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6. Het verdient aanbeveling dat zowel veredelaar als fytopatho-
loog de notatie '+' gebruiken voor een compatibele reactie van 
een waardplant-parasiet combinatie. 

7. De "resistentie veredeling" is een sprekend voorbeeld van 
'man-guided' evolutie en verhoogt stellig de 'fitness' van de 
veredelaar. 

8. De in de natuur voorkomende overeenkomsten en verschillen 
tussen organismen zeggen meer over de architectuur dan over de 
ontstaanswijze. 

9. Het wetenschappelijk onderzoek kan zodanig grensverleggend 
zijn, dat bij toepassing het vermogen om verantwoorde beslis­
singen te nemen in essentie te kort schiet. 

10. Als gevolg van de STC-operatie in het HBO dreigen de 
Middelbare Laboratoriumopleidingen (MLO) tussen wal en schip te 
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processen. 
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middelbaar niveau grotendeels door mensen met een hogere 
beroepsopleiding vervuld kunnen worden. 

12. Het is een goede investering indien de plaatselijke overheid 
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mate financieel steunt. 

13. Het afdwingen van deeltijdwerk c.q. werktijdverkorting 
beknot de persoonlijke vrijheid tot werkverdeling op grond van 
aanleg en voorkeur. 
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1. General introduction 

1.0 Genetic mechanisms in fungi 

In contrast to higher plants where the haploid phase (gameto-

phyte) is restricted to only a few nuclear divisions before 

gametic fusion respectively karyogamy takes place, the fungal 

organism is haploid. At the sexual stage, karyogamy takes place 

in specialized binucleate hyphal cells and is immediately follow­

ed by meiosis of the resulting tetrad mother cell (see Fig.1.1). 

The meiotic mechanism of higher and lower eukaryotes is essent­

ially similar. 

Many fungal species, however, are 'imperfect', which means 

that they do not propagate sexually, or at least that a sexual 

stage is not known. Several species of the imperfect fungi are 

important in agriculture as plant pathogens, or in biotechnology 

as producers of amino acids, carboxylic acids, antibiotics and 

enzymes. 

Although imperfect fungi have no meiotic recombination they 

have, like many perfect fungi, an effective somatic recombin­

ation mechanism known as the parasexual cycle (Pontecorvo, 1954) 

or better the parasexual sequence. In plant pathogenic fungi 

these processes confer genetic flexibility on the populations; 

in imperfect fungi of industrial interest somatic recombination 

provides possibilities for breeding production strains. In 

general somatic recombination enables genetic analyses of 

imperfect fungi. 

The parasexual sequence has been extensively studied in 

Aspergillus nidulans, an ascomycete with a functional sexual 

stage (perfect stage). Its proper name is Emericella nidulans, 

but the fungus is generally known by its 'imperfect name'. In 

this orgamism the outcome of somatic recombination can be 

analysed with the help of meiotic products and the effects of 

the two recombination mechanisms can be compared. The basis for 

this work was laid in the fifties by Pontecorvo and co-workers 



at Glasgow and has since been gradually extended, e spec ia l ly in 
Great B r i t t a i n . Recently A.nidulans received renewed a t t en t ion 
by the development of p ro toplas t techniques and hos t -vector 
systems for genet ic manipulation. Figure 1.1 gives the 
generat ive and the vegeta t ive l i f e cycle of A.nidulans. 

conidiophore 
bearing 

chains 
of 

conidia 

In a young c le i s to thec ium 
ascusmothercel ls w i l l be 
formed on a branched asco-
gonium (b inuc lea te c e l l s ) 

Figure 1.1 Life cycle of Aspergi l lus n idulans (Eidam) Wint. 

On so l id media these fungi grow as mycelial co lon ies . The 
c e l l s of the branched mycelium are mul t inucleate and the septa 
have a pore allowing i n t e r c e l l u l a r migration of n uc l e i . On 
spec ia l ized c e l l s (conidiophores) vege ta t ive spores (conidio-
spores or conidia) are formed. In A.nidulans the conidiospores 
are formed in chains each a r i s ing from one uninucleate s terigma. 
So the conidia of the same chain are genotypical ly i d en t i c a l , 
but chains may d i f fe r in genotype when the mycelium i s he te ro-
karyot ic ( i . e . when i t contains nuc le i of d i f fe ren t genotype). 
Wildtype A.niger s t r a i n s usual ly have long conidiophores, so 
tha t the spores readi ly d isperse and lead to contaminations in 



the laboratory. Wildtype A.nidulans strains have green, wildtype 

A.niger strains have black condiospores, so the colonies appear 

green resp. black. Mutant strains with other colours (yellow, 

white, pale, fawn, olive-green)) are useful for genetic studies. 

The parasexual processes which may lead to somatic recombin­

ation consist of a number of steps. Here the basic aspects of 

these steps are briefly summarized. 

Between two hyphae of the same strain or of compatible 

strains hyphal fusions (anastomoses) may occur, so that nuclei 

of different hyphae can migrate. If fusion is between hyphae of 

genotypically different mycelia, this gives rise to hetero-

karyons. In the conidiospores the two parental types will 

reappear. Sometimes somatic nuclei in the mycelium fuse and if 

fusion is between two genotypically different nuclei, a hetero­

zygous diploid nucleus results. The heterokaryon will then 

produce diploid conidia and so heterozygous diploid colonies can 

be obtained. Details on heterokaryosis and somatic karyogamy are 

presented in Section 1.2. 

In somatic diploid nuclei two recombination processes occur: 

mitotic crossing-over (between non-sisterchromatids of homo­

logous chromosomes) and haploidization. Mitotic crossing-over 

results in recombinant chromatids. Haploidization results from 

mitotic non-disjunction of sisterchromatids which leads to 

aneuploid nuclei (2n-l, 2n-l-l, etc.) and by successive loss of 

chromosomes ultimately to haploid nuclei. During haploidization 

genes on the same chromosome segregate simultanously as linkage 

groups. Mitotic crossing-over enables recombination of linked 

genes. For details on these mechanisms for somatic recombination 

see Section 1.2. 



1.1 Scope and outline of the present study 

The imperfect fungus Aspergillus niger is of considerable 

biotechnological interest. Nevertheless hardly any systematic 

genetical research on it has been published so far. 

Recently we started a genetic program with A.niger, the first 

step being the establishment of a collection of mutants with 

well defined markers to be used for the construction of master-

strains. In this program we can profit from extensive experience 

with the imperfect fungus Colletotrichum lindemuthianum and the 

perfect fungus Aspergillus nidulans, which is one of the genetic­

ally best explored fungi. Aspergillus nidulans is used by us as 

a model organism for the development of specific techniques, be­

sides being an ideal organism for the training of research 

students. 

Much of the work was carried out as small research studies in 

which students participated and has not been published so far. 

However, in the course of time the different parts could be 

fitted together. Moreover, the obvious possibilities for 

application in the A.niger program justify presentation. It is 

an appropriate selection of the results with C.lindemuthianum, 

A.nidulans and A.niger. 

In Chapter 2 methods for the optimalization of UV-mutagenesis 

procedures are explored, with emphasis on survival curves, 

mutant yield, and isolation and enrichment procedures, mainly 

with A.nidulans. 

In Chapter 3 experiments on heterokaryosis by hyphal fusion 

in C.lindemuthianum are reported, which did not lead to unam­

biguous results. Another way to induce heterokaryosis, and 

ultimately somatic recombination, is protoplast fusion. Prefer­

ence was given to conidial protoplasts and methods for proto­

plast isolation from conidiospores were developed. A.nidulans is 

used as a model to study protoplast fusion and karyogamy. Part 

of this work has been published earlier (Bos and Slakhorst, 

1981; Bos et al., 1983; Bos, 1985). Protoplast fusion was 

applied to C.lindemuthianum to see whether heterokaryons could 

be established. 



Chapter 4 deals with A.niger and gives the first results of 

the isolation of induced mutants suitable as genetic markers, 

and of a number of genetic analyses by somatic recombination. 

Special attention is paid to a number of complications which 

arise in such analyes. 



1.2 Summary of somatic recombination processes 

For a good understanding of somatic recombination, we summar­

ize here the course of events and some details on the signific­

ance of the processes. 

1.2.1 HETEROKARYOSIS 

When a mycelium contains nuclei of different genotype it is 

called a heterokaryon. It can arise through mutation in a 

homokaryon, but in our study the main origin is the combination 

of existing genotypically different nuclei. 

Between two hyphae of the same strain, or of compatible 

strains, hyphal fusions (anastomoses) may occur so that nuclei 

can migrate. Heterokaryons can be selected for by combining on 

minimal medium (MM) two strains with different auxotrophic 

markers, i.e. strains which are blocked in essential metabolic 

pathways. So in principle heterokaryons will grow on MM. If, in 

addition, the strains differ in colour, these heterokaryons 

show a dense mixture of the two conidial colours. This process 

is illustrated in Fig. 1.2. A heterokaryon can only be 

maintained if effective selection for the two complementary 

auxotrophies takes place, for on complete medium (CM) or 

supplemented medium (SM) one finds segregation (sorting out) of 

the two parental types. However, also on MM sorting out of 

nuclei occurs and depending on the types of deficiency in the 

parents some homokaryotic hyphae may grow among the otherwise 

heterokaryotic mycelium by cross-feeding. In general only part 

of a heterokaryon will be truly heterokaryotic. 

In fungi with multinucleate conidiospores the heterokaryotic 

condition can be maintained by vegatative propagation. 

Heterokaryons are useful for complementation studies. Two 

phenotypically similar mutants usually complement in a hetero^ 

karyon if different genes are involved. Because in some cases 

intragenic complementation can take place, only when two mutants 

do not complement they are considered as alleles of the same 

gene. However, some types of non-allelic mutants only complement 

in diploid nuclei (Roberts, 1964). 



haploid 

strains 

parenta 
type sp 

Figure 1.2 Heterokaryosis in A.nidulans. 
Balanced heterokaryons produce conidia with parental genotypes and at low 
frequency also heterozygous diploid conidia. 

1.2.2 SOMATIC KARYOGAMY 

In the vegetative mycelium diploid nuclei can arise by fusion 

of two nuclei or by restitution of all chromosomes in one 

nucleus during mitosis. Somatic karyogamy can only be recorded 

when different nuclei in a heterokaryon fuse to give hetero­

zygous diploid nuclei. The resulting heterozygous diploid 

conidia can be identified by their capacity to grow on MM. The 

process is illustrated in Fig 1.2. Selection of heterozygous 

diploids is usually performed in a sandwich of MM as shown in 

Fig 1.3. 

The frequency of heterozygous diploid conidia is both species 

and strain dependent. For A.nidulans frequencies of about 10"° 

are found. Clutterbuck and Roper (1966) mentioned that diploid 

nuclei are twice as frequent in hyphae as in conidia. However it 

is difficult to obtain a reliable estimate of the frequency 
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Figure 1.3 Isolation of heterozygous diploid colonies. 
Conidiospores collected from heterokaryon are plated in a MM layer (bottom) and 
covered with another layer MM. After 4-6 days incubation at 37°C diploid 
colonies (and also some heterokaryons) appear. 

of karyogamy. Due to sorting out variable parts of a hetero-

karyotic mycelium become homokaryotic. Moreover, diploid sectors 

of varying size can be present in a heterokaryon. As will be 

shown in Chapter 3, protoplast fusion opens a way for a more 

realistic estimation of the frequency of somatic karyogamy. 

Naturally occurring diploid strains have been found in 

plantpathogenic fungi (Caten and Day, 1977) as well as in 

biotechnology by important fungi. In some fungal species 

(e.g. Cladosporium cucumerinum, Van Tuyl, 1977) diploids have 

been found while no balanced heterokaryons could be established. 

1.2.3 MITOTIC CROSSING-OVER 

Mitotic crossing-over was first observed by Stern (1936) in 

somatic cells of Drosophila from so called twin spots. The 

phenomenon has been studied extensively in A.nidulans, which is 

very suitable for the purpose. The frequency of mitotic crossing 
-3 

over is high (approximately 10 per diploid nucleus), collect­
ions of several hundreds of genetic markers are available and 
heterozygous diploids can be easily selected for. 

The phenomenon has been observed in several other fungal 

species (see e.g. reviews by Bradley, 1962; Caten, 1981), where 

the frequency of mitotic crossing-over might be somewhat higher 

or lower. 

Essentially mitotic crossing-over may take place either in 

the Gl-phase between homologous chromosomes or after DNA-repli-

cation in the G2-phase, i.e. between non-sisterchromatids of 

homologous chromosomes. From experimental data it is concluded 

that mitotic crossing-over occurs predominantly or exclusively 

in the G2-phase (Roper and Pritchard, 1955; Käfer, 1961, 1977). 

8 



In a heterozygote, mi to t ic c rossing-over between non - s i s t e r -
chromatids can r e su l t in homozygosity of a l l markers d i s t a l of 
the point of exchange. Homozygous daughter c e l l s r e su l t only in 
one of the two poss ible anaphase assortments of the chromatids 
(1+3 and 2+4 in Fig. 1.4). As mi to t ic crossing-over i s f a i r ly 
r a r e , in general only one c ross-over w i l l take place between 
locus and centromere. 

two combinations of chromatids 
a re poss ib le (only one of them 

mut gives information) 
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Figure 1.4 Consequences of mitotic crossing-over. 
In this example homozygous yellow (yA2) diploids (*) are selected and tested 
for another mutant phenotype (mut). If e.g. all yellow diploids have the 
mut-phenotype then the linear arrangement is: mut yA2 centromere 
(second situation). 

Note that a cross-over must occur between yA2 and the centromere, otherwise no 
yellow diploids will be obtained. 



Mitotic crossing-over provides a tool for the determination 

of the relative distances of genes with respect to the 

centromere (mitotic mapping). Note that pairs of recessive 

markers must be in cis-position (i.e. on the same chromosome) 

because otherwise homozygous recombinants for both recessive 

genes do not arise. In Fig. 1.4, if mut is located further from 

the centromere than yA2, the yA2 (yellow) homozygotes (which can 

be isolated upon visual selection) are always also homozygous 

for mut (recessive mutant allele on a given locus). If mut is on 

the same chromosome arm and closer to the centromere a certain 

ratio of mut and mut+ phenotypes will be found. 

In general the availability of good selection markers 

terminal on the chromosome arm is a prerequisite. On the basis 

of different types of markers a number of selection systems have 

been developed (Pontecorvo et al, 1953). Genetic analysis of 

A.niger wholly depends on somatic recombination and has been 

hampered by the absense of suitable selection markers 

(Pontecorvo, Roper and Forbes, 1953; Lhoas, 1967). 

1.2.4 HAPLOIDIZATION 

A.nidulans has eight very small chromosomes. During mitosis 

sister-chromatids sometimes fail to separate. In diploid 

A.nidulans, as a result of mitotic non-disjunction, aneuploid 

nuclei arise at a frequency of about 2.10~2 (Käfer, 1961, 1977). 

These aneuploids (2n+l and 2n-l) have impaired growth as a 

consequence of genome inbalance. A monosomic cell (2n-l) will, 

by successive loss of other chromosomes, give rise to a haploid 

cell with a complete set of chromosomes and normal growth. So, 

on complete medium haploid segregants are present in addition to 

homozygous diploid mitotic crossing-over products. They can be 

observed visually if the diploid is heterozygous for suitable 

colour markers. The process of haploidization is illustrated in 

Fig. 1.5. 

The frequency of non-disjunction can be enhanched by addition 

to the medium of substances which interfere with the formation 

of the spindle, such as p-fluorophenylalanine, benomyl, and to a 

lesser extent chloralhydrate. On these plates not only the 
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Figure 1.5 The process of haploidization in A.nidulans for 2n = 4. 
Two modes of non-disjunction for one chromosome II (with m resp. m+) and 
subsequent haploidization are illustrated . Only aneuploids and haploids are 
shown. 

aneuploid hyphae grow poorly, but also the diploids have reduced 

growth. So haploid segregants can be isolated. 

The segregants are purified by a number of transfers to fresh 

plates and tested for the presence of the various markers. Two 

types of segregants (haploids and homozygous diploids) can be 

distinghuished by means of certain markers. Moreover, diploid 

conidia have about twice the volume of haploid conidia, which 

facilitates the identification of diploid segregants. 
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2. Induction and i so la t ion of mutants 
2.0 Introduction 

2.0.0 GENERAL ASPECTS 

Mutations arise spontaneously at low frequencies. Their 

frequency can be highly enhanced by mutagenic treatment. Some of 

these mutations have little or no effect on the phenotype, but 

others cause a failure of essential metabolic functions. It is 

also possible that the secondary gene products (enzymes) are 

changed in such a way that they have new potentialities (e.g. 

other or new substrate specificity). 

As the geneticist requires mutants for analyzing a variety of 

processes, and in general also a collection of strains with 

suitable marker genes, and because in industrial microbiology 

many production strains have been and are still being obtained by 

mutation breeding, optimalization of procedures of mutation 

induction deserves special attention. 

A mutational lesion may occur in only one of the two DNA 

strands, and after DNA replication it should give a mutant and a 

non-mutant double helix. Consequently, upon mitosis only one of 

the two daughter nuclei is expected to carry the mutation. How­

ever, upon mutagenic treatment of uninucleate cells predominantly 

both daughter nuclei carry the same mutation, since in general 

uniform, i.e. non-heterokaryotic, colonies arise. This means that 

mutations either directly involve both strands, or that single 

strand mutations by some mechanism lead to a mutation in the 

complementary strand (Kimball, 1964; Haefner, 1967; Nasim and 

Auerbach, 1967; James et al., 1978; Kilbey, 1984). 

Resting spores are generally in the Gl phase (situation before 

DNA-replication). A mutation arising in G2 (post DNA-replication) 

will again be carried in only one of the two chromatids respect­

ively only one of the two daughter nuclei. 

In A.nidulans the conidia are uninucleate. Other fungal 

species may have binucleate or multinucleate conidiospores. Here 

a mutation gives rise to a heterokaryon. Unless the mutant 

12 



allele is dominant, the mutant can only be found after sorting 

out of nuclei or upon vegetative propagation. 

2.0.1 CHOICE OF MUTAGEN 

Apart from point mutations, mutagenic treatment can induce 

larger deletions or chromosomal aberations, especially with 

ionizing radiations like X-rays. Such disturbances in the genetic 

background occur to a far lesser extent with UV. Moreover, UV 

equipment can be easely installed in any laboratory. These are 

the reasons why we restricted mutation induction mainly to UV. 

Alkylating agents are an alternative. Especially nitroso-

guanidines (NG) are very effective mutagens (e.g. Gichner and 

Veleminsky, 1982) and are applied in fungi by several workers. 

Apart from requiring very careful handling in view of their 

carcinogenicity, NG-compounds often produce a sequence of mutat­

ions, i.e. very closely linked mutations in the progressing 

DNA-replication fork (Carter and Daves, 1978; Cerdâ-Olmedo and 

Reau, 1970; Calderón and Cerdâ-Olmedo, 1982). Significantly, Van 

Tuyl (1977) observed that various auxotrophic mutants of A.niger 

obtained by NG-treatment showed slow growth and poor sporulation, 

in contrast to similar mutants obtained by UV-treatment. For 

these reasons we did not make use of these compounds. 

Using UV-mutagenesis some specificity may exist for attacking 

pyrimidine nucleotides and that certain genes may be less sens­

itive to UV than others (Prakash and Sherman, 1973). However, UV 

can in principle induce mutations in any gene, causing sub­

stitution, insertion and deletion of basepairs and also a small 

amount of somewhat larger intragenic deletions (Kilbey et al., 

1971). In general mutation induction depends more on DNA-repair 

mechanisms than on specificity of action of the mutagen (Ishii 

and Kondo, 1975; Balbinder et al., 1983). 

2.0.2 THE PROBLEM OF MUTAGEN DOSE 

For the induction of mutants mostly high mutagen doses are 

applied, which result in low survival of the treated spores, but 

in relatively high frequencies of desired mutants among 

survivors. Often linear relationships between the frequency of 
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mutants among survivors and (the logarithm of) the mutagen dose 

are presented. This leads to the notion that it is profitable to 

isolate mutants at low levels of survival. 

For obtaining high yielding production strains in industrial 

practice, cells are treated with a mutagenic agent until a 

certain 'desired' kill is obtained and the survivors are tested 

for production characteristics. Survival levels of 0.1!£ to 5 % 

seem to be common practice (e.g. Das and Ilczuk, 1978; 

Nevalainen, 1981). 

However, high doses of mutagen can result in chromosomal 

aberrations (Käfer, 1977) and in general disturb the genetic 

background by an enhanced load of undesirable mutations especial­

ly when recurrent mutagenic treatment is given, as is often the 

case with strains of industrial interest. If mutants can be 

crossed to wildtype this can be traced and cured. When the 

progeny consist of two homogeneous classes (wildtype and mutant 

type), this is an indication that the mutant is 'clean'. Imper­

fect fungi, however, cannot be outcrossed to remove (accumulated) 

background damage. Upshall and co-workers go another way: they 

use only spontaneous mutants under the assumption that these will 

be unlikely to carry multiple aberrations (Upshall et al., 1979; 

Teow and Upshall, 1983). 

The question can be raised whether such high mutagen doses are 

necessary at all, for appropriate selection procedures and enrich­

ment techniques can considerably enhance the mutant yield and 

thus compensate for the lower frequency at lower dose. In this 

connection, attention will be paid to mutagenic treatment and its 

effect on survival (Section 2.2), mutant yield (2.3) and to 

enrichment procedures which can be applied to filamentous fungi 

(2.4). 
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2.1 Material and methods 

2.1.0 ORGANISMS AND STRAINS 

The following Aspergillus nidulans strains descending from 

Glasgow strains were used. The A.nidulans strains in our collect­

ion have a WG number. Gene symbols are according to Clutterbuck 

(1984); markers on different chromosomes are separated by a semi­

colon, if not they are on the same chromosome. 

WG015 biAl; pyroA4; pAl (biotine and pyridoxin requiring; pale 

conidia) 

WG076 yA2; nicA2, riboD5 (yellow conidia; nicotinamide and 

riboflavin) 

WG094 pabaAl; pyroA4 (p-aminobenzoic acid; pyridoxin) 

WG096 pabaAl, yA2 (p-aminobenzoic acid, yellow conidia) 

WG136 biAl; wA3; pycB4 (biotin; white conidia; pyruvatecarboxyl-

ase) 

WG145 wA3 ; pyroA4 (white;- pyridoxin) 

WG176 biAl; uvsD53 (biotin; UV-repair deficient) (uvsD53 from a 

cross with UT517 kindly provided by Dr.G.J.O.Jansen, 

Utrecht) 

WG179 yA2; nicA2, riboD5 (yellow; nicotinamide, riboflavin). 

WG282 pabaAl, yA2; acrAl; metGl; lacAl; choAl (p-aminobezoic 

acid, yellow; acriflavin; methionine; lactose; choline). 

An Aspergillus niger wildtype strain was obtained from CBS 

(Baarn, The Netherlands): N400 (= CBS 120-49). From this strain 

morphological and auxotrophic mutants were derived by UV-mutagen-

esis as will be described in Section 2.2. The following strains 

were used: 

N402 cspAl: a strain with low conidiophores descending from N400 

N410 cspAl; fwnAl (a fawn mutant from N402) 

N408 cspAl; argAl (an arginine requiring mutant from N402) 

N420 cspAl; lysAl (a lysine requiring mutant from N402) 

An Aspergillus oryzae wild type strain was also obtained from 

CBS (Baarn, The Netherlands) (= CBS 574.65). 

For long term preservation of strains (cf. Perkins, 1962), 

conidia were collected from a conidial suspension (see below) by 

centrifugation or filtration, and resuspended in a mixture of 

15 



skimmed milk (5X) and sodium glutaminate (4D Aliquots of 0.1 ml 

were added to small ice-cooled screw cap vials containing 0.5 g 

sterile silicagel (without indicator), immediately stirred on a 

vortex mixer and put back on ice for about ten minutes. The vials 

were stored in the refrigerator (4°C). 

For short term storage of strains, 3 day old cultures were 

stored in a refrigerator, prior to experimental use during mostly 

3 (-5) days. 

2.1.1 MEDIA 

The fungi were grown on minimal medium (MM), supplemented MM 

(SM), complete medium (CM) (composition according to Pontecorvo 

et al., 1953) or malt extract agar (ME). 

MM: contains per litre demineralized water 

6.0 g NaN03, 

0.5 g KCl, 

0.5 g MgS04.7H20, 

1.5 g KH2P04, 

Traces (one crystal) FeS04, ZnS04, MnCl2 and CuS04. 

SM: MM supplemented with growth factors (amino acids 20 mg/ml; 

vitamins (0.2 mg/ml). 

CM: contained in addition to MM per litre: 

2 g neopeptone, 

1 g casamino acids, 

1 g yeast extract, 

0.3 g ribonucleic acid hydrolysate (sodium salt), 

2 ml vitamin stock solution. 

The vitamin stock solution contained per 100 ml: 

10 mg p-aminobenzoic acid, 

10 mg thiamin, 

100 mg riboflavin, 

100 mg nicotinamide , 

10 mg pantothenic acid, 

50 mg pyridoxin.HCl, 

0.2 mg biotin. 

CMT:CM containing 0.01% Triton-XlOO in order to reduce colony 

size on count-plates (Cf. Maleszka and Pieniazek, 1981). 
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ME: contains per litre: 

20 g maltextract, 

4 g sucrose, 

1 g neopepton, 

1 g casamino acids, 

1 g yeast extract, 

0.2 g ribonucleic acid hydrolysate (sodium salt), 

2 ml vitamin solution. 

Traces (one crystal) FeS04, ZnS04, MnCl2 and CuS04. 

Solid media contained 1.5 I agar and soft-agar media 0.8?!. The pH 

of the media was adjusted to 6.0 with NaOH before autoclaving for 

20 minutes at 120°C. The carbon source, mostly 0.05 M glucose, 

was added as a sterile solution (1:20). 

2.1.2 CONIDIAL SUSPENSIONS 

Conidial suspensions were made from 3 day old cultures of 

A.nidulans (grown on agar at 37°C) , or 4 day old cultures of 

A.niger (30°C) and A.oryzae (24°C) with additional short term 

storage at 4°C for 3 to 7 day. Suspensions were made in saline-

Tween (0.005 % w/v Tween-80), vigorously shaken during 10 min in 

order to break conidial chains, and then filtered through a 

cotton wool plug to remove mycelial fragments. The spore-

concentrations were calculated by means of a Coulter counter and 

usually adjusted to approx. 10? conidia / m l . In general sus­

pensions were stored overnight at 4°C prior to experimental use. 

Viability of spores was 65-75% unless otherwise stated. 

2.1.3 MUTAGENIC TREATMENT AND SURVIVAL 

For UV-treatment 10 - 12 ml of the suspension stored at 4°C 

was transferred to a glass Petridish which was placed, lid 

removed, under a Philips TUV-tube (30W) at a dose rate of about 

120 J/m^/min. The UV-fluence was deternmined with a short wave 

UV-meter (Blak Ray Ultraviolet Sensitivity meter J225). Upon 

irradiation (at room temperature) the suspension was transferred 

to a 30 ml screw cap flask, or in case of smaller samples to test 

tubes, placed in ice. 
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When applying a single dose, the fraction of surviving spores 

could be calculated from a sample taken from the original 

suspension and a sample from the suspension after treatment. To 

this end the samples were diluted to give upon estimation approx. 

50-150 colonies per plate (after plating of 0.1 ml aliquots in 

duplo or triplo). Often more than one dilution was plated 

especially when it was difficult to predict the results. The 

resulting colonies were counted. 

When applying a dose range, samples of 0.5 ml (added to 0.5 ml 

cooled saline) were taken in duplicate from the same Petridish at 

time 0, followed by time intervals corresponding to the different 

doses. Taking the samples from Petridishes, which can not be 

shaken, involves fluctuations in spore concentrations up to 25Z. 

To correct for such unequal sampling the number of conidia in 

each sample is determined with the Coulter counter. 
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2.2 Survival curves 

Examination of dose-response survival curves provide 

information on the process of cell killing itself and also 

indirectly on what mutagen dose can be used best for obtaining 

mutants without too heavy a load of genetic background damage. 

Since A.nidulans conidiospores are unicellular and uni­

nucleate, a suspension may behave like any population of single 

uninucleate cells. Typical for such cell populations are sigmoid 

curves when survival is plotted against irradiation dose. Such 

curves become linear on a log survival scale. Fig 2.1 (solid 

line) gives a linear log survival curve for UV-irradiation of 

microconidia of Neurospora crassa as found by Giles (1951). 

Norman (1954) found likewise. 

However, upon UV-treatment of haploid A.nidulans conidia, an 

initial shoulder is found at lower doses, followed by a linear 

decline (Fig 2.1 dashed line). At higher doses a small fraction 

(e.g. 0.5 % ) seems to be more resistent against killing by UV, 

probably due to experimental conditions. Experiments with 

N.crassa macroconidia also lead to shouldered curves (e.g. Atwood 

and Norman, 1949; Schroeder, 1970; Furukawa and Hasunuma, 1984), 

contrary to what is usually found for microconidia. Chang and 

Tuveson (1967) however found a shoulder also for a wildtype 

microconidial strain. In fact the same must have been found by 

Atwood and Norman (1949) as they mention that usually an extra­

polation number (see later) of 1.5 has been found for N.crassa 

microconidia. Significally, Chang and Tuveson (I.e.) found no 

initial shoulder with microconidia from an UV-repair deficient 

strain (see 2.2.4). 

Initial shoulders can only be convincingly demonstrated when 

lower doses are included, otherwise they may go unnoticed. Such 

shoulders can be generated by several causes: multiplicity of 

hits or multiplicity of targets (2.2.0), and natural repair 

processes (2.2.1). 
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Figure 2.1 Survival curves . 
UV-survival of Neurospora c rassa microconidia based on Giles (1951); 

data converted to a dose r a t e of 100 J /n r /min . 
— O— UV-survival of conidiospores of A.nidulans s t r a i n s WG096 (own d a t a ) . 

2 . 2 . 0 MULTI-HIT AND MULTI-TARGET CURVES 

The term number of t a r g e t s can b e s t be unde r s tood as number of 

genomes per c e l l . So a c o n i d i o spo r e which c o n t a i n s one h ap lo i d 

nuc l eus in t h e Gl -phase i s a one t a r g e t c e l l . A h i t i s an event 

p roduc ing a l e s i o n in a t a r g e t . 

In t h e formula for s u r v i v a l c u rve s used i n t h i s s e c t i o n t he 

f o l lowing symbols a r e u sed : 

S i s t h e f r a c t i o n of spores among v i a b l e spores s u r v i v i ng 

mutagenic t r e a t m e n t . The number of v i a b l e spores i s measured 

a t dose z e r o , and i n g ene r a l i t i s 65 t o 75% of t h e t o t a l 

number of s p o r e s . 
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kt is the effective mutagen dose, where 

t is the duration of the treatment (i.e. irradiation), usually 

in minutes, and 

k is a compound constant, being the product of the (inherent) 

sensitivity of the cells, the dose rate received in the cells, 

and a multiplier to transform kt (or kt. uloge with logS-

graphs) to the t-scale. 

n is the number of targets in the cell, 

h is the number of hits per individual target to achieve target 

"killing" if no repair takes place. Cell-killing is supposed 

to occur when all targets in the cell are "killed". 

It is assumed that the hits are randomly distributed both over 

the cells and over the targets within the cell. So the number of 

hits per target follows a Poisson distribution and the fraction 

of targets that receives no hits equals e . For h = 1 and n = 

1, this is also the fraction of surviving cells. 

Formulae for dose-response relationships in which either the 

target number or the hit number is taken into account, have 

already been discussed by Atwood and Norman (1949). These 

formulae have been used earlier to describe physioligical 

processes. The survival curve for a multi-target process is: 

S = 1 - (1 - e"kt) n (Eq.2.1) 

Fig.2.2a shows a number of multi-target curves. 

For the single target process (n=l) Eq.2.1 becomes 

S = e"kt, 

an exponential decay, which is linear on a logS- scale since 

log S = -kt loge 

For a multi-target process (n>l) the curves of (Eq.2.1) show an 

initial shoulder. Upon expansion it is seen that for somewhat 

higher doses one obtains the approximation 
-kt 

S = n.e , or log S = logn - kt loge, 

Now , n can be obtained by solving this equation for kt = 0. This 

means that the intercept with the S-axis of the extrapolated 

linear part of a multi-target survival curve corresponds to the 

target number, n. 
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The other mathematical model for the explanation of initial 

shoulders in log-survival curves is the so called multi-hit 

hypothesis. Here it is postulated that each cell has only one 

target and that at least h hits per target are required for cell 

killing. For the multi-hit process the survival curve (at n = 1) 

i s g iven by 

h -1 
-k t T ~ ( k t ) J :t z ( E q . 2 . 2 ) 

j=0 J! 
In a s em i - l oga r i t hm i c p l o t , t h e s e cu rves ( F i g . 2 . 2b ) a r e of 

s i m i l a r g ene r a l shape as t hose for a m u l t i - t a r g e t p r oce s s (Fig 
2 . 2 a ) . Note , however, t h a t an i n c r e a s e i n h i t number has a much 
l a r g e r e f f e c t on t he l o g S - i n t e r c e p t than a s i m i l a r i n c r e a s e i n 
t a r g e t number. 
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Figure 2.2 Survival curves according to two models. 
a . Survival curves for d i f fe ren t t a r ge t numbers (n) (Eq 2 . 1 ) . 
b . Survival curves for d i f fe ren t h i t numbers (h) (Eq .2 .2 ) . 
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A natural extension of the above models is to incorporate both 

target number and hit number. This postulates that a cell has one 

or more targets (n) and killing of an individual target requires 

h hits. 

The general formula for survival curves in such a process 

reads / , , \ 

- k t h i i ( k t ) J V S = 1 - 1 - e > _ _ l _ , or for short 

(Eq.2.3) 

j=0 j! 2! (h-1)! 

Equations (2.1) and (2.2) are special cases of Eq.2.3 by taking h 

= 1 and n = 1 respectively. 

Graphs for logS at h = 1, 2, 4 and n = 1, 2, 4 are given in 

Fig.2.3. The curves are of the same general shape, all showing an 

initial shoulder except for h = 1, n = 1, which gives 

S = e " k t or logS = -kt.loge, 

which is a straight line through the origin. 

Now, except for the lowest doses (i.e. the lowest values of 

kt) Eq.2.3 is fairly well approximinated by 

S = n.e .Q or 

logS = logn -kt.loge + logQ (Eq.2.4) 

For h = 1, i.e. log Q = 0 one obtains 

logS = logn - kt.loge (Eq.2.5) 

This linear function of t is approximated relatively rapidly 

as can be seen from Fig.2.2a and 2.3 (h = 1 ) . The dashed lines 

give the extrapolations of this linear part of the curves. They 

represent Eq.2.5. The intercept with the logS-axis (at t = o) is 

logS = logn, from which n can be calculated. For h > 1 Eq.2.4 is 

not a linear function of t and the convergence to linearity is 

very slow (Fig.2.3). 
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From Fig.2.3 it is seen that all extrapolation lines tend to 

run parallel. In fact they should do so, as can be shown as 

follows, but for low values of kt the extrapolation lines for 

different values of h are still not parallel. 

For very high values of kt, the last term in Q becomes much 

larger than the sum of the preceeding terms, so that we may put 

(kt)*"1 

Q = 
(h-D! 

Then d i f f e r e n t i a t i n g Eq .2 .4 one o b t a i n s 
d ( logS) h -1 r , . . , . dOogSO 

= - l og e + , o r fo r h i gh k t : 
d ( k t ) ë k t 

l og e 
d ( k t ) 

So for a l l v a l u e s of n and h t h e e x t r a p o l a t i o n l i n e s have t h e 

same s l ope (run p a r a l l e l ) . 

Figure 2.3 Survival curves for combinations of n (1 , 2, 4) and h ( 1 , 2, 4) 
See Eq. 2.3 
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As can be seen from Fig.2.3 for h > 1 convergence to linearity 

is only at higher doses. However, at such high kt-values survival 

fractions are so low that they fall outside the dose-range, or 

rather are well below the point where the decline levels off (see 

e.g. Fig.2.1). So, in contrast to h = 1, it is with h > 1 an 

uncertain procedure to construct correct linear extrapolation 

lines from experimental data. The linear extrapolation lines for 

h > 1 in Fig.2.2b and 2.3 were eye fitted. 

It is further seen from Fig.2.3 that hit number (h) has a much 

larger impact on the width of a shoulder than the number of 

targets (n) has. For example a fourfold increase of n always 

leads to a fourfold increase of the S-intercept (logS-intercept 

converted to a linear scale), whereas a fourfold increase of h 

results in aproximately a sixtyfold increase. The latter is far 

beyond the range of existing target numbers in spores. 

This quantitative difference between the effects of n and h on 

the shape and location of survival curves seems not to have been 

recognized previously (e.g. Atwood and Norman, 1949; Alper, 

1979). This possibly is why the terms multi-hit and multi-target 

curves often have been used indiscriminately (e.g. Meynell and 

Meynell, 1970). Similary, the terms hit number and target number 

have both been used in connection with the logS-intercept of 

extrapolated lines from the linear part of the experimental data. 

It is clear that whilst at h = 1, logS = logn, no such simple 

relationship exist between S and h, since except for h = 1 the 

relationship between Q and h is complex. Note that extrapolation 

to t = 0 yields logS = logn + logQ. 

Already in 1960 Alper et al. pointed out that the S-intercept 

of a survival curve may not at all reflect some kind of 

'multiplicity' in the cell. They therefore proposed the neutral 

term 'extrapolation number' instead of the terms target number or 

hit number. 
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Differences in k may result from differences in inherent 

sensitivity of the cell populations compared (e.g. age of spores) 

or from differences in dose rate received in the cell (e.g. as a 

consequence of spore wall colour). At equal S, doubling of k 

mimics halving of irradiation time. So, while k affects the slope 

of the curve, and correspondingly the width of the shoulder, it 

does not change the logS-intercept of the extrapolation lines. 

This holds for any combination of n and h. Fig.2.4 gives the 

effect of k for h = 1 and n = 4. It implies a.o. that mixing 

spores which only differ in sensitivity, e.g. mixing older and 

younger spores from a colony, will not influence the 

logS-intercept. 

Figure 2.4 Effect of effective dose (kt) on the log-survival curve for n =4 
(resulting in an initial shoulder) and h = 1. 
Scale at left: shift of origin when repair is allowed for (see 2.2.1). 
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2.2.1 THE EFFECT OF REPAIR 

For the explanation of initial shoulders only target and hit 

multiplicity have been discussed so far. 

Bridges and Munson (1968) mentioned repair as a third explan­

ation for initial shoulders in logS curves. In this hypothesis, 

proposed by Haynes (1964), effective natural repair mechanims can 

at lower doses cope with UV-induced lesions, but at higher doses 

they become saturated or inhibited. This holds for a dark repair 

system. It differs from the (light dependent) photo-repair, which 

eliminates a constant fraction of potentially lethal photo-

products throughout the dose range (Harm, 1980). The prevailing 

dark-repair system probably is the excision-resynthesis repair, 

or excision repair for short. 

The effect of excision repair is to elongate the shoulder till 

the dose of saturation. From this point the curve proceeds as 

from dose 0 (Figs. 2.2 - 2.4). Notably, for n = 1 and h = 1 

decline follows immediately at the dose of saturation. Thus in 

the graphs constructed for the situation without repair, dose 

zero is in reality the dose where the repair capacity is satur­

ated. This means that in experiments with repair the dose zero 

correspondents to a negative dose in Fig.2.2 - 2.4. Such a logS-

axis for the experimental situation where repair takes place has 

been added in Fig.2.4. 

This is of course a simplified model, but it can very well 

illustrate the effect of repair on the level of the logS-inter-

cept from extrapolation lines. Thus in Fig 2.4 (h = 1, n = 4) it 

is seen that, when repair is allowed for ('experimental axis'), 

the logS-intercept found from experiments overestimates logn, the 

more so the higher the repair capacity is. Secondly a change in 

k, e.g. due to a difference in sensitivity, will not leave the 

experimental logS-intercept unaffected. A high sensitivity will 

in fact give a more pronounced overestimation of logn than a low 

sensitivity does. 
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2.2.2 INFERENCES FROM EXPERIMENTS 

In the analysis of survival curves, the initial shoulders and the 

causes of it play a central role. Experiments can be constructed 

where different internal conditions of the spores or different 

experimental conditions are compared. These conditions specific­

ally should relate to a change in k (inherent sensitivity or dose 

rate received in the cell), or to a change in n (diploidy or 

change of Gl to G2 by preincubation), or to repair capacity 

(e.g. using excision repair deficient strains). 

Summarizing, in the interpretation of such experiments, a 

number of points should be kept in mind (see Figs. 2.2 till 2.5). 

1. With a given k the extrapolation lines for different values of 

n and h run parallel at high doses. 

2. The slope of the extrapolation lines can only change as a 

result of change in k. 

3. Both repair and values of h > 1 can give overestimates of 

target number when simply putting logS = logn at t = 0. 

4. Even in the absence of repair, h > 1 gives extrapolation 

numbers which exceed the number of targets (n) expected in the 

material. Conversely, larger extrapolation numbers far 

exceeding the expected n indicate repair and/or a multi-hit 

process. 

5. In the presence of repair, a change of k can mimic a change in 

n. 

The choice of points to be used for the construction of the 

linear extrapolation line, remains subjective even with a 

theoretical curve. Inclusion of a higher or a lower point may 

influence the slope of the line and the level of the logS-inter-

cept. This is illustrated in Fig.2.5. In practice, the normal 

experimental point to point fluctuations introduce additional 

uncertainty on what points to include in the regression. 
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Figure 2.5 Effect of choice of points. 
Regression lines are drawn based on six points: four black points and two 
higher ( ) or two lower points( ). The width of the points can be taken 
to represent the experimental variation. A for n=1, h=3; O for n=1, h=1. 

Since uncontrolled photorepair can interfere with the factors 

to be studied, the samples of the spore suspension were placed on 

ice immediately after UV-irradiation. An experiment was done to 

see whether photorepair was excluded under the experimental 

conditions used. 

Conidiospores of the yellow A.nidulans strain WG096 were 

irradiated with UV for 30 sec and half of the suspension was 

placed on ice for 1 h under the usual dimmed light conditions. 

Subsequently this suspension was treated further in the same way 

as the control half (Fig.2.6). The experiment was repeated with a 

UV dose of 1 min followed by 1 h on ice and further treatment. In 

both experiments no difference in survival was found, indicating 

that photorepair did not occur under these expermental con­

ditions. In a control experiment complete repair was found after 

1 h incubation at roomtemperature. 
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Figure 2.6 Absence of photorepair in A.nidulans under the experimental 
condi t ions used. 
o Survival curve of WG096 under s tandard condi t ions 
A Survival of WG096 conidia a f t e r 0.5 min i r r a d i a t i o n subsequently s tored in 

ice for 1 h, upon which the procedure was cont inued. 

2 . 2 . 3 EXPERIMENTS ON FACTORS MODIFYING SENSITIVITY (k) 

The factor k depends on the e f f ec t ive dose r a t e ( the f rac t ion 
of the dose r a t e given which i s recieved in the c e l l s ) and on the 
inherent s e n s i t i v i t y of the c e l l s . 

I t can be expected t ha t the wal l-colour of the conidiospores 
influences the e f fec t ive dose r a t e , as a r e s u l t of d ifferences in 
UV-absorption. Secondly, spores a t the bottom of the i r r ad i a t ed 
Pe t r id i sh can be shel tered by the spores higher in the suspens­
ion. Conidiospores of d i f fe ren t age may have d i f fe ren t inherent 
s e n s i t i v i t i e s . 

I t w i l l be assumed t ha t the un inuclea te haploid conidiospores 
of A.nidulans and A.niger s t r a i n s are s ingle t a rge t c e l l s (n=l) , 
i . e . t ha t the nucle i are in the Gl-phase (see Section 2 . 0 . 0 ) . 
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2.2.3.1 SPORE COLOUR AND SHELTER EFFECTS 

In Fig 2.7 logS-curves are plotted for a white strain (WG145) 

and a yellow strain (WG096) of A.nidulans. As expected the white 

strain is the more sensitive one, as can be seen from the steeper 

decline of the linear extrapolation line, which implies a smaller 

k value. From the survival at doses of 1 min till 3 min the 

extrapolation numbers are 3.3 and 2.7 respectively. If for the 

white strain also the survival at a dose of 0.5 min is included 

for regression then an extrapolation number of 2.7 is obtained 

too (black triangles). Assuming n = 1, these extrapolation 

numbers could either reflect h > 1 (e.g. h = 2; see Fig 2.3) or 

repair with a saturation dose of about 0.3 min. 

In a comparable experiment, except that the cultures were 

stored for 3 days at 4°C, about the same extrapolation numbers 

have been obtained (3.4 and 2.6 respectively). The yellow strain 

WG096 has also been used in the photorepair experiment (Fig.2.6). 

logSf 
3.3 ~ 
2.7 

Figure 2.7 Effect of spore colour on survival in A.nidulans. 
o yellow (WG096); A white (WG145); • ,A used for regression. 

Conidia from 3 day old cultures (37°C) and stored for 1 day (4°C) instead of 3 
days as usual. 
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The yellow s t r a i n WG096 has a lso been used in the photorepair 
experiment (F ig .2 .6 ) . The logS-curves in F igs .2.6 and 2.7 show 
v i r t u a l l y i den t i ca l slope and shoulder. 

In s t i l l another experiment, a green A.nidulans s t r a i n 
(WG094) was used under the same condi t ions (see spores from 3 day 
old cu l tu res in F ig .2 .9 ) . The green s t r a i n s had about the same 
s e n s i t i v i t y as the yellow s t r a i n . See e .g . the l evel of 1% 
survival which in a l l th ree cases i s reached a t about 3 min 
i r r a d i a t i o n . 

Conidiospores of A.niger are far more UV r e s i s t a n t than those 
of A.nidulans. As can be seen from F ig .2 .8 the log-survival curve 
i s of the same shape as t ha t of A.nidulans (note the shortened 
t - s c a l e in the A.niger graphs) . Thus a t 3 min A.niger survival i s 
s t i l l higher than 50%. The lower s e n s i t i v i t y i s probably for a 
l a rge pa r t due to the black spore co lour . At l e a s t , colour 

Figure 2 .8 She l te r e f f e c t . 
LogS-curves for conidiospores of A.niger s t r a i n N408. 
o normal spore concentra t ion (107/ml). 
A d i l u t ed suspension (10 /m l ) . 
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mutants from this strain, e.g white (gene whi), olive green (olv) 

and fawn (fwn) have much steeper survival curves (not presented), 

which resemble those of A.nidulans strains. 

In Fig.2.8 (A.niger, strain N408) a normal spore concentration 

(lO^/ml) and a diluted suspension (10^/ml) were compared. The 

sheltering effect of the higher spore concentration is very 

pronounced. The diluted sample has a much steeper decline of the 

linear extrapolation line, implying a much smaller k-value. 

For the diluted and the normal suspension the log-S intercepts 

are 2.3 and 1.3 respectively. For a given value of h, a change in 

k is not expected to generate a difference in logS-intercept 

(compare Fig.2.4). In fact the extrapolation lines intersect at 

the level logS = 0. Assuming n = 1, this happens to be precisely 

what is expected when the shoulder is only due to repair (with 

saturation at about 1 min). 

2.2.3.2 AGE OF THE SPORES 

The infernal physiological condition of the spores may also 

influence their sensitivity. It fits best with the time schedule 

in the laboratory to collect spores from 3 day old cultures, 

which are subsequently stored in the dark for about three days at 

4°C prior to use in experiments. Unless stated otherwise this is 

the normal procedure. 

Fig.2.9 gives the result of two experiments, viz. Exp.I where 

the age of the culture was varied (40 h and 7 days) at fixed 

storage time (1 day), and Exp.II where the duration of storage 

was varied (none and 3 days) at fixed age of culture (3 days). It 

is seen that "very young" spores are far more sensitive than 

"very old" spores. With the 7 day old spores the results are 

irregular so no attempt was made to construct a linear 

extrapolation line. Moreover the viability of the spores was as 

low as about 20^ (in this experiment 22%) , which makes them less 

suitable for the present purpose. 

For spores from 3 day old cultures subsequent storage has 

little effect down to 1% survival (i.e. little effect on the 

slope of the linear part of the curve and on the shoulder). 
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3 d none 62% 

40 h 1 d 63% 

Figure 2.9 Age of cultures and duration of storage. 
LogS-curves for the green A.nidulans strain WG094 grown at 37°C and stored 
at 4°C. 

Obviously age of culture has a main effect on sensitivity. For 

practical reasons three day old cultures were preferred over 

younger cultures. It should be noted that harvesting from 3 day 

old cultures implies a certain range of spore ages. However, this 

only affects k (the slope of the linear extrapolation lines), and 

not the logS-intercept. 

In Fig.2.9 the extrapolations for 3 day old cultures virtually 

conincide. The lines intersect at the level of logS = 0 as 

expected for n = 1 when repair is considered as the cause of the 

shoulder. 
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2.2.4 EFFECT OF REPAIR DEFICIENCY ON LOG-SURVIVAL CURVES 

From experiments with haploid conidiospores, which are 

generally thought to be one target cells, it can be concluded 

that the logS-survival curves always have about the same general 

shape. This becomes especially clear when, by adjusting the 

t-scale, the sensitivities at 1% survival are made to coincide. 

So e.g. in the experiment on the shelter effect (Fig 2.8) after 

correction for the difference in effective dose at 1Z survival, 

the extrapolation lines are found to coincide. This correction 

makes it possible to compare strains with different sensitivity. 

If the initial shoulder is the result of an effective repair 

mechanism it will probably not be found with UV-repair deficient 

strains. 

Such uvs-mutants are characterized by their increased 

sensitivity to inactivation by UV (Shanfield and Käfer, 1969; 

Jansen 1970; Fortuin, 1971). The uvsD53 mutant used in the 

following experiment was obtained from Dr.Jansen and has in 

addition reduced meiotic recombination and an enhanced frequency 

of mitotic recombination. By comparing certain characteristics of 

uvs-mutants Jansen and Fortuin inferred that the uvsD53 mutant is 

excision-defective. 

In Fig.2.10 the survival curves of A.nidulans strains WG176 

(uvsD53) and WG096 (uvsD+) are shown. As expected, with the 

uvsD-mutant strain an immidiate linear decline was found without 

an intial shoulder. When a regression line is drawn based on the 

points for 15, 30, 45 60 and 90 seconds UV, the extrapolation 

number is -0,14. In two other experiments values of -0,18 and 

-0,10 were found. It can be concluded that A.nidulans has a 

repair mechanism, which becomes saturated after a low dose 

UV-irradiâtion. 

The initial repair is typical for UV-lesions as the shoulder 

was not found with X-ray survival curves. This is shown in 

Fig.2.11 for A.nidulans strain WG096, where the level of survival 

at 300 Gy X-ray is about equal to that at 3 min UV. 
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Figure 2.10 Effect of repair deficiency on the logS-survival curve in 
A.nidulans. 

o strain with wildtype UV-repair (WG096). 
A UV-repair deficient strain uvsD53 (WG176). 
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Figure 2.11 Survival curve for X-irradiation in A.nidulans (WG096). 
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2 . 2 . 5 EXPERIMENTS ON MODIFICATION OF n 

When c o n i d i a of h a p l o i d A .n idu l an s a r e o n e - t a r g e t c e l l s 

(n = 1 ) , t hen t ho s e of d i p l o i d A . n i du l an s a r e t w o - t a r g e t c e l l s 

(n = 2 ) . A change from n=l t o n=2 i s expec ted t o r e s u l t i n a one 

u n i t i n c r e a s e i n e x t r a p o l a t i o n number, r e g a r d l e s s t h e v a l ue of h 

( a l t hough i t i s no t expec ted t h a t h w i l l c h ange ) , and p rov ided 

t h e r e p a i r c a p a c i t y does n o t change from h ap l o i d t o d i p l o i d . 

Moreover, i f r e p a i r i s i nvo lved a change i n s e n s i t i v i t y (k) may 

a l s o a f f e c t t h e e x t r a p o l a t i o n number, bu t i f r e p a i r i s no t 

i nvo lved a change i n k has no i n f l u e n c e on t h e log S - i n t e r c e p t . 

Figure 2.12 Effect of increase in t a r ge t number. 
Survival of conidiospores of a d ip lo id green A.nidulans s t r a i n WG015//WG096 
(obtained from somatic karyogamy between the s t r a i n s WG015 and WG09Ó). 

O Exp.1; A Exp.2 (two subsequent exper iments) . 
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With conidiospores of a green diploid A.nidulans strain 

(WG015//WG096) an extrapolation number of about 4 has been found 

(3.5 and 4.3 respectively; see Fig.2.12). With the haploid green 

strain (WG094) an extrapolation number of about 2 was obtained 

(Fig.2.9). The slope of the logS-survival curves was about the 

same for haploid and diploid A.nidulans. 

At first sight this increase in extrapolation number seems to 

be the result of the doubling of the target number (n = 2). In 

the discussion it will be shown that the situation is somewhat 

more complex. However, the results justify the conslusion that 

the extrapolation number increases with increase in target 

number. 

A second approach to study the effect of a change in n is to 

include a preincubation before UV-irradiation. In our experiments 

on the isolation of protoplasts from conidiospores (Section 3.2) 

it was found that upon incubation of conidiospores mitosis takes 

place between three and five hours of incubation. This agrees 

with the observations of Fiddy and Trinci (1976) that mitosis 

preceeds germination of conidiospores. So if the conidiospores 

are in Gl-phase the chromosomal material should be duplicated 

during preincubation and the extrapolation number should 

increase. 

A suspension of A.nidulans WG096 conidiospores in saline was 

divided into two portions of 12 ml. The first was used directly 

and the spores of the other portion were collected and 

resuspended in 30 ml liquid SM and preincubated in a reciprocal 

incubator at 37°C for three hours. Then the spores were collected 

again and resuspended in 12 ml saline and irradiated as the first 

portion. The results are shown in Fig.2.13. 

Without preincubation the extrapolation number was 1.9 and 

with preincubation it was 3.5. The slope of the extrapolation 

line becomes steeper with preincubation, indicating increased 

sensitivity. Note that the two extrapolation lines intersect 

below the level logS = 0. When one corrects for the difference in 

sensitivity at the 1 1 survival level, the extrapolation lines 

coincide. 
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Figure 2.13 Effect of p re incubat ion of conididospores on s u r v i v a l . 
Conidia of the green A.nidulans s t r a i n WG092* were UV-irradiated. 
o without p re incuba t ion . 
A with preincubat ion for 3 h a t 37°C in l i qu id SM. 

The preincubation experiment was repeated with the yellow 
A.nidulans s t r a i n WG282. This s t r a i n was used l a t e r to study 
mutation induct ion. Preincubation was extended to 4 and 5 hours . 
Extrapolat ion numbers of 2 (without p re incubat ion) , 4 (3h), 9 
(4h) and 15 (5h) were found (F ig .2 .14) . For c l a r i t y , only the 
regress ion l ines are presented in F ig .2 .14 . With prolonged 
incubation the slope of the ex t rapola t ion l i ne becomes s teeper , 
which ind ica tes increased s e n s i t i v i t y . As before, the 
ex t rapola t ion l i nes i n t e r s e c t well below the l evel logS = 0. 

From the marked increase in ex t rapo la t ion number i t can be 
concluded t ha t the conidia are indeed in the Gl-phase. The 
increase exceeds, however, far above what i s expected from a 
doubling of the t a rge t number. 
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Figure 2.14 Effect of preincubation on extrapolation number. 
Conidia of the yellow A.nidulans strain WG282 were preincubated in liquid MM at 
37°C. 
o without preincubation . 
A 3h preincubation; A 4h and- G 5h preincubation. 

When in this graph the extrapolation lines are corrected for 

sensitivity at the level of 1% survival ('without preincubation' 

as a standard) even more extreme extrapolation numbers are 

obtained (Fig.2.15): for 3, 4 and 5 h preincubation the 

extraplation numbers become 6, 11 and 20 respectively. 

The changing slope of the curves indicates increasing 

sensitivity and this causes a disproportionate increase of 

extrapolation numbers (cf. Fig.2.4). In Fig.2.15 a second 

logS-axis is drawn at the level where the repair capacity of 

normal (not preincubated) conidia is saturated. This logS-axis 

intersects the t-axis at 0.6 minutes and here extrapolation 

numbers of 2.5 (3h), 3.5 (4h) and 8 (5h) are found. 
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Figure 2.15 Effect of preincubation after correction for k. 
The data of Fig.2.14 have been corrected for differences in sensi t ivi ty (k) at 
1 % survival level, taking the survival without preincubation as standard. 
A second logS-axis i s drawn at the point where the repair capacity of normal 
cel ls is saturated (t = 0.6 min). 
Extrapolation numbers are inserted. 
o without preincubation; 
A 3h preincubation; A4h and Q 5h preincubation. 

The contineous increase in ex t rapola t ion number, notably from 
3 to 5 h preincubat ion, may pa r t ly r e f l e c t non-synchronous 
d ivis ion of nuc le i . However, one i s led to conclude t ha t during 
extended preincubation the r epa i r capacity increases consider­
ably, which progressively extends the shoulder of the curves. The 
increase in ext rapolat ion number cannot solely be accounted for 
by the increase in t a rge t number. I t can only be explained by an 
increase of r epa i r capaci ty . 
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A.oryzae s t r a i n s are known to have mult inucleate conidio-
spores (Yuil, 1950). An A.oryzae s t r a i n which had on the average 
6 nucle i per conidiospore was used as an i l l u s t r a t i o n of a high 
t a rge t number. The survival curve (Fig.2.16) has a much more 
extended shoulder than the curves obtained for d ip lo id of 
preincubated haploid A.nidulans conidiospores . 
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Figure 2.16 Survival of multinucleate A.oryzae conidiospores. 
Note the shortened t - sca le . 
There are insufflent data for an exact extrapolation l ine . A 
minimum estimate for the extrapolation number seems to be 30. 

The ex t rapo la t ion number of a t l e a s t 30 cannot be wholly 
accounted for by a pure mu l t i - t a r ge t p rocess , s ince a t most 10 
nuc le i (average 6) are present in conidiospores of t h i s A.oryzae 
s t r a i n . There are too few data for an exact ex t rapola t ion l i n e , 
but two p a r a l l e l experiments gave s imi la r r e s u l t s . The slope of 
the ex t rapola t ion l ine with A.oryzae i s s teeper than with 
A.nidulans, i nd ica t ing a higher s e n s i t i v i t y of the former. As 
such, a change in s e n s i t i v i t y does not a f fec t the ex t rapo la t ion 
number. 
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So the high extrapolation number and the very extended shoulder 

of A.oryzae indicate a high repair capacity. 

In summary the following prelimary conclusions can be drawn: 

- Repair mechanisms cause initial shoulders in logS-survival 

curves. 

- A higher target number is reflected by a higher extrapolation 

number (logS-intercept). 

- Increase in repair capacity may coincide with increase in 

target number. 

- The extrapolation number cannot be used as an estimator of 

target number. 

2.2.6 DISCUSSION 

When plotting log-survival against irradiation dose, the 

curves show an initial shoulder. This is generally explained as 

resulting from either a multi-target process (n > 1) or a 

multi-hit process (h > 1). The two models are used rather 

indiscriminately in littérature. 

Fig.2.3 compares the effect of increasing target number with 

that of increasing hit number. The graphs are based on Eq.2.3, 

which is the general formula covering all combinations of n and 

h. It is seen that doubling of hit number has a much larger 

effect on the width of the shoulder than doubling of target 

number has. Correspondingly, the intercepts of the linear 

extrapolation lines with the logS-axis increase much more with an 

increase in h than with an increase in n. For h = 1, these 

intercepts give extrapolation numbers equal to the number of 

targets. So, when extrapolation numbers are found which are 

clearly larger than expected on the basis of target number, one 

is inclined to conclude to a multi-hit process, provided no other 

factors are involved in the generation of initial shoulders. 

A.nidulans conidiospores are haploid and uninucleate. 

Moreover, they can be assumed to be in the Gl-phase, which is 

generally the case with resting cells. In work on cell division 

and mitosis in fungi, including A.nidulans, a doubling of DNA 
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content is observed prior to germination of the conidiospores 

(Bainbridge, 1971; Fiddy and Trinci, 1976; Bergen and Morris, 

1983). This indicates that the conidiospores are in Gl-phase 

rather than in the G2-phase, which is a short transient state. 

The results of our experiments with preincubation of conidio­

spores are in agreement with the statement that the spores are in 

Gl-phase. Preincubation results in an immediate increase in 

extrapolation number. In conclusion, the target number of resting 

conidiospores can be put at unity (n = 1). So one is the more 

inclined to ascribe initial shoulders, respectively intercepts of 

logS > 0 to a multi-hit process. Provided, as before, that no 

other factors are involved. 

Now (still if no other factors are involved), a change in k, 

i.e. a change in the dose received in the cells and/or a change 

in the inherent sensitivity of the cells, should have no effect 

on the logS-intercept, regardless the value of n and h. This is 

illustrated in Fig.2.4. 

However, in our experiments on factors modifying k, viz. on 

spore colour and shelter effect (2.2.3.1) and on the age of the 

spores (2.2.3.2), a change in k results in a change of the logS-

intercept. This strongly suggests the involvement of another 

shoulder generating factor. It is clear that a shoulder can be 

generated by an inherent repair capacity of the spores, which 

becomes saturated around a particular UV-dose. It is significant 

that in our graph for varying k-values, the linear extrapolation 

lines intersect at the X-axis, or near it. In other words they 

intersect at the level logS = 0, which is precisely what is 

expected for n = 1 in the case of an effective repair mechanism. 

Fig.2.4 shows for n = 4 a point of intersection well above the 

X-axis, and when repair is included also a shift of the origin 

which corresponds to the effect of repair. 

If repair is the predominant factor causing an initial 

shoulder when resting conidiospores (n = 1) are irradiated, then 

a repair deficient strain is expected to show no shoulder. This 

is confirmed by our experiments with an uvs-strain (2.2.4) which 

gives straight lines running through the origin, or rather inter­

sects the logS-axis even somewhat below the origin. It should 
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be noted that the line of the uvs-strain is much steeper than 

that of the wildtype strain (Fig.2.10), which indicates a higher 

UV-sensitivity. Obviously uvs-strains are selected predominantly 

on the basis of a higher overall UV-sensitivity and in addition 

the present uvs-strain is devoid of the initial repair capacity. 

Finally, the change in slope of the uvs-strain at a point below 

IX survival is probably due to reversion to UV-insensitivity, 

represented by a small fraction of the spores. 

Turning to our experiments on preincubation (2.2.5), it is 

seen that the relationships are complex. One expects an increase 

in target number, when the cells go from Gl (n = 1) to G2 (n = 

2). However, the sensitivity of the cells appeares to increase 

at the same time. This results in a disproportionate increase in 

extrapolation number (Fig.2.14). The increased sensitivity can be 

expected when the treated cells approach the S-phase (Bainbridge, 

1981; Davis et al., 1978; Jansen, 1970; Fortuin, 1971). Themost 

outstanding feature is that the extrapolation lines intersect 

well below the X-axis (see also Fig.2.15). This can only be 

explained when along with increasing sensitivity also the repair 

capacity increases with prolonged incubation. 

Finally, two points should be discussed here which have not 

been mentioned so far. 

In several of the logS-graphs a point is found in the low dose 

region, which is slightly above the X-axis. This means that here 

viability of the spores is somewhat higher than at dose zero. 

There is no unanimity in literature on a stimulating effect of UV 

on spore germination (Griffin, 1984), but for A.niger light 

stimulation has been observed by Kahn (1977) and UV-stimulation 

by Golubtsova et al. (1976). 

In diploid spores, complementation may play a role. The same 

holds for spores in G2 (upon preincubation). It is not likely 

that the majority of lethal lesions is dominant, so a certain 

amount of lesions does not come to expression due to the presence 

of the homologous wildtype alleles. In diploids the shoulders are 

more extended than expected from the target number (n = 2). 
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This extra extension can originate both from extra repair 

capacity and from complementation. Of cou.rse, complementation can 

be understood as 'repair' on the level of expression. So, in 

general the extrapolation number would give an overestimation of 

the target number as illustrated with A.oryzae. 
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2.3 Frequency of mutants 

2.3.0 INTRODUCTION 

Since the yield of mutants per surviving cell in general 

increases with the dose of mutagen, it has often been concluded 

in literature that it is efficient to apply high mutagen doses 

where most spores are killed. 

Since conidiospores of haploid A.nidulans and A.niger are 

one-target cells (see 2.2) it is reasonable to expect that there 

is no need for the application of high mutagen doses in procedures 

for isolation of recessive mutants. In this Section it is studied 

whether low doses UV can be used in general for the induction of 

different types of recessive mutants. 

In general one is more interested in the frequency of mutants 

among survivors ("mutant fraction") than in the frequency of 

mutants among total spores ("mutant yield"). When mutants are 

selected by testing survivors, the frequency of mutants among 

survivors determines how much work is involved in the isolation 

of a certain amount of mutants. However, in this study special 

attention is also paid to the frequency of mutants among total 

spores. 

For studies on mutation induction often a selection system for 

revertants of auxotrophic mutants is used. E.g. Giles (1951) 

working with Neurospora crassa plotted the frequency of reverse 

mutations of two inositol-less mutants against the X-ray dose and 

found a linear relationship. Ashwood-Smith and Bridges (1966) 

used a tryptophane-less strain of E.coli and found that the 

frequency of mutants (revertants) induced by low doses of UV was 

proportional to the square of the dose. However, the majority of 

their revertants were suppressor mutants and the frequency of 

true revertants proved to be linear with the dose (Bridges and 

Munson, 1968). One of the most suitable systems to study mutation 

induction is the red-white adenine system in yeast. Forward 

mutation to adenine-deficiency can be recorded by visual 

inspection. James and Kilbey (1977) used this system to analyze 

whether mutations were single or double stranded. From their data 

it can be inferred that the dose-effect relationship is fitted 
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best by a cubic function. In these experiments mostly low doses 

were used and when the frequency of mutants was plotted against 

the logarithm of the surviving fraction straight lines were 

obtained. Witkin (1956), already pointed out that there was a 

saturation of the mutant yield at higher doses. 

2.3.1 RESULTS 

Different types of A.nidulans mutants were used to study 

mutation induction, firstly resistance mutations since these are 

easy to score. 

From an UV-irradiated suspension of conidiospores from the 

green A.nidulans strain WG094, undiluted samples of 0.1 ml were 

plated in duplo on CM+acriflavin (100 ug/ml) and on CM+benomyl 

(10 ug/ml) in order to score for resistance mutants. Diluted 

samples were plated on CMT for survival. 

In the figures the relative frequency of mutants is expressed 

in two ways: 

a. "mutant yield", i.e. number of mutants as a fraction of the 

total number of spores. See closed symbols and solid lines. 

b. "mutant fraction", i.e. the number of mutants as a fraction of 

the number of surviving spores. See open symbols and dashed 

lines. 

For both acriflavin and benomyl resistent mutants the highest 

yield (solid lines in Fig.2.17) was already obtained at a dose 

corresponding to more than 10% survival. The curves for mutant 

fraction, especially that for acriflavine resistant mutants were 

of a complex nature, but both tend to soon reach a plateau at a 

relative frequency (mutants among survivors) of about 0.1 %. The 

complexicity of these curves becomes even more obvious when the 

relative frequency of resistant mutants is plotted against log-

survival as is usually done in literature (Cf. Fig.2.19). Note 

that the maximum yield of mutants was obtained at relatively high 

survival level. 
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Figure 2.17 Frequency of mutants in A.nidulans WG092!. 
Rela t ive frequency of induced a c r i f l av i ne (100 ug/ml) ( • ) and benomyl 
(10 ug/ml) ( A ) r e s i s t a n t mutants among t o t a l spores ("mutant y i e ld" ) 
and the log r e l a t i v e frequency of mutants among the surv ivors ("mutant 
f r ac t ion" ) ( O r e s p . A ) . 
The s u rv iva l curve has a l so been p lo t t ed ( O ) . 

A s imi lar experiment was done with the paba-def ic ient yellow 
A.nidulans s t r a i n WG096. Acrif lavin r e s i s t a n t mutants were scored 
on CM + 100 ug/ml a c r i f l av in (as before) and on CM + 150 ug/ml 
a c r i f l a v i n . Again, notably for r e s i s t a n t mutants on 100 ug 
a c r i f l a v i n , a complex dose-response r e l a t i onsh ip was found 
(F ig .2 .18a) . For the frequency of mutants among surv ivors , curves 
logy = a . t were f i t t ed (dashed l i nes ) with b = 1.04 (100 ug/ml 
and b = 0.70 (150 ug/ml) r e spec t ive ly and a = 3.1x10 and 

- f\ 3.7x10 r e spec t ive ly . 
In t h i s experiment a l so pabaAl-revertants were scored, but 

t h e i r frequency turned out to be too low for r e l i a b l e e s t imates . 
Therefore an experiment with a somewhat d i f fe ren t procedure 

was ca r r i ed out . At each UV-dose a separa te 12 ml sample from the 
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spore suspension was irradiated. From each sample 10 ml was 

concentrated 10 times (by centrifugation and resuspension in 1 

m l ) , and plated in duplicate on MM. From the remaining non-

concentrated suspension 0.5 ml was also plated in duplicate on 

MM. Diluted samples were plated on CMT for survival count. 

So at each UV-dose a choice between the concentrated and 

non-concentrated platings could be made, to avoid less 

satisfactory counts due to overcrowding on the one hand and too 

low numbers of revertants on the other hand. Among revertants 

always slow and fast growing mutants are found, and therefore in 

these experiments plating numbers asked special attention. 

logSi 

Figure 2.18 Resistant mutants and pabaAI-revertants in A.nidulans WG096. 
a. Experiment in which acriflavine resistant mutants were scored. 
On plates with 100 ug/ml: A mutants among total spores; 

A mutants among survivors; 
On plates with 150 ug/ml: • mutants among totals spores; 

•mutants among survivors. 
b. Experiment in which pabaAI-revertants were scored. 
A mutants among total spores; A mutants among survivors. 
For both experiments the survival curves have been added ( o ). 
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The results are presented in Fig 2.18b. At low doses (1-3 min) 

pabaAl-revertants with nearly wildtype colony growth were found 

in addition to small colonies of irregular shape. At higher doses 

only small and thinly growing colonies were found. The revertants 

with irregular or thin growth are perhaps suppressor mutants with 

poor growth characteristics. At higher doses probably also double 

mutants were present. Three well growing revertants were analyzed 

(not presented) and turned out to be at three non-linked pabaAl-

suppressor loci. 

The function y = atb (with b = 2.1 and a = 20.7 ) fits well 

to the log rel. frequency of pabaAl-revertants among survivors 

(dashed line in Fig.2.17b). 
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Figure 2.19 PabaAl-revertants in A.nidulans WG096. 

a. Data from Fig.2.18, frequency of mutants among survivors was plotted against 

log S. 
b. Same data, but now plotted against log t. 
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Graphs in which the relative frequency of mutants is plotted 

against logS (Fig.2.19a) or against logt. (Fig.2.19b) show a steep 

rise as a result of a scaling effect. This might suggest that 

only at higher doses (or at low survival) it is profitable to 

screen for the wanted mutants. However, the curves in Fig.2.18, 

where log frequency of mutants among survivors is plotted against 

the dose (on linear scale), give a more balanced picture for 

deciding what dose to choose. 

In literature on short dose-ranges it is often found that the 

frequency of mutants among survivors is linear with the duration 

of mutagenic treatment (e.g. K^lmark and Kilbey, 1968; Kilbey et 

al., 1978), but often (e.g. in textbooks) the relationship of 

mutant frequency with dose is represented by plotting the 

untransformed relative mutant frequency among survivors against 

logS or against logt. The curves presented are mostly linear 

(e.g. Bridges and Munson, 1968; Munson and Goodhead, 1977; 

Lawrence and Christensen, 1978). This is at variance with the 

results of the present experiments on the pabaAl revertants where 

no simple linear function is found. (See Fig.2.19a and b for the 

relative mutant frequency among survivors as functions of logS 

and logt respectively.) 

The metGl-system described by Lilly (1965) is often used to 

study mutation induction in A.nidulans (e.g. Scott and Alderson, 

1971; Boschloo, 1985). Therefore we included an experiment with 

this system (strain WG282) to widen the range of mutant types 

studied. In a parallel experiment the conidia were preincubated 

in liquid SM for 3 hours to see whether this influenced the 

frequency of mutants. The two experiments started from the same 

conidial suspension and were carried out in duplicate. 

The results (Fig.2.20) are similar to those of the foregoing 

experiments. Again the maximum number of mutants was obtained at 

a low UV-dose (survival level of about 501). With preincubation 

the cells are more sensitive than without (see logS curves in 

Fig.2.20) and the effect is that the mutant-curve has shifted 

somewhat to the left. However, the relative frequency of mutants 
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Figure 2.20 MetG1-revertants in A.nidulans s t rain WG282. 
O , A Survival curves for conidiospores without resp. with 3h 

preincubation in liquid SM. 
• , • Relative frequency of mutants among to tal spores (viable at t = 0). 

_ _ Curve for the function y= a t b which f i t s for the relat ive frequency 
of mutants among survivors both without and with preincubation. 

among s u r v i v o r s i s about t h e same for w i th and w i t hou t p r e ­

i n c u b a t i o n . A good f i t i s g iven by t h e f unc t i on y = a . t (dashed 

l i n e i n F i g . 2 . 2 0 ) , w i th b = 1.8 and a = 62 for n on -p r e incuba t ed 

s p o r e s , and b = 1.7 and a = 64 for p r e i n cuba t ed s p o r e s . I t can be 

concluded t h a t 3 h p r e i n c u b a t i o n has no e f f e c t on t h e r e l a t i v e 

f requency of mutan ts among s u r v i v o r s . 
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2.3.2 DISCUSSION 

The experiments described in the previous section show that it 

is very well possible to isolate recessive mutants at low mutagen 

doses. Among the acriflavine and perhaps also among the benomyl 

resistant colonies there could be dominant mutants, but from the 

work of Van Tuyl (1977) it is known that benomyl resistant 

mutants mostly are recessive. Also some acriflavin mutants are 

known to be recessive (see Clutterbuck, 1984). For the 

pabaAl-revertants it is shown that the three revertants analyzed 

were recessive. The frequency of pabaAl revertants was low, much 

lower than the frequency of resistent mutants. The reason probab­

ly is that only very specific mutations lead to revertants 

whereas mutations towards resistance are possible at many sites 

in different genes (cf. Roper and Kafer, 1957; Van Arkel, 1958; 

Van Tuyl, 1977). For the metGl-system it is known that most of 

the revertants belong to several classes of suppressor mutants 

(Lilly, 1965; Scott and Alderson, 1971). 

In our experiments no simple relationship between the 

frequency of mutants among survivors and the mutagen dose or the 

logarithm of the survival was found. The linear relationships 

reported in literature (discussed by Munson and Goodhead, 1977; 

Chadwick and Leenhouts, 1976; Balbinder et al.,1983) were 

probably found because only small dose ranges were studied or 

because the curves are based on only few data. As the revertants 

are at different loci, complex relationships may be expected, for 

from our experiments it is seen that the maximum yield is not at 

the same UV-dose with different types of mutants (for complex 

relationship see also Alderson and Hartley, 1969). Furthermore, 

the relative frequency of acriflavine resistent mutants seems to 

be about linear with the effective dose, whereas the frequency of 

pabaAl revertants among survivors is proportional to the square 

of the effective dose. This is in agreement with the value found 

for N.crassa ad3-revertants following diepoxybutane treatment of 

conidia (K^lmark and Kilbey, 1968). The yield of methGl-revert­

ants in our experiments was proportional to or somewhat less than 

the square of the effective dose. 
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At higher doses the curve for the relative frequency of 

mutants among survivors tends to level off or even to decrease. 

This has also been found in Schizosaccharomyces pombe for certain 

chemical mutagens by Heslot (1962; cited by Fincham et al.,1979). 

Graphs in which the relative frequency of mutants is plotted 

against logS (as in Fig.2.19a) or against logt (Fig.2.19b) show a 

steep rise as result of scaling effects. The value of plotting 

the frequency of mutants among survivors against logS or logt and 

especially of plotting its logarithm against logS or logt is very 

questionable. Nevertheless such graphs appear in textbooks 

(Burnett, 1975; Fincham et al., 1979). These transformations 

wrongly suggest that the yield of mutants will always increase 

with the dose and that only at higher doses it is profitable to 

screen for the wanted mutants. 

In conclusion it can be argued that for the induction of 

mutants low doses mutagen are optimal. Maximum numbers of mutants 

were obtained at survival levels above 20% say, but when the 

harmfull effects of high mutagen doses on the genetic 

back-ground are considered, the optimal conditions for mutation 

induction will be at still higher survival levels. In practice we 

prefer to aim at about 80% survival level. When direct selection 

is possible, as is the case with resistance mutants, the 

advantage of low doses is obvious. For auxotrophic mutants the 

situation may be somewhat less pronounced as the frequency of 

mutants among the survivors is a little higher at high doses of 

mutagen. But this advantage does not offset the chance of 

unnoticed double mutations or chromosome rearrangments. The fact 

that at higher doses only small slow growing revertants were 

found in the experiment with WG096, and that a similar tendency 

was observed with metGl-revertants in strain WG282, is a clear 

indication of a distorted genetic background. 

In order to compensate for the low frequencies of mutants 

among the survivors, appropriate enrichment procedures will be 

very useful. These will be discussed in the next section. 
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2.4 Enrichment of mutants 

2.4.0 INTRODUCTION 

A number of distinct enrichment methods have been reported for 

the isolation of auxotrophic mutants of filamentous fungi. The 

most classical one is the filtration enrichment procedure 

developed for Ophiostoma multiannulatum by Fries (1947, 1948) 

and adapted to Neurospora crassa by Woodward et al.(1954) and 

also to several other fungi including A.nidulans (e.g. Roberts, 

1963). In A.nidulans the starvation method has been used too 

(Pontecorvo et al., 1953). Upon the discovery of the penicillin 

technique for E.coli, several suggestions for enrichment of 

fungal mutants by antibiotics were made (Snow, 1966; Bal et al., 

1974; Ditchburn and MacDonald, 1971). When techniques for the 

isolation of protoplast had become available, these protoplast 

were proposed as tools for the isolation of auxotrophic mutants 

(Piedra and Herrera, 1976; Sipiczki and Ferenczy, 1978). 

Several of these procedures have been tested by us for the 

isolation of A.nidulans auxotrophs and other biochemical mutants 

(e.g. mutants unable to use specific carbon sources). In our 

hands none of these procedures gave better results than the 

filtration enrichment procedure. 

In the filtration enrichment procedure the original strain is 

allowed to grow in liquid MM supplemented with the essential 

growth factors. After successive incubation periods the mycelium 

and the germinated conidia are removed by filtering through a 

plug of cotton wool. The spores that pass the cotton woll plug 

are reincubated in fresh medium if desired. Finally the conidia 

are collected and resuspended in a small volume and plated for 

rescue. The resulting colonies are tested for mutant phenotype 

(in addition to the markers in the original strain). 

In order to test this procedure some model experiments with 

A.nidulans and A.niger have been performed. In these model 

experiments, a known quantity (e.g. 0.5D of spores from a mutant 

strain was added to the spores of a "wildtype" strain, which 

carried a marker so both types can be counted upon plating. 
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2.4.1 RESULTS 

In prelimary experiments it was found that the quality of the 

cotton wool plug used for filtration is very important. In a 

funnel (diameter 7 cm) 50 mg cotton wool was applied. The filters 

were sterilized in a pressure cooker, because they become felted 

upon dry sterilization. These filters were compared with layers 

of small-mesh gauze and Miracloth and proved to be the most 

satisfactory. Incubation was in a reciprocal shaker at about 

180-200 strokes per minute. 

A representative model experiment is shown in Fig. 2.21. Here 

conidial suspensions of three A.nidulans strains were mixed in 

order to test the enrichment of two mutant types. A pabaAl 

deficient strain (WG096) served as prototrophic strain and as 
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Figure 2.21. Filtration enrichment in a model experiment with A.nidulans. 
WG096 served as prototrophic strain (o) and WG136 (pyc-deficient: A ) and 
WG176 (ribo-deficient: • ) as mutants. 
Incubation in liquid SM with glucose as carbon source at 37CC in a reciprocal 
shakerbath. 
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mutants we used a pycB4, biAl strain (WG136) and a riboD5, nicA2 

strain (WG179). Conidiospores of the mutant strains (about 0.5 Z) 

were added to the prototrophic strain and incubated in liquid MM 

supplemented for the paba-deficiency of WG096. Upon plating the 

frequency of each of the "mutants" proved to be about 1% (of the 

viable spores). The suspensions were incubated at 37°C. At 

successive time intervals the suspensions were filtered through a 

cotton wool plug. Diluted samples were plated on medium 

supplemented for one of the strains. The conidia of the remaining 

suspension were collected and resuspened in fresh medium and 

incubated for another time interval. 

From Fig. 2.21 it is seen that a mutant which is blocked in a 

major metabolic pathway (i.e. pyruvate carboxylase; WG136) can be 

enriched very efficiently. When only riboflavin was ommitted from 

the incubation medium the frequency of the mutant increased 

first, but later on the relative frequency of the mutant 

decreases, probably due to cross-feeding as only little amounts 

of vitamin are necessary to allow growth. 

In Fig. 2.22 the results of an enrichment experiment with 

A.niger are shown. This fungus has slower growth and an optimal 
o 

temperature of 30 C. In this model experiment an arg-less strain 

was mixed with 0.1^ of a lys-deficient strain. Incubation was in 

MM supplemented with arginine. At successive intervals the 

suspension was filtered through a cotton wool plug, which was 

washed with saline because otherwise part of the conidia stay 

behind. The conidiospores of these A.niger strains had more 

difficulty in passing the cotton wool plug than A.nidulans 

conidiospores. The conidia were collected on a membrane filter 

and resuspended in fresh medium. Then a sample was plated in 

appropriate dilutions for viable count. Fig. 2.22 shows that 

after prolonged incubation (>36h) the frequency of mutant type 

conidia decreases somewhat, but after 24-36 hours a high yield is 

obtained. 

It was also studied whether the filtration enrichment proced­

ure was applicable to multi-target cells. Recessive mutations 

will not be expressed in the resulting heterokaryon and often 

this is met by very high mutagenic treatments in order to 
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Figure 2.22 F i l t r a t i o n enrichment in A.niger . 
Simulation in a model experiment with N408 ( a rg -de f i c i en t ) as p ro to t roph ic (O) 
and N420 ( l y s -de f i c i en t ) as auxotrophic component ( A ) . Incubation in l i qu id MM 
supplemented with a rg in ine a t 30°C in a r e c ip roca l shakerbath. 

i nac t i va t e a l l other nucle i of a c e l l ( e .g . Bergman e t a l . , 
1973). Conidia of A.oryzae were UV-treated and incubated for 
enrichment as usual for A.niger. No mutants were obtained. In a 
s imi lar experiment a segregation s tep was included. After 
UV-irradiat ion the spore-suspension was divided in to 10 por t ions 
of 1 ml. These were each t r ans fe r red to 30 ml cu l tu re f lasks with 
s o l i d i f i ed CM. These cu l tu res were incubated a t 30°C for 4 days 
and spores were co l lec ted from each cu l tu re separa te ly . The spore 
suspensions were t rea ted for enrichment and plated on CMT for 
rescue as u sua l . From one such experiment three d i f fe ren t auxo­
trophic mutants could be obtained. 
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2.4.2 DISCUSSION 

Model experiments with A.nidulans and A.niger showed that the 

filtration enrichment method is very suitable for the isolation 

of auxotrophic mutants. The efficiency of the method depends to 

some extent on the type of mutants, but it proved to be very 

useful for the isolation of mutants with a deficiency in the 

carbon metabolism (Bos et al, 1981; Uitzetter, 1982). Roberts and 

coworkers used a comparable enrichment procedure for the isolat­

ion of carbon metabolism mutants (Roberts, 1959; Armit et al, 

1976; McCullough and Roberts, 1974; Payton et al., 1976). 

For the isolation of auxotrophic mutants which are more 

sensitive to cross-feeding the medium has to be refreshed at 

shorter intervals and the procedure can be continued for a 

shorter time only. As will be shown in Chapter 4 a great variety 

of auxotrophic mutants of A.niger have been isolated by us in 

this way. 

For certain types of mutants the rescue medium may be 

critical: Some essential substance may not be present in CM (e.g. 

tryptophan). It is also possible that certain mutants need extra 

supplementation of CM (e.g. some arg-less and pyr-less mutants). 

With somatic recombination experiments too, the filtration 

enrichment method is very suitable for the isolation of homo­

zygous diploid recombinants (from mitotic crossing-over) in 

addition to haploid recombinants. For genetic analysis of 

A.nidulans (Bos et al., 1981) and also for A.niger (Chapter 4) 

this method could be profitably used. 

The isolation of auxotrophic mutants of A.oryzae was not 

successful if the enrichment procedure immediately followed the 

mutagenic treatment. This can only be expected, because the 

conidia are multinucleate. After introduction of a segregation 

step, however, recessive auxotrophic mutants have been obtained. 

So, there is no need for the application of a high dose mutagen 

to kill nuclei till only one viable nucleus is left. 

60 



2.5 Conclusions 

ad 2.2 

- Semi-logarithmic dose response curves for survival of UV-irrad-

iated conidiospores of A.nidulans have an intial shoulder (at 

low doses) followed by a decline in survival which is linear 

with the dose. 

- Resting conidiospores of haploid A.nidulans and A.niger strains 

are single target cells, so one is inclined to explain the 

initial shoulder by a multi-hit process. 

- However, experiments on the modification of k, viz. or differ­

ences in inherent sensitivity of the spores or differences in 

dose rate received in the spores, clearly indicate the 

involvement of another factor. 

- This factor is the repair capacity of the cell, which becomes 

saturated around a certain dose. This is confirmed by 

irradiation of repair deficient strains, which do not show an 

initial shoulder. 

- In diploid conidia, or conidia which are in G2-phase, or 

multinucleate conidia, the extended shoulder results only for a 

small part from an increased target number and mainly from both 

repair and complementation, which two factors reinforce each 

other. 

- In general the logS-intercept of the linear extrapolation lines 

cannot be used to estimate the target number. 

ad 2.3 

- Studies on mutants frequency showed that for different types of 

mutants the maximum yield is obtained at rather high survival 

levels (20-501). 

- The relative frequency of mutants among survivors increases 

with the mutagen dose, but levels off at higher doses, or even 

declines somewhat. Plotting the frequency of mutants among 

survivors against log t or log S, as is often done in 

literature, wrongly suggests that high mutagen doses are to be 

preferred. 

61 



- Since at higher doses the mutations looked for do not come by 

themselves, but are present in a distuxbed genetic background, 

it is advisable to use doses giving high survival levels (e.g. 

70-801), and to limit the number of rounds of mutations 

induction in a strain to a minimum. 

- For combining different mutant genes in a strain recombination 

procedures are to be preferred. 

ad 2.4 

- To compensate for the lower frequency of mutants among 

survivors, appropriate filtration enrichment procedures can be 

succesfully used for different types of mutants. 

- With fungi with multinulceate spores a segregation step can be 

introduced, which will uncover the récessives present. This 

can be followed by enrichment procedures. 
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3. Somatic recombination 

3.0 Introduction 

In phytopathogenic imperfect fungi somatic recombination is 

important for the evolution of physiological races. Mutations in 

virulence and pathogenicity can be maintained and recombined, 

thus providing genetic flexibility. Mitotic crossing-over allows 

recombination even of tightly linked genes. 

Prerequisites for somatic recombination are heterokaryosis 

and the formation of heterozygous diploid nuclei. In fact hetero­

karyosis is the first phase of somatic recombination because in a 

multinucleate organism it allows combination and recombination of 

whole nuclei. Heterokaryons are formed by hyphal fusions 

(anastomoses) followed by exchange of nuclei from genetically 

different strains. When heterokaryons only produce uninucleate 

conidiospores, the heterokaryotic condition can not be maintained 

via these spores, as they give the parental types only. More 

details of the process of somatic recombination have been given 

in Chapter 1. 

In several fungi heterokaryosis and karyogamy have been 

observed. First in A.nidulans and A.niger (Roper, 1952; 

Pontecorvo et al., 1953) and later also in Aspergillus oryzae 

(Ishitani and Sakaguchi, 1956), A.flavus (Papa, 1973, 1976), 

A.parasiticus (Papa, 1978), Verticillium albo-atrum (Hastie, 

1964, 1967), Fusarium oxysporum (Buxton, 1956; Garber et al., 

1961), Pénicillium chrysogenum (Pontecorvo and Sermonti, 1953, 

1954; MacDonald et al., 1963), Cochiobolus sativus (Tinline, 

1962). Heterokaryosis is also well known in Neurospora crassa 

(Garnjobst 1953, 1955). Since the review on fungal flexibility by 

Hansen (1938), several reviews on heterokaryosis and 

parasexuality in fungi have been published (Bradley, 1962; 

Parmeter et al., 1963; Tinline and MacNeill, 1969; Caten, 1981). 
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Jinks (1952) pointed out that heterokaryosis is a system for 

adaptation in wild fungi, and it was recognized that it might be 

important in plant pathology as an adaptive system by Buxton 

(1960) and Johnson (1960). 

Köhler (1930) was perhaps the first to study anastomosis in 

imperfect fungi (e.g. Botrytis, Fusarium). Since then anastomoses 

have been observed in many imperfect fungi. In Fusarium 

anastomoses occur only at a certain distance from the border of 

the colony (Dickinson, 1932). In Verticillium on the other hand 

also fusion between germ tubes of conidia has been observed 

(Schreiber and Green, 1966). In Helminthosporium fusion has been 

observed just behind the hyphal tips (Hrushovetz, 1956). Hoffmann 

(196 ) studied the frequency of anastomosis between different 

types of hyphae in Fusarium oxysporum. About two third of the 

fusions was between older parallel situated and less than kl 

between younger hyphae near the tip. 

Although the possibility of hyphal fusions does not depend on 

generative compatibility systems, notably in Aspergillus 

nidulans, several heterokaryon compatibility groups have been 

found (Caten and Jinks, 1966). Sometimes anastomosis can proceed, 

but is followed by an incompatibility reaction resulting in cell 

death. This phenomenon has been mainly studied in Neurospora 

crassa (Garnjobst, 1955; Garnjobst and Wilson, 1956). In these 

cases anastomosis took place but no plasmogamy followed. 

Vegetatively incompatible A.nidulans strains might produce 

heterokaryons upon prolonged incubation under selective 

conditions (Dales et al., 1983). 

Heterokaryosis sometimes is also possible between species. 

Hansen and Smith (1932) found interspecific fusions between 

Botrytis allii and B.ricini, Uchida et al. (1958) between 

Aspergillus oryzae and A.sojae and Hastie (1973) between 

Verticillium albo-atrum and V.dahliae. 

For studying heterokaryosis, auxotrophic mutants are essent­

ial, and the fungus should grow on simple synthetic media (MM). 

For analyzing somatic recombination the conidiospores should be 

unicellular and uninucleate. 
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The imperfect fungus Colletotrichum lindemuthianum met these 

requirements. It is the causal organism of bean anthracnose, and 

therefore it was attractive to study the genetic basis of its 

phytopathogenicity. There was ample information on its races and 

on resistance in beans (e.g. Barrus, 1918; Bannerot, 1965; 

Hubbeling, 1961; Kruger et al, 1977). Physiological races could 

be obtained from the collection at Wageningen (Hubbeling, 

Instituut voor Plantenziektenkundig Onderzoek, Wageningen, The 

Netherlands). 

Much effort was spent to study somatic recombination of C. 

lindemuthianum in vitro. However, it turned out that a number of 

features of this fungus interfered with the interpretation of the 

experimental results. The conidiospores are large and contain 

much reserve material, so auxotrophic strains may have some 

growth on MM. On the ohter hand germination percentage of the 

spores is low, even on CM, and the viability of cultures 

decreases rapidly with time. 

It was difficult to distinghuish between heterokaryosis and 

cross-feeding. Of course the isolation of heterozygous diploids 

would provide proof for heterokaryosis, but such diploids could 

not be found with certainty either (see further 3.2). 

Therefore we resorted to Aspergillus nidulans as a model 

organism.. Its genetics is well established (Pontecorvo et al., 

1953; Käfer. 1958,1977), it has both mitotic and meiotic recombin­

ation, and many markers are available in the extensive strain 

collection at Glasgow University and in the Fungal Genetic Stock 

Centre (FGSC, Humbold State University Foundation, Areata). 

A.nidulans is known to form balanced heterokaryons (Jinks et al., 

1966). Between different wildtype isolates heterokaryon 

incompatibility is found (Jinks and Grindle, 1963; Grindle, 1963; 

Jinks et al., 1966). This type of incompatibility is found 

generally (Esser and Blaich, 1973). 

The problem of crossfeeding can be avoided by making hetero­

karyons via protoplast fusion. Fusion between two protoplasts 

from genetically different strains will unambiguously lead to 

heterokaryons. Moreover, by using protoplasts, natural 

heterokaryon incompatibility between unrelated strains may be 
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bypassed (Dales and Croft, 1979; Kevei and Peberdy, 1983) and 

even fusion of protoplasts from different (related) species may 

lead to heterokaryons (Ferenczy et al., 1977; Kevei and Peberdy, 

1977; Mellon et al., 1983). Protoplast fusion between unrelated 

species may be usefull for exchange of mitochondria or for virus 

transmission (Ferenczy, 1981; Kaiying and Pingyan, 1984). 

Methods for protoplasts isolation and fusion in A.nidulans are 

presented in the Sections 3.3. and 3.4, respectively. Section 3.5 

gives the application of this method to C.lindemuthianum. 
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3.1 Materials and methods 

3.1.0 ORGANISMS AND STRAINS 

The following A. nidulans strains descending from Glasgow 

strains were used. Gene symbols are according to Clutterbuck 

(1984); markers on different chromosomes separated by a 

semicolon. 

WG019 biAl; AcrAl; phenA2 (biotin; phenylalanine requiring, 

acriflavin resistant) 

WG021 yA2; AcrAl; lysB5 (yellow conidia; acriflavin; lysine) 

WG076 yA2; nicA2, riboD5 (yellow; nicotinamide, riboflavin) 

WG093 pabaAl, yA2; AcrAl; pyroA4 (p-aminobenzoic acid, yellow; 

acriflavin; pyridoxin) 

WG132 pabaAl; wA3, AcrAl; pyroA4 (p-aminobenzoic acid; white, 

acriflavin; pyridoxin) 

WG179 yA2; nicA2, riboD5 (yellow; nicotinamide, riboflavin). 

Colletotrichum lindemuthianum strains were kindly provided 

by Dr. N. Hubbeling (IPO, Wageningen). They represented different 

physiological races, C409: alpha and C420: gamma. From these 

wildtypes auxotrophic mutants were isolated by UV-mutagenesis at 

about 0.1-1% survival. At that time, the experiments described in 

Chapter 2 had not been carried out yet, so we still used survival 

levels customary in literature. 

C409-20 pro (proline requiring) from C409 

C409-36 ade (adenine) from C409 

C409-41 pro, thr (proline, threonine) from C409-20 

C409-45 arg, lys (arginine, lysine) in two steps from C409 

C409-47 arg, lys, azg (arginine, lysine, azguanine-resistant) 

from C409-45 

C420-08 arg (arginin) from C420 

C420-10 pro, cys (proline, cysteine) in two steps from C420 

C420-12 pro, cys, azu (proline, cysteine, azauracil-res.) from 

C420-10 

Strains of Cladosporium cumerinum, Aspergillus carbonarius, 

A.niger, Fusarium culmorum and Pénicillium expansum were provided 

by the Department of Phytopathology (Agric. Univ., Wageningen). 

For the production of lytic enzymes Oerskovia xanthineolytica 

(ATCC 27402) was used. 
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3.1.1 MEDIA 

The fungi were grown on complete medium (CM), minimal medium 

(MM), supplemented MM (SM) and malt extract agar (ME),the 

compositions of which are given in Section 2.1.1. In addition a 

liquid synthetic medium (SG) was used that was suitable for spore 

germination. For C.lindemuthianum a peptone medium (M) advised by 

Mathur et al. (1950) and a medium with ureum as nitrogen source 

(C3) were used. The compositions of these media are per litre 

demineralized water: 

SG: 0.05 g MgS04.7H20 

0.15 g KH2P04 

0.05 g KCl 

0.04 g NH,N0o,the salt solution was adjusted to pH 6.0 

0.6 g glucose (added as filter sterilized solution). 

M: 1.23 g MgS04.7H20 

2.72 g KH2P04 

2.0 g neopeptone (Difco) 

2.8 g glucose . 

C3: 1.23 g MgS04.7H20 

2.72 g KH2P04 

1.0 g NaCl 

0.75 g ureum 

trace FeSCv and ZnS04 

1.0 g inositol 

1.0 g sorbose 

4.0 g glucose . 

The filter sterilized carbon source was added separately; solid 

media contained 1.5 % agar, soft agar media 0.8X. The media were 

adjusted to pH 6.0 and sterilized by autoclaving for 20 minutes. 

Aspergillus nidulans cultures were grown for 3 days at 37°C, 

A.niger 4 days at 30°C, C.lindemuthianum 12-14 days at 22°C and 

Oerskovia xanthineolytica at 30°C. 

Aspergillus cultures could be stored at 4°C for months but 

usually the cultures were kept at 4°C for 3 days prior to 

experimental use. . The strains were preserved by' storage of 

conidia on silicagel as described in 2.1.0. 
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Oerskovia cells were preserved by lyophilisation and from 

these fresh start plates on nutrient agar were made. Details are 

given in 3.1.5. 

With the maintainance of C. lindemuthianum cultures several 

difficulties arose. The viability of cultures diminishes strong.ly 

after 3-4 weeks, also upon storage at 4°C C.lindemuthianum 

conidia did not survive storage on silicagel. A method for 

lyophilization could be developed which maintained viability: 

Spores from 12-14 day old cultures are suspended in a 

lyophilization medium containing 752 (w/w) egg albumin solution 

(50 g powdered soluble egg albumin (Merck) in 75 ml demineralized 

water and decontaminated by centrifugation at 15.000 rpm for 20 

min ), 10 2 glucose, 10 1 glycerol and 5 2 sodium glutamate. See 

further 3.2.0. 

In general conidial suspensions were made in 0.82 (w/v) saline 

containing 0.0052 (w/v) Tween-80. For Aspergillus strains the 

suspensions were vigorously shaken during 10 min to break 

conidial chains. Suspensions were subsequently filtered through a 

cotton wool plug to remove mycelial debris. 

Prior to experimental use conidial suspensions of A. nidulans 

and A.niger usually were kept in saline overnight at 4°C. With 

the other fungi always fresh suspensions were prepared. 

Each series of experiments started from monospore cultures 

which had been tested for genetic markers previously. 

3.1.2 HETEROKARYONS 

Aspergillus nidulans heterokaryons were made following 

Pontecorvo et al. (1953). Conidia of two strains with different 

auxotrophic markers were mixed in 2 ml liquid complete medium and 

incubated at 37°C for one day. Pieces of the resulting mycelial 

material were transferred to MM plates and incubated at 37°C for 

4 to 5 days. The usually poorly growing mycelium incidentally 

produced vigorously growing sectors. Uniformly growing balanced 

heterokaryons were obtained by transfer of pieces of such sectors 

to MM plates. For A.niger a longer incubation period at 30°C was 

used and the MM plates were incubated at 30°C too. 
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Attempts to establish heterokaryons in C.lindemuthianum were 

made by combining conidia from two auxotrophic strains in liquid 

CM at 22°C for 4 days. The mycelium was then collected on a 

membrane filter (0.45 um) to remove nutrients and washed with 

saline. Pieces of mycelium were transferred to MM plates and 

incubated at 22° C for 14 to 20 days. As a control the parental 

strains were treated separately in the same way. 

3.2.3 ISOLATION OF DIPLOIDS 

For the isolation of heterozygous diploids from heterokaryons 

a suspension was made of conidia from a heterokaryon in saline/ 

Tween as described earlier. Viability counts were done by plating 

a diluted suspension on CM. Diploids were isolated by plating a 

concentrated suspension in MM with a thick MM toplayer as 

described by Pontecorvo et al. (1953). In some'experiments with 

A.niger 0.5 or 1 ml aliquots of a concentrated suspension were 

mixed with 10 ml soft MM-agar (0.8 % agar; 45°C) and plated in a 

toplayer on MM bottoms. In this way diploid colonies will appear 

well before heterkayons arise due to the dense plating. 

3.1.4 MICROSCOPICAL EXAMINATION OF ANASTOMOSIS 

Several methods were tried for microscopical examination of 

anastomosis (the onset of heterokaryosis). Two of these were 

satisfactory. 

a. Microscopic slides. Slides covered with a thin layer of MM 

were inoculated with spores by means of a thin cotton thread 

soaked in a spore suspension. The two strains were inoculated at 

a distance of about 3 mm. The slides were incubated in a Petri 

dish on two glass rods with some sterile water on the bottom 

preventing drying. 

b. A Moist chamber method. Anastomosis can also be observed 

in a hanging drop. On a microscopic slide a perspex ring is 

mounted with silicone grease. A cover glass with a hanging drop 

inoculated at opposite sites is placed on the ring. At the bottom 

of the chamber some water is present. 
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3.1.5 LYTIC ENZYMES 

For the isolation of protoplasts from conidiospores the lytic 

system used was a combination lytic enzymes excreted by 0. 

xanthineolytica (Mann et al., 1972) grown on A. nidulans cell 

wall material and glucanases, either glucanases containing 

autolytic enzymes from Aspergillus (Zonneveld, 1972) as used by 

Van den Broek et al. (1979), or commercial glucanases. Portions 

(5 ml) of the enzyme preparations were either frozen and kept at 

-80 °C, or freeze-dried, which gave no noticeable loss of 

activity over a period of 2 years. 

The Oerskovia enzymes were obtained from shake cultures by 

precipitation with ammonium sulphate; the yield was 20-25 ml of 

enzyme from 1.8 1 of culture filtrate at a concentration of 0.5-1 

mg protein/ml determined by the Lowry reaction. The Aspergillus 

glucanases were isolated from plate-grown Aspergillus and the 

yield per plate (9-cm diameter) was 6-8 ml. In later experiments 

the Aspergillus glucanases were replaced by ô-glucanases from 

Pénicillium emersonii purchased from British Drug Houses Ltd. 

3.1.6 PREPARATION OF PROTOPLASTS FROM CONIDIOSPORES 

Protoplasts were prepared from conidia that were pre-incubated 

in liquid minimal medium (pH 6.0) supplemented with the essential 

growth factors and 2-deoxy-D-glucose (25 ug/ml). This minimal 

medium (CP) was essentially the same as the minimal medium of 

Pontecorvo et al. (1953), except that now 5.9 g/1 sodium citrate 

and 1.0 g/1 sodium pyruvate were added. Occasionally also a 

medium (SG) very suitable for spore germination was used. 

Preincubation of the conidia (10 /ml) was at 37°C for 3 h in 

a reciprocal shaking bath (180 oscillations/min). Shaking is 

necessary to avoid clumping of conidia. After this period the 

conidiospores from 50 ml suspension were collected on a membrane 

filter (0.45 um) and resuspended in 2 ml buffer (pH 6.5) 

containing 10Z (v/v) Oerskovia enzyme and either Aspergillus 

glucanases (101, v/v) or commercial Pénicillium glucanase (0.1 

mg ml). The buffer consisted of 0.2 M KH2P0,, 0.4 M (NH4)2S04and 

0.5 mM CaCl2 .2H20, adjusted to pH 6.5 with 1 M KOH. Addition of 

(NH,)„S0, to the mixture prevented the disruption of protoplasts. 
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After 3 h of incubation at 30°C in a shaker bath (120 oscillat­

ions / min) most of the conidiospores were converted into 

protoplasts. 

3.1.7 PURIFICATION OF CONIDIAL PROTOPLASTS 

In order to remove conidia and cell wall fragments, approxi­

mately 1 ml of the protoplast suspension was layered on 7 ml of a 

301 or 35% (w/v) sucrose solution in a glass tube and centrifuged 

in a swing-out rotor at 1200 rpm for 20 min. The conidia and cell 

wall fragments sedimented, while the protoplasts banded at the 

interface between buffer and sucrose. They could easily be 

withdrawn with a Pasteur pipette, and stabilizing buffer (usually 

0.6 M KCl according to Ferenczy et al., 1976) was added stepwise 

up to a final volume of 5 ml. After 20 min the protoplasts were 

recollected by centrifugation at 4000 rpm and resuspended in 

fresh stabilizing buffer. 

3.1.8 COUNTING AND MEASUREMENT OF PROTOPLASTS AND CONIDIA 

The counting of conidia and protoplasts was carried out with 

a Coulter counter (model ZF with channelyzer), using 0.6 M KCl as 

electrolyte in order to stabilize the protoplasts. The 

distribution patterns were based on the volume of the particles. 

For calibration, latex particles of 8.07 um diameter were used. 

The process of protoplast formation was followed by microscopical 

inspection of samples in a haemocytometer, thus allowing a rough 

estimate of the number of protoplasts released. The viable proto­

plasts and conidia were determined by plating on complete medium, 

with or without 0.4 M KCl as stabilizer. 

3.1.9 STAINING OF NUCLEI IN PROTOPLASTS 

Protoplasts were stabilized with 0.6 M KCl and fixed with a 

solution of 0.25% (w/v) glutaraldehyde (Miegeville and Morin, 

1977) in 0.6 M KCl for 20 min. The fixative was removed by centri­

fugation and the protoplasts were washed with demineralized 

water. A drop of the protoplast suspension was placed on a slide 

and freeze-dried. Then the dried protoplasts were stained with 

lacto-acetic orcein {2% w/v orcein in a 2:1 mixture of acetic acid 

and lactic acid). 
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3.2 Heterokaryosis in Colletotrichum lindemuth-
ianum 

3.2.0 EXPERIMENTS TO IMPROVE VIABILITY OF STRAINS 

Genetical and physiological experiments with Colletotrichum 

lindemuthianum were hampered both by problems in maintaining the 

strains and by the low germination frequencies of the 

conidiospores. 

When stock cultures are maintained by monthly transfer of 

conidiospores there is a strong selection favouring the 

production of conidia, but other characteristics like auxotrophic 

markers or virulence may be lost. Germination percentage was as 

low as 10X (sometimes 20%) and when cultures of C.lindemuthianum 

were stored for four weeks at 15°C germination decreased to 101 

of the original germination frequency. Storage at 4°C resulted in 

even lower viabilities. C.lindemuthianum did not survive storage 

on silicagel, the standard procedure for many fungi. 

Lyophilization as used for fungi (cf Hesseltine et al., 1960) 

O glycerol, 
without glucose 

A glucose, 

in the presence of 
5% glycerol 
glucose 

A glucose, 
without glycerol 

10 15 % glucose / glycerol 

Figure 3.1 Effect of glycerol and glucose on lyophilization of C.lindemuthianum. 
Conidia of C.lindemuthianum (strain C409) were lyophilized in albumin-glutamin-
ate medium with varying concentrations of glucose and/or glycerol. 

73 



was not possible either. Therefore we looked for a method of 

lyophilization in which a certain amount of bound water was 

maintained. 

Empirically we found that lyophilization of a suspension of 

conidia in a concentrated egg-albumin solution containing 102 

glucose, 51 sodium glutaminate and 10Z glycerol resulted in high 

survival. The experiments on the composition of this preservation 

medium will be published in detail elsewhere. Here the effects of 

glycerol and glucose are shown (Fig.3.1). When small samples of 

0.04 ml were dryed, freezing was not necessary. Routinely some 

samples were used for the determination of survival after a few 

days or a week. Usualy a survival of 50-80 % was found. These 

batches could be stored for more than 15 years without loss of 

viability. 

During the search for a medium that allowed higher plating 

efficiency the medium used for Aspergillus nidulans (Section 2.1) 

proved to be superior to that proposed for C.lindemuthianum by 

Mathur et al.(1950). Especially on MM the colonies sporulated 

much better than on Mathur's medium, and also the viability of 

conidia harvested after some weeks was better. A modified com­

plete medium based on that from Mathur et al.(1950) was used too. 

In Fig. 3.2 the results of a growth experiment with different 

media are shown. In this experiment the fungus was grown in 30 ml 

vials with 10 ml of medium. After some time of incubation at 22°C 

conidia were collected in saline-Tween and plated on CM for 

viable count, as on this medium the germination of conidia was 

the highest and the colonies could be counted very well. On CM 

the colonies could be counted after two days; on MM a day later. 

Colonies varied in size due to asynchronous germination. 

Germination in liquid media was studied too. Besides saline 

and liquid MM, a medium (SG) with a lower salt concentration and 

less nitrogen, including different glucose concentrations were 

tested. After a few hours of incubation samples taken and 150 -

200 conidia were scored microscopically for germination. Conidia 

with a germination tube of half the width of the conidium were 

scored as germinated. The results are summarized in Fig.3.3. 
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The low s a l t medium (SG) (see F ig .3 .3 C,D) gave the best r e s u l t s . 
This l iqu id medium was used for incubations of spores in the 
experiments to follow. 

100 

Media: 

C3 

MM 

CM 

0.01 ir 

days 

Figure 3.2 V iab i l i t y of conidia frown on d i f f e r en t media. 
C.lindemuthianum ( s t r a i n C409) was grown on d i f f e r en t media for 16-28 days a t 
22°C. Conidiospores were harvested a t success ive times and p la ted on CM for 
v i a b i l i t y count . 

80 

c 60 o 

H 40 

40 

• 32 h 

M 24 h 

• 18 h 

D 

Figure 3.3 Germination of C.lindemuthianum conidia in liquid media. 
Conidiospores wre harvested from 12 days old cultures grown at 22°C. 
Conidiospores were incubated in liquid media (10 ml) in a shakinhg waterbath at 
22°C and scored for germination after 18, 24 and 32 h. 
Incubation media: 
A. MM + 0.06% glucose C. SG + 0.06% glucose E. Saline 
B. MM + 0.6% glucose D. SG + 0.6% glucose F. Saline without vitamins 
All media except F contained 0.5% (v/v) vitamin solution (as used in CM). 
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3.2.1 ATTEMPT TO INDUCE HETEROKARYOSIS 

A combination of two double auxotrophic strains of C.linde-

muthianum C409-45 (arg, lys) and C420-10 (pro, cys) was inocu­

lated in liquid CM (i.e. without agar) and after four days at 

22°C the mycelium was collected on a membrane filter and 

thoroughly washed with saline. Pieces of mycelium were trans­

ferred to MM plates and incubated at 22°C for 14 days. Growth 

was as good as that of wildtype mycelium. In a control 

experiment with the separate strains no growth was observed. 

(Fig.3.4). 

Figure 3.4 Attempt to force heterokaryosis of auxotrophic strains of C.linde-

muthianum on MM. 
In the middle: a combination of strains 0409-45 and C420-10; left strain C409-
45; right C420-10 
Pieces of mycelium transferred to MM; incubation for 14 days at 22°C. 

It now had to be tested whether the good growth is due to 

heterokaryon formation or to cross-feeding. Heterozygous 

diploids could provide proof for heterokaryosis. 

From the putative heterokaryon conidia were collected in 

saline and 10 conidia were plated in a double layer MM as for 

Aspergillus nidulans (cf 3.1.3). After incubation for 11 days at 

22°C only a few very slowly growing colonies could be observed. 

These colonies sporulated very badly, only a few spores were 

found after incubation for 3 weeks. These had according to 

Coulter counter determination a slightly larger volume than 

those of the parental strains. 

In a similar experiment with the strains C409-47 <arg, lys, 

azg) and 420-12 (cys, pro, azu) putative heterokaryons were also 

obtained, whereas mycelium of separate strains showed no growth. 
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3 . 2 . 2 MICROSCOPIC CHEQUE ON ANASTOMOSIS 

In t h e p r eceed ing expe r imen t s i t was no t p o s s i b l e t o p rove 

whether t h e presumed h e t e r oka r yon s were r e a l h e t e r oka r yon s o r 

mimicked by c r o s s - f e e d i n g . The r e fo r e t h e p roces of a nas tomos i s 

was s t u d i e d by m i c r o s cop i c a l e xamina t i on . The mois t -chamber 

method was more s a t i s f a c t o r y t han growth on m ic roscop ic s l i d e s 

Mois t -chambers were i n o c u l a t e d a t o p po s i t e p o i n t s w i t h s t r a i n 

C409-20 and C409-36 r e s p e c t i v e l y . These two s t r a i n s d i f f e r i n 

t ype of myce l i a l growth so t h a t t h e hyphae cou ld be r e cogn i zed 

a t t h e bo rde r of c o n t a c t . Wi th in s t r a i n C409-20 hyphal f u s i ons 

were observed very f r e q u e n t l y , a l s o between younger hyphae . In 

s t r a i n C409-36 hyphal f u s i ons were only observed between o l d e r 

hyphae , i . e . i n a r a t h e r dense network of mycelium. Also t h e i r 

t ype of fus ion b r i d g e s d i f f e r e d as i s i l l u s t r a t e d i n F ig 3 . 5 . 

Figure 3-5 Types of i n t r a - s t r a i n anastomoses between hyphae of C.lindemuthianum 
Left : s t r a i n C409-2O; r i g h t : s t r a i n C409-36. ^J-inaemuthianum. 

and U ^og l36 I n t e r ~ S t r a l n a nas tomos is between C.lindemuthianum s t r a i n s C409-20 

Two observat ions in moist chamber. Lef t : the ove r a l l p i c t u r e ; r i g h t (see arrow) 
the anastomosis in d e t a i l . <muw, 
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Microscopic examina t ions r e v e a l e d only few c a s e s of a n a s t o ­

mosis between t h e two s t r a i n s . They can only be seen du r i ng t h e 

t ime t h a t t h e s t r a i n s make c o n t a c t w i th each o t h e r and t h e 

myce l ia a r e no t y e t i n t e rwoven . F i g . 3 . 6 shows t h e s h o r t b r i d g e s 

observed between two s t r a i n s ( r a c e s ) . 

Within s t r a i n C409-20 t he p r o c e s s of anas tomos i s cou ld be f o l ­

lowed more c l o s e l y . In F i g . 3 . 7 two e ven t s of anas tomos i s a r e 

shown. At a g iven moment two n e i ghbou r i ng hyphae form b ranches 

which approach each o t h e r . When t h e hyphae change t h e i r p o s i t i o n 

a l i t t l e , t h e b ranches seek each o t h e r a g a i n . In mycelium of a 

few days o ld many anas tomoses connec t t h e d i f f e r e n t hyphae 

g i v i n g a s o l i d n e t -work . 

Figure 3-7 The process of anastomosis .:. J.iindemuthianum (C409-20). 
Anastomosis in a moist chamber in a drop liquid CM at 22 °C. 
Upper and lower row: two different modes of the development of anastomoses. 
Pictures at time intervals of about 1 h. 
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3.2.3 RENEWED ATTEMPT TO INDUCE HETEROKARYOSIS 

As hyphal fusions could be observed indeed, it was attractive 

to study once more the possibility of karyogamy and the 

distinction of heterokaryosis and cross-feeding. This was now 

done by combining the strains C409-47 (arg, lys, azg) and 

C420-12 (cys, pro, azu). These strains each have a marker for 

resistance against an antimetabiolite in addition to two 

auxotrophic markers (see 3.1.0). The resistance markers however 

were not satisfactory for selection. The two strains were 

derived from two different wildtype isolates (races). 

After 30 days of incubation at 22°C the presumed hetero-

karyons had sufficient conidia. The conidia were collected and 

plated in a MM toplayer on a MM bottom-layer and not in a double 

layer as in the preceeding experiment (3.2.1) because of the 

slow growth of colonies in the double layer. After 30 days 

colonies arose on MM, with a frequency of 0.0012 while the 

germination on CM was 82 (Table 3.1, Exp.l). From one presumed 

diploid colony on MM spores were collected and plated on 

different media (between brackets the percentage viable count): 

MM (3.32), MM+arg+lys (3.62), MM+pro+cys (3.02) and on SM (2.02) 

(see Table 3.1). All spores seem to grow on MM as may be 

expected from a heterozygous diploid. However, from determin­

ation with the Coulter Counter, the size of the conida of the 

'diploid' was intermediate between that of the parental strains, 

instead of much larger as expected for diploid cells (diameter 

conidia C409-47: 120 um3; C420-12:100 um3; presumed diploid: 115 

um3) . 

From the MM plates mycelia of 95 presumed diploid colonies 

were transferred to CM+fpa (2mg p-fluorophenylalanine/ml CM to 

induce non-disjunction). As no colour markers were present the 

segregants could not be purified in the usual way of manual 

transfer. Therefore from 10 sectors (i.e. from 10 different 

colonies with segregation sectors) small samples of spores were 

each plated on media supplemented for each of the parental 

strains (SMA resp. SMB), on MM and on complete SM. None of them 

gave colonies on MM and on the other media about the same 

frequencies were found. The average results were (between 
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brackets the frequency of colonies on the basis of number of 
spores p l a t ed ) : MM (0.0%), MM+arg+lys (0.081), MM+pro+cys 
(0.05%) and on complete SM (0.10%) (see Table 3 . 1 : "from 
CM+fpa"). 

In t o t a l 100 colonies on complete SM (10 from each segregat­

ing sec tor) were t es ted for auxotrophic markers with as 

(average) r e s u l t 35 of one paren ta l type (C409-47), 60 of the 

other (C420-12) and 5 gave no growth a t a l l (probably due to 

poor t r ans fe r ) (see Table 3 . 1 : from SMAB). Only parenta l types 

were recovered, whereas i t i s un l ike ly tha t a l l four markers are 

on the same chromosome. 

Tab l e 3 - 1 - A n a l y s i s of p o s s i b l e d i p l o i d s o f C . l i ndemu th i anum. 

Exp . S t r a i n s % h e t e r o - % g rowth on d i f f e r e n t media w i t h o o n i d i o s p o r e s from 
ka ryon ' d i p l o i d ' 1 CM+fpa SMAB*) 

MM CM MM SMA SMB SMAB MM SMA SMB SMAB A B 

1 C409-47 0.001 8 3.3 3-6 3-0 2.0 0.0 0.08 0.05 0.10 35 60 
C420-12 

2 C4Q9-47 0.0001 12 0.6 0.3 15.8 14.5 0.1 0.8 0.1 0.8 4 96 
C409-41 

*) by t r a n s f e r ; o ther t e s t s by p l a t i ng con id ia . 
SMA = MM + arg + lys ; 
SMB = MM + pro + cys (Exp.1) resp. thr (E.xp.2); 
SMAB (complete SM) = MM + arg + lys + pro + cys (Exp.1) resp. thr (Exp.2). 

In a parallel experiment C409-47 was combined with C409-41 

(mutants derived from the same wildtype isolate). The results 

were more or less similar (Table 3.1: Exp.2). The frequency of 

presumed diploids was even lower than in Exp.1 where strains of 

different origin were used, and one parental type was in great 

excess. It was, also here, not possible to isolate recombinants. 

3.2.4 COMPARISON WITH A.NIDULANS HETEROKARYONS 

As in, the C .lindemuthianum heterokaryons several contra 

dictory features were observed, A. nidulans heterokaryons wer 

studied for comparison. Auxotrophic strains of this fungus are 

known to form very homogeneous balanced heterokaryons on MM. 

Strains with strong amino acid deficiencies (lysB5 and phenA2 

respectively) were used in order to avoid cross-feeding. 

Heterokaryons from the A.nidulans strains WG019 and WG021 can be 

e 
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maintained by transfer of pieces of mycelium from the border of a 

heterokaryon. However, when hyphal tips of about 2 mm were cut 

off and transferred to MM only 10Z of these hyphal tips produced 

colonies. For control, hyphal tips from the same regions were 

also transferred to CM with as result that 90X were viable. This 

experiment shows that also in a homogeneous heterokaryon of A. 

nidulans there is a continuous segregation of parental hyphae. 

As the colonies can be maintained as balanced heterokaryons, 

even by transfer of pieces mycelium from the border of the 

colony, it is assumed that new heterokaryotic hyphae are 

currently formed by anastomosis. So, it can be assumed that even 

a balanced A.nidulans heterokaryon consists only partly of 

heterokaryotic hyphae. 

From these heterokaryons heterozygous diploids were isolated. 

The frequency of heterozygous diploid conidia was 5.10" . If a 

heterokaryon contains many homokaryotic hyphae, the frequency of 

somatic karyogamy will be much higher than is deducted from the 

frequency of heterozygous diploid conidia. 

This experiment shows that it may be difficult to prove the 

excistance of heterokaryons in C.lindemuthianum by analysis of 

colony growth on MM. 

3.2.5 DISCUSSION 

In section 3.2.2 the term presumed heterokaryon was used for 

simplicity since it had to be proven that the colonies concerned 

were real heterokaryons. The best proof for the existance of a 

heterokaryon is the isolation of heterozygous diploid conidia. 

Although in these experiments no unambiguous proof was obtained 

for the occurrence of somatic recombination in C.lindemuthianum, 

it is probable that at least heterokaryosis occurs. When two 

complementary double auxotrophic strains were grown on MM, 

colonies were formed with a phenotype as expected for a 

heterokaryon. As no good colour markers could be included, it 

could not be visually assessed how homogeneous these colonies 

were. It was significant that tranfers from the border of the 

colony did not show growth on MM, which may indicate sorting out 

of parental types. 
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The first prerequisite for heterokaryosis, anastomosis, was 

observed microscopically. In our observations hyphal fusions 

occurred almost exclusively between somewhat older parallel 

hyphae. These (still young) hyphae are apparently old enough to 

form anastomoses. Therefore it is somewhat surprising that 

punched pieces from the border of a heterokaryon did not grow on 

MM. Sorting out was, however, supported by analysis of balanced 

A.nidulans heterokaryons. 

The initiation of hyphal contact was bilateral and between 

the side branches of strain C409-20 attraction was observed. In 

strain C409-36 the type of anastomosis was different. Different 

types of fusion bridges were also seen by Flentje and Stretton 

(1964) between isolates of Thanatephorus. 

Although we observed plasmogamy between hyphae of C. linde-

muthianum we did not study migration of nuclei. Only Hoffmann 

(1967) demonstrated with certainty nuclei in hyphal bridges in 

Fusarium (34 out of 509), but several other authors working with 

different fungi did not come to a conclusion. 

The moist-chamber method was good for observing anastomosis, 

but here staining of nuclei is not possible. The observation of 

a nucleus in a hyphal bridge is still riot a proof for migration 

of nuclei from one to the other hypha. The isolation of hybrid 

conidia and recombinants is in fact the only positive proof. 

In our experiments we could isolate prototrophic colonies 

starting with a presumed heterokaryon of two double auxotrophic 

strains of C. lindemuthianum, but we did not find any new 

combination of auxotrophic markers. 

It can be concluded that probably heterokaryons had been 

induced. They could be maintained by transfer of pieces of 

mycelium from near the centre of the colony, but transfer of 

punched pieces from the border of the heterokaryons to fresh MM 

plates did not result in growth. Furthermore, it is still not 

clear whether heterozygous diploids have been obtained. Although 

the presumed diploids grew on MM (i.e. complementation), their 

colonies produced conidiospores of the same size as the parental 

strains and segregated the two parental types only. With 
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p-fluorophenylalanine-treatment one would certainly expect 

recombinants. So it is still uncertain whether these colonies 

were diploid. 

Stephan (1966, 1967) stated that he could isolate a 

prototrophic recombinant from a heterokaryon of Colletotrichum 

gloesporoides. When a segregant is found in which an auxotrophic 

marker is replaced by the prototrophic allele, it is possible 

that revertants are involved. He might have isolated a 

revertant, especially since he started from hyphal tips. In our 

experiments hyphal tips appeared to be homokaryotic. 

It is unlikely that the growth on MM in our experiments was 

due to reverse mutations (two reverse mutations required, which 

later are lost again). Cross-feeding is still a possible 

explanation. Perhaps some conidia have sufficient reserve 

material to start initial growth on MM selection plates and 

since plating density is high, colonies may appear owing to 

cross-feeding. But also in this case heterokaryotic hyphae may 

be expected among homokaryotic hyphae. This is supported by the 

observation that only pieces of mycelium from older parts of the 

presumed heterokaryon could grow upon transfer to fresh MM. 

Although conidia of C.lindemuthianum are uninucleate (as 

confirmed by microscopic examination after staining with lacto-

acetic orcein) it cannot be excluded that a very low percentage 

of spores has two nuclei. This may be an explanation for the 

'presumed diploids'. 
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3.3 Isolation of protoplasts from A.nidulans 
conidiospores 

3.3.0 INTRODUCTION 

Protoplast fusion may be an alternative way to establish 

heterokaryons. We resorted to A.nidulans to develop procedures 

for isolation of protoplasts from conidiospores and for proto­

plast fusion. 

Chapter 3.3 describes the isolation of protoplasts from 

A.nidulans conidiospores. The main aspects and some details have 

been published earlier (Bos and Slakhorst, 1981; Bos, 1985). 

Many aspects of fungal protoplasts have been reviewed by 

Peberdy (1979). Several procedures for the isolation of fungal 

protoplasts apply to Aspergillus nidulans mycelium, and these 

mycelial protoplasts have been used in fusion and transformation 

experiments (e.g., Anne and Peberdy, 1976; Ferenczy et al., 

1976; Dales and Croft, 1977; resp. Ballance et al. , 1983; Kelly 

and Hynes, 1985; Tilburn et al., 1983; Yelton et al., 1983). 

However, protoplasts isolated from mycelium vary in size and 

in number of nuclei. In terms of organelle constitution and 

biochemical functions they can be expected to show a marked 

heterogeneity (Peberdy, 1976). Such heterogeneous protoplast 

suspensions from filamentous fungi are in fact less suitable for 

quantitative recombination experiments. 

As conidiospores of A. nidulans are very uniform in size and 

are mononucleate, these difficulties can be overcome by the 

isolation of protoplasts from conidiospores. Also, for re­

generation studies it can be preferable to isolate protoplasts 

from conidiospores. Only a few reports describe procedures for 

the preparation of protoplasts from conidia and they mention poor 

yields (see Bos, 1985). Moore and Peberdy (1976) isolated 

protoplasts from Aspergillus flavus conidia produced in liquid 

culture; however, agar-grown conidia of A. flavus gave only a 

very poor release of protoplasts. 

Our first studies on the application of lytic enzymes showed 

that germinating conidia of A. nidulans respond well to the lytic 

system described by Van den Broek et al. (1979) for the isolation 
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of organelles from A. nidulans hyphae. Therefore, this lytic 

enzyme mixture was used for the isolation of protoplasts from 

conidiospores. A preincubation step was included to activate the 

conidia to synthesize new cell wall material during swelling. 

Since autolytic enzymes are involved in cell wall synthesis, the 

wall of a swollen conidiospore will in a sense resemble a hyphal 

tip. Preincubation was in the presence of 2-deoxy-D-glucose, for 

Birnboim (1971) and Foury and Goffeau (1973) found that this 

facilitates the digestion of cell walls of Schizosaccharomyces 

pombe. A similar effect was found by Van den Broek et al. (1979) 

for A. nidulans mycelium grown in the presence of low 

concentrations of 2-deoxy-D-glucose. This agrees well with the 

inhibitory effect of 2-deoxy-D-glucose on o<-l, 3-glucan synthesis 

in Aspergillus cell walls as found by Zonneveld (1973). 

Since polyoxin D inhibits chitin synthetase (Endo et al., 

1970) and active chitin synthetase is predominantly found in 

membrane preparations of protoplasts derived from hyphal tips 

(Aspergillus fumigatus, Archer, 1977), it is likely that 

polyoxin D makes swollen conidia more sensitive to lytic enzymes. 

It was tested whether including polyoxin D in the preincubation 

facilitated protoplast isolation. 

The isolation procedure was adapted by us to conidiospores of 

some other (imperfect) fungi. 

3.3.1 PREPARATION OF PROTOPLASTS 

The first attempts to prepare protoplasts from agar-grown 

Aspergillus conidiospores showed that preincubation of the co­

nidia was a prerequisite for obtaining protoplasts. Preincubation 

should be stopped after about 3 hours, since spores forming a 

germ tube (after 4 h of incubation) tend to aggregate (see 

below). When the growth factors (necessary for the auxotrophic 

strains) were omitted from the preincubation medium (see 3.1.6), 

protoplasts could be prepared in the same space of time, though 

with slightly lower yields. 

The procedure for the isolation of protoplasts and the process 

of regeneration are outlined in Fig.3.8. 
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In general conidiospores germinate after 6 h of incubation. 

Preincubation for 3 h in a minimal medium with 2-deoxy-D-glucose 
at 37°C results in swelling of the conidia. 

Incubation with lytic enzymes for 3-^ h at 30°C digests the cell 
wall and protplasts escape through a pore from the cell envelope. 

Protoplasts swell and can form a large vacuole depending on the 
stabilizing medium 

Protoplast can fuse and are capable of' DNA-uptake 

/ 
In stabilized nutrient medium protoplasts can regenerate new 

cell walls and will form normal colonies. 

Figure 3-8 Outline of the isolation and regeneration of protoplasts from 
A.nidulans conidiospores. 
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The presence of 25 ug 2-deoxy-D-glucose / ml medium increased 
the f inal y ie ld of p ro top las t s by a factor of f ive , with the 
addi t ional advantage tha t subsequent incubation with l y t i c 
enzymes could be reduced from 5 to 3 h. 

On the basis of these preliminary r e su l t s the following 
standard conditions for p ro top las t preparat ion were chosen: 
preincubation of conidiospores for 3 h a t 37°C in the presence of 
25 ug 2-deoxy-D-glucose/ml, followed by incubation with l y t i c 
enzymes for 3 h a t 30°C with 0.4 M (NH,)2S0, as s t a b i l i z e r . 

Table 3.2 Effects of var ious condi t ions on the conversion of A. n idulans 
( s t r a i n WG093) conidiospores i n t o p ro top l a s t s 

Exp. Variable *) 
no. 

1 Preincubation time (h) 

1.5 
2 
2.5 

-3 
2 2-Deoxy-D-glucose during 

preincubation (ug/ml) 
0 

10 
— 25 

3 Incubation with 
lytic enzymes (h) 
2 

- 3 
3-5 

4 Presence of ammonium 
sulphate during in­
cubation with lytic 
enzymes (M) 
0.1 
0.2 
0.3 

- 0 . 4 
0.4 (3.5 h incubation) 

Protoplast 

Protoplasts 
counted/ml 

Very low 
8.0x106 

1.6x10? 
1.7x107 

2.3x106 
1.5x107 

1.7x107 

8.4x106 

1.3x10? 
1.6x10' 

3.8x10^ 
5.6x10 
1.1x107 

1.7x107 

2.1x107 

yield 

as % of 
conidia 

32 
64 
68 

9 
58 
68 

33 
52 
64 

15 
22 
44 
68 
83 

% intact conidia 
as determined in a 
haemocytometer 

100 
50 
5 
5 

90 
5 
5 

50 
5 
5 

25 
25 

5-10 
5 
5 

* When varying one parameter the o the rs were kept cons tant , as under s tandard 
cond i t i ons . Standard condi t ions (see -« ) were pre incubat ion of conidia (2.5x10 
/25 ml in 100 ml b o t t l e ) for 3 h a t 37°C in c i t r a t e - py ruva t e medium conta in ing 
25 ug/ml of 2-deoxy-D-glucose, followed by incubat ion with the l y t i c enzymes 
for 3 h a t 30°C in the presence of 0.4 M (NHi|)2S0Jj as s t a b i l i z e r . 

The condi t ions for 3 and 3-5 h of incubat ion with l y t i c enzymes in Exp.3 a re 
s t r i c t l y comparable to those in Exp.4 and the r e s u l t s show the experimental 
v a r i a t i o n . 
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Subsequent experiments on the effect of variation of each of 

these factors are summarized in Table 3.2. It was found that 

incubation with lytic enzymes for 3.5 h instead of 3 h gave 

higher yields of protoplasts, but that the other standard 

conditions were suitable. Polyoxin D had a stimulating effect 

too, but not additive to that of 2-deoxy-D-glucose and since it 

is more expensive, it was not included in the standard procedure. 

During preincubation the conidia swell and the increase in 

volume is linear with time (Fig.3.9). The volume distribution 

curve was approximately normal indicating that the conidial 

population was homogeneous with respect to swelling. Although 

prolonged preincubation promoted the subsequent release of 

protoplasts, after 3 h the conidial count decreased due to 

3 4 
Preincubation time (h) 

Figure 3-9 Swelling and aggregation of conidiospores during preincubation. 
Conidiospores of A.nidulans (strain WG179) were incubated in CP medium at 37°C. 
The diameters ( • ) and numbers of free conidia ( O ) were calculated from 
Coulter counter measurements in samples of 0.5 ml taken at different times 
during incubation. 
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aggregation (Fig.3.9). Microscopic examination showed that at 

that moment only a few conidiospores had a small "nose" and that 

no germination tubes were present. 

The effect of preincubation medium (cf 3.1.6) on the release 

of protoplasts from A. nidulans is shown in Fig.3.10. Although 

swelling of the conidia during preincubation was about equal in 

the three media used, the citrate-pyruvate MM gave better results 

than the normal MM, whereas the lowest yields were obtained when 

spore germination medium (SG) was used for preincubation. 

In another experiment the production of protoplasts from 

three different strains of A. nidulans (WG093, WG132, WG179) was 

compared. The yield was found to be strain independent, and in 

general, after 3 h of incubation with lytic enzymes, at least 50Z 

of the conidia were converted into protoplasts (data not shown). 
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Figure 3-10 Effect of preincubation on protoplast yield. 
Conidiospores of A.nidulans (strain WG179) were preincubated prior to treatment 
with lytic enzymes as described in 3.1.6. Three different media were compared: 
O CP A MM D SG (see 3 . 1 . 1 ) . 
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The Oerskovia enzymes proved to be indispensable for proto­

plast formation, whereas the additional Aspergillus autolytic 

enzymes greatly promoted protoplast release (Fig.3.11). The 

latter could easily be replaced by a commercial glucanase from 

Pénicillium, which gave even more reproducible and slightly 

higher yields of protoplasts. Jointly with Oerskovia enzymes, 

glucanase contributed 30Z to the total yield, but when applied 

separately they produced almost no protoplasts. In this way often 

no less than 80^ of the conidiospores could be converted into 

protoplasts. 

1.5-
i 
o 
t-4 

* 1 . 3 -
t—i 
E 

~" 1 .1-
4-1 

o3 

- 0 . 9 -
o 
4-1 

O 
U 
PL. 0.7-

0.5-

0.3-

0.1-

0-

/ / 

/ /[& 

/J 

A 

/S-n A 
n 

A 

D 

I 

0 1 2 3 4 
Incubation with lytic enzymes (h) 

Figure 3-11 Effect of glucanases in combination with Oerskovia lytic enzymes 
on protoplast formation. 

After preincubation conidiospores of A.nidulans (strain WG179) were treated with 
lytic enzymes from Oerskovia as described in 3.1.6, with or without glucanases. 
O without glucanases 
Dwith Aspergillus glucanases (0.1 ml/ml) 
A with Pénicillium glucanases (0.1 mg/ml). 
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The res idual conidia were removed by cent r i fugat ion of the 
p ro top las t suspension over a layer of 30Z sucrose, which r e su l ted 
in p ro top las t suspensions with l e s s than I I , and often l e s s than 
0.51 conidia . The e f fec t iveness of t h i s pu r i f i ca t ion s tep was 
s l i gh t l y s t r a i n dependent. After cent r i fugat ion almost a l l 
p ro top las t s were a t the sucrose i n t e r f ace , whereas the conidia 
and c e l l wall fragments had penetrated the sucrose layer and 
formed a sediment. Removal of the i n te r face and the top l ayer , 
followed by stepwise addi t ion of 0.6 M KCl, r e su l ted in a f ina l 
recovery of p ro top las t s of a t l e a s t 501, often about 802 pur i f ied 
p r o t op l a s t s . A r epresen ta t ive example i s given in Table 3 . 3 . 

Table 3-3 Summary of a t yp i c a l i s o l a t i o n procedure for p ro top l a s t s from 
A.nidulans ( s t r a i n WG132) conidia 

Step in the Volume P ro top l a s t s 
procedure (ml) Total % of % of 

count/ml i n i t i a l preced. 
conidia s t ep 

Colonies *) Colonies 
formed/ml formed/ml 
on complete on complete 
medium plus medium 
Q . 4 M KCl 

Inoculum (conidia, 
2.5 um diameter) 

Preincubation for 
2 h at 37°C 

Incubation for 
4 h with lytic 
enzymes 

Purification 
Amount used 
Purified proto­

plasts (5.1 um 
diameter) 

0.6 M KCl added 
stepwise 

Washing by 
centrifugation; 

resuspension 

1 

50 

2 

1 

1 

5 

1 

14 

.0 

0 

6 

3 

0 

0 

4 

1 

1 

1 

1 

3 

1 

.4x107 

0x106 

•3x107 

.3x10? 

5x107 

8x106 

9x107 

52 

49 

38 

38 

5x105(50) 

52 5.5x106 (42) 3x10 5 (2 .3) 

87 

85 1.1x106(30) 3 -3x10 3 (0 .1 ) 

100 6.7x106 (35) 4.0x10 (0 .2 ) 

*) Values in parentheses r epresen t percentage of t o t a l count of p r o t o p l a s t s . 
P ro top l a s t s were p la ted on CMK (CM + 0.4 M KCl; see 3 . 3 . 2 ) . 
Recovery of p ro top l a s t s e . g . a f t e r p u r i f i c a t i o n : input 1.6/2.0x5x10'= 4x10 ' ; 
ou tput : 1.95x10? ( -*• 49%). 

The complete procedure for the i s o l a t i on of p ro top las t s r equ i r ­
ed about 7 h. Microscopically i t i s seen tha t the p ro top las t s 
extrude through a pore in the c e l l wall and r e t r a c t from i t . The 
p ro top las t s were about twice as l a rge as the conidiospores. 
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After r e l e a s e , t h e p r o t o p l a s t s deve lop a l a r g e v acuo le and 

i n c r e a s e s l i g h t l y i n s i z e w i t h t ime . V a cuo l i z a t i on c o n t i n u e s for 

about 30 min u n t i l t h e cy toplasm has wholly r e t r a c t e d a g a i n s t t h e 

c e l l w a l l . At t h i s s t a g e they resembled t h e p r o t o p l a s t s i s o l a t e d 

from l i qu id -g rown c o n i d i a of A. f l a vu s a f t e r 12 h i n l y t i c medium 

(Moore and Peberdy, 1976) . 

Microscopic examina t ion a f t e r s t a i n i n g w i th o r c e i n r e v e a l e d 

t h a t a l l i n i t i a l c o n i d i a were u n i n u c l e a t e , bu t t h a t t h e 

p r o t o p l a s t s i s o l a t e d a f t e r 3 h of p r e i n c u b a t i o n , fo l lowed by 

4 . 5 h of i n cuba t i on w i th l y t i c enzymes, most ly (>80%) had two 

n u c l e i . Af te r l e s s p ro longed i n c u b a t i o n (3 h of p r e i n c u b a t i o n and 

3 h of i n c uba t i o n w i t h l y t i c enzymes) , t h e p r o t o p l a s t s had one 

n u c l e u s . P r o t o p l a s t s of s t r a i n WG179 a r e shown i n F i g . 3 . 1 2 . The 

s t r a i n s WG093 and WG132 behaved i d e n t i c a l l y . 

Figure 3.12 Microphotographs of protoplasts of A. nidulans WG179. 
Bar equals 5 um in a l l Figures. 

a) P ro top las t r e l ease a f t e r 2 h of incubat ion with l y t i c enzymes a t 37°C; 
b) P ro top la s t s a f t e r p u r i f i c a t i on , resuspended in 0.6 M KCl; 
c) P ro top las t s s t a ined with l a c t o - a c e t i c o rce in : l e f t , p r o top l a s t s obtained 

a f t e r 3 h of p re incubat ion and 2.5 h of incubation with l y t i c enzymes 
mostly mononucleate; r i g h t , p r o t op l a s t s obtained a f t e r 3 h of p re incubat ion 
and 4 h of incubation with l y t i c enzymes, mostly with two nuc l e i ; 

d) and e) P ro top las t s during r egenera t ion in l i qu id CM + 0.4M KCl, 
d) P ro top las t s a f t e r 1 h incubat ion a t 37 C, 
e) A p ro top las t escaping from the newly synthesized c e l l envelope; r i g h t a 
drawing of the c e l l wall ( d i f f i c u l t to see in the photograph); 

(f) Regenerated c e l l with l a rge germ t ube s . 
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The procedure for isolation of protoplast from conidiospores 

was tested with some other fungi in a few pilot experiments. With 

dark coloured A.niger strains rather low yields were obtained, 

but from conidia of a light coloured mutant a high yield of 

protoplasts (64-92?!) was obtained after preincubation in SG with 

2-deoxy-D-glucose (Bos and - Slakhorst, 1981). From A.carbonarius 

conididospores no protoplasts were obtained, but the procedure 

proved to be suitable for Cladosporium cumerinum, Colletotrichum 

lindemuthianum and Pénicillium expansum. 

Although this lytic procedure seems to have broad applicability 

to conidiospores of other fungi, modifications specific for each 

organism may be required for optimal results. 

3.3.2 STABILIZATION AND REGENERATION OF A.NIDULANS PROTOPLASTS 

Protoplasts were effectively stabilized in 0.6 M KCl. At lower 

stabilizer concentrations considerable losses occurred, but 

stepwise dilutions could also be made in liquid CM containing 0.4 

M KCl. Protoplasts were plated either by spreading on agar, or by 

pouring them into a 3 ml top layer as usual in the case of 

high-density plating for the selection of fusion products or 

recombinants. 

From the plating experiments summarized in Fig. 3.13 it was 

concluded that addition of 0.3 M KCl to the plating medium was 

sufficient; in general 0.4 M KCl was added. 

Fig.3.14 shows that plating in a top layer had to be done 

quickly, since protoplasts did not survive a temperature of 45°C. 

Independent of plating conditions it was frequently found that 

only 20-502 of the plated protoplasts gave rise to colonies (cf 

Table 3.3), whereas upon plating conidia (with or without pre­

incubation), in general 50-802 germination was found. Attempts to 

increase the plating efficiency by promoting the stability of the 

protoplasts were not successful. 
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Figure 3.13 Stabilization of protoplasts on solid media with KCl. 
Number of colonies upon plating of the same protoplast suspension (A.nidulans 
WG179) on complete media with different concentration of KCl (CMK). 

2 4 6 8 
Incubation time at 45°C (min) 

Figure 3.14 Effect of temperature when plating in a top layer. 
Protoplasts of A.nidulans (strain WG179) were plated in a top layer of soft CMK 
(3-5 ml CMK with 0.8% agar at 45°C). After addition to the soft-agar the proto­
plasts were kept at 45°C for different times. 
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Storage in the cold (4-8°C) for 1 day prior to plating had no 

effect on the viability of the protoplasts and no aggregation 

occurred. The protoplasts were still sensitive to osmotic shock 

upon dilution in water, so it can be concluded that no 

regeneration had taken place. Freshly prepared and stored 

protoplasts showed no differences in fusion frequency (Section 

3.4). In liquid CM containing 0.4 M KCl aggregation became first 

visible after incubation of protoplasts for 1 h at 37°C. After 

1.5 h many aggregates were present, and some germ tubes could be 

seen. 

Protoplasts prepared from A. nidulans conidiospores by the 

Oerskovia lytic enzymes and glucanases show a remarkable pattern 

of regeneration as shown in Fig. 3.12 d-f. Upon incubation in 

liquid CM + KCl at 30 to 37°C, regeneration starts immediately 

with the formation of a microfibrillar network that becomes 

denser with subsequent deposition of amorphous material (Peberdy, 

1979). In a regenerating protoplast the vacuole vanishes, and 

subsequently the protoplast leaves the rigid network. Now the 

protoplast forms a new cell wall within 20 minutes, after complet­

ion of which two or three germ tubes are prodcued (see Fig.3.8). 

3.3.3 DISCUSSION ON ISOLATION AND REGENERATION OF PROTOPLASTS 

Methods for the isolation of protoplasts from fungal spores 

have been reviewed recently (Bos, 1985). Some procedures gave a 

low yield, whereas with others only protoplast-like structures 

could be obtained. The safest criterion for true protoplast 

formation is their release from the spore envelope through a pore 

in the cell wall and their osmotic lability. When lysing Fusarium 

culmorum protoplasts, prepared with Micromonospora lytic enzymes 

(Garcia Acha et al., 1966), the cellular content escaped from the 

spherical structure and a rather thick envelope was left. In 

this case no true protoplast were obtained. These structures 

rather are spheroplasts; the authors speak rightly about proto­

plast-like structures. In the review (Bos, 1985) it is suggested 

that in such situations addition of other enzymes might yield 
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true protoplasts. However, from our recent experiments with 

conidiospores of certain A.niger strains which produced also 

spheroplasts, carefully changing of the osmotic pressure of the 

stabilizing medium proved to be a way to obtain true proto­

plasts. This procedure may also be suitable for other fungi. 

The procedure described in this Section is based on Oerskovia 

lytic enzymes with in addition commercial glucanases. 

Fresh agar-grown conidia of A. nidulans appaer to be very in­

sensitive to lytic enzymes of Oerskovia, but after a preincu­

bation treatment, up to 99% (and rarely less than 80%) of the 

conidiospores can be converted into protoplasts. 

It was surprising that commercial ß-glucanases could replace 

the autolytic glucanases of A.nidulans since it was shown 

(Zonneveld, 1972; Van den Broék et al., 1979) that the 

(tf-(1,3)-glucanase activity was the most important component for 

degradation of cell wall material and release of protoplasts from 

hyphae of A. nidulans. This may reflect differences in cell wall 

constitution and structure, but it may also be due to 

heterogeneity of the glucanase preparation as indicated by 

Manners et al. (1976) for another fungal glucanase preparation. 

Moreover, the effect of glucanases in a 'crude extract may depend 

on the total complex system rather than on any single component 

(Clarke and Stone, 1965; Doi et al., 1976). 

With protoplasts prepared from young mycelium, the condit­

ions of mycelium cultivation have a great influence on the num­

ber of protoplasts released (Musilkova and Fencl, 1968; 

Zonneveld, 1972; Van den Broek et al., 1979). Our experiments 

showed that preincubation of conidia was an essential step for 

the release of protoplasts from Aspergillus conidiospores. The 

marked effect of 2-deoxy-D-glucose on the process was probably 

due to its interference with polysaccharide biosynthesis 

(Kratky et al., 1975). The viability of conidia was not 

affected by 2-deoxy- D-glucose, although germination was delayed. 

The citrate-pyruvate medium turned out to be superior for the 

release of protoplasts in the subsequent incubation with lytic 

enzymes. Upon preincubation for more than 3 h the conidiospores 

begin to aggregate. For this reason vigorous shaking is 

necessary. Aggregation during preincubation was probably the 
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reason that the yield of protoplasts often varied from 50-80X 

under standard conditions. Their regeneration pattern was quite 

different from that observed for protoplasts obtained from young 

hyphae. Protoplasts from young hyphae form aberrant germination 

tubes sometimes resembling a chain of budding cells (Peberdy and 

Gibson, 1971; Gibson et al., 1976; Van den Broek et al., 1979). 

Yeastlike chains were also observed in regenerating protoplasts 

obtained from liquid-grown A. flavus conidia (Moore and Peberdy, 

1976) which showed a striking resemblance to protoplasts from 

Saccharomyces calsbergensis isolated by Eddy and Williamson 

(1959) . 

One of the main advantages of preparing protoplasts from 

conidiospores is the resulting homogeneous suspension of 

protoplasts with either one or two nuclei, depending on the 

conditions during isolation. Sometimes this requirement of 

homogeneity is also fulfilled when protoplasts are prepared from 

hyphae, e.g. the protoplasts obtained from Pyricularia oryzae 

hyphae by Tanaka et al. (1981) were mostly mononucleate. 

Although A.nidulans conidiospores are mostly mononucleate, 

during the isolation procedure mitosis obviously occurred after 

approximately 6 h of incubation. It was possible to obtain almost 

exclusively mononucleated protoplasts, however at the cost of 

yield. The observation of nuclear division during preincubation-

of conidia was in agreement with Fiddy and Trinci (1976) who 

found that in A.nidulans mitosis occurred when the cytoplasmic 

volume per nucleus attained a mean value of about 57 um3. 

Bainbridge (1971) observed mitosis in germinating conidia of 

A.nidulans and found that after 6 h incubation (in which time 50% 

of the conidia produced germ tubes) approximately 70% of the 

conidia had two nuclei. Protoplasts from young mycelium may 

contain several nuclei (Aguirre and Villanueva, 1962), even up to 

a hundred or more (Emerson and Emerson, 1958). Often the total 

content between the septa of a hypha was extruded as a single 

protoplast. With more recently described methods the hyphal 

protoplasts were also highly variable in size and contained 

several nuclei (Anne and Peberdy, 1976; Peberdy, 1976; Ferenczy 

et al., 1976). 
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Secondly, protoplasts from conidiospores are homogeneous in 

physiological condition, whereas protoplasts derived from 

mycelium are heterogeneous as a result of age differences of the 

hyphal cells from which they have been extruded (Peberdy and 

Gibson, 1971; Anne et al., 1974). This is reflected by the 

regeneration process. Tanaka et al. (1981) observed for hyphal 

protoplasts three different patterns of regeneration: a chain 

of yeastlike buds; a chain where after some time a germ 

tube-like hypha protruded from the cell most distal to the 

original protoplast; and a type where the protoplast remained 

spherical for several hours before a germ tube-like hypha was 

formed directly from the spherical cell. These different 

regeneration types may be due to the origin of the protoplasts 

(older cells or hyphal tips) . 

In conclusion, the Oerskovia lytic system proved to be very 

suitable for the isolation of protoplasts from Aspergillus 

nidulans conidiospores. Starting with mononucleate conidiospores 

this isolation procedure gives suspensions of either mono- or 

binucleated protoplasts depending on the duration of incubation. 

The protoplasts obtained from conidiospores proved to be very 

suitable for recombination experiments. They have been used for 

protoplast fusion (this study, Chapter 3.4) and for transform­

ation (Wernars et al., 1985). 
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3.4 P ro top las t fusion and karyogamy inA.n idulans 
3.4.0 INTRODUCTION 

Protoplast fusion and karyogamy too were studied in Asper­

gillus nidulans. In fusion experiments with Aspergilli and 

Penicillia large differences in fusion frequency have been found 

(Anne and Peberdy, 1976; Ferenczy et al., 1976). High fusion 

frequencies may be a consequence of extreme aggregation. With 

multinucleate protoplasts it is difficult to see whether the 

colonies on selective plates arise from aggregates of proto­

plasts or from protoplast fusion. Protoplast suspensions 

prepared from conidiospores of A.nidulans are either mono- or 

binucleate, depending on the duration of the incubation. 

Therefore they are suitable to study protoplast fusion and 

karyogamy. 

Protoplast fusion is mostly done in polyethylenglycol (PEG). 
2+ 

It is reported to be stimulated by high pH and Ca -ions (Anne 

and Peberdy, 1976; Anne, 1983; Ferenczy et al., 1975, 1976, 

1977). These factors were varied in order to find optimal 

conditions for reproducible experiments. For studying how many 

protoplast participate in a fusion event three strains differing 

in colour of conidia were combined pairwise and in the 

combination of three. 

As the fusion products proved to be ideal heterokaryons the 

next step was to study the frequency of karyogamy. In these 

experiments a yellow and a white strain were used so that green 

heterozygous diploid sectors or colonies could be identified. 

3.4.1 CONDITIONS PROMOTING PROTOPLAST FUSION 

Initially we followed the common procedures (e.g. Anne and 

Peberdy, 1976; Ferenczy et al., 1976) using a PEG solution 

buffered in 50 mM glycin. The pH was difficult to control as can 

be expected from the pK of glycin. Especially older solutions 

had a low pH (pH 4). In prelimary experiments 50 mM imidazole 

buffer gave better results than 50 mM glycin. Washing with 0.6M 

KCl gave a lower viable count than direct plating of the fusion 

mixture. 
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For s t udy ing t he e f f e c t of d i f f e r e n t pH v a l ue s on t h e f u s ion 

f requency a 50 mM imidazo le b u f f e r (pK = 7 . 0 ) was used for t h e 

h i g h e r pH range and a 25 mM ma l a t e bu f f e r (pK = 5 .0) fo r t h e 

lower pH r ange . Although t h e f requency of h e t e r oka ryon s i n 

c o n s e cu t i v e exper iments could d i f f e r w i th a f a c t o r 10, d u p l i c ­

a t e s pe r exper iment agreed w e l l . The r e s u l t s of a r e p r e s e n t a t i v e 

e xpe r imen t , i n which a l s o an unbuf fe red PEG s o l u t i o n was 

i n c o r p o r a t e d , a r e summarized i n Tab le 3 . 4 . When p r o t o p l a s t s of a 

s i n g l e s t r a i n were i n cuba t ed i n t h e PEG s o l u t i o n and p l a t e d on 

CMK t he v i a b l e count was mos t ly h i g h e r t han 70%. 

Table 3.4 Effect of pH on the fusion of non-purified protoplasts. 

Input. : about 1.3x10° protoplasts per s t ra in (WG132 and WG1791 
Fusion : in 1 ml PEG (30% PEG, 50 mM CaCl , + or - buffer) . 

2__ 
pH Buffer Recovery of colonies 

after PEG incubation 
Heterokaryons 

4 25 mM malate 

5 
6 
7 50 mM imidazole 
8 
5.9 without buffer 

Viable 

535 x 
850 

1545 
1085 
1060 
910 

count 

103 

% of 

41 
65 

118 
83 
81 
70 

input Count 
on MMK 

409 
210 

1473 
558 
420 

8000 

% in rel.to 
viable count 

0.08 
0.03 
0.05 
0.05 
0.03 
0.88 

These experiments show that a neutral pH is optimal for 

protoplasts fusion under these conditions. In similar 

experiments too, a freshly prepared PEG solution without buffer 

gave .significantly the best results. We did not find differences 

between PEG4000 and PEG6000. There were however différencies 

between different batches of PEG. A 30% solution of PEG with 

lower molecular weight however is easier to handle. 
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In the experiments summarized in Table 3.4 the protoplasts 

were collected from the lytic mixture by centrifugation and 

resuspended in PEG buffer directly. Washing twice with 0.6 M KCl 

by centrifugation resulted in similar heterokaryon frequencies. 

Purification of protoplasts (see 3.1.7) often increased the 

heterokaryon frequency (Table 3.5). 

In some other experiments (data not shown) the presence of 

Ca 2+ -ions in the PEG solution proved to be essential and could 

not be replaced by K + o r Al3+ . A concentration of CaCl2 between 

50 and lOOmM gave the best results when using unbuffered PEG 

solutions. Furthermore a PEG concentration of 25-30 % resulted 

in maximum heterokaryon frequencies. 

The effect of pH with imidazol buffer was analyzed again with 

purified protoplasts and compared with that in glycin buffer at 

high pH (Table 3.5). Also a treatment of unpurified protoplasts 

with imidazol buffer pH 6 was included. Purified protoplasts 

gave much higher heterokaryon frequencies than usually obtained 

with non-purified protoplasts. This experiment shows again that 

a neutral pH is optimal for protoplast fusion under our 

conditions. Often freshly prepared PEG solutions gave better 

results than in this experiment. 

Table 3-5 Effect of pH on the fusion of purified protoplasts. 

Input : about 10 protoplasts of each strain (WG132 + WG179) 
fusion : in 1 ml PEG (30% PEG, 50 mM CaCl2 ; + or - buffer) 

pH Buffer Protoplasts Heterkaryons 
Viable Count % in rel. to 
count on MMK viable count 

5.9 without buffer, 
6 50 mM imidazole, 

6 
7 
8 
8 50 mM glycin 

9 
10 

purified 
not purified 

purified 

57 
910 

180 
220 
180 
190 
100 
160 

x103 15 
1. 

45 
32 
24 
20 
16 
20 

X 

4 
03 26 

0.15 

25 
14 
13 
10 
16 
12 
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3 . 4 . 2 NUMBER OF PROTOPLASTS IN A FUSION 

In o r de r t o see how many p r o t o p l a s t s c o n t r i b u t e d t o a f u s ion 

p roduc t an exper iment w i th equa l amounts of p r o t o p l a s t s pe r 

s t r a i n was performed (Table 3 . 6 ) . The s t r a i n s d i f f e r e d i n c o l ou r 

and had two d i f f e r e n t a uxo t r oph i c markers each , so t h a t t h e 

c o r r e spond ing h e t e r oka ryon s cou ld be s e l e c t e d . In c o n t r o l 

expe r imen t s t h e s t r a i n s were combined p a i rw i s e (Table 3 . 6 ) . The 

t h r e e combina t ions of p r o t o p l a s t s showed about t h e same f u s ion 

a b i l i t y . From two expe r imen t s where about 2x106 p r o t o p l a s t s of 

each of t h e t h r e e s t r a i n s were pooled i n 1 ml 30% PEG, 50 mM 

CaClp, 50mM imidazo le bu f f e r pH6, t h e h e t e roka ryon f r e quenc i e s 

a r e summarized i n Table 3 . 7 . The ave rage f requency of f u s ion 

p r oduc t s as % of t h e t o t a l v i a b l e count on CMK i s 4 . 6 . In t h e s e 

two exper iments 6% r e s p e c t i v e l y 10% of. t h e f u s ion p r oduc t s 

c o n s i s t of c e l l s w i th t h r e e t ypes of n u c l e i (Table 3 . 7 ) . 

Table 3-6 Fusion frequencies with p a i r s of s t r a i n s . 

Input : 2x10° p ro top las t s per s t r a i n 
Fusion : in 1 ml 30% PEG, 50mM CaCl2, 50mM imidazole pH 6.0 

Combination Heterokaryons (% of v i ab l e count) 
of s t r a i n s Exp. 1 Exp. 2 

WG132 + WG179 3.8 % 3.8 % 
WG076 + WG179 4.6 % 1.2 % 
WG132 + WG076 10.0 % 6.2 % 

Table 3-7 Relat ive f requencies of p ro top l a s t combinations p a r t i c i p a t i n g 
in a fusion event . 

Input :2x10 p ro top la s t s of WG132 (wh i t e ) , WG179 (yel low), WG076 (green) 
Fusion : in 1 ml 30% PEG, 50 mM CaCl ,50 mM imidazole pH 6.0 

Exp.1 Exp. 2 

heterokaryons (% of viable count) 3-9 5.4 

white - yellow heterokaryons (WG132+WG179) 

yellow - green heterokaryons (WG179+WG076) 
white - green heterokaryons (WG132+WG076) 
tricoloured heterokaryons (WG132+WG179+WG076) 

32 % 
29 % 
33 % 

6 % 

22 % 
33 % 
35 % 
10 % 
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When combining two strains, 502 of the fusion products will 

be heterokaryotic, when equal amounts of protoplasts are mixed 

and assuming equal viability and fusability. 

When three different types of protoplasts are combined, there 

are 27 permutations among triple fusions and 3x2x1 = 6 in 27 are 

tricoloured. So total triple fusions is calculated as 27/6 times 

the number of tricoloureds. For 62 and 102 tricoloured 

heterokaryons (see Table 3.7) the corresponding figures are 27 

and 45 triple fusions. As 3 in 27 are homokaryons (go unnoticed) 

there remain 242 and 402 triple fusions among heterokaryotics. 

Consequently 762 and 602 heterokaryons result from pairs of 

protoplasts. Finally, with equal amounts of the three types of 

protoplasts, among pairwise fusions 1 in 3 are homokaryotic and 

go unnoticed, the corresponding figures being 38 and 30. 

From this it can be calculated that among all fusions 

27 / (76+38+27) = 192 resp 45 / (60+30+45) = 332 are between 

three protoplasts and consequently 812 resp. 672 between two 

protoplasts. 

3.4.3 FREQUENCY OF KARYOGAMY 

As the fusion of protoplasts isolated from conidiospores 

proceeded without appreciable interference of aggregation and 

predominantly only two or three protoplasts participated in 

fusion events, this system was suitable for quantitative studies 

on karyogamy. The yellow and white strain which were also used 

in the previous experiment were combined in a number of fusion 

experiments. The results are shown in Table 3.8. On the plates 

used for selection of heterokaryons (MMK), only few green 

diploid colonies were observed: 0.022 to 0.52 of the fusion 

products. 

Table 3-8 Frequency of karyogamy upon protoplast fusion of WG132 and WG179. 
Exp. Protoplasts Heterokaryons % Green diploid colonies 

% survival of viable protopl. Number observed Freq./heterok. 

1 
2 
3 
4 
5 
6 

2 
6 

10 
30 

2 
1 

14 
4 
6 
3 
0.8 
1.1 

,10-t 
,10"3 
,10-3 
10-3 

3.10-
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More frequently green sectors could be found. Sreening for 

green sectors was done with a dissecting microscope, although 

the sectors could be found by visual inspection of the plates. 

In three fusion experiments with strains WG132 (white) and WG179 

(yellow) we found green sectors with frequencies of respectively 

1/152, 3/1320 and 3/498 (= 0.35%). From the observations on 

regeneration in liquid minimal medium it was learned (cf 

Fig.3.12f) that regenerating protoplasts produce two, or more 

often three large hyphae. It was often seen that very young 

heterokaryons were composed of three sectors. So a green sector 

represents probably one third of the nuclei present in the 

heterokaryon, and from this the frequency of somatic karyogamy 

is estimated as 1/3 x 0.35 = 0.12%. In conclusion somatic 

karyogamy is at least a factor 100 higher then the frequency of 

heterozygous diploids found in heterokaryons (about 10~°-10~->). 

3.4.4 DISCUSSION 

Fusion of protoplasts isolated from A.nidulans conidiospores 

in 30% PEG and 50 mM CaCL, proceeded at frequencies of 2-20% 

(see Table 3.5 till 3.8). In contrast to observations of others 

(Anne, 1977; Ferenczy et al., 1976) fusion was better at neutral 

pH than at higher pH values. In fact a freshly prepared unbuf­

fered PEG solution (pH 5.8-6.0) has proved very satisfactory. 

The high fusion frequencies at very high pH found by Ferenczy et 

al. (1976) are theoreticaly only possible if multiple fusions or 

aggregates are formed. With our system we could increase 

heterokaryon frequency, but at the same time the protoplasts 

viable count decreased, giving a smaller amount of hetero­

karyons. This is an indication for multiple associations. Under 

standard conditions (purified protoplasts in freshly prepared 

30% PEG, 50 mM CaC^ solution at neutral pH) aggregation and 

fusions of larger numbers of protoplasts played a minor role as 

most fusion products were composed of two or three protoplasts. 

Upon direct plating of the fusion mixture high survival of 

protoplasts was found, probably because the PEG protected the 

protoplasts from drying out on the plate. As has been mentioned 

in Section 3.3.2 plating on the surface of the plates gave equal-
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ly good results as plating in a soft agar toplayer. With plating 

in a top layer the temperature was very critical and therefore 

we preferred surface plating. 

Purification of protoplast did not result only in higher 

fusion frequencies, but also in more reproducible results. The 

lytic mixture contained 0.4 M (NH^^SO^, but the lytic enzymes 

were prepared by precipitation with ammonium sulphate and might 

contain varying amounts of sulphate. It is therefore possible 

that precipitation of CaSO^ is one of the uncontrolled factors 

in fusions, which can be avoided by purification of protoplasts. 

As only two or three protoplasts participated in a fusion 

event, this system is very suitable to distinguish between 

heterokaryosis and cross-feeding. Moreover, it is also a good 

system to study somatic karyogamy. As was concluded in section 

3.2.4 the frequency of heterozygous diploid conidia could be a 

rather pronounced under-estimate of somatic karyogamy. With our 

protoplast fusion method reproducible data could be obtained 

which proved that somatic karyogamy occurred at a frequency of 

about 10" . Consequently protoplast fusion may also open a way 

for the isolation of hybrid diploids in cases where the 

frequency of heterozygous diploid conidia in a heterokaryon is 

low or in cases of heterokaryon incompatibility. It can also be 

useful when the isolation of heterozygous diploids by selective 

plating is not possible and visual identification is needed for 

distinguishing heterokaryons and hybrid diploids. 
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3.5 Protoplast isolation and protoplast fusion 
in Colletotrichum lindemuthianum 

3.5.0 INTRODUCTION 

The standard procedure for the isolation of protoplasts from 

Aspergillus nidulans conidiospores consists of a preincubation 

of the spores followed by incubation in a mixture of lytic 

enzymes and purification of the protoplasts formed (Chapter 

3.3). 

For A.nidulans strains with slow growth characteristics 

(e.g. strains which cannot grow on glucose) some adjustments 

in the procedure have to be introduced. Similary,with some 

modifications the procedure was also successful in pilot 

experiments with some phytopathogenic imperfect fungi. 

Protoplast were obtained from conidiospores of a phytopathogenic 

strain of Aspergillus niger, Pénicillium expansum, Cladosporium 

cucumerinum and Colletotrichum lindemuthianum. Methods for 

isolation of protoplasts from conidiospores have been discussed 

elsewhere (Bos, 1985). Recently the procedures for lytic 

digestion of cell walls have been reviewed by Peberdy (1985)and 

Davis (1985). 

In this Section the isolation procedures for C.lindemuthianum 

are reported in detail. Chu and Alexander (1972) were also able 

to digest Colletotrichum conidiospores in their studies on cell 

wall biosynthesis, but they took no precautions to stabilize the 

protoplasts and in addition the spores had been killed by 

ultraviolet radiation in advance. 

In the studies on heterokaryosis in C.lindemuthianum (Chapter 

3.2) no final evidence of heterokaryosis was obtained, since 

for the putative heterokaryotic colonies cross-feeding could not 

be excluded. However, when in protoplast fusion only few 

protoplast participate cross-feeding cannot play an important 

role, i.e. complementation must then be the result of 

heterokaryosis. In this section, apart from the isolation of 

protoplasts from conidospores of C.lindemuthianum, also fusion 

of mutants of different physiological races is described. From 

several physiological races auxotrophic mutants have been 
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isolated (see 3.1). For fusion experiments double auxotrophic 

strains were used in order to avoid complications caused by 

revertants and as extra precaution against cross-feeding. 

3.5.1 ISOLATION OF PROTOPLASTS 

From prelimary experiments it was obvious that the lytic 

enzymes from Oerskovia grown on Aspergillus cell walls in 

combination with Pénicillium glucanases could effectively attack 

the Colletotrichum conidial cell walls. Under the standard 

conditions developed for A.nidulans the protoplasts collapsed 

and therefore conditions had to be modified. In the lytic 

mixture a higher (NH^^SO^ concentration proved to be necessary, 

and the best results were obtained with 0.8 M ammonium suphate. 

During lytic incubation small, probably anucleate, protoplast 

drops were pinched off. At 1.0 M (NH-KSO/ this effect is less, 

but the protoplasts yield was reduced by 502. The protoplast 

procedures for A.nidulans and C.lindemuthianum are compared 

Table 3.9. 

Table 3-9 Summary of conditions and results of protoplast procedures. 

A.nidulans C.lindemuthianum 

Conidiospores from 3 days old cultures on CM 
grown at 37°C 

12 days old cultures on CM 
grown at 22°C 

Conidial suspension 5x10? in about 1 ml saline 1o8 in 10 ml saline+Tween; 
iTi ir trt i«. -. *•) *j *-»̂  *- — e n mi / r i — i i .. -~ 4-.. ~i — _ i» ^>j +Tween; added to 50 ml CP collected on a membrane filter 

Preincubation in CP + 2-deoxy-D-glucose omitted 
(2x25 ml in a 100 ml bottle) 
for 3 h at 37°C 

conidiospores collected by 
centrifugation or on a 
membrane filter 

Lytic incubation 

Purification of 
protoplasts 

10 in 2 ml 0.4 M (NH^SOj, 
= 0.2 ml PC-buffer 
+ 0.4 ml Oerskovia enzymes 
+ 0.4 ml glucanases (0.2mg) 
+ 1 ml 0.8 M (NHjpSOj. 
for 3 h at 30°C 

on 35% sucrose by centri­
fugation at low speed 

10 in 2 ml 1.0 M (NH1))2S0J( 

= 0.2 ml PC-buffer 
+ 0.4 ml Oerskovia enzymes 
+ 0.4 ml glucanases (0.2mg) 
+ 1 ml 2 M (NH; 
for 5-6 h at 30°C 

, j,)-SOi, 

Protoplast yield 60-80 % 

washed with 0.6 M KCl by 
centrifugation. 

95-100% 
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The formation of droplets was stimulated by shaking the 

suspension during lytic incubation, but ommission of shaking 

caused more aggregation of protoplasts. The preincubation step 

could be ommitted without decrease of yield, and prolonged lytic 

incubation up to 5 or 6 hours increased the yield. In general at 

least 90 % of the conidiospores were converted into protoplasts. 

Since the mycelium of C.lindemuthianum hardly grows above 

22 °C and the spores are killed at higher temperatures (see 

Chapter 3.2.1) incubation with lytic enzymes at 25°C was 

compared with that at 30CC. The results are shown in Table 3.10. 

Incubation at 30CC during 5-6 hrs aparently was not harmfull and 

it even gave, like in some other experiments, a slightly higher 

yield of protoplasts than at 25°C. For the preparation of 

protoplasts from 10° conidiospores (in 2 ml) 0.5 ml Oerskovia 

enzymes and 0.5 mg glucanases were satisfactory. 

Table 3-

Strains 

C409-41 
C409-47 

10 Isolation of protoplasts from C.lindemuthianum 

Initial amount Amount of protopl 
of spores (x10~6) at 25°C 

38 21 
6 5.6 

asts (x10" 
at 30°C 

21 
7.5 

-6) 

conidiospores. 

% protopl 
at 25°C 

96 % 
98 % 

asts 
at 30°C 

98 % 
100 % 

Lytic incubation with Oerskovia enzymes and glucanases in 0.8 M PAC buffer. 
Conidiospores collected from cultures grown at 22°C for 12 days. 

The structures found when conidiospores of C.lindemuthianum 

were incubated with the lytic enzymes resembled those of 

Saccharomyces carlsbergensis (Eddy and Williamson, 1959) , 

except that the protoplasts protrude at the top of the cell 

(Fig.3.15). After one hour of incubation with lytic enzymes, the 

escape of the protoplasts from the cell wall can be readily 

observed. 

S. oarlsbergens%s 

CZZJ 

C. lindemuthianum 
Figure 3-15 Protoplast release from cells of Saccharomyces carlsbergensis (after 
Eddy and Williamson, 1959) and from conidiospores of C.lindemuthianum. 
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3.5.2 PROTOPLAST FUSION IN C.LINDEMUTHIANUM 

In prelimary experiments on fusion it was concluded that 

higher Cad« concentrations should be used than with A.nidulans. 

In that case the protoplasts must be purified, because 

otherwise a precipitate of CaSO, will be formed. Protoplasts 

from the lytic mixture were diluted with two volumes 1.2 M KCl 

and brought in a centrifuge tube on a 30Z sucrose cushion and 

centrifuged at 2000 rpm for 25 minutes. On the top some greasy 

cell material settled and above the sucrose a protoplast band 

was formed. The protoplasts were collected and washed twice with 

1.2 M KCl by centrifugation. There was still no separation of 

protoplast and residual spores, but owing to the low percentage 

of spores this did not interfere in the fusion experiments. 

Protoplast could be plated on CMK or MMK, stabilized as usual 

with 0.4 M KCl. The fusion mixture was plated directly or 

diluted 10 times with 1.2 M KCl. 

Table 3-11 Summary conditions and results of protoplast fusion. 

A.nidulans C.lindemuthianum 

Fusion 

Survival of 
protoplasts 

Heterokaryon 
frequency 

2x106 protoplasts in 2ml 
30% PEG (pH 5.9); 
50 mMCaCl2 
for 20 min at 30°C 

non-purified: >40 % 
purified: 1-30 % 

non-purified: 0.03-1 % 
purified: 2-25 % 

10? protoplasts in 2 ml 
30% PEG (50mM glycin-buffer 
pH8); 450 mM CaCl2 
for 20 min at 30°C. 

washed: 25-8C % 

0.4-1 % 

The protoplast fusion experiments (see Table 3. il) were 

performed with two double auxotrophic strains derived from the 

same wildtype strain. About equal amounts of protoplasts of both 

strains were collected by centrifugation and washed with 0.6M KCl. 

The protoplasts were resuspended in 30^ PEG, 450 mM CaClo, 50 mM 

glycin buffer pH 8. After 15 - 20 minutes the protoplasts were 

plated on CMK and MMK and incubated at 22°C for respectively 5 

and 10 days. Incubation in PEG for 60 min gave similar results. 

In Table 3.12 the results of two fusion experiments are presented. 
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Table 3-12 Pro toplas t fusion between two mutants of C.lindemuthianum (C409). 

Exp. 

1 

2 

Strain 

C409-
C409-

C409-
C409-

-41 
•47 

• 41 
-47 

Input 
total 
count 
xlO-4 

90 
60 

240 
330 

Viable 
count 
on CMK 
xllH» 

4.5 
1.8 

87 
44 

Fusion treatment at different pH 
pH 6 

colonies 
CMK x10" 

5.2 
(82%) 

110 
(83%) 

> 
-1* MMK 

225 
(0.4%) 

30 
(0.04%) 

pH 7 
colonies 

CMK xlO" 

3.9 
(62%) 

76 
(57%) 

"̂  MMK 

220 
(0.6%) 

710 
(0.09%) 

pH 8 
colonies 

CMK x10 

2.2 
(35%) 

33 
(25%) 

"4 MMK 

220 
(1.0%) 

1200 
(0.38%) 

Between b racke t s : CMK % p ro top l a s t s recovered; MMK % heterokaryons. 

I n E x p . l 800 mM CaCl2 was u s e d i n s t e a d of 450 mM, b u t w i t h 

800 mM CaCK t h e p r o t o p l a s t l o o k e d somewhat w r i n k l e d and t h e r e ­

f o r e n o r m a l l y 450 mM C a C ^ was u s e d , d e s p i t e t h e h i g h e r 

h e t e r o k a r y o n f r e q u e n c i e s i n E x p . l . 

As i n t h i s e x p e r i m e n t t h e h i g h e s t pH (pH 8) seemed t o be t h e 

b e s t c h o i c e , t h e pH r a n g e was e x t e n d e d i n a n e x t e x p e r i m e n t . Fo r 

pH 6 a 50 mM i m i d a z o l e b u f f e r was u s e d and now f o r pH 7 - 10 a 50 

mM g l y c i n b u f f e r ( T a b l e 3 . 1 3 ) . 

Table 3.13 Effect of pH on fusion frequency. 

S t r a in s Input Number of co lonies on CMK found a f t e r fusion 
t o t a l count pH6 pH 8 pH 9 pH 10 

C409-41: 12 x105 1.8 x105 1.8x105 0 .5x105 0 .05x105 

C409-47: 32 x105 

Heterokaryons on MMK 220 1010 350 130 
Heterokaryon frequency 0.01% 0.56% 0.7% 2.6% 

Incubat ion in 30% PEG, 450 mM CaClp. 

A l t h o u g h a t pH 10 t h e h i g h e s t h e t e r o k a r y o n f r e q u e n c y was 

f ound t h i s d i d n o t c o m p e n s a t e f o r t h e l o s s o f p r o t o p l a s t s . 

O p t i m a l r e s u l t s i n t h i s e x p e r i m e n t w e r e o b t a i n e d a t pH 8 . 

S t a n d a r d c o n d i t i o n s f o r f u s i o n o f C . l i n d e m u t h i a n u m p r o t o ­

p l a s t s w e r e : i n c u b a t i o n i n 30% PEG, 450 mM C a C ^ a t pH 8 and 

d i r e c t p l a t i n g of t h e m i x t u r e . PEG 1000 c o u l d r e p l a c e PEG 4000 

w i t h o u t s i g n i f i c a n t c h a n g e s i n y i e l d . I n c u b a t i o n i n 20% PEG a t 

pH 9 was b e t t e r t h a n i n 3 01 PEG a t pH 9 , b u t s t i l l l e s s t h a n i n 

30% PEG a t pH 8 . 
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C420-12 
C409-41 

C420-12 
C409-47 

C409-41 
C409-47 

3.4 
12 

3.4 
32 

12 
32 

x105 0.04 x105 

0.2 

0.04 
5.8 

0.2 
5.8 

In fusion experiments with double auxotrophic mutants from 

two different wildtype isolates (C409 and C420) a relatively 

high frequency of fusion products was found. The data from two 

of these experiments are given in Table 3.14. Also fusion 

between mutants derived from the same wildtype isolate is 

included in order to compare inter-strain with intra-strain 

fusion frequencies. 

Table 3.14 Fusion of mutants of different physiolical races (C409 and C420). 

Strain Input protoplasts Recovery Heterokaryon Fusion 
Total count Count on CMK count on CMK count on MMK frequency 

0.4 x105 240 0.60 % 

1.8 150 0.05 % 

1.8 220 0.12 % 

Incubation in 30% PEG, 450 mM CaCl . 

The ratio between the strains was not optimal, since strain 

C420-12 sporulated poorly,so it was not possible to collect 

sufficient conidiospores. Protoplast fusion between mutants of 

different isolates proceeded equally well as between mutants of 

the same isolate. The variation between different experiments is 

such that the differences in this experiment can not be 

considered as significant. 

3.5.3 DISCUSSION 

As described in Chapter 3.3, with C.lindemuthianum putative 

heterokaryons (from hyphal anastomosis) could be selected on MM, 

but heterokaryosis was difficult to prove as cross-feeding could 

not be excluded. So, we resorted to protoplast fusion with two 

double auxotrophic strains. Here the problem of cross-feeding 

does not arise. This is in agreement with Genovesi and Magill 

(1976) who found no cross-feeding between double auxotrophic 

strains of Pyricularia oryzae. The same was found by others with 
/ 
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a number of fungi (Anne and Peberdy, 1976; Anne, 1977; Ferenczy 

et al., 1976). Also in our experiments with conditions not 

allowing fusion (e.g. no PEG or no Ca^+) no cross-feeding was 

observed. 

With the Oerskovia lytic system, developed for Aspergillus 

nidulans, protoplasts could readily be prepared from conidio-

spores of C.lindemuthianum. Already after one hour of lytic 

incubation most conidia showed protoplast formation. All 

protoplasts escaped from the top of the conidiospore. This is 

remarkable because conidiospores mostly form a germ tube at the 

side. The protoplasts leave the cell envelope through an 

aperture and one may suspect that the location at which the germ 

tube should be formed will be digested first. At least 90% and 

often up to 99% of the conidiospores could be converted into 

protoplast after 5 to 6 hours of lytic incubation with 0.8 M 

(NH.,)„SO,as stabilizer. As germination of conidia of C.lindemuth­

ianum requires more than 15 h of incubation one may assume that 

the conidial protoplasts still have one nucleus. When shaking 

during lytic incubation is too vigorous, small probably 

anucleate protoplasts are pinched off. 

For fusion experiments the protoplasts had to be washed prior 

to use for fusion to remove the sulphate, which could 

precipitate the calcium of the fusion buffer. If this was 

omitted lower fusion frequencies were found and a precipitate 

was observed. Fusion proceeded optimally at pH 8. At higher pH 

the heterokaryon frequencies were higher, but the number of 

heterokaryons showed a pronounced decrease. The high frequencies 

at high pH were strictly dependant on the presence of high 

calcium concentrations. This is in agreement with the high 

fusion frequencies at high pH found with Pénicillium sp. (Anne, 

1977) and Aspergillus nidulans (Ferenczy et al. ,1976). Probably 

multiple fusions occur under these conditions. 

Us'ualy the fusion mixtures (in 30% PEG) were plated directly 

(without washing), giving the best results. Since incubation in 

PEG buffer for 20 minutes gave the same results as incubation 

for 60 minutes, it is probable that fusion is completed on the 

plates. Anyway the PEG buffer protects the protoplasts against 
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drying on the plate. It was not necessary to plate in a 

toplayer. 

In our experience with C.lindemuthianum we observed that the 

plating efficiency of conidia was often not more than 10Z 

(incidentally 20%) on CM and on MM even lower (see 3.2.0). So 

plating fused protoplasts on MMK may lead to underestimation of 

the heterokaryon frequency, since protoplast counts are done on 

CMK. Nevertheless, the heterokaryon frequencies (often 0.1-1 %) 

were not much lower than the frequencies obtained with 

A.nidulans (Chapter 3.4) and even higher than those obtained 

with Penicilium (Anne', 1977). 

The heterokaryons of C.lindemuthianum obtained after 

protoplast fusion indicate that the presumed heterokaryons 

obtained by hyphal anastomosis can be real heterokaryons. 
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3.6 Conclusions 

The phytopathogenic fungus Collectotrichum lindemuthianum 

which has low spore viability and is difficult to maintain can 

be preserved by lyophilization. 

C.lindemuthianum probably is able to form intra- and 

inter-strain heterokaryons: 

- Hyphal anastomoses occur, also between different races. 

- Presumed heterokaryons of complementing strains could be 

established on MM, although this may be mimicked by cross-

feeding. 

- Heterokaryons were also obtained by protoplast fusion, where 

cross-feeding is excluded. 

- Karyogamy could not be proven* Although presumed diploids 

could be isolated, no recombinants were found. 

An effective procedure for the isolation of protoplasts from 

conidiospores was developed. This resulted in homogeneous 

suspensions of mono- or binucleate protoplasts. The procedure, 

developed for A.nidulans, was also suitable for other imperfect 

fungi. With certain strains (of A.niger) initially sferoplasts 

are formed, but by carefully lowering the osmotic pressure of 

the stabilizing medium protoplasts can be obtained. 

The protoplasts prepared from conidiospores are very suitable 

for fusion experiments (heterokaryon frequency about 1 Z). 

Under the fusion conditions used mostly only two or three 

protoplasts participate in a fusion event. 

Studies on somatic karyogamy in A.nidulans with the help of 

protoplast fusion revealed that the frequency of somatic 

karyogamy may be some orders of magnitude higher (lOOx) as can 

be deduced from the frequency of heterozygous diploid 

conidiospores in a heterokaryon. 

In balanced heterokaryons sorting out of nuclei results in 

homokaryotic hyphae and the heterokaryon is maintained by new 

anastomoses. Examinations on heterokaryons showed that hyphal 

tips from the border of a heterokaryon in general are 

homokaryotic. This agrees with the observations on karyogamy 

frequency. 
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4. Perspectives for genetic analysis 
of Aspergillus niger 

4.0 Introduction 
Although Pontecorvo et al. (1953) demonstrated that para-

sexual mechanisms occur in Aspergillus niger, the genetics of 

this fungus is still ill-explored despite its biotechnological 

importance. Pontecorvo, Roper and Forbes (1953) carried out a 

number of genetic experiments, but concluded that still much 

research had to be done before satisfactory genetic analyses 

could be achieved. Lhoas (1967) started a genetic analysis of 

A.niger by somatic recombination, but his work was only 

continued occasionally: Van Tuyl (1977) used among other fungi 

A.niger to study the genetic basis of resistance against 

fungicides, Azevedo and co-workers (Avezedo and Bonatelli, 1983) 

did genetic experiments with different strains of A.niger, 

including diploid strains, Pâskovâ and Munk (1963) forced 

heterokaryons of gluconic acid producing strains; Ilczuk (1971) 

studied citric acid production by means of heterozygous 

diploids, and Fiedurek and Ilczuk (1983) the production of 

pectolytic enzymes. 

Applications of somatic recombination to production strains 

are scarce, at least little has been published on the topic. In 

these experiments several obstacles will be met which are 

discussed in the present chapter. 

In recent years attention is also paid to the isolation of 

protoplasts of A.niger. Some pilot experiments were reported by 

Anne (1977), Moore and Peberdy (1977), Bos and Slakhorst (1981), 

Lasure and Weber (1983). Recently, recombinant DNA techniques 

were applied to A.niger. Kelly and Hynes (1985) carried out 

experiments on the transformation of wildtype A.niger with 

Plasmids containing the amdS gene of A.nidulans. The A.niger 

trpC gene was cloned and used in transformation of A.nidulans 

protoplasts (Kos et al., 1985)). 

In our research group we started genetic research on A.niger 

in 1981. It was not possible to acquire the A.niger master 

strains constrcuted by Lhoas (1967). So we started with new wild 
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type strains obtained from the Centraal Bureau voor Schimmel-

cultures (CBS, Baarn). One of these strains was chosen as 

reference strain. From this strain an extensive mutant col­

lection will be made and test-strains for genetic analysis will 

be constructed. So genetic analysis can be performed in an 

isogenic background. Wildtype isolates may be polymorphic (i.e. 

contain different alleles) at several loci. Moreover chromosomal 

rearrangments may have occurred. Yet genetic analysis of strains 

of different origin is possible with the help of the reference 

strain. In this way one can use a single collection of genetic 

marker strains. Prerequesite for this approach is that somatic 

recombination between strains of different origin is possible. 

In the case of strains descending from different wildtype 

isolates, protoplast fusion can be used to overcome heterokaryon 

incompatibility. 

The building up of a collection of strains with suitable 

genetic markers and the construction of test-strains is time 

consuming. In this Chapter some of our collective results will 

be reported. First the strategy and result with the isolation of 

mutants will be given (4.2) and then a number of genetic 

analyses based on mitotic recombination will be presented (4.3). 
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4.1 Materials and methods 

4.1.0 STRAINS 

An Aspergil lus n iger wildtype s t r a i n was obtained from CBS 
(Baarn, The Netherlands): N400 = CBS120-49. In t h i s wildtype 
s t r a i n a morphological mutant with low conidiophores (cspAl) was 
induced and from t h i s mutant s t r a i n (N402) we derived auxo­
trophic and colour mutants (see 4 . 2 ) . Combinations of d i f fe ren t 
markers were in general obtained from recombination experiments 
(see 4 . 3 ) . For convenience a l i s t of genotypes showing the 
o r ig in of the s t r a i n s used in t h i s Chapter i s given: 

Survey of s t r a i n s descending from A.niger N400: 

r -N422 
c spAl ,metB2 

- N 4 1 0 

N402 -
ospA1 

N412 -
gryA1 

cspAl,fwnA1 

N434-
c spA1 ,h i sD4 

- N414 
c spAl , l euA1 

- N406-
cspA1,cysA2 

- N408-
cspA1,argA1 

N411 

.N442 
cspAl , fwnA1, leuAB6 

N436 
cspAl,fwnA1,lysA7 

•N415 
cspAl,cysA2,argA1 

N470 
cspA1,olvA1 cspA1,olvA1,trp2 

N413 
gryA1,argE5 

N503 
cspAl,metB2,leuAB6 
N505 
cspAl,fwnA1,metB2,leuAB6 

-N498 
cspAl,fwnA1,lysA7,hisD4 

-N462 
cspAl,leuA1,argA1,cysA2 

-N455 
cspAl,argA1,pheAl 
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4.1.1 MEDIA 

The A.niger strains were grown on complete medium (CM), 

minimal medium (MM), supplemented MM (SM) (according to 

Pontecorvo et al, 1953), and on malt extract (ME). These methods 

are described in Chapter 2.1. On CM and ME sporulating cultures 

were obtained after 3-4 days incubation at 30°C. 

4.1.2 ISOLATION OF MUTANTS 

Mutants were induced by UV-irradiation and occasionally by 

gamma-radiation, at survival levels of 70-801 according to the 

analyses presented in Chapter 2. Suspensions of 2x10 conidia 

per ml were used since in denser suspensions the shelter effect 

was too large. For UV-irradiation 10-12 ml suspension was 

irradiated in an open Petri dish (see 2.1.3). Gamma-irradiation 

of 2 ml conidial suspensions (5xl0^/ml) in small polypropyleen 

tubes was carried out with a Co-source (ITAL, Wageningen) at a 

dose of 100 Gy (= 10 krad). The condial suspensions were made 

the day before and kept at 4°C overnight. 

Before and after irradiation, dilutions of the suspension 

were plated on CMT and spore counts were done with the Coulter 

counter to correctly determine the percentage survival. 

The filtration enrichment procedure applied has been 

described in Chapter 2.1.3. After mutagenic treatment the 

conidia (about 10?) were collected and added to 40 ml liquid MM, 

supplemented for the growth factors required by the parental 

strain. This suspension was incubated in a reciprocal shaker at 

30 °C, in general for 18-24 hours. After 10-12 h the suspension 

was filtered through a cotton wool plug (50 mg in a 7 cm funnel) 

and the medium was refreshed. At the end of incubation the 

suspension was filtered again and the conidia that passed the 

cotton wool plug were collected by centrifugation and 

resus.pended in 2 ml saline. 

From this suspension samples were plated on CMT for survival 

count and the suspension was stored overnight at 4°C. Then 

survival could be counted and an appropriate dilution was plated 

to obtain 50 to 80 colonies per plate. Sometimes the suspension 
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was plated on CMT enriched with arginine, tryptophane and 

uridine when specifically mutants of these types were required. 

Subsequently, after 2-3 days the colonies rescued on CMT were 

transfered to MM. The colonies on the CMT plates which did not 

grow on MM were collected and tested again. In other experiments 

a replica plating technique was used. The CMT plates were 

covered with a piece of sterile filter paper and the suspension 

was plated on the filter paper (0.2 ml per plate). After two 

days incubation at 30°C the filter paper was transferred to the 

top of a wood block (0 8.5 cm) and replicas were made on MM by 

pressing the MM plate upside down on the filter paper. After one 

day at 30°C the MM plates could be scored. Auxothrophic mutants 

give only a dark spore print on the MM plate whereas prototrophs 

form a colony. 

Several students and colleagues participated in the isolation 

of A.niger mutants. Especially the contributions of Miss Anja 

Huibers and Dr.K.Swart are gratefully acknowledged. 

4.1.3 CHARACTERIZATION OF MUTANTS 

The auxotrophic mutants isolated were identified by growth 

tests on media with different amino acids (20 mg/ml), vitamins 

(0.2 mg/ml) or nucleosides (20 mg/ml). Morphologic mutants were 

isolated directly from the CMT plates. 

Phenotypically similar mutants were tested for complement­

ation in heterokaryons. For some groups of mutants growth tests 

on metabolic intermediates and analyses of enzyme activities are 

currently carried out by Swart, Bos and others (unpublished). 

4.1.4 HETEROKARYONS 

Aspergillus niger heterokaryons were obtained according to 

Pontecorvo et al. (1953). Conidia of two strains with different 

auxotrophic markers were mixed in 2 ml liquid complete medium 

and incubated at 30 °C for 2 days. Pieces of the resulting 

mycelial material were transferred to MM plates and incubated at 

30 C for 4 to 5 days. The usually poorly growing mycelium 

produced vigorously growing sectors. By far not all pieces of 

mycelium give rise to heterokaryons, but from all combinations 
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of strains heterokaryons could be obtained. Uniformly growing 

balanced heterokaryons are secured by transfer of sector pieces 

to MM plates. 

4.1.5 ISOLATION OF DIPLOIDS 

For the isolation of heterozygous diploids from heterokaryons 

a spore suspension was made by collecting conidia from a hetero-

karyon in saline-Tween as described earlier. Viability counts 

were done by plating a diluted suspension on CMT. Diploids 

were isolated by plating ' a concentrated suspension (about 

10"/ml; filtered through a cotton wool plug) in MM with a thick 

MM overlay as described by Pontecorvo et al. (1953). The plates 

were incubated for 5-7 days at 30°C. Since in some experiments 

with A.niger we found a high frequency of heterokaryotic 

colonies from plated conidia, occasionally the suspensions were 

plated in a MM-toplayer poured onto a MM bottom-layer. 

In view of the relatively high frequency of mitotic crossing-

over the number of transfers of the diploids was limited as much 

as possible. The selection plates were preserved and the 

diploids were transferred once to MM master plates. 

4.1.6 GENETIC ANALYSIS 

Master strains for allocation of genes to linkage groups were 

not yet available, but several individual genes could be tested 

for linkage. To determine whether genes were on the same 

chromosome a masterplate with heterozygous diploid colonies was 

replicated on CM+benomyl (1/200 or 1/250 of a stock solution of 

0.4 mg/ml in aceton) and/or on CM+fpa (2 mg p-fluorophenyl-

alanine/ml). These plates were incubated for a week at 30°C and 

segregants were isolated on CM. Benomyl was preferred as haploid-

izing agent whenever possible, especially when using colour 

markers. Only in a few experiments CM+fpa proved to be more 

suitable. The segregants were purified, (usualy) twice on CM and 

tested for genetic markers. In case of doubt about ploidy the 

size of the conidia was determined by means of the Coulter 

counter. 
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For the determination of mitotic recombination diploid 

segregants, homozygous for a specific marker, were isolated and 

these were tested for homozygosity of linked markers descending 

from the same parent. Only markers in cis-position can be mapped 

in this way (see 1.2.3). For A.niger we used an enrichment 

method analoguous to that used for the isolation of mutants. 

This procedure had proven to be very suitable for the isolation 

of partially homozygous diploids in A.nidulans for a broad range 

of different characters, e.g. for pdhC mutants (Bos et al., 1981 

and unpublished results). The auxotrophic segregants were 

identified by replica plating. 

We verified the ploidy of the colonies of interest by 

measuring a sample of conidiospores with the Coulter counter. 

When suitable colour markers can be used for selection, a sample 

of diploid spores can be plated on CMT and inspected visualy. 
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4.2 Establishment of a mutant collection 

4.2.0 INTRODUCTION 

A wild type strain was chosen for the establishment of a 

collection of mutants to be used as genetic markers for the 

construction of master-strains. In this wildtype strain mutants 

are induced by UV or other mutagens at low doses (cf. Chapter 2). 

In order to avoid accumulation of background mutations or 

chromosomal rearrangements the number of consecutive treatments 

of a strain has to be kept to a minimum. 

First a mutant was induced which had low conidiophores and 

from this mutant auxotrophic and colour mutants were isolated 

(see 4.1.0). In principle strains with more than two auxotrophic 

markers have to be obtained by recombination. Since we also 

worked with other wildtype strains we decided to have a fixed 

auxotrophic marker to label the strain used for the isolation of 

new mutants. 

4.2.1 RESULTS 

In a series of mutation experiments a collection of some 90 

auxotrophic mutants were derived from the reference strain (N402) 

(See Table 4.1). Detailed characterization of the mutants is in 

progress. It was known from work with A.nidulans that some 

arginine, tryptophane and pyrimidine deficient mutants (mutants 

which we looked for with priority) need supplementation of CM. 

Therefore, except for the first experiments, these amino acids 

and uridine were always added to CM and CMT in the course of the 

mutant isolation procedure. Induction, isolation and prelimary 

characterization of mutants was carried out as described in 

Section 4.1. In general only mutants with full expression were 

retained, for leaky mutants are not always easy to handle in 

genetic analyses. 
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Table 4.1 List of auxotrophic mutants descending from N402 

Gene Phenotype 
symbol 

ade adenine deficient 
arg arginine or arg/pro deficient 
bio biotin deficient 
cys cysteine or cys/met deficient 
his histidine deficient 
leu leucine deficient 
lys lysine deficient 
met methionine deficient 
nie nicotinamide deficient 
pab p-aminobenzoic acid deficient 
phe phenylalanine deficient 
pro proline deficient 
trp tryptophan deficient 

Total 

Number of 
mutants 

10 
14 

1 
4 
5 
8 

23 
12 
1 
2 
1 
3 
4 

Number of loci 
on the basis of 
complementation 

>2 
5 
1 
3 
5 

>3 
4 

>3 
1 
1 
1 
1 

>2 

>30 

4.2.3 DISCUSSION 

The procedure chosen for the isolation of auxotrophic mutants 

proved te be suitable for this A.niger strain (N402). It is 

obvious that the enrichment techniques favour the isolation of 

certain mutant phenotypes. By adjusting the conditions for 

enrichment and rescue, other mutants may be found too. The 

trp-mutants were only found when filter sterilized tryptophane 

was added to the CM. As was shown in Section 2.3, for the 

isolation of vitamine-less mutants repeated refreshing of the 

enrichment medium is recommended. In this way, variation in 

experimental conditions can supply sufficient different mutant 

fenotypes. It should be kept in mind that a great variety of 

markers is necessary for genetic analyses. The master strains 

should have phenotypically different markers because, for 

example, an argA and an argB marker in the same experiment will 

complicate the analysis. Apart from the auxotrophic mutants also 

some resistance markers and colour markers are used in 

recombination experiments. 
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4.3 Genetic analyses 

4.3.0 INTRODUCTION 

To assign genes to chromosomes a set of master strains is 

needed, each with marker genes on the different chromosomes. The 

construction of such master strains requires firstly the 

establishment of linkage relationships between the available 

genetic markers. 

From several combinations of mono-auxotrophic strains double 

auxotrophic recombinants were obtained by mitotic recombination 

(Cf 4.1.0). Diploid analyses at this stage are not presented 

here, because little information about linkage was obtained. 

Rather the double auxotrophic recombinant strains were 

subsequently used for diploid analyses to identify linked genes 

(see below). 

Non-disjunction in heterozygous diploids is induced by 

benomyl (Hastie, 1970). It is known that this agent interferes 

with spindle formation (Davidse and Flach, 1978; Sheir-Neiss et 

al, 1978), and consequently disturbs the disjunction of sister 

chromatids. Although Kappas et al. (1974) mentioned a mutagenic 

effect of benomyl on A.nidulans, Wood (1982) showed that it has 

little or no effect on mutation or mitotic crossing over in 

yeast. 

It was already known that mitotic crossing over in A.niger is 

more frequent than in A.nidulans. Six linkage groups could be 

demonstrated (Lhoas, 1967). Also the genes studied by Van Tuyl 

(1977) assorted according to the known linkage groups. 

On the basis of the compiled linkage data obtained in our 

experiments the interference of mitotic crossing over with the 

allocation of genes to chromosomes and the consequences for' the 

construction of master strains are discussed. 

4.3.1 SELECTION OF DIPLOIDS 

Several combinations of mutant strains decending from strain 

N402 were used to make heterokaryons and heterozygous diploids. 

Upon the transfer of pieces of heterokaryon to fresh MM plates 

mostly well balanced heterokaryons were formed. 
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Usualy it was easy to collect 10 conidia from heterokaryons 

on a single MM plate. Although the suspension was filtered 

through a cotton wool plug, often many heterokaryons were found 

on the selection plates. In general one in 30 to 50 colonies was 

a diploid. The diploid frequency among conidiospores was about 

10" . When the frequency of heterokaryons was high, plating in a 

toplayer was preferred over plating in a bottomlayer with a MM 

overlay as is usually done with A.nidulans. 

Several presumptive diploid colonies were tested for growth 

on MM and the conidia were measured. One diploid colony was 

chosen for genetic analysis. This colony is maintained on MM 

with as few transfers as possible. 

Often it is difficult to see whether a colony is a diploid or 

a heterokaryon. Also when colour markers are used, heterokaryons 

may show (sectors with) conidia with a dark phenotype like the 

heterozygous diploid. When e.g. olive-green and fawn colonies 

grew on the same CM plate, dark coloured conidia were formed at 

the border where the colonies adjoined. 

4.3.2 ANALYSES BY HAPLOIDIZATION 

A number of diploid analyses were carried out in order to 

identify linked genes. Haploid segregants were obtained from a 

heterozygous diploid on CM+benomyl, purified by repeated 

transfer to CM and tested for genetic markers. 

The results of one of the experiments are presented in the 

Tables 4.2 and 4.3. The genotypes of the segregants are listed 

in Table 4.2. Segregants which differ in colour from the 

heterozygous diploid were easier to identify than segregants 

with wild type colour. It is seen that a number of segregations 

is disturbed (i.e. the segregation of the two alleles of a given 

gene deviates from the 1:1 ratio). Moreover, in this experiment 

prototrophic fawn segregants were very frequent. Probable these 

were mostly diploid homozygous for the fawn colour marker as a 

result of an earlier mitotic crossing-over event. In this 

experiment (one of the first analyses) these colonies were not 

screened for ploidy by measuring the conidia. For the analysis 

of linkage only arg-less segregants were used (* in Table 4.2) 

to circumvent the inclusion of diploid fawn segregants. 
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Table 4.2 Genotypes of segregants from d ip lo id N413//N442 

N413 
N442 

argE5 
+ 

+ 

argE5 
+ 

+ 

+ 

argE5 
argE5 
argE5 

+ 

+ 

+ 

argE5 
argE5 
argE5 

+ 

argE5 

gryA1 
+ 

+ 

+ 

gryA1 
+ 

+ 

gryA1 
+ 

+ 

gryA1 
gryA1 

+ 

gryA1 
gryA1 

+ 

gryA1 
gryA1 

+ 

fwnA1 

+ 

+ 

+ 

fwnA1 
+ 

+ 

fwnA1 
+ 

fwnA1 
+ 

fwnA1 
fwnA1 

+ 

fwnA1 
fwnA1 
fwnA1 

+ 

leuAB6 

+ 

+ 

+ 

+ 

leuAB6 
+ 

+ 

leuAB6 
+ 

leuAB6 
leuAB6 

+ 

leuAB6 
leuAB6 
leuAB6 
leuAB6 

Total: 

8 
0 

19 
252 

5 
8 

45 
3 

29 
16 
72 
38 
6 

45 
51 
31 

'628 

* 

* 
* 
* 

• 
* 
* 

* 

*) arg5 s egregan ts : 176 

The frequencies of pairwise gene combinations are shown in 
the lower l e f t half of Table 4 . 3 . In the upper r i gh t half the 
recombination frequencies are given. 

Table 4 .3 Diploid ana lys i s (N413//N442) 

N413 gryA1 argE5 + + 

N4 42 + + fwnA1 leuAB6 

markers gryA1 + argE5 *) + fwnAI + leuAB6 

gryA1 (53 %) 41 % 47 % 
+ 

argE5 *) 83 93 (10%) (48 %) 

+ 1 3 17 52 % 
fwnAI 69 90 159 

+ 46 45 91 8 83 
leuAB6 37 48 85 9 76 

* Only arg5 segregants were used for tjie ana lys i s s ince t he re "was a l a rge 
excess of p ro to t roph ic fwnAI co lon ie s , probably descending from a m i to t i c 
c ross ing-over event . 
Frequencies between brackets r e f e r to s i n g l e - c l a s s (within argE5) 
s eg rega t ions . Here the assumption of non-dis turbed ove ra l l segragat ion i s 
made. 
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From this experiment it was learned that it is important to 

maintain the heterozygous diploid with as few transfers as 

possible to avoid mitotic crosssing-over. In the following 

experiments also special attention was payed to phenotypes which 

could represent diploids. In the case of suspect segregants 

ploidy was decided on spore size and diploid segregants were 

excluded. The results are summarized in the Tables 4.4 to 4.7. 

The parents of the diploids used for genetic analysis were 

chosen from the recombinants obtained in foregoing experiments 

(see 4.1.0). In the diploid analysis of N498//N503 (Table 4.4.) 

with five loci no linkage was found, and in the diploid analysis 

of N462//N498 (Table 4.5) only one pair of markers was linked 

(21% recombination). In the diploid analyses N455//N498 (Table 

4.6) and N455//N505 (Table 4.7) three markers (pheA, argA, metB) 

showed close linkage. It should be noted that the pheAl mutation 

was induced in an argAl strain, so these two mutant alleles are 

in coupling phase. The linkage data are summarized in Table 4.8. 

Table 4.4 Diploid analysis N498//N503 

N498 fwnA1 lysA7 hisD4 + + 
N503 + + + metB2 leuAB6 

markers 

fwnA1 
+ 

lysA7 
+ 

hisD4 
+ 

+ 
metB2 

+ 
leuAB6 

wnAI 

66 
89 

18 
137 

73 
82 

87 
68 

+ 

63 
64 

12 
115 

72 
55 

77 
50 

lysA7 

54 

13 
116 

66 
63 

74 
55 

+ 

% 

17 
136 

79 
74 

90 
63 

hisD4 

53 

47 

17 
13 

19 
11 

+ 

% 

% 

128 
124 

145 
107 

metB2 

55 % 

50 % 

50 % 

51 % 

51 % 

55 % 

48 % 

87 77 
58 60 

282 segregants were analyzed. 
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Table 4.5 Diploid analysis N462//N498 

markers 

leuAl 
+ 

cysA2 
+ 

argAl 
+ 

+ 

fwnAl 

+ 

lysA7 

+ 

hisD4 

N462 
N49E 

leuAl 

37 
81 

40 
78 

58 
60 

55 
63 

105 
13 

+ 

53 
136 

52 
137 

96 
93 

80 
109 

161 
28 

leuAl 
+ 

cysA2 
+ 

cysA2 + 

44 % 

28 
62 

42 
48 

80 
10 

70 
20 

. 64 
153 

112 
105 

55 
162 

196 
21 

argAl 
+ 

argAl + 

42 % 

41 % 

42 
50 

36 
55 

83 
9 

112 
103 

98 
117 

183 
32 

+ 

fwnAl 

+ 

72 
82 

136 
18 

+ 

lysAl 

fwnAl 

51 % 

52 % 

53 % 

63 
90 

130 
23 

+ 

hisD4 

+ lysA7 

47 % 

21 % 

50 % 

47 % 

111 155 
24 17 

+ hisD4 

57 % 

70 % 

63 % 

48 % 

58 % 

307 segregants were analyzed. 
Note: When both single gene segregations are disturbed (deviate significantly 
from 1:1) the percentages cannot be considered as unbiased estimates of the 
recombination percentages. 

Table 4.6 Diploid analysis N455//N498 

N455 argAl pheAl + + + 
N498 + + fwnAl lysA7 hisD4 

markers argAl + pheAl 

argAl 1 % 

+ fwnAl + lysA7 + hisD4 

50 % 44 % 59 % 

pheA2 
+ 

+ 

fwnAl 

+ 

lysA7 

+ 

hisD4 

90 
3 

44 
49 

49 
44 

86 
7 

0 
225 

110 
115 

97 
128 

179 
46 

41 
49 

48 
42 

83 
7 

113 
115 

98 
130 

182 
46 

51 % 

70 
84 

76 

124 141 
30 23 

44 % 

50 % 

124 141 
22 31 

59 % 

54 % 

51 % 

318 segregants were analyzed. 
See footnote to Table 4.5 
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Table 4.7 Diploid analysis N455//N505 

markers 

argAl 
+ 

pheA1 
+ 

+ 

fwnA1 

+ 

metB2 

+ 

leuAB6 

N455 
N505 

argA 

98 
2 

64 
36 

100 
0 

66 
34 

argAl 
+ 

+ 

1 
212 

97 
116 

2 
211 

109 
104 

pheA1 + 

+ fwnA1 

pheA1 + 

1 % 

62 99 
37 115 

99 3 
0 211 

65 110 
34 104 

+ 

65 
96 

87 
74 

+ 

metB2 1 

fwnA1 

42 % 

43 % 

37 
115 

88 
64 

+ 

=uAB6 

-i 

68 
34 

metB2 

1 % 

1 % 

42 % 

107 
104 

+ leuAB 

46 % 

46 % 

52 % 

45 % 

313 segregants were analyzed. See footnote to Table 4.5 

Table 4.8 Compilation of recombination data from all diploid analyses. 

gryA argA argE oysA hisD leuA leuAB lysA metB 

gryA 

argA 

argE 

cysA 

hisD 

leuA 

leuAB 

lysA 

metB 

pheA 

fwnA 

41 

53 
50 
42 

(10) 

52 

53 
48 
54 

51 

52 
51 
52 

54 
47 
50 

55 
42 

51 
43 

gryA 

(53) 

47 

arg 

41 

63 
59 

42 

46 

50 
44 

1 

1 
1 

70 

44 

(48) 

57 

55 

21 47 
58 
51 

50 

59 

47 51 

48 
45 

46 

50 

44 

For percentages between brackets see Table 4.3-
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4.3.3 ANALYSES BY MITOTIC CROSSING-OVER 

The diploid N455//N505, which has three closely linked markers 

and two non-linked markers is suitable to study mitotic 

crossing-over : 

N505 metB2 + + fwnAl leuAl 

N455 + argAl pheAl + + 

(sequence arbitrary) 

There are two drawbacks for an analysis of mitotic crossing-

over. Firstly, as mentioned in Section 1.2.3, pairs of recessive 

markers must be in cis-position, i.e. on the same homologue, for 

recombinants which have become homozygous for the wildtype 

allele will go unnoticed as they have the same phenotype as the 

heterozygous diploid. Of course, the homozygous diploid recombin­

ants can be analyzed by subsequent haploidization,. but this is 

very laborious. Secondly, markers suitable for positive select­

ion are not available. This is overcome by using enrichment 

procedures. 

With the diploid strain N455//N505 three separate enrichment 

procedures (as described in 2.4) have been carried out: in SM 

without methionine (Exp.l), in SM without phenylalanine (Exp.2) 

and in SM without arginine (Exp.3). Each enrichment procedure 

started with conidia of the heterozygous diploid grown on CM 

(although MM would have been better, see Discussion). About 

4xl07-108 conidia were incubated in 20 ml SM (e.g. SM -met) for 

two days. The medium was refreshed after one day. The remaining 

conidia were plated on filter paper on CMT supplemented with 

arginine and phenylalanine. The resulting colonies were 

replicated on MM. Colonies not growing on MM were collected by 

transfer to CM+arg+phe and tested for the other markers. Conidia 

were measured for determining the ploidy level. In this way 

haploid and partially homozygous diploid recombinants are 

selected. The results are summarized in Table 4.9. 

Since the numbers of segregants obtained by enrichment proced­

ures provide no information on the frequency of spontaneous 

haploidization, spontaneous fawn-segregants were isolated after 

plating of conidiospores from a heterozygous diploid colony 

(Exp.4). Starting from a monospore colony the diploid was 
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Table 4.9 Enrichment for recessive recombinants from an A.niger diploid 
N455//N505. 

Exp. 

1. 

2. 

3-

4. 

Enrichment for 

met-requirement 

phe-requirement 

arg-requirement 

no enrichment 
fwnA1 colonies 

Number of colonies 
rescued and tested 

from CM 
MM 

3600 

331 

2096 

4020 
5260 

Segregant 
total 

66 

27 

90 

10 
6 

colonies: 
haploid 

64 

25 

87 

8 
5 

diploid 

2 

2 

3 

2 
1 

Conidiospores were incubated for enrichment (see 4.1 and 2.4). After enrichment 
the conidospores were plated on 20 plates CMT (40 in Exp.3) and tested for 
deficiencies. Segregants were measured for determining ploidy. 
In Exp.4 no enrichment was applied; fwnA1 segregants were isolated visually 
after plating of conidia directly on CMT. 

grown on CM and on MM at 30°C for 4 days. Spore suspensions 

(about 10 spores) were made from both cultures and plated on 

CMT+arg+phe so that about 200 colonies per plate could be 

expected. Spores harvested from CM and from MM gave rise to 

fawn colonies in frequencies of 0.21 and 0.1%, respectively. The 

fawn segregants were isolated by transfer to CM+arg+phe, grown 

for 3 days at 30°C and the spore sizes were determined to assess 

the ploidy level. The results were: spores from fawn colonies 

obtained from the culture on CM: 8 haploids and 2 diploids; from 

MM: 5 and 1, respectively (see Table 4.9). 

The diploid recombinants from Exp.1-3 were each transferred 

to a master plate (CM+arg+phe) and replicated on plates 

CM+arg+phe+benomyl. Segregants were isolated and tested for 

markers. In the diploids from Exp.2 and Exp.3 only the metB2-

marker had to be analyzed in this way; argAl respectively pheAl 

could be scored in the diploids, since they would be present 

either as heterozygotes (wildtype phenotype) or as homozygous 

récessives (mutant phenotype). The results are presented in 

Table 4.10. 

To assess the linear order of the three linked genes and the 

centromere (cen), we first turn to the assumed genotypes of the 

homozygous diploids (see Table 4.10). 
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Table 4.10 Analysis of homozygous diploid recombinants 

Exp. 

1. 

2. 

3. 

Diploi ds 
Number Assumed genotype 

1) 

a,b 

a,b 

a,b 

c 

2) 

metB2 + + 
metB2 argA1 pheA 1 

metB2 argA1 pheA 1 
+ argA1 pheA.1 

metB2 argA1 + 
+ argA1 pheAl 

metB2 argA1 pheA1 
+ argAI pheAl 

Segregants 
Genotype 

metB2 
metB2 

metB2 
+ 

+ 

+ 

metB2 
metB2 

metB2 
+ 

+ 

argAI 

argAI 
argAI 

argAI 
argAI 
argAI 
argAI 

argAI 
argAI 

sbtained by haploidization 

+ 

pheAl 

pheAl 
pheAl 

+ 

pheAl 
+ 

pheA 

pheAl 
pheAl 

From 
a 

127 
51 

28 
51 

4 
40 
22 

8 

diploid 
b 

148 
98 

16 
48 

1 
11 
22 

0 

number 
0 

0 
20 

1) For numbers of diploids, see Table 4.9. 
2) Most probable genotype as deduced from the phenotype of the diploid; linear 

order still arbitrary. 

In Exp.2 the pheAl//pheAl diploids (2 a,b) are also 

homozygous for argAI and it can be concluded that pheA and argA 

are on the same side of the centromere. Since in Exp.3 two out 

of three argAl//argAl diploids (3 a,b) were heterozygous for 

pheAl and one (3 c) was homozygous for pheAl, the simplest 

explanation is the linear order cen-pheA-argA. These diploids 

represent two cases of exchange, i.e. one between pheA and argA 

and one between pheA and the centromere. Haploidization 

confirmed the assumed genotypes of the diploids 2 a,b and 3 

a,b,c (see Table 4.10). 

From the metB2//metB2 diploids (1 a,b) both argA+pheA+ and 

argAlpheAl haploid recombinants were obtained. This can be 

expected from the assumed genotype, if metB is distal on the 

pheA-argA arm or is on the other side of the centromere. 

However, haploidization of the pheAl//pheAl diploids (2 a,b) 

revealed that these diploids were heterozygous for metB and 

consequently metB cannot be distal to pheA, in other words metB 

must be on the other chromosome arm. 

The same conclusion follows from the two argAI//argAI 

diploids (3 a,b) which were also heterozygous for metB2. The 

most probable linear order then is: metB-cen-pheA-argA. 
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From the argAlpheAl//argAlpheAl diploid (3 c) only metB+ 

haploids were obtained. So the diploid is probably homozygous 

for metB and the presumed genotype of this diploid (see Table 

4.10, 3 c) is not correct. At first sight the homozygosity for 

metB+ may suggest that metB is distal of argA, but this 

possibility has been rejected. Probably this diploid results from 

an additional crossing-over on the other chromosome arm between 

metB and the centromere. 

From diploid 3 a two types of haploids were obtained (viz. 

metB2 argAl pheAl and metB+argAl pheA+ with frequencies 8 and 4 

respectively) which do not seem to fit in the scheme. Also from 

diploid 3 b one haploid of the latter type was found. These rare 

recombinant genotypes might have resulted from a later crossing-

over (see Table 4.11). 

Table 4.11 Origin of rare recombinant genotypes by mitotic crossing-over. 

Genotype of diploids Numbers of haploids 

original diploid: metB2 
argAl phiTT 

first crossing-over: metB2 argAl + 22«-
+ * argAl pheAl 4 0 ^ 

second c ross ing-over : + t argAl 
argAl pheAl 

metB2 r argAl + 
metB2 " argAl pheAl 

Although a j o i n t i n t e rp r e t a t i on of a l l data i s not easy, the 

l i nea r order of the three l inked markers i s well e s t ab l i shed . I t 

i s obvious tha t frequently more than one crossing-over between 

two homologues can occur, although the overa l l frequency of 

mi to t ic crossing-over i s low. 
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4.3.4 DISCUSSION 

The frequencies of heterozygous diploids found by us showed 
- f\ 

much variation (around 10 ) and is much lower than reported by 

Lhoas (10 ). Also we often found many times (e.g. 20 times) more 

heterokaryons than diploids on the diploid selection plates, a 

phenomenon not mentioned by Lhoas (1967). Our results agree with 

the observations of Chang et al. (1974). The heterokaryons on the 

selection plates probably originate from heterokaryotic conidia 

which can be present at a low frequency. 

With mitotic division one expects that markers located on 

different chromosomes segregate independently, whereas markers on 

homologous chromosomes show no recombination. However, due to 

mitotic crossing-over, recombinants can occur at low frequencies. 

So one expects two classes of recombination freq.uencies, e.g. 

<10Z, and about 502. 

When estimating recombination frequencies a number of points 

should be kept in mind. Firstly, the individual recombinants are 

not wholly independent in origin. In the diploid small 

recombinant clones can occur (e.g. conidia from one chain), and 

occasionally even larger recombinant sectors can be present. This 

was the case in the first haploidization experiment described 

here (see Table 4.2). Secondly, with some digenic combinations 

both segregations are disturbed, which leads to biassed estimates 

of the recombination frequencies. However, from their order of 

magnitude one can safely make conclusions about linkage groups. 

Among 11 loci studied in these experiments (Table 4.8) only 

three showed close linkage: argA, pheA and metB. The low 

percentage of recombination (11) observed between the three 

linked loci can be explained by mitotic crossing over. 

The genes fwnA, hisD, leuAB, and lysA are not linked to this 

linkage group and are mutually unlinked. So at least 5 linkage 

groups are present. CysA showed 21 % recombination with lysA. 

Further experiments should be done to see if these loci are 

linked or not. The remaining two genes, gryA and argE, are 

mutually unlinked, but otherwise insufficient information on the 

two genes is available. 
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The low percentage of recombination (by mitotic crossing-

over) between the three linked loci is in agreement with the 

observations of Lhoas (1967). He found among haploid segregants 

induced on CM+p-fluorophenylalanine between the loci pab, arg and 

a of linkage group I 0.3 Z respectively 6.3 % recombinants 

resulting from mitotic crossing over. In two diploids, however, 

he found up to 15 1 recombinants between arg and a. This can be 

due to the small number of segregants analyzed (66 and 67, 

respectively). By ommitting the diploids with a high fraction of 

recombinants Lhoas obtained homogeneous data. He concluded that 

in two diploids mitotic crossing-over took place several cell 

generations before haploidization. This illustrates that 

complications can be expected in gene mapping by mitotic 

crossing-over when scoring is done with haploid segregants. 

As mentioned above, we found 21 °L recombinants between cysA 

and lysA (Table 4.5). In one of his analyses Lhoas found 17 1 

recombinants (7 out of 42) between two markers (met and his), 

whereas in other diploids independent segregation between these 

two markers was observed. He concluded that the diploid might be 

heterozygous for a translocation. In our strains translocations 

are unlikely, because we used only few rounds of mutagenic 

treatment and applied a low dose. Therefore, the interpretation 

might be that the loci are located on different chromosomes or 

are on the same chromosome, either far from each other or mitotic 

crossing-over must have occurred some cell generations before 

haploidization. The markers cysA and lysA will be included in 

further analyses. 

When mitotic crossing over is studied on the basis of haploid 

segregants the two processes of recombination may interact. It 

may well be that benomyl does not have any effect on mitotic 

crossing-over (Wood, 1982), but it may still influence the 

selection relationships. Lhoas (1967) found for the loci arg and 

a (chromosome I) in 20 separate diploid analyses mitotic crossing 

over frequencies to vary from 3 - 15 1. At any rate cloning of 

mitotic recombinants and selection may disturb the analysis. 

Upon plating of conidia from different diploid single spore 

colonies Lhoas (1967) found 0.4-1.4 2 haploid acr-resistant 
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segregants. He estimated the incidence of mitotic crossing-over 

in a population of diploid nuclei to be at least 20%. This was 

based on a crossing-over frequency of 6.27!? between arg and a (on 

chromosome I) and on the assumption that A.niger has six chromo­

somes. Although we too found low frequencies (1%) of mitotic 

crossing-over among haploid segregants, haploid spontaneous 

recombinants were found to be 20-30 times more frequent than 

homozygous diploid recombinants. For our marker fwnAl (probably 

on the same chromosome as the acr marker of Lhoas) we found a 

somewhat lower frequency of haploids (0.1 - 0.2%). So, even if we 

assume a haploidization frequency of 1%, our conclusion is that 

the frequency of mitotic crossing-over per nucleus will be much 

lower than found by Lhoas. It can then be estimated to be at 

least about 0.3% (6 x 1/20 x 1%). Further experiments will be 

done to obtain a more exact estimate. As said earlier when 

mitotic crossing-over is studied on the basis of haploid 

segregants the two processes of recombination may interact and so 

Lhoas (1967) arrived at too high an estimate of the frequency of 

mitotic crossing-over. However, it should be mentioned that Lhoas 

used strains derived from a different wildtype isolate. 

The analysis of homozygous diploids by haploidization revealed 

that a second crossing-over occurs more frequently than expected. 

This suggests that a special physiologic condition in the cells 

promotes mitotic crossing-over. This differential capability of 

cells for mitotic recombination is an interesting point for 

further studies for which A.niger would be a suitable object. 
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4.4 Conclusions 

A start has been made with the establishment of a mutant 

collection in an isogenic background as a source of genetic 

markers. Up to now about 90 independent auxotrophic mutants have 

been isolated after induction by UV at a low dose followed by 

enrichment procedures. Complementation tests showed that the 

mutants are at least at 30 different loci. 

Somatic heterozygous diploids can be obtained in the usual way 
- f\ 

(frequency about 10 ), but often far more heterokaryons are 

obtained. Probably this is caused by a certain number of 

binucleate conidia. 

Genetic analysis of 11 loci by haploidization showed that at 

least 5 different linkage groups could be distinguished. So it is 

quite possible that A.niger has more than the 6 chromosomes as 

proposed by Lhoas (1967). 

The filtration enrichment procedure was used successfully to 

isolate recessive recombinants so we can do without specific 

selective markers terminal on the chromosome arms, since any 

auxotrophic marker can now be used for selection. 

The frequency of spontaneous haploid recombinants was somewhat 

lower than found by Lhoas (1967), but not very much so. However, 

the estimated frequency of mitotic crossing-over per nucleus 

(0.3X) is much lower than the 20Z assumed by Lhoas. The 

frequency of haploid segregants was 20-30 times higher than that 

of homozygous diploid segregants of similar phenotype. 

By relating the frequency of mitotic crossing-over to the 

frequency of spontaneous haploid recombinants, quantitative data 

on the frequency of spontaneous mitotic crossing-over can be 

obtained and the results of different expriments become 

comparable. These frequencies are not dependent on the position 

of the selection marker which happens to be used in the 

experiment, so gene-maps can be made in a consistent way. 

From these studies it can be concluded that these procedures 

for the isolation of mutants and for genetic analysis offer good 

perspectives to further development of the genetics of A.niger, 

as well as for application in breeding programs. 
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5. Summary 

Many fungi which are important in Agriculture as plant 

pathogens or in Biotechnology as producers of organic acids, 

antibiotics or enzymes, are imperfect fungi. These fungi do not 

have a sexual stage, which implies that they lack a meiotic 

recombination mechanism. 

However, many imperfect fungi have effective recombination 

mechanisms operating-during mitotic divisions. The first step in 

somatic recombination is the fusion of somatic cells. In nature 

this occurs by hyphal fusion followed by exchange of nuclei, 

which results in a heterokaryotic mycelium, if the partners are 

genetically different. Owing to fusion of somatic nuclei 

(karyogamy), which occurs at a very low frequency, heterozygous 

diploid nuclei may then arise. Heterozygous diploid strains can 

be isolated and maintained by transfer of conidia. During 

division of somatic nuclei (mitosis) recombination of genes can 

occur by mitotic crossing-over and by loss of chromosomes 

leading to haploid recombinants. 

In the laboratory heterozygous diploid strains can also be 

obtained via protoplast fusion. 

This study concerns the biotechnologically important fungus 

Aspergillus niger and the phytopathogenic fungus Colletotrichum 

lindemuthianum (the causal organism of bean anthracnose), 

whereas studies on fundamental aspects or on the development of 

procedures were carried out with the genetically well known 

fungus Aspergillus nidulans. The latter has both a sexual stage 

and well studied processes of somatic recombination. We used it 

as a model for studies on mutation induction, heterokaryosis and 

protoplast fusion. 

The chapter on induction and isolation of mutants (Chapter 2) 

presents studies on UV-survival curves for conidiospores (2.2), 

the frequency of mutants (2.3) and mutant enrichment procedures 

(2.4). 

The interpretation of the shape of survival curves was 

discussed. Processes generating an initial shoulder in log-

survival curves have quite different effects: A multi-hit 
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process leads to a much more pronounced initial shoulder than a 

multi-target process does. In the experimental part is was 

argued that the initial shoulders in logS curves of haploid 

uninucleate A.nidulans conidiospores (single target cells) 

probably are the result of an inherent repair capacity which 

becomes saturated at a certain UV dose. An increase in target 

number (number of genomes in the spore) results in an increase 

of the logS-intercept due to a larger shoulder. At the same 

time, however, the repair capacity may have increased and 

complementation of lethal lesions may occur. In general such 

increases of the logS-intercept lead to overestimation of the 

target number. 

As in practice often high mutagen doses are applied so that 

mutants are isolated at low survival, the relationship between 

mutant frequency and survival was analyzed to see whether such 

high mutagen doses are necessary at all. High doses produce 

chromosome rearrangements and unnoticed mutations which disturb 

the genetic background. For several types of mutation it was 

shown that the highest yield of mutants is found at low mutagen 

dose (i.e. at about 20-50 % survival). The frequency of mutants 

among the survivors increases with the dose of mutagen, but 

levels off and even decreases at higher doses. It was also 

found, contrary to what is suggested in littérature, that often 

no simple linear relationship exists between frequency of 

mutants and the logarithm of the dose or of the surviving 

fraction. In conclusion our experiments show that mutants can be 

well isolated at low doses of mutagen. So taking into account 

the risk of disturbance of the genetic background by unnoticed 

mutations and chromosomal rearrangments, mutation induction 

should be done at a survival level of at least 707». 

To compensate for the relatively low frequency of mutants 

among the survivors, we require procedures for the selection of 

mutants or for the elimination of the non-mutant cells. The 

effectiveness of filtration enrichment procedures was 

demonstrated for different types of mutations. Next, the 

procedures have been applied to establish a collection of 

A.niger strains providing genetic markers for genetic analysis 

and breeding. The first results are reported in Chapter 4. 
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In Chapter 3 studies on different aspects of somatic 

recombination are presented: heterokaryosis in C.lindemuthianum, 

isolation of protoplasts from condidiospores, protoplast fusion 

and karyogamy in A.nidulans and protoplast fusion in 

C.lindemuthianum. 

To see whether somatic recombination plays a role in the 

evolution of physiological races of Colletotrichum 

lindemuthianum the possibilities for heterokaryosis and somatic 

karyogamy in this fungus were studied (3.2). Although this 

fungus fulfils some essential requirements for such experiments, 

the phenomenon of cross-feeding hampered these studies. Between 

different strains hyphal fusion was observed, but no definite 

prove for heterokaryosis could be given. Somatic karyogamy could 

not be demonstrated. 

As protoplast fusion seemed a promising alternative for 

inducing heterokaryosis, methods for isolation (3.3) and fusion 

(3.4) of conidial protoplasts were first developed with 

A.nidulans. It was demonstrated that by these methods also in 

C.lindemuthianum heterokaryons can be formed and maintained. 

Fusion of protoplasts from conidiospores of strains with 

different auxotrophic markers resuLted in well growing 

heterokaryons. So at least heterokaryosis may play a role in the 

development of genetic variation of this phytopathogenic fungus. 

In the fusion experiments with A.nidulans protoplasts (3.4) 

we found that only few protoplasts fused. The system was used 

to estimate the frequency of somatic karyogamy, which we found 

to be much higher than the frequency of heterozygous diploid 

conidia on a heterokaryon. These results confirm that only a 

small portion of a balanced heterokaryon consists of 

heterokaryotic hyphae. This was already indicated by an 

experiment in which hyphal tips were analyzed. 

The conclusion is that a heterokaryon is a dynamic system based 

on hyphal fusions and segregation of homokaryotic hyphae of the 

parental types. 
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In Chapter 4 the start of a program for genetic analysis in 

A.niger is described. The first results in establishing a 

collection of mutants providing genetic markers are presented 

(4.2). Nearly a hundred different mutants are now available, 

located on at least 30 different genes. 

Genetic analysis by haploidization revealed that the 11 loci 

analyzed belong to at least five linkage groups. In general 

haploidization was induced by benomyl, but for estimating the 

frequency of spontaneous haploidization we screened for 

spontaneous light coloured (fawn) segregants. 

The isolation of (homozygous diploid or haploid) recessive 

recombinants was succesfully done by the enrichment procedure as 

used for the isolation of mutants. So, for genetic analysis and 

gene mapping there is no need for special terminal selection 

markers. In this way genetic analysis and mapping of genes on 

the chromosomes is possible. The process of mitotic 

crossing-over proved to be 20-30 less frequent than spontaneous 

haploidization. 

Starting from a reference strain, mutant strains should be 

induced by as few rounds of mutagenic treatment as possible. 

Instead, combinations of markers have to be made by recombin­

ation. In this way well characterized master strains can be 

obtained in an isogenic background. These can be used for 

genetic analysis of other A.niger strains. 
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7. Samenvatting 

7.1 INLEIDING 

Veel schimmels die belangrijk zijn als veroorzakers van 

planteziekten of in de biotechnologie als producenten van orga­

nische zuren, antibiotica of enzymen zijn imperfecte schimmels. 

Het zijn schimmels die geen geslachtelijk stadium hebben en 

juist bij de generatieve reproductie spelen zich de processen 

voor recombinatie van erfelijke eigenschappen af. Het lijkt er 

op alsof de evolutie van natuurlijke populaties van imperfecte 

schimmels alleen gebaseerd is op het optreden van mutaties (toe­

voegen of verloren gaan van bepaalde kenmerken) zonder dat er 

uitwisseling of recombinatie van bijvoorbeeld genen voor viru-

lentie mogelijk is. Een dergelijk systeem is veel minder 

flexibel dan wanneer er wel recombinatie mogelijk is. Bij de 

voor de industrie belangrijke schimmels zou het betekenen dat 

veredeling alleen mogelijk is door herhaalde mutatie inductie en 

het selecteren van betere stammen. Kruising van stammen met 

goede kenmerken is dan niet mogelijk. 

Veel imperfecte schimmels hebben echter toch effectieve 

recombinatie mechanismen die zich afspelen in gewone somatische 

cellen. De eerste stap daarin is de fusie van somatische cellen. 

Dat kan gebeuren door de vorming van verbindingsbruggetjes 

tussen schimmeldraden (hyphe-fusies of anastomoses). Dit proces 

kan onder laboratorium condities geforceerd worden indien beide 

stammen verschillende voedingsdeficienties hebben. Het resultaat 

is dan een mycelium met twee verschillende typen kernen 

(heterokaryon). 

Een heterokaryon kan ook verkregen worden door fusie van 

protoplasten. Deze weg is interessant wanneer zich tussen 

schimmel stammen geen bruggetjes kunnen vormen. Een heterokaryon 

verkregen door protoplastenfusie heeft nog iets voor op een 

gewoon heterokaryon: Een klein heterokaryon, net ontstaan door 

fusie van twee protoplasten, heeft van beide typen kernen 

evenveel; een gebalanceerd gewoon heterokaryon kan voor een 

groot deel bestaan uit hyfen met maar eéii type kern. Om deze 

twee redenen maakten wij gebruik van protoplasten fusie. 
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Er komen in dit onderzoek drie vragen aan de orde: 

- Op welke wijze kunnen we het beste mutanten isoleren? 

Dit is van belang, omdat voor alle genetisch onderzoek mutanten 

nodig zijn als genetische kenmerken. Het probleem is ook van 

belang voor de veredeling van productiestammen (Hoofdstuk 2). 

- In hoeverre speelt somatische recombinatie een rol bij de 

imperfecte schimmel Colletotrichum lindemuthianum? (Hoofdstuk 

3). Hier wordt ook beschreven hoe protoplasten geisoleerd kunnen 

worden uit conidiosporen en hoe deze gebruikt worden voor het 

aantonen van somatische karyogamie. 

Tenslotte: kunnen we een systeem opzetten voor de genetische 

analyse van de biotechnologisch belangrijke schimmel Aspergillus 

niger? (Hoofdstuk 4). 

7.2 INDUCTIE EN ISOLATIE VAN MUTANTEN 

De experimenten over mutatie inductie zijn grotendeels 

uitgevoerd met UV en met A.nidulans als object. Een van de 

aspecten die kenmerkend zijn voor de effectiviteit van een 

mutagene behandeling is de inductie van letale mutaties. Zo 

verschaffen overlevingscurves belangrijke informatie over de 

wijze waarop mutanten kunnen worden geisoleerd. Mutaties zijn in 

het algemeen recessief, dat wil zeggen dat ze niet tot uiting 

komen als het oorspronkelijke gen (wildtype gen) ook aanwezig 

is. Wanneer nu een conidiospore meer dan één kern heeft of ook 

wanneer de chromosomen in de kernen van deze cellen al 

verdubbeld zijn (uit twee Chromatiden bestaan) zal door mutatie 

een heterokaryon ontstaan en selectie van recessieve mutanten 

zal nagenoeg niets opleveren. 

Verschillende schimmels blijken een initiële schouder te 

vertonen in de logS UV-overlevingscurve (logarithme van de 

fractie overlevenden uitgezet tegen de bestralingstijd). In 

hoofdstuk 2.2 worden enkele theoretische achtergronden van het 

optreden van initiële schouders in de logS-curves besproken. Er 

is aangetoond dat dit bij haploide A.nidulans stammen in de 

regel een gevolg is van een mechanisme dat zorgt voor herstel 
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van UV-schade. Dit bijzondere 'repair'-mechanisme is bij een 

bepaalde dosis verzadigd en pas daarna is het effect van UV op 

de overleving te zien. Sommige stammen hebben diploide of 

meerkernige conidiosporen. Dat veroorzaakt een extra grote 

schouder in de logS-curve. De toename is echter sterker dan op 

grond van het grotere 'target-number' (bv aantal kernen per cel) 

verwacht mag worden. Dat komt omdat ook de'repair'-capaciteit 

toeneemt. 

In de mutatieveredeling worden bij mutagene behandelingen 

vaak hoge doses toegepast. Een voordeel is dat veel van de 

overlevende sporen wel een of andere mutatie hebben opgelopen. 

Het nadeel is echter dat er dan nogal wat additionele ongewenste 

mutaties onopgemerkt blijven en bovendien treden er 

chromosoombreuken en uitwisselingen op. Hoewel de gewenste 

mutanten er door selectie wel uitgezocht kunnen worden, wordt op 

deze wijze de genetische achtergrond een vergaarbak van allerlei 

afwijkingen. In een serie experimenten (2.3) waarin naar 

verschillende typen mutaties werd gekeken, is aangetoond dat al 

bij relatief lage doses het hoogste aantal mutanten wordt 

verkregen, al is de frewkentie onder de overlevenden dan niet 

het meest gunstig. Bij hoge doses neemt trouwens de frekwentie 

van de mutanten onder de overlevenden af. 

Om mutanten te isoleren uit een monster met betrekkelijk veel 

niet gemuteerde sporen van het oorspronkelijke type kunnen 

verrijkingstechnieken worden toegepast (2.4). Een effectieve 

methode is : het laten kiemen van de sporen in een medium waarin 

alleen de oorspronkelijke sporen kunnen kiemen en de gewenste 

mutanten niet. De gekiemde sporen worden na enige tijd 

afgefiltreerd door een wattenprop en daarna worden de dan nog 

aanwezige niet gekiemde sporen uitgezaaid op een compleet 

medium. Onder de dan nog groeiende kolonies wordt vervolgens 

gezocht naar mutanten. Enkele condities voor een dergelijke 

verrijkingsprocedure zijn bestudeerd, waarbij duidelijk is 

geworden dat deze methode heel effectief is indien ze aangepast 

wordt aan het gewenste type mutanten. 
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7.3 SOMATISCHE RECOMBINATIE 

In eerste instantie (3.2) is onderzocht of heterokaryose en 

somatische karyogamie een rol spelen bij de ontwikkeling van de 

genetische variatie in de fytopathogene schimmel Colletotrichum 

lindemuthianum (veroorzaker van bruine vlekken op slabonen). 

Hoewel daarvoor onder meer door de waarneming van bruggetjes 

tussen verschillende schimmeldraden wel aanwijzingen werden 

verkregen, was er geen sluitend bewijs. Waarschijnlijk speelde 

het optreden van 'cross-feeding' (het elkaar voorzien van nood­

zakelijke voedingsstoffen via het medium) hierbij parten. Daarom 

zijn er later (3.5) met behulp van protoplastenfusie experimen­

ten gedaan die met zekerheid aangetoond hebben dat bij deze 

schimmel heterokaryons kunnen ontstaan. 

Er werden procedures voor de isolatie van protoplasten uit 

condidiosporen ontwikkeld (3.3). Er was reeds bekend dat 

protoplasten uit mycelium verkregen konden worden. Deze 

protoplasten zijn echter zeer heterogeen. Protoplasten uit 

conidiosporen zijn fysiologisch homogeen en ze bevatten maar een 

of twee kernen. Ze bleken dan ook zeer geschikt voor 

kwantitatieve genetische experimenten. Met behulp van deze 

protoplasten is aangetoond dat somatische karyogamie bij 

A.nidulans met veel hogere frekwentie optreedt (minstens lOOx) 

dan gesuggereerd wordt door de frekwentie van heterozygoot 

diploide sporen op een heterokaryon (3.4). 

Deze protoplasten zijn ook geschikt voor transformatie 

(opname van DNA) en zijn in elders beschreven experimenten 

gebruikt voor de ontwikkeling van een gastheer-vector systeem 

ten behoeve van genetische manipulatie met recombinant DNA. 

Binnen onze sectie worden de protoplasten gebruikt voor de 

hybridisatie van A.niger stammen die van nature geen hetero­

karyons vormen. 

7.4 PERSPECTIEVEN VOOR GENETISCHE ANALYSE VAN ASPERGILLUS NIGER 

Sinds enkele jaren concentreert het schimmel genetisch 

onderzoek zich op A.niger, een schimmel die van belang is in de 

biotechnologie. De bedoeling daarvan is om uitgaande van een 

bepaalde wildtype stam een collectie op te bouwen van stammen 

met geschikte kenmerken voor genetische analyses. Deze wildtype 
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stam dient daarbij tevens als referentie voor de analyse van 

stammen met een andere herkomst. Ook worden test-stammen 

geconstrueerd waarmee genetische analyses uitgevoerd kunnen 

worden. Daarnaast wordt in het kader van toegepaste projecten 

veredelingsonderzoek uitgevoerd. 

In dit hoofdstuk (4.2) wordt duidelijk dat de isolatie van 

mutanten op basis van de in hoofdstuk 2 beschreven methoden 

goede resultaten oplevert. Er zijn nu een kleine honderd 

mutanten van in totaal tenminste dertig verschillende genen. In 

dit hoofdstuk (4.3) is ook beschreven de aanzet tot genetische 

analyse op basis van somatische recombinatie. Een dergelijk 

onderzoek was reeds eerder (1952, 1967) in Engeland begonnen 

maar niet voortgezet. Er zijn echter goede perspectieven, mede 

doordat verrijkingstechnieken voor de isolatie van mutanten ook 

toepasbaar bleken voor de isolatie van homozygoot diploide 

recombinanten. Hierdoor zijn we niet afhankelijk van zeer 

specifieke voor selectie geschikte genen. De lokalisatie van de 

genen op de chromosomen is uitgewerkt aan de hand van enkele 

beschikbare gekoppelde genen. Dit type onderzoek zal in de 

toekomst veel aandacht krijgen. 

Aan het in dit proefschrift beschreven onderzoek hebben veel 

studenten en stagiaires bijgedragen. Vaak waren het experimenten 

met een duidelijk explorerend karakter, waardoor zij zelf geen 

grote oogst aan resultaten konden binnenhalen, omdat voor hen 

het 'leerdoel' voorop stond. Het bood ons vaak wel de mogelijk­

heid om met enige aanvullende experimenten een aantal onder­

delen af te ronden. 
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Curriculum vitae 

De auteur van dit proefschrift werd op 21 juni 1936 te Wester-

emdem geboren. Na het behalen van het diploma MULO B (1953), een 

jaar praktijk op een landbouwbedrijf, het behalen van het 

diploma van de Rijks Middelbare Landbouwschool (nu HLS) te 

Groningen (1957) en een jaar militaire dienst werd in 1958 de 

studie aan de Landbouwhogeschool begonnen. 

In 1964 studeerde hij met lof af aan de Landbouwhogeschool, 

studierichting Plantenziektenkunde, met als verzwaard hoofdvak 

de Fytopathologie en als bijvakken de Biochemie en de Virologie. 

De praktijkstage werd doorgebracht in het Institut für 

Spezielle Botanik van de Eidgenossische Technische Hochschule 

in Zürich, terwijl een deel van het hoofdvak werd gedaan op het 

Genetisch Instituut van de Rijksuniversiteit van Utrecht. 

Sinds 1964 is hij werkzaam bij de vakgroep Erfelijkheidsleer 

van de Landbouwhogeschool als wetenschappelijkmedewerker, sinds 

1972 als wetenschappelijk hoofdmedewerker, voor het onderwijs en 

het onderzoek in de Microbiele Genetica. Het onderzoek betreft 

in het bijzonder mutagenese, somatische recombinatie en 

genetische manipiulatie bij Aspergillus. Het richt zich vooral 

op uiteindelijke toepassingen bij de veredeling van industrieel 

belangrijke stammen. 

Naast het werk binnen de vakgroep zijn er andere activiteiten 

zoals voor het HBO, met name voor het laboratorium onderwijs: 

eerst als docent Genetica, later als cursusleider van de 

botanische avondopleiding in Wageningen en nu nog als lid van 

een adviescommissie voor het laboratorium onderwijs (CALPA). 

Verder is hij o.m. actief betrokken geweest bij de studierich­

ting biologie bijvoorbeeld als studiecoördinator, bij de her­

programmering en momenteel als secretaris van de richtings­

onderwijscommissie Biologie. Hij is lid van de Vaste Commissie 

Studiebegeleiding en tevens voorzitter van de Coördinatie­

commissie Studievoorlichting. 
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