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Science, Agricultural University, Wageningen, The Netherlands, 

20 March 1990. 

D. E. Hume 

This thesis reports the results of seven indoor and outdoor 

studies on the growth of prairie grass (Bromus willdenowii Kunth). 

In five studies comparisons were also made with ryegrass (Lolium 

spp.). Leaf and tiller production were quantified for undisturbed 

growth and growth under different cutting regimes. Water soluble 

carbohydrate reserves for regrowth were also determined. 

Particular attention was given to the effects of reproductive 

development on partitioning of biomass, tillering, herbage 

quality and yields. Field studies also investigated the effects 

of disease, plant populations, tillering, natural reseeding and 

frequency of defoliation. 

Compared to ryegrass, prairie grass had a high leaf 

appearance rate but low site filling, which resulted in low 

tiller numbers. Prairie grass had large tillers with long wide 

leaves, resulting in high herbage production. Plants were able 

to tiller profusely in the field to compensate for plant death. 

High reproductive development occurred in prairie grass which had 

large effects on yields, herbage quality and tillering. 

Vegetative and reproductive plants performed best under 

infrequent defoliation regimes. 
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S T E L L I N G E N 

1. An important factor determining the different tillering rates 
of prairie grass (Bromus willdenowii Kunth) and ryegrass (Lolium 
spp.) during the early growth of seedlings is the capacity to 
develop the coleoptile and prophyll tiller buds. (this thesis) 

2. Suitable management for high production of prairie grass during 
the vegetative and reproductive growth stages is infreguent 
defoliation. (this thesis) 

3. The relative performance of prairie grass cultivars as identified 
during undisturbed growth can be highly modified under cutting, 
especially during reproductive growth. (this thesis) 

4. Presence of the reproductive tiller in prairie grass increases 
the yield but decreases the herbage quality, especially at later 
stages of development compared to Westerwolds ryegrass. 

(this thesis) 

5. It appears that there is an alarming and regrettable ignorance 
about the role and value of pasture plants throughout the (New 
Zealand) agricultural industry. 
L a n c a s h i r e , J . A. ; Using Herbage Cultivars, NZGA, 

Palmerston North, 79-87, 1985. 

6. Concern for the environment is clearly lacking in the following 
statement. "Everyone is quite aware now that what matters is to 
obtain as large an amount of milk or meat as possible, not merely 
per animal, but also per hectare of forage crop and that at least 
cost." 
Loiseau, R. ; Foreword, In Latest Technical Information on Bromus 

catharticus, 1982. 

7. The use of pasture legumes in north west Europe is at present 
limited by economic constraints, but environmental considerations 
may prescribe their use in certain situations. Farmers, research 
and extension workers, however, would first need to increase 
their knowledge on this way of grassland farming. 

8. A period of foreign study for students in any country is 
essential for both their personal and scientific development. 

9. Even though some New Zealanders are leaving New Zealand 
permanently for so called 'greener pastures', the country must 
still have something to offer as the majority of Dutch emigrants 
who arrive in New Zealand settle there permanently. 

10. The overall success of current political reforms in Eastern 
Europe may only be truly judged in the long term by economic 
reforms and an improved standard of living for these Europeans. 

11. The declining proportion of home births in The Netherlands is a 
trend that the Dutch people may regret in the future. 

Proefschrift D. E. Hume 
Morphological and physiological studies 
of prairie grass (Bromus willdenowii Kunth) 
Wageningen, 20 maart 1990 
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C H A P T E R 

G E N E R A L I N T R O D U C T I O N 

Introduction 

Over the last 20 to 30 years interest has developed in prairie 

grass (Bromus willdenowii Kunth) by research scientists, with 

increased farm use occurring in France (Anon., 1982) and New 

Zealand (Hampton and Scott, 1984; Johnson, 1985). However, use 

of prairie grass is still relatively small, only being used on 

1 to 3 % of its potential area in New Zealand (Lancashire, 1985). 

Several prairie grass cultivars are now available (Anon., 1986), 

which have proven to be highly productive in several countries 

eg. France (Anon., 1982), New Zealand (Fraser, 1985) and the 

United Kingdom (Anon., 1986). Many of the perceived problems of 

establishment, management and persistency have been overcome so 

that we now have *working packages' for the use of prairie grass 

on the farm (Anon., 1982; Clark, 1985; Fraser, 1985). Much of 

these xpackages' are concerned with practices that are different 

to those normally used for ryegrass (Lolium spp.), tall fescue 

(Festuca arundinacea Schreb.) and cocksfoot (Dactylis glomerata L . ) , 

as prairie grass has specific management requirements and a more 

limited environmental niche (Langer, 1973; Burgess et al., 1986). 

In comparison to other commonly used temperate pasture 

species, relatively little is known about the behaviour of 

prairie grass, except under general farming conditions (Anon., 

1982; Burgess et al., 1986). This study was therefore undertaken 

to investigate some of the morphological and physiological 

characters of this species, and to identify the possible 

implications that these may have on the value and use of prairie 

grass in agricultural systems. Some of this information may also 

be the basis for defining plant parameters for use in computer 

modelling of growth in prairie grass. 



Features of prairie grass 

Prairie grass is a true perennial originating in the Pampas of 

South America, and now has a very wide geographical distribution 

(Hafliger and Scholz, 1981). For example, prairie grass was first 

recorded in New Zealand in 1869 and soon became established as 

a useful pasture species (Rumball, 1967). Similar introduction 

occurred in France in the 1860's (Lavellee, 1865; cited by 

Pfitzenmeyer and Parneix, 1981). In the past, accidental 

introduction of prairie grass to The Netherlands occurred near 

sea ports and some cultivation has been practiced (Heukels, 1911; 

Jansen, 1951). It did not become a permanent stable species in 

the Dutch environment as it apparently did not survive hard 

winters (Jansen, 1951; Heukels and Van der Meijden, 1983). 

Prairie grass has been and is known under various common 

names and species names. It is also known as rescue grass, brome 

grass, Schraders brome grass and in The Netherlands as 
xpaardegras'. The species is known under various botanical names; 

Bromus catharticus Vahl, B. unioloides H.B.K., B. schraderi Kunth and 

B. willdenowii Kunth, with considerable discussion over the correct 

species name (Hubbard, 1956; Raven, 1960). It is a tall, erect 

plant with wide leaves and few but large tillers. The 

inflorescences are large panicles with big spikelets and they are 

produced over a prolonged period from mid-spring to mid-autumn. 

In New Zealand and France (Anon., 1982; Burgess et al., 

1986) prairie grass is valued for its ability to provide green 

forage at times when traditional pasture mixtures are low 

yielding. Prairie grass has the ability to grow well under the 

cool conditions of winter and the dry conditions of summer and 

early autumn. It is highly palatable at all stages with high 

digestibility despite large numbers of inflorescences. It also 

has a good level of tolerance to pests and diseases. Natural 

reseeding is a feature of this species and is reported to help 

maintain or regenerate swards. These agronomic advantages result 

in economic advantages to the farmer, eg. 10 to 15% higher gross 

margins where prairie grass is used in sheep farming systems in 

New Zealand (Greer and Chamberlain, 1986). 

Prairie grass does have environmental and managements limits 

to its use. It suffers from poor persistence and production under 



frequent defoliation and when grown in soils susceptible to 

waterlogging. The prolonged, high production of reproductive 

tillers has caused some concern regarding quality and has 

therefore become a selection criterion for some plant breeders 

(Pfitzenmeyer, 1982). Its low tillering capacity has caused some 

concern (Hill and Pearson, 1985). The head smut fungus Ustilago 

bullata Berk, may infect the plant and cause reductions in plant 

productivity and persistence (Falloon, 1976). 

Outline of this thesis 

This thesis presents a number of studies that investigated 

several aspects of prairie grass. Chapters 1 to 5 include 

comparisons with ryegrass (Lolium spp.) in order to place prairie 

grass in perspective. Chapters 6 and 7 deal with aspects that are 

more specific to prairie grass. 

Chapter 2 presents the results of a field trial at 

Wageningen in which prairie grass was grown for a three month 

period of undisturbed growth. Partitioning of biomass between all 

plant components and herbage quality were assessed. This was 

compared to a tetraploid Westerwolds ryegrass (Lolium multiflorum 

Lam.) which is reported to have similar quality and a similar 

upright growth habit to prairie grass. 

In Chapter 3, leaf and tiller production for vegetative and 

reproductive prairie grass plants is quantified and compared to 

perennial ryegrass (Lolium per enne L. ) and Westerwolds ryegrass 

under various photoperiod and temperature conditions. 

Chapters 4 and 5 describe the effects of cutting on 

vegetative and reproductive plants with cutting frequency being 

a major treatment. Herbage quality and reserves for regrowth were 

also measured. 

Chapter 6 presents the results of a two year field trial at 

Wageningen. Effects of cutting frequency on tillering, herbage 

quality and yields were measured. 

Chapter 7 investigated the effects of various proportions 

of the head smut fungus Ustilago bullata Berk, in simulated prairie 

grass swards during a 15 month field trial in New Zealand. Plant 

survival, tillering and yields were assessed. 



Chapter 8 presents an analysis of the relative importance 

of plant survival, tillering and natural reseeding in the 

maintenance of high producing simulated prairie grass swards in 

New Zealand. 

Chapter 9 presents an overview and general discussion of the 

results of the studies presented in this thesis. 
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A B S T R A C T 

Prairie grass (Broaus willdenowii Kunth) and a tetraploid 

Westerwolds ryegrass (Lol ium mult iflorum Lam.) were established in 

a field trial in April 1987 and grown for a three month period 

of undisturbed growth. Leaf, tiller and plant populations were 

assessed on ten occasions while yields of herbage and roots, 

chemical composition, leaf area and light interception were 

determined on six occasions. Herbage was divided into leaf 

lamina, inflorescence, vegetative and reproductive pseudostem. 

Nitrogen, water soluble carbohydrates, ash, cell wall and in vitro 

digestibilities were determined. 

Both species had similar light interception and leaf area 

index. Prairie grass had lower plant, tiller and leaf populations 

but larger tillers and more live leaves per tiller. Roots were 

distributed more evenly and to greater soil depths in prairie 

grass. Leaf lamina made major contributions to dry matter yields 

and yields of the various chemical components, but as 

reproductive development occurred, reproductive pseudostem became 

a major component of the total sward. Harvesting herbage to gain 

optimum yields, herbage quality and regrowth is discussed. It is 

concluded that prairie'grass is a high yielding, high quality 

forage grass, comparable to Westerwolds ryegrass. 

http://oxru.ui


I N T R O D U C T I O N 

Prairie grass also called rescue grass or Schraders brome grass 

(Bromus willdenowii Kunth; synonyms B. catharticus Vahl , B. schraderi 

Kunth, B. unioloides H.B.K.), is widely distributed through the 

world (Hafliger and Scholz, 1981). It has an upright growth 

habit, long broad leaves and few tillers many of which are 

reproductive over a prolonged period of the year (Langer, 1973). 

Over the last 25 years there has been increasing interest in 

prairie grass, a pasture species that is a true perennial and 

valued for its out of season growth (Loiseau, 1982; Hume and 

Fraser, 1985) and quality (Wilson and Grace, 1978; Anon., 1982). 

There have been several detailed studies of seedling and 

primary growth of prairie grass (eg. Hill and Pearson, 1985; 

Hill, Pearson and Kirby, 1985; Sangakkara, Roberts and Watkin, 

1985), but little is known of the partitioning of biomass and 

forage quality of each plant component. This could be important 

when the large numbers of reproductive tillers are considered. 

A field trial was therefore established to investigate these 

factors over a three month period of undisturbed growth, with 

Westerwolds ryegrass (Lolium multiflorum Lam.) as a comparison 

species. Westerwolds ryegrass also has an upright growth habit 

and produces a large number of reproductive tillers. 

M E T H O D S A N D M A T E R I A L S 

Site and treatments 

The trial site was at Wageningen Hoog, three km from Wageningen 

city, and for the previous six years had been under rotation with 

various crops and with high fertilizer inputs. The soil was a 

light free draining pleistocene sand of moderate fertility; pH-

KC1 5.4, organic matter 2.6%, 25 mg P (ammonium lactate acetic 

acid extracted), 9 mg K (HCl extracted) and 4 mg Mg (NaCl 

extracted) per 100 g dry soil. A fine seedbed was prepared in 

late March 1987 and plots (92 m2) were hand sown with either 

^Grasslands Matua' prairie grass (Bromus willdenowii Kunth) or 

*Caramba' tetraploid Westerwolds ryegrass (Lolium multiflorum Lam.) 

in a randomised block design replicated four times. Matua plots 

were sown with 505 viable seeds m"2 (60 kg viable seed ha"1) on 13 



April 1987, and Caramba plots with 925 viable seeds m~2 (40 kg 

viable seed ha"1) on 21 April 1987. Spray irrigation was used to 

apply 20 mm of water on 28 April. 

Growth of plots was then measured over a three month period 

of undisturbed growth until 13 July 1988. Half the area of each 

plot was then measured for another 21 months with treatments of 

frequent and infrequent cutting and these results are reported 

in Chapter 6 of this thesis. Root measurements were also taken 

in June 1988. 

Measurements 

The first field measurements were taken on 29 April 1987, 

eight days after sowing the Caramba plots. Ten randomly placed 

625 cm2 quadrats per plot were used to assess numbers of 

seedlings, tillers and leaves. These measurements were taken on 

a further three occasions, each at five day intervals after the 

first measurement (ie. 4, 9, 14 May). 

On 24 May, the first of a series of six harvests was taken. 

These harvests were at successive ten day intervals, with a 

number of measurements being taken at each harvest. Light 

interception of the sward was measured in ten positions per plot 

using photocells situated above and below (soil surface) the leaf 

canopy. Root mass was estimated by randomly taking five 40 cm2 

soil cores per plot to 30 cm depth. At harvest 5, further samples 

were taken to assess root mass at 30-40 cm depth. One year later 

in June 1988, root mass was determined to a depth of 40 cm. The 

soil cores were separated into 10 cm depth increments and stored 

at -20°C until washing in winter. At washing, all roots were 

collected, dried at 100°C and then weighed. Root samples were 

then bulked to give 2 replicates, ground to 1 mm and analysed for 

organic matter. 

To assess herbage mass, leaf and tiller numbers, plants from 

two 0.5 m2 quadrats were removed from each plot by cutting the 

plants below ground level at the six harvests. The samples were 

then counted for total numbers of plants and subsamples taken for 

counting leaves, vegetative tillers, jointed tillers and tillers 

with emerged inflorescences. These components of the plant were 

also physically separated to give leaf lamina, vegetative 

pseudostem, reproductive pseudostem (culm and sheath of 
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FIG. 1. Total rainfall (bars) and average soil temperatures at 
5 cm depth (line) from March to July 1987 for each third of a 
month. Hatua sown on 13 April and Caramba 21 April. 

reproductive tiller) and inflorescence. Surface area of each 

plant component was measured with an electronic planimeter to 

give the total leaf area index of the sward; area of one side of 

leaf lamina, pseudostem and inflorescence per unit area of 

ground. The plant material was then dried at 70°C and weighed. 

Herbage quality 

Dried samples of each plant component were ground in a 

hammer mill (1 mm sieve) and the four replicates bulked to give 

two replicates for determination of herbage quality by chemical 

analysis. True in vitro digestibility of the organic matter (Van 

Soest, Wine and Moore, 1966) was determined and then converted 

to apparent digestibility of organic matter (D0„) by reference to 

a series of standard grass samples of known in vivo digestibility 

for sheep fed at maintenance. Cell wall contents (CWC) , or 

neutral detergent fibre, were determined by Van Soest's (1977) 

method. Digestibility of the cell wall (D„„) was calculated from 



the true digestibility, cell wall content and ash content. Water 

soluble carbohydrates (WSC) were colourmetrically determined with 

an automatic analyser using ferricyanide. Nitrogen (N) was 

determined colourmetrically after the dry samples had been 

digested in a solution of salicylic and sulphuric acid with 

hydrogen peroxide. Ash contents of the dry material were also 

determined. Roots were only analysed for organic matter. 

Fertilizers and herbicides 

Trace elements and 90 kg N, 72 kg P205 and 144 kg K20 ha"1 

were applied prior to sowing. A further 100 kg N ha"1 as nitrolime 

(27% N) was applied on 13 June 1987. Broad-leaved weeds were 

controlled in mid-May 1987 by spraying with 4 1 ha"1 xBasagran P' 

(375 g mecoprop and 250 g bentazon l"1). 

Climate 

Temperature and rainfall records for the trial period were 

obtained from the Wageningen, Haarweg meteorological station, 

four km from the trial site. 

R E S U L T S 

Temperature and rainfall 

Soil temperature at Haarweg (5 cm depth) was 7.9°C at the time of 

sowing Matua plots (13 April) and 10.7°C when Caramba plots were 

sown 8 days later (from daily records). Soil temperature in April 

(9.9°C) was almost 2°C above the 30-year average [Fig. 1]. 

Temperatures were 2 and 1°C below the 30-year average for May and 

June respectively, while temperatures in July were similar to the 

30-year average. Rainfall was high during March (100 mm) but 

immediately prior to sowing (early April) rainfall was low [Fig. 

1]. For the three weeks after Matua plots were sown, rainfall 

was only 9 mm. Rainfall over the remainder of May was higher, and 

on average, rainfall was high in June and July. For an 18 day 

period during late June and early July no rainfall occurred. 

Rainfall in April, May, June and July was 68, 147, 138 and 155% 

of the 30-year averages for these months, respectively. 



Populations 

(a) Planes. Matua had the highest % emergence and plant 

populations [Fig. 2(a)] early in the trial. Emergence improved 

in Caramba plots with both species having approximately 55% 

emergence 32 days after sowing Matua plots. Emergence increased 

up until 50 days after sowing to be 70-80%. With the higher 

sowing rate, Caramba plots had up to 750 plants m"2 while there 

was a maximum of 375 plants m"2 in Matua plots. Plant populations 

decreased in the latter part of the trial, mostly in Caramba 

plots. 

(b) Tillers and leaves. Tiller populations were highest in 

Caramba plots, reaching 4200 tillers m"2 72 days after sowing, 

while there were only 1800 tillers m"2 in Matua plots [Fig. 2(b)]. 

Greater tiller populations in Caramba plots were on most 

occasions due to greater plant populations and not greater tiller 

numbers per plant [Fig. 2(c)]. A large rise in Caramba tiller 

populations 72 days after sowing [Fig. 2(b),(c)] resulted from 

the appearance of new vegetative tillers but these had died 

within 10 days. Caramba plants were faster to produce 

reproductive tillers (first reproductive tillers observed 61 days 

after sowing, Fig. 2(b)) but at later dates a greater proportion 

of Matua plants and tillers were reproductive. Matua had 92% and 

50%, Caramba 78% and 44% reproductive tillers and reproductive 

plants respectively 91 days after sowing. 

Matua and Caramba leaf populations were similar for the 

first 41 days, after which Caramba had greater leaf populations 

[Fig. 2(d)]. This was despite greater numbers of leaves per plant 

and per tiller for Matua. On average, Matua had 3.6 live leaves 

per tiller and Caramba 2.5 (P<0.001). 

Biomass yields 

(a) Herbage. Differences in total green herbage yields 

occurred from harvest 3 onwards (P<0.01) [Fig. 3(a)]. Caramba 

plots yielded 22% more than Matua plots over harvests 3, 4 and 

5, but at the last harvest, Matua (9200 kg DM ha"1) yielded 10% 

more than Caramba (8300 kg DM ha"1) (P<0.01). Differences in yield 

of reproductive pseudostem between species was the primary cause 

of greater total yields in Caramba plots, while greater 

10 
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reproductive pseudostem and inflorescence yields at the final 

harvest were responsible for higher Matua yields. 

Leaf yield (live leaves) increased with time and reached a 

plateau after harvest 4 of approximately 245 g m"2. Contribution 

of leaf to the total yield decreased with time dropping from 62 

to 28%. Leaf yield was greater in Caramba plots at harvest 4 

(P<0.01) but otherwise leaf yields were similar for the two 

species. Yield of vegetative pseudostem increased until harvest 

3 to be 43% of total yield, but then decreased from harvest 4 as 

tillers showed signs of reproductive growth to be only 5% of 

total yield at the final harvest. Matua and Caramba did not 

differ in yields of vegetative pseudostem at any harvest 

(P>0.05). As reproductive tillers appeared, their rapid growth 

ensured a continuation of increasing total yield, contributing 

53% to the total yield by the final harvest. Inflorescence yield 

was relatively small and only significant at the final harvest 

(13% of total yield). Dead matter was low reaching a maximum of 

7% at the final harvest. 

Growth rates measured during the later harvests were very 

high. For Matua, maximum growth rates of 27.5 and 36.0 g DM m"2 

day"1 (275 and 360 kg DM ha"1 day"1) were recorded for reproductive 

pseudostem and total yield respectively, while Caramba had 

maximum growth rates of 20 and 17 g DM m"2 day"1 respectively. 

(b) Roots. Total root organic matter increased significantly 

with time, and except for the first two harvests, was greater for 

Caramba than Matua (p<0.05) [Fig. 3(b)]. Higher total root mass 

in Caramba was due to a greater root mass in the 0-10 cm root 

depth zone (mean, 46 g OM m"2) than in Matua (28 g OM m"2) 

(P<0.01). There were no significant differences between species 

for root mass in the other depth zones; means of 13 and 11 g OM 

m"2 in 10-20 cm and 20-30 cm zones respectively. Caramba had a 

higher percentage of total root mass in the 0-10 cm zone (68%) 

than Matua (52%) at all dates (P<0.01). In the other depth zones, 

Matua roots were evenly distributed in terms of mass and 

percentage (mean, 24%) (P>0.05), while 19 and 13% of Caramba 

roots were in the 10-20 cm and 20-30 cm zones respectively 

(P<0.05) . 

Shoot root ratio in Caramba was 3.2 at harvest 1, increasing 
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to be approximately 6 at the remaining harvests. Matua had 

significantly lower shoot root ratios (4) over the first 4 

harvests (p<0.05) but at harvests 5 and 6 the ratios were 7.8 and 

11.7 respectively. Total biomass (organic matter of shoot and 

root) was 39% higher in Caramba plots at harvests 3, 4 and 5 

than in Matua plots (P<0.05). 

Sampling to 30-40 cm soil depth at harvest 5 showed small 

amounts of roots at this depth (6 and 3 g OM m"2 for Matua and 

Caramba respectively, P>0.05), representing 7 and 3% of the total 

root mass for Matua and Caramba respectively (?>0.05). Sampling 

one year later in June 1988, again showed'significantly higher 

root mass (143 g OM m"2) and percentages (79%) of roots in the 0-

10 cm zone for Caramba compared to Matua plots (92 and 58%) 

(P<0.01). Matua had significantly greater root mass and 

percentage of roots at 20-30 cm (13%) and 30-40 cm (9%) than 

Caramba (4 and 2% respectively). Total root mass (169 g OM m"2) 

did not differ significantly between species (P>0.05). 

Herbage quality 

Herbage quality is considered in terms of percentage of 

chemical components in dry matter or organic matter (eg. nitrogen 

content, N%) and yield of chemical components (g m"2). Yield of 

chemical components were calculated from percentage composition 

and herbage yields. 

(a) Nitrogen. Nitrogen content (N%) varied with each plant 

component and decreased with time in all components except the 

inflorescence [Fig. 4(a)(i)]. Leaf N% dropped from 5 to 3.5%, 

with Caramba having significantly higher N% at harvests 1, 4 and 

6 (P<0.01). N content in reproductive pseudostem (mean, 1.7%), 

vegetative pseudostem (2.6%) and inflorescence (2.7%) was 

significantly greater in Matua at most harvests (P<0.01). The 

resulting N% of the total sward dropped from 4.5 to 2.1%, with 

significantly higher N% in Matua at harvests 2, 4 and 5, although 

differences were small [Fig. 4(a)(ii)]. Harvest 3 had a large 

drop in N% in all plant components, but with the application of 

100 kg N ha"1, N% had increased again by harvest 4. 

Total nitrogen yield (g m"2) increased with time but reached 

a plateau at the final 2 harvests [Fig. 3(c)]. Yields of nitrogen 
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in Caramba plots at harvests 4 and 5 were on average 26% higher 

than those in Matua plots (p<0.05). This was due to significantly 

greater nitrogen yields from reproductive pseudostem and leaf in 

Caramba (P<0.001) despite greater amounts of nitrogen from 

vegetative pseudostem of Matua (P<0.01). There were few other 

significant differences in nitrogen yield for the other plant 

components. Initially, leaf nitrogen contributed 70% to the total 

nitrogen yield with vegetative pseudostem contributing 30%. At 

the final harvest almost 50% of the nitrogen yield came from 

reproductive pseudostem (33%) and inflorescence (15%), while leaf 

contributed 46% and vegetative pseudostem 6%. 

(b) Water soluble carbohydrates. Contents Of water soluble 

carbohydrates (WSC%) varied greatly with harvest, plant component 

and species [Fig. 4(b)]. For all plant components and the total 

sward, WSC% was generally significantly higher in Matua at the 

first 3 harvests while Caramba had higher contents at the last 

3 harvests. WSC% was high at harvest 3, a harvest when N% was 

low. On average, leaf had a WSC content of 12%, vegetative 

pseudostem 20.5%, reproductive pseudostem 22%, inflorescence 12% 

and the total sward 17%. 

Total yield of WSC was 67% higher in Caramba plots at 

harvests 4 and 5, primarily due to greater WSC yield from 

reproductive pseudostem [Fig. 3(d)]. Caramba leaf had 34% higher 

WSC yields than Matua leaf (P<0.05) at all but the first 2 

harvests. Contribution of leaf WSC to total WSC yield dropped 

from 55% at harvest 1 to 12% at harvest 6. Reproductive 

pseudostem contributed significantly to WSC yield (70% at harvest 

6) due to a high dry matter yield and high WSC%. Contribution 

from inflorescence was 11% at the final harvest while vegetative 

pseudostem contributed up to 60% at the initial harvests 

declining to 6% at the final harvest. 

(c) Cell wall. Cell wall content (CWC) of inflorescence, 

reproductive and vegetative pseudostem was significantly higher 

in Matua at all harvests (P<0.01) [Fig. 4(c)(i)]. In the leaf 

this was true from harvest 3 onwards while at harvest 1 Matua had 

significantly lower CWC. CWC increased in all plant components 

with time, except for the inflorescence. Matua leaf and 

vegetative pseudostem had larger increases in CWC than Caramba. 
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FIG. 4. Percentage composition of (a) nitrogen, (b) water soluble 
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( O ) / vegetative pseudostem ( D ), reproductive pseudostem 
( A ) and inflorescence ( • ); and part (ii), total sward. For 
six harvests (HI 6) of Matua ( ) and Caramba ( ). Vertical 
bars near each plant component indicate LSD values (P<0.05) for 
leaf lamina, vegetative pseudostem, reproductive pseudostem, 
inflorescence and total sward. 

16 



FIG. 4 . (Cont inued) 

CD 
ü 

7 0 

6 0 

5 0 

4 0 

3 0 
100 

9 0 

(cXi) 

03 

$ 

0 

0) 
A 

<f) 
<]> 
a 
Û 

> 
= 
o 
(0 
0) 
UI 
U 

f 
(I) 
t _ 

|U 
O a < 

CD 

m 
F 
0 
i 
(0 
(ii 
i _ 

o 
^ 

RO 

7 0 

6 0 

5 0 

4 0 
9 0 

HO 

7 0 

6 0 

5 0 

(cXii) 

(d)<i> (dXii) 

(eXi) (eXii) 

7 0 

6 0 

5 0 

• 4 0 

30 
100 

90 

80 

70 

60 

50 

40 
90 

co 

ai 
ü 

CD 
O 

_ÇD 
j u 

co 
<u 
O) 

8 0 
>. ^ 

/O 

t>U 

n 
co 
<u O) 
o 

r m i _ 

m o a 

m f-
o 
i_ 
(0 
<» k_ 

o 

5 0 
1 2 3 4 5 6 

Harvest 
3 4 

Harvest 

17 



For the total sward, CWC was significantly higher in Matua at 

harvests 2,4,5 and 6, while at harvest 1 Caramba had higher CWC 

[Fig. 4(c)(ii)]. / 

Total yield of cell walls was significantly higher in 

Caramba at harvest 4 and lower at harvest 6 [Fig. 3(e)]. This was 

primarily due to high amounts of cell wall from reproductive 

pseudostem and to some extent leaf. At the final harvest, a large 

proportion of the total cell wall yield was from reproductive 

pseudostem (58%), with 23% from leaf, 14% from inflorescence and 

5% from vegetative pseudostem. 

Digestibility of cell wall (D.^%) decreased with time, 

particularly after harvest 4 and especially for Matua [Fig. 

4(d)]. D ^ of leaf only decreased from 91 to 80%, while there 

was a steady decline in D.̂ % of vegetative pseudostem and sharp 

declines for reproductive pseudostem and inflorescence. Dc.,.% was 

significantly lower in Matua at the later harvests for leaf, 

vegetative pseudostem and inflorescence [Fig. 4(d)(i) ]. Matua had 

higher D.̂ % of reproductive pseudostem at harvests 4 and 5 while 

Caramba had higher D ^ at harvest 6. Resulting D ^ of the total 

sward showed no significant species differences (P>0.05) [Fig. 

4(d)(ii)]. 

Total yield of digestible cell wall was higher in Caramba 

at harvest 4 and lower at harvest 6, due to differences in yields 

from reproductive pseudostem and leaf. These trends are similar 

to those shown for cell wall yield in Fig. 3(e). At harvest 1, 

total digestible cell wall was comprised of 64% from leaf and 36% 

from vegetative pseudostem. This declined to 31 and 6% 

respectively at harvest 6, with reproductive pseudostem 

contributing 49% and inflorescence 14%. 

(d) Digestibility. Apparent digestibility of organic matter 

(D0,%) followed a pattern similar to that described for D.̂ %. Leaf 

Do.% was relatively constant over the first 3 harvests (86%) with 

no species differences (P>0.05), but then declined over the final 

harvests especially in Matua (P<0.001) [Fig. 4(e)(i)]. A similar 

pattern of species differences and decline occurred in vegetative 

pseudostem. Digestibility of reproductive pseudostem decreased 

rapidly, with Matua having significantly greater D0„% than Caramba 

at harvest 3 while the reverse was true at the final harvest 

(P<0.001). D„,% of inflorescence also declined with time with 
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Matua having significantly lower D„„ (66%) than Caramba (72%) 

(P<0.001). DOT% of the total plant declined slowly from harvest 

1 (86%) to harvest 4 (81%) but then declined sharply at harvests 

5 and 6 [Fig. 4(e)(ii)]. Significant differences only occurred 

at harvest 6 when Matua had significantly lower D„»% (P<0.001). 

Total yield of apparently digestible organic matter was 

significantly greater at harvests 3, 4 and 5 for Caramba [Fig. 

3(f)]. This was mainly due to greater yields from reproductive 

pseudostem and to a lesser extent leaf. Contribution of leaf to 

the total yield declined from 65 to 32% and vegetative pseudostem 

from 35 to 6%. At the final harvest, inflorescence contributed 

14% and reproductive pseudostem 48%. ^ 

FIG. 5. Leaf area index (area per unit area of ground) of leaf 
lamina ( 0 ) / vegetative pseudostem ( • ), reproductive 
pseudostem ( ̂ ) and inflorescence ( £3 ) at six harvests (HI — 6) 
for Matua (M) and Caramba (C). Vertical bars indicate LSD values 
(P<0.05) for dates where significant species differences occurred 
for total leaf area index. 
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Light interception 

Light interception of swards rapidly increased in both 

species being 17, 59, 73, 93, 99 and 100% at harvests 1 to 6 

respectively. Matua had significantly greater light interception 

at harvest 1 (p<0.01) while Caramba had greater interception at 

harvest 2 (P<0.001). At subsequent harvests there were no species 

differences. 

Total leaf area index of the sward (area per unit area of 

ground) as measured by electronic planimeter for each plant 

component, differed only at the final two harvests due to a large 

drop in area of leaf lamina in Caramba plots [Fig. 5]. This 

corresponded with severe wilting of leaf lamina in Caramba plots 

at these harvests. Leaf lamina made the greatest contribution (75 

to 90%) to total leaf area index. Contribution from vegetative 

pseudostem decreased from 18 to 3%, while at the final harvest 

inflorescence and reproductive pseudostem contributed 6 and 15% 

respectively. Critical leaf area index (95% light interception) 

occurred at a leaf lamina area index of 4.5 and a total leaf area 

index of approximately 5. 

D I S C U S S I O N 

The large contribution made by reproductive development in this 

study is similar to that described by Wilman, Ojuederie and Asare 

(1976) for Italian ryegrass (Lolium mult if lorum L.). This 

contribution is important because reproductive tillers are 

produced over a major part of the growing season in both the 

species used in the present study. These species have no 

vernalization requirements, with long photoperiods being the only 

requirement for reproductive development (Karim, 1961; Evans, 

1964). Thus the various attributes identified over the period of 

this study are also applicable to other times of the year. This 

is in contrast to some other agriculturally important temperate 

grass species such as perennial ryegrass (Lolium perenne L. ), tall 

fescue (Festuca arundinacea Schreb.) and cocksfoot (Dactylis glomerata 

L.) that have reproductive development confined to a relatively 

short period of the year (Evans, 1964). Reproductive development 

is also important because it is often considered undesirable due 

to its detrimental effects on herbage quality and herbage intake 
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of grazing animals. Reduction of reproductive growth in prairie 

grass has therefore become a selection criterion for some plant 

breeders (Pfitzenmeyer, 1982). 

The change in tillers from the vegetative to the 

reproductive state affected a number of characteristics. The most 

obvious effect was that on yields of herbage and therefore yields 

of the different chemical components of the total sward. 

Continuation of increasing total yield at the later harvests was 

due in most part to reproductive development of tillers. Maximum 

growth rates of 360 kg DM ha"1 day"1 for the total sward and 275 

kg DM ha"1 day"1 for reproductive pseudostem were very high. It is 

well documented that a large proportion of reproductive tillers 

results in high growth rates (Parsons, 1988). Large amounts of 

assimilates were therefore being used in the production of 

reproductive pseudostem at later harvests. Reproductive tillers 

had considerable biomass in the pseudostem (culm and sheaths) as 

it elongated, lesser yet still significant amounts of biomass in 

inflorescences, high WSC contents in the pseudostem, and leaves 

that are longer, appear faster and are retained on the tiller 

longer (Davies, 1977). 

The results of this study indicate that for both species, 

reproductive development should not be allowed to progress too 

far before the herbage is defoliated. Reproductive pseudostem at 

an early stage of elongation had high digestibility, which is 

similar to that found in other species (Minson, Raymond and 

Harris, 1960; Wilman et al., 1976). Barloy (1982) and Parneix 

(1982) have also found that high nutritive value and high WSC 

levels in prairie grass are maintained until head emergence. This 

rapidly changed so that digestibility was very low at the final 

harvest causing large reductions in digestibility of the total 

sward, particularly in Matua. The decision to defoliate must 

therefore be based on a compromise between, high dry matter 

yields, high yields of chemical components, availability 

(digestibility) and content of nutrients, and current tiller and 

leaf populations and recovery of these populations after 

defoliation. It is important that this decision is made at the 

correct time, as even during a short delay large changes in 

digestibility and nutrient contents occur rapidly when 

reproductive tillers are present. 
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For Italian and perennial ryegrass, maximum yield of 

digestible dry matter is reported to occur before the maximum 

yield of dry matter and before digestibilities have fallen to 70% 

(Anon., 1966), with digestibilities being maintained until the 

beginning of ear emergence (Minson et al., 1960). The prairie 

grass and Westerwolds ryegrass swards in the present study appear 

to have similar attributes. When all these factors are taken into 

account, it is suggested that the optimum time for defoliation 

may approximate to harvests 4 or 5 in this study. At harvests 4 

and 5, 11.5 and 24% of the total tillers were reproductive and 

4 and 12% had emerged inflorescences, respectively. The optimum 

time for defoliation may also differ between the species when 

their different tiller dynamics are considered. 

Reproductive development affected other components of the 

sward such as populations of tillers and leaves, and leaf area 

index. Reproductive tillers inhibit development of axillary 

tiller buds (Laidlaw and Berrie, 1974; Ong, Marshall and Sagar, 

1978) thus contributing to the plateau and drop in tiller numbers 

at later harvests. Removal of reproductive stems is not always 

required to remove the suppression (Langer, 1963) as occurred in 

Caramba plots approximately 60-70 days after sowing when there 

was a flush of new vegetative tillers. A similar tillering 

pattern did not appear to occur for Matua although commencement 

of reproductive development was later in Matua. A more detailed 

investigation of tiller dynamics would be required to study this 

aspect further. Accelerated leaf appearance on reproductive 

tillers (Davies, 1-977; Chapter 3 this thesis) also ensures a high 

number of leaves present to intercept light. Although area of 

leaf lamina was the major contributor to total leaf area index, 

reproductive pseudostem and inflorescence contributed up to 21% 

of the total leaf area at later harvests and therefore warrant 

inclusion in measurements of sward area (Robson and Sheehy, 

1981). 

Along with reproductive pseudostem, leaf lamina was the 

other major component of the sward particularly at early harvests 

and still an important component at later harvests. Leaf lamina 

in both species generally maintained high nutrient contents and 

high digestibility. Although vegetative pseudostem was a smaller 

component of the total sward, generally having lower herbage 
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quality than leaf lamina, its high WSC content made significant 

contributions to WSC yield along with high WSC contents in 

reproductive pseudostem. Inflorescence generally had slightly 

lower levels than vegetative pseudostem for all chemical 

components and made a relatively small contribution to yields. 

The importance placed on species differences in quality and 

yields at each harvest must also consider the age of the plant 

components and the stage of plant development. Despite an earlier 

sowing date, Matua was later to show signs of reproductive 

growth. Reproductive tissue was therefore older on average in 

Caramba than Matua and reproductive growth in Matua was occurring 

at higher temperatures. The earlier sowing date for Matua (eight 

days earlier than Caramba) is considered to have little influence 

on the results of this study. This is because temperatures and 

soil moisture were relatively low at the time of sowing Matua, 

conditions which are unfavorable for rapid establishment of 

prairie grass (Culleton and McCarthy, 1983; Burgess et al., 1986), 

and would therefore minimise the effect of differences in sowing 

date. 

Although the herbage components of the total sward were 

similar for the species, Caramba and Matua had different ways of 

forming this dry matter. Caramba swards had greater populations 

of plants, tillers and leaves, but Matua had bigger tillers with 

more leaves per tiller, due to a high leaf appearance rate, and 

greater area per leaf (Chapter 3 this thesis). Similar findings 

for prairie grass and Lolium mulcif'lorum have also been gained by 

Hill et al. (1985). Westerwolds ryegrass normally has greater 

tiller numbers per plant than prairie grass (Hill et al., 1985; 

Hume, unpublished data) but in the present study this varied with 

time. The higher number of viable seeds sown in Caramba plots may 

have influenced this as higher sowing rates result in lower 

numbers of tillers per plant (Holliday, 1953). 

Westerwolds ryegrass is valued for its high forage quality 

(Osborne, 1980; Langer and Hill, 1982). Matua compared favorably 

with Caramba Westerwolds ryegrass in terms of yield of chemical 

components and percentage composition. These observations of high 

forage quality of prairie grass are similar to those of Wilson 

and Grace (1978) and Anon. (1982), despite considerable numbers 

of reproductive tillers. Reproductive herbage in prairie grass 
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is also readily eaten by grazing animals with minimal rejection 

of culm or inflorescence (Pfitzenmeyer, 1982; Burgess et al., 

1986). Some major and trace elements are low in prairie grass 

(Rumball, Bulter and Jackman, 1972) but these low levels only 

rarely have the potential to cause problems in livestock (Burgess 

et al., 1986). The present study considered the total herbage mass 

but in a grazing or cutting system the total plant is not 

harvested ie. a stubble remains. Caution should therefore be 

exercised if these results are to be used for estimating animal 

production. There may also be other factors to consider such as 

the positive effect of prairie grass sward structure on herbage 

intake of grazing animals (L'Huillier, Poppi and Fraser, 1986). 

Root mass and distribution appeared to differ for the two 

species. Caramba allocated a smaller proportion of biomass to 

roots (higher shoot root ratio) and had a higher percentage of 

root mass in the top 10 cm of soil, while Matua appeared to have 

a better distribution of root mass to greater soil depths. 

Typically 70-80% of roots are in the 0-10 cm soil zone 

(Troughton, 1957), but species that root to greater depths and 

have a more even distribution of roots exhibit greater tolerance 

of dry soil conditions (Garwood and Sinclair, 1979). Wilting of 

leaves in Caramba and not in Matua plots, and death of young 

vegetative tillers on Caramba plants under the dry conditions in 

late June and early July (harvests 5 and 6), could have been the 

result of Matua plants having better access to soil water at 

greater depths. Prairie grass is known to have good tolerance to 

dry soil conditions (Eteve, 1982; Burgess et al., 1986) and good 

root growth (Sangakkara et al., 1985). Deeper rooting could also 

explain higher nitrogen yields for Matua under low soil nitrogen 

conditions in winter (Hume and Lucas, 1987), higher nitrogen 

yields for Matua in these plots in 1988 (Chapter 6 this thesis), 

and tolerance of grass grub (Costelytra zealandica White), a pest 

that damages roots (East, Kain and Douglas, 1980). As 

reproductive development occurs, root growth is reduced 

(Troughton, 1978) due to changes in assimilate partitioning 

between roots and shoot (Parsons and Robson, 1981), thus 

increasing shoot root ratios. This appeared to be the case for 

Matua (harvests 5 and 6) but not for Caramba. 

Further measurements of roots would be required to confirm 
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these observations, because although measurements had relatively 

low coefficients of variation (20%) they were taken over a 

relatively short time period and only for one soil type. 

Over the period of this study, Caramba Westerwolds ryegrass 

and Matua prairie grass appear to have a number of similar growth 

characteristics and chemical compositions. Although variations 

will occur with different cultivars, this study has shown that 

prairie grass is a high yielding, high quality forage grass and 

warrants consideration for use in appropriate pasture situations. 

Although reproductive development is normally considered 

undesirable, this view warrants considerable thought with regards 

to these species due to their continual production of 

reproductive tillers during the growing season. 
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A B S T R A C T 

A detailed morphological study of three prairie grass cultivars 

(Bromus willdenown Kunth) was conducted under vegetative and 

reproductive growth conditions (short and long photoperiods) and 

at different temperatures. Perennial ryegrass (Lolïum perenne L. ) 

and Westerwolds ryegrass (Lolium multiflorum Lam.) were used as 

comparison species, although a valid comparison was limited only 

to vegetative growth. 

Prairie grass had higher leaf appearance rates (leaves 

tiller"1 day"1) and lower site filling (tillers tiller"1 leaf 

appearance interval"1) than the ryegrass species. Tillering rates 

(tillers tiller"1 day"1) were also lower, except under vegetative 

conditions at 4°C. Low tiller number in prairie grass was not due 

to lack of tiller sites but a result of poor filling of these 

sites. Lower site filling occurred because of increased delays 

in appearance of the youngest axillary tiller and lack of 

axillary tillers emerging from basal tiller buds. In prairie 

grass, no tillers came from coleoptile buds while only 

occasionally did prophyll buds develop tillers. Low tiller number 

in prairie grass was compensated for by greater tiller weight. 

Prairie grass had more live leaves per tiller, greater area per 

leaf and a high leaf area per plant. 

Considerable cultivar variation was found in prairie grass. 

The cultivar %Bellegarde' had high leaf appearance, large leaves 

and rapid reproductive development, but had low levels of site 
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filling, tillering rates, final tiller numbers and herbage 

quality during reproductive growth. * Primabel' tended to have the 

opposite levels for these parameters, while ^Grasslands Matua' 

was intermediate and possibly provided the best balance of all 

plant parameters. 

I N T R O D U C X I O N 

Prairie grass (Bromus willdenown Kunth; synonyms B. catharticus Vahl, 

B. schraderi Kunth, B. unioloides H.B.K.) is a highly productive 

forage grass, valued for its high summer production (Anon, 1982; 

Fraser, 1985; Anon, 1986), and also in New Zealand for high 

winter production (Burgess et al., 1986). It is a tall plant with 

long broad leaves, but few, large tillers. Hill and Pearson 

(1985) considered that low tillering capacity in prairie grass 

could be a major limitation to its performance in pastures 

especially compared with Italian ryegrass (Lolium multiflorum Lam. ) 

(Hill, Pearson and Kirby, 1985). Tillering is important during 

sward establishment and for regeneration of swards after apices 

have been removed by defoliation (Jewiss, 1972). Low tillering 

may also reflect poor perenniality (Cooper and Saeed, 1949). 

Tiller production is controlled by rate of leaf appearance as 

this determines the number of tiller buds (sites), and also 

controlled by how many tiller buds develop (site filling) 

(Davies, 1974). Prairie grass has a long day requirement for 

reproductive growth, with no vernalization requirement (Karim, 

1961; Evans, 1964), so large numbers of reproductive tillers are 

continually produced from mid-spring to mid-autumn (Chapter 6 

this thesis). Considerable tiller losses therefore occur at 

cutting or grazing and there is a large suppression of tillering 

through apical dominance. High numbers of reproductive tillers 

also have a large impact on herbage production and quality 

(Chapter 2 this thesis). 

Apart from providing tiller sites, a high leaf appearance 

rate is important if the plant is to intercept as much light as 

possible as quickly as possible, and it also provides a major 

part of harvested herbage. Leaf size is therefore also important 

but in some species this is inversely related to leaf appearance 

rate (Cooper and Edward, 1960; Ryle, 1964). 
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These plant factors are interrelated and they ultimately 

determine yield. For recent cultivars of prairie grass these 

factors have not been fully quantified. This paper therefore 

reports several experiments in which leaf production, tiller 

production and reproductive development were measured in three 

prairie grass cultivars compared with two ryegrass species (Lolium 

species), during undisturbed growth at different temperatures and 

photoperiods. Such a characterization of the species may be of 

value to plant breeders who are attempting to breed for a prairie 

grass that is better adapted to a wider range of management 

conditions. 

M E T H O D S A.ND M A T E R I A L S 

Five experiments were completed during 1987 and 1988 in 

temperature and photoperiod controlled glasshouses at Wageningen, 

The Netherlands. Experiments 1 and 2 were in short photoperiods 

so plants remained vegetative. Experiment 3 was conducted under 

a range of short and long photoperiods so that 'Caramba' 

tetraploid Westerwolds ryegrass (Lolium multiflorum Lam.) and 

prairie grass (Bromus willdenowii Kunth) could develop reproductive 

tillers at the long photoperiods. Experiment 4 was also conducted 

at a long photoperiod. Experiment 5 investigated development of 

the first axillary tiller buds of seedlings during a short 

photoperiod. 

In all experiments, water was applied daily while nutrients 

were applied at regular intervals as modified Hoagland's nutrient 

solution. 

Vegetative conditions 

Experiment 1. During early October 1987, seedlings of 'Wendy' 

perennial ryegrass (Lolium perenne L. ) , 'Caramba' Westerwolds 

ryegrass and 'Grasslands Matua' prairie grass, were grown in 

white sand in a 9 h photoperiod, day/night temperatures of 

20°C/12°C, with supplementary lighting from 400 W sodium lamps. 

When seedlings had two fully emerged leaves, they were 

transferred to plastic trays each containing 38 small pots (0.1 

litre each) filled with a three to one mixture of yellow sand and 

black soil. One seedling was planted per pot and a total of 
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twenty trays for each species. Temperatures were gradually 

reduced so that by early December temperature was 4°C day and 

night, with natural photoperiod and no supplementary lighting. 

Plants were cut to 6 cm height and the trays placed close 

together in a randomised block design to give 83 plants m~2. 

Eighteen plants were then randomly selected from each 

species and measured every 14 days for leaf appearance and tiller 

numbers for a period of 13 weeks. Leaf appearance rates (LAR) 

were obtained by marking the uppermost fully emerged leaf (ligule 

emerged) on a tagged tiller with an acrylic pen, then two weeks 

later counting the number of fully emerged leaves above this 

marked leaf. This procedure was then repeated for the following 

weeks. Leaf appearance rate was calculated by dividing the number 

of new fully emerged leaves appearing at each marking, by the 

time interval (14 days). Total tiller numbers were counted on the 

plants at each marking. From this, site filling, the proportion 

of tiller buds forming visible tillers in a single leaf 

appearance interval was calculated (Davies, 1974). At each 

marking, position of the youngest axillary tiller (number of leaf 

axils from the top of the tiller) was recorded for the tagged 

tillers. At the end of the experiment, plants were assessed for 

herbage yield above 6 cm height and nitrogen content. 

Experiment 2. During early September 1987, seedlings of Wendy, 

Caramba and three prairie grass cultivars (^Grasslands Matua', 

'Primabel', ^Bellegarde') were grown in white sand and then 

transferred to 5 litre pots (one seedling per pot) containing the 

sand-soil mixture. This gave forty replicates in a randomised 

block design. Temperatures were 18/12°C with a 9 h photoperiod 

during which supplementary lighting was used. When seedlings had 

two fully emerged leaves (23 September), weekly measurements 

began on the main tiller for leaf appearance, positions of the 

youngest and first axillary tillers (numbers of leaf axils from 

the top and bottom of the tiller respectively), and tiller 

numbers per plant. After three weeks of measurements, new young 

tillers with one fully emerged leaf were also monitored. 

Measurements finished after six weeks, and plants were cut to 6 

cm height to assess herbage yields and nitrogen content. Plants 

from three replicates were also measured with an electronic 

planimeter to assess total area of leaf lamina. Older leaves 
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marked for leaf appearance were also measured for leaf area and 

leaf dimensions. 

After one weeks regrowth, these plants were then used in 

experiment 3. 

Reproductive conditions 

Experiment 3. The plants from experiment 2 were randomly 

divided into four photoperiod groups and placed in a glasshouse 

operating at temperatures of 18/12°C, with a 9 h photoperiod 

consisting of natural (winter) daylight that was supplemented by 

sodium lamps to ensure a minimum irradiance of 80 W m"2 at plant 

level. By means of covers and extra low intensity lighting, 

photoperiod was extended in three of the groups. Thus 

photoperiods in the four groups were 9, 11, 14 and 16 hours, with 

each group having the same 9 hours of full light intensity. With 

this design, full statistical analysis of effect of photoperiod 

was not possible, but within each photoperiod there were ten 

replicates of each species which could be statistically analysed. 

The tillers tagged in experiment 2, and new tillers (one 

emerged leaf) tagged one week before and three weeks after the 

photoperiods were applied, were all measured weekly for leaf 

appearance and position of the youngest axillary tiller. Tiller 

numbers were also recorded weekly, while reproductive development 

of tillers was recorded daily as inflorescences emerged. Plants 

were measured for eight weeks and then cut to 6 cm height to 

assess herbage yields, nitrogen content and apparent 

digestibility of organic matter. 

Experiment U. Seedlings of Wendy, Caramba and Matua were grown 

during early April 1987, and on 17 April, transferred to 5 litre 

plastic pots containing the sand-soil mixture, to give four 

seedlings per pot. Seedlings were allowed to establish for 11 

days, at which time they had two fully emerged leaves and 

measurements began. Pots were arranged in a randomised block 

design with 20 replicates. Throughout the experiment, photoperiod 

(14 h) and temperature (20/14°C) conditions were kept constant 

and no supplementary lighting was used. 

Weekly measurements of leaf appearance, position of the 

youngest axillary tiller and tiller number, began on 28 April and 

31 



continued for 11 weeks. Leaf appearance was measured on the main 

tiller, and also on younger tillers (one fully emerged leaf) 

tagged after three and six weeks of measurements. After six weeks 

of measurements, plants from two replicates were measured for 

total herbage yields. 

SiCes of tillering 

Experiment 5. Tillering in a short photoperiod (9 h) was 

examined on seedlings grown in two mediums and germinated in 

different ways. Seeds of Wendy, Caramba, Matua, Primabel, and 

Bellegarde were sown in white sand, and when seedlings had two 

fully emerged leaves, they were transferred to either aerated 

nutrient solution (Steiner's solution) or to the sand-soil 

mixture in 5 litre pots [part (i)]. Seeds of Wendy, Caramba and 

Matua were also sown directly into pots containing the sand-soil 

mixture, or seeds were germinated on moist filter paper at 25°C 

for three days and then transferred to pots or nutrient solution 

[part (ii)]. In each case, positions were recorded for the first 

axillary tillers to form on the main tiller and to form on the 

first secondary tiller. Position of the youngest axillary tiller 

was also recorded. 

R E S U L T S 

Results of the five experiments are discussed for each of the 

measured parameters. In the photoperiod experiment (experiment 

3), the two short photoperiods of 9 and 11 hours did not induce 

reproductive development in any cultivar. These two photoperiods 

therefore represent growth under vegetative conditions, and as 

such, can be grouped with experiments 1 and 2 on vegetative 

growth. Wendy had not been vernalized so it did not produce 

inflorescences, while Caramba apices showed signs of reproductive 

development at the 14 and 16 h photoperiods (dissections of 

apices in experiments 3 and 4), but only in experiment 4 did some 

inflorescences emerge. 
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Leaf appearance 

Leaf appearance for experiments 1 to 4 is shown in Figure 

1. The slopes of the lines represent the leaf appearance rates 

(LAR) , while average LAR (leaves tiller"1 day"1) can be calculated 

from the total number of leaves appeared, divided by the time in 

days. 

(a) Vegetative. Under the vegetative conditions of experiments 

1, 2 and 3 (9 and 11 h photoperiods), the prairie grass cultivars 

consistently had much higher LAR than the ryegrass species [Figs. 

1(a),(b),(c)] (p<0.001). Wendy and Caramba had similar LAR in 

experiments 1, 2 and 3 (all photoperiods and all tagged tillers 

in experiment 3) (P>0.05) [Figs. 1(a) to 1(e)]. The only 

exception was a higher LAR in Wendy for the second tagged tiller 

in experiment 2 (p<0.05). For the prairie grass cultivars, Matua 

had higher LAR in experiment 2 (P<0.05), while Bellegarde had a 

higher LAR for all tagged tillers in experiment 3 (9 and 11 h ) . 

Primabel had significantly lower LAR than the other prairie grass 

cultivars, except for the second tagged tiller in experiment 2 

where LAR was significantly higher. 

Within each cultivar, the different tagged tillers had 

similar LAR (p>0.05), except in experiment 2 where LAR on the 

second tagged tiller was 7% lower for Matua and Bellegarde than 

on the main tiller (P<0.05). 

(b) Reproductive. LAR of reproductive prairie grass tillers 

were higher than LAR in the ryegrass species [Figs. l(d),(e),(f)] 

and higher than LAR of vegetative prairie grass tillers 

(experiment 3) [Figs. l(c),(d),(e)]. LAR in prairie grass in the 

long photoperiods (14 and 16 h) of experiment 3, increased after 

three weeks [Figs. 1(d),(e)]. Increases were most rapid at 16 

hours photoperiod, and fastest in Bellegarde and slowest in 

Primabel. Increases in LAR were greatest and occurred earliest 

on the main tiller, while increases were less and occurred later 

the younger the tagged tiller. LAR declined and leaves ceased to 

appear as the inflorescences emerged. Emergence of inflorescences 

occurred faster and earlier on the main tillers, earlier at 16 

hours photoperiod and earlier in Bellegarde [Table 1] [Figs. 

1(d),(e)]. Photoperiod appeared to have no effect on LAR in the 

ryegrass species. 
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FIG. 1. Cumulative numbers of leaves appeared on tillers of Wendy 
( T T ) / Caramba ( v V ), Matua ( o • ) , Primabel ( o — O ) and 
Bellegarde (A A ) . (a) experiment 1; (b) experiment 2, upper 
and lower sets of lines are main and second tagged tillers 
respectively; (c) experiment 3, average of three tagged tillers 
in the 9 and 11 h photoperiods; (d) experiment 3 (14 h ) , main 
tiller; (e) experiment 3 (16 h ) , main tiller; (f) experiment 4, 
upper, middle and lower sets of lines are main, second and third 
tagged tillers respectively. In experiment 3, arrows indicate for 
each prairie grass cultivar when 50% of the main tillers had 
emerged inflorescences. Temperature and photoperiod conditions 
are indicated in the corner of each figure. Vertical bars 
indicate LSD values (P<0.05) for significant species differences 
for each set of tagged tillers. 
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TABLE 1. Reproductive development and tiller numbers in prairie 
grass for experiment 3. Days taken for 50% emergence of 
inflorescences on the main and second tagged tillers. Total 
tillers per plant at the end of the experiment, and percentage 
of total tillers with emerged inflorescences at the 14 and 16 h 
photoperiods. Figures in a row that are accompanied by the same 
lower case letter are not significantly different (P>0.05). 

Days to 50% emergence 
of inflorescences for 

- main tiller -14 h 
-16 h 

-second tagged -14 h 
tiller -16 h 

Total tillers per plant 
- 9 h 
-11 h 
-14 h 
-16 h 

% tillers with emerged 
inflorescences -14 h 

-16 h 

Matua 

48b 
40b 

55b 

47b 

37. 
32. 
27. 
26. 

13«, 
24b 

Cultivar 
Primabel 

54. 
46. 

68. 
60. 

43. 
36. 
30. 
26. 

4C 
7C 

Bellegarde 

42c 
38c 

45c 

41c 

24b 
25b 
17„ 
18b 

41. 
44. 

Similar trends for LAR also occurred in experiment 4 for the 

main and second tagged tillers, but Matua showed no signs of 

reproductive development or accelerated LAR on the third tagged 

tiller [Fig. 1(f)]. LAR in Wendy and Caramba declined with time 

and was significantly higher on average in Caramba for all 

tillers (P<0.01). LAR of Wendy and Caramba on the second and 

third tagged tillers were 9 and 14% lower than on the main 

tiller, respectively (P<0.05). At the end of the experiment, 55% 

of Matua tillers had emerged inflorescences and 5% were jointed, 

while only 4% of Caramba tillers were reproductive (jointed 

tillers and emerged inflorescences). 

Tillering and site filling 

(a) Vegetative. Tillering rates were similar for all cultivars 

in experiment 1 (P>0.05) [Fig. 2(a)] [Table 2], but otherwise 

prairie grass had significantly lower tillering rates, lower site 

filling and lower tiller numbers than ryegrass under vegetative 
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TABLE 2. Average tillering rate (tillers tiller"1 day"1) (x 10 4) 
and average site filling (tillers tiller -' leaf appearance 
interval _1) for all experiments. Figures in a row that are 
accompanied by the same lower case letter are not significantly 
different (P>0.05). 

T i l l e r i n a r a t e fx lOM 

Expt 
Expt 
Expt 

Expt 

S i t e 

Expt 
Expt 
Expt 

Expt 

1 

2 

3 

4 

f i 

1 

2 

3 

4 

9 h , 
9 h , 
9 h , 

11 h , 
14 h , 
16 h , 
14 h , 

l l i n a 

9 h , 
9 h , 
9 h , 

11 h , 
14 h , 
16 h , 
14 h , 

4/4°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
20/14°C 

4/4°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
20/14°C 

Wendy 

7 1 . 

930. 
155. 
144. 
138. 
162. 
480. 

0 . 243 . 
0 .597 . 
0 .152 . 
0 .158 . 
0 . 1 3 1 . 
0 .157 . 
0 .298 . 

Caramba 

62 . 

840b 

120b 

137. 
140. 
137b 

460b 

0.222.,, 
0 .544b 

0 .121 b 

0.140b 

0 .140 . 
0 .148 . 
0 .276b 

C u l t i v a r 
Matua P r imabe l 

76 . 

700c 

8 6 . 
7 1 . 
26 c 

26 . 

310c 

0.176b 

0.370 . 
0 . 061 . 
0 . 0 51 . 
0 .014 . 
0 .014 . 
0 .172 c 

700c 

109c 

79 . 
47,, 
30 . 

0.428 c 

0.085 c 

0.086o 

0.030 c 

0 .018 . 

B e l l e g a r d e 

580. 
112c 

116. 
52b 

5 1 . 

0.316 . 
0.079«^ 
0 . 081 c 

0.029 c 

0 .029 . 

conditions [Figs. 2(b),(c)] [Table 2]. Increases in tiller 

numbers in experiments 1 and 3 were very low, and so tillering 

rates and site filling were also low. Tillering rates and site 

filling declined steadily with time in experiment 2, the greatest 

decline occurring in Matua and Bellegarde. 

Wendy and Caramba had comparable tillering and site filling, 

but on average, Caramba had slightly lower tillering rates, site 

filling and final tiller numbers than Wendy (P<0.05) [Fig. 2] 

[Table 2]. Of the prairie grass cultivars in experiment 2, 

Primabel had the highest site filling, while Bellegarde had poor 

site filling and the lowest tiller numbers. Despite a low site 

filling, a good tillering rate resulted in Matua having the same 

tiller numbers as Primabel. In experiment 3, Bellegarde showed 
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Ẑ 

100 

5 0 

10 

5 

0 2 4 6 8 10 12 0 1 2 3 4 5 6 

1 0 0 

't—V 

50 

_ 10 

(c) 9 & 1 1 h 18/12°C 

»— • ' 

7 — V -

^-o—o—o 
-o-%,—o—o 

o=8 : ,^Ö' «,—A J 
^ A A ' 

>— V ' 

(d) 14 h 18 /12°C 

r - T - T 

$—"D J_ 

-A -A A A -
_A A -

1 0 0 

5 0 

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 

oo 

50 

i 
-

(e) 16 h 18/12°C 

. A A A A -

. Y " 

, - V 

—A— 

T — • 

V " V 

_ A — A 

(0 14 h 20 /14°C T 

i—D—a—o—a—D—a 

10 _ 

100 h-

50 

10 

5 

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 11 

Weeks Weeks 

FIG. 2. Numbers of tillers per plant for Wendy ( y — • ) , Caramba 
( V — V ) , Matua ( D — D ) , Primabel (o O) and Bellegarde 
( A — A ) . (a) experiment 1, (b) experiment 2, (c) experiment 3 
(average of 9 and 11 h photoperiods), (d) experiment 3 (14 h ) , 
(e) experiment 3 (16 h ) , and (f) experiment 4. Temperature and 
pnotoperiod conditions are indicated in the corner of each 
figure. Vertical bars indicate LSD values (P<0.05) for 
significant species differences. 
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better tillering and site filling when compared to the other 

prairie grass cultivars, but increases in tiller numbers were 

very low in this experiment and Bellegarde still maintained a low 

tiller number. 

(b) Reproductive. Reproductive development in the prairie 

grass cultivars resulted in reductions in tillering, site filling 

and lower final tiller numbers in the long photoperiods of 

experiment 3 [Figs. 2(c),(d),(e)] [Tables 1,2]. In experiment 4, 

tiller numbers increased in an exponential manner for Wendy and 

Caramba until 4 to 5 weeks of measurements [Fig. 2(f)]. Tillering 

rates and site filling then declined sharply, firstly in Caramba 

and then Wendy. This occurred at a stage when there were large 

numbers of tillers per pot (120-200) in Wendy and Caramba. Matua 

had decreasing tillering rates and site filling from an early 

stage, with no increase in tiller numbers after 5 weeks, and 

therefore site filling of zero during this later period. Average 

site filling was significantly higher in Wendy than Caramba, and 

lower in Matua [Table 2] (P<0.001). 

Positions of axillary tillers 

Position of the youngest axillary tiller (number of leaf 

axils from top of tiller) on the main tiller increased with time 

in all experiments [Fig. 3]. In some experiments, positions were 

similar for all cultivars at the start of the experiment, but 

positions soon increased so that Wendy consistently had the 

smallest position and the prairie grass cultivars the largest. 

Positions in Caramba in experiments 1 and 2 were similar to 

prairie grass, but in experiment 3 it was closer to that of 

Wendy. Of the prairie grass cultivars, Bellegarde generally had 

the largest position and Primabel the smallest. With the higher 

LAR and lower site filling associated with reproductive 

development, position of the youngest axillary tiller rapidly 

increased in experiments 3 (14 and 16 h) and 4. The increase 

being fastest in Bellegarde and slowest in Primabel. 

In experiments 2, 3 and 4, position of the youngest axillary 

tiller on the second tagged tiller was similar to that of the 

main tiller. For Bellegarde in experiment 2, this is only based 

on 80% of the plants, because over the total trial period 20% of 
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( f ) experiment 4. Temperature and photoperiod conditions are 
indicated in the corner of each figure. Vertical bars indicate 
LSD values (p<0.05) for significant species differences. 
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the plants did not produce visible axillary tillers on the second 

tagged tiller. The third tagged tiller in experiment 3 produced 

axillary tillers in Wendy and Caramba, which were similar in 

position to the main tiller (P>0.05), but in prairie grass only 

40% of these tagged tillers produced axillary tillers. No 

axillary tillers were produced on the fourth tagged tiller in 

experiment 3 or on the third tagged tiller in experiment 4. 

Tillering on the main and second tagged tillers in 

experiment 2, and the main tiller and first secondary tiller in 

experiment 5, started approximately one leaf stage later in 

prairie grass than in ryegrass [Table 3]. For the prairie grass 

cultivars, tillering started later in Bellegarde. The final 

growing medium for the plant in experiment 5 did not affect these 

sites of tillering, but where no or minimal disturbance to roots 

occurred, ie. seed sown into soil or germinated on filter paper 

[experiment 5(ii)], tillering began at an earlier leaf stage. 

In experiment 5(i) , tiller numbers per plant when six leaves 

had appeared on the main tiller, were 15.3, 14.2, 5.6, 5.5 and 

4.4 for Wendy, Caramba, Matua, Primabel and Bellegarde 

respectively (LSD0„5=0.2, P<0.05). These species differences in 

tiller numbers were primarily due to the positions at which the 

first axillary tillers were produced, because at this leaf stage 

differences in positions of the youngest axillary tillers were 

small. Variation in tiller numbers between cultivars of a species 

corresponded with the small differences in positions of the 

youngest and the first axillary tillers. 

Yields, herbage quality, leaves 

The prairie grass cultivars had the greatest yields per 

tiller, being highest in Bellegarde especially at long 

photoperiods [Table 4(a)]. Wendy had a very low yield per tiller 

while Caramba was intermediate. Yield per plant [Table 4(b)] is 

a result of yield per tiller and tiller number. Wendy 

consistently had the lowest yield per plant, despite having the 

highest tiller number. Yield per plant for Caramba relative to 

prairie grass, varied with experiment, but Caramba consistently 

had higher yields per plant than Wendy [Table 4(b)]. Although 

Bellegarde had a low tiller number, a high yield per tiller gave 

Bellegarde the highest yield in experiment 3, particularly with 
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TABLE 3. Positions of the first axillary tillers to form on the main 
tiller, first secondary tiller and the second tagged tiller in 
experiments 2 and 5(i),(ii). P, C, 1, 2, etc. represent prophyll, 
coleoptile, first leaf, second leaf, etc. respectively. For experiment 
2, figures in a column that are accompanied by the same lower case letter 
are not significantly different (P>0.05) for log transformed data. 

Experiment 
T i l l e r 

Wendy 
Caramba 
Matua 
P r imabel 
B e l l e g a r d e 

Main 

1.6d 

i . o . 
2.0C 

2 . 1 b 

2 . 4 . 

P o s i t i o n c 
2 
2nd t agged 

Pc 

P= 
1.0„ 
1.0b 

2 . 1 . 

f f i r s t a x i l l a r v 

Main 

1 
1 
2 
2 
2 

5 ( i ) 
Secondary 

P 
P 

P o r 1 
P o r l 
1 o r 2 

t i l l e r 
5 ( i i ) 

Main Secondary 

C P 
C P 
1 P o r 1 

TABLE 4. (a) Herbage yields per tiller and (b) herbage yields per plant 
at the end of experiments 1, 2 and 3, and yields after six weeks of 
measurements in experiment 4. Figures in a row that are accompanied by 
the same lower case letter are not significantly different (P>0.05). 

Cultivar 
Wendy Caramba Matua Primabel Bellegarde 

fat Yield per tiller fgl 

Expt 1 
Expt 2 
Expt 3 

Expt 4 

fbï Yie 

9 h , 
9 h , 
9 h , 

11 h , 
14 h , 
16 h , 
14 h , 

Id p e r 

4/4°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
20/14°C 

p l a n t (g) 

0 .016 c 

0.06 a 

0 .07 . 
0 . 08 . 
0 . 08 . 
0 . 09 . 
0 .06 c 

0.055 b 

0.18 c 

0.14„ 
0.18„ 
0.24„ 
0 .26d 

0.19 b 

0 .072 . 
0 .32 b 

0.70 b 

0.85„ 
1.03b 

1.34b 

0 . 5 3 . 

0 .34 
0 .63 
0 .74 
0 .83 
1.05 

0.66. 
1.28. 
1.20. 
2.12. 
2.16. 

Expt 
Expt 
Expt 

Expt 

1 

2 

3 

4 

9 h , 
9 h , 
9 h , 

11 h , 
14 h , 
16 h , 
14 h , 

4/4°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
18/12°C 
20/14°C 

0 . 31 b 

4.0C 

14 . 5a 

13 . 2„ 
14 . 4„ 
1 4 . 8 , 

4 . 0 b 

0 .56 . 
9 . 6 . 

19 . 6C 

19.3C 

21.8C 

22.4C 

6 .2 . 

0 . 50 . 
6.7B 

25.6 b 

25.6 b 

27. 3b 

32. 0b 

5 .6 . 

6 .7 b 

2 6 . 9 ^ 
26.2.„ 
2 5 . l b 

24. 7C 

6 . 3 b 

29 . 7 . 
2 8 . 6 . 
3 4 . 9 . 
3 8 . 8 . 
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TABLE 5. Numbers of leaves, area per leaf, total area of leaf 
lamina per plant, and leaf dimensions of six leaves of the same 
leaf stage from the main and second tagged tillers, at the end 
of experiment 2 (9 h, 18/12°C ). Figures in a row that are 
accompanied by the same lower case letter are not significantly 
different (P>0.05). 

Live leaves - tiller"1 

- plant-1 

Area leaf"1 (cm2) 

Total plant leaf 
lamina area (cm2) 

Leaves of same 
leaf stage 
- lamina width (cm) 

- lamina length (cm) 

- lamina area (cm2) 

- sheath length (cm) 

Wendy 

3.1„ 

228, 

2.7„ 

620o 

0.4C 

22c 

7c 

4C 

Caramba 

3.5„ 
192. 

9.2C 

1760. 

0.7b 

32b 

16„ 

6b 

Cult 
Matua 

4.9b 

104b 

11.5b 

1190b 

i.o. 
36. 

28. 
10. 

ivar 
Primabel 

4.4c 
87b 

12.9„ 

1120b 

Bellegarde 

5.5. 

53c 

18.4. 

970b 

reproductive development. Matua and Primabel had similar yields, 

although the long photoperiods in experiment 3 appeared to have 

little effect on total yield in Primabel. 

Apparent digestibility of herbage organic matter in 

experiment 3 was consistently higher in Wendy (85%) than in 

Caramba (82%) and lower in prairie grass (80%) at 9 and 11 h 

(p<0.01). Digestibility of prairie grass at long photoperiods was 

less at 14 h (76%) and 16 h (74%), the greatest decrease 

occurring in Bellegarde (70% at 16 h) while at 16 h Primabel had 

76% and Matua 74% digestibility. Nitrogen content was high (3 to 

4.5%) in all cultivars in experiments 1, 2 and 3. 

Wendy had high numbers of live leaves per plant but a low 

number of live leaves per tiller [Table 5]. Leaves were very 

small in Wendy, with short leaf sheaths and a low leaf area per 

plant. In contrast, prairie grass had high numbers of large 

leaves per tiller, long leaf sheaths, low numbers of leaves per 

plant and high leaf area per plant. Caramba was intermediate in 

these characters, although total leaf area was high. Of the 

prairie grass cultivars, Bellegarde had the highest number of 
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leaves per tiller and the largest leaves, but a lower tiller 

number resulted in lower numbers of leaves per plant and lower 

total leaf area. 

D I S C U S S I O N 

This study has characterized leaf and tiller production in 

prairie grass under a range of environmental conditions. 

Inclusion of two ryegrass species provided a good comparison as 

there is already considerable knowledge on the tillering and 

production of this genus. Only during experiments 3 (14 and 16 

h) and 4, growth in long photoperiods, was this comparison not 

valid. In these experiments, reproductive development occurred 

in prairie grass but not in ryegrass. Wendy perennial ryegrass 

had not been vernalized and therefore could not produce 

reproductive tillers. Conditions were apparently suitable for 

reproductive development in Caramba Westerwolds ryegrass (Cooper, 

1960), but very few inflorescences emerged. Although night 

temperatures (12-14°C) appeared to be low enough to avoid any 

significant inhibition of inflorescence production in Caramba 

(Cooper, 1958; Evans, 1960; Hill and Pearson, 1985), this could 

have been a possible cause of inhibition as satisfactory 

reproductive development has been obtained in Caramba with night 

temperatures of 10°C (Chapter 5 this thesis). 

Under vegetative conditions, leaf appearance rate in prairie 

grass was consistently higher than in the ryegrass cultivars 

while site filling was lower. Similar results have also been 

found in further studies with these cultivars (Chapter 4 this 

thesis). Low tillering rates and low tiller numbers in vegetative 

prairie grass growing from mid-autumn to mid-spring, are 

therefore not the result of a low number of tiller sites, on the 

contrary, a high number of tiller sites are produced per tiller. 

Low filling of these sites is the cause of low tiller numbers and 

low tillering rates. 

Low site filling in Vegetative prairie grass dominated any 

positive effects that a high leaf appearance rate may have on 

tiller numbers (high number of tiller sites), so that tiller 

numbers were low. Despite the low tiller numbers, prairie grass 

yields were high, because of a high yield per tiller when 
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compared to the ryegrass species. This was achieved through more 

live leaves per tiller, and bigger leaves and sheaths than for 

the ryegrass tillers. Similar results have also been gained by 

Hill, Pearson and Kirby (1985) and Hill and Pearson (1985) with 

Matua prairie grass and Italian ryegrass (Lolium multiflorum Lam. ). 

À similar gradient for these characters also existed within the 

prairie grass cultivars, with Bellegarde having the lowest tiller 

numbers but the highest number of live leaves per tiller, 

greatest area per leaf and highest yield per tiller. 

Under reproductive conditions, prairie grass exhibited large 

increases in leaf appearance and a lower site filling. It may be 

expected that reproductive plants of the ryegrass species would 

also have shown a similar pattern of accelerated leaf production 

and lower tiller production (Chapter 5 this thesis). Again low 

site filling in reproductive plants dominated any positive 

effects that a high leaf appearance rate may have on tiller 

numbers. In this case, apical dominance would appear to be the 

major factor limiting axillary bud activity. With the continual 

production of large numbers of reproductive tillers during long 

photoperiods, apical dominance could be expected to be a major 

factor in controlling tiller production from mid-spring to mid-

autumn . 

Length of photoperiod is reported to have various effects 

on tiller production in prairie grass. Eteve (1982) reported that 

tillering in prairie grass stops below a critical photoperiod, 

the length of which had not been determined with precision. 

Results from the present study do not support this. Karim (1961) 

found that long photoperiods are required for reproductive 

development in prairie grass and that development is accelerated 

by increasing photoperiod. The present study used newer cultivars 

of prairie grass and these exhibited a similar response to long 

photoperiods. There was a large range in response of the prairie 

grass cultivars to long photoperiods, with similar observations 

being noted in field trials (Hume, unpublished data). Primabel 

was a cultivar with a lower propensity for reproductive growth, 

high herbage quality and high tiller numbers, but low herbage 

yields during reproductive growth. On the other hand, Bellegarde 

had strong reproductive growth, low tiller numbers and low 

herbage quality, but high yields. It would appear that Matua was 
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intermediate with regards to these characters, and with a high 

leaf appearance rate and high tiller numbers, Matua may be the 

cultivar with the best attributes to achieve high yields of 

quality herbage. Hill and Kirby (1985) have also suggested that 

Matua is well suited to agricultural use. 

It should also be noted that the different photoperiods in 

experiment 3 appeared to have no effect on tillering and leaf 

production in the ryegrass species. This supports other research, 

as reviewed by Langer (1963) and Anslow (1966). 

Neuteboom and Lantinga (1989), in a new model for leaf and 

tiller production in perennial ryegrass, have suggested a factor 

n which is a measure of axillary bud activity. Axillary tillers 

may show delays in appearance at the top of tillers (youngest 

axillary tillers) or total lack of appearance from basal buds 

(first axillary tillers). Much of the variation in tillering 

occurring between species and between cultivars within a species 

in the present study, was due to the position at which the first 

axillary tiller was produced, and at later stages, position of 

the youngest axillary tiller. That is to say, site filling was 

the major factor determining tillering. 

In the ryegrass species, the first axillary tillers could 

come from the coleoptile or prophyll buds, while even under 

optimum conditions [Experiment 5(ii)], the first axillary tillers 

of prairie grass only came from the first leaf on the main tiller 

and only occasionally from the prophyll of tillers. The previous 

leaf and tiller production model (Davies, 1974) ignored the 

possibility of tillering from the coleoptile or prophyll, while 

the observations from the present study provide further support 

for the model of Neuteboom and Lantinga (1989). The prophyll and 

coleoptile tiller sites are of considerable importance in 

determining potential tillering. 

Delays in appearance of the youngest axillary tiller at the 

top of the tiller increased (position increased) in all cases 

with time, with subsequent decreases in site filling. At later 

stages of growth, the youngest tillers on the plant did not 

produce any axillary tillers. This increasing delay or total lack 

of appearance was greatest in prairie grass and usually smaller 

in Caramba and consistently less in Wendy. On each tiller of 

prairie grass there were therefore a considerable number of 

45 



potential sites for tillering, especially on reproductive 

tillers, many of which could develop after defoliation. These 

sites are particularly important in reproductive prairie grass 

plants because of the high tiller losses that will occur when 

plants are defoliated. Of the prairie grass cultivars, Matua and 

Primabel exhibited the greatest ability to fill all the tiller 

sites available. This resulted in these cultivars having high 

tillering rates and the highest tiller numbers for this species. 

Previous findings that leaf appearance rate and leaf size 

are inversely related (Cooper and Edwards, i960; Ryle, 1964), 

appear not to be true for the species and' cultivars in the 

present study. Prairie grass, despite having the largest leaf 

size, had the highest leaf appearance rates. For the prairie 

grass cultivars, Bellegarde had the greatest leaf size and one 

of the highest leaf appearance rates. These results agree with 

Wilson (1963) who found significant positive correlations between 

leaf appearance and leaf size in prairie grass. In the present 

study there in fact appeared to be some negative correlation 

between site filling and leaf size or tiller weight. 

In a review by Anslow (1966), it is suggested that age of 

tiller has no effect on rate of leaf appearance. From the present 

study, this does not always appear to be the case for vegetative 

plants. Lower leaf appearance appeared to be occurring on new 

tillers developing when there was already considerable herbage 

mass present. These tillers could therefore be suffering from the 

effects of lower light intensities (Mitchell, 1953) that occur 

below the leaf canopy. Also during reproductive growth there were 

very large differences in leaf appearance for the various 

tillers. These differences between tillers obviously has 

important implications for obtaining a true estimate of leaf 

appearance for the total plant, and also estimates of site 

filling. For site filling, this was potentially of most 

importance in reproductive prairie grass plants where leaf 

appearance ceased on tillers as inflorescences emerged. The 

overall effect on site filling was actually relatively small, 

because when the reproductive stems were elongating and 

inflorescences emerging, tillering rates had dropped considerably 

so site filling was very low or zero no matter what estimate was 

used for leaf appearance rate. 
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The various temperature and light conditions of the 

experiments resulted in large differences in leaf appearance, 

site filling and tillering rates. Due to changing plant (size, 

growth state) and environmental conditions, a true comparison of 

effects of temperature and light are not possible. It does appear 

though that increasing temperature and increasing total light 

energy resulted in higher levels of leaf appearance, site filling 

and tillering rates. Mitchell (1953) has also recorded similar 

responses although there were differences between species. In the 

field, Davies and Thomas (1983) have shown that temperature is 

the major factor determining leaf appearance rates, while light 

conditions appear to have little influence. Site filling appeared 

to be completely independent of environmental conditions and more 

dependent on plant size and subseguent tiller shading. The 

species in the present study all reacted in an approximately 

similar manner to the changes in temperature and light, except 

in experiment 1 (4°C, winter light intensity). In experiment 1, 

the reduction in leaf appearance was less in Matua prairie grass 

and so despite lower site filling in Matua, tillering rates were 

equal for all the cultivars. Relatively high leaf production and 

good tillering in such conditions could play a role in the high 

winter production of prairie grass. 

This study has characterized leaf and tiller production in 

prairie grass during undisturbed growth and at high nutrient 

levels. A wide range of variation between cultivars was 

identified for the parameters measured. Future studies should 

further quantify the effects of cultivar variation, climate and 

management on these morphological features, in order to fully 

understand the behaviour of this species in agricultural 

situations. 
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C H A P T E R 

E f f e c t o f C u t t i n g o n P r o d u c t i o n 

a n < i T i l l e r i n g i n P r a i r i e G r a s s 

( 5 r o m u s w i _ i 1 d&Tio\*ri. i K u n t h ) . 

1 . V e g e t a t i v e p l a n t s 

Hume 

S u b m i t t e d t o A n n a l s o f Bo t a ny 

A B S T R A C T 

Effects of cutting to 3 or 6 cm stubble height at frequencies of 

1, 2 or 4 weeks were investigated in young, vegetative, spaced 

plants growing for eight weeks on nutrient solution at day/night 

temperatures of 15/10°C and in a short photoperiod. Increased 

cutting frequency and a lower cutting height both reduced leaf 

appearance, site filling and tiller numbers. Prairie grass (Bromus 

willdenowii Kunth) was affected the least by the cutting 

treatments while proportionally large reductions occurred in 

perennial ryegrass ( Lol i um per enne L.) and greater reductions in a 

tetraploid Westerwolds ryegrass ( Lol i urn mult if lorum Lam.). Relative 

growth rates in all species responded in a similar manner with 

more frequent cutting and a lower cutting height. Cutting 

frequency had the greatest effect on growth rates, although the 

effect of cutting height increased with time. A typical U-shaped 

curve for depletion and recovery in water soluble carbohydrates 

occurred after defoliation in all species, but levels remained 

low at frequent cutting. Water soluble carbohydrate levels in 

stubble and roots were higher in Matua. Regrowth at the end of 

the experiment was highly correlated with total stubble and root 

weights (r=0.84), while regrowth per tiller showed a good 

correlation with water soluble carbohydrate content, although the 

response varied between species and cutting treatments. Results 

confirm that general recommendations of long intervals between 
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defoliations will give the best yields for vegetative prairie 

grass, but the yield response to cutting may be no different to 

that of ryegrass. Stubble height was of lesser importance in 

determining yields. 

I N T R O D U C T I O N 

It is generally accepted that prairie grass (Bromus willdenowii 

Kunth) requires rotational grazing management with long intervals 

between grazing or cutting in order to maintain high production 

and persistence under intensive pastoral farming (Burgess et al., 

1986). Defoliation frequency, based on the height of plants when 

they are to be defoliated, is therefore the most important 

criterion on which management decisions are taken during both 

vegetative and reproductive (mid-spring to mid-autumn) growth 

(Karim, 1961; Hill and Pearson, 1985). The height plants are cut 

to (stubble height) appears to be of secondary importance (Karim, 

1961; Hume and Lucas, 1987). 

Little is known about the plant parameters that affect 

regrowth in prairie grass, or what is the response of the plant 

to different defoliation regimes. For various other grass species 

there has been considerable discussion about the role of various 

parameters such as water soluble carbohydrates, protein, residual 

leaf area and root and stubble weights in determining regrowth 

(Milthorpe and Davidson, 1966; Davies, 1988). Davies (1966) 

concluded that the effects of many of these factors are highly 

interrelated and the importance of each may vary according to the 

situation. 

Two important growth stages exist for prairie grass; 

vegetative growth and reproductive growth. Both of these stages 

are important because reproductive growth is prolonged as long 

photoperiod is the only requirement for reproductive development 

(Karim, 1961), while prairie grass is valued for its high 

vegetative growth during the cool seasons of the year (Langer, 

1973). Each growth stage has large effects on leaf and tiller 

production (Chapter 3 this thesis) but few details are known of 

the response of the plant to defoliation and how this differs to 

the response of ryegrass (Lolium species). This paper therefore 

reports a study on the effects of defoliating vegetative plants 
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of prairie grass and ryegrass, while a further paper reports 

effects of defoliating reproductive plants (Chapter 5 this 

thesis). 

M E T H O D S A N D M A T E R I A L S 

Treatments 

This experiment investigated the effects of cutting height and 

cutting frequency on the growth of young, vegetative, spaced 

plants of * Grasslands Matua' prairie grass (Bromus willdenowii 

Kunth), xCaramba' tetraploid Westerwolds ryegrass (Loliwn 

multiflorum L. ) and xWendy' perennial ryegrass ( Lol i um per enne L. ). 

Plants were cut to heights of 3 or 6 cm (stubble height) at 

frequencies of 1, 2 or 4 weeks. These treatments were replicated 

five times in a factorial design. Plants of each cultivar were 

also grown for the length of the experiment without being cut 

(Undisturbed Growth). 

Plant material and growing conditions 

Seedlings of the three cultivars were grown in a glasshouse 

in white sand in a nine hour photoperiod during early December 

1987. On 22 December, seedlings were transferred to troughs 

containing Steiner's nutrient solution. The troughs were placed 

in a growth cabinet operating at temperatures of 15°C/10°C 

(day/night) and an 11 hour photoperiod. Lighting was provided by 

mercury and sodium lamps giving an irradiance of 115 W m"2 at 

plant level. The nutrient solution was constantly aerated and pH 

(5.5-6.0) was adjusted daily. Initially the solution was replaced 

weekly, but after four weeks it was replaced every 3-4 days. 

Measurements and harvests 

On 14 January 1988, plants were cut to their appropriate 

treatment heights and the cutting frequency and cutting height 

treatments were applied for the next eight weeks. Immediately 

prior to cutting, all plants were assessed for leaf and tiller 

numbers, and ten plants were measured for shoot and root weights. 

Throughout the experiment, five plants from each treatment were 

observed at weekly intervals for leaf appearance on the main 
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tiller, tiller numbers and position of the youngest axillary 

tiller on the main tiller (number of leaf axils from the top of 

the tiller) . When these plants were cut, the cut herbage was 

dried and weighed. Leaf appearance was assessed by marking the 

uppermost fully emerged leaf (ligule emerged) on the tagged 

tillers with an acrylic pen. One week later the number of fully 

emerged leaves above this marked leaf were counted. This 

procedure was repeated for the following weeks. From leaf 

appearance and total tiller numbers, site filling, the proportion 

of tiller buds forming visible tillers in a single leaf 

appearance interval was calculated (Davies, 1974). At each 

harvest, the cut herbage was examined for ligules of leaves that 

had not yet emerged but which were removed in the cut pseudostem. 

Destructive harvests 

Extra plants were also grown so that five plants for each 

cultivar and cutting treatment could be destructively harvested 

at various dates. Destructive harvests were taken at the 

beginning of the cutting treatments (14 January), and then for 

each treatment when cutting was due. For undisturbed growth, 

destructive harvests were taken l, 2, 4, 6 and 8 weeks after the 

start of the cutting treatments. Plants removed for destructive 

harvests were separated into shoot above the 3 or 6 cm cutting 

heights, stubble and roots. Stubble was divided into 0-3 cm and 

0-6 cm according to the appropriate cutting height, and 0-3 cm 

and 3-6 cm in plants growing undisturbed. These stubble fractions 

and roots were dried at 70°C and weighed, and then analysed for 

nitrogen and water soluble carbohydrates. Water soluble 

carbohydrates (WSC) were determined colourmetrically with an 

automatic analyser using ferricyanide. Nitrogen (N) was 

determined colourmetrically after the dry samples had been 

digested in a solution of salicylic and sulphuric acid with 

hydrogen peroxide. Nitrogen content in the cut herbage was also 

determined for all treatments at the final harvest. 

Regrowth 

After eight weeks of the cutting treatments, the remaining 

plants were allowed to regrow for one week after cutting. The 
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plants were then cut to assess the amount of regrowth, and 

stubble and roots were dried, weighed and analysed for N and WSC 

contents. 

R E S U L T S 

Leaf appearance 

Leaf appearance prior to the cutting treatments being applied was 

highest in Matua and similar in Caramba and Wendy [Table 1] 

(P<0.001). These cultivar differences also occurred during the 

cutting treatments [Fig. 1(a)]. 

Leaf appearance was approximately constant in all treatments 

except during the first week of the cutting treatments. At 6 cm 

cutting height, cutting frequency had relatively little effect 

on leaf appearance in Matua and Wendy, but in Caramba leaf 

appearance was significantly reduced by cutting every week [Fig. 

1(a)]. At 3 cm cutting height, increased cutting frequency 

reduced leaf appearance linearly (P<0.01), with the greatest 

proportional reductions occurring in Caramba and Wendy. Cutting 

height had no significant effect in Matua and Caramba at the 4 

week cutting frequency, while at the 1 and 2 week cutting 

frequencies, 3 cm cutting significantly reduced leaf appearance. 

TABLE 1. Plant parameters immediately prior to applying cutting 
treatments. Position of the youngest axillary tiller is the 
number of leaf axils from the top of the tiller. Figures in a row 
that are accompanied by the same lower case letter are not 
significantly different (p>0.05). 

Leaves appeared 
on main tiller 

Tillers plant"1 

Position youngest 
axillary tiller 

Shoot weight mg 

Root weight mg 

Matua 

5.5. 

3.5C 

3.2. 

220b 

70„ 

Cultivar 
Caramba 

4.9b 

7.6. 

2.4b 

370. 

120. 

Wendy 

4.7b 

5.9b 

2.1c 

160b 

58b 
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Leaf appearance in Wendy at 6 cm was relatively low, so that at 

the 4 week cutting frequency leaf appearance was significantly 

lower at 6 cm than at 3 cm, and at the 2 week cutting frequency 

leaf appearance was similar for the two cutting heights. Plants 

growing undisturbed had similar leaf appearance to the highest 

leaf appearance in the cutting treatments (P>0.05). 

The number of leaf ligules that were removed with the cut 

herbage before the ligules had emerged, was greater at higher 

cutting frequencies. At the final harvest, these leaves 

represented 2, 4 and 6% of the total leaves to have leaf ligules 

above the cutting height for the 1, 2 and 4 week cutting 

frequencies respectively (P<0.01). There were no significant 

effects of cultivar or cutting height. 

Tiller numbers 

When the cutting treatments were first applied, Caramba had 

the highest number of tillers per plant and Matua the lowest. 

[Table 1] (p<0.001). Significant cultivar differences occurred 

throughout the experiment, but were modified by cutting height 

and frequency. Cutting treatments affected tiller numbers at an 

early stage in the experiment (after one to two weeks of 

cutting), with tiller numbers at the final harvest illustrating 

the effects that occurred [Fig. 1(b)]. Calculation of tillering 

rates (tillers tiller"1 day"1) removed the effect of cultivar 

differences in initial tiller numbers, but the trends as 

described below for tiller numbers were mostly unchanged. 

At 6 cm cutting height, cutting frequency had relatively 

little effect on tiller numbers in Matua and Wendy, but tiller 

numbers in Caramba were reduced in a quadratic manner with 

greater cutting frequency (P<0.05) [Fig 1(b)]. Increased cutting 

frequency at 3 cm cutting height caused a linear reduction in 

tiller numbers in Matua and Caramba and a quadratic reduction in 

Wendy. At this cutting height, the reduction in tiller numbers 

was proportionally greatest in Caramba and Wendy and least in 

Matua. This resulted in all cultivars having similar tiller 

numbers for weekly cutting at 3 cm height (P>0.05), with 

tillering rates being significantly less in Caramba and Wendy, 

than in Matua (P<0.001). Tiller numbers in Caramba and Wendy in 

this treatment showed only slight increases after four weeks of 
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3cm 6cm 
Caramba 

3cm 6cm 
Wendy 

FIG. l. After eight weeks of the cutting treatments, (a) total 
leaves appeared on the main tiller, (b) final numbers of tillers 
per plant, (c) average site filling, (d) average relative growth 
rates, for all cutting treatments and undisturbed growth (| |) . 
Cutting frequency of 1 week is represented by ( Y//A ) , 2 weeks 
(ÉE23) a n d 4 weeks ([77]). Within each cultivar, bars accompanied 
by the same letter are not significantly different (P>0.05). For 
tillers per plant, lettering is for Log10 transformed data. 
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cutting. Cutting height had no significant effect on tiller 

numbers in any of the cultivars at the 4 week cutting frequency 

(P>0.05), while at 1 and 2 week cutting large reductions occurred 

when plants were cut to 3 cm compared to 6 cm. 

Matua and Caramba plants growing undisturbed had similar 

tiller numbers and tillering rates to the 6 cm, 4 week cutting 

frequency (P>0.05). Wendy plants growing undisturbed had higher 

tiller numbers and tillering rates than any of the cutting 

treatments (P<0.05 ). 

Site filling 

On average, Matua had the lowest site filling of the three 

cultivars, and cutting treatments had no significant effect on 

site filling in Matua [Fig. 1(c)]. In Caramba and Wendy, the 2 

and 4 week cutting frequencies had similar site filling (P>0.05), 

while weekly cutting caused large reductions in site filling 

mainly at 3 cm cutting height. For these two cultivars there was 

a significant quadratic response occurring with increasing 

cutting frequency. All cultivars had similar site filling at 3 

cm, weekly cutting (p>0.05). Site filling in plants growing 

undisturbed was similar to the highest site filling in the 

cutting treatments (p>0.05). 

When the numbers of leaves that were removed by cutting 

before the ligules had emerged were included in the estimate of 

potential tiller sites, site filling values were only reduced on 

average by approximately 3% and this did not significantly alter 

treatment differences. 

Position youngest axillary tiller 

Position of the youngest axillary tiller (number of leaf 

axils from top of tiller) reflected to a certain extent the 

cultivar and treatment differences found for site filling. Matua 

had the largest position at the start of the cutting treatments 

and Wendy the smallest, with Caramba intermediate [Table 1] 

(P<0.001). After four weeks of cutting, Matua and caramba had 

similar positions (P>0.05) for the remainder of the experiment. 

Position increased constantly during the experiment so that at 

the final harvest, position was 4 in Matua and Caramba and 2.8 
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in Wendy (P<0.001). Position increased linearly (P<0.001) with 

more frequent cutting, with mean positions at the final harvest 

being 4.0, 3.6 and 3.2 for the 1, 2 and 4 week cutting 

frequencies respectively (LSD0.05=0.3). Position in plants growing 

undisturbed was similar to that in the 4 week cutting frequency 

(P>0.05). Cutting height had no significant effect on position. 

Yields 

(a) Cut herbage. Total yield of cut herbage was highest in 

Caramba (mean, 14 g ) , lower in Matua (mean, 8 g) and lowest in 

Wendy (mean, 5 g) (P<0.001). Yields for 1, 2 and 4 week cutting 

were 2, 6 and 19 g respectively (P<0.001) (LSD0.05=2), and 9 and 

11 g respectively for 3 and 6 cm cutting. 

Due to different stubble weights for the cultivars and 

cutting heights at the start of the experiment (see also shoot 

weight Table 1) relative growth rates (g g"1 day"1) were 

calculated. On this basis, growth was similar for all cultivars 

(P>0.05) but a significant interaction occurred between all 

treatments [Fig. 1(d)]. This interaction was primarily caused by 

significantly lower growth of Wendy at 4 week cutting at 6 cm 

height compared to 3 cm. Otherwise cutting height had no 

significant effect on relative growth rates at 4 weekly cutting. 

More frequent cutting (1 and 2 week cutting frequencies) at both 

cutting heights reduced growth rates in a quadratic manner 

(P<0.05). This reduction in growth was greatest at 3 cm height 

compared to 6 cm, except Wendy at the 2 week cutting frequency. 

All cultivars had similar growth rates for weekly cutting at 3 

cm height and also for 4 weekly cutting at both cutting heights. 

Plants growing undisturbed had significantly higher growth 

rates than any of the cutting treatments (P<0.001). 

(b) Stubble and roots. Cutting treatments affected dry weights 

of stubble and roots in a similar manner to that described for 

relative growth rates of cut herbage. Weights at the final 

harvest were reduced by higher cutting frequency, the greatest 

reductions occurring at 3 cm cutting height. 

Water soluble carbohydrates 

(a) stubble. Con t en t s of wa t e r s o l u b l e c a r b o h y d r a t e s (WSC) i n 
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the stubble at the start of the cutting treatments were highest 

in Matua, lowest in Caramba and intermediate in Wendy [Fig. 2]. 

These differences between cultivars remained for the rest of the 

experiment. One week after applying the cutting treatments, WSC 

had decreased in all treatments especially at 3 cm cutting height 

and also particularly in Matua. After two weeks, WSC had started 

to recover in all treatments with further increases occurring 

after four weeks in most treatments. In plants cut weekly, WSC 

remained at low levels especially at 3 cm cutting height. At the 

2 and 4 week cutting freguencies, WSC were higher, approaching 

the same levels as in the stubble of plants growing undisturbed. 

At the 2 week cutting frequency, WSC were generally less than or 

similar to those at 4 week cutting. Cutting height had relatively 

little effect on WSC in Matua at 2 and 4 week cutting, but in 

Caramba and Wendy, WSC were higher at 6 cm than 3 cm cutting 

height. 

(b) Roots. Contents of WSC in the roots were much lower than 

in the stubble [Fig. 3]. Again Matua had the highest contents and 

Caramba the lowest. There was a similar pattern of decrease and 

recovery in WSC after the initial cut as occurred in the stubble. 

These changes though were relatively small and recovery less in 

Wendy and Caramba, while in Matua the changes were greater. 

Differences between cutting frequencies and heights in Matua were 

similar to those occurring in the stubble, but in Wendy and 

particularly Caramba, levels were generally low and relatively 

constant. 

Nitrogen 

A full analysis of nitrogen (N) contents in roots and 

stubble during the early part of the experiment was limited by 

insufficient ground plant material for determination of N 

content. In general, there appeared to be no consistent 

differences between the treatments during the course of the 

experiment. Plants growing undisturbed had similar or lower N 

contents than plants in the cutting treatments. In the stubble, 

N content (4.2%) was similar for all cultivars. Contents were 

lower in the roots of Matua and Wendy (3.6%), but in Caramba, 

roots and stubble had similar N contents (4.2%). 
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
Weeks after applying cutting treatments 

FIG. 2. Water soluble carbohydrate content (WSC) (%) of stubble 
for (a) Matua, (b) Caramba and (c) Wendy, for (i) 3 cm and (ii) 
6 cm cutting heights. WSC content at the initial cut and the 
following four weeks is represented by (•—•); a cutting 
frequency of 1 week by ( Q — D ), 2 weeks ( A — A ), 4 weeks (o—O) ; 
and 3 and 6 cm stubble heights for undisturbed growth (•--•)• 
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FIG. 3. Hater soluble carbohydrate content (WSC) (%) of roots for 
(a) Hatua, (b) Caramba and (c) Wendy, for (i) 3 cm and (ii) 6 cm 
cutting heights. WSC content at the initial cut and the following 
four weeks is represented by ( • — • ) ; a cutting frequency of 1 
week by ( o — D ) , 2 weeks ( A — A ) / 4 weeks ( o — O ) J and 3 and 6 
cm stubble heights for undisturbed growth (•--•)-
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The cut herbage at the final harvest had high N contents 

(mean, 5.2%) in all cultivars (range for treatments, 4.7-5.5%). 

Regrowth at the end of the experiment 

After the one week of regrowth at the end of the cutting 

treatments, WSC and N contents in roots and stubble showed large 

decreases at the 4 week cutting frequency, and in most cases 

decreases at the 2 week cutting frequency [Figs. 2, 3]. One 

weekly cutting continued to have constant low levels of WSC and 

N. With the 4 week cutting frequency, stubble weight decreased 

in all cultivars while root weights only decreased in Matua, 

Caramba at 3 cm height and Wendy at 6 cm. Root and stubble 

weights decreased only in Caramba for the 2 week cutting 

frequency, while there were no decreases at the 1 week cutting. 

Yield of the regrowth was significantly higher with decreasing 

frequency of cutting and significantly higher with the greater 

cutting height [Fig. 4]. Only for Wendy at the 4 week cutting 

frequency was this not true, as yields were similar for both 

cutting heights. 

Of all the variables measured, stubble weight, root weight 

and WSC content of stubble showed positive correlations with 

yield of regrowth. Regression analysis showed a high positive 

linear correlation between total yield of regrowth and total 

weight of stubble (mean for log transformed data, r=0.81) [Fig. 

5]. Similar correlation coefficients also occurred for root 

weight and total yield of non WSC substances in the stubble. 

Adding WSC content or weight of WSC to the regression analysis 

did little to improve the percentage of variance accounted for, 

but this varied considerably with each treatment and cultivar as 

illustrated in Fig. 5. Regression analysis with only WSC content 

gave high correlations (r=0.9) for Matua 6 cm, Caramba 3 cm and 

Wendy 3 cm. When regrowth was expressed as g per tiller, stubble 

weight per tiller was the best indicator of regrowth for Caramba 

(r=0.84) but for Matua and Wendy, WSC content accounted for the 

greatest variation (r=0.8). 
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FIG. 4. Yield of regrowth one week after the end of the cutting 
treatments. Cutting frequency of 1 week is represented by 
( P??3 ), 2 weeks ( [̂ <1 ), 4 weeks ( f77l ). Within each cultivar, 
bars accompanied by the same letter are not significantly 
different for Log10 transformed data.(P>0.05). 
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Total stubble weight (g) and 
Water soluble carbohydrates in stubble (%) 

FIG. 5. Yield of regrowth one week after the end of the cutting 
treatments relative to total stubble weight (open symbols) and 
water soluble carbohydrate (WSC) content of stubble (closed 
symbols) at the start of regrowth. Matua is represented by 
( D ) i Caramba ( A ) and Wendy ( O )• Separate curves and lines 
of best fit are drawn for each cultivar for WSC content and a 
dotted line for all cultivars for stubble weight. 
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D I S C U S S I O N 

Firstly it should be noted that the Wendy perennial ryegrass 

plants measured in the 6 cm cutting height 4 week cutting 

frequency treatment appeared to have uncharacteristically low 

levels for total yield, regrowth yield and numbers of tillers. 

This was confirmed by comparison with the yields and tiller 

numbers of plants grown for the destructive harvests (Hume, 

unpublished data). It therefore appears that the poor performance 

of these plants was not a true indication of the effect of this 

defoliation treatment for Wendy. Only minor importance should 

therefore be placed on the relatively low tiller numbers and low 

yields of Wendy in this treatment. 

Plant parameters 

The features of high leaf appearance, low site filling and 

low tiller numbers in prairie grass relative to ryegrass that 

have already been identified during undisturbed growth (Chapter 

3 this thesis), were relatively unchanged by the different 

defoliation treatments. Only when defoliation was very frequent 

at the low cutting height of 3 cm were site filling and tiller 

numbers reduced in the ryegrass species to the same levels as in 

prairie grass. Caramba and Wendy exhibited approximately similar 

levels for these measured parameters which is also similar to 

results gained in previous experiments (Chapter 3 this thesis). 

There was considerable variation between species in response 

to the cutting treatments for leaf appearance, site filling and 

numbers of tillers. For these plant parameters Matua was the 

least affected by cutting treatment, with no effect on site 

filling and only at 1 and 2 week cutting at 3 cm was leaf 

appearance reduced and so directly reducing tiller numbers. Wendy 

showed some effect of cutting frequency at 6 cm height while 

Caramba was affected to the greatest extent at this height. At 

3 cm cutting height, cutting frequency had proportionately the 

largest effects in Caramba and Wendy. 
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Herbage growth rates 

Despite these species differences in response of the plant 

parameters to the different cutting treatments, the resulting 

herbage growth rates were remarkable similar for all species in 

each treatment. It could have been expected that under the 

relatively low temperature and moderate light conditions of this 

experiment (similar to early spring or late autumn conditions) 

that Matua and Caramba would have shown higher growth rates than 

Wendy (Langer, 1973). Langer (1970) also found no differences in 

growth between prairie grass and ryegrass and it was only during 

growth of closely spaced plants (sward conditions) that superior 

growth could be demonstrated for prairie grass. This was 

attributed to better adaptation to reduced light intensity 

through a more upright growth habit and better leaf distribution. 

Only for the plants growing undisturbed did Wendy have lower 

growth rates than the other cultivars, possibly because of the 

high herbage mass and tiller numbers in these Wendy plants. This 

bulk of dense herbage resulted in shading within each plant 

similar to the shading that may occur in swards. 

The different levels of leaf appearance and tiller numbers 

created by the cutting treatments, did not directly result in the 

same response in terms of yields. This was further illustrated 

by significantly higher growth in plants growing undisturbed 

compared with those in the best cutting treatments, despite 

similar leaf appearance and tiller numbers. This indicated that 

cutting treatments were not only affecting tiller numbers and 

number of leaves produced per tiller, but also size of leaf 

lamina and sheaths. It is known that more frequent cutting and 

lower height of cutting leads to the production of shorter leaves 

and sheaths in perennial ryegrass (Davies, 1977). Defoliation 

frequency also has little effect on the number of green leaves 

per tiller (Davies, 1977). Hill and Pearson (1985) also noted 

large reductions in yield per tiller, weight per leaf and leaf 

area per tiller in Matua with frequent defoliation and smaller 

yet still significant reductions for these parameters for Italian 

ryegrass. Mitchell and Coles (1955) found that the greatest 

effect of repeated defoliation was on the reduction in the amount 

of tissue formed per tiller, mainly due to the reduction in leaf 

size. 
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Frequency of cutting had the greatest effect on growth 

rates, while the stubble cutting height generally had less effect 

especially at very infrequent cutting, ie. growth rates were 

unaffected by cutting height at the 4 week cutting frequency. The 

optimum cutting treatment in the current experiment therefore 

appeared to be 4 week cutting at 3 or 6 cm height for all 

species. This result is similar to the general recommendations 

that prairie grass should be defoliated infrequently, with 

stubble height being of secondary importance (Karim, 1961; 

Burgess et al., 1986; Bell and Ritchie, 1989). Although cutting 

at 3 cm resulted in high relative growth rates (g g"1 day"1), 

actual herbage yields were lower than those from 6 cm cutting, 

due to growth from lower stubble weights. Also cutting height was 

exerting a greater influence with time as illustrated by the 

approximately equal effects of cutting frequency and cutting 

height on regrowth at the end of the experiment. Differences 

between cutting heights for total yields were also increasing as 

the experiment progressed. 

At the 4 week cutting frequency approximately three leaves 

were produced on the ryegrass tillers between each defoliation 

and four to five leaves in prairie grass. The production of three 

leaves in ryegrass has been suggested as the optimum time for 

defoliation, because this is the maximum number of green leaves 

a vegetative tiller will support and it can be the time when 

ceiling yield is reached (Davies, 1971, 1977). The maximum number 

of green leaves per tiller would appear to be higher for prairie 

grass, possibly being 4 to 5 leaves depending on variation 

between leaf appearance of different cultivars (Chapters 2 and 

3 this thesis; Hume, unpublished). Species with high leaf 

appearance have more live leaves per tiller (Ryle, 1964). 

Frequency of defoliation, although set in this experiment at 

fixed time intervals, should therefore be based on time for 

herbage to reach a certain level. For prairie grass this may be 

20 cm height, as recommended by Burgess et al. (1986), or the 

number of leaves per tiller. For this latter criterion, time 

interval between defoliations of vegetative plants is therefore 

determined by the leaf appearance rates, which can vary 

considerably with temperature (Chapter 3 this thesis). 

The relatively similar yield response of all species to 
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defoliation frequency is rather unexpected. Prairie grass and 

Westerwolds ryegrass with their upright growth habit, generally 

perform poorly under frequent defoliation while perennial 

ryegrass is more tolerant of defoliation (Langer and Hill, 1982). 

Such general statements rarely differentiate between reproductive 

and vegetative growth conditions for the plant. This can be 

important for the different species, for example, Caramba 

Westerwolds ryegrass defoliated frequently during reproductive 

growth has performed poorly compared to the other cultivars 

(Chapter 5 this thesis). 

The temperature and photoperiod conditions in this 

experiment are approximately similar to those encountered during 

vegetative growth in early spring or late autumn. The results 

from this experiment therefore indicate that although increased 

defoliation frequency will be detrimental to growth rates in all 

the species, the response of prairie grass may be no different 

to that occurring in Westerwolds ryegrass or perennial ryegrass 

during vegetative growth at these times of the year. Response to 

defoliation may vary with different temperature and light 

intensities (Mitchell, 1955), and time for recovery of water 

soluble carbohydrate levels can be longer at lower temperatures 

(Davies, 1965). Further testing would therefore be required at 

lower temperatures, shorter photoperiods and with closely spaced, 

mature plants (sward conditions) in order to identify the overall 

response to cutting for conditions encountered during vegetative 

growth in the field. 

Regrowth and reserves 

The pattern of depletion and recovery of water soluble 

carbohydrate contents in stubble after the first cut, formed a 

characteristic U-shaped curve. Decline was greatest the higher 

the initial values and greater when cutting height was low. 

Similar results have also been obtained with perennial ryegrass 

(Del Pozo Ibanez, 1963; Davies, 1966). Matua differed to the 

ryegrass species by having higher water soluble carbohydrate 

contents in roots and stubble and demonstrating greater changes 

in water soluble carbohydrate contents in roots after the initial 

cut. Examination of the one week of regrowth at the end of the 

experiment showed that the U-shaped curve of depletion and 
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recovery after cutting still appeared to be occurring with 

cutting frequencies of 2 and 4 weeks, but not for the 1 week 

cutting frequency. 

Frequent cutting led to low constant levels of water soluble 

carbohydrates which is often associated with poor growth (Graber 

et al. 1927; Weinmann, 1961) and tiller death (Alberda, 1966). 

Levels of water soluble carbohydrates are the net result of 

production by photosynthesis, utilisation by respiration and 

transformation into structural material. With cutting every week, 

regular removal of leaf lamina would have been limiting 

photosynthate production to the extent that no net increase in 

water soluble carbohydrates could occur. Alberda (1966) concluded 

that the plant can not use stubble water soluble carbohydrates 

as reserves below a level of 6%, this being the minimum level for 

cell function. At this stage tillers will die and presumably 

tissue broken down and its products translocated to the remaining 

tillers. Levels of water soluble carbohydrates in the present 

study, and those recorded by Davies (1965), have gone below this 

level. On average, tiller numbers in Caramba and Wendy increased 

only slightly after four weeks of cutting at 3 cm height, with 

some tiller death occurring. 

Although this experiment was not specifically designed to 

assess the major factors that determined regrowth in these 

species, analysis of the regrowth at the end of the experiment 

did reveal some differences between the species. As could have 

been expected (Davies, 1966) total stubble weight was a major 

factor in determining regrowth. High stubble weight gave high 

regrowth due to high tiller numbers but also high stubble weight 

per tiller. Higher stubble weights also had higher water soluble 

carbohydrate levels. Only when regrowth was expressed per tiller, 

or was considered for individual treatments, could water soluble 

carbohydrates be demonstrated to have a large influence on 

regrowth. This effect appeared to differ for each species for the 

range of water soluble carbohydrates in this study [Fig. 5]. 

Although a greater range of water soluble carbohydrates would be 

required to fully define the curves estimated in Figure 5, there 

at least appeared to be a maximum yield response occurring for 

water soluble carbohydrate content in Wendy which is similar to 

that described for several clones of perennial ryegrass by Davies 
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(1966). A similar maximum in response to water soluble 

carbohydrates may have occurred in Caramba at higher levels while 

Matua appeared to be exhibiting a different relationship, 

although when expressed on a per tiller basis, more linear 

relationships occurred for Matua and Caramba. 

The overall importance of water soluble carbohydrates in 

regrowth appears to be on the effect it has over the first two 

to seven days after defoliation, until sufficient leaf area is 

formed to sustain plant respiration and carbohydrate utilisation 

for growth. Following this initial period, regrowth rates may be 

similar despite different initial water soluble carbohydrate 

levels (Del Pozo Ibanez, 1963; Davies, 1965). The initial level 

of water soluble carbohydrates appears to affect the length of 

delay before exponential increases in regrowth occur again. This 

influence on growth only occurs when water soluble carbohydrates 

are below a critical level (Davies, 1965; Davies et al., 1972). 

The relatively low levels of water soluble carbohydrates in 

roots (except for Matua), is typical of this plant organ (Davies, 

1965, 1966). Root material is a consumer of photosynthate and can 

not supply carbon to shoots after defoliation (Marshall and 

Sagar, 1965). The measurements of nitrogen in the plant tissue 

in the current experiment revealed little change with cutting 

treatment. Protein can be used in regrowth (Davidson and 

Milthorpe, 1966; Ourry, Bigot and Boucaud, 1989), but water 

soluble carbohydrates are preferentially used by the plant 

(White, 1973). The high nitrogen status in the current experiment 

could have masked the effects that cutting may have had on 

protein levels, especially at very frequent defoliation, as only 

total nitrogen was measured. In high nitrogen situations, nitrate 

levels in the plant are high and these levels increase 

considerably after cutting (Alberda, 1960). 

The high nutrient status in the present experiment resulted 

in very high levels of nitrogen in plant tissues, eg. mean 5.2% 

N in cut herbage. High nitrogen levels are known to reduce 

carbohydrate levels (Alberda, 1960) as carbohydrates are used in 

increased protein production (Prianishnikov, 1951). At lower 

levels of nitrogen that would be encountered in a field 

situation, it could be expected that plant nitrogen contents 

would be lower and so water soluble carbohydrates higher. This 
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would give a better range of water soluble carbohydrates to 

determine the response curves as depicted in Figure 5. Higher 

levels of water soluble carbohydrates have been recorded for 

vegetative growth during winter or growth at low temperatures. 

At nitrogen contents in the cut herbage of approximately 3%, 

water soluble carbohydrates during growth in a glasshouse at 4°C 

with natural winter daylight at Wageningen were 44, 34 and 30% 

in the stubble (0-6 cm) of Matua, Caramba and Wendy respectively 

(Hume, unpublished data). Westerwolds ryegrass in New Zealand 

during winter is reported to have 22-47% water soluble 

carbohydrates in the stubble (Vartha and Bailey, 1980), while in 

perennial ryegrass during winter in the United Kingdom levels of 

6-15% have been recorded (Baker, 1957). 

Conclusions 

Performance of vegetative plants of prairie grass is 

strongly related to defoliation frequency and less dependent on 

the stubble height to which plants are defoliated to. Under the 

spaced plant conditions of this experiment, these results confirm 

general recommendations for the management of prairie grass of 

long intervals between defoliations (Burgess et al, 1986). The 

response of prairie grass in terms of yield and changes in water 

soluble carbohydrate levels was similar to that occurring in 

ryegrass, but prairie grass demonstrated greater tolerance to 

defoliation for other plant parameters. Regrowth response 

relative to different water soluble carbohydrate contents 

appeared to be different for prairie grass and Westerwolds 

ryegrass compared to perennial ryegrass. Further investigations 

would be required to determine the significance of these 

differences. 
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A B S T R A C T 

Effects of time of initial cut, followed by frequency of 

defoliating the subsequent regrowth (1, 2 or 4 weeks) were 

examined in a glasshouse during summer 1988 for reproductive 

plants of three prairie grass cultivars (Bromas willdenowii Kunth) , 

Westerwolds ryegrass (Lolium multLflorum Lam. ) and perennial 

ryegrass (Lolium perenne L.). Measurements were made of tiller and 

leaf numbers, sites of tillering, reproductive development, and 

herbage quality and yields. Effect of time of initial cutting on 

regrowth appeared to be independent of stage of reproductive 

development, and unrelated to any of the measured plant 

parameters. Characteristics for each cultivar as identified 

during undisturbed growth prior to the initial cuts, confirmed 

observations from previous experiments, but these characteristics 

were modified by the cutting frequencies. 

Perennial ryegrass had the highest yields under frequent 

cutting with high herbage quality. Westerwolds ryegrass and the 

prairie grass cultivars xGrasslands Matua' and * Primabel' had 

the highest yields with infrequent cutting, but lower quality 

than perennial ryegrass. At each cut, tiller death in prairie 

grass was determined by the number of reproductive tillers, and 

in Westerwolds ryegrass and perennial ryegrass also by the 

numbers of elongated vegetative tillers. Recovery of tiller 

numbers was rapid and primarily from inhibited tiller buds at the 
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base of reproductive tillers. Tiller numbers in prairie grass 

were relatively unaffected by increased cutting frequency but 

more axillary tillers originated from vegetative tillers rather 

than from inhibited tiller buds of reproductive tillers. 

I N T R O D U C X I O N 

Reproductive development in prairie grass (Bromus willdenowii Kunth) 

occurs during long photoperiods (Karim, 1961), and is therefore 

an important feature of this species as large numbers of 

reproductive tillers are produced from mid-spring to mid-autumn. 

The reproductive tiller has an inhibitory effect on the 

development of new axillary tillers (Langer, 1963), but this 

inhibition is removed when the elongating apex is decapitated, 

or at a late stage of flowering after elongation has finished 

(Langer, 1956). Regrowth after defoliation therefore depends on 

vegetative tillers and the development of inhibited buds. In 

prairie grass, where up to 70% of the tillers may be reproductive 

at the time of cutting (Chapter 8 this thesis), development of 

the inhibited buds will be important in obtaining rapid regrowth. 

Despite this high proportion of reproductive tillers, 

reproductive development in prairie grass appears to have little 

effect on tillering and regrowth (Eteve, 1982; Chapter 8 this 

thesis), but time of cutting can influence this (Eteve, 1982; 

Parneix, 1981, 1982). 

Frequent defoliation of prairie grass is detrimental to 

herbage production and plant persistence (Burgess et al., 1986), 

but such statements rarely differentiate between the response of 

vegetative and reproductive plants. A previous study found no 

significant differences in response of relative growth rates in 

prairie grass and two ryegrasses (Lolium species) to different 

cutting heights and cutting frequencies in vegetative plants 

(Chapter 4 this thesis). The present paper reports the effects 

of time of initial cut and frequency of cutting in reproductive 

plants of prairie grass and ryegrass. 
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M E T H O D S A N D M A T E R I A L S 

Plant material and pretreatments 

During October and November 1987, seedlings of ̂ Grasslands Matua' 

prairie grass (Bromus willdenowii Kunth), ^Caramba' tetraploid 

Westerwolds ryegrass ( Lol ium mult if lorum ham. ) and *Wendy' perennial 

ryegrass (Lolium perenne L. ) were grown in small pots in a 

glasshouse at 20°/l2°C (day/night) and 12 h photoperiod at 

Wageningen, The Netherlands. The temperature was then reduced 

to 4°C with natural photoperiod for the next four months, in 

order to vernalize the plants. On 1 March 1988, the plants were 

transferred to five litre black plastic pots containing a sand-

soil mixture to give one plant per pot. The temperature was 

increased to 18/10°C with an 11 h photoperiod, and the plants 

allowed to establish for one month. During early February 1988, 

seedlings of three prairie grass cultivars (^Grasslands Matua', 

*Primabel' and ^Bellegarde') and 'Caramba' Westerwolds ryegrass 

were grown in five litre pots containing the sand-soil mixture, 

with one seedling per pot. In early March they were placed in the 

same glasshouse as the plants that had been vernalized. 

From this material, vernalized plants of Caramba and Wendy, 

and plants of Matua, Primabel and Bellegarde that had not been 

subjected to the vernalization treatment were used in the 

experiment described below. Ten plants each of vernalized Matua 

and non-vernalized Caramba were also grown in the long 

photoperiod of the experiment for a period of five weeks to 

determine the effects of vernalization. 

Experimental treatments 

On 4 April 1988, the photoperiod was extended to 16 hours 

by the use of 400 W sodium lamps, and maintained at this length 

for the duration of the experiment. Temperatures remained at 

18/10°C. Plants were then subjected to seven times of initial 

cutting, followed by three frequencies of cutting the subsequent 

regrowth. The first of the initial cuts was on 18 April, just 

prior to or at the start of stem elongation. The subsequent six 

times of initial cutting were at weekly intervals. After the 

plants had received the initial cut, the regrowth was cut at 
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frequencies of 1, 2 or 4 weeks. These cutting frequencies were 

continued until 22 August, approximately four months after the 

first initial cut had been taken. All cutting was to a stubble 

height of 5 cm. The pots were placed close to one another to 

simulate sward conditions and the treatments were replicated four 

times in a randomised block design. Nutrients were applied at 

regular intervals as modified Hoagland's nutrient solution and 

water was applied daily. 

Measurements 

{a) heaves, tillers and yields. Two weeks prior to applying the 

long photoperiod, weekly measurements of total tillers and leaf 

appearance were started. Leaf appearance was measured on the main 

tiller of the prairie grass cultivars and on a large tiller of 

Wendy and Caramba. When the long photoperiod was applied another 

tiller (1 emerged leaf) was tagged and monitored, and after 5, 

8 and 12 weeks further tillers were measured. The uppermost fully 

emerged leaf (ligule emerged) on a tagged tiller was marked with 

an acrylic pen, and one week later the number of fully emerged 

leaves above this marked leaf were counted. This procedure was 

repeated for the following weeks. Leaf appearance rate (LAR) was 

then calculated by dividing the number of new fully emerged 

leaves appearing at each marking, by the time interval (7 days) 

(Davies, 1974). At each marking, position of the youngest 

axillary tiller (number of leaf axils from the top of the tiller) 

was recorded for the tagged tillers. 

At each harvest, the cut herbage was dried and weighed, and 

the numbers of vegetative tillers, jointed tillers and tillers 

with emerged inflorescences were recorded. Three weeks before the 

end of the experiment, the cut herbage was also separated into 

vegetative and reproductive tillers. 

(b) Herbage quality. Nutritive quality of the cut herbage at 

each initial cut and the regrowth 1, 2 and 4 weeks after each 

initial cut was determined by chemical analysis. The effects of 

the cutting frequencies on herbage quality were assessed four 

weeks after each of the initial cuts, and at the end of the 

experiment. Herbage was analysed for cell walls, digestibility 

and ash content, with nitrogen and water soluble carbohydrates 
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also being assessed for the herbage from the initial cuts. 

Before analyses, the dried herbage samples were ground in 

a hammer mill (l mm sieve) and the four replicates bulked to give 

two replicates for chemical determination. Water soluble 

carbohydrates (WSC) were determined colourmetrically with an 

automatic analyser using ferricyanide. Nitrogen (N) was 

determined colourmetrically after the dry samples had been 

digested in a solution of salicylic and sulphuric acid with 

hydrogen peroxide. True in vitro digestibility of the organic 

matter (Van Soest, Wine and Moore, 1966) was determined and then 

converted to apparent digestibility of organic matter (D„) by 

reference to a series of standard grass samples of known in vivo 

digestibility for sheep fed at maintenance. Cell wall contents 

(CWC), or neutral detergent fibre, were determined by Van Soest's 

(1977) method. Digestibility of the cell wall (D^) was 

calculated from the true digestibility, cell wall content and ash 

content. 

Destructive harvests 

Another set of pots of the five cultivars was also raised 

in the same way as described above. On nine occasions at weekly 

intervals, four replicates were destructively harvested and 

divided into roots, stubble (0-5 cm) and the cut herbage. Two 

harvests were taken prior to the first initial cut and seven 

harvests at the same times as the initial cuts. At each harvest, 

counts were made of total tillers, jointed tillers and tillers 

with emerged inflorescences. The stubble was further divided into 

reproductive and vegetative tillers. The plant material was 

dried, weighed and the roots and stubble fractions analysed for 

nitrogen and water soluble carbohydrates. 

R E S U L T S 

Results are discussed in terms of (a) growth over ten weeks from 

two weeks before the long photoperiod was applied until the final 

initial cut, and (b) growth after each of the seven initial cuts 

during the 1, 2 and 4 week cutting frequencies. 
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Before initial cuts 

(a) Yields. Herbage dry matter yields increased in all 

cultivars with time [Fig. 1(a)]. Wendy consistently had the 

lowest yields at all dates. The other cultivars had comparable 

yields but higher growth rates in Caramba and Bellegarde gave 

higher yields at initial cuts 3 and 4. Increased growth rates 

did not occur in the other cultivars until initial cuts 5, 6 and 

7. Yields on average were 45, 40, 40, 37 and 29 g per plant for 

Bellegarde, Matua, Caramba, Primabel and Wendy (P<0.01) (LSD005= 

2). The same cultivar differences and increases with time also 

occurred for yield of apparently digestible organic matter. 

Total stubble and root weights increased until initial cut 

3, then stayed approximately constant [Fig. 1(a)]. On average 

Primabel had the highest stubble weight (6.2 g) and Caramba the 

lowest (4.6 g ) , with no significant cultivar differences for root 

weight. Proportion of the total stubble that was composed of 

reproductive tillers increased rapidly as reproductive 

development occurred, reaching a maximum of 80% at initial cuts 

4 to 7. Shoot root ratios increased in all cultivars from a ratio 

of approximately 3 to a ratio at the final initial cuts of 8 in 

prairie grass and 6 in Caramba and Wendy. Wendy was slow to 

increase the shoot root ratio with only significant increases 

occurring after initial cut 4. 

(b) Tillers. Prior to applying the long photoperiod, tiller 

populations per plant were highest in Wendy and lowest in 

Bellegarde [Fig. 1(b)]. Tiller numbers increased rapidly in all 

cultivars especially in Caramba and Wendy as older tiller buds 

developed. Tillering then slowed as reproductive tillers 

developed, particularly in prairie grass where increases became 

negligible. Tillering then increased as old tiller buds developed 

at the bases of reproductive tillers in Caramba and Wendy at 

initial cuts 6 and 7 and in the prairie grass cultivars at 

initial cut 7. Tillering rates (tillers/tiller/day) prior to 

these new tillers emerging were 0.031 for Wendy and caramba and 

0.023 for the prairie grass cultivars (P<0.01). 

Caramba was the first cultivar to show signs of reproductive 

development, one week after the long photoperiods had been 

applied. Reproductive development then occurred progressively 
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FIG. 1. Plant parameters from 
two weeks before the long 
photoperiod was applied until 
the final initial cut, a ten 
week period of undisturbed 
growth. Times when initial 
cuts were taken are indicated. 
(a) Herbage dry matter yields 
(>5 cm), root (•—•) and 
stubble ( • — • ) weights. 
(b) Tillers per plant. 
(c) Cumulative numbers of 
leaves appeared on first and 
(d) second tagged tillers. 
(e) Position of youngest 
axillary tiller on the first 
tagged tiller. Matua ( • — D ) , 
Bellegarde ( A — A ), 

Primabel ( O — O ), Caramba ( v- -V ) and Wendy ( T- -T ) • Vertical 
bars indicate LSD values (P<0.05) for significant cultivar 
differences, and for root and stubble weights. 

Initial CUtS 1 2 3 4 5 6 7 

- 2 - 1 0 1 2 3 4 5 6 7 8 

Weeks from start of long photoperiod 

77 



TABLE 1. Reproductive tillers and tillers with emerged 
inflorescences as percentages of total tillers at initial cut 6 
for prairie grass and for Caramba and Wendy at initial cut 5. 
This was prior to emergence of new tillers from the base of 
reproductive tillers. Figures in a row accompanied by the same 
lower case letter are not significantly different (P>0.05). 

Cultivar 
Matua Bellegarde Primabel Caramba Wendy 

% reproductive tillers 53b 73, 45c 50b 52„ 

% tillers with 
emerged inflorescences 43b 65, 28c 24c 7a 

later in the other cultivars in the order of Bellegarde, Matua, 

Primabel and Wendy. Cultivar order for emergence of the first 

inflorescences, however, was Bellegarde, Matua, Primabel, Caramba 

and Wendy. For the prairie grass cultivars, Bellegarde had the 

highest proportion of reproductive tillers, many of which had 

emerged inflorescences [Table 1]. Later reproductive development 

in Primabel resulted in a lower proportion of reproductive 

tillers with fewer emerged inflorescences. Caramba and Wendy had 

high proportions of reproductive tillers but later inflorescence 

emergence resulted in lower proportions of tillers with emerged 

inflorescences [Table 1]. 

(c) Leaf appearance and reproductive development of tagged tillers. 

Prior to applying the long photoperiod, Matua and Bellegarde had 

produced more leaves on the first tagged tiller (main tiller) 

(6.5) than Primabel (5.9) (P<0.01). Leaf appearance rates (LÀR) 

increased on the first tagged tiller (main tiller in prairie 

grass and a large tiller in Caramba and Wendy) in all cultivars 

as reproductive development occurred, firstly in Bellegarde then 

later in Matua, Caramba, Primabel and lastly in Wendy [Fig. 

1(c)]. Leaves ceased to appear close to the time of inflorescence 

emergence, firstly in Bellegarde, then Caramba, Matua and 

Primabel, and lastly Wendy. Matua and Wendy produced the most 

leaves, Caramba and Bellegarde the least. This cultivar order for 

the cessation of leaves appearing was different to the cultivar 

order for inflorescence emergence (see above). Inflorescences 
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emerged in prairie grass before the flag leaf was fully emerged, 

while in ryegrass, inflorescences emerged only after the flag 

leaf was fully emerged. 

The second tagged tiller (tagged at the stage of one emerged 

leaf in all cultivars) had a similar pattern of acceleration in 

leaf appearance and emergence of inflorescences [Fig. 1(d)]. 

Caramba and Wendy had lower LAR than the prairie grass cultivars 

even during the high LAR occurring with reproductive stem 

elongation. At initial cut 7, Caramba and Wendy had therefore 

produced 5 and 6.5 leaves respectively and the prairie grass 

cultivars 9 leaves. Leaves ceased to appear in both Bellegarde 

and Caramba at the same date but Bellegarde had produced 9 leaves 

and Caramba 5 leaves. The third tagged tiller showed similar 

trends for LAR but Caramba had much higher LAR (0.143 

leaves/tiller/day), similar to that of Bellegarde, with 

reproductive development (visible internode elongation) occurring 

when the tiller was only three to four weeks old. 

(d) Position of axillary tillers. Position of the youngest 

axillary tiller on the tagged tiller (number of leaf axils from 

the top of the tiller) reflected changes in tillering rates and 

the stage of reproductive development [Fig. 1(e)]. Position 

decreased in Caramba and Wendy as large increases in tiller 

numbers occurred during the first few weeks of measurements. As 

reproductive development occurred and tillering decreased, 

position increased and then came to a plateau as the 

inflorescences emerged in all cultivars. Positions decreased at 

the final dates as tiller buds developed on the reproductive 

tillers. 

Positions of axillary tillers during the remainder of the 

experiment were not analysed because of the high numbers of 

tillers that had no axillary tillers, or tiller buds developed 

from the base of reproductive tillers and so their correct 

positions could not be identified. 

(e) Herbage quality. Cell wall contents (CWC) Of the cut 

herbage increased with time while apparent digestibility of 

organic matter (D,,.) decreased [Figs. 2(a), (b)]. The prairie grass 

cultivars had similar CWC (mean, 51%) (P>0.05) which was 

significantly higher than Caramba and Wendy (mean, 48%) (P<0.01). 
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FIG. 2. Plant parameters from two weeks before the long 
photoperiod was applied until the final initial cut, a ten week 
period of undisturbed growth. Times when initial cuts were taken 
are indicated. (a) Cell wall contents and (b) apparent 
digestibility of organic matter, for Matua ( • — D ) , Bellegarde 
( A — A ), Primabel ( O — O ), Caramba ( V- -V ) and Wendy ( Y- -Y ). 
(c) Nitrogen and (d) water soluble carbohydrate contents of cut 
herbage ( V- -V ), roots ( o — O ), vegetative ( • — D ) and 
reproductive ( A — A ) stubble. Vertical bars indicate LSD values 
(P<0.05) for significant cultivar differences, and for each plant 
component in (c) and (d). 
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D0„ was consistently higher in Wendy (mean, 78%) and lowest in 

Bellegarde (mean, 70%). Caramba and the prairie grass cultivars 

had similar DOB at initial cut 1 but the decline was greater in 

the prairie grass cultivars, so that at initial cut 7, 

digestibility was significantly higher in Caramba (P<0.01). 

Digestibility of the cell wall (D,̂ ) followed a similar pattern 

of decline (81 to 59%) to that described for D„„. 

Nitrogen (N) content in the plant decreased from relatively 

high levels at the start of the long photoperiod to lower levels 

at initial cut 4, increasing again at the final initial cuts 

except in cut herbage [Fig. 2(c)]. In contrast, water soluble 

carbohydrate (WSC) contents increased and then decreased slightly 

at the final initial cuts [Fig. 2(d)]. Roots had low levels of 

N and WSC, while reproductive stubble had low N but high WSC 

contents. Vegetative stubble had high contents of N and WSC. 

Consistent cultivar differences for N and WSC were few, but 

Caramba and Wendy did have significantly lower WSC contents in 

roots (3%), vegetative (16%) and reproductive (22%) stubble than 

the prairie grass cultivars (10, 25, 27% respectively). 

Differences between vegetative and reproductive stubble for WSC 

varied with each cultivar. In Caramba large differences between 

the stubble fractions occurred from an early stage while only 

from initial cuts 4, 5 and 6 did differences occur for 

Bellegarde, Wendy and Matua respectively, with no differences 

occurring in Primabel. 

After initial cuts 

(a) Yields. Regrowth one and two weeks after each initial cut 

was highest with the first initial cut (mean, 5.8 g initial cut 

1, 3.2 g initial cuts 2 to 7). However, after four weeks of 

regrowth, yields were similar for all initial cuts (mean, 16.6 

g). The time of each initial cut had no significant effect on 

growth rates (mean, 0.284 g day"1) during the cutting frequency 

treatments. Total yields for the experiment were therefore higher 

with later initial cutting due directly to the higher yields 

obtained with each successive initial cut. 

Cutting frequently resulted in large reductions in yields 

particularly in Caramba, and least in Wendy [Fig. 3]. With more 

infrequent cutting, yields of Bellegarde relative to the other 

81 



TABLE 2. Effect of cutting frequency and cultivar, after the 
initial cuts, on reproductive tillers at each cut as a percentage 
of total tillers, and tillers with emerged inflorescences at each 
cut as a percentage of total reproductive tillers. Herbage yields 
(>5 cm) from reproductive tillers as a percentage of the total 
yield at cutting, three weeks before the end of the experiment. 
Figures in a column accompanied by the same lower case letter are 
not significantly different (P>0.05). 

X reproductive % emerged % total yield 
tillers of inflorescences of from reproductive 

total tillers total reproductive tillers 
tillers 

Cutt ing frequency 
(weeks) 

Matua 

B e l l e g a r d e 

Pr imabe l 

Caramba 

1 

2b 

3b 

2b 

2 3 . 

2 

% 

10„ 

7C 

3 4 . 

4 

22 b 

19 b 

14 c 

4 4 . 

1 

38 b 

7 4 . 

6 4 . 

1= 

2 

5 2 . 

5 0 . 

11» 

2c 

4 

7 2 . 

6 4 b 

6 2 b 

3 8 c 

1 

l i b 

l i b 

% 

4 2 . 

2 

1 3 b 

io„ 

19b 

5 7 . 

4 

5 5 b 

4 9 b 

4 8 b 

7 8 . 

cultivars declined. Thus at 4 week cutting, Bellegarde and Wendy 

had the lowest yields and Caramba the highest. Yields of D0„ were 

similar to the trends shown for the dry matter yields in Fig. 3. 

The high digestibility of Caramba and Wendy increased yields of 

Do« relative to prairie grass, particularly in Wendy at 4 week 

cutting. This resulted in Wendy having significantly higher 

yields of D„, than Bellegarde at 4 week cutting (i><0.01), while 

dry matter yields were similar for these two cultivars [Fig. 3] 

(P<0.05). 

Reproductive growth represented a high percentage of the 

total yield at 4 week cutting and lower percentages at more 

frequent cutting [Table 2]. This was closely related to the 

percentage of reproductive tillers at each cut [Table 2]. Caramba 

had relatively high percentages of yield as reproductive tillers 

even at frequent cutting due to the high amounts of reproductive 

growth. 

(b) Tiller numbers. Effect of time of initial cutting on tiller 

numbers was variable, with no consistent effects. Therefore only 
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FIG. 3. Total herbage dry matter yields (>5 cm) (excluding yield 
at initial cuts) for 1, 2 and 4 week cutting frequencies and 
cultivars, Matua (M), Bellegarde (B), Primabel (P), Caramba (C) 
and Wendy (W). Within each cutting frequency, bars accompanied 
by the same lower case letter are not significantly different for 
log transformed data (P>0.05). 

averages for all initial cuts are presented for each cultivar 

and cutting frequency treatment (Fig. 4). 

Tiller numbers differed greatly between cultivars and 

cutting frequencies [Fig. 4]. Increased cutting frequency in 

Caramba and Wendy decreased tiller numbers. Similar results 

occurred in prairie grass during the early stages but then the 

1 and 2 week cutting frequencies had a general increase in tiller 

numbers. In Matua and Primabel this resulted in similar tiller 

numbers for all cutting frequencies at later stages of the 

experiment, while 1 week cutting of Bellegarde resulted in 

consistently higher tiller numbers than the other cutting 

treatments. 

Tiller numbers in Caramba with 4 week cutting followed a 

similar pattern to the other cultivars, but with 1 and 2 week 

cutting there were rapid declines in tiller numbers over the 4 

to 6 weeks after each initial cut [Fig. 4(d)]. This resulted in 

all initial cutting times having similar tiller numbers (P>0.05) 

which were relatively constant for the remainder of the 
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Weeks after long photoperiod applied 

FIG. 4. Tiller numbers per plant during the cutting frequencies. 
Average of all initial cuts. (a) Matua, (b) Bellegarde, 
(c) Primabel, (d) Caramba and (e) Wendy, for 1 ( • — D ) , 2 
( A — A ) and 4 ( o — O ) week cutting frequencies. Vertical bars 
indicate LSD values (P<0.05) for significant differences in 
cutting frequencies. 
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experiment ie. 3 and 24 tillers per plant for 1 and 2 week 

cutting respectively. 

(c) Numbers of reproductive tillers. Reproductive tillers in 

Wendy had their apices removed at the initial cuts (mainly at the 

later initial cuts) or at the following cut after 1, 2 or 4 

weeks, depending on the cutting frequency treatment. No further 

reproductive tillers developed in Wendy after this stage. 

Proportions of tillers that were reproductive at each cut 

and therefore had apices removed killing the tiller, were 

greatest in Caramba and higher with more infrequent cutting 

[Table 2]. Caramba had high percentages of reproductive tillers 

even at 1 and 2 week cutting, but with few emerged 

inflorescences. Only at 4 week cutting did significant numbers 

of reproductive tillers have emerged inflorescences in Caramba, 

but still lower than prairie grass. Cutting frequency had much 

greater effects on percentages of reproductive tillers at each 

cut in prairie grass, with over 50% of these tillers having 

emerged inflorescences even at frequent cutting [Table 2]. Of 

the prairie grass cultivars, Primabel had the lowest percentages 

of reproductive tillers and emerged inflorescences, while Matua 

and Bellegarde were approximately similar in reproductive 

development, but with high percentages of emerged inflorescences 

in Bellegarde. 

(d) Changes in tiller numbers with cutting and sites of tillering. At 

all initial cuts and subsequent cuts, tiller death in prairie 

grass was almost completely attributable to death of the 

reproductive tillers as their apices were removed. In Caramba 

and Wendy, vegetative stem elongation resulted in apices being 

carried above the cutting height and thus adding to the numbers 

of tillers that were killed at cutting. This was most prominent 

at later initial cuts with 50% of the vegetative tillers having 

their apices above the 5 cm cutting height at initial cut 7. Also 

20 and 5% of the reproductive tillers in Caramba and Wendy, 

respectively, had tiller bases above 5 cm. Such large percentages 

did not occur during the cutting frequencies but in Caramba at 

4 week cutting, tiller buds above 5 cm developed on elongated 

reproductive tillers and so were removed by cutting. Such 

vegetative stem elongation did not occur in prairie grass and all 
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FIG. 5. Relative tiller numbers for all cultivars immediately 
prior to initial cut then 1 day, 1, 2, 3 and 4 weeks after each 
of initial cuts 1,3,5 and 7. The fall in tiller numbers one day 
after each cut represents the tillers that died due to apices 
being above the 5 cm cutting height. Also see text. Initial cut 
1 ( A- -A ) , 3 ( o — O ) , 5 ( A- -A ) , 7 ( D — • ) - Vertical bars 
indicate LSD values (P<0.05) for significant differences. 
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TABLE 3. Percentages of axillary tillers that could be identified 
as originating from the leaf axils of tagged tillers, three weeks 
before the end of the experiment. Figures in a row accompanied 
by the same lower case letter are not significantly different 
(P>0.05). 

Cultivar 
Cutting frequency 

1 week 

2 week 

4 week 

Matua 

63b 

44b 

16c 

Bell egarde 

71. 

31c 

11. 

Primabel 

64b 

69. 

39. 

Caramba 

21c 

15„ 

30b 

Average 

55 

40 

24 
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tiller buds developing on reproductive stems came from previously 

inhibited basal tiller buds and not raised on the culm. 

Tiller death at each successive initial cut increased as 

more reproductive tillers elongated carrying the apex above the 

5 cm cutting height [Fig. 5]. Within one or two weeks after 

cutting, tiller numbers had recovered or exceeded their previous 

levels [Fig. 5] due to extravaginal development of the previously 

inhibited tiller buds at the bases of reproductive tillers. This 

varied between initial cuts with initial cuts 3 and 4 taking 

longer to increase tiller numbers in all cultivars despite a 

range in stage of reproductive development. At initial cuts 6 and 

7, this recovery appeared to be less, but at these cuts the 

previously inhibited tiller buds at the bases of reproductive 

tillers were starting to develop before the herbage was cut, 

particularly in Caramba and Wendy. 

This pattern of death and recovery continued with the 4 week 

cutting frequency, except for Wendy, where there was no 

reproductive growth. The death and subsequent increase in tiller 

numbers was less with more frequent cutting, because of lower 

reproductive growth at cutting, and less in cultivars that had 

lower reproductive growth eg. Primabel [Table 2]. 

With more frequent cutting, less tillers came from inhibited 

reproductive tiller buds (extravaginal) and a greater number of 

new tillers arose from vegetative tillers (intravaginal). This 

is illustrated in Table 3 where greater percentages of axillary 

tillers could be identified as originating in the leaf axils of 

tillers, and so not from the base of the tiller as occurring on 

reproductive tillers. With infrequent cutting, few vegetative 

tillers had axillary tillers until they became reproductive. 

Tiller buds then developed either just prior to cutting 

(particularly in Caramba) or after cutting. In Caramba at 1 and 

2 week cutting these percentages were much lower, an indication 

of the poor tillering in Caramba at these cutting frequencies. 

At 4 week cutting, Caramba had a relatively high percentage of 

axillary tillers than would be expected for the high degree of 

reproductive growth in this cultivar. This was primarily because 

tiller buds developed not only from the base of reproductive 

tillers, but also from tiller buds raised on the culm and thus 

were identified as coming from a leaf axil. 
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(e) Leaf appearance and reproductive development of tagged tillers. LAR 

in Wendy was similar on all tillers in all treatments (0.099 

leaves/tiller/day) (P>0.05), while Caramba had significantly 

higher LAR (0.121) with no significant effect of treatment 

(P>0.05). Average LAR in Matua was 0.130, Bellegarde 0.124 and 

Primabel 0.139 (P<0.01) (LSD0.05=0.005), with no significant effect 

of cutting frequency (P>0.05). 

With later initial cuts a greater proportion of the first 

tagged tillers were reproductive and thus had their apices 

removed (mean, 80% of tillers killed by initial cuts). More of 

the second and third tagged tillers survived the initial cut 

because of later reproductive development (mean, 50% of tillers 

killed by initial cuts). Reproductive tillers that survived the 

early initial cuts, soon had their apices removed at the 

subsequent l, 2 or 4 week cuts. The third tagged tiller and 

subsequent tagged tillers in Caramba all showed very rapid 

reproductive development and thus considerable tiller death 

occurred at each cutting making it difficult to assess LAR 

compared to the other cultivars. In Wendy, the third tagged 

tiller and subsequent tagged tillers remained vegetative for the 

rest of the experiment. 

(f) Herbage quality. Quality of the regrowth 1, 2 and 4 weeks 

after each initial cut, generally increased the later the initial 

cut was taken. On average, CWC, D„ and D„„ were 49, 80 and 80% 

respectively for the regrowth from the first three initial cuts, 

and 47, 82, and 84% respectively for the remaining initial cuts. 

Assessment of herbage quality later in the experiment showed 

significant effects of initial cutting time, but differences were 

few and not consistent. 

Assessment of herbage quality (a) of regrowth one, two and 

four weeks after each initial cut, (b) four weeks after each 

initial cut for each cutting frequency, and (c) quality at the 

end of the experiment, all showed similar results for the effects 

of cultivar and cutting frequency [Fig. 6]. Herbage quality 

decreased in a significant quadratic manner with decreasing 

cutting frequency (p<0.01). The 1 week cutting frequency had low 

CWC and high digestibility. A slight decrease in quality occurred 

at 2 week cutting, but at 4 week cutting, CWC increased 

considerably and large decreases occurred in D^ and D„. 
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FIG. 6. Average herbage quality after the initial cuts as 
affected by cutting frequency and cultivar, Matua (M), 
Bellegarde (B), Primabel (P), Caramba (C) and Wendy (W). 
(a) Cell wall contents, (b) digestibility of cell wall, and 
(c) apparent digestibility of organic matter. Within each cutting 
frequency, bars accompanied by the same lower case letter are not 
significantly different (p>0.05). 

89 



The cultivars responded differently to cutting frequency. 

Wendy which had few reproductive tillers in the herbage, had 

relatively small decreases in herbage quality with increasing 

cutting frequency. The prairie grass cultivars and Caramba had 

large decreases in quality with 4 week cutting. Overall, Wendy 

had the highest herbage quality while prairie grass had the 

lowest quality. Caramba had good digestibility and low CWC at 1 

and 2 week cutting, but with 4 week cutting digestibility was 

comparable to prairie grass. The prairie grass cultivars 

generally had similar herbage quality, but Bellegarde had high 

CWC at 1 and 2 week cutting and Matua had significantly lower 

digestibility at 4 week cutting. 

Vernalization 

The only significant effect vernalization had on Matua and 

Caramba was a lower number of leaves to appear in Matua at 

inflorescence emergence on vernalized main tillers (5.5) than 

on non-vernalized main tillers (9). Inflorescences on the main 

tiller of vernalized Matua plants therefore emerged two to three 

weeks before non-vernalized plants, resulting in a higher 

percentage of reproductive tillers in vernalized (75%) than non-

vernalized (40%) plants. 

D I S C U S S I O N 

Response to cutting frequency 

It is generally reported that under frequent defoliation prairie 

grass performs poorly relative to other species (Langer and Hill, 

1982; Burgess et al., 1986). The results of the present study 

support this for reproductive plants of prairie grass. This is 

in contrast to defoliation of vegetative prairie grass plants 

(Chapter 4 this thesis), where production was reduced by frequent 

defoliation, but response was similar to that occurring in 

ryegrass. In the present experiment, prairie grass did adapt 

surprisingly well to frequent cutting producing high tiller 

numbers, but yields per tiller and per plant were low. Leaf 

sheaths shortened in prairie grass giving a leafy stubble with 

leaf lamina being the major component of the harvested herbage. 

90 



Reproductive tillers also shortened considerably so that only 

when inflorescences emerged were apices carried above the cutting 

height. This resulted in relatively high numbers of reproductive 

tillers with emerged inflorescences in prairie grass despite 

frequent cutting. So even under frequent defoliation, prairie 

grass may produce inflorescences which are important for natural 

reseeding in this species (Chapter 8 this thesis). 

Caramba responded quite differently to prairie grass as 

cutting frequency increased. With its rapid reproductive growth, 

Caramba continued to produce high numbers of reproductive tillers 

which would start to elongate only three to four weeks after 

appearing in a leaf axil. Shortening of the leaf sheaths did not 

appear to occur to the same extent as in prairie grass, 

especially not in reproductive tillers of Caramba. These 

reproductive tillers were therefore quickly killed with frequent 

cutting, creating high tiller losses, and combined with lower 

tillering from vegetative tillers, tiller numbers declined 

dramatically with frequent cutting. This also resulted in some 

plant death. 

Tiller losses at cutting were also increased in Caramba and 

Wendy by vegetative stem elongation and development of tiller 

buds raised on the culm. This did not occur in prairie grass. 

Minderhoud (1978) recorded similar high levels of elongation, 

especially at high nitrogen levels. This type of development 

enables some widening of the base of the plant when raised 

tillers are able to root to the ground. This allows ryegrass 

plants to spread and fill gaps in a sward (Minderhoud, 1978, 

1980), but this does not occur in prairie grass (Eteve, 1982). 

This type of tillering can also suppress the formation of 

vegetative tillers at the tiller bases. 

In practice, monocultures of prairie grass or Westerwolds 

ryegrass will be rare and these grasses will be growing with 

other sown species (grasses, legumes) and *weed' species (eg. Poa 

annua L. ) in the sward. Some of these species will be better 

adapted to frequent defoliation and will therefore be strong 

competitors for nutrients and light. The relatively poor 

performance of the prairie grass cultivars and Caramba with 

frequent cutting in the present experiment will therefore become 

more pronounced under field conditions. The relatively good 
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performance of Wendy perennial ryegrass during frequent cutting 

is an example of a species that has relatively good growth under 

such conditions, and is a reason why mixtures of prairie grass 

and perennial ryegrass are usually not recommended (Burgess et 

al., 1986). 

Response to initial cutting time 

Importance of time of the initial cut in relation to stage 

of reproductive development as it affects regrowth has been 

clearly demonstrated for timothy (Phleum pratense L. ) and ryegrass 

(Jewiss and Powell, 1966; Davies, 1969; Davies, 1973). In the 

present experiment, regrowth after each initial cut appeared to 

be independent of the stage of reproductive development. This 

suggests that environmental factors or other plant parameters not 

measured in this study were having a greater influence. 

For Bellegarde in the field, Eteve (1982) and Parneix (1981, 

1982) also gained similar results to those recorded in the 

present study. Both researchers have noted that later initial 

cuts increase the yield of the initial cut, and increase the 

total annual yield but only due to the high yield at the initial 

cut. Initial cuts taken too early (plant vegetative) or very late 

(anthesis) were detrimental to good summer performance, but 

otherwise the species appeared to have a good flexibility of 

management and good recovery even after late cuts. Parneix (1981) 

also recorded similar levels and decreases in nitrogen and 

increases in water soluble carbohydrate contents with later 

initial cutting. Cabos (1985) has noted a build up in reserves 

(chemical composition not stated) peaking at inflorescence 

emergence, depleted at cutting and reserves increasing again as 

long as there was enough time between defoliations. The best 

time for defoliation could be when the levels of water soluble 

carbohydrates are at a peak, and may be linked with the 

development of inhibited tiller buds before defoliation. 

Jewiss and Powell (1966) found that regrowth was most 

closely related to water soluble carbohydrates in the primary 

tillers of timothy, presumably due to higher growth of inhibited 

buds, and to stubble weight of primary tillers, presumably due 

to the direct growth that vegetative tillers produce. Water 

soluble carbohydrates increase in the stubble during reproductive 
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development in late spring (Weinmann, 1952; Pollock and Jones; 

1979), and it appears that these reserves are used in the 

formation of new tillers (Awopetu, 1979; Davies, Evans and Sant, 

1981). In the present study, water soluble carbohydrates 

increased to high levels in reproductive stubble particularly in 

prairie grass, while vegetative stubble weight declined slightly 

with time. The results of Jewiss and Powell (1966) would suggest 

that in the current experiment these two factors may have been 

operating against each other. Whatever the factors involved in 

the current study, regrowth after four weeks was similar for all 

initial cuts. 

Tillers 

The pattern of tiller death (mainly reproductive tillers) 

at cutting followed by rapid recovery of tiller numbers as 

previously inhibited tiller buds developed at the base of 

reproductive tillers, has also been documented for other grass 

species (Jewiss and Powell, 1966; Âwopetu, 1979; Davies, Evans 

and Sant, 1981). With the continual production of high numbers 

of reproductive tillers in prairie grass and Westerwolds ryegrass 

during the long photoperiods of the growing season, tiller 

populations are therefore completely renewed several times in the 

year. The greater the level of reproductive growth, either 

through more infrequent cutting or in cultivars with faster 

reproductive growth, tillering became more reliant on the 

development of these reproductive tiller buds with less tillering 

from the vegetative tillers that were present at cutting. 

Observations in a field trial at Wageningen (Chapter 6 this 

thesis) and in other glasshouse experiments confirm this pattern 

of tiller death and recovery at cutting, with similar development 

of tiller buds at the base of reproductive tillers (Hume, 

unpublished data). In the field trial, the first cut in spring 

had the greatest tiller loss (70-80% tillers reproductive at 

cutting) and greatest recovery in tiller numbers, with fewer 

reproductive tillers at the following cuts, similar to the 

pattern in the present experiment. In New Zealand, high numbers 

of reproductive tillers (70%) have been recorded in the field in 

late spring, with rapid recovery in tillers within four weeks 

(Chapter 8 this thesis). 
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In some cases cutting was not required to allow inhibited 

tiller buds to develop. This also occurs in other species 

(Langer, 1956) and occurred more readily in Caramba than prairie 

grass. Similar results have been gained in field trials with 

Matua and Caramba (Chapter 2 this thesis; Hume, unpublished data) 

with the death of these new tillers occurring in Caramba if the 

sward was not cut. This indicates that Caramba may require 

relatively shorter regrowth intervals than prairie grass when 

grown in the same situation. The decision to defoliate should 

therefore not be based solely on period of regrowth but also on 

observations of new tillers developing. 

Leaf appearance 

Leaf appearance in prairie grass during the cutting 

treatments continued to be significantly higher than in Caramba 

and Wendy with no significant effect of cutting frequency. Of the 

prairie grass cultivars, leaf appearance was actually highest in 

Primabel and lowest in Bellegarde. To understand these results 

it must be recognized that different factors can be operating in 

different situations. In prairie grass in treatments where 

reproductive growth is lower (eg. 1 week cutting frequency, 

Primabel), there are fewer reproductive tillers present and so 

fewer tillers with accelerated leaf appearance, but fewer tiller 

deaths at cutting. In contrast, where reproductive growth is 

greater (4 week cutting frequency, Bellegarde), high leaf 

appearance rates occur during stem elongation, but as 

inflorescences emerge leaf appearance rates decline and become 

zero as leaves cease to appear. The overall result may therefore 

be different to what could be expected from observations of 

undisturbed growth. Similar observations of leaf appearance in 

a field trial confirm these results for the prairie grass 

cultivars and Caramba (Hume, unpublished data). 

Other plant parameters 

The important contribution made by reproductive tillers to 

yields of prairie grass and Caramba as identified in previous 

studies (Chapters 2 and 6 this thesis) was also evident in the 

present experiment. The proportion of yield coming from 
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reproductive growth was approximately double the proportion of 

reproductive tillers present. This effect was similar for all 

cutting frequencies. In Wendy the role of reproductive tillers 

was limited to a relatively small portion of the experiment or 

the growing season in the field. This in part explains the lower 

yields and high quality of Wendy with infrequent cutting. 

The analysis of plant parameters during the period of 

undisturbed growth prior to the final initial cut, confirms 

results gained in the field situation with Matua and Caramba 

(Chapter 2 this thesis) and in glasshouse experiments including 

the three prairie grass cultivars (Chapter 3 this thesis). It 

can be summarized that Wendy generally has high tillering and 

herbage quality, but leaf appearance is low even during 

reproductive stem elongation and yields are low partly because 

of later reproductive development. Prairie grass has lower 

herbage quality and tillering, but high leaf appearance rates and 

yields. Caramba is intermediate, although comparable to prairie 

grass in terms of yield but with rapid reproductive development 

and few leaves appearing by the time of inflorescence emergence. 

Of the prairie grass cultivars, Bellegarde has high levels of 

leaf appearance until inflorescence emergence, rapid reproductive 

development and high yields, but lower herbage quality and 

tillering. Primabel has lower leaf appearance rates and 

reproductive growth, but higher tiller numbers. Matua is 

generally in between the other two cultivars for these plant 

parameters. 

These cultivar differences were modified considerably by the 

cutting frequencies. With no reproductive tillers, Wendy 

continued to have high herbage quality, but yields were 

relatively low with infrequent cutting and relatively high with 

more frequent cutting. In contrast, yields were low for 

frequently cut prairie grass and Caramba, but herbage quality was 

relatively high. Infrequent cutting allowed greater reproductive 

growth and thus high yields, especially in Caramba, although 

Bellegarde did not respond to the same degree and had low yields 

relative to the other prairie grass cultivars and Wendy. 

Vernalization 

Analys i s of the e f f e c t s of v e rna l i z a t i on on Caramba 
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Westerwolds ryegrass and Matua prairie grass is important for the 

results of this study to be placed in the context of a field 

situation. Faster reproductive development of Matua tillers that 

had previously been growing at 4°C indicates a quantitative 

response to vernalization, though not obligatory. Karim (1961) 

also reported similar responses in a range of cultivars although 

there was considerable cultivar variation. In the field, this 

will result in earlier heading of tillers that have grown through 

the winter than spring formed tillers and so high yields earlier 

in spring. Field observations of heading in Matua, Bellegarde and 

Primabel at Wageningen confirm this (Hume, unpublished data). 

Eteve (1982) also reports that spring formed tillers head two to 

four weeks later in Bellegarde than tillers formed before winter. 

If vernalized prairie grass had been used in the main experiment 

in the present study, earlier reproductive development would have 

occurred in prairie grass resulting in greater yield differences 

relative to ryegrass. The lack of response to vernalization in 

Caramba is similar to results gained by Cooper and Calder (1964). 

Conclusions 

It could be expected from these results that in the field, 

perennial ryegrass would be the best species to use in situations 

of frequent defoliation. With infrequent defoliation, Wendy will 

produce the highest quality herbage but lower yields of dry 

matter and digestible organic matter than Matua, Primabel and 

Caramba. Prairie grass and Westerwolds ryegrass will perform best 

under infrequent cutting with Primabel and Matua being the best 

prairie grass cultivars. Later initial cutting will improve total 

yields and the yield at the first cut, but quality of the first 

cut will decrease. For the cultivars and conditions in this 

study, time of initial cutting had little influence on regrowth 

and very little correlation with stage of reproductive 

development or any of the measured plant parameters. 
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Abstract: 

Herbage quality, yields, tiller and plant populations of 

Grasslands Matua' prairie grass and xCaramba' tetraploid 

Westerwolds ryegrass were investigated in a two year field trial 

on a sandy soil. Plots were either harvested frequently (5-6 cuts 

per year) or infrequently (4 cuts). During the first year, 

herbage was separated into leaf, vegetative and reproductive 

pseudostem, and analysed separately. 

With very mild winters and adequate water supply, swards had 

good persistence and production for two years. Total yield in the 

first year, 10.5 t DM ha"1, was similar for both species. Yields 

in the second year were (t DM ha"1) 13.4 and 18 for Matua and 11.1 

and 13 for Caramba under frequent and infrequent cutting 

respectively. Leaf contributed 58% to yields and reproductive 

pseudostem 35%. Infrequently cut plots had; 23% higher dry matter 

yields primarily due to higher yields of reproductive pseudostem; 

higher yields of most chemical components and higher contents of 

water soluble carbohydrates and cell walls; lower digestibility 

and nitrogen content. Cell wall content was consistently higher 

in Matua but otherwise herbage quality was similar for the two 

species. It is suggested that prairie grass should at least be 

considered as a replacement for spring sown Westerwolds ryegrass 

on sandy soils in The Netherlands. 
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Introduction 

Prairie grass or paardegras (Bromus wiiidenowü Kunth) is a true 

perennial grass originating in the Pampas of South America, and 

now has a very wide geographical distribution (Hafliger and 

Scholz, 1981). In the past, accidental introduction of prairie 

grass to The Netherlands occurred near sea ports and some 

cultivation has been practised (Jansen, 1951). It did not become 

a permanent stable species in the Dutch environment as it 

apparently did not survive hard winters (Jansen, 1951; Heukels 

and Van der Meijden, 1983). There are now a.number of prairie 

grass cultivars available which have proven to be highly 

productive in a number of countries eg. France (Anon, 1982), New 

Zealand (Fraser, 1985) and the United Kingdom (Anon, 1986). No 

detailed studies have been published on the performance of 

prairie grass in The Netherlands. A field trial was therefore 

conducted to provide information on productivity, persistence and 

herbage quality of prairie grass in order to identify possible 

roles prairie grass may have in Dutch agriculture. 

Materials and methods 

Site and treatments 

The trial site was at Wageningen Hoog, three km from Wageningen 

city, on a light free draining pleistocene sandy soil of moderate 

fertility; pH-KCl 5.4, organic matter 2.6%, 25 mg P (ammonium 

lactate acetic acid extracted), 9 mg K (HCl extracted) and 4 mg 

Mg (NaCl extracted) per 100 g dry soil. The trial area had been 

under various crops for the previous six years, with high 

fertilizer inputs. 

Plots (11.5 x 8 m) were hand sown with either 'Grasslands 

Matua' prairie grass (Sromus willdenowii Kunth) or 'Caramba' 

tetraploid Westerwolds ryegrass (Lolium multiflorum Lam.) in a 

randomised block design replicated four times. Matua plots were 

sown with 505 viable seeds m"2 (60 kg viable seed ha"1) on 13 April 

1987 and Caramba plots with 925 viable seeds m"2 (40 kg viable 

seed ha"1) on 21 April 1987. Approximately 20 mm of water was 

applied by spray irrigation one week after sowing the Caramba 

plots. Half the area of each plot (5.75 x 8 m) was used for 
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detailed growth and quality analysis as reported in Chapter 2 of 

this thesis. The remaining area of each plot was used in the 

current study and divided into either frequent or infrequent 

cutting. 

Along side this trial, small unreplicated plots (8m2) of 

three prairie grass cultivars, 'Grasslands Matua', 'Bellegarde' 

and 'Primabel', were sown at 505 viable seeds m~2 on 13 April 

1987. These plots received the same management as the infrequent 

cutting treatment. Irrigation was used once in 1988, with 25 mm 

of water being applied to all plots in mid-June. 

Measurements 

At the first harvest on 3 July 1987, all treatments were cut to 

a height of 5 cm. Frequent plots were then harvested on four 

occasions and infrequent plots on three occasions during the 

remainder of 1987. During 1988, frequent plots were harvested on 

six occasions and infrequent plots on four occasions. Final 

harvests in both years were taken in late October. 

At each harvest, total herbage yield was determined by 

cutting a strip of 6 x 0.88 m at 5 cm height from each plot. The 

cut herbage was weighed and subsampled for determination of dry 

matter and herbage quality. During 1987, samples were dissected 

to assess yields and quality of leaf lamina, vegetative 

pseudostem and reproductive pseudostem (culm, sheath of 

reproductive tillers and inflorescence). Immediately prior to 

each harvest, populations of vegetative tillers, jointed tillers 

and tillers with emerged inflorescences were determined by 

counting two 0.25 m2 quadrats in each plot. Tiller populations 

were also determined in early April 1988 and 1989. Plant 

populations were assessed at the final harvests in late October 

1987 and 1988, and in early April 1988 and late March 1989. 

Herbage yields, tiller and plant populations for the small 

plots of Matua, Bellegarde and Primabel were only recorded during 

1988, with tiller and plant populations also being assessed in 

late March 1989. 
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Herbage quality 

Herbage samples were ground in a hammer mill with 1 mm sieves and 

the four replicates bulked to give two replicates for 

determination of herbage quality by chemical analysis. True in 

vitro digestibility of the organic matter was determined using 

the method of Van Soest et al. (1966) and then converted to 

apparent digestibility of organic matter (D„„) by reference to a 

series of standard grass samples with known in vivo digestibility 

for sheep. Cell wall constituents (CWC) were determined by Van 

Soest's (1977) method. Ash, nitrogen and water soluble 

carbohydrates were also measured. Digestibility of cell wall 

(D^) was calculated from true digestibility, cell wall content 

and ash content. 

Fertilizers and herbicides 

Trace elements and 90 kg N, 72 kg P205 and 144 kg K,0 ha"1 were 

applied prior to sowing. A further 485 kg N, 64 kg P205 and 128 

kg K20 ha"1 were applied during the remainder of 1987. Total 

fertilizer applications in 1988 were 350 kg N, 200 kg P205 and 

200 kg K20 ha"1. Last nitrogen applications were in mid-September 

and mid-August for 1987 and 1988 respectively. In early January 

1989, 25 kg N ha"1 was applied to all plots as nitrogen deficiency 

was apparent during a mild winter. Plots were sprayed in mid-May 

1987 with 4 1 ha"1 *Basagran P' (375 g mecoprop and 250 g bentazon 

l"1) for control of broad-leaved weeds. 

Figure 1. Average monthly air temperature (150 cm height) (line) 
and total rainfall (bars) for the trial period, Q 
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Climate 

Temperature and rainfall records for the trial period were 
obtained from the Wageningen, Haarweg meteorological station, 
four km from the trial site. 

Results 

Temperature and rainfall 

Mean air temperature (13.5°C) for the growing season, April to 
October, in both years was very similar to the 30-year average 
(13.4°C) (Figure 1). Temperatures in both winters (November to 
March) (5.2°C) were well above the 30-year average (3.5°C), being 
as high as 4°c above average in some months. Rainfall was greater 
than 50 mm per month during the growing season except for April 
1987 and April, May and June 1988 when it was dry and plots were 
irrigated on two occasions (Figure 1). Total rainfall for the 
1987 growing season (544 mm) was 18% above the 30-year average 
(460 mm) and in 1988 rainfall (390 mm) was 15% below average. 

Tiller and plant populations 

(a) 1987. Tiller populations were relatively high at the 
first harvest in early July 1987 (Table 1). Populations then rose 
by 30% in all treatments except Matua frequent, but then declined 
to relatively constant levels for the rest of 1987 of 1300 and 
2400 tillers m~2 for Matua and Caramba respectively (P<0.01). 
Plant populations declined considerably from the first to the 
last harvest (October 1987), while plant size increased from 5 
to 13 tillers plant"1 over this time period. There were no 
significant differences between cutting frequencies for tiller 
and plant populations during 1987. 

(b) 1988/89. The first measurement in early April 1988 showed 
a decrease in plant populations over winter (Table 1). Tiller 
populations also declined with the largest reduction occurring 
in Caramba plots. Cutting frequencies showed no significant 
differences at this date (P>0.05). During 1988, tiller 
populations increased the most in frequently cut plots. A peak 
in tiller populations occurred in late July with 2800 and 1760 
tillers m~2 in frequently and infrequently cut plots respectively 
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Table 1. Numbers of tillers and plants m"2 for Matua and Caramba 
at five dates, ns indicates means that are not significantly 
different (P>0.05), * P<0.05, ** P<0.01, *** P<0.001. 

Sward parameter Tillers m"2 Plants m"2 

Cultivar Matua Caramba Matua Caramba 

July 1987 1600 ** 3000 350 ** 510 

October 1987 1275 *** 2375 110 ** 160 

April 1988 745 * 850 85 *** 120 

October 1987 1660 ns 1990 90 ns 100 

March 1989 1150 ns 920 95 ns 100 

(P<0.01). Differences between species occurred at several dates 

but these were always changing in terms of magnitude and species 

order. At the final harvest there were no significant treatment 

differences (Table 1) and an average of 19 tillers plant"1. After 

winter 1988/89, there were again no significant treatment 

differences (Table 1). 

Reproductive tillers occurred at all harvests in 1987 and 

1988, with infrequently cut plots having 31% of the total tillers 

reproductive and frequently cut plots 17%. During 1988, Caramba 

frequently cut plots had a greater percentage of reproductive 

tillers (31%) than Matua frequently cut plots (14%) (P<0.01). 

Herbage yields 

(a) 1987. Total herbage dry matter yields during 1987 were 

20% higher for infrequently cut plots (11500 kg DM ha"1) than 

frequently cut plots (9570) (Figure 2). This was primarily due 

to yields of reproductive pseudostem being 54% higher in 

infrequently cut plots (P<0.01). Infrequently cut plots had an 

average content of 52% leaf, 8% vegetative pseudostem and 40% 

reproductive pseudostem compared to 60, 10 and 30% respectively 

for frequently cut plots (P<0.05 for all yield components). There 

were no significant species differences for total annual yield 

in 1987, but at five of the eight harvests significant species 

differences did occur, although these differences varied in 
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Figure 2. Total dry matter yield for frequently and infrequently 
cut Hatua (M) and Caramba (C) plots in 1987 and 1988. For 1987 
leaf is represented by ( £7] ), vegetative pseudostem ( • ), 
reproductive pseudostem ( ^ ), and in 1988 total yield 
( K| ) • Bars accompanied by the same letter are not 
significantly different (P>0.05) for total yield within each 
year. 

magnitude and species order. These differences were generally due 

to higher yields of all plant components and not just one 

particular component. At each harvest there were a number of 

significant species differences for the yields of plant 

components but there was little consistency in these differences. 

Content of dead matter was low (<1%). 

(b) 1988. A significant interaction occurred for total yield 

in 1988 with the greatest yield occurring in Matua plots cut 

infrequently (17970 kg DM ha"1) and the least in Caramba plots cut 

frequently (1112p) (Figure 2) (P<0.01). The interaction was due 

to low yields of infrequently cut Caramba plots up until 21 July 

(a dry period of the year), so that at this date total Caramba 

yield did not differ significantly between cutting treatments. 

It was during this first half of the growing season that the 
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biggest species differences in herbage yields occurred (44% 

higher yield in Matua than Caramba). Differences in yield for the 

second half of the season were considerably less (5% higher yield 

in Matua). Yields at the first harvest in 1988 were high (4650 

kg DM ha"1), being greatest in Matua infrequently cut plots 

(7760), representing 43% of the total annual yield for this 

treatment. In the other treatments, yield of the first harvest 

(3620 kg DM ha"1) represented 29% of total annual yield. 

Herbage quality 

(a)1987. For the total sward in 1987, infrequently cut plots 

had on average significantly higher WSC% and CWC%, and lower N%, 

D„% and Dc.,.% than frequently cut plots (Table 2). This was also 

generally true for the contents in each yield component (ie. 

leaf, vegetative pseudostem, reproductive pseudostem). Leaf had 

the highest N%, D„% and D.̂ %, and the lowest CWC% and WSC% (Table 

3). In contrast, reproductive stem had low N%, D0»% and D„c%, and 

high CWC% and WSC%. Vegetative pseudostem had the highest WSC% 

while levels (%) of N, D,», D̂ « and CWC were between those of leaf 

and reproductive pseudostem (Table 3). 

Infrequently cut plots had significantly higher yields of 

WSC, CWC, D̂ ,. and D0„ (Table 2). This was primarily due to 

infrequently cut plots having greater yields of these chemical 

components from reproductive pseudostem. Yields of N were 

approximately equal for the two cutting frequencies with 70% of 

N yield coming from leaf. High WSC content of pseudostem (Table 

3), especially in infrequently cut plots, resulted in 57 and 66% 

of total WSC yield coming from pseudostem for frequent and 

infrequent cutting respectively. Approximately 10% of the total 

yields of CWC, D,̂  and D„. came from vegetative pseudostem, while 

40, 35 and 30 % came from reproductive pseudostem and 50, 55 and 

60% from leaf, respectively. 

Species did not differ in terms of yields of chemical 

components but Matua had significantly lower WSC%, D.̂ % and Dom% 

and higher CWC% than Caramba (Table 2). This was also generally 

true for the contents in each yield component (ie. leaf, 

vegetative pseudostem, reproductive pseudostem). N% was similar 

for the two species. Only one significant interaction occurred 

and this was for DcvC%. Species had similar D ^ in plots cut 
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Table 2. Percentage of chemical components in the total dry 
matter or organic matter yield for 1987, and total yields of 
chemical components for 1987. ns (P>0.05), * P<0.05, ** P<0.01, 
*** p<0.001. 

Chemical 
Component 

N% 
N kg ha"1 

WSC% 
WSC kg ha"1 

CWC% 
CWC kg ha"1 

D_% 
D ^ kg ha"1 

D.% 
D„ kg ha"1 

Cultivar 
Matua 

3.7 
400 

8 
840 

54 
5790 

75 
4350 

74 
7020 

Caramba 

ns 
ns 

* 
ns 

* 
ns 

* 
ns 

* 
ns 

3.7 
380 

10 
1090 

49 
5100 

77 
3910 

76 
6990 

Cuttina Frequency 
Frequent Infrequent 

4.1 
380 

8 
770 

50 
4700 

79 
3690 

78 
6370 

** 
ns 

* 
* 

** 
* 

** 
* 

** 
* 

3.4 
400 

10 
1160 

53 
6190 

74 
4570 

73 
7640 

Mean 

3.7 
390 

9 
965 

52 
5445 

76 
4130 

76 
7005 

Table 3. Percentage of chemical components in the total dry 
matter or organic matter yield of leaf, vegetative and 
reproductive pseudostem for 1987. Averages of all treatments. 
Figures in a row that are accompanied by the same lower case 
letters are not significantly different (P>0.05). 

Chemical 
Component 

N 

WSC 

CWC 

D=vc 

D„ 

Percentaae 
Leaf Vegetative 

pseudostem 

4.8. 

6C 

46c 

84. 

82. 

3.3b 

16. 

50b 

79B 

79b 

content in 
Reproductive 

pseudostem 

2.3C 

12» 

62. 

67c 

64c 

infrequently but Caramba had significantly higher D.̂ % in plots 

cut frequently (P<0.05). 

WSC% of pseudostem showed major changes with time. WSC% 

dropped from high levels at the first harvest, 15 and 19% for 
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vegetative and reproductive pseudostem respectively, to 5-10% at 

the following harvests. WSC% then increased at the final harvest 

to 23 and 31% for vegetative pseudostem and 17 and 22% for 

reproductive pseudostem for Matua and Caramba respectively. WSC% 

of leaf also increased from 5 to 11%. Similar trends also 

occurred in 1988, with WSC% dropping from 28% at the first 

harvest to 7% and increasing to 13% at the final harvest. 

(b)1988. In general, Matua herbage in 1988 had significantly 

(P<0.05) greater WSC%, CWC% and D.̂ %, with N% being higher in 

Caramba and D.,,% being approximately equal (P>0.05) for the two 

species (Table 4). Matua had higher yields of all chemical 

components, primarily due to the greater herbage yields of Matua 

plots rather than the higher chemical composition (Table 4). 

Infrequent cutting decreased herbage digestibility (D„ and D„c) , 

N% and N yields, while increasing CWC%. Infrequent cutting 

increased yields of all other chemical components for Matua, but 

for Caramba, only CWC yield increased with infrequent cutting. 

Infrequently cut Matua plots had low N% (Table 4), 

especially at the first harvest when content was 1%. N% increased 

during the year to be 3-4% in all treatments at the final 

harvest. Infrequently cut Matua plots had the highest content 

of WSC while infrequently cut Caramba plots had the lowest 

content. Infrequent cutting increased CWC% in both species, 

especially in Caramba, with average CWC% being higher in Matua 

than Caramba. Dcvc% and D0.% were lower in infrequently cut plots. 

Herbage harvested in the middle of the growing season had higher 

CWC% and lower D„.* and D0.% than herbage harvested early or late 

in the season. 

Small plots of prairie grass 

The three prairie grass cultivars were very similar in all 

aspects. Herbage quality, and plant and tiller populations were 

similar to those in the infrequently cut Matua plots of the main 

trial. Yields of these plots for 1988 were 16.6, 15.2 and 15.3 

t ha"1 for Matua, Bellegarde and Primabel respectively. 
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Table 4. Percentage of chemical components in the total dry 
matter or organic matter yield for 1988, and total yields of 
chemical components for 1988. Figures in a row that are 
accompanied by the same lower case letters are not significantly 
different (P>0.05) for the species x cutting frequency 
interaction and those with the same upper case letters are not 
significantly different (P>0.05) for average of the cutting 
frequencies. 

Chemical 
Component 

N% 
N kg ha"1 

WSC% 
WSC kg ha"1 

CWC% 
CWC kg ha"1 

D„c% 
D,^ kg ha"1 

DOT % 
DOT kg ha"1 

Matua 

2.6b 

360 

16b 
2170b 

55c 

7620B 

71 
5380b 

73 
9200b 

Frequent 
Caramba 

2.8. 
310 

15„ 
1680c 

50„ 
5650„ 

69 
3890c 

74 
7580c 

Mean 

2.7, 
335A 

15.5 
1925B 

52. 5B 

6635B 

70. 04 

4635B 

73. 54 

8390B 

Matua 

1.8a 

320 

19. 
3570. 

59. 
10940. 

58 
6380. 

64 
11060. 

Infrequent 
Caramba 

2.2C 

270 

13. 
1690c 

56b 

7070c 

57 
4040e 

64 
7480c 

Mean 

2.0B 

295B 

16.0 
2630» 

57. 5A 

9005A 

57. 5B 

5210A 

64.0. 
9270x 

Discussion 

With good rainfall levels and irrigation when required, high 

levels of herbage production on this light free draining soil 

were achieved for both species. Adequate summer moisture and very 

mild winters enabled good survival of Caramba into the third 

year. This is unusual for this species as it is regarded as a 

true annual (De Haan, 1955). The very mild winter temperatures 

did not in any way test the tolerance of prairie grass to the 

cold winter conditions that may be experienced in The Netherlands 

or in North West Europe. It is known that Bellegarde has a low 

tolerance to cold temperatures (Betin, 1982) but there was no 

apparent decline in Bellegarde in the present study. Several 

prairie grass cultivars have been successfully grown in NIÄB 

cultivar trials in England over the past ten years with Bromus 

species demonstrating good winter hardiness when given the 

correct management (Anon, 1986). Further years of testing with 

different cutting and nitrogen managements prior to winter would 
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be needed to fully test the degree of winter survival of prairie 

grass in The Netherlands. 

Although there was relatively little difference in 1987 

between cutting frequencies, five harvests for frequent and four 

for infrequent, infrequent cutting increased herbage yield by 

20% and yields of most chemical components were also increased. 

Infrequent cutting did not significantly increase N yield, but 

N content and digestibility decreased, and CWC% and WSC% 

increased. Similar results occurred in 1988 although there were 

several species x cutting frequency interactions. These 

interactions were primarily due to infrequently cut Caramba plots 

only having significant increases in the yields of dry matter and 

CWC. With reductions in digestibility and contents of chemical 

components, harvesting Caramba only four times in 1988 

(infrequent) was a disadvantage. Although yields of dry matter 

and chemical components increased in Matua with infrequent 

cutting in 1988, decreases in digestibility, high CWC% and lower 

N content indicate that infrequent cutting was also detrimental 

to production of quality forage in Matua. 

As discussed in Chapter 2 of this thesis, it is important 

to gain a balance between obtaining high yields and maintaining 

forage quality. In 1987, this was apparently controlled by the 

amount of reproductive pseudostem (culm, sheath, inflorescence) 

that was allowed to develop, as it was the extra reproductive 

pseudostem that contributed the most to the higher chemical and 

dry matter yields. Yields of vegetative pseudostem and leaf did 

not change significantly with infrequent cutting. Guidelines 

suggested for optimum timing of harvests based on proportion of 

reproductive tillers and emerged inflorescences (Chapter 2 this 

thesis), would predict in the present study that both frequencies 

of cutting in 1987 were optimal, but only frequent cutting in 

1988 was optimal for herbage production and quality. More 

frequent cutting may be considered in order to gain higher forage 

quality, but yields will be reduced and problems of persistence 

may arise because neither species performs well under defoliation 

regimes that are too frequent. 

Leaf and reproductive pseudostem were the most important 

components of the sward. Contribution from reproductive 

pseudostem was less at the end of the season when reproductive 
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development was minimal, but on average it contributed 35% to 

yields whereas leaf contributed 58%. Although reproductive 

pseudostem decreased total sward N% and digestibility, and 

increased CWC, it had high WSC% and contributed to high dry 

matter yields and high yields of most chemical components. The 

importance of reproductive pseudostem in determining yields and 

quality of prairie grass and Westerwolds ryegrass has been 

emphasised in Chapter 2 of this thesis. 

Species differences in terms of herbage quality varied 

between years with only CWC% appearing to be consistently higher 

in Matua. In general the two species had similar herbage quality 

and yields, although soil moisture and frequency of cutting had 

a major modifying effect on this. The dry period during the first 

half of the 1988 growing season demonstrated the superior herbage 

production that prairie grass has under dry conditions (Eteve, 

1982; Burgess et al., 1986). Westerwolds ryegrass is valued for 

its high forage production and quality (Langer and Hill, 1982), 

so Matua prairie grass, if managed correctly, should also be 

considered in a similar manner. 

Lower herbage quality in 1988, especially in the middle of 

the growing season, could have been the result of strong winds 

and rain that flattened the swards immediately prior to 

harvesting. Harvesting was therefore difficult and leaf quality 

deteriorated rapidly. This occurred at two harvests of 

infrequently cut plots and one harvest of frequently cut plots. 

Both species appeared to be affected to the same degree. 

It should be noted that in 1987 a high amount of nitrogen 

was applied (575 kg ha"1) and a lower amount in 1988 (350 kg 

ha"1). At the present time, average nitrogen use on grassland on 

sandy soils in The Netherlands is approximately 400 kg ha"1 (kg 

N applied in terms of equivalent fertilizer N, calculated from 

Aarts et al., 1988). Higher nitrogen input in 1988 could have been 

expected to improve contents of nitrogen and improve production 

but decrease apparent recovery of nitrogen. 

There was a decline in plant numbers but tiller populations 

did not decline because plant size (tillers plant"1) increased to 

compensate for lower tiller populations. Compensation in prairie 

grass swards can occur by increased plant size (tillers plant"1) 

and tiller size (weight tiller"1) [Chapter 7 this thesis (Falloon 
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and Hume, 1988)] and natural reseeding (Chapter 8 this thesis). 

Whether natural reseeding will successfully occur under the 

management and climatic conditions of The Netherlands is yet to 

be determined. Natural reseeding was observed to be occurring 

for both species in the present study but no measurements were 

taken on these seedlings. If natural reseeding is not successful, 

then prairie grass swards may be expected to have a shorter life 

than those recorded under conditions in France (Anon, 1982) and 

New Zealand (Fraser, 1985; Burgess et al., 1986) (persistence >4 

years). 

It would appear that prairie grass could at least be 

considered as a replacement for spring sown Westerwolds ryegrass, 

as quality and yields are comparable for the two species, with 

prairie grass having the added advantage of better production and 

survival in dry summers and on dry soil types. Prairie grass has 

poor tolerance of wet soil conditions so is best suited to the 

sandy soils of The Netherlands. As a longer term pasture species, 

it can be expected to survive mild winters giving at least two 

years production of quality herbage when managed correctly. 

Further trials are required to investigate various managements 

to achieve maximum winter survival and to fully test the range 

of cultivars that are currently available. 
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Productivity and persistence of prairie grass 
(Bromus willdenowii Kunth). 1. Effects of the head 
smut fungus Ustilago bullata Berk. 

R. E. FALLOON AND D. E. HUME 
Plant Diseases Division and Grasslands Division, 
DSIR, New Zealand 

Abstract 

A field trial measured effects of the head smut 
fungus Ustilago bullata Berk, on forage producti
vity of prairie grass (Bromus willdenowii Kunth). 
Simulated swards containing different propor
tions of U. bullata infected and non-infected 
plants were established in the autumn, and sward 
and plant parameters were measured over the 
following 15 months. Total herbage produced 
from swards containing only non-infected plants 
was 27-3 t ha - 1 , while that from totally infected 
swards was 14-6 t ha"1. Infected plants produced 
fewer and lighter tillers than non-infected plants 
when both were growing together in swards. 
Almost all the U. bullata infected plants died 
during an epidemic of bacterial wilt disease 
(caused by Xanthomonas campestris pv. graminis 
(Egli, Goto and Schmidt) Dye), while most of the 
non-infected plants survived. The deleterious 
effects of U. bullata on individual plant producti
vity affected sward productivity only when the 
proportion of infected plants in swards was 
greater than 50%. Plants not infected with U. 
bullata compensated for low productivity and 
death of infected plants by producing large 
numbers of tillers. 

Introduction 

'Grasslands Matua' prairie grass (Bromus willde
nowii Kunth), described by Rumball (1974), is a 

Correspondence: Dr R. E. Falloon, Plant Diseases Division, 
DSIR, Private Bag, Christchurch, New Zealand. 

very productive perennial forage cultivar with 
potential for use in high fertility, dryland and hill 
country pastures (Rumball, 1974; Sithampara-
nathan, 1979; Fraser, 1985). This cultivar has the 
important agronomic features of high tiller pro
duction and high individual tiller yield, character
istics that give it tolerance to defoliation (Hill and 
Kirby, 1985). However, it is very susceptible to 
the head smut fungus Ustilago bullata Berk. 
(Falloon, 1976). Plants infected by this fungus 
have been shown to be less productive than 
uninfected plants, due to decreased tillering and 
poor persistence (Falloon, 1976; 1979a). 

Prairie grass can become infected by U. bullata 
at two stages of growth; either through the 
seedling coleoptile from seed-borne ustilospores 
(seedling infection), or through young tillers from 
air- or splash-borne ustilospores (shoot infection) 
(Falloon, 1979b). In seed crops free of head smut 
at the first harvest, incidence of the disease can 
increase at subsequent harvests due to shoot 
infection. However, in grazed or cut swards with 
heavy initial infection, disease incidence has 
decreased over successive years in both small 
plots and farm paddocks (J. A. Lancashire, 
personal communication). This may be due to 
poor persistence of infected plants, and either 
compensation by, or reseeding from, healthy 
plants. 

No detailed studies of U. bullata epidemics in 
prairie grass swards have been undertaken. A 
field trial was therefore conducted to determine 
effects of U. bullata infection on productivity and 
persistence of Matua prairie grass swards, and to 
monitor the infection status of plants in these 
swards. 

Materials and methods 

The trial measured productivity of cut simulated 
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swards of Matua prairie grass established with 
different proportions of U. bullata infected and 
uninfected plants. 

Plants 

'Infected' plants were grown from seed inoculated 
(Falloon, 1976) with 3-7 g kg- ' U. bullata ustilo-
spores of high germinability (96% on potato 
dextrose agar after 20 h at 25°C), an inoculum 
level likely to infect all seedlings (Falloon, 1976). 
'Healthy' plants were grown from seed treated 
with the fungicides triadimenol + fuberidazole 
(' Bay tan F17') at 0-25+004 g kg - ' seed to ensure 
that no U. bullata infection occurred at the 
seedling stage (Falloon and Rolston, 1986). Seeds 
were sown into potting soil in seedling trays in the 
glasshouse. Three weeks after sowing, height and 
numbers of leaves and tillers of seedlings were 
determined. One week later in mid-autumn (1 
April 1985) seedlings were planted in the field. 

Site 

The trial site was at DSIR Palmerston North on 
an imperfectly drained soil from Holocene sili
ceous silty alluvium. Analysis of topsoil samples 
(0-75 mm depth) gave: pH 5-8; Olsen P 29 ppm; 
and exchangeable cations (extracted with 0-72 M 
sulphuric acid), K 3-0 mg g"1 soil and Mg 1-5 mg 
g~' soil. 

A seedbed was prepared, and square metal 
grids with one hundred 10 x 10 cm squares were 
permanently positioned in each of twenty 1 x 1 m 
plots. The plots were arranged in four blocks of 
five plots each. 

Treatments 

Plots were planted with different numbers of 
healthy and infected plants to give the following 
treatments; 

(1) 100 healthy plants (100H), 
(2) 75 healthy and 25 infected plants (75H), 
(3) 50 healthy and 50 infected plants (50H), 
(4) 25 healthy and 75 infected plants (25H), 
(5) 100 infected plants (OH). 

Treatments were arranged randomly within each 
block. One plant was planted in each square of 
the metal grids to give a planting density of 100 
plants m~2. Healthy and infected plants were 
distributed evenly over plots for the 75H, 50H, 

and 25H treatments. Border areas (0-3 m wide) of 
healthy plants were planted around all plots. 

Measurements 

Plant and tiller populations and herbage yields 
were determined on ten occasions (three in late 
autumn-winter 1985, three in spring 1985, and 
two each in summer 1985-86 and autumn 1986) 
when green canopy heights reached about 200 
mm. Tillers were counted on the plants in the 
central thirty-six squares in each plot. At the same 
time, all plants were checked for U. bullata 
infection by inspecting inflorescences for head 
smut symptoms. I'n mid-spring 1985, numbers of 
flowering tillers per plant were counted. After 
completion of tiller counts, plots were cut to 30 
mm height, usually with a rotary mower, and the 
cut herbage from each plot was dried and 
weighed. On two occasions (in spring 1985 and 
summer 1986,30 and 48 weeks, respectively, after 
planting) individual plants were harvested with 
electric shears, and plant dry weights were deter
mined. 

Fertilizer 

A basal analysis 0% N, 6% P, 14% K and 7% S 
fertilizer was applied to the trial at 400 kg ha - 1 

annually as equal split applications in spring and 
autumn. Nitrogen removed in the cut herbage, 
calculated as 5% of the dry matter yield, was 
replaced after each cut by applying nitrolime 
(26% N). 

Climate 

Temperature and rainfall records for the trial 
period were obtained from the Palmerston North 
DSIR meteorological station (NZ Meteorologi
cal Service), 500 m from the trial site. 

Results 

Seedlings 

Three-week-old seedlings grown from U. bullata 
inoculated seed were shorter (mean height 194 
mm) than those grown from fungicide-treated 
seed (mean height 254 mm; P<001) . Both 
groups of seedlings had similar numbers of leaves 
(mean, 4-0). Tillering had not commenced at this 
stage. 
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Figure 1. Mean dry weight of herbage harvested on ten 
occasions from plots planted with 0-100% healthy prairie grass 
plants and the remainder infected with U. builata. LSD values 
(Z'̂ O-OS) are indicated where differences between treatments 
were significant. (O O) 100H; (A A) 75H; 
(D D) 50H; ( • • ) 25H; (A . . . A) OH. 

U. builata infection 

In spring 1985, 98-6% of the plants grown from 
inoculated seed produced smutted inflorescences, 
while none of the plants from fungicide treated 
seed were infected with U. builata. In autumn 
1986, only three of the previously healthy plants 
(0-4%) produced both healthy and smutted 
inflorescences. Six months later (spring 1986) 
these three plants produced only healthy inflores
cences. 

Sward parameters 

(a) Herbage yields. Plot yields were similar for 
all treatments at the first five harvests (Figure 1), 
but from late spring onwards, yields from OH 
plots were much less than those from other 
treatments ( P < 005). Yields from the other treat
ments were similar to each other, except that 25H 
plots yielded less (P < 005) than 100H plots at the 
two summer harvests (weeks 41 and 48). Total 
herbage yields from the ten harvests were (t DM 
ha"1): 100H, 27-3; 75H, 25-8; 50H, 25-8; 25H, 
23-8; and OH, 14-6 (LSD 005 = 30). The 25H and 
OH treatments thus gave 12-8 and 46-7% less dry 
herbage, respectively, than the 100H treatment. 
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Figure 2. Mean numbers of prairie grass plants on ten occasions 
in plots planted with 0-100% healthy plants and the remainder 
infected with U. builata. LSD values (/><0 05) are indicated. 
(O O) I00H; (A A) 75H; (D D) 50H; 
( • « ) 2 5 H ; ( A . . . A ) OH. 
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Figure 3. Mean numbers of tillers on ten occasions in plots 
planted with 0-100% healthy prairie grass plants and the 
remainder infected with U. builata. LSD values (A><005) are 
indicated. (O O) 100H; ( A A) 75H; (D D) 50H; 
( • « ) 2 5 H ; ( A . . . A ) OH. 

(b) Numbers of plants. The numbers of plants 
in plots declined only slightly during the first 35 
weeks after planting, but then decreased to a 
greater extent, in some treatments dramatically 
(Figure 2). This decrease coincided with the 
period of greatest inflorescence production, 53% 
and 74% of the tillers flowering on healthy and 
infected plants respectively (P<001) . Plants 
either failed to regrow after cutting or developed 
withered leaves and white seedheads before 

1 13 



(o) (b) 

S» 

lOOH 75H 50H 25H OH IOOH 75H 50H 25H OH 

Treatment 

Figure 4. Mean dry weight of herbage harvested from individual 
prairie grass plants in plots planted with 0-100% healthy plants 
and the remainder infected with U. bullaia. Harvests were 
carried out 30 weeks (a) and 48 weeks (b) after planting. Means 
accompanied by the same letter are not different (P > 0 05, LSD 
tests). (®) healthy; ( •) U. bullata-mfsxled. 

campestris pv. graminis (Egli, Goto and Schmidt) 
Dye). Subsequent investigations have shown that 
field-grown U. bullaia infected plants died when 
infected with X. campestris pv. graminis, whereas 
plants free of U. bullaia infection survived the 
bacterial wilt epidemic. 

(c) Numbers of tillers. Different treatments had 
different tiller populations from 15 weeks after 
planting ( /><005; Figure 3); 100H plots con
tained fewer tillers than plots planted with mainly 
U. bullaia infected plants (25H and OH). From 
late spring onwards, this trend was reversed as 
infected plants-died and numbers of tillers in OH 
and 25H plots were consistently less (P<005) 
than in 100H and 75H plots. 
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Figure 5. Mean numbers of tillers on healthy (a) or V. bullaia 
infected (b) prairie grass plants on ten occasions in plots planted 
with 0-100% healthy plants and the remainder infected with U. 
bullaia. LSD values (/><005) are indicated. (O o) I00H; 
(A A) 75H; (D D) 50H; ( • • ) 25H; (A . . . A) 
OH. 

dying. Survival was different for healthy and 
infected plants. Almost all U. bullata infected 
plants died in the summer; by 61 weeks after 
planting survival was I % and unrelated to treat
ment. On the other hand, plants not infected with 
U. bullata died from midsummer to mid-autumn. 
Survival at 61 weeks was related in an inverse 
linear manner to the original healthy plant popu
lation (i><001), and was 64% in I00H plots, 
70% in 75H, 77% in 50H, and 93% in 25H plots. 

Plant death was associated with symptoms of 
bacterial wilt disease, caused by Xanthomonas 

Plant parameters 

(a) Yield per plant. Individual infected and 
healthy plants harvested in mid-spring yielded 
similar amounts of herbage in plots where each 
was grown alone (100H and OH treatments, 
respectively; Figure 4a). However, healthy plants 
produced about three times more herbage than 
infected plants in plots containing both healthy 
and infected plants (/"<005). Healthy plants 
contributed 92, 78, and 57% of the total herbage 
from 75H, 50H, 25H treatments, respectively. In 
late summer, the few infected plants that still 
survived were very small, and contributed little to 
the total harvested herbage (Figure 4b). 

Individual plant dry weights were affected by 
the different treatments. In mid-spring (Figure 
4a), dry weights of both healthy and infected 
plants were greatest in plots containing few 
healthy plants (25H), and smallest in plots con
taining mostly healthy plants (75H; P<001) . In 
late summer (Figure 4b), surviving healthy plants 
in the 25H plots were almost twice the size of 
those in the 75H plots (/><001). 

(b) Tillers per plant. Infected and healthy 
plants had similar numbers of tillers until 25 
weeks after planting (early spring; Figure 5). 
Thereafter, healthy plants had more tillers than 
infected plants (P<005); 14%, 35%, 103%, and 
513% more at weeks 25, 30, 35 and 41, respect
ively. Both healthy (Figure 5a) and infected 
(Figure 5b) plants had fewer tillers at higher than 
at lower healthy plant populations (/><005). 
Tiller numbers increased at later assessments for 
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the few infected plants that survived in the OH 
treatment (Figure 5b). 

(c) Yield per tiller. Tiller dry weights were 
determined from data obtained at individual 
plant harvests. In mid-spring (30 weeks after 
planting) healthy and infected plants grown alone 
(100H and OH treatments, respectively) had simi
lar tiller dry weights (mean 0-46 g). However, in 
treatments where both healthy and infected 
plants grew together (75H, 50H and 25H), 
healthy plants had heavier tillers (mean 0-58 g) 
than infected plants (mean 0-25 g; P<001) . 
Healthy plants in the 100H plots had lighter tillers 
(mean 0-51 g) than healthy plants in other 
treatments (mean 0-58 g; P<005) . Infected 
plants in OH plots had heavier tillers (mean 0-41 g) 
than infected plants in other treatments (mean 
0-29 g; P<001) . 

At the late summer harvest (48 weeks after 
planting), no differences in tiller dry weights were 
detected either between healthy and infected 
plants, or between treatments (overall mean 0-29 
g per tiller). 

Temperature and rainfall 

Mean air temperature for the trial period was 
13-8°C, 1 -5°C above the 30-year average. Rainfall 
(1205 mm for 15 months) was similar to the 30-
year average (1187 mm). Both autumns were dry 
(157 mm, 64% of average rainfall), winter (222 
mm) and spring (290 mm) rainfall was about 
average, while that for summer (378 mm) was 
almost double the 30-year average. 

Discussion 

Ustilago bullata can have potentially harmful 
effects on forage production of prairie grass 
(Falloon, 1976; 1979a). The present study has 
demonstrated that this fungus can affect plant 
survival and productivity in simulated swards in 
the field. 

The most dramatic effect of V. bullata was that 
almost all infected plants died 9 to 10 months 
after establishment, while most non-infected 
plants survived. Summer rainfall was high so 
moisture stress was not likely to have been a 
factor in plant mortality. Fischer and Holton 
(1957) reported that U. bullata infected prairie 
grass plants grown in a glasshouse were more 

susceptible to root rot pathogens than non-
infected plants. In the present study, U. bullata 
infected plants died during a bacterial wilt epi
demic, while most non-infected plants survived. 
Thus, infected plants appear to be more severely 
affected by other pathogens than non-infected 
plants. Prairie grass is also affected by several 
foliage diseases caused by fungi (Latch, 1965). 
Decline of head smut in prairie grass swards with 
initially high incidence may therefore be due to 
induced disease susceptibility, and resulting high 
mortality, in plants infected with U. bullata. 

Ustilago bullata also affected growth of indi
vidual plants in the swards. Plants infected with 
this fungus produced less dry matter, fewer and 
lighter tillers, and higher proportions of flowering 
tillers than non-infected plants. These effects were 
similar to those recorded previously for field-
grown spaced plants (Falloon, 1979a). 

Competition effects, expressed as differences in 
individual plant productivity, were noted in the 
present trial. Healthy plants produced more and 
heavier tillers than plants infected with U. bullata, 
but only in swards containing both types of 
plants. These effects first became apparent in 
early spring before infected plants died, and 
indicate that healthy plants were more competi
tive than infected plants. Later in the trial, after 
infected plants died, the remaining healthy plants 
produced more tillers at low plant populations 
than where populations were higher, responding 
in a manner similar to that recorded for other 
grasses (Langer, 1963). Thus, high tiller produc
tion by healthy plants partially compensated for 
the deleterious effects of U. bullata on sward 
productivity. 

Reduced dry matter production due to U. 
bullata was recorded only in swards where 
infected plants were predominant (25H and OH 
treatments). This suggests that infection levels 
lower than 50% in swards may not reduce pasture 
production. However, as U. bullata can also be 
harmful to prairie grass establishment (Falloon 
1979a; 1985), methods to control head smut 
should still be used routinely. 

Very few of the healthy plants became infected 
by U. bullata in this trial, indicating that shoot 
infection occurred only rarely. Where shoot infec
tion did occur, infected tillers on healthy plants 
were eliminated within 6 months. Although 
nearly all plants from inoculated seed produced 
infected inflorescences, these inflorescences were 
probably removed by regular harvests before 
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ustilospores were released. Thus, shoot infection 
from infected plants within a sward may not 
readily occur in regularly grazed pastures, but is 
more likely to be a problem where infected 
inflorescences are not removed {e.g., in lightly 
grazed pastures, or in hay and silage crops). 

This trial has demonstrated that the pathogen 
U. bullata can reduce growth and cause death of 
individual prairie grass plants within swards. 
However, this fungus is unlikely to severely 
reduce herbage production unless infection levels 
in swards are somewhat greater than 50%. 
Methods of head smut control in forage crops 
should therefore aim at preventing high initial 
incidence of head smut in swards. Prevention of 
the disease in seed crops by controlling seedling 
infection with fungicide seed treatments results in 
seed free of ustilospore contamination at harvest 
(Falloon and Rolston, 1986). If this seed is used 
for pasture establishment, adequate control of U. 
bullata should be achieved in prairie grass swards 
grown for forage. 
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A B S T R A C T 

A field trial with different populations of prairie grass (Bromus 

willdenowii Kunth) plants in 1 year old simulated swards enabled 

changes in plant and tiller populations, and natural reseeding, 

to be studied. At establishment half of the plants in this trial 

were infected with the head smut fungus {Ustilago bullata Berk.)» 

but the disease had disappeared within 2 years as all infected 

plants died. Where plant populations were low, plants compensated 

by producing more and heavier tillers than where populations were 

higher. There was an overall decline in plant population, mostly 

during the period from mid-summer to mid-autumn. Numbers of 

seedlings resulting from natural reseeding were greatest (1600 

seedlings/m2) in swards with the highest populations of mature 

plants, and lowest (650/m2) in plots with few mature plants. Most 

seedlings emerged in autumn and early winter, with early 

emergence giving the greatest seedling survival. Seedling growth 

was slow so that 1 year after emergence, seedlings were still 

increasing in size. Seedling survival after 1 year was low (1%), 

but contribution to total plant and tiller populations from 

seedlings were 28% and 11% respectively. These results indicate 

that natural reseeding, plant compensation and survival of 
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original plants all play important roles in the persistence of 

prairie grass swards. 

I N T R O D U C T I O N 

Prairie grass (Bromus willdenowii Kunth) is potentially a true 

perennial plant (Loiseau 1972; Rumball 1974), which is capable 

of high forage production (Fraser 1985). However, prairie grass 

pasture production may decline due to poor grazing or cutting 

management (Alexander 1985), insect attack (East et al. 1980), 

summer drought, wet soil conditions in winter (Mwebaze 1986), or 

infection with the head smut fungus Ustilago bullata Berk. [Chapter 

7 this thesis (Falloon & Hume, 1988)]. 

The mechanisms by which prairie grass pastures persist are 

unclear. Natural reseeding has often been suggested as a means 

by which declining swards can rejuvenate (eg. Langer 1973; East 

et al. 1980). Seedling populations of 31 to 878/m2 have been 

recorded in autumn-winter from natural reseeding (Pineiro & 

Harris 1978; Francis 1986; Stevens & Hickey 1988; D. E. Hume 

unpublished data). However, the successful establishment of these 

seedlings, and their contribution to sward production, have not 

been studied, other possible means of prairie grass persistence 

are the long-term survival of existing plants in the sward, and 

expansion of these plants to compensate for reductions in plant 

populations. Optimum plant populations for prairie grass swards 

are unknown, but plant compensation (increased tiller weight and 

number) can be important in maintaining sward production, at 

least in the short term [Chapter 7 this thesis (Falloon & Hume, 

1988)]. 

The importance of natural reseeding, plant survival and 

compensation in maintenance of prairie grass pastures has not 

been adequately determined. A field trial, which had measured 

effects of u. bullata on sward productivity [Chapter 7 this thesis 

(Falloon & Hume, 1988)], gave the opportunity to study these 

factors in simulated prairie grass swards. The trial was 

therefore continued for a further 17 months, and the results 

obtained are reported here. 
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M E T H O D S AJSTD M A T E R I A L S 

The trial used simulated swards of ^Grasslands Matua' prairie 

grass established in autumn 1985 with different proportions of 

U. builata-infected and uninfected plants. Early results have been 

reported and discussed in Chapter 7 of this thesis (Falloon & 

Hume, 1988). The present paper reports results recorded from 

autumn 1986 until completion of the trial in winter 1987. 

Site and treatments 

The trial site was at DSIR Palmerston North on an imperfectly 

drained fertile soil from Holocene siliceous silty alluvium. 

Plots measured 1 x 1 m, with 0.3 m borders around all plots. 

Square metal grids with one hundred 10 x 10 cm squares had been 

permanently positioned in each plot. 

There were five treatments, replicated four times in a 

randomised block design. Treatments differed in the prairie grass 

populations per plot as follows; 

(1) 78 plants (78P), 

(2) 56 plants (56P), 

(3) 44 plants (44P), 

(4) 26 plants (26P), 

(5) 5 plants (5P). 

These plant populations resulted from the death of u. builata-

infected plants over the first summer of the trial [Chapter 7 

this thesis (Falloon & Hume, 1988)]. This left the above 

uninfected plant populations in all but the 5P plots. All the 

plants in the 5P plots were infected with u. bullata. Full details 

of the site and trial establishment are outlined in Chapter 7 

of this thesis (Falloon & Hume, 1988). 

Measurements 

When green canopy heights reached about 200 mm, the numbers of 

tillers on plants in the 36 central squares in each plot were 

counted. The plots were then cut with a rotary mower to a height 

of 30 mm, and the herbage dried and weighed to determine dry 

matter yields from each plot. Harvests were made on two occasions 

in both autumn and winter 1986, on three occasions in spring 
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1986, and on four occasions over the period of summer 1986-87 to 

late winter 1987. The 36 central squares in each plot were 

examined for prairie grass seedlings arising from natural 

reseeding. Newly emerged seedlings were tagged with coloured 

plastic triangles anchored with nails, while tags were removed 

from dead seedlings. Numbers of tillers were recorded for all 

seedlings. These measurements were taken at the same time as 

tiller and plant counts, and also in late autumn and early winter 

1986 to coincide with emergence of new seedlings. Seedlings that 

emerged from natural reseeding in 1987 were not tagged but were 

counted in late autumn 1987. 

On two occasions during late spring 1987, plants and 

seedlings in one replicate were examined and numbers of 

reproductive tillers were counted. Plants in all replicates were 

assessed for u. bullata infection. 

Fertilizer 

The trial was top-dressed with 400 kg superphosphate (0% N, 6% 

P, 14% K, 7% S) per ha annually as equal split applications in 

spring and autumn. Nitrolime (26% N) was applied after each 

harvest to replace nitrogen removed in the cut herbage. The rate 

of nitrogen was calculated as 5% of the dry matter yield. 

Climate 

Temperature and rainfall records were obtained from the 

Palmerston North DSIR meteorological station (N.Z. Meteorological 

Service), 500 m from the trial site. 

R E S U L T S 

Herbage yields 

From autumn to early spring 1986, 5P plots yielded much less 

herbage than the other treatments (P<0.01; Fig. la), but from 

mid-spring to the end of the trial, all treatments had similar 

(P>0.05) dry matter yields. Total herbage yield for the 17 month 

trial period was 16 t DM/ha from 5P plots, lower (P<0.01) than 

from the other treatments (21 t DM/ha). 
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Plant parameters 

(a) Numbers of plants. There was little change in numbers of 

plants in 5P plots (all U. bul lat a- infected plants) until early 

summer when they all died (Fig. lb). Numbers of plants in the 

other treatments declined slightly over the first autumn, 

following the death of healthy plants over the period mid-summer 

1985-86 to mid-autumn 1986 [Chapter 7 this thesis (Falloon & 

Hume, 1988)]. Numbers of plants remained approximately constant 

over the following winter and spring, then declined from mid

summer to mid-autumn. During this period many of the mature 

plants developed symptoms of bacterial wilt disease (caused by 

Xanthomonas campestris pv. graminis (Egli, Goto and Schmidt) Dye). For 

the trial period, decline in numbers of plants was 61% in 78P 

plots, 51% in 56P plots, 50% in 44P plots and 29% in 26P plots 

(LSD0.05 = 3). At all dates mean numbers of plants in all 

treatments were significantly different (P<0.01), although the 

magnitude of these differences became smaller as the trial 

progressed (Fig. lb). 

(b) Numbers of tillers. The 44P, 56P and 78P plots had similar 

tiller populations (Fig. 2a), and until mid-summer, 26P plots had 

fewer tillers than other treatments. Later, all of these 

treatments had similar numbers of tillers. Populations of tillers 

in the 5P plots were always less than 100 tillers/m2. Tiller 

populations were greatest from winter to early summer 1986, and 

lowest during autumn and winter 1987, but remained relatively 

static during both winters. 

(c) Tillers per plant. Numbers of tillers on plants increased 

during autumn 1986, especially in 5P plots (Fig. 2b), remained 

almost constant through the winter and early spring, and then 

fluctuated until the end of the summer. For most of the trial 

period, tillers per plant were related to plant populations in 

plots in an inverse linear manner (P<0.01), but during autumn 

and winter 1987, differences between 78P, 56P, 44P and 26P plots 

disappeared. 

Natural reseeding parameters 

(a) Total numbers of emerged seedlings. Although r a i n f a l l f or the 
summer of 1985-86 was almost double average [Chapter 7 t h i s 
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thesis (Falloon & Hume, 1988)], seedlings from seed shed in mid

summer did not appear until the start of autumn (Fig. 3a). Few 

seedlings emerged during the drier than average early autumn, 

and it was not until the second half of autumn that numbers of 

emerged seedlings increased. This coincided with more and heavier 

rainfall events, so that from late autumn onwards, the soil was 

always wet. Of the total number of seedlings to emerge, 70% 

appeared in the second half of autumn and the first month of 

winter, while only 8% emerged after this period. A total of 

approximately 1600 seedlings/m2 emerged in 78P plots throughout 

the trial period, while 650 seedlings/m2 emerged in 5P plots, 

significantly fewer (P<0.01) than for the other treatments. 

Seedling emergence was also later in 5P plots than in other plots 

(P<0.01). 

(b) Numbers of live seedlings and seedling survival. Few seedlings 

died until the end of autumn 1986, so until that time numbers of 

live seedlings (Fig. 3b) followed a very similar pattern to that 

of total numbers of emerged seedlings. From early winter onwards 

numbers of live seedlings declined rapidly as many seedlings 

died. Of the seedlings that emerged, 50% were alive at the end 

of winter 1986 (510 seedlings/m2), 17% at the end of spring 1986 

(180/m2), 2% in autumn 1987 (25/m2), and 1% alive in winter 1987 

(16/m2). Differences between treatments for numbers of live 

seedlings were very similar to those for total numbers of emerged 

seedlings until the end of autumn 1986. Through winter and spring 

1986 there were no treatment differences (P>0.05), but from early 

summer onwards, 5P plots had significantly (P<0.01) more 

seedlings and greater seedling survival than the other 

treatments. By winter 1987, 2.9% of emerged seedlings had 

survived in the 5P plots (38 seedlings/m2), while survival in the 

other treatments was 0.7% (10 seedlings/ma). 

The first seedlings to emerge in early autumn 1986 had the 

best survival and growth of all seedling. These seedlings 

represented 14% of the total seedlings to emerge, and by winter 

1987 made up 26% of the seedling population and 31% of the 

seedlings tillers. Seedlings that emerged in mid-autumn had good 

survival and growth, but relatively few of those that emerged at 

the end of autumn or in winter survived. The seedlings that 

emerged in spring survived well, but because they were so few in 
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number, they contributed very little to total seedling tiller 

numbers. 

(c) Tillers per seedling and numbers of seedling tillers. Seedlings 

in 5P plots increased in size much faster than seedlings in the 

other treatments (Fig. 4a). At the end of winter 1986, seedlings 

in 5P plots had an average of 3.0 tillers, while other treatments 

had 1.3 tillers per seedling. Only during late spring did the 

seedlings in these other treatments start to increase in size. 

At all dates, numbers of tillers per seedling were related to 

plant populations in an inverse linear manner (P<0.01). 

Numbers of tillers from seedlings also differed greatly 

between the 5P plots and the other treatments (Fig. 4b). For all 

treatments except 5P, numbers of seedling tillers declined as 

numbers of live seedlings declined. From late winter 1986 

onwards, tiller populations and patterns of change in populations 

with each harvest in 5P plots were similar to those occurring for 

mature plants in the other treatments. 

Total tillers and plants 

Due to the large numbers of seedlings, 95% of the total plants 

(seedlings plus mature plants) and 49% of the total tillers were 

from seedlings in winter 1986. These proportions reduced to 28% 

of the total plants and 11 % of the total tillers in winter 1987, 

due to the low level of seedling survival. In winter 1987 total 

numbers of tillers and total numbers of plants were related to 

mature plant populations in an inverse linear manner (P<0.01). 

Data from 5P plots were excluded from regression analyses because 

from mid-summer onwards, the only prairie grass plants in these 

plots were seedlings. 

Other parameters 

Inspection of inflorescences in spring and summer showed that 

apart from plants in 5P plots, no other plants were infected with 

u. bullata. In late spring a total of four seedlings were observed 

to be infected with u. bullata. These seedlings all died in early 

summer, at the same time as mature plants in the 5P plots (all 

infected with u. bullata). 

In late spring, all the mature plants had produced 
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reproductive tillers, while of the seedlings, 75% in 5P plots 

and 39% in the other treatments had developed reproductive 

tillers. Ninety percent of the tillers on U. bullaza infected 

plants and 70% of those on non-infected plants were reproductive 

at this time. For seedlings that were reproductive, 97% of the 

tillers in 5P plots were reproductive, while 70% were 

reproductive in other treatments. At the next count (end of 

spring) there were less plants with reproductive tillers and 

fewer reproductive tillers on these plants and seedlings. There 

were also a considerable number of new vegetative tillers at the 

bases of plants at this time. 

Temperature and rainfall 

The summer of 1985-86, immediately before the trial period 

commenced, had almost double (378 mm) the 30 year average 

rainfall. For the 17 month trial period, mean air temperature was 

the same as the 30 year average (12.7°C), and rainfall (1233 mm) 

was slightly less than the 30 year average (1390 mm). Rainfall 

in autumn 1986, summer 1986-87 and winter 1987 was in each case 

about 60% of the average (245 mm). Rainfall in winter 1986 (310 

mm) and spring 1986 (217 mm) was close to average, while autumn 

1987 (300 mm) had 25% more rain than the 30 year average. 

D I S C U S S I O N 

The present study has demonstrated that plant compensation, plant 

survival and natural reseeding can all play important roles in 

the persistence of prairie grass swards. 

The ability of prairie grass plants to compensate for 

differences in plant populations, as identified in the first 

stage of this trial [Chapter 7 this thesis (Falloon & Hume, 

1988)], was again evident in the results reported here. Herbage 

yields for the different treatments (excluding 5P plots) were 

similar, despite large differences in numbers of plants between 

treatments. At low plant populations, individual plants 

compensated by producing more tillers, and in 26P plots, heavier 

tillers. This was true during autumn, winter and early summer in 

1986. Plants exhibited these compensatory features although many 

seedlings, collectively responsible for large tiller populations, 
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were present in swards. However, these seedlings contributed 

little to plot yields because they were small and often below the 

30 mm cutting height used for harvests. Seedlings growing in 

plots without mature plants (5P treatment) compensated in a 

similar manner. Seedling tiller populations in this treatment 

were equal to mature plant tiller populations in other treatments 

in late winter, and followed a pattern similar to that of mature 

plants from then on. As numbers of seedlings declined, numbers 

of tillers per seedling in the 5P treatment increased, so that 

tiller population was maintained. 

Over the full 2.5 year period of this trial, numbers of 

original non-U. bullata infected prairie grass plants declined 

considerably, suggesting that plants may not survive for long 

periods. The decrease in plant numbers was greatest in plots with 

the highest plant populations (69% decrease), which indicates 

that the highest populations were above optimum. Even where 

populations were low, however, plant numbers decreased, although 

to a lesser extent (31% decrease in 26P plots). Plant populations 

were constant for most of the year, but irrespective of summer 

rainfall levels, mature plants died during the mid-summer to mid-

autumn periods, when bacterial wilt epidemics occurred. As 

glasshouse experiments have shown that X. campestris pv. graminis 

can kill prairie grass plants (G. C. M. Latch & R. E. Falloon 

unpublished data), it is likely that the effects of this organism 

compounded plant competition effects, when this field trial was 

established, half of the plants were infected with u. bullata, but 

within 2 years the swards were free of head smut disease. Thus, 

although U. bullata can have deleterious effects on plant and 

sward productivity, previous observations (J. A. Lancashire, 

personal communication) that head smut disease incidence declines 

in heavily infected pastures have been verified by the present 

study. 

This study has revealed a large potential for natural 

reseeding to occur in prairie grass swards. Prairie grass 

produces a high proportion of reproductive tillers, and as 

reproductive growth is controlled by long photoperiods (Karim 

1961), inflorescences develop over a large part of the year. In 

the present study, inflorescences were removed by regular 

harvests, but in the mowing process, seed was threshed out of 
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inflorescences so there was always a lot of seed spread over the 

plots. In a pasture situation, similar seed drop could occur from 

hay or silage crops or from grazed pastures, as inflorescences 

produce large amounts of seed which is freely shed (Rumball 

1983). Considerable seed drop can occur when pastures are spelled 

in summer, management that is recommended if prairie grass 

populations decline (Burgess et al. 1986). 

Although a large number of seedlings emerged from natural 

reseeding in this trial (average of 1080 seedlings/m2) , seedling 

survival after 1 year was only 1%, suggesting that natural 

reseeding contributes little to sward productivity. Low seedling 

survival from natural reseeding has also been recorded in 

extensively managed meadows (Rabotnov 1969), and intensively 

grazed ryegrass (L'Huillier & Aislabie 1988; D. E. Hume 

unpublished data) and prairie grass pastures (Francis 1986; 

1987). Furthermore, success of reseeding was influenced in an 

inverse linear manner by plant populations, despite egual tiller 

populations. Thus, where plant populations are high and plant 

replacement is not required to maintain swards, natural reseeding 

is unlikely to be successful. However, when the complete sward 

1 year after seedling emergence is considered, plants that arose 

from natural reseeding comprised 28% of the total plants and 11% 

of the total tillers present. With death of mature plants and 

continual input each year of new plants from natural reseeding, 

a dynamic situation is likely to develop in prairie grass 

pastures, with natural reseeding playing an important long-term 

role. 

Despite almost double normal rainfall giving good moisture 

conditions during the 1985-86 summer, and although seed was 

scattered from inflorescences from late spring onwards, it was 

not until early autumn that the first seedlings emerged. This may 

have been due to seed dormancy. Although Hill and Watkin (1975) 

have shown that prairie grass seed can be viable as soon as 4 

days after anthesis, seed dormancy is more pronounced in prairie 

grass than in perennial ryegrass (Lolium perenne L.) (Froud-

Williams & Chancellor 1986; M. P. Rolston unpublished data). Late 

germination could also have been caused by the stage of 

development of seed. Late spring harvests were at 4 week 

intervals, so seed from these harvests may have been undeveloped 
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and non-viable, and even very slight immaturity at harvest can 

extend seed dormancy considerably (Nakamura 1962). Summer 

harvests were at 6 week intervals, and seed scattered at these 

harvests may have been more fully developed. 

From early autumn onwards, rainfall appeared to be a factor 

that controlled seedling emergence. Thus, dry conditions in early 

autumn may have delayed the main period for seedling emergence 

until later in autumn and early winter, when adequate rainfall 

occurred. Seed dormancy could also have affected seedling 

emergence at this stage, as although moisture conditions for 

germination became adequate from mid-autumn onwards, the main 

period for seedling emergence still extended over a 3 month 

period. 

The greater survival and growth of prairie grass seedlings 

that emerged in early autumn and spring parallels earlier results 

where seed was sown into warm soils (Hare et al. 1988; Falloon 

& Rolston 1989). In areas or years where summers are dry and 

autumn rainfall comes late, natural reseeding may not be 

successful because soil temperatures may be too low for good 

seedling growth and establishment. 

Without direct assessment of the yield of the seedlings and 

plants separately, it is difficult to determine, except in the 

5P plots, the precise effect of natural reseeding on maintenance 

of herbage yields. Seedlings were still smaller than the original 

plants in plots 1 year after emergence (winter 1987), although 

seedlings were increasing in size while the numbers of tillers 

on the original plants were relatively constant. Mature plants 

in grazed prairie grass swards may only possess 10 tillers 

(Rumball 1974; Francis 1987). In the present study, over 30% of 

the seedling plants possessed 10 tillers or more in winter 1987, 

and could thus be making a considerable contribution to the 

sward. Also at this stage, there were no differences in numbers 

of plants between treatments, although there were still 

significant differences in numbers of original plants. 

It is difficult to deduce optimum plant or tiller 

populations for prairie grass swards from this study, because of 

plant compensation effects and contributions from reseeding. 

Plant and tiller populations were relatively constant over the 

winter, but fluctuated at other times of the year, possibly due 
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to the times of cutting and appearance of suppressed tillers 

(D. E. Hume unpublished data). Although numbers of tillers per 

plant varied with season, these remained approximately similar 

(15 to 35 tillers per plant) throughout the 2 years of the trial, 

and it was only because of death of plants that tiller 

populations decreased with time. Ridler (1986) reported similar 

plant populations (35 plants/m2) in prairie grass swards grazed 

by dairy cows, but Francis (1986; 1987) found established plant 

populations of 100 to 200/m2 under dairy grazing and 100 to 300/m2 

under sheep grazing. Reported tiller populations in prairie grass 

swards have also varied greatly from 130 to 849 tillers/m2 

(Pineiro & Harris 1978) to 4120/ra2 (Hume & Lucas 1987). The 

present study has demonstrated that similar variations in plant 

and tiller populations can occur when contributions from natural 

reseeding are taken into consideration. Further long-term studies 

that identify plant, tiller and yield components are required to 

fully characterise prairie grass swards. The behaviour of the U. 

bullata-infected plants reported here confirms results recorded 

in the previous year [Chapter 7 this thesis (Falloon & Hume, 

1988)]. These plants showed little effect of the fungus during 

winter and early spring, and increased in size to be as big as 

the plants in the 78P plots. However, as was the case previously, 

infected plants died shortly after they produced inflorescences 

in early summer, probably due to the combined effects of both u. 

bullata and X. campestris pv. graminis. Furthermore, the proportion 

of seedlings infected with u. bullata was very small with only 

four of a total of 5400 emerged seedlings showing signs of 

infection in late spring. This may have been due to removal of 

smutted inflorescences before infective ustilospores were 

released, thus preventing seedling or shoot infection by u. 

bullata, or because infected seedlings have poor survival during 

establishment (Falloon 1979a; Falloon & Rolston 1989). In any 

event, although half of the plants originally established in 

plots were infected with U. bullata, head smut disease had 

completely disappeared from the swards within 2 years. 

The relevance of the present study in cut swards to the 

situation in grazed or mixed swards should be considered. In 

grazed swards, animals may affect prairie grass persistence by 

trampling, defoliation, and dung and urine deposition. Companion 
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plants (eg. Trifolium spp.) in the sward may also change the 

interplant environment, although competition from existing grass 

plants would probably be less where legumes were present, as the 

nitrogen status would be lower than in the present trial where 

nitrogen fertilizer was applied. However, changes in plant and 

seedling populations in the present study were similar to those 

recorded in swards grazed by sheep or cattle (Francis 1987). 

Other investigations (D. E. Hume unpublished data) have shown 

that sheep have little influence on early growth of naturally 

reseeded seedlings, because seedlings are below grazing height 

and are protected to some extent by mature plants in the sward. 

Thus, it seems likely that the dynamics of prairie grass plant 

and seedling populations will be similar in both cut and grazed 

swards. 

This study has demonstrated that a dynamic situation of 

plant and tiller populations exists in prairie grass swards. As 

a sward ages, the contribution to production from originally 

established plants can diminish as they die of diseases such as 

head smut and bacterial wilt. Loss of plants can be compensated 

for by prolific tiller production by surviving plants and by 

development of new plants from natural reseeding. 
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C H A P T E R 

O V E R V I E W A N D G E N E R A L D I S C U S S I O N 

Prairie grass - ryegrass comparison 

The inclusion of ryegrass (Lolium spp.) as a comparison species 

in five of the studies in this thesis was considered to be an 

essential aspect of any study on prairie grass (Bromus willdenowii 

Kunth). This is because considerable information is already 

available on the growth of ryegrass, while prairie grass is 

competing with ryegrass for use on farms. In particular, in New 

Zealand it is competing with perennial ryegrass (Lolium per enne L.) 

because prairie grass swards can have long term persistence 

(Fraser, 1985). In other regions it is also competing with 

perennial species such as tall fescue (Festuca arundinacea Schreb.) 

and cocksfoot (Dactylis glomerata L. ), and short term species such 

as hybrid ryegrass (Lolium x hybridum Hausskn.), Italian and 

Westerwolds ryegrasses (Lolium multiflorum Lam.) (Anon., 1982). One 

of the major problems with the farm management of prairie grass 

is that ryegrass management practices are applied to prairie 

grass swards and in many situations this is unsuitable causing 

the demise of the species. 

Westerwolds ryegrass was chosen as a comparison species 

because prairie grass and Westerwolds ryegrass have similar 

herbage quality (Wilson, 1977; Wilson and Grace, 1978), upright 

growth habit (Langer, 1973) and neither require vernalization 

treatment to flower. Long photoperiod is the only requirement for 

reproductive development (Evans, 1964). Chapters 2, 5 and 6 

confirmed that herbage quality for these two species is similar. 

Prairie grass did have higher cell wall contents and high water 

soluble carbohydrate contents but digestibility was not markedly 

different between the two species. Distribution of dry matter 

between leaves, vegetative and reproductive pseudostem was also 

similar but there were considerable differences in the way this 

dry matter was formed. Prairie grass formed more leaves per 

tiller which were larger and there were more green leaves per 
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tiller. This occurred both in the field and in the various indoor 

studies for vegetative and reproductive growth under different 

temperature and photoperiod conditions and cutting treatments. 

Tillering and site filling though were higher in Westerwolds 

ryegrass and in the field, plant densities were also higher. 

Although both species performed best under infrequent 

cutting, and to a lesser extent at greater stubble height, 

increasing severity of defoliation had greater effects in 

Westerwolds ryegrass (Chapters 4 and 5). Much of the demise of 

Westerwolds ryegrass under frequent defoliation of reproductive 

growth was due to continued rapid reproductive development. 

Reproductive stem elongation occurred at an early stage in the 

growth of a tiller. This increased dry matter production but also 

resulted in many tillers being susceptible to defoliation. Also 

during reproductive growth, development of new tiller buds 

occurred earlier in Westerwolds ryegrass than in prairie grass. 

Applying the same cutting frequency to both species based on the 

development of prairie grass was actually detrimental to the 

production and quality of Westerwolds ryegrass under field 

conditions. 

Another important difference between these species is that 

prairie grass performed well under dry soil conditions while 

Westerwolds ryegrass suffered leaf wilting or plants died in a 

dry summer at Wageningen Hoog (Chapter 2; Hume, unpublished 

data). This is one of the most attractive features of prairie 

grass which has inspired intense interest in this species by 

researchers and farmers (Anon., 1982; Burgess etal., 1986). Root 

measurements taken in the field indicate that this may be due to 

a better distribution of root mass to greater soil depths in 

prairie grass (Chapter 2), and Chu (1979) has also demonstrated 

a lower sensitivity of cell division and cell elongation to water 

deficit in prairie grass. 

In comparison to perennial ryegrass, prairie grass has a 

very contrasting morphology, period of reproductive growth and 

herbage quality. Comparison of these two species must be placed 

in the context of environmental and management conditions that 

occur in the field. Prairie grass in New Zealand is recommended 

primarily in areas where performance of ryegrass is poor, and is 

recommended as a special purpose pasture species (Hume and 
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Fraser, 1985). Relative to perennial ryegrass, prairie grass is 

valued for its superior winter growth and growth during dry 

conditions in summer and early autumn. In these cases the guality 

of herbage may be of secondary importance while quantity is of 

prime importance. Prairie grass is also useful in situations of 

damage from pests and diseases and in cases where animal 

disorders such as xryegrass staggers' may be a serious problem 

when grazing ryegrass based pastures (Fletcher and Harvey, 1981). 

Implications for plant breeding in prairie grass 

Inclusion of three prairie grass cultivars in some studies in 

this thesis has provided a good demonstration of the variation 

that exists within the species. This has also been demonstrated 

by Hill and Kirby (1985). Hill and Kirby identified two 

morphological groups of prairie grass, but there was an inverse 

relationship between high tiller numbers and high yield per 

plant. Both these features were considered necessary for good 

agronomic performance, with the cultivar xGrasslands Matua' 

exhibiting these desirable characteristics. Results from this 

thesis indicate that the cultivar * Primabel' also has the 

required attributes for good agronomic performance. Performance 

of * Bellegarde' though may be limited by low tillering capacity. 

Variation between cultivars in the present studies also 

demonstrates to plant breeders- the advantages or disadvantages 

of selection for certain characters in prairie grass. The 

cultivars Bellegarde and Primabel provided extremes in the 

features that plant breeders may be interested in (eg. leaf 

appearance, tiller numbers, reproductive development). Matua was 

relatively intermediate, although it exhibited a good combination 

of high leaf appearance, moderate reproductive growth and high 

tiller numbers and yields. The importance of these features as 

identified during undisturbed growth were modified during 

reproductive growth in simulated cut swards in Chapter 5, 

reducing the differences between cultivars. This was also 

observed in the limited field measurements for these three 

cultivars during cutting (Chapter 6; Hume, unpublished data). The 

possible reasons for such results are discussed in Chapter 5. 

Cultivars such as Matua and Primabel though appear to be of 
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greater potential overall for agronomic use (Anon., 1986). 

Another feature that is of value to breeders was the 

occurrence of high leaf appearance rates with a large leaf size 

eg. Bellegarde compared with Primabel. This is contrary to 

findings of Cooper and Edwards (1960) and Ryle (1964) for 

ryegrass and other grass species showing a negative relationship 

between these two variables. High leaf appearance rate also has 

the added advantage of more live leaves per tiller (Ryle, 1964; 

Chapters 2 and 3). Results from Chapter 3, however, did suggest 

a possible negative correlation between site filling and leaf 

size, tiller weight or leaf appearance. 

Determination of sites of tillering (ie. lack of development 

of basal tiller buds and delay in development of the youngest 

axillary tillers) and leaf appearance rates, provided a good 

explanation of the cultivar and species differences for final 

tiller numbers (Chapter 3). Site filling was the major factor 

determining tiller numbers. Site filling or more specifically the 

sites of tillering, may be considered as variables to measure in 

plant breeding programmes to indicate tillering capacity. 

Reproductive growth 

Considerable attention has been given in this thesis to the role 

of reproductive growth in prairie grass. While reproductive 

growth in perennial ryegrass, tall fescue and cocksfoot is 

limited to a relatively short period of the year, reproductive 

growth in prairie grass can occur over a prolonged period from 

mid-spring to mid-autumn due to long photoperiod being the only 

requirement for reproductive development. Although reproductive 

development is normally considered undesirable in pasture grasses 

due to its detrimental effects on tiller production, herbage 

quality and animal intake, this does not appear to be the case 

in prairie grass (Eteve, 1982; this thesis). 

Concerns over the low tillering capacity in prairie grass 

(Pfitzenmeyer, 1982; Hill and Pearson, 1985) proved not to be a 

barrier to high production under the correct management 

conditions, even within the range of tillering of the different 

cultivars studied in this thesis. Prairie grass was able to 

tiller profusely during reproductive growth in the field to 
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compensate for lower production from surrounding plants or when 

plant death occurred due to disease (Chapters 7 and 8). Although 

tillering was dominated by the presence of the reproductive 

tiller, tiller numbers in both the indoor and outdoor studies 

were relatively high. Rapid development of previously inhibited 

tillers buds after cutting, quickly compensated for the large 

losses of reproductive tillers that occurred at cutting. Prairie 

grass had a higher reliance on these inhibited tiller buds than 

perennial ryegrass which may place prairie grass at a greater 

risk to adverse environmental and management conditions during 

this period of growth. 

The rapid increase in dry matter that is associated with 

reproductive development is an important feature in allowing 

prairie grass to achieve high yields during reproductive growth 

(Chapters 2, 5, 6). This large contribution to yields is an 

important aspect to consider in plant breeding, especially since 

palatability remains high and high herbage intakes of grazing 

animals occur in the presence of reproductive pseudostem and 

inflorescences (Pfitzenmeyer, 1982; Burgess et al., 1986; 

L'Huillier, Poppi and Fraser, 1986). Reduction in reproductive 

development may also reduce natural reseeding in prairie grass 

and so reduce sward persistence. 

Although infrequent cutting is recommended for prairie grass 

during reproductive growth, Chapter 2 has identified that it is 

essential that this does not occur too late in the development 

of reproductive tillers due to large decreases in herbage 

quality. Optimum defoliation time based on proportions of 

reproductive tillers as suggested in Chapter 2, would equate to 

a stage when inflorescences are beginning to emerge in the field. 

Up until this stage, herbage quality is maintained (Barloy, 1982; 

Parneix, 1982; Chapter 2). This would require further testing in 

field trials to determine the effects on herbage quality, dry 

matter yields, tillering and persistence. Other criteria 

(Chapters 2, 4, 5) for assessing the optimum timing of 

defoliation, such as development of inhibited tiller buds at the 

base of reproductive tillers, numbers of leaves appeared (maximum 

of 4 to 5 green leaves per tiller) and contribution of reserves 

to regrowth, all require further study. 

The ability of prairie grass to maintain highly productive 
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swards during reproductive growth in the field was well 

documented in Chapters 7 and 8. Prairie grass was able to 

maintain productivity at various plant densities through changes 

in tiller weight and tiller numbers per plant. Natural reseeding 

also contributed to the maintenance of swards and occurred even 

without the summer spelling that is recommended for reseeding 

(Burgess et al., 1986). These mechanisms for maintenance of 

yields, tillers and plant populations are important in prairie 

grass swards because existing plants can not spread as can occur 

in ryegrass (Minderhoud, 1980). Prairie grass plants remain as 

relatively distinct units even in old swards (Eteve, 1982). In 

ryegrass, vegetative stem elongation or development of tillers 

raised on elongated reproductive tillers allows spreading of the 

plant when these tillers root to the soil. This type of tiller 

development does not occur in prairie grass. This prevents 

widening of the base of the plant or spread of plants but it does 

reduce tiller losses at cutting or grazing (Chapter 5; Hume, 

unpublished data), frost damage (Baker, 1967) and suppression of 

tillering (Minderhoud, 1978). 

Limitations and further studies 

There are several limitations to the studies in this thesis 

regarding the direct implications of these results for 

agricultural systems. Many of these limitations are discussed in 

each chapter. There are also discrepancies with observations made 

in the field. For example, prairie grass and Westerwolds ryegrass 

failed to show superior production to perennial ryegrass during 

vegetative growth in Chapter 4, while superior production is 

observed in the field. Prairie grass adapted to very frequent 

cutting during reproductive growth producing high tiller numbers 

(Chapter 5), while field studies show that this does not occur 

(Bell and Ritchie, 1989; Burgess et al., 1986). Perennial 

ryegrass under frequent cutting in Chapter 5 had low tiller 

numbers while frequent defoliation in the field usually results 

in high tiller numbers (Langer, 1963; Davies, 1977). Such 

differences in experimental results may occur with indoor studies 

because soil, plant and other environmental conditions are highly 

modified to enable detailed measurements to be taken and to allow 
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responses of the plant to specific variables to be identified 

while other variables are kept constant. 

Further studies require the use of simulated swards, field 

conditions, inclusion of companion species [eg. legumes such as 

white and red clovers (Trifolium repens L. , T. pracense L. ) ] and 

finally inclusion of the grazing animal. As has been discussed 

in the first section of this chapter, prairie grass has many 

advantages that become apparent when it is used in specific 

agricultural situations. Prairie grass sward conditions and the 

grazing animal have been shown to have large effects on plant and 

animal production. For example, only during growth of closely 

spaced plants could Langer (1970) demonstrate superior cool-

season productivity of prairie grass relative to ryegrass. Langer 

attributed this to a better adaptation of prairie grass to 

reduced light intensity primarily through a more upright growth 

habit and better leaf arrangement in the sward. These are 

morphological features that are not considered in this thesis. 

Long leaves and upright growth habit as occurs in prairie grass 

are also generally associated with better light penetration and 

light distribution in the sward and increased yields under 

infrequent cutting (Rhodes, 1969, 1971). The better distribution 

of green leaf in prairie grass swards which increases 

accessibility to the animal (Allden and Whittaker, 1970), has 

large positive effects on animal intakes in prairie grass swards 

(L'Huillier, Poppi and Fraser, 1986). Prairie grass palatability 

is also high for horses (Hunt, Hay and Clark, 1989), deer (W. F. 

Hunt, personal communication), sheep, cattle (Burgess et al., 1986) 

or even browsing rabbits (Hume, unpublished data). 

With the increased interest in computer modelling of pasture 

growth, results from this thesis also provides some of the basic 

information on primary parameters used in growth models. In 

particular it has identified parameters which differ to those 

recorded in perennial ryegrass. 
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S U M M A R Y 

Introduction 

Prairie grass (Bromus willdenowii Kunth; synonyms B. catharticus Vahl, 

B. unioloides H.B.K., B. schraderi Kunth) is a tall, erect plant with 

wide leaves, few but large tillers and a prolonged period of 

reproductive growth. Compared to other commonly used temperate 

grass species (eg. ryegrass, tall fescue, cocksfoot), prairie 

grass has several advantages. Of these can be mentioned: high 

yields especially during the cool conditions of winter and the 

dry conditions of summer and early autumn, high palatability at 

all growth stages, high herbage quality, good levels of tolerance 

to pests and diseases and good morphological characters resulting 

in high herbage intakes by grazing animals. However, performance 

is poor when it is grown in soils susceptible to waterlogging or 

when defoliation is frequent. It is also susceptible to the head 

smut fungus Ustilago bullata Berk. , which lowers plant productivity 

and persistence. There is concern over the low tillering capacity 

and the high degree of reproductive development. 

Compared to other pasture grasses, especially ryegrass, 

relatively little is known about the behaviour of prairie grass 

except under general farming conditions. This thesis therefore 

presents three indoor and four field studies which investigated 

some morphological and physiological aspects of this species. 

Considerable emphasis was placed on the comparison of prairie 

grass with ryegrass pWendy' perennial ryegrass (Lolium perenne L. ) 

and xCaramba' tetraploid Westerwolds ryegrass (Lolium multiflorum 

Lam.)] and to a lesser extent cultivar variation in prairie 

grass. Emphasis was also placed on separating the vegetative and 

reproductive growth stages of prairie grass. Westerwolds ryegrass 

was chosen as a comparison species as both species have a similar 

erect growth habit with long photoperiods being the only 

requirement for reproductive development. 

Morphological and physiological features 

Relative to Westerwolds ryegrass, prairie grass had similar 

155 



herbage quality during reproductive growth, although quality 

deteriorated quickly in prairie grass after heading. Prairie 

grass had higher cell wall contents and high contents of water 

soluble carbohydrates. The two species had similar biomass 

partitioning between leaf lamina and pseudostem, but prairie 

grass had a better distribution of root mass to greater soil 

depths which may explain the better performance of prairie grass 

under dry soil conditions. 

Compared to both ryegrass species, prairie grass had higher 

leaf appearance rates, bigger leaves and sheaths, more live 

leaves per tiller, greater reproductive development, but lower 

site filling resulting in a lower tiller number. Low tiller 

number did not inhibit the potential for high yields, the ability 

of plants to compensate for tiller or plant death in the field, 

or the ability to tiller profusely after the removal of large 

numbers of reproductive tillers by defoliation. 

Differences in site filling between species was the main 

reason for the different tillering rates. For the prairie grass 

cultivars used in the studies, tillers did not develop from the 

coleoptile tiller buds and only occasionally from the prophyll 

tiller buds, while tillers did develop from these sites in 

ryegrass. There was also generally a greater delay in the 

appearance of the youngest axillary tiller in prairie grass. 

Cutting trials during vegetative and reproductive growth 

showed that performance of prairie grass was best under 

infrequent cutting, and to a lesser extent, greater cutting 

height. During vegetative growth, response of prairie grass to 

increasing cutting severity varied to the response in ryegrass 

for some morphological characters but relative growth rates were 

similar in all species. The role of reserves for regrowth (water 

soluble carbohydrates, protein) in prairie grass appeared to be 

similar to that occurring in ryegrass, although water soluble 

carbohydrate levels were higher in prairie grass. Identifying the 

precise role of reserves in prairie grass would require further 

study. 

The prairie grass cultivars (* Bellegarde', 'Grasslands 

Matua' and 'Primabel') studied in this thesis provided a good 

range in morphological features and the implications of these 

in plant breeding are discussed. Bellegarde had high leaf 
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appearance rates, large leaves, low site filling, low tiller 

numbers and rapid reproductive development. Primabel had 

relatively low leaf appearance rates, smaller leaves, less 

reproductive growth, but higher site filling and tiller numbers. 

Matua was approximately intermediate for these characters. Matua 

and Primabel had the best characteristics for good agronomic 

performance. 

Maintenance of highly productive and persistent swards was 

dependent on a combination of changes in the numbers of tillers 

per plant and tiller weight of existing plants in the sward, and 

contributions from natural reseeding. These are important 

characteristics in prairie grass as plants can not spread or 

widen their bases by aerial tillers that root to the soil as 

occurs in ryegrass. Prairie grass swards were able to quickly 

compensate for the detrimental effects of the head smut fungus 

U. bullata. However, sward production was reduced when more than 

50% of the plants were infected. Controlling seedling infection 

with fungicide seed treatments should prevent such high levels 

of infection occurring in swards. 

Reproductive development resulted in high yields of dry 

matter and digestible organic matter, but herbage quality 

declined rapidly after inflorescences emerged. The necessity to 

gain a good balance between high yields and high quality is 

discussed. Tiller numbers were able to recover quickly after 

cutting reproductive plants, through the growth of previously 

inhibited tiller buds at the base of reproductive tillers. 

The following morphological characters were suggested as 

criteria for the optimum time of defoliation to ensure high 

levels of herbage quality, production and persistence. 

Defoliation should occur when 11.5 to 24% of the total tillers 

are reproductive or 4 to 12% of the total tillers have emerged 

inflorescences, when previously inhibited tiller buds at the base 

of reproductive tillers start to develop, when 4 or 5 leaves have 

appeared per tiller, and when reserves for regrowth have 

increased to a high level. These all require further study in 

detail and under sward conditions. 

In a field trial at Wageningen, prairie grass had high 

yields and good persistence over two years which included two 

mild winters. It is suggested that prairie grass should at least 
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be considered as a replacement for spring sown Westerwolds 

ryegrass on sandy soils in The Netherlands. 
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S A M E I S T V A T T X N G 

I n l e i d i n g 

Bromus willdenowii Kunth (synonyms B. catharticus Vahl, B. unioloides 

H.B.K., B. schraderi Kunth) is een hoog opgroeiende plant met brede 

bladeren, weinig maar grote spruiten en een lange generatieve 

groeifase. Vergeleken met andere veel gebruikte grassoorten uit 

gematigde streken (bijv. raaigras, rietzwenkgras, kropaar) heeft 

B. willdenowii veel voordelen. Hiervan kunnen worden genoemd hoge 

opbrengsten, speciaal gedurende koele winterperiodes, in droge 

tijden gedurende de zomer en het begin van de herfst, grote 

smakelijkheid in alle groeifasen, hoge ruwvoederkwaliteit, goede 

tolerantie tegen plagen en ziekten en goede morfologische 

eigenschappen die leiden tot een hoge opname door weidend vee. 

De produktie is echter laag wanneer deze soort wordt geteeld op 

plaatsen die onderhevig zijn aan een hoge waterstand of wanneer 

vaak wordt ontbladerd. De soort is ook gevoelig voor een 

schimmel ziekte die veroorzaakt wordt door Ustilago bullata Berk. , 

waardoor de produktiviteit en standvastigheid van de soort 

verlaagd worden. Ook kunnen als nadeel genoemd worden de geringe 

uitstoelingscapaciteit en de hoge mate van generatieve 

ontwikkeling. 

In vergelijking met andere grassen, vooral raaigras, is er 

relatief weinig bekend over het gedrag van B. willdenowii, behalve 

onder algemene bedrijfsomstandigheden. Dit proefschrift geeft 

daarom drie kas- en fytotron- en vier veldstudies weer, waarin 

de morfologische en fysiologische aspecten van deze soort werden 

onderzocht. Speciale nadruk werd gelegd op een vergelijking van 

B. willdenowii met Lol ium-soorten (L. perenne, het diploide ras 

*Wendy', en L. multiflorum het tetraploide ras xCaramba') en in 

mindere mate werd aandacht besteed aan rasverschillen in B. 

willdenowii. Nadruk werd ook gelegd op een onderscheiding van de 

vegetatieve en generatieve groeifase in B. willdenowii. Westerwolds 

raaigras was in de vergelijking meegenomen, omdat beide soorten 

een vergelijkbare groeivorm hebben, met een lange daglengte als 

de enige voorwaarde voor generatieve ontwikkeling. 
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Morfologische en fysiologische eigenschappen 

In vergelijking met Westerwolds raaigras had B. willdenowii een 

vergelijkbare ruwvoeder kwaliteit gedurende de reproduktieve 

fase, alhoewel kwaliteit bij B. willdenowii sneller achteruit ging 

na het schieten. B. willdenowii had hogere celwand en hogere 

wateroplosbare koolhydraat gehaltes. De twee soorten hadden een 

vergelijkbare droge stof verdeling tussen bladschijven en 

pseudostengels, maar B. willdenowii had een betere verdeling van 

wortelmassa over grotere bodemdieptes, waaruit wellicht de 

grotere droogteresistentie van B. willdenowii .wordt verklaard. 

In vergelijking met beide raaigrassoorten had B. willdenowii 

een grotere bladverschijningssnelheid, grotere bladeren en 

bladscheden, meer levende bladeren per spruit en grotere 

reproduktieve ontwikkeling, maar geringere *site filling' 

waardoor een geringer spruitaantal resulteerde. Lage 

spruitaantallen deden niets af aan het potentieel voor hoge 

opbrengsten, de mogelijkheid van planten om te compenseren voor 

de dood van spruiten of planten in het veld en de mogelijkheid 

om massaal uit te stoelen na verwijdering van grote aantallen 

reproduktieve spruiten door ontbladering. Verschillen in *site 

filling' tussen de soorten was de voornaamste reden voor 

verschillen in spruitvormingssnelheid. In de B. willdenowii rassen 

die gebruikt werden in deze studies ontwikkelden zich geen 

spruiten uit de knop van het coleoptilum en slechts zo nu en dan 

spruiten uit de okselknop van het prophyllum; de Lolium-soorten 

produceerden wel spruiten uit deze knoppen. In het algemeen was 

er een grotere vertraging in het tevoorschijn komen van de 

jongste axillaire spruit in B. willdenowii. Maaiproeven gedurende 

de vegetatieve en generatieve groei toonden dat de produktie van 

B. willdenowii het hoogst was bij lage maaifrequenties en in 

mindere mate bij grotere maaihoogte. Gedurende de vegetatieve 

groei verschilde B. willdenowii met raaigras in het effect van 

frequenter maaien in sommige morfologische eigenschappen, maar 

de relatieve groeisnelheden waren vergelijkbaar in alle soorten. 

De rol van reserves voor hergroei (wateroplosbare koolhydraten 

en eiwitten) in B. willdenowii waren vergelijkbaar met raaigras 

alhoewel het gehalte aan wateroplosbare koolhydraten hoger was 

in B. willdenowii. Het bepalen van de juiste rol van reserves in 
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B. willdenowii vergt verdere studie. 

De B. willdenowii. rassen 'Bellegarde', 'Grasslands Matua' en 

'Primabel' die in deze studie waren betrokken toonden een goede 

spreiding in morfologische eigenschappen en de betekenis hiervan 

voor de plantenveredeling worden besproken. 'Bellegarde' had 

hogere bladverschijningssnelheden, grote bladeren, lage 'site 

filling', lage spruit aantallen en snelle reproduktieve 

ontwikkeling. 'Primabel' had relatief lage 

bladverschi jningssnelheden, kleinere bladeren, minder generatieve 

groei, maar hogere 'site filling' en spruitaantallen. 'Matua' was 

ongeveer intermediair voor deze eigenschappen. 'Matua' en 

'Primabel' hadden de beste eigenschappen voor landbouwkundige 

produktie. 

Het behoud van hoog produktieve en persistente zodes was 

afhankelijk van een combinatie van veranderingen in de 

spruitaantallen per plant, het spruitgewicht van bestaande 

planten in de zode en uit bijdragen van natuurlijke uitzaai. Dit 

zijn belangrijke eigenschappen van B. willdenowii omdat planten 

zich niet kunnen verspreiden of hun basis verbreden door spruiten 

die boven de basis ontwikkelen en zich vestigen in de grond zoals 

bij raaigras gebeurt. B. willdenowii zodes waren in staat om snel 

te compenseren voor nadelige effecten van de schimmelziekte 

veroorzaakt door U. bull ata, maar zodeproduktiviteit was 

verminderd wanneer meer dan 50% van de planten waren aangetast. 

De infectie bij kiemplanten kan wellicht worden voorkomen door 

zaadbehandeling met een fungicide. 

Generatieve ontwikkeling resulteerde in hoge opbrengsten van 

droge stof en verteerbare organische stof, maar 

ruwvoederkwaliteit ging snel achteruit nadat de bloeiwijzen 

tevoorschijn kwamen. De noodzaak om een goed evenwicht te 

bereiken tussen hoge opbrengsten en hoge kwaliteit wordt 

besproken. Spruitaantallen konden zich snel herstellen na maaien 

van generatieve planten, door uitstoeling uit voorheen geremde 

knoppen aan de stengelbases. 

De volgende morfologische eigenschappen worden gesuggereerd 

als criteria voor het optimale tijdstip van ontbladering om hoge 

niveaus van ruwvoederkwaliteit, produktie en standvastigheid te 

waarborgen. Ontbladering moet plaatsvinden wanneer 11,5 tot 24% 

van het totaal aantal spruiten reproduktief is, of 4 tot 12% van 
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het totaal aantal spruiten zichtbare bloeiwijzen heeft, wanneer 

eerder geremde spruitknoppen aan de basis van de reproduktieve 

spruiten beginnen te ontwikkelen, wanneer 4 tot 5 bladeren per 

spruit aanwezig zijn en reserves voor hergroei tot een hoog 

niveau zijn opgelopen. Meer gedetailleerde studies in het veld 

zijn vereist. 

In een veldproef in Wageningen had B. willdenowii hoge 

opbrengsten en goede standvastigheid over twee jaren met zachte 

winters. B. willdenowii kan in ieder geval worden beschouwd als 

een vervanger voor Westerwolds raaigras op zandgrond in Nederland 

voor inzaai in het voorjaar. 
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C U R R I C U L U M V I T A E 

David Edward Hume was born in Christchurch, New Zealand on 20 

June 1960. After finishing his secondary school education at 

Christchurch Boys' High School, he started a four year Bachelors 

degree in 1979 at Lincoln College (Agricultural and Horticultural 

University), Canterbury, New Zealand. In the third year of this 

degree course he specialised in scientific research, with further 

specialisation in the fourth year in soil-plant-animal 

interfaces. Also in the fourth year he undertook an Honours 

Course in the Department of Plant Science. This course involved 

conducting a research project on the effects of winter cutting 

management on the yields and tiller densities of six grass 

species and writing a dissertation on this work. In May 1983, he 

graduated as a Bachelor of Agricultural Science with First Class 

Honours, and Senior Scholar. 

In early 1983 he accepted a scientist position as a pasture 

agronomist with the Department of Scientific and Industrial 

Research Grasslands (DSIR Grasslands) at Palmerston North, New 

Zealand. His work involved pasture management and ecological 

studies, and evaluations of grass and clover species in dry hill 

country and fertile moist lowland. Another aspect of his work was 

involvement in the New Zealand Forage Germplasm Centre at 

Palmerston North. 

In late 1986 he was granted a study award from DSIR to 

conduct a research programme for a doctorate thesis at the 

Department of Field Crops and Grassland Science, Agricultural 

University at Wageningen, The Netherlands, starting in March 

1987. This study was completed in March 1990 and he will now 

return to New Zealand to his position at DSIR Grasslands, 

Palmerston North. 
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