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NivJofToU^S-

STELLINGEN 

1. In tegenstelling tot de klassieke methoden ter bepaling van de kritische oppervlaktespanning 

van vaste oppervlakken is oppervlakteruwheid juist bevorderlijk wanneer de "plakkende 

luchtbel" methode wordt gebruikt. 

Dit proefschrift, hoofdstuk 4 

2. Gelet op het feit dat de rejectie over het algemeen sterk varieert met de concentratie, is het 

gebruik van "de rejectie" als maat voor het scheidend vermogen van een membraan 

misleidend. 

3. Maruyama et al. schrijven enantiomeerscheiding met behulp van een met (n-nonylfenoxy)-

oligo(oxyethyleen) gederivatiseerd poly(L-glutamaat) membraan toe aan het ontstaan van een 

geordende vloeibaar kristallijne structuur en gaan ten onrechte voorbij aan het feit dat een 

membraan van louter poly(L-glutamaat) ook zou hebben geresulteerd in enantioselectiviteit. 

A. Maruyama, N. Adachi, T. Takatsuki, M. Torii, K. Sanui and N. Ogata, Enantioselective permeation of a-amino 

acids isomers through poly(amino acid)-derived membranes, Macromolecules, 23 (1990) 2748-2752 

4. De conclusie van Vocel en Ryan, dat geadsorbeerde polymeerlagen geen zwichtspanning 

zouden vertonen, is wat voorbarig, omdat in het gebied waarin zij afschuifspanningen hebben 

aangelegd ook geen zwichtspanning te verwachten zou zijn. 

J. Vocel and J.T. Ryan, Surface Theological properties of polymer-surface active agent solutions, Can. J. Chem. Eng. 

49 (1971) 425-429 

5. Door voorbij te gaan aan mogelijke conformatieveranderingen is de door van Oss et al. 

voorgestelde methode ter bepaling van de oppervlaktespanning van eiwitten niet correct. 

CJ. van Oss, D.R. Absolom, A.W. Neumann and W. Zingg, Determination of the surface tension of proteins I. 

Surface tension of native serum proteins in aqueous media, Biochim. Biophys. Acta 670 (1981) 64-73 



6. De resultaten van Koster en Cramer betreffende de remming van methanogeen korrelslib door 

langketenige vetzuren worden vertroebeld door voorbij te gaan aan de maximale 

oplosbaarheid van de calciumzouten van deze vetzuren. 

I.W. Koster and A. Cramer, Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids, 

Appl. Environ. Microb. 53 (1987) 403-409 

7. Ook sociale systemen kunnen uitstekend beschreven worden met de Maxwell-Stefan theorie. 

8. Het opzetten van een adequaat openbaar vervoersysteem in Nederland zal gepaard moeten 

gaan met een verdergaande urbanisatie. 

9a. Het spelen van oude muziek op authentieke instrumenten is niet zinvol, omdat in het geval 

de desbetreffende componisten de beschikking hadden gehad over hedendaagse instrumenten, 

zij hun muziek daarop hadden laten spelen. 

b. Wil men echter toch op authentieke wijze spelen dan dient het geproduceerde 

dienovereenkomstig vals te zijn. 

10. Gezien de kwaliteit van het Rijnwater is eau de Cologne meer dan eau de toilette. 

Jos Keurentjes 

Physical chemistry and engineering of membranes for fat/fatty acid separations 

Wageningen, 6 maart 1991 
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chapter 1 

INTRODUCTION 

1.1 MEMBRANE PROCESSES 

In the past two decades the range of conventional separation techniques such as distillation, 

crystallization and extraction has been extended with membrane separation processes. Several 

authors have given definitions of a membrane. In 1975 Hwang and Kammermeyer [1] defined a 

membrane as "a region of discontinuity interposed between two phases". Later, in 1984 

Lakshminarayanaiah [2] defined a membrane as a "phase that acts as a barrier to prevent mass 

movement but allows restricted and/or regulated passage of one or more species through it". In 

1986, the European Society of Membrane Science and Technology defined a membrane as "an 

intervening phase separating two phases and/or acting as an active or passive barrier to the 

transport of matter between phases adjacent to it" [3]. From these definitions it will be obvious 

that a membrane can be solid, liquid or gaseous and that it provides a separation. 

Membrane separation processes may vary in their mode of operation and in their application. They 

are often more efficient and more economical than the conventional separation techniques 

mentioned above (distillation, crystallization and extraction) [4]. Many applications in the food 

and pharmaceutical industry and in biotechnology often require the processing of temperature-

sensitive products. Since most membrane processes are performed at ambient temperatures, they 

can offer clear advantages as compared to the conventional separation processes. 

In table 1 some of the technically relevant membrane separation processes are summarized. In 

reverse osmosis (RO), ultrafiltration (UF) and microfiltration (MF) a hydrostatic pressure 

difference is the driving force. In these processes the membrane acts as a sieve and retains 

molecules or particles larger than the pore diameter. Gas separations use the same pressure 

difference as a driving force, and a difference in solubility in the membrane material results in 

a separation. In electrodialysis, ion-exchange membranes are used and applying an electrical 

potential difference results in the separation of charged components. In dialysis and liquid 

membrane processes, a combined exclusion/extraction mechanism is used. Exclusion is used to 

avoid the passage of molecules or particles which are soluble in the extraction phase, and a 

1 
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concentration gradient causes transport of the required component. 

Table 1. Some technically relevant membrane separation processes and some of their applications 

Process Driving force Applications 

RO 

UF 

pressure 
difference 

pressure 
difference 

MF 

Gas 
separation 

Electro-
dialysis 

Dialysis 

Liquid 
membrane 

Membrane 
extraction 

Membrane 
distillation 

Pervaporation 

pressure 
difference 

pressure 
difference 

electric 
potential 
difference 

concentration 
difference 

solubility 
difference 

solubility 
difference 

partial vapour 
pressure 
difference 

partial vapour 
pressure 
difference 

-desalination of sea/brackish water [5] 
-concentration of whey and fruit juice [6,7,8] 
-waste water treatment [9,10,11] 

-purification/concentration juices 
and polymer solutions [12] 

-protein recovery [13] 
-waste water treatment [14] 

-filtration of cell suspensions [15] 
-blood plasma recovery [16] 
-filtration of particles and cells from 
air streams [17] 

-oxygen enriched air [18] 
-purification natural gas [19] 

-demineralization [20] 
-removal of metals from waste water [21,22] 

-purification polymer solutions [23] 
-hemodialysis [24] 

-metal recovery [25,26] 

-L-L extractions [27] 
-metal extraction [28,29] 

-desalination of sea/brackish water [30,31] 
-boiler feed water production [32] 

-separation azeotropic mixtures [33] 
-dewatering organic liquids [34] 

Finally, membrane distillation uses a partial vapour pressure difference as a driving force, and 

pervaporation uses, in addition to this partial vapour pressure difference, a difference in solubility 

in the membrane material. 
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1.2 MEMBRANES IN TWO-PHASE SYSTEMS 

From the processes mentioned in table 1, only a few apply to two phase systems. There are RO 

and UF applications for the separation of emulsions, although only the removal of the water phase 

from oil in water (o/w) emulsions is considered. The membrane should then preferentially be 

wetted by the water phase and applying a static pressure difference over the membrane results in 

the permeation of this phase. Most of these applications are found in industrial waste water 

treatment, mainly in the metal-finishing industry [35,36,37]. The removal of water reduces the 

volume of the o/w emulsion. The concentrated emulsion can then be reused or can be incinerated 

[5,12]. 

In processes such as membrane extraction, liquid membranes and membrane distillation two phases 

are involved. In the first process (figure 1) a porous membrane is used to keep two liquid phases 

separated and it provides a defined liquid-liquid interface, thus avoiding emulsification [38,39]. 

This is a clear advantage in the case of extraction with liquids having a low interfacial tension. 

In the case of liquid membranes, the membrane is a thin liquid film that is stabilized by a 

microporous polymer membrane in the case of a so-called immobilized liquid membrane (figure 

2) [25,26]. In the case of membrane distillation the membrane phase is a vapour (figure 3) 

[30,31,32]. 

porous membrane 

feed 

porous membrane 

V/ 

* - extraction liquid 
feed | J ) e m b r o n e ( gr ipping 

liquid | "~ liquid 

Figure 1. Membrane extraction Figure 2. Solid-supported liquid membrane 

The use of a membrane to keep two phases separated may serve other purposes as well. In some 
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biotechnological applications membranes are used as a bioreactor in which the membrane acts as 

a carrier for enzymes (mainly lipases) that require substrates from two phases. The same 

conversions can be carried out in an emulsion system, however, this results in the formation of 

a stable emulsion that has to be broken in order to obtain the products. Using a membrane, the 

formation of emulsions can be avoided, and since the enzyme can be immobilized, reuse of the 

enzyme can be achieved [40,41,42,43]. In all these processes, the membrane is preferentially 

wetted by one of either two phases, and the polymer membrane merely acts as a (non-separative) 

carrier to obtain a stable system. Besides, it will also prevent solid particles to pass through the 

membrane, which usually results in a rather pure product stream [44]. 

vapour 
f e e d — ! - • —(—•permeate 

Figure 3. Membrane distillation; T[eed>T 
permeate 

Whenever two-phase systems are studied, wetting of the polymer matrix by these two phases plays 

an impprtant role. As stated above for the separation of emulsions, one of the two phases should 

preferentially wet the membrane (i.e. exhibit a contact angle with the surface <90°), so that it will 

penetrate into the pores. The other phase cannot enter the pores as a result of the adverse Laplace 

pressure, which is for cylindrical pores: 

AP 
27 cos a (1) 

in which AP is the pressure difference over the interface, 7 the interfacial tension, a the contact 

angle of the non-wetting phase with the surface and R the pore radius. Wettability of the 

membrane is determined by both the membrane characteristics (hydrophobicity and pore size) as 

well as the liquid properties (e.g. surface tension [45]). For the application of supported liquid 

membranes it is important that the polymer membrane is not wetted by one of the two liquid 

phases-outside the membrane (i.e. they exhibit a contact angle larger than 90°), otherwise the 
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liquid inside the pores will be displaced by one of the liquids outside the membrane. 

1.3 FAT/FATTY ACID SEPARATION 

The separation of fatty acids from non-mineral oil is a process applied worldwide on a large scale 

in the refinery of edible fats and oils [46,47]. The conventional separation method (the so-called 

caustic refining) consists of the addition of an aqueous alkali solution to the oil at a temperature 

of around 90°C, resulting in the formation of the sodium salts of the fatty acids. The thus formed 

soapstock is separated from the oil by centrifugation. The application of this process, however, 

has one major drawback: the soapstock leaving the system contains considerable amounts of 

triglycerides (usually about 50% [48]), which are considered as a loss. For this reason, the caustic 

refining of oils containing high concentrations of fatty acids (e.g. rice bran oil) is not an 

economical process. 

In the enzymatic hydrolysis of fats in a membrane bioreactor, the reaction rate rapidly decreases 

with an increase in fatty acid content of the oil phase [41]. To maintain a high reaction rate, the 

fatty acids have to be removed from the oil stream. Obviously, the classical caustic refining 

procedure can not be used for this purpose for two reasons. Firstly, the elevated temperature and 

the added alkali will inactivate the enzyme. Secondly, the poor quality of the product, as the 

soapstock only contains 50% fatty acids. 

Alternative process designs are known [49,50,51,52], of which steam distillation is the one in 

which losses of triglycerides can be avoided. However, in the proposed extraction processes only 

a partial separation is achieved. Membrane separations can be an alternative when the 

requirements of selectivity, low temperature and economics are met [53]. 

1.4 MEMBRANE PROCESSES FOR THE SEPARATION OF FATTY ACIDS FROM 

EDIBLE OIL AND OUTLINE OF THIS THESIS 

Reports on the application of membranes in oil refining are only concerned with the filtration of 

one or more constituents from the oil [53,54,55]. The application of such a filtration step for the 

removal of fatty acids from the oil stream may result in a reduction of the triglyceride losses with 

60% [53,54]. For the refining of edible oils this may be sufficient to make the process viable, 

however, this still implies a significant loss for removing fatty acids from the oil stream in the 
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enzymatic hydrolysis of oils. In this thesis two possible process schemes for the separation of fatty 

acids from oil without losses of triglycerides are presented, the two having in common that 

membranes are used in a two-phase environment. It is the aim of this thesis to study the 

engineering and physico-chemical phenomena that are relevant for the operation of these 

processes. 

In the first system [56,57] (figure 4), an aqueous alkali solution is added to the oil, thus forming 

the sodium salts of the fatty acids. Subsequently, 2-propanol is added in order to solubilize the 

soaps and to form a system of two immiscible liquids. The water phase contains water, 2-propanol 

and the soaps, whereas the oil phase contains triglycerides and a trace amount of 2-propanol. This 

two-phase system can be separated into the two separate phases by a hydrophilic and a 

hydrophobic membrane in series, where the water phase permeates through the hydrophilic and 

the oil phase through the hydrophobic membrane. It appears to be impossible to detect 

triglycerides in the water phase, nor fatty acids in the oil phase (provided sufficient sodium 

hydroxide is added), indicating that the separation is complete in this respect. 

hydrophobic membrane 

NaOH 
FFA rich oil 2-propanol 

y y y 

•SEK» tefflg«*»*»* ••& 

9« © A 0 9 9 4 / ' 

! -«»- • • -V<V", 'V . ; i K S 0 QPS 

© %^M't$N\ 2"Pro 

WNI fatty acids hydrophilic membrane 

propanol 

Figure 4. Two-membrane system for the removal of fatty acids from oil 

In chapter 2 of this thesis this two-phase system will be characterized and the factors affecting 

the performance of the hydrophilic membrane will be investigated. In chapter 3 multicomponent 

transport phenomena through a hydrophilic homogeneous cellulose membrane will be described. 

On the basis of this description an enhanced permeation rate of the aqueous phase can be 

achieved. In chapter 4 a method is described for the measurement of hydrophobicity of membrane 

materials, since this will influence the wettability of the material by each of the phases. In chapter 
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5, the effect of adsorption of sodium oleate on the wetting behaviour is studied as a function of 

surface hydrophobicity, resulting in the design of a membrane for the separation of the oil phase 

from the two-phase system. 

FA free oil -+-

water 

FA containing oil 

i 
i 

- B E -

i r~ 
1,2-butanediol 

1 \ ' 

emulsion 

L 
hydrophobic membrane 

13 
I 
I 
4 — I 
I 

'1 
hydrophi 
membrane 

water 

ic 

,_J 

Figure 5. 3-step fatty acid removal from oil; step 1 is extraction, step 2 is emulsion separation 

and step 3 is dewatering 

A second possible system for the separation of fatty acids from edible oil is depicted in figure 5. 

In the first step the fatty acids are extracted from the oil using a 1,2-butanediol/water (20:1 v/v) 

mixture. Subsequently, water is added to the system, which demixes as a result of the water 

addition, forming a dispersion of fatty acids in a 1,2-butanediol/water (6.5:3.5 v/v) mixture. The 

thus formed dispersion can be separated by centrifugation or by the two-membrane system as 

described above. Finally, excess water has to be removed from the 1,2-butanediol/water mixture. 

This can, for example, be achieved using reverse osmosis membranes. 

In chapter 6 the extraction of fatty acids from oil using cellulosic membranes is described, a 

method that can also be used for the fractionation of fatty acid mixtures. Using membranes for 
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the separation of the water/1,2-butanediol mixture a multistage process will be required, since 

it is only possible to achieve a partial separation. In chapter 7 calculations are made on membrane 

cascades for the separation of binary mixtures, using a butanediol/water mixture as an example. 

Obviously, the three steps involved in this system (extraction, emulsion separation and dewatering) 

can be performed by classical processes like liquid-liquid extraction, centrifugation and 

evaporation, respectively, and can be combined with the membrane processes in the most 

economical configuration. This thesis provides the engineering data and models to make a 

thorough costs analysis for the evaluation of the viability of any of these three steps. 
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THE REMOVAL OF FATTY ACIDS FROM EDIBLE OIL; REMOVAL OF 

THE DISPERSED PHASE OF A WATER IN OIL DISPERSION BY A 

HYDROPHILIC MEMBRANE 

SUMMARY 

Fatty acids can be extracted from an oil phase by forming a dispersed phase of saponified fatty acids/water/isopropanol 

in oil. This dispersion can be separated in the two phases by two membranes of opposite polarity in series. In this study 

the separation of the water phase from the dispersion by a hydrophilic membrane and the mechanisms underlying the 

flux characteristics have been investigated. The permeation flux through a PAN ultrafiltration membrane has been 

optimized with respect to the fatty acid/water/isopropanol ratio. It appears, that a 1:6.5:3 (v/v) ratio gives the highest 

flux (95 l/(m2.h.bar)). The dispersion at these conditions consists of a continuous oil phase as well as a continuous water 

phase between 20% and 65% water phase hold up. The flux/pressure curve shows a linear increase of the flux with 

pressure at low pressures (determined by the membrane resistance), followed by a maximum flux value for the case that 

the volume of the water phase present in the inflow is limiting. It is not possible to remove the water phase with 

membranes, below a water phase hold up of 20%. At this hold up value also the transition between a bicontinuous and 

a discrete dispersion occurs. 

J.T.F. Keurentjes, G.I. Doornbusch and K. van 't Riet 

Accepted for publication in Separation Science and Technology 
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2.1 INTRODUCTION 

Fatty acids have to be removed from oils for different purposes. In refining procedures of edible 

oils, the free fatty acids (FFA) have to be removed as a contaminant [1,2], since too high levels 

of FFA will result in rancidity of the oil [3]. In the enzymatic production of fatty acids from 

triglycerides, the reaction rate strongly decreases with an increasing fraction of fatty acids in the 

oil phase [4]. To maintain a sufficiently high reaction rate, the fatty acids should be removed 

continuously. 

The classical method for the removal of fatty acids from an oil is the so called caustic refining. 

Soaps are formed by adding alkali to the oil, and the formed soapstock is consequently separated 

from the oil by high speed separators [5]. The most important problem occurring in this procedure 

is the inclusion of triglycerides into the soapstock. Usually, this amount will equal the amount of 

fatty acids that is saponified [6]. This included oil is difficult to recover and is therefore 

considered to be a loss. Evidently, caustic refining of oils with high fatty acid contents will 

introduce considerable losses of triglycerides. In the enzymatic oil splitting, the soapstock phase 

contains the fatty acids, which are the products. As a recovery process for these fatty acids in the 

enzymatic oil splitting [4], caustic refining will result in a very poor product, containing about 

50% fatty acids. 

The crude oil losses inherent to the caustic refining can be avoided by the use of other refining 

procedures such as distillation or steam distillation [7]. The high temperatures needed for these 

processes may especially affect highly unsaturated fatty acids, either present as free fatty acids 

or in triglycerides. A membrane separation process might be a mild alternative for these processes. 

For the application of membranes for a fat/fatty acid separation three configurations can be 

envisaged. Firstly, a direct filtration with a retention based on molecular size differences can be 

used. This will be difficult because of the small differences in molecular weights. Secondly, an 

extraction mode can be applied. However, the extradants found in literature (mostly alcohols) are 

not very specific [8,9], and will also introduce losses of crude oil. 

The third mode to apply membranes is the formation of a dispersion that can be separated in the 

two phases by a hydrophilic and a hydrophobic membrane in series. The two-membrane system 

for the separation of such a dispersion is shown schematically in figure 1 [10]. In order to separate 

a particular phase from a two phase mixture, the membrane used has to fulfill the requirement 

that it is preferentially wetted by this phase. The phase that does not wet the membrane (exhibits 

a contact angle on the surface larger than 90°) can be retained, provided the system's Laplace 
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pressure is higher than the applied trans-membrane pressure. 

The separation of a dispersion into its two phases will largely depend on the type of dispersion 

to be separated. The most simple types of dispersions are emulsions of a dispersed aqueous phase 

in a continuous organic phase (a w/o emulsion), and of a dispersed organic phase in a continuous 

aqueous phase (an o/w emulsion). In the absence of a stabilizing agent (surfactant) or in the 

presence of sufficiently large droplets (in the order of 1 mm) these dispersions are not very stable 

and their separation into the two phases is relatively easy. Other, more complicated, types of 

dispersions may also occur. Examples are dual emulsions and microemulsions. In dual emulsions 

the continuous phase is also present as small droplets in the dispersed phase [11,12]. 

Microemulsions can be formed in the presence of a surfactant and a cosurfactant (usually an 

alcohol). They are thermodynamically stable water-in-oil dispersions with very small droplet sizes 

(in the order of 20 nm [13]). Upon increasing the fraction of the dispersed phase in such a 

microemulsion system, a transition into a bicontinuous system can be observed [14]. Several types 

of bilayer and liquid crystal structures have been found in this type of dispersed systems [15]. 

However, no literature is available on the filtration characteristics of those, more complicated, 

types of dispersions. 

hydrophobic membrane 

NaOH 
FFA rich oil 2-propanol 

FFA free oil 

y y v ©$ © © ©_ @ © t 
© ® O ® ( 

"^iPa <sro&ov\ y Q ©v^>,»''.v;;-;';v,v 2-propanol 

K-WM fatty acids hydrophilic membrane 

Figure 1. Two-membrane system for the removal of fatty acids from an oil 

In this study the soapstock obtained by the addition of alkali to the fatty acid rich oil is solubilized 

by an alcohol under the formation of a dispersion. A suitable membrane for the removal of the 

dispersed water phase from this dispersion will be selected and the mechanisms underlying the 

permeation characteristics of the water phase will be investigated. 
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2.2 MATERIALS 

Dispersions were prepared by adding alkali to oleic acid containing soy bean oil in order to 

saponify the oleic acid. Subsequently, isopropanol was added to solubilize the soaps, and water was 

added to lower the viscosity of the water/soap/alcohol phase. The soy bean oil used was of edible 

quality (obtained from Rhenus Inc., The Netherlands). In this two phase system the solubility of 

isopropanol in the oil phase was determined to be below 0.5%. In order to avoid the formation of 

insoluble calcium and manganese soaps, demineralized water was used. All chemicals used were 

purchased from Merck (FRG) and were reagent grade. The dispersion was stored in a stoppered 

bottle to avoid the evaporation of isopropanol and was continuously stirred by means of a 

magnetic stirrer. 

A qualitative analysis for fatty acids, its soaps and triglycerides was made by means of TLC. The 

stationary phase was 0.2 mm Silicagel 60 F 254 purchased from Merck (FRG) and the mobile 

phase petroleum ether 40-60, diethylether and acetic acid (80:20: l(v/v/v)). After developing, the 

sheets were colored with iodine vapour. 

Several hydrophilic membranes were tested for their capability to separate this dispersion and are 

summarized in table 1. Flux measurements of the flat sheet membrane were carried out in a New 

Brunswick Scientific Megaflow TM 100 test module. The membrane surface in this module is 64.5 

cm2 and the channel height is 0.4 mm. All membranes were rinsed thoroughly with demineralized 

water before use to remove preservative liquids. 

Table 1. Hydrophilic membranes tested: HF=hollow fiber, FS=flat sheet 

Membrane Type Pore Size/Cut Off Manufacturer 

Cellulose 
Celluloseacetate 
Polyacrylonitrile (PAN) 
Polyamide 

HF 
HF 
FS 
HF 

6,000 
200,000 
30,000 
0.2 um 

ENKA 
ENKA 
Rhone-Poulenc 
ENKA 

The viscosity of the water phase was determined using an Ostwald viscosimeter. After phase 

separation, the interfacial tension between the two phases was measured using a spinning drop 

tensiometer [16,17]. A small drop of the low density phase is brought into a rotating tube 

containing the high density phase. The drop will deform along the axis of the tube. In case the 

length of the droplet is more than 4 times its heigth, the Vonnegut approach gives the following 
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relation: 

7 = Ap-"2 ' rd (O 

in which is i the interfacial tension between the two phases, Ap the density difference between 

the two phases, ui the angular velocity and rd the half height of the droplet. 

In order to establish the transition from a continuous into a discrete oil phase, a thin layer of pure 

oil containing the dissolved dye Sudan HI making it intensely red was brought on top of a non-

stirred dispersion. In the case of a continuous oil phase, the red colored oil moves from the top 

downwards by diffusion and convection, whereas in the case of a discrete oil phase, no downward 

movement of the colored oil occurs. 

The transition from a continuous into a discrete water phase was established by conductivity 

measurements. Conductivity measurements were performed using a 400 Hz AC current in order 

to avoid electrophoresis. All measurements have been carried out at 20 °C, unless stated otherwise. 

2.3 RESULTS AND DISCUSSION 

Membrane selection 

The membrane selection experiments have been carried out with a dispersion containing 54% soy 

bean oil, 10% sodium oleate, 14% water and 22% isopropanol (v/v). The water phase contains the 

soaps, water and 2-propanol, while the organic phase contains oil and only traces of 2-propanol. 

It is not possible to detect any soaps in the organic phase. The membranes given in table 1 have 

been tested for their capability to separate this dispersion. The results are summarized in table 2. 

Table 2. Fluxes determined with the standard dispersion 

membrane flux (l/(m2.h.bar)) 

Cellulose 1 
Celluloseacetate -*) 
PAN 30 
Polyamide -*) 
*) both phases permeate 
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For all membranes, the permeate is examined for the presence of soaps and triglycerides by means 

of TLC. In the case of a cellulose and PAN membrane, no triglycerides could be detected in the 

permeate, thus indicating that the separation of the fatty acids from the triglycerides is complete. 

From table 2 it can also be concluded, that the pore size of the membrane influences the 

separation characteristics: the membranes with the large pore sizes could not retain the oil phase. 

However, the Celluloseacetate and polyamide are expected to be slightly more hydrophobic 

compared to cellulose and PAN [18]. This also might be part of the reason for the permeation of 

both phases. It is evident from table 2, that the PAN membrane gives the best flux and a complete 

separation. Therefore, the PAN membrane is used for the flux optimization experiments. 

Flux optimization in the PAN membrane 

The clean water flux of the PAN membrane is found to vary from 300 to 700 l/(m2.h.bar), 

depending on the sheet of material used. To allow a comparison of the results obtained with 

different sheets of the membrane material, the flux is standardised to a virtual clean water flux 

of 500 l/(m2.h.bar), the average of the measured clean water flux of the sheets used. This 

correction is allowed, since in our system permeation of the water phase is determined entirely 

by the resistance of the membrane. 

0{ l / (m2h) ) 
600 

800 _ 1000 
n"1(m2.N1.s"1) 

Figure 2. Permeation flux through the PAN membrane versus the inverse of the viscosity of the 

water phase at 1 bar trans-membrane pressure 
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This is shown in figure 2, in which the measured (non-corrected) flux is plotted versus the inverse 

of the viscosity of the water phase with different compositions. This appears to be a straight line 

through the origin. The clean water flux of this particular sheet is 580 l/(m2.h.bar), which falls 

within the range of clean water fluxes measured. This means that although a dispersion is present 

at the retentate side of the membrane, the membrane is completely wetted by the water phase and 

the resistance against permeation is completely determined by only the hydrodynamic resistance 

of the membrane: there is no additional resistance at the retentate side. 

0FA(l/(m2.h)) 

8-

6-

4 

2-

0( l / (m 2h)) 

-80 

60 

40 

h20 

1 1 1 1 1 r~ 
1 2 3 4 5 6 

2-propanol /fatty acid ratio (v/v) 

Figure 3. Permeation flux and fatty acid flux through a PAN membrane at different 

isopropanol/fatty acid ratios (P=l bar) 

To optimize the flux of the PAN membrane, the fatty acid to water and 2-propanol ratio is varied. 

The experiments are carried out at 1 bar trans-membrane pressure. Varying the isopropanol 

content of the dispersion at a fixed water content results in a permeation flux and fatty acid flux 

as shown in figure 3. It can be seen, that although the permeation flux increases with an increase 

in isopropanol content (due to a decrease in viscosity of the water phase), the fatty acid flux (this 
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is the permeation flux times the fatty acid concentration) has an optimum value at an isopropanol 

to fatty acid ratio of 3:1. At this optimum isopropanol content the water content is varied and the 

same type of curves are obtained (figure 4). The optimum composition of the water phase with 

respect to the fatty acid flux appears to be a fatty acid, water, isopropanol ratio of 1:6.5:3. At this 

optimum composition of the water phase a permeation flux of 95 l/(m2.h.bar) can be achieved, 

resulting in a fatty acid flux of 15 l/(m2.h.bar). All experiments described further are carried out 

with this composition of the water phase. 

0(l/(rri.h) 
FA 

16 

14 

12 H 

10 

— i — 

5.5 

0(t /(m2 .h)) 
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100 
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6.5 7.5 8.5 
wa ter / fa t ty acid ratio (v/v) 

Figure 4. Permeation flux and fatty acid flux through a PAN membrane at different water/ fatty 

acid ratios at the optimum isopropanol content (P=l bar) 

Although not performed here because it is not relevant for our purposes, the relation between flux 

and viscosity and therewith with the composition can easily be brought in an optimization model 

with the fatty acid flux as the parameter to be optimized. 

Long term performance of the PAN membrane 

In a series of consecutive batch experiments the performance of the PAN membrane has been 

investigated. Every new batch is started without cleaning the membrane. In these experiments the 

permeate is recirculated to the feed vessel. From figure 5 it can be seen, that the flux gradually 
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decreases from an initial flux of 105 l/(m2.h.bar) to around 30 l/(m2.h.bar) after 560 hours. Every 

new batch initially gives a higher flux, however, after one day the flux decrease continues 

according to the pattern of the batch before. Rinsing the membrane with isopropanol for 3 hours 

restores the flux to 53 l/(m2.h.bar), a value comparable with the value after 60 hours. Rinsing with 

nitric acid (0.1%), however, has no effect, indicating that the flux decay is probably due to a 

clogging of the membrane with non dissolved soap molecules. 

0 (l/(m2.h)) 

new batch 

I 

time ( h ) 
Figure 5. Long term performance of a PAN membrane in the separation of a two-phase system 

(P=l bar) 

Characterization of the dispersion 

To reveal the nature of the dispersion, several experiments have been performed. It appeared to 

be impossible to estimate the particle size by microscopy. This indicates, that a more complicated 

system than a water in oil dispersion is formed. This might be due to a low interfacial tension. 

From spinning drop measurements at different angular velocities it follows, that 7 equals 

0.27±0.01 mN/m. This value is sufficiently low to form a microemulsion. However, laser light 

scattering experiments indicate, that in the water phase as well as the oil phase no microemulsion 

is formed. 

Performing conductivity measurements it can be seen (figure 6), that the conductivity of the 

system increases almost stepwise by two decades at a water phase content of around 20%. It also 

shows, that no other stepwise increase in conductivity takes place, which indicates that water is 

present as a continuous phase above 20% water phase in the dispersion. The experiments with 

colored oil show a similar abrupt change around 35% oil phase. It can therefore be concluded that 
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the oil phase is present as a continuous phase above 35% oil phase. 

•1 m - 1 \ log G (ohm . m ) 

60 80 100 
water phase content (%) 

Figure 6. Conductivity of the dispersion at different water phase contents 

From these experiments it can be concluded that the system behaves similar to the concentrated 

microemulsions used by Lagües [19], and forms a bicontinuous system at a water phase content 
between 20% and 65%. However, it has to be noted, that bicontinuous in this context is not the 

same as the expression bicontinuous in the classical way: the dispersion is not transparant, and it 

defenitely is not the result of a highly concentrated microemulsion [20,21]. Lowering the fraction 

of the water phase below 20% will result in a transition from bicontinuous into a discrete emulsion 

containing water spheres in oil. According to Kirkpatrick [22] this transition is expected to take 

place between 15 and 29% dispersed phase in the system, based on a percolation theory approach. 

Above this threshold value, the conductivity is expected to increase according to a power law with 

an exponent of around 1.6 [22]. However, from a log-log plot of the results given in figure 6 

follows a maximum exponent of 0.8, showing that the conductivity of the system increases less 

with an increase of the water phase content than expected from the percolation theory. 

It can be concluded, that for our system three regions can be distinguised: between 0% and 20% 

water phase a dispersion of water droplets in oil is formed, between 20% and 65% water phase the 

water phase as well as the oil phase is present as a continuous phase, although it is not yet clear 

which type of bicontinuous system is present. Above 65% water phase a dispersion of oil droplets 
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in water is formed. 

Effect of composition on the flux 

In a batch experiment the water phase content will decrease upon filtration. For a dispersion 

containing 45% water phase, the flux can be plotted versus the water phase content, giving figure 

7 as a typical result. The maximum flux found in this plot equals the flux in case the water phase 

only is applied as feed solution on the same sheet of membrane, which is in agreement with the 

fact that the water phase is present as a continuous phase and is wetting the membrane completely. 

It is also found, that the same curves are obtained in the case of sodium, potassium and lithium 

soaps, and an increase in the temperature only influences the maximum flux, which is merely due 

to a decrease in viscosity of the water phase. In figure 7 a steep decrease of the flux can be 

observed below 20% water phase in the system, and the flux finally becomes zero at 18%. The 

same phenomenon has been observed in the case of the cellulose membrane, thus indicating, that 

this stepwise flux decrease is a property of the dispersion rather than an effect caused by the 

membrane. 

This transition point coincides with the transition from a continuous water phase into a water 

phase consisting of discrete spheres in oil. Apparently, the dispersed droplets cannot coalesce with 

the same phase present in the membrane. The size of the droplets is many times smaller than the 

heigth of the flow channel, and dispersed droplets will be lifted away from the surface because 

of the tubular pinch effect [23,24]. This will result in an extremely low flux. 

By removing the oil phase from this poor emulsion it is possible to obtain again a dispersion with 

more than 20% water phase. Consequently, the flux then can be restored to the value it has above 

20% water phase. This can be done in the two membrane system as proposed for the separation 

of this dispersion [10]. 

The effect of pressure and flow conditions on filtration 

For a filtration in which no concentration polarization occurs, the flux will be entirely determined 

by the hydrodynamic membrane resistance. It has been found above, that the flux increases 

proportionally to the inverse of the viscosity. This implies that for a fixed feed flow velocity the 

flux will also increase linearly with the trans-membrane pressure: 

21 



chapter 2 

4>ew.A.V.tiw (2a) 

with ^ the permeation flux and <t>cv the clean water permeation flux at 105 Nm - 2 trans-membrane 

pressure and 1 m2 membrane area, respectively, P the trans-membrane pressure, A the membrane 

surface, rj the viscosity of the permeate and f?w the viscosity of water. A mass balance then yields 

Q(fi„-fou.) (2b) 

in which is Q the feed flow and fin and fout the dispersed fraction in the feed flow and the flow 

leaving the system, respectively. From the experiments mentioned above it follows, that fout can 

not be smaller than 0.2. This implies, that the flux can not increase above the value calculated 

from equation 2b with fout=0.2: 

Q(f t a-0.2) (2c) 

0 (l/(m2.h)) 
100 

30 40 
fraction dispersed phase (%) 

Figure 7. The permeation flux through a PAN membrane varying with the fraction dispersed phase 

in the system 
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In figure 8 it is shown that the predicted and measured permeation flux at conditions for which 

fout>0.2 (equation 2b) show a good agreement at the condition of pressure dependent permeation. 

From figure 9 it can be concluded, that the maximum permeation flux, i.e. for fout=0.2 (equation 

2c), in this system is well described by the amount of water phase that is present in the inflow. 

Both figures 8 and 9 confirm that the pressure limited permeation at low trans-membrane 

pressures (determined by the membrane resistance), and the inflow limited permeation at high 

trans-membrane pressures determine the flux/pressure curve. 

0{l.m"2 .h-1) v= 11A cm/s 

v= 6.8 cm/s 

v = 4.5 cm/s 

-o—o ° <*, o—5— v = 3.4 cm/s 

0 _ f ö Z0~ S 40 SO 
P(bar) 

Figure 8. Permeation flux through a PAN membrane at different feed flow velocities and trans

membrane pressures 

Prediction of the membrane performance 

With the thus obtained experimental data it is possible to predict the performance of a membrane 

used in this separation. Firstly, it has to be established whether a membrane is capable to retain 

the oil phase or not. Subsequently, the performance can be determined as shown schematically in 

figure 10. A change in the composition of the water phase will result in a change in viscosity. 

Using the ratio of the viscosity of the water phase over the viscosity of pure water together with 

the clean water flux, the permeation rate can be calculated. A mass balance over the system gives 
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the maximum product flux that can be attained. Combining the concentration of the product in 

the water phase with the maximum flux finally results in the product flux. 

0 (t/(m2.h)) 

280 

240 

200 
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80 

40 
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D maximum flux (according to eq. 2c ) 

o measured maximum flux 

12 
feed flow(10 m/s] 

Figure 9. Permeation flux through a PAN membrane at different feed flow velocities. The 

calculated maximum flux is calculated according to eq. 2c 

composition - * - viscosity 

clean water 
flux 

mass balance 

Figure 10. Route for the prediction of the performance of a membrane for the removal of the 

water phase from the dispersion 
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IA CONCLUSIONS 

From this work it can be concluded, that it is very well possible to separate the fatty acids from 

an oil by forming a dispersion of saponified fatty acids/water/isopropanol in oil. It follows from 

conductivity and diffusion measurements, that a bicontinuous system is formed between 20% and 

65% water phase in the system. The filtration characteristics at a hydrophilic membrane have been 

investigated. The permeation flux through a PAN ultrafiltration membrane is optimized with 

respect to the fatty acid/water/isopropanol ratio. It follows, that a 1:6.5:3 (v/v) ratio gives the 

highest flux (95 l/(m2.h.bar)). In these experiments the flux is limited by the amount of dispersion 

that is led across the membrane. It appears, that it is not possible to go below 20% water phase in 

the dispersion, which can be explained by a transition from a bicontinuous system into a discrete 

dispersion. This 20% value falls within the range predicted by percolation theory for the transition 

between spheres and a bicontinuous system. However, by removing the oil phase by a hydrophobic 

membrane in series, it will be possible to restore the water phase content to a value above 20%. 
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MULTTCOMPONENT DIFFUSION IN DIALYSIS MEMBRANES 

SUMMARY 

Multicomponent diffusion through porous media is usually described by an effective diffusivity for each component. In 

such a diffusivity many different effects are lumped together, which makes its behaviour very difficult to understand. In 

this study we use a different approach in which each species has a driving force which is counteracted by friction due 

to its motion relative to the surroundings. The resulting equation is a difference form of what is known as the 

Generalized Maxwell Stefan equation (GMS). We apply this to describe transport through cellulose dialysis membranes. 

Friction between water and the membrane matrix is determined by isobaric dialysis experiments in mixtures with 

methanol, ethanol and 2-propanol. The water/membrane friction strongly depends on the water content. The friction 

of methanol or ethanol with the membrane is almost constant, while that of 2-propanol decreases with an increase in 

the 2-propanol concentration. The resulting friction coefficients give a quantitative description of transport of a ternary 

liquid mixture through the membrane. Using similar mixtures with a hollow fiber device shows that only the external area 

of the fiber bundle is effectively used. Apparently there is insufficient flow of the external phase between the fibers. 

In a second set of experiments a multicomponent system is studied. At the feed side of the membrane a solution of 

water, 2-propanol and sodium oleate is applied; on the permeate side an NaCl solution. A small pressure gradient from 

feed to permeate is applied. Initially a mass flux against the pressure gradient is observed. After some time the flux 

changes direction and becomes 2 to 10 times larger than the permeation rate would be for the feed solution alone with 

the same applied pressure. These effects can not be explained using effective diffusivities, but they can be understood 

qualitatively from the GMS equations. 

J.T.F. Keurentjes, A.E.M. Janssen, A.P. Broek, A. van der Padt, JA. Wesselingh and K. van 't Riet 

Dept. of Chemical Engineering, University of Groningen, The Netherlands 

This chapter is submitted for publication 
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3.1 INTRODUCTION 

Membrane processes can be applied to a wide range of separation processes. They can be driven 

by different forces. A pressure gradient over the membrane is used in processes such as reverse 

osmosis, ultrafiltration and microfiltration [1]. Essentially, these three processes are the same: the 

membrane acts as a sieve. In electrodialysis it is an electrical field over the membrane that causes 

transport of charged molecules [2]. In dialysis [3], pervaporation [4] and pertraction [5,6] a 

chemical potential gradient (concentration gradient) causes transport. 

In almost all membrane processes, there are more than two components [7]. Therefore, an analysis 

of multicomponent transport phenomena is important. Also, it is desirable to describe transport 

in terms that have a simple physical interpretation. Only then is it possible to use the coefficients 

obtained for a given system, to predict the behaviour of other systems. Several approaches can be 

followed to describe transport in multicomponent systems [8,9]. Traditionally, diffusion 

phenomena in membranes are described by an effective diffusion coefficient (Deff). This effective 

diffusion coefficient can be related to the free (Fickian) diffusion coefficient by the 

characteristics of the membrane material [10,11]. The most widely used equation in this respect 

is the equation of Mackie and Meares [11], which relates the accessible volume (the non-polymer 

volume t) to the diffusivity in free solution D : 

Drff f_e_f 
D0 • [2-eJ 

(1) 

However, the description of transport phenomena in terms of these phenomenological effective 

diffusivities does not result in quantities with an unambiguous physical interpretation. 

In the Maxwell-Stefan equations, transport is described in terms of intermolecular friction [12]. 

The Generalized Maxwell Stefan equation (GMS) relates driving forces and intermolecular friction 

to net diffusion velocities, and hence to fluxes [12,13]. The equations contain frictional 

interactions between each set of species (including the membrane). 

The GMS equation is a first order differential equation. For the sake of convenience, we use in 

this study the GMS equation in the form of an (approximate) difference equation [14] in order to 

determine membrane-solute friction coefficients and to describe the diffusion of multicomponent 

mixtures through a dialysis membrane. It will be shown that effects that cannot be accounted for 

using Fickian diffusion theory can be explained using the GMS equation. 
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3.2 THEORY 

The Generalized Maxwell-Stefan equation 

The starting point for the derivation of. an equation for transport velocities in a mixture is the 

expression for the rate of entropy production (a). For an isothermal system [15,16]: 

n 
a = - c t R£d i (Ui -u ) >0 (2) 

i - l 

Here d; is the driving force on a species i (per unit of volume of the mixture), U;-u is the relative 

velocity of species i with respect to the mixture, ct is the total molar concentration of the mixture 

and R is the gas constant. At thermodynamic equilibrium d;=0 and o=0. 

The driving force dj may have various constituents. For example a chemical potential gradient due 

to composition gradients, a pressure gradient and an electrical potential gradient. Of course the 

driving force may, if necessary, be extended by adding gravitational, centrifugal or other terms. 

For our example it can be written as follows [15]: 

dj = A v T P f t + ' " ' VP + XiZi-f-Vp (+ other terms) (3) 
• R T T,pf*i C t R T

 l lRT 

with X; = mole fraction component i [-] 

0j = volume fraction component i [-] 

/ij = chemical potential due to composition component i [J/mol] 

Wj = mass fraction component i [-] 

P = pressure [Pa] 

T = absolute temperature [K] 

<p = electrical potential [V] 

Z; = charge number of component i [-] 

F = Faraday constant [C/mol] 

The driving force on a species is counteracted by friction with the other species. The friction 

between two species is taken proportional to their relative amounts and to the differences in 

velocities [15,16]: 
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" ^ ( l i j - U i ) 
d, - E ' JV"J " " i-1.2. ,n (4) 

This is the Generalized Maxwell-Stefan equation. The Dy's are interaction coefficients between 

the species i and j . They have the dimensions of a diffusivity and are known as Maxwell-Stefan 

(MS) diffusivities. From the Onsager reciprocal relation it is known that Dy = D^ [17,18,19]. 

The MS-diffusivities are only identical to the better known Fick diffusivities in two cases: 

-for ideal binary mixtures and 

-for solutes at infinite dilution in a solvent. 

The behaviour of MS-diffusivities as a function of concentration is thought to be much simpler 

than that of Fick diffusivities [14,20]. 

Transport through a porous medium 

If the spatial variations of n-t, P and <p are low enough, one can always rewrite equations (3) and 

(4) in terms of differences over a distance S. This is a second order approximation of the 

differential equation [14]: 

ACfrx,) , AP ^ Ay . ^ v ( " j - " i ) ( 5 ) 

(Tf,x,)* Pi Vi j - i J kij 

Here 7; is the activity coefficient of component i and (ijX;) is taken at the average composition 

in the membrane, yi=RT/(Fzi) and P—RT/Vi where V; is the partial molar volume of i. For one-

dimensional problems equation (5) is usually a good approximation [14]. In equation (5) the 

diffusion coefficients Dy of equation (4) have been replaced by a transfer coefficient k^, which 

is defined as: 

k.. = 5 i (6) 
,J 6 

here S is the layer thickness over which diffusion takes place. In a porous body the layer thickness 

S has to be corrected for porosity (e) and tortuosity (r), yielding [21] 

kij = 3Ü (Va) 
'J ST 
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In this paper we are dealing with a membrane which we will regard as a single phase. Since it is 

difficult to define a mole fraction for the membrane we will replace the factor xm/k im by l/k' im. 

The mole fraction membrane is taken equal to zero, so those of the permeants sum up to unity. 

This effectively removes the porosity correction e from equation 7a, so that: 

k,, = ^ (7b) 
1J

 ST 

The coefficients in solution can be estimated from literature data. However, since almost no data 

are available from the literature for the membrane coefficients, these values must be determined 

experimentally. 

In addition to the diffusive mechanism described above, transport in porous media can involve 

a second mechanism [22,23,24]. This is viscous or convective flow and it is caused by a pressure 

difference. We will assume that the viscous flow is non-separative, so that each species has the 

same viscous velocity vv. The total mass transfer velocity is the sum of the diffusive and viscous 

velocities: 

V. = VV +U: (8) 

3.3 MATERIALS 

The membrane material used in this study is cellulose (Cuprophan), supplied by ENKA AG, FRG, 

both as flat sheets or hollow fibers with a dry membrane thickness of 8 /jm. The flat sheet 

membrane is used in a New Brunswick Scientific Megaflow TM-100 filtration module. This 

module has an effective membrane area of 6.45* 10"3 m2. Liquid can be circulated at both sides 

of the membrane. The hollow fiber membrane device (artificial kidney) contained fibers of the 

same cellulose as used in the flat sheet module. The membrane area of the hollow fiber device is 

0.77 m2. Before use the membranes are rinsed with demineralized water to remove preservatives. 

The water used in this study is demineralized. Methanol, ethanol and 2-propanol have been 

purchased from Merck, FRG, and are reagent grade. The temperature used throughout the study 

is 20 "C. 
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Figure 1. Experimental set-up for steady state experiments 
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Figure 2. Experimental set-up for batch experiments 
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The set-up for the experiments is shown in figures 1 and 2. It consists of two flow circuits on each 

side of the membrane. It can be operated in two different ways: 

(1) Both compartments with a continuous feed and an overflow (figure 1). The system then 

eventually reaches a steady state. 

(2) The batch mode, without feed to the compartments and without overflow (figure 2). In this 

mode a pressure difference can be applied across the membrane. 

In case (1) the composition in both compartments is measured. In case (2) the mass of one of the 

compartments is measured. 

Diffusion experiments with binary and ternary mixtures are performed with both a flat sheet and 

a hollow fiber membrane module. In these experiments there is no pressure difference across the 

membrane. 

Table 1. Initial circuit composition (in moles) in filtration experiments. On circuit '1 an excess 
pressure of 1 bar is applied 

circuit 1 circuit 2 

1 ) oleate 
2) sodium 
3) water 
4) 2-propanol 
5) chloride 

0.032 
0.032 
3.65 
1.51 
0 

0 
0.3 
7.5 
0 
0.3 

With the same equipment "filtration" experiments have also been performed. Here a pressure 

gradient is applied, so there is not only diffusive, but also viscous transport through the 

membrane. The mixtures used here are complex. One circuit contains a two phase system with soy 

bean oil as the organic phase and a sodium oleate solution in water/2-propanol as the water phase. 

In this dispersion the water phase is continuous between 20% and 65% water phase [25]. Since the 

membrane is hydrophilic, it will be entirely wetted by the water phase and the oil phase does not 

enter the membrane. A typical set of initial compositions is given in table 1. 

3.4 MEASUREMENT OF MEMBRANE FRICTION COEFFICIENTS 

The membrane friction coefficients k'im and k'jm are measured by steady state dialysis 

measurements. Two streams of a binary mixture (with different compositions) are circulated 

through the two compartments. Both compartments have a steady feed and the volumes are kept 
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constant. In the following it is assumed that there are no volume changes in the mixing process. 

The flow rates in the two circuits are such that they may be regarded as well mixed. 

The two circuits are fed at a constant rate (Q l in and Q2in) and the volume of both circuits is kept 

constant (figure 1). For compartment 1 the following volume balance can be written in case two 

components i and j are present: 

dVi 

dt - Q : lin 
X; ilin 1 " X i l i n 

ilout 
i-x=. 

Pi 
* Jl 

(9) 

Here V1 is the volume of compartment 1, pi and p-s are the densities of the two components, X i l in 

and X ; l the mass fraction of component i in the inflow of compartment 1 and in the compartment, 

respectively. J; and J, are the diffusion fluxes through the membrane and t represents time. With 

a constant composition of i and j in the feed, and a constant volume of the two compartments, the 

system will reach steady state after some time. Since Vj is kept constant (dVj/dt=0), equation (9) 

results in the following expression for Q lou t: 

Pi+(Pj-Pi)»Xilin 
•Qlin + ( V J i > * 

Pi*(prPi)*^ii 

A mass balance over compartment 1 gives 

PiPj 

pi+(prpi)*Xn 

(10) 

dt 
= Qlin "Qlout +PiJi +PjJj 

For the steady state this yields: 

-P}Ji = Qlin "Qlout + M 

(11) 

(12) 

Similar equations can be derived for compartment 2. From equation (12) and (10) (and their 

analogs for compartment 2) the outflows can be eliminated, finally resulting in 

- V j 
X i l - X i l i n 

<!lin 
P j J i (X i i - l ) 

X i l 

(13) 
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Pih 
^i2 _X i2in PjJjXi2 (14) 

X a - 1 

From equation (13) and (14) the diffusion fluxes Jj and Jj can be calculated when the inflow and 

steady state concentrations are known. The diffusion velocities are related to these fluxes by 

u. - A (15a) 
1 eA 

u. = A (15b) 
J «A 

in which A is the membrane area over which transport occurs and « the porosity of the membrane 

material. 

The pressure and electrical terms in equation (5) are zero in these experiments. The activity 

coefficients are obtained from existing data [26,27]. The binary diffusivities D^ (and therefrom 

kjj) are calculated from known values at infinite dilution Dĵ x—O) and Djj(Xj=l). This is done by 

linear interpolation [20]: 

D i j = D^Xi-0) * * D^x , - ! )* (16) 

Both the partial densities and diffusivities are weak functions of composition. The accuracy of the 

experiments, however, does not make it necessary to take this into account. When ky is estimated 

using equations (7b) and (16) the calculation of k'im and k ' jm is straightforward. 

3.5 RESULTS AND DISCUSSION 

Membrane friction coefficients 

Membrane friction coefficients have been determined for the systems ethanol-water-cellulose, 

methanol-water-cellulose and 2-propanol-water-cellulose. Parameters used in the calculations are 

given in table 2. 

Steady state concentrations are reached within about one hour in the two compartment module. 

The results of the measured membrane-solute transfer coefficients are given in figures 3 and 4. 
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Figure 3. Membrane-water friction coefficients for water-methanol, water-ethanol and water-2-

propanol mixtures versus water content in solution 

In figure 3 the water-membrane friction is given for all three liquid mixtures as a function of the 

water fraction in the liquid. It appears, that the friction between water and the cellulose 

membrane strongly depends on the water fraction, but is virtually independent of the nature of 

the second liquid component. This strong dependence of the water-membrane friction with 

composition may be due to binding of part of the water to the cellulose matrix. From figure 4 it 

appears that the methanol and ethanol membrane coefficients vary little with composition. The 

2-propanol-membrane coefficient shows the opposite trend as compared to water. From these 

results it can be concluded, that water diffuses more rapidly through the cellulose matrix than the 

alcohols at relatively high water contents in the system (xw>0.5), whereas at low water contents 

the alcohols diffuse more rapidly through the membrane. 
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Figure 4. Membrane-solute friction coefficients for water, methanol, ethanol and 2-propanol 

versus water content in solution 

Mass transport in a four component system 

We have also done batch experiments with ternary mixtures and zero pressure gradient. In these 

experiments only the mass of the two compartments was measured as a function of time. The 

initial compositions in the three experiments are listed in table 3. The results are shown in figure 

5 (flat membrane) and figure 6 (hollow fiber module). 

For the description of mass transfer with time, we proceeded as follows. With known values of 

the transfer coefficients and the compositions on both sides of the membrane the velocities 

through the membrane can be calculated (equation (5)). Each component is assumed to be 

transported with its average concentration inside the membrane. This transport will cause a change 
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in composition at both sides of the membrane. These changed compositions are used for the 

calculation of the new transport velocities and so on. In this manner the mass of each component 

in either compartment can be calculated as a function of time. 

Table 2. Parameters used for the calculation of k'-

membrane parameters 

porosity 0.65 [28] 
tortuosity 1.9 [11] 
thickness (dry) 8/im [28] 
thickness (swollen) 15/xm [29] 

densities (kg/ms) 

water 
methanol 
ethanol 
2-propanol 

MS-diffusivities in free solution (10~9 m2/s) 

1000 
790 
790 
785 

water/methanol 1.7 [31] 
water/ethanol 1.0 [30] 
water/2-propanol 1.3 [32] 
methanol/ethanol 2.15 [32] 

We have done these calculations using the transfer coefficients given in table 4, which were all 

taken from the previous experiments. The coefficients are related to the average composition in 

the membrane. In these batch experiments the average values do not change significantly with 

time, and the coefficients may be taken as constant. 

Table 3. Initial circuit compositions (in moles) for ternary diffusion experiments 

exp.l 

flat sheet module 

exp.2 

hollow fiber 

water 
MeOH 
EtOH 

left 
10 
0 
0 

right 
0 
2 
2 

left 
5 
1 
0 

right 
0 
2 
2 

left 
11 
0 
0 

right 
0 
2 
2 
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100 120 

t ime (min) 

Figure 5. Mass of circuit 2 in flat sheet diffusion experiments, A and D are measured values, the 

lines are simulations 

The measured and simulated changes agree well for the two experiments with a flat membrane 

(solid lines in figure 5). However, the fluxes calculated for the hollow fiber module are much too 

high. Correct results are predicted with an effective membrane area of 0.045 m2 instead of the 

actual fiber area of 0.77 m2. It was shown by residence time distribution measurements in the 

same dialysis modules [33], that these modules can be considered as a plug flow vessel with a "dead 

volume" corresponding to the fiber bundle volume. The outer area of the bundle of fibers is 0.032 

m2. All this indicates that within the time scale of the process studied here only the outer surface 

of the bundle of fibers is effective for mass transfer. 
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14 16 18 20 

t ime(min) 

Figure 6. Mass of circuit 2 in a hollow fiber diffusion experiment. 0 are measured values, line 1 

is a simulation with A=0.77 m2 and line 2 is a simulation with A=0.045 m2 

Table 4. Transport coefficients (m/s) used for the simulation of mass transport in four 

component diffusion experiments. (l)=water, (2)=methanol, (3)=ethanol and 

(m)=membrane. A:12=5.P*70"5, k13=3.4*J0's and k23=6.7*10'5 m/s 

exp.l exp.2 hollow fiber 

lm 
2m 

• 3m 

1.1*1(T5 

i.6*i<r6 

1.6*10"6 

6*10 
8*10 
8*10 

7.8*10"6 

2*10-7 

2*10 - 7 
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Mass transport in a complex system 

The origin of this study lies in effects observed in an even more complicated system. Initially we 

did not understand these effects; even with our current knowledge we can only explain them 

qualitatively. In these experiments, a solution of sodium oleate in a 2-propanol/water mixture is 

to be pumped through a membrane into a solution of sodium chloride in water. To attain this, a 

pressure difference of 1 bar is applied across the membrane. With both compartments filled with 

the sodium oleate/2-propanol/water solution this gives a trans-membrane velocity of 1.4*10-8 

m/s. We shall assume that this is the viscous flow velocity. 

In experiments with the sodium chloride solution at the permeate side, fluxes were obtained 2 to 

10 times larger than the flux based on viscous flow. Not only that, but they were initially directed 

against the pressure gradient (figures 7 and 8). This reverse flux could be increased by either 

reducing the NaCl concentration or increasing the 2-propanol concentration. 

30 
t ime(min) 

Figure 7. Measurements of the effect of NaCl concentration at the permeate side of the membrane 

on permeation behaviour 
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Figure 8. Measurement of the effect of 2-propanol concentration at the feed side of the membrane 

on permeation behaviour 

This very complex system can be analyzed using the same techniques as in the previous paragraph. 

However, now there are 5 permeating species in addition to the membrane (table 5). Also, we 

apply a pressure gradient. Because ionic species are involved, an electrical potential difference 

may be generated. So we have 5 unknown species velocities and an unknown electrical potential 

difference. There are 5 transport equations, and the sixth is due to the constraint that there is no 

net charge transfer across the membrane. 

Again we have made simulations of the batch experiments using the same technique as in the 

former paragraph. A large set of transport coefficients is required (table 5). The greater part of 

these coefficients are only known within an order of magnitude. However, only the coefficients 

belonging to water, 2-propanol and the membrane are important for the final result. They can be 

estimated from figure 4. As thermodynamic data for such a system are non-existent we have 
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chosen to ignore variations of the activity coefficients. Although it was shown in the former 

paragraph that for diffusive transport in a fiber bundle only the outer fibers are important, we 

used an effective surface area of 0.77 m2 here. Since viscous flow occurs, the bundle of fibers will 

be more open, and flow will occur in between. 

Table 5. Estimated transfer coefficients for a multicomponent mixture. (l)=oleate, (2)=sodium, 

(3)=water, (4)=2-propanol, (5)=chloride and (m)=membrane 

k12=5*l(T6 

k2S=5*l<r6 

kj4=4.5*10-6 

k45=3*10"5 

k'5m=l*10-6 

k13=2*l(T5 

k24=3*10"5 

k,6=7*10-5 

k'4m=l-5*10-6 

k14=3*l(T5 

k25=5*l(T6 

k'3m='-5*10-6 

k15=5*10-6 =5*10-
=i*io~6 

AM2(g) 

DU -

40-

-

20-

0 
-

70-

3 

i 

]//^ 
' " l 

1:1 M NaCl 
2:2M NaCl 
3:5M NaCl 

i 

10 20 30 

t ime (min) 

Figure 9a. Simulations of the effect of NaCl concentration on the mass of the permeate circuit 
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Figure 9b. Simulations of the effect of NaCl concentration on flux 

8 10 

t ime (min) 

Figure 10a. The effect of 2-propanol concentration on the mass of the permeate circuit 

(simulations) 
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Figure 10b. The effect of 2-propanol concentration on flux (simulations) 

Results of such simulations are shown in figures 9 and 10. They indeed show the reverse fluxes 

found experimentally and also the effects of the NaCl and 2-propanol concentration are predicted. 

However, the fluxes thus predicted are roughly 3 times higher than those measured. With the 

assumptions made, this deviation can indeed occur. Another possible explanation is precipitation 

of sodium oleate onto or inside the membrane at high NaCl concentrations. This precipitation was 

observed in separate experiments, and will result in a reduced membrane area over which 

transport can take place. 

The simulations yield transport velocities of all components separately (figure 11 ). From these we 

see that there are three main contributions to the overall flow: 

(1) the viscous flow, which dominates for long times 

(2) the transport of 2-propanol, which is in the direction expected (going both down the pressure 

and the concentration gradient) 

(3) the transport of water. 

Water is initially transported with a high velocity against the pressure gradient into the 2-propanol 

solution. The reversed mass flow is explained by this phenomenon. When sufficiently 2-propanol 

has been transferred its direction also reverses. The electrical and pressure terms in the diffusion 
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equation were found not to be important. 

Vj(1(r6m/s) 

1: oleate 
2: sodium 

3: water 
4: 2-propanol 
5: chloride 
6: viscous flow 

"i 1 1 — 

8 10 
time (min) 

Figure 1 la. Transport velocities of all components 
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Figure l ib . Transport fluxes of all components 
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3.6 CONCLUSIONS 

In this study a difference approximation of the generalized Maxwell-Stefan (GMS) equation is 

used to describe transport through homogeneous cellulose dialysis membranes. Solute-membrane 

friction is determined for water, methanol, ethanol and 2-propanol. It appears, that the friction 

between water and the cellulose matrix strongly depends on the water concentration. At low water 

contents water is strongly retarded, probably by binding of water to the membrane matrix. At 

higher water contents the transfer coefficients for water are two decades larger. Using these 

measured friction coefficients it is possible to describe transport of a ternary liquid mixture 

through a flat sheet membrane quantitatively. However, for a hollow fiber device containing 

fibers of the same material the calculated mass flux through the membrane is much faster than 

the observed transport. It appears that the surface area over which diffusion occurs is almost 

identical to the outer surface of the fiber bundle. In a complex system containing water, 2-

propanol and sodium oleate at the feed side and a NaCl solution at the permeate side of the 

membrane, initially a flux against the pressure gradient is observed (i.e. from permeate to feed). 

After some time the flux changes direction and becomes 2 to 10 times larger than the permeation 

rate would be at the same pressure. These effects can be explained qualitatively by the difference 

approximation of the GMS equations. 
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HYDROPHOBICITY MEASUREMENTS OF MF AND UF MEMBRANES 

SUMMARY 

A method for the determination of the hydrophobicity of membrane materials is developed. The advantage of this 

method over existing methods is that it is not influenced by the presence of the pores. A piece of the membrane material 

is submerged horizontally in a liquid with surface tension -rL. Hydrophobicity is expressed in terms of -id, the surface 

tension at which an air bubble brought into contact with the top surface of the membrane has a 50% chance of detaching 

from the surface. Values of -rd are expected to be 2-4 mN/m higher than critical surface tension (-yc) values found in 

the literature. For PP, PTFE and PDMS membranes, a good agreement was found between 7 d and nc values. PVDF, 

PSf and PES membranes appeared to be more hydrophilic than was expected on the basis of the literature ic values for 

the polymers. Using XPS, constituents that are not present in the pure polymer have been found in the surface of some 

membranes. These constituents and the production techniques are shown to influence the hydrophobicity of the 

membranes investigated. 
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The Netherlands 
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4.1 INTRODUCTION 

In many membrane processes, the choice of the membrane is based on the pore size of the 

material. However, for the separation of organic molecules from aqueous solutions in membrane 

distillation processes [1,2], for the separation of dispersions [3,4] or for explaining fouling 

phenomena [5,6], this property does not suffice. Interactions of the solvent and solutes with the 

membrane material will be an important parameter in these processes; therefore, in addition to 

the pore size, the hydrophobicity of the membrane material needs to be known. 

Hydrophobicity of a solid material is usually expressed in terms of a contact angle (9) or a critical 

surface tension. The most widely used method for the determination of the contact angle of a 

liquid (with surface tension i(L) on a surface, is a direct measurement of 9 using a sessile drop of 

the liquid on the surface. Because of surface inhomogenity, either an advancing, receding or 

equilibrium contact angle can be determined [7]. The critical surface tension of a solid (7C) is 

defined as the surface tension at which the contact angle of a liquid just vanishes on that solid 

[8,9], on 

% = lim(#-'0)TL ( ]) 

Usually, 9 is measured using different liquids or mixtures of two liquids having different surface 

tensions. If cos0 is plotted versus the surface tension of the liquid (Zisman plot), extrapolation to 

cos0=l gives the critical surface tension i c [9]. 

Figure 1. Two different metastable configurations of a liquid drop having the same contact angle 

9 on a rough surface 

Conditions for correct measurements of 9 are a homogeneous and ideally smooth surface. Because 

of surface roughness, the observed contact angle may differ significantly from the real contact 
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angle. This is shown schematically in figure 1. The only general method to predict the effect of 

surface roughness on contact angle measurements is based on Wenzel's theory [10]. This theory 

gives a relationship between the advancing contact angle on the smooth surface (0E) and the 

advancing contact angle on a rough surface (9A): 

cos0A = r,cos0E (2) 

in which the surface roughness is quantified by r,, the roughness factor, defined as the ratio of 

the actual to the apparent area of the surface. Several other models have been proposed, however, 

their use is restricted to special types of surface roughness [11,12,13]. The surface roughness of 

membrane materials is caused by the presence of pores and the roughness of the polymer material, 

the latter often being in the order of several microns [2]. 

Beside surface roughness, capillary forces also play an important role for the determination of the 

hydrophobicity of a membrane material. Due to capillary forces, a droplet of liquid with "i\>lc 

can penetrate into a hydrophobic membrane, even though it does not spread on a non-porous sheet 

of the same material. Using the Laplace equation, a correction for these forces in cylindrical pores 

can be made. Franken et al. [1] introduced a pore geometry coefficient to correct for non-

cylindrical pores. 

A method for the determination of the hydrophobicity of membrane materials should preferably 

be independent of the presence of pores. For this purpose, several existing methods can be taken 

into consideration. As mentioned before, methods for the direct determination of contact angles 

are sensitive to surface roughness. Therefore, these methods are of limited interest for the 

determination of the hydrophobicity of membrane materials. Two methods have been developed 

specifically to determine the hydrophobicity of porous or inhomogeneous materials. Of practical 

interest is the penetrating drop method [1], although this method is restricted to microporous 

membranes. Distribution of material over two aqueous polymer phases has proven to be very 

useful for the determination of hydrophobicity of bacterial material [14,15]. An advantage of this 

method is that pore effects can be avoided. This method could perhaps be used for homogeneous 

membranes, but must obviously be excluded for non-woven supported and composite membranes, 

unless a complete separation of the skin layer from the backing material can be achieved. 

In this study, a method is developed for the determination of the hydrophobicity of membrane 

materials. This method is not influenced by the presence of pores, and applies to homogeneous 

as well as to composite membranes and over a broad range of pore sizes. 

55 



chapter 4 

4.2 METHODS 

1. Sticking bubble technique 

Bubble adhesion measurements are carried out as follows. A piece of membrane material (about 

1 cm2) is placed horizontally at the bottom of a beaker containing a liquid with surface tension 

TfL. In order to vary fL, water-methanol mixtures are used, giving a range in iL from 23 to 72 

mN/m. Using a 10 /il syringe (Hamilton Co.) with a flat ended needle (horizontal), air bubbles are 

brought into contact with the surface. The smallest distance between the open end of the needle 

and the membrane surface is about 0.5 times the bubble diameter. At high values of 7L, air 

bubbles will stick easily to the surface. When the surface tension of the liquid decreases, the 

adhesion of the air bubbles becomes weaker. Below a certain value of 7L, bubbles will not adhere 

at all because the liquid wets the surface completely (figure 2). The surface tension at detachment 

(l(d) is determined by plotting the percentage of bubbles which sticks versus iL; a sudden 

transition is observed at id. 

W//A 

¥>Y d YL*Yd YL<Yd 

Figure 2. Three situations of an air bubble brought into contact with a surface 

2. X-ray photoelectron spectroscopic measurements 

Surface analysis on membranes by X-ray photoelectron spectroscopy was performed at AKZO 

(Arnhem, The Netherlands) using a Vacuum Generators Scientific MA 500 instrument. The 

excitation X-ray source was MgKa (excitation energy 1253.6 eV). Sample orientation was chosen 

normal to the electron energy analyzer, resulting in an "analysis depth" of approximately 5 nm, 

and also in a skimming position, decreasing the depth of analysis to approximately 1 nm. 
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4.3 MATERIALS 

In this study the hydrophobicity of several hydrophobic membrane materials has been measured. 

All membranes used are summarized in table 1. Data are according to the suppliers; most of the 

membranes are commercially available. 

Table 1. Membranes used for the determination of id 

Material 

PTFE 
PVDF 
PVDF 
PVDF 
Polypropylene (PP) 
Polysulfone (PSf) 
Polysulfone (PSf) 
Polysulfone (PSf) 
Polysulfone (PSf) 
Polysulfone (PSf) 
Polyethersulfone (PES) 
PDMS 

Code 

IRIS 3065 
Accurel 
GR 81 PP 
GR 61 PP 
GR51 PP 
GR 60 PP 
S-30 
Omega 
*) 

Manufacturer 

Gore 
Millipore 
Millipore 
Rhone-Poulenc 
ENKA 
DDS 
DDS 
DDS 
DDS 
Dorr Oliver 
Filtron 
-

Pore size/cut off 

0.2 pm 
0.14 ftm 
0.2 inn 
10,000 D 
0.2 urn 
6,000 D 
25,000 D 
50,000 D 
25,000 D 
30,000 D 
100,000 D 

*) Dense film made of PDMS obtained from Dow Chemical 

Some of the membranes mentioned in table 1 are microporous homogeneous membranes. These 

membranes are stored as dry sheets and do not have to be cleaned before use. However, most of 

the ultrafiltration membranes are impregnated with a preservative liquid (usually containing 

glycol) that has to be removed before use. The cleaning procedure used in this study is as follows. 

First, a sheet of the membrane material (65 cm2) is washed with a detergent solution (1% SDS). 

Next, 20 1 doubly distilled water is filtered through the membrane. Then the material is dried at 

40 °C, and is ready for use. 

All experiments are carried out at 20 °C. The water used is doubly distilled, and the methanol 

(analytical grade) was obtained from Merck (F.R.G.). Before each experiment the water-methanol 

mixtures are freshly prepared. Udel polysulfone is obtained from Union Carbide Corp. (CU 4750) 

and polyethersulfone from ICI (4800 G). 

4.4 THEORY 
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We consider the simple case of a bubble with spherical contour attached to the surface with 

contact angle 02, as shown in figure 3. At the point of detachment, the vertical component of the 

adhesion forces exactly compensates the gravitational forces: 

VApg = 2irri(dsin02 (3) 

where V is the air bubble volume, g the acceleration due to gravity, Ap the difference between 

liquid and air density, r the radius of the contact plane and ~td the surface tension of the liquid 

at the point of detachment. The radius of the contact plane (r) is given by: 

r = Rsin02 (4) 

Figure 3. The air bubble-liquid-membrane system in the case of an air bubble with spherical 

contour 

Since part of the sphere is only virtually present, the volume of the bubble (V) is: 

V =7rRs(^+cos02-i.cos302) (5) 

Combining equations (3), (4) and (5) gives the surface tension (ifd) of the liquid at which the 

bubble will just detach: 

Td 

ApgR2(r+cos02-i.cos302) 

2sin202 

(6) 
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From equation (6) 82 can be calculated. 

Figure 4. The air bubble-liquid-membrane system in the case of a deformed air bubble 

Since air bubbles attached to a surface tend to deform (to an extent depending on their size), the 

approximation of a spherical bubble is not entirely correct. The curvature at the bottom of the 

bubble is less than for the spherical case, and the contact angle with the surface changes from 02 

to 61 while r remains the same. For this case (fig. 4) one can write [16]: 

VApg = 2irr-yd(sin01-(^)sin02) (7) 

where b is the radius of curvature at the top of the bubble. In the case where R«b, equation (7) 

simplifies to: 

VApg = 2jrrTfd(sin0j-sin02) (8) 

It should be noted, that R»b does not imply that the bubble is spherical. The deformation at the 

top of the bubble can be small with respect to the deformation at the bottom. It was also shown 

in ref. [16], that this approximation gives a good accordance between experimental and theoretical 

results for 02 smaller than 30°. Combining equations (5) and (8) gives the following expression for 

the calculation of 6^ 

ApgR2( |+cos«2- lcos302) 

2Tdsinfl2 
sin0, 

(9) 
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4.5 RESULTS AND DISCUSSION 

Exact determination of the surface tension at which there are just no bubbles that stick to the 

surface proved to be difficult. This might be caused by inhomogenities of the surface. Therefore, 

7d is (arbitrarily) chosen as the surface tension at which 50% of the bubbles brought into contact 

with the surface adheres. Graphically, this point can be determined as shown for the 0.2 pm 

polypropylene membrane in figure 5. Each point of this curve is determined by bringing 20 air 

bubbles into contact with the membrane surface. The standard deviation in the points around the 

50% value is 4%, resulting in an accuracy of 0.2 mN/m in the 50% value. 

As the air bubble size detaching from the needle end decreases with decreasing surface tension 

of the liquid, calculations have to be carried out with a different bubble radius R (and density pL) 

for each liquid mixture. In table 2 the results are summarized. The values of 62 and 61 are 

calculated from equations (6) and (9), respectively. Values for -yc are obtained from ref. [17] and 

were measured on a flat non-porous sheet of the pure polymer. 

% sticking bubbles 
100 n 

30 32 
YL(mN/m ) 

Figure 5. Percentage of air bubbles brought into contact with the surface of a 0.2 urn PP 

membrane that becomes attached, versus the surface tension of the liquid 

Plotting a number of contact angle data given by Fowkes [18] for water-butanol droplets on 

graphite (figure 6) reveals that the difference in 7L between #=25° and 0=0° is of the order of 1 -2 

mN/m. Since ic is defined at 0=0° it is clear that values of id should be 1-2 mN/m higher than 

7C values. Together with the systematic error introduced by taking the 50% adhesion value instead 
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of 0% (which is also of the order of 1-2 mN/m), it can be concluded that 7d values obtained with 

this method are expected to be 2-4 mN/m higher than "j values found in literature. 

60 r 80 

7L (mN/m) 

Figure 6. Contact angle of droplets of water-butanol mixtures on graphite. Data are from ref. 

[18] 

Table 2. Results from hydrophobicity measurements for different hydrophobic membranes 

membrane 

PP 
PVDF 0.2 /im 
PVDF 0.14 /im 
PVDF IRIS 3065 
PTFE 
PSf GR51 PP 
PSf GR 61 PP 
PSf GR 81 PP 
PSf GR 60 PP 
PSf S-30 
PES 
PDMS 

P L , 
kg/m3 

853 
924 
922 
941 
805 
990 
1000 
973 
1000 
992 
1000 
807 

R 
10-* m 

4.7 
5.2 
5.1 
5.3 
4.6 
5.9 
-
5.6 
-
6.0 
-
4.6 

Td 
mN/m 

29.5 
42.4 
41.3 
47.0 
24.2 
65.0 
>72 
56.3 
>72 
66.8 
>72 
24.5 

1c 
mN/m 

29-34 
25 
25 
25 
16-22 
41 
41 
41 
41 
41 
* 
24.2 

h 
° 

11.9 
11.2 
11.3 
11.1 
12.3 
10.7 
-
10.9 
-
10.7 
-
12.2 

«l 
O 

24.3 
22.9 
23.0 
22.6 
25.2 
21.9 
-
22.2 
-
21.8 
-
25.1 

* no value found in literature;^ on bulk material 56.3 mN/m 
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Table 2 shows that the results obtained for PP, PDMS and PTFE membranes show a fairly good 

agreement between 7d and *ic values. However, the other membrane materials show measured rid 

values more than 2-4 mN/m above the 7C values reported in the literature. We now discuss 

possible reasons for these discrepancies. 

PVDF membranes 

XPS measurements performed on the PVDF IRIS 3065 ultrafiltration membrane clearly show the 

presence of oxygen and nitrogen in the top layer of the membrane (table 3). From these results 

it may be concluded that, at least, the IRIS 3065 PVDF membrane surface has some constituents 

that may make the membrane more hydrophilic than the pure polymer. 

Table 3. Atomic ratios found by XPS measurements on the PVDF IRIS 3065 ultrafiltration 

membrane 

depth of analysis 
atom theor. 5 nm 1 nm 

60.6 
26.1 
7.9 
53 

Microporous PVDF membranes (obtained from ENKA AG) have been investigated by Franken 

[1] using the penetrating drop method. He found a value for -yp of about 38 mN/m, i.e. 13 mN/m 

above the "ic value and in agreement with our results. The same method applied to polypropylene 

membranes gives Tfp»29 mN/m, in good agreement with the <yc value (29-34 mN/m) and our 

results. It might therefore be concluded from these results that the high values found for PVDF 

membranes, as compared to bulk PVDF, are an inherent property of the membrane surface, rather 

than an artifact introduced by the method. 

Polysulfone membranes 

Measurements were carried out on pure bulk PSf and PES (grains and sheets). Values for ird of 

48.8 and 56.3 mN/m, respectively, were obtained. The -yc value reported for PSf is 41 mN/m. This 

value indicates that, on somewhat more hydrophilic materials, the deviation between -yd and ic 

might be larger (although only one reference for -yc data was found). The value found for the 

polysulfone membranes is more than 15 mN/m above the ic value found in the literature. For both 

PSf and PES we found 7d on membranes more than 7 mN/m higher than the value obtained by 

62 

c 
F 
O 
N 

50 
50 
0 
0 

57.6 
29.1 
7.7 
5.6 
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us on the pure polymer. Possible explanations for this phenomenon are i) constituents that are 

present in the membrane material but not in the pure polymer and ii) conformational changes 

induced by the production method. 

i)From XPS measurements carried out on the DDS PSf membranes (table 4), it can be concluded 

that the GR 51,61 and 81 membranes seem to be made of the same material (Udel polysulfone), 

which was shown before and confirmed by the manufacturer [19]. Oxygen and nitrogen are 

obviously more abundant than would be expected on the basis of atomic ratios in the pure 

polymer. It therefore seems plausible that the membrane surface is more hydrophilic, although it 

is impossible to quantify this effect. The nitrogen and oxygen may come from dimethylformamide 

(DMF) used as a solvent in the production [20]. 

Table 4. Atomic ratios as determined by XPS (1 nm) for the DDS GR 51, 61 and 81 PSf 

membrane; the theoretical ratio is given for Udel Polysulfone and Victrex 

Polyethersulfone 

atom theor. GR 51 GR61 GR 81 
Udel Victrex 

c 
o 
s 
N 

84.5 
12.5 
3.0 
0 

75.0 
18.75 
6.25 
0 

82.5 
13.8 
3.0 
0.7 

81.6 
14.9 
2.3 
1.1 

82.6 
13.2 
2.2 
2.0 

ii)Conditions during production used for polysulfone membranes (made by phase inversion 

techniques) may also influence the value of ~id. We checked this as follows. Membranes of the pure 

Udel polysulfone or polyethersulfone were made by spreading a viscous solution of PSf in DMF 

on a polypropylene sheet. This sheet was submerged in water and rinsed with water. It was found, 

that, by varying polymer concentrations and the time of exposure to air before immersion, values 

for i d varied between 49 and 72 mN/m for PSf and between 56 and 72 mN/m for PES. This is 

probably due to surface-induced conformational changes of the polymer, which are "frozen in" 

at a particular stage of the phase inversion process. This kind of induced orientation of polymers 

has been reported by Ray et al. [21] and Lee [22]. It can therefore be concluded that, eventhough 

membranes are made of the same polymeric material, hydrophobicity may vary significantly with 

conditions during production. 

The effect of surface roughness can be estimated using equation (6) and (9). The effect of a rough 

surface will be expressed in a longer contact line than the same bubble will have on a flat surface. 
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Therefore 02 and 01 have been calculated for a flat surface for which the contact line is doubled. 

The results for the two extremes (PTFE and PSf) are given in table 5. 

Table 5. Calculated effect of surface roughnesses on 62 and 6^ the effect of roughness is 

introduced by multiplying the length of the contact line on the flat surface by an 

(arbitrary) factor of 2 

membrane 

PTFE 
PSf GR 51 PP 

Id 

24.2 
65.0 

rough 

8.6 
7.6 

h 

17.5 
15.3 

smooth 

12.3 25.2 
10.7 21.9 

Obviously, on a rough surface, the values for the contact angles are smaller than those on a smooth 

surface. However, the lower the contact angle at the point of detachment, the closer the value of 

T(d will approach the value of 7C, as can be seen in figure 6. From this it may be concluded that 

values of »>d obtained on a rough surface are even closer to the values of ic than values obtained 

on a smooth surface. Therefore, id measured on membranes will differ less than 2-4 mN/m from 

7C values measured on smooth surfaces. 

4.6 CONCLUSIONS 

In this study a method has been developed to measure hydrophobicity of porous materials, such 

as membranes, which is not influenced by the presence of the pores. Hydrophobicity is expressed 

in terms of Tfd, the surface tension at which an air bubble has a 50% chance of detaching from the 

surface. Values of id may be compared with 7C values found in literature, although the present 

method gives values that are expected to be 2-4 mN/m higher. By means of XPS it has been found 

that some membrane surfaces are representative of the pure polymer, whereas others have surface 

atomic compositions which differ from those of the pure polymer, perhaps due to trace 

contaminants. This may be the reason why some membranes are more hydrophilic than might be 

expected on the basis of the chemistry of the pure polymer. It was also found that, for PSf 

membranes, the conditions during production have a large effect on the hydrophobicity of the 

membrane surface. 
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SURFACTANT-INDUCED WETTING TRANSITIONS: ROLE OF 

SURFACE HYDROPHOBICITY AND EFFECT ON OIL PERMEABILITY 

OF ULTRAFILTRATION MEMBRANES 

SUMMARY 

In this study the effect of surface hydrophobicity on adsorption of sodium oleate from a mixture of water and 2-propanol 

is investigated as well as consequences of this adsorption for wettability by oil or water/2-propanol, respectively. The 

surface hydrophobicity is varied by the use of compatible mixtures of a hydrophobic (polystyrene) and a more hydrophilic 

polymer (polyamide or poly(methylmethacrylate)). It appears that for the adsorption onto these surfaces three regions 

can be distinguished. In the case of a hydrophobic surface adsorption of the surfactant is due to van der Waals and/or 

hydrophobic interactions between the apolar tails of the surfactant and the surface. Upon an increase of the surface 

hydrophilicity a large region in which adsorption takes place is followed by a very narrow region of 0.5 mN/m in which 

no adsorption is found. A further increase in surface hydrophilicity results in an almost stepwise increase of the amount 

adsorbed, now due to polar interactions between the polar head groups of the surfactant and the surface, possibly 

followed by the adsorption of a second layer. The adsorption behavior in the three regions can be explained in a semi

quantitative way, considering interfacial free energies between different components present in the system. 

This result can be used in order to design an oil-selective ultrafiltration membrane for the separation of a system of two 

immiscible liquids (i.e., o/w or w/o emulsions). It was found that only in the region where no surfactant is adsorbed the 

surface is preferentially wetted by oil and that only then is an UF membrane is entirely permeable to oil and not to the 

aqueous phase. 

J.T.F. Keurentjes, MA. Cohen Stuart , D. Brinkman, C.G.P.H. Schroën and K. van 't Riet 

Wageningen Agricultural University, Dept. of Physical and Colloid Chemistry, Dreijenplein 6, 6703 HB Wageningen, 

The Netherlands 

This chapter has been published in Colloids and Surfaces 51 (1990) 189-205 
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5.1 INTRODUCTION 

The presence of amphiphilic molecules in a solution usually affects the hydrophobicity (or 

wettability) of a surface in contact with this solution [1-3]. In flotation and detergency this effect 

is used to improve the efficiency of the process. In flotation a surfactant that adsorbs 

preferentially onto one of the minerals to be separated is added which makes the surface of this 

mineral more hydrophobic. Air bubbles will preferentially adhere to the more hydrophobic 

mineral grains, and a separation can be achieved [4-6]. In detergency (washing) adsorption of 

surfactants with their hydrophobic part onto a fibrous substrate will increase the wettability for 

water. Subsequently water can penetrate into the pores, thus removing oily materials from the 

pores by a combined displacement and solubilisation mechanism [7]. 

Usually, the effect of surfactant concentration on the wetting of a solid substrate is studied [8,9], 

and little attention is paid to the surface energy of the solid as a parameter in adsorption and 

wettability of solids. Polymer surfaces may consist of materials with a broad range of surface 

energies varying from low energy solids like PTFE to rather high energy solids like cellulose, and 

both dispersive (apolar) and polar or electrostatic interactions may play a role in adsorption and 

wetting phenomena on those surfaces. 

Adsorption and wetting phenomena will play an important role in membrane separation processes. 

The permeability of hydrophobic membranes for water can be improved by the presence of a 

surfactant [10] or an alcohol [11]. Two-phase systems can be separated using two membranes of 

opposite polarity (of which an example is given in figure 1). In these systems the polar phase 

(usually containing water) is allowed to permeate through the hydrophilic membrane, whereas the 

apolar part (usually containing an organic liquid) permeates through the hydrophobic membrane. 

In this way, either water-in-oil or oil-in-water emulsions can be separated [12,13]. 

To alter the membrane surface so as to obtain specified wettability characteristics several 

modification methods exist. Firstly, surfaces can be treated by radiation induced grafting [14]. 

However, heavily grafted membranes often exhibit poor mechanical properties compared to 

ungrafted membranes [IS]. Surfaces can also be treated with plasmas, resulting in a coupling of 

functional groups to the polymer substrate. In addition, several deposition methods have been 

proposed. Dip-coating [16,17], deposition by plasma polymerization [18,19] and interfacial 

polymerization [20] are frequently used methods. A particularly practical deposition method was 

proposed by Franken [21 ], who simply modified (hydrophobic) membranes by passing a suitable 

(wafer soluble) polymer solution over them. After drying, the membrane has the wettability 
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characteristics of the deposited polymer. 

In this study the effect of the surface hydrophobicity on the adsorption of a surfactant (sodium 

oleate) from solution is investigated. Also, the effect of hydrophobicity on wettability by a two-

phase system, namely, an emulsion consisting of soy bean oil and an aqueous solution of sodium 

oleate and 2-propanol is investigated. In order to vary the hydrophobicity we used a modification 

of Franken's method: mixtures of two polymers are deposited on the membranes by passing 

suitable solutions through them [22]. Finally, we studied the oil selectivity of the modified 

membranes in the two-phase system described below. 

hydrophobic membrane 

NaOH 
F FA rich oil 2-propanol 

IV y v 
soaps 

W.<i:».'>.'.:'ffl water 
1 2-propanol 

FT̂ fl fatty acids hydrophilic membrane 

Figure 1. Two-membrane system for the removal of fatty acids from oil f 13J 

5.2 MATERIALS 

For hydrophobicity measurements, as well as wetting experiments, films consisting of mixtures 

of two compatible polymers have been prepared. The polymers used are summarized in table 1. 

Soy bean oil (triesters of glycerol and fatty acids (of which more than 95% are C16 and C18)) of 

edible quality was supplied by Rhenus Inc. (The Netherlands). All other chemicals are purchased 

from Merck (F.R.G.) and were reagent grade. The water used was doubly distilled, and the 

temperature used throughout the study is 20°C. The balance used for surface tension 

measurements was a Mettler AE 50-S analytical balance. 

Wetting behavior and separation characteristics of the different membranes used in this study 

were tested with an emulsion containing soy bean oil as the oil phase, and water containing 2-
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propanol and sodium oleate (the sodium salt of cis-9-octadecenoic acid) as the water phase. The 

water/2-propanol/sodium oleate ratio in the water phase was 6.5:3:1 (v/v/v). The ratio between 

the oil and the water phase in the dispersion was 4:3 (v/v). In a previous paper [13] it was shown, 

that in this dispersion the oil phase as well as the water phase are present as a continuous phase 

at water phase contents between 20% and 65%. The transition into a discrete water-in-oil 

dispersion occurs at 20% water phase. The interfacial tension between the two phases was 

measured by the spinning drop technique and was found to be 0.27 mN/m. This is a relatively low 

value but it did not result in the formation of a microemulsion [13]. 

Table 1. Polymers used to produce surfaces with a range in hydrophobicity 

Polymer MW Manufacturer 

Polyamide (PA) 42,000 
Polystyrene (PS) 150,000 
Poly(methylmethacrylate)(PMMA) unknown 

Aldrich Chem. Corp. Inc. 
Aldrich Chem. Corp. Inc. 
Aldrich Chem. Corp. Inc. 

Several commercially available membranes have been tested for their capability to separate the 

emulsion. Of those membranes, the 0.1 /an polypropylene has also been used as support material 

for applied coatings. The membranes used in this study are summarized in table 2. 

Table 2. Membranes used; all membranes are commercially available 

Material 

Polypropylene (PP) 
Polypropylene (PP) 
PVDF 
PVDF 
PTFE 
Polysulfone (PSf) 

Code 

Accurel 
Accurel 

IRIS 3065 

Pore size/cut off 

0.2 um 
0.1 /xm 
0.2/«n 
10,000 D 
0.2 pm 
30,000 D 

Manufacturer 

ENKA 
ENKA 
Millipore 
Rhone Poulenc 
Gore 
Amicon 

5.3 METHODS 

Hydrophobicity 

A useful measure of the wettability of a surface is the critical surface tension ic, i.e. the surface 

tension of a liquid that is just capable of giving complete wetting [23]. A good approximation of 

1C iS the surface tension id at which air bubble detachment takes place [24]. Since surfaces of low 
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1d are hydrophobic, whereas a high value of id indicates a hydrophilic surface, we can use 7d as 

a quantitative measure of hydrophobicity. 

Measurements of id were carried out using the sticking bubble technique [24]. A piece of 

membrane material or polymer film (about 1 cm2) is placed horizontally at the bottom of a beaker 

containing a liquid with surface tension 7L. Water/methanol mixtures used gave a range in iL of 

23 to 72 mN/m. Using a 10 /il syringe with a flat ended needle (horizontal), air bubbles were 

brought into contact with the membrane surface. The surface tension at which the transition from 

adhesion to detachment takes place (id) has been shown to be a measure for the surface 

hydrophobicity comparable to the Zisman critical surface tension (ic) [23]. 

Adsorption measurements 

Adsorption of surfactant on a ground polymer material was measured from pure water as well as 

from water/isopropanol mixtures. Films of the different polymer mixtures were prepared by 

evaporation of the solvent from a 40 g/1 solution in chloroform. The polymer films were then 

frozen in liquid nitrogen and ground in a Retsch mill with a slit size of 0.5 mm. The specific 

surface area of each sample was determined by methylene blue adsorption. Adsorption of sodium 

oleate onto the surface was measured by the usual depletion method starting from a 3.15*10-2 

mol/1 solution in water or water/2-propanol solution (6.5:3 v/v). Oleate concentrations were 

determined by adding 9 ml of 2.5 M HCl to a 1 ml sample, extracting the oleic acid thus formed 

into hexane, and the concentrations were determined on a Carlo Erba gas Chromatograph with a 

5 m CP-Sil 5 CB (Chrompack, The Netherlands) capillary column with a cold on-column injection 

system using caproic acid as an internal standard. 

Contact angle measurements 

Advancing contact angles of both the oil and water phase on different polymer surfaces were 

determined. For this purpose the emulsion was separated into its two bulk phases by 

centrifugation. Glass Wilhelmy plates were dip-coated in 40 g/1 polymer solutions in chloroform 

and air-dried. The surface tension of both the water and the oil phase is determined using these 

plates (figure 2a). Next, the plates were prewetted in one phase, resulting in a thin liquid film on 

the polymer surface. Thereafter, the force acting on the Wilhelmy plate was measured when the 

plate was brought into contact with the surface of the other phase. This is shown schematically 

in figure 2b. By measuring the forces Fj and F2 for a particular phase (1) on a Wilhelmy plate 

prewetted with the same phase (1) and with the other phase (2), respectively, one finds the 
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advancing contact angle 82 for phase 2 from cosS2=F2/F1. The surface tension ix of phase 1 was 

obtained as usual from F1=L71, where L is the length of the contact line. By measuring both the 

contact angle of the oil phase on water prewetted plates (0o) and of the water phase on oil 

prewetted plates (0W) and taking the difference between,the two, one has a measure for the 

capability of one phase to remove the other phase from the surface. 

1 ^ ' • • . '' ' , 

phase © 

\ /-
\ ' 

phase © 

phase 

Figure 2. Measurement of the surface tension of a liquid and the three phase advancing contact 

angle 

Coating experiments 

Membranes were coated using a flat sheet membrane test module (Megaflow TM 100, New 

Brunswick Scientific Co. Inc., USA). A polymer solution (40 g/1) in chloroform was applied as a 

feed solution at 100 ml/min, at a starting static pressure of 0.3* 105 N/m2. Under these conditions 

only a part of the polymer solution permeated and the pores and the surface were gradually filled 

with polymer, which resulted in an increase of the pressure as a result of an increase in the 

membrane resistance. At a pressure of 1.0*106 N/m2 circulation of the chloroform solution was 

stopped and the flow circuit was rinsed with oil to remove the chloroform [22]. 

Membrane selectivity 
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To investigate the selectivity of commercially available membranes and coated membranes, the 

emulsion described above was led over the membrane applying a trans-membrane pressure of 10 

N/m2. The permeate was analysed for the presence of glycerides and oleate by TLC using silicagel 

60 F254 TLC sheets purchased from Merck (F.R.G.). 

5.4 RESULTS 

Adsorption of sodium oleate 

Mixtures of polystyrene (PS) with polyamide (PA) or with poly(methylmethacrylate) (PMMA), 

were used to create surfaces varying in hydrophobicity. The results are presented as 7d 

(determined by bubble detachment) versus mixture composition in figure 3 and 4 for PS/PA and 

PS/PMMA mixtures, respectively. These curves show that 7d does not depend linearly on the 

polymer composition of the mixture. 

80 100 
%PA 

Figure 3. ià of PS/PA mixtures versus composition 
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ïd (mN/m) 

~\ 1 1 1 1 1 1 1 r 

0 20 40 60 80 100 
% PMMA 

Figure 4. 7d of PS/PMMA mixtures versus composition 

Tfd(mN/m) 

Figure 5. Adsorption of sodium oleate onto PS/PMMA particles from water 
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Yd(mN/m) 

Figure 6. Adsorption of sodium oleate onto PS/PMMA particles from water/2-propanol (6.5:3 

v/v) and water 

In figures 5 and 6 the adsorbed amounts of sodium oleate onto PS/PMMA surfaces as a function 

of hydrophobicity (7d) are shown, from water and from water/isopropanol solutions, respectively. 

The adsorption from water (fig. 5) decreases with increasing -yd to almost zero above a 7d value 

of 39.5 mN/m. This result is in agreement with that obtained by Piirma and Chen [25] for the 

adsorption of sodium dodecyl sulfate (SDS) on PS/PMMA copolymer latex particles. In the case 

of adsorption from water/isopropanol mixtures (figure 6) it can be seen, that the adsorbed 

amounts at iid values below 39 mN/m are comparable to those from water. In the region 

38.5<i(d<39.5 mN/m the adsorbed amount drops sharply to zero. However, in contrast to the 

adsorption from water, a further increase of the surface hydrophilicity results in an almost 

stepwise increase of the amount adsorbed. Hence, three regions can be distinguished: both at low 

and at high id we find adsorption, but in between there is a very narrow region where no 

significant adsorption is detected. 

Wetting of the surface 

Wettability by each of the liquid phases (oil and water phase, respectively) as a function of id was 

studied by measuring the advancing contact angle. The surface tension of the water phase and the 
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oil phase against air is determined using dip-coated Wilhelmy plates and appears to be 28.5±0.1 

and 32.5±0.3 mN/m, respectively. In figure 7a and 7b the difference in advancing contact angle 

(A6=$O-0V) is plotted against -yd for PS/PMMA and PS/PA surfaces, respectively. 

(b) 

^d(mN/m) 

36 38 40 42 
Yd (mN/m) 

Figure 7. The difference in advancing three phase contact angles of the water and the oil phase 

versus surface hydrophohicity: (a) on PS/PA and (b) on PS/PMMA 
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It turns out, that only in a very small region of id did the oil phase exhibit a smaller contact angle 

than the water phase. This region is almost the same for both polymer mixtures. (The slight 

discrepancy between the two curves is presumably due to the fact that PS/PA mixtures result in 

somewhat rougher coatings than PS/PMMA mixtures. From contact angle calculations it was 

shown [24], that a rougher surface will result in a 7d value that is slightly lower than that obtained 

on a smooth surface with the same hydrophobicity.) These results imply, that only in this small 

region of 7d is the surface better wetted by oil than by water/2-propanol. A simple analysis shows 

that the difference in interfacial tension (A-/) between the water-wet and the oil-wet polymer 

surface can be related to the contact angles 0o and 0W and the surface tensions i0 and iv: 

7ocos0o - Twcos0w = AT+(i(w-Tf0) (1) 

Since I0iw7w it follows that cos80-cos8vixAi/i0 (provided 7w-70 is negligible as compared to A-y). 

When 90-6v changes sign, this must imply that Ai (which is nearly equal to the spreading 

coefficient since T(0/w is very small) changes sign also and the oil/water contact angle will change 

abruptly when this happens. 

Comparing figures 6 and 7, it can be seen that the region in which no adsorption of sodium oleate 

takes place coincides with the region of preferential wettability for the oil phase. We conclude 

that the change in wettability is caused by the fact that no adsorption takes place, and that 

adsorption of the surfactant improves the wettability for the water phase. 

Table 3. iàof several hydrophobic membranes; the range given for polysulfone follows from ref. 

[24] 

Membrane 7d (mN/m) 

Polypropylene (0.2 urn) 29.5 
Polypropylene (0.1/im) 29.5 
PVDF (0.2 y.m) 42.4 
PVDF(10,000D) 47.0 
PTFE (0.2 itm) 24.2 
Polysulfone (30,000D) 49-72 

Membrane selectivity 

Hydrophobicity measurements were carried out on different commercially available membrane 

materials. For the polysulfone membrane (which is a hollow fibre device) it is not possible to 

measure the hydrophobicity without damaging the module severely. Therefore, a range is given 
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for the hydrophobicity of polysulfone as it appears from earlier measurements [24]. The results 

are given in table 3. 

It appears that none of the membranes listed in table 3 is selective for one of the two phases. 

However, from the experiments described above, it may be expected that membranes possessing 

a hydrophobicity (expressed in fd) in the narrow range between 39.5 and 40.0 mN/m should be 

capable to separate the oil phase from the surfactant and isopropanol containing dispersion, since 

on these materials no adsorption of the surfactant occurs, resulting in a good wettability for the 

oil phase. In order to test this hypothesis a microporous polypropylene support was coated with 

different PS/PA and PS/PMMA mixtures, making membranes with hydrophobicities 

corresponding with the hydrophobicity of the applied coating. Subsequent permeation experiments 

clearly showed that indeed only those coatings on which no surfactant adsorption takes place (i.e. 

39.5<Tfd<40.0 mN/m) are capable of separating the oil phase from the dispersion. Polymer 

compositions very close to, but not in this composition range are not capable of accomplishing the 

separation. The measured fluxes for one phase (oil) permeation are between 5 and 50 l/(m2.h.bar). 

These are common fluxes for ultrafiltration of solutions with comparable viscosities. No 

significant change in flux or selectivity was observed when experiments were run for several days. 

SEM micrograph of the polypropylene support 
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Figure 8b. SEM micrograph of the coated side of the microporous support 

In order to investigate the structure of the coated layer on top of the polypropylene support 

material, SEM micrographs were taken. From figure 8 it can be seen, that the nodular structure 

of the polypropylene (figure 8a) was still present at the coated side of the membrane (figure 8b). 

A layer of the applied coating onto each of the polypropylene nodules was observed, revealing that 

the polymer was not present as a separate film on top of the microporous support, but as a coating 

on the nodules of the polypropylene support. Polymer was, therefore, present in the pores, down 

to about 20 /im from the top surface. For this reason the adhesion between the microporous 

support and the coated layer was good: it is not possible to peel off the coated layer. An additional 

factor is the strong interaction between the hydrophobic polymer in the blend (PS) and the 

polypropylene support. It has been shown by Franken [21], that strong interactions are a 

prerequisite for a good adhesion. 

5.5 DISCUSSION 

As shown in figure 6, three regions can be distinguished for the adsorption of sodium oleate from 

the water/2-propanol mixture onto surfaces with different hydrophobicities. Firstly, in the 

hydrophobic region the surfactant is expected to adsorb with the apolar tails towards the surface. 
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Upon increasing the hydrophilicity of the surface, there is an almost stepwise transition into a 

region in which no adsorption takes place, followed by another almost stepwise increase in the 

amount adsorbed. In the latter region the surfactant will presumably adsorb with its polar head 

group towards the surface, probably followed by the adsorption of a second layer (surfactant or 

alcohol) on top of this first layer. From the fact that this third region is absent in pure water, it 

is tempting to conclude that coadsorption of 2-propanol plays also a role here. 

The double adsorption transition observed gives rise to two questions. Firstly, one might wonder 

why the two transitions are so sharp. Secondly, it is important to know what determines their 

positions and why they are so close. With respect to the first question, it can be said in general that 

the adsorption of surfactants is a cooperative process because of the tendency of these molecules 

to associate. Both theoretical [26,27] and experimental [28,29] studies have provided ample 

evidence of this in the form of sudden jumps in the adsorption isotherm. A change in adsorption 

energy (at fixed surfactant concentration) may also give rise to sharp adsorption/desorption 

transitions. Theoretical models predict this [30] and some evidence comes from neutron scattering 

studies on nonionic surfactants adsorbed onto Si02 where the adsorption energy was varied via 

pH [31]. Since adsorption/desorption transitions are so sharp it is justified, for a crude description, 

to consider only either entirely covered or entirely bare surfaces. It is then relatively easy to 

estimate surface free energies for each of these two cases and finding the transition(s) by 

balancing them. 

In order to simplify the matter, the alcohol/water mixture is considered as one component, the 

solvent (o). On very hydrophobic surfaces the interfacial energy between surfactant molecules 

adsorbed onto the surface (s) with their tails (t) will be very low, and increasing the surface 

hydrophilicity, the interfacial free energy will increase also. For adsorption with the head groups 

(h) the pattern will be reversed compared to adsorption with the tails: the more hydrophilic the 

surface, the smaller the interfacial free energy will be. 

For adsorption with the tails onto the surface, the following requirement has to be fulfilled: 

Tt. <T.o+Tto ( 2 ) 
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in which 7y is the interfacial tension between components i and j ; t, s and o refer to components 

as listed above. The term it0 is a constant since it does not depend on the nature of s, but the other 

two vary with surface hydrophobicity. It is not necessary to incorporate a term for the head 

groups of the surfactant, since they remain in the solvent after adsorption. For adsorption of the 

head groups of the surfactant molecules an equivalent equation can be written: 

Ths < T.o +Tho (3) 

where iho is, again, a constant, and the other two vary with id. Each of the conditions (2) and (3) 

may give rise to a transition; in between, one might even find a region where 7d of the solid is 

such that none of them are met, so that the free energy will not decrease by exchanging solvent 

by heads or tails of the surfactant on the surface, and a negligible adsorption results. 

In order to obtain estimates of fy we proceed as follows. Surface tensions can be divided into a 

dispersive and a polar contribution. Following Fowkes [32,33], we write: 

7 = < y d
+ < y P <4> 

where -y is the surface tension of the liquid, and id and ip are the dispersive and polar components 

of the surface tension of the liquid, respectively. Interfacial tensions between two phases (Tf12) can 

be determined from the geometric mean of the polar and the dispersive intermolecular interactions 

[34,35]: 

1 1 2 = - h ^ 2 - 2 ( ^ ) 5 - 2 ( ^ ) 5 ( 5 ) 

in which the subscripts 1 and 2 denote the two different liquid phases. For an estimate of 

interfacial tensions, surface tensions of each of the different species have to be divided into a 

dispersive and a polar part. For our system, tentative estimates are given in table 4. 

Table 4. Estimates of surface tension components of the different components in the system 

1 Tfd ifp ref 

solvent (o) 29 21 8 [35] 
tails (t) 25 21 4 
heads (h) 40 20 20 
surface (s) PS 38 33 5 [34] 

PMMA 41 30 11 [34] 

Surface tension components for water/alcohol mixtures have been reported by Janczuk et al. [35]. 
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Although 2-propanol has not been investigated, it can be seen from the data for ethanol and n-

propanol that the dispersive component for these two substances is almost the same: namely 20 and 

21 mN/m for a 30% solution of ethanol and n-propanol in water, respectively. Therefore, a 

dispersive component of 21 mN/m for 30% 2-propanol in water is a reasonable estimate. The tails 

of the surfactant will be rather apolar. However, they contain a double bond, which gives rise to 

a small polar part in the surface tension. The estimate for the head group is more difficult, and 

although head groups usually are considered as hydrophilic, a significant part will still be due to 

dispersive intermolecular interactions. For the polymer surfaces we used the values reported by 

Wu [34], although the -y values used by this author differ slightly from id as determined by us. 

Using equations 4 and 5 and the values of table 4, we find interfacial tensions between the 

different components as plotted in figure 9. We can locate the intersection points and determine 

regions of 'tail down' and 'head down' adsorption as defined by equations 2 and 3. It is gratifying 

to note that the region in which adsorption with the tails towards the surface occurs does not 

overlap with that in which adsorption with the head groups towards the surface occurs. As a 

consequence, a region of surface hydrophobicity occurs in which no adsorption takes place. 

Moreover, our analysis predicts transitions nearly there where they are found experimentally. We 

should note, however, that the calculation of the interfacial tensions is rather sensitive for 

differences in the chosen values for •>, -yd and -yp. Most values in table 4 are reasonably reliable, 

but the value for the head groups is perhaps less certain. 

With help of figure 9 it is now possible to estimate the effect of changes in one or more of the 

components. The effect of a change in the solvent can be predicted: reducing the amount of 

alcohol will result in an increase of the polar part of the surface tension of the solvent, while the 

dispersive part will remain the same. In this region of id this causes an increase in 7OB and ito and 

a decrease in ifho. This will narrow down the range in which no adsorption takes place. Eventually, 

the non-adsorption region may even completely disappear. The ultimate case, in which the solvent 

merely consists of water, clearly does not obey this rule, as is shown in figure 5. This can perhaps 

be explained by the uptake of surfactant molecules in micelles which occurs in pure water, but 

not in the water/2-propanol mixture. According to our simple model, cooperative adsorption from 

water onto a not too hydrophobic surface is possible due to polar interactions. If the molecules 

already associate in the bulk solution as micelles, the tendency to adsorb will be much reduced. 

For a surfactant with a saturated hydrocarbon tail, the polar part of its surface tension will almost 

vanish, which results in an increase in ito. Similarly, in this region of i d , ifts will increase, and it 

will be the ratio of the two terms that determines whether the range in which no adsorption takes 
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place will be broadened or reduced. The fact that a change in one component affects two or three 

curves at the same time makes it difficult to give precise predictions of the effects, and it will 

therefore be necessary that values for 7, id and 7P are known exactly to give real quantitative 

predictions. 

Yij (mN/m) 

42 
td (mN/m) 

Figure 9. Calculated inter facial tensions between the different constituents of the system versus 

the surface hydrophobicity 

5.6 CONCLUSIONS 

In this study the effect of surface hydrophobicity on adsorption of sodium oleate from a water/2-

propanol solution is investigated. It appears that adsorption of the surfactant takes place in three 

regions. On a more hydrophobic surface the surfactant will adsorb with the hydrophobic tails onto 

the surface; increasing the surface hydrophilicity leads to a narrow region in which virtually no 
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adsorption occurs, followed by a region in which adsorption occurs again, presumably by 

interactions between the head groups of the surfactant and the surface. From wetting studies it 

follows that in the regions where adsorption takes place the surface appears to be rather 

hydrophilic. Surfactant adsorbed onto the hydrophobic solid will expose its polar headgroups to 

the solution, whereas in the case of the more polar solid a second surfactant or alcohol layer will 

adsorb on top of the first layer, also rendering the surface more hydrophilic. These adsorption 

phenomena can be explained in a semi-quantitative way by taking the cooperative nature of 

surfactant adsorption into account and making estimates of free energies for various conceivable 

interfaces in the system. 

It appeared that surfaces in the region where no adsorption of sodium oleate occurs are 

preferentially wetted by the oil phase of a two-phase system consisting of soy bean oil as the oil 

phase and a sodium oleate solution in water/2-propanol as the water phase. These results have 

been used to develop a membrane material with the required wetting properties for the separation 

of such a mixture. Since the range in hydrophobicity in which no adsorption occurs is only 0.5 

mN/m wide, it is not surprising that no commercially available membrane is capable of separating 

the oil phase from this two-phase system. However, it should be realized that a change in the 

composition of the mixture to be separated can induce significant changes in the adsorption and 

wetting behavior. In order to obtain guidelines, it is necessary to have estimates of the different 

contributions to the surface tension of each of the components of the mixture to be separated and 

to use these to predict adsorption/desorption transitions of the system. 
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EXTRACTION AND FRACTIONATION OF FATTY ACIDS FROM OIL 
USING AN ULTRAFILTRATION MEMBRANE 

SUMMARY 

The removal of fatty acids from oil is an important step in edible oil refining. The classical caustic refining process results 

in losses of triglycerides, which should preferably be avoided. In this study a membrane based liquid-liquid extraction 

is used in which these losses can be avoided by the use of a selective extradant. A suitable extradant appears to be 1,2-

butanediol. The distribution coefficient for fatty acids varies with alkyl chain length from 0.7 for erucic acid (C22:l) up 

to 5.5 for caproic acid (Có). The fatty acids can be removed from the 1,2-butanediol solution by the addition of water. 

The system demixes, and the dispersion can then be separated into pure fatty acids and a fatty acid free 1,2-

butanediol/water mixture, to be reused as extradant after dewatering. 

Extractions have been performed in cellulose hollow fiber membrane modules. It appears that a major part of the mass 

transfer resistance is situated inside the membrane wall. The overall mass transfer coefficient varies from 7*10 m/s 

for erucic acid up to 5*10 m/s for caproic acid. Using these overall mass transfer coefficients, the required membrane 

surface area for a countercurrent extraction can be calculated. An interesting feature is the fact that the mass transfer 

coefficients vary with fatty acid chain length, which can be used for the fractionation of a fatty acid mixture. Two 

mechanisms act in the same direction to obtain selectivity: an increasing mass transfer coefficient and an increasing 

distribution coefficient with a decrease in fatty acid chain length. 

J.T.F. Keurentjes, J.T.M. Sluijs, R J.H. Franssen and K. van 't Riet 

This chapter is submitted for publication 
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6.1 INTRODUCTION 

Liquid-liquid extraction is usually carried out by dispersing the extraction phase in the feed phase 

or vice versa. In extraction towers, a large surface area to volume ratio can be obtained. After 

extraction, the dispersion is allowed to coalesce and the two phases are separated. Coalescence, 

however, often causes severe problems in case of a very fine dispersion, which occurs at intensive 

mixing to obtain a large surface area per volume. Less intensive mixing results in a dispersion that 

can be separated more easily, but also results in a smaller surface area per volume, and hence in 

a decreased extraction rate. Besides, backmixing or flooding often limits the performance of 

extraction towers [1,2]. 

Hollow fiber extractors offer the possibility to perform extractions without the formation of a 

dispersion [3]. Also, when the fibers are sufficiently small in diameter, a large extraction area per 

volume can be obtained. Typical values are in the order of 103-106 m2/ms [4] which is higher than 

the values found in packed towers [1]. Flooding and backmixing do not occur in hollow fiber 

extractors. 

In most applications of hollow fiber extractors microporous membranes are used [2,3,5-8]. A static 

pressure is applied on the phase that does not wet the membrane. However, in the case of a low 

interfacial tension between the two liquid phases, a rather unstable system is obtained because the 

Laplace pressure in the pores is low. For cylindrical pores this pressure is given by: 

AP = 2TC 0 S* (1) 
R 

where AP is the pressure difference over the liquid-liquid interface, i the interfacial tension 

between the two liquids, 0 the contact angle with the polymer surface and R the pore radius. 

. Usually, there is complete wetting of the membrane by one of the phases, cosfl=l. However, if this 

is not the case (cosfl<l), the pressure which the system can withstand is even lower. 

For the separation of free fatty acids from oil, usually sodium hydroxide is added to the oil in 

order to saponify the fatty acids. Consequently, the soaps are separated from the oil by high speed 

separators [10,11]. The most important problem occurring in this type of processes is the inclusion 

of triglycerides into the soapstock. Usually, the amount of triglycerides included equals the 

amount of fatty acids [12], and these triglycerides have to be considered as a loss. As an 

alternative, extractions have been proposed. However, the extradants used (mostly alcohols) show 

a low selectivity [13-16], which also causes losses of triglycerides. 
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In this study a series of extradants is tested. Factors affecting the extraction of fatty acids from 

an oil using different homogeneous ultrafiltration membranes are investigated with a suitable 

extradant. 

6.2 THEORY 

Overall mass transfer coefficient 

Mass balance equations for the oil and the extraction phase can be combined and linearized, 

resulting in: 

-In 
Keq-Cel 

c 
e.eq 

= K 0 .A. m 
V .V 
T e' T o 

(2) 

Here, V0 and Ve are the volumes and C0 and Ce the concentrations of fatty acid in the oil and 

extraction phase respectively. The distribution coefficient m of the fatty acid over oil and the 

extraction phase is defined by m = Ce e_/C0 „ where the subscript eq indicates equilibrium. A is 

the contact area between the two phases and K0 the overall mass transfer coefficient. When -

ln{(Ce eq-Ce)/Ce eq} is plotted versus t, a straight line is obtained and K0 can be calculated from 

the slope. 

Partial mass transfer coefficients 

For a hydrophilic membrane with the extraction phase inside the membrane, the overall mass 

transfer can be written as [5]: 

iC-k^dn.kJ-Mm.k.)-1 « 

In this equation the overall mass transfer resistance (the reciprocal of the overall mass transfer 

coefficient K0) is the sum of the mass transfer resistance in the oil phase inside the fibers (k0
_1), 

the mass transfer resistance in the extraction phase outside the fibers ((m.ke)
_1) and the resistance 

of the extraction phase in the membrane wall ((m.km)_1). 

Since the Reynolds number inside the fibers will be less than 1, mass transfer inside the fibers is 

described by [17]: 
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Do ' [if-Do 

in which is df the internal fiber diameter, lf the fiber length, D0 the diffusion coefficient of the 

solute and v0 the average oil flow velocity. 

The resistance in the membrane wall (km
-1) is proportional to the membrane thickness dm divided 

by the diffusivity D, of the solute in the liquid filling the pores. With a correction for the 

effective diffusion distance by the tortuosity r and a correction for the polymer volume by the 

porosity e the resistance in the membrane is given by [18]: 

iC = ^1 (5) 
m De.€ 

The mass transfer outside the fibers can be calculated using equations for mass transfer outside 

fibers or tubes as given in literature. All those equations are of the form 

*-'[ëH*f (6) 

where ve is the extradant flow velocity, d the outer fiber diameter and v the viscosity of the 

extraction liquid. The constants a and b differ with the system investigated [17-20], resulting in 

ke values that may vary by a factor of 100. For this reason the best way for the determination of 

the ke values is to measure K0, to determine k0 and km and calculate ke therefrom, using equations 

(3), (4) and (5). 

Extraction 

For a continuous extraction, the amount of fatty acids that can be transferred from the oil phase 

into the extraction phase is determined by both the distribution coefficient m and the ratio of the 

oil phase and extraction phase flow (F0 and Fe, respectively), as combined in the stripping factor 

A: 

A - fLf: (7) 
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When we consider the extraction to take place by a countercurrent process (which can be relatively 

easily achieved in a hollow fiber membrane device) the number of theoretical transfer units 

(NTU) equals the heigth of the extractor (H) divided by the height of a transfer unit (HTU) [21]. 

This can be written as: 

— - (NTU = H/HTU) W 
A-l | A j x 0 A 

with X;/x0 as the ratio between the inflow and the outflow concentration in the oil phase and p the 

density of the oil phase. Once the overall mass transfer coefficient is known it is possible to 

calculate the required surface area (A) for a given A and x;/x0. 

6.3 MATERIALS 

Fatty acids with different chain lengths were used. Some relevant characteristics are summarized 

in table 1. All fatty acids used were reagent grade, except oleic acid, which was technical grade. 

Table 1. Fatty acids used in this study; the fatty acid chain length is calculated using a binding 

length of 0.154 nm for a C-C bond and a binding angle of 109° 

fatty acid manufacturer estimated chain length (nm) 

caproic acid (C6:0) 
capric acid (CI0:0) 
myristic acid (CI4:0) 
oleic acid (CI8:1) 
erucic acid (C22:l) 

Aldrich 
Unichema 
Aldrich 
Merck 
Aldrich 

0.8 
1.3 
1.8 
2.5 
3.1 

Extractions were carried out in hollow fiber membrane devices containing different membrane 

materials, provided by ENKA Membrana AG, FRG. The membranes used are given in table 2. 

All experiments were carried out at 30 °C. The water used was demineralized and all other 

reagents were analytical grade and purchased from Merck (FRG). The oil phase was soy bean oil 

of edible quality (Rhenus Inc. The Netherlands). 
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6.4 EXPERIMENTAL 

Distribution coefficients were determined as follows. After intensive mixing of 100 ml fatty acid 

containing soy bean oil with 100 ml extractant, the fatty acid concentration was determined in 

both phases and mass balances were set up in order to check the recovery. Fatty acid 

concentrations were determined by titration of a 1 gram sample in 20 ml ethanol with a 0.S N 

sodium hydroxide solution. Water concentrations were measured using an automatic Karl Fisher 

titration apparatus (Mettler). 

Table 2. Membranes used in extraction experiments 

membrane cut off 
(D) 

surface area 
m 2 

wall thickness 
(lu"6 m) 

trade name 

cellulose 
cellulose 
cellulose 
mod. cellulose 
cellulose acetate 
cellulose acetate 

6,000 
6,000 
6,000 
70,000 
60,000 
750,000 

0.90 
0.77 
0.70 
0.177 
0.144 
0.062 

6.5 
8 
11 
16 
25 
85 

Cuprophan 
Cuprophan 
Cuprophan 
Hemophan 
Diaphan 
PF 100 

<B-i 

l i | | \ oil phase 

Figure 1. Experimental set-up for membrane extraction experiments 
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Membrane extractions were carried out using hollow fiber membrane modules. The experimental 

set-up is depicted in figure 1. The oil phase is circulated inside and the extraction phase outside 

the fibers and the polar extraction phase wets the fiber wall. In order to avoid emulsion formation 

by extradant permeating into the oil phase, the oil phase was circulated at a static pressure of 

0.5* 10s Nm -2 . Before use the membranes are rinsed with demineralized water. 

Fatty acid concentrations in fractionation experiments were determined on a Carlo Erba gas 

Chromatograph with a 5 m CP-Sil 5 CB capillary column (Chrompack, The Netherlands) with a 

cold on-column injection system using hexadecane as an internal standard. 

6.5 RESULTS AND DISCUSSION 

Distribution coefficients 

For several extradants the distribution coefficient for oleic acid over the extradant and soy bean 

oil is determined at an oleic acid concentration of 20% (v/v). The results are given in table 3. 

From table 3 it appears, that several extractants found in the literature, like methanol and 

mixtures of methanol with water and acetonitrile or furfural, are partially or completely miscible 

with oil. For an effective extraction, however, it is necessary that the mutual solubility is very 

low. This requirement, together with the highest distribution coefficient, can be met using 1,2-

butanediol. 

Table 3. Distribution coefficients of oleic acid over soy bean oil and different extractants. 

Miscibility of the extradant with oil is indicated by —: not miscible, +-: partially 

miscible and ++: completely miscible 

extradant m miscibility with oil 

formamide 
glycerol 
1,3-butanediol 
2,3-butanediol 
1,4-butanediol 
1,2-butanediol 
2-butene-l,4-diol 
methanol 
methanol/acetonitrile/water 75/20/5 (v/v/v) 
methanol/furfural/water 75/20/5 (v/v/v) 

0.04 
0.16 
0.29 
-
0.12 
1.08 
0.08 
1.10 
0.45 
-

— 
— 
— 
++ 
— 
— 
— 
+-
+-
++ 
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The distribution coefficient appears to be almost independent of the fatty acid concentration and 

temperature, but decreases with an increase in water content (figure 2). The chain length of the 

fatty acid strongly influences the distribution coefficient (figure 3), varying from 0.7 for erucic 

acid up to 5.5 for caproic acid. It could be expected that short chain fatty acids are more soluble 

in butanediol than the long chain fatty acids, due to the smaller ratio between hydrophobic tail 

and hydrophilic head group. 

The solubility of soy bean oil in 1,2-butanediol appeared to be below the threshold of detection 

using refractive indices (i.e. <0.1% w/w). The solubility of 1,2-butanediol in soy bean oil was 

measured to be 1% (w/w) in the case butanediol is used without water. Since cellulose membranes 

are not allowed to be used with dry solvents, it is necessary to add some water to the butanediol. 

When 1,2-butanediol contains 2% (w/w) water, the solubility of 1,2-butanediol in soy bean oil 

decreases to a value below the threshold of detection using refractive indices (<0.1% w/w). 

6 8 10 12 
% H20 in 1,2-butanediol 

Figure 2. Effect of the water content of 1,2-butanediol on the distribution coefficient of oleic acid 

over soy bean oil and 1,2-butanediol 
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O+A- - i 1 1 1 1 1 1 1—^-i 
6 10 14 18 22 

number of C-atoms of fatty acid 

Figure 3. Effect of the fatty acid alkyl chain length on the distribution coefficient of fatty acids 

over 1,2 butanediol (containing 2% water) and soy bean oil 

When 1,2-butanediol is used as extradant, extracted oleic acid can be removed from the 1,2-

butanediol phase by the addition of water up to 35% (w/w). This water addition results in 

demixing of the system, yielding a dispersion with fatty acids as the dispersed phase and 1,2-

butanediol/water as the continuous phase. The amount of water required for demixing increases 

up to 55% for capric acid, and is almost independent of the fatty acid content. Below the water 

content required for demixing, fatty acids are completely miscible with the 1,2-butanediol 

mixture. After phase separation a fatty acid phase and a 1,2-butanediol/water phase are obtained. 

The fatty acid phase then contains 2% 1,2-butanediol, whereas the 1,2-butanediol/water mixture 

contains less than 0.05% of fatty acids. Values that are virtually independent of the nature of the 

fatty acid, indicating that a higher mutual solubility in the case of shorter fatty acids is 

compensated by an increased water content required for demixing. After dewatering this stream 

can be reused as extraction liquid. 

Mass transfer coefficients 

Because of the low interfacial tension between fatty acid containing oil and 1,2-butanediol (which 
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vanishes to zero at a fatty acid content of 35% (v/v) in the oil phase), and probably also because 

of incomplete wetting by the water phase, it appeared impossible to use the PF100 cellulose 

acetate membrane for these extractions. Even at a low static pressure (0.05* 105 N/m2) the oil 

phase permeates through the membrane. Applying the same static pressure on the water circuit 

results in permeation of the water phase. The other membranes listed in table 2 could be used for 

the extraction experiments. 

For the determination of the overall mass transfer resistance, experiments have been carried out 

with different fatty acids in soy bean oil and the Cuprophan cellulose membranes. Measuring the 

concentration of fatty acid in the extraction circuit with time yields figure 4a as a typical result. 

Linearizing this curve according to equation (2) then yields figure 4b, from which the overall mass 

transfer coefficient can be calculated. The overall mass transfer coefficient increases with a 

decrease in fatty acid chain length (figure 5). 

c e(mol/l) 

Figure 4a. 

1200 
time (min) 

Fatty acid concentration versus time in a typical extraction experiment of oleic acid 

from oil 
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0.32 
•e.eq 

Figure 4b. Linearized concentration versus time for the determination of K0. Q represents the 

volume correction term of equation (2) 

K0 (1Cf8m/s) 
60 

3 k 
fatty acid length (nm) 

Figure 5. Overall mass transfer coefficient versus fatty acid chain length 
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Figure 6. 1/K0 versus v,,"1'8 for the determination of the partial mass transfer resistance inside 

the fibers 
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Figure 7. 1/K0 versus ve
_1 for the determination of the partial mass transfer resistance outside the 

fibers 
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Figure 8. 1/K0 versus the dry membrane thickness 

In order to determine the contribution of the partial mass transfer resistance inside the fibers to 

the overall mass transfer resistance 1/K0 is plotted versus v0
_1^s, according to equation (4) (figure 

6). Only a slight dependence is found, and extrapolation to an infinitely large velocity still yields 

a significant mass transfer resistance (the intercept represents the sum of the resistances inside the 

fiber wall and in the extraction phase). When 1/K0 is plotted versus v e
- 1 (figure 7) no dependence 

is found, indicating that no significant resistance is situated outside the fibers. It can therefore 

be expected, that the intercept of figure 6 represents the mass transfer resistance inside the 

membrane wall only. Also, a plot of 1/K0 versus the membrane wall thickness (figure 8) gives a 

straight line through the origin, indicating that indeed almost all resistance against mass transfer 

is situated inside the membrane wall. This appeared to be the case for all fatty acids used, except 

for caproic acid (C6:0), where the resistance inside the fiber wall only represents 60% of the 

overall mass transfer resistance. According to equation 3, the mass transfer resistances inside the 

fiber wall and at the extradant side of the membrane can be neglected when m—»oo. 

Diffusion in the membrane matrix 

From measurements of the different partial mass transfer resistances, the diffusion coefficients 
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inside the membrane matrix can be calculated. These are given in figure 9. The diffusion 

coefficients inside the cellulose membrane matrix obtained for different fatty acids can be 

compared to the coefficients as obtained from different models that have been proposed in the 

literature to relate the diffusion coefficient in solution (calculated according to the Wilke-Chang 

relationship [22]) to the diffusion coefficient inside a homogeneous membrane matrix. The results 

of these calculations are also included in figure 9. Most models use the porosity, tortuosity and 

pore diameter of the membrane material (0.65 [23], 1.9 [24] and 3.4 nm [35], respectively), except 

the model proposed by Peppas and Reinhart [23], which requires information about the molecular 

structure of the polymer. 

Deff (10~V/S) 

3.2 

2.4-

1.6 

0.8-

free diffusion 

Satterfield 
Î — O r -

1 pore 

Figure 9. Diffusion inside the membrane matrix. Values are compared to values obtained with 

diffusion models proposed in literature 

It appears, that most models predict the diffusion coefficient within a factor of 4. The curve 

following from the theory of Faxen [29] is differently shaped and predicts too steep a decrease 

of the diffusion coefficient with chain length, whereas both the models of Faxen [29] and 

Satterfield [28] differ more than a factor of 4 for the longest fatty acids. From these results it can 
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be concluded that all models give predictions in the range of the experimental values for the 

diffusivity inside the membrane matrix. However, none of them results in an exact fit of the 

experimental data, which may be partly due to deviations in the estimates for the fatty acid and 

pore diameter. It seems that the models can, at best, make a reasonable first guess of the diffusion 

coefficient. Whenever values are needed that are more reliable than that, they will have to be 

determined experimentally. 

£ [103m2.s/kg] 

Figure 10. The membrane surface area required for the separation of oleic acid from soy bean 

oil using the Diaphan membrane as a function of the stripping factor at different 

required separation efficiencies 

Countercurrent extraction 

Once the overall mass transfer coefficients are obtained, it is possible to calculate the required 

membrane surface area for a given extraction. As an example, the surface area required for the 

separation of oleic acid from oil using the Diaphan membrane is calculated for different 

extraction efficiencies (xj/x0) versus the stripping factor A. The overall mass transfer coefficient 
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for this separation is the measured one, being 8*10~8 m/s. The results of these calculations are 

shown in figure 10. It appears that an increase in the stripping factor has a strong influence on 

the required surface area up to values of about 3. A further increase does not result in a further 

decrease in the required surface area. 

These data reveal that for a full scale extraction (90% fatty acid removal from 5,000 kg/h oil) 

about 40,000 m2 of membrane area are required. The costs for the extraction of copper from oil 

using the same cellulose hollow fiber membranes as used in this study for a 10,000 m2 system to 

treat 5,000 kg/h have been estimated to be between 0.01 and 0.03 $/kg [30]. The increase of the 

costs of a membrane plant are estimated to be proportional to A 0 6 [31 ]. These figures indicate that 

the costs for this fatty acid extraction will be between 0.025 and 0.07 $/kg. 

Fractionation 

Because of the low interfacial tension between oil and 1,2-butanediol it is necessary to use rather 

'dense' membranes, i.e. with small pores. For such membranes, mass transfer coefficients are small 

as compared to transport in solution. This implies that relatively large membrane surface areas are 

needed for an extraction. However, it yields another opportunity, which is the ability to achieve 

a fractionation of a fatty acid mixture, since different fatty acids exhibit different mass transfer 

coefficients, as is clearly shown in figure 5. For this fractionation the selectivity (a) with respect 

to two components A and B can be defined as follows [32]: 

"*A,B 

x i , A , 
Xo,A 

- xi,B 
Xo,B 

-1 

' 
-1 

(9) 

The ratios x i A / x o A and x i B / x o B in this expression can be calculated according to equation (8). 

In figure 11 calculated selectivities between three different fatty acids (C6, C10 and C18:l) are 

given as a function of A/F0 at a stripping factor A=2 for CI8:1. It should be noted, that the 

stripping factor increases with a decrease in fatty acid chain length as a result of the increased 

distribution coefficient. This implies that for fractionation two mechanisms act at the same time 

in the same direction: a difference in retardation by the membrane and a difference in solubility 

in the extraction liquid. Figure 11 shows that an increase of the permeated amount (which 

increases with an increase in A/F0) leads to decreased selectivities. Obviously, at 100% permeation 

no separation is achieved. 
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Figure 11. 
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Selectivity between different fatty acid combinations versus the surface area to feed 

ratio at a stripping factor of 2 for oleic acid 

By way of example, we give, in figure 12, the removal of a low concentration C6 from a fatty acid 

mixture consisting of CIO and CI8:1 dissolved in soy bean oil. In this experiment a batch 

extraction with 0.77 m2 membrane area is used. The volumes of the oil and the 1,2-butanediol 

phase were 4.9*10~4 and 4.3*10"4 m3, respectively. It appears that in a relatively short contact 

time (1 hour) the caproic acid concentration is decreased by 80%, whereas the oleic acid and 

capric acid concentration are only decreased by 22% and 40%, respectively. The lines in figure 12 

are calculated according to equation (2), using mass transfer coefficients from figure 5. The 

agreement between experimental and predicted values indicates, that the individually measured 

mass transfer coefficients are not influenced significantly by the presence of other fatty acids. 

In this example only one extraction stage is used. More stages will obviously result in almost pure 

products. Most fatty acid fractionation procedures are based on crystallization (e.g. panning and 

pressing [33] and the hydrophilization process [34]), which require reaction times of several days 
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[33]. The major advantage of the present membrane fractionation procedure is found in the time 

required for separation. Neither of the crystallization processes results in pure products and 

requires several stages, as does this membrane fractionation, thus stressing the advantage of short 

reaction times. 

time (1000 s) 
Fractionation of a mixture of C6, CIO and C18:l (1:5:5) in a batch extraction 

Table 4. Concentrations in the different streams as indicated in figure 12 starting with a 1:1:1 

ratio in the feed; A/Fo=4300 m2s/kg, K(C18:1)=2 

stage concentration (%) 

permeate (PI) 
retentate(Rl) 
permeate (P2) 
retentate (R2) 
permeate (P3) 
retentate (R3) 

C6 
60 
8 
25 
2 
70 
25 

C10 
34 
33 
57 
21 
22 
57 

C18:l 
6 
59 
18 
77 
8 
18 

Using the data of figure 11, a three- membrane countercurrent extraction system (figure 13) can 

be used tó fractionate a 1:1:1 mixture of C6, C10 and C18:l to produce one stream almost free of 
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C6 (R2), one stream almost free of C18:l (P3) and one intermediate stream enriched in CIO (P2 

and R3 together). The results are given in table 4. 

Figure 13. Three stage membrane system for the fractionation of a fatty acid mixture 

dissolved in an organic solvent 

However, the two stage extraction is more complicated than shown in figure 13. The fatty acids 

of the 1,2-butanediol phase have to be reextracted to an other oil phase, since it is not possible 

to extract fatty acids from 1,2-butanediol to fatty acid free 1,2-butanediol because of a trans

membrane flow due to osmotic effects. Reextraction can easily be achieved by the addition of 

water to the butanediol phase as described above. This operation yields a fatty acid free butanediol 

phase and pure fatty acids which then can be dissolved in any organic solvent, thus serving as the 

feed of stage 3. 

6.6 CONCLUSIONS 

From this work it can be concluded that it is possible to extract fatty acids from an oil stream 

when a suitable extradant can be found. It appeared that 1,2-butanediol can be used for this 

purpose. The distribution coefficient varies from 0.7 for erucic acid up to 5.5 for caproic acid. 
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The mutual solubility of oil and 1,2-butanediol is less than 0.1% in the presence of 2% of water 

in the system. Recovery of the fatty acids can be achieved by the addition of water, resulting in 

demixing of the solution into a dispersion containing fatty acids as the dispersed and 1,2-

butanediol/water as the continuous phase. The fatty acid phase then contains 2% 1,2-butanediol 

and the 1,2-butanediol contains less than 0.05% fatty acids. 

Extractions have been performed in hollow fiber membrane modules containing cellulose and 

cellulose acetate membranes. Due to the low interfacial tension between oil and 1,2-butanediol 

it is necessary to use rather dense membranes. From mass transfer measurements it follows that 

a major part of the mass transfer resistance is situated inside the membrane matrix. Overall mass 

transfer coefficients vary significantly for different fatty acids, varying from 7*10-9 m/s for 

C22:l up to 5*10-7 m/s for C6. 

Using the mass transfer data it is possible to calculate the required membrane surface area for a 

given extraction. As a result of the high mass transfer resistance inside the membrane wall this 

membrane surface area is large. Fractionation of fatty acid mixtures can be achieved on the basis 

of differences in overall mass transfer coefficients and differences in solubility in 1,2-butanediol. 

These two effects act in the same direction: short chain fatty acids have higher mass transfer 

coefficients and are better soluble in 1,2-butanediol than the long chain fatty acids. 
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LIST OF SYMBOLS 

A membrane surface area [m2] 

a constant [-] 

b constant [-] 

C fatty acid concentration [kg/m3] 

D fatty acid diffusion coefficient [m2/s] 

d external fiber diameter [m] 

df internal fiber diameter [m] 

dm membrane thickness [m] 

F flow [kg/s] 
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extraction phase 
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outflow oil phase 
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REFERENCES 

1) Lo, T.C. and M.H.I. Baird, Liquid-liquid extraction, in: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 

109 



chapter 6 

9, 3 r d edition, M. Grayson (Ed.), J. Wiley and Sons, New York, 1980, 672-721 

2) D'Elia, NA., L. Dahuron and E.L. Cussler, Liquid-liquid extractions with microporous hollow fibers, J. Membrane 

Sei. 29 (1986) 309-319 

3) Prasad, R. and K.K. Sirkar, Dispersion-free solvent extraction with microporous hollow fiber modules, Am. Inst. 

Chem. Eng. J. 34 (1988) 177-188 

4) Kiani, A., R.R. Bhave and K.K. Sirkar, Solvent extraction with immobilized interfaces in a microporous 

hydrophobic membrane, J. Membrane Sei. 20 (1984) 125-145 

5) Alexander, P.R. and R.W. Callahan, Liquid-liquid extraction and stripping of gold with microporous hollow fibers, 

J. Membrane Sei. 35 (1987) 57-71 

6) Kim, B.M., Membrane-based solvent extraction for selective removal and recovery of metals, J. Membrane Sei. 21 

(1984) 5-19 

7) Callahan, R.W., Novel uses of microporous membranes: a case study, AIChE Symposium Series, vol 84 no. 261 

(1988) 54-65 

8) Dekker, M., P.H.M. Koenen and K. van 't Riet, Reversed micellar-membrane-extraction of enzymes, Int. Chem. 

Eng. Symp. Series 118 (1990) 7.1-7.12 

10) Applewhite, T.H., Fats and fatty oils, in: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 9,3 rd edition, 

M. Grayson (Ed.), J. Wiley and Sons, New York, 1980, 795-831 

11) Edible oils and fats, developments since 1978, Food Technology Rev. 57, S. Torrey (Ed.), Noyes Data Corp., Park 

Ridge NJ, USA 1983 

12) Braae, B., Degummimg and refining practices in Europe, J. Am. Oil Chem. Soc. 53 (1976) 353-357 

13) Shah, K J. and T.K. Venkatesan, Aqueous isopropyl alcohol for extraction of free fatty acids from oils, J. Am. Oil 

Chem. Soc. 66 (1989) 783-787 

14) Pons, WA, P.H. Eaves, Aqueous acetone extraction of cottonseed, J. Am. Oil Chem. Soc. 44 (1967) 460-464 

15) Swern, D. (ed.), Bailey's industrial oil and fats products, Vol. 2, 4 t h edition, J. Wiley and Sons, New York, 1982 

16) Uksila, E., M. Varesmaa and I. Lehtinen, Separation of unsaturated fatty acids of soybean and linseed oils by 

crystallization and subsequent liquid-liquid extraction, Acta Chim. Scandinavie^ 20 (1966) 1651-1657 

17) Yang, M.C. and EX. Cussler, Designing hollow fiber contactors, Am. Inst. Chem. Eng. J. 32 (1986) 1910-1916 

18) Dahuron, L. and E.L. Cussler, Protein extraction with hollow fibers, Am. Inst. Chem. Eng. J. 34 (1988) 130-136 

19) Prasad, R. and K.K. Sirkar, Solvent extraction with hydrophilic and composite membranes, Am. Inst. Chem. Eng. 

J. 33 (1987) 1057-1066 

20) Kreith, F., Principles of heat transfer, Harper and Row, New York, 1973 

21) Beek, W J. and K.M.K. Muttzall, Transport Phenomena, J. Wiley and Sons, London, 1975 

22) Wilke, CR. and P. Chang, Correlation of diffusion coefficients in dilute solutions, Am. Inst. Chem. Eng. J. 1 (1955) 

264-270 

23) Peppas, NA. and CT. Reinhart, Solute diffusion in swollen membranes. Parti. A new theory, J. Membrane Sei. 

15 (1983) 275-287 

24) Sakai, K., S. Takesawa, R. Mimura and H. Ohashi, Structural analysis of hollow fiber dialysis membranes for 

clinical use, J. Chem. Eng. Japan 20 (1987) 351-356 

27) Mackie, J.S. and P. Meares, The diffusion of electrolytes in a cation exchange resin membrane, Proc. Roy. Soc. 

(London), A232 (1955) 498-509 

28) Satterfield, CN., CK. Colton and W.H. Pitcher, Restricted diffusion in liquids with fine pores, Am. Inst. Chem. 

Eng. J. 19 (1973) 628-635 

29) Faxen, H., Die Bewegung einer starren Kugel langs der Achse eines mit zahrer Flüssigkeit gefüllten Rohres, Arkiv. 

Mat. Astron. Fys., 17 (1923) 27 

30) Keurentjes, J.T.F., Th.GJ. Bosklopper, LJ. van Dorp and K. van 't Riet, The removal of metals from edible oil 

110 



chapter 6 

by a membrane extraction procedure, J. Am. Oil Chem. Soc. 67 (1990) 28-32 

31) Kloosterman, J., P.D. van Wassenaar and WJ. Bel, Membrane bioreactors, Fat Sei. Technol. 89 (1987) 592-597 

32) Sandell, E.B., Meaning of the term separation factor, Anal. Chem. 4 (1968) 834-835 

33) Zilch, K.T., Separation of fatty acids, J. Am. Oil Chem. Soc. 56 (1979) 739A-742A 

34) Stein, W., The hydrophilization process for the separation of fatty materials, J. Am. Oil Chem. Soc. 45 (1968) 471-

474 

35) Klein E., F.F. Holland and K. Eberle, Comparison of experimental and calculated permeability and rejection 

coefficients for hemodialysis membranes, J. Membrane Sei. 5 (1979) 173-188 

111 



chapter 7 

MEMBRANE CASCADES FOR THE SEPARATION OF BINARY 

MIXTURES 

SUMMARY 

For the separation of binary mixtures several techniques can be considered, of which is distillation the most widely used. 

When problems occur in distillation (like the formation of an azeotropic mixture), membrane separation can be an 

alternative. A cascade of membranes has to be applied in those cases where it is impossible to achieve a complete 

separation in a single membrane separation process. To calculate the separation in such a cascade, a McCabe-Thiele 

diagram is used in which the equilibrium curve is determined by the membrane selectivity. Optimization calculations for 

the cascade have been performed with respect to the total membrane surface area. Because of the large reflux flows 

around the feed stage, the permeate/retentate ratio in the feed stage has to be chosen carefully, since the required 

membrane surface area is merely determined by the permeate flows. The membrane characteristics that influence the 

required membrane surface area are selectivity and permeability: an increased selectivity or permeability reduces the 

membrane area. However, an increase of the selectivity usually goes with a decrease of the permeability. It appears from 

this study, that for selectivity and permeability values commonly found for RO membranes, an increase of the 

permeability influences the required membrane area to a larger extent than an increase in selectivity. This effect is 

illustrated by simulations for RO membranes used for the separation of water/l,3-butanediol mixtures. The total 

membrane area can be reduced by 25% when two membranes are available with opposite selectivity, i.e. membranes with 

a retention for the other component. 

J.T.F. Keurentjes, LJ.M. Linders, WA. Beverloo and K. van 't Riet 

This chapter is submitted for publication 
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7.1 INTRODUCTION 

For the separation of liquid mixtures several techniques such as distillation, liquid-liquid 

extraction and membrane separations can be employed, of which distillation is the most commonly 

used [1], The use of distillation can be limited by the formation of an azeotropic mixture. In most 

of the membrane separations, differences in molecular size and sorption characteristics determine 

the selectivity for the components, and since for that case no phase transition is required, the 

formation of an azeotropic mixture will not influence the separation. Membrane separation 

processes will also be energetically favourable as compared to distillation [2,3,4], and because of 

the low temperatures used in membrane processes, thermal or oxidative degradation will be 

retarded. 

For the methods described in this report, reverse osmosis (RO), pervaporation and gas separation 

are the main applications. Reverse osmosis can be applied to the separation, concentration and 

fractionation of organic as well as inorganic substances in the liquid phase. The classical 

application of RO is in desalination of sea and brackish water. Novel applications are found in the 

separation of liquid mixtures such as water-ethanol [1,7], n-heptane-ethanol [5] and butanol-

acetone [6] mixtures. Pervaporation and gas separation can also be used for the separation of 

binary mixtures. In these processes the membrane material is a dense polymer film and a 

difference in solubility in the membrane material yields selectivity for one of the components. 

Pervaporation can be applied to the separation of mixtures consisting of components having rather 

close boiling points [8]. Although the separation of gas mixtures by membranes has been known 

for a long time, it has only found application recently due to an increased knowledge of 

membrane materials [9]. Examples are the separation of helium and methane to produce helium 

from natural gas and the separation of S02-nitrogen mixtures [10,11]. 

Like most separation processes, membranes can not separate mixtures into pure components in one 

single step. Generally, a feed stream is separated in two product streams with different 

compositions. Often a series of consecutive stages with membranes is needed to obtain product 

streams of predetermined specifications. Several configurations have been proposed 

[12,11,13,14,15], of which a multistage column (figure 1) seems to be the generally accepted 

configuration. 

Descriptions of multistage membrane separations are derived from the graphical description of 

other multistage separation processes using a McCabe-Thiele diagram. The equilibrium curve is 

obtained by plotting the retentate concentration versus the permeate concentration. Since it is 
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impossible to consider a membrane separation process as an equilibrium separation, we would, 

however, prefer to use the term selectivity curve instead of equilibrium curve. 

QrlNl.XpIN] 

Xf .Qr 

M + 1 

M 

f-a 

•JQrtMl.XpIM] 

[Ml.XJM] pu ' j . ^ p 

M-1 

Qp[1].Xp[1] 

Figure 1. Cascade configuration for the separation of a binary mixture with feed concentration 

X( into a top and bottom stream with concentration X[N] and X[l], respectively 

Usually, an operating line is drawn to describe the deviation from an ideal separation process. This 

line is determined by the concentrations in the two streams in between two consecutive stages. The 

required number of stages can be determined graphically from this operating line and the 

selectivity curve. For membrane separations, attempts have been made to give a suitable 

description of the operating line [14,15]. Hwang and Kammermeyer [14] have given a general 
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description of the operating line for multistage separations, however, this results in extensive 

equations and a different operating line for every single stage. They showed that this approach 

can be worked out graphically for a constant stage cut (the permeate to inflow ratio) or a constant 

overflow, however, when both change with stage number, the graphical determination of the 

number of stages is impossible, although it can be calculated numerically. Schulz et al. [12] treated 

a membrane cascade for gas separations in a similar way, using a constant stage cut. Evangelista 

[15] constructed a different type of membrane cascade for the separation of liquid solutions: 

several parallel series of membranes were used without reflux streams. This procedure is of 

interest to the design of a RO plant for the concentration of a liquid in which one of the streams 

(permeate or retentate) may be wasted. However, for the separation of binary mixtures in which 

both components are valuable this configuration is not very suitable (although the model might 

be extended for this situation). In this study the use of operating lines is avoided, and it will be 

shown that the number of stages can be determined from the selectivity curve directly. The effect 

of permeability and selectivity (the two most important membrane characteristics in this respect) 

and cascade configuration will be investigated. 

7.2 THEORY 

The feed stream of the cascade is a binary mixture with components a and b with a fraction X{ 

of component a (figure 1). The feed stream, with a flow rate Qf, is led across the feed stage 

membrane, numbered as M. By applying a static pressure P at the feed side, a part of the stream 

(Qp[M]) will permeate with fraction Xp[M], and is led towards stage [M-l]. The retentate stream 

(QJM]) with fraction XJM] is led towards stage [M+l]. The feed of each stage [I] consists of the 

retentate flow of the stage below ([1-1]) and the permeate flow of the stage on top ([1+1]), except 

the feed stage [M] where the feed stream entering the system is added to these flows, and the top 

and bottom stage (stage [1] and [N], respectively) where the product streams leave the system. For 

an efficient separation process it is a prerequisite that the composition of the retentate stream of 

stage [1-1] equals the permeate composition of stage [1+1]. When this requirement is not met, the 

separation efficiency will decrease, due to the extra entropy production of mixing [14]. 

For the cascade as a whole and for each separate stage a mass balance can be written: 

Qin=Qp + Qr (D 
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in which Qin is the mass flow entering a stage and Qp and Qr are the permeate and retentate flows, 

respectively. The same applies for the component balance: 

Q A = Q p x p + Q r x r (2) 

The selectivity of a membrane can be defined in several ways [1,6,8,10, 16,17,18]. In this study 

the selectivity a is defined in a way similar to the definition generally used in other separation 

processes: 

X p ( l - X r ) _ p 
X r ( l - X p ) 

(3) 

In gas separations this selectivity is called the actual separation factor, whereas the ideal separation 

factor as defined for gas separations is the ratio of the two permeability coefficients [11,12,13]. 

XJN] 

Figure 2. McCabe-Thiele diagram for a<l. The curved line is the selectivity curve 

Starting point for our calculations on multistage membrane separations is a McCabe-Thiele 

diagram as shown in figure 2, in which the curved line gives the composition of the retentate 

plotted against the permeate composition (the selectivity curve) as given by equation (3) at a given 

and constant value of a. The effect of incomplete mixing and concentration polarization is 

incorporated in the selectivity curve when it is determined for the same experimental conditions 

as applied in the cascade. 
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Figure 3. McCabe-Thiele diagram for a>l 

Starting with a feed stream with composition Xf (point A) a line can be drawn to point B on the 

selectivity curve. At this point, the retentate and permeate composition of the feed stage are 

known (E and D, respectively). Now the composition of the permeate and retentate streams 

throughout the system are known, since XpII^XJI-2] and Xr[I]=Xp[I+2]. The line AB can be 

chosen freely, and is given by an equation derived from the balance equation (2) and the 

selectivity equation (3) as: 

- 5 E V 
Qr P "I (4) 

The tangent of the line AB (written as tan[M]) equals the ratio of the permeate and retentate 

streams (-Qp/Qr). The boundary condition of a tangent close to 0 yields a maximum increase in 

permeate concentration, but with a permeate flow near to 0, whereas the boundary condition of 

an infinite tangent results in the permeation of the whole mixture. In calculations tan[M] is an 

important parameter, since the line AB determines the permeate and retentate flows of all the 

other stages. Membrane cascades can be optimized with respect to a minimum membrane surface 

area (A), but other optimization criteria can be used as well. The total membrane surface area is 

determined by the permeating streams, since A[I] is directly related to Qp[I]: 
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MI] = S E (5) 
#I]P 

in which is tffl] the permeability of the membrane material for the liquid permeating at stage [I] 

and P the applied pressure. Equation (S) shows that it is necessary to minimize the permeate flows. 

Similarly to figure 2 one can construct the McCabe-Thiele diagram for a membrane having a 

selectivity towards the other component b (figure 3). In this case the selectivity curve is situated 

below the Xp=Xr line. The treatment of this diagram is similar to the one described above. 

7.3 MATERIALS 

Permeation experiments have been performed using an Amicon stirred cell device with an 

effective membrane surface area of 32.4* 10~4 m2 at a t rans-membrane pressure of 4*106 Pa. 

Three cellulose acetate RO membranes (table 1) have been used for the determination of 

separation characteristics and permeabilities for 1,3-butanediol/water mixtures. 

Table 1. Cellulose acetate RO membranes used for permeation experiments 

Membrane Manufacturer NaCl retention (%) 

1 Hoechst 30 
2 DDS 55-65 
3 Toray 9(5 

Demineralized water was used, the 1,3-butanediol was reagent grade and purchased from Merck 

(F.R.G.). The membranes were rinsed thoroughly with water before use, and the temperature was 

20 °C throughout. 

7.4 RESULTS AND DISCUSSION 

Water/1,3-butanediol separation 

The results of permeation experiments with water/1,3-butanediol mixtures using the three RO 

membranes are given in figure 4a and 4b. In figure 4a, the retentate concentration is plotted 

versus the permeate concentration. The selectivity calculated according to equation (3) is plotted 

versus X r in the inset. Figure 4b shows the permeation rate versus X p . From these figures it 
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appears that the less selective membrane (membrane 1) has the highest permeability, and the most 

selective one (membrane 3) has the lowest permeability. All three membranes become less selective 

upon a decrease in 1,3-butanediol concentration. The selectivities found are comparable to those 

found in the literature for the separation of organic liquid mixtures using RO membranes 

[5,6,16,19,20]. The permeabilities increase significantly at low 1,3-butanediol contents, and the 

difference in permeability is about two decades over the full concentration range. This effect will 

be due to the fact that water molecules are significantly smaller than 1,3-butanediol molecules, 

resulting in smaller friction with the membrane material. The permeabilities found here (10-s-10~ 
6 kg/(m2.s.bar)) are somewhat higher than the permeabilities usually found for RO (1(T4-10~6 

kg/(m2.s.bar)), which is due to the fact that the RO membranes used here are relatively loose RO 

membranes with low NaCl retentions. 

Figure 4a. McCabe-Thiele diagram as measured for different RO membranes for the 

separation of water/1,3-butanediol mixtures. Concentrations are 1,3-butanediol 

concentrations. Inset: selectivity a versus Xt 

From the foregoing it appeared, that selectivities and permeabilities are not constant over the 

whole composition range. In the following, however, cascade calculations will be performed using 

idealized membranes, possessing a constant selectivity and permeability over the whole 
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concentration range. In that case the selectivity curve is given by equation (3). If necessary, 

however, it is possible to use the exact values of a[I] instead of equation (3) and the exact values 

of fll] in equation (5). For the separation of the water/ 1,3-butanediol mixture the exact values 

are given in figures 4a and 4b. It will be shown that this simplification does not significantly 

affect the results. 

0 (kg/(m2.h.bar)) 

0.20 0.40 0.60 0.80 

Figure 4b. Permeability of the three RO membranes versus permeate concentration 

Single-membrane type cascade 

I.Cascade parameters. 

Optimization calculations on the cascade are carried out with respect to the required membrane 

surface area. A membrane with selectivity a=0.7 and permeability 2*10-4 kg/(m2.s.bar) is used, 

based on the data in figures 4a and 4b. As an example the results for the separation of a feed 

stream of 1 kg/s with composition Xf=0.5 into product streams with compositions X[l]=0.05 and 

X[N]=0.95 are presented. The applied pressure is 80 bar. In figure 5 the concentrations in the 

permeate and retentate streams of each stage through the whole cascade are given. It can be seen 

that close to the feed stage [M], concentration differences between two stages are significantly 

larger than close to the top and bottom stage, which is caused by the fact that in the McCabe-

Thiele diagram the selectivity curve approaches the line Xr=Xp near the end points. 
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Figure 5. Permeate and retentate concentration for each stage. Xf=0.5, X[l]=0.05, X[N]=0.95, 

tan[M]=-1.07, Q^l kg/s, P=80 bar, a=0.7 and <t>=2*10~* kg/(m2.s.bar) 
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Figure 6. • Variation of tanflj with stage number for the conditions of figure 5 

122 



chapter 7 

Figure 6 shows that tan[I] (which is the permeate/retentate flow ratio) varies for each stage. The 

ratio decreases from the bottom stage upwards. However, the influence on the surface area is small 

as compared to the effect of reflux flows (figure 7, line a). Reflux flows are smaller towards the 

top and the bottom of the cascade, which results in a smaller surface area for the stages at the top 

and the bottom. The choice of a correct permeate/retentate ratio in the feed stage will be an 

important design parameter, since the volume flow through the feed stage is the largest one. This 

is shown by line b in figure 7, where an incorrect choice of tan[M] results in membrane areas that 

show a strong variation in consecutive stages. The total membrane surface area for the case of line 

b in figure 7 is 6655 m2 versus 5422 m2 for line a. The total membrane surface area can be 

decreased when the stages with the large permeate/retentate ratio of line b in figure 7 are replaced 

by membranes with opposite selectivity, as will be shown in the next paragraph. 

A(m2) 

500: 

250-

25 

D A: line a (5422 m2) 

• : line b (6655 m2) 
n a 

ôo 

D A a 
A A • 

A A A 

A * 

D a A A A 
D D * A ° 

• A 

— I — 

32 16 24 
stage number 

Figure 7. Membrane surface area per stage for the conditions of figure 5. Line a is obtained at 

the optimum tanfMJ (-1.07), line b is obtained for tan[M]=-2.5 

It turns out, that the optimum permeate/retentate ratio is a function of the feed concentration 

(figure 8), indicating that at low feed concentrations a relatively large fraction of the feed 

permeates in the feed stage, whereas a relatively small fraction permeates when the feed 

concentration is high. This implies that at feed concentrations around 0.5, tan[M] will be close to -
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1, at higher feed concentrations larger than -1 and at low feed concentrations smaller than - 1 . 

This is, however, a tendency and the exact value of the optimum tan[M] also depends on the 

selectivity a. The effect of Xf on the optimum tan[M] is smaller at selectivities close to 1 than at 

selectivities further from 1 (figure 8). 

optimum tan [M] 

-0.6 

Figure 8. Optimum feed stage permeate/retentate ratio versus feed concentration for a=0.5 and 

a=0.7 (other conditions as mentioned at figure 5) 

II. Membrane parameters. 

Two membrane parameters are important for the separation of a mixture in a cascade: the 

selectivity (a) and permeability (<t>). The required number of stages depends on the selectivity 

(figure 9), and increases when the selectivity becomes close to 1. Also, the required surface area 

increases with a selectivity coming closer to 1. Since the total surface area is merely determined 

by the total permeate flow, it will be inversely proportional to the permeability. Although no 

mathematical relation exists between a and <t>, an increase in selectivity usually goes together with 

a decrease in permeability. The three membranes used for the separation of water/1,3-butanediol 

mixtures showed this dependence also. The effect of a and <t> on the total membrane surface area 
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is shown in figure 10. Since it is difficult to draw conclusions from this plot, the slope of the 3D-

plane is taken in both the or and 4> direction. The result of this procedure is shown in figure 11, 

using some typical values for reverse osmosis membranes. The dotted lines in figure 11 connect 

points with equal selectivity, whereas the solid lines connect points with equal permeability. The 

dashed line in figure 11 represents the line where a realtive change in permeability has the same 

effect on the cascade surface area as a relative change in selectivity. From figure 11 it can be 

concluded that all points are found below the dashed line, indicating that permeability affects the 

total membrane area to a larger extent than the selectivity. Even when an improvement of the 

permeability results in a decrease in selectivity, this may often result in a reduced total membrane 

surface area. 

A (1000 m2) 
200 

150-

100-

GC 

Figure 9. Total number of stages and total membrane surface area versus membrane selectivity 

(other conditions as mentioned at figure 5) 

125 



chapter 7 
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A(m2) 
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70000 

35000 

(kg/(m2.s.bar)) 1Q-4 1.66 

Figure 10. Total membrane surface area versus selectivity and permeability. X[ 1]=0.1 and 

X[N]=0.9, other conditions as mentioned at figure 5 

The foregoing can be illustrated for the separation of 1 kg/s water/1,3-butanediol mixture with 

a 1,3-butanediol concentration of 0.2 into top and bottom streams with concentrations 0.9 and 

0.05, respectively. For this calculation, a[I] and #1] are ajusted for each stage according to the 

data of figures 4a and 4b. Using membrane 1 (the less selective one) 894 m2 are required at a 

trans-membrane pressure of 80 bar. For this separation 17 stages are required and the feed stage 

is stage number 9. Performing the same calculations for membrane 3 results in 1499 m2, although 

only 7 stages are required with number 3 as the feed stage. As expected, this calculation shows a 

smaller total surface area for membrane 1. This does not necessarily mean that this process is the 

most competitive, since there is a large difference in the total number of stages required for 

membrane 1 and 3. This difference will introduce other parameters than membrane surface area 

into the cost analysis. 

The data obtained with the exact selectivity and permeability values can now be compared to the 

surface area obtained for membranes with a constant selectivity and permeability. For this purpose 
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the permeability used for membrane 1 and 3 is chosen as the permeability belonging to the feed 

stage composition, 4.8*10-4 and 0.4*10-4 kg/(m2.s.bar), respectively. This choice is based on the 

fact that at the feed stage the largest reflux flows are found, resulting in the largest membrane 

area at the feed stage. For the selectivity the average values are used (i.e. 0.6 and 0.28 for 

membrane 1 and 3, respectively). Using these values, the total surface area for membrane 1 and 

3 is 813 and 1861 m2, respectively. Those values can be compared to the values obtained when 

selectivity and permeability are varied with stage number. From these results it can be concluded, 

that the use of an idealized membrane with constant selectivity and permeability influences the 

results only to a minor extent. 

0 4 â [1000 m2] d0 

a j j ^ [1000 m2] 

Figure 11. Derivative of the membrane surface area to the selectivity versus the derivative to 

the permeability. The dashed line represents an equal effect of both permeability 

and selectivity on the cascade surface area 

Two-membrane cascade 

For the separation of organic liquid mixtures, the separation characteristics strongly depend on 

the solubility of the two components in the membrane material. Using different materials, it is 

possible to obtain selectivities both below and above unity [20]. When we consider a cascade 
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consisting of two membranes with opposite selectivity (e.g. 0.1 and 10) and equal permeability, 

the same calculations as described above can be carried out. The McCabe-Thiele diagram then 

contains two selectivity curves, one below and one above the line Xr=Xp. For every stage 

membrane 1 or membrane 2 can be chosen. It can be shown graphically, that this operation will 

result in a decrease of the total membrane surface area. As it was shown in figure 6, choosing a 

small permeate to retentate ratio results in a small surface area in the feed stage. However, for this 

situation tan[I] switches between small and large for consecutive stages. The second membrane can 

now be installed at the stages where a large part of the inflow has to permeate (i.e. A-B2 instead 

of A-Bl in figure 12). For the situation of exactly opposite selectivities (e.g. 0.1 and 10) the 

permeate/retentate ratio belonging to membrane 1 becomes the retentate/permeate ratio of 

membrane 2. This finally results in a reduced surface area for all stages. 

XrlN] 

Figure 12. McCabe-Thiele diagram for two membranes having opposite selectivities 

The calculations showed that at very high or very low feed concentrations (when the feed stage 

is the top or the bottom one) the optimum configuration consists of one block of stages containing 

membrane 1 and one block containing membrane two. The block of stages near the feed stage 

merely consists of the membrane that retains the component present in a high concentration, 

wheras the block of stages at the other end of the cascade merely contains the membrane with 

retention for the component with a low concentration in the feed. This will result in a rather small 

reduction of surface area, as is shown in figure 13 for Xf=0.1 or 0.9. When the feed stage is not 
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the bottom or the top stage this finally results in a minimum surface area when membrane 1 and 

2 are used alternately. It can be seen in figure 13 that this procedure can result in a reduction of 

25% in membrane area. It has to be noted, that in the case of opposite selectivities the number of 

stages will not change as compared to the use of one membrane. 

A (m2) 
200 

Figure 13. Membrane surface area versus feed concentration of a cascade constructed with 

membrane 1, membrane 2 and the optimum combination of membrane 1 and 2. 

al=0.1, a2=10, other conditions as mentioned at figure 5 

7.5 CONCLUSIONS 

Using a McCabe-Thiele diagram a cascade of membranes for the separation of a binary liquid 

mixture can be designed. Calculations have been carried out using an idealized membrane with 

a constant selectivity and permeability over the whole concentration range. Optimization of the 

cascade is performed using the total membrane surface area as criterion, although it has to be 

noted that especially for cascades consisting of many stages other factors may govern the choice 

of optimization criteria. It appeared, that in the feed stage the largest surface area is required, due 

to large reflux streams. Because of these large reflux streams, the permeate/retentate ratio of the 

feed stage has to be chosen carefully. The selectivity a and permeability <l> influence the required 
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membrane surface area to a large extent: an increased selectivity (larger deviation from 1) and 

increased permeability result in a decreased surface area. However, an improved selectivity often 

goes with a decreased permeability. It appears, that for fluxes and permeabilities commonly found 

for RO membranes, an improvement of the permeability leads to a significantly larger decrease 

in membrane surface area than an improvement made on the selectivity. These effects were 

illustrated using different RO membranes for the separation of water/1,3-butanediol mixtures. 

A decrease of 25% of the total membrane surface area can be achieved using two membrane 

materials having the same permeability but an opposite selectivity, i.e. membranes that are 

selective for either one of the two components of the mixture. In this situation each stage can be 

equipped with the membrane with the appropriate selectivity. 
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CONCLUDING REMARKS; THE IMPROVEMENT OF MEMBRANE 

PERFORMANCE 

8.1 INTRODUCTION 

In this thesis, two processes for the removal of fatty acids from oil have been investigated. A 

characteristic property of both systems is the application of membranes in a two-phase 

environment. The process described in chapters 2 to 5 includes the separation of an emulsion, and 

the process described in chapters 6 and 7 is based on a membrane liquid-liquid extraction. The 

latter system also has to be completed with the separation of an emulsion, but this has not been 

investigated in detail. 

In this last chapter, the methods described in this thesis for the separation of fat/fatty acid 

mixtures will be compared to other systems that serve the same purpose and that can be found in 

the literature. In order to assess the progress that has been made, the more generalized application 

of the principles described in this thesis applied to other membrane separation processes will be 

discussed. Since part of this thesis was concerned with the separation of an emulsion, factors 

affecting the separation of such systems will be discussed, this in relation to the wetting properties 

of the membrane. Finally, possible applications of membrane modifications will be discussed. 

8.2 FAT/FATTY ACID SEPARATION 

The classical method for the separation of fatty acids from edible oil is the caustic refining process 

[1,2]. To compare the two membrane-based processes for fat/fatty acid separations with the 

caustic refining process on other than economical considerations, three parameters are of 

importance: losses of triglycerides, temperature and selectivity. In the caustic refining process, 

losses of triglycerides can be due to the saponification of triglycerides or can be due to inclusion 

of triglycerides into the soapstock [1,3,5]. For an application in the refining of edible oils, 

saponification of triglycerides should always be avoided, since a maximum yield of triglycerides 

is required. In order to reduce the losses due to saponification of triglycerides, a rather small 
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surplus of alkali should be applied [2]. The relatively low temperature used in the membrane 

process (20 "C versus 90 °C) also minimizes saponification losses. However, for an application in 

the (enzymatic) hydrolysis of oils, "losses" due to saponification can even be favorable for the 

process, since it results in an enhanced production rate of fatty acids. Inclusion of triglycerides 

into the soapstock should, however, for both applications be avoided. It was shown for the 

membrane separation systems that losses due to inclusion do not occur, resulting in rather pure 

product streams. In the classical caustic refining process a fatty acid free oil can be obtained. 

However, the soapstock usually contains about 50% triglycerides [1], which are difficult to regain. 

Temperature is a factor of importance for the physical refining (distillation) of oils [5] and for the 

fractionation of fatty acid mixtures by distillation techniques [4]. High temperatures mainly affect 

unsaturated fatty acids, resulting in oxidation and/or polymerization reactions [4,6,7], a problem 

that can be avoided by the use of mild fractionation techniques such as panning and pressing [8,9] 

and solvent fractionation [10,11]. Disadvantages of those techniques are the extremely long 

reaction times (several days in the case of panning and pressing) and the relatively poor product 

quality. This introduces the factor selectivity, since pure product streams are required. It was 

shown in chapter 7, that the application of a membrane-based fractionation may result in rather 

pure product streams after relatively short times. Selectivity is due to differences in mobility 

inside the membrane matrix with a variation in fatty acid chain length. A clear disadvantage of 

the membrane fractionation is that it will be difficult to distinguish between fatty acids with the 

same number of carbon atoms but with different degrees of saturation. For this purpose, other 

mild separation techniques have to be developed. One example is the fractionation of fatty acid 

mixtures using cyclodextrin inclusion [12]. 

It can be concluded that the membrane-based separations as proposed in this thesis may offer 

advantages as compared to the classical fat/fatty acid separation processes in terms of reduced 

losses of triglycerides and mild process conditions. It has nevertheless to be noted that economical 

or safety considerations may change the feasibility of these processes. 

8.3 EMULSION SEPARATIONS 

In chapters 2 to S a system for the separation of a two-phase system has been described, resulting 

in relatively high fluxes over a broad range in phase composition. We should emphasize, however, 

that the emulsion used in those chapters has a phase behaviour that is not commonly found. In 

order to broaden the scope of applications of the knowledge generated here, the relation between 
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the phase characteristics of an emulsion and its permeation behaviour will be the first issue to be 

considered. 

It was shown in chapter S that preferential wetting of the membrane was necessary to achieve 

separation of the oil phase from the emulsion. This condition was only fulfilled in the absence of 

adsorption of surfactant onto the membrane surface. If the surface is not completely wetted by 

only one of the two phases (i.e. the contact angle at the three phase boundary is larger than 0°), 

it is difficult to retain the non-wetting liquid, as it can easily be forced through the pores. This 

is because the Laplace pressure over the liquid-liquid interface, which must prevent the non-

wetting phase from entering the pores, decreases as the contact angle and, hence, the curvature 

of the interface decreases. In the case of a small Laplace pressure it can easily be exceeded by the 

pressure used for permeation of the continuous phase. It is advantageous to use a membrane with 

small pores, however, the permeation flux will then be reduced also. 

Removal of the continuous phase 

It appeared from chapter 2, that the permeation rate of the water phase strongly decreases at the 

transition from a continuous into a discrete water phase. We have performed similar experiments 

with emulsions with a known phase behaviour. Figure 1 shows an example where an emulsion of 

water in soy bean oil containing 1% Span 80 as emulsifier is used. The permeation rate of the oil 

through a PVDF ultrafiltration membrane (IRIS 3065, provided by Rhone Poulenc) is plotted 

versus the emulsion composition. At the transition from a continuous into a discrete oil phase, the 

flux drops almost stepwise to a value close to zero. Other experiments showed the same trends. 

These experiments reveal that this permeation behaviour is not only a property of the system 

studied in chapter 2, but is a more general property for the permeation through a membrane of 

one of the two phases of an emulsion. 

Although this composition-flux relation may seem an important difficulty for an efficient 

separation, it does not prevent separation, since most emulsions show some hysteresis in their 

phase behaviour [13,14]. Hysteresis means that the history of the emulsion determines which of 

the two phases is the continuous one and which is the dispersed one. When the electrical 

conductivity of an emulsion containing water as the water phase and soy bean oil containing 1% 

Span 80 as the oil phase is measured, figure 2 is obtained. This figure indicates that hysteresis is 

found over a large composition interval. Starting with an oil in water emulsion with the 

composition belonging to concentration O in figure 2, the continuous water phase can be removed 

using a hydrophilic membrane up to the composition belonging to concentration B. Here the 
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emulsion changes from an oil in water (o/w) into a water in oil (w/o) emulsion (C), and now the 

continuous oil phase can be removed using a hydrophobic membrane until D is reached, where 

the emulsion changes back from w/o into o/w (A). 

flux (kg/(m2h.bar)) 
6 

4 - o/w emuls 

2-

~20~ "S ' 100 
% oil (w/w) 

Figure 1. Permeation of the oil phase of a water-in-oil emulsion containing 1% Span 80 in the oil 

phase through a PVDF ultrafiltration membrane 

Removal of the dispersed phase 

In the literature several publications on the separation of emulsions are found, however, they are 

mainly concerned with the removal of the continuous (water) phase, resulting in a more 

concentrated emulsion [15,16]. It may, however, be preferable to remove the dispersed phase from 

an emulsion, especially when one is dealing with a particularly small volume of dispersed phase. 

One example one can think of is the removal of a trace amount of oil droplets from a waste water 

stream. For the permeation of the (continuous) water phase a large membrane area would be 
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required whereas the selective permeation of the dispersed oil phase would result in a significant 

reduction of the required surface area. 

log (conductivity) 
0 

80 100 
% oil in emulsion 

Figure 2. Conductivity of an emulsion containing 1% Span 80 in the oil phase versus composition 

If the dispersed phase is to pass the membrane selectively, it must first of all preferentially wet 

the membrane material. This may appear simple at first sight, but the presence of surfactant in 

the system may lead to some surprises. We demonstrated the effect of surfactant adsorption on the 

wettability of a hydrophobic membrane for the separation of the oil phase from an emulsion in 

chapter 5. 

The wetting condition being met, one has to consider the rate of separation. Two rate-determining 

steps can be recognised. The first step is transport of the dispersed droplets from the bulk to the 

membrane surface. Secondly, once a droplet has arrived at the membrane surface, it has to 

coalesce with the membrane or the liquid inside the membrane. Transport of (solid) particles from 

the bulk to the membrane surface is an important phenomenon in membrane fouling, and several 

publications deal with this subject [17,18]. They reveal that in a laminar flow, dispersed particles 

will not move towards the membrane surface, but will migrate towards the center of the duct, an 
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effect known as "tubular pinch" [19,20]. It is obvious that this phenomenon will reduce the droplet 

flux towards the membrane and that one must try to drive the droplets towards the membrane 

surface by an external field. Since emulsion droplets are usually charged, an electrical field will 

probably do [21]. 

A second point of interest is the rate of coalescence at the membrane surface. Although emulsion 

stability has been subject to extensive investigations [21,22], relations for stability and coalescence 

have mainly been derived for particles approaching a flat surface in a non-flowing medium [23]. 

Before coalescence, drainage of the film of continuous phase between two droplets (or a droplet 

and a surface) must occur. Once the film has reached a critical thickness, rupture occurs, followed 

by coalescence (figure 3a). When coalescence is the rate determining step, a fully occupied 

membrane surface can be obtained (figure 3b). For this situation Hartland and Vohra [24] 

determined the following relation for the time (t) required for coalescence: 

t~£ ( i ) 

where a is the area of the film where coalescence has to occur and F the force acting on the 

droplet. From this relationship it follows, that lateral coalescence (i.e. between adjacent drops) 

increases the time required for coalescence in the normal direction, since the liquid between the 

droplet and the membrane surface has to drain over a longer distance, due to an increased film 

area a. This implies, that coalescence with the membrane surface should be enhanced, whereas 

coalescence between adjacent droplets should be avoided. 

Figure 3a. Approximate shape of a droplet at the oil/water interface 
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y//////////////////////////, 
Figure 3b. Emulsion droplets approaching the interface, subject to a vertical force 

Summarizing this section, it can be concluded that the removal of the continuous phase from an 

emulsion can be achieved easily when the membrane is preferentially wetted by this phase. For 

the removal of the dispersed phase, however, two phenomena that require further study can be 

recognized. Firstly, hydrodynamics of dispersion flow are important for the transport of emulsion 

droplets from the bulk towards the membrane. Secondly, the coalescence mechanisms are 

important once a droplet has arrived at the membrane surface. Which of the two is the rate 

determining process is difficult to predict, however, it certainly will depend on the nature of the 

emulsion. 

8.4 FOULING REDUCTION 

For the system described in chapter 5 it appeared possible to avoid adsorption of the surfactant 

onto the membrane surface by adjusting the hydrophobicity of the surface. When adsorption of 

surface active agents could be avoided by adjusting the nature of the surface, this would offer the 

possibility to tailor membranes for a given application [29,30]. Modifying the membrane surface 

for the separation of an emulsion was already discussed in chapter 5. A second important 

application could be avoiding or minimizing fouling. Fouling of membrane materials is often due 

to the adsorption of proteins [27,28,43] or other surface active agents [31] and results in a 

decreased permeation rate. 

In chapter 5 it also appeared possible to describe the adsorption of sodium oleate onto polymer 

surfaces in terms of hydrophobicity of the membrane surface. The adsorption of non-ionic 

surfactants onto polysulfone membranes was shown to be due to hydrophobic interactions [32,33]. 

For the adsorption of charged or very large molecules, however, other than hydrophobic 
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interactions may be important [41]. 

For the adsorption of proteins, van Oss et al. [34,35] showed that the adsorption and desorption 

behaviour merely depends on the hydrophobicity of the protein and the polymer surface, and they 

stressed that other effects can be neglected. On the other hand, Norde [36] and Grainger [37] 

showed that under many conditions, adsorption is driven by an increased entropy, which is partly 

due to conformation changes of the protein upon adsorption and partly due to the solvent. Others 

[38,39] showed that the amount of protein adsorbed onto various substrates strongly depends on 

pH, and thus on electrostatic interactions. 

Tailoring the membrane surface would make it possible to obtain surfaces with relatively low 

fouling potential. Since it will often be impossible to adjust the nature of the solvent, it is 

generally impossible to avoid adsorption by choosing the proper solvent. Fouling may, however, 

be minimized by the use of a membrane material or coating that closely resembles the solvent. 

This means, that in order to minimize fouling from aqueous solutions a very hydrophilic material 

has to be used. This mechanism could be applied in order to minimize protein-membrane 

interactions by adjusting surface hydrophobicity [37,40], using copolymers in a way similar to the 

one described in chapter 5. The underlying mechanism has not yet been understood completely. 

Electrostatic repulsion can also be used to minimize adsorption [41]. In the case of electrostatic 

repulsion it is usually impossible to avoid adsorption completely. The reason for this is that 

unfavorable electrostatic interactions are screened by a transfer of ions from solution to the 

adsorbed protein [42]. 

From these considerations it will be obvious, that it is difficult to avoid adsorption by adjusting 

only one parameter. Using an appropriate combination, however, one may perhaps obtain a 

significant decrease in fouling due to protein adsorption. 

8.5 LIQUID-LIQUID EXTRACTIONS 

For liquid-liquid extraction systems, where the function of the membrane is to stabilize the 

liquid-liquid interface, a low interfacial tension gives rise to problems. The Laplace pressure 

(which keeps the interface in place) is easily exceeded by an external pressure. This was shown 

for a membrane extraction of a-amylase with a reversed micellar solution [25]. Reversed micellar 

systems exhibit an interfacial tension of 10~4-10~7 mN/m [26], so that even in the case of a 0° 
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contact angle, the maximum pressure the system can withstand is 400 N/m2 at a (maximum) pore 

size of 1*10"6 m. It can be concluded, that the application of membrane-based liquid-liquid 

extractions will be limited by the Laplace pressure (which is determined by the maximum pore 

size) and by the size of the molecules to be extracted: molecules larger than the pore size will not 

be able to pass the membrane. It was shown in chapter 6 that a rather dense membrane matrix had 

to be used for the extraction of fatty acids from oil using 1,2-butanediol as extractant. These 

membranes, however, have too small pores for the extraction of proteins. 

Modifications of the membrane surface can also be used in order to improve the stability of solid-

supported liquid membranes (SLM's). Instability of this type of membranes is mainly caused by 

the disappearance of the membrane liquid from the pores of the support. This results in a reduced 

permeability of the membrane due to lost carrier, or in a disappearance of the membrane function 

[44,45,46]. Several methods have been proposed to solve this problem, most of them attempting 

to replenish the liquid that has been lost from the pores [47,48]. Since these methods tend to 

conceal leakage of the membrane liquid only, the method proposed by Neplenbroek [49] has to 

be preferred. He used a (partially) gelled membrane liquid in order to prevent leakage of the 

membrane liquid. Indeed, an improved stability was observed, however, this gel layer may 

constitute a supplementary barrier to mass transport, especially when large molecules such as 

proteins have to transported. 

feed 
(water) 

hydrophilic v 

stripping liquid 

(wa •er) 

Figure 4a. Solid-supported liquid membrane in a three-layer sandwich membrane. The 

membrane consists of a hydrophobic polymer membrane which contains the 

membrane liquid and two hydrophilic layers on top of the hydrophobic membrane 
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Ap Laplace 

Figure 4b. The liquid membrane of figure 4a when subject to an external force 

Instabilities of solid-supported liquid membranes are mainly caused by two effects. Firstly, liquid 

may be forced out of the supporting membrane [50,51] by too high trans-membrane pressures. 

This may e.g. occur as a result of the pressure drop over the length of the fibers in hollow fiber 

systems. Secondly, shear forces may result in emulsification of the membrane liquid into the feed 

or stripping solution [52]. In order to avoid these two effects, we would suggest to modify a 

microporous support as follows. When both sides of the (usually hydrophobic) membrane are 

coated with a hydrophilic layer, a composite membrane as shown schematically in figure 4a is 

obtained. Since the liquid-liquid interface is situated inside the pores, shear forces will hardly 

affect it and emulsion formation will be retarded significantly. More important, however, is the 

fact that such a system is self-correcting with respect to pressure variations. When an excess 

pressure is applied onto one of the two sides (figure 4b), the membrane liquid is forced towards 

the hydrophilic part of the pore. Since the hydrophilic part is poorly wetted by the membrane 

liquid (i.e. exhibits a contact angle close to 0°), the Laplace pressure will counteract the external 

pressure. In this way a pressure of 5*105 N/m2 can be withstood for pores with a 0.1 /im pore 

radius and a liquid-liquid interfacial tension of 25 mN/m. Even though the gelled liquid 

membrane was apparantly capable to withstand larger pressure differences, one may expect that 

already before breakthrough a significant part of the membrane liquid will have spread over the 

membrane surface, and will be lost due to emulsification. 

8.6 CONCLUSIONS 

In this chapter some implications of the fat/fatty acid separation processes as described in this 
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thesis are discussed. It can be concluded, that for the separation of an emulsion it is often more 

interesting to remove the dispersed phase instead of the continuous phase, although new problems 

will occur, due to hydrodynamic and physico-chemical effects. Adsorption onto the membrane 

is an important parameter in fouling, which might be minimized or even completely avoided by 

modifications of the membrane surface. It can also be concluded that mechanisms other than size 

exclusion are important for the use of membranes in separation processes. Liquid membranes and 

membrane-based extractions illustrate this in many ways. 
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SUMMARY 

Fatty acids have to be removed from non-mineral oil for several purposes. In the refining of 

edible oils and fats they have to be removed as a contaminant. In the enzymatic hydrolysis of oils, 

a high content in fatty acids results in a reduced conversion rate. In order to maintain a 

sufficiently high reaction rate they will have to be removed, preferably in-line. The conventional 

separation method is the caustic refining process, in which alkali is added to the fatty acid 

containing oil, resulting in the formation of the sodium salts of the fatty acids (soapstock). Then 

the soapsock is separated from the oil by centrifugation. However, this soapstock contains 

considerable amounts of triglycerides (about 50%), which have to be considered as a loss. For this 

reason, caustic refining of oils containing high concentrations of fatty acids is not an economical 

process. 

In this thesis two alternative processes for the separation of fatty acids from oil are presented, 

with the common feature that membranes are used in a two-phase environment. It is the aim of 

this thesis to study the engineering and physico-chemical phenomena that are relevant for the 

operation of these processes. 

In the first process, alkali is added to the oil in order to form the sodium salts of the fatty acids. 

Additionally, 2-propanol is added to solubilize the soapstock thus formed, resulting in a two-

phase system. The water phase contains the fatty acid salts dissolved in a water/2-propanol 

mixture and the oil phase merely contains triglycerides and a trace amount of 2-propanol. This 

two-phase system can be separated into its two phases by a hydrophilic and a hydrophobic 

membrane in series. 

In chapter 2 the nature of the two-phase system and the permeation behaviour of the water phase 

through the hydrophilic membrane have been investigated. It appears, that both the oil and the 

water phase are present as a continuous phase between 20 and 65% water phase in the dispersion. 

Above 20% water phase, the flux through the membrane is merely determined by the 

hydrodynamic membrane resistance, provided that the membrane is entirely wetted by the water 

phase. Below 20% water phase, the water phase is present as dispersed droplets in oil. At the 

transition from a continuous into a discrete water phase the permeation flux drops almost stepwise 

to a value close to zero. 
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When in the system described in chapter 2, a concentrated NaCl solution is circulated at the 

permeate side of the cellulose membrane, initially a flux reversed to the normal permeation flux 

is observed. After some time the flux changes direction and becomes 2 to 10 times larger than it 

would be based on the pressure difference over the membrane. These effects cannot be accounted 

for using the classical Fickian diffusion theory. In chapter 3 it is shown that the flux changes can 

be explained qualitatively using the Maxwell-Stefan diffusion theory. 

It appeared, that commercially available hydrophobic membranes were incapable of separating the 

oil phase from this dispersion. As the preliminary requirement to solve this problem, chapter 4 

describes a method that has been developed to measure hydrophobicities of membranes. When a 

piece of membrane is submerged in a liquid, air bubbles will adhere to the membrane when the 

surface tension of the liquid is high. Decreasing the surface tension of the liquid yields a transition 

from adhesion to non-adhesion. The surface tension of the liquid at which this transition occurs 

can be compared to the critical surface tension as is commonly used to characterize polymeric 

surfaces. 

In chapter 5 the adsorption is measured of a surfactant in water/2-propanol mixtures onto surfaces 

that vary in hydrophobicity. Adsorption appears to occur in three regions: "tail down" adsorption 

on hydrophobic surfaces, "head down" adsorption on hydrophilic surfaces, and a very small region 

in between, where adsorption is absent. A membrane that possesses a hydrophobicity belonging 

to this region appears to be capable of separating the oil phase from the dispersion selectively. 

The second system for the removal of fatty acids from oil consists of a membrane extraction step, 

using 1,2-butanediol as a selective extradant. When water is added to the fatty acid containing 

1,2-butanediol, the system demixes in a fatty acid phase dispersed in a 1,2-butanediol/water 

mixture. After phase separation, water has to be removed from the 1,2-butanediol, which can be 

reused as extractant. In chapter 6 extraction of fatty acids from oil has been investigated. In order 

to obtain a stable system, it is necessary to use rather dense membranes. This results in relatively 

high mass transfer resistances and hence in large surface areas for extraction. Due to the fact that 

the mass transfer coefficients vary significantly with fatty acid chain length, it appears to be 

possible to fractionate a fatty acid mixture. 

In chapter 7 membrane cascades for the separation of binary mixtures have been investigated. 

Calculations based on a McCabe-Thiele diagram show that, for permeabilities and selectivities 

commonly found for reverse osmosis membranes, permeability is the parameter on which 

improvements have to be made when a minimum total membrane surface area is required. 
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Finally, in chapter 8 some implications of the work described in this thesis have been discussed. 

The two systems descibed for the separation of fatty acids from oil are capable to perform this 

separation selectively and at mild conditions. Two future implications that require further 

investigations are discussed. The first one is the separation of emulsions using membranes. 

Secondly, tailoring membranes for special applications and in order to reduce fouling are possible 

applications that require further investigations. 
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SAMENVATTING 

Vetzuren dienen uit eetbare olie te worden verwijderd om verschillende redenen. Bij de raffinage 

van oliën en vetten dienen ze te worden verwijderd als ongewenste component, terwijl bij de 

enzymatische hydrolyse van oliën en vetten de vetzuren als gewenst produkt moeten worden 

geïsoleerd. Dit omdat bij de hydrolyse een hoog vetzuurgehalte de reactiesnelheid sterk verlaagt. 

De klassieke ontzuring van olie vindt plaats in het zogenaamde "caustic refining" proces. Hierbij 

wordt een loogoplossing aan de olie toegevoegd waarbij de natriumzouten van de vetzuren worden 

gevormd, de zogeheten soapstock. Deze wordt vervolgens afgescheiden van de olie met behulp van 

centrifuges. Deze methode resulteert in verliezen van triglyceriden, omdat de zeepmassa na 

afscheiding uit de olie nog een aanzienlijke hoeveelheid triglyceriden bevat (ongeveer 50%). Om 

deze reden is dit proces niet geschikt voor het ontzuren van olie met een hoog vetzuurgehalte. In 

dit proefschrift worden twee processen beschreven voor het afscheiden van vetzuren uit olie 

waarbij deze verliezen geminimaliseerd worden. De twee processen hebben als gemeenschappelijk 

kenmerk, dat membranen worden gebruikt in combinatie met twee niet mengbare vloeistoffasen. 

Het doel van het werk zoals beschreven in dit proefschrift is het bestuderen van 

procestechnologische en fysisch chemische parameters die van belang zijn voor het bedrijven van 

deze twee processen. 

In het eerste proces wordt, analoog aan het klassieke proces, een loogoplossing toegevoegd aan de 

olie. Vervolgens wordt ook 2-propanol toegevoegd, waarbij de gevormde zepen weer in oplossing 

gaan en een emulsie wordt gevormd. De waterfase bevat dan de zepen opgelost in een water/2-

propanol mengsel en de oliefase bestaat uit olie met een spoortje 2-propanol. Dit tweefasen 

systeem kan worden gescheiden in de twee afzonderlijke fasen met behulp van een hydrofoob en 

een hydrofiel membraan. 

In hoofdstuk 2 is het gevormde tweefasen systeem gekarakteriseerd, alsmede het permeatiegedrag 

van de waterfase door het hydrofiele membraan. Het blijkt, dat zowel de waterfase als de oliefase, 

als continue fase aanwezig zijn tussen 20 en 65% waterfase in de emulsie. Wanneer het membraan 

volledig door de waterfase wordt bevochtigd wordt boven 20% waterfase in de emulsie de flux 

door het membraan louter bepaald door de hydrodynamische weerstand van het membraan. 

Beneden 20% waterfase in de emulsie is de waterfase aanwezig als gedispergeerde deeltjes in olie. 

Bij de overgang van een continue naar een disperse waterfase neemt de flux nagenoeg stapsgewijs 

af tot een waarde van ongeveer nul. In hoofdstuk 3 zijn multicomponent diffusieverschijnselen 
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in cellulose membranen bestudeerd. Wanneer een geconcentreerde NaCl-oplossing wordt 

gecirculeerd aan de permeaatzijde van het membraan, wordt in eerste instantie een flux tegen de 

transmembraandruk in waargenomen. Deze verandert na enige tijd van richting en wordt dan 2 

tot 10 keer groter dan de flux die hoort bij de aangelegde transmembraandruk. Deze effecten 

kunnen niet verklaard worden wanneer de klassieke Fick diffusietheorie wordt gebruikt, echter 

wel met behulp van de Maxwell-Stefan diffusietheorie. 

Het is gebleken, dat geen commercieel verkrijgbaar hydrofoob membraan in staat is om de oliefase 

selectief uit de emulsie af te scheiden. Om dit probleem op te lossen is allereerst een methode 

ontwikkeld om de hydrofobiciteit van membranen te meten, als beschreven in hoofdstuk 4. 

Wanneer een stukje hydrofoob membraan wordt ondergedompeld in een vloeistof en luchtbellen 

worden in contact gebracht met het oppervlak, dan zullen deze hechten wanneer de 

oppervlaktespanning van de vloeistof hoog is. Wordt de oppervlaktespanning van de vloeistof 

verlaagd, dan wordt een punt gepasseerd waarbeneden geen hechting meer plaatsvindt. De 

oppervlaktespanning die behoort bij deze overgang kan vergeleken worden met de kritische 

oppervlaktespanning die vaak gebruikt wordt om polymeeroppervlakken te karakteriseren. 

In hoofdstuk 5 is adsorptie van zeep aan oppervlakken met verschillende hydrofobiciteiten 

gemeten, vanuit water/2-propanol mengsels. Adsorptie blijkt plaats te vinden in drie gebieden: 

met de staarten naar het oppervlak op hydrofobe oppervlakken; met de koppen naar het oppervlak 

bij hydrofiele oppervlakken en een zeer klein gebiedje daartussen waarin geen adsorptie optreed. 

Wanneer een membraan wordt gemaakt met de hydrofobiciteit die behoort bij dit kleine gebiedje 

kan de oliefase selectief worden afgescheiden uit de emulsie. 

Het tweede systeem bestaat uit een extractie met behulp van een membraan met 1,2-butaandiol 

als extractiemiddel. Wanneer water wordt toegevoegd aan de vetzuurbevattende 1,2-butaandiol, 

ontmengt het systeem en wordt een dispersie van vetzuren in 1,2-butaandiol/water gevormd. Na 

fasescheiding moet het water worden verwijderd uit de 1,2-butaandiol, hetgeen dan weer als 

extractiemiddel gebruikt kan worden. In hoofdstuk 6 is de extractie van vetzuren uit olie 

bestudeerd. Om een stabiel systeem te verkrijgen is het nodig relatief dichte membranen te 

gebruiken, hetgeen resulteert in hoge stofoverdrachtsweerstanden en daardoor in grote 

membraanoppervlakken voor extractie. Omdat de stofoverdrachtscoëfficienten sterk variëren met 

de lengte van de vetzuurketen kan een vetzuurmengsel gefractioneerd worden. In hoofdstuk 7 zijn 

berekeningen aan membraancascades voor de scheiding van binaire mengsels gedaan op basis van 

een McCabe-Thiele diagram. Het blijkt, voor selectiviteiten en permeabiliteiten die gevonden 

worden voor omgekeerde osmose, dat de permeabiliteit de belangrijkste parameter is wanneer een 
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minimaal oppervlak van de cascade gewenst is. 

In hoofdstuk 8 worden enkele implicaties van het in dit proefschrift beschreven werk besproken. 

De twee systemen voor de afscheiding van vetzuren uit olie zijn in staat dit selectief en onder 

milde condities te doen. Emulsiescheidingen met behulp van membranen en het aanpassen van 

membraanoppervlakken om vervuiling te verminderen of geheel te voorkomen zijn mogelijke 

toepassingen die verder onderzoek behoeven. 
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