions were used during liquefaction. At 

pH 4 hardly any endogenous chicory enzyme activity is seen, and also 40 °C is 

suboptimal for the chicory enzymes. Thus the release of sesquiterpene 

lactones during enzymatic liquefaction is only due to the commercial enzymes 

used. 

6.2.2.3 Purification of chicory enzyme 

Freeze dried chicory root powder was extracted with a solution of salt. The 

extract was dialysed and further purified by ion exchange and ultra 

filtration as described in Section 6.4.2. Five fractions were obtained and 

investigated for the conversion of sesquiterpene lactones and their 

precursors. Chicory root extract was used as substrate (pH 6, 24 h). 

Similar results were obtained as described in Sections 6.2.2.1 and 6.2.2.2: a 

decrease of compound N and cichorioside B, and an increase of Lc, dHLc and 

dH8dLc was found. 

One of these fractions was found to have the highest enzyme activity for 

conversion of compound N and cichorioside B into other components, among them 

dHLc. This compound was increased after incubation. 

This purified chicory root enzyme fraction was compared with crude chicory 

enzyitic and two commercial enzyme preparations for their ability to hydrolyse 

pure cichorioside B and crepidiaside B into dHLc respectively dH8dLc. The two 

commercial enzyme preparations, Exo I and Hemi II, had similar p-nitrophenyl-

ß-D-glucopyranoside (PNPG) activity, which was used as standard. 

Exo I is an enzyme preparation with cellulase (mainly B-glucosidase) 

activity, and Hemi II is a preparation consisting of (hemi) cellulase and 

pectinase activities. The results are summarized in Table 6.1. 

After 21 h incubation with Exo I all cichorioside B and crepidiaside C were 

hydrolysed into dHLc and dH8dLc respectively. This could not be reproduced 
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using the other enzyme preparations, only partial hydrolysis was seen. With 

inactive chicory enzyme no hydrolysis of cichorioside B and crepidiaside B 

was found. 

From Table 6.1 it can be concluded that Exo I has a higher enzyme activity, 

expecially B-D-glucosidase, than Hemi II, relating to hydrolysis of 

cichorioside B and crepidiaside B, despite their similar glucosidase activity 

Table 6.1 Enzymatic hydrolysis of cichorioside B (Q) and crepidiaside B (T) 

after incubation for 21 h with enzyme preparations. Data are in height (mm) 

of the compounds in the HPLC chromatogram. 

compound 

Enzvme preparation dHLc dH8dLc 

Blank 

Exo I 

Hemi II 

Crude chicory 

enzyme 

Purified chicory 

enzyme 

36 

17 

12 

22 

33 

19 

20 

12 

80 

32 

13 

54 

74 

46 

63 

26 

towards PNPG. This might be due to enzyme activities other than B-D-

glucosidases, which are necessary for the conversion of precursors into the 

compounds investigated. 

According to Giinata et al. (1990) the activity of B-glucosidases is dependent 

on the structure of the aglycon (primary, secondary, or tertiary alcohol), 

and the origin of the enzyme. However, cichorioside B and crepidiaside B are 

both glycosides of a primary alcohol, so this can not explain differences 
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between Exo I and Hemi II. 

The crude chicory root enzyme preparation hydrolysed more cichorioside B and 

crepidiaside B than the purified chicory enzyme: only 40% of both substrates 

were hydrolysed by the purified enzyme preparation, contrary to the crude 

chicory enzyme preparation, which hydrolysed about 70-80% of the substrates. 

The activity of the crude enzyme preparation towards crepidiaside B was 

higher than that towards cichorioside B. So during purification of the 

chicory enzyme part of the enzyme activity with respect to the hydrolysis of 

both pure compounds has been partly lost. Hemi II had similar activity for 

cichorioside B and crepidiaside B as had the purified chicory root enzyme 

preparation, however, the rate of hydrolysis was higher when Hemi II was used 

at the time scale investigated. 

6.3 Conclusions 

Endogenous chicory root enzymes are able to hydrolyse precursor compounds 

into their aglycon and sugar unit, as can be seen by the increase of dHLc and 

dH8dLc and the decrease of cichorioside B and crepidiaside B. Under the 

conditions used, more time is necessary to hydrolyse the precursor glycosides 

with endogenous enzymes than with the commercial enzyme preparations. 

Endogenous chicory enzymes are also able to convert germacrane type of 

compounds into guaiane type of compounds. Only guaianolides (Lc, dHLc, and 

dH8dLc) are found in chicory extract after incubation with these enzymes. No 

Lp could be detected. This compound is probably hydrolysed to Lc and p-

hydroxy-phenylacetic acid by endogenous enzymes. 

The pH optimum of these enzymes is pH 6, and the optimum temperature is 30 

°C. Enzymatic liquefaction with commercial enzymes was carried out at pH 4 at 

40 °C. Under these conditions endogenous chicory root enzymes are not active. 

So the release of sesquiterpene lactones as described in Chapter 5 is 

therefore due to the added, exogenous commercial enzymes. 

The enzyme preparation Exo I has a high activity for hydrolysing pure 

cichorioside B and crepidiaside B into dHLc respectively dH8dLc. Hemi II has 

a lower activity towards these two compounds despite similar glucosidase 

activity for PNPG. 
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The purified chicory root enzyme fraction has lost part of the enzyme 

activity in comparison with the crude chicory enzyme preparation, since it is 

less able to hydrolyse crepidiaside B. 

6.4 Experimental section 

6.4.1 Materials 

Pure cichorioside B and crepidiaside B were obtained from fresh chicory roots 

as described in Section 5.3.4 and 5.3.5. 

6.4.2 Release of sesquiterpene lactones 

Chicory root extract was prepared as described in Section 5.3.2. It was free 

of endogenous chicory enzyme activity. This substrate (2 ml) was diluted with 

Melivaine buffer (17.5 ml, pH 6 ) . The total mixture was incubated (30 "C) 

with 0.5 ml of an aqueous suspension of freeze dried chicory root powder (4% 

(w/v)). After various periods of time (0, 0.5, 2 and 24 h) samples (0.5 ml) 

were removed. Enzyme inactivation was by boiling (water bath, 8 min). The 

extracts were analysed by HPLC as described in Section 4.4.3. Compounds were 

identified according to their retention time. 

A control experiment was carried out by dissolving the chicory root powder in 

boiling water (100 °C, 8 min) to inactivate the endogenous chicory enzymes. 

After cooling, the incubation and analysis were carried out as described 

above. 

6.4.3 pH and temperature optimum 

Buffers of pH 3-8 were prepared according to Mcllvaine (1921). Incubation 

conditions were: 50 /il enzyme, 200 /il substrate, 1750 /il buffer solution at 

30 °C for 24 h. Chicory root extract was obtained as described in Section 

5.3.2, and used as substrate. Inactivation was by boiling for 8 min. The 
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samples were analysed by gradient HPLC as described in Section 4.4.3. In the 

control mixture, the enzyme was replaced by the same amount of buffer. 

In order to determine the temperature optimum of chicory root enzymes, 50 /il 

enzyme was mixed with 200 /il substrate and 750 /il Mcllvaine buffer (pH 6), 

and incubated (20-60 °C) for 2 h. The mixture was boiled for 8 min to 

inactivate the enzyme. Samples were analysed by gradient HPLC. 

6.4.4 Purification of chicory root enzymes 

Freeze dried chicory root powder (6 g) was extracted with 5% NaCl solution 

(81 ml), containing also 0.25% ascorbic acid and 0.01% sodium azide, for 2 h 

at pH 7. During extraction the material was stirred continuously and the 

temperature kept constant at 5 °C. After centrifugation (10 min, 12000 g) the 

solution was dialysed twice using 5 1 sodium succinate solution (20 mM, pH 

6.8). This crude enzyme solution was used for the experiments with pure 

cichorioside B and crepidiaside B. 

A part of above enzyme solution was further purified by fractionation with 

DEAE (Biogel) ion exchange column (22 x 3.5 cm). Before elution the enzyme 

solution (35 ml) was first centrifuged (10 min, 49500 g) to remove the final 

remainder of chicory root particles. 

The enzymes were eluted from the column at 5 °C with 20 mM sodium succinate 

(pH 6.8) with gradient of NaCl (0-1 M) as eluent. Gradient was 100% 20 mM 

sodium succinate (A) for 2 h; linear increase for 6 h from A to 100% A with 

0.5 M NaCl (B); elution with B for 2 h; linear gradient from 100% B to 100% A 

with 1 M NaCl in 4 h. Flow rate was 20 ml/h, UV detection at 280 nm was used. 

Fractions (300 each of 10 ml) were collected. The fractions obtained were 

assessed for p-nitrophenyl-ß-D-glucopyranoside (PNPG) activity, on the basis 

of which they were combined into 5 fractions. 
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6.4.5 Enzymatic hydrolysis of cichorioside B and crepidiaside B 

Solutions of pure cichorioside B and crepidiaside B (1950 /il; 0.1 rag/100 ml 

resp. 0.3 mg/100 ml) were incubated with 50 /il of Exo I, Hemi II, crude 

chicory root enzyme preparation, and purified chicory root enzyme preparation 

(made as described in Section 6.4.4) at pH 5 (Exo I, Hemi II) or pH 6 

(chicory root enzyme preparations) for 21 h at 30 °C. Samples were taken 

before and after incubation and analysed with gradient HPLC after 

inactivation of the enzymes by boiling (water bath, 8 min). 

6.4.6 PNPG activity 

Enzyme fractions were analysed for their p-nitrophenyl-B-D-glucopyranoside 

activity. Chicory root enzyme (75 /il) was incubated with 50 /il PNPG solution 

(0.375%, Mcllvaine buffer, pH 6) for 45 min at 30 °C. The reaction was 

terminated by addition of 125 /il 0.5 M glycine buffer (pH 9) containing 0.002 

M EDTA. The extinction of the solution was measured at 405 nm, after which 

PNPG activity could be calculated. 
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CHAPTER 7 

ENZYMATIC LIQUEFACTION OF CHICORY ROOTS: RELEASE OF INULIN 

7.1 Introduction 

In addition to bitter sesquiterpene lactones chicory roots contain also 

inulin, which is a carbohydrate reserve. Inulin cannot be digested by humans 

because of lack of the appropriate enzymes, and may therefore be used as 

dietary fibre. Inulin can be used as raw material for the production of 

fructose syrup (Zittan, 1981) and 5-hydroxymethylfurfural (Küster, 1989). 

Inulin is usually extracted from sliced plant material using hot water. The 

yield of inulin depends on its degree of polymerisation, and on the milling 

degree of the chicory roots from which inulin has to be extracted (Fleming & 

Groot Wassink, 1975). 

De Baynast de Septfontaines et al. (1986) have patented a process for 

liquefaction of sugar beets by an enzymatic treatment using cellulases or 

pectinases, and inulinases, which is also suitable for chicory roots. The 

resulting hydrolysate may be used for fermentation to produce alcohol. The 

advantage of this process over extraction by diffusion is that no extra water 

is needed during incubation, and that it is suitable for two types of 

agricultural raw materials. There are no claims for a higher efficiency of 

the process compared to hot water extraction. 

Enzymatic liquefaction of chicory roots with pectinases and cellulases should 

not only release the bitter constituents but also inulin, and optionally 

after treatment with inulinase, fructose. Thus a bitter, sweet syrup can be 

obtained, which might be used as raw material for the production of 

beverages, e.g. tonic water. 

Release of inulin was investigated as well as inulinase activity of enzyme 

preparations used. 
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7.2 Results and discussion 

7.2.1 Enzymatic liquefaction of chicory roots 

Several commercial enzyme preparations were evaluated for their ability to 

liquefy chicory roots and to release inulin without its hydrolysis by 

determination of the total sugar content and reducing sugars in the 

supernatant after liquefaction. 

A large amount of fructose and other reducing sugars was found in the 

supernatant after liquefaction of chicory roots using Rapidase C80 (see Table 

7.1). This is due to the inulinase activity of this enzyme preparation, 

contrary to Maxazym CL2000 and Rapidase C600, which both gave higher amounts 

of inulin. However, Maxazym CL2000 did not liquefy chicory roots very well: 

giving only 53% of total sugars in the supernatant. With a mixture of 

7ao7e 7.1 Sugar composition of supernatant after enzymatic liquefaction of 

chicory roots with several enzyme preparation at pH 4 for 24 h. Data are 

expressed as % of total dry matter of chicory roots. 

enzyme 
* 

preparation 

C80 
CL2000 

C80 + CL2000 

C80 + CL2000 

C600 

C600 

enzyme 
** 

concentration 

0.25 

0.20 

0.25 + 0.20 

0.20 + 0.20 

0.03 

0.10 

total sugars 

63 
53 

64 
64 

58 
73 

gi ucose 

13 
2 

16 
16 

2 
5 

fructose 

43 
2 

38 
36 

3 
5 

sugars with 

DPa4 

0.2 
3.8 

0 
0.6 
4.4 
5.2 

* C80=Rapidase C80; CL2000=Maxazyme CL2000; C600=Rapidase C600. 

** expressed as percentage of fresh weight of chicory roots. 
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Rapidase C80 and Maxazym CL2000 chicory roots could be liquefied, however the 

amount of Rapidase C80 was still too high for recovery of inulin. Rapidase 

C600 gave a 73% recovery of total sugars, and a low amount of reducing 

sugars. This indicates that no inulin has been hydrolysed. 

In order to confirm that inulinase activity of Rapidase C600 can be 

neglected, pure inulin was used as the substrate. Inulinase activity of 

Rapidase C600 was compared with commercial inulinase. Incubation of inulin 

with Rapidase C600 for 4 h showed no release of fructose, glucose, or 

saccharose. 

Rapidase C600 was therefore used in all further experiments to investigate 

the release of inulin from chicory roots during enzymatic liquefaction. 

7.2.2 Release of inulin 

The release of inulin during enzymatic liquefaction of chicory roots has been 

studied with a commercial enzyme preparation, containing pectinases and 

cellulases. During 24 h of liquefaction, samples were taken and analysed for 

fructose, glucose, saccharose and inulin content by HPLC. The control was the 

same mixture without the addition of enzymes. 

In the control mixture no increase is seen of the carbohydrates analysed, 

contrary to the liquefaction mixture. So no (endogenous) enzyme activity was 

found. 

During liquefaction the glucose content of the supernatant increased due to 

hydrolysis of cellulose (Fig. 7.1). 

The fructose content remained constant up to 5 to 8 h incubation time with 

commercial enzymes (0.1 resp. 0.01%) and then increased somewhat. Probably 

the (endo-) inulinase activity of Rapidase C600 is rather low, so that the 

effect of this enzyme (increase of fructose) is only seen after prolonged 

incubation (>4 h). No inulinase activity of Rapidase C600 was detected during 

incubation for 4 h at 40 °C at pH 4.5 when pure inulin was used as substrate. 

This was not investigated further. 

Hydrolysis of inulin might also be due to endogenous inulinase activity of 

the chicory roots. Singh and co-workers (1971a, b) investigated fructose and 

inulin (fructosan) metabolism, and found that pH 5.6 and 37 °C were optimum 
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for fructosyl transferase, responsible for the synthesis of inulin. In later 

stages of the growth of chicory root, the enzyme fructosan hydrolase 

(inulinase) is responsible for the hydrolysis of fructosan (Gupta et al., 

1985). No optimum conditions for the latter enzyme were reported. Probably 

fructosan hydrolase has the same optimum pH and temperature as has fructosyl 

transferase. If this is true then the pH during enzymatic liquefaction is too 

low for endogenous inulinase activity, however, the temperature used is 

almost optimal for this endogenous enzyme. Thus hydrolysis of inulin during 

enzymatic liquefaction of chicory roots by endogenous enzymes is not 

expected. As already mentioned before no inulinase activity was found in the 

control mixture, because no increase of fructose was seen. 

Fig. 7.1 shows also that the supernatant from the enzymatic liquefaction 

contained almost all inulin originating from the chicory roots. Almost no 

inulin was found in the residue. However, the residue from the control 

liquefaction (without commercial enzymes) contained a relatively large amount 

of inulin. During the control liquefaction the chicory root cell walls are 

not hydrolysed and thus inulin will not pass into the liquid phase. An 

incomplete extraction is seen. 

Optimum release of inulin is obtained after 2 h incubation with Rapidase C600 

(Fig. 7.2). Incubation of the chicory roots with 0.1 or 0.01% Rapidase C600 

gave no difference in release of inulin, only the time scale was different: 

hydrolysis of the cell wall components is more rapid when a higher amount of 

enzyme preparation is added to the root suspension. Thus optimum release of 

inulin is obtained after 2 h (Netjes, 1985). 

Recovery of inulin in the control is approximately 100%, and for enzyme 

treated chicory roots between 100-150%. This great variation might be due to 

problems with inulin determination. Leclercq & Hageman (1985) showed that 

inulin can be determined by HPLC. However, only pure inulin could be 

detected; smaller heterogenous oligo-saccharides did not separate well on the 

column used, and one sugar gave double peaks. Retention times of sugars with 

the same DP were different. 

Inulin content was therefore measured indirectly by determining fructose, 

glucose, and saccharose content before and after incubation with inulinase. 
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Fig. 7.2 Release of inulin and sugars during enzymatic liquefaction of 
chicory roots (A) and control mixture (B). 
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7.3 Conclusions 

Inulin can be released by enzymatic liquefaction of chicory roots with a 

recovery of approximately 100%. The results of the liquefaction corresponds 

with repeated batch-wise liquid-solid extraction of the roots with hot water. 

The higher yield obtained during this liquefaction may thus be ascribed to 

the inefficiency of the incomplete one-step batch extraction of the untreated 

control, with which the liquefaction mixture was compared. 

Incubation with Rapidase C600 (0.1%) has to be terminated within 5 h due to 

hydrolysis of inulin. No endogenous inulinase activity was found during 

incubation of the roots, which could be responsible for this hydrolysis. 

No difference was seen between enzymatic treatment of the roots at 0.1 and 

0.01% enzyme concentration. At low concentration only the hydrolysis was more 

lengthy. 

Isolation of inulin using enzymatic liquefaction of chicory roots is 

warranted only in combination with the isolation of other interesting 

compounds, such as bitter sesquiterpene lactones, or for the production of 

bulk chemicals such as ethanol. 

7.4 Experimental section 

7.4.1 Materials 

Chicory roots were obtained from a grower and stored one week at 1 °C before 
3 

they were cut into small pieces (about 4 mm ) under liquid nitrogen, and 

frozen at -60 °C before use. 

Rapidase C80 (pectinases), Rapidase C600 (pectinases and cellulases), and 

Maxazym CL2000 (cellulases) were obtained from Gist-brocades, Delft, the 

Netherlands. Novozym 230, an inulinase preparation was obtained from NOVO 

industries, Copenhagen, Denmark. The inulinase activity according to the 

supplier was 3000 units/g. 

Inulin was purchased from BDH Ltd (United Kingdom). 
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7.4.2 Liquefaction of chicory roots 

Portions of frozen roots (10 g) were suspended in 0.1 M sodium acetate buffer 

(10 ml, pH 4) and incubated at 40 °C for 24 h under continuous stirring with 

0.025 g Rapidase C80, 0.02 g Maxazym CL2000, 0.003 and 0.01 g Rapidase C600 , 

and 0.02 + 0.02 g and 0.025 + 0.02 g Rapidase C80 + Maxazym CL2000 

respectively. The enzymes were added to the suspension as dry powders. 

Samples were centrifuged (3000 g, 30 min) after incubation. The supernatant 

was analysed for reducing sugars using the Nelson-Somogyi test as modified by 

Spiro (1966). Total sugars were measured using the method according to Dubois 

et al. (1956). Fructose and glucose were both used for calibration. 

The glucose, fructose, saccharose, and oligosaccharides content of the 

samples were determined with HPLC. An Aminex HPX-87 Pb column (300 x 7.8 mm; 

Bio-Rad) kept at 90 °C was used connected in line with a guard column filled 

with 35% AG50-WX4 (minus 400 mesh, H+-form) and 65% AG3-X4A (200-400 mesh, 

0H"-form) both from Bio-Rad. Eluent was double distilled water degassed with 

helium. An RI detector was used (40 °C). The flow rate was 0.5 ml/min. 

The release of inulin and sugars during enzymatic liquefaction of chicory 

roots was followed as function of time, as described in Section 5.3.3 for 

bitter compounds. The roots were incubated with Rapidase C600 (0.01 or 0.1%), 

which was added as dry powder to the chicory roots suspension. Samples were 

removed after 0, 1, 2, 5, 8, and 24 h. They were centrifuged for 30 min at 

10000 g to obtain the residue and supernatant. Both were analysed for inulin, 

fructose, glucose, and saccharose. The control was the same mixture without 

added enzymes. 

7.4.3 Inulinase activity 

Inulinase activity of Rapidase C600 was compared with that of Novozym 230 by 

incubating pure inulin (100 ml of 5% solution) at 40 °C for 4 h at pH 4.5 

with 0.05 g of Rapidase C600 or with 50 units of commercial inulinase. 

The enzyme reaction was stopped by adding MeOH (4 ml of MeOH to 1 ml of 

inulin solution). The sample was filtered (0.45 fm filter), and analysed for 

fructose, glucose, and saccharose as described in Section 7.4.2. 
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7.4.4 Analysis 

Fresh chicory roots, and residues and supernatants obtained during enzymatic 

and control liquefaction were analysed for fructose, glucose, and saccharose 

by HPLC as described in.Section 7.4.2. The roots and residues (both 1.5 g) 

were extracted twice with water (5 ml, 70 °C). The two extracts were combined 

and the mixture was diluted with MeOH (4 ml of MeOH to 1 ml of total 

extract), filtered (0.45 pm filter), and injected into the liquid 

Chromatograph. Supernatant was diluted with MeOH (as described above) before 

analysis. 

The inulin content was measured indirectly after incubation with inulinase 

(Novozym 230). Aqueous extracts from chicory root and the residues, as well 

as the obtained supernatants, were incubated with inulinase. Inulinase (25 

/zl) was added to 1 ml of extract or supernatant, the pH adjusted to 4.5 with 

0.1 N HCl and incubated (60 °C) for 3 h. Addition of MeOH (see above) was 

used to terminate the reaction. The samples were analysed for fructose, 

glucose, and saccharose as described in Section 7.4.2. The inulin content was 

calculated from the sugar content before and after incubation with inulinase. 
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CHAPTER 8 

SENSORY ANALYSIS OF CHICORY ROOTS 

8.1 Introduction 

The first attempts to evaluate bitterness of lactucin and lactucopicrin were 

carried out with fresh and dried milky juice of L. virosa by Schenck & Graf 

(1939a, b ) . They found that lactucarium only contained the bitter compounds 

Lc and Lp. With this material they determined the lowest concentration at 

which Lc and Lp were perceived as bitter: about 2 and 1.6 ppm respectively 

(Schenck & Graf, 1939a). 

A relation was also found between bitterness perception of lactucarium and 

composition of the soil in which L. virosa was grown (Schenck & Graf, 1939b). 

However, only the total bitterness of lactucarium was determined, and not 

that of the individual components. A more bitter lactucarium is obtained with 

an acid soil containing less calcium. 

Dolezal (1976) investigated the influence of forcing methods on the yield of 

chicory heads and on the content of bitter principles in the roots as well as 

heads. Bitter compounds were analysed after extraction of the sample with 

acid methanol and reaction with KCN using fluorescence spectroscopy. Chicory 

heads proved to have a maximum of bitter compounds after forcing in synthetic 

foam flakes without any cover compared with forcing in soil with or without 

cover. In the roots no difference in bitterness was detected between the 

various forcing methods. However, the method of analysis for bitter 

constituents as used by Dolezal (1976) is inaccurate, because all compounds 

reacting with KCN are taken into account, including the compounds which are 

not bitter. 

Kuusi & Autio (1985) investigated total bitterness of extracts of chicory 

heads and roots obtained by extraction with water. Kuusi & Autio (1985) 

compared bitterness of dandelion (Taraxacum sp.) with that of chicory. In 

dandelion extract they found glucosides of sesquiterpene lactones with a 
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germacrane skeleton, and also p-hydroxyphenyl acetic acid, which is a part of 

Lp, causing bitterness (Kuusi et al., 1985). 

Voirol et al. (1987) compared total bitterness of an aqueous chicory root 

extract with that obtained from the leaves. The leaves appeared to be more 

bitter than the roots and bitterness persistency lasted longer for leaves 

than for chicory roots. They did not analyse chemically their extracts for 

bitter compounds. It is most likely (see Chapter 4 and 5) that the water 

extracts contained only precursor compounds (i.e. glycosides) and hardly any 

Lc and Lp. However, Voirol et al. (1987) presumed that these last two 

compounds are present in the extracts. 

Dirinck et al. (1985), Price et al. (1990) and Van der Meer et al. (1985) 

tried to relate bitterness of chicory heads with chemical analysis of the 

bitter compounds. Dirinck et al. (1985) found a relationship between 

bitterness of fresh chicory heads and the amount of lactucin in chicory heads 

as measured by HPLC. However, their correlation coefficient is rather low 

(r=0.69). 

Price et al. (1990) found a relationship between bound lactucin (lactucin 

glycoside) obtained after MeOH extraction of the chicory heads by boiling 

under reflux, and bitterness of fresh chicory heads (r=0.80). No relationship 

was found between the bitter score and the amount of 8dLc, Lp and their 

glycosides in chicory leaves. However, no evidence is given that the 

glycoside of Lc (picriside A, Fig. 6.2) was identified in the analysed 

samples. The water soluble components of the extracts were assumed to be the 

glycosides of Lc, 8dLc, and Lp. After treatment with a cellulase only these 

three sesquiterpene lactones were determined. As was seen in Chapter 4 many 

precursors are present in an MeOH extract of chicory roots. Various compounds 

from such an extract might be converted to Lc or other sesquiterpene lactones 

during incubation with cellulase. 

It is also possible that by tasting a fresh sample of chicory in the mouth 

presursors are hydrolysed to their aglycons by endogenous chicory enzymes, 

which might both influence the results of Dirinck et al. (1985) and Price et 

al. (1990). Only three sesquiterpene lactones (Lc, 8dLc, Lp) were 

investigated. Price et al. (1990) could have known that chicory also 

contained other sesquiterpene lactones, such as dihydro equivalents (Seto et 

al., 1988), which were not taken into account. Pure compounds were not 

tested. 
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Van der Meer et al. (1985) related bitter taste of cooked chicory heads from 

various varieties with the respective extracts of uncooked samples. The 

extracts were analysed according to the rather unspecific fluorescence method 

as described by Dolezal (1976) after the reaction of the chicory extract with 

KCN. They found high correlation between bitterness score and chemical 

analysis (r=0.78-0.91). However, with their analytical method it is not 

possible to detect 8dLc (Van der Meer et al., 1985) and with the extraction 

method used (extraction with MeOH) a large amount of glycosides will be 

extracted and a low amount of bitter sesquiterpene lactones (see Chapter 4 ) . 

It is uncommon to compare the chemical analysis of untreated chicory with the 

sensory analysis of a cooked equivalent. Also the influence of cooking on 

bitter principles of chicory has not been investigated, neither as pure 

compounds nor the effect on extraction efficiency and profile. 

No publication is known in which the bitterness of pure, individual 

sesquiterpene lactones has been investigated and compared with for instance 

quinine. However, as can be seen from Fig. 4.1 B chicory root extract 

contains many compounds of which only few have been identified. We extracted 

and isolated six known sesquiterpene lactones (Lc, Lp, 8dLc, and their 

dihydro analogues), and determined their threshold value. 

Further we investigated the possibility to use chicory root extract as 

flavouring material in soft drinks, especially tonic water, bitter orange, 

and bitter lemon, which usually contain quinine as bitter principle. The 

influence of daylight and pasteurization on bitter taste of bitter orange 

flavoured with chicory root extract or quinine as bitter constituent was 

studied. The effect of enzymatic treatment of chicory root extract on bitter 

taste was investigated. 

8.2 Results and discussion 

8.2.1 Threshold values of sesquiterpene lactones 

Threshold values of pure Lc, Lp, 8dLc, dHLc, dHLp, dH8dLc were measured as 

described by Van Beek et al. (1990). In Table 8.1 threshold values of these 

compounds are summarized. 
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Table 8.1 Threshold values for the six sesquiterpene lactones and quinine 

hydrochloride (in ppm) (after Van Beek et al., 1990). 

lactucin (Le) 1.7 

8-deoxylactucifi (8dLc) 1.1 

lactucopicrin (Lp) 0.5 

ll(S),13-dihydrolactucin (dHLc) 1.4 

ll(S),13-dihydro-8-deoxylactucin (dH8dLc) 1.1 

ll(S),13-dihydrolactucopicrin (dHLp) 0.2 

quinine hydrochloride 1.6 

Four sesquiterpene lactones, Lc, dHLc, 8dLc and dH8dLc, have threshold values 

similar to that of quinine hydrochloride. The other two, Lp and dHLp, are 

more bitter than quinine. 

Schenck & Graf (1939a) have found a threshold value for lactucin and 

lactucopicrin from lactucarium of respectively 2 and 1.6 ppm. We found for 

lactucin a similar value, but the value for Lp was much lower. 

Probably the preparation containing Lp used by Schenck & Graf (1939a) was not 

pure as was assumed. It is likely that is was contaminated with Lc and/or 

8dLc. 

In Chapter 3 it was predicted that lactucopicrin should be the most bitter 

compound of the three sesquiterpene lactones isolated from chicory roots, as 

a consequence of its structure, and that lactucin should be the least bitter 

compound. This has been corroborated by the afore mentioned experiment. 

The same order of bitterness intensity is found also with the dihydro 

sesquiterpene lactones. Reduction of the exocyclic methylene group of the 

o,ß-unsaturated lactone ring enhances bitterness somewhat. This can only be 

explained by increase of hydrophobicity of the molecules (see Chapter 3). 

8.2.2 Sensory analysis of soft drinks 

In the first experiment three types of soft drinks were prepared, i.e. tonic 
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Table 8.2. Composition of soft drinks (g/1). 

fructose 

glucose 

sucrose 

citric acid 

Na-benzoate 

orange juice* 

lemon juice* 

lemon extract* 

quinine sulphate** 

or 
chicory extract* 

tonic 

23 

37 
21 
3.6 
0.5 

0 
0 

0 
30 

12 

bitter 

orange 

21 

22 
61 

0 
0.5 

100 
0 
0 

20 

20 

bitter 

lemon 

0 

50 
62 
0 
0.5 
0 

48 
40 
30 

24 

* ml/1 

** mg/1 

water, bitter orange, and bitter lemon with chicory root extract as the 

bitter principle. They were compared to identical controls, made with quinine 

sulphate. The composition of these drinks, summarized in Table 8.2, was 

determined after chemical analysis of commercial samples. 

A higher concentration of chicory root extract was necessary in bitter orange 

lemonade and bitter lemon, since the bitter taste was masked by other flavour 

ingredients in the above mentioned beverages. 

Bitterness of chicory root extract as flavouring material in tonic water was 

perceived to be different from that of quinine. About 37% of the panellists 

judged the beverage with chicory root extract as the most bitter, and 45% the 

beverage with quinine; the other panellists (18%) were not able to 

distinguish the beverage with chicory root extract from its reference with 
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quinine. 

The second part of this experiment was a prefence test to establish the 

degree of liking for bitter orange or bitter lemon containing quinine or 

chicory root extract. No preference was given to quinine or to chicory root 

extract in bitter orange, contrary to bitter lemon in which quinine as bitter 

principle was most preferred (p < 0.05). 

Quinine is an accepted and well known bitter constituent in soft drinks. 

Panellists are not familiar with the taste of chicory root extract as bitter 

principle in soft drinks. They may have rejected the beverage with this 

ingredient associating it with an off-taste. 

In the second experiment the effect of pasteurization and storage in daylight 

or darkness on the bitter taste of bitter orange lemonade was measured. This 

beverage contained chicory root extract or quinine as bitter constituent (see 

Table 8.2 for the composition). 

In the bitter orange lemonade containing chicory root extract a small 

difference in bitter score was seen between the pasteurized sample stored in 

darkness, and the untreated control (Table 8.3). Pasteurization had a small 

positive effect on the bitter taste. Storage in daylight of the pasteurized 

beverage decreased the bitter intensity slightly. However, the differences 

Table 8.3 Influence of pasteurization and storage conditions on bitter score 
of bitter orange flavoured with quinine or chicory root extract (n=19). 

chicory root 

extract 
qui m ne 

mean s.d. mean s.d. 

untreated control, dark 

pasteurization, dark 

pasteurization, daylight 

57.1 

65.2 

58.4 

8.3 

6.9 

11.4 

14.3 

15.9 

2.9 

8.8 

8.2 

3.2 
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between these three samples are not significant (p < 0.05). Pasteurization of 

bitter orange containing quinine had no effect on the bitter taste, only 

storage of the beverage in daylight affected the bitterness which is 

significant (p < 0.05). This is in agreement with Sulser & Mändli (1987), who 

found in tonic water a practically complete degradation of quinine after a 

few hours when tonic was exposed to sunlight. 

The bitter taste of the bitter oranges containing chicory root extract was 

perceived more intense when compared to the bitter oranges containing quinine 

despite the standardization of the used extract. After preparation of this 

extract, it was analysed, and standardized for the amount of lactucin as was 

the extract used in the first experiment. The influence of season, and 

variety when related to the bitter taste of chicory root extract is unknown, 

which both might have altered total bitterness. The extract was not 

standardized for the other bitter constituents. 

8.2.3 Bitterness of glycosides 

To investigate the influence of sesquiterpene lactone glycosides on 

bitterness of chicory root extract, the extract was first treated with Hemi 

II before sensory analysis. The experiment was carried out twice, because 

after the first experiment (10 panellists) no judgement could be given on 

whether the enzyme treatment of the chicory root extract gave rise to a more 

bitter taste. 

In the first experiment 6 judges (n=10) could discriminate between the 

samples. All found the incubated extract the most bitter. 

In the second experiment 17 panellists (n=36) could detect correctly the two 

pairs from four submitted samples. They too judged that the treated samples 

with Hemi II had the highest bitter intensity suggesting that the glycosides 

are less bitter when compared with their aglycons. However, the other 19 

panellists could not detect any differences between the tasted samples. 

From the above results it is not possible to conclude that precursors are 

less bitter than their aglycons. The influence of sugars, released by the 

exogenous enzymes, on the bitter taste is also not known. No pure compounds 

were evaluated, so the interpretation of the above results has to be carried 

out carefully. 
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8.3 Conclusions 

The threshold values found for the six sesquiterpene lactones investigated 

(Lc, 8dLc, Lp, and their dihydro derivatives) depend to a great extent on the 

substituent at C-8. Lactucopicrin and its dihydro equivalent are more bitter 

than the other four compounds (about three to eight times). This is in 

agreement with the hypothesis formulated in Chapter 3. 

Bitter orange, containing chicory root extract, does not lose its bitter 

taste upon storage in daylight. However, pure lactucin reacts with water 

under influence of daylight, which has been reported independently by Schenck 

et al. ( 1964), Leclercq et al. (1988), Sessink (1988), and Van Leeuwen 

(1989). 

Schenck et al. (1964) proposed a mechanism for the addition of water to 

lactucin under the influence of daylight (Fig. 8.1), by which the molecule 

becomes more polar. 

H + /H 2 0 O H 

Fig. 8.1 Addition reaction of water to lactucin as proposed by Schenck et al. 

(1964). 

The addition of water at C-10 is favoured above that of C-l (also proposed by 

Schenck et al., 1964) for resonance reasons. The carbonyl group at C-2 is 

strongly polarized, with the electrons shifted toward the more 

electronegative oxygen atom. The carbonyl carbon is therefore electron 

deficient. This can be neutralized by the electrons from the C=C bonds 
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Fig. 8.2 Resonance structures of lactucin. 

between C-3 and C-4, and between C-10 and C-l. The carbon atoms at C-4 and C-

10 are thus slightly positively charged (Fig. 8.2). Addition of water at C-4 

and C-2 next to addition at C-10 is possible (Fig. 8.3; Fig. 8.4), but these 

products have not been described in literature. 

However, another reaction may also occur (Fig. 8.5). As a result of a 

photochemical reaction the double bond between C-10 and C-l in the lactucin 

molecule is out of conjugation, and has been moved to C-10 and C-15 as 

described by Pfennig-Yen according to Van Leeuwen (1989). The polarity of the 

solvent influences which type of reaction occurs (Van Leeuwen, 1989). In 

general a lot of energy is needed for a molecule to move out of conjugation. 

This mechanism is therefore not expected in the absence of (day)light. 

According to the theories on bitterness, the newly formed compounds following 

addition of water should taste less bitter. 
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Fig. 8.3 Addition reaction of water to lactucin at C-2. 
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Fig. 8.4 Addition reaction of water to lactucin at C-4. 

hv 

Fig. 8.5 Photochemical reaction of lactucin. 
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The photochemical reaction product of lactucin, which is out of conjugation, 

is expected to be equally bitter to Lc. 

Probably this reaction with rearrangement of the double bond is favoured in 

bitter orange when stored in daylight, because equal bitterness is obtained 

when compared with bitter orange stored in dark. A stabilization effect of 

other ingredients during irradiation may also occur. This was not 

investigated further. 

Quinine can be replaced as a flavouring material in soft drinks by chicory 

root extract, however the panel was not familiar with its bitter note, 

especially in bitter lemon. Probably this is also true for other bitter 

tasting compounds. Busch-Stockfisch & Domke (1991) reported that the bitter 

taste of amarogentin, a bitter tasting component of gentian root, was not 

identical to that of quinine, and that sucrose was necessary for obtaining a 

well-rounded bitter taste as well as for masking its off-taste. Bitterness of 

chicory root extract and that of quinine was also perceived as different. 

Taste thresholds for bitter compounds show a Gaussian distribution, but for 

some bitter principles they are bimodal (see Chapter 3 ) . Probably the 

population can be divided into tasters, which do recognize chicory 

bitterness, and tasters, which are not sensitive for the bitter taste of a 

chicory root extract. The same phenomenon may be true for the bitterness of 

the sesquiterpene lactones and their glycosides. About half of the panellists 

judged the glycosides to be equally bitter as their aglycons, the other part 

judged the sesquiterpene lactones as most bitter. 

However, the interpretation of the above results has to be carried out very 

carefully, since no pure compounds were used. A complex mixture of precusors 

and their aglycons were tasted before and after enzymatic treatment. Not 

known are the effects of the release of the sugars from the glycosides on the 

bitter taste of the aglycons, i.e. whether there are synergistic or 

antagonistic effects of the various ingredients of the chicory root extract. 
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8.4 Experimental section 

8.4.1 Determination of threshold value 

Threshold determinations of six pure sesquiterpene lactones were determined 
by triangle testing. A professional panel of 16 housewives (40-55 years old) 
employed by Quest International was asked to select the one cup, out of three 
cups, that contained a stimulant other than water. Evaluations were conducted 
at room temperature. Samples were presented as 50 ml aqueous solutions in 
plastic serving cups. 

8.4.2 Sensory analysis of soft drinks 

Chicory root extract was prepared as described in section 5.3.2. The extract 
was analysed and standardized for the amount of Lc (30 mg/100 ml extract; 20 
ml of extract (6 mg of Lc) was judged equally bitter as 20 mg quinine 
sulphate per 1 bitter orange). This extract was used as a bitter ingredient 
in three types of soft drinks: tonic water, bitter orange, and bitter lemon. 
They were compared with the same type of beverage containing quinine 
sulphate. The composition of the beverages is summarized in Table 8.2. 
Lemon extract was prepared by steam distillation of lemon peel (340 ml 
extract was obtained from the peel of one lemon). Lemon juice was freshly 
pressed prior to use. Orange juice was bought in the supermarket. 

In the first experiment a consumer panel consisting of selected housewives 
(n=102) was asked to identify the most bitter beverage out of two, thus 
comparing the quinine flavoured beverage with the chicory flavoured beverage. 
Only one type of beverage (for instance tonic water) was judged each time. 
Samples were presented as 50 ml solutions in plastic serving cups at room 
temperature. 

In the second experiment a panel consisting of students from the Agricultural 
University, Wageningen (n=17) was asked to rank 6 samples of bitter orange 
lemonade. The beverages were prepared with chicory root extract or quinine 
sulphate as bitter ingredient. The composition of the beverages is summarized 
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in Table 8.2. The influence of different process conditions on the bitterness 

of the beverages was investigated. A part of the bitter orange was 

pasteurized (80 °C, 30 min), and divided into two portions: one was stored in 

daylight (June 1990), the other part in darkness at 5 °C, both for 3 days. 

The non-pasteurized bitter orange samples (control) were stored in dark at 5 

°C for 3 days prior to use. The six samples were presented as 20 ml solutions 

in plastic serving cups at room temperature, and were presented 

simultaneously in random order. The students were selected for their ability 

to perceive a bitter taste. 

8.4.3 Bitterness of glycosides 

Chicory root extract was prepared as described in section 5.3.2. The thus 

obtained aqueous extract was divided in two portions, one of which was 

incubated with 0.05% enzyme preparation (Hemi II, Gist-brocades, the 

Netherlands) for 26 h at 30 °C under continuous stirring. Inactivation of the 

enzymes was by boiling. The extracts were diluted 5 times with tap water 

before further analysis. 

The treated and untreated chicory root extract was tasted by a student panel 

(n=36), which was selected for their ability to taste bitter. Samples were 

presented as 50 ml aqueous solutions in plastic serving cups at room 

temperature. The panel was asked to identify two pairs out of four samples, 

and to state which pair had the highest bitter intensity. 
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CHAPTER 9 

GENERAL DISCUSSION AND CONCLUDING REMARKS 

9.1 Enzymatic liquefaction 

Isolation of substances from plant material is usually carried out with a 

solvent. Complete extraction of both bitter sesquiterpene lactones and inulin 

from chicory roots in one step is not possible when extraction is performed 

with one solvent. 

Inulin is soluble in (hot) water. It is extracted from the roots by liquid-

solid extraction. Countercurrent diffusion may also be used in place of 

batchwise extraction (Fleming & Groot Wassink, 1979). The sesquiterpene 

lactones are rather apolar and will thus remain in the pulp fraction. 

Extraction with more apolar solvents give only the bitter substances as 

solvent solubles, and inulin will remain in the pulp. 

According to our results a one step process is only possible when enzymes are 

used to degrade chicory root cell wall polysaccharides, in order to 

solubilize inulin as well as the bitter substances. An almost complete 

liquefaction can be obtained when pectinases and cellulases are involved 

(Pilnik & Rombouts, 1979). However, such a process is rather unusual for the 

isolation of flavour compounds. 

With enzymatic liquefaction of chicory roots not only inulin and bitter 

compounds will pass into the liquid phase, but also a higher yield is 

expected, especially for the bitter principles, compared to solvent 

extraction. 

The extraction of the roots with different solvents is investigated to 

determine the effect of solvents on extraction efficiency and yield, for 

analytical purposes (development of an HPLC method), and for comparison with 

literature data. 
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Of all solvents evaluated for extraction of bitter compounds from chicory 

roots EtOAc is the best one, giving a simple procedure and reproducible 

extracts. Chicory root extracts obtained from more polar solvents, such as 

water and MeOH, consist of mainly polar compounds and less Lc, 8dLc, and Lp. 

These polar compounds elute at the beginning of the HPLC chromatogram (see 

Chapter 4). Some of them are expected to be glycosides of the sesquiterpene 

lactones investigated. Seto et al. (1988) extracted chicory roots with MeOH 

and found many glycosides in the solvent solubles. 

Storage conditions, the degree of milling, or freezing, all influence the 

total yield and extraction efficiency of the sesquiterpene lactones 

investigated (Chapter 4). Storage at low temperature (1 °, -30 °C) gives a 

higher yield of especially the apolar compounds. Drying of the roots at 70 °C 

degrades bitter compounds almost completely. The same results have been 

described for the bitter substances from Taraxacum, which are glycosides of 

germacranolides (Kuusi et al., 1985). 

The milling step is critical for obtaining a reproducible extract from 

chicory root. Endogenous enzymes may be active during this process, 

converting precursor compounds into other compounds. The yield of 

sesquiterpene lactones, the reproducibility of the extraction, and also the 

bitter tast of the extract are influenced in this way. 

Freeze dried chicory root powder has first to be soaked in an excess of water 

to obtain high extraction efficiency with EtOAC as solvent. Water seems to 

play an important role during extraction. This might be due to a low 

solubility of carbohydrates in the apolar extraction solvent and may have 

been prevented the sesquiterpene lactones to come into contact with the 

solvent. 

When chicory roots are liquefied enzymatically with commercial pectinases and 

cellulases more sesquiterpene lactones are isolated compared to roots which 

are extracted after milling and/or frozen storage (Chapter 5). Especially Lc, 

dHLc, 8dLc, and dH8dLc increased during enzyme treatment of the roots. This 

increase can be explained by: 

i. Total solubilization of the chicory roots by exogenous enzyme treatment. 

Thus all compounds present in the roots can be detected in the liquid phase. 
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Extraction efficiency of the roots with a solvent will also depend on 

diffusion of the compounds through the cells, and on interactions of the 

solvent solubles with other cell components. These effects can be neglected 

after complete liquefaction. 

ii. Conversion of precursors (glycosides) into their sesquiterpene lactone 

aglycons by added commercial enzyme preparations or by endogenous chicory 

enzymes or both. However, the optimum conditions for both enzyme systems are 

different: optimum pH and temperature are pH 4-4.5 and 40 °C, and pH 6 and 30 

°C respectively. During enzymatic liquefaction of chicory roots, exogenous 

enzymes are responsible for the hydrolysis of precursors into the 

sesquiterpene lactones investigated. Chicory root enzymes are also able to 

catalyse the same type of reactions, but only at higher pH and at slightly 

lower temperature (Chapter 5, 6). Endogenous chicory enzymes play a role 

during processing and storage of the roots. 

The hydrolysis of two precursors, cichorioside B and crepidiaside B (compound 

Q and compound T respectively), into dHLc and dH8dLc was found during 

incubation of chicory roots and chicory root extract both with commercial 

enzymes containing pectolytic and cellulolytic activity and with endogenous 

chicory enzymes. Incubation of a chicory root extract (inactive endogenous 

enzymes) with a commercial enzyme preparation shows only an increase in dHLc, 

contrary to the incubation with chicory root enzymes, where also an increase 

in Lc is seen. The glycoside of Lc, picriside A, is probably present in the 

extract, but is not hydrolysed by the enzymes from the commercial 

preparation. 

The nature of compound N is still unknown. It is converted in cichorioside B 

during incubation with the used enzymes. There are indications are that 

compound N is a diglycoside of dHLc. 

iii. Possible conversion of sesquiterpene lactones with a germacrane skeleton 

into sesquiterpene lactones with a guaiane skeleton. Transformation of 

compounds with a germacrane skeleton into compounds with guaiane skeleton has 

been described with endogenous chicory enzymes (Chapter 6). When chicory root 

extract is incubated with endogenous root enzymes for more than 24 h, only 

sesquiterpene lactones with a guaiane skeleton are found in the HPLC 

chromatogram. 
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Whether commercial enzyme preparations are able to convert a germocranolide 

into a guaianolide is still a subject of speculation. It is plausible that 

endogenous chicory enzymes are capable to perform this reaction. Both types 

of sesquiterpene lactones are found in the chicory root. More research is 

needed to evaluate commercial enzyme preparations as well as chicory enzymes 

for their ability to catalyse the above mentioned reactions and to evaluate 

above findings with pure compounds. The result might be valuable for new 

applications in the synthesis of terpenes. 

Use of pectinases and cellulases for isolation of flavour compounds from 

plant material is not common (Chapter 1). Glucosidases have been described in 

literature for hydrolysing monoterpene glucosides through which volatile 

monoterpenes are released, in order to enhance the aroma of fruit juices and 

wines (Wilson et al., 1984; Voragen, 1989). 

Similar effects may be true for other vegetables and plant materials 

subjected to enzymatic liquefaction. Endogenous enzymes may be active during 

this treatment. It can be stated that by enzymatic liquefaction more 

interesting compounds are released in the liquid phase (juice), and depending 

on conditions chosen more precursors are released and can be hydrolysed into 

their aglycons, thus changing flavour and taste of the juice. Also non

volatile taste components can be released. Jenniskens et al. (1991) studied 

the effect of liquefying enzymes on the aroma constituents of apple juice. 

Liquefaction caused an extra release of aroma compounds or precursors of 

flavour compounds from the pulp into the juice. To date no results are 

reported discussing vegetables in this context. 

Inulin can be released during enzymatic liquefaction. When compared with hot 

water extraction, the yield of inulin is about the same. Enzymatic treatment 

in order to release inulin is only economically feasible when other 

interesting compounds can be released simultaneously (Chapter 7). 

9.2 Sensory analysis 

The six sesquiterpene lactones which were investigated, have been proven to 

taste bitter. Their threshold value varies depending on the group attached to 
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C-8. Lactucopicrin and ll(S),13-dihydro-lactucopicrin proved to be the most 

bitter compounds of the six lactones investigated, and lactucin and its 

dihydro derivative were the least bitter, but have about the same threshold 

value as quinine hydrochloride. 

Sensory analysis of soft drinks prepared with chicory root extract as such, 

and after enzymatic treatment, suggested that glycosides of the sesquiterpene 

lactones are less bitter than their respective aglycons. However, an extract 

was tasted and not the pure, isolated compounds. It was difficult to obtain a 

chicory root extract with similar bitter intensity compared to a previous 

prepared extract made from another portion of chicory roots. Storage of the 

roots increased the amount of especially apolar compounds, and therefore its 

bitterness. 

The effect of natural variation (season, variety) on the bitter taste of 

chicory root and its extract is not known. 

Chicory extract contained cichorioside C, a germacranolide. Kuusi et al. 

(1985) isolated from Taraxacum bitter glucosides of sesquiterpene lactones 

with a germacrane skeleton. It might be expected that cichorioside C (as part 

of compound Q) has a bitter taste. However, the bitter intensity of this 

compound is not known, nor that of the other unknown components present in 

chicory root extract. 

Eudesmanolides have been identified in C. intybus and C. endivia, a relative 

of chicory (Seto et al., 1988). This was not confirmed by other authors. In 

the chicory roots extracts described in this thesis no sesquiterpene lactones 

with an eudesmane skeleton were found. However, many compounds were not 

identified further. It is therefore conceivable that our chicory extract 

also contained eudesmanolides. Their possible influence on the bitter taste 

is not known, but some eudesmanolides are reported to taste bitter (Hansel et 

al., 1980). 

After incubation of chicory roots with endogenous enzymes only guaianolides 

are obtained. This may provide a possibility to prepare a chicory root 

extract of a more constant bitter quality. An extract which consists of only 

a few compounds is more easy to handle. 

Depending on the final application, various chicory root extracts may be 

produced with different bitter intensities. The bitterness of the extract can 
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be influenced by choosing the desired condition: enzymatic liquefaction, 

treatment with endogenous chicory enzymes, or extraction with polar or apolar 

solvents. 
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SUMMARY 

Chicory {Cichorium intybus L.) is one of the many species of the family 

Compositae. Chicory has been cultivated for the production of leaves or 

chicons, which have been used as a vegetable since approximately 300 BC, and 

for its roots, which can be used as a coffee substitute after roasting. 

Chicory leaves are appreciated for their slightly bitter taste. Two bitter 

compounds were known at the start of this project: lactucin (Lc) and 

lactucopicrin (Lp), both sesquiterpene lactones with a guaiane skeleton. 

These compounds are also present in the roots, which remain as a waste 

product after harvesting of the chicons. Chicory roots contain besides 

bitter substances also inulin, a linear ß-(2-l) linked fructose polymer 

terminated by a sucrose unit residue and the main carbohydrate of the chicory 

plant. 

In Chapter 2 all known constituents of chicory roots are discussed as well as 

the effect of roasting on these compounds. A survey is given of work carried 

out on the isolation and identification of bitter principles in Compositae, 

especially chicory. The aim of this project was to isolate the bitter 

constitutents and inulin in one step from waste chicory roots. A one step 

process is only possible when enzymatic liquefaction is applied. Both bitter 

compounds and inulin will then pass into the liquid phase. The obtained 

bitter, sweet liquid can be used as a raw material for soft drinks. Quinine 

eventually could be replaced by the bitter principles from chicory roots. 

An isocratic HPLC method was developed for the analysis of the sesquiterpene 

lactones. Three components were identified in the chicory root extract: Lc, 

Lp and 8-deoxylactucin (8dLc). Various extraction solvents were tried for the 

isolation of the sesquiterpene lactones from chicory roots. Polar solvents 

gave many unknown polar compounds, which eluted at the beginning of the HPLC 

chromatogram. More apolar solvents gave the sesquiterpene lactones and hardly 

any of the polar components. 

Storage of the roots and further processing, such as drying and milling, 

affects the amount of sesquiterpene lactones in the roots and thus the 

composition of the chicory extract (Chapter 4 ) . 

The release of bitter compounds and inulin has been studied during enzymatic 
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liquefaction of chicory roots with commercial pectinases and cellulases 

(Chapter 5 and 7). An increase was seen in the amount of Lc and 8dLc found in 

the liquid phase during enzymatic liquefaction. After improvement of the HPLC 

method (gradient elution instead of isocratic method) it was found that the 

increase of Lc and 8dLc was due to the increase of their dihydro derivatives, 

which eluted at the same place as Lc respectively 8dLc with the isocratic 

method. 

Endogenous chicory root enzymes have also been studied in this context, 

because they have proven to be capable to release bitter components as well 

(Chapter 6 ) . However, the optimum pH and temperature for the performance of 

endogenous chicory root enzymes are different from those of the commercial 

enzyme preparations tested, and may therefore not play a role in the release 

of sesquiterpene lactones during enzymatic liquefaction. 

Cichorioside B (glycoside of ll(S),13-dihydro-lactucin), crepidiaside B 

(glycoside of ll(S),13-dihydro-8-deoxylactucin), cichorioside C (glycoside of 

a germacranolide), and ll(S),13-dihydrolactucopicrin were identified in 

chicory roots. Compound N could not be identified, but there are indications 

that this compound is a diglycoside of dHLc. The presence of the glycoside of 

Lc is plausible, but to date this compound was not extracted from the chicory 

roots. 

The threshold value of six pure sesquiterpene lactones (Lc, Lp, 8dLc, dHLc, 

dHLp, dH8dLc) was determined (Chapter 8) and related to the theories on 

bitterness as discussed in Chapter 3. 

The effect of processing and storage on the bitter taste of bitter orange 

lemonade was investigated. A comparison was made between quinine as bitter 

substance and chicory root extract as the bitter ingredient. 

The storage in daylight of the bitter orange containing quinine caused a 

tremendous decrease of the bitterness of the beverage. No decrease in 

bitterness was seen in the beverage with chicory root extract. Pasteurization 

did not affect the bitter taste of bitter orange with chicory root extract. 

The bitterness of the various chicory root extracts made for sensory analysis 

differed in bitter intensity in spite of standardisation of the Lc content. 

Bitter intensities of chicory root extract before and after incubation with 

pectolytic and cellulolytic enzymes were determined. Thus the bitterness of 

the precursors was compared with that of the aglycons. However, no judgement 

could be given on whether the enzyme treatment of the chicory root extract 
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could be given on whether the enzyme treatment of the chicory root extract 

gave rise to a more bitter taste. About half of the panellists judged the 

extract with the glycosides more bitter than the extract with the aglycons, 

the other half could not taste any difference between these samples. 
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SAMENVATTING 

Witlof {Cichorium intybus L.) is een van de vele soorten van de familie der 

Composieten. Als sinds de oudheid worden de bladeren als groente gegeten. De 

geroosterde wortels worden gebruikt als koffiesurrogaat. Dit gebruik stamt 

uit de 16e eeuw. 

Witlof smaakt enigszins bitter. Deze bitterheid werd bij de start van dit 

project toegeschreven aan twee sesquiterpeen lactonen: lactucine en 

lactucopicrine. Deze twee verbindingen komen ook in de wortels voor. 

Witlofwortels komen vrij na het oogsten van het lof. Ze worden als 

afvalproduct beschouwd. Behalve de bitterstoffen bevatten de wortels ook het 

polysaccharide inuline. Het doel van dit onderzoek was de isolatie van zowel 

inuline als de bitterstoffen uit de witlofwortels met behulp van enzymatische 

vervloeiing. Op deze manier zou een bitter, zoete stroop kunnen worden 

verkregen, die als grondstof kan dienen voor de bereiding van bittere 

dranken, zoals tonic. Tonic bevat nu kinine. Sommige mensen zijn gevoelig 

voor kinine en vertonen een allergische reactie als kinine in het dieet 

voorkomt. 

In Hoofdstuk 2 worden alle tot nu toe geïdentificeerde inhoudstoffen van 

witlofwortels besproken. Het effect van roosteren op deze verbindingen is 

nagegaan. Ook is een overzicht opgenomen van publicaties over de isolatie en 

identificatie van bittere stoffen in Compositae, waarbij vooral de aandacht 

aan witlof wordt gegeven. 

Het isoleren van zowel inuline als de bitterstoffen in één extractieprocedure 

is niet goed mogelijk. Inuline is oplosbaar in (heet) water, de bitterstoffen 

niet. De sesquiterpeen lactonen kunnen worden geëxtraheerd met een apolair 

oplosmiddel, maar dan blijft inuline in de restfractie achter. Als oplossing 

voor dit probleem is daarom gekozen voor een complete vervloeiing van de 

witlofwortels met behulp van pectolytische en cellulolytische enzymen. De 

celwanden worden daarbij afgebroken en de gehele celinhoud komt in de 

vloeibare fase terecht. 

Als eerste werd de extractie en analyse van de bitterstoffen ter hand genomen 

(Hoofdstuk 4 ) . Een isocratische HPLC methode werd ontwikkeld, waarmee de 

extracten van de witlofwortels werden geanalyseerd. In het witlofwortel 
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extract werden drie sesquiterpeen lactonen aangetoond: lactucine (Lc), 

lactucopicrine (Lp) en 8-deoxylactucine (8dLc). 

Het soort oplosmiddel dat tijdens een extractie werd gebruikt bleek van grote 

invloed op de hoeveelheid geëxtraheerde sesquiterpeen lactonen. In een polair 

oplosmiddel kwamen voornamelijk polaire stoffen voor, eluerend in het begin 

van het HPLC chromatogram, en nauwelijks Lc, Lp en 8dLc. Werd een apolair 

solvent gebruikt dan werden vooral deze drie verbindingen in het extract 

aangetroffen en weinig polaire verbindingen. De precieze aard van deze 

polaire stoffen is onbekend, maar vermoedelijk betreft het glycosiden. 

Ook de bewaarcondities beïnvloeden het extractierendement, evenals de 

bewerking (malen, drogen). De wat wisselende resultaten met betrekking tot de 

opbrengst aan bitterstoffen kon in de loop van het onderzoek worden 

toegeschreven aan de endogene enzymactiviteit van de witlofwortels zelf. 

Het vrijkomen van bitterstoffen en inuline gedurende enzymatische vervloeiing 

is bestudeerd (Hoofdstuk 5 en 7 ) . De hoeveelheid bitterstoffen bleek tijdens 

vervloeiing toe te nemen ten opzichte van een blanko vervloeiing (dezelfde 

condities werden aangehouden, alleen werd geen enzym toegevoegd). Met name de 

hoeveelheden Lc en 8dLc namen toe. 

Na optimalisatie van de HPLC methode (een gradient elutie werd gebruikt in 

plaats van de isocratische methode) kon worden aangetoond dat de toename van 

Lc en 8dLc het gevolg was van de enzymatische hydrolyse van de glycosiden van 

ll(S),13-dihydro-lactucine (dHLc) en ll(S),13-dihydro-8-deoxylactucine 

(dH8dLc). Beide dihydro-derivaten vielen in het isocratische HPLC 

chromatogram samen met de pieken van Lc en 8dLc. 

Endogene witlofenzymen bleken ook in staat om bovenstaande omzettingen te 

geven. Echter de optimale pH en temperatuur van deze enzymen verschilt van 

die van het gebruikte enzympreparaat tijdens vervloeiing. Gedurende de 

enzymatische vervloeiing met exogene enzympreparaten zijn de endogene enzymen 

waarschijnlijk niet actief. 

In witlofwortels zijn aangetoond cichorioside B (glycoside van dHLc), 

crepidiaside B (glycoside van dH8dLc), cichorioside C (glycoside van een 

germacranolide) en 11(S), 13-dihydro-lactucopicrine (dHLp). De aanwezigheid 

van het het glycoside van Lc werd aannemelijk gemaakt, maar deze stof kon tot 

op heden niet worden geïsoleerd. Een andere verbinding, component N, werd 

tijdens de enzymatische vervloeiing omgezet in cichorioside B. Waarschijnlijk 
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gaat het hier om een diglycoside van dHLc, maar dit is niet nader onderzocht. 

De drempelwaarde van zes sesquiterpeen lactonen (Lc, Lp, 8dLc, dHLc, dHLp, 

dH8dLc, uit wit "lof wortel s geëxtraheerd en gezuiverd) is bepaald en 

vergeleken met die van kinine (Hoofdstuk 8 ) . De uitkomst is gerelateerd aan 

de theorieën over bitterheid. Deze zijn in Hoofdstuk 3 besproken. 

De bitterheid van een witlofwortel extract in tonic, bitter orange, en bitter 

lemon is vergeleken met die van kinine. De bitterheid van het extract werd 

anders waargenomen dan die van kinine. Ook bleek de bitterheid van de 

gemaakte extracten verschillend te zijn, ondanks de standaardisatie van het 

Lc-gehalte. 

Het effect van pasteurisatie op de bitterheid van bitter orange waaraan 

witlofextract is toegevoegd en het effect van bewaren in daglicht werden 

onderzocht. Beide bewerkingen hebben weinig effect op de bitterheid van 

bitter orange. Dit in tegenstelling tot bitter orange, waaraan kinine als 

bitterstof was toegevoegd. Met name bewaren in daglicht had een negatief 

effect op de bitterheid van de drank. 

De bitterheid van een witlofextract voor en na incubatie met pectolytische en 

cellulolytische enzymen werd bepaald om te onderzoeken of de glycosiden even 

bitter zijn als hun aglycon. Hierover kon geen uitspraak worden gedaan, omdat 

de bitterheid van het extract met glycosiden anders was dan die van het 

behandelde extract. Het experiment zal daarom moeten worden herhaald met 

zuivere glycosiden. 
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DANKWOORD 

Bijna alle dingen in het leven doe je samen met andere mensen. Mag het 

schrijven van een proefschrift een eenzame bezigheid zijn, aan het resultaat 

zoals dat voor u ligt, hebben toch veel mensen een steentje bijgedragen. 

Prof. Dr. Walter Pilnik gaf de eerste aanzet tot dit onderzoek. Zijn 

discussies, juist ook buiten het levensmiddelentechnologisch vakgebied, heb 

ik zeer gewaardeerd. Prof. Dr. Aede de Groot was bereid om een deel van het 

onderzoek bij de vakgroep Organische Chemie onder te brengen. Deze 

samenwerking heb ik als zeer positief ervaren. 

Op de afdeling Biochemisch Onderzoek van het Sprenger Instituut ben ik door 

Frouwke Heidema, Jan Robbers, Teun Honkoop en Menno van der Meer prima 

opgevangen als vreemde (technologische) eend in de bijt. Ik heb nog vele 

fijne herinneringen aan deze tijd. Natalio Gorin bracht mij daar de eerste 

beginselen bij van de "echte" wetenschap, het ontwerpen en uitvoeren van goed 

opgezette experimenten. Daarvan pluk ik nog steeds de vruchten. 

De inbreng van de Begeleidingscommissie, samengesteld uit medewerkers van 

zowel het Sprenger Instituut (Erwin Steinbuch, Hans Meffert, Wim Klop) als de 

vakgroep Levensmiddelenchemie (Fons Voragen, Frans Rombouts), was ver

frissend. Diverse delen van het vakgebied passeerden tijdens de vergaderingen 

de revue. 

Dank ook aan Teris van Beek, Henk Schols, Gerrit Beldman en Jacques Roozen, 

die de begeleiding van studenten in het tweede deel van het onderzoek op zich 

hebben genomen. 

Veel studenten hebben een stuk van hun doctoraalstudie aan de bitterheid van 

witlof besteed. Zij zullen dan ook het gemakkelijkst hun steentje in dit 

proefschrift terug vinden. Hen wil ik hier zeker noemen: Geja Hageman, 

Jenneke Netjes, Lenie Brugging, Sandra Sessink, Paul Maas, Remco van der 

Grift, Jürgen Jansen, Huub van Leeuwen, André Meijerink, Margot Bergmans en 

Nicolette Wessels Boer. 

Prof. Dr. K.H. Gensch, Freie Universität, Berlijn, wil ik bedanken voor zijn 

belangstelling voor dit onderzoek, zijn inbreng en de interessante 
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discussies, die we mochten voeren. Een uitwisseling van studenten is hierdoor 

mogelijk geworden. 

Een aantal collega's van Quest International wil ik hier ook noemen. Twee van 

hen hebben mij over de hoge drempel geholpen om toch maar eens dit 

proefschrift af te maken: Kate Maume en Rosemary O'Reilly. Beide wil ik ook 

bedanken voor het corrigeren van mijn Nederengelse tekst. 

Theo Tabak offerde tijd voor mij op om alle chemische struktuurformules 

netjes op papier te krijgen. 

Tenslotte Doeke, jij hebt het meest geleden onder mijn inspanningen. 

Desondanks had je het volste vertrouwen in de goede afloop. Soms fungeerde je 

zelfs als "stok achter de deur". Gelukkig was je ook een geïnteresseerde 

lezer. Bovendien heb je het uiterlijk van dit boekje mee bepaald. 
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CURRICULUM VITAE 

De auteur van dit proefschrift werd geboren in 1955 te Drachten. In 1972 

behaalde zij het diploma Atheneum B aan het Drachtster Lyceum in Drachten. Na 

het behalen van de akte N XIX (1975) begon zij aan de studie Levensmiddelen

technologie aan de Landbouwhogeschool te Wageningen. Het doctoraal diploma 

werd in 1982 behaald. In dat jaar werd zij aangesteld als wetenschappelijk 

onderzoeker bij het toenmalige Sprenger Instituut te Wageningen, waar het 

onderzoek zoals beschreven in dit proefschrift, in nauwe samenwerking met de 

vakgroepen Levensmiddelenchemie en Organische Chemie, werd uitgevoerd. 

Tegenwoordig is zij als onderzoeker werkzaam bij Quest International te 

Naarden. 
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