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Stellingen 

1. Selektie op antilichaamproduktie bij pluimvee leidt niet tot 

een verhoogde stressgevoeligheid. 

[Dit proefschrift, Hst. I, II, III] 

2. Verschillen tussen de "hoge" en "lage" selektielijn in 

humorale immuunrespons worden deels verklaard door 

verschillen in het aantal antilichaamproducerende cellen. 

[Dit proefschrift, Hst. IV] 

3. Het al dan niet optreden van immuunsuppressie is onbruikbaar 

als parameter voor de mate van "stress" waaraan een dier is 

blootgesteld. 

[Kelley, 1985. Animal stress p.193-223; Siegel, 1985. WPSA-joumal 41: 

36-44; Dit proefschrift] 

4. Selektie op een hoge humorale immuunrespons kan uitgevoerd 

worden zonder negatieve gevolgen voor andere immunologische 

kenmerken en produktie-eigenschappen. 

5. De potentiële waarde van selektie op weerstandskenmerken is 

voldoende onderbouwd om nader onderzoek in challenge-proeven 

en beproeving in commerciële fokprogramma's te 

rechtvaardigen. 

6. Analyse van DNA-sequenties biedt goede perspektieven voor het 

opsporen van ziekte-risikofaktoren en resistentie-genen in 

het genoom van zowel mens als dier. 

7. Bij voortgaande toepassing van moderne reproduktietechnieken 

bij landbouwhuisdieren dient meer aandacht geschonken te 

worden aan het voorkomen van genetische erosie. 

8. Gebruik maken van "DNA-fingerprinting" als selektiekriterium 

bij het akseptatiebeleid -voor verzekeringen of in 

sollicitatieprocedures is in essentie niet verschillend van 

diskriminatie op grond van ras of sekse, en is derhalve in 

strijd met de grondwet. 



9. Indien aanzuren van mest geaksepteerd wordt als grootschalige 

oplossing om de ammoniakuitstoot te reduceren, zal het 

plateau van Margraten alsnog afgegraven moeten worden. 

10. Het verhogen van de resistentie van PC's tegen virusinfekties 

vereist regelmatige financiële injekties voor de aankoop van 

up-to-date kiemvrije software. 

11. Doordat het huidige sociale en fiscale beleid eenzijdig 

gericht blijft op stimulering van de traditionele "hoeksteen 

van de samenleving", wordt het ouderschap in tweeverdiener

relaties nog steeds ontmoedigd. 

12. Sinds melkquota verhandelbaar zijn, komt (wit-)goudkoorts 

vaker voor dan melkerskoorts. 

13. Uit het feit dat ze zichzelf kunnen voeden, leiden sommige 

mensen onterecht af dat zij voedingskundigen zijn. 

14. Wanneer de groene lobby bereid is haar witte motor aan een 

zorgvuldige revisie te onderwerpen en regelmatig onderhoud 

te plegen, kan die ook aan toekomstige strenge milieunormen 

voldoen. 

Proefschrift R.A. Donker. 
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Wageningen, 19 mei 1989. 



Voorwoord 

De wijze waarop een skriptie tot stand komt is ooit eens vergeleken met 

het volbrengen van een dracht. De totstandkoming van een proefschrift als dit 

kan naar mijn idee echter beter vergeleken worden niet een immuunrespons. 

Na gedurende mijn propaedeuse en kandidaats studie met een breed scala van 

antigenen (studievakken) in aanraking te zijn gekomen, heb ik in mijn 

doktoraalstudie enkele duidelijke immunisaties gehad met fokkerij en 

immunologie. De resultaten van die immunisaties waren enkele skripties, en een 

ir. titel. Na een korte tussenperiode heb ik, in de vorm van dit promotie-

assistentschap een forse reimmunisatie ontvangen met immunologie. De respons 

bij een reimmunisatie vertoont doorgaans een heftiger verloop, een hogere piek 

en houdt langer aan. Het resultaat van deze respons ligt voor u. Zoals u kunt 

konstateren is de hoeveelheid antilichaam in ieder geval voldoende voor een 

flinke respons. 

Zoals een imuunrespons tot stand komt door een groot aantal samenwerkende 

cellen (o.a. macrofagen, plasma cellen, B-cellen, T-helper, T-suppressor en 

nul cellen), zo komt een proefschrift slechts tot stand door een groot aantal 

samenwerkende personen. Een aantal wil ik op deze plaats met name noemen. 

Mijn promotor, Prof. dr. Arie Hoogerbrugge, wil ik bedanken voor het 

vertrouwen dat hij in mij gehad heeft en de geboden begeleiding. Ik heb het 

zeer gewaardeerd dat u ook na uw onverwacht vervroegde emiritaat altijd bij 

het onderzoek betrokken hebt willen blijven. 

Mijn co-promotor, dr.ir. Akke van der Zijpp, bedank ik voor de geboden 

kans dit onderzoek te doen en de vrijheid die je me daarbij gelaten hebt. Door 

de jaren heen is jouw stimulerende invloed van essentieel belang gebleken, 

niet alleen voor dit onderzoek, maar voor het hele immunologisch onderzoek bij 

de vakgroep. 

Dr. Gerard Beuving dank ik voor zijn inbreng vanuit het COVP 't 

Spelderholt in het onderzoek, en in de diskussies in de begeleidingskommissie. 

Waardevolle bijdragen in de begeleiding zijn eveneens geleverd door ir. 

Marijke Kreukniet en dr.ir. Andre Henken. 

Mike Nieuwland neemt uiteraard een unieke plaats in in dit rijtje mensen. 

Zonder zijn denk-, hand- en lachwerk zou nog niet de helft van dit 

proefschrift tot stand gekomen zijn. Peter Vos heeft, met name in de latere 

respiratiecel-proeven, een belangrijk deel van het (vele) monnikenwerk voor 

zijn rekening genomen. 

De bedrijfsleider van de pluimvee-akkomodatie, Roel Terluin, heeft, met 

zijn medewerkers Arie den Dool en Aad Rodenburg, op inventieve wijze telkens 

oplossingen gevonden voor de problemen welke ik wist te creëren. Op 

vergelijkbare wijze heeft Peter van den Berg, met de verzorgers Victor 

Schemkes en Wouter Hiskemuller, op uitstekende wijze de proef in de toen 



splinternieuwe stal op het Spelderholt verzorgd; na van de eerste schok 

bekomen te zijn. De belangeloze terbeschikkingstelling van de faciliteiten op 

het Spelderholt door de direktie van het COVP is zeer gewaardeerd. 

De proeven in de respiratiecellen zouden absoluut onmogelijk geweest zijn 

zonder de 24-uur-per-dag 7-dagen-per-week toewijding van ing. Prins van der 

Hel, ir. Henk Brandsma, Koos van der Linden en ing. Marcel Heetkamp. 

De hormoonassays uit de laatste hoofdstukken zijn in een prettige 

samenwerking uitgevoerd door Prof.dr. E. Decuypere van de K.U. Leuven. 

De (toenmalige) studenten Hilde Koek, Gerard Scheepens, Carlo van Haren, 

Tom Schneijdenberg, Willem Oostenbrink, Carolien Makkink, Anja Swinkels, 

Saskia Beers, Rein van de Wal en Lia Jansen zullen meer of minder van hun werk 

terugvinden in dit proefschrift. Tijdens hun stage van de HAS hebben eveneens 

hun steentje bijgedragen Karin van Belzen en Trienke Hofstra. 

De ernstigste engelse taalblunders zijn uit de manuskripten gehaald door 

Mw. Hélen West, dr. Annemarie de Passillé en dr. Jeff Rushen. 

De publikatie van dit proefschrift is mede mogelijk gemaakt door 

substantiële financiële bijdragen door het LEB-fonds en het Fonds voor 

Pluimveebelangen. 

Alle mensen noemen die op één of andere wijze direkt of indirekt bij de 

proeven betrokken zijn geweest noemen, maakt dit proefschrift nog dikker dan 

het al is. Echter, niet vermeld is nog niet vergeten. 

Gedurende drie jaar intensieve samenwerking is uiteraard niet alles altijd 

rozegeur en maneschijn geweest. Ikzelf ben echter blij dat altijd alles 

bespreekbaar is gebleken. Zodoende blik ik nu (al) terug op een prettige 

periode bij een gezellige vakgroep. Bedankt. 

Tot slot wil ik nog drie namen noemen. Mijn paranimfen ir. Nicoline Soede 

en Ger de Vries Reilingh hebben in de afgelopen drukke periode reeds bewezen 

naast goede vriendinnen trouwe supporters te zijn. Dank, met jullie erbij kan 

mij niets gebeuren de 19e. Mijn kamergenoot van de afgelopen drie jaar 

(dr.)ir. Harm Ploeger bedank ik voor de prettige tijden. Jouw vaardigheid op 

de cursortoetsen zal ik nooit evenaren. Dat je me aan een koffie-verslaving 

hebt geholpen vergeef ik je, daar kan ik prima mee leven; maar dat je 

probeerde om mijn drop-hobby te ondergraven door telkens tijdens mijn 

afwezigheid de voorraad uit te putten... 

^b 
Ver. 
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Thermal influences on antibody production and metabolism in chicken lines 

divergently selected for immune responsiveness. 

General Introduction. 

The developments in agriculture during recent decennia are characterized by 

a steady increase in specialization, mechanization and population density. 

Particularly in the poultry industry large, highly automated farms have evolved 

with very high concentrations of birds. With the increased population density, 

the infection pressure, and consequently the incidence of infectious diseases 

increased. Management precautions (isolation and strict hygiene), medication and 

extensive vaccination programs minimize the risk of disease outbreak. However, 

medication and vaccination programs are expensive, both in labor and drugs, and 

the still occurring disease outbreaks frequently cause enormous production loss, 

or may even require a stamp out of the whole flock. 

Selection for immune responsiveness 
An alternative (additional) method of minimizing health-risk is that of 

improving the genetic disease resistance of our flocks. A relatively simple 

approach to improve disease resistance is to include in the breeding program 

selection for responsiveness to a primary a-pathogenic antigen which stimulates 

the immune system (Siegel and Gross, 1980; Van der Zijpp, 1982). Using sheep red 

blood cells (SRBC) as antigen, three selected lines were obtained which diverged 

steadily during eight generations (Fig. 1A). Within each selection line (High 

response, randombred Control and Low response line) a normal distribution of 

antibody titers prevailed (Fig. IB), however, values in the L line congregated 

around 1, the detection limit of the present assay. The steady variation within 

lines indicates the polygenic character of the selected trait. Comparable 

selection in mice (Biozzi et al., 1979) involved approximately 10 independent 

genes. 

The chicken lines derived have been found to show comparable differences in 

their response to other antigens which, like SRBC, stimulate the systemic 

response (Van der Zijpp et al. , 1986) , but not in cellular immunity or phagocytic 

capacity. Moreover, the mortality after an experimental contact infection with 

Mareks' disease was found to be decreased in the H line compared to the L line, 

indicating lower susceptibility for this disease (Van der Zijpp et al., 1988). 



Figure 1. Total antibody titers to SRBC 5 days after immunization. 

H: High line; C: random bred Control line; L: low line. 
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Genotype x environment interactions 
Related to any such selection, other traits may change accordingly. Either 

because of physiological relations with the selection criterium, or by genetic 

linkage. Monitoring possible consequences in primary production traits is 

therefore important for the poultry industry, and is subject to study. Altered 

genetic constitution also introduces the possibility of interactions with 

different environments, which could undo the obtained selective advantage. 

There are two major reasons for being concerned about possible genotype x 

environment interactions in these lines. One reason is based on the existence of 

a difference in the average bodyweight between the selection lines. The high 

selection line has a lower body weight than the low line. Differences in body 

weight could imply altered metabolic rate, energy and protein turnover. 

The other reason is related to immunological self-regulation. Several factors 

involved in this regulation also play a role in the stress response. These two 

reasons will be discussed in more detail hereafter. 

Environmental temperature 
Homeotherms, including birds, maintain a more or less constant body 

temperature independently of environmental temperature. This is possible only 

within certain limits (indicated as "normothermia", Fig. 2). When the 

environmental temperatures is outside these limits hyper- or hypothermia occur, 

which eventually may cause death of the animal. 

Figure 2. Schematic representation of relations between environmental 

temperature, heat production and body temperature in homeotherms. 

Tc: critical temperature (After Mount, 1979). 
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But also within this zone of normothermia temperature stress may be evident. 

Above the upper critical temperature thermoregulatory effort has to be undertaken 

to maintain body temperature constant: heat loss from the body has to be 

increased, and heat production decreased. Below the lower critical temperature 

heat loss from the body has to be restricted and heat production increased to 

prevent hypothermia. The regulatory mechanisms to maintain body temperature 

within these limits are neural, behavioral as well as endocrine (Hillman et al., 

1984). 

Stress and adaptation 
Abrupt changes in environmental temperature or other stressful stimuli 

initially provoke aspecific responses in behaviour, and in nervous and endocrine 

systems (Siegel, 1980; Fig. 3). Corticosteroids and catecholamines (epinephrine 

and nor-epinephrine) are some of the most potent hormones released. 

Corticosteroids and catecholamines cause important changes in cellular activity 

and energy mobilization, to prepare the body for acute action ("the fight or 

flight" response). 

Figure 3. Schematic representation of reaction pattern to stressors. 

HPA: hypothylamus-pituitary-adrenal system; NS: neurogenic system; 

CRF: corticotripin releasing factor; ACTH: adrenocorticotropin. 

(After Siegel, 1980). 
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When the stressor prolongs, specific adaptive regulation will prevail, for 

example in behaviour or feed intake, to minimize the discomfort. Thyroid activity 

plays an important role in acclimation to changed environmental temperature. 

Thyroxine (T4) and the biologically active form triiodothyronine (T3) regulate 

feed intake, and thermoregulation (reviewed by Hillman et al., 1984). 

Several physiological changes induced by a stressor may be utilized to 

evaluate the severity of the stressor and to compare differences in impact 

between (e.g.) selection lines. Increased plasma corticosterone levels, changes 

in leukocyte numbers or morphology, lymphatic regression and changes in acute 

phase proteins might prove useful for this purpose. Also measurement of the 

metabolic rate and changes therein, caused by an altered environment can provide 

insight in the thermal demand of the environmental temperature on the animal. 

Immunological regulation 
In the vertebrates' immunology key functions are fulfilled by phagocytosis, 

cellular immunity and the systemic response. The latter, the evolutionary most 

refined, results in the production of highly specific and effective immuno

globulins and the founding of immunological memory. This requires the integrative 

action of various cell types. Communication between these cells and thus 

regulation of the response is realized by interleukins and through feedback on 

the hypothalamo-pituitary-adrenal axis (Besedovski et al., 1983, 1986; Glick, 

1984). Antigen stimulated lymphocytes produce compounds (lymphokines) that also 

stimulate CRF release in the hypothalamus (Besedovski et al., 1983, 1986) and 

thus corticosteroid production (compare Fig. 3). Antigen stimulated lymphocytes 

may also excrete "ACTH-like" substances (Siegel, 1987), which may directly act 

on the adrenals. This corticosterone feedback is probably needed to suppress 

proliferation of lymphocytes with low affinity to the antigen, and thus prevents 

an over-reaction of the immune system which could cause autoimmunity (Glick, 

1984; Munck et al., 1984; Besedovski et al., 1986; Trout et al., 1988). This 

feedback is probably also essential in cessation of the immune response after 

the antigen has been cleared. 

Temperature and stress effects on immunity 
Because some endocrine factors, especially corticosterone, are related to 

both the stress response and immunological regulation, stressors can interfere 

with immune function. If an immunological stimulus is given during a stressful 

event suppression of the responses is found. In poultry, immuno suppressive 

activity on antibody production has been reported with acute heat stress (Subba 

Rao and Glick, 1970, 1977; Henken et al., 1983; Thaxton and Siegel, 1970, 1972, 

1973), with social stress (Gross and Siegel, 1965; Siegel and Gross, 1965; Gross 

and Colmano, 1969; Siegel and Latimer, 1975; Edens et al. , 1983; Gross, 1986) and 

with administration of adrenocorticotropin hormone (ACTH) or corticosteroids 

13 



(Thaxton and Siegel, 1973; Gross and Siegel, 1973; Gross et al. , 1980; Davison 

et al., 1987, 1988; Powell and Davison, 1986; Davison and Misson, 1987). 

Metabolie activity and immunity 
After an initial aspecific stress response, acclimation to an altered 

situation (e.g. high temperature) will occur. After such an acclimation, 

stimulatory activity on the immune system may even be evident (Henken et al., 

1983; Anderson and Kühn, 1988). This stimulatory effect was postulated to be 

associated with thyroid activity, and alterations in energy and protein 

metabolism (Henken et al. , 1983). Thyroid involvement in regulation of the immune 

response is evident (Gause and Marsh, 1985; Kai et al. , 1987, 1988; Marsh et al. , 

1984a, 1984b; Mashaly et al., 1983; Scott et al., 1985; Yam et al., 1981), but 

the route of action is still unclear. 

The immune response itself affects the animal's metabolism. During an immune 

response a reduced heat production was found, and fat deposition was favored over 

protein retention (Henken and Brandsma, 1982; Henken et al. , 1982; Siegel et al. , 

1982). 

Synthesis 
Thus a complex network of interference between immunity, environmental 

temperature and metabolic rate is unfolding (Fig. 4 ) . Within these, interactions 

with the genotype might take place on several levels. Based on the described 

observations the following possible interactions are hypothesized: 

Selection for high antibody production is based on a low level of 

endocrinological feedback after immunization (see "Immunological 

regulation"). In the high line lymphocytes can proliferate which excrete 

antibodies with a relatively low affinity for the antigen. External stressors 

could have a more profound impact on the immune response in high than in low 

line chickens, since the adrenal corticosteroids, released after a stressor, 

would easily suppress the proliferation of these lymphocytes that excrete the 

"low-affinity" antibodies. 

• On the other hand, if the above would prove untrue, the number of 

lymphocytes excreting antibodies with high affinity to the antigen should 

be increased in the high line birds. Alternatively, the proliferative ability 

of these lymphocytes may be increased. These populations of lymphocytes would 

not be differently sensitive to external stressors, resulting in equal 

responses to stress or environmental temperature in either line. The 

selective advantage in antibody production would not be lost after stressors 

that cause immunosuppression. 

14 



Figure 4. Schematic representation of interactions between environment, immune 

response and metabolic traits. 
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• Selection for high antibody production may be associated to differences 

in endocrine and metabolic activity between the lines. The high antibody 

producing line birds are easily stimulated by antigen, or any environmental 

stimulus. These environmental stimuli would cause relatively high base levels 

of corticosteroids. Lymphocytes adapt to these high base levels by blocking 

their corticosterone-receptors, or reducing the numbers of these on their 

surface. This adaptation would make the lymphocytes of this high line less 

susceptible to the effects of environmental stressors. The high base levels 

of corticosteroids will favor fat deposition over protein gain, resulting in 

lower growth rate and small, fat birds with a relatively low feed efficiency. 

• If, in contrast, the selection is not based on a physiologically functional 

relation between body weight, metabolic rate and immune responsiveness, the 

changes in bodyweight between the high and low selection line are based on 

genetic linkage. The effects of stressors or high temperature on antibody 

production would be the same in either line. 

Thesis 
This thesis is made up of eight papers which describe a series of experiments 

in which genotype x environmental temperature interactions on the humoral immune 

response and metabolism of two chicken lines were studied. 

The high and low chicken lines, which were developed at the Department of 

Animal Husbandry, Agricultural University, Wageningen (Van der Zij pp and 

Nieuwland, 1986) were used throughout these studies. The randombred control line 

was not included in these studies. 

The occurrence of the interaction on antibody production was studied after 

acute heat stress, implicating the stimulation of the hypothalamo-pituitary-

adrenal axis, and at continuously high temperatures, providing enough time for 

acclimation. 

In these studies acute heat stress and high environmental temperature were 

used as treatments. An important reason for this is the international character 

of poultry industry. Chicken lines developed under temperate conditions should 

be able to perform under tropical conditions as well. Large concentrations of 

poultry production are found in hot areas of the world (central U.S.A., middle 

east, south America). Furthermore, acute thermal stress can occur during 

transport, during ventilation failure, or lack of wind when natural ventilation 

is used. Finally, considering thermal influences also a model for other 

stressors, temperature is an experimentally accurately regulatable stressor, with 

a number of well documented effects in poultry. 

Metabolism studies were performed before and during the mounting of the 

immune responses, serving two aims at the same time. Firstly to compare metabolic 

rate between the lines during the immune response, and secondly to obtain 

information about the severity of the thermal demand placed upon the birds. 

16 
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Abstract 

The effect of heat stress on antibody production to sheep red blood cells 

(SRBC) was investigated in three experiments using chicken lines selected for 

six generations on high (H) or low (L) plasma antibody titer to SRBC after 

primary intramuscular (i.m.) immunization. Chickens were immunized 24 h after 

a heat stress treatment (HS) of four periods each of 30 min, at a temperature 

of 42°C with an intervening 30 min period at a temperature of 22°C. The 

control treatment (CT) involved the same handling of chicks, but at a 

temperature of 22°C. Antibody titers were measured on 3, 5, 7, 10 and 14 days 

post immunization. Intramuscular immunizations of .25 ml SRBC were given in 

all three experiments and an additional intravenous immunization of . 5 ml 14% 

SRBC in Experiment 2 and .5 ml 5% SRBC in Experiment 3. A significant effect 

of HS treatment on antibody titers (P<.05 on days 3, 5, 7 and 10 after 

immunization) was found in Experiment 1 only. Titers were decreased in the H 

line only. Differences between the H and L lines were significant (P-C.001) in 

all three experiments and after both intramuscular and intravenous 

immunizations. Heat stress was found to have little or no effect on antibody 

production in these lines. 

Keywords: antibody production, selection lines, heat stress, SRBC 

Running title: Heat stress and antibody production. 

Introduction 

There is accumulating evidence to suggest that not only immune 

responsiveness is affected by stressors, but also that antigenic stimulation 

evokes hormonal and neural reactions in the central nervous system (Ader et 

al., 1987; Siegel, 1987). Thus physiological reactions to a stressor may be 

altered by immunological stimulation along this pathway. For example, 

selection for antibody production might alter stress susceptibility as a 

related effect, and thus in turn alter the effect of stress on immune 

responses. 

Stress effects on immune responses have been well documented (Kelley 1985; 

Siegel 1987). In many experiments concerning immunosuppressive effects on 

humoral responses in poultry, heat stress has been applied (Thaxton, 1978). 

Although suppressive effects of intermittent heat periods (at approximately 

42°C) on antibody production to sheep red blood cells (SRBC) have been 

demonstrated in several experiments (Subba Rao and Glick, 1970, 1977; Thaxton 

et al., 1968; Thaxton and Siegel, 1970, 1972, 1973), considerable variation 
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in responses has been found. In some experiments, clear immunosuppressive 

action was found, but the same stressor used on stock of different genetic 

origin, or with another antigen was not found to be immunosuppressive and in 

some cases was even immuno-stimulating (Heller et al., 1979; Régnier et al., 

1980; Kelley, 1985; Siegel, 1987). Régnier et al.(1980) could not demonstrate 

immunosuppressive action of the heat stress treatments in chickens of the same 

breeds but of different genetic origin, as used by Subba Rao and Glick (1970, 

1977), Thaxton et al. (1968) (New Hampshires) or Thaxton and Siegel (1970, 

1972, 1973) (Athens randombreds). 

Because there are apparent differences in susceptibility to heat stress, 

the effects of heat stress on chicken lines of different genetic capacity for 

antibody production need to be investigated. Demonstrable differences in 

stress susceptibility may have implications for the applicability of selection 

programs on immune responsiveness. Gross (1986) studied the effects of social 

environment on immune responses in chicken lines bred selectively for high 

and low humoral response after intravenous SRBC immunization. No significant 

interactions between genotype and environment were found. 

In the present study, the interaction between genotype and heat stress 

was investigated in chicken lines bred for humoral immune responsiveness. 

Short-term heat stress was applied to lines selected for six generations for 

high and low antibody response to SRBC (Van der Zijpp and Nleuwland, 1986) . 

These lines were selected based on antibody titer after intramuscular (i.m.) 

immunization. As most of the studies cited used animals that had been 

immunized intravenously (i.V.), both immunization routes were used in order 

to investigate possible route differences. Siegel et al.(1983) and Siegel and 

Latimer (1984) demonstrated interactions between heat stress and antigen dose 

on antibody production in experiments using Salmonella pullorum antigen. 

Immunosuppression occurred only when low antigen doses were used. In our 

experiments, one antigen dose was administered i.m. and two doses i.V.: one 

.5 ml 14% SRBC comparable to doses given in other studies, and the other a 

lower dose of .5 ml 5% SRBC. 

Material and Methods 

Chicks and pre-experimental conditions 
Three experiments were conducted, using male and female chickens from 

lines selected for high (H) and low (L) antibody titer five days post primary 

i.m. immunization with .25 ml packed SRBC. Chicks were vaccinated 

intramuscular against Mareks Disease on day of hatch and intra ocularly 

against infectious bronchitis at two days of age, infectious bursal disease 

at 15 days of age and Newcastle Disease at 22 days of age. Chicks were kept 
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in groups in wire battery cages, and provided with commercial starter feed and 

water ad libitum. The two sexes were kept separately and H and L lines were 

randomly mixed. The light regime was gradually altered from 23 h light and 1 h 

darkness at one day of age to 8 h light (800-1600 h) and 16 h darkness at 16 

days of age. Over the same period ambient temperature was decreased from 32°C 

to approximately 22°C. 

Heat stress treatment 
Chicks were randomly subjected to heat stress (HS) or control treatment 

(CT). They were transferred from their battery cage in portable cages. At 

about 9 h the cage with chicks undergoing HS treatment was placed in a 

climate-respiration chamber approximately 1 * .8 * 1 m in size (Verstegen et 

al., 1987) in which the temperature was 42°C and relative humidity 

approximately 50%. At the same time, CT chicks were placed in an identical 

chamber, in which the temperature was controlled at 22°C and relative humidity 

approximately 50%. Treatments started randomly with either cockerels or hens. 

After 30 min, the cages were removed from the chambers and treatment started 

for the other sex. This procedure was repeated until both sexes had been in 

the respective chambers for four 30-min periods. In the intervening periods, 

the cages containing the chickens were placed in an adjoining room, in which 

the temperature varied between 20 to 25°C and relative humidity was 

approximately 50%. After the temperature treatment, all chicks were returned 

to their original battery cage. 

Immunizations 
Twenty-four hours after the beginning of the first HS/CT episode chicks 

were immunized with SRBC. Immunization at this time has been demonstrated to 

result in the most pronounced depression of antibody production (Subba Rao and 

Glick, 1970; Thaxton et al., 1968). In the first experiment, the chickens 

were immunized i.m. with 1 ml of a 25% SRBC in phosphate buffered saline (PBS) 

solution in two equal portions in the chick's thighs. In the two subsequent 

experiments, the same i.m. immunizations were given, and additional chickens 

were given intravenous immunization. These immunizations were given via the 

brachial vein (vena cutanea ulnaris) by injecting .5 ml of a 14% SRBC in PBS 

solution (Exp. 2) and .5 ml 5% SRBC in PBS solution (Exp. 3). The day of 

immunization is hereafter referred to as day 0. 

Blood sampling and hemagglutinin assay 
Blood samples were taken from the brachial vein with a syringe rinsed with 

a heparin solution. The blood samples of approximately 1.5 ml each, were 

centrifuged to harvest the plasma, which was stored at -20°C until assayed. 

Total (TO) and 2-Mercaptoethanol (2ME) resistant antibody titers were assayed 
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by hemagglutinin assay (Van der Zijpp and Leenstra, 1980). Titers were 

expressed as log2 of the highest dilution giving total agglutination. 

Experimental protocol 
The uniformity of antibody titers recorded within an experimental group 

can be enhanced by 'socialization' and thus increase discrimination between 

experimental groups (Gross, 1986). Special attention was given in these 

experiments to handling of the chicks ('socialization'). 

In Experiment 1 the 72 chicks, equally distributed over both H and L line 

and both sexes, were handled daily from 26 days of age (Fig. 1). They were 

subjected to either HS or CT treatment on day 34 of age and were immunized 

i.m. 24 h later. Blood samples were taken from all chicks immediately before 

and after temperature treatment and on day 3, 5, 7, 10 and 14 post 

immunization (Fig. 1). 

In Experiment 2 the 78 chicks, including both lines and sexes, were used. 

They were handled daily from 25 days of age. Temperature treatments were 

performed at 35 days of age (Fig. 1), and 24 h later 39 chickens were 

immunized i.m. , and the remainder immunized i.v. with .5 ml 14% SRBC solution. 

Blood samples were drawn immediately before and after temperature treatment 

and on day 3, 5, 7, 10 and 14 post immunization. 

A total of 408 chicks, also equally distributed over males, females and 

across H and L lines, was used in the Experiment 3. For socialization, each 

chick was removed daily from the cage, placed in a box, and then replaced in 

the cage. This procedure was carried out from 14 days of age. The chicks were 

divided into three groups. Group I received the temperature treatment on 32 

days of age, group II on 35 days of age, and group III on 42 days of age 

(Fig. 1). Antigen injection, 24 h after commencing temperature treatment, was 

given by both immunization routes (i.v. with .5 ml 5% SRBC or i.m. with 1 ml 

25% SRBC) in each group. The distribution of chicks was full factorial: 3 

groups * 2 lines * 2 sexes * 2 treatments * 2 immunization routes * 4 

replications. In addition within each group, line, sex and treatment, 9 extra 

chickens were immunized i.v. Three of these were killed on each of day 3, 4 

and 5 each post immunization for assay of the number of plaque-forming-cells 

in the spleen. The plaque test results are included in a separate manuscript 

(Donker et al., submitted-b), results on antibody titer assays are included 

here. Blood samples were taken on day 7, 4 and 1 before immunization and day 

0, 1, 2, 3, 5, 7, 10 and 14 after immunization. On the days before 

immunization and on days 0, 1 and 2 post immunization, samples were taken 

between 0830-0930 h and between 1330-1430 h.; on the temperature treatment day 

(-1), this was immediately before and after the treatment. Each chick was 

bled only once before immunization, once on either day 1 or 2 post 

immunization, once on day 3, 4 or 5 post immunization. All chicks were bled 
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on days 7, 10 and 14 post immunization. The blood sampling schedule is given 

in Table 1. 

Figure 1. Experimental layout. 
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Table 1. Number of blood samples1' taken per group in Experiment 3. 

Days post 

immunization 0 830.0 930 133 0-143 

-7 8 8 

-4 8 8 

-1 8 16 

0 16 32 

1 24 24 

2 24 24 

3 32 + 242) 

4 242> 

5 32 + 242) 

7 64 

10 64 

14 64 

8 = 2 lines * 2 sexes * 2 chicks 

16 = 2 lines * 2 sexes * 2 treatments * 2 chicks 

24 = 2 lines * 2 sexes * 2 treatments * 2 imm. routes * 1.5 chicks 

32 = 2 lines * 2 sexes * 2 treatments * 2 imm. routes * 3 chicks 

64 = 2 lines * 2 sexes * 2 treatments * 2 imm. routes * 4 chicks 

N.B. 1: 1.5 chicks means randomly 1 or 2 within a line-sex-treatment-route group 

N.B. 2: before the temperature treatment, no treatment groups were distinguished; 

before immunization, no immunization route groups were distinguished. 

'These 24 chicks were used for plaque-test assay; were i.V. immunized; plasmas were 

also tested for antibody titers. 

Statistical analysis 
Wherever possible, each of the groups (lines, sex, temperature treatment, 

etc.) contained equal number of chicks. Data were examined for normality of 

distribution (Snedecor and Cochran, 1969). Values of antibody titers (To) 

before day 3 and 2ME- titers before day 5 in Experiment 1 and 2, and before 

day 7 in Experiment 3 showed skewed distributions, because of values of mainly 

0 and 1 on these days. 

In the analysis of variance (SAS, 1985) performed within sampling day, the 

factors included in the models were line (H, L) , sex (male, female), 

temperature treatment (HS, CT), route of antigen (i.m,, i.V.; in Experiment 2 
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and 3 only) and group number (I, II, III; in Experiment 3 only). Day of blood 

sampling was included also for Experiment 3, when independent groups of chicks 

were bled on consecutive days (for example, day 3, 4 and 5 post immunization). 

Data from these days were incorporated in one analysis. Two- and three-way 

interactions were tested and those that were significant (P<.05) were included 

in the model. Pooled data of all three experiments were analyzed together to 

test also for temperature treatment effect. 

Results 

Both total and 2ME-resistant antibody titers were higher in the H line 

than in L line (Tables 2, 3, 4; Fig. 2, 3, 4) in all three experiments, and 

after both i.m. and i.v. immunization. Higher titers were found in females 

than in males (Tables 2, 3, 4 ) , which is not unusual in these lines 

(unpublished results). 

In the analysis on pooled data, there were significant differences between 

experiments (P<.001), and route of immunization within experiment (P-C.001), 

but no "overall" temperature treatment effect was found. 

The significance of effects for antibody titers in Experiment 1 is 

presented in Table 2. No significant temperature treatment effect was found 

in L line, but there was immunosuppression in H line (Fig. 2 ) , as indicated 

by significant line * treatment interactions and the results of the T-test for 

temperature treatment within H line (Table 2, Fig. 2). However, mean titers 

in the heat stressed chicks from the H line were still higher than mean titers 

in both heat stressed and control chicks from the L line. 

In Experiment 2, no significant effects of sex, temperature treatment or 

significant interactions of factors were found (Table 3). Total and 2ME-

resistant antibody titers were higher after intravenous than after 

intramuscular immunization (Table 3, Fig. 3). 

Temperature treatment also had no significant effect on total and 2ME-

resistant antibody titers after immunization in Experiment 3 (Table 4, 

Fig. 4 ) . Total and 2ME-titers increased with age of the chicks, as titers in 

group 3 were higher than those in group 2, which were higher than those in 

group 1. Intravenous injection of antigen resulted in higher antibody titers 

in both lines. Significant interactions (Table 4) were caused by differences 

in magnitude within factors, not by differences in ranking. 
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Figure 2. Total antibody titer ( ) and 2ME-resistant titer (— -) per line 

and treatment after intramuscular immunization in Experiment 1. 

Least squares means from a model including line, sex, treatment 

and line-treatment interaction. 
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Table 2. Significance11 of effects in the analysis of total (TO) and 2ME-
resistant (2ME) antibody titers (Exp. 1) 
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0 
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TO 
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TO 
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TO 
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TO 
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-: not tested because of skewed distribution of values. 
ns: not significant (P>.10); 
+: P<.10; *: P<.05: **: P<.01; ***: P<.001 

29 



Figure 3. Mean total antibody titer ( ) and mean 2ME-resistant titer 

(- —) per line and treatment after intramuscular immunization and 

intravenous immunization in Experiment 2. 
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Table 3. Significance1' of effects in the analysis of total (TO) and 2ME-
resistant (2ME) antibody titers (Exp. 2) 

Day T0/2ME Sex Line 

Immunization 

Treatment route 

10 

14 

TO 

2ME 

TO 
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TO 
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TO 

2ME 
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TO 
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*** 
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*** 
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-: not tested because of skewed distribution of values. 

ns: not significant (P>.10); 

+: P<.10; *: P<.05; **: P<.01; ***: P<.001 
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Figure 4. Total antibody titer ( ) and 2ME-resistant titer ( ) per line 

and treatment after intramuscular immunization and intravenous 

immunization in Experiment 3. Least squares means from a model 

including group, line, sex, route and treatment. 

Exp. 3 Intramuscular imm. 

12 

10 

j Titer ( log2) 

W-~-*L- Mr- •mr-

H - L - line 

D O HS treatment 

I I « C T treatment 

^Jfc = = = £ _ _ * 
^ ,==#= = — — e = — — — — =§ 

—i W 1 1 1 1 1 1 r - i r 

0 1 2 3 10 14 

Days post immunizat ion 

Exp. 3 Intravenous imm. 

1 2 J Titer ( log2) H - L - line 

D 0 HS t reatment 

• » C T treatment 

0 1 2 3 4 5 10 14 

Days post immunizat ion 

32 



Tab l e 4 . S i g n i f i c a n c e 1 ' of e f f e c t s i n t h e a n a l y s i s of t o t a l (TO) and 2ME-
r e s i s t a n t (2ME) a n t i b o d y t i t e r s (Exp. 3 ) . 

Days 2 ' p o s t 

Inun. T0/2ME Group 3 ' Sex L ine T r ea tm . 

Imm. 

r o u t e Day" 
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. : not applicable; 
- : not tested because of skewed d is t r ibut ion of values; 

ns; not s ignificant (P>.10); 
+ : P<.10; *: P<.05; **: P<.01; "** : P<.001 

Day 0 included a l l samples taken before immunization 

Group I, I I , I I I 

Day of sampling: 1 or 2; 3, A, or 5. (day 4 i.V. only) 

Significant (P<.05) Line * Day interaction 

6) Significant CP<.05) Group * Line interaction 
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Discussion 

Despite evidence that chicks in these experiments were under conditions 

experienced as "stressful" (Donker et al., submitted-a), no consistent 

suppression of circulating antibodies to SRBC was found. Moderate suppression 

in heat stressed chicks from the H line was found in Experiment 1 only. A 

number of factors may be responsible for the considerable variation in 

immunosuppression after heat stress as found in these experiments and the 

various studies cited. 

Genetics 
There may well be considerable genetic differences in stress 

susceptibility. Thaxton and Siegel (1970, 1972, 1973) found suppressive 

actions of heat stress on humoral immune responses in chicks from an Athens 

randombred line selected for high stress susceptibility (Régnier et al., 

1980; Thaxton, personal communication). Similar results were obtained by 

Thaxton et al. (1968) and Subba Rao and Glick (1970, 1977) in chicks from a 

New Hampshire line selected for high bursa weight. Régnier et al. (1980) also 

used Athens randombreds and New Hampshires . These Athens randombreds , however , 

were from the outbred population and not the inbred line. The New Hampshires 

were obtained commercially and thus not from the high bursa weight line. Yet 

in their experiments, no immunosuppression was found after the same heat 

stress treatment. 

Siegel (1987) demonstrated that, after application of a stressor, more 

corticosteroids were bound in thymus cells from a line selected for high 

stress response than in the low response line. Immunosuppression is, at least 

partially, mediated by corticosteroid binding in lymphoid cells (Thaxton and 

Siegel, 1972; Siegel, 1987). If, as a consequence of selection for other 

traits, elevated corticosteroid binding in lymphoid cells occurs, increased 

stress susceptibility can be expected. However, both lines used in our 

experiments might bind few corticosteroids in lymphoid cells and thus be 

relatively unsusceptible to stress effects. 

Antigen presentation 
Antigen dose and route of immunization may have led to differences in 

results obtained. Siegel et al. (1983) and Siegel and Latimer (1984) 

demonstrated differences in suppressive action which were related to antigen 

concentration. They demonstrated a interaction between Salmonella pullorum 

antigen dose and heat stress or ACTH injection in White Rock chicks. Heat or 

ACTH was found to have a suppressive effect only at low antigen doses. In the 

experiments cited, SRBC was administered intravenously. The dose was, at least 
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in Thaxton's experiments, the lowest that gave an optimal response (Thaxton, 

pers. com., 1987). In our experiments, several intramuscular immunizations 

were given, with a dose that could be considered high (.25 ml packed SRBC). 

Results obtained after intravenous immunization, however, were comparable to 

those obtained after i.m. immunization. The i.v. dose injected in Experiment 2 

(.5 ml 14% SRBC) was the same as used in many of the experiments cited (1 ml 

7%) (Régnier et al., 1979; Subba Rao and Glick, 1970, 1977; Thaxton et al., 

1968; Thaxton and Siegel, 1970, 1972). The i.v. dose used in Experiment 3 can 

be considered to be "lowest optimal dose" for these lines; doses lower than 

this showed a rapid decline in antibody titers (unpublished results). Yet, the 

only significant suppression in antibody titers was found in chicks after i.m. 

immunization (Exp. 1). Both routes of antigen injection and all doses used 

showed clear differences between the two selection lines. 

Socialization 
Socialization or adapting chicks to handling reduces the inter-treatment 

variation in immune responses (Gross and Siegel, 1979, 1982; Gross, 1986), 

leading to more consistent results between experimental groups. Beuving and 

Vonder (1978, 1986) demonstrated a rise in plasma corticosterone after 

handling. Freeman et al. (1979) found that after several daily injections of 

corticotrophin, a rise in plasma corticosterone still occurs, together with 

hyperglycemia, but neutralization of these responses is quicker, thus 

demonstrating habituation. The same phenomenon might occur after daily 

handling, leading to increased capacity to deal with a stressor. Indications 

of this were found by Bowen and Washburn (1985) , who found a reduced rise in 

plasma corticosterone levels after an 1 h heating episode, when chickens were 

extensively handled on four preceding- days. Thus in our experiments, the 

increased attention given to handling may have had the opposite effect than 

we intended. Gross (1986) found consistent differences in antibody titers 

between two lines selected for high and low response to SRBC. He kept chicks 

under various social environments. Results with different antigens were 

essentially the same in all environments, but most pronounced when chicks had 

been socialized. 

Differences between the high and low selection lines were consistent 

throughout the experiments, both for total and 2ME-resistant antibody titers. 

Apart from the moderate suppression found in Experiment 1 in H line, no 

evidence was found for increased or decreased stress susceptibility in one of 

these lines. 
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Abstract 

Physiological responses were measured during studies to investigate the 

influence of heat stress on humoral immune response in chicken lines selected 

for immune responsiveness (Donker et al., submitted). During four consecutive 

periods of 30 min each at 42°C, cloacal temperatures and plasma corticosterone 

levels were increased and decreased again in intervening 30 min periods. 

Plasma corticosterone levels also rapidly decreased after the total heating 

episode. Leukocyte counts (heterophils, lymphocytes and the 

heterophil/lymphocyte ratio) did not change during or after heat stress 

treatment, nor did hematocrit percentage. Weight loss during the treatment 

period was greater in heat stressed chickens than in control chickens. Changes 

in albumin and fibrinogen levels did not differ between heat stressed or 

control chickens. 

After immunization, given 24 h after the beginning of the heat or control 

treatment, marked changes in leukocytes counts were detected. The initial 

decrease in heterophils and heterophil/lymphocyte ratio, which was more 

pronounced after intramuscular than after intravenous immunization was 

followed by an increase in levels 24 h after immunization. Plasma levels of 

albumin and fibrinogen were increased three, four and five days after 

intravenous immunization but not after intramuscular immunization. 

Keywords: selection lines, heat stress, corticosterone, body temperature 

heterophil/lymphocyte ratio, acute phase proteins, SRBC 

Running title: Heat stress and physiology. 

Introduction 

Heat stress is a frequently occurring factor which can have a negative 

effect on poultry production. It can directly influence production by reducing 

feed intake and growth, or in extreme situations, increased mortality may 

occur. Indirectly, heat stress can reduce immune responsiveness (Thaxton, 

1978; Siegel, 1987). Genetic differences in stress responses (Edens and 

Siegel, 1975, Gross and Siegel, 1985) and heat tolerance occur (Bowen and 

Washburn, 1984). A number of studies have been carried out on the effect of 

heat stress on antibody production in two chicken lines that genetically 

differ in immune responsiveness (Donker et al., submitted). To assess the 

severity of heat stress in these studies, and possible differences in heat 

tolerance between these lines, physiological data were gathered during these 

experiments, which are described in this paper. 
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Because chickens are homeothermic they will attempt to maintain body 

temperature within their comfort zone. Therefore measurements of hyperthermia 

can serve as assessment of the degree of heat stress encountered. In addition 

to convection, the almost sole mode of heat loss during hyperthermia in birds 

is through evaporation (Barnas and Rautenberg, 1987). Weight loss, due to 

evaporative losses could therefore be another simple indicator of heat stress. 

More generally, increased plasma corticosterone levels are used as an estimate 

of stress of various kinds, both in mammals and poultry (Siegel, 1987). 

Changes in blood leukocyte counts have been frequently found after 

stressful situations. In poultry, lymphopenia (Ben Nathan et al. , 1976; Heller 

et al.,1979), heterophilia and increased heterophil/lymphocyte ratios 

(Chancellor and Glick, 1960; Gross et al., 1980; Gross and Siegel, 1983) have 

been reported after heat stress. 

In this study two "acute phase proteins" were also measured, to evaluate 

their value as a possible additional measurement of stress. The acute phase 

response is a complex physiological reaction, found in animals after a variety 

of injuries, including infection and mechanical or thermal trauma (Koj and 

Gordon, 1985; Kushner, 1982; Pindyck et al., 1983). During such a response 

both local and systemic changes occur. Plasma levels of several "acute phase 

proteins" are affected during these responses. 

In the experiments described in this paper heat stress periods of 30 min 

at a temperature of 42°C were given. The following were considered as 

parameters of heat stress: cloacal temperature, weight loss, leukocyte numbers 

and plasma corticosterone, albumin and fibrinogen levels. 

Material and methods 

Chicks from the sixth generation of lines selected for high (H) and low 

(L) antibody production to SRBC (Van der Zijpp and Nieuwland, 1986) were used 

in three experiments. These chickens were vaccinated against Mareks Disease 

on day of hatching and against infectious bronchitis, Newcastle Disease and 

Gumboro on 2, 15 and 22 days of age, respectively (Donker et al. , submitted). 

After a period of daily handling for socialization purposes (Fig. 1), 

the chicks were subjected to a heat stress (HS) or control (CT) treatment. 

Those undergoing heat stress treatment were placed in a portable cage in a 

climate respiration chamber (Verstegen et al., 1987) at a temperature of 

42°C. After 30 min the cages were removed from the chamber and set in an 

adjoining room at an ambient temperature of approximately 22°C for 30 min 

After four of these 30 min periods at 42°C, with 30 min intervals, the chicks 

were returned to the battery. The control group was subjected to the same 

procedure but at a temperature of approximately 22°C in the respiration 
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Figure 1. Experimental layout of Experiment 1 and 3. 
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chamber. Twenty-four hours after beginning the treatment chicks were immunized 

with sheep red blood cells (SRBC) intramuscularly (i.m., 1 ml 25% SRBC, in 

both experiments) or intravenously (i.V., .5 ml 5% SRBC, Exp. 3 only) (Donker 

et al., submitted). The day of immunization is hereafter referred to as day 

0; thus day of treatment is day -1. 

Experiment 1 

All 72 chicks (equally distributed over H and L line and both sexes) in 

Experiment 1 were bled from the brachial vein (vena cutanea ulnaris) with a 

heparinized syringe immediately before (approximately 900 h) and after 
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treatment (approximately 1400 h ) . A further 36 chicks of both lines and sexes 

remained in the battery cage and were bled at the same times. 

Chicks in both treatments were bled again on day 3 and 5 post 

immunization. Fibrinogen and albumin concentrations were estimated in all 

plasma samples as amounts relative to a reference plasma, which was included 

in every assay. Plasma corticosterone concentrations were estimated in plasmas 

from the day of treatment. For corticosterone assay, plasmas were pooled per 

three chicks from the same sampling time, line, sex and treatment. 

Experiment 3 ' 

The 408 chicks in Exp. 3 were divided into three groups (I, II and III). 

Each group was treated alike, but at different ages (Fig. 1). Chicks were bled 

several days before and after treatment (Fig. 1, Table 1). A chick was bled 

on only one day in each of the following periods: day 7, 4, 1 or 0 before 

immunization; day 1 or 2 post immunization and day 3, 4 or 5 post 

immunization. Before immunization and days 1 and 2 after immunization samples 

were taken at approximately 900 h, that is before treatment on day -1 and 

before immunization on day 0, and at approximately 1400 h, that is after 

treatment on day -1. The number of samples taken from each group is given in 

Table 1. In all blood samples taken on days -7, -4, -1, 0, 1 and 2 post 

immunization, hematocrit percentages were measured and number of heterophils 

and lymphocytes counted. Relative amount of albumin and fibrinogen was 

measured in all plasmas. All chicks were weighed immediately before and after 

treatment. 

An extra group (IV) of 68 pullets was treated in the same way as groups 

I-III, but not bled on days before treatment. These pullets received treatment 

at 46 days of age (Fig. 1), but were not immunized afterwards. Before 

treatment, two pullets of each line were bled and cloacal temperature measured 

(to .1°C precision; Point of time 1, see Table 2). After removal from the 

battery and immediately before the first heat episode, two additional pullets 

of each line were bled and temperature measured (point of time 2). Just before 

the end of the first heat episode two pullets from each line and treatment 

group were removed individually from the climate-respiration chamber, bled and 

cloacal temperature measured (point of time 3). This procedure was continued 

for each of the treatment episodes (Table 2). When the chicks were returned 

to the battery, two pullets from each line, which had not been removed from 

the battery, were bled and cloacal temperature measured (point of time 10). 

in this paper to facilitate comparison with Donker et al. (submitted). 
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Table 1. Number of blood samples1' taken per group (groups I, II and 
III) in Experiment 3. 

Days post time 

immunization 083°-0930 1330-143 

-7 8 8 

-4 8 8 

-1 8 16 

0 16 32 

1 24 24 

2 24 24 

3 32 + 242) 

4 242) 

5 32 + 242) 

7 64 

10 64 

14 64 

The number of chicks bled at any time is composed as follows: 

8 = 2 lines * 2 sexes * 2 chicks 

16 = 2 lines * 2 sexes * 2 treatments * 2 chicks 

24 = 2 lines * 2 sexes * 2 treatments * 2 imm. routes * 1.5 chicks 

32 = 2 lines * 2 sexes * 2 treatments * 2 imm. routes * 3 chicks 

64 = 2 lines * 2 sexes * 2 treatments A 2 imm. routes * 4 chicks 

N.B. 1: 1.5 chicks means randomly 1 or 2 within a line-sex-treatment-route group 

N.B. 2: before the temperature treatment, no treatment groups were distinguished; 

before immunization, no immunization route groups were distinguished. 

' These 24 chicks were used for plaque-test assay, were i.v. immunized 

In this experiment each pullet was bled only once from the brachial vein, and 

care was taken to complete the sampling procedure within 45-60 sec, the period 

thought to be necessary to induce adreno-cortical activation by handling 

(Beuving and Vonder, 1981). Hematocrit percentage was measured in all blood 

samples, and the number of heterophils and lymphocytes in one of two samples 

in each line/treatment combination per sampling time was counted. 
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Table 2. Sampling schedule during HS/CT treatment in Experiment 3, 
group IV. Number of chickens is shown within each line / 
treatment / sampling time, used for temperature measurements 
and bleeding. 

Line : 

Treatment : CT HS CT HS 

Point of time: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

at battery cage1' 

before HS/CT period 1 

after HS/CT period 1 

before HS/CT period 2 

after HS/CT period 2 

before HS/CT period 3 

after HS/CT period 3 

before HS/CT period 4 

after HS/CT period 4 

at battery cage11 

2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

2 2 2 2 

Assays 

Corticosterone 
Plasma corticosterone levels were estimated by a radioimmunoassay method 

(Beuving and Vonder 1981) . 

Acute phase proteins 
Albumin and fibrinogen were assayed in duplicate using the 

rocket-electrophoresis method described by Grieninger et al. (1979). The 

assays were modified as follows. Gels were prepared using agarose 

immunoelectrophoretic tablets (1% agarose, .025 M tricine, pH 8.6; Biorad, 

Richmond, California, USA). A 44 mM tris buffer (pH 8.6) was used as the 

electrophoresis buffer. Gels were made on a plastic support film between two 

glass plates, using an U-shaped mould to obtain homogeneous .8 mm thick gels. 

After electrophoresis, the gels were dyed in a solution containing 5 g/1 

Coomassie blue in 45% ethanol, 45% aqua dest, 10% acetic acid. Peak height was 

45 



measured and the amounts expressed in relation to a reference plasma, which 

was included in every assay. 

Heterophil/Lymphocyte ratio 
A 1:50 dilution of blood in Natt and Herrick (1952) solution was made. 

The number of heterophils and lymphocytes present in a volume of lO"4 ml was 

counted in a Bürker hemocytometer. A duplicate subsample was counted from each 

blood sample. 

Statistical analyses 

Data were evaluated by means of analysis of variance. The general linear 

models procedure of the SAS package was used (SAS, 1985). Factorial designs 

were used with 2- and 3-way interactions among factors. Interactions or 

factors that were not significant (P>.05) were dropped from the model. Levels 

of significance evaluated were : P<.05 (*), P<.01 (**), P<.001 (***). In the 

analyses P values >.05 were considered to be not significant (n.s.). Pre

planned comparisons (for example, treatment difference within a day or time) 

were tested with a Student t-test. 

In Experiment 1 analysis was performed within time of sampling: 

Xijkl - M + Li + Tj + Sk + eijkl (1) 

in which : 

Xijki = characteristic measured (corticosterone, albumin, fibrinogen) 

/i = mean within sampling time 

Lt = line effect (i = H, L line) 

Tj = treatment effect (j - H S , CT or battery1') 

Sk - sex effect (k - male, female) 

Êijki = residual error 

In Experiment 3 weight loss during treatment was analyzed with a model: 

Xgijkl - P + Gg + L i + Tj + Sk + e i J k l ( 2 ) 

in which: 

Gg = group effect (g - I, II, III): 

and other factors were as mentioned for model (1) 

Battery group only included on day of HS/CT treatment 
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The other characteristics (albumin and fibrinogen, heterophil and lymphocyte 

count, heterophil/lymphocyte ratio) were analyzed in models containing: 

P. G8, Li, Tj, Sk, Dd, M,,, Rr (3) 

in which: 

Dd - effect of sampling day (d = -7, -4, -1, 0; 

d = 1, 2; 

d - 3, 4, 5; where appropriate) 

M,,, = effect of sampling moment (m - a.m., p.m; where appropriate) 

Rr = effect of route of antigen injection (r — i.m., i.V.; after 

immunization) 

In Experiment 3, data on cloacal temperature and corticosterone (group IV) 

were analyzed with a model: 

Xijk = M + Li + Timej + eijk (4) 

in which: 

Li = Line effect (i = H,L) 

Timej = Point of time effect (j - 0, 1, 10) 

As no significant line effects were found, a model without Lt was also used 

for these data. 

Results and Discussion 

Temperature 

Ambient temperature during treatment was kept within 1°C of the set point 

temperature (22°C for CT and 42°C for HS treatment). 

Cloacal temperature during treatment in group IV are presented in 

Figure 2A. In the statistical analysis, time-treatment interaction was 

significant at P<.001. Cloacal temperature was higher immediately after a HS 

treatment than after a CT treatment period. Significance of a T-test between 

HS and CT treatment is indicated in Figure 2A. The increase in cloacal 

temperature indicate that the chicks under HS treatment could not handle the 

excessive heat in order to maintain homeothermy. In all three experiments they 

panted heavily during both the heat periods and the intervals between. They 

tended to "overshoot" their thermoneutral set point after a heat period, that 

is during the intervening periods (Figure 2A). Similar findings have been 

recorded by Siegel and Gould (1982) in chicks subjected to heat periods of one 

hour, with eight hour intervals. 

Weight loss 

As ruffling of feathers and panting are intended to increase evaporative 

heat loss, for cooling purposes, weight loss during treatments was expected 

to be highest in HS treated chicks. Weight loss, relative to live weight, 
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Figure 2. Cloacal temperature (A) and plasma corticosterone (B) values 

during four 30 min heat stress (HS) or control (CT) periods. (Exp. 

3, group IV). LSM ± s.e.m. HS/CT periods are indicated with a bar 

at the bottom of the figure. Point of time as in Table 1. 

"B control" was battery control 

Significance of difference HS-CT: 

+: P^.10; *: P<.05; **: P<.01; ***: P<.001 
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Figure 3. Plasma corticosterone levels (LSM ± s.e.m.) before and after four 

30 min heat (HS) or control (CT) periods in respiration chambers. 

(Exp. 1) 

"B"-chicks were battery control. 

Significance of difference: ns: P>.05; **: P<.01 

ns ** 

Treatment 

recorded during HS treatment in Experiment 3 (LSM ± s.e.) was 7.5 ± .21, 

8.4 ± .2% and 7.5 ± .2% for group I, II and III, respectively. For CT 

treatments these values were 8.1 ± . 2%, 7.8 ± .2% and 5.9 + .2% respectively. 

Thus, greater weight loss after HS treatment was found in groups II and III 

(P<.05), but not in group I. The difference between HS and CT treatment 

increased with age or live weight, as the difference was smallest in group I 

and greatest in group III. The amount of droppings may account for a 

considerable variation in weight loss recorded. It cannot be excluded that 

this amount differed between treatments or groups. 
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Corticosterone 
In Experiment 1 plasma corticosterone levels before treatment did not 

differ between experimental groups (HS, CT or battery control) (Fig. 3). 

Levels after treatment were higher than before in all experimental groups. 

After treatment levels in CT treated chicks were higher than HS treated or 

battery control chicks (P<.01). Morning values were higher in cockerels (LSM 

= 2.17) than in pullets (LSM=1.65, P<.05). The H and L line did not differ 

significantly at any time. 

Plasma corticosterone levels measured in Experiment 3, group IV, during 

treatment (Fig. 2B) showed a pattern comparable to that found in cloacal 

temperature. Time-treatment interaction was significant only at P<.10. After 

a heat episode plasma corticosterone values where higher in HS than CT treated 

chicks (P<.05), and decreased again during intermittent periods (Figure 2B). 

Significances for differences between CT and HS treatment in a T-test within 

sampling time are indicated in Figure 2B. 

The decline in corticosterone levels was apparently rapid, since levels in 

Experiment 1 at the time of returning HS chicks to their battery cage were 

the same as in the chicks left in the battery (Fig. 3). These relatively low 

levels in HS treated chicks at this time may also indicate depletion of 

corticosterone in the adrenals. During continuous heat stress at a temperature 

of 43°C for a period of several hours, Edens and Siegel (1975, 1976) recorded 

a rise in plasma corticosterone levels in chicks followed by a decrease after 

60 min. This decrease coincided with a depletion of adrenal corticosterone 

(Edens, 1978). This acute adrenal cortical insufficiency was accompanied by 

decreased levels of plasma glucose, cholesterol, Na+, Ca2+ and P. When 

returned to the battery cage, CT chicks in Experiment 1 had corticosterone 

levels comparable with those during CT treatment in Experiment 3 (group IV; 

Figure 2B). This indicated some increase caused by the continuously handling, 

but this was apparently not as stressful as HS treatment. 

Hematocrit values 
No consistent influences on hematocrit values were found, neither in 

groups I-III, nor group IV in Experiment 3. Variations in hematocrit 

percentages (in the range of 29-33 %) were not found to be related to group, 

line, treatment or days post or pre-immunization. 

Leukocyte counts 
The course in time of numbers of heterophils, lymphocytes and the 

heterophil/lymphocyte ratio in groups I-III from Experiment 3 are presented 

in Figure 4. Pronounced variations were found in heterophil numbers, causing 

the variations found in heterophil/lymphocyte ratios. The a.m.-p.m. 

differences in heterophils and heterophil/lymphocyte ratio found on days -7 
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Figure 4. Number of heterophils (A), lymphocytes (B) counted in blood and 

heterophil/lymphocyte (C) ratio in experiment 3. LSM ± s.e.m. from 

models including group effects. 

Heat stress (HS) or control (CT) treatment was given on day -1, 

immunization with SRBC was given on day 0. 

"a" indicates a.m. samples, "p" indicates p.m. samples. 

Before treatment all samples are indicated as "CT"; 

before immunization all samples are indicated as "i.m.". 
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and -4 was not significant. Although after treatment (day -1) the rise in 

heterophil counts and decrease in lymphocyte numbers were not significant, 

the changes resulted in an increase in the heterophil/lymphocyte ratio 

(P<.05). However, heterophil and lymphocyte counts were not influenced 

differently by HS or CT treatment. Also, in group IV leukocyte counts 

(heterophils, lymphocytes, heterophil/lymphocyte ratio) did not show a 

significant relation with sampling time or treatment. Thaxton et al. (1967) 

also did not find influences of heat stress on leukocyte counts immediately 

after treatment. This is in contrast, however, with the results of Chancellor 

and Glick (1960), Ben Nathan et al. (1976) and Heller et al. (1979), who 

found significant changes in these values immediately after heat stress 

treatments. 

Leukocyte counts were affected by immunization with SRBC. Influences were 

different in i.m. and i.v. immunized chicks. On the afternoon after 

immunization (day 0 ) , heterophil count was significantly lower (P<.001) in 

chicks immunized intramuscularly. Heterophil/lymphocyte ratio decreased 

accordingly (P<.05). Differences between immunization route were significant 

(P<.001 for heterophils; P<.01 for the ratio) at this time. This reduction 

in blood counts might indicate a mobilization of these cells with phagocytic 

and antigen presenting abilities from the blood to the site of antigen 

injection. The morning of day 1 post immunization heterophil counts were 

increased in all treatment/immunization route groups. Trout et al. (1988) 

found a comparable rise in blood heterophils after immunizations with Brucella 

abortus, which peaked 12 hours after immunization. 

Acute phase proteins 
In Experiment 1 plasma albumin and fibrinogen levels were higher in the 

samples before treatment than thereafter (Fig. 5A, 5B) . A similar difference 

between morning and afternoon levels was found in chicks left in the battery 

cage. No significant differences were found between treatments in either 

plasma albumin or fibrinogen levels. A similar diurnal pattern in albumin and 

fibrinogen levels was found in Experiment 3, on days before treatment 

(Fig. 6A, 6B). On days -7 and -4 albumin levels were higher in the morning 

than afternoon (P<.05), but the opposite was found on day of treatment (day 

-1; P<.05). On the morning of the day after treatment (day 0) values were 

lower (P<.01) but subsequent were constant on days 1 and 2. Higher albumin 

levels were found in chicks immunized i.v. than i.m. on days 3, (4) and 5. 

Changes in fibrinogen levels were comparable to those in albumin levels. On 

day -7 and -4 values were higher in the morning than afternoon (P<.05), but 

on the day of treatment no significant differences were found between morning 

and afternoon levels. Levels were elevated on the morning of day 1 after 

immunization, thereafter they declined again. Values were higher in chicks 
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Figure 5. Plasma albumin (A) and fibrinogen (B) levels (LSM ± s.e.m.) before 

and after four 30 min heat (HS) or control (CT) periods in 

respiration chambers and 3, 5 days after immunization. (Exp. 1). 
"B"-chicks were battery control 

"a" indicates a.m. samples, "p" indicates p.m. samples 
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Figure 6. Plasma albumin (A) and fibrinogen (B) levels in Experiment 3. LSM 

± s.e.m. from models including group effects. 

Heat stress (HS) or control (CT) treatment was given on day -1, 

immunization with SRBC was given on day 0. 

"a" indicates a.m. samples, "p" indicates p.m. samples. 

Before treatment all samples are indicated as "CT"; 

before iranunization all samples are indicated as "i.m.". 
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immunized i.v. than in those immunized i.m. on days 3, (4) and 5 (P<.001). 

Thus no significant differences were found in albumin and fibrinogen 

levels between morning and afternoon samples, on day of treatment in 

Experiment 3, in contrast to the days before treatment. These changes were 

found, either after HS or CT treatment. Therefore it is concluded that these 

changes were not induced by the HS treatment, but rather by the absence of 

food or water during the HS and CT treatment. Levels of both proteins 

increased significantly on days 3 and 5 after i.v. immunization compared to 

i.m. immunized chicks. These higher values coincide with higher SRBC antibody 

levels on these days (Donker et al., submitted). Changes in these proteins 

therefore do not seem indicative for (heat) stress, but may reflect metabolic 

changes, during the mounting of an humoral immune response. The reaction 

pattern found in albumin and fibrinogen levels differed from that usually 

found during an acute phase response. In these experiments changes occurring 

during treatment and after immunization showed a similar pattern for albumin 

and fibrinogen levels. This is the reverse of changes found during the usual 

acute phase reaction, in which albumin levels decrease and fibrinogen levels 

rise (Kushner, 1982; Koj, 1985). 

In conclusion the physiological responses of H and L selection line to 

heat stress and immunization were similar. It may be concluded that heat 

stress affected chickens because both body temperature and plasma 

corticosterone increased considerably during this treatment. The changes in 

leukocyte counts in blood and plasma albumin and fibrinogen concentrations 

in plasma were not indicative of heat stress. The relevance of the diurnal 

rhythm and changes in leukocyte counts and acute phase proteins observed 

after immunization need further study. 
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R.A. Donker, A.G.J.C. Swinkels and A.J. v.d. Zijpp 

The effect of environmental temperature on antibody production and some 

physiological parameters in chicken lines selected for humoral immune 

responsiveness. 

Abstract 

1. To study genotype x environmental temperature interactions on antibody 

production, chickens from lines, divergently selected for antibody 

production to sheep erythrocytes (SRBC), were kept at different 

temperatures. Temperatures were either constant at 25°C, 35°C or 

fluctuating diurnally between 15-25°C or 25-35°C. 

2. A primary immunization with SRBC was given at 35 d of age. At the time of 

primary immunization, some of the chickens were exchanged between 

different temperatures. A secondary immunization was given at 63 d of age. 

3. Higher cloacal temperature, decreased growth and decreased lymphoid organ 

weights post mortem indicated a major stress influence in high temperature 

environments. 

k. Higher antibody titres were found in the high temperature environments, 

but moving chickens from 25°C to 35°C at the time of immunization caused 

immunosuppression during primary immunization. 

5. Differences between the two selection lines in antibody production and 

physiological characteristics measured were constant in all environments 

and treatments, indicating the absence of environment x genotype 

interactions. 

Introduction 

Antibody production is one of a number of important responses in an 

animals defence against pathogens. For a given antigen and dose, differences 

in antibody production can occur because of variation in nutrition, genetics 

and environment (Kelley, 1985; Siegel, 1987). Genetic differences can be 

utilized to develop selection lines that differ in antibody production 

capacity, as was demonstrated in mice (Biozzi et al., 1979) and chickens 

(Siegel and Gross, 1978; Van der Zijpp and Nieuwland, 1986). 

The most studied environmental influence on antibody production has been 

environmental temperature. In particular immunosuppression as a consequence 

of sudden changes in temperature has been reported (Subba Rao and Glick, 1970, 

1977; Thaxton and Siegel, 1970, 1972, 1973). This immunosuppressive effect of 

acute thermal stress was associated with stimulation of the hypothalamo-

pituitary-adrenal axis. 
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The influence of moderate but prolonged heat has been described by Blecha 

and Kelley (1979), Henken et al. (1983a, b) and Beard and Mitchell (1987). 

After adaptation to temperatures just outside the therraoneutral zone, immuno-

enhancement can occur (Henken et al., 1983a; Beard and Mitchell, 1987; 

Anderson and Kühn, 1988). 

The occurrence of interactions between different environmental 

temperatures and antigen type and dose have been reported (Siegel and Latimer, 

1984; Beard and Mitchell, 1987). However, no results are available concerning 

genotype x environment interactions with respect to antibody production. These 

interactions would be of importance for the practical application of selection 

on immunological traits in breeding programmes. 

To study this interaction, chickens from lines selected for high (H) and 

low (L) antibody titres after immunization with sheep erythrocytes (SRBC) were 

kept under different environmental conditions. Temperatures ranging from 15 -

35°C were used. 

To study the effect of acute thermal stress at the moment of immunization, 

compared to the effect of prolonged stress, birds were exchanged between the 

different temperatures. 

To monitor metabolic changes which could be associated with alterations 

in the environment, the cloacal temperature and growth were measured 

frequently. 

As indicators of stress, measurements of cloacal temperature and the 

heterophil/lymphocyte ratio were made; lymphoid organ development and liver 

weight were checked at the end of the experiment. 

Material and methods 

In this experiment a total of 396 chickens was used. These were 

genetically identical to the sixth generation of the H and L selection lines 

for antibody titre to sheep red blood cells (SRBC). These lines are selected 

on antibody titre five days after an intramuscular (i.m.) immunization with 

1 ml 25Z SRBC in phosphate buffered saline (PBS) (Van der Zijpp and Nieuwland, 

1986). 

After hatching the birds were individually wingbanded and vaccinated 

against Marek's disease, infectious bronchitis, Gumboro's disease and 

Newcastle disease (Fig. 1) . They were placed in wire cages and provided with 

commercial layer starter feed and water ad libitum throughout the experiment. 

The two sexes were housed separately, but the two lines were intermingled. 

The temperature in all chambers was gradually lowered from 32°C at d 1 to 

25°C at 25 d of age, and during the following six days gradually changed to 

the final temperatures for the specific treatment. One control chamber (C) was 
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Figure 1. Experimental layout. 
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continuously kept at 25°C, one chamber kept at the high (H) temperature of 

35°C, one chamber fluctuated daily between 15 and 25°C (fluctuating Control; 

Cf) and one chamber fluctuated between 25 and 35°C (fluctuating Hot; Hf) . 

Temperatures were regulated by a microcomputer and kept within setpoint 

temperature + 1°C. Relative humidity was approximately 70% in all chambers. 

Fluctuating temperatures followed a sinusoid with the highest temperature at 

400 h and the lowest at 1600 h. The light regime was 12 h light, 12 h dark. 

Seven treatment groups were used. In each of the four chambers one group 

stayed there throughout the experiment (CC, HH, C£C£, H£H£) . Immediately after 

primary immunization, one group was moved from the 25 to the 35°C environment 

(CH), one group from the 35 to the 25°C environment (HC) and one group was 

moved from the fluctuating control to the fluctuating hot environment (C£H£) . 

Chickens from both lines and both sexes were equally distributed over 

treatment groups at 13 d of age. Thus a total of 28 line-sex-treatment 

combinations were distinguished. 

From 19 d of age chickens were weighed weekly (Fig. 1). At 35 d of age 

chickens were immunized i.m. with 1 ml 25% (v/v) SRBC in PBS. Chickens were 

bled randomly 5 d or 1 d before immunization (referred to as day -5, -1) and 

1 or 2 d post immunization. All chickens were bled 3, 5, 7 and 14 d after 

immunization. At 65 d of age all chickens were bled again just prior to a 

secondary immunization with 1 ml 50% (v/v) SRBC in PBS. They were bled again 

3, 5, 7 and 14 d post secondary immunization (Fig. 1). 

62 



Five and 1 d before primary immunization (-5, -1) and 1 and 2 d after 

immunization cloacal temperature was measured with .1°C precision prior to 

bleeding. These measurements were made between 900 and 1200 h. Cloacal 

temperature was measured 12 d after primary immunization, either between A00 

and 600 h or between 1600 and 1800 h. At this time the chamber temperature was 

the highest (400-600 h) or the lowest (1600-1800 h) in the environments with 

fluctuating temperatures. 

At 78 d of age, chickens were killed by cervical dislocation and from 

every treatment 24 chickens (6 of every line-sex-treatment combination) were 

dissected. The liver, spleen, bursa of Fabricius and thymus were excised and 

weighed. 

Assays 
All blood samples were taken between 900 and 1200 h from the brachial vein 

(vena cutanea ulnaris) with a syringe which was rinsed with a heparin 

solution. 

Smears were made from 112 blood samples (4 in every line-sex-treatment 

group), that were taken on 5 and 1 d before and 1 and 2 d after the primary 

immunization. These were dyed with May-Grttnwald-Giemsa stain and a 

differential count was made of the number of heterophils and lymphocytes. A 

total number of 100 leukocytes was counted in each smear to estimate the 

heterophil/lymphocyte ratio. 

The packed cell volume (PCV) was measured in 112 blood samples (4 per 

line-sex-treatment combination) taken before and on d 1, 2, 3, 7 and 14 after 

primary immunization. 

After centrifugation, plasma was collected and stored at -20°C until 

assayed. Total (TO) and 2-Mercapto ethanol (2ME-) resistant antibody titres 

were assayed in all plasmas by hemagglutinin assay (Van der Zij pp and 

Leenstra, 1980). Titres were expressed as log2 of the highest dilution giving 

total agglutination. 

Statistical analysis 
Analyses of variance were performed within day of sampling, with full 

factorial designs, using the GLM procedure of the SAS package (SAS, 1985). 

Main factors included in the models were line, sex and treatment. Two- and 

three- way interactions between the factors were analyzed in the initial full 

factorial model, but left from the model if not significant (P >.05). The sex 

effect was also left from the model if not significant. Student-Newman-Keuls 

multiple range tests were used to test for differences among treatments. T-

tests on least squares means were performed to test a number of pre-planned 

comparisons between environments, e.g. comparison of CC with HH or CH. 
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Results 

Chacal temperature 
Treatment differences in cloacal temperature are presented in Table 1. 

Elevated cloacal temperatures were found in chickens in high temperature 

environments (35°C) at all times. In the environment with fluctuating high 

temperature (H£) cloacal temperature was not increased on d -5, -1, 1 and 2 

(between 900 and 1200 h) . In this environment the cloacal temperature was 

increased during the 35°C period (day 12 high), but not during the 25°C period 

(day 12 low) (Table 1) . Cloacal temperatures of chickens in the C£ environment 

were comparable to those in the C environment at all times. No significant 

differences between lines and sexes were found. 

Table 1. Cloacal temperature (°C). Least squares means for each 
treatment1' 

Days after immunization 

Treatment ^5 -_l 1 2 12 low2' 12 high3 

CC 

CH 

HC 

HH 

C£C£ 

C£H£ 

HfH, 

4 1 . 5b 

4 1 . 5b 

4 1 . 9 a 

4 1 . 8 a 

4 1 . 5 b 

4 1 . 5b 

4 1 . 6b 

41 .5 ° 

4 1 . 8 b c 

4 2 . 4 a 

4 2 . 0 a b 

4 1 . 6C 

4 1 . 5C 

4 1 . 6C 

4 1 . 5 b 

4 2 . 0 a 

4 1 . 3 b 

4 1 . 8 a b 

4 1 . 4 b 

4 1 . 5b 

4 1 . 5b 

4 1 . 3 b 

4 1 . 9a 

4 1 . 2b 

4 1 . 8 a 

4 1 . 5b 

4 1 . 4 b 

4 1 . 4 b 

4 1 . 3 b 

42 . l a 

4 1 . 3 b 

4 1 . 9 a 

4 1 . 4 b 

4 1 . 3 b 

4 1 . l b 

4 1 . 2b 

4 2 . 3 a 

4 1 . 2 b 

4 2 . 0 a 

4 1 . 2b 

4 2 . l a 

4 2 . 0 a 

1) 

2) 

Least squares means in the same column bearing different superscripts differ significantly 
(P<.05) 

Measured during the low temperature period in fluctuating temperature environments 

' Measured during the high temperature period in fluctuating temperature environments 

Body weight 
Average body weights for each treatment are presented in Table 2. Higher 

body weights were found in the L line from 26 d of age. Males were heavier 

from 19 d of age. Decreased growth was found in high temperature environments; 

differences in body weights were significant from 34 d of age. Chickens in 

control environments (C and C£) grew fastest, and chickens kept in the 

continuous hot (H) environment grew slowest. The chickens in the fluctuating 

high temperature group (H£) showed intermediate growth. After transfer from 
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one environment to another (d 0 ) , the chickens adapted rapidly to the new 

environment with regard to growth rate. 

Table 2. Body weight (g). Least squares means for each treatment1'. 

Age (days) 

Treatment 19 26 34 42 49 56 63 70 77 

CC 188 273 401a 550a 714a 866b 1020b 1137b 1287b 

CH 

HC 

HH 

C£C£ 

C£H£ 

H£H£ 

186 

183 

190 

192 

186 

182 

270 

260 

269 

278 

262 

265 

389a 

336b 

348b 

391a 

397a 

387a 

466c 

460° 

426d 

560a 

529b 

513b 

560d 

626c 

535d 

730a 

672b 

662b 

621d 

760c 

624d 

903a 

784c 

776c 

686e 

784d 

708e 

1066a 

884c 

900c 

761e 

910d 

777e 

1196a 

986c 

999c 

836e 

1055d 

852e 

1362a 

1127c 

1137c 

Least squares means in the same column bearing different superscripts differ significantly 
(P<.05) 

Antibody production 
Antibody titres after primary immunization are presented in Figure 2 and 

those after secondary immunization in Figure 3. Significance levels of the 

factors line, environment and sex are shown in Table 3. No significant 

interactions were found. 

Higher antibody titres were found in the H line, both in total and 2ME 

resistant titres. 

After primary immunization total antibody titres in chickens in the HH 

treatment were significantly increased, and those in CH chickens significantly 

decreased, compared to CC chickens. HC chickens showed an increase on d 5, and 

a decrease on d 7, compared to CC chickens, but these differences were 

significant only in a direct comparison using a T-test (P<.05). 

From the chickens in fluctuating temperature environments, those in CfHf 

treatment showed higher antibody titres compared to C£Cf (and CC) treatment. 

Levels in the other treatments in environments with fluctuating temperatures 

(C£C£ and HfH£) were comparable to the CC treatment. 

Differences between the H and L line and between treatments in 2ME-

resistant titres were comparable to those found in total titres, but titers 

were lower and with lower levels of significance. 
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Figure 2. Antibody production after primary immunization with SRBC. Least 

squares means for each treatment. 
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Figure 3. Antibody production after secondary immunization with SRBC. Least 

squares means for each treatment. 
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Table 3. Significance1' of line, treatment and sex in analysis of total (TO) and 
2ME-resistant (2ME) antibody titres. 

Days after immunization 

Primary immunization 

- 5 - 1 1 2 3 

TO: 

Line 

Treatment 

Sex 

14 

n s 
*** 
ns 

*** 
ns 
n s 

*** 
*** 
ns 

•irk* 

•kick 

•k 

~kkk 

*** 
* 

*** 
*** 
* 

Secondary immunization 

0 3 5 7 14 

r̂̂ nfr "kk~k itick kk~k ieki: 

~k~k~k kk"k k-k kick kick 

ns n s n s n s n s 

2ME: 

Line 

Treatment 

Sex 

ickk ick-k 

•kick ick 

** n s 

kkic kick -kick -kick 

k-k ic kkic ickic 

ns ns ns ns 

Differences between treatments2' (Figures 3 and 4): 

Primary immunization 

- 5 - 1 1 2 3 5 7 14 

TO: 

CC 

HH 

CH 

HC 

C£C£ 

H£Hf 

ab 

bc 

b 

bc 

a 

a 

c 

a 

a 

a 

a 

a 

a 

a 

be 

a 

be 

a 

c 

be 

b 

cd 

a 

d 

be 

d 

d 

b 

b 

a 

c 

be 

be 

b 

a 

be 

a 

c 

abc 

bc 

bc 

ab 

Secondary immunization 

0 3 5 7 14 

b 

a 

ab 

a 

b 

a 

ab 

c 

ab 

bc 

abc 

bc 

abc 

a 

b 

a 

b 

b 

b 

b 

b 

b 

a 

b 

a 

a 

ab 

b 

b 

a 

b 

b 

b 

b 

b 

2ME: 

CC 

HH 

CH 

HC 

CfCf 

H£H£ 

C£H£ 

b 
a 

b 

b 

b 

b 

b 

b 
ab 

b 

ab 

b 

ab 

a 

a 
a 

a 

a 

a 

a 

a 

abc 
a 

abc 

ab 

c 

bc 

abc 

ab 
a 

b 

ab 

ab 

ab 

ab 

bc 
a 

c 

b 

bc 

bc 

c 

a 
a 

b 
b 

b 

b 

b 

-: not tested because of skewed distribution of values. 
ns: not significant (P>.05); 
*: P<.05; **: P<.01; ***: P<.001 

Treatments bearing different superscripts within a column differ significantly in a 
Student-Newman-Keuls multiple range test (P<.05). 
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After secondary immunization the chickens in HH environment had higher 

total titres again than all other treatment groups. The other treatment groups 

were not significantly different from each other. Only the HC group showed 

higher titres at d 7, at the same level as the HH group. 

After secondary immunization the 2ME-resistant titres were highest at d 7. 

The 2ME-titres in the HH treated group were increased, while some decreased 

titres were found in the CH and C£H£ groups compared to CC and C£Cf. However, 

these differences were significant only when compared in a direct T-test. 

Packed cell volume (PCV) 
The PCV values were always higher in the H line than the L line, but the 

difference was only significant (P<.01) on d -5, -1 and 1. The difference 

between the two sexes was not consistently significant. Differences between 

treatments (Table 4) were significant at all days (P<.01 on d -5, -1; P<.001 

on other days). Values were very similar in the treatment groups kept at the 

same temperature before immunization (e.g. CH and CC) , or after transfer to 

another temperature (e.g. HC and CC). The day after immunization an increase 

was found in some groups (CC, CH, C£H£) , whereas in the others there was a 

decrease. On d 2 and 3 after immunization all groups had lower PCV values 

than before. These differences later disappeared, and the HH and HC group 

showed a relative rise on d 14. The changes observed were the greatest in 

groups kept at constant temperatures. 

Table 4. Packed cell volume (%). Least squares means for each 
treatment1'. 

Days after immunization 

Treatment -5 -1 1 2 3 7 14_ 

CC 

CH 

HC 

HH 

C£C£ 

C fH£ 

H fH£ 

2 9 gab 

3 0 . 2 a b 

28 . 6b 

2g gab 

2 9 5 a b 

3 2 . 0 a 

2 9 . 2 b 

2 8 . 9 b c 

28 . 2C 

28 . 4 b c 

2 9 . 3 a b 

3 0 . 3 a b 

30. 9 a 

29 . 0 b 

3 1 . 5 a 

29 . 2b 

25 . 3C 

2 7 . 9 b 

28 . 5b 

3 1 . 9a 

2 8 . 0 b 

27 . 8b 

27 . 6b 

2 4 . 0 d 

25 . 7C 

2 8 . 4 b 

3 0 . 4 a 

28 . l b 

27 . 6 a 

2 7 . 2 a b 

24 .7 C 

2 5 . 3 b 0 

28 . 2 a 

2 8 . 4 a 

2 7 . 1 a b 

3 0 . 3 a b 

2 7 . 3 c d 

2 8 . 8 b c 

2 6 . 4 d 

31 . 0 " 

2 7 . 9 c d 

2 8 . 7 b c 

29.8* 

27.7b 

32. l a 

29.6* 

31.3" 

29.9* 

30.2a 

Least squares means in the same column bearing different superscripts differ significantly 

(P<.05) 
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Heterophil / lymphocyte ratio 

The variation in heterophil/lymphocyte ratio (H/L; Fig. 4)) were such that 

no consistent influence of line, sex or treatment could be found on d -5, -1 

and 1. A decrease in the ratio was observed in all environments 2 d after 

immunization (P<.01) compared to the days before. Despite reduced variation 

on d 2 and 3, no significant differences were found between treatments. 

Figure 4. Heterophil/lymphocyte ratio. Least squares means for each treatment. 
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Relative organ weight 
Relative organ weights of liver, spleen, thymus and bursa were, like body 

weight, influenced significantly by the environmental temperatures. 

Significance of factors and least squares means are given in Table 5. 

Table 5. Significance1' of line, treatment and sex in analysis of 
relative organ weight2' of liver, spleen, thymus and bursa. 
Least squares means for each line and treatment. 

S i e n i f i c a n c e : 

F a c t o r : 
L i ne 
T r e a tmen t 
Sex 

L e a s t s q u a r e s 

T r e a t m e n t : 
CC 
HH 
CH 
HC 
CfC£ 

H£Hf 

C£Hf 

L i n e : 
H 
L 

R e l a t i v e 
l i v e r 

+ 
*** 
+ 

means : 
R e l a t i v e 
l i v e r 

1 . 53 a b 

1.37 c 

1.36 c 

1.59 a 

1 . 63 a 

1.46 b c 

1.46 b c 

1.46* 
1.50* 

w e i g h t of : 
s t i l e en 

*** 
*** 
*** 

w e i g h t o f : 
s p l e e n 

0 . 18 " 
0 . 1 3 b 

0 . 1 3 b 

0 . 1 7 a 

0 . 1 8 a 

0 . 1 6 a 

0 . 1 5 a b 

0 .18* 
0 . 1 4 y 

thvmus 

n s 
*** 
*** 

thvmus 

0 . 4 3 a 

0 . 2 2 b 

0 . 2 3 b 

0 . 4 3 " 
0 . 4 5 " 
0 . 3 7 a 

0 . 3 7 a 

0 . 35* 
0 . 36* 

b u r s a 

n s 
*** 
n s 

b u r s a 

0 1 6 a b c 

0.08d 

0.08d 

0.15bc 

0.19 ab 

0.13 e 

0 .21 a 

0.15* 
0.14* 

ns: not significant (P>.10); 
+: P<.10; *: P<.05; **: P<.01; ***: P<.001 

2'Organ weight / live bodyweight * 100 t . 
Least squares means in the same column bearing different superscripts differ 
significantly (P<.05) 

The environment where the chickens were kept after the immunization was of 

most influence on the weight of these organs, because no differences were 

found in relative weight between CC and HC; HH and CH; H£Hf and CfH£ 

treatments. Only one exception was found: bursa weight in C£H£ was as high as 

in C£C£ chickens, and different from HfH£. All relative organ weights were 

depressed in chickens kept in hot environments. Most significant suppression 

was found in the continuous hot environments: HH and CH. Reductions were also 

found in the fluctuating high temperature environments (H£Hf and C£H£) for 
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liver, spleen and bursa (only in H£H£) ; although the reductions in spleen and 

thymus weights were not significant. A significant difference between lines 

was found only in spleen weight. Significant sex influences were found on 

spleen and thymus weight. 

Discussion 

Cloacal temperature 
The environmental temperature markedly influenced the cloacal temperature 

of the chickens, since homeothermia was lost at 35°C. In the environment with 

fluctuating high temperature, chickens passed daily through homeothermic and 

hyperthermic conditions. Elevated cloacal temperatures found at 35°C are in 

agreement with results found by others (Sykes and Fataftah, 1985, 1986; 

Meltzer, 1987). 

No indications were found of differences in cloacal temperatures between 

the H and L line in the various treatments. Thus, apparently, no difference 

between the lines in adaptation to the different temperatures is evident. 

Growth 
Growth was dramatically affected by the high temperature. A main factor 

in maintaining homeothermia in chickens is regulation of feed intake (Farrell 

and Swain, 1977; Henken et al., 1983b), with an associated higher feed 

conversion ratio at high temperatures (Henken et al., 1983b). Although not 

measured in this experiment, feed intake was obviously decreased at high 

temperatures. Therefore chickens decreased their feed intake to minimize 

metabolic heat production in an effort to maintain homeothermia. 

In those treatments in which chickens were moved from one environment to 

another, growth rates rapidly approached those of the chickens that were 

already present in that environment. Existing differences in body weight 

between chickens that stayed in the same room and those which were placed 

there after immunization either did not disappear or did so only very slowly. 

Like the effects on cloacal temperature, no line x treatment (or line x 

sex x treatment) interactions were found for body weight and growth rate. 

Therefore, the reduction in growth caused by the temperature differences was 

comparable for H and L line, indicating a comparable level of thermal stress 

in both lines. 

Antibody production 
Differences in antibody production between H and L line were as expected. 

Higher antibody titres in the H line were consistent in these lines from the 

first generation (Van der Zijpp et al., 1988). This has been demonstrated 
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under different conditions (Donker et al., submitted: a ) . Higher titres in 

females than in males are usual in these lines (unpublished data). 

After primary immunization treatment effects were found on antibody 

titres. Immunosuppression was found in the CH treatment when compared to those 

in CC or HH treatment. This is consistent with results found by Subba Rao and 

Glick (1970, 1977) and Thaxton and Siegel (1970, 1972, 1973). This 

contradicts, however, previously reported results by Donker et al. (submitted: 

a ) , who could not demonstrate immunosuppression by means of short term acute 

heat stress in the same selection lines. A crucial difference in the present 

experiments could be the absence of daily handling, which Donker et al. 

(submitted: a) used to 'socialize' their birds. In those experiments, 

immunosuppression was only found in the first experiment, carried out with not 

very intense daily handling. Daily handling might give frequent stimulation 

of the hypothalamo-pituitary-adrenal axis, which through negative feed-back 

could reduce the number of free receptors for corticosteroids on lymphocytes 

and thus decrease susceptibility for stressors (Beuving and Vonder, 1978; 

Axelrod and Reisine, 1984; Munck et al., 1984). 

Birds in the HH treatment had higher antibody titres than those in CC 

treatment, and thus showed an immuno stimulation. A comparable difference was 

found by Henken et al. (1983a) in commercial chickens. They discussed a 

possible relation between the metabolic rate above thermoneutral levels and 

antibody production levels. Immuno-stimulatory effects were also found by 

Anderson and Kühn (1988) in mice. They found that immunosuppression on 

antibodies to SRBC antigen by T. cruzi in infected mice could be overcome by 

high environmental temperature, and they also found immuno-stimulation in mice 

that were not infected. They postulated alterations in T-helper cell 

populations caused by the high temperature environment. 

In the treatment groups in fluctuating temperatures only the C£H£ was 

different from the other treatments with fluctuating temperatures and from CC. 

Antibody titres were increased in this group, as in HH. Because of improved 

acclimation to the high temperature, induced by daily fluctuations before 

immunization this treatment could possibly adapt to high temperatures as the 

HH treatment did. Higher antibody production at fluctuating high temperature 

was also reported by Beard and Mitchell (1987) , using Newcastle disease virus. 

The question remains, however, why this was not found in H£H£ treatment in 

this experiment. 

The differences between treatments at fluctuating temperatures were 

smaller than those found at constant temperatures. This could be explained by 

the less extreme temperatures used, but also by better acclimation of the 

birds to changes in temperature. Henken et al. (1983a) also found less 

profound influences of fluctuating temperatures on antibody production 

compared to constant temperatures. 
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The differences in antibody titres between the treatments after secondary 

immunization were comparable to those after the primary immunization, but were 

less pronounced. Higher titres were found only in HH treatment after secondary 

immunization; all other treatments showed very comparable levels. This 

indicates adaptation to the environmental temperature at the time of secondary 

immunization. 

An important finding for the practical application of breeding for immune 

responsiveness was the absence of genotype x treatment interactions in this 

experiment. For the primary response in the HH, CC and CH treatments this is 

illustrated in Figure 5. All treatment influences on antibody titres were in 

the same direction and of the same magnitude in both lines. 

Figure 5. Antibody production in CC, HH and CH treatment after primary 

immunization with SRBC. Least squares means for each line-

treatment . 
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No clear relations were found between PCV and treatment or environmental 

temperature. Differences in the PCV in chickens kept at different 

temperatures, or which were exchanged between these temperatures were reported 

previously (Huston, 1965; Deaton et al., 1969; Moye et al., 1969). However, 
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higher packed cell volumes were found only about two or three weeks after the 

high temperature was set. 

A decreased PCV was found after immunization. No other results are known 

which show this effect. Only Panigrahy et al. (1986) found a comparable 

decrease in PCV, erythrocyte count and hemoglobin concentration 5 d after an 

infection with infectious bursal disease. However, the repeated bleeding may 

have caused reductions in PCV values (Gildersleeve et al., 1985). 

Heterophil / lymphocyte ratio 
H/L ratios have been used as a measure of stress (Chancellor and Gllck, 

1960; Gross et al., 1980; Gross and Siegel, 1983). However, no consistent 

changes in the H/L ratio were found in relation to the treatment or 

environmental temperature. Either the differences in temperature between the 

treatments were apparently not of a sufficient magnitude to influence the 

ratio, or temperature does not act on these ratios in the same way as do 

other stressors. 

On d 2 after immunization a decrease in the ratio was found in all 

treatments, which is probably related to the immunization with SRBC. Donker 

et al. (submitted: b) found a comparable decrease after immunization with 

SRBC. Also Trout et al. (1988) found comparable changes in the H/L ratio after 

immunization with Brucella abortus. However, the lowest values of the ratio 

in those experiments was found about 12 - 24 h after the immunization. 

The high variation in the H/L ratio on the day before immunization was 

unexpected, and no sound explanation could be found. 

HC treatment 
Chickens in the HC treatment showed somewhat different results from the 

other treatments. 

In particular, on d -1 a very high cloacal temperature was found for 

chickens in this treatment, higher than for the HH treatment. Also on d -1, 

the heterophil/lymphocyte ratio was considerably higher in the HC group than 

in any other group. These two observations could be an indication of some 

unknown stressor. 

The reasons for these findings are unknown. However, they might also have 

influenced antibody production. The antibody titres in the HC treatment group 

were comparable to HH treatment at 3 and 5 d after immunization, but much 

lower values were found on 7 and 14 d after immunization, comparable to CC 

treatment. 
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Relative organ weight 

The differences between treatments in relative organ weights illustrate 

the detrimental effects of the hot environments. The decreased spleen-, bursa-

and thymus- weight in the hot environments were remarkable since these 

chickens had shown the highest antibody titres. All three organs, but 

particularly the spleen, play an essential role in the initiation of an immune 

response. As found in this experiment and earlier work (Donker et al., 

submitted: c ) , higher spleen weights were found in H line chickens than in L 

line chickens, indicating a positive correlation between spleen weight and 

antibody production. Thus a higher spleen weight might be related to higher 

antibody producing capacity, as is the case in the difference between H and 

L line. However, the higher antibody production initiated by the high 

temperature was not associated with an high spleen weight. 

The different treatments in the climate chambers provoked a number of 

differences in the chickens. Influences on cloacal temperature, growth, 

lymphoid organ development and antibody titres were observed. No consistent 

influence was found on packed cell volume and heterophil/lymphocyte ratios. 

Most important is the observation that all changes induced by the temperature 

treatments were the same in the H and L selection line, and did not interfere 

with existing differences between the lines. It is concluded that no genotype 

x environmental temperature interactions are evident in these selection lines. 
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Chapter IV 

Plaque-forming-cell assay and lymphoid organ development in chicken 
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R.A. Donker, M.G.B. Nieuwland and A.J. van der Zijpp. Plaque-forming-cell 

assay and lymphoid organ development in chicken lines selected for high and 

low immune responsiveness. 

Abstract 

In two experiments, the number of direct and indirect plaque-forming-cells 

in spleens of two chicken lines, selected for humoral immune response to sheep 

erythrocytes (SRBC) was studied. Chickens from the fifth and sixth generation 

were used. After immunization with SRBC, the high antibody production line 

showed significantly higher numbers of direct plaque-forming-cells in the 

spleen. Additionally, relative spleen weight was higher in the high antibody 

line. Thus, higher antibody titers in the high response line partly can be 

explained by the occurrence of higher numbers of immunocompetent cells. 

Differences were consistent after both intravenous and intramuscular 

immunization, and after both primary and secondary immunization. 

In a third experiment, chickens from the sixth generation were dissected 

at 1, 7, 15, 22, 29, 37 and 50 days of age, without prior immunization. Higher 

relative spleen weights were found in high line chickens in this experiment. 

Slightly lower relative weight of bursa of Fabricius was found in high line 

chickens. No significant differences in live weight and relative thymus weight 

were found. Thus the higher spleen weight and probably higher antibody 

production capacity in high line chickens is already initiated during the 

ontogeny, before immunization. Lower bursa weight apparently does not impair 

immune fune t i on. 

Keywords: selection lines, plaque-forming-cells, organ development, SRBC 

Introduction 

During the mounting of an immune response, a complex mechanism is 

triggered, in which macrophages, T- and B-cells cooperate. B-cells, which 

originate in the primary lymphoid organs, differentiate into plasma cells 

after being primed with antigen and eventually release antibodies. These 

processes are regulated by interleukins released by macrophages and various 

subsets of lymphocytes. After immunological stimulation, (potential) plasma 

cells and macrophages, which bind antigen particles, migrate into secondary 

lymphoid organs, such as the spleen, to intensify contact between plasma cells 

and antigen (Roitt et al., 1985). 

Selection for humoral immune responsiveness can result in selection lines 

that differ in antibody production (Biozzi et al., 1979; Siegel and Gross, 
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1978; Van der Zijpp and Nieuwland, 1986). Such differences could be caused by 

alterations in several phases of this process. Biozzi et al. (1979) described 

modifications in numbers and activity in populations of macrophages as well 

as lymphocytes in mice selected for various antigens. 

Siegel et al. (1982) and Ubosi et al. (1985) found that bodyweight and 

organ development were influenced in chickens, after selection for immune 

responsiveness. Landreth and Glick (1973) and Yamamoto and Glick (1982) found 

differences in antibody production in chicken lines which were selected for 

high or low bursal weight. 

To study the changes in the selection lines used in our laboratory (Van 

der Zijpp and Nieuwland, 1986), occurring as a result of the selection for 

antibody production to sheep red blood cells (SRBC) a series of experiments 

were carried out. In combination with antibody titers, the number of plaque-

forming- cells in the spleen was measured, in order to estimate the potential 

number of antibody producing cells. Route of antigen administration, 

intravenous (i.v.) and intramuscular (i.m.), and age influence were included 

in the experiments. The ontogeny of lymphoid organ development was studied 

without immunization in young chickens of various ages. 

Material and methods 

Three experiments were conducted, using chickens from lines selected for 

high (H) and low (L) antibody titer five days after a primary i.m. 

immunization with 1 ml 25% (v/v) sheep red blood cells (SRBC) in phosphate 

buffered saline (PBS) at 37 days of age (Van der Zijpp and Nieuwland, 1986). 

Chicks used in the experiments were vaccinated against Marek's disease 

and, sexes separately, housed on wire brooder cages. Chicks were provided with 

starter feed and water ad libitum. Vaccination against infectious bronchitis 

was given at one day of age, against Gumboro ' s disease at 15 days and 

Newcastle disease at 21 days of age. 

Experiment 1 (route influence) 
A total of 143 chickens, genetically identical to the fifth generation of 

the H and L selection lines, was used. Chickens were immunized with SRBC at 

52 days of age. Immunization was given i.m. for half the chickens (1 ml 25% 

SRBC in PBS) and i.v. (.5 ml 5% SRBC) for the other half. Three, 4, 5 and 6 

days after immunization, 16 chicks were weighed, killed by decapitation, blood 

was collected for antibody titer assay, their spleens removed, weighed and 

direct and indirect plaque tests were performed on spleen cells. Twenty-nine 

days after primary immunization, the remaining chicks were re-immunized via 

the same route as at primary immunization. SRBC-dose was doubled, compared to 



primary dose. On 2, 3 ,4 ,5 and 6 days after immunization chicks were weighed, 

sacrificed and the same procedure was followed as after primary immunization. 

Experimental design was a full factorial design: 2 lines x 2 sexes x 2 

immunization routes x 9 sampling days x 2 replicates. However, because some 

pullets were incorrectly sexed as cockerels, and because one bird died, this 

was not completely achieved. 

Experiment 2 (age influence) 
A total of 216 chickens, genetically identical to the sixth generation of 

the H and L selection lines, was used. These chickens were involved in an 

experiment to investigate the influence of heat-stress on antibody production. 

Details of this experiment are described elsewhere (Donker et al., submitted-

a, -b). To habituate chickens to handling, they were handled daily from 16 

days of age, until the end of the experiment. To study age differences, 

chickens were separated into three groups, which were treated alike, but at 

different ages. Chickens were immunized 24 hours after a heat stress treatment 

(four 30 min. periods at 42°C with 30 min. intervals) or a control treatment 

(identical treatment but at 22°C). Immunization was performed with .5 ml 5% 

SRBC in PBS. Immunizations were given at ages of 33 days (group I ) , 36 days 

(group II) and 43 days (group III), respectively. Three, 4 and 5 days after 

immunization a number of chickens were weighed and sacrificed, blood was 

collected for antibody titer measurements, spleen and bursa were removed and 

weighed, and plaque tests were performed on spleen cells. The experimental 

design was factorial: 3 age-groups x 2 lines x 2 sexes x 2 stress-treatments 

x 3 days x 3 replicates. 

Experiment 3 (ontogeny of organ weight) 
A total of 140 chickens, from the same hatch as those in Experiment 2, 

was used for this experiment. Housing and husbandry were as described for 

Experiment 2, except that these chickens were not specifically handled daily. 

On the day after hatching and at 7, 15, 22, 29, 37 and 50 days of age, 5 

chicks from each line and sex were weighed and sacrificed. The bursa of 

Fabricius, thymus, spleen and liver were removed and weighed. 

Assays: 

Hemagglutinin 
Blood samples were collected in a tube containing a drop of a heparin 

solution. Samples were centrifuged to harvest plasma and stored at -20°C until 

assayed. Total (TO) and 2-Mercapto ethanol (2ME-) resistant antibody titers 

were assayed by hemagglutinin assay (Van der Zijpp and Leenstra, 1980). Titers 

were expressed as log2 of the highest dilution giving total agglutination. 
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Plaque test 
Hemolytic plaque tests were performed in an assay comparable to that as 

described by McCorkle and Leslie (1983). After decapitation of the chickens 

the spleen was quickly excised from the animal and stored in a complete cell 

medium (RPMI, Flow, Irvine, Scotland, U.K.) which was kept on ice. The spleen 

was squashed and gently pressed through a nylon mesh to separate cells. Cells 

were washed twice, centrifuged (7 min., 0°C, 400 g) and resuspended in fresh 

RPMI solution. The percentage of live and dead cells was estimated by a count 

with trypan-blue. A dilution of the cells was made so that the number of 

plaques to be counted in the final plaque slides was expected to be between 

50 and 200. For the assay of direct plaque-forming-cells (DPFC, 19S-antibody 

producing cells) , 100 pi cell suspension was mixed with 100 pi SRBC suspension 

(6 * 108 cells/ml) and 25 pi of a pooled serum from unrelated cocks as 

complement source. Previously this serum had been absorbed in the cold with 

SRBC to remove all possible agglutinating or lysing antibodies. For the assay 

of indirect plaque-forming-cells (IPFC, 7S-antibody producing cells) 100 pi 

cell suspension was mixed with 100 pi SRBC suspension (6 * 108 cells/ml), 20 

pi RaChlgG solution (Rabbit anti chicken-IgG, heavy and light chain specific, 

Cappel, USA) and 20 pi Guinea-pig complement solution (Flow, Germany). To 

obtain a monolayer of cells the suspension was brought in a double slide 

chamber by capillary action. The volume of each sample was such that three of 

these chambers were required. Chambers were sealed with paraffin and incubated 

at 41°C for at least 75 min (DPFC) or 90 min (IPFC) to allow formation of the 

plaques. A total count of all plaques present in the three chambers was made 

under a preparation microscope. Plaque numbers were elog transformed to obtain 

a distribution of values which resembled a normal distribution. 

Statistical analysis 
Analysis of variance of data was performed using the SAS-package (SAS, 

1985). Full factorial designs were evaluated, with two and three way 

interactions among factors. Non-significant (P >.05) interactions and factors 

(with the exception of line effect) were removed from the models. 
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Experiment 1 
A statistical model including line, sex, route and sampling day was 

applied: 

ïijkim - f + Li + sj + Rk + DL (+ interactions) + eiikla (1) 

in which: 

Xijkim ~ characteristic analyzed: antibody titer, DPFC, IPFC, 

relative spleen weight 

ß - overall mean 

Lt = line effect (i = H, L) 

Sj = sex effect (j - male, female) 

Rk = route of immunization effect (k = i.m., i.v.) 

D]_ - day of sampling (1 - 3, 4, 5, 6, 2S, 3S, 4S, 5S, 6J1' 

êijkim = random error 

Experiment 2 
A statistical model including line, sex, group, treatment and sampling day 

was applied: 

Xijki™ » ß + Li + sj + Gk + Di + T m (+ interactions) + eiJkljral (2) 

in which: 

Xijktan ~ characteristic analyzed: antibody titer, DPFC, IPFC, 

relative spleen and bursa weight 

Gk - group effect (k - I, II, III) 

DL = day of sampling effect ( 1 = 3 , 4, 5) 

Tm = treatment effect (m = heat stress, control treatment) 

and /i, Lj, Sj, e1jkljr]n as mentioned in model (1). 

Experiment 3 
Weight data in Experiment 3 were analyzed in a model including line, sex 

and age at dissection: 

Xijki = M + L± + Sj + Ak (+ interactions) + eijkl (3) 

in which: 

Yijk = characteristic analyzed: Body weight, relative spleen, 

bursa and thymus weight 

Ak = age at dissection (k = 1, 7, 15, 22, 29, 37, 50 days) 

andp, ~Lit Sj as mentioned in model (1) 

days with subscript are relative to secondary immunization. 
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Results 

Antibody production 

Total and 2ME-resistant antibody titers were consistently higher in H line 

than in L line (Tables 1, 2; Fig. la, 2a, 3a). This was found both after i.m. 

and i.v. immunization (Fig. la, 2a, 3a); and for primary and secondary 

response (Fig. la, 2a). The significant interactions (Tables 1, 2) 

demonstrated differences in magnitude between days, or route (Fig. la, 2a), 

rather than differences in ranking between the two lines. Titers mounted after 

i.v. immunization were higher than those after i.m. immunization (Fig. la, 2a; 

Table 1). Secondary responses were characterized by faster increase in titers, 

and in most cases higher peak values (Fig. la, 2a). With increasing age (or 

group number) antibody titers increased (Fig. 3a; Table 2). 

Table 1. Significance1' of effects in statistical analysis. 
Experiment 1. 

Factor2' : 

Antibody titer 
(total) 

*** + 

L S U LR i k LD i X SR j k S D n RD k l 

•k-k-k "kick 

Antibody titer 
(2ME resistant) 

ns *•* "k-k-k -k-k-k + 

DPFC 
(elog direct plaques) 

•kick ns -k-k-k -k-k-k •k-k-k -kick 

IPFC n s 
( e l o g i n d i r e c t p l a q u e s ) 

•k-k-k -k-k-k 

Spleen weight 
(relative %) 

^c-k-k -k-k-k * 

.: not in model; ns: non significant (P>.10); 
+: P<.10; *: P<.05; **: P<.01; ***: P<.001 

k 
= line effect (i - H, L) 
= sex effect (j = male, female) 
= route of immunization effect Ck = i.m., i.V.) 
- day of sampling (1 - 3, 4, 5, 6, 31, 32, 33, 34, 35) 
= interaction between line and sex; etc. 

Plaque-forming-cells 

The number of plaque-forming-cells found in the spleen was higher after 

i.v. immunization than after i.m. immunization (Figure lb,c, 2b,c; Table 1). 

Indirect plaques were very low in number after i.m. immunization, especially 
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Figure 1. Responses after intravenous immunization in Experiment 1. 

Least squares means + s.e.m. 
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Figure 2. Responses after intramuscular immunization in Experiment 1. 

Least squares means ± s.e.m. 
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during the primary response (Fig. 2c). In both experiments significant 

differences between H and L line were found in the number of direct plaque -

forming-cells (Table 1 , 2 ) . Higher numbers of plaques were found in the H line 

(Fig. lb, 2b). Significant interactions encountered (Table 1, 2) clearly 

indicated different kinetics between the immunization routes (Fig. lb, 2b) and 

age groups (Fig. 3b). In Experiment 1 and 2, no consistent difference in 

indirect plaques was found between lines, but in Experiment 2, a significant 

day-line and group-day interaction was found. In all three age groups, the 

number of indirect plaques on day 4 was highest in the H line (Fig. 3c). 

Table 2. Significance1' of effects in statistical analysis. 
Experiment 2. 

Factor2': 

Antibody titer 
(total) 

Li Sj Gk DL LS U LGilt LD^ SGjk SD^ GDkl 

Ant i body t i t e r 
(2ME r e s i s t a n t ) 

•kjc-k * * * 

DPFC *** 
( e l o g d i r e c t p l a q u e s ) 

*** *** 

IPFC ns 
(elog indirect plaques) 

*** *** 

Spleen weight 
(relative %) 

*** *** ns *** * 

Bursa weight 
(relative %) 

.: not in model; ns: non significant (P>.10); 
+: P<.10; *: P<.05; **: P<.01; ***: P<.001 

k 
- lino effect (i - H, L) 
= sex effect (j = male, female) 
- group effect (k - I, II, III) 
» day of sampling (1 - 3, 4, 5, 6, 31, 32, 33, 34, 35) 
= interaction between line and sex; etc. 

Treatment effect (heat stress, control) and interactions were never significant 

Spleen weight after immunization 

After immunization the spleen quickly increased in size (compare spleen 

size at the same age: Experiment 2, group II, day 3 (Fig. 3d): with 

immunization and Experiment 3, day 37 (Fig. 4d): without immunization). Later 

during the immune response relative spleen weight decreased again (Fig. Id, 

2d, 3d). Spleen weight after i.v. was higher than after i.m. immunization 
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Figure 3. Responses after intravenous immunization in Experiment 2. 

Least squares means ± s.e.m. 
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(Table 1; Fig. ld, 2d). H line had higher spleen weight than L line, 

(Tables 1, 2; Fig. Id, 2d). This difference was bigger after i.v. immunization 

(Table 1; Fig. 2d) and decreased with age (Table 2; Fig. 3d). 

Growth and lymphoid organ development 
In Experiment 3, the difference in body weight, and thus growth, between 

the two non-immunized selection lines was not significant (Table 3, Fig. 4a). 

Relative spleen weight was consistently higher in the H line (Table 3, 

Fig. 4b). Relative bursa weight was higher in the L line, but this varied 

with age (Table 3, Fig. 4c). Differences in relative thymus weight, when 

present, were not consistent over ages (Table 3, Fig. 4d) . No differences 

were found in relative liver weight between the H and L line, but the weight 

decreased with age (Table 3). Relative liver weight estimates (g / 100 g body 

weight) were (age): 3.00 (22 d ) , 3.11 (29 d ) , 2.79 (37 d ) , 2.32 (50 d ) ; s.e.m. 

= ±.08. 

Table 3. Significance1' of effects in statistical analysis. 
Experiment 3. 

Factor2': 

Body weight 

Spleen weight 
(relative %) 

L i S j Ak LS j j LA i k SA J k L SA i J k 

Bursa weight 
(relative %) 

* * ic * * * ** 

Thymus weight 
(relative %) 

ns * *** 

Liver weight 
(relative %) 

xis ** *** 

2) 

.: not in model; ns: non significant (P>.10); 
+: P<.10; *: P<.05; **: P<.01; ***: P<.001 

= line effect U = H, L) 
- sex effect (j = male, female) 
- age effect at dissection (k - 1, 7, 15, 22, 29, 37, 50 d) 
* interaction between line and sex; etc. 
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Figure 4. Growth and lymphoid organ development of chicks in Experiment 3. 

Least squares means ± s.e.m. 
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Discussion 

In the two experiments involving immunizations, H line chickens produced 

consistently more antibodies to SRBC than L line chickens. This is in 

accordance with our other observations in these lines (Van der Zijpp and 

Nieuwland, 1986; Donker et al. , submitted-a; Donker et al. , unpublished data). 

Biozzi et al. (1979) also reported higher antibody production to a number of 

antigens after selection on antibody production. They also reported 

differences in kinetics of antibody titers; detectable titers were found at 

an earlier time after immunization, and persistence was higher in the high 

selection line. 

As well as higher antibody titers, higher numbers of plaque-forming-cells 

were found. Intravenous immunization resulted in higher titers and a higher 

number of direct and indirect plaques in the spleen. The H line chickens had 

relative higher numbers of direct plaque-forming-cells in their spleen than 

did L line chickens. Indirect plaque-forming-cells showed the same tendency, 

but the difference between the two selection lines was not significant. 

In all three experiments, with or without immunization, relatively higher 

spleen weights were found in H line chickens. Combined with an increased 

number of plaque-forming-cells (expressed per 106 spleen cells), this means 

that total number of immunocompetent cells in the spleen is probably much 

higher in the H line than in the L line. Thus, at least a part of the 

difference in antibody production between H and L line can be subscribed to 

different numbers of cells with antibody producing capacity in the spleen. 

After immunization, the spleen quickly increased in size. This is probably 

due to the 'homing' and proliferation of a large number of lymphocytes to this 

organ during the initiation of the immune response. Later during the immune 

response, when most antigen is neutralized, these cells enter the peripheral 

blood again, which explains the decrease in spleen size found later after 

immunization. In Experiment 1, a relatively low level of plaques was found on 

day 5, in all experimental groups and in direct and indirect plaques. Day-

to-day variation in the assay could account for this, since plaque tests are 

sensitive to variation in, for example, temperature (Bhogal et al., 1984). 

However, a marked increase in spleen weight was noted on the same day 

(Fig. Id), which was not found either during the secondary response, or in 

Experiment 2. No obvious factor was known which could have caused these 

effects. 

Average body weight in Experiment 3 was higher in the H line than in the 

L line, but the difference was not significant. This contrasts with the 

differences usually found in these lines. Weight recording of the selection 

lines at 30 days of age revealed higher weights in L line over a number of 

92 



generations (Van der Zij pp and Nieuwland, unpublished results). The same 

relation was reported by Siegel et al. (1982) and Ubosi et al. (1985) in their 

selection lines for high and low antibody production after i.v. immunization. 

Higher spleen weights in H line were found both with and without 

immunization, independent of age. Ubosi et al. (1985) also reported higher 

spleen weight in their high selection line. These differences suggest a direct 

relation between antibody production capacity and spleen weight, already 

before antigenic stimulation. 

Ubosi et al. (1985) also reported an increased thymus weight in the high 

antibody line, which was not found in this study. The thymus is essential for 

the production of T lymphocytes. The antibody response to SRBC is dependent 

of T and B lymphocytes. A small difference in bursa weight, which was higher 

in the L line, was also reported by them. These observations are in line with 

those made by Landreth and Glick (1973) and Yamamoto and Glick (1982), who 

observed decreased production of antibodies to SRBC in a line selected for 

large bursa size compared to the small bursa line. Although the presence of 

the bursa is essential for development of normal reactivity to antigen, no 

positive relation with bursa size is apparent. The presence of active bursa 

follicles is of more importance than bursa size (Ubosi et al., 1985). As they 

postulated, the number of follicles might be negatively correlated to bursa 

size. 

In conclusion it can be stated that higher antibody production is 

associated with higher numbers of plaque-forming-cells in the spleen. The 

difference between lines differing in antibody production capacity can partly 

be explained by this difference, in combination with higher spleen weight 

during the ontogeny before antigenic challenge. Thymus and bursa development 

are not influenced, or only modestly' during the ontogeny. T and B cell 

function are not impaired, even when bursa weight is somewhat reduced, as 

found in the high selection line. 
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R.A. Donker and G. Beuving 

The effect of corticosterone infusion on plasma corticosterone concentration, 

antibody production, circulating leukocytes and growth in chicken lines 

selected for humoral immune responsiveness. 

Abstract 

1. The effect of corticosterone on antibody production in chicken lines 

selected for humoral immuneresponse was studied. 

2. Twelve cockerels (33 days old) from lines selected for high and for low 

antibody response after immunization with sheep red blood cells (SRBC) 

were implanted with mini-infusion pumps delivering corticosterone or 

vehicle continuously for 14 d. 

3. Three days after implantation, the chickens were immunized intramuscularly 

with 0.25 ml packed SRBC. Blood samples were taken before implantation, 

before immunization and 3, 5, 7 and 11 days after immunization. 

4. Corticosterone infusion induced higher plasma corticosterone 

concentrations (P<.001) and heterophil/lymphocyte ratios (P<.05) than 

infusion of vehicle only. Growth was considerably depressed (P<.01) and 

relative weights of the thymus, bursa of Fabricius and spleen were less 

(P<.001) in the corticosterone infused chickens. 

5. An effect of corticosterone on antibody production could not be 

demonstrated, and differences between selection lines were unaffected. 

Introduction 

The avian hypothalamo-pituitary-adrenal axis can be activated by either 

external or internal stimuli and result in increased concentrations of 

corticosterone in the plasma, as well as in the cytoplasm and nucleus of 

thymocytes and the lymphoid cells of the bursa of Fabricius, thymus and spleen 

(Siegel and Gould, 1982; Siegel, 1987). Immunosuppression has been reported 

after stress or ACTH injections (Thaxton et ai., 1968; Subba Rao and Glick, 

1970; Thaxton and Siegel, 1970, 1973; Siegel, 1987) and shown to be largely 

mediated by corticosterone. Injections with cortisone acetate or 

corticosterone before immunization with sheep red blood cells (SRBC) reduced 

antibody titres (Sato and Glick, 1970). Corticosterone fed to chickens 

depressed antibody titres to SRBC in inverse relation to the dose (Gross et 

al., 1980). Also implantation of pellets containing corticosterone caused a 

dose-related decrease in antibody titres to SRBC and Brucella abortus (Davison 

and Misson, 1987). Continuous infusion of corticosterone has been reported to 
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increase the incidence of Marek's disease after challenge (Powell and Davison, 

1986). 

In this study the effects of corticosterone on antibody titres to SRBC 

were investigated in chicken lines, selected for high and low antibody titres 

to SRBC. Application of breeding for immune responsiveness could be of 

restricted value if genotype-environment interactions are manifest. These 

lines were used to determine if differences in susceptibility to stress are 

related to selection for antibody production. 

Corticosterone was infused continuously for 14 d by osmotic mini-infusion 

pumps and the effects on plasma corticosterone and the humoral immune response 

to SRBC were measured. The effect of corticosterone infusion on the 

heterophil/lymphocyte ratio was measured and used as an index of stress 

(Selye, 1976; Gross and Siegel, 1983; Siegel, 1987). 

Material & methods 

Chickens and pre-experimental conditions 
A total of twelve cockerels from the sixth generation of two lines (medium 

heavy layers) selected for high or low antibody titres after immunization with 

SRBC (Van der Zijpp and Nieuwland, 1986) were used. 

They were kept in wire cages and provided with commercial laying starter 

feed and water ad libitum. Each cockerel was vaccinated against Marek's 

disease on day of hatching; against infectious bronchitis at 2 d of age, 

Gumboro's disease at 12 d of age and Newcastle disease (LaSota strain) at 19 d 

of age. From 26 d of age, all cockerels were handled daily to familiarise them 

with the blood sampling procedure (Gross and Siegel, 1982; Gross, 1986). 

Individual weights were recorded at 30 d of age. 

Experimental procedure 
At 33 d of age the cockerels were bled and anaesthetized with ether. Two 

infusion pumps (Alzet osmotic minipumps, model 2002; Alza Corp., Palo Alto, 

CA, USA) were implanted subcutaneously in the neck contralateral to the crop 

in each chicken. Each implanted minipump delivered a continuous flow of 0.60 

± .03 pl/h polyethyleneglycol for 14 days (PEG, polyethyleneglycol-400, Merck, 

Darmstadt, Federal Republic of Germany). The experimental group received PEG 

containing corticosterone (Sigma, St Louis, MO, USA) at an rate of 8.48 /jg 

corticosterone/h. Mini-infusion pumps filled with PEG only were implanted in 

a control group of chickens. The number of chickens in each (line, treatment) 

was: (high line, corticosterone): 3, (high line, PEG): 2, (low line, 

corticosterone): 4, (low line, PEG): 3. 
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Three days after implantation, the cockerels were bled again and immunized 

intramuscularly with 0.25 ml packed SRBC in 1 ml phosphate buffered saline 

(PBS). Hereafter day of immunization is referred to as day 0. The cockerels 

were bled again after 3, 5, 7 and 11 d. 

The chickens were weighed, killed by decapitation on day 11 and the 

thymus, spleen, liver and bursa of Fabricius were excised and weighed. 

Blood sampling 
Blood samples (1.5 - 2.0 ml) were obtained from the ulnar vein using 

heparinized syringes. Samples were taken between 9.00 and 10.00 h, immediately 

after the chicken had been removed from its cage. The entire procedure did not 

take longer than 45-60 seconds since prolonged handling can cause increased 

circulating corticosterone (Beuving and Vonder, 1978). 

Assays 

Heterophil/lymphocyte count 
A smear was prepared from each blood sample and stained with May-Grünwald-

Giemsa stain. The heterophil/lymphocyte ratio was estimated by counting a 

total of 200 leukocytes in each smear. Blood samples were centrifuged and 

plasma stored at -20°C until assay. 

Corticosterone 
Plasma concentrations of corticosterone were determined by a 

radioimmunoassay (Beuving and Vonder, 1981). Specificity of the antiserum 

(estimated on plasma of laying hens) for corticosterone was high: cross-

reactivity with cortisone, Cortisol, 21-deoxycortisol, 11-deoxycortisol, 

testosterone and 18-hydroxycorticosterone was less than 5%. Cross-reactivity 

with 11-deoxycorticosterone and progesterone was 28.6 and 22.5%, respectively 

(Beuving and Vonder, 1981). Coefficient of variation (within assay) was 7.4. 

Haemagglutinin assay 
Total haemagglutinin- and 2-mercapto-ethanol resistant (2ME-) antibody 

titres against SRBC were determined using a microtitre assay (Van der Zijpp 

and Leenstra, 1980). Titres were expressed as log2 of the highest dilution 

giving total agglutination. 
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Statistical analysis 

The statistical significance of the results was determined in an analysis 

of variance with the SAS program (SAS, 1985). Initially the following model 

was used: 

ï i j k = /* + L i + T j + L T i j + e i jk 

in which: 

YiJk - the value for the evaluated characteristic of animal k from 

line i and treatment j 

/i = the overall mean 

tt = the effect of line (i = H, L) 

Tj = the effect of treatment (j - C S , CT) 

LT1, «= the interaction between line and treatment 

eiJk = random error 

Analyses were performed within day of sampling. For most characteristics 

the interaction between line and treatment was not significant (P>.05) and 

therefore an analysis with the same model, but omitting the interaction, was 

performed. If the interaction was significant (Table 2 ) , cell means were 

compared in a multiple range test, using the Student-Newman-Keuls procedure. 

Results 

None of the implanted mini-infusion pumps caused visible infection or 

irritation and none of the minipumps was found to be encapsulated when 

examined post mortem. 

Mean plasma concentrations of corticosterone are presented in Figure 1. 

Before pump implantation (day -3) concentrations were similar in both groups 

(Table 1). After implantation plasma corticosterone concentration was 

significantly (P<.001) higher in corticosterone-infused chickens (Fig. 1; 

Table 1) . No differences in plasma corticosterone concentrations between the 

two lines were evident (Table 1). 

Mean total antibody titres and 2ME-resistant antibody titres to SRBC for 

each line and treatment are plotted in Figure 2. A clear difference for both 

total and 2ME-resistant titre between high and low line was evident (Fig. 2; 

Table 1). Corticosterone infusion was found to have a suppressive effect on 

total antibody production only in the high line on day 3 (P<.05) post 

immunization (Fig. 2; Table 1). Titres were significantly higher (P<.05) in 
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Figure 1. Plasma corticosterone levels in chickens implanted with mini-

infusion pumps (day -3) delivering corticosterone or 

polyetheleneglycol (PEG) and immunized with 0.25 ml SRBC in 1 ml 

PBS (day 0 ) . 

Least squares means ± standard error from a statistical model 

including line and treatment. 

0\ 

• PEG infusion 

0 Corticosterone infusion 

7 11 

Days post Immunization 

corticosterone infused chickens than in controls on day 11 (Fig. 2; Table 1), 

indicating a more rapid decline in antibody titre in controls. 

The 2ME-resistant titres (Fig. 2) showed similar trends but at a lower 

level. Line differences were evident after day 5; but there was no significant 

difference between treatments. 

In both corticosterone- and PEG infused groups heterophil/lymphocyte 

ratios increased from day 3 (Fig. 3), but the rise in corticosterone infused 

birds was significantly greater (P<.05). The significant line-treatment 

interaction and line effect on day 3 (Table 1) was caused by an extremely 

high value for this ratio in one high line chicken in the corticosterone-

treated group. 

Weight gain was reduced by 23% in the corticosterone-infused group 

(Table 2). In the corticosterone-infused chickens the relative weight of the 

thymus was reduced by approximately 71% (P<.001), relative bursa weight and 

relative spleen weight by approximately 57 and 35% respectively (P<.001). Only 
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the relative weight of the liver was increased by approximately 37% (P<.05). 

The spleen was significantly (P<.001) heavier in the high than in the low line 

(Table 2). 

Figure 2. Mean total antibody titres and 2ME-resistant antibody titres to 

SRBC in chickens implanted with mini-infusion pumps (day -3) 

delivering corticosterone or polyetheleneglycol (PEG) and 

immunized with 0.25 ml SRBC in 1 ml PBS (day 0 ) . n=3 (high line, 

corticosterone; low line, PEG), n-4 (low line, corticosterone), 

n-2 (high line, PEG). 
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Table 1. Significance1' of line and treatment effects in the statistical 
analysis for blood parameters. 

Blood parameter: Number of days post immunization 
0 3 5 

Corticosterone 
Line 
Treatment 

Total titre 
Line 
Treatment 

2ME titre 
Line 
Treatment 

-3 

n. s. 
n.s. 

-
-

-
-

n. s. 
*** 

Heterophil/lymphocyte ratio 
Line n.s. n.s. 
Treatment n.s. n.s. 

***2' 
n. s. 

-

* * 2 > 
*** 

* * * 3 > 
n. s. 

** 
n.s. 

n. s. 
* 

n. s 
*** 

** 
n. s 

** 
n. s 

n. s 
* 

11 

n. s. 
* 

** 
* 

* 

n. s. 

n.s. 

l) 

2) 

3) 

n.s.: P>.10; + P<.10; *: P<.05; ** P:<.01; *** : P<.001; 

. not measured; -: not tested because of skew distribution of values. 

In Preceding analysis: line x treatment interaction: P<.05 

In Preceding analysis: line x treatment interaction: P<.10 

Table 2. Relative growth1' and relative organ weight2'. Least squares means 
± standard errors and significance levels3 from the statistical 
analysis. 

Treatment 
control corticosterone 

Relative 

growth1' 121.9 ± 6.2 93.99 ± 5.2 ** 

Thymus (g/gBW)0.77 + 0.06 0.23 ± 0.05 *** 

Bursa (g/gBW) 0.56 + 0.03 0.24 ± 0.03 *** 

Spleen (g/gBW) 0.18 ±0.01 0.12 ± 0.01 *** 

Liver (g/gBW) 2.80+0.23 3.84 ± 0.20 * 

Line 
High Low 

108.6+6.2 107.2 ± 5.2 

0.51 ± 0.05 0.49 ± 0.05 

0.44 ± 0.03 0.35 ± 0.03 

0.18 ± 0.01 0.12 ± 0.01 

3.11 ± 0.23 3.52 ± 0.20 

2) 

3) 

= (Live weight at killing - live weight at 30 days) x 100 
Live weight at 30 days 

= Organ weight / Body weight x 100 

n.s.: P>.10; + P<.10; *: P<.05; ** P:<.01; ***: P<.001; 
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Figure 3. Heterophil/lymphocyte ratio in chickens implanted with mini

infusion pumps (day -3) delivering corticosterone or 

polyetheleneglycol (PEG) and immunized with 0.25 ml SRBC in 1 ml 

PBS (day 0) . 

Least squares means ± standard error from a statistical model 

including line and treatment. 
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Discussion 

Throughout the experiment the plasma corticosterone concentrations in 

corticosterone-infused chickens were higher than in the control group. In a 

similar experiment with corticosterone infused adult hens, plasma 

corticosterone concentrations were highest 1-2 d after implantation and then 

plateaued at a higher level than in the controls infused with PEG (Beuving, 

unpublished results). Davison et al. (1985) observed a similar pattern with 

continuous infusion of ACTH in young chickens. The corticosterone 

concentrations in the corticosterone infused group were close to the upper 

limits of the normal physiological range (Beuving, 1983; Webb and Mashaly, 

1985; Beuving and Vonder, 1986). 
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The severe effect of infused corticosterone on body weight and on the 

relative weight of the thymus, bursa and spleen is consistent with the view 

that stressors and corticosterone, have catabolic effects on lymphoid organs 

(Selye, 1976). Sato and Glick (1970) reported decreased growth rate and bursa, 

spleen and thymus development in chickens given daily injections of cortisone 

acetate or corticosterone. Siegel and van Kampen (1984) made similar 

observations in broilers after five daily injections of corticosterone. In 

their experiment metabolic measurements indicated higher protein catabolism 

and increased fat deposition. Similar reductions in growth and spleen and 

bursa development were found in young chickens implanted with either pellets 

containing corticosterone, or mini-infusion pumps delivering ACTH (Davison et 

al., 1985). 

Heterophil/lymphocyte ratios were increased in both groups of chickens. 

The increase in corticosterone-infused animals was considerably higher (P<.05) 

and was consistent with the lymphocytosis and eosinopenia (Selye, 1976) and 

heterophilia (Gross and Siegel, 1983) induced by various stressors. 

Lymphocytosis and heterophilia, induced by feeding corticosterone was related 

to the dose fed (Gross et al., 1980). In this experiment, the rise in 

heterophil/lymphocyte ratio in the control group of chickens may have been 

caused by the implantation of the minipumps and the PEG infusion. A rise of 

the same magnitude was recorded in adult hens implanted with minipumps 

delivering PEG (Jones et al., 1988). Also immunization with SRBC can increase 

the heterophil/lymphocyte ratio (Donker et al., submitted-a). However, they 

found a rise in the ratio only on day 2 after immunization. Similar findings 

have been reported for immunizations with Brucella abortus antigen (Trout et 

al., 1988). 

Although corticosterone infusion was found to have marked effects on 

growth, organ weight and heterophil/lymphocyte ratio there was no evidence of 

a consistent depression of the antibody production. Only a small difference 

in the high line was evident on day 3, but this disappeared later. These 

findings are in agreement with observations in subsequent experiments using 

heat-stress (Donker et al., submitted-a). Corticosterone and cortisone acetate 

were found to have suppressive effects on antibody titres to SRBC when 

injected in chickens daily from 13-28 days of age (Sato and Glick, 1970). When 

injected from 2-5 days of age, however, only cortisone acetate was 

demonstrated to be immunosuppressive, indicating that exogenous corticosterone 

might be a relatively weak immunosuppressant or is bound to serum globulin, 

inactivating cellular action. Davison and Misson (1987) however, reported 

dose-dependent depressions of SRBC and Brucella abortus titres using 

subcutaneous implants releasing corticosterone. 

The dose of antigen (SRBC) administered in this experiment might be 

considered high compared with other reports. Siegel et al. (1983) and Siegel 
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and Latimer (1985) could demonstrate immunosuppressive effects of heat or ACTH 

on the antibody response to Salmonella pullorum only at low doses of antigen. 

Nevertheless, in other experiments (Donker et al., submitted-a; Donker et al., 

submitted-b), we have been able to demonstrate suppressive effects of heat 

stress on the antibody response with the same dose of antigen injected by the 

same route. These effects, however, were much smaller than the differences 

achieved by selection. Thus, in spite of the effects of heat stress or 

corticosterone infusion, these lines have a constant response to SRBC, with 

differences between the lines remaining unaffected. The absence of genotype-

environment interaction on antibody production in these lines may be of 

importance in selection programmes which include breeding for immune 

responsiveness. 
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Abstract 

Energy metabolism was studied in two lines, divergently selected for 

humoral immune response after immunization with sheep erythrocytes. 

In two experiments the relation between heat production and ambient 

temperature was studied without immunization. The heat production (kJ kg-1) 

was higher in chickens of the low response line in one experiment at 

temperatures below 30°C. Levels were similar for both lines in the other 

experiment. Relative ad libitum feed intake, relative growth rate and cloacal 

temperature were not different between the two lines. No thermoneutral zone 

was found in either line. 

In two other experiments, metabolism before and during an immune response 

was studied. Energy utilization was somewhat more efficient in the high line; 

fat deposition was higher at a comparable metabolized energy intake. During 

the immune response, fat deposition was decreased in the low response line, 

but not in the high line. 

Levels of metabolism-associated hormones (growth hormone, somatomedine, 

thyroxine, triiodothyronine (T3)) were not different between the high and low 

line, except for T3 concentration. T3 levels were higher in the high line, but 

no direct relation with antibody titers was evident. 

Despite profound differences in antibody titers only small differences in 

metabolic efficiency were found between the two lines. It is not very likely 

that these contribute to the immunological difference. 

Keywords: metabolism, immune response, SRBC, selection lines 

Running title: Metabolism and immune response 

Introduction 

Selection for immune responsiveness possibly is a fruitful way to increase 

disease resistance in poultry (van der Zijpp et al., 1988). However, when 

selecting for immune responsiveness, other characteristics may show associated 

alterations (Siegel et al., 1982a; Ubosi et al., 1985). For example, in the 

lines divergently selected for immune responsiveness in our laboratory (van 

der Zijpp and Nieuwland, 1986) bodyweight is obviously influenced by the 

selection (van der Zijpp and Nieuwland, unpublished data) . Average body weight 

is higher in the low response line. 

Important endocrine regulators of growth and body composition are growth 

hormone, somatomedines and thyroid hormones (Scanes, 1987). These hormones 

have been reported to act as immuno-modulating agents. Growth hormone has been 
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described as immuno stimulant (Berczi, 1986) and hypo- and hyper-thyroidism 

have been found to influence immune responsiveness (Yam et al., 1981; Mashaly 

et al., 1983; Berczi, 1986; Martin et al., 1988). 

It has also been reported that the mounting of an immune response 

influences the levels of these hormones (Besedovski et al., 1975, 1986; Trout 

et al. , 1988) and metabolic rate and composition of gain (Henken and Brandsma, 

1982; Siegel et al., 1982b). Thus as a result of selection for immune 

responsiveness, hormone levels might have been altered directly (by genetic 

linkage) or indirectly (by associated physiological mechanisms) between the 

lines. In this study, differences in growth and immune response between the 

two selected lines will be associated with differences in the hormonal status 

and the metabolic rate of these lines before and during the immune response. 

In previous experiments (Henken et al., 1983a, 1983b) it was demonstrated 

that moderate changes in the environmental temperature can provoke changes in 

the height of the immune response. In a recent study (Donker et al., 

submitted-b) , it was found that these changes can be of the same magnitude as 

those obtained by selection. Thus, the perception of the environment by the 

bird can be an important factor in the immune response mounted. A possible 

difference in thermal requirements or adaptive capacity of the birds between 

the high (H) and low (L) selection line could therefore be a contributing 

factor to the differences found in immune responsiveness between the lines. 

Measurement of heat production at varying temperatures, and of the associated 

feed intake and growth rates, and estimates of the critical temperature can 

give an impression of these differences. 

Material and methods 

Four experiments were performed. In Experiments 1 and 2 measurements of 

feed intake, growth rate and heat production were made at a range of 

environmental temperatures in order to estimate the thermoneutral zone and 

lower critical temperature. In Experiments 3 and 4, measurements of the 

protein and energy balance and hormone profiles were made during an immune 

response under thermoneutral conditions. 

Birds and pre-experimental conditions 
Male birds were used, which were genetically identical to the 7th 

generation of a high and low line that were selected for antibody titer to 

sheep erythrocytes (SRBC) (Van der Zijpp and Nieuwland, 1986). For each 

experiment, a separate hatch was used. The sexes and lines were separated at 

hatch and the birds were placed in brooder cages with water and commercial 

starter feed provided ad libitum. 
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Environmental temperature was gradually decreased during the first two 

weeks from approximately 32°C to approximately 25°C; the light regime was 

changed from 23 h light/ 1 h dark to 12 h light/ 12 h dark during the first 

three weeks. 

Individual vaccinations against Marek's disease (at 1 d of age), 

infectious bronchitis (2 d of age), Gumboro's disease (12 d of age) and 

Newcastle disease (18 d of age) were given. 

To exclude large variation in weight and growth rate during the 

experiments, a selection for body weight at 22 days of age was made. Only 

chicks with a bodyweight within a range of the median weight of that line ± 

1 s.d. were used. The 16 selected birds per line were randomly distributed 

over four cages in the climate-respiration chamber. The high and low line were 

kept in separate chambers. 

Climate-respiration chambers 
Two medium size climate respiration chambers (1.8 m3 each) at the 

experimental unit of the Department of Animal Husbandry of the Agricultural 

University were used. The technical equipment and possible applications of 

these chambers are described elsewhere (Verstegen et al., 1987). Within each 

chamber a set of four brooder cages (± .5 x .4 x .4m each; 1 x b x h) was 

placed. Measurement of feed intake and excreta could be performed for each 

cage individually; 02-consumption and C02-production for indirect calorimetry 

(Verstegen et al., 1987) could be measured for each chamber. Activity 

measurements, by ultra-sound activity detectors were made simultaneously (Wenk 

and van Es, 1976). 

Experiment 1 and 2 (relation of environmental temperature and heat production) 
The birds were placed in the chambers at an age of 25 days. Chamber 

temperatures were regulated at 25°C, RH at 70%. At 28 days of age all four 

birds of one cage per chamber were individually removed from the chamber and 

an immediate measurement of cloacal temperature was made. All 32 birds were 

weighed individually and after the chambers were closed again chamber 

temperatures were modified simultaneously in both chambers (Fig. 1). A day of 

adaptation to the new temperature was allowed before measurements of C02, 02 

and activity-measurements (Verstegen et al., 1987) were started. These 

procedures were repeated every alternate day (Fig. 1). Ad libitum feed intake 

was measured daily. 

Changes in chamber temperatures were made according to a "/\" shape in 

Experiment 1, starting at a minimum temperature of 15°C and a maximum 

temperature of 35°C. In Experiment 2 a "\/" shape was programmed in the 

temperatures, starting at a maximum temperature of 35°C and with a minimum 

temperature of 10°C (Fig. 1). 
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Figure 1. Experimental layout of Experiments 1 and 2. 

P: Pre-experimental adaptation period 

: Two day period at same temperature 

I: Main day (calorimetry) 
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Experiments 3 and 4 (metabolism before and during the immune response) 
The birds were placed in the chambers at an age of 25 days. Chamber 

temperature was regulated at 25°C, with a RH of 70%. Light regime was 12 h 

light/ 12 h dark. At 31 days of age the birds were weighed and the first of 

three successive balance periods was started (Fig. 2). During a 5-day balance 

period ad libitum feed intake was measured daily and excreta were collected 

for each cage. Chambers were not opened throughout a balance period. At the 

second day of a balance period the first of two successive 48-hour respiration 

periods was started (Fig. 2). Continuous measurements of 02-consumption and 

C02-production were made during a respiration period. At the end of each 

balance period, the birds were weighed again, the amount of excreta was 

assessed and samples of excreta and refused feed were taken. 

Prior to the second balance period, a blood sample was taken from the 

ulnar vein {vena cutanea ulnaris) of all birds using a heparinized syringe. 

The birds were immunized intramuscularly with 1 ml 25% (v/v) packed SRBC in 

saline. Another blood sample was taken immediately after the end of the second 

and third balance period. 

The chickens were killed by cervical dislocation after the third balance 

period and the liver, thymus, spleen and bursa were excised and weighed. 

Figure 2. Experimental layout of Experiments 3 and 4. 
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Assays 
All food and excreta samples in Experiments 3 and 4 were analyzed for 

energy and protein contents. In addition, energy and nitrogen loss through 

dust and airflow (NH3) from the chambers were estimated. 

Plasma samples were analyzed for total and 2ME-resistant antibody titer 

to SRBC (Van der Zijpp and Leenstra, 1982) and concentrations of 

triiodothyronine (T3) (commercial kit: Dac-Cel T3 ; Welcome Reagents Ltd, 

Beckenham, Kent U.K.), thyroxine (TJ (commercial kit: T4 RIA(PEG); Abbott 

Diagnostic Division, Antwerp, Belgium), growth hormone (GH) (Harvey and 

Scanes, 1977) and somatomedine-C (SmC) (Huybrechts et al., 1985) were 

measured. 

Statistical analysis 
Heat production (H) was calculated from oxygen consumption and carbon 

dioxide production, using the formula of Romijn and Lokhorst (1961): 

H (kJ) = 16.20 x 02 (1) + 5.00 x C02 (1). 

In experiments in which metabolic traits (M) are compared, the influence 

of bodyweight (BW) is usually excluded by expressing M - a BWP (Brody, 1945) 

in which p is the mass exponent. For inter-species comparisons, p - .73-.75 

is generally used. For intra-species comparisons, varying estimates are found. 

In chickens, p values varying between .3 (mature birds) and 2.1 (young 

chickens) were reported (van Kampen, 1987). In this study, p=l is used since 

Kuenzel and Kuenzel (1977) and Henken et ai. (1982a) demonstrated this to be 

the most appropriate estimate for young chickens. For this reason, all 

characteristics are expressed on the basis of kg"1. However, calculations have 

also been done using p=.75, giving results which were essentially the same as 

presented here. 

Data were statistically evaluated in analyses of variance using the SAS 

procedures (SAS, 1985). 

In Experiment 1 and 2, individual growth, relative growth (growth in g / 

d / 100 g bodyweight), cloacal temperature and ME-intake per cage were 

analyzed in an analysis of variance with day and line as factors. Heat 

production was analyzed by regression on chamber temperature, including line 

as factor. Comparisons were made between data from the total 24 hours and data 

from the 12 hour light and 12 hour dark periods taken separately. Separate 

analyses were done for the phases with rising or decreasing temperature 

(Fig. 1). For estimates of critical temperature (Tc) separate regression lines 

were calculated using data from 20°C and lower and 30° and higher. When these 

lines crossed above 25° , data from 25° were added to those from 20°C and 

lower, and vice versa (Henken et al., 1982b). Differences between slopes were 

tested in a regression analysis. Activity-free heat production was calculated 
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from regression of heat production on activity data. The same analyses that 

were performed on total heat production were also done on activity free heat 

production. 

Individual data from Experiments 3 and 4 were analyzed, using a model 

containing line, day of sampling and animal number (nested within line) as 

factors. Line differences were tested against animal within line; differences 

between days and day x line interaction were tested against the residual 

error. Characteristics analyzed were growth, relative growth, antibody titers 

(total and 2ME-resistant) , GH, T3, T4 and SmC. In a combined analysis of data 

from Experiment 3 and 4, differences between experiments were tested against 

animals within line, with interactions being tested against residual error. 

Balance characteristics analyzed from Experiments 3 and 4 were ME-intake 

(kJ x kg-1 x day-1) , energy balance EB (kJ x kg-1 x day"1) , protein retention 

PR (g x kg"1 x day"1) and fat deposition FD (g x kg"1 x day"1) . ME was 

calculated from energy in feed minus energy lost in excreta, dust and outgoing 

air (NH3); PR was calculated from N in feed minus N lost in excreta, dust and 

outgoing air; EB was calculated as ME minus H, in which H (heat production) 

was calculated by dividing total heat loss per chamber among cages relative 

to ME intake. FD was calculated from the difference in energy retention 

between EB and PR. Balance data were analyzed in the same manner as individual 

data, testing line differences against cage within line and balance period and 

interactions against residual error. 

Relative organ weights were analyzed in an one-way analysis with line as 

a factor. A two-way analysis of variance, including experiment as a factor was 

used on combined data of Experiment 3 and 4. 

Results 

Experiment 1 and 2 

Feed intake 

Mean relative feed intake was higher in the L line than in the H line in 

Experiment 1 (P<.05), but not in Experiment 2 (Fig. 3). Relative feed intake 

was reduced at temperatures higher than 25°C in both experiments (P<.001). 

However, feed intake remained at a lower level during the phase of decreasing 

temperature in Experiment 1. 
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Body weight and growth 
Mean body weight and relative growth rate (g / d / 100 g body weight) per 

line during Experiment 1 and 2 are also shown in Figure 3. Average body weight 

was higher in L line than in H line in Experiment 2 (P<.05), but not in 

Experiment 1. Relative growth rates were not significantly different between 

lines. Growth rate was significantly depressed at 35°C in Experiment 1 (P<.05) 

and 2 (P<.01). 

Chacal temperature 
Cloacal temperature (Fig. 3) was not different between lines. Higher 

cloacal temperatures (P<.001) were found at 35°C. 

Heat production and critical temperature (TQ) 
Average heat production based on 24 h data per line are presented in 

Figure 4. In Experiment 1 heat production during the phase of increasing 

temperature was higher than during the phase of decreasing temperature. In 

Experiment 2, the heat production during the phase of decreasing temperature 

was, at temperatures above 20°C, higher than during the phase of increasing 

temperature. The heat production in L line was higher than that of H line at 

temperatures below 25°C in Experiment 1, but not in Experiment 2 (Figure 4; 

Table 1) . 

Average heat production, taken for the 12 h light period and the 12 h dark 

period separately is not shown, but the same differences between phases of 

increasing and decreasing temperatures, and lines were found as in 24 h data. 

However, heat production during the dark period was significantly lower 

(P<.001) than during the light period. 

Regression analysis of 24 h heat production data is summarized in Table 1. 

The table shows significance of the factors included in the regression 

analysis (temperature phase, line and interaction), the significance of 

different slopes between lines within temperature phase and between 

temperature phases within lines, and the estimate of the lower critical 

temperature per line. In several regression analyses, differences between the 

two distinguished temperature sections were found. However, the differences 

between the estimated regression coefficients in each section usually very 

small, giving unrealistic estimates of the critical temperature. When the 

intended procedure was followed, no estimate for the lower critical 

temperature was found between 20° and 30°C. All regression coefficients were 

significantly different from 0 (P<.001), so no temperature zone was found in 

which heat production was independent from environmental temperature. Activity 

free heat production data are not presented, but gave similar results at a 

lower level. 
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Figure 3. Average relative feed intake (A, B ) , average body weight (C, D ) , 

average relative growth rate (E, F) average body temperature (G, 

H) for H and L line in Experiment 1 and 2. 

(N 

Q. 
X 

l i l 
V 

J * 

ra 
c 
•a 
oi 
V 

V 

*3 
JO 

cà 

* H 

6. 
X 

m 
V 

_c 
•a 
01 
V 

1 * -

V 

> * J 

a. 
< 

m-—<<=:::::::::^ 

< 

ii 

< / 
.N» 
/ / 

• o 
V c» 

/ \ 
o • 
\ 1 

\\ 
< 

• 0 

\ 1 

\/ 
• 

• o 
1 1 1 

O LH O 
in' CM O 

c* 
\ 

(U 
C 

O 

O 

c 

I 
• 

• 

1 

lO 
N 

(P / 6Q0!- / B) aneiui p ss j SAQE 

0 • 

\ 1 
o • 

\ 1 o • 
\ l 

•o 

\ 
cm / i 

Y 
o"» 

/ / 

* ^^° 

<<r 
/ / 

o • 

\ \ / J / 1 o • 
\ / 
Y 

1 r 

O if) O 
in oj d 

CP / 6001- / 6) SMBlu. os 

0) 
c 

_1 
O 

o 
0) 

I 
• 

• 

, 
i n 

a^ SAi^e 

1 ^ 
1 n 

J 
1 o 

1 « . 
1 o 
r 

1 ID 

1 ID 

, 8 

l a 
1 o 
i m 

1 £ 

o 
uri 

5 ' d 

j 
1 

1 m 
1 -

1 O 
1 w 

1 w 

1 o 
1 n 

J 
1 ^ 
1 ^ 

1 o 
1 n 

1 LO 

1 W 
1 

1 o 
1 ^ 

1 in 

1 
O 
ui 

3 H 

0 
b 

a 
£ 
a» 
i-

0) 

ro a> 

ai 

à. 
X 

Lil 
*-t 
.S 
.5? '3 
S 

> " a 

* 
1 ! • 
\ a» 

\ 
m 

\ 

\ 

w 
\\ 

\ 
\ 

\ 
a» 

I ' , 1 . 1 , 1 , F , 

if) 
n 

ro 

CM 

O 

CM 

iT) 

O 

tfi 

O 
C\J 

IT) 
CM 

O 

n 

Û o o o o o o o o 
n-l o o o o o o o 

Q 

1 - 1 

D. 
X 

LU 
* J 

bo 
"3 
3 
> i 

1 
CD 

u 

(6) It-IDISAA ApOQ 

m 

\ 
\ • 
\ \ • \ 

\ \ • 
\ 
\ 
\ 
\ 

\ 

\ 
\ 
\ 
\ 
• 

i . r , i , i , i , i 

0 o o o o o o 3 o o o o o o 
v to m ^ m CM 

(5) iqBOM Apog 

m 

c*j 

if) 
CM 

o 
m 

m 
n 

o 
m 

in 
CM 

o 
CM 

m 

0 

• = 

Qj 

£ S 

(ö 
Qj 
Q. 

Ü3 

116 



(S 

à X 
UJ 
V 

a 

X 

g 
o 
im 
M 

> 

a
ti 

a œ 

ce 
LL 

-~\ 
Q. 
X 

UJ 
u 

n 

X 

5 
o 

at 
u 

_» ra 

*\1̂  
i 

o » 

ƒ / 
• o 

/ l /1 
• 0 

\ \ \ \ 
» o 

_ , - ' ' 1 

o ' ' • 

\ -, 

\ \ \ \ *\°\ 
'X 

'X -7 

0 Ôr,-.,_ 5; S1EJ 

O • 

\ / 
é 

/i 
/! 

• 0 
Y 

A 
0 • 

\ \ \ \ c» 

o • 

x / \ 
\/b 

X 
o • V 

éz 

« CD <D -

ce 
ui 

^^•^0 -

-
-

-

-

o 

CM 

O 
CM 

in 

o 

-

-

m 

o 
CM 

CM 

o 
n 

1 s 1 

o 

MJMCJC cAiiBrSy 

~ 

-

m 

o 
CM 

in 
CM 

O 

1 r' 

o 
n 

CM 

C\i 

_i o 

CM O 

UJWOJÔ oAUGiây 

Q) 
3 

û 
E 
tu 

t -

Qi 
3 

Q 
ç 
5 
I-

(N 

à X 
LU 

0) 
i-
3 

(0 

41 
a 

£ 
4) 

"3 

Ü ? 
i 

T H 

a . 
X 

UJ 
u 

3 

a 

a 

E 

_ m 
u 
IS 

d 

°x r 

* 
o» 

\\ 
\1 
• 
1 1 
• 
\ 
\ 
• ii 
\ 11 

U 

V A 
• 0 1/ ƒ 

c» 
II 

\ \ / 
/ /i 

o • 

O 

m 
CM 

O 

i n 

o 

m 

o 
CM 

CM 

O 
n 

i n 

^ n CM i - o 
r̂ i - T <j <Î 

(0) s j n i e j s a u e i [ B O Ê O Q 

i 
0» 

il 
1 
• 

/ 
ƒ o » 

\\ \ 
\ 
• 
1 
\ 
;| 0« 

M 

11 
o » w 

0» 

_ , 
T n CM *- c 
^ T r̂ ^ ^ 

O ) a jn is jaaa ie i l e o e o o 

10 

o 
CM 

m 
CM 

o 
co 

un 
en 

o 
n 

m 
CM 

Û 
CM 

m 

3 
? 

ï 

Qj 
a 
E 
a» 

in 

Q 
Ê 
Q; 
h-

117 



Figure 4. Average 24 h heat production vs. chamber temperature for H and L 

line. The arrow indicates the course of the temperature. 
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Experiment 3 and 4. 

Antibody production 
Before immunization no antibodies were detected against SRBC (Fig. 5) The 

antibody production after immunization, total antibody titer and 2ME-resistant 

titer, was higher in H line than in L line (P<.001; Fig. 5). 

Relative organ weights 
The relative weights of all measured organs were different between 

Experiment 3 and 4 (Table 2). No significant interaction between line and 

experiment was found. The weight of the spleen was significantly higher in H 

line birds than in those from the L line. In the combined analysis of 

Experiment 3 + 4 the weights of the liver, spleen and bursa were found to be 

significantly higher in H line. 

Table 2 Relative organ weights post mortem. Least squares means ± s.e.m. 
Experiment 3 and 4. 

Line 

Experiment 

Liver 
Spleen 
Bursa 
Thymus 

Experiment 

Liver 
Spleen 
Bursa 
Thymus 

Experiment 

Liver 
Spleen 
Bursa 
Thymus 

3 

4 

3 + 

High 

2.06 
0.22 
0.53 
0.55 

2.24 
0.25 
0.58 
0.60 

4 

2.15 
0.23 
0.55 
0.57 

± 
± 
+ 
+ 

± 
± 
± 
± 

± 
+ 
+ 
+ 

.04 

.01 

.02 

.04 

.06 

.01 

.03 

.03 

.02 

.01 

.01 

.00 

Low 

2.02 
0.16 
0.49 
0.55 

2.08 
0.18 
0.53 
0.57 

2.05 
0.17 
0.51 
0.56 

± 
± 
± 
+ 

± 
± 
± 
± 

+ 
± 
± 
± 

.04 

.01 

.02 

.04 

.05 

.01 

.03 

.03 

.02 

.01 

.01 

.00 

Significance 
H - L EXP. 3 

ns 
** 
ns 
ns 

ns 
** 
ns 
ns 

*** *** 

** ** 

ns * 

1)Organ weight / body weight * 100% 

2)Levels of s ignificance: 
ns : P>.05; *: P<.05; **: P<.01; 
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Figure 5. Total and 2ME-resistant antibody titer. Least squares means ± 

s.e.m. for H and L line from the combined results of Experiment 

3 and 4. 

Significance for the difference between lines within a balance period 

in a T-test is indicated: *** P<.001; - not tested because of skewed 

distribution. 
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Hormone levels 
Growth hormone concentrations (Table 3) were significantly (P<.01) higher 

in H line only in Experiment 3 on day 36. In Experiment 4, significantly 

higher concentrations were found in L line birds on all days (P<.001). In the 

combined analysis of Experiment 3 and 4, no significant line effect and no 

significant differences between days were found. 

T3 concentrations (Table 3) were overall significantly higher in H line 

birds than in L line (P<.01). When tested within day, however, the difference 

was significant only on days 36 and 41 in Experiment 3. In Experiment 3, the 

level was higher on day 41 than on days 36 and 46 (P<.05), but in 

Experiment 4, the level was highest on day 46 (n.s.). This was reflected in 

a significant day x experiment interaction (P<.001) in the combined analysis 

and no significant differences between days. 
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T4 concentrations (Table 3) were significantly lower in H line on day 36 

in Experiment 3 and 4 (P<.01), but significantly higher in this line on day 

46 in Experiment 3 and day 41 in Experiment 4 (P<.01). In the combined 

analysis a day x experiment x line interaction was found (P<.001). 

SmC concentrations (Table 3) did not differ significantly between lines, 

days or experiments. 

Growth and balance data 
The L line birds were heavier (Fig. 6) throughout both experiments 

(P<.001). The difference in bodyweight remained constant as relative growth 

did not differ between the lines. Relative growth was also not significantly 

different between balance periods. 

Figure 6. Body weight. Least squares means + s.e.m. for H and L line from 

the combined results of Experiment 3 and 4. 

Significance for the difference between lines within day in a T-test 

is indicated: *** P<.001 
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Figure 7. (A) Metabolized energy (ME), heat production (H) and energy 

balance (EB). (B) protein retention (PR) and fat deposition (FD) . 

Least squares means ± s.e.m. for H and L line from the combined results 

of Experiment 3 and 4. Significance for the difference between lines 

within a balance period in a t-test is indicated: ns P>.05; * P<.05; 

** P<.01; *** P<.001 
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The overall ME-intake was not significantly different between the two 

lines (Fig. 7A) , although ME was never lower in the H than in L line. The 

difference between H and L line was significant (P<.05) within balance period 

2, which caused a significant line x balance period interaction. When ME was 

separated into EB and H-production, no significant differences between the 

lines in H-production were found in any period (Fig. 7A). H-production 

differed (P<.001) between balance periods; it was highest in balance period 

1 and lowest in period 3. 

The EB during Experiment 3 was significantly (P<.05) higher in the H line 

than in L line, but this difference was not significant in Experiment 4. In 

the combined analysis of Experiment 3 and 4, several significant interactions 

were found between line, balance period and experiment. The EB of the H line 

was significantly higher than that of the L line during balance periods 1 and 

2; the difference in period 2 was larger in Experiment 3 (127.7 kJ kg-1 d_1; 

P<.001) than in Experiment 4 (56.3 kJ kg"1 d"1; P<.05). For the L line, the EB 

was lowest in balance period 2, but no significant differences between balance 

periods were found in the H line. 

The protein retention (PR) was not significantly influenced by balance 

period or line. Only in the combined analysis of Experiment 3 and 4 a 

significant difference was found between H and L line in balance period 2 

(P<.05; Fig. 7B) . 

Fat deposition (FD) was not significantly different between lines or 

balance periods, although for this trait significant interactions between 

line, experiment and balance period were found. FD was higher in Experiment 4 

than in Experiment 3, but the difference was bigger for L line than for H 

line. The FD in the L line was decreased in balance period 2 and increased 

in balance period 3 (Fig. 7B). These differences were not found in H line. 

Discussion 

Experiments 1 and 2 
The birds were normothermic during a wide range of temperatures. They 

achieved this by adjusting feed intake. Feed intake was reduced, particularly 

at higher temperatures in order to minimize heat production and thus heat 

load. Reduced growth rate was a consequence. At temperatures of 30°C and 

lower, body temperature remained constant; 35°C caused hyperthermia equally 

in H and L line, as was previously found by Donker et al. (submitted-b) . 

Romijn and Lokhorst (1961) reported hyperthermia at temperatures above 32°C. 

In Experiment 1, a marked difference between the H and L line was found in 

heat production at temperatures of 30°C and lower. The lower feed intake in 

this experiment in H line was associated with this lower heat production. 
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However, also an increased efficiency was evident, as growth rate was not 

lower than in the L line. The lower level of heat production during the phase 

of decreasing temperature in Experiment 1 and the phase of increasing 

temperature in Experiment 2 was, at least partly, related to the lower feed 

intake during these periods. Comparable differences between the temperature -

increasing and -decreasing part were reported by Henken et al. (1982b), 

indicating an age dependent difference. Also Kuenzel and Kuenzel (1977) 

reported an age dependent decrease in basal metabolic rate in young broilers 

as well as Leghorns. 

The differences between regression coefficients in the regression analysis 

of heat production on temperature in the different sections was often very 

small, even when significant. No clear thermo-neutral zone could be 

demonstrated in either line, during light or dark periods. Therefore, no good 

estimates of Tc could be made. The absence of a critical temperature in the 

case of ad libitum feeding was also reported by Henken et al. (1982b). In 

contrast to the results they obtained, better estimates could not be found 

during the dark than during the light period. 

Because no differences between the lines existed in critical temperature 

or reaction in feed intake or body temperature, it is concluded that these 

lines can be compared for metabolic traits at any temperature. However, only 

temperatures between 10° and 30°C are in the thermoneutral zone for both 

lines. Feed intake is reduced at temperature above 25°C. Thus for comparisons 

under normal physiological conditions temperatures between 10° and 25°C are 

preferable. 

Experiments 3 and 4 
The differences found in antibody titers between the H and L line were as 

expected (Van der Zijpp et al., 1988). In addition, the higher body weight in 

the L line is usually found in these lines (van der Zijpp and Nieuwland, 

unpublished data; Donker et al., submitted-b). 

An increased relative weight of spleen in the H line has been reported 

before (Donker et al., submitted-a,-b) . However, the increased weight of 

thymus and bursa in the H line were not found before. Earlier studies (Ubosi 

et al., 1985; Donker et al., submitted-a,-b) showed either no difference 

between selection lines or a slightly negative relation between selection for 

high antibody production and the weights of these organs. Those results were 

obtained in non-immunized birds, or in older animals after a secondary 

immunization. The relatively short period after the primary immunization could 

have accounted for increased thymus and bursa weight. The increased liver 

weight in H line compared to the L line in these experiments could be an 

indication of a somewhat increased metabolic activity, as will be discussed 

below. 
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Growth hormone, thyroid hormones and somatomedines play an important role 

in regulation of growth, growth rate and composition of growth (Scanes, 1987; 

Decuypere and Buyse, 1988). However, no consistent differences in the plasma 

levels of the hormones measured between H and L lines or balance periods were 

detected in these experiments. Only the levels of T3 showed some consistent 

differences across time and across experiments; these concentrations were 

higher in the H line. No significant correlation with either total or 2ME-

resistant antibody titer was found, however. A similar increased T3 level was 

found in the high antibody selection line developed by Siegel and Gross (1978) 

(Martin et al., 1988), but, also in those lines, no clear relation between 

antibody titers and T3 levels was found. Several other studies dealt with 

interactions between thyroid status and immune responses (Yam et al., 1981; 

Scott et al., 1985; Martin et al., 1988). However, conflicting results were 

found in those experiments. In hypothyroid birds, T3 and T4 plasma levels 

decreased, but increased as well as decreased antibody titers were reported. 

Although GH and intact thyroid function are essential for the development of 

the immune system (Berczi, 1986; Scanes, 1987), antibody production is 

probably not significantly altered by thyroid hormones as long as these 

hormone levels are within the physiological range (Mashaly et al., 1983). 

Possibly, thyroid hormones affect immune responses only indirectly by 

modifying metabolic rate (Berzci, 1986). 

Hormone levels were not significantly influenced by the immunization in 

these experiments. Trout et al. (1988) reported significant changes in T3 and 

T4 levels after immunization with Brucella abortus antigen. However, 

significant changes were found only within 2 - 4 8 hours after immunization. 

Like the small and inconsistent differences in the growth-related hormone 

levels, the differences in growth, protein retention and fat deposition 

between H and L line and between balance periods also were small. The 

difference in body weight between the lines remained constant because growth 

rate was the same in the two lines. Thus, although increased levels of T3 are 

usually related to higher growth rate (Decuypere and Buyse, 1988), this was 

not the case here. However, before immunization, the retained energy was 

higher in the H line. This was apparent as a higher deposition of fat. The ME 

intake was not different during this period, indicating an increased 

efficiency in the H line. During the second balance period, when the immune 

response was mounted, the difference in energy retention and fat deposition 

between H and L line was bigger than before. Also a higher protein retention 

in the H line was found in this period. Comparable differences were found by 

Henken and Brandsma (1982) between SRBC and sham immunized chickens. However, 

they reported an increased EB, PR and FD compared with the first balance 
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period in SRBC immunized birds, whereas we found decreased levels in the L 

line compared to the first balance period. Thus, a decreased efficiency in 

energy utilization in the L line after immunization is evident. Fat deposition 

is stimulated by high plasma concentrations of corticosterone (Brown et al., 

1958; Nagra and Meijer, 1963; Siegel, 1980; Henken and Brandsma, 1982; Kafri 

et al., 1988). Plasma corticosterone concentration can be increased after an 

immunization (Siegel et al., 1985; Besedovski et al., 1986; Trout et al., 

1988). Thus a higher fat deposition in the H line could be associated with 

relatively higher corticosterone levels during this phase of the immune 

response. 

During the third balance period, after the peak day in antibody titer (day 

5) , the differences in energy balance and protein retention disappeared again. 

In the L line, an increased fat deposition, which apparently was some 

compensation for the lower deposition in the previous period, was found. 

During the experiments, ME intake and heat production decreased with age 

as did relative feed intake in Experiment 1 and 2. Comparable age related 

decreased intake was also reported by Kuenzel and Kuenzel (1977), Henken and 

Brandsma (1982) and Siegel et al. (1982b). 

The response in cloacal temperature, feed intake and heat production to 

changing environmental temperature was the same in H and L line. No 

thermoneutral zone was found, thus no accurate estimates of the lower critical 

temperature could be made in either line. Heat production at the same 

temperature was higher in L line in one experiment. Some differences between 

the H and L selection line before and during the mounting of an immune 

response were evident. During the immune response, fat deposition was reduced 

in the L line. A slightly increased efficiency in use of metabolized energy 

was found in the H line. However, it is not very likely that these differences 

account for the different levels of the immune response found between these 

lines. 
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Abstract 

Energy metabolism with associated physiological responses was studied, 

during the immune response to SRBC immunization, in two chicken lines. These 

lines were divergently selected for the immune response to SRBC. 

In each of two experiments, one group of birds (8 birds of either line) 

was kept in a climate respiration chamber at 25°C (70% RH) and served as a 

control (CC) . 

In the first experiment, an acute heat stress group (CH) was kept in a 

second, identical, climate respiration chamber. After an initial moderate 

climate (25°C and 70% RH) the birds were exposed to 35°C and 60% RH, 

immediately after an immunization with SRBC. 

In the second experiment a group was kept in the second climate 

respiration chamber, which was continuously kept at 35°C and 60% RH (HH). 

All groups consisted of 16 cockerels, 8 high and 8 low line birds, but the 

lines were kept in separate cages. 

The energy balance, heat production, growth rate and fat deposition were 

decreased during the high temperature periods to the same extent in both 

lines. Protein retention was decreased during the 5-day balance period 

immediately after the temperature change in the CH treatment. Cloacal 

temperature was increased in the high temperature groups. Plasma 

concentrations of corticosterone, T3 and T4 were not different between 

treatments or lines. Somatomedine-C concentration was higher and growth 

hormone lower in the high temperature groups. 

Antibody titers were consistently higher in the high selection line. In 

the low selection line, antibody titers were increased in the CH group 5 and 

10 days after immunization and in the HH group 10 days after immunization 

compared to the low line birds in the CC control. 

It was concluded that the differences in antibody production between the 

high and low selection line, and the influence of temperature on antibody 

production were not directly related to energy or protein metabolism. 

Keywords: hyperthermia, immune response, SRBC, selection lines, metabolism, 

Running title: High temperature, immune response and metabolism 
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Introduction 

The influence of environmental temperature on antibody production can be 

immuno suppressive (Thaxton, 1978; Henken et al., 1983a; Siegel, 1987; Donker 

et al., submitted-d) or immuno stimulating (Henken et al. , 1983a; Anderson and 

Kühn, 1988; Donker et al., submitted-d). Immunosuppressive action is usually 

found after acute thermal stress, in which the hypothalamo-pituitary-adrenal 

(HPA) axis is stimulated. Stimulation of this axis, which ends in 

corticosterone release, probably plays a key function in the suppression. 

However, results have not always been consistent (Heller et al. , 1979; Régnier 

et al., 1980; Donker et al., submitted-b). 

Stimulatory effects on antibody production have been reported after non-

acute thermal conditions, in which birds were acclimated to an environmental 

temperature just above the thermoneutral region (Henken et al., 1983a; Donker 

et al. , submitted-d) . It was postulated that in this process the hypothalamo-

pituitary-thyroid (HHT) axis might be involved, with associated changes in 

metabolic rate (Henken et al., 1983b; Donker et al., submitted-d). The HHT 

axis takes part in the acclimation to changed environmental temperatures, and 

helps maintain homeostasis through influences on thermoregulation and 

redistribution of protein and fat metabolism. The effects of thyroid hormones 

on immune responsiveness recently have been the topic of intensive study (Yam 

et al., 1981; Mashaly et al., 1983; Marsh et al., 1984a, 1984b; Gause and 

Marsh, 1985; Scott et al., 1985; Bachman and Mashaly, 1986; Martin et al., 

1988), but the regulatory role is still not understood, due to conflicting 

results in hypothyroid as well as hyperthyroid birds. 

By selection for antibody titers after immunization with sheep 

erythrocytes (SRBC) , lines were obtained which differed in antibody production 

capacity (Van der Zijpp and Nieuwland, 1986). It is still unknown which 

functional changes cause these differences in antibody production capacity. 

However, since differences in bodyweight and growth rate are evident between 

the lines, it was suggested that part of the difference might be associated 

with changes in endocrine factors and associated metabolic changes. 

The study of endocrine function and metabolic rate during the immune 

response in these lines is therefore relevant. Since metabolic rate is also 

greatly affected by environmental temperature (Henken et al., 1983b), it is 

possible that the thermal requirements of the birds are altered in the 

selected birds. A combined study of endocrine function and metabolic rate 

during the immune response at high temperatures might give an idea of the 

altered thermal requirements of the selected birds, changes in endocrine 

function and the implications thereof for immune responsiveness. 
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In this study the influence of high environmental temperature was 

investigated in acclimated and non-acclimated chickens from the high and low 

selection line for immune responsiveness (Van der Zijpp and Nieuwland, 1986). 

The effects on plasma hormone levels (growth hormone, somatomedine, thyroid 

hormones, corticosterone) and energy- and protein balance were studied during 

the immune response after SRBC immunization. 

Material and methods 

Birds and pre-experimental conditions 
Two experiments were carried out, using male birds which were genetically 

identical to the 7th generation of a high (H) and low (L) line, selected for 

antibody titer to sheep erythrocytes (SRBC) (Van der Zijpp and Nieuwland, 

1986). For each experiment, a separate hatch was used. The birds were placed 

with lines separated, in brooder cages with water and commercial starter feed 

provided ad libitum. 

Environmental temperature was gradually decreased during the first two 

weeks from approximately 32°C to approximately 25°C; the light regime was 

changed gradually from 23 h light/ 1 h dark to 12 h light/ 12 h dark during 

the first three weeks. 

Individual vaccinations against Marek's disease (at 1 d of age), 

infectious bronchitis (2 d of age), Gumboro's disease (12 d of age) and 

Newcastle disease (18 d of age) were given. 

To exclude large variation in weight and growth rate, a subgroup from the 

available birds was chosen. The selection was based on individual body weight 

at 22 d of age. The bodyweight of chicks used in the experiment was within a 

range of the median weight of that line ± 1 s.d. 

Climate-respiration chambers 
Two medium size climate respiration chambers (1.8 m3 each) at the 

experimental unit of the Department of Animal Husbandry of the Agricultural 

University were used. The technical equipment and applications of these 

chambers is described elsewhere (Verstegen et al. , 1987) . Within each chamber, 

a set of four brooder cages (± .5 x .4 x .4 m each; 1 x b x h) was placed. In 

each chamber, two cages with 4 H line birds and two cages with 4 L line birds 

were placed. Measurement of feed intake and excreta could be obtained for each 

cage separately; 02-consumption and C02-production for indirect calorimetry 

(Verstegen et al., 1987) could be measured for each chamber. 
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Experimental procedures 
The birds were placed in the chambers at an age of 25 d (Fig. 1 ) . Light 

regime was 12 h light/ 12 h dark throughout the experiments. 

At 31 d of age all birds were removed from the chamber individually, with 

minimal disturbance for the other birds, in random order. A blood sample (± 

1.5 ml) was taken from the ulnar vein (vena cutanea, ulnaris) with a 

heparinized syringe. The entire procedure did not take longer than 45-60 

seconds per bird since prolonged handling can cause increased circulating 

corticosterone (Beuving and Vonder, 1978). Immediately thereafter cloacal 

temperature was measured. The birds were weighed and replaced in the same cage 

as before. The first of three successive balance periods was started (Fig. 1 ) . 

During a 5-day balance period, ad libitum feed intake was measured daily and 

excreta were collected. Chambers were not opened throughout a balance period. 

At the second day of a balance period the first of two successive 48-hour 

respiration periods was started (Fig. 1 ) . Continuous measurements of 

02-consumption and C02-production were made during a respiration period. At 

the end of each balance period the same procedure for blood sampling and 

temperature measurement (as described above) was followed. The amount of 

excreta was assessed and samples of excreta and refused feed were taken. 

Prior to the second balance period, the birds were immunized 

intramuscularly with 1 ml 25% (v/v) packed SRBC in saline. 

The chickens were killed by cervical dislocation after the third balance 

period and the liver, thymus, spleen, bursa and adrenals were excised and 

weighed. 

Figure 1. Experimental layout. 
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Experimental treatments 
Three different experimental groups were distinguished based on the 

results of Donker et al. (submitted-d). 

A control treatment (CC) was included in both experiments: the chamber 

temperature was regulated at 25°C at all time, with a relative humidity (RH) 

of 70%. 

In Experiment 1 the other chamber provided an acute thermal stress (CH). 

The initial temperature was 25°C (70% RH) and this was abruptly increased to 

35°C (60% RH) immediately after immunization. 

In Experiment 2 the other chamber provided a continuous hot environment 

(HH; 35°C, 60% RH). This temperature was set before the adaptation period 

(Fig. 1 ) , thus giving birds the opportunity to acclimate. 

Assays 
All food and excreta samples were analyzed for energy and nitrogen 

contents. In addition energy and nitrogen loss in dust and airflow (NH3) from 

the chambers were assessed. 

The blood samples were assayed for packed cell volume (PCV) and the plasma 

for total and 2-mercaptoethanol (2ME-) resistant antibody titer to SRBC (Van 

der Zijpp and Leenstra, 1982). Concentrations of corticosterone1' (Beuving and 

Vonder, 1981), triiodothyronine (T3) (commercial kit: Dac-Cel T3 ; Welcome 

Reagents Ltd, Beckenham, Kent U.K.), thyroxine (T4) (commercial kit: T4 

RIA(PEG); Abbott Diagnostic Division, Antwerp, Belgium), growth hormone (GH) 

(Harvey and Scanes, 1977) and somatomedine-C (SmC) (Huybrechts et al., 1985) 

were measured. Thyroid peroxidase activity (TPO) was estimated in the thyroid 

post mortem as an estimate of the T4 reservoir. 

Statistical analysis 
All metabolic traits are expressed on the basis of kg-1, as discussed 

by Donker et al. (submitted-a). 

Heat production (H) was calculated from oxygen consumption and carbon 

dioxide production with the formula of Romijn and Lokhorst (1961) : 

H (kJ) - 16.20 x 02 (1) + 5.00 x C02 (1). 

Balance characteristics analyzed were ME-intake (kJ x kg"1 x day-1), energy 

balance EB (kJ x kg"1 x day-1) , protein retention PR (g x kg"1 x day-1) and fat 

deposition FD (g x kg-1 x day"1)). ME was calculated from energy in feed minus 

energy lost in excreta, dust and outgoing air; PR was calculated from N in 

Plasma corticosterone concentrations were obtained in samples which were pooled within a day of two 
birds from the same cage. 
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feed minus N lost in excreta, dust and outgoing air (NH3) ; EB was calculated 

as ME minus H, in which H (heat production) was calculated by dividing total 

heat production per chamber among cages relative to ME intake; FD was 

calculated from the difference in energy retention between EB and PR. 

Analyses of variance were performed using the SAS procedures (SAS, 1985). 

Individual data were analyzed within sampling day, using a model 

containing line and treatment as factors. Characteristics analyzed were 

growth, relative growth, antibody titer (total and 2ME-resistant), GH, T3, T4, 

SmC, TPO and relative organ weights. A line x treatment interaction was 

initially included, but excluded from the model if not significant (P>.05). 

Balance data were analyzed in a comparable manner as individual data, but 

on the basis of cage values. 

Results 

Body weight and growth rate 
In Experiment 1, body weight was higher at 31 d of age in the CH treatment 

group (Fig. 2; P<.05). Because of the higher growth rate in the CC treatment 

during the first balance period (P<.05) the weight was not different at 36 d 

of age. Lower growth during balance periods 2 and 3 (P<.01) in the CH 

treatment resulted in lower weights in this treatment at 41 and 46 d of age. 

In Experiment 2 body weight and growth rate were always lower in the HH 

treatment (P<.001, Fig. 2; P<.01). Body weight was higher in the L line than 

in the H line in Experiment 1 on all days (P<.01), but not in Experiment 2. 

Growth rate was not different between the lines. 

Relative organ weights 
The relative weights of liver, spleen, bursa and thymus were decreased by 

the CH treatment (Exp. 1) and the HH treatment (Exp. 2) (P<.001) (Table 1.). 

Higher spleen weights (P<.001) and bursa weights (P<.05) were found in the H 

line (Table 1). The adrenal weight was not significantly influenced by the 

treatments, but was higher in the H line in Experiment 1 (P<.01; Table 1). 

Chacal temperature 
Cloacal temperature was increased (P<.001) when the birds were kept at 

35°C in the CH treatment (Exp. 1) or HH treatment (Exp. 2). Average 

temperature was 41.9°C (CH and HH) vs. 41.5°C (CC) . Temperatures were the same 

in H and L line. 
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Figure 2. Body weight (g) per treatment. 

Least squares means ± s.e.in. The significance between treatments 

within a day is indicated: * P<.05, ** P-C.01, *** P<.001 
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Tab l e 1 . R e l a t i v e o r g an w e i g h t 1 ' a f t e r d i s s e c t i o n . L e a s t s q u a r e s means 2 ' ± s . e . m 

Expe r imen t 1 

T r e a t m e n t : ÇÇ HH 
L ine : High Low High Low 

L i v e r 2 . 4 9 a ± .06 2 . 4 0 a ± .06 2 . 0 2 b ± .06 2 . 0 7 b ± .06 
S p l e en 0 . 3 0 a + . 01 0 . 1 8 b c ± . 01 0 . 2 1 b ± . 01 0 . 1 5 e ± . 01 
Bu r sa 0 . 6 6 a ± .03 0 . 5 6 b ± .03 0 . 50 b c ± .03 0 . 4 4 e ± .03 
Thymus 0 . 6 8 a ± .04 0 . 6 8 a ± .04 0 . 4 2 b ± .04 0 . 4 8 b ± . 04 
A d r e n a l s 0 . 0 1 1 a ± . 0 0 1 0 . 0 0 8 b ± . 0 0 1 0 . 0 1 0 a b ± . 0 0 1 0 . 0 0 9 b ± . 0 0 1 

Experiment 2 

Treatment: ÇÇ HH 
Line : 

Liver 
Spleen 
Bursa 
Thymus 
Adrenals 

u Organ weight / body weight x 100 % 
2' Lsm within the same row bearing different superscripts differ significantly 

(P<.05) 

High 

2 .29 
0 . 2 5 a 

0 . 5 7 a 

0 . 7 3 a 

0 .008 

± 
+ 
+ 
+ 

± 

.12 

. 01 

.04 

.04 
. 001 

Low 

2 . 3 1 
0 . 1 9 b 

0 . 50 a 

0 . 6 3 a 

0 .009 

+ 
+ 
+ 

± 
± 

.12 

. 01 

.04 

.04 
. 001 

High 

2 . 03 
0 . 1 8 b 

0 . 4 8 a 

0 . 36 b 

0 . 011 

+ 

± 
+ 

± 
± 

.12 

. 01 

.04 

.04 
. 001 

Low 

1.88 
0 . 1 4 c 

0 . 3 4 b 

0 . 4 0 b 

0 .009 

+ 

± 
+ 
+ 
+ 

.12 

. 01 

.04 

.04 
. 001 

Antibody titers 

After immunization, total and 2ME-resistant antibody titers were higher 

in the H line than in the L line (P<.001; Fig. 3). Significant differences 

between treatments were found only in the L line. Higher total titers were 

found in Experiment 1 in CH treatment on day 41 (P<.05) and in Experiment 2 

in HH treatment on day 46 (P<.05). Higher 2ME-resistant titers were found in 

CH and HH treatment on day 46 in Experiment 1 and 2 (P<.05). 

Packed cell volume (PCV) 

The PCV was lower in birds kept in the CH or HH treatments at high 

temperatures (Fig. 4 ) . The PCV was higher in the H line, but the difference 

was significant (P<.05) only on days 31 and 46 in Experiment 1. 
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Figure 3. Total ( )and 2ME-resistant (- - -) antibody titer per line 

and treatment. 

Least squares means ± s.e. Lsm bearing different superscripts 

within a day differ significantly (P<.05) 
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Figure 4. Packed cell volume (%) per treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a day is indicated: * P<.05, ** P<.01, *** P<.001 
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Plasma hormone concentrations 
Mean plasma corticosterone concentrations varied between .8 and 5.0 ng/ml. 

No consistent differences between treatments or H and L selection line were 

found. 

The average plasma concentration of the thyroid hormone T3 varied between 

.75 and 2.00 ng/ml, but was not significantly different between lines or 

treatments. 

The average concentration of T4 hormone was higher in CC treatment than 

in CH before the immunization (13.0 vs 10.2 ng/ml; P<.01), but concentrations 

were higher in CH treatment thereafter (13.0 vs 11.9 ng/ml; P<.01). In 

Experiment 2 the concentration of T4 was significantly higher in HH treatment 

than in CC before immunization (12.2 vs 8.9 ng/ml; P<.01), but concentrations 

were not different thereafter (± 10 ng/ml). 

Concentrations of GH were lower at high temperatures (Fig. 5A, 5B). GH-

concentrations were the same in H and L line. 

The concentrations of SmC were higher at high temperatures (Fig. 5C, 5D) . 

The concentrations of SmC were lower in the H line, but only significantly in 

Experiment 2. In Experiment 2 the difference was on average .5 ng/ml (P<.05 

on d 31, d 41; P<.001 on d 36). 

Thyroid peroxidase activity 
The thyroid peroxidase activity, which is a measure for the amount of T4 

present in the thyroid, was .406 m/j/mg thyroid in Experiment 1 for the H line 

and .745 for the L line. In Experiment 2 the peroxidase activity was .103 

m/i/mg thyroid in the H line and .248 in the L line. The difference was 

significant only in Experiment 2 (P<.001). No treatment influence was found 

on peroxidase activity. 

Balance characteristics 
Metabolizable energy and heat production in Experiment 1 were the same in 

CC and CH treatment during balance period 1 (Fig. 6A). They were higher in CC 

treatment in balance period 2. The ME was higher in CC than in CH treatment 

also during balance period 3. The energy balance was always higher in CC 

treatment, but the difference was bigger in balance periods 2 and 3 than in 

period 1 (Fig. 6A). 

In Experiment 2, metabolizable energy, heat production and energy balance 

were higher in the CC treatment than in the HH treatment in all three balance 

periods (Fig. 6B) . 

No significant differences in metabolizable energy, heat production or 

energy balance were found between the H and L line in these experiments. 
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Figure 5. Plasma growth hormone (GH) and somatomedine-C (Sm-C) 
concentrations per treatment. 
Least squares means ± s.e.m. The significance between treatments 
within a day is indicated: * P<.05, ** P<.01, *** P<.001 
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Figure 6. Metabolizable energy (ME), heat production (HP) and energy balance 
(EB) per balance period and treatment. 
Least squares means ± s.e.m. The significance between treatments 
within a balance period is indicated: * P<.05, ** P<.01, 
*** P<.001 
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Figure 7. Relative protein retention (PR) and fat deposition (FD) per 
balance period and treatment. 
Least squares means ± s.e.m. The significance between treatments 
within a balance period is indicated: * P<.05, ** P<.01, 
*** P<.001 
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A significant difference in protein retention between treatments was found 
in balance period 2 of Experiment 1 only (Fig. 7). The CH treatment had a 
lower protein retention during this period. 

Significant differences in fat deposition between CC and CH treatment 
(Exp. 1) were found in all three balance periods. The difference was biggest 
in period 2, when birds in the CH treatment mobilized fat. No significant 
amount of fat was deposited in the CH treatment group in balance periods 1 and 
3. 

Fat deposition was significantly different between CC and HH treatment in 
Experiment 2 in all three balance periods. No significant amount of fat was 
deposited in birds in HH treatment during balance periods 1 and 2. 

No significant differences in protein retention or fat deposition were 
evident between H and L line in any balance period in these experiments. 

Discussion 

High environmental temperature in the CH and HH treatments affected a 
number of physiological parameters as reported by Donker et al. (submitted-
d) . These included reduced growth rate, increased cloacal temperature, reduced 
weight of the liver, spleen, thymus and bursa and decreased packed cell 
volume. Similar observations of reductions in lymphoid organ weights and 
cloacal temperature were reported in chickens kept at 40° by Williamson et al. 
(1985). A decreased packed cell volume in the high temperature environment, 
as observed here, was reported before (Moye et al., 1969; May et al., 1971). 
This was not found, however, in birds from the same line as in the present 
experiments and under comparable conditions (Donker et al., submitted-d). 

Plasma corticosterone 
The plasma concentrations of corticosterone were always in the usual 

physiological range, and not higher than those measured in these lines in 
previous experiments under standard conditions (Donker et al., submitted-c). 
The high temperature did not increase plasma corticosterone concentrations, 
as was also observed by Williamson et al. (1985). Probably, the level did rise 
immediately after the temperature increased in the CH treatment, but then 
declined rapidly again (Donker et al., submitted-c) 

Thus, none of these physiological parameters or the corticosterone 
concentration, which could be indicative of a better acclimation to the high 
temperature in HH treatment than in the CH treatment, differed between these 
two treatments. Also none of these parameters differed between the H and L 
line. 

Growth-associated hormones 
Increased plasma concentration of somatomedine-C and decreased 

concentrations of growth hormone during the high temperature periods relate 
to decreased growth observed in CH and HH treatment. Relative high SmC and low 
GH levels are usually associated with low growth rate (Decuypere and Buyse, 
1988). 

Thyroid hormones 
In the present experiment, no effects of the heat treatments on 

concentrations of thyroid hormones were found, in contrast to results reported 
by Klandorf et al. (1981) and Williamson et al. (1985). They reported 
decreased T3 and T4 levels during a period after moving chickens to a high 
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temperature (1-7 d at 32° in adult hens (Klandorf et al., 1981); 1-35 d at 
40°C in young chickens (Williamson et al., 1985)). They found these changes 
were associated with decreased heat production. A decrease in heat production 
and feed intake were found in the present experiments at high temperatures, 
but this was not associated with decreased thyroid hormone levels, or 
recruitment of T4 from the thyroid. Therefore, it is concluded that these 
changes are not necessarily initiated by thyroid hormones. 

Antibody titers 
Decreased antibody titers after an CH treatment and higher titers in birds 

in HH treatment have been reported previously (Henken et al., 1983a; Donker 
et al. (submitted-d). The involvement of the HPA and HHT axes was postulated 
to account for these changes. 

Immunosuppression was expected in the CH treatment because of the acute 
stress nature of this treatment (Donker et al., submitted-d). However, these 
selection lines are relatively unsusceptible to heat stress or corticosterone, 
with respect to antibody production (Donker and Beuving, 1989; Donker et al., 
submitted-b) . Thus, despite physiological indications of severe thermal demand 
on the animals, the absence of immunosuppression is not so surprising. 

Moreover, no association between thyroid hormones and the level of 
antibody titers was found. Increased antibody titers were found only in the 
low selection line in the HH treatment 5 and 10 d after immunization and in 
the CH treatment 10 d after immunization. The increase in the HH treatment is 
consistent with earlier results (Henken et al., 1983a; Donker et al., 
submitted-d) , although in an earlier experiment this was found equally in the 
high and low line (Donker et al., submitted-d). Since the antibody titers are 
much lower in the low line, the stimulatory effect might be detected more 
easily in this line. 

Although the absence of immunosuppression in CH treatment is not so 
surprising, to find a stimulating of this treatment is unexpected. A 
considerable decreased protein retention and the mobilization of fat (Fig. 7A) 
are indicative of a severe demand on the birds of the (combination of) 
suddenly increased temperature and the immunization. However, analyses of 
continuous activity and heat production data (not shown) showed that, at least 
for these traits, the birds adapted within a day to the high temperature. 

Since no relation was between antibody production and any measured 
endocrine factor or metabolic rate, it remains unclear what stimulating 
factor(s) increase antibody production under hyperthermic conditions. Most 
likely is that temperature sensitive factors which work directly on 
lymphocytes, e.g. lymphokines, are involved. It remains to be investigated, 
however, what these factors are and why these influences are so variable. 

It is clear, however, that differences in circulating antibodies between 
high and low selection line are not regulated by corticosteroids, thyroid 
hormones or "general metabolic rate", since these were not different between 
the two lines. Moreover, profound changes in these traits caused by the 
temperature treatments were not associated with differences in antibody 
titers, either between or within lines. The differences in antibody titers 
between the lines remained very constant, however. 

Antibody production may be considered an end-point characteristic of 
complex reactions in the immune system. Selection for antibody production 
might influence many of the underlying steps. Our understanding of the 
influence of temperature and acclimation thereto on antibody production can 
be obscured by interactions with any of the involved endocrine or cellular 
factors. Better understanding of the changes which occurred in the selection 
lines in these factors is therefore required to clarify the variability in 
endocrine-immunological interactions. 
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Abstract 

The energy metabolism was studied, with associated physiological 

responses, before and during the immune response after an immunization with 

sheep red blood cells (SRBC) in two chicken lines. These lines were 

divergently selected for the immune response to SRBC. 

In the first of two experiments one group of young cockerels, which served 

as a control (CC), was implanted with a latex dummy and kept in a climate 

respiration chamber at 25°C (70% RH). A second group was implanted with an 

osmotic minipump, delivering a corticosterone solution continuously, and was 

placed in another climate respiration chamber with the same conditions set 

(CS). 

In Experiment 2 the group in one climate respiration chamber was assigned 

to the same corticosterone infusion (CS) , and in the other chamber a group of 

birds was implanted with a dummy and climate conditions were set to 35°C and 

60% RH (HH). The birds were given six days to acclimate before the experiment 

started. 

Each group consisted of 16 young cockerels, and equal numbers of the high 

(8) and low (8) selection line were used, but kept in separate cages, four 

birds per cage. 

In the CS infused group the plasma corticosterone concentration was 

increased, but not in the HH group. The CS infusion and HH treatment decreased 

growth rate and lymphoid organ development. Plasma thyroxine (T4) 

concentration was lower in CS infused birds; triiodothyronine (T3) 

concentration was lower in CS infused than in CC birds, but higher than in HH 

birds. 

Metabolizable energy intake and heat production (per kg body weight) was 

decreased in HH birds, but not in CS infused birds. Differences in the energy 

balance were small, but CS infused birds had a higher energy balance during 

the log phase of the immune response. Fat deposition was higher in CS infused 

birds, particularly during the log phase of the immune response. Protein 

retention was lower in CS infused and HH treated birds than in CC birds. 

Antibody production (total and 2ME-resistant titer) was higher in high 

line birds than in low line birds. CS infusion did not affect antibody titer, 

but HH treatment stimulated antibody production in the low line birds. 

No clear relation was found between the corticosterone infusion or heat 

treatment with associated changes in metabolism and endocrinology and the 

antibody production. 

Keywords: immune response, SRBC, selection lines, corticosterone, metabolism 

Running title: Corticosterone, immune response and metabolism 
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Introduction 

Increased activity of the hypothalamo-pituitary-adrenal (HPA) axis is, 

also in poultry, typical for a stress response. The resulting increased plasma 

corticosterone levels can have profound influences on the birds physiology 

and immunology. Immunosuppression has been reported after stimulation of the 

HPA axis by e.g. acute thermal stressors (Subba Rao and Glick, 1970; Thaxton 

and Siegel, 1970, 1973; Thaxton, 1978; Siegel, 1987). However, particularly 

the effects on humoral immune response have been variable (Heller et al., 

1979; Régnier et al., 1980; Siegel, 1987; Donker et al., submitted-b). 

Administration of corticosteroids in the feed, or by injection or infusion 

results in more constant elevated plasma corticosterone levels and might 

reduce this variability in results, and thus serve as a experimental 

substitute for environmental stressors. 

Reduced antibody titers to sheep red blood cells (SRBC) were found if the 

birds were injected with cortisone acetate or corticosterone before 

immunization (Sato and Glick, 1970) and after feeding corticosterone (Gross 

et al., 1980). Reduced responses to SRBC and Brucella abortus were reported 

in birds with pellets containing corticosterone implanted (Davison and Misson, 

1987). Continuous infusion of corticosterone has been reported to increase the 

incidence of Marek's disease after challenge (Powell and Davison, 1986). 

However, Donker and Beuving (1989) reported no effect of infused 

corticosterone on antibody titers to SRBC in young chickens from lines 

selected for immune responsiveness, despite serious detrimental effects on 

growth and lymphoid development. 

Placing birds of these lines (Donker et al., submitted-e) or parental 

stock (Henken et al., 1983) in a moderate or extreme hot environment, 

providing time to acclimate, increased the humoral response to SRBC, in spite 

of hyperthermia, reduced growth and other indications of severe thermal 

stress. The enhanced antibody response was postulated to be caused by 

stimulatory effects of the hypothalamo-pituitary-thyroid axis, with possible 

associated effects on metabolic rate (Henken et al., 1983; Donker et al., 

submitted-d). Thus the effects of extreme heat and corticosterone 

administration on the immune response can be quite different, despite the 

supposed stressful character of both. 

To investigate the relations between antibody production, environmental 

temperature, corticosterone levels and metabolic rate more accurately a number 

of studies were accomplished. Energy and protein balance data were gathered 

during the immune response in a high and low selection line under varying 

conditions. In earlier reports the results at thermoneutral conditions were 

155 



presented (Donker et al. , submitted-a) and under hyperthermic conditions with 

or without previous acclimation to the high temperature (Donker et al., 

submitted-e). In this report we present the results of endocrine and metabolic 

characteristics in these selection lines during the immune response, comparing 

those with corticosterone infusion and under hyperthermic conditions. 

Material and methods 

Birds and pre-experimental conditions 
Two experiments were accomplished, using male birds which were genetically 

identical to the 7th generation of a high (H) and low (L) line, selected for 

antibody titer to sheep erythrocytes (SRBC) (Van der Zijpp and Nieuwland, 

1986). For each experiment a separate hatch was used. After hatching, the 

cockerels were, lines separately, placed in brooder cages with water and 

commercial starter feed provided ad libitum. 

Environmental temperature was gradually decreased during the first two 

weeks from approximately 32°C to approximately 25°C. The light regime was 

changed from 23 h light/ 1 h dark to 12 h light/ 12 h dark during the first 

three weeks, which remained the same throughout the experiments. 

Individual vaccination against Marek's disease (at 1 d of age), infectious 

bronchitis (2 d of age), Gumboro's disease (12 d of age) and Newcastle disease 

(18 d of age) were given. 

To exclude large variation in weight and growth rate a selection from the 

available birds was used. The selection was based on individual body weight 

at 22 days of age. Chicks with a body weight within a range of the median 

weight of that line ± 1 s.d. were used. 

Climate-respiration chambers 
At 25 d of age the birds were placed in one of two medium sized climate 

respiration chambers (1.8 m3 each) at the experimental unit of the Department 

of Animal Husbandry of the Agricultural University. The technical equipment 

and applications of these chambers are described elsewhere (Verstegen et al. , 

1987). Each chamber contained a set of four brooder cages (± .5 x .4 x .4 m 

each; 1 x b x h ) , two cages with 4 H line birds and two cages with 4 L line 

birds. Measurement of feed intake and excreta could be obtained for each cage 

separately; 02-consumption and C02-production for indirect calorimetry 

(Verstegen et al., 1987) could be measured for each chamber. 
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Experimental procedures 
The chicks were randomly assigned to either a corticosterone infused group 

(CS), a control group (CC; in Exp. 1) or a heat exposed group (HH; in Exp. 2). 

The experimental design was full factorial with equal numbers of each line in 

each treatment group. Birds were anaesthetized with ether on 22 d of age 

(Fig. 1) . In the corticosterone treatment group an infusion pump with a 

infusion capacity for four weeks (Alzet osmotic minipumps, model 2ML4; Alza 

Corp., Palo Alto, CA, USA) was implanted subcutaneously dorsal of the thorax. 

In the CC and HH groups a sterilized dummy of a synthetic elastic polymer (382 

Medical grade elastomer, Dowcorning Co., Midland, MI, USA) with approximately 

the same dimensions and weight was implanted at the same location. The 

implanted minipumps (CS group) delivered a continuous flow of corticosterone 

(Sigma, St Louis, MO, USA) in polyethyleneglycol (polyethyleneglycol-400, 

Merck, Darmstadt, Federal republic of Germany) at a rate of 8.50 pg 

corticosterone/h throughout the experiment. 

After examination of the incision and the implant the birds were placed 

in the chambers at an age of 25 days for a 6 d adaptation period (Fig. 1). 

Inspection of the implant was repeated after every balance period (see below). 

Not all implanted minipumps and dummies stayed in location where 

implanted. Many (approx. 7 out of every 10) migrated subcutaneously to a site 

in the leg. This apparently did not hinder the birds' movements. In some birds 

the pressure of the implant caused necrosis of the skin and eventually pierced 

the skin. When this was noted the bird was taken out of the experiment. 

Because of this reason one bird in Experiment 1 with a dummy was taken out of 

the experiment, before balance period 1 was started. In Experiment 2 this was 

found in one bird with a dummy and one CS treated bird after balance period 1, 

and in one bird with a dummy after balance period 2. At examination post 

mortem it was found that several implants had caused some minor irritation 

(red skin with small blood spots). 

Balance periods 
At 31 d of age all birds were removed from the chamber individually, with 

minimal disturbance of the other birds, in random order. A blood sample (±1.5 

ml) was taken from the ulnar vein (vena cutanea ulnaris) with a heparinized 

syringe. The entire procedure did not take longer than 45-60 seconds since 

prolonged handling can cause increased circulating plasma corticosterone 

(Beuving and Vonder, 1978). Immediately thereafter cloacal temperature was 

measured. After the birds were weighed and replaced in the same cage, the 

first of three successive balance periods was started (Fig. 1). 

During the 5-day balance periods ad libitum feed intake was measured daily 

and excreta were collected. Chambers were not opened during a balance period. 
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At the second day of a balance period the first of two successive 48-hour 

respiration periods was started (Fig. 1) . Continuous measurements of 

02-consumption and C02-production were made during a respiration period. At 

the end of each balance period the same procedure for blood sampling and 

cloacal temperature measurement was followed, as described above; the amount 

of excreta was assessed and samples of excreta and refused feed were taken. 

Prior to the second balance period the birds were immunized 

intramuscularly with 1 ml 25% (v/v) packed SRBC in saline. 

The chickens were killed by cervical dislocation after the third balance 

period and liver, thymus, spleen, bursa and adrenals were excised and weighed. 

Figure 1. Experimental layout. 

X: Implantation of infusion pump or dummy 

P: Pre-experimental adaptation period in climate respiration chambers 

Bl, B2, B3: Balance period 1, 2, 3 

Rl, .., R6: 2-day respiration periods 

B: Blood sampling 

I : Immunization with SRBC 

W: Weighing 

S: Slaughter and dissection 
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Experimental treatments 
Three different experimental groups were distinguished, based on the 

results of Donker and Beuving (1989) and Donker et al. (submitted-d) . Only two 

experimental groups could be included in each experiment. 

A corticosterone infused treatment group (CS) was included in both 

experiments. Birds in this treatment were implanted with a minipump, 
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delivering corticosterone and were placed in a chamber with a temperature of 

25°C, and a relative humidity (RH) of 70%. 

In Experiment 1 a control group (CC) was placed in the other chamber; the 

birds were implanted with a dummy and placed in a chamber with a temperature 

of 25°C and a RH of 70%. 

In Experiment 2 a high temperature treatment group (HH) was placed in the 

other chamber; the birds were implanted with a dummy and placed in a chamber 

with a temperature of 35°C with 60% RH (Donker et al., submitted-a, -e). The 

birds were given time to acclimate to the temperature before immunization, 

therefore these conditions were already set during the adaptation period in 

the respiration chamber (Fig. 1). 

Assays 

All food and excreta samples were analyzed for energy and nitrogen 

contents. Also energy and nitrogen loss in dust and airflow (NH3) from the 

chambers were assessed. 

Packed cell volume (PCV) was assessed in the blood samples. Plasma samples 

were analyzed for total and 2-mercaptoethanol resistant (2ME-) antibody titer 

to SRBC (Van der Zij pp and Leenstra, 1982) and concentrations of 

corticosterone1' (Beuving and Vonder, 1981), triiodothyronine (T3) (commercial 

kit: Dac-Cel T3 ; Welcome Reagents Ltd, Beckenham, Kent U.K.), thyroxine (T4) 

(commercial kit: T4 RIA(PEG); Abbott Diagnostic Division, Antwerp, Belgium), 

growth hormone (GH) (Harvey and Scanes, 1979) and somatomedine-C (SmC) 

(Huybrechts et al. , 1985) were measured. 5'-Monodeiodinase activity (Decuypere 

et al., 1983) was measured in liver homogenates post mortem, as an estimate 

of the T4 to T3 conversion capacity. 

Statistical analysis 

All metabolic traits were expressed on the basis of kg"1, as discussed 

by Donker et al. (submitted-a). 

Heat production (H) was calculated from oxygen consumption and carbon 

dioxide production with the formula of Romijn and Lokhorst (1961): 

H (kJ) = 16.20 x 02 (1) + 5.00 x C0Z (1). 

Balance characteristics analyzed were ME-intake (kJ x kg"1 x day"1) , energy 

balance EB (kJ x kg"1 x day"1) , protein retention PR (g x kg"1 x day"1) and fat 

deposition FD (g x kg"1 x day"1)). ME was calculated from energy in feed minus 

energy lost in excreta, dust and outgoing air (NH3) ; PR was calculated from 

N in feed minus N lost in excreta, dust and outgoing air; EB was calculated 

as ME minus H, in which H (heat production) was calculated by dividing total 

Plasma corticosterone concentrations were obtained in samples which were pooled within a day of two 
birds from the same cage. 
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heat production per chamber among cages relative to ME intake. FD was 

calculated from the difference between EB and energy deposited as protein. 

Data were evaluated in analyses of variance using the SAS procedures (SAS, 

1985). 

Individual data were analyzed within sampling day, using a model 

containing line and treatment as factors. Characteristics analyzed were body 

weight, relative growth, packed cell volume, antibody titers (total and 2ME-

resistant), and plasma concentrations of corticosterone, GH, T3, T4, SmC, 

monodeiodinase activity and relative organ weights. A line x treatment 

interaction was included in the initial model, but left from the model if not 

significant (P>.05). 

Balance data were analyzed in a comparable manner as individual data, but 

on the basis of cage values. 

Results 

In the following paragraphs differences between H and L line are only 

mentioned if significant. 

Plasma corticosterone concentrations 
The plasma corticosterone concentrations were elevated on all sampling 

days in the CS infused birds compared to those in CC or HH treatment (Fig. 2). 

The concentrations in the CC treatment (Exp. 1) and the HH treatment (Exp. 2) 

were in the same range of values. 

Body weight and growth rate 
Body weight was lower in CS infused birds than birds in CC or HH treatment 

(Fig. 3) . The difference in body weight between HH and CS (Exp. 2) was smaller 

than that between CC treatment and CS infusion (Exp. 1). Relative growth rate 

was lower in the CS infused birds than in CC treated birds (P<.001), but was 

not different between CS infusion and HH treated birds. 

Relative organ weights 
Relative organ weights post mortem are presented in Table 1. 

CS infusion in Experiment 1 caused a significant decrease in the relative 

weight of the spleen (P<.01), bursa (P-C.001) and thymus (P<.001) compared to 

CC treatment and a significant increase (P<.001) in liver and adrenals (P<.05) 

weights. 
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Figure 2. Plasma corticosterone per treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a day is indicated: *** P<.001 
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Figure 3. Body weight per treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a day is indicated: * P<.05, ** P<.01, *** P-C.001 
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CS infusion in Experiment 2 caused a significant decrease in the relative 

weight of thymus (P<.01) and bursa (P<.01) compared to the HH treatment and 

a significant increase in liver (P<.001) and adrenal (P<.05) weights. 

The relative weight of the spleen was higher in the H line than in the L 

line (P<.01 in Exp. 1; P<.001 in Exp. 2). 

Cloaca! temperature 
Cloacal temperature was not different between CS infused or control 

chickens in Experiment 1. Cloacal temperature in Experiment 2 was on average 

.3°C higher in HH treatment than in CS treatment on all days (41.7°C vs. 

41.4°C; P<.001). 

Antibody titers 
Antibody titers (total titer and 2ME-resistant titer) were significantly 

higher in the H line than in the L line 5 and 10 days after immunization (41 

c.q. 46 d of age) in Experiment 1 and Experiment 2 (P<.001) (Fig. 4 ) . 

Antibody titers (total titer and 2ME-resistant titer) were not 

significantly influenced by CS infusion in Experiment 1. In Experiment 2 the 

titers were significantly higher in the HH treated birds of the L line than 

the CS infused birds of the same line (P<.05) on 5 and 10 d after 

immunization. The same difference in the H line was significant only for the 

2ME resistant titers. 

Packed cell volume (PCV) 
The packed cell volume was higher in CS infused birds than in control 

birds in Experiment 1 (Fig. 5), although the difference was significant only 

on 31 (P<.05) and 36 (P<.001) d of age. In Experiment 2 packed cell volume was 

significantly lower in HH treated birds on all days than in those which were 

CS infused (Fig. 5). 

Plasma hormone concentrations 
Plasma triiodothyronine (T3) concentration was lower in CS infused birds 

in Experiment 1 (Fig. 6 ) , though only significantly at 31 (P<.01) and 41 d of 

age (P<.05). In Experiment 2 T3 concentration was significantly lower on all 

days in HH treated birds than in CS infused birds (P<.001). 

Plasma thyroxine concentration (T,,) was significantly lower in CS infused 

birds than in CC control birds (P<.001; Fig. 6). The CS infused birds had also 

a lower average T4 concentration than HH treated birds in Experiment 2 

(P<.001). 

The liver 5 '-monodeiodinase activity was not different between lines or 

treatments in Experiment 1 (Table 1). In Experiment 2 monodeiodinase activity 

164 



Figure 4. Total ( )and 2ME-resistant (- - -) antibody titer per line 

and treatment. 

Least squares means ± s.e.m. Lsm bearing different superscripts 

within a day differ significantly (P<.05) 
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Figure 5. Packed cell volume per treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a day is indicated: * P<.05, ** P<.01, *** P<.001 
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Figure 6. Plasma triiodothyronine (T3) and thyroxine (TA) concentrations per 

treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a day is indicated: * P<.05, ** P<.01, *** P<.001 
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was higher in the H line than in the L line (P<.05), and lower in CS infused 

birds than in HH treated birds (P<.05). 

Average plasma growth hormone concentration was not significantly 

different between control birds (4.04 ng/ml) and CS infused birds (3.89 ng/ml) 

in Experiment 1. HH birds in Experiment 2 had a significantly higher average 

growth hormone concentration (4.45 ng/ml) than CS infused birds (3.81 ng/ml; 

P<.001). 

The average concentration of somatomedine-C was lower in CS infused birds 

(5.49 I.U./ml) than in control birds (8.35 I.U./ml; P<.001) in Experiment 1. 

Somatomedine concentrations in Experiment 2 were not significantly different 

between CS infused (7.43 I.U./ml) or HH treated birds (7.42 I.U./ml), except 

on 31 days of age, when concentrations were lower in CS infused birds (5.63 

I.U./ml vs. 6.99 I.U./ml; P<.001). 

Balance characteristics 
Metabolizable energy (per kg body weight) was not significantly different 

between CS infused and control birds in Experiment 1 in any balance period 

(Fig.7). Metabolizable energy was significantly lower in HH treated birds than 

in CS infused birds in Experiment 2 in all balance periods. 

Heat production was somewhat higher in CS infused birds than in CC-control 

birds during balance period 1 (Fig. 7; P<.05). They were not different in 

balance periods 2 and 3. In Experiment 2 the heat production was lower in HH 

treated birds than in CS infused birds. 

A small difference was found in the energy balance between CS infused 

birds and the CC control in balance period 1, Experiment 1 (Fig. 7 ) . A higher 

energy balance was found in balance period 2 in the CS infused chickens. The 

energy balance was not significantly different in balance period 3. 

In Experiment 2 the energy balance was lower in CS infused birds than in 

HH treated birds in balance periods 1 and 3, but higher during balance 

period 2. 

The protein retention and fat deposition are presented in Figure 8. In 

Experiment 1 the protein retention was lower in the CS infused chickens than 

in CC controls, which was significant in balance periods 1 and 3. Fat 

deposition was always higher in CS infused chickens, particularly during 

balance period 2. In Experiment 2 protein retention was not different between 

CS infused and HH treated chickens. Fat deposition was lower in CS infused 

chickens during balance periods 1 and 3, but higher during balance period 2. 
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Figure 7. Metabolizable energy (ME), heat production (HP) and energy balance 

(EB) per balance period and treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a balance period is indicated: * P<.05, ** P<.01, 

*** P<.001 
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Figure 8. Protein retention (PR) and fat deposition (FD) per balance period 

and treatment. 

Least squares means ± s.e.m. The significance between treatments 

within a balance period is indicated: * P<.05, ** P<.01, 

*** P<.001 
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Discussion 

The infused corticosterone increased plasma corticosterone levels 

throughout the experiments, but the concentrations remained within a range 

as frequently observed under physiological conditions (Davison et al., 1985; 

Beuving and Vonder, 1986; Donker and Beuving, 1989) . The plasma corticosterone 

concentrations in the CC and HH treated birds were at the same level as 

reported before in these birds as normal base levels (Donker et al., 

submitted-e) or after minipumps had been implanted releasing vehicle only 

(Donker and Beuving, 1989). Thus the implanted dummies did not result in 

increased levels of corticosterone, like in adult hens (Beuving, personal 

communication). Also the high temperature did not result in elevated plasma 

corticosterone concentrations, as previously reported by Williamson et al. 

(1985) and Donker et al. (submitted-e). However, plasma corticosterone was 

probably increased initially after the birds were placed in the hot 

environment (Donker et al. , submitted-b), but decreased again soon thereafter. 

Beuving and Vonder (1978) reported that, in adult hens, plasma corticosterone 

concentrations were back to the base level four days after placing them at 

37°C. Williamson et al. (1985), however, did not find increased plasma 

corticosterone concentrations already 24 h after placing young birds in a 40°C 

environment. 

Decreased growth and detrimental effects on lymphoid organs after 

artificial corticosterone administration are well described (Siegel and van 

Kampen, 1984, Davison et al., 1985; Kafri et al., 1988; Donker and Beuving, 

1989). Comparable effects on growth and lymphoid organs of hot environments 

were also reported (Williamson et al., 1985; Donker et al., submitted-d, -e). 

The lower growth in corticosterone infused or heat treated birds was not 

reflected in altered plasma concentrations of growth hormone. Somatomedine 

levels were decreased in corticosterone infused birds and on the same level 

in those in the high temperature environment. Comparable observations were 

made by Buyse et al. (1987) in corticosterone injected birds. 

Increased liver weight after corticosterone administration is related to 

the increased lipogenesis and agrees with the increased fat deposition (Siegel 

and van Kampen, 1983; Davison et al., 1985; Buyse et al., 1987; Kafri et al., 

1988). Increased adrenal weights in the CS infused group was not expected and 

conflicting with other reports (Davison et al., 1985; Kafri et al., 1988). 

The decreased packed cell volume in the HH treatment may have been caused 

by either a decrease in the number of erythrocytes or a decrease in the volume 

per cell (May et al., 1971). In either case haemoglobin capacity is probably 

decreased. This might reflect the lower oxygen demand because of the decreased 

growth rate in this treatment. The increased packed cell volume in CS infused 
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birds could on the contrary reflect the higher oxygen demand, related to 

deposition of more fat. 

Decreased T3 plasma concentrations as a result of the corticosterone 

infusion and high environmental temperature are in line with other recent 

observations (Davison et al., 1985; Williamson et al., 1985; Buyse et al., 

1987; Williamson and Davison, 1987) . Triiodothyronine is probably an important 

factor in regulating feed intake and metabolic rate (Bobek et al., 1977; 

Klandorf et al., 1981; Williamson et al., 1985). 

After corticosterone infusion often an increased level of T4 is found. 

However, decreased T4 concentrations after corticosterone administration, as 

found in the present experiments, were reported also by Decuypere et al. 

(1983). Davison et al. (1985) and Williamson and Davison (1987) reported an 

increase in T4 levels was found only above some threshold dose of 

corticosterone. An explanation for the increased T4 concentration could also 

be the corticosterone induced decrease in 5'-monodeiodinase (Decuypere et al. , 

1983; Williamson and Davison, 1987). However, also thyroidal release of 

thyroxine can be influenced by corticosterone (Decuypere et al. , 1983; Davison 

et al., 1985), resulting in increased T4 concentrations. Both factors could 

explain higher thyroxine concentrations in HH treatment, although these 

differences were not observed in earlier experiments (Donker et al., 

submitted-e). 

As expected the high environmental temperature decreased total 

metabolizable energy and heat production in the birds (Henken et al., 1983; 

Donker et al., submitted-e); which is probably related to lower T3 levels 

(Klandorf et al., 1981; Williamson et al., 1985). Remarkable and unexplained 

is the fat deposition measured in HH treatment in Experiment 2. This was 

considerably higher than results in the same treatment already reported by 

Donker et al. (submitted-e). Fat deposition in CS-infused birds was 

controversially quite low. In balance periods 1 and 3 lower even than in HH 

treatment birds. Although no measurements were made, it was very obvious at 

examination post mortem that fat depots in CS infused birds were considerable 

bigger than in CC or HH treated birds. Also a higher ME intake in the CS-

infused group combined with a growth rate that was lower than CC treatment 

(Exp. 1) or equal to HH treatment (Exp. 2) indicates a higher fat deposition 

in CS-infused birds. 

Thus the effects of corticosterone infusion on balance characteristics 

were not so clear. But an obviously higher energy balance was found during 

balance period 2, in which the immune response was mounted. This increase was 

associated with considerably increased fat deposition during the same period. 

These changes are somehow induced by the immune response, as a comparable 

difference was found in the same balance period when SRBC and PBS injected 

birds were compared (Henken and Brandsma, 1982) or when the H and L response 
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lines were compared (Donker et al., submitted-a). In those experiments the 

experimental groups which mounted the highest immune response had higher 

energy retention and higher fat deposition. 

No suppressive effects of corticosterone infusion were found on antibody 

titers in either the H or the L selection line. The selection difference in 

antibody titer between the lines was consistent. This was also previously 

reported by Donker and Beuving (1989) . It has been suggested that exogenous 

corticosterone might be a relatively weak immuno suppressant (Sato and Glick, 

1970). Davison and Misson (1987) , however, reported dose dependent depressions 

of implanted pellets containing corticosterone on antibody titers to a T-cell 

dependent (SRBC) as well as a T-cell independent (Brucella Abortus) antigen. 

Although implantation of pellets containing corticosterone might affect immune 

function differently than infusion, it seems likely that the chickens used in 

the present experiments are somehow rather unsusceptible to the effects of 

corticosterone on lymphocyte action, with respect of antibody production, 

despite the detrimental effects on lymphoid tissue. 

Increased titers were found on day 5 after immunization in HH treated 

compared to CS infused chickens in Experiment 2. These were rather caused by 

stimulatory factors in the HH treatment as postulated by Donker et al. 

(submitted-d, -e), than suppressive factors in CS infused birds (see Fig. 4a 

and 4b). But it remains unclear what these factors are. Decreased T3 and 

increased T4 concentrations could be of importance, since thyroid hormone are 

associated with immune function. However, controversial results were reported 

in both hypo- and hyperthyroid birds (Gause and Marsh, 1985; Kai et al. , 1987, 

1988; Marsh et al., 1984a, 1984b; Mashaly et al., 1983; Scott et al., 1985; 

Yam et al., 1981). Donker et al. (submitted-e) reported no influence of the 

high temperature on thyroid hormone concentrations and thus no relation with 

the observed immuno stimulatory effect of high temperature. Mashaly et al. 

(1983) postulated that thyroid hormones probably do not regulate immune 

function as long as levels remain in the normal physiological range. 

Although the effects of CS infusion and the hot environment were 

comparable in some characteristics (depressed growth, lymphoid involution), 

many other effects were very different. Continuously high plasma 

concentrations were not typical of the hot environment, as also reported by 

Williamson et al. (1985). The effects on thyroid hormones, packed cell volume, 

energy balance and composition of gain were quite different between CS 

infusion and high temperature. Also the effects on antibody production were, 

although small, different. The validity of continuous CS infusion as a 

experimental substitute for chronic stress is therefore questionable. 

Thus some very distinct differences in metabolic characteristics and 

stress associated parameters, caused by either corticosterone infusion or high 

environmental temperature were found. These were not associated, however, with 
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differences in antibody titers. Differences in antibody production between the 

high and low selection line on the other hand were unaffected by experimental 

treatments and also not related to endocrine levels or general metabolic 

characteristics. Therefore these results are proof of the small impact of 

environmental influences or corticosterone on the height of the immune 

response in these selection lines. 
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Thermal influences on antibody production and metabolism in chicken lines 
divergently selected for immune responsiveness. 

General Discussion. 

Introduction 
Genetic improvement of disease resistance is an attractive approach to 

minimize risk of disease outbreak and reduce the cost of medication and 

vaccination programs. The chosen approach of selection for responsiveness to 

a complex, though non-pathogenic antigen (SRBC) proved to be worthwhile. The 

lines diverged steadily from the first generation on. The justification of 

this approach is found in the results of experiments in which other antigens 

and infectious agents were used (Van der Zijpp et al., 1988). In these 

experiments the high (H) line performed better (higher titers, lower 

mortality) than the low (L) line. 

However, the response to a given antigen is not solely genetically 

determined. Heritability estimates of peak titers (5 days after immunization) 

were about .20 - .25 (Van der Zijpp et al., 1988). Thus, environmental 

influences modulate the response to the SRBC immunization, even under 

standardized conditions. Although the repeatability of the assay itself is 

high (about .95; Van der Zijpp and Leenstra, 1980), variation from experiment 

to experiment and from year to year is evident. This can be illustrated by the 

antibody titers on day 5 after the SRBC immunization over the selection 

generations (Fig. 1; compare to Fig. 1 in the General Introduction). Although 

the differences between lines diverged consistently, the levels vary 

considerably. 

These environmental influences on the responses, although the precise 

nature of the source is unknown, were the source of concern about possible 

genotype x environment interactions, and thus provided the motive for the 

present experiments. If genotype x environmental temperature interactions 

were evident, the selection could be impaired. 

From the present experiments it was concluded that this is not the case. 

No interactions were found on either physiological parameters, metabolic rate 

or antibody production. This general conclusion will be discussed in more 

detail. 
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Figure 1. Selection result in antibody titers 5 days after immunization. 

H: High line; C: random bred Control line; L: low line 
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Stress parameters 
During the experiments a number of indicators of the impact of treatments 

on the birds were measured. 

The acute heat stress (in which the chickens were kept for h h periods at 

42°C, with h h intervals), as described in Chapters I and II, did affect 

cloacal temperature and stimulated the hypothalamo-pituitary-adrenal (HPA) 

axis in the chickens. These responses, measured by plasma corticosterone 

concentrations and cloacal temperature, were in accordance with those reported 

elsewhere (Ben Nathan et al., 1976; Edens and Siegel, 1975, 1976; Siegel and 

Gould, 1982; Williamson et al., 1985), but more importantly, they were not 

different between the H and L line. Also, when the adrenals were stimulated 

directly by injecting ACTH, the increase in plasma corticosteroids did not 

differ between H and L line (unpublished results). The effects on both cloacal 

temperature and plasma corticosteroids were temporary, as can be concluded 

from the return to initial levels in the intervening h hour periods between 

the high temperature periods (Chapter II) and the absence of elevated 

corticosterone levels when temperature was increased from 25°C to 35°C 

(Chapter VII). 
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When the birds were placed in high temperature environments (35°C) during 

longer periods, either with or without the opportunity for acclimation 

(Chapters III, VII, VIII), they were hyperthermic continuously. No effects 

were found on plasma corticosterone levels. Thus, in these experiments, the 

HPA axis was not stimulated or, more probably, during acclimation the 

corticosteroid levels were lowered to their base levels again. This requires 

clearing of the corticosterone from the blood stream during the H h intervals 

(Chapter I and II) and soon after the temperature increase from 25° to 35°C 

(Chapters III, VII). This implies endocrine feedback, and binding in 

lymphocytes (Gould and Siegel, 1974, 1978, 1980, 1984, 1985; Siegel and Gould, 

1982). 

Also depression in feed intake, growth rate, reduced protein retention and 

fat deposition and the detrimental effects on lymphoid tissue were clear 

testimonies of the impact of the hot environment. But, here again, the effects 

on the birds were equal in the H and L line. 

Some of the other measured parameters were either not affected at all or 

results were inconsistent. 

Changes in heterophils and lymphocytes, or more particularly the ratio 

between these two, was reported to be a reliable estimate of stress responses 

(Chancellor and Glick, 1960; Ben Nathan et al., 1976; Heller et al., 1979; 

Gross et al., 1980; Gross and Siegel, 1983). We could not confirm these 

observations in the present experiments. No consistent changes were found that 

reflected the impact of heat stress, either after short during acute stress 

(Chapter II), or during the prolonged heat periods (Chapter III, unpublished 

results). Some interesting relations were manifest, however, in the response 

to immunization (Chapter II) . These were proof of the involvement of the 

heterophils (the chickens equivalent of the mammals' "polymorphic neutrophil") 

in the immune response. Comparable results were reported by Trout et al. 

(1988a). Recent observations (Trout et al., 1988b) revealed morphological 

changes in these cells during the initiation of the immune response. Despite 

this proven role in immune function, no difference in number of these cells 

was found between H and L line. However, more precise study of these cells 

during the early phases of an immune response, for example using FACS-

equipment, might be worthwhile. 

Two of the "acute phase proteins", fibrinogen and albumin, did not prove 

useful as indicators of stress. Acute phase proteins are affected by infection 

or injury and show rapid changes in concentration, usually in relation to body 

temperature (fever) . Although they do change together with cloacal temperature 

during a progressing infection in poultry (Sijtsma, personal communication), 

no relation with increased cloacal temperature was found in the present 

experiments (Chapter II; Chapter III, unpublished results). Unexpected, but 

remarkable changes during the immune response were found, on the day peak 
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titer is reached, dependent on immunization route (intramuscular or 

intravenous) . This indicates therefore some relation with antibody production. 

The implications of this finding are unclear, but deserve further study. 

During the experiments which were performed in the climate-respiration 

chambers (Chapters VI, VII, VIII) also endocrine data were gathered. 

Thyroid hormones are frequently associated with immune function (Gause and 

Marsh, 1985; Kai et al., 1987, 1988; Marsh et al., 1984a, 1984b; Mashaly et 

al., 1983; Scott et al., 1985; Yam et al., 1981). Very variable results were 

obtained, however, also in the present studies. Only when the H and L line 

were compared under "standard" 25°C conditions (Chapter VI) was a small, but 

consistent, difference in T3 concentration between the lines found. This 

higher level in the H line was similar to a recently reported difference 

between lines bred to immune response after intravenous immunization with SRBC 

(Martin et al., 1988). In the other experiments (Chapters VII, VIII), no 

reliable relations between thyroid hormones and immune function, selection 

line or treatment (high temperature or corticosterone infusion) were evident. 

Growth hormone concentration was lower during the periods at high 

temperatures (Chapter VII) than at control temperatures, either with or 

without previous acclimation. Somatomedin-C, an inhibitor of growth hormone 

was higher at the same time. These findings match with the decreased growth 

during these periods. No relations were observed however, that would reveal 

an explanation for differences in antibody production between the H and L 

line, or between temperature treatments. 

Also no apparent differences were found between H and L line in metabolic 

rate. Heat production was dependent on environmental temperature during a wide 

range of temperatures (Chapter VI), equally in the two lines. Thermo-

neutrality was maintained by adjustment of the ad libitum feed intake. Only 

a small difference in energy balance, heat production and fat deposition was 

evident between the lines (all higher in H line), during the balance period 

immediately after immunization under 25°C conditions (Chapter VI). These 

results were analogous to those found by Henken et al. (1983) when they 

compared SRBC immunized chickens with a group that received a sham injection. 

The high temperature treatments (continuously hot, or sudden change from 

25° to 35°C; Chapters VII, VIII) and the corticosterone infusion (Chapter 

VIII) had a major impact on metabolic rate. Metabolizable energy, energy 

balance, heat production and fat deposition were considerably decreased, but 

protein retention was rather constant. Only during the balance period 

immediately following the temperature change from 25° to 35°C (Chapter VII) 

a decreased protein retention was found, an indication of severe stress during 

this period. 
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Interactions with antibody production 
Acute stressors 
Although a number of the physiological parameters were indicative of major 

influences of the thermal treatments on the birds, effects on the antibody 

titers were small. 

A major influence of acute stressors on immune responses is generally 

accepted to be mediated through the HPA axis (see General Introduction). In 

the case of antibody production, the period most sensitive to heat stress 

treatment was reported to be between 24 h before and 12 h after the 

immunization (Subba Rao and Glick, 1970). Despite the fact that the acute 

short thermal stressor (four h h periods at 42°C; Chapter I) or the acute 

change in temperature (from 25° to 35°C; Chapters III, VII) was given within 

this period, and it was clear that the HPA axis was stimulated in both lines, 

only incidently was an immunosuppressive action found. After the short period 

heat stress a small suppression was found in only one experiment (Chapter I), 

and in the H line only. But the effect of suppression was considerably smaller 

than the obtained selection difference in this (6th) generation. The most 

pronounced immunosuppression was found in the experiment described in Chapter 

III, after transfer from a 25°C environment to a 35°C environment (Fig. 2). 

It is important to notice that this suppression was similar in the H and L 

line. 

Figure 2. Antibody production in CC, HH and CH treatment after primary 

immunization with SRBC (Chapter III). 

CC: 25°C environment; HH: 35°C environment; CH: moved on day of 

immunization from 25° to 35°C environment. 
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Also in literature considerable variation in the suppressive effects of 

heat stress on antibody production has been reported (Heller et al., 1979; 

Régnier et al., 1980). A number of factors may interfere with the occurrence 

of immunosuppression, as discussed in Chapter I. It is noteworthy that the 

most significant heat stress mediated immunosuppression on humoral immune 

responses reported in literature was found either in a New Hampshire line, 

selected for high bursal weight (Subba Rao and Glick, 1970; 1977) or in Athens 

Randombred that were selected for high stress responsiveness (Thaxton and 

Siegel, 1970; 1972; 1973; personal communication), although this was not 

always clearly stated. Régnier et al. (1980) used birds from the same breeds, 

which were not selected for these traits in comparable experiments. They did 

not find suppressive effects on antibody titers. Also Davison et al. did not 

find suppressive effects of a similar heat stress treatment in their birds 

(personal communication). Heller et al. (1979) even reported enhancing effects 

of the same acute heat stress treatment, in the chicken lines they used. 

Therefore, it is even more notable that in the present experiments, if 

suppressive effects were found, the H and L line reacted in such similar 

manner. This demonstrates the absence of an increased stress susceptibility 

in either line. It emphasizes, however, in combination with the literature 

cited, that genetic differences can exist between poultry stock in 

susceptibility to a stressor with varying outcome in antibody response. 

Only one other study of environment x genotype interactions in antibody 

production, using birds from the same genetic origin, has been reported so 

far. Gross (1986) studied the immune responses in different social 

environments of birds which were selectively bred for high or low antibody 

production after intravenous immunization with SRBC (Siegel and Gross, 1980). 

In that study more pronounced and consistent results in responses to SRBC and 

bacterial antigen between the H and L line were found in 'socialized' birds. 

Comparable differences were found however in 'normal' treated or 'harassed' 

birds. So in that study no clear line x social environment interaction was 

found on the immune response. 

More surprising than the absence of suppressive action of acute stress in 

the present studies, was the absence of immunosuppressive action of direct 

injection of ACTH (unpublished results) and the corticosterone infusion in the 

experiments described in Chapters IV and VIII. Direct administration of ACTH 

or corticosteroids supplied in the feed or by means of infusion, pellet 

implantation or injection usually cause a significant decrease in antibody 

production (Sato and Glick, 1970; Gross et al., 1980; Davison and Misson, 

1987), or cause an increase in the incidence of Mareks' disease (Powell and 

Davison, 1985; 1986). All other effects of the infused corticosterone in the 

present experiments, (growth depression, lymphoid regression, leukocyte 
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changes, fat deposition) were very typical for chronic stress, or at least for 

a chronic high plasma corticosterone level. 

From these observations it is therefore concluded that the H as well as 

the L selection line is particularly tolerant to heat stress or corticosteroid 

effects on antibody production. 

Metabolic rate 
Stimulatory influences on antibody production were found if birds were 

kept for long periods in high temperature environments (Chapters III, VII, 

VIII). In Chapter III an increase of the antibody production in both lines 

was found if the birds were given time to acclimate (Fig. 2) . This is similar 

to results reported by Henken et al. (1983). These effects could have been 

caused by stimulation of the hypothalamo-pituitary-thyroid (HHT) axis, and 

thus increased metabolic rate (Henken, 1983), although these were not measured 

in this experiment. The same treatment repeated in the climate respiration 

chambers, however, did not consistently result in an increase in antibody 

production (Chapters VII, VIII), and the involvement of thyroid regulation 

could not be confirmed. During these experiments in the climate respiration 

chambers considerable changes in metabolic rate caused by temperature 

treatments or corticosterone infusion were evident, but could not be clearly 

related to changes in the measured hormones or the height of the immune 

response. Vice versa, considerable differences in antibody production between 

the lines were not reflected in differences in metabolic rate or hormone 

levels (Chapter VI, VII, VIII). 

Thus, from these experiments in the climate respiration chambers it is 

clear that the differences in antibody production between high and low line 

are not based on aspecific differences in metabolic rate. 

Ontogeny 
The experiments described in Chapter IV, revealed a significant difference 

between the high and low line in the weight of one of the immunologic most 

important organs, the spleen. In all other experiments higher spleen weight 

were found in the high line too, but in this experiment it was found to be so 

during the whole ontogeny of the bird, even before immunization. Moreover, 

it was demonstrated that after immunization higher numbers of plaque-forming-

cells were present in the spleen of high line birds. This certainly 

contributes to the immunologic difference between the lines. These findings 

imply that functional differences in immune responsiveness are probably based 

on cellular activity and cooperation. 

Another important finding, which justifies more basic research into cell-

cell and cell-antigen interactions, is that the frequencies of some haplotypes 

of the major histocompatibility complex (B-complex) are different in the 
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successive lines (Van der Zijpp and Nieuwland, unpublished results). This 

probably has implications on a number of important immunologic cell-

interactions, with consequences for disease resistance. 

Consistency of results 
As outlined in the first paragraph of this discussion, considerable 

variation between experiments can be found in antibody production levels. This 

was also found in the present series of experiments. Sometimes 

immunosuppression was found; the same treatment repeated in a second 

experiment did not give any immunosuppression. Even under these highly 

controlled experimental conditions there were apparently a number of factors 

which influenced the occurrence of stimulation or suppression. It is therefore 

comforting to find that, even if a environmental factor influenced the 

response, the impact was always smaller than the selection difference obtained 

in the six or seven generations. Moreover, the difference between selection 

lines was consistent under all conditions studied in these experiments. It is 

questionable whether high temperature influences under practical conditions, 

unless being lethal in itself, would have greater impact on the immunology 

of the birds than in the experiments presented here. The importance of high 

temperature interactions in these lines can therefore be neglected, also under 

practical conditions. 

Conclusions: 
From these experiments it is concluded that 

• The selection on antibody production did not alter the physiological 

responses to an acute thermal stressor, or to high environmental 

temperature. 

• Both the high and low selection line are particularly resistant to thermal 

stress or the effects of corticosterone, with respect to antibody 

production. 

• Environmentally induced changes in endocrine profiles and metabolic rate, 

before or during the immune response, do not have a regulatory role in 

antibody production. 

• The obtained difference in immune responsiveness between the high and low 

selection line is not physiologic functionally related to differences in 

body weight or metabolic rate. 
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The size of the spleen and the total number of (potential) immunocompetent 

cells therein is a deterministic factor for the difference in immune 

responsiveness between the high and low selection line. 
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Thermal influences on antibody production and metabolism in chicken lines 

divergently selected for immune responsiveness. 

General Abstract. 

Introduction 
The international character of the poultry industry requires that poultry 

bred under temperate conditions should be able to perform under tropical 

conditions as well. However, abrupt changes in environmental temperature or 

continuous high temperatures may affect production traits, immune 

responsiveness, and thus disease resistance. 

Improved disease resistance can be obtained by breeding for high immune 

responsiveness. However, if the effects of a stressor, e.g. high temperature, 

is be different in the successive selection lines, the selective advantage 

can be lost. 

Two mechanisms might cause such a genotype x environment interaction. 

First, the stress susceptibility may be increased after the selection for high 

responsiveness. Second, the body weight, and thus possibly metabolic rate, 

may be different between the selection lines. This could imply different 

thermal requirements of the birds, and thus different reactions to changed 

environmental temperatures. 

In the present studies, the effects of acute thermal stress and continuous 

high temperature on antibody production to sheep red blood cells (SRBC) were 

investigated in young chickens, which had been selected for either high (H) 

or low (L) antibody titers to SRBC for several generations. Also, the 

influence of infused corticosterone, the "stress"hormone that is held 

responsible for immunosuppression, was studied. The general aim of the 

studies was to investigate the occurrence of genotype x environment 

interactions and the causes for such interactions. 

Chapter I 

To study the effects of acute thermal stress on antibody production, three 

experiments were carried out. The chickens were subjected to an acute heat 

stress treatment (4 periods of h h at 42°C, with h h intervals) 24 h before 

an immunization with SRBC. Experiments reported in literature described 

considerable immunosuppressive action of such treatments. This treatment could 

give therefore a good opportunity to study the possible differences in 

response between the selection lines. 

Immunizations were given intramuscularly (i.m.) and intravenously (i.v.) 

(with different doses). Only in one experiment was a relatively small, but 
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significant, immunosuppressive effect found in the H line, but not in the L 

line. The immune response in the H line was always considerably higher than 

in the L line. 

Chapter II 
To quantify the impact of the heat stress treatment on the birds, changes 

in a number of physiological parameters were studied in the birds, which were 

subjected to the treatment described in chapter I. 

During the heat stress treatment cloacal temperature and plasma 

corticosterone were increased. Changes in numbers of circulating leukocytes, 

and plasma albumin and fibrinogen concentrations were not changed during the 

heat stress, but changed during the following days in which the immune 

response was developing. Differences in these changes between i.m. and i.v. 

immunized birds were found, but H and L line were not different. 

Chapter III 
In chapter III an experiment is described, in which the chickens were 

placed in climate chambers. In this experiment, an acute thermal stress was 

given, comparable to that described in chapters I and II, but the effects of 

prolonged heat on the birds were also studied. After acclimation to high 

temperature, the influence of acute stress diminishes, and endocrine and 

metabolic changes can affect antibody production. The environmental 

temperature was constant either 25° or 35°C or it fluctuated daily between 15-

25°C or 25-35°C. At the time the immunization with SRBC was given, some of the 

chickens were exchanged between the different temperatures (acute stress). 

At the high temperature, the chickens were hyperthermic, showed depressed 

growth, and post mortem lower weights of lymphoid organs were found equally 

in acclimated and non-acclimated chickens. Birds moved from 25° to the 35°C 

environment (CH) had a lower immune response than those that remained at 25° 

(CC) . The birds which were already in the 35° environment before immunization 

(HH) mounted higher immune responses. The responses in birds which were kept 

in the chambers with fluctuating temperatures, showed less pronounced 

differences, suggesting a smaller impact of these temperatures, or a better 

acclimation of the birds to the temperature. These effects were the same in 

H and L line chickens. 

Chapter IV 
A number of experiments are described in chapter IV, in which the ontogeny 

of lymphoid organs (important for the immune system), and the number of 

plaque-forming-cells (the precursors of the antibody-secreting cells) in the 

spleen were studied. Aim of this study was to find morphological differences 

between the H and L line that might determine the difference in immune 
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responsiveness. It was found that the spleen was already heavier in the H line 

than in the L line, before immunization. Also, higher numbers of plaque -

forming-cells were found in the spleen of birds from the H line than in those 

of L line birds after immunization. These differences contribute to the 

differences in antibody production after immunization. 

Chapter V 
Because the effects of acute heat stress on antibody production, described 

in chapters I and III, were smaller than expected, a study with direct 

application of corticosterone was done. Corticosterone is the hormone presumed 

to cause immunosuppression after stress. Direct administration of 

corticosterone might reduce the variability in the response measured after 

thermal stressors, and thus provide a more precise comparison of stress 

effects between the lines. In chapter V this experiment is described in which 

the birds were infused with a corticosterone solution (CS). 

Major effects of the CS treatment on plasma corticosterone, growth, 

leukocytes and lymphoid organs were found. The antibody titers to SRBC were 

unaffected, in the H and L line. 

In chapters VI, VII and VIII the effects of the treatments already 

described in chapter III (CC, HH and CH) and V (CS infusion) were studied more 

extensively. Changes in metabolic rate, growth, energy and protein turnover, 

caused by the different temperature treatments might have comparable effects 

on antibody production as obtained by selection. These treatments were studied 

in relation to changes in endocrine factors (corticosterone, growth hormone, 

somatomedine, thyroid hormones T3 and T4) and energy metabolism. Therefore 

these studies were performed in the climate-respiration chambers. 

Chapter VI 
Because an average weight difference exists between the H and L line (L 

line is usually about 7% heavier) the influence of differences in metabolic 

rate between the lines on antibody production was studied. 

Heat production was recorded at different temperatures in both lines. Heat 

production was somewhat higher in the L line than in the H line in one of two 

experiments, but no lower critical temperature could be estimated in either 

line. Thermo-neutrality was maintained by adjusting feed intake. 

During the immune response only minor differences in energy metabolism 

were detected between the two lines. These could not unanimously be related 

to the height of the immune response. 

193 



Chapter VII 
Chickens were subjected to a CC, CH or HH treatment, as described in 

chapter III. The effects of high temperature on metabolism were very evident. 

Decreased feed intake, growth rate, heat production and fat deposition were 

found. In the CH treatment also a decreased protein retention was found during 

the balance period immediately after the temperature change. Effects on 

cloacal temperature and lymphoid organs were as reported before (Chapter III). 

The effects of the temperature treatments on antibody production were not as 

impressive as found in the experiment in chapter III. Plasma corticosterone 

and thyroid hormones were not affected, somatomedine was increased and growth 

hormone decreased in hot environments. Differences in metabolic traits, caused 

by the different environmental temperatures were not related to differences 

in antibody titers, and differences in antibody titers between the H and L 

line were not reflected in differences in metabolic rate. 

Chapter VIII 
Finally, the CC and HH treatments were compared to CS infusion. Some 

effects of the infused corticosterone and HH treatment were similar. Decreased 

feed intake, growth and heat production were found in both treatments. Also 

lymphoid organs were negatively influenced in either treatment. But no 

increased plasma corticosterone levels were evident in HH treatment. T4 

concentration was decreased in CS infused birds; T3 was lower in CS infused 

and was the lowest in HH treated birds. The energy balance was higher in CS 

infused birds immediately after immunization. Fat deposition was higher in CS 

infused birds. A small stimulatory effect of the HH treatment on antibody 

production was found in the L line birds only. Similar to chapter VII, no 

clear relations between endocrine parameters, energy metabolism and antibody 

production were found. It was questioned whether the CS infusion is valuable 

as an experimental model for continuous (heat) stress, because of the marked 

differences in a number of the measured characteristics. 

Discussion 
In the discussion it is argued that the differences between H and L line 

in antibody production are very steady. 

From the experiments, it is evident that severe heat stress, prolonged 

heat and corticosteroids do affect the birds: growth, body temperature, 

corticosterone and other hormones, lymphoid development are changed, but 

equally in both lines. The selection did not result in a "high stress 

susceptibility line". 

Moreover, both lines are apparently rather stress resistant, with regard 

to antibody production. Acute heat stress, prolonged severe heat and even 
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corticosterone infusion could only marginally affect antibody titers. If the 

antibody production was affected by the experimental treatment, the changes 

were usually very similar in the H and L line. The absence of genotype x 

environment (heat stress) effects was therefore apparent. 

The influence of metabolic rate, as measured here, on antibody production 

was rather small. Some changes in fat deposition during the balance period 

immediately after the immunization were found, which could indicate a shift 

in energy distribution between fat and protein, during the immune response. 

But no direct relation between metabolic rate, influenced by selection or 

environmental temperature with endocrine regulation and antibody production 

was found. It was also concluded therefore that the difference in bodyweight 

between the selection lines is rather based on linked genes than physiologic 

meaningful relations between the immune system and energy metabolism. 
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Temperatuurs invloeden op antilichaam produktie en metabolisme in 
op immuun respons geselekteerde kippelijnen. 

Samenvatting. 

Inleiding 
Het internationale karakter van de pluimvee-industrie vereist dat kippen, 

welke gefokt zijn onder gematigde klimatoligische omstandigheden, ook onder 

tropische omstandigheden moeten kunnen produceren. Plotselinge temperatuurs

veranderingen en hoge temperaturen kunnen echter de produktie en het 

immuunsysteem, en daarmee de ziekteresistentie, beinvloeden. 

Verhoogde ziekteresistentie kan onder andere verkregen worden door te 

selekteren op een hoge immuunrespons. Wanneer deze voordelen van een verhoogde 

resistentie onder gematigde omstandigheden echter verloren gaan als gevolg 

van b.v. hoge temperaturen, is de waarde hiervan beperkt. 

Er zijn twee mogelijke mechanismen waardoor dergelijke genotype x milieu 

interakties op zouden kunnen treden. Op de eerste plaats kan de stress-

gevoeligheid van de kippen welke op een hoge respons geselekteerd zijn 

verhoogd zijn. Op de tweede plaats kan, als gevolg van een gemiddeld 

gewichtsverschil tussen de hoge en de lage selektielijn, de temperatuurs-

behoefte van de dieren veranderd zijn en daarmee de reaktie op veranderende 

omgevingstemperaturen. 

In de beschreven experimenten werd de invloed van "akute hittestress" 

(plotselinge temperatuursveranderingen) en konstant hoge temperaturen op 

antilichaamproduktie bestudeerd. Hierbij werden jonge kippen gebruikt, welke 

gedurende een aantal generaties geselekteerd waren op een hoge ("H") of lage 

("L") antilichaamproduktie nadat zij geïmmuniseerd waren met schapen rode 

bloed cellen (SRBC). Behalve temperatuursinvloeden is ook gekeken naar de 

invloed van corticosteron, toegediend via een infuus. Corticosteron is het 

"stress"hormoon, dat waarschijnlijk een belangrijke rol speelt in het 

veroorzaken van immuunsuppressie. Algemeen doel van alle experimenten was het 

bestuderen van het vóórkomen van genotype x milieu interakties en de oorzaken 

ervan. 

Hoofdstuk I 
Teneinde de invloed van akute hittestress op antilichaamproduktie te 

bestuderen werden drie experimenten gedaan. De kuikens werden aan een "hitte 

behandeling" blootgesteld van 4 periodes van een h uur bij 42°C, met telkens 

een h tussentijd, 24 uur voor ze geïmmuniseerd werden met SRBC. Uit de 

literatuur was al bekend dat een dergelijke behandeling een goede methode was 
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om immuunsuppressle op te wekken. Daarom zou deze methode geschikt moeten zijn 

om de mogelijke verschillen in respons tussen de selektielijnen te bestuderen. 

De immunisaties werden zowel in de spieren (intramusculair, i.m.) als 

rechtstreeks in de aderen (intraveneus, i.v.) gegeven, met verschillende 

doses. Slechts in één experiment werd een, relatief klein maar signifikant, 

immuunsuppressief effekt gevonden in de H lijn, doch niet in de L lijn. De 

hoogte van de immuunrespons was in de H lijn altijd belangrijk hoger dan in 

de L lijn. 

Hoofdstuk II 
Om een indruk te kunnen krijgen over hoe "zwaar" de hittestress was, zoals 

die gebruikt was in hoofdstuk I, en of deze belasting verschillend was tussen 

de twee lijnen, werden een aantal fysiologische parameters gemeten. 

Tijdens de hitte behandeling waren de rektaal gemeten temperatuur en het 

corticosteron gehalte in het bloed verhoogd. Tijdens deze behandeling werden 

er geen veranderingen in de aantallen witte bloedcellen en plasma albumine en 

fibrinogeen concentraties gevonden. Deze parameters veranderden echter wel in 

de daarop volgende dagen tijdens het ontwikkelen van de immuunrespons. Er 

werden in deze kenmerken geen verschillen gevonden tussen de H en L lijn, maar 

wel tussen i.v. of i.m. geïmmuniseerde dieren. 

Hoofdstuk III 
In hoofdstuk III wordt een experiment beschreven, waarin de kuikens in 

klimaatkamers geplaatst waren. In dit experiment werd een akute hittestress 

gebruikt, vergelijkbaar met die in hoofdstukken I en II, maar werd ook de 

invloed van kontinue hitte bestudeerd. Na aanpassing aan de hoge temperatuur 

neemt de stress invloed af en kunnen hormonale en metabole veranderingen 

mogelijk de immuunrespons beinvloeden. De ingestelde omgevingstemperatuur was 

25°of 35°C of fluktueerde dagelijks tussen 15-25°C of 25-35°C. Op het moment 

dat de immunisatie met SRBC werd gegeven, werd een deel van de kuikens 

overgeplaatst van de ene temperatuur naar de andere (akute stress). 

Bij de hoge temperaturen hadden de kuikens konstant een verhoogde rektaal 

temperatuur, groeiden slechter en hadden, na slachten, lagere gewichten van 

de lymfoïde organen. Bij de kuikens welke overgeplaatst waren van 25° naar 

35°C (CH behandeling) werd een lagere immuunrespons gemeten dan bij die welke 

konstant bij 25°C gehouden werden (CC controle). Een hogere respons werd 

echter juist gemeten bij kuikens welke konstant in de 35°C omgeving zaten (HH 

behandeling) . De kuikens in de kamers met dagelijks fluktuerende temperaturen 

vertoonden kleinere afwijkingen in de hoogte van de respons. Dit duidt op een 

geringere invloed van deze temperaturen, of een betere aanpassing van de 

kuikens aan de omgeving. Alle gemeten effekten waren hetzelfde in de H en de 

L lijn. 
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Hoofdstuk IV 
In hoofdstuk IV wordt een aantal experimenten beschreven, waarin de 

ontogenie van een aantal lymphoïde organen (belangrijk voor het 

immuunsysteem), en het aantal plaque-vormende-cellen (de voorlopers van de 

antilichaam uitscheidende cellen) in de milt worden bestudeerd. 

Het doel van deze studie was om morfologische verschillen tussen de H- en de 

L-lijn te vinden die het verschil in immuunrespons kunnen bepalen. Er werd 

gevonden dat de milt al voor immunisatie zwaarder is in de H dan in de L 

lijn. Tevens werden er grotere aantallen plaque-vormende cellen gevonden in 

de milt van H lijn kuikens na immunisatie. Deze verschillen dragen bij aan het 

verschil in antilichaamproduktie na immunisatie. 

Hoofdstuk V 
Omdat de verschillen in antilichaamproduktie, na de acute hittestress 

zoals beschreven in de hoofdstukken I en III, kleiner waren dan verwacht, werd 

een experiment uitgevoerd met rechtstreekse toediening van corticosteron. 

Corticosteron is het hormoon dat een belangrijke bijdrage levert aan de 

immuunsuppressie veroorzaakt na stress. Rechtstreekse toediening van 

corticosteron kan de variabiliteit in de gemeten respons na hittestress 

verminderen en kan dus een nauwkeuriger vergelijking van de Stresseffekten 

geven tussen de lijnen. In dit hoofdstuk wordt dit experiment beschreven, 

waarbij corticosteron werd toegediend door middel van een infuus (CS-infuus). 

Duidelijke effekten van de CS-behandeling werden gevonden op de plasma 

corticosteron concentratie, groei, aantallen leukocyten en ontwikkeling van 

lymfoïde organen. De antilichaam-respons tegen SRBC was niet beinvloed, noch 

in de H, noch in de L lijn. 

In de hoofdstukken VI, VII en VIII worden de behandelingen, zoals 

beschreven in hoofdstukken III (CC, HH en CH) en V (CS-infuus) uitgebreider 

bestudeerd. Veranderingen in metabolisme, groei, energie- en eiwithuishouding, 

zoals veroorzaakt door de verschillende temperatuurbehandelingen, kunnen 

vergelijkbare effekten hebben op de antilichaamproduktie, als verkregen door 

selektie. Daarom werden deze behandelingen bestudeerd in relatie tot 

hormoonhuishouding (corticosteron, groeihormoon, somatomedine, en de 

schildklier hormonen T3 en T4) en energiemetabolisme. Deze studies werden 

daarom uitgevoerd in de klimaat-respiratiecellen. 

Hoofdstuk VI 
Omdat er een gemiddeld gewichtsverschil bestaat tusen de H en L lijn (de 

L lijn is meestal zo'n 7% zwaarder) werd de invloed van verschillen in 

metabole aktiviteit vergeleken tussen de lijnen. 
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De warmteproduktie van de kuikens werd geregisteerd bij verschillende 

omgevingstemperaturen. In één experiment werd een iets hogere warmteproduktie 

gevonden in de L lijn, maar niet in het tweede experiment. In geen van de 

experimenten kon de onderste kritieke temperatuur vastgesteld worden, noch bij 

de H, noch bij de L lijn. De kuikens handhaafden hun thermoneutraliteit door 

de voeropname te verhogen bij lagere temperaturen. 

Tijdens de immuunrespons werden slechts geringe verschillen in energie

huishouding vastgesteld, welke niet éénduidig aan verschillen in de 

immuunrespons konden worden gerelateerd. 

Hoofdstuk VII 
Kuikens werden blootgesteld aan een CC, CH of HH behandeling, net zoals 

in hoofdstuk II. Er waren duidelijke invloeden van deze behandelingen op de 

energiehuishouding. Verlaagde voeropname, groei, warmteproduktie en vet-

depositie werden gevonden als gevolg van de CH en HH behandeling. In de CH 

behandeling werd eveneens een lagere eiwitsynthese gevonden in de periode 

onmiddellijk na de temperatuursverandering. De effekten op rektale temperatuur 

en lymfoïde organen waren net als in hoofdstuk III. De effekten op de 

immuunrespons waren minder duidelijk dan in hoofdstuk III. De concentraties 

van plasma corticosteron en schildklierhormonen waren niet beinvloed, maar 

de concentratie van somatomedine was verhoogd en van groeihormoon verlaagd als 

gevolg van de hoge temperatuur. Verschillen in metabolisme kenmerken, 

veroorzaakt door de behandelingen, konden niet gerelateerd worden aan 

verschillen in immuunrespons. Omgekeerd waren verschillen in immuunrespons 

tussen de H en L lijn niet terug te voeren tot verschillen in metabole 

kenmerken. 

Hoofdstuk VIII 
Tot slot werden de CC en HH behandelingen vergeleken met de CS-infuus. 

Sommige effekten van de CS infuus en de HH behandeling waren zeer 

vergelijkbaar. Lagere voeropname, groei en warmteproduktie worden in beide 

behandelingen gevonden. Ook de ontwikkeling van lymfoïde organen is minder 

in beide behandelingen. Maar het plasma corticosteron niveau is niet verhoogd 

bij de HH behandeling, terwijl bij de CS infuus TA lager en T3 hoger waren 

dan bij de CC behandeling. T3 was nog lager bij HH behandelde kuikens. De 

energie balans was hoger direkt na de immunisatie. Vetdepositie was hoger in 

CS geinfuseerde dieren. In de HH behandeling werd een geringe stijging 

gevonden in de immuunrespons, alleen bij de L lijn kuikens. Vergelijkbaar met 

hoofdstuk VII, werd er geen duidelijke relatie gevonden tussen gemeten 

hormonen, het op deze wijze gemeten metabolisme en de antilichaam respons. Het 

is de vraag of een op deze wijze toegediende CS infuus bruikbaar is als 
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experimenteel model voor kontinue (hitte) stress, vanwege de toch duidelijke 

verschillen in een aantal van de gemeten parameters. 

Diskussie 
In de diskussie wordt er op ingegaan dat de verschillen in immuunrespons 

tussen de H en L lijn erg konstant zijn. 

Uit deze experimenten is het duidelijk dat de hittestress en het 

corticosteron infuus de kuikens beslist beinvloeden: groei, 

lichaamstemperatuur, plasma corticosteron en andere hormonen, lymfoïde organen 

worden beinvloed, maar altijd in gelijke mate in de H en L lijn. De selektie 

heeft niet geresulteerd in een lijn met hogere stress gevoeligheid. 

Bovendien lijken beide lijnen relatief resistent te zijn voor stress

invloeden, voor wat betreft hun antilichaam produktie. Zowel akute stress, 

als langdurige hitte en zelfs rechtstreeks toegediende corticosteron hadden 

slechts marginale effekten op de hoogte van de immuunrespons. En wanneer een 

van de behandelingen een invloed had op de respons, dan waren de effekten 

veelal vergelijkbaar in de hoge en lage lijn. Daarom is er geconcludeerd dat 

er geen noemenswaardige genotype x milieu (hitte) interaktie aanwezig is bij 

deze lijnen. 

De invloed van energiehuishouding, zoals hier gemeten, op de immuun

respons is klein. In een aantal gevallen werd een verandering in de 

vetdepositie gevonden, in de periode direkt na de immunisatie. Dit kan duiden 

op een verschuiving in de verdeling van energie tussen eiwit- en vetaanzet, 

tijdens de immuunrespons. Maar geen rechtstreekse relatie tussen verschillen 

in metabole aktiviteit, als gevolg van de selektie of ten gevolge van de 

verschillende behandelingen, met hormonale regulatie of antilichaam produktie 

was aantoonbaar. Daaruit volgt dan ook dat verschillen in gewicht tussen de 

selektielijnen veeleer een gevolg zijn van genetische koppeling, dan dat ze 

berusten op fysiologische betekenisvolle relaties tussen immuunsysteem en 

energiehuishouding. 
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