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STELLINGEN 

1. Land use at the sub-regional level can be described by means of a set of spatial 
objects. The object-oriented approach enables a structured description of land use 
and land use change, which is lacking in most present approaches to land use inven­
tory. (This thesis.) 

2. The possibilities for discriminating between land cover types only on the basis of 
spectral reflectance characteristics are limited. Major improvements to spectrally 
separate land cover types are not to be expected by increasing the spectral and 
spatial resolution of satellite imagery. The integration of remote sensing data with 
other types of data, employing a process of reasoning for information extraction 
whereby the proper use of rules of inference is of great importance, is more 
promising in this respect. 

3. The interpretation of (remotely sensed) data for the extraction of information on 
terrain objects always refers to a particular context. The definition of context to 
consist of: (a) a thematic context that is reflected in the classification system and 
attribute structure of objects; (b) a spatial context that is reflected in the levels of 
aggregation and the used scale levels; (c) the purpose of mapping and the aspect of 
time, enables a meaningful description of the context and the structured use of 
context information. 

4. Reconnaissance soil surveys do not provide data with sufficient detail to be 
relevant for evaluating land use with respect to the bio-physical land potentials at 
farm - or field level. On the other hand, the information that is provided is too 
specific for the evaluation of land use at sub-regional level. The goals and practice 
of the reconnaissance soil survey should be reconsidered. 

5. Scientific development in the field of land use inventory studies and rural surveys 
is hampered by the lack of a central paradigm. 

6. Land evaluation and farming system analysis (LEFSA) provide information on 
land use, through land and land use inventory and diagnosis of problems associated 
with land use. The function of information in the planning process and plan 
execution has to be defined as yet. This function can only be determined through 
analysis of the planning process. 

7. With the technical capabilities of modern GIS systems for handling and 
processing spatial data, the interpretation of results and judgement of their validity 
has become a primary problem. The required expertise is generally lacking with the 
operators of GIS systems and with planners who might base their decisions on the 
information that is generated. 



8. Zolang er 'oerrunderen' grazen in door onszelf gecreëerde natuur en transgene 
stieren volkomen natuurlijk ogen zal een duurzaam milieu een illusie zijn. 

Tom Lemaire (1970), Filosofie van het landschap, Uitgeverij AMBO. 
Hans Achterhuis (1992), De illusie van groen. Over milieucrisis en de fixatie op 
techniek, Uitgeverij de Balie. 

9. Wetenschappelijk onderzoek is eigenlijk een poging van wetenschappers om die 
situatie te scheppen waarin hun ideeën het duidelijkst bevestigd worden. Dit 
subjectieve aspect wordt vaak ontkend door het suggereren van objectiviteit. Echter 
juist de erkenning daarvan bevordert de objectiviteit. 

llya Prirogine and Isabelle Stengers (1990), Orde uit Chaos. Uitgeverij Bert 
Bakker. 

10. Wetenschap is een strijd geworden om geld, faciliteiten en plaats voor publica­
ties in tijdschriften. De condities die daarvoor gelden werken eerder verstikkend op 
de wetenschap dan dat deze bijdragen tot vernieuwende inzichten. 

Henry H. Bauer (1992), Scientific literacy and the myth of the scientific method, 
University of illinois press. 

11. Onderzoekers die in de tropen gestationeerd zijn hebben de neiging harder te 
werken en/of meer op vakantie te gaan. Beide zijn redenen om onderzoek in de 
tropen te bevorderen. 

12. Hoe groter de afstand van waaraf wij het aards oppervlak waarnemen des te 
onbeduidender lijkt alles te worden wat zich op dat oppervlak afspeelt. 

13. Computers lack a body to be intelligent. 

Hubert L. Dreyfus (1979), What computers can't do. The limits of artificial intelli­
gence, Harper & Row publishers, New York. 

Stellingen behorende bij het proefschrift " Land use zones and land use patterns in 
the Atlantic zone of Costa Rica" van Jeroen Huising, te verdedigen op 3 mei 1993 in 
de aula van de Landbouw Universiteit Wageningen. 
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Abstract 

This thesis describes an approach to land use inventory at the sub-regional scale in the 
Guacimo-Rio Jiménez-Siquirres (GRS) area in the Atlantic Zone of Costa Rica. Therefore, 
the concept of "land use zones" is introduced. The land use zone (LUZ) plays a central role 
in the definition of an observational methodology as well for structuring dynamics in land 
use. Land use is described in terms of the land use pattern (LUP). The LUP denotes the 
farming systems and land utilization types (LUTs) occurring within a land use zone. 

This thesis formulates a methodology for the inventory of land use and land use change 
that is object-oriented and data-driven. "Object-oriented" means that land use is expressed 
in terms of a collection of objects (land use zones) with specific geometric and thematic 
characteristics. A classification system is developed so that each class contains land use zones 
with a characteristic thematic description, geometry, aggregation structure and dynamics. The 
handling of such complex object information requires that emphasis is put on the definition 
of a data model. 

For inventory purposes satellite imagery and aerial photos are used. The use of these 
materials involves pattern recognition. The "data-driven" approach in this case means that 
the classes to describe land use are not a-priori but inductive, i.e. they result from the inven­
tory process. The data-driven approach is a strategy to gain insight in the sub-regional land 
use expressed in the land use patterns. The complex land use inventory process is unravelled 
into a number of sequentially ordered processing steps, described in the various chapters. 
This thesis consists of three parts. 

The first part of this thesis defines LUZs as a tool for the inventory of land use and land 
use change. From the comparison of aerial photos of 1948-1952 and 1984 we learn that the 
LUZs, that belong to the agricultural area, have stable boundaries. This implies that the land 
use zone may serve as a reference area for monitoring land use change. 

Data on farm size distribution and farming system composition of a number of zones were 
obtained by means of a farm survey. The data show significant differences in the farming 
system composition, on the basis of which we define the land use patterns. That these clear 
differences occur indicates that the LUZ serves as a spatial unit for the land use inventory 
at the sub-regional level. The differences in LUP relate to differences observed in land cover 
composition and farm size distributions. This relation indicates that information on LUP may 
be inferred from composite land cover and farm size characteristics, so that satellite imagery 
and aerial photos can be used as tools for land use inventory, if the proper rules for interpre­
tation are applied. 

The correspondence between LUP and composite land cover implies that change in LUP 
may be inferred from change in land cover composition, under the condition that the 
geometric characteristics do not change. Change in land cover composition of LUZs between 
1986 and 1990 was investigated using satellite imagery. Clear trends in land use change were 
observed, when the proper interpretation rules are applied. These trends were a decrease in 
the area for the cultivation of maize and in pasture land, and an increase in the area for 
banana and macadamia production and reforestation. Besides changes in area of crops, a 
change in the condition of pastures and banana plantations could be indicated. 

The second part describes the pattern recognition process. This concerns the identification 
and classification of the LUZs. First, the stratification of the GRS area into sub-regions is 
described. The spatial pattern, which is determined by the size, form and arrangement of the 
agricultural fields, is used as a key to the aerial photo interpretation and as a criterion to 
identify the LUZs. 



Once the LUZs are identified, their field size characteristics and the land cover composi­
tion are determined. A procedure is described for the per pixel land cover classification. This 
procedure will guide the image analyst in the complex task of defining a set of training 
classes with statistical properties suitable for the maximum likelihood classification. Emphasis 
is on the training phases. The procedure presented here makes use of supervised as well as 
unsupervised approaches. 

Special attention has been paid to the definition of LUZ classes. Statistical methods are 
used to identify and define the different patterns as a key to classification. Field size charac­
teristics of the LUZs were determined. One-way analysis of variance and multiple compari­
son were used to evaluated differences in mean field size. This resulted in the definition of 
five classes for mean field size. 

A hierarchical cluster analysis was performed to evaluate the difference in land cover 
composition between the LUZs. To derive the relevant groups of corresponding LUZs from 
the results (represented by a dendrogram) a critical distance is defined. The critical distance 
denotes the minimum distance at which LUZs (or groups of LUZs) are considered signifi­
cantly different with respect to their land cover composition. The critical distance reflects 
accuracy of data on land cover composition, which is determined by the accuracy of the land 
cover classification and the geometric accuracy of the land cover map and the LUZ map. The 
resulting composite land cover classes provide information on land use of the LUZs. 

Land use information is obtained by interpretation of the land cover composition and field 
size characteristics of the LUZs. This interpretation involves the transformation of data 
classes into information categories by using mapping rules (also termed decision rules). 
Mapping rules assign a conditional class label to an object, whereby the condition refers to 
a particular context. The mapping involves complex decisions. Insight in the complex 
decision structure is gained by putting the decision rules in hierarchical order. The result is 
a decision tree for the classification of LUZs in terms of LUPs. The decision tree leads to 
stepwise classification of LUZs. The decision tree provides a formalized description of the 
decisions in the classification of the LUZs. 

In Part Three the land use in the GRS area is evaluated with respect to bio-physical land 
potentials. The LUZ map and the physiographic soil map were combined. The soil unit 
boundaries and the land use zone boundaries corresponded to a high degree. But this does 
not mean that land use is in agreement with the (bio-physical) land potentials. Results show 
that 18 % of the GRS area is at risk of land degradation, while 51 % of the area is con­
sidered to have potential for more intensive use. Expert judgement is used to determine the 
suitability of the soil types for specific land utilization types (LUTs). However, the exact 
position of the soil type or the LUT cannot be determined at a sub-regional scale, with units 
being composite in nature. This introduces a fundamental uncertainty with respect to the 
statements on land use suitability. The study, therefore, has an exploratory character. The 
figures denote expectations. 

In the last chapter the variation in banana yield within one plantation (representing a 
particular LUZ) is investigated. Soil survey data explained 67 % of the variation. Combining 
Landsat-TM and soil data did not provide a better estimation of yields. The explained 
variation remained 67 %. 



Preface 

The main part of this thesis deals with land use inventory. The original idea had a 
broader scope. It incorporated also soil suitability assessment and agro-ecological evaluati­
on as part of a GIS for land use planning. This thesis shows that land use inventory in 
itself is a topic large enough to spend almost 5 years on. The soil, as such, plays a minor 
role in this thesis, though I do think that my experience as a soil scientist in soil survey 
strongly shaped my attitude towards land use inventory. This is reflected, for example, in 
the use of aerial photos. With respect to land use inventory emphasis has been primarily 
on data acquisition. In the beginning attention was focused on the use of satellite imagery, 
to be shifted later to data modelling and object classification. 

Priorities change during the research as consequence of insights gained in the regional 
setting and in the subject itself. Problems are encountered and this further steers the line 
of investigation. Doing research is in fact a kind of struggle to come to grips with the 
subject of interest, to fulfil conditions required for the research and to put everything on 
paper. The struggle was harder and took more time than I had imagined. At this point I 
am relieved to conclude this research, but at the same time anxious to further explore the 
possibilities the theory offers. I hope the reader may acknowledge the importance of the 
problems discussed in this thesis and can make use of my experience to his or her own 
advantage. 
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EXPLANATION OF TERMS 

Data class : Data source-specific class or cluster, defined from relationships in a particu­
lar data space. Also named 'attribute values class' when the object attribute refers to 
a particular data source. 

Faces (photo interpretation) : surfaces on the aerial photo, homogeneous in tone and 
texture, recognisable through change in tone or texture or through linear features 
delimiting the faces. 

Farm system : Decision making unit comprising the farm household, cropping and 
livestock systems, that transforms land, capital and labour into useful products that 
can be consumed or sold (Fresco et ah, 1990). 

Farming system : Class of similarly structured farm systems (Fresco et ah, 1990). 
Farming Systems Analysis : Diagnosis and analyses of farm level variables, concerning 

farming and land use, covering both ecological and socio-economic aspects (Fresco 
etal, 1990). 

Geographical Information System : A (computerized) system providing a structure for the 
description of spatial data and tools for storing, retrieving, transforming and 
displaying of geographical data, describing objects from the real world (Burrough, 
1986). 

Information categories : classes of information bearing a direct relevance in the user 
situation. Inferences about the information classes are drawn from the collection of 
data classes. 

Land Cover : Vegetation and artificial constructions covering the land (Rhind & Hudson, 
1980). 

Land Evaluation : The process of assessment of land performance when used for specific 
purposes, involving the execution and interpretation of surveys and studies of 
landforms, soils, vegetation and climate and other aspects of land in order to identify 
and make comparison of promising kinds of land use in terms applicable to the 
objectives of the evaluation (FAO, 1976). 

Land Use : Man's activities on the land, which are directly related to the land (Clawson 
& Stewart, 1965). 

Land Use Pattern (LUP): The LUP describes the land use of a land use zone. The LUP 
denotes the land utilization type(s) and farming system(s) occurring within a LUZ. 

Land Use Zone (LUZ): A geographical unit (or object) with a particular land use pattern 
and a dynamic behaviour, expressed by change in the land use characteristics and by 
change in the land use zone boundaries. The LUZ provides a geographical basis for 
the description of land use and land use change at sub-regional level. 

Land Utilization Type (LUT): Crop, crop combination or cropping system with a 
specified technical and socio-economic setting (FAO, 1983). In this thesis the LUT 
refers to land use at field level. 

Land Evaluation and Farming Systems Analyses (LEFSA): A conceptual model for land 
use planning, integrating the land evaluation and farming systems analyses 
approaches. 

Object class : Kind or type of object. 
Spatial pattern : An arrangement of (spatial) components which has more meaning than a 

simple aggregation of the components. Within the context of the present study the 
components refer to agricultural fields. 

Superclass : Generalization of object classes; many object classes can belong to one 
superclass. 
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AP - Agricultural Penetration 
APs - Aerial Photos 
APTD - Average Pairwise Transformed Divergence 
AZ - Atlantic Zone 
BB - Bare soil and Built-up area (land cover class) 
CATIE - Centra Agronómico Tropical de Investigación y Ensenanza 
CLC - Composite Land Cover 
CLCC - Composite Land Cover Class 
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FOR - Forest (land cover class) 
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LUT - Land Utilization Type 
MAG - Ministerio de Agricultura y Ganaderia 
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LAND EVALUATION AND FARMING SYSTEM ANALYSIS. 

In 1986 the Wageningen Agricultural University (WAU) entered into a cooperative 
research effort with the Centra Agronómico Tropical de Investigación y Ensenanza (CATIE) 
and the Minestério de Agricultura y Ganaderia (MAG). These institutions started a program 
for regional development studies, natural resource inventory and studies of ecological change 
in the Atlantic Zone of Costa Rica. The ultimate aim of the research is to provide relevant 
insights for agricultural planning purposes, directed to sustained land use and small farm 
development. The project aims at the development of a methodology for defining alternative 
land use scenarios, based on the Land Evaluation and Farming Systems Analysis (LEFSA) 
concept (Fresco et al., 1990). 

Within the framework of the Atlantic Zone research program attention is devoted to the 
application of satellite remote sensing and geographical information systems (GIS) for general 
purpose land cover and land use inventory and the monitoring of changes in this respect. It 
serves to provide information needed for the LEFSA sequence, although the LEFSA 
sequence was not yet defined in 1987, when the present study was initiated. 

LEFSA is a conceptual model for land use planning. Land use planning refers to regional 
agricultural planning. It is a form of intermediate-level planning of regions with a view to 
bridging the gap between general macro-planning and specific project planning. It concerns 
the identification of priority areas, which can be understood in both a geographical and a 
thematic sense. Both land evaluation and farming systems analysis represent tools for land 
use planning. The LEFSA integrates both methods, in order to profit from the advantages 
of both approaches and to overcome the shortcomings intrinsic to each one. The initiative to 
reconcile procedures had previsouly been taken by Young (1986). 

Land evaluation has a strong geographical orientation, through the mapping and descrip­
tion of the different types of land. It looks at potentials for the use of land, based on an 
evaluation of the bio-physical resources, with respect to selected types of land utilization 
(FAO, 1976). The shortcomings of many land evaluations are related to problems in 
integrating agronomic and socio-economic information. A constraint of the methodology itself 
is the lack of clear procedures for the selection of land use types (Fresco et al., 1990; also 
remarked by Young, 1986). 

Farming systems analysis focuses on determining present uses of land. In contrast, land 
evaluation puts the emphasis on future and potential uses. Farming system analysis diagnoses 
the present situation with regard to farming and land use, providing insight in possible and 
necessary improvements. Farming system analysis lacks the geographical orientation of the 
land evaluation approach. Its problems are largely related to the selection of the relevant 
areas. The land units serve to identify the areas where agricultural problems are subsequently 
diagnosed. These units, however, might be less suitable to denote areas with homogeneous 
land use characteristics. In such areas the farmers are part of similar agricultural systems, 
operating under comparable agro-ecological as well as socio-economic conditions. The 
integration of LE and FSA, as proposed in LEFSA, intends to preserve the strong geographic 
character of the LE and to use the FSA for diagnosis and identification of relevant land 
utilization types. 

LEFSA recognizes the different emphasis on the hierarchical level at which both 
approaches work. LE focuses on the regional level in its reconnaissance task and on cropping 
system level in its detailed analysis, whereas FSA concentrates on the farm level. Therefore, 
hierarchical levels are identified that are acceptable to both methodologies. Starting from the 
highest level, these are: the regional level, the sub-regional level, the farm system and the 
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farm sub-system (which consists of the household system, the cropping system and the 
livestock system). 

These hierarchy levels are intended to be relevant for both the land evaluation and the 
farming system analysis. By implication, both the land use and the physiography or the soil 
can be described as separate systems or models at the different hierarchy levels. In the 
present investigation land use and soil have been treated as independent themes. 

Both the crop system and farm system can be geographically and thematically defined as 
individual entities. This is less clear for the description of land use at sub-regional and higher 
levels. In the document mention is made of the possibility to employ land use and vegetation 
maps to which farm information from statistical sources or limited field work can be related. 
Such maps may be based on information from remote sensing, whereby "care should be 
taken that the different land use types and cropping and livestock systems can be identified 
within the land use/cover units" (Fresco et al. 1990). It is commented that "this might 
require changes in the way the land cover and land use classes are presently defined. " 

The latter quotation specifies the focus of the present study. The aim is to contribute to 
the LEFSA sequence by elaborating the sub-regional level with respect to the land use. To 
provide tools for the inventory of land use at the sub-regional scale, satellite remote sensing 
data and aerial photography are employed. The traditional tools for FSA comprise observa­
tions in the field and farm survey. 

SATELLITE IMAGERY AND AERIAL PHOTOS FOR SUB-REGIONAL LAND USE 
INVENTORY 

Since the launching of the first satellite for land observation in 1972 (ERTS1), remotely 
sensed data has been used extensively for the inventory of land cover and land use. However, 
there are some limitations to the use of satellite remotely sensed data. These were also 
experienced with respect to the land cover and land use inventory in the Atlantic Zone of 
Costa Rica. In brief: 

- Remote sensing is best suited for the inventory of land cover, since this can be 
directly sensed. The relevance for land use inventory is limited. Also in a general 
purpose land cover classification, the classes are often hardly specific, further 
complicating the inference of land use information. 

- The results of the satellite-based land cover classification often show limited 
reliability. 

- Image interpretation is a rather unstructured, subjective activity. As a conse­
quence the results have a somewhat 'ad hoc' character. The process is therefore 
difficult to describe and transfer and the results are uncertain. Also the procedure 
may be less efficient; much time is needed to obtain results of acceptable quality. 
The general-purpose classification of land cover requires insight in the occurrence 
of land cover types over a large area. It also requires insight in the possibilities 
for the recognition of these cover types through remote sensing. With the increas­
ing need for timely data and given the changeable character of land cover and 
land use, this is considered to be a major limitation. 

The present document addresses these questions, as well as the problems associated with the 
use of remote sensing (and GIS) for purposes being discussed. 

For regional agricultural planning, information on the regional land use pattern is 
required. The above-mentioned problems indicate a discrepancy between the methods and 
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techniques available and the information required. This is related to a discrepancy in scale 
level. A different general strategy for the inventory of land use is clearly needed. The 
methods (and techniques) should be adapted to the information requirements. Remote sensing 
serves as a possible data source. Integration with other data sources is needed to obtain the 
required land use information. 

An important aspect of the approach to land use inventory presented here is its object-
oriented character. The object refers to a geographic entity* associated with a specific level 
of aggregation. As such, scale dependencies can be accounted for. Also in land evaluation, 
we see that in recent years attention has focused, in recent years, on tailoring soil studies (or 
the use of soil survey data) to specific requirements. These study designs take into account 
the scale dependencies, as well as levels of detail and accuracy of the information required 
(Bouma et al., 1986; Bouma, 1989). 

GEOGRAPHICAL INFORMATION SYSTEMS AND THEORY 

Land use is changeable, especially in regions like the Atlantic Zone of Costa Rica, where 
the colonization history is relatively young. 
The capability for regular updating and monitoring of land use change is therefore an 
important requisite. With respect to regional agricultural planning it is important to visualize 
the effects of different land use scenarios and to be able to assess the effects of measures 
taken. It implies the use of a geographical information system (GIS). 

The monitoring of land use change requires a systematic approach to land use inventory. 
Structured, objective and quantitative methods and measures are needed to enable the 
consistent execution of the inventory process and description of land use corresponding to 
different points in time or to different regions. It entails the design of a data model for des­
cription of land use and a clearly defined process structure for the inventory of land use. The 
system aspects are an important theme in the present research. 

A geographical information system (GIS) provides a certain structure for the description 
of spatial data and tools for storing, retrieving, transforming and displaying of geographical 
data (Burrough, 1986). The geographical data describe objects from the real world. 
The term GIS can be taken to denote a computer system with the technical capabilities and 
functions just cited. Alternatively, the term may denote an application-oriented GIS, 
providing a conceptual data model and prescribed (semi-automated) procedures for data 
processing relevant to the field of application, The term may also refer to a GIS in which a 
fully elaborated data model has been implemented, containing data on a specific area and for 
a specific application and with standard (or fully automated) procedures. In this thesis we are 
concerned with the development (or application) of a GIS for a specific application, namely 
land use inventory. 

Geographical information systems are widely used at present. Problems are encountered 
with the exchange of data and with the linking of geo-information of different fields of 
application. (These problems were also experienced in the present investigation, specifically 
in linking the soil and physiographic data to the land cover and land use data.) A major 
problem is that the object definitions are always embedded in a particular context (i.e. field 
of application, scale, geographical region). Solutions have been sought in data standardization 
(i.e standard definitions of terrain objects) but have, as yet, not been very successful. This 
is observed and commented upon in an article by Molenaar (1991c) entitled "Object hierar­
chies, why is data standardization so difficult?". An explanation of the difficulties in data 
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standardization would require an investigation of the structural aspects of data and object 
definition. That is, it presupposes the definition of theoretical information models for 
geographical information systems. The formal data structure (FDS) developed by Molenaar 
(1991a, 1991b) has been adopted as a principle for the structuring of the object description 
in the present study. 

The data model only constitutes part of an information system, when this is taken to 
represent an arrangement of components (or subsystems) that process inputs into outputs. The 
information contained in a map (or GIS) cannot be seen independently from the process (and 
methods) to derive the information from the input data. 

Also with respect to data processing, standardization of the procedure (defining a uniform 
process structure) is important to guarantee comparable and reproducible results. The 
definition of such a structured procedure (or process structure) requires insight in the data 
and information flow. In the information analyses the functional steps and the relation 
between these steps in the information process are identified. On the other hand the data 
structure and the methods and techniques for data processing are investigated. Decision rules 
determine the process logic (Essink and Romkema, 1989). In the context of the land use 
inventory, the information process refers to the inference of land use information from 
satellite imagery and aerial photos, applying knowledge on the regional context (see Figure 
1 for the general structure). 

Image interpretation (referring to both aerial photo and satellite imagery) is a rather 
complex process. Image interpretation involves seeing and understanding. This requires both 
the identification of image pattern elements (i.e. tone, color, size, shape, etc.) and the analy­
sis and articulation of conceptual knowledge, based on diverse stereotype models and 
heuristic rules employed by expert interpreters (Agrialas and Harlow, 1990). 

As is often the case in aerial photo or satellite image interpretation, the objects of interest 
are not defined a-priori, such that the interpretation can be directed to the recognition hereof. 
Indeed, the interpretation serves to identify the objects. In the case of the land use inventory 
the object as concept for modelling of land use even had to be introduced. In that event, the 
problem is to determine the relevant object characteristics, which requires insight in the role 
of the objects in the land use analysis (i.e. the context). When it is known which information 
the objects have to carry, the relevant object characteristics can be determined. From these 
the criteria for the object definition and recognition follow. Using imagery for the recognition 
of objects preseumes the translation of the object characteristics into image characteristics. 
The pattern recognition contains context-dependent decision moments. Lack of insight in the 
problematic sketched here makes image interpretation a very subjective activity. 

With respect to remote sensing, systems for interpretation of satellite imagery have 
received much attention in the literature. The systems are generally based on a per pixel 
classification. In order to improve results the models not only contain algorithms for solving 
mathematical problems, but they also incorporate knowledge about the objects to be mapped. 
Making use of such knowledge represents the expert system approach. For an overview of 
the knowledge-based (or model-based) models, see Agrialas and Harlow (1990) with respect 
to remote sensing image interpretation, and Robinson and Frank (1987) as regards know­
ledge-based systems for GIS. A general conceptual model that would apply to a GIS for land 
use inventory is presented in Figure 1. 

Two main tasks were set for the present investigation: first, the definition of (a structure 
for) the land use inventory process; and second, the application of the land use inventory 
process at sub-regional scale. A representative area of about 30 by 30 km was selected for 
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the application and validation of the procedure. The area is named after the three villages that 
define the area: Guacimo, Rio Jimenez and Siquirres (GRS area). The question is whether 
land use can be quantified through a repeatable and transferable methodology. 

G.I.S 

/ Satellite remote 
sensing data 

% 

Aerial photo 
data 

Held data Knowledge 
base 

I 
INFERENCE 

RESULTS AND OUTPUT 
L 

Figure 1 General structure of a knowledge-based system. 

LAND USE INVENTORY AND ANALYSIS IN THE ATLANTIC ZONE OF COSTA 
RICA 

For the regional inventory of land use in the Atlantic Zone of Costa Rica, the land use 
zone is defined as the central geographical unit (or spatial object). The land use zone concept 
assumes the existence of sub-regions with discriminating land use characteristics. The land 
use is described by the land use pattern, denoting the farming and cropping systems occurring 
within a land use zone and the prevailing socio-economic conditions. The units are intended 
to serve as target areas, composed of farmers operating under similar conditions and ex­
periencing more or less the same problems and opportunities. That is, it serves to diagnose 
and analyze the agricultural system at sub-regional level and it identifies the relevant land use 
types for the land evaluation to be executed per unit identified. As such the units are assumed 
to provide a context for defining and evaluating land use scenarios. 

The land use zone can be considered an aggregation of agricultural fields (as far as the 
agricultural lands are concerned). The land use zone may consist of many farms, a single 
farm, or a part of a farm when the corresponding area is large enough to be recognized at 
the sub-regional level and when the agricultural activities of the farm or enterprise are 
differentiated. 

In Part 1 the land use zones are described and their relevance for the inventory of land 
use and land use change on a regional scale is assessed. The discussion It concerns the prag­
matics of the identified objects. The first chapter gives a structure for the description of spa­
tial objects. In the subsequent chapters, the thematic and behavioral aspect of the objects are 
investigated in relation to land use and land use change. All concern the GRS area. An 
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important theme in this first part is the interpretation of the object's image characteristics 
with respect to the land cover and land use characteristics. 

In Part 2, the strategic and methodological aspects are addressed. The strategy consists 
of the following parts: 

- The stratification (or image segmentation) process, in which the land use zone 
boundaries are determined. The geographical units are determined by means of 
aerial photo interpretation, whereby the spatial pattern is the most important crite­
rion. A pattern (or structure) is attributed by an expert to an arrangement of 
components, which has more meaning than a simple aggregation of the compo­
nents (Agrialas and Harlow, 1990). Concerning land use inventory, two related 
types of patterns are distinguished, namely the spatial pattern (e.g. certain arran­
gement of fields) and the land use pattern (e.g. certain combination of land use 
types), whereby the former is an expression of the latter. Aside from being a 
mere aggregation of elementary objects, the land use zone is justified as a geo­
graphical entity in itself, by its specific land use history and land ownership 
pattern. 

- The determination of the land use zone characteristics. The land use zones are 
characterized by elements derived from aerial photos and land cover composition. 
To obtain information on land cover, use is made of satellite imagery. Analyses 
of the object characteristics indicate the degree to which the land use zones can 
be mutually discriminated. On this basis, the aerial photo interpretation is 
evaluated and accepted or rejected. 

- The classification of the land use zones. This consists of classification of the land 
use zones on the basis of their image characteristics. First the appropriate classes 
are defined, taking account of the discriminating power of the object characteris­
tics. In second instance, these classes are to be translated to the relevant cat­
egories describing the land use patterns of the land use zones. 

The structuring of the inventory and classification process requires a clear distinction 
between the object's image characteristics, which are important for object recognition and 
characterization, and the object's land use characteristics, which are inferred from the image 
characteristics. The inference is described as a separate activity. 
To make an inventory of land use, a data-driven approach was selected. This means that the 
classes are not defined a-priori but are generated by the procedure. This approach is the 
strategic answer to situations in which exact information requirements cannot be specified and 
in which there is limited availability of materials. This approach is also an answer to the 
image interpretation dilemma described earlier. 

In an introductory chapter to Part 2 the land use zone approach is described in general 
terms. It is justified as an object-oriented approach in terms of developments in the use of 
satellite imagery and aerial photos for land cover and land use inventory. 

Part 3 deals with land use evaluation, taking bio-physical land characteristics into con­
sideration. When the present research was initiated, soil mapping of the Atlantic Zone was 
already under way. A case study is presented which makes use of this soil data and of the 
land use zone data for evaluating land use at the sub-regional scale. The evaluation serves 
to identify priority areas with respect to possible over-exploitation of the natural resources 
and with respect to possibilities for improved use of the natural resource. 

In addition, a study is presented concerning the variation in banana yield as explained by 
remote sensing and soil survey data. This study is included to demonstrate the use of remote 
sensing and soil information at a more detailed level. 



ATLANTIC ZONE PROFILE 

This condensed profile of the Atlantic Zone was compiled from Hall (1984), Silva (1982), 
Waaijenberg (1990) and Wielemaker (1990). The information on land cover was obtained 
from our own data sources. 

Geomorphology and soils 
The northern Atlantic Zone (AZ) is located in the north-east of Costa Rica. It constitutes 

the transition of the central volcanic mountain range to the Caribbean Sea. 
Three major landforms can be distinguished from the south-west to the north-east: 

- The sloping areas of the central mountain range with lava and lahar deposits of 
andesitic composition. At higher elevations these deposits are covered with 
volcanic ashes. 

- Slightly inclined plains at the foot of the volcanoes with fine grained fluvio-
laharic deposits. 

- The coastal plain with fine-textured to peaty deposits and inundated depressions. 
Remnants of Tertiary and early Quaternary volcanism with deposits of basaltic 
composition, strongly dissected and with deep weathered soils are also found. 

The soils in the area belong predominantly to the Andosols and Inceptisols. Their fertility 
status depends largely on the age of the deposits, which varies strongly for the first two of 
these three landscapes. The younger deposits are covered with nutrient-rich and non-acid 
soils, whereas the older deposits are covered with nutrient-poor and acid soils. The younger 
lava and lahar deposits on and near the volcanoes can be extremely stony. The soils of the 
coastal plain are fertile but often suffer from impeded drainage. Very recent fluvial deposits 
are shallow and sandy, limiting agricultural use. 

Climate 
The AZ has a humid tropical climate. The mean annual temperature is 26°. Daily tem­

peratures vary little, and differences in day and night temperature are small (a maximum 
difference of about 12°). 
The mean yearly precipitation varies between 3000 and 6000 mm/yr, with mean monthly 
precipitation generally between 300 and 700 mm. The months of February, March and April 
represent a relatively dry period with mean monthly precipitation values between 100 and 300 
mm. 

Agricultural history and present use 
The colonization of the AZ began with the establishment of some cacao plantations around 

Matina in the 17* century. Before then, the AZ was populated by a few indigenous groups. 
Plantation worker were recruited from these groups. Later negro slaves were imported to 
work on the plantations. 
The late colonization of the AZ might be explained by the adverse climatic conditions, the 
presence of dense forest cover and other less favorable conditions in the Atlantic Zone. The 
colonization proceeded very slowly in the beginning; by 1820, Matina had only 34 in­
habitants. 

The colonization process gained momentum with the construction of a harbor at Limon 
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and the construction of the railway (1872-1890) for the benefit of the coffee export. The 
coffee was produced around Cartago. First the line Limon-Guapiles was built; later, the 
branch from Siquirres to Cartago was constructed. In this period, a start was made with the 
cul-tivation of banana. The product was already exported before the end of the century. The 
period is marked by the foundation of the United Fruit Company, which was to dominate 
banana production in the area for four decades to come. 

The beginning of the 20* century showed a strong increase in the production of banana, 
accompanied by further extension of the railway infrastructure. Production came to a stand­
still in the 1930s as consequence of the Panama disease, which attacked the roots of the 
plants, and of labor unrest. Cacao, maize and cassava became important crops after the 
demise of the banana plantations. The initiative for the cultivation of cacao seems to have 
come from the banana companies. The area of its cultivation is often associated with former 
banana plantations. At the end of the 1950s, we see the return of banana cultivation, with 
new varieties resistant to the Panama disease. Production increased steadily thereafter, 
accompanied by improvements of the road infrastructure. This period is also marked by the 
immigration of many people from other parts of the country, seeking jobs at the plantations 
or looking for other opportunities to make a living. Those with financial resources bought 
farms; others occupied new lands still under forest at the fringe of the reclaimed areas. 

The workers at the plantations were often employed on a temporary basis. When leaving 
the plantations many tried to settle nearby as farmers. In the 1970s, the pressure on the land 
increased and larger estates were invaded. These estates were generally not used for agricul­
tural purposes. Conflicts were settled by the intervention of the Institute for Agrarian 
Development (IDA), buying up the estates and distributing the land. 

At the end of the 1980s a new agrarian policy was announced, seeking to reduce subsidies 
on basic grains and increase the cultivation of crops for export. The last years have shown 
an increase in the cultivation of ornamental crops and flowers and food crops like 
macadamia. Most of these crops, however, are not feasible alternatives for the small farmer. 
Land use in the region is thus characterized by strong and rapid change, which find expres­
sion above all in the rapid deforestation of the area. The location of land brought into use, 
land claims and grants, and the settlements were all strongly related to the route of the 
railway. It has resulted in a pattern of parcels and fields positioned in a direction perpen­
dicular to the railway. This pattern can still clearly be recognized. 

Table 1 presents data on land cover of the AZ. This data was obtained on the basis of a 
1986 satellite image (Landsat-TM). The largest part of the Atlantic Zone is still occupied by 
forest. The forests are found in the coastal area and on the slopes of the volcanoes of the 
central mountain range. The percentage presented in Table 1 somewhat overestimates the 
forest cover, because the Landsat-TM scene includes a forested part of Nicaraguan territory. 

Of the unforested area, most is covered by 'wooded area'. This includes tree crops like 
cacao, citrus and macadamia (the latter two are not very important), homesteads, wooded 
pastures and other wooded areas like riverbanks. Pastures occupy a large part of the area, 
especially if we consider that part of the 'wooded area' also corresponds to grassland and that 
the 'grass vegetation on inundated or poorly drained lands' often forms part of the pasture 
land. Banana production is by far the most important economic activity in the region at 
present, though it occupied (only) 9.6 % of the unforested area in 1986. Livestock breeding 
takes a second place. 
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Table 1. Land cover distribution in the Atlantic Zone 
The Atlantic Zone land cover distribution: Forested and deforested area: 

Forest 

Unforested 

Total area of the scene 

46.4 % 

53.6 % 

569560 ha. 

Land cover distribution within the deforested area: 

Banana 

Pasture land 

Unvegetated lands 

Wooded area 

Secondary Vegetation 

Grass vegetation of lands inundated or poorly drained 

Other 

9.6 % 

24.7 % 

13.6 % 

27.3 % 

12.9 % 

7.0 % 

4.9 % 

Land cover and land use was inventoried for the northern Atlantic Zone. The development 
of the methodology and testing of the validity of the approach, of which the next chapters 
give account, was done in a part of the Atlantic Zone considered representative for the area 
in total. The area has been called the Guacimo-Rio Jiménez-Siquirres (GRS) area, after the 
three most important villages in the area. The location of the GRS area is shown in Figure 
1. 

Tortuguero 

Limon 

COSTA RICA 

Fig. 1 Location of the GRS study area 
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INTRODUCTION 

The main purpose of Part 1 of this thesis is to evaluate land-use zones as meaningful 
entities for inventorying and mapping land use and land-use change on a sub-regional scale. 
An inventory has been made of land-use in the Guacimo-Rio Jimenez-Siquirres area of Costa 
Rica. The results are presented as a land-use map in Appendix D. 

A land-use map is a model of the real world. This model is relevant only in the specific 
context for which it has been designed. Of more general interest is the structure of the 
model, which we expect to be applicable to land-use modeling in other regions as well. 

A model is described in terms of objects (or entities) and in terms of the relations between 
objects. In a geographic context, these objects represent terrain objects (or spatial objects). 
Geographic Information Systems (GIS) are used to store and analyze the data on terrain 
objects (Burrough, 1986). 

Attempts to link different GIS have been disappointing and efforts to tackle this problem 
through standardization of object description have failed. Molenaar (1991c) attributes these 
failures to the context-dependent nature of object definitions. Further attempts to solve these 
integration problems have led to the investigation of spatial data structures. The importance 
of a data structure for describing terrain objects has been stressed by various authors 
(Peuquet, 1984; Molenaar 1991a,b). 

This first chapter presents a data structure to describe terrain objects. It provides a 
framework for modeling terrain objects and it explains the terms and concepts that the reader 
will encounter in the subsequent chapters. The data structure presented here is based on the 
Formal Data Structure (FDS) defined by Molenaar (1989a, 1991b) and Molenaar and Janssen 
(1991). Only minor changes have been made. 

A FORMAL STRUCTURE FOR DESCRIBING TERRAIN OBJECTS 

Included in the descriptions of terrain objects are the following characteristics: 
- Geometric structure; 
- Thematic content; 
- Dynamic behavior. 

Also included in the descriptions are the relations between the objects. Besides the 
topological relation, three other types of relation can be defined. These are: 

- Classification hierarchies; 
- Aggregation hierarchies; 
- Associations between the objects. 

The dynamic behavior of the objects refers to the changes in these characteristics over 
time. Such changes require an updating of the objects' representations in a GIS. 

Object-Oriented Terrain Description 

There are three components in the basic structure for describing the terrain objects in a 
GIS (Fig. 1.1). These are: 
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- An object identifier; 
- Geometric data; 
- Thematic data. 

Behavior can be added as a fourth 
component, but we shall not be comment­
ing upon this further, as it is expressed in 
terms of the object's geometric or them­
atic characteristics. 

Depending on the context, an object can 
be described as an area object, as a line 
object, or as a point object. (A town, for 
example, can be represented either as an 
area object or as a point object, depen­
ding, among other things, on the scale of 
the map.) Objects are represented in one 
of two geometric structures. The current 
systems of processing geographic information are either vector-based or raster-based. They 
imply a vector-to-raster conversion, or vice versa, when the objects that are presented in 
different geometric structures are to be combined or related. 

The description of geometric structures is outside the scope of this disssertation. For a 
description of a formal data structure for vector maps, see Molenaar (1989a and 1991a). 

Fig. 1.1 Basic structure for the representation 
of objects (after Molenaar, 1991a). 

The concept of the Land-Use Zone (LUZ) was developed to enable an inventory of 
land use in the Atlantic Zone (AZ) of Costa Rica (CR). The LUZ defines the central 
geographic object (or unit) for describing that land use. The LUZ is characterized by 
a certain land-use pattern and its boundaries (or geometric data) are determined 
through aerial-photo interpretation, a process in which the spatial pattern is the most 
important interpretation key. A spatial pattern is an arrangement of superficies with a 
homogenous land cover (e.g. fields). 

Object Classes 

Thematic data refer to the attributes of an object. Objects are related if they belong to the 
same object class, which is defined as either a common attribute structure or corresponding 
attribute values. All objects in an object class have a common attribute structure. In Figure 
1.2, we see that one object class can contain many objects. 

Take, for example, the object class "rivers". Relevant attributes of rivers include depth, 
width, current velocity, flow rate, and maximum tonnage. All the objects classified as rivers 
have these attributes. Only the values differ. The possible attribute values come from the 
attribute domain (Fig. 1.3). Similarly, we could define an object class "roads", also with its 
own attribute structure. 

In principle, there is no difference between an object class that is defined through a 
common attribute structure and one that is defined through corresponding attribute values. 
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Object class 

Object 

Attribute list 

Attribute values 

Fig. 1.2 Class structure of objects (Mole­
naar, 1991a) 

Fig. 1.3 The relation attribute value-atribute 
domain-attribute name (Molenaar, 1991a). 

For example, we could classify rivers as either small or large, on the basis of their flow 
rates. At this level of generalization, the value domain would specifies the two possible class 
values. The former object class "rivers" becomes a superclass representing a higher level of 
generalization than the classes "small rivers" and "large rivers". This shows that we can 
build classification hierarchies by evaluating the attribute values at different generalization 
levels. 

Object classes with partially corresponding attribute structures can be grouped into a 
superclass. Each level of the classification hierarchy has its own attribute structure and its 
own set of attributes whose values are evaluated. The object classes inherit the attribute 
structure and the attribute values of their superclass. We can, for example, define a 
superclass "waterways" that contains "rivers" and "canals" at the next level down. Canals 
include all water ways with no flow rate. Rivers, however, do have a flow rate, an attribute 
that allows us to divide them into either "large rivers" or "small rivers". At this level, we 
can determine the object attributes (e.g. large rivers are characterized e.g. by their maximum 
allowed tonnage, an attribute that might not be relevant for small rivers). 

Super class 

! 

Object class 

i 
Object 

Super class attribute list, 1 -2 

Super class attributel values 
Attribute list 

Super class attribute 2 values 
Attribute values 

Attribute value classes 

Fig. 1.4 Class and superclass structure of objects. 
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Figure 1.4 also shows the class hierarchical structure. At the highest level are the super­
classes with their lists of superclass attributes. Some of these attributes are evaluated at the 
next level down, the class level, and some are evaluated at the lowest level, the object level. 
At each level, additional attributes are defined. It is possible to find out whether an object 
belongs in an object class (or in a superclass) by verifying the presence or absence of 
attributes and by evaluating attribute values. The classes are defined either by the user or 
through the analysis of the distribution characteristics of the attribute values. The classes 
represent clusters within the object space that is defined by the attributes. These clusters are 
called attribute value classes. 

LUZs are used for the inventorying and mapping of land use at sub-regional level. 
They represent zones with a recognizable land-use pattern. Land-use patterns reveal a 
farming system or a particular combination of farming systems (e.g. cattle farming or 
plantation cropping) in a specific sub-region. They represent the object class level. In 
the classification hierarchy, classes like "agricultural areas" and "residential and 
industrial areas" are given at superclass level. The specific classification structure 
depends on the purpose of the land-use inventory. 

Aggregation Hierarchies 

In aggregation hierarchies, the inheritance lines lead upward. This is unlike classification 
hierarchies, in which the inheritance lines of attribute structures lead downward, causing the 
thematic description of terrain objects to become more detailed the farther we go down the 
hierarchy. 

Figure 1.5 shows how composite objects can be built up from elementary objects and how 
these composite objects can be put together to build up still more complex objects. The 
composite objects inherit the attribute values from their constituent parts. There is no direct 
relation to the classification hierarchy. In fact, for every type of composite object, a separate 
classification structure can be defined (Fig. 1.6). 

composite 
object 

elemen ary 
UUJOOl 

attribute values (2) 
composite attribute -
values (1) 

attribute values (1) 

Fig. 1.5 Structure for composite objects. 
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For each level of the aggregation hierarchy, there should be rules for selecting the terrain 
objects that are to be aggregated to a particular composite object. In a GIS, these rules will 
be based partly on the topological relations between terrain objects (e.g. connectivity or 
adjacency) and partly on the thematic relations (e.g. common class values). 

Not all of the class values that can occur in a composite object will occur. Even so, 
contrary to what Molenaar states (1991c), this does not mean that composite objects cannot 
have a fixed attribute structure. If elementary objects can be aggregated to form composite 
objects, then their attributes can be aggregated also. For each elementary attribute, there is 
a corresponding composite attribute, implying that for the fixed attribute structure for the 
elementary object there is a corresponding fixed attribute structure for the composite objects. 

The distribution of the attribute values (or the attribute value classes) within the composite 
objects can be described with a frequency distribution or with statistical data like mean and 
standard deviation. The composite attribute values will depend on the specific composition 
of the composite objects. 

Classification hierarchy levels 

A 

Super class 2 
(SC2) 

Super class 1 
(SC1) 

Object class 
(OC) 

Elementary object • 

Levels of aggregation 

Fig. 1.6 Relation between aggregation hierarchy and clas­
sification hierarchy 

A good example of a composite object is a town district, which can be considered an 
aggregation of buildings. It can be classified as residential, administrative, or industrial, 
depending on the function of the buildings, that is, depending on their object class (e.g. 
houses, offices, shops, factories). But having said this, we should bear in mind that a 
residential area need not consist exclusively of houses - shops and some offices might be 
present as well. Nor, by the same token, does an industrial area need to have only factories. 
The district can be described simply by for example the number of buildings in each object 
class. 
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LUZs are composite objects. The elementary objects that combine to form them are 
fields (or, in more general terms, superficies with a homogeneous land cover). Fields 
are described through their size and land cover. The composition of the LUZs is then 
described through mean field size and land-cover composition. (The percentages of land 
cover are obtained by overlaying the LUZ with a land-cover classification based on sate­
llite imagery.) 

As the LÙZs delineation is based on recognizable field patterns, so it follows that the 
shape, size, and orientation of the fields are the actual criteria for aggregation. The spa­
tial pattern itself is an independent (non-aggregated) characteristic of the composite ob­
jects, relevant only to the specific aggregation level. 

Object Associations 

Besides classification hierarchies and aggregation hierarchies, which are very well defined, 
there is a third, less well defined type of relation between terrain objects: Object associations. 
The associations between terrain objects are determined by corresponding attribute values 
(e.g. houses or buildings with the same owner, companies with an office in Amsterdam, and 
so on). And, unlike the hierarchies, which are characterized by many-to-one relationships 
(m:l), object associations represent many-to-many relationships (m:n). 

Even though they are less strictly defined, associations between terrain objects can be very 
important for interpreting and evaluating certain phenomena. Object associations are general­
ly found by mounting searches based on attribute values or by analyzing the joint occurrences 
of different kinds of objects. 

Object associations based on ownership apply to LUZs. LUZs with a common owner 
are sometimes scattered over the region. Often they are adjacent, in which case they re­
present one farm or one enterprise with various kinds of land use (for which they are 
mapped as separate LUZs). Information on ownership can be relevant because a change 
of ownership often implies a change in land use. 

OBJECT DYNAMICS 

Now that we have a data structure for describing terrain objects, we can describe the 
dynamic behavior of these objects as well. By dynamic behavior we usually mean: 

- Changes in geometric structure; 
- Changes in thematic content; 
- Changes in aggregation structure. 

A change in the geometric structure of an object can mean a change in its position, its 
shape, or its size. A change in position implies a corresponding change in the topology, 



20 Chapter 1, Parti 

which will then have to be updated. For a discussion of updating geometric data and 
maintaining consistency, see Molenaar (1991b). 
Changes in the thematic content of an object concern: 

- Changes in one or more attribute values; 
- Changes in the attribute structure (e.g. an agricultural area that is converted to a 

residential area). 
Both kinds of change might cause the object to migrate to another object class. 
Changes in the aggregation structure are illustrated in Figure 1.7. They can be: 

- The fragmentation of an area into smaller objects; 
- The dissolution of small elementary objects into a larger object; 
- The changes in the arrangement of the elementary objects that make up an aggregated 

object. 
Changes in the definition of the aggregation hierarchies and in the classification hierarchies 
are not considered here because they do not concern the dynamic behavior of the objects. 
They do, however, affect the relations between the objects. 

Fig. 1.7 Changes in aggregation structure, a -fragmentati­
on of objects; b - dissolution of the elementary objects; c -
change of arrangement. 

To these three types of change we can add a fourth, one that does not refer only to objects 
that have already been identified. This is the change caused by the appearance of new objects 
and the disappearence of existing ones. Describing the appearance and disappearance of 
objects is difficult when the existing objects are the only frame of reference. In theory, these 
changes can be described by changes in the aggregation structure of objects at a higher 
aggregation level (e.g. fragmentation, dissolution). Imagine that a new elementary object 
appears. Its appearance implies the fragmentation of the composite object to which it belongs. 
Similarly, the disappearance of an elementary object can be described by dissolution at the 
composite-object level. But what if the new object is a composite object? It would require 
defining a higher aggregation level to descibe the associated change, which, in turn, would 
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require redefining the aggregation hierarchies. And this might involve redefining the 
aggregation structure of the existing objects. 

We can describe these changes another way. For example, if a composite object at 
aggregation level 1 is split, the new objects, which also belong to aggregation level 1, will 
be associated by their common origin. So, if new objects appear by splitting or merging, 
only one level of aggregation is involved in the process. We refer to this type of change as 
change in association structure (Fig. 1.8). If new objects appear by fragmentation or 
dissolution, two levels of aggregation are involved. 

Fig. 1.8 Change of object association structure. 

Such changes occur when, for example, regional structures develop in a formerly 
undifferentiated forested area because of colonization. The emerging LUZs can be 
described by their own aggregation structure and class structure. The changes are then 
not associated with the changes in the characteristics of a specific LUZ, but rather with 
the replacementof one LUZ by another or by several different LUZs. 

Comparable changes occur when, for example, agriculture on a plantation is changed 
or diversified. The plantation is split into various areas, each with its own type of land 
use. This division implies the definition of new LUZs, which are associated because of 
their common origin. 

On the other hand, different LUZs can be merged to form one area with a specific 
land-use pattern. This occurs when, for example, plots of land belonging to different 
owners are merged as part of a settlement scheme. 

LUZS IN THE ATLANTIC ZONE OF COSTA RICA. 

LUZs are used to describe land use at sub-regional level. Their effectiveness for this 
purpose is determined in part by the degree to which the terrain objects can be differentiated 
(or classified) on the basis of their composition characteristics. These characteristics stem 
from the distribution of the attribute values (or attribute value classes) of the elementary 
objects. Put another way: Can clusters be identified in the data space? And, if so, do the 
corresponding groups represent meaningful land-use categories? We shall be discussing 
whether LUZs represent a meaningful aggregation level for the description of land use in 
Chapter 3. 

Land use is subject to change. Structural changes in land use, especially in the Atlantic 
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Zone of Costa Rica, can occur very rapidly, sometimes within only a few years. This means 
that a reliable procedure for monitoring land-use change is needed. If the LUZs are to be the 
carriers of land-use information, then land-use change must be expressed through the object's 
dynamic behavior. But, before we can investigate the object dynamics, we shall have to 
design a data model of sub-regional land use that will define objects, their attribute structure 
and their classification and aggregation structures. 

Monitoring land-use change requires identifying the same objects at different points in 
time, an exercise that could be quite frustrating if all the object characteristics tended to 
change. Therefore, to monitor change, we must find a constant characteristic. The LUZ 
characteristic most likely to remain constant is the location of the boundaries (the LUZ 
geometric characteristic). Stationary geometric characteristics make it possible to evaluate 
land-use change in the LUZs by verifying changes in their thematic attributes values and their 
aggregation structure. 

In Chapter 2, we show that stationarity of the boundaries usually occurs only in certain 
LUZ classes. In some of these classes (e.g. agricultural areas), we observe that changes in 
land use can be modeled through the aggregation structure or the class structure of the object. 
In other classes (e.g areas of colonization), change in land use is expressed primarily by 
change in geometry. (Think of a forest front retreating in the face of agricultural encroach­
ment.) In areas of colonization, therefore, we need other methods to describe land-use change 
than those used for agricultural areas. 

In Chapter 4, we evaluate the changes that occur in the thematic attributes of LUZs in 
relation to land-use change. The land cover composition being an important characteristice 
in this respect. Because LUZs are composite objects, change in their thematic attributes 
means change in their composition. Remote sensing is a good tool for monitoring object 
dynamics (Molenaar and Janssen, 1991), and so land-cover data from satellite imagery was 
used to evaluate the changes in the thematic characteristics of the LUZs. 



CHAPTER 2 

LAND USE ZONES THAT DEFINE PERMANENT SPATIAL UNITS 
FOR MAPPING LAND USE 
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INTRODUCTION 

In the previous chapter we saw that the geometry of a terrain object must be stationary if 
the changes in that object's thematic characteristics and aggregation structure are to be 
evaluated effectively. Thematic characteristics depend in part on the object's position, size, 
and form, and they will be altered by any changes in these factors. If we wish to base an 
inventory of change in land use on a change in thematic characteristics, we must exclude the 
changes that have occurred because of a change in object geometry. For example, let us 
assume that a Land-Use Zone (LUZ) has stationary boundaries. Under these conditions, a 
change in land use within the LUZ will manifest itself principally through: 

- A change in land cover, which at LUZ level means a change in land-cover 
composition; 

- A change in parcelling, which appears as a change in the LUZs aggregation 
structure. 

In this chapter, we shall look at the changes that can occur in the geometry and, to a lesser 
extent, in the aggregation structure of an object. Of course, not all LUZs will have stationary 
boundaries. They will probably have changing geometric characteristics, especially where 
forests and agricultural areas meet. (Think, for example, of a forest front retreating in the 
face of agricultural penetration.) Indeed, in that specific context, a change in land use will 
manifest itself as a change in LUZ geometry. 

Forests are generally delineated as large, undifferentiated areas, in which spatial structures 
will develop in the wake of deforestation and because of differentiation in land use. 
Differentiation refers to splitting of LUZ (change in association structure) or to change in the 
aggregation structure as a result of fragmentation. Splitting of existing LUZs implies the 
definition of new LUZs, resulting in a different LUZ structure. It should not be confused 
with change in the LUZ's geometry. 

In agricultural areas, we expect land-use change to occur within the existing LUZ because 
the spatial sub-regional structure is already crystallized. The object dynamics will then be 
expressed as change in the thematic attribute values (e.g. changes in the land-cover composi­
tion because of changes in the relative importance of crops) and in the aggregation structure 
(fragmentation and dissolution). But, we also expect some change in LUZ structure due to 
splitting and merging. (Think of consolidation of property.) In these cases, an inventory of 
change in land use cannot be based on change in thematic attribute values. 

Thus stationarity of LUZ boundaries is a prerequisite to monitoring land-use change by 
observing change in thematic attribute values. It would be useful if we could infer boundary 
stationarity from boundary type instead of having to verify it for each individual LUZ. The 
boundary type is denoted not only by the contents of the polygons on either side, but also by 
the object class it represents. Property boundaries generally show up as rectilinear stationary 
features. Similarly, boundaries corresponding to large rivers and physical structures like 
escarpments, can represent permanent LUZ limits. Unfortunately, these correlations cannot 
always be defined. 

We shall discuss the relation between boundary type and stationarity. But our main interest 
is in establishing whether LUZs represent stationary spatial structures. Hereafter, the terms 
"stable" and "permanent" will be synonymous with "stationary". The term "LUZ structure" 
will mean the spatial constellation defined by the whole set of LUZs. 
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PROCEDURE AND METHODS 

The Procedure 

The stability of the LUZ boundaries was examined by comparing two sets of aerial photo 
(AP) interpretations: one dating from the years 1948-1952 and the other from 1984. The 
comparison was done according to the steps listed below: 

- Interpret the APs and delineate the LUZ; 
- Digitize the AP interpretations; 
- Perform numerical restitution and transform the geometric data; 
- Classify the LUZ; 
- Compare the LUZ maps and evaluate change. 

The APs from 1948 and 1952 were black and white, with an approximate scale of 
1:40,000. The 1984 APs were colour infrared photos and their scale was approximately 1:80 
000. (AP interpretation is described in Chapter 2 of Part 2.) 

Block Adjustment 

The AP interpretations were digitized. The point positions are given in the camera 
coordinate system. To compare the LUZs from both periods, we must transform these 
interpretations into a common coordinate system. The method used here was numerical 
restitution. For each AP, we must determine the transformation matrix. The reference points 
for calculating the transformation matrix were obtained by block adjustment using indepen­
dent models (Albertz and Kreiling, 1989). This method entails making independent stereo 
models and then linking them to each other to form a block, which is then referenced to the 
terrain. 

To calculate the terrain coordinates for each point in the AP, we need to know that point's 
elevation. Accordingly, to obtain this information for the 1984 AP interpretations, we made 
a Digital Elevation Model (DEM) by digitizing the contour lines and interpolating between 
them. To transform the 1948-1952 AP interpretations, however, we used an average 
elevation of the area corresponding to each photo, as the topography of the area was fairly 
flat. This minor difference in approach causes a slight deviation in the positioning of the 
LUZs, especially in the higher areas. 

Land-Use Classes 

The 1948-1952 and the 1984 LUZs were classified. As there were no remotely-sensed 
spectral data from 1948-1952, neither were there detailed land-cover data from this period, 
so the classification of 1948-1952 LUZs was based completely on photo characteristics. 
Consequently, only the major classes of land use could be mapped. They are: 

- Forests and areas of natural and semi-natural vegetation; 
- Areas of agricultural penetration; 
- Agricultural lands; 
- Plantations; 
- Settlement areas; 



26 Chapter 2, Part 1 

- Wetlands; 
- Bodies of water; 
- Other. 

Hereafter, these will be referred to as "LUZ classes" 

Evaluating Change in LUZ Geometry 

The 1948-1952 and the 1984 AP interpretations were overlaid and compared. The various 
LUZ were identified and three categories of change were defined: 

- Category 1, which contains 1948-1952 LUZs with no boundaries in common with 
1984 LUZs; 

- Category 2, which contains 1948-1952 LUZs with some boundaries in common 
with 1984 LUZs; 

- Category 3, which contains 1948-1952 LUZs that correspond either to a 1984 LUZ 
(1:1), or various adjacent 1948-1952 LUZs that, taken together, correspond to a 
1984 LUZ (M:l). 

To decide whether the LUZ boundaries corresponded, a maximum distance was defined. 
This value was based not only on the geometric accuracy that is achieved with the geometric 
transformation of data, but also on the accuracy of delineating and digitizing of the LUZ 
boundaries. For the 1948-1952 and the 1984 transformations, there was a difference of about 
30 m between the measured and the computed reference points. The margin of error for 
delineating LUZ boundaries and digitizing the data was assumed to be about 0.3 mm. On the 
AP scale of 1:80 000, this corresponds to 24 m. The relative error, when we compare the 
position of a point in one map to its position in the other, is obtained by adding the error in 
the individual sources. It will range from 100 to 150 m, which corresponds to 2 and 3 mm 
on the scale of 1:50 000 that was used for the comparison of the LUZ boundary information. 
So the lines on both maps can be regarded as corresponding boundaries if they do not differ 
by more than 2 to 3 mm. Applying these rules gives a first impression of the stationarity of 
the LUZ boundaries. 

Quite often, the boundaries of the 1948-1952 LUZs do not correspond with those of the 
1984 LUZs. These differences do not necessarily mean a change in LUZ geometry, however. 
The scale of the 1948-1952 APs is different from that of the 1984 APs, making it difficult 
to judge whether difference in the delineation of the LUZs is owing to actual change in LUZ 
geometry, to splitting and merging, or to the difference in the level of aggregation. This 
judgement is further complicated by the large time span between the two periods of observa­
tion. It makes it difficult relating the 1984 LUZ to the 1948-1952 LUZ (determining whether 
the 1984 and the 1948-1952 LUZ are in fact the same). To deal with this problem, we 
identified three situations in which difference in the delineation of the LUZs is not taken to 
indicate a change in LUZ geometry. These are: 

- If the LUZs of 1948-1952 correspond to a part of the 1984 LUZ. (Change is then 
considered the result either of change in aggregation structure, i.e. dissolution, or 
the result of change in association structure, i.e that the 1984 LUZ corresponds to 
another aggregation level). 

- If a 1948-1952 LUZ corresponds to several 1984 LUZs. (Change is then con­
sidered the result either of change in aggregation structure, i.e. fragmentation, or, 
more likely, the result of change in association structure, i.e. forming of new 
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LUZs). 
- If the shape, size, and topology of the 1948-1952 LUZs and the 1984 LUZs agree, 

but the differences in the position of their boundaries exceed the threshold value. 
(Change is then considered the result of misinterpretation of the AP.) 

But even with these guidelines, it can be difficult to decide if there has been change in 
LUZ geometry. There is some freedom in the interpretation of change in LUZ geometry. If 
we count only the 1948-1952 LUZs that are clearly intersected by the 1984 LUZs as 
evidence that the LUZ structure has changed, then the rate of geometric change will be 
relatively low. If we count all boundary changes greater than the specified threshold value, 
then the rate of geometric change will be relatively high. We can make a more or less 
conservative estimation of the area of LUZs with non-stationary boundaries. 

Aside from investigating the possible causes for the difference in LUZ delineation between 
both periods in order to make statements on LUZ boundary stability, also the relation 
between change in LUZ geometry and LUZ class should be investigated. For each category 
of change the distribution of the LUZ classes is determined. Taking account of the LUZ 
classes as well as the different causes for change in LUZ delineation, conclusions on the 
stability of the LUZ boundaries are drawn. 

Also investigated is the relation between boundary stability and type of the LUZ boundary. 
This was done by inventorying the boundary types and shapes per LUZ. The inventory was 
conducted at LUZ level, instead of looking to each boundary individually, because of the 
many uncertainties in establishing change in the position of the boundaries (due to the 
uncertainty in identifying a 1984 LUZ boundary as being the same as the 1948-1952 LUZ 
boundary). Thus, for the LUZs in each category of change, the class value of the adjacent 
LUZs was inventoried. The LUZs were categorized as having either at least one adjacent 
LUZ belonging to agricultural land for or not neighbouring to the agricultural land. The 
shape of the boundaries of each LUZ was inventoried and categorized as follows: 

- I Only irregular boundaries; 
- F At least part of the LUZ boundaries correspond to rivers, escarpments or other 

terrain features; 
- S Straight linear boundaries for at least a part of the total LUZ boundary, being 

interpreted as property limits. 

RESULTS AND DISCUSSION 

Incidence of All LUZs in the Change Categories 

Table 2.1 shows the incidence of LUZs in each of the three categories of change. The 
figures express area percentages. The total area is the sum of the areas of all the LUZs of 
1948-1952, minus the areas of extended forest. Investigating change in LUZ geometry is not 
relevant for these forest areas, because no LUZs exist. 

We see that not more than 40 per cent of the total area the LUZ structure in 1948-1952 
corresponds to the LUZ structure in 1984. It indicates that we cannot assume stationarity of 
LUZ boundaries in general. The data are obtained by looking to difference in LUZ 
delineation without taking account of the various causes for the difference in delineation. As 
we shall read in the Methods section, these data alone do not express stationarity of the 
LUZs geometric characteristics. 
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Table 2.1. Incidence ofLUZs in the three change categories (expressed in % of the 
total area) 

15.0% 

45.7% 

39.3% 

Category 1 : No correspondence 

Category 2 : Partial correspondence 

Category 3 : Correspondence 

Incidence of LUZ Classes in the Change Categories 

The incidence of the various LUZ classes in each of the three change categories was 
inventoried. The results are shown in Table 2.2. 

Table 2.2 Incidence of LUZ classes in the three change categories (in %) 

(LUZs of 1948-1952) 

Class 1 
Natural and semi-natural vegetation 

Class 2 
Area of agricultural penetration 

Classes 3 and 4 
Agricultural land and plantations 

Change category 
1 (change) 

47.6% 

35.7% 

16.7% 

Change category 2 
(some change) 

35.4% 

26.2% 

38.4% 

Change category 3 
(no change) 

32.9% 

17.6% 

49.4% 

The majority of the 1948-1952 LUZs in category 1 (change) belong to classes 1 and 2, 
confirming the assumption that LUZs pertaining to these classes may not be assumed to have 
stationary boundaries. Nevertheless, there is still a strikingly high incidence (32.9%) of class 
1 LUZs in category 3 (no change). And, to a lesser extent, this is true for class 2 LUZs 
(17.6 %). This indicates that also in the forest areas and areas of agricultural penetration 
stationary structures occur, despite change in land use. The stationary structures can be 
attributed in part to former banana plantations. The plantations were abandoned between 1920 
and 1940, after which a dense secondary vegetation established. 

The majority of LUZs in category 3 belong to class 3 (agricultural land) and class 4 
(plantations), which, for the sake of convenience, have been grouped together here. 

Changes in LUZ Geometry 

To draw conclusions on stationarity of the LUZ boundaries from differences in the 
delineation of LUZs as obtained by AP interpretation, the various explanatory factors should 
be taken into account. As mentioned in the Methods section, the difference cannot be 
attributed exactly to one of these factors, leaving some room for interpretation. This is 
reflected in the minimum and maximum figures denoting area with change in the LUZ 
geometry. (This can be LUZs with change in all or in part of its boundaries.) Maximum and 
minimum areas of change are given in Table 2.3. The percentage of maximum change in 
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LUZ geometry was obtained by accepting all questionable cases as representing change. The 
percentage of minimum change was obtained by accepting all questionable cases as evidence 
of stationary boundaries. The area of maximum change was 4033 hectares, that of minimum 
change was 1618 hectares. The percentages of change were obtained by dividing the area of 
change by the total area. 

Stationarity of the LUZs boundaries may not be assumed for LUZs belonging to the area 
of agricultural penetration and forest areas, but it often occurs. Because of this reason, 
calculations are made for both, including as well as excluding these areas. This is reflected 
in the two ways used to calculate the total area. 
The first was to add together the area of all LUZs except for those with extended forest and 
those corresponding to isolated spots of areas of agricultural penetration (or areas of secon­
dary vegetation) within the forest area. The total area calculated in this way includes the 
majority of the areas of agricultural penetration. The corresponding percentage of the area 
of change will underestimate the actual the area of change. Although many of the LUZs that 
were areas of agricultural penetration in 1948-1952 did not correspond to the 1984 LUZs, 
only a limited number was taken to actually represent change in LUZ geometry, because of 
reasons given in the Methods section. However, these LUZs are accounted for in the total 
area. The total area was 35 955.6 hectares. 

The second way of calculating the total area excluded the areas of agricultural penetration 
and the forest areas, except for those LUZs with stationary boundaries and those for which 
change in LUZ boundaries was concluded. The total area amounted to 18 613 hectares when 
departing from the maximum area of change of 4033 hectares (because a larger part of the 
area of agricultural penetration was taken to represent LUZs with stationary boundaries, 
which were, therefore, included in the calculation of the total area). A total area of 16 181 
hectares resulted when departing from 1618 hectares as total area of change. The percentages 
in this second way of calculation probably overestimate the actual percentage of the area of 
change. The figures are presented in Table 2.3. 

The figures indicate that not more than about 20 percent of the area exhibits non-stationary 
geometric characteristics. In other words, a cautious estimation gives an 80 % of the area 
representing a stationary LUZ structure. This confirms the assumption that once a LUZ 
structure has established it represents a stationary spatial structure. 

Table 2.3 The total area of change in LUZ structure, calculated by different methods (in %) 

Maximum area of change 
(4033 Ha.) 

Minimum area of change 
(1618 Ha.) 

I. Total area excluding extended forest areas 
(35956 Ha.) 

11.2% 4.5% 

21.7% 10.0% II. Total area excluding area of AP and forest 
area (18613 and 16181 Ha. respectively)1 

Total area depends on whether maximum or minimum area of change is taken. For explanation see text. 

Incidence of LUZ Boundary Types in LUZ Change Categories 

Boundary stationarity is often related to boundary type. For each LUZ in each of the 
category of change, the classes of the adjacent LUZs were investigated. The results of the 
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investigation were categorized according to whether only LUZ classes 1 and 2 were neigh­
bours, or to whether there was at least one LUZ of class 3 or 4 as a neighbour. The LUZs 
were then grouped according to their LUZ class and category of change (Table 2.4). 

Table 2.4 Incidence of LUZs bordered by at least one LUZ belonging to agricultural land 
or plantation per category of change and LUZ class (in %). 

Class 1 
Natural and semi-natural vegetation 

Class 2 
Area of agricultural penetration 

Classes 3 and 4 
Agricultural land and plantations 

Change category 1 
(change) 

30% 
(N=20) 

13% 
(N=23) 

57% 
(N=9) 

Change category 2 
(some change) 

39% 
(N=15) 

35% 
(N=17) 

92% 
(N=8) 

Change category 3 
(no change) 

67% 
(N=7) 

75% 
(N=25) 

87% 
(N=15) 

We can see that, of the class 1 LUZs in category 1 (change), 30 per cent have at least one 
class 3 or class 4 LUZ as a neighbour. (Put another way: 70 per cent of the LUZ belonging 
to forest land and showing non-stationary LUZ boundaries, is bordered either by more forest 
land or by areas of agricultural penetration.) In category 3 (stationary boundaries), 67 per 
cent of the class 1 LUZs are bordered by at least one LUZ pertaining to agricultural land. 
We can see similar increases if we compare the change categories for class 2 LUZs and for 
class 3 or class 4 LUZs. This strongly suggests that the stationarity of the boundary is related 
to the type of the boundary. This relation is especially interesting for class 1 and class 2 
LUZs. If proven, it could provide criteria for predicting stationarity of LUZ boundaries, 
which would be helpful for those situations in which stationarity of LUZ boundaries cannot 
be verified by long-term measurements. 

Boundaries are also characterized by their shape, namely irregular (type I), straight (type 
S), or curved, as when corresponding to a river (type F). S-type boundaries generally 
represent property limits. Their occurrence in each of the different change categories was 
investigated. The results are presented in Table 2.5. 

Table 2.5 Incidence of LUZ with I-type, F-type or S-type boundaries types in the three 
change categories (in %). 

Only type I boundaries 

Type F boundaries occur 

Type S boundaries occur 

Change category 1 
(N=35) 

60% 

40% 

6% 

Change category 2 
(N=40) 

18% 

70% 

43% 

Change category 3 
(N=32) 

3% 

(No data) 

72% 

Type I boundaries are not expected to occur in LUZs with, at least partially, stable 
boundaries. If we assume that type S boundaries are stable boundaries, then a partial change 
in LUZ boundaries implies the occurrence of type S boundaries. The data in Table 2.5 seem 
indeed to suggest that S-type boundaries tend to be stationary. The percentage of stationary 
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LUZs having S-type boundaries is higher than for LUZs having partly stationary or non-
stationary boundaries. However, S-type boundaries are not a requisite for stationary boun­
daries, nor does it assure stationarity of the LUZ boundaries. 
The reverse trend is visible for type I boundaries. The percentage of LUZ having only type 
I boundaries clearly decreases from change category 1 (change) to 3 (stationarity). Stationary 
LUZs seldom have only type I boundaries. Type F boundaries are observed for LUZs in all 
categories of change. 

ILLUSTRATING CHANGE IN LUZ STRUCTURE 

Sample Area 1 

Figure 2.1 illustrates stationary LUZ boundaries in the GRS study area. We see that many 
of the structures observed in 1984 were already established in 1948. Look, for example, at 
LUZs 58, 59, 61, 142, 62, 63, 66, 140, 60, 64, 65, 155, 67, 68, 143 and 139. Their 
boundaries in 1984 (continuous lines) correspond either partly or completely to the boun­
daries observed in 1948 (broken lines). Most of the stationary boundaries are rectilinear lines 
corresponding to property boundaries. LUZs 59 and 69 show stationary boundaries that are 
formed by rivers. 

Most of the LUZs are located alongside the railway, perpendicular to the tracks. The 
colonization of the Atlantic Zone started at the end of the last century with the construction 
of the railway, and in 1948 the train was still the primary means of transport. The claims on 
large parts of the land in this area (more than 500 ha) and the colonization pattern are 
strongly related to rail infrastructure. The structure of 1948 was still evident in 1984 and in 
1990, the last year for which a Landsat-TM was obtained (not shown). 

But we do see a few changes in LUZ delineations. In 1948, LUZs 63, 66, and 140 were 
defined as one area, corresponding probably to a rubber plantation. In 1984 three LUZs were 
identified, as consequence of differentiation in land use (splitting) In 1990, it shows as one 
area again, this time as a macadamia nut plantation. Through this process of splitting and 
merging the association between the LUZ becomes clear. This is a good example of how 
information on the LUZ structures of 1948-1952 can improve the 1984 AP interpretation. 
The correspondence to a single enterprise or management unit could be deducted from the 
very regular form the three LUZs together represent. The boundaries between the LUZs, 
therefore, are to be regarded as temporary limits. 

Let us now look at LUZs 64 and 65. The straight outer boundaries, clearly recognisable 
in 1948, indicate that both LUZs are one farm, and so the boundary between them should 
have been marked as only temporary. Two LUZs were defined because of difference in cover 
characteristics. Two separate LUZs were still defined for the 1984 situation, based on small 
differences in the land cover and the lay-out of the fields, which were related to differences 
in terrain characteristics. The land cover and land use in both units did not differ any more 
in 1990. 

Still another example of association between LUZ is the case of LUZs 155 and 67. Both 
belong to the same enterprise. The property boundaries are recognisable in the 1984 AP 
because of the marked and straight boundaries. The area is currently being used to grow 
ornamental crops. The differentiation of two LUZs in 1984 was based on the difference in 
land cover, which had already changed by 1986. The property limits are also recognisable 
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592088,241080 

578588,227588 

Land use zone delineations corresponding to 1948-1952 and 1984, 

LUZ boundary, corresponding to the 1984 situation 

LUZ boundary, corresponding to the period 1948 -1952 
Railway 

Figure 2.1. Stationary LUZ structure in agricultural areas (for explanation of shade symbols 
see Fig 2.2). 

in the 1948 photo, while the LUZ structure within this area differs considerably. Some of 
the LUZ boundaries were not considered permanent features because they represented a 
transition from forest to (partly) cultivated land. The change in LUZ structure could then be 
attributed to the different scale of the 1948 photos or, indeed, to a process of dissolution and 
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subsequent fragmentation. Whatever the explanation, the important thing is that the changes 
were confined to the area defined by the straight outer boundaries of the LUZs visible in both 
the 1948 and the 1984 aerial photos. Almost the same story can be told about LUZs 68, 139, 
and 143. 

Let us look at LUZ 60. This area consists of many small farms instead of a large enter­
prise, and its boundaries have proved to be fairly stable over the years. Except for one part, 
which was under forest cover in 1948, no changes have occurred. LUZ 60 probably belonged 
to a banana plantation at the beginning of this century. Later it was abandoned and the land 
distributed to small farmers. The companies provided the farmers with cacao, and the cacao 
fields, though often neglected, are still very characteristic of the zone. 

The LUZs farthest from the railway were classified as forest or as areas of agricultural 
penetration in 1948. These areas were not differentiated further, and their boundaries are not 
assumed to be permanent features. The area corresponding to LUZ 99 shows some differen­
tiation in 1948, but this was temporary. It later became a settlement scheme, implying that 
a redistribution of the land had occurred under the auspices of the Institute for Agrarian 
Development (IDA). Generally, the IDA buys larger farms for distribution among small far­
mers, a practise that preserves the LUZ structure. 

Sample Area 2 

Sample area 2 is presented here because it differs from the earlier example area in that the 
larger part was still covered by forest or overgrown by dense secondary vegetation in 1952 
(Fig.2.2). But even in the non-agricultural LUZs, we can see clear rectilinear features, 
probably traces of the property boundaries of former plantations. 

Let us look at LUZs 30 and 28. Their straight broken lines represent stable spatial features 
where they correspond to the continuous lines of the 1984 AP interpretation, suggesting one 
large property. And indeed, LUZs 30, 28, and 29 still belong to the same owner today. The 
broken lines within the area spanned by LUZs 28 and 30 represent only small changes in 
photo texture, which are not significant as they relate to slight changes in the density of the 
same vegetation. 

We see a resemblance between the interpretations of 1952 and 1984 in the delineation of 
LUZ 22. This LUZ was classified as one banana plantation in 1984. But in 1952, only the 
north-east part could be clearly identified. It was distinguished from the south-west part by 
the difference in land use, the boundary between the two parts being defined by river. The 
historical data would suggest that the land of LUZ 22 is divided among different owners. 
And indeed, the two different parts are the property of two different owners, although both 
parts are banana plantations. This is another instance where information on earlier LUZ 
structure would have helped to interpret the 1984 APs correctly. 

The other LUZs are bounded by irregular linear features that represent a transition from 
forested to non-forested areas. They do not represent permanent features, and the spatial 
structure of 1952 and 1984 consequently does not correspond. 

CONCLUSIONS 

The dynamic behaviour of LUZ as regards to their geometry differs from one LUZ class 
to the next. 
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585380,256080 

575208,246700 

Land use zone delineations, corresponding to the period 1948-1952 and 1984 
LUZ boundary, corresponding to the 1984 situation 

LUZ boundary, corresponding to the period 1948-1952 

[ X ^ Forest area 

|[ | | | Dense secondary woody vegetation 

Y/X Open (secondary) woody vegetation 

Figure 2.2. Stationary structures in non-agricultural areas. 

1. The spatial structure of the LUZs representing agricultural areas is stationary. This 
stationarity occurs despite the short history of and the rapid changes in land use in the 
region. This means that change in land use can be evaluated by investigating change in the 
thematic content and the aggregation structure of the LUZs. 
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2. The geometrie structure of LUZs representing areas of agricultural penetration and forests 
may not expected to be stationary. Indeed, change in spatial structure can be considered 
characteristic of these areas. Even so, stationary and partly stationary structures can still be 
identified. 

3. There is a relation between the type and the stationarity of LUZ boundaries. LUZ 
boundaries are defined here by their shape and by the LUZ class of the LUZs on its either 
side. Straight boundaries corresponding to property limits are generally stationary. Irregular 
boundaries tend to be non-stationary. Boundaries denoting a transition from one agricultural 
area to another and from an agricultural area to an area of agricultural penetration tend to 
be more stable. Boundaries denoting a transition between areas of agricultural penetration and 
between those areas and forest tend to be less stable. Boundary type could be a useful tool 
in monitoring change in areas of agricultural penetration and of forest, indicating which 
boundaries might be assumed stationary. 

4. Information on the former LUZ structure can help to determine the current LUZ structure 
from aerial photos, especially when boundary type is being considered. Association between 
LUZs can be determined by comparing LUZ structures from different periods. 



CHAPTER 3 

LAND USE ZONE, LAND COVER COMPOSITION AND LAND USE 
PATTERN 

DEFINING LAND USE PATTERNS 
IN RELATION TO LAND COVER COMPOSITION 
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1. INTRODUCTION 

LUZs are delineated on the basis of spatial patterns, as observed on aerial photos. The 
pattern elements refer to agricultural fields. The aerial photo interpretation is described in 
Chapter 2, Part 2. Subsequently field size distribution (Chapter 4, Part 2) and land cover 
composition (Chapter 5, Part 2) of the LUZ is determined; classes are defined that express 
the correspondence or difference in these LUZ characteristics; and the LUZs are assigned 
class labels. From the classification result we want to infer information on land use. It 
requires the interpretation of the land cover composition and field size in term of land use 
characteristics. It is the subject of this chapter. With respect to the land use classification the 
question is the following: 

- First, do the LUZs provide a relevant geographical basis for the description of land 
use at sub-regional level? Can the LUZs be discriminated on the basis of their land 
use characteristics? 

- Second, if the first question is answered confirmatively, can we relate land use 
characteristics to the land cover composition and field size characteristics of the 
LUZs, so that we can map land use on the basis of land cover and field size charac­
teristics. 

The term data classes will be reserved to denote the field size classes and the composite 
land cover classes (CLCCs). That is, to denote classes that refer to the imagery derived LUZ 
characteristics. The term information categories refers to the classes describing the land use 
of the LUZs (i.e. LUPs). The translation of data classes to information categories will be 
referred to as mapping. The rules for translation (or interpretation) are named mapping rules. 

The translation of field size classes into farm size classes is the subject of Chapter 4 of 
Part 2. In this chapter we are concerned with the interpretation of CLCCs in terms of land 
use patterns. The objective is to define rules for this interpretation. The definition of the 
appropriate mapping rules requires insight in the land use or agricultural activities in the 
region and insight in the object image characteristics. The relation between (composite) land 
cover class and land use (pattern) is ambiguous. The correct interpretation will depend on 
the context. The context, in fact, limits the range of the mapping of the data classes to the 
information categories. That is, the context defines a subset of the information categories to 
which the data classes can be mapped. To use context information we must be able to denote 
the context and to specify the associated domain. 

Land use refers to the functionality of the land, c.q. the purpose for which the land is used 
and the way in which it is used. This is much in agreement with Clawson and Stewart (1965) 
who define land use as man's activities on land which are directly related to the land. Land 
cover refers to what is found on the land surface. See Burley (Rhind and Hudson, 1980), 
who defines land cover as 'vegetation and artificial construction covering the land surface'. 

For the description of land use different concepts have been developed. The FAO (1984) 
defines the land utilization type (LUT), which "refers to a crop, crop combination or 
cropping system with a specified technical and socio-economic setting". The definition can 
be applied at different levels of detail. "A single crop can be regarded as a LUT", but it can 
also be appropriate to regard "farming system or cropping system as the definition of land 
utilization type". As such, the definition does not take into account the specific aggregation 
level. The classification and aggregation hierarchies are not very well defined in land 
evaluation (LE). Multiple and compound LUTs are defined, however, not in relation to levels 
of aggregation. 
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In this thesis the following conventions and definitions are adopted: 
1. The LUT is used to describe land use at field level. It describes the cropping system 

with a specified technical and socio-economic setting. 
2. At farm level different activities can be combined. The farm system describes the 

combination of activities (referring to production of crops or livestock) at farm 
level, with associated management characteristics. Farming system is used to indi­
cate the classes of similar farm systems (Fresco and Westphal, 1988). 

3. At sub-regional level the land use pattern (LUP) is used to describe the association 
of LUTs or farming systems. When the LUZ corresponds only to a part of a farm 
or enterprise, the LUP will refer to one single LUT. Sometimes, the LUP will refer 
to only one farming system. 

For example, the LUP of a LUZ that corresponds to a single plantation will be described 
by one LUT, namely as 'large scale banana production with an advanced management level'. 
For LUZs that comprise many farms the occurrence of only one LUT or one farming system 
is very unlikely. Instead, various farming systems will often occur. However, the com­
bination of farming systems will not be arbitrary. The LUZ approach assumes the existence 
of specific land use patterns. This assumption is verified in this chapter. 

2. PROCEDURES AND METHODS 

The definition of LUPs requires information on land use characteristics of LUZs. This 
information was obtained through a farm survey. The survey was carried out especially to 
the LUZs that comprise many farms, because these are the most difficult to characterize in 
terms of LUP. The procedure was as follows: 

- Interviews, carried out in the study area; 
- Definition of farming systems and classification of the farms visited; 
- Evaluation of the distribution of farming systems for selected LUZs and definition 

of land use patterns. 
The farms were not selected fully at random, in so far that no list was made of all farmers 
in the area from which a random selection could have been taken. Such a list could only be 
obtained at the expense of extreme efforts and costs. Therefore, farms were selected at 
locations spread across the zones. Generally a few neighbouring farmers were interviewed. 
Cross checks were done by asking neighbours about their surrounding farms or by inquiring 
at the pulperias (local stores where groceries and drinks are sold) about the farms in the 
neighbourhood. 

Definition of farming systems 

For the purpose of this study a rather general classification of the farm systems was 
carried out (see Fresco and Westphal, 1988, on classification of farm systems). 
The following criteria were used : 

- The main farm activity, being the cultivation of crops, animal husbandry or a 
combination of both. It will be referred to as farm proposition. The proportion of 
the farm area dedicated to the different activities is considered. Mixed farming is 
concluded only when more than 10 % of the farm area is dedicated to each activity. 
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- Management level, determined by the use or possession of machinery (especially 
tractors and accessories for field preparation), investment in buildings and the use 
of hired labour. 

- Other criteria like off-farm income enjoyed by the owner or family members and 
whether the owner lives on the farm. 

For the description of the farming systems see the appendix. 

The low variation in management levels, as reported by Rhind and Hudson (1980) for 
many tropical countries, also applies to the agriculture in the Atlantic Zone of Costa Rica. 
Either large commercial (often international) enterprises are encountered, with a high level 
of management (use of advanced techniques, high level of investment in machinery and buil­
dings and much use of hired labour, e.g. the banana plantations) or farms with 'traditional' 
agricultural practices are found. The latter implies that labour is provided by family mem­
bers, with sometimes the hiring of temporal workers for specific activities; The preparation 
of the fields and other activities are mostly done manually with the use of simple tools 
(sometimes a tractor is hired for ploughing of the fields); Little investment in machinery and 
buildings, but with common use of herbicides, pesticides and fertilizers. 

Intermediate forms are practically absent. Only a few LUTs with intermediate management 
level are found. The most important is the cultivation of ornamental crops: sprinkler 
irrigation is commonly found; nets are applied to protect the plants against sun irradiance; 
also, the land is used rather intensively, requiring high labour inputs. 

The scale of production is an additional criteria adopted to differentiate between farms 
with a corresponding LUTs, but with varying levels of input. It allows to differentiate 
between the larger and smaller cattle farms that do not differ principally in management 
level. Also distinction could be made e.g. between farms with only a few hectares and with 
up to tens of hectares dedicated to the production of maize, with similar cultivation practices 
(e.g. inputs per hectare may not differ). 

Definition of LUPs and rules for mapping 

For each LUZ the composition in terms of farming systems can be assessed. Defining 
LUPs involves the definition of specific classes of farming system composition. The requisite 
for the LUPs is that these can be linked to CLCC and the field size class, because we want 
to use these data classes for the mapping of LUPs. But also that the classes are distinct. 
Therefore, the distribution of farming systems is listed for each combination of CLCC and 
field size class. The data are aggregated for LUZs with corresponding CLCC or farm size 
class. On the basis of these data differences between the LUZs is investigated and the LUPs 
are defined. 

As stated in the introduction, the relation between the land cover class composition and 
LUP is not unambiguous. The specification of the mapping rules for the interpretation of the 
(composite) cover classes requires insight in the land use characteristics in the region and 
how these come to expression in the satellite imagery and the aerial photos. Insight in the 
regional land use characteristics is obtained by means of the earlier mentioned farm survey 
and by consulting the relevant literature. The literature (Waaijenberg, 1990; Wielemaker, 
1990; Ofioro, 1990) describes the land use in different regions in the Atlantic Zone. The 
description is based on a survey carried out in 1987. 

Especially of interest is the possible relation between farm size and LUT, because we 
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dispose of information on farm size at LUZ level (Chapter 4, Part 2). The information might 
serve to support the interpretation of the composite land cover. The relation between farm 
size and land use is investigated by analyzing farm data. However, the LUZs represent 
aggregated units. Whether difference in land use in relation to difference in farm size is 
expressed also in difference in LUP in relation to farm size class must be verified. 

Mapping of land cover composition involves the interpretation of the individual land cover 
classes (LCCs) in terms of land use. The per pixel classification of land cover resulted in the 
identification of general LCCs, like 'wooded area' and 'secondary vegetation'. The inter­
pretation of the general cover classes in terms of specific cover classes or LUTs (e.g. 'cacao' 
or 'grassland with fruit trees') is dependent on the context. The LUZ may provide the 
relevant context. The context can be denoted by the general LUZ class (or general LUP) 
which can be derived from general characteristics, like the presence of agricultural fields. 
See Chapter 6, Part 2 for the hierarchical structure of the LUZ classification. 

3. RULES FOR MAPPING LAND COVER CLASS TO ACTUAL LAND COVER 
TYPE. 

For the land cover classification 17 land cover classes were defined. The description of 
the land cover classification can be found in Chapter 3, Part 2. The interpretation of these 
classes is not always uniform. The term cover type is used to denote specific land cover 
categories that can be distinguished in the field, but that can not be recognised spectrally, 
which is the case for the land cover classes. For the following three important land cover 
classes the interpretation is discussed: 

- Bare Soil and Built-up area (BB) 
- Wooded Area (WA) 
- Pasture and grasslands (Pas) 

Bare Soil 
Maize fields are recognised as 'bare soil', given the recording date of satellite image 

(february 6th) and the period for field preparation for the cultivation of maize (between 
december and march). However, 'bare soil' may also correspond to other crops. Beans are 
sown in the same period, but mostly on very small plots because the produce is generally for 
home consumption only. Because of their size the plots will, in general, not be recognized. 
Root and tuber crops, such as Yucca (Manihot esculenta), are cultivated throughout the year. 
Thus, 'bare soil' might in cases also correspond to these crops. Decision as to which crop 
'bare soil' will correspond depends on the context. 

Maize is generally found on small and medium sized farms. When larger enterprises are 
concerned bare soil should be interpreted differently, e.g corresponding to root and tuber 
crops (Yucca, Chamol [Colocasia esculenta var. antiquorum] and Tiquisque [Xanthosoma 
sagittifolium]) or for the planting of ornamental crops (among others Cana India [Dracaena 
massangeana], Marginata spp., Helioconia spp. and Philodendron spp.), or to clearings for 
other purposes. Plantings of ornamental crops and seedlings, whereby nets are used for their 
protection against the sun irradiance are classified as bare soil as well. 
This means that when the spatial pattern indicates the presence of smaller farms, bare soil 
areas are assumed to correspond to maize plots. When larger commercial farms are con-
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cerned no direct conclusion on cultivated crop can be drawn. 

Wooded Area 
'Wooded area' (WA) may correspond to a variety of land cover types and/or crops. Any 

densely wooded area, like river banks, orchards, tree plantations, cacao plots or homestead 
gardens, are classified as such. In many cases distinction between these cover types can be 
made on grounds of spatial characteristics. When a larger homogeneous area is concerned 
(> 100 ha.) generally a macadamia (Macadamia integrifllio) plantation is found. In general 
fruit orchards do not extend to such sizes in the Atlantic Zone. An other possibility in this 
case might be reforestation or tree plantation (mostly of laurel [Cordia alliodora] or Eucalip-
to [Eucalyptus spp.]), but generally these show less homogeneous characteristics. When 
'wooded area' is found in smaller units it can correspond to: 

- Cacao plots (Theobroma cacao); 
- Orchards of different fruit trees (e.g orange [Citrus spp.] or guanabana [Annona 

muricata]); 
- Pastures with fruit trees or; 
- Homesteads in which a large variety of trees can be found (coco [Coconut nucifera], 

citrus [Citrus spp.], Guavo [Inga spp.], Guayabo [Psidium guajavd], to name some 
common species). 

The units are too small to be mapped separately or to be recognised as one of the specific 
cover types mentioned before. 
'Wooded area' can also correspond to river banks and waste lands with high densities of 
trees. They have a deviant spatial pattern through which they can be recognised. In the 
colonization areas larger parts, often poorly drained, are found with high density of trees. 
These are areas that have been deforested, but where valuable trees have been preserved. Or 
they may correspond to areas with a dense woody secondary vegetation. On other areas with 
unfavourable terrain conditions (steep slopes, shallow soils, rock outcrop, etc.) a woody 
cover is often encountered. 

When a LUZ consists only of 'wooded area', the correct interpretation can generally be 
given on the basis of the spatial pattern characteristics, terrain features or other. In case the 
LUZ has a composite character the data on the cover composition provides information for 
correct interpretation of the cover class. For example: 

- If a high percentage of forest in combination with secondary grassland (indicating 
area of agricultural penetration) is observed, the WA will correspond to stands of 
trees (preserved while cutting the forest) and secondary woody vegetation. 

- If the field pattern indicates small farms, and a high percentage of WA (more than 
40 %, see Chapter 6, Part 2) is observed in combination with small percentages for 
grassland and bare soil, then the WA will partly correspond to cacao stands. A high 
threshold value for WA percentage is required to decide on cacao, because a part 
of the area classified as WA will be explained by wooded river banks, homesteads 
and other. 

Pasture and grasslands 
Two classes of grasslands were defined for the land cover classification. One class 

corresponds to cultivated pasture with a homogeneous grass cover, characterized by little 
variation in height of the grass vegetation and no or only limited presence of shrubs or trees. 
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The pasture types are 'ratana' pasture (Ischaemum ciliare), mixed pasture of 'ratana' and 
'natural' (Axonopus compressus), 'estrella' pasture (Cynodon nlemfluensis) or pasture with 
brachiaria species (eg. Brachiaria ruziensis). The specific cover types can not be recognised 
spectrally but rules for the interpretation of this cover class can be given taking account of 
the farm size (see section 5 hereafter). 

The other class of grasslands corresponds to non-cultivated or neglected grasslands. It is 
characterized by mostly a strong variation in height of the grass vegetation and the grasslands 
are often - but not necessarily - heavily invaded by shrubs. This class can refer to spon­
taneous vegetation found in and around lagoons or in poorly drained depressions, or they can 
be the consequence of negligence and poor maintenance of the pasture. Species encountered 
are 'Alernan' {Echinochloapolystachya), 'Guinea' (Panicum maximum), Paspalum virgatum, 
'King-grass' {Pennisetum purpureum) and 'Cola de Venado' (Andropogon bicornis) among 
other species. 

The (semi-)natural grasslands which correspond to the lagoons and other in periods 
inundated areas, are recognised by their spatial pattern. This can be the absence of faces 
(absence of a field pattern and no or little variation in vegetative cover) or the gradual 
transitions when variation in vegetative cover is present. The poorly drained bottom lands 
correspond to 'cut off valleys'. They are related to a specific landscape in which the bottom­
lands are clearly recognised by the lobbed spatial pattern. In the other cases the 'non-
cultivated grassland' indicates neglected grasslands and it provides, as such, information on 
management. 

4. GENERAL LAND USE PATTERN ASSOCIATED WITH THE COMPOSITE LAND 
COVER CLASS 

The translation of the cover class to a specific land use is mostly rather straight forward 
in cases where the LUZ consists of only one cover class. Examples are the LUZs corres­
ponding to plantations. When banana is the dominant LCC the zone corresponds to a banana 
plantation. In all cases this implies the production of banana on a large scale with application 
of advanced techniques and high investments. Plantations with the larger parts classified as 
'wooded area' refer to Macadamia plantations. Also in these cases there is little differences 
in management. Such cases are not further discussed. 

In Table 3.1 the number and percentage of farms are listed according to their main 
activity for each of the following general CLCCs: 

1. With cultivated pasture as dominant and wooded area as sub-dominant LCC. 
2. With a combination of wooded area, bare soil and pasture. 
3. With wooded area as dominant LCC. 
4. With the cover composition dominated by forest (area of agricultural penetration). 

The data presented in this table as well as in the tables that follow hereafter are all originate 
from the farm survey. 

The area with a land cover dominated by grassland indeed shows a clear dominance of 
farms only dedicated to livestock production. In areas where different cover classes occur, 
without clear dominance of either of these, we observe also the highest frequency of mixed 
farms (with pasture for grazing and crops), although farms solely dedicated to animal 
husbandry or to crop production are also observed. 
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Table 3.1 Distribution of farming system per major CLCC. 

General 
CLCC' 

1. Grass 

2. Mixed 

3. WA 

4. AP 

N4 

38 

56 

9 

11 

Crop 
production 

1 (3%) 

10 (19%) 

5' (56%) 

1 (9%) 

Farming system 

Livestock Mixed 
farming 

33 (87%) 4 (10%) 

19 (35%) 25 (45%) 

1 (11%) 3 (33%) 

1 (9%) 0 

2 

Wood/ 
Livestock5 

7 (64%) 

Wood/Mixed 

2 (18%) 

') These are the general CLCCs as described in the forgoing text. The numbers correspond to the 
numbers indicated in the text. 

2) The definition of farming systems is based on the main farm activities, being crop production, 
livestock production, wood extraction or a combination hereof. For a description of the classes 
see the appendix. 

') At four of the five farms visited the crop concerned was cacao. It will be mapped as 'WA'. 
*) Number of observations. This is the number of farms visited. 
5) Corresponding to farms with often a considerable part of the farm area under forest cover. 

Logging is often an important activity. Livestock can not be considered the main activity or the 
main source of income. 

The third general CLCC is distinguished from the previous classes by the high WA 
percentage (more than 40 % of the area is classified as WA). The large share of WA in the 
CLCC is unlikely explained only by the presence of wooded river banks, trees scattered over 
the pastures and some orchards. The high percentage implies a large portion of the area 
dedicated to the cultivation of tree crops. This indeed proved to be the case. Nine farms were 
visited. Of these 5 farms were classified as dedicated to the production of only tree crops 
(cacao, coffee and fruit trees), 3 farmers mentioned tree crops and pastures and one farm had 
only cattle. Thus, the high percentages of 'wooded area', under the condition that a field 
pattern is clearly observed, indeed indicates the importance of tree crops (especially cacao) 
in the land use pattern. 

The results show a clear difference in percentage of farming systems occurring for the 
general CLCCs. It indicates the existence of different LUPs and that these LUPs may be 
related to the CLCC. 

The area of agricultural penetration (AP) defines a completely different context for the 
interpretation of the land cover classes and composition of the units. The fourth class 
represents these areas. Activities are less directed to the commercial use of the land for crop 
or livestock production. Agriculture and cattle breeding seem to be of little importance 
(Waaijenberg, in: Wielemaker, 1990). Waaijenberg mentions deforestation and land specu­
lation as important activities. Generally few crops are found, and the produce is for home 
consumption. The limited availability of labour and bad transport conditions make the agri­
cultural activity little profitable. The fact that owners do often not live on the farms indicates 
the importance of land speculation in the areas. An other phenomena which is illustrative 
for the deviating situation is the presence of 'precarismo' (squatters). 

The data on the 11 farms visited show that a high percentage of forest cover for the area 
in total, coincides with high percentages of forest cover for the individual farms. Nine farms 
had a part of the farm area covered with forest, varying form 9 to 69 percent. Often a 
considerable area was covered with tacotales (secondary woody vegetation). Generally the 
forest, upon deforestation, is converted to grassland. The land often does not allow for 
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another type of land use, given the physical (often very wet conditions) and socio-economic 
conditions. 10 of the 11 farms had grassland. The land use of 7 farms was classified as a 
combination of forest and pasture. Three farmers mentioned the cultivation of crops like 
maize, rice, yucca or plantain for home consumption and were classified accordingly. 

5. LAND USE PATTERNS ASSOCIATED WITH GRASSLAND AREAS 

Farm size based rules for the interpretation of land cover. 
In the forgoing section the correlation between the major CLCC and general land use 

pattern is discussed. More specific statements concerning the LUP can be given, when the 
composite land cover is considered in relation with field size. Field size is related to farm 
size and farm size is related to land use and management level. Waaijenberg (1990) reports 
that in the Atlantic Zone of Costa Rica the proportion of the farm area for crop production 
tends to increase with decreasing size of the farm. Nevertheless, livestock production often 
remains part of the farm activity irrespective of the size of the farm. But, on small scale it 
is less a commercial activity and of less importance for income generation. The herd 
produces milk and calves for home consumption and for the market. The calves are sold 
when in need for money. It serves as a banking account (Waaijenberg, 1990). This seem to 
be confirmed by the data presented in Table 3.2. Farms that are dedicated to the breeding, 
development and fattening of cattle are, in general, larger than farms that are (partly) 
dedicated to milk production. The smaller farms use the milk for home consumption. 
No indication is obtained on differences in animal load in relation to farm proposition or to 
farm size (see Table 3.2). For the conversion of different categories of animals to livestock 
units (corresponding to 450 k.) data from Costa Rica were used (CATIE, 1986). 

Table 3.2 Farm proposition and average farm size regarding farms dedicated to 
livestock production. 

Proposition 

I. Cattle breeding 

II. Development and fattening 

III. Fattening 

rV. Milk production for home 
consumption and feeding 

V. Milk production for sale 
and feeding 

VI. Breeding, development and 
fattening 

Average farm size 

124 Ha. 

256 Ha. 

200 Ha. 

22 Ha. 

47 Ha. 

308 Ha. 

Animal load 

1.20 AU/HA. 

1.13 AU/Ha. 

1.11 AU/Ha. 

1.22 AU/Ha. 

0.85 AU/Ha. 

1.63 AU/Ha. 

Number of observations 

23 

7 

1 

26 

6 

7 

Smaller farms tend to devote less attention to the improvement of grasslands. Generally 
'ratana' and 'natural', that are considered species of lower quality, are found at the smaller 
farms. The average farm size of farms having 'estrella' is larger (Table 3.3). The difference 
is significant at a level of 0.1. The difference in farm size between farms having estrella 
pastures or other improved pastures is not significant (significance level is 0.488). Also, 
pastures with fruit trees in it are less often found with increasing farm size, while at the same 
time the presence of timber tends to increase (Table 3.4). 
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Table 3.3 Average farm size in relation to grassland type. 

Composition of the pasture 

Ratana/Natural 

Estrella or Estrella/Ratana 

Other improved pasture 

Average Farm 
Size 

Number of obser­
vations 

49 Ha. 58 

167 Ha. 22 

367 Ha. 9 

The larger farms tend to be focused to one or a few specific activities. Activities are 
generally directed to breeding or fattening of the cattle. Often improved grass species 
(Estrella, Guinea and Brachiaria species) are encountered. Fruit trees are not found in the 
pastures, whereas trees for timber are generally present (see Table 3.2, 3.3 and 3.4). Estrella 
can be found on smaller farms and ratana/natural pastures are also encountered on larger 
farms, but a trend as discussed is clearly present. 

Table 3.4 Presence of fruit trees or timber in relation to farm size. 

Farm size class 

1. 0 - 2 9 Ha. 

2. 10- 60 Ha. 

3. 30- 260 Ha. 

4. 85 - 1000 Ha. 

5. > 400 Ha. 

No. of farms 
with pasture 

51 

51 

44 

24 

7 

No. of farms 
with fruit trees 

33 (65%) 

33 (65%) 

21 (48%) 

5(21%) 

0 (0%) 

No. of farms 
with timber 

30(59%) 

41 ( 80%) 

41 ( 87%) 

19 ( 79%) 

7 (100%) 

LUPs associated with LUZs with predominance of grassland cover. 
This section presents data on the distribution of farms in relation to the CLCC in com­

bination with farm size class. Whereas in the former section trends are presented on the basis 
of data of the individual farms, in this section trends are analyzed at LUZ level. Table 3.5 
present the distribution of farming systems for combinations of CLCC and farm size class, 
only with respect to areas with pasture as dominant land cover. The data indicate: 

- First, a clear dominance of farms dedicated to livestock production for all LUZs 
with dominance of grassland cover. Dominance of cattle farms for areas with 
dominance of grassland cover was concluded before. Important, in this context, is 
that the dominance shows for all combinations of CLCC and farm size class 
involved. 

- Secondly, differences in land use pattern exist between LUZs. They seem to be 
related to the farm size class. 

The following observations are made with respect to the area of study: 
1. High percentages for cultivated pasture (> 40 %) and low percentages for Wooded 

Area (< 30 %; class "A" in Table 3.5) only occur in LUZs with large to very large 
farms (farm size class 4 or 5). This is conform findings presented in the forgoing 
section. The farms are only dedicated to livestock production. Large herds are kept and 
the pastures often consist of improved grass species. The presence of WA, that may 
reach up to 30 %, do not have a specific meaning. Generally 20 to 30 % of the area 
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is classified as WA, corresponding to wooded river courses, trees along roads and other 
densely wooded spots not directly relevant with regard to the interpretation of land use. 

2. LUZs with very small farms (class 1) and predominant grassland cover do not occur. 
This seems to confirm findings of Waaijenberg who states that proportion of the farm 
area dedicated to crop production increases with decreasing farm size. Very small farms 
dedicated exclusively to livestock or milk production are rare. Consequently, LUZs with 
very small farms and clear dominance of pasture in the cover composition is not found. 

3. Areas with small and medium sized farms (class 2 and 3) tend to have a reduced 
percentage of cultivated pasture (<35 %) and an increased percentage of WA (25% 
< WA < 45%), indicated by CLCC "B". This phenomenon is related to the occurrence 
of farms that are not dedicated exclusively to animal production and with the common 
occurrence of fruit trees and timber trees in the pastures. 
Further interpretation of the CLCC in terms of land use depends on average farm size. 
LUZs with CLCC "B" and small farms are associated with presence or orchards and 
pastures with trees1. The occurrence of medium sized farms seems to indicate less 
importance of milk production for home consumption and a use more specific dedicated 
to stock breeding. The higher farm size class relates to a lower percentage of farms 
with fruit trees and difference in farm proposition2. For LUZs with larger farms in this 
category, the land use is characterized by grazing and the increased importance of 
timber production (reforestation). The lower percentage for cultivated grassland for this 
category indicates the presence of pastures of poor quality3. 

4. The other CLCCs pertaining to the general class of area with dominance of grassland 
show non-cultivated pasture as dominant grassland type (CLCC "WAPAS3"), or have 
a part of the area classified as forest ("WAFORPAS1"). Large farms dedicated to 
livestock production occur, with sometimes a few hectares dedicated to arable cropping. 
The larger percentage of non cultivated pasture, in case of the WAPAS3, is caused by 

Small farms. In two LUZs with CLCC "B" and FS class "2" thirteen farms were visited. Of the 13 farms 
10 were dedicated to livestock production and 3 had both crops (maize, beans and plantain) and cattle (table 3.6). 
The increased percentage for WA is the reflection of the common presence of trees disperse over the farm area or 
the presence of orchards. Of the 10 farmers having pasture, 7 mentioned the presence of fruit trees (limon, naranja, 
aguacate [avocado], coco and guavo) and 8 mentioned having timber (Laurel and Cedro) disperse over the farm area. 

Medium sized farms. 10 farmers distributed over 4 LUZs were interviewed; 7 farms were located in 
one LUZ. Of these 7 farms 6 were dedicated to livestock production and one to the production of perennial crops 
(orchard of fruit trees) with a small part of the farm for maize production. Of the six farms with cattle, 5 had 
livestock production as the main activity, with in some cases small parts dedicated to the production of cacao or of 
maize and yucca and one farmer was dedicated to both production of maize and to livestock production for market 
sale. The data of the three farms located in the other LUZs confirmed the pattern. All the 10 interviewed mentioned 
timber disperse over the area a minority mentioned also the presence of fruit trees (table 3.7). For the group in total 
we see a decrease, from 69 to 32 per cent, in farms which mention the presence of fruit trees and an increase, from 
67 to 89 %, of the farms which mention the presence of timber wood. 

Larger farms. Data on six farms were obtained. All were dedicated to livestock production with in some 
cases very small proportions of the farm area dedicated to the production of maize, plantain or cacao. The relatively 
high percentage for WA in this class in this case is explained by the presence of trees for timber wood in the fields. 
In one case 10 hectares was reforested (with Surâ [Terminalia chiriquensis], Eucalipto and Cedro). Three other farms 
mention a few hectares under forest cover and sometimes a considerable percentage of tacotal. A further decrease 
in presence of fruit trees is observed. Four of the interviewed mention the presence of considerable parts of the farm 
area with 'para aleman', a grass species which is only found on poorly drained soils. 
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Table 3.5. Farming system distribution in relation to CLCCfor the area with pasture 
as dominant land use. 

CLCC' 

A. PAS1, 
PASBB1. 

B. WAPAS1, 
PASWA2, 

MPASWABB 

C. WAPAS3. 

C. WAFOR-
PAS1. 

MWAPASSV, 
MFORWAPAS 

Farm 
size2 

4 ,5 

2 

3 

4 ,5 

4 ,5 

4 ,5 

4 ,5 

No. of 
LUZs5 

10 

4 

4 

8 

3 

2 

2 

N3 

5 

13 

10 

6 

1 

2 

1 

Crop 
production 

ff 
o

 
o

 
o

 
o

 
©

 
o

 
o

 

Livestock 

5 (100%) 

10 ( 77%) 

8 ( 80%) 

6 (100%) 

1 

2 

1 

Mixed 
farming 

0 

3(23%) 

1 (10%) 

0 

0 

0 

0 

Management 
category 

1,2 

3 

3 

2 

) The entries in this column denote CLCCs. The names denote the most important cover classes in the 
composition, in order of importance. PAS stands for pasture; WA for wooded area; BB for bare soil or built-
up area; For is forest. The prefix M stands for 'mixed', indicating the absence of a dominant cover class. 
CLCCs with similar cover composition are grouped. These groups have the following characteristics: 
A. Cultivated pasture > 40 % and Wooded Area < 30 % ; 
B. Cult, pasture < 35 % , WA between 25 and 45 %, Non cultivated pasture < 25 % and BB < 20 %.; 
C. With non-cultivated pasture as dominant grassland type or with part of the area classified as forest. 
*) Farm size class (see Table 3.4). 
' ) Number of observations for each LUZ category. 
4) Refers to tree crops. 
5) Denotes the number of LUZs with the combination of CLCC and farm size class as denoted. 

very poorly drained often drowned valleys in a hilly landscape. 
Another land cover composition results when part of the area is classified as forest. The 
two farms in the corresponding LUZs for which data were obtained, indeed mention a 
considerable part (30 and 50 hectares) under forest cover or as reforested area. The 
occurrence of remnant parts of forest can possibly be explained by poor soil and terrain 
conditions, (see Part 3 of this thesis). 

5. The last category (Table 3.5) indicates LUZs with forest and secondary vegetation 
as important land cover classes, aside from grassland. These LUZs represent the areas 
of agricultural penetration. The presence of secondary vegetation suggest that the much 
of the areas are not used - or only very extensively - for grazing. This can indeed be 
ascertained when visiting the recently deforested areas. 

In table 3.6 the number of farms according to the farm proposition and presence of trees 
in pastures is listed for combinations of CLCC and farm size class. Only farms with pasture 
and livestock are considered, but the farms may belong to LUZs with a dominant land cover 
class other than grassland. Table 3.6 intends to show that the correlation between farm 
proposition and farm size, as shows from the individual farm data, is also reflected in the 
LUP of the LUZs, although these represent aggregated units. Totals are presented for LUZs 
with corresponding farm size class. The totals indicate a decrease in percentage of farms that 
produce milk, a decrease in percentage of farms mentioning fruit trees and an increase in 
percentage of farms mentioning timber, with an increase in farm size class of the LUZs. 
Important is that the patterns are more or less consistent for the LUZs with the same farm 
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size class, irrespective of the CLCC. The size of the populations however is too small to 
confirm this statistically. 

Table 3.6. Farm proposition and presence of trees disperse over the farm area, 
in relation to farm size class, regarding all farms with pasture and livestock. 

Composite 
Land 
Cover Class4 

MBB WAP AS 1 

WAPAS1 
MWAPASBB 

BBWA1 
MBBWAPAS2 

MWAFORBB 

WAP AS 1 
MPASWABB 

WA2 

Farm 
Size 
Class 

1,2 

1,2 

2 

2 

1,2 

TOTALS 

MPASBBWA 

MBBWAPAS 

WAP AS 1 
MPASWABB 

3 

2 ,3 

2 ,3 

TOTALS 

PAS1 

PASWA2 

WAPAS3 

4 ,5 

4 ,5 

4 ,5 

TOTALS 

Number of farms according to farm 
proposition' 

N5 

11 

5 

9 

8 

5 

3 

41 

3 

4 

6 

13 

1 

6 

2 

9 

rv 
4 

3 

7 

4 

2 

0 

20 
(49%) 

1 

0 

0 

1 
(8%) 

0 

0 

0 

0 

V 

1 

0 

1 

2 

0 

0 

4 
(10%) 

0 

1 

2 

3 
(23%) 

0 

0 

0 

0 

i/n/m/vi 
6 

2 

1 

2 

3 

3 

17 
(41%) 

2 

3 

4 

9 
(69%) 

1 

6 

2 

9 
(100%) 

Number of farms 
mentioning trees in the 
pastures2 

N5 

15 

11 

9 

7 

10 

4 

49' 

4 

5 

10 

19 

1 

6 

2 

9 

FRUIT TIMBER 

8 10 

8 8 

8 4 

2 5 

7 8 

3 3 

34 33 
(69%) (67%) 

2 3 

2 4 

2 10 

6 17 
(32%) (89%) 

0 1 

2 6 

0 2 

2 9 
(22%) (100%) 

1 The proposition of activities regarding livestock were only determined for those farms for which data on the 
composition of the herd was obtained. For the explanation of the roman numbers see table 3.3. 
2 The numbers only refer to farms which reported grasslands as part of the farm area. 
3 Totals exclude farms being part of the area of agricultural penetration. 
4 The CLCCs is given to indicate that results remain the same in spite of changing cover composition. For 
the explanation the names see the notes for table 3.5. 
5 'N' indicates the number of observations. That is, the number of farms with pasture and livestock, pertaining 
to the LUZs with a combination of CLCC and farm size as listed, and for which data on farm proposition 
respectively presence of trees was obtained. 

We see furthermore that small and medium sized farms with livestock are often part of 
land use zones with a land cover partly consisting of bare soil (indicated by BB in the name 
of the CLCC). That is, small farms with livestock are often part of LUZs where beside 
grazing also other use of the land is made, whereas the larger farms with livestock tend to 
be part of land use zones indicating a land use only for grazing. 
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In summary of chapter 5, it can be stated that the CLCC in combination with farm size 
class relates to the land use pattern. This is illustrated for example by high percentages of 
cultivated grasslands (CLCC "PAS1" and "PASBB1") always corresponding to the presence 
of large cattle farms. The interpretation of the land cover class 'wooded area' depends on the 
farm size class of the LUZ. Larger farms tend to possess more timber wood and less fruit 
trees in the pastures. Activities like reforestation are more feasible for larger farms. These 
tendencies are reflected in the LUPs of the LUZs. 
Deviant land cover class composition (e.g. including secondary vegetation) sometimes seems 
to be related less to land use characteristics than to soil and terrain characteristics. In the case 
of the agricultural frontier area they do relate to deviant land use patterns. 

6. LAND USE PATTERNS ASSOCIATED WITH A LAND COVER COMBINATION 
OF WOODED AREA, BARE SOIL AND PASTURE. 

General considerations for mapping LUZs with a mixed land cover. 

To interpret CLCCs that are a combination of wooded area (WA), bare soil (BB) and 
pasture (Pas), the farm size class should be taken into account. Smaller farms tend combine 
crop production and animal husbandry, whereas the larger farms tend to focus on one or a 
few specific activities. The scale and purpose of the activities differ as well. For the smaller 
farms, the cultivation of arable crops is generally the most important activity in economic 
terms. On the basis of this relation between land use and farm size, one would expect the 
presence of mixed farms for LUZs that have small farms, rather than the presence of farms 
belonging to various farming systems. The larger farms (with hundreds of hectares) can often 
be mapped individually. Therefore, LUZs corresponding to larger farms with a LCC 
combination of WA, BB and PAS are not expected. These expectations are confirmed by the 
result of the classification (see table 3.7). LUZs related to larger farms (farm size class 4 or 
5) and showing a combination of bare soil, wooded area and pasture do not exist! Only for 
LUZs with small and medium sized farms such cover combinations are found. 

The LUZs can further be differentiated on the basis of specific CLCC and farm size class. 
Especially the percentage of the area classified as bare soil is of importance. CLCC "A" 
indicates a land cover composed of limited percentages of 'bare soil' (< 20% of the area). 
CLCC "B" represents areas with 25 to 45 percent 'bare soil'. This latter group can be 
differentiated further on the basis of the farm size class. In Table 3.7 data for the individual 
LUZs and group totals are given, in order to see whether the patterns are consistent for 
LUZs with the same farm size class and corresponding CLCC. 

Bare Soil representing less then 20 % of the area: CLCC "A". 

One group of LUZs belonging to CLCC "A" is not presented in the table. It represents LUZs 
with an average field size of less than 2.4 ha. (class 1). These areas are often associated with 
small villages and their surroundings. Three of the 5 concerning LUZs corresponded to 
villages known as Rio Jimenez, Los Angeles and Humo. The other two LUZs also had a 
residential function. The agricultural activity In these LUZs is directed to crop production 
for home consumption in small fields or garden lots. For one LUZ data was obtained. It 
indicated the presence of various properties of 1 hectare. The owners were mostly employed 
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at the banana plantation. Generally crops are grown in small quantities (maize, yucca, beans, 
plantain) and generally tree crops are found (some fruit trees and cacao). 

Table 3.7 Land use patterns associated with a composite land cover of wooded 
area, bare soil and pasture. 
CLCC4 

A. WAP AS 1 
MWAPASBB 
WAPASBB 

1. TOTAL 

B. BBWA1 
MBBWAPAS1 
MBBWAPAS2 

2. TOTAL 

B. MBBWAPAS1 
3.5 

B. MPASBBWA 
MBBWAPAS 

4. TOTAL 

Farm 
Size 
Class 

1,2 
1,2 
1,2 

1 
1 
1 

2 
2 

3 
2,3 

LUZ 
ID.' 

94 
99 
23 

g 
93 
106 

10 
17 

18,39 
36 

N2 

7 
4 
2 

13 

3 
5 
3 

11 

13 
6 

3 
8 

11 

Crop 
production 

0 
l3 

1 

2 
(15%) 

1' 
0 
0 

1 
(9%) 

3' 
3 

0 
1 

1 
(9%) 

Livestock 

1 
0 
0 

1 
(9%) 

1 
1 
1 

3 
(27%) 

8 
0 

2 
5 

7 
(64%) 

Mixed 
Farms 

6 
3 
1 

10 
(77%) 

1 
4 
2 

7 
(64%) 

2 
3 

1 
2 

3 
(27%) 

Management 
class 

3 
3 
3 

3 
3 ,4 

3 

2 ,3 
2 ,3 

2 ,3 
2 ,3 

'. Identification of the LUZ for which the presented data is obtained. 
2. Number of farms visited. 
3. Crop production in this case refers to orchard or plantation (fruit tree, coffee or cacao or production of 

ornamental plants). 
4. CLCCs with comparable cover composition are grouped: CLCC "A" represents the following cover 

composition: 'WA' between 25 and 45 % ; Cultivated pasture between 10 and 30 % ; Non cultivated pasture 
between 10 and 20 % and BB less than 20 %. CLCC "B" represents: 'BB' between 25 and 45 %; WA 
between 20 and 35 %; Cult. Pas. between 10 and 25 % and non cult. pas. less than 20 %. The numbers 
indicate combinations of CLCC ('A' or 'B') with farm size class. 

5. No totals are generated because of the deviating land use pattern for LUZ 10. 

The majority of the farms of the LUZs with farm size classes 1 and 2, were dedicated to 
mixed farming (Table 3.7). Although pastures are mostly found, livestock production is not 
the main activity4. The relatively low 'bare soil' percentage of this LUZ class with farm size 
class 1 and 2, should not be explained as the result of less area being devoted to annual crop 
production. But rather as the consequence of less area of the total area for crop production 
being devoted to the cultivation of maize. This is illustrated in Table 3.8. This table presents 
data on the area of maize cultivation as percentage of the farm area and of the total area for 
crop production of the farm. The lower section of the table lists data for LUZs with small 

Of the 13 farmers interviewed 10 had arable crops, tree crops and grassland. One farmer was dedicated 
to livestock production only; One was dedicated to arable cropping only; One farmer was dedicated primarily to the 
production of cacao and coffee (farming system '4C', see appendix). The farmers involved in arable cropping 
mentioned the cultivation of cassava, chamol or nampi in combination with maize mostly in smaller quantities. Only 
one farmer reported to cultivate maize only. 
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proportions of 'bare soil' in the cover composition. The area of maize cultivation varies 
between 17 to 73 percent of the total area destined for arable crop production. This is in 
contrast to the 90 to 100 per cent of the total arable crop area for the production of maize 
reported for LUZs with a higher proportion of their area classified as BB (upper two sections 
of the table). 

Table 3.8 Average plot size, percentages of total arable crop area and percentage of 
total farm area of the area for cultivation of maize and/or rice in relation to CLCC. 

LUZ 
No. 

93 

106 

10 

17 

36 

39 

94 

99 

23 

89 

111 

Farm 
Size 
Class 

1 

1 

2 

2 

2/3 

3 

1/2 

1 

1/2 

2 

2 

CLCC 

MBBWAPAS1 

BBWA1 

MBBWAPAS1 

MBBWAPAS1 

MBBWAPAS2 

MPASBBWA 

WAP AS 1 

MWAPASBB 

WAPASBB 

WAP AS 1 

PASWA2 

N1 

4 

2 

6 

2 

5 

3 

4 

3 

2 

6 

1 

Maize (and/or Rice) area 

Average Plot Size Avg. Percentage of 
farm area 

2.3 Ha. 31 % 

1.5 Ha. 23 % 

2.8 Ha. 15 % 

3.0 Ha. 48 % 

10.8 Ha. 21 % 

10.7 Ha. 11 % 

1.8 Ha. 20 % 

0.7 Ha. 5 % 

8.2 Ha. 39 % 

2.0 Ha. 9 % 

2.5 Ha. 8 % 

Percentage of 
total crop area 

90 % 

100 % 

93 % 

100 % 

100 % 

100 % 

44 % 

17 % 

73 % 

45 % 

50 % 
1 The number of farms for which data on acreage of arable crops were available. 

Bare soil covering between 25 and 45 % of the LUZ: CLCC "B". 

For the definition of LUPs corresponding to this CLCC further differentiation according 
to farm size class is required. For LUZs with very small farms the LUP is similar to the 
forgoing: generally mixed farms are found, with cattle breeding not representing a commer­
cial activity; the relative importance of maize is reflected in the higher percentage of the 
LUZs classified as bare soil5. 
For the LUZ with small farms one expects mixed farming as the dominant farming system. 
This is not true for LUZ number 10. Predominant farms dedicated to livestock production 
were found. This might be the result of a possible error in the aerial photo interpretation. 
The LUP of LUZ number 17 is agreement with the expected pattern. Mixed farms were 
found with maize as far most important annual crop. The interviews do indicate a higher 
degree of specialization in land use. This is reflected for example in the occurrence of farms 

Very small farms. Of the 11 farms 7 were mixed farms; three were dedicated to livestock production only 
and one was dedicated to the production of ornamental crops. 7 of the 11 interviewed reported arable crops. When 
producing for home consumption mostly maize and yucca were found. When for market selling, maize was the most 
important crop. 9 of the 11 farms had pasture land with sometimes a very limited amount of cattle (in cases zero or 
one). 8 of them reported fruit trees, sometimes also timber trees, scattered within the pastures. 
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dedicated to the production of ornamental crops6. For LUZs with even larger farms (the 
medium sized farms) a lower percentage for 'bare soil' is observed. Less farms are classified 
as mixed farms, as consequence of a decreasing proportion of the farm area dedicated to 
arable cropping. However, the total area dedicated for annual crops is not less. Respectively 
4,3,8,14 and 6 hectares dedicated to the production of basic grains (maize predominantly, 
one reported rice) were reported by farmers who had the by far largest part of the farm area 
covered with grassland. In those cases where crop production was the main activity large 
areas were reported for the cultivation of maize. This is reflected in the high values for 
average size of the maize plots (10.8 Ha. respectively 10.7 Ha., Table 3.8). The presence 
of fruit trees decreases. Activities are found, that are only feasible for larger farms, such as 
reforestation, attributing to a somewhat increased percentage of WA7. 

7. SUMMARIZING RESULTS AND CONCLUDING REMARKS 

1. The land use zone proves to be a useful geographical entity for the description of land use 
at sub-regional scale. In many cases the corresponding land use pattern refers to only one 
land utilization type or farming system. This is the case, for example, for banana plantations. 
However, land use zones composed of many farms and exhibiting a combination of land 
cover classes a composite land cover demonstrate also a limited number of farming systems. 
Generally a dominant farming system is observed. 

On average, the dominant farming system represents 72 percent of the farms of a LUZ. 
This figure is based on a total of 109 observations divided over 14 LUZs. The lowest value 
observed was 64%. Therefore, the dominant farming system is in many cases sufficient to 
characterize the LUP. It is concluded that the LUZ represents a relevant aggregation level 
for the inventory of land use and that the land use pattern is a useful concept to describe the 
land use at sub-regional scale. 

2. The composite land cover class in combination with the farm size class relates rather well 
to the observed land use pattern. Only in one of the 14 LUZs investigated did the LUP not 
correspond to the pattern that one would be expected on the basis of CLCC in combination 

Small farms. Of LUZ no. 10 only 3 of the 14 interviewed could be classified as mixed farms. 8 were 
classified as cattle farms. Observing that the areas classified as bare soil corresponded to two larger, regular shaped 
areas, it might indicate the presence of a larger commercial farm which was erroneously included in the unit under 
consideration. However, the assumption that with increasing farm size the activities are more commercially oriented 
and directed to specific activities is confirmed. When cattle farming is concerned this is reflected in the decreasing 
number of farms which report fruit trees in the pasture lands. Only 7 of the 12 farms with pasture reported the 
presence of fruit trees. However, orchards are observed more often. One farm had an orchard of fruit trees, one had 
a cacao plot and one farm produced ornamental crops. 

Of the six farms visited in LUZ no. 17 one farm was purely dedicated to the cultivation of maize and two farm 
produced flowers and ornamental crops. The tendency to commercialization of the production is further confirmed 
by farmers which report a few hectares with orchards in stead of fruit trees disperse of the farm area. 

Medium sized farms. Of the 11 farms 3 were classified as mixed farms, 7 as cattle farms and 1 farm as 
dedicated to arable cropping. Only 4 of the 9 farmers with grassland (for one farm no data on presence of trees was 
obtained) reported fruit trees. Presence of trees disperse in the fields for wood production is frequently reported (7 
farmers). Two farmers mentioned reforestation. One farmer reported 300 trees of cedro amargo, in another case 
1500 eucalyptus and teak trees were planted and an additional 120 laurel trees and cedro amargo were found. 



54 Chapter 3, Part 1 

with the farm size class. This means that in 93 % of the cases (referring to LUZs) the LUP 
is in agreement with the CLCC and FS class. It indicates that the CLCC and farm size class 
serve to map LUPs. 

The error of 7 % might partly be explained by misinterpretation of the aerial photos or 
might be due to changes in land use between time at which the photos were taken (1984) and 
the time of recording of the satellite data (1986). 

The results are based on the 14 LUZs most complex in terms of land cover class com­
position and land use pattern. The classification of most other LUZs is less complex. For 
example, all banana plantations were recognized and mapped correctly by the LUZs. The 
same score was obtained for the forest areas and other areas of natural and semi-natural 
vegetation. 

The viability of the LUZ approach was tested for the GRS area. The questions whether 
the LUZs express clearly distinct land use patterns and whether these land use patterns can 
be mapped on the basis of land cover and field size inventory are answered affirmatively. De 
idea behind the land use zone approach for mapping of land use is, that the mapping rules 
are defined on the basis of data obtained for a representative part of the area to be mapped, 
and that these rules are subsequently applied to map the total area. The validity of the 
mapping rules (relating CLCC in combination with field size class to land use pattern), 
should still be tested on an independent data set. 

The rules for mapping, investigated in this chapter, are valid only for the region con­
cerned. The mapping rules should be adapted for application to other regions, in Costa Rica 
or elsewhere. 



CHAPTER 4 

DETECTING CHANGE IN LAND USE THROUGH CHANGE IN THE 
LAND-COVER COMPOSITION OF LUZS 



INTRODUCTION 

In chapter 2 we saw that LUZs represent permanent spatial structures if they represent 
agricultural land. In this chapter we discuss whether changes in LUZ aggregation structure 
(field composition) and thematic content (land-cover composition) provide information on 
land-use change. We shall focus on change in land-cover composition, because changes in 
aggregation structure generally involve changes in land cover. 

Changes in crop or vegetative cover can best be observed with satellite imagery (Molenaar 
and Janssen, 1991). Accordingly, we used Landsat-TM imagery of 1986 and 1990 to deter­
mine the land-cover composition of LUZs. The results apply to the Guacimo-Rio Jiménez-
Siquirres study area, an area of about 30 x 30 kilometres, representative of the northern part 
of the Atlantic Zone (AZ) of Costa Rica. These results were not evaluated statistically 
because there were no systematically obtained data available for either of the periods 
corresponding to the Landsat images. Field observations were made from 1988 to 1990. 
Information on land use obtained in this period were used to evaluate the results. In addition, 
we present secondary evidence of land-use change to evaluate results. 

The recent history of land use in the AZ has been characterized by intensiveness and 
radical change. This is manifest in the colonization of new areas and an associated high 
deforestation rate. But also changes in existing agricultural areas occur, caused by change 
in socio-economic conditions and initiated by agrarian policies. For example, a new policy 
was announced a few years ago. Called "agriculture of change", it entailed a reduction in the 
subsidies for basic grains (maize and rice) and the stimulation of alternative crops for export 
(Waaijenberg, 1990). Other important factors for change are the fluctuations in market and 
export prices. For example, meat prices dropped (with serious repercussions for the local 
economy, as much of the AZ is used for meat production) and cassava prices increased. The 
search for new cash crops has led to the introduction of palm heart (pejibaye), macadamia 
nuts, and ornamental trees, to name a few. 

METHODS AND PROCEDURES 

Jensen (1983) mentions two methods of using remote sensing to detect change: image 
differencing and post-classification comparison. Image differencing uses the difference in 
radiance values to detect change in images from different dates. The disadvantages of this 
method are: 

- The difficulty in locating the threshold between radiance change and no change; 
- The occurrence of radiance change as a result of other phenomena than change 

in land cover. The method is not specific. 
Variations of the image-differencing method use least-square transformation or principal 
components to reduce adverse affects from differences in atmospheric conditions or sun 
angles (Fung and LeDrew, 1987). Post-classification comparison is hampered by the often 
high classification errors (Jensen, 1983). Both methods imply a per pixel comparison of the 
scenes. As a consequence, spatial misregistration is an additional cause of errors in change 
detection. 

A partial solution to these problems is to reduce the number of change categories. This can 
be done by looking at change within a restricted area (see Vogelmann, 1988, who uses 
image-differencing to detect change in forests, or Christensen et al., 1988, who use post-
classification to detect change in wetland). It can also be done by generalizing the change 
categories. At the highest level of generalization, we register only whether change has 
occurred or not; the nature of change is not specified. 
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To detect change in the AZ, we used the post-classification method. It does not require us 
to evaluate differences in atmospheric condition for the two scenes. Any change we detect 
is immediately expressed in terms of the LCCs. We can counteract the effect of high 
classification errors and improve classification performance by generalizing the LCCs and 
incorporating the context information from the LUZs. And we can counteract the effect of 
spatial misregistration by using data aggregation, i.e. using spatial units (LUZs) whose sizes 
are large in comparison to the registration error. 

We used two Landsat-TM images: one from 6 February 1986 and the other from 9 
February 1990. We followed the steps listed below to detect change: 

- Classify the land cover; 
- Generalize the land-cover classes to a level where they are common to both scenes; 
- Aggregate from pixel level to LUZ level; 
- Interpret changes in composite land cover in terms of changes in land use. 
The procedure is illustrated in Figure 4.1. The steps are explained in the following 

paragraphs. 

Classification 

Generalization 

land cover classification 
1986 

land cover classes 

> f 
land cover 

superclasses 

Aggregation 
1 f 

land use zone 

Y 
land use zone 
land cover class 
comDOsition 1986 

Interpretation/Mapping 

V 
changes in 
land cover clas 
composition 86 

> f 

land cover classification 
1990 

land cover classes 

V 

land cover 

superclasses 

map 

> ' y f 
land use zone 

land cover class 
comDOsition 1990 

s 
-90 

interpretation/ 
classification of 
land use change 

Fig. 4.1 Inventory and classification of land-use change. 
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Independent Classification of Both TM Images and the Need for Generalized Cover 
Classes 

A land-cover classification of both TM images was obtained. The 1990 classification 
defined the LCCs differently from the 1986 classification. This difference was caused partly 
by the changes in land cover that had occurred in the intervening period, requiring the 
definition of new classes. But the main reason was that it was possible to gather field data 
for the classification of the 1990 image, while this was not possible for the 1986 land cover 
classification. This made it possible to relate spectral characteristics more precisely to land-
cover characteristics, allowing for a more specific definition of the 1990 LCCs. Comparison 
of the two periods required us to define common land-cover classes. We did this by adopting 
a higher generalization level in the classification system for both images, at which super­
classes are defined common to both systems of classification. It implied recoding of the 
picture elements of both classifications. 
For example, various spectral classes in the 1990 classification were defined as different 
types of woody vegetation, all corresponding to plantation crops, which allowed us to define 
a "woody plantation" superclass. And as this superclass could also be defined for the 1986 
classification, though the classes (at the lower level of generalization) had a content different 
from the 1990 classes. We could compare both images at the superclass level. The same 
principle of generalization was applied to other LCCs. Although the classes defining the 
lowest hierarchy level were often not the same, it is possible to define common superclasses. 

Aggregating From Pixel Level to LUZ Level 

The two scenes were compared not on a per pixel basis, but per LUZ. There were two 
reasons for this: 

- The positional accuracy of pixels is too low. Misregistration introduces an artificial 
change in class values when classifications from two periods are compared. The 
relative error decreases as the aggregation level increases; 

- The pixel level is too detailed for an inventory of land-use change at sub-regional 
level. Information on land cover change on sub-field level is not relevant when 
change in area of crop cultivation is required. 

So pixel information is aggregated to information about the land-cover composition of the 
LUZs and then LUZs are compared with respect to their land-cover composition. 

LUZs correspond either to a part of a farm with specific land use, or to a whole farm, or 
to an area with various farms but with corresponding land use. In general, we can say that: 

- Specific changes will be restricted to the area defined by the LUZ; 
- Changes will occur over the total area of the LUZ. 

LUZ boundaries are therefore considered to provide the relevant geographical basis for 
evaluating land-use change. 

Interpreting Change in Land-Cover Composition 

To infer information on change in land-use at sub-regional scale from change in land-cover 
requires us: 

- To interpret the land cover classes (LCCs) in terms of land use; 



Land use change inventory 59 

- To interpret the change in the composition of LCCs in terms of change in land-
use pattern (LUP). 

LCCs usually represent general types of cover like "bare soil" or "wooded area", which 
have to be translated into land-use classes. The translation depends on the context, which is 
provided by the LUZ. For example, "wooded area" can be interpreted as cacao when it is 
found within a LUZ belonging to the class of agricultural area, with small farms, and when 
a large part of the LUZ is classified as wooded area. (A percentage of 10 to 20 percent, and 
even 30 percent of "wooded area" can often be explained by the presence of wooded river 
banks, homesteads, and other wooded areas. Higher percentages are needed to denote the 
presence of tree crops.) 
"Bare soil" can indicate various specific cover types or uses, such as maize-growing area, 
forest clearings or residential area. The interpretation depends on the form and size of the 
'bare soil' area and on the land cover class of the neighbouring areas. 

It is important to realize that changes in land-cover composition often take place gradually 
and that, within a LUZ, the stages of change will often vary. Different LCCs can occur 
simultaneously as a consequence of the same process of change. For example, the planting 
of a macadamia plantation is done in phases. It will take some years before the nut trees are 
fully established and producing. In the meantime, the areas corresponding to the different 
ages of the trees will be mapped as a wide range of LCCs, varying from degraded grasslands 
and secondary vegetation to woody plantation. But all the changes observed within this 
specific context are part of the same process. Therefore, changes in land cover in a specific 
location cannot be considered independently from changes in the neighbouring areas (infor­
mation on the context is required for the proper interpretation). Because land use is related 
to farm size, also land-use change will be related to farm size. For example, because of the 
large investment required, macadamia cultivation is feasible only on large farms or plan­
tations. Therefore, a strong increase in "wooded area" indicates an increase in macadamia 
cultivation only if the farm-size class indicates large farms. 

Thus, the LUZs provide a context not only for interpreting LCCs, but also for interpreting 
a change in land cover. This is because we can define only a limited number of possible 
changes for each LUZ, dependent on the farm-size class and the existing type of land utiliz­
ation. 

We conclude that there has been a change in land cover or land use only if there is a 
marked difference in the land-cover compositions between the 1986 and the 1990 images. 
Changes in the percentage of the LCCs are interpreted taking the 1986 LUZ classification 
into account. 

Marked Differences in Land-Cover Composition 

The aggregation of pixels into LUZs, implies the aggregation of the per pixel land-cover 
class to LUZ land-cover percentage. At LUZ level, the LCCs with their percentages of 
occurrence, together determining the composite land cover (CLC). A threshold value is 
required to indicate change or no change in the land cover percentage, when LUZs from 
different periods are compared. We conclude that there has been a change in the land-cover 
composition of a LUZ when the difference in percentage of any LCC exceeds 15 per cent. 
A difference of less than 15 percent is not considered significant. Of this 15 percent error 
margin, 10 percent is explained by inaccuracy of the land cover classification (see Chapter 
5, Part 2, for explanation on how this value is obtained), and 5 percent is explained by 
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geometric inaccuracies. 
The land cover composition is determined by overlaying the LUZ map with respectively the 
1986 and 1990 land cover classification. Difference in land cover composition might occur 
as consequence of difference in the geometry between both land cover classifications. This 
5 percent is an average value. The difference in land cover percentage as consequence of 
geometric inaccuracy can vary from 0 to 12 per cent, depending on the size of the LUZ and 
the land cover percentage. Smaller units and higher LCC percentages mean higher possible 
errors in establishing change in land cover percentage. The maximum error was calculated 
assuming a maximum relative geometric error of 60 metres (2 pixels), considering the 
minimum size of one square kilometer for the LUZ, and departing from a land cover 
percentage of 40. (The areas of the major LCCs such as bare soil, wooded area, and pasture 
often cover 40 percent of a LUZ.) A threshold value of 15 per cent seems acceptable, con­
sidering that slight changes in the LCC percentage would not really alter its proportionality 
within a LUZ. Also, 15 per cent corresponds to the width of many composite land cover 
classes, i.e. the range in percentage of the LCCs defining a composite Land cover class. See 
Chapter 5, Part 2 for explanation of the reliability in determining land cover composition and 
for the definition of the composite land cover classes. 

LAND USE CHANGE IN THE GUACIMO-RIO JIMENEZ SIQUIRRES AREA FROM 
1986 TO 1990. 

Applying a threshold value of 15 per cent results in 96 of 136 LUZs showing a marked 
difference in their land-cover composition. Of the original 157 LUZs, 21 were excluded, 
either because they were either too small or because clouds covered a too large part of the 
LUZ, preventing the determination of the land cover composition. 
On the basis of the changes in the land cover characteristics the following dominant processes 
of change in land use in the GRS area are identified: 

- Decrease in the area for the cultivation of maize; 
- Decrease in and degradation of the grassland area; 
- Increase in plantation area (banana, macadamia, other); 
- Deforestation; 

Decrease in the Area for Cultivation of Maize 

Change in the area for maize-growing is concluded from change in the area classified as 
bare soil. At time of scene recording (February 6, 1986 and February 9, 1990) fields are 
being prepared for the sowing of maize or maize had been sowed shortly before. Therefore, 
maize areas show as bare soil. However, this interpretation is only valid in the context of 
LUZs with very small to small farms and with a mixed land cover with bare soil as dominant 
land cover class. For other areas, changes in the percentage of bare soil should be interpreted 
differently. 

The LUZs with very small farms and a mixed land cover (indicated as class 31 in Figure 
4.2) did not show a reduction in the areas of bare soil. Parts of these LUZs are residential, 
so some of the area classified as bare soil may correspond to buildings, houses, and roads. 
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594825,259774 

565547,227699 

LUZ's with small to medium sized farms and mixed land cover. 
Marked changes in the 'Bare Soil' area from 1986 to 1990. 

wgj Area with small farms and mixed land cover, marked decrease in the percentage of 'bare 
" * 8 S0||', interpreted as strong decrease In area of maize cultivation from 1986 to 1990. 

Areas with very high percentage of 'bare soil' in 1986 and strong decrease in 'bare soil' 
area in 1990. 'Bare soil' in 1986 is a result of clearing (e.g. deforestation). Current land 
use varies. 
LUZ with medium sized farms, mixed land cover dominated by "wooded area' and 'bare 
soil'. Strong decrease of 'bare soil'. The 'bare soil' 1986 corresponded only partly to area 
of maize cultivation. Partly it corresponded to areas being cleared for other purposes. 

I | No evidence of land-use change. 

Fig. 4.2 LUZ's showing a decrease in the area of maize cultivation between 1986 and 1990. 

No evidence was found of a reduction of the maize-growing area in these LUZs. This is not 
surprising if we consider that most of the maize grown is for home consumption, and so less 
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sensitive to price fluctuations. 
The LUZs with small farms and a mixed land cover (classes 32, 33 and 52) all showed a 

marked decrease in the amount of bare soil, which was interpreted to mean a decrease of the 
maize-growing area (Fig. 4.2). In these areas root and tuber crops (cassava, chamol [Coloca-
sia esculenta var. antiquorum] and other), palm heart (Bactris gasipaes), and ornamental 
crops, to name a few, have gained in importance. This is expressed primarily as an increase 
in the area classified as plantation. 

There were no data available on the actual decrease in the area dedicated to the production 
of maize for the GRS study area or for the specific LUZs, nor were there data available on 
maize production. Nevertheless, the conclusion that the maize area has decreased con­
siderably is supported by the sharp drop in maize prices from 1986 onwards (Table 4.1). The 
price of yellow maize in December 1989 was 40 per cent lower than the 1985 price. The 
price of white maize, which is most grown in the AZ, was in decline until 1988, after which 
it recovered somewhat. But even with this increase, the price in May 1990 was still 28 per 
cent lower than the September 1985 price. 

Table 4.1. Maize prices per metric ton from 1985 to 1990 (in U.S.$) 

Yellow Maize 
Date Price 

Sept. '85 $ 270.90 
Dec. '86 234.30 
Dec. '87 201.00 
Dec. '88 173.00 
Dec. '89 163.60 

Source: Department of Economic Studies, CNP. Prices are based on the official exchange rate set by the 
National Bank of Costa Rica. 

Three LUZs with small to very small mixed farms (class value 34, Fig. 4.2) did not show 
a significant reduction in the bare soil percentage. All three, however, had smaller percen­
tages of bare soil in 1986. Annual crops are cultivated in these areas, but maize is relatively 
unimportant. For a description of this class I refer to the preceding chapter. 

Decrease in and Degradation of Grassland Areas. 

The changes in land use with respect to area used for grazing are mapped in Figure 4.3. 
To evaluate changes with respect to the areas used for grazing one has to take account of the 
farm size class. For some LUZs the data on the cover composition suggested a complete 
change in land use (LUZs shaded with a checkered pattern in Figure 4.3). These LUZs 
corresponded to single farms. Grasslands had made way for uses such as banana plantation, 
plantations of palm heart, ornamental crops, reforestation, and cassava (the new land use is 
indicated in Figure 4.4). These changes were confirmed by field observations. The area of 
change they represented, however, was but a small percentage of the total. 

White Maize 
Date 

Sept. 
Dec. 
Dec. 
Dec. 
Sept. 
May 

'85 
'86 
'87 
'88 
'89 
'90 

Price 
$ 270.90 

234.30 
201.00 
173.00 
189.39 
195.43 
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594825,259774 

565547,227699 

Land-use change in the Guacimo-Rio Jiménez-Siquirres area: 1986-1990. 
Change in areas of Livestock Production. 

KSS] LUZ's with a very strong decrease in cultivated grassland. The areas were used for grazing 
ßääa |n 1986. In 1990 the land was used for other purposes (e.g. banana plantation, 

reforestation). 

Y777Ä LUZ's with a marked decrease in cultivated grassland. Parts of the area, formerly used for 
^ ^ grazing, now used for other purposes (e.g. perennial crops). 

Decrease In cultivated grasslands, but with an Increase in uncultivated grasslands or 
secundary vegetation. Grassland degradation occurring because of low stocking rates or 
negligence. 

I^rc Decrease In uncultivated grasslands, but with an increase in the cultivated grasslands. 
^ > N Upgrading of the grasslands because of improved management. 

• LUZ's with no marked changes in land cover composition. No evidence of change In land 
use. 

irrrn LUZ's for which no data are available because of cloud cover. 

Fig. 4.3 LUZ's showing a decrease in the grassland area or grassland degradation between 
1986 and 1990. 
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It is worth noting that many LUZs showed a decrease in the percentage of (cultivated) 
grasslands and an increase in the proportion of grasslands classified as secondary grasslands 
(grasslands invaded by herb- and scrub vegetation, as result of poor grazing and manage­
ment). These changes could not be verified because of lacking field data for 1986. For a 
number of LUZs the decrease in area of grasslands is confirmed by observations in the field. 
The decrease was in one case due to expansion of a neighbouring banana plantation. In 
another cases, grasslands were converted to area for the cultivation of cassava and to area 
planted with achiote (tree crop producing dye). The changes in grassland area seem to bear 
out the story of sharply decreased livestock production that is told by the figures in Table 
4.2. Table 4.2 presents figures on the national production of cattle. The decline in the 
production is assumed to have occurred also in the AZ. The data on land cover change 
suggest that the decrease in production is reflected partly in the decrease of the area for 
grazing and partly in the degradation of the grasslands as result of more extensive use of the 
land. Only in one case, there was a clear improvement in the state of the grasslands. 
Verification in the field revealed that this area corresponded to a farm whose management 
had changed around 1986. In none of the LUZs was there an increase in the area of gras­
slands. 

Table 4.2. Total number of cattle produced for the domestic market and for export. 

Year 
1986 
1987 
1988 
1989 
1990 

Total domestic consumption 
355.594 
331.858 
283.814 
270.689 
300.562' 

Total export 
206.544 
156.698 
137.268 
117.561 
112.487 

The increase in the number of cattle for domestic consumption is primarily the result of an increase in the 
number of calves born. Source: Departemente) de Estudios Económicos, Consejo Nacional de Producción, 
Departamento Pecuârio. 

Increase in Plantation area 

It is fairly easy to see where new banana plantations have been established and where old 
plantations have been removed. One LUZ was classified as a new banana plantation even 
though the greater part of it was "bare soil". This plantation had been established only a 
short time before the date of the 1990 image, and so large parts of it were either covered 
with recently-planted material or had no cover at all. We could also see where existing 
banana plantations had been extended or improved (Class 8, Fig. 4.4). This was the case in 
two LUZs. One LUZ corresponds to the finca Santa Maria. The markedly higher percentage 
of the area classified as banana for this finca agrees with the plantation's improved produc­
tivity: from 1494 boxes/ha/year for 1986, which is far below the average yields, to 1935 
boxes/ha/year in 1988 (Source: ASBANA, Costa Rica). The changes were the result of 
improved management. 

New plantations, other than banana plantations, are also fairly easy to detect, if they 
occupy large areas. Figure 4.4. shows an increase particularly in the macadamia plantations 
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Land-use change from 1986 to 1990. Large commercial enterprises other 
than cattle ranches and plantations. 
K$m 1. Marked decrease in 'bare soil' and incases grassland. Marked increase in tree 
^ ^ crop plantation' and 'secondary vegetation'. Present use is macadamia plantation. 

|WOTJ 2. Marked decrease in 'bare soil' and increase in 'plantation crops' (not very pro-
&W nounced). 'Bare soil' in 1986 corresponds to clearing; Former land use unknown; 

current land use for (semi-)perennial crops. 
g*™ 3. Marked decrease in grassland cover and increase in 'woody plantation'. Former 
K-Sa pasture land now being used for reforestation. 

£7773 4. Decrease in pasture, increase in 'plantation', 'banana' or 'secondary vegetation'. 
WM Land use has changed to the cultivation of perennial crops (macadamia, palm heart) 

or root and tuber crops (cassava, chamol). 

Y^mp. 5. Medium sized farms. Decrease in 'wooded area', increase in 'plantation crops'. 
V//A Land use has change to the cultivation of palm heart. 
FZ/771 6. Decrease in forest cover, increase in 'plantation crops' and 'banana'. Area partly 
V4ZA converted to plantation (banana or other). 

^ ^ 7. New banana plantation, established between 1986 and 1990. 

V777J 8. Banana plantations with an increase in the banana cover, indicating increased 
£ ^ J density of the vegetative cover or extension of the planted area. 

t$$$sj 9. Former banana plantation. No longer in existence in 1990. 
| 1 10. No evidence of change in land use. 

Fig. 4.4 Increase of banana- and macadamia plantations and area of reforestation. 
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(first and fourth class of change). Also change as consequence of reforestation is evident 
(third class). The superclasses, used to compare the LUZ land cover composition, do not 
provide information on the specific plantation crop (e.g. cassava, palm heart, macadamia 
nuts, and ornamental crops, eucalyptus, etc.). More detailed information was obtained from 
the 1990 classification, but also the 1990 LCCs do not indicate a specific crop. Nevertheless, 
with some additional information (e.g. plantation size and elevation, terrain and soil), we 
were able to draw some conclusions on land-use change (Figure 4.4). In areas with small 
to medium sized farms, detecting an increase in the area of specific crops is possible only 
through more detailed study of the LUZ concerned, or through direct observations in the 
field. 

Deforestation 

In many cases, the percentage of forest area had decreased considerably, but this was 
often compensated by an increase in the percentage of secondary vegetation and woody 
plantation. Different training samples have been used to determine the spectral signatures of 
forest cover, secondary vegetation and woody plantation for the classification of the two 
different periods. The content of the land cover classes of both classifications will, therefore, 
not be the same and will probably overlap. Accordingly, a reduction in forest cover, if so 
compensated by secondary vegetation or woody plantation, was not considered evidence of 
change in land cover or in land use. A reduction in forest cover was accepted only if the 
difference, after subtracting the increase in secondary forest and woody plantation, was more 
than 10 percent. LUZs with no difference after subtraction were classified as areas with no 
evidence for deforestation. Data on the most interesting area (the colonization area) could not 
be obtained because of a too high cloud cover. 

A few LUZs corresponding to isolated spot of (remnant) forest areas had been completely 
deforested and banana plantations were established on these sites. Some LUZs, partly with 
forest area and partly agricultural area, showed a decrease in forest cover. Others snowed 
no such decrease. 

CONCLUSIONS 

Land use change can be detected adequately by determining change in land-cover class 
composition of the LUZs. Evaluating change in LCC composition will in many cases provide 
better results than detecting change in land use than evaluating land cover on a per pixel basis 
only. This is illustrated, for example, by the detection of the new macadamia plantations, 
which show a range in land cover classes due to the difference in age of the trees in the 
different parts of the plantation. Without the context provided by the LUZ the content of the 
change is difficult to establish. 
Areas with change in land use, known from field observation, all appeared as areas of change 
using the procedure described. In some LUZs, we observed a partial change in land cover. 
These cases require more detailed study to determine where exactly the change has occurred 
and what the corresponding change in land use is. The same satellite imagery can be used 
for these studies at a more detailed level. 



PART II. 

USING REMOTE SENSING AND AERIAL PHOTOGRAPHY IN 
AN OBJECT ORIENTED APPROACH TO THE INVENTORY OF 
LAND COVER AND LAND USE. 
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1. INTRODUCTION 

Part One of this dissertation describes the land use and land use change in terms of land 
use zones and their characteristics. This second part devotes attention to methodological 
aspects. Consecutive chapters reflect the information theoretical analyses of the inventory 
process. These chapters specify the methods applied in the land cover and land use inventory 
in the Atlantic Zone of Costa Rica. 

Our aim is to develop tools for the inventory and description of land use at sub-regional 
scale. Aside from the farm survey few tools are currently available for the inventory of land 
use.Aerial photo's and, more recently satellite imagery have been used for the inventory of 
land cover in particular. 

From the beginning of this century, aerial photos have been used for the inventory of land 
cover, land use and agricultural geography (Schneider, 1974; Bomberger and Dill, 1960). 
However, since the advent of the earth observation satellite for natural resource studies (the 
launching of the ERTS satellite in 1972), the use of satellite data has become more important 
and is now widely applied. 

Both techniques have advantages and drawbacks. These are related to their spectral and 
spatial resolution. The low spectral resolution of the aerial photos limits their use for the 
discrimination of land cover. More discriminative power is obtained with the second 
generation Landsat satellites, for instance. This is due to the higher spectral resolution 
(measurements in seven spectral bands). However, the Landsat imagery shows a relatively 
low spatial resolution (30 by 30 meters). 

On the other hand, the high spatial resolution of the aerial photographs makes them 
especially suitable for the discrimination of spatial features, such as texture and structure. 
There is an additional advantage to the use of satellite imagery: the data is presented in 
digital form. This allows a more quantitative approach and formal description of data struc­
tures and processes. Yet, the improved scanning techniques also make digital processing of 
aerial photographs possible. 

2. APPROACHES IN THE USE OF SATELLITE IMAGERY FOR LAND COVER 
AND LAND USE INVENTORY 

Satellite imagery has been widely applied for the mapping of land cover and land use. 
Different techniques are available for the classification of the spectral data (Ahmad, 1986). 
Nevertheless, the generally level of accuracy does not meet the requirements. Accuracies 
range between 40 and 90 percent (Ioka, 1986). Overall performance generally lies in the 
range of 70 to 75 percent (Kenk, 1988; Janssen, 1990). In chapter Three and the Appendix, 
we consider ways to improve the classification performance. These possibilities include 
improved procedures, especially stepwise refinement of the training statistics and incorporat­
ing procedures for checking of results. Or they may require change of classification strategy, 
which involves applying spectral indices for the characterization of cover types. 

Other techniques to improve classification performance use ancillary data (see Hutchinson, 
1982; Kenk et al., 1988). These techniques entail: 

- The use of ancillary data prior to the classification. This may be done through 
stratification or segmentation of the image (Hutchinson, 1982; Cross and Mason, 
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1985); 
- The modification of the classifier by using a priori probabilities. These are based 

either on the estimated composition of the known object classes or on the known 
association between object classes and ancillary data (Swain, 1978; Strahler, 1980; 
Hutchinson, 1982). For example, Janssen (1990) uses information on past land cover 
to classify current land cover. Gong and Howarth (1990) add structural information 
to the feature space upon which the classification is executed; 

- Post-classification approaches (or sorting) use ancillary data after the multi-spectral 
classification to improve the results. The use of a majority filter is a simple example 
(Gurney, 1983). Digital elevation and forest cover have also been used as ancillary 
data (Kenk, 1988). And elevation, slope and aspect (Wilkinson and Mégier, 1990) 
have been used as criteria in a decision model for better classification performance. 

Figure 1.1 displays the flow charts, corresponding to the three approaches mentioned 
above. Of those strategies in particular the latter has proven to be successful. All three 
approaches are pixel-based classifications. 
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Fig. 1.1 Schematic representation of the classification approaches. 

3. OBJECT-ORIENTED APPROACH 

More recently the object-oriented approach to land cover and land use classification has 
attracted more attention. This has been stimulated by developments in the field of GIS and 
expert systems. Janssen et al. (1990) and Janssen and Van Amsterdam (1991) correct 
misclassifications by providing a spatial context. This is the geometry of the object, being 
defined as an area in which only one land cover type is expected (i.e. agricultural fields, in 
their case). 
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Fig. 1.2 Flowchart for the object classification approach. 

The corresponding flowchart for this object classification approach is given in Figure 1.2 
(Janssen and Van Amsterdam, 1991). In these cases, the per pixel classification is used to 
obtain information on the objects concerned. Such an approach, for example, has been used 
in obtaining statistical information on land cover and land use per region or strata. See 
Bunschoten (1989) for the application of remote sensing at the Central Bureau for Statistics, 
see Husson (1989) for a related project concerning the agricultural statistics for the European 
Community. Refer to Hall-Könyves (1990) for crop area estimation in harvest regions or, 
for example, the use of satellite imagery to obtain statistical data on crop condition per crop-
reporting districts (Manore and Brown, 1990). In most of these cases, information on the dis­
tricts or region is obtained from topographic maps. 

The land cover and land use inventory of the Atlantic Zone of Costa Rica adopts an object 
oriented approach. This choice was based on the consideration that the pixel level did not 
correspond to the level of detail of the required land use information. Therefore, spatial 
objects were defined at sub-regional scale: the land use zones. The land use zones approach 
also incorporates aspects of the three classification approaches. 
The goals for the object definition were twofold: 

The object should provide a context (spatial as well as thematic) for the interpretation 
of land cover and land use. This could include scene stratification for the reduction of 
the variation in land cover. In this manner cover types that cannot be distinguished 
spectrally can be separated (Hutchinson, 1982). Or the objects should provide ancillary 
data (as for example on spatial characteristics) for the classification of land cover and 
land use. (See Ton et al., 1991, who uses spatial knowledge for the segmentation of 
Landsat images.) 
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The objects themselves should be entities meaningful to the presentation of land use 
information. 

4. DATA ACQUISITION AND OBJECT CLASSIFICATION 

Three phases can be distinguished in the information process: 
1. Definition phase: definition and description of the terrain objects and their charac­

teristics; 
2. Data acquisition phase: how to obtain data on object characteristics; 
3. Data processing and information extraction phase: the classification of terrain objects 

and mapping. 
The various aspects of this process will be briefly introduced in the following sections, The 
descriptions will refer to the land use inventory as carried out in the Atlantic zone of Costa 
Rica. 

4.1. Object definition and identification 

The first step in the information process is the definition of the relevant object types. 
Sometimes the object types are clearly defined and individual objects can easily be identified. 
In other situations, only the context might be clearly defined, with the object types only 
conceptually defined. The definition and identification of the objects then forms an integral 
part of the information process. Soil or land use inventory might serve as an example of a 
situation in which the objects are not clearly defined in advance. In that event, the identifica­
tion of the objects is an explicit task in the inventory process. The spatial objects then might 
be identified through the interpretation of aerial photos (e.g. delineation of soil mapping 
units). In Costa Rica, aerial photo interpretation served to delineate (i.e. identify) Land Use 
Zones. These are the objects of concern for the mapping of land use at sub-regional scale. 
Satellite imagery was used for the recognition and mapping of land cover (by means of land 
cover classification). 

Object recognition requires the image characteristics of the objects to be known. By way 
of those characteristics the object can be recognized in the image (satellite or aerial photo). 
The sequence is as follows: 

1. Definition of the objects; 
2. Determination of the image characteristics of objects; 
3. Recognition of the objects. 

Objects are defined in terms of their characteristics and the object relationships. Objects 
are characterized by (Molenaar, 1991a, 1991b): 

- Geometrical structure; 
- Thematic content; 
- Dynamic behavior. 

Relationships between objects are defined, apart from the topological relationships, through: 
- Classification hierarchies; 
- Aggregation hierarchies; 
- Associations between objects. 
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The data structure for the description of terrain objects is presented in Chapter One, Part 
One. The remaining chapters of Part One deal with the description of the Land Use Zones. 

The subject of this second part is the description of the information process. The next phase 
in the information process concerns the data acquisition to determine the object characteristics 
and object relationships. 

4.2. Data acquisition for object characterization 

The second phase refers to data acquisition. It defines which characteristics can be 
measured and how this is done. 
To obtain data on object characteristics, different sources are generally available. Data might 
be obtained through direct measurements in the field, by the use of aerial photos or satellite 
imagery or from different sources of textual and tabular data. 

The use of aerial photos or satellite imagery may serve two purposes: 
1. Identification and recognition of objects, which was the subject of the former 

section, and; 
2. Data extraction for the inventory of the objects' characteristics. 

The second objective requires the object to be identified in the image. Then the image 
characteristics of the objects can be defined through data extraction. The sequence is: 

1. Identification of objects in the image; 
2. Data extraction; 
3. Description of object (image) characteristics. 

In both processes, knowledge is required on how object characteristics are expressed in 
the imagery used. In the first process (object recognition) knowledge is necessary to deter­
mine the relevant image characteristics for recognition. In the second process it is needed to 
infer the relevant information from the measured image characteristics. 
An example is the land cover classification. The spectral characteristics of a land cover class 
can be determined. On that basis, the land cover class can be recognized and mapped. In the 
other situation an object is identified in the image. By analysis of the spectral characteristics 
conclusions may be drawn regarding its land cover characteristics. 

Landsat-TM provides land cover data, while traditional aerial photo interpretation tech­
niques are better suited to provide information on land use activities (Lindgren, 1985). Land 
use, which indicates the functionality of the land and how it is used, cannot be deduced 
directly from land cover data. (See also Bunschoten (1989), concerning the use of remote 
sensing as a tool to obtain data agricultural statistics). 

Land use expresses itself in land cover as well as in the spatial structure, as determined 
by the size, shape and orientation of the fields. Therefore, the inventory included both land 
cover and spatial characteristics. In the present study, satellite imagery data (Landsat-TM) 
were used for the inventory of land cover. For the inventory of spatial elements aerial photos 
were used. 

The data extraction process, as described above, often involves data aggregation. The 
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Land Use Zones define the object boundaries mentioned in Figure 1.2. All the picture 
elements belonging to the object are then used to describe the object. 
The land use zones represent composite objects, being composed of many pixels. The land 
cover characteristics of these zones are described in terms of composite land cover. The data 
is obtained by aggregation of the pixels and their corresponding land cover class. 

aggregation 
pixel+land cover class > land use zone-(-composite land cover 

If the land use zones exhibit a characteristic composition of land cover, then they define 
a context for the per pixel land cover classification. Accordingly only specific land cover 
classes are expected within the context defined by the land use zone. 

context 
LUZ+characteristic composition > per pixel land cover classification 

This introduces a feedback mechanism for the classification of land cover. This feed back 
mechanism is used in the present study to improve results. It explains the dual purpose of 
defining land use zones (Section 3 of this chapter). The land use zones serve as a context for 
the land cover classification. They also comprise an entity for mapping of land use at the 
sub-regional scale. 

The use of satellite imagery and aerial photos provides specific characteristics of the land 
use zones (e.g. land cover composition and field size). These characteristics might be used 
to deduce information on land use. However, they do not provide data for the description of 
the land use itself. To obtain information on the existing types of land utilization and land 
use patterns, additional data sources are required. In the case of Costa Rica farm surveys and 
literature sources were used. 

4.3 Data analysis and processing 

Data analysis and processing refers to the classification of objects. The classification 
entails: 

- Class definition; and 
- Assignment of a class label by means of a decision (or classification) rule. 

With respect to the class definition, it is useful to distinguish between data classes and 
information categories. They have a different function. Furthermore the rules for class label 
assignment are specific for both types of classes. Two phases are distinguished in the 
classification process: 

1. Data analysis, data class definition and assignment of a data class label to 
objects of concern; and 

2. Definition of information categories and mapping of data classes to information 
categories. 

Data classes refer to the attribute values of objects, for which they are also termed 
attribute value classes (see Figure 1.3). The classification can be expressed mathematically 
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as: 

'x e S' 

The spatial object ('x') belongs to ( ' € ', is assigned) class 'S ' . This formula is taken from 
Klir and Folger (1988), who use it for the modeling of uncertainty. 
The object description ('x') is discussed in a previous section. Class definition corresponds 
to a process of defining clusters of observations in an n-dimensional feature space, whereby 
'n' refers to the number of features considered relevant to the classification. Spectral classes 
might serve as an example of data classes. 
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Fig. 1.3 Class structure of objects and attributes. 

As regards classification, two approaches exist: supervised and unsupervised. In the 
supervised approach, the data classes are defined on the basis of the statistics of a population 
specified by the user. In the unsupervised approach the user specifies homogeneity criteria 
and a cluster algorithm to define the clusters representing data classes. 

The advantage of the first approach is that it ensures that the data classes represent 
relevant information. Though with a possible trade-off in classification accuracy. The 
advantage of the unsupervised approach is that it ensures certain minimum accuracy require­
ments for the assignment of data class labels. The discriminative power of the features used 
in the classification process can be accounted for in the specification of parameters which 
control the cluster procedure. This is done by specifying minimum requirements for size of 
the classes and distance between groups (i.e. data classes). The minimum required size and 
distance are determined on the basis of the reliability of the input data (i.e. the values of the 
relevant object 'x' attributes). The relevance of classes in terms of their informational value 
is determined afterwards. 

In the case of composite objects, the object characteristics can be described in statistical 
terms (e.g. mean, standard deviation) because one object refers to many observations. This 
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facilitates a statistical evaluation of the differences between the objects and the use of 
probabilistic criteria in the definition of the data classes (see Lee et ah, 1987). 

The terms 'supervised' and 'unsupervised' approach are used in the field of remote 
sensing. Here the unsupervised approach will be referred to as the data-driven approach. This 
approach was adopted for the classification of the land use zones. 

The classification rules specify the criteria and methods for class label assignment (for 
example the 'maximum likelihood classification rule'). Data classes, often referring to the 
specific techniques and methods applied, do not have informational value. (This is already 
discussed above.) It requires the translation of the data classes to information categories. This 
process will be referred to as the mapping of data classes onto information categories. The 
term 'mapping' is used in a mathematical sense, referring to the function of assigning a 
unique element of a set 'B' to an element of a set 'A', represented as (Lipschutz, 1968): 

/ :A-> B 

In the context of the present study, set 'A' refers to the set of data classes and set 'B' refers 
to the set of information categories. Aronoff (1984) used the term 'labelling' for this process. 

The information categories have direct relevance with respect to the output of information. 
They represent classes with the appropriate level of aggregation and generalization and with 
an information content directly relevant for mapping. A land cover class might illustrate the 
concept of an information category. (The reader is referred to Lee et al. (1987) for further 
discussion on data classes and information categories.) 

The decision rules for mapping often take the shape of conditional assignment of class 
labels to objects. It is especially in this mapping procedure that context-dependent infor­
mation is used. 

6. LAND USE CLASSIFICATION IN THE ATLANTIC ZONE OF COSTA RICA 

The next chapters are introduced by a short summary of the procedure used. The complete 
process of land use inventory and mapping in the Atlantic Zone of Costa Rica is illustrated 
in figure 1.4. It is in fact a further elaboration of the flowchart for object classification 
presented in Figure 1.2. 

6.1 Photo interpretation for the delineation of land use zones. 

The first steps involve the definition of the object boundaries. This is done by means of 
aerial photo interpretation. The intendion is not to provide information on the thematic 
content of the objects, as that is considered a separate phase in the inventory process. 
Given the sub-regional level of the land use inventory, photo features should be selected that 
reflect the composite nature of the objects to be defined. The spatial pattern, which refers 
to the arrangement of image elements, is such a feature. The spatial pattern served as the 
main key for the interpretation of the aerial photo's. The photo interpretation for delineation 
of land use zones is the subject of Chapter 2. 
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6.2 Land cover classification 

The land cover composition is one of the land use zone characteristics. Its determination 
requires the inventory and mapping of land cover, for which satellite imagery are used. 
Given the information theoretical context of this research, attention is devoted to procedural 
and strategic aspects rather than technical ones. Standard procedures (where possible quan­
titative) are needed to implement the inventory process in a system environment. The land 
cover data obtained pertains to a specific point in time. However, both land cover and land 
use change in the course of time. Also in this respect uniform procedures are important. It 
ensures consistent classification of scenes recorded on different dates. In this manner the 
results will be comparable. 
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Fig. 1.4 The land use classification procedure. 

Chapter 3 treats the land cover classification. Attention is devoted especially to the 
definition of the land cover classes and their associated spectral classes. A procedure is given 
which ensures the set of spectral classes to be exhaustive, spectral separable and to represent 
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meaningful land cover categories. 
Appendix A investigates an alternative strategy to the land cover classification. It makes 

use of spectral indices to spectral characterize the land cover classes. The indices are related 
to measurable land cover characteristics and provide, as such, better insight in the spectral 
complexity of the scene. 

Appendix B reviews the a-priori selection of the appropriate spectral feature combination. 
The purposes of this combination is to obtain colour composites with high informational 
value as an aid the selection of sites for ground survey. 

6.3 Data analysis and definition of (composite) data classes 

The land use zones are characterized by land cover composition and by characteristics 
derived from aerial photo (like the size of fields, referred to as faces in the interpretation 
process). The data is obtained through the overlay procedure depicted in Figure 1.5. 
Subsequently attribute value classes are defined, taking account of the distribution of attribute 
values per composite object. The attribute values refer to the elementary objects. In defining 
the classes for classification of the LUZ's, homogeneity requirements need to be fulfilled, 
as in the definition of the spectral classes for the per pixel classification. 

land cover classif 
C raster) 

land use zones 
(polygons) 

luz# land cover faces pattern 

tl% t2% , tx% s f b 
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etc 

Fig. 1.5 Integration of the aerial photo and satellite image­
ry derived products to obtain data on the LUZ. 

Chapter four describes this process for the situation in which the observations concern a 
continuous variable, namely field size. Data classes (field size classes) are defined, on the 
basis of the results of variance analysis and these are subsequently mapped to farm size 
classes by way of correlation. 
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Chapter 5 refers to a situation where the observations concern a variable with a nominal 
value, i.e. the land cover class. For each land use zone, a distribution of land cover classes 
is obtained. In this case, clustering techniques were used to define the data classes, i.e. the 
composite land cover classes. Two factors influence the uncertainty or possible error in deter­
mining the land cover composition. These are the accuracy with which a pixel is assigned 
a land cover class label (thematic accuracy) and the accuracy with which a pixel is assigned 
to a specific land use zone (geometric accuracy). Both are evaluated and accounted for in the 
definition of the composite land cover classes. 

Once the data classes are defined, the land use zones are attributed a data class label on 
the basis of its attribute value. 

6.4 Classification system and assignment of class labels to land use zones 

The classification of the land use zones represents a multi-source classification problem. 
This has been subject of many studies on the integration of remote sensing and GIS (Foody, 
1988; Goodenough, 1987; Lee et al. 1987; Srinivasan and Richards, 1990; Wu et al., 1988). 

Chapter 6 describes the classification rules used to assign a land use class label to each 
zone. This classification involves mapping of the objects with their associated attribute values 
and data class values to the information categories. The information categories describe land 
use in terms of land use patterns. 

The information categories are hierarchically ordered in classes and superclasses. This 
generates a classification system similar to, for example, the USGS land cover and land use 
classification system (Anderson, 1976) or the CORINE land cover classification system 
(CORINE, 1989). The hierarchical ordering of categories is governed by a decision tree, 
representing a hierarchy of the classification rules. The decision tree evaluates attributes at 
different levels. The rules take the shape of the conditional assignment of class labels to 
objects. These rules are context dependent. 

Examples of decision trees can be found in many taxonomie systems. For instance, in the 
'soil taxonomy' classification system, specific soil attributes are evaluated at each level in 
the classification hierarchy. This may range from occurrence of diagnostic horizons at order 
level to specific physical and chemical soil properties in soil series (USDA, 1975). 

In remote sensing many authors have recognized the power of hierarchical classifiers or 
decision tree classifiers (see Swain and Hauska, 1977; Ton et al., 1991). Especially in the 
classification of multi-source remote sensing and geographical data, the decision tree 
classifier is very efficient (Srinivasan and Richards, 1990; Wilkinson and Mégier, 1990). 
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1. INTRODUCTION 

With respect to the land use inventory in the Atlantic Zone of Costa Rica, the interpreta­
tion of aerial photos (color infrared, scale 1:80000, 1984) aims at the delineation of land use 
zones. The land use zone (LUZ) is defined as a geographic area that exhibits a characteristic 
land use pattern (LUP). The LUP may comprise a range of agricultural uses and manage­
ment. The idea of regionalization of land use based on aerial photo characteristics is not new. 
Examples can be found in the disciplines of land use and agricultural geography. Kelly used 
aerial photographs to delineate 'utilization strata' and to select sampling areas as part of an 
annual agricultural survey programme (see Nunnally, 1974; Thaman, 1974). Another 
example is given by Murphy et al. (see Myers, 1983). They define 'agrophysical units' as 
geographic areas having definable and comparable agronomic and physical parameters which 
reflect a range in agricultural use and management. 
A stratification making explicit use of the photo characteristics is presented by MacPhail (see 
Peplies, 1976). He defines 'photomorphic units' as a complex of a variety of tones. These 
are the result of vegetation, crop type, soil moisture condition, field pattern, and settlement 
morphology. The photomorphic units are determined on textual and tonal properties. 

As mentioned in the introductory chapter, the interpretation process is difficult to structure 
and formalize, because it integrates various objectives. A solution is sought in the iden­
tification of the different tasks and their speparate execution. In the next section, the process 
of photo interpretation process is described in general terms, subsequently the implementation 
of the aerial photo interpretation for the delineation of land use zones is explained. 

2. THE INTERPRETATION PROCEDURE 

Aerial photo interpretation aims at the recognition of spatially defined objects (in this case 
LUZs). Ideally the process should consist of the following steps: 

- Object definition, whereby the objects are defined which are to be recognized; 
- Definition of the object characteristics; 
- Determination of the image characteristics of the objects and specification of 

interpretation keys; 
- Object recognition or interpretation. 

These steps are schematically represented in Figure 2.1 A. These are typical for the 
satellite imagery-based land cover classification, discussed in the next chapter. The land 
cover types are defined on the basis of field checks. Their associated spectral characteristics 
are determined. These are an expression of general characteristics such as the presence of 
green vegetation, bare soil, or water bodies. At the same time, they express specific charac­
teristics of vegetation cover types, including biomass, height and geometry of the vegetation. 
The land cover types are recognized upon the per pixel classification of the satellite image. -

The aerial photo interpretation is a related process in which the order of steps is normally 
different. The process is executed in the order shown in Figure 2. IB. The 'objects' are 
mostly not known in the beginning. Instead a standard set of interpretation keys are used, 
depending on the purpose of the interpretation. From the many image features (tone, texture, 
etc.) the interpreter has the task to distill mutually discernable spatial 'objects'. This pre­
sumes knowledge on the possible occurrence of object classes given a certain context. 
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Fig 2.1 The photo interpreation process. 

It also requires knowledge on the image representation of the possible 'objects'. Some know­
ledge of the region, often obtained through field trips, is required to tell which image 
features are to be given special attention. 

Photo interpretation is an informal process. The knowledge referred to above, is often 
informally incorporated. The delineation of the interpretation unit is an interactive associative 
process in which object definition and recognition are intertwined. It is an iterative process 
of disaggregation in which a dynamic adaption of the classification system takes place. The 
following dangers are involved: 

1. Object definition may be confused with object classification. 
2. The use of specific information may be overlooked. 
3. Confusion of aggregation levels, since the photo scale corresponds to 

another level of aggregation than the individual observation in the field. 

For example, in aerial photo interpretation for soil inventory, first the interpretation is 
carried out and then data is gathered in the field. At that point ideas are formed about the 
possible soil classes. The photo interpretation is subsequently adapted to the findings in the 
field. As a consequence of the photo interpretation sequence, attention is focused on the final 
step. That generally consists of classification of the objects based on the results of the field 
survey. Since the 'objects' are not yet defined, a mingling of the object definition and object 
classification is the result. That is, 'objects' are often defined in terms of their classification. 
The object definition and classification process are not recognized as independent processes. 

This is confirmed by the observation that the interpretation process itself is not usually 
described. Therefore, the relation between the image characteristics and the objects are not 
made explicit. Also some confusion exists with respect to terminology. In soil survey the 
mapping unit is often referred to as a class, as it occurs in the legend of the map. Yet it can 
also refer to the single spatial unit on the map (i.e. the object with its specific characteris-
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tics). 

The present study takes a different approach. Aerial photo interpretation is described as 
an independent process. We indicate which image characteristics are used to delineate the 
units and their relation to the objects identified. In this manner, we are obliged to take 
account of the scale dependencies, as well as how object identification depends on the type 
of material used. The description of the interpretation process serves three purposes: 

- It allows for an evaluation of the interpretation results and describes the methodology 
for future interpretations; 

- It identifies specific information present in the aerial photos that can be used for 
further processing and classification of the data; 

- It describes the regional context, since the object definition, the object characteristics, 
as well as their image characteristics (the interpretation keys) are context dependent. 

The interdependence of thematic and geometric aspects of objects makes it difficult to 
structure the process of interpretation and classification. With respect to the land use 
inventory in the Atlantic Zone of Costa Rica, this problem was tackled by treating the photo 
interpretation and classification as distinct processes. In other words, the spatial units are 
defined through photo interpretation. Thematic characterization and classification of the units 
is done afterwards using other techniques. The outcome is then used to evaluate the results 
of aerial photo interpretation. 

3. LAND USE ZONES AND THEIR PHOTO CHARACTERISTICS 

The uses of the land depend upon land ownership (Lindgren, 1985). Parcels would there­
fore represent useful spatial entities for the description of land use. Yet, this cadastral 
information was not available for the area under study. However, for larger farms (a few 
hundred hectares or more), the property boundaries can often be detected by their rectilinear 
form. Thus, some information on land ownership is provided. With respect to the recognition 
of smaller farms it is assumed that these are spatialy grouped, allowing us to delineate 
regions with farms of a certain size. This is very clear in the case of settlement schemes, 
which exhibiting a uniform farm size distribution. 

Agricultural fields have been used effectively as objects for the classification of land use 
on the basis of spectral information (Janssen and Van Amsterdam, 1991). However, it would 
provide too much detail for the land use mapping of the Atlantic Zone on sub-regional scale. 
Furthermore, fields could often not be discerned on the photos, due to quality and scale of 
the aerial photos (1:80,000). This does not preclude the use of field type information for the 
interpretation of aerial photos (e.g. in the sense of field pattern). 

A field pattern is associated with the type of land utilization. For instance, the cultivation 
of ornamental crops corresponds to small fields, often arranged in a regular pattern. A 
grassland area is visualized as surfaces corresponding in tone and texture, delimited by clear 
linear features that are dark in tone. The lineaments represent living fences as boundaries of 
the fields. Therefore, the spatial pattern, as determined by the spatial arrangement of farms, 
fields and crops within fields, reflects the land ownership pattern as well as land utilization. 
Photo archeology recognizes spatial pattern as an important characteristic and key to the 
interpretation of aerial photos. Examples are known of ancient patterns of land division that 
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have been preserved for centuries (like the Roman and Japanese patterns that could still be 
recognized; see Schneider, 1974). Other examples are known where spatial patterns are ana­
lyzed, however mostly in relation to terrain features. Schneider (1974) describes field 
patterns ('flurvormen') in relation to mountainous areas. 

Spatial characteristics also reflects the history of land use. For instance, the limits of a 
former banana plantations are often still visible. Also former settlement schemes are still 
recognized by their spatial pattern. Areas with a shorter history in agricultural use may be 
recognized by the absence of living fences. 

Historical data can be highly relevant in studying current land use and evaluating develop­
ment options. Vrana (1989) states that the inability to access historical states of land use may 
restrict analysis to a snapshot view. He favors the use of historical data as an explicit 
component of land information systems. 
The single-date satellite scene represents a snapshot view. The interpretation of aerial photos 
on the basis of spatial pattern might provide relevant geographical units for incorporating his­
torical information (see Chapter 2 and 4 of Part 1). 

4. PHOTO INTERPRETATION KEYS 

4.1 Spatial patterns 
A spatial pattern can be defined as a function of photo pattern elements. A pattern element 

can be defined as surface artefacts that are homogeneous in tone and texture having a certain 
size and shape. They appear as 'faces' on the aerial photograph. They are delimited by line 
features that may correspond to elements like fences, roads or tracks or they may be 
recognised through change in tone or texture, corresponding to change in land cover. 

The pattern elements represent too small an area to serve as a basis for mapping. Given 
the sub-regional scale of the aerial photos (1:80,000) the units of interpretation will represent 
aggregated areas for which the (spatial) pattern provides the pre-eminent key for the interpre­
tation. 

The spatial pattern observed on the aerial photos is considered to correspond to the 
arrangement of terrain objects, such as agricultural fields. In the manual of photographic 
interpretation (A.S.P., 1960), pattern is defined as the spatial arrangement of farms, fields, 
and crops within the fields. The pattern defined as a function of terrain objects only partly 
corresponds with the pattern defined as a function of photo objects. 

In Costa Rica, large tracts of uncultivated and partly cultivated land exist (agricultural 
frontier areas). Patterns can also be described for these areas. The pattern elements in the 
latter case consist of forested and deforested (mostly grassland) areas, which appear as 
patches within the forest area (see Fig. 2.2) or elongated areas (corridors along rivers and 
streams). The rivers provided access to virgin lands. In the deforested patches of land, no 
field boundaries could be detected, nor do the limits of the areas correspond to property 
boundaries. In natural vegetated areas patterns can also be distinguished (as defined by spatial 
photo elements that are homogeneous in tone and texture). However, in this case the 
boundaries are often curved and represent gradual transitions, reflecting vegetation patterns 
determined by the soil and terrain conditions. 

Patterns indicate man-made landscapes, when sharply defined, mostly straight linear fea­
tures are encountered. Non-linear features and gradual boundaries indicate areas with natural 
vegetation. Within the man-made landscape, a distinction between farms, fields, or crops 
within fields can often not be made. This is because the boundaries of these object types have 
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a similar appearance on the aerial photo. However, when larger areas are delimited by long 
rectilinear features, they are interpreted as property boundaries. 

4.2 The land use zone boundaries 
Another important criterion does not concern the content of the zone but refers to the 

boundary of the land use zone. Property limits tend to be straight lines that often do not 
correspond to terrain features. The larger properties are easily recognized by these linear fea­
tures; they often extend over hundreds of meters, sometimes even kilometers. In these cases, 
the boundaries of the zone are determined by these straight lines even though within the area 
sometimes large differences in tone and pattern exist. 

Property boundaries generally represent stationary features (see Chapter 2 of Part 1). The 
structure indicated on the old cadastral maps at the beginning of colonization of the Atlantic 
Zone early in this century is still reflected in the present spatial pattern, as observed on the 
aerial photographs. 
The recognition of different patterns within a unit of landownership will results in the 
delineation of a number of LUZs, that are then associated by common ownership. It is 
important to register this type of association; shifts in land use are often related to change 
in ownership. Information on this type of object association can often not be derived from 
a single aerial photo. Analysis of historical material (aerial photos) in particular may reveal 
the association of land use zones and farm properties. The situation is similar to that of the 
parcels in multiple use, as described by Vrana (1989) in reference to urban use. He uses his­
torical information to indicate change with respect to urban use of the parcels. Also, land 
use zone boundaries often correspond to physical barriers, such as rivers, escarpments, etc. 
They represent stable features. On the other hand, some boundaries correspond to changes 
in cover (e.g. from forest to grassland) along a curved line but not to any physical change. 
Such boundaries tend to be less stable in character. The type of boundary is therefore an 
important key to interpretation. 

Our investigation revealed that the aerial photos perform poorly in regard to the recogni­
tion of vegetation types and crops. Only major cover types like forest, plantation crops and 
grass- and arable cropland could be recognized with some accuracy. Therefore, we did not 
attempt to identify vegetation and crop type by means of aerial photo interpretation. Land 
cover was determined later, by interpreting satellite imagery. An exception was made for the 
identification of forest cover, because the presence of forest cover is an important character­
istic of particular spatial patterns and herewith for the delineation and definition of LUZs. 

Summarizing, the criteria for the interpretation of aerial photos to delineate LUZs land use 
zones are presented: 

Concerning the land use zones: 
- Type of boundary of the unit; 
- Presence of faces; 
- Pattern 
- Infrastructural characteristics with respect to the accessibility of the LUZs. 

Concerning the faces, the following criteria were considered: 
- Boundary type of the faces and level of discernment; 
- Form of the faces; 
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- Tone and texture; 
- Presence of trees; 
- Size of the faces. 

The photo characteristics are listed for each land use zone, in order to provide criteria for 
its classification. See Chapter Six for the relevant features. 

5. SPATIAL PATTERNS IN THE ATLANTIC ZONE OF COSTA RICA. 

A set of characteristic patterns for a region can useually be 
defined and subsequently used for the identification of a LUZ. To describe all patterns 
occurring in the Atlantic Zone would not be very useful. However, some characteristic 
patterns are presented for illustration. 

The colonization pattern is characterized by the presence of forest and deforested areas. In 
this case large patches of deforested land being spread within forest area. 

Fig. 2.2. A colonization pattern; 

The deforested patches appear to be more or less randomly distributed. No larger rivers 
are present that could have determined the settlement pattern. The deforested patches can be 
considered the elementary objects. Grassland is found within the deforested area. No field 
pattern can be recognized within the deforested patches on the aerial photos. In case a field 
pattern can be discerned, it should be described and the entire unit should then be described 
in terms of an association. It is therefore important to denote whether the pattern elements 
are interpreted as agricultural fields or as other artefacts. The presence of agricultural fields 
is one the important criteria for the classification of the LUZs. 

Another example is the banana plantation pattern. A banana plantation is characterized 
by a very regular layout of the production sectors. The sectors themselves are normally 
difficult to recognize, but the drainage canals and roads give a clear indication of the pattern. 
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Faces can not be recognised. Nevertheless, the layout of the drainage system and roads 
suggest the presence of larger units in a regular arrangement. The variation in tone and tex­
ture within and between the sectors is very small, indicating a uniform land cover. The 
example of Figure 2.3. represents a land use zone of which the boundaries largely corres­
pond with river courses (i.e. the curved boundaries of the plantation). 

Plantation 
boundary 

Figure 2.3 Banana plantation. 

A third example is found in the state-controlled settlement pattern. All settlements 
schemes show a uniform distribution of the size of the faces, corresponding to agricultural 
fields (see Figure 2.4). The fields show a clear orientation and arrangement. Sometimes an 
extremely regular layout of the parcels is found. In these cases, a very systematic layout of 
the infrastructure is common. This depends on the topography, among other things. 

Figure 2.4 A settlement pattern 
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The area depicted in Figure 2.4 originally belonged to a banana. This may be recognized by 
the road pattern. The roads, parallel and at a fixed distance from each other, traverse the 
area. The river running through the area (broken line) disturbs the regular layout of the 
fields. Faces corresponding to agricultural fields are easily recognized. The boundary of the 
faces corresponds to living fences and and to change in cover (i.e. evident changes in tone 
and texture). The variation in tone and texture also indicates presence of various types of 
land utilization. 

A relatively young agricultural pattern is characteristic for areas developed in the last 20 
years. The more recently colonized areas are often characterized by the absence of living 
fences ('cercas vivas'), which hamper the recognition of the separate fields or parcels. Land 
use can be very uniform, which implies that parcels cannot be distinguished by changes in 
tone or texture. On the photo this results in some linear features that are clearly present but 
do not join to form faces. For many line features it is uncertain whether they actual represent 
boundaries (the broken lines). Many irregularly shaped features are present (areas delimited 
by drainage and rivers). Obviously, the degree of distinction of the faces is an important 
criterion. 

Figure 2.5 Pattern of more recently 
colonized area used predominantly for 
grazing. 

Some small forested areas are present. Densely wooded areas are also found as are areas 
with scattered trees. Trees scattered over the fields reveals something about the management 
and intensity of grazing. Grasslands with many trees dispersed over the area are often found 
in the more recently opened up areas. The trees indicate that the area is not being grazed or, 
if so, only very extensively. Trees often represent future revenues, for which they are 
preserved. 
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1. INTRODUCTION 

This chapter describes a structured approach to land cover inventory using remotely sensed 
data. The focus is on the definition of die training statistics, which form the basis for good 
classification results. The procedure provides an efficient way to obtain adequate training sta­
tistics for classification of land cover. Only land cover is concerned, since this can be 
directly sensed by the sensor. Land cover includes both (semi-)natural vegetation and agri­
cultural crops. Functional aspects of the land are only addressed in this chapter in as far these 
pertain to mapping the cover of the land. By adequate training statistics, we mean a set of 
classes fulfilling the requirements formulated by Swain and Davis (1978): 

- The list of classes must be exhaustive; 
- The classes must have informational value; 
- The classes must be spectrally separable. 

The literature devotes much attention to specific techniques and methods for classification. 
Comparatively little attention has been given to the selection and definition of the training 
statistics (Chuvieco and Congalton, 1988) as well as to the output phase. Both are important 
aspects of the classification process. 

Inadequacy and inefficiency of traditional approaches, have been pointed out in the 
literature. The criticism of Buchheim and Lillesand (1989), for instance, refers to both 
locating and delineating supervised training fields with statistical properties appropriate for 
maximum likelihood classification. They attribute the inefficiency and inadequacy to the 
spectral complexity of second-generation multispectral data. The reasoning behind the merger 
and deletion decision concerning the spectral classes is said to involve more art than science. 
This need not be a problem when the classification product stands alone and when the analyst 
is adept at the art. But the fact that results are dependent on the personal decisions of the 
analyst can be a problem. This is the case when comparable classifications are to be executed 
for other regions or for different points in time. 

The definition of a set of classes fulfilling the requirements mentioned above is a process 
in which object definition (definition of the land cover classes), spectral characterization and 
the recognition of the object are interwoven. The task requires insight in the complex field 
situation and in the spectral characteristics of the scene (as well as in factors explaining the 
spectral response). In case of Costa Rica the effort to meet these requirements is further 
hampered by: 

- The heterogeneity of the land cover in the Atlantic Zone and the gradual transi­
tions between the cover types; 

- The discrepancy between scheduled and actual recording date of the scene (due 
to the high cloud cover); 

- Rapid changes in land cover in the area. 

A structure is need to steer the inventory process. At the same time it should document the 
activities and decision making process. 

2. GENERAL CHARACTERISTICS OF THE AREA 

The inventory of land cover was carried out in the Atlantic Zone of Costa Rica, a humid 
tropical region in Central America. Part of the area is used for agricultural production, 
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varying from banana plantations and extensive grazing to subsistence farming. The areas of 
subsistence farming are strongly fragmented. Consequently, a large part of the pixel 
population will have a mixed spectral signature (mixed pixels) as result of boundary effects. 
Much of the area is covered by forest, which includes large swamps and peat bogs. Defores­
tation and colonization of new areas are dominant processes. The agricultural sector is 
characterized by pronounced changes in the relative shares of the different crops. 

The topography is rather flat except for some old volcanic remnants in the coastal plain and 
the central volcanic mountain range, part of which falls within the Landsat-TM scene. The 
area to be mapped covered the complete Landsat-TM scene (path/row: 15/53). The recording 
date is February 6, 1986. Field work was carried out two and three years later in 1988 and 
1989. 

3. PHASES IN THE CLASSIFICATION PROCESS 

The procedure presented is based on the supervised classification approach. It contains the 
sequential steps illustrated in the flow chart below (Fig. 3.1). The steps form part of the 
three phases of the digital classification process which are distinguished in the literature: 
training; classification; and output and evaluation. Part of the sequence is iterated several 
times until the set of training classes fulfils specified requirements. The steps are the 
following: 

1. The selection of a feature combination for a color composite assumed to have a high 
information content (the feature combination that provides best discrimination 
between the cover classes). Also a principal component transform is carried out. 
These products are taken to the field to select locations for observation. 

2. Fieldwork is carried out in one or a few areas considered representative for the 
region as a whole. In the field, the vegetation characteristics and terrain features are 
registered (see Cihlar et ah, 1987; Pouget and Mulders, 1988; these sources des­
cribe land cover and land surfaces for correlation with remote sensing data). 
Preliminary land cover classes are defined. 

3. Definition of preliminary training statistics through selection of training fields. The 
training fields are selected in agreement with the spectral and spatial resolution of the 
imagery. That is, the only classes allowed have a limited range in spectral values and 
correspond to areas that are homogeneous in terrain and cover characteristics. For 
example, areas with the same land cover but varying slope and aspect (which causes 
deviating spectral signatures) are assigned as separate training fields. Training fields 
are selected for a number of sites with corresponding land cover. This is done in 
order to characterize the spectral dispersion and to prevent incorrect spectral 
definition of the land cover types due to possible change in land cover. (This might 
have occurred because the satellite data acquisition date and the dates of field data 
gathering do not correspond). 
In the second pass an unsupervised training approach is adopted. The homogeneity 
criteria ruling the clustering process are selected such that the size of the resulting 
spectral clusters corresponds to the smaller spectral classes as defined previously. 

4. In the first cycle, the training statistics are tested using conventional methods: visual 
analysis of the feature space plots and calculation of errors of omission and commis 
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sion from the contingency matrix (see Richards, 1986). Classes with errors of less 
than 10 percent are accepted; others are evaluated for spectral overlap. 
The spectral classes that together best represent the spectral domain of the total set 
of overlapping spectral classes are selected. This requires redefinition of land cover 
classes if the rejected spectral classes rejected pertain to land cover types not yet 
represented by the remaining spectral classes. 
In the second pass of the cycle, the supervised training classes are evaluated for 
overlap with the training statistics obtained from the unsupervised approach. 
A first classification is carried out with the maximum likelihood classifier (MLC). 
The MLC enables the specification of a threshold value based on likelihood values. 
The MLC uses the likelihood that a pixel belongs to one of the spectral classes as 
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criterion for the assignment of the pixels. The threshold value, specified by the user, 
determines the confidence region. Pixels with spectral values that locate them outside 
the region of confidence are left unclassified. A confidence level of 0.9 is taken. 

6. The classification result is first checked against the percentage of unclassified pixels. 
The fieldwork, a repetition of step 2, is then directed to those areas corresponding 
to the unclassified pixels. Also the preliminary classification result is tested in the 
field. The final pass of the cycle only involves testing of the classification. 

7. The spectral classes are mapped to the land cover classes. In defining the final land 
cover classes care should be taken that they do incorporate the land cover types 
associated with the earlier rejected spectral classes. If the content of the final cover 
classes does not cover all relevant land cover types the land cover classes have to be 
redefined. When spectral clusters form part of the final training statistics, the corres­
ponding cover class is determined in the field. 
The information categories for final mapping are defined, taking into account the 
information requirements and the reliability of the field data (i.e. the reliability of 
cover class assessment). The information categories represent the appropriate level 
of generalization. 

8. Finally the image is referenced in the output phase, if not before. Color coding and 
smoothing of the image is carried out before producing the land cover map. Finally 
the map's accuracy is assessed. 

4. METHODS APPLIED 

4.1 A priori feature selection for color composites. 

Ranking methods are sometimes used for a priori selection of the spectral feature combina­
tions (Lillesand and Kiefer, 1987; Mulders et al, 1991). These rank the combinations by 
the total variance of the combinations and the correlation between the features. The methods 
consider the variance and correlation independent of each other. Therefore these methods do 
not provide an exact measure of the information contained in the feature combination. 

This study uses a measure based on the variance of difference. In this case the variance 
of difference expresses the variance of the difference between two spectral features. The 
measure then sums the variance of difference of all the possible pairs of features that occur 
within the set of features defining the feature combination. The measure subsequently dévides 
the sum by the number of possible feature pairs. The variance of difference measure is given 
by: 

£ 53 IVAR(i) +VAR{j) -2COV(i,j) 

Q.5N(N-1) 

whereby i = 1.. .N and j= i +1 . . .N and j > i, N is number of spectral features in the feature combination. 
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A priori feature selection aims to provide the feature combination with highest information 
content in terms of independent variance. This does not mean that the feature combination 
will also have highest informational value. That is because the factors explaining the spectral 
variation might not be relevant to the mapping task. Information content, being defined as 
the probability of correct classification, can be estimated by the average pairwise transformed 
divergence (APTD, Singh, 1984; Swain and Davis, 1987). The use of the variance of 
difference measure as a means to accomplish feature selection is evaluated in Appendix B. 

4.2 Spectral clusters to test supervised training statistics 

In land cover inventory, classification strategies have been grouped in two categories: the 
supervised and the unsupervised classification approach (see Ahmad, 1986, for an overview). 
In the supervised approach, the spectral classes are defined on the based of the training fields 
selected by the user. Statistics of the classes are determined afterwards. The spectral classes 
statistically characterize the information categories. The unsupervised approach defines 
spectral clusters based on criteria for spectral homogeneity. The pixel population from which 
the clusters are derived is obtained by taking a (semi-)random sample from the spectral 
scene. The clustering identifies spectrally homogeneous groups in the image. 

There are two reasons to evaluate the supervised training statistics against the unsupervised 
outcomes: 

- First, to test whether the supervised classes cover the total spectral range (i.e 
whether the list of classes is exhaustive) and to correct for possible overestimation 
of contrast between spectral classes as a consequence of spatial (auto-)correlation 
effects (Campbell, 1981); 

- Secondly, to critically review the size and spectral homogeneity of the spectral 
classes. 

The procedure is illustrated in Figure 3.2. The spectral clustering is executed per image 
segment corresponding to the major cover categories (e.g. 'forest', 'grasslands', 'built-up 
area and bare soil') to accommodate the evaluation of the spectral classes. This gives some 
indication of the cover type to which the spectral clusters correspond. The segments are 
obtained through masking of the image. These masks are derived from the preliminary 
classification result. The parameters for the clustering were the number of pixels sampled; 
radius from population means, outside which new spectral classes are defined; minimum 
allowed distance between population means; and maximum allowed number of spectral 
classes. These are chosen such that the dispersion of the spectral data of the clusters corres­
ponds to the dispersion of the values of the supervised classes. 

Testing of the supervised training classes is done by submitting the total set of supervised 
spectral classes and the spectral clusters to a hierarchical cluster analysis. Squared 
euclidian distance between means is used as the criterion for grouping. 

The result of the hierarchical clustering indicates class pairs or groups of classes with small 
differences in class means. The spectral divergence between classes is further evaluated by 
means of visual analysis of the feature space plots. (The feature space plots visualize the 
spectral overlap between the spectral classes in a two-feature space.) The classes that 
together best cover the total range in spectral values and show least spectral overlap are 
selected. The classes are thus evaluated on the basis of the distance between class means and 
size of the spectral classes. 
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Fig 3.2 Flow diagram illustrating the procedure for the 
integration and evaluation of the supervised and unsupervi­
sed training statistics. 

Chuvieco and Congalton (1988) also combine the training statistics generated by both the 
supervised and unsupervised approaches. These statistics are subsequently subjected to a 
hierarchical cluster analysis. Their focus however is slightly different. They use the 
groupings to interpret the meaning of the unsupervised classes and to improve the spectral 
definition of the information categories. They base the merger decisions on the findings of 
the hierarchical cluster analyses. No merging of classes is proposed by the present procedure, 
since this might easily lead to reduced classification accuracies. 

4.3 Mapping of spectral classes to land cover classes 

For classification output, the spectral classes need to be mapped to the information 
categories (the final cover classes). The process of expressing the classes of one classification 
system in terms of classes of a second system has also been called 'labeling' (Aronoff, 1984, 
who speaks of the assignment of 'resource classes' to 'image classes'). The process is shown 
schematically in Figure 3.3. 

The correspondence between the spectral classes and the cover classes is examined. For 
mapping, the final cover classes are defined. These should reflect the appropriate level of 
generalization, giving expression to the internal variability of groups with similar spectral 
characteristics, as well as describing the difference between groups. Aside from the purpose 
of mapping, the appropriate level of generalization is determined by the accuracy and 
reliability of the measured land cover charactersitics. 
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Fig. 3.3. Mapping of the spectral classes to the cover types 
and informational categories. 

In the supervised approach, the correspondence of the spectral classes to the cover type 
is known. This relation is obvious because the spectral classes are obtained through sampling 
of the image for sites of known cover class. However, the date of field data recording and 
the image data recording often do not correspond. For that reason, uncertainty might exist 
concerning the cover characteristics at the time of recording. The uncertainty should be 
accounted for in the definition of the final cover classes. Reliability of the mapping results 
is increased by applying more general cover classes. These are obtained through a grouping 
of classes on the basis of corresponding characteristics (which includes the definition of wider 
class boundaries). 

The spectral classes, when defined in agreement with the spectral and spatial resolution of 
the imagery, will often provide information on land cover that is too detailed for general 
purpose land cover mapping. Also in this respect the definition of more general land cover 
classes is called for. 

The mapping is done by simple recoding of picture elements. That is, the class label for 
the initial cover class is replaced by the corresponding information category label). Only 
many-to-one relationships between the spectral classes and the final land cover classes are 
allowed. 

Grouping of classes by mapping is preferred to merging of spectral classes. Merging of 
the spectral classes, when it is based on the logical grouping of the land cover classes, can 
easily create spectral classes with a large spread of spectral values. This will lead to a 
considerably lower precision of the classification. On the other hand, grouping of the spectral 
classes on the basis of the outcome of the hierarchical cluster analysis can easily result in 
heterogeneous information categories. The advantage of the proposed approach is that the 
original spectral classes are retained. Moreover, final output can be adapted through a simple 
recoding procedure to fulfil other information requirements (i.e. modification of the 
classification system). 
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5. RESULTS 

5.1 Feature selection 

On the basis of the 'variance of difference' measure, a combination of Landsat-TM bands 
3-4-5 is selected for making the color composite. The combination was supposed to possess 
the highest information content. However, in our case it did not represent the most relevant 
combination for mapping of land cover in the area. Afterwards we evaluated the 
informational value of band combinations by comparing their 'average pairwise transformed 
divergence' (APTD, Swain et al., 1971). This evaluation revealed that the band combination 
2-4-5 provided the highest discriminative power between the land cover classes. However, 
the 3-4-5 band combination is shown to represent the next-best solution. In the Table 3.1, 
the 'variance of difference' and the APTD values are listed for nine feature combinations. 
Higher values indicate greater information content, respectively more discriminative power. 
(The APTD reaches a limit at 2000, representing complete separation of spectral classes.) 
See further Appendix 2 for a description of the variance of difference measure for a priori 
feature selection. 

5.2 Preliminary classification results 

For the first (i.e. preliminary) maximum likelihood classification, the application of a 
threshold value (confidence level of 0.90) resulted in an estimated 21 percent unclassified 
area in the image. However, the percentage varied for the different regions. This is probably 
due to the geographical distribution of problematic cases (e.g. areas with a fragmented and 
diverse land cover versus areas with uniform land cover, such as extensive grassland areas). 

Table 3.1 Values for the variance of difference measure and average pairwise 
transformed divergence for eight feature combinations. 

Feature combination 

3-4-5 

1-4-5 

2-4-5 

4-5-7 

3^-7 

1-4-7 

2-A-7 

2-3-4 

3-5-7 

Var. ofDiff. 

493.7 

485.5 

476.6 

475.5 

403.0 

389.8 

375.1 

351.9 

163.0 

APTD 

1949 

1936 

1955 

1920 

1939 

1922 

1948 

1922 

1885 

In many cases unclassified pixels were those with a mixed spectral signature. They 
corresponded to roads, rivers and riverbeds, residential areas in combination with homestead 
gardens, etc. In general the unclassified areas were small in extent. In some cases larger 
areas were left unclassified, representing cover classes not yet included in the training statis­
tics. Examples include a plantation of plantain and one of a specific banana variety ('gran 
nain'). The classes were added to the set of cover classes. 
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5.3 The final set of training statistics 

The first cycle yielded a set of 66 supervised classes. With the unsupervised method, 30 
spectral clusters were added to the set of training classes, making a total of 96 classes. The 
hierarchical cluster analyses and the evaluation of the spectral classes (by means of the 
feature space plots) for redundant spectral information reduced the final set to 52 training 
classes. (See further Huising and Mulders, 1992.) The 52 classes were evaluated for errors 
of commission and errors of omission (through classification of the pixels corresponding to 
the training samples; see Richards, 1986). The results are presented in Table 3.2. 

Table 3.2 Accuracy and reliability of the training classes. 

Name of 
signature 

Accuracy1 Reliability2 
Name of 
signature 

Accuracy Reliability 

Grasslands 
PasOl 
Pas03 
Pas04 
Pas05 
Pasl2 
Pas06 
Pas21 
Pas07 
Pas24 
Pasl8 
Pasl9 
Pas20 
Pas22 
Pas23 

Secondary veeetation 
Sec02 
Sec06 
ArbOl 
SecOl 
Sec05 
Sec07 
Sec09 

93% 
97% 
96% 
100% 
91% 
81% 
100% 
99% 
95% 
98% 
98% 
100% 
100% 
100% 

93% 
96% 
97% 
92% 
89% 
89% 
88% 

Residential area and bare soil 
BuaOl 
BsoOl 
Bso02 
Ped 
LagOl 
Rio 
NubOl 
SomOl 

100% 
97% 
98% 
100% 
100% 
100% 
100% 
98% 

95% 
98% 
89% 
93% 
94% 
76% 
96% 
97% 
99% 
99% 
100% 
70% 
97% 
98% 

93% 
93% 
95% 
79% 
93% 
94% 
91% 

100% 
100% 
98% 
100% 
89% 
100% 
100% 
100% 

Forest 
ForOl 
For04/2 
For04/28 
For02/28 
For03/28 
For03/29 
For03 
Swv02 
Perennial croDs 
Ban02 
Ban03 
Ban04 
Ban05 
PlaOl 
OrnOl 
Orn02 
Orn03 
BamOl 
Bam02 
PejOl 
PalOl 
Pal02 
PipOl 
Pip02 

93% 
88% 
92% 
100% 
100% 
99% 
94% 
99% 

93% 
99% 
98% 
95% 
94% 
97% 
97% 
100% 
92% 
86% 
100% 
93% 
100% 
100% 
94% 

100% 
91% 
92% 
100% 
100% 
98% 
45% 
100% 

985 
98% 
90% 
90% 
100% 
99% 
94% 
100% 
97% 
70% 
92% 
100% 
100% 
100% 
94% 

1 Accuracy is defined as 100% 
2. Reliability is defined as 100% 

minus the error of omission, 
minus the error of commission. 

The classification of grasslands gives some idea of the number of classes that might be 
involved in classification process. Initially, more then 40 training samples were taken, of 
which 19 were selected for the preliminary classification. In the second cycle, additional 
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training samples brought the total to 24 classes, of which 14 classes remained after testing. 
Large distances between means for the spectral classes and the spectral clusters were found 

only for those belonging to 'bare soil and built-up area'. These distances were due to 
differences in size of the spectral classes and clusters; the two spectral classes (BsoOl and 
Bso02) covered the same spectral range as the set of 4 spectral clusters. 
The examination of corresponding land cover did not result in meaningful categories. For this 
reason the original bare soil classes were selected for the final training statistics. 

5.4 Definition of the information categories and mapping of the spectral classes 

Hierarchical cluster analysis generally resulted in the grouping of related land cover 
classes. This allowed for merging of the spectral classes. However, in some cases, groups 
of highly divergent land cover classes resulted. For example, bamboo was grouped with 
one class of secondary vegetation. Some grassland classes were grouped with certain classes 
of secondary vegetation. And some perennial crops were also grouped with secondary 
vegetation. For a description of the hierarchical cluster result, see Huising and Mulders, 
1992. 

Vice versa, merging of the spectral classes of corresponding the land cover classes would 
have reduced the accuracy of the classification. For example, considère the four information 
categories defined for the 1:100000 scale land cover map: 'Grassland 1', Grassland2', 
'Grassland3' and 'Secondary vegetation'. In this case, by merging the spectral classes corre­
sponding to the same information category two of the original secondary vegetation classes 
(corresponding to 'Seel' and 'Sec9') would have been classified as 'Grassland3'. The grass­
land cover type 'Pas6' (pertaining to 'Grassland2': neglected pastures) would be classified 
as 'Secondary Vegetation'; Pasl2 (also corresponding to 'Grassland2') would be classified 
as 'Grassland3' (wooded grasslands). 

Given these negative consequences, no merger of spectral classes took place. Instead, 
general cover classes were defined and the spectral classes were mapped onto these general 
cover classes. 

Two years lapsed between acquisition of the remote sensing data and the collection of field 
data. Consequently uncertainty about cover characteristics predominantly concerned grass­
lands, secondary vegetation and agricultural crops. The grassland cover types (listed in Table 
3.2) were grouped according to grass species showing corresponding general plant character­
istics. These cover types were also grouped according to management characteristics such 
as presence of weeds and shrubs in the pastures. The latter criterion, however, might not be 
considered a permanent characteristic. The general plant characteristics refer to general 
geometric characteristics of the grass species: general height of the plants; size and form of 
the leaves and stems; and whether the grasses grow in tussocks. 
'Ratana' (Ischaemum ciliare) and 'Natural' (Axonopus compressus) pastures were grouped 
at the first level of generali-zation. 'Estrella' (Cynodon nlemfluensis) was retained as a sepa­
rate group. Together these groups represent the information category 'Grassland 1'. This 
corresponds to pastures with short to medium-high vegetation with smooth vegetation sur­
faces. 
'Guinea' (Panicum maximum), 'King grass' (Pennisetum purpureum), and pastures dominated 
by 'Cola de Venado' (Andropogon bicornis) are some examples of coarse grasses reaching 
up to three meters; These were grouped to 'Grassland 2'. Cover types pertaining to this class 
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might represent different uses. Guinea pasture is an improved pasture, whereas the other 
grassland types in this group often refer to neglected grasslands characterized by the presence 
of weeds, herbs, and small shrubs. Pastures containing trees were classified as wooded grass­
lands (Grassland 3). 

Two general classes of secondary vegetation were defined: 
1. The 'tacotales', representing very dense covers of shrub vegetation often containing 

'platanillo' (Musa spp.). The shrubs vary from 1.50 to about 4 meters in height and 
with a rather smooth vegetation surface. 

2. The more woody (somewhat older) secondary vegetation types. These contain shrubs 
and trees and have a less regular vegetation surface. 

The definition of only two general classes, while large differences in vegetation characteris­
tics might exist, reflects the uncertainty about the 'true' vegetation characteristics at time of 
scene recording. 

With respect to the banana plantations a wide variation in spectral values was found. 
Deviating spectral characteristics might be due to different plant characteristics of the 
varieties used (height of the plants, size of the leaves). Deviation might also be due to 
different management characteristics. These could include general condition of the plants and 
plant density. Also, whether the fruits are transported over road or by cable to the packing 
station influences spectral response. (In the first case roads traverse the plantation, while in 
the second case the banana plants form a closed canopy.) Defining various categories of 
banana plantations would require further investigation of the correlation between spectral 
characteristics and cover characteristics. Therefore, only one class of banana plantation was 
defined. A distinction was made between plantations of plantain and the banana plantations. 

The situation was more or less the same more or less the same for coconut plantations, 
palm heart plantations (stands of young pejivalle trees, Bactris gasipaës). That is, the two 
spectral classes corresponding to coconut plantation (PipOl and Pip02) seemed to correspond 
to difference in tree density and height of the trees. Because the differentiation was not 
considered relevant to mapping, the consistency of this relationship was not examined 
further. 

For the major cover class 'bare soil and built-up area', spectral clusters resulted after 
testing the training statistics. The associated land cover was investigated by means of 
classifying a test area and evaluating the results. The classification yielded fragmented bare 
soil areas. Furthermore, the fringes of the bare soil areas were classified as clouds. It was 
concluded that the spectral clusters had a spectral range that was too narrow to adequately 
represent the spectral variation associated with bare soil cover types. The original classes 
were selected for classification. One general class of bare soil and built-up area was defined 
for final classification. The list of final classes for the land cover map is presented in Table 
3.3. 

5.5 Final classification results 

The final classification was checked in the field. A total of 240 observations were made, 
both along transects at regular intervals and at a number of randomly selected sites (though 
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Table 3.3 Land cover classes for 1:100,000 scale mapping. 

0 
1 
2 

3 
4 
5 
6 
7 

8 

Background 
Forest 
Peat and swamp forest vegeta­
tion 
Secondary forest 
Wooded area 
Secondary vegetation 
Grassland 
Natural and degraded grassland 
vegetation 
Plantain 

9 Banana 
10 Bamboo 
11 Ornamental crop 
12 Woody plantation crops: coconut, 

pejivalle, palmito, and other. 
13 Bare soil and built-up area 
14 River courses and rocks 
15 River 
16 Lagoons and shadow of clouds 
17 Clouds 

mostly referring to the agricultural areas). The items only registered were correspondence 
or non-correspondence of the classification result with the actual cover class. The percentage 
of correspondence varied from 64 percent for ornamental crops to 94 percent for the forest 
cover class. These percentages are listed in Table 3.4. 

Testing was done only for a small sample. We felt that tests conducted three years after 
scene recording would not provide a very reliable indication of classification accuracy. In 
fact the grassland classes, which do not represent very stationary cover characteristics, show 
a low level of accuracy. At 95 percent confidence level, the minimum level of accuracy for 
the grassland classes is 10 to 11 percent lower than the values listed in Table 3.4. These 
figures apply to a sample size of about 50. 

The low score of 64 percent for ornamental plants is partly explained by the wide variety 
of plants that exhibit clear differences in geometric characteristics. And in part it is also 
explained by the size of the plots; the small size prevents the determination of the spectral 
characteristics. The spectral classes gave a poor picture of the spectral range associated with 
ornamental crops. Two of the three training fields for ornamental crops referred to Cafia 
India (Dracaena massangeana), since these are found on larger plots. 

Table 3.4 Percentage of correct classification of a number of land cover classes. 

Banana 80 % 
Bamboo 82 % 
Ornamental crop 64 % 
Forest 94 % 
Secondary vegetation 89 % 
Wooded area 84 % 
Pasture land 70 % 
Secondary grasslands 72 % 

Calculated in areal percentages, 87 percent of the image was correctly classified. This high 
percentage is partly caused by the high degree of accuracy for the classification of forest 
(94%) and the high percentage of the area covered by forest (38%). 
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A more detailed classification was tested for the grasslands. On the next-lower level of 
generalization, seven grassland classes were defined. Testing at 41 locations resulted in 18 
cases of corresponding land cover classes (44%). In cases of erroneous classification the 
actual and classified value generally corresponded to related land cover classes (possibly as 
result of the object migrating to a related cover class). The tests indicated that the three 
grassland land cover classes represented the appropriate level of generalization. 

6. DISCUSSION 

6.1 The use of spectral clusters 

The present procedure is based on the supervised classification approach. The use of 
spectral clusters is intended only for testing of the set of supervised training classes. The 
spectral clusters are not used for classification purposes because they may not discriminate 
between the relevant land cover classes. There are two reasons: 

- The pixels for determining the spectral clusters do not generally represent homo­
geneous land cover because pixels are selected at random. 

- Spectral clusters are defined according to homogeneity criteria. Therefore they do 
not reflect the characteristic spectral variability of land cover classes. 

If testing reveals shortcomings in the training statistics, then additional supervised classes 
should be defined as replacements for the unsupervised spectral clusters. 

6.2 Land cover and land use 

The present procedure refers to land cover mapping only. Conventionally land cover and 
land use are mapped in associa-tion. However, land cover can be directly observed, as it 
refers to "the vegetation and artificial constructions covering the land surface" (Burley, 
1961). In contrast land use can not be observed directly, as it denotes "man's activities on 
land which are directly related to the land" (Clawson and Stewart, 1965). Lillesand and 
Kiefer (1987) pose that ideally land cover and land use should be separated, but that from 
a practical standpoint it is most effective to mix the two systems. The common association 
of land cover and land use reflects the interdependent nature of activity and form, as well as 
the conceptually fuzzy distinction between them. Rhind and Hudson (1980) state that this 
interdependence is sometimes a critical assumption in land use surveys. This assumption was 
also made with regard to the land cover and land use survey in the Atlantic Zone of Costa 
Rica. 

The application of land use criteria in defining the classes tends to result in overlapping 
spectral classes. On the other hand, the definition of cover classes on the basis of charac­
teristics less relevant for the spectral response might cause spectral confusion. 

The study in Costa Rica yielded many examples of diviating land use with corresponding 
land cover (and thus spectral) characteristics, and vice versa: 

- The natural grasslands in and near lagoons have spectral characteristics similar to 
those of the grass vegetation in bottomlands. The latter are used for grazing in the 
drier periods, whereas the former are not used. 

- A macadamia plantation (a tree crop) parts of which are also used for the cultivation 
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of maize by the labourers, differs spectrally from other macadamia plantations that 
have a grass vegetation as under-story. These also differ from plantations where the 
grass has been cut, shortly before recording the scene. There is no substantial 
difference in land use, while the spectral characteristics differ strongly. 

- Cacao plantations (especially the older ones) are difficult to distinguish from other 
densely wooded areas, like wooded grasslands, wooded river banks, some reforested 
areas or secondary woody vegetation. 

- Secondary shrub vegetation cannot be distinguished from a young planting, for 
instance of achiote (a tree crop used in producing dye). 

The classes to be applied to remote sensor data should therefore refer to land cover charac­
teristics. Land use can be inferred from land cover by considering additional characteristics, 
such as field pattern. Thre land use classification is considered separately from land cover 
classification. 

The classification procedure would be improved if the definition of cover classes and their 
spectral expression could be based on known relationships between cover characteristics and 
spectral response. Such relationships are investigated in the appendix A. 

6.3 Classification and aggregation hierarchies 

Classification systems are often used in the classification of land cover using satellite 
imagery. The classification system described a hierarchical structure of materials. They 
enhance the understanding of a complex field situation. Problems may arise due to the 
improper definition of classification and aggregation hierarchies. This may happen especially 
with the second generation satellite imagery, 

The USGS land use/land cover classification system (Anderson, 1976) is one example of 
such a classification system. Another is the CORINE classification system, designed to 
classify land cover and land use in Europe (CORINE, 1989). Both classification systems treat 
land cover and land use in association. 

The various levels of the USGS classification system are designed to accommodate remote 
sensor data of varying resolution. Only the first and second level of the classification system 
are defined. These levels are principally used on a nationwide or statewide basis. Levels 
three and four, which provide information on a regional level, are intended to be designed 
by the local user. i 

Aside from representing different levels of aggregation, the hierarchy levels represent 
grouping of classes according to logical or functional criteria (e.g. classes 'Cropland and 
pasture' and 'Orchards, groves, vineyards, nurseries and ornamental horticultural areas'). 
The confusion between aggregation and generalization makes it very difficult to define the 
appropriate set of classes. This may be elucidated by considering some examples from Costa 
Rica. The classes, recognized using remotely sensed data, correspond to different levels of 
generalization. Also areas classified as homogeneous refer to different levels of aggregation. 
For example, banana plantations can be easily recognized and mapped because they cover 
large areas. Even specific varieties of banana crops (Gran nain, Valéry, Cavendish) can be 
recognized. On the other hand a crop like 'Palmito' (young palm trees [Bactris gasipaes] 
harvested for palm heart), cannot be recognized as a specific crop. Palmito is generally 
grown in smaller units and it is liable to spectral confusion with other cover types. It can 
only be recognized as the general class of dense shrub vegetation. 
The same applies to cacao {Jheobroma cacao), which can only be recognized as the general 
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class of 'wooded area'. The category of wooded area includes land cover classes like 
'wooded river banks', 'densely wooded pastures', 'citrus plantations' and 'macadamia 
plantations'. With respect to ornamental crops, larger fields of Cana India (Dracaena 
massangeana) can be mapped. Other ornamental crops like Marginata sp., generally grown 
on smaller plots, cannot be recognized. 

Because of these considerations, no a priori defined set of classes was used for the Atlantic 
Zone land cover classification. Rather the procedure departs from the idea that it should first 
be investigated which classes can be discerned, given the resolution of the material 
employed. In a later phase (the mapping phase) final land cover classes and classification 
hierarchy levels are defined. Data aggregation is a problem in itself and is treated elsewhere. 

6.4 Improvements of the classification procedure 

Automated procedures could be employed for the feature extraction to further reduce the 
impact of the human factor (see Buchheim and Lillesand, 1989). However, problems would 
still be associated with the specification of the relevant parameter values ruling the feature 
extraction process. Also, the selection of seed pixels would still be a matter of concern. Fur­
ther investigation should reveal the usefulness of such automated procedures. 

In the present procedure, the distance between spectral classes and clusters is evaluated by 
measuring the distance between means (and also by visual interpretation of the feature space 
plots). Other distance measures could be used, such as the mahalanobis distance. Moreover, 
quantitative criteria could be specified for merging or deleting of training classes. One 
shortcoming of these measures is that they evaluate distances between two populations, 
whereas the set of classes should be to evaluated for spectral overlap. Visual analysis of the 
feature space plots is an efficient way to do this. 

However, on the basis of the analysis of the feature space plots, alternative sets of classes 
could be defined. Measures like the average pairwise transformed divergence could then be 
used as quantitative criteria in selecting the best out of alternative sets. 

For the mapping (or labeling) of spectral classes an optimized labeling algorithm has been 
designed by Aronoff (1984). The algorithm finds the label assignment which minimizes the 
loss function due to misclassification. Especially when costs due to misclassification can be 
specified, optimization of the labeling might be very valuable. These costs can often not be 
determined in a general purpose land cover mapping. 

In the supervised approach, the spectral class are directly linked to the cover classes 
through the sampling procedure. The actual per pixel label assignment will generally be 
optimal one. More relevant is the question whether the appropriate cover classes have been 
defined. The content of the classes might change, especially during the evaluation of the 
training statistics, if classes are deleted, if- in exceptional cases - merging of classes occurs, 
or if new classes are added. Then it could be useful to evaluate the land cover class definition 
on the basis of classification result. The final phase in the classification process would then 
not only consist of the evaluation of classification accuracy. But at the same time it would 
be directed to the definition of the final land cover classes at the appropriate level of general­
ization. A loss function, as provided by Aronoff, could then be used to evaluate alternative 
sets of land cover classes. 
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1. INTRODUCTION 

Farm size is an important socio-economic variable, as well as an important criterion 
for the characterization and classification of farms, because choice of crop and farm 
management are strongly related to farm size. Data on farm size can often be obtained 
per administrative unit. This will generally be statistical data on farm size distribution and 
will not provide very specific information. 

The aim of stratification is to define units with more homogeneous features. Since farm 
size is an important socio-economic parameter for land use analysis and mapping, the 
land use zones are assumed to represent units with less internal variability on farm size. 
Furthermore, there should be clear differences in farm size characteristics between these 
zones. 

With respect to the Atlantic Zone, information on the size and location of farms is not 
readily available. Data can be obtained directly through farm survey or through aerial 
photographs, for instance. The latter approach would be more efficient as it requires only 
limited fieldwork. Under certain conditions, fields size is expected to be related to farm 
size. Thus, field size could be used in inventory of farm size. The validity of this 
indicator is verified in this chapter. 

A different but related question concerns the class definition. Land use is inventoried 
by means of the delineation and classification of LUZs. It implies that field size and farm 
size distribution, among other characteristics, is investigated for the LUZs. The question 
is whether LUZs can be discriminated on the basis of their field size and farm size 
characteristics. If so, the field size and farm size classes should be defined such that they 
reflect the degree of distinction which can be reached with the material available. In other 
words the classes should represent the appropriate level of generalization. 

At the same time, the investigation of the distinction between the LUZs serves the 
evaluation of the result of the photo interpretation result. If no differences are found in 
farm size between the LUZs, then obviously the LUZs do not represent relevant spatial 
units. The procedure is depicted in figure 4.1. If the data does not permit the required 
distinction between objects, the result of the photo interpretation result is rejected. 

2. DATA ACQUISITION: SIZE OF FACES, FIELD SIZE, AND FARM SIZE 

In agricultural areas, LUZs can generally be considered an aggregation of agricultural 
fields. In the natural vegetated areas, no field pattern is observed. Nor are fields often 
recognized in the agricultural frontier area. Therefore, these latter areas should be ignored 
when field size is investigated in relation to farm size. It is assumed that the size of 
agricultural fields is correlated with farm size. Since we want to use aerial photos to 
obtain information on field size, we exclude all those units where the faces were not 
considered to represent agricultural fields (see chapter two). 

The size of fields will be related to farm size only for certain land uses. This is 
especially likely in areas dedicated to grazing. There, size of the fields will be related to 
the size of the herds and thus to size of the farm. Such a relationship is also likely with 
respect to arable cropping and other uses. Small farmers who depend on family for labour 
will cultivate maize on smaller plots if. Larger farms, with possibility of employing 
machinery or hired labour, will tend to have larger plots. 
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Fig 4.1 Testing of the 
boundary definition. 

LUZ and class 

This assumption does not hold for intensive crops, like ornamental plants. These crops 
are grown on comparatively small plots, eventhough the farms might be large. Another 
example is the cultivation of bananas. The plantations are organized in production sectors. 
The size of these sectors does not give an indication of the size of the plantation. The 
number of sections or the number of stations for washing and packing of the fruits might 
be a more meaningful indicator of size. 

Therefore, we should select only the LUZs with mixed land cover (arable cropping and 
grazing) or areas predominantly used for grazing. These LUZs are sampled with respect 
to field size. Data on field size is obtained through a grid point count, whereby a grid 
point corresponds to a certain area size (in hectares). Statistical data is recorded per land 
use zone. The data includes minimum value, maximum value, mean, median and standard 
deviation. 

Information on farm size distribution was obtained through farm interviews (see 
Chapter Three of Part One). The interviews were carried out in the same LUZs for which 
data on field size was obtained. Also with respect to farm size, the minimum, maximum, 
mean, and median values were recorded per land use zone, in hectares as well as in farm 
size class. In this procedure, farm size classes were only used for the purpose of scaling 
the farm size data. The variance or standard deviation in farm size will increase with 
increasing mean farm size. (For a land use zone with large farms the difference between 
the size of the individual farms will be high also, in absolute terms.) To correct for this 
effect the farm size data is scaled according to the two schemes shown in Table 4.1. Two 
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different schemes were applied to account for possible effect of the scaling pattern itself. 

Table 4.1 . 

Scheme I: 
0 - 5 ha. 
5 - 10 ha. 

10- 20 ha. 
20 - 50 ha. 
50 -100 ha. 

100 - 200 ha. 
> 200 ha. 

Scaling of farm size data. 

Class: 
I 

II 
III 
IV 
V 

VI 
VII 

Scheme II: 
0 - 5 ha. 
5 - 15 ha. 

14- 45 ha. 
45 -135 ha. 

135 - 440 ha. 
> 440 ha. 

Based on the collected, we attempted to answer the following questions: 
1. Does the data on size of faces, as obtained from the aerial photo, allow for dis­

crimination between the LUZs? 
2. Are field size and farm size related? 
3. Can from the distribution of fields size conclusions be drawn on the distribution 

of farm size within the LUZs. 

3. METHODS 

The class definition for field size, with respect to the LUZ involves defining clusters in 
a one-dimensional feature space. For each LÜZ many observations are made. Differences 
between the LUZs are evaluated by the one-way analysis of variance. The comparison of 
all possible pairs of group means is called the multiple comparison (Scheffé, 1959). It 
produces a matrix in which all the significantly different group means are indicated. 
Those LUZs with a small number of field size observations were excluded from the 
analyses. These zones were generally small in size. On the basis of this matrix homogene­
ous subsets are defined. These consist of groups (i.e. LUZs) with means that do not differ 
significantly. The minimum and maximum values of these subsets can be used to 
represent the class boundaries. 

Before the LUZs are subjected to analysis of variance, the results of the photo 
interpretation are checked by evaluating the distribution characteristics. LUZs with a wide 
spread in data values, bi-modal distribution, or skewed distribution patterns (as indicated 
by a large difference between median and mean values for size of faces) where traced on 
the aerial photo. If indeed an interpretation error was found, the boundaries of the land 
use zone were redefined. 

The relation between field size and farm size was analyzed by means of regression 
analysis, though at land use zone level. This implies that the regression analysis concerns 
object characteristics like mean or median fields size and farm size. It does not concern 
the individual measurements of field size and size of farms. It is investigated which of the 
statistics expressions of field size distribution (mean, median and other), best indicates 
farm size. 
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3. RESULTS 

The highest correlation was found between the land use zone mean field size and mean 
farm size class (with referring to the first classification scheme for scaling of the farm 
size, Table 4.1). An R-square of 0.87 (N=37) was obtained using non-linear regression 
(see Figure 4.2). 
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Fig 4.2 Mean farm size class as function of the mean size of faces of the land 
use zones. 

The linear regression produced an R-square of 0.81. The points on the graph represent 
LUZs. The lower correlation for the linear regression is simply explained by mean farm 
size class reaching an artificial determined maximum of seven, while the mean size of 
faces is not delimited. (The highest class represents a range in farm size from 200 to a 
few thousand hectares). By leaving out the four LUZs with highest mean size of the faces 
we obtained almost the same correlation coefficient (R-square = 0.86 at N=33) for the 
linear regression. The use of the median values yielded lower results for both size of the 
faces and farm size. 

The one-way analysis of variance indicated a significant difference between the LUZs 
with respect to their mean size of faces. The matrix below (Table 4.2) indicates the 
results of the multiple range test. The asterisk denotes pairs of LUZs with significant 
difference in mean size of faces. On the axes the LUZs are indicated by their identifier. 
Also listed is their mean value for the size of faces. This result was obtained with 
Duncan's multiple range test applying a significance level of 0.10. Comparable results 
were obtained with the application of the Least significant difference (LSD) range test 
(see SPSS, 1983) and an a of 0.05. 

On the basis of these results, we can define homogeneous subsets of LUZs that do not 
differ significantly as regards their group means. The matrix should be read as follows: 

LUZ no. 14 (first column, the number should be read vertically), with a mean field 



112 Chapter 4, Part 2 

size of 1.12 hectare does not differ significantly from LUZ no. 17 (row) with a 
mean value of 4.25. Together with all the LUZs that have a value in between, they 
define a homogeneous subset. In the same way, a subset of LUZs with no statistical 
difference in mean field size can be defined for each column (i.e. each land use 
zone). 

Many of these subsets will show strong overlap. They can be identified through the 
matrix. For example, the subsets corresponding to the first seven columns show a very 
strong overlap in their group members. All subsets contain the same LUZs with means 
equal to or less than 3.81, referring to LUZ no. 10. These subsets can be merged to 
define one homogeneous set whereby LUZ no. 10 represents the highest mean value. 

Table 4.2 Significantly different land use zones with respect to the mean size of the 
faces, as determined by the Duncan's multiple range test. 

LUZ I d e n t i f i e r . ' 
1 

Mean 
1.12 
1.14 
1.20 
1.26 
1.28 
1.36 
1.64 
1.66 
1.86 
1.92 
2.32 
2 .40 
2 .56 
2 .77 
2.84 
3 .20 
3.30 
3 .81 

4 .00 
4 .25 
4 .98 
5.02 
5.46 

6.04 
7 .08 
7.36 

8.90 
9.92 

10.40 

12.11 
12.16 
13.76 
14.00 

17.60 
23.04 

LUZ I d . 
14 
40 
88 
26 
75 
99 
53 
34 
93 
45 
60 

145 
33 
94 
80 
23 
76 
10 

89 
17 
36 

100 
56 

84 
39 
65 

1 
9 1 
13 

58 
124 

30 
138 

113 
72 

1 4 8 2 7 9 5 
4 0 8 6 5 9 3 

* * * * 
* * * * * 

* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 

3 9 4 6 
4 3 5 0 

* * * 
* 

* * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 
* * * * 

* * * * 
* * * * 

4 3 9 8 2 7 1 8 1 
5 3 4 0 3 6 0 9 7 

* * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 
* * * * * * * * * 

3 0 5 8 3 6 0 
6 0 6 4 9 5 1 

* * * * 
* * * * 
* * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 

9 1 5 2 3 3 
1 3 8 4 0 8 

* 
* 
* * * * * * 
* * * * * * 

1 7 
3 2 

* denotes pairs of groups significantly different at the 0.100 level/ ' Number should be read vertically 

The next columns that represents strongly overlapping subsets are the columns of LUZ 
no. 34 through LUZ no. 60. These are also merged to define a homogeneous set with a 
minimum mean value of 1.6 hectares (corresponding to LUZ column no. 34) and a 
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maximum mean value between 4.25 hectares corresponding to LUZ row no. 17 and 4.98 
ha. corresponding to LUZ row no. 36. The asterisks indicate that LUZ 36 is significantly 
different from LUZs 34, 93 and 60, because of which it is not part of the homogeneous 
set. 

The next sets of strongly overlapping subsets can be defined in the same way. These 
sets are indicated by vertical and horizontal lines. The vertical lines denoting the start of a 
new set of overlapping subsets. The first LUZ in the new set determines the lower 
boundary. The horizontal lines denote the upper limits of the sets. The corresponding 
mean field size of the first and the last LUZ of the homogeneous set denote the minimum 
respectively the maximum boundaries of the classes for the mean size of faces. The 
classes are listed in Table 4.3a. However, the classes still show too great an overlap in 
value. The second class, therefore, was discarded, and the fourth and fifth class were 
merged, resulting in classes as listed in Table 4.3b. 

Table 4.3 Class boundaries for the mean size of the faces. A shows the total number of 
homogeneous subsets; B gives the reduced set with less overlap between the classes. 

A. 
1.0- 3.8 ha. 
1.6- 4.6 ha. 
2 .4- 5.5 ha. 
4 .9- 8.0 ha. 
6.0- 11.0 ha. 
9.9 - 17.6 ha. 

> 14.0 ha. 

The above mentioned classes of mean size of the faces can be translated into classes of 
mean size of farms. This can be done by using the regression equation for the correlation 
between size of face and farm size. However, the classes are intended to describe the 
range of farm size occurring within a specific land use zone and not the mean value. 
Therefore, the deviation from the mean is taken into account in translating upper and 
lower limits of the field size classes to farm size classes boundaries. This will generate 
the classes as listed in Table 4.4. For the translation of field size to farm size use was 
made of the linear regression equation obtained for the reduced set of 33 observations. 

1.0 
2.4 
4 .9-
9.9-

> 

B. 
- 3.8 ha 
- 5.5 ha 
11.0 ha 
17.6 ha 
14.0 ha 

Table 4.4. Farm size classes. 

Class 1. 
Class 2. 
Class 3. 
Class 4. 
Class 5. 

0 - 29 ha 
10 - 60 ha 
30- 260 ha 
85 - 1000 ha 

> 400 ha 

This class definition represents a set of farm size classes, appropriate to classification 
of LUZs. 'Appropriate' means that the size of the classes reflects the internal variability 



114 Chapter 4, Part 2 

of the LUZs in terms of fields size (and farm size) and that it effectively describes the 
difference between LUZs. The definition of more specific classes would not be very 
useful. That is because the internal variability of the LUZ as regards to field size does not 
justify such detailed description of farm size. Definition of more general classes would 
not make use of the full discriminating potential of field size data. More general classes 
would therefore imply a loss of information. The result reflects the quality of the aerial 
photo interpretation (the LUZ map). Different class boundaries would result from a 
different aerial photo interpretation. 

Since our objective is to develop the aerial photo interpretation as a tool for land use 
inventory, the emphasis is on the aerial photo characteristics (field size, in this case). The 
width of resulting farm size classes fully depends on field size characteristics of the 
LUZs: difference in mean field size between LUZs; mean standard deviation of field size 
of the LUZs. Also, the number of observations of fields size per LUZ will influence the 
outcome of the multiple range test and herewith the width of the classes. In defining the 
farm size classes the only farm data used is the LUZ mean farm size. Distribution of 
farm sizes within the LUZs has not been explicitly taken into account in defining the farm 
size classes. The relevant question then of course is to which degree the individual farms 
within a LUZ correspond in size to the farm size classes predicted on basis of the field 
size data. To answer this question, the original farm size data corresponding to the 
individual farms spread over nine LUZs were compared with the farm size class deter­
mined on the basis of the field size data. It proved that for 83 percent of the farms 
(N=78) farm size was within the boundaries indicated by the farm size class. The 
percentage per land use zone varied between 60 and 100 percent. 

The relation between field size and farm size is determined on the basis of data for the 
relevant LUZs in a study area of 30 by 30 kilometers. The area is considered representa­
tive for the total northern part of the Atlantic Zone. Application of the approach to 
mapping of farm size to other parts of the Atlantic Zone requires the investigation of the 
validity of the relationship established between mean field size and mean farm size for 
those parts. This could not be verified because of lack of data at this time. For regions in 
which different land use characteristics and other socio-economic conditions prevail, the 
relationship at issue should be established independently. 
In this chapter it is demonstrated that: 

1. A clear difference in field characteristics exists between the LUZs. 
2. The LUZs exhibit clear differences in farm size composition (see Chapter 

Three, Part One); 
3. Farm size can be mapped on the basis of mean field size, given the relation­

ship between mean field size and mean farm size. 

4. DISCUSSION 

The class boundaries for farm size classes that are used in socio-economic (regional) 
analysis are seldom subject to discussion. Choice of class boundaries is either based on 
convention or is made rather arbitrarily. For example, in the socio-economic analysis of 
the Rio Jimenez area in the Atlantic Zone of Costa Rica, the following farm size classes 
are used without further reference (Waaijenberg, 1990): 
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< 4 ha. 
4 - 20 ha. 

20- 50 ha. 
50 - 200 ha. 

> 200 ha. 

In a related study concerning a different area, two different classification systems are 
used. No further clarification is provided on the class boundaries used (Wielemaker, 
1990): 

< 20 ha. < 30 ha. 
20 - 50 ha. 30- 60 ha. 

50 - 200 ha. 60 - 120 ha. 
> 200 ha. 120 - 250 ha. 

> 250 ha. 

In these studies the farm size classes are defined a-priori. These studies investigate 
the forms of land use, agronomic or socio-economic characteristics associated with the 
given farm size classes. Areas or regions are characterized and compared with respect to 
their distribution pattern for farm size, among other variables. The areas which are 
compared are sometimes defined using different criteria (as was the case in the mentioned 
examples). 

The land use zone approach is founded on a different concept, namely that of 
homogeneous LUZs. The focus is on the definition of units or regions relevant to the 
mapping of land use, instead of having to resort to more or less arbitrarily defined 
regions. The classes are chosen to express characteristic difference between the units of 
interest, as well as the variation within the units. It is a data-driven approach, which 
reflects the type, scale, and quality of the material used in defining the appropriate units 
and classes. Since the farm size classes are not a-priori defined but result from the 
procedure, the relevance of the classes for the characterization of farms and land use 
should be investigated afterwards. This aspect is evaluated in Chapter Three, Part One. 
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1. INTRODUCTION 

This chapter, like Chapter 4, deals with the problem of class definition concerning 
aggregated objects. Aside from the field size distribution, land use zones (LUZs) are 
characterized by their land cover composition. Also in this case the issue is whether the land 
cover composition allows us to discriminate between the land use zones. 

On the one hand, the analysis of the separability of the LUZs serves to evaluate the photo 
interpretation, since the objective of the photo interpretation is the identification of LUZs 
with distinct characteristics. On the other hand, the analysis serves to define the attribute 
value classes that should adequately reflect the discriminative power of the composite land 
cover attribute. 

The problem at hand is different from the one treated in the previous chapter. Here we are 
concerned with the classification of a multi-dimensional discrete variable. This task requires 
different analytical techniques. Nonetheless, the principle remains the same, namely, 
clustering in an n-dimensional space. 

An important aspect of the class definition is the error and uncertainty of the input data 
in relation to the class definition. With respect to the mean field size, the classes were 
defined such a way that they reflected the internal variability of the land use zones, while 
maintaining the power to discriminate between the zones (see Chapter 4). As such reflecting 
the appropriate classes for describing the variation in field size. 

We want to define also appropriate classes for the classification of land cover composition 
of the LUZs. With respect to the accuracy of the input data for this classification two factors 
are of importance: 

1. The assignment of the pixels to the regions. Hutchinson (1982) acknowledges the 
problem of discrete transitions in stratified maps. This problem emerges in the 
context of combining Landsat and ancillary data. The object thematic content is 
dependent on that geometry of the object. The accuracy with which the geometrical 
characteristics are determined will influence the reliability of the thematic attribute 
data and thus the class definition. 

2. The assignment of the pixels to the classes. The cover classes are the result of an 
earlier classification process. Thus they have a certain associated reliability. This 
influences the reliability of the aggregated object classification. 

Therefore, the main questions addressed in this chapter are: 
1. What is the degree of inaccuracy of the thematic attribute values pertaining to the 

LUZs? What are the causes of inaccuracy? 
2. How can the inaccuracy be accounted for in the definition of the appropriate set of 

composite land cover classes? 

2. MATERIALS AND METHODS 

Data on land cover composition of the land use zones is obtained by overlaying the land 
cover classification with the LUZ map. The land cover classification is described in Chapter 
3; the delineation of the LUZs is described in Chapter 2. 
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2.1 Geometric transformation 

Before the land use zone definition and the land cover classification result can be overlaid, 
they have to be referenced to the same coordinate system. Both the satellite imagery and the 
aerial photo interpretation were transformed to the local coordinate system (Lambert projec­
tion). 

With regard to the registration of the satellite imagery, an upper limit for the RMS (Root 
of Mean Squares) is normally defined for the transformation result. This is generally set from 
1.0 to 1.5 pixel. In the case of Landsat-TM this corresponds to between 30 and about 50 
meters. Errors are caused by deviations in the identification and location of control points. 
Errors also depends on the degree of the transformation polynomial (see Buiten, 1988). 

For the Guacimo-Rio Jiménez-Siquirres (GRS) study area in the Atlantic Zone of Costa 
Rica, a single photo numerical restitution was carried out. The application of this method 
requires information on the elevation for every point. A Digital Elevation Model (DEM) was 
constructed by first digitizing the contour lines from the topographic sheets. This was 
followed by rasterization and interpolation to obtain elevation data per raster cell. Transform­
ation parameters were determined on the basis of carefully selected reference points. The 
procedure is schematized in Figure 5.1. 

contour lines 
(mx,my,z 

Fig. 5.1 Single bundle resection and monoplotting operation. 

The procedure was carried out with a program developed at the Agricultural University 
Wageningen. It operates on a personal computer under MS-DOS with peripherals (a 
digitizing tablet and a plotter). See Molenaar and Stuiver (1987) for a description of the 
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monoplotting procedure. 

2.2 Overlay and data aggregation 

The GRS study area in Costa Rica consisted of 158 LUZs. This map was overlaid with 
the land cover classification. For every LUZ, the percentage of each of the 16 land cover 
classes was obtained (illustrated in Table 5.1). The land cover classification of the GRS area, 
with the LUZs overlaid, is presented in the appendix. 

The percentages had to be corrected for the effect of cloud cover and for the unclassified 
area (result of incomplete matching of the coverage boundaries). The area of the LUZ not 
classified or corresponding to clouds was distributed over the other cover classes, in 
accordance to the portion each cover class occupies in the LUZ. 

Table 5.1 The matrix of land cover class percentages 

LUZ Identifier 

1 

— 

._ 

158 

Land cover class percentages 

LCC 1 LCC 2 — 

X|,i X12 

^158,1 ^158,2 -

— — LCC 16 

X, |j 

- " ^158,16 

2.3 Class definition through cluster analysis and by defining a threshold value for the 
cluster solution 

The discrimination between the LUZs by land cover composition is analyzed by means of 
a hierarchical cluster analysis. And on the basis of the cluster solution, the composite land 
cover classes are defined. 

The hierarchical cluster analysis evaluates, in a hierarchical order, the distances between 
cases or groups of cases. Cases or groups thereof are linked in order of increasing distance. 
Two linked cases represent a group. The group, with its associated group values, will be 
compared to other cases or groups to form new groups, etc. At the end of the clustering 
procedure, one group is left. That group incorporates all the original cases. 

For each distance, a corresponding cluster solution can be found. The distance at which 
to accept the cluster solution is the minimal distance at which two groups can be considered 
different. This minimum is determined by the accuracy with which the distance between 
groups can be calculated. Once the threshold value is determined and the cluster solution 
accepted, the minimum and maximum values of the resulting clusters are used to define the 
class boundaries. 

We selected average linking between groups as cluster methods, using the city block as the 
measure of distance. The city block measures the 'walking distance'. It means that the 
distance between LUZs is determined by the sum of the difference in percentage for each 
cover class. 

The minimal required distance between LUZs is determined by the accuracy with which 
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the land cover percentages can be calculated. Once this threshold value is defined, the cluster 
solution will serve as a basis for the class definition. The LUZ with the minimum value in 
the cluster will thus define the lower boundary of the composite land cover class. The land 
use zone with the maximum value will then define the upper boundary of the composite land 
cover class. (For each of the 16 land cover classes, the minimum and maximum values are 
determined per composite land cover class.) 

The land cover composition of a LUZ is determined by the pixels pertaining to it. 
Accordingly, the reliability of the cover class percentage is related to the certainty with 
which a pixel's membership in the LUZs can be determined. It is also related to the 
reliability of the land cover class label that is assignment to a individual pixel. 

The reliability of the assignment of a pixel to a LUZ depends on the geometric accuracy. 
And this, in turn, depends on the precision of the transformation process, as well as the 
precision with which reference point can be identified and located. The accuracy is expressed 
in terms of discrepancies between measured and calculated points. Maximum errors are used 
as a basis for determining the threshold value. This is done to assure that the final classes 
will capture the variation in the composition of land cover class as consequence of the 
geometric inaccuracy. 

The reliability of the LUZ land cover class percentage is depends on the accuracy of the 
land cover classification. The listed land cover percentages are in fact estimates of the actual 
land cover percentage. For each estimation of a land cover percentage a confidence interval 
can be calculated, taking into account the reliability of the per pixel assignment of that 
specific land cover label. The confidence interval can be calculated on the basis of the 
probability of class 'A' occurring r times, given s occurrences of pixels classified as 'A'. 
This probability is based on two terms, namely: 

1 The probability of class 'A' occurring, given that the pixel is classified as 'A' 
[P(A | A)], and; 

2 The probability of occurrence of class 'A', given that the pixel is not classified as 'A' 
[P(A | not A)]. 

The formula is as given below: 

w = é [<f*Wa -PxT') *(! " ^ t a r ' a -/>2)
(n-sMr-°)] 

where: 
n = total population (number of pixels of a LUZ) 
r = number of occurrences of 'A' 
s = number of occurrences of pixels classified as 'A' 
pi = P(A| A) is the conditional probability of A given A, with A being the event of class A 

(classified as A) 
p2 = P(A | -i A) is the conditional probability of occurrence A given ~~>A (not A), with """A being 

the event of not class A (not classified as A). 
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3. RESULTS 

3.1 Accuracy of the geometric and thematic object attributes 

Geometric accuracy 
With respect to geometrical accuracy, the orientation of the satellite imagery relative to 

the LUZ map must be coordinated, since these are overlaid. The possible relative error is 
ascertained by adding the registration error of the satellite imagery to the possible deviation 
in geometry of the land use zone map. The former was set to 1.5 pixel (given as a parameter 
in the transformation process), corresponding to 50 meter in the field. 
As regards the geometric accuracy of the land use zone boundaries, the following sources 
of error have been identified (see also Buiten, 1988): 

- The accuracy of the LUZ delineation. The line thickness gives an indication of the 
accuracy with which a line (boundary) can be drawn on the aerial photo. It is taken 
to be 0.3 millimeter, which corresponds to about 25 meters in the terrain, consider­
ing the 1:80,000 scale of the aerial photos. 

- The accuracy of the subsequent digitization is taken to be 0.2 millimeter (when 
done accurately), corresponding to 16 meters in reality. (This is slightly more than 
the 0.15 millimeter mentioned by Buiten (1988) for the digitalization accuracy; that, 
however, concerns the digitizing of control points.) 

- The accuracy of the transformation itself. In the case of Costa Rica a deviation of 40 
meters was accepted for the results of the numerical restitution. 

A discrepancy of 40 meters between measured and calculated reference points was 
accepted. This margin takes the quality of the topographic sheets into account. Their quality 
affects both the accuracy of the DEM and the precision with which the coordinates of the 
reference points could be determined. An accuracy of about 80 meters is obtained for the 
geometric precision of the LUZ boundary, by adding the errors from the different sources. 
This implies that when we compare the land cover classification and the LUZ map, the 
maximum relative error.is 130 meters (80 plus 50 meters). This figure corresponds to a 
maximum deviation of 4 to 5 pixels, which was indeed observed in some places. The 
expected standard error is 70 meters (obtained by VEffj2, whereby sigma denotes the standard 
deviation in meters associated with factor /). 

Land cover classification accuracy 
The accuracy of the land cover classification was estimated by doing field checks. This 

methods was preferred to assessing the probability of class membership as derived from the 
conditional probability for the spectral values, given a certain spectral class. These can often 
be requested as additional output of the classification, depending on the type of classifier 
applied (Wu et al., 1988; Kenk et al., 1988; Wilkinson and Mégier, 1990). The probability 
that a pixel 'x' belongs to a certain spectral class does not need to correspond to the 
probability that 'x' correctly identifies actual land cover. Actual land cover was recorded 
along three transects in the field and for a number of randomly selected sites. The obser­
vations were compared with the classification values. Table 5.2 presents the results. 

The figures lie within the 50 to 90 percent range generally reported for classification 
accuracy. Janssen et al. (1990) mentions 72 and 76 percent classification accuracy obtained 
in two agricultural areas in the Netherlands. Kenk (1988) mentions accuracies of 70 percent 
or more in terms of identifying the correct class. The classification performance was better 
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than the classification accuracy mentioned by Ioka (1986); the performance ranged form 46.8 
per cent to 76.8 percent, depending on the level of generalization. The percentages were used 
as a measure of the probability of correct classification. 

Table 5.2 Percentages of correct classification for a number of land cover classes. 

Banana 80 % 
Bamboo 82 % 
Ornamental crop 64 % 
Forest 94 % 
Secondary vegetation 89 % 
Wooded Area 84 % 
Pasture land 70 % 
Secondary grasslands 72 % 

Reliability of the LUZ land cover percentage 
The LUZ land cover percentage is determined through aggregation of pixels (elements). 

The reliability of this percentage depends on the reliability of the elementary observations 
(the per pixel land cover class). The error in relative positioning introduces error in the 
composition of the land use zone. Pixels and their associated land cover class are included 
in LUZs to which they do not belong. The error it introduces will be referred to as 
'pollution'. The grade of 'pollution' of a unit will depend on the size and form of the unit. 
A possible error of 130 meters in relative position would result in a pollution of 25 % for 
a land use zone corresponding to a square kilometer. Therefore, a square kilometre was set 
as the minimum required size for the land use zone, in order to restrict the maximum 
pollution to 25 percent. Increase in size of the LUZ reduces the percentage of pollution. The 
more irregular the shape, the higher the percentage of pollution. 

The formula presented in the methods section is used to estimate the effect of the land 
cover classification accuracy on the assessment of the land cover class percentage. The 
confidence interval has been calculated for a number of fictitious cases, to obtain an indica­
tion of its general size. 

In view of the classification accuracies (presented in Table 5.2) and the results of the 
contingency analysis (see Chapter 3), we took 0.8 as the average probability of correct 
classification (the probability that class 'A' indeed occurs if the pixel is classified as 'A'). 
And we took 0.02 as the probability of the occurrence of cover class 'A', if the pixel is 
classified as other than 'A'. 

Given a total population of 100 pixels, of which 30 have been classified as 'A', the 
probability for each number of occurrences of class 'A' (r) can be calculated. (For example, 
the probability of class 'A' occurring 20 times is 0.016.) Based on these results, the 
confidence region is determined. In this case a level of significance of 0.95 would would 
correspond to a confidence region where 22 (occurrences) is the lower boundary and 30 the 
upper boundary, corresponding to a range of 8 percent. 

The same situation, but with 70 percent of the units classified as 'A', would result in a 
confidence region of 12 percent. It indicates that the confidence region will generally vary 
between a 8 and 12 percent for the major land cover classes. The general accuracy of the 
land cover class percentage was taken to be 10 percent. 
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3.2 A threshold as criterion for accepting the appropriate cluster solution 

These effects of inaccuracy add up to a critical distance in land cover composition between 
LUZs of about 45 percent (using the city block distance measure). (Because the LCC com­
position is given in percent the distance between LUZs is also expressed in percent.) Of this 
critical distance, 25 percent corresponds to the maximum allowed pollution as a consequence 
of geometric imprecision and 20 percent corresponds to the maximum distance as con­
sequence of the inaccuracy of the land cover classification. A distance of 20 percent is 
ascribed to the land cover classification inaccuracy because an error of 10 percent in the 
percentage of one LCC implies an additional error of 10 percent in the remainder of the 
LCC's of the LUZ. (Together the cover class percentages of a LUZ add up to 100 percent.) 

This means that for a distance less than 45, the LUZs may not be assumed to represent 
different characteristics with respect to their land cover composition. Differences less than 
45 are related to noise. They are an effect of geometrical inaccuracy and limited reliability 
of the land cover classification. This corresponds nicely to the distance found between LUZs 
representing the same object class. For example, a maximum distance of 47 percent was 
found, considering all possible pairs of LUZs corresponding to banana plantations. The 
critical distance of 45, therefore, resulted in the grouping of all the banana plantations with 
corresponding characteristics. Two banana plantations showed clearly deviating percentages 
for the area that was classified as banana. These discrepancies corresponded to deviant 
characteristics in the field (with respect to plant variety, management and production level; 
see Chapter 3 and 4 of Part 1). They were not included in the resulting cluster of banana 
plantations (see Table 5.3, the composite land cover classes BAN1 and BAN2). 

A threshold value of 45 resulted in 41 clusters, on which basis 41 composite land cover 
classes were defined. The resulting clusters denoted clear differences in land cover com­
position. Not only did the clusters reflect obvious differences in land cover composition, for 
example between banana plantations and other land use patterns, but also smaller, but 
significant, differences were indicated. For instance, between the banana plantations and 
between LUZs with mixed land cover (compare WAFORP2, WAFORPB, FORWAPAS, 
FORWA1, etc. in Table 5.3). 

The relevance of the composite land cover classes with respect to the land use inventory 
is evaluated in Chapter 3 of Part 1. Table 5.3 shows the 20 cluster solution. It is to be con­
sidered a generalization of the 41 cluster solution (for example, all LUZs with a forest cover 
of more than 50 percent were grouped). It serves to illustrate the distinction obtained in land 
cover composition between the LUZs. 

The data in Table 5.3 indicate that the percentages of five cover classes were generally 
sufficient to distinguish between most of the composite cover classes. These correspond to 
the following cover classes: 

Banana (BAN); 
Forest (FOR); 
Wooded area (WA); 
Grassland (PAS); 
Bare soil and built-up area (BB). 

In some cases the percentage of other cover classes was used to define a composite cover 
class. This was done, for example, in the case of bamboo plantations and some composite 
classes in which secondary vegetation occupied a considerable part of the area. 
Often only one criterion was sufficient to define the composite cover class. For example, the 
percentage of the LUZ classified as banana allowed us to distinguish between both the banana 
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cover classes and the other composite cover classes and between the two composite banana 
cover classes. To differentiate between the composite forest cover classes, only the percen­
tage of the forest cover and the percentage of wooded area was required. 

Table 5.3 Percentages of the land cover classes for the composite land cover classes 
corresponding to the 20 cluster solution. 

Grass- Bare soil Banana Bamboo 
land2 & BA' 

Class name4 

BAN 1 
BAN 2 
WA 
WAFORP2 
WAFORPB 
WAPAS 
PASWA 
PAS1 
PAS2 
BBWAPAS 
BBWA 
BB1 
BB2 
BBFOR 
PASBB 
BAM 
FORWAPAS 
FORWA1 
FORWA2 
FOR 

Forest 

< 20 
15-35 
15-35 

Wooded 
area1 

> 40 
30-50 
20-45 
30-50 
20-40 

< 30 
20-35 

(WA+SV) > 30 

> 15 

20-35 
30-50 
35-50 

> 50 

15-20 
20-40 

< 20 

Pasture 

10-20 
10-20 
25-35 

> 60 
40-60 
15-30 

> 35 

> 60 
45-60 

< 20 
10-20 

10-20 
10 - 30 10 - 20 

8 -20 

20-45 
20-35 
40-60 

> 60 
> 30 

15-30 

10-25 
> 15 

Wooded area (WA) denotes an area with a high density of trees, whether they are tree crops, tree plantations or 
wooded vegetation along river courses, for example. 
Grassland here represents neglected pastures, invaded with shrubs and grass vegetation up to 3.50 meters in 
height, or the grass vegetation encountered in inundated areas, bottom lands or otherwise poorly drained areas. 
BA denotes Built-up area. Bare soil and built-up area is defined as one cover class. 
Names are abbreviations; BAN stands for banana, WA for wooded area, PAS or P for pasture, BB for bare soil 
and built-up area, BAM for bamboo, FOR for forest and SV for secondary vegetation. 

4. DISCUSSION 

The classification of the LUZs with respect to the land cover composition can be described 
mathematically by 'x G S' (Klir and Folger, 1988; Molenaar, 1991). 'X' in this case corres­
ponds to the land use zone and its associated value for the composite land cover. The subset 
'S' corresponds to the composite land cover class. For the classes 'S ' we can define the 
following requirements, analogous to those defined by Swain and Davis (1978) for classifi­
cation systems (see also Chapter 3, Part 2): 

- The list of classes must be exhaustive. 
- The classes must be distinctive. 
- The classes must contain informational value. 
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The second requirement signifies that the members of the same class should form 
homogeneous subsets, while members of different classes should form heterogeneous groups 
with respect to the relevant properties. A too narrow definition of classes in comparison to 
the variation of the attribute values will result in a low reliability of the classification result. 
A too broad definition of the classes will result in loss of information upon classification. 

The method presented in this chapter aims to fulfill the first two requirements. It is a 
quantitative approach to understanding the variation in land cover composition and the dis­
tinctions between LUZs made on that basis. In our case the classification concerns composite 
objects characterized by a multi-dimensional feature. 

The method represents a data-driven approach to the classification of land cover and land 
use. (The steps are illustrated in figure 5.2). This means that the classes are not a-priori 
defined. Instead, they depend on the accuracy with which the object characteristics can be 
determined (the 'x' in the expression above). That, in turn, depends on the methods applied 
and the quality of the data sources used to describe the objects. Errors in topography and 
classification can be evaluated or estimated. Their effect on the determination of the cover 
percentages can be assessed and accounted for in the definition of the composite cover 
classes. As such, a certain degree of accuracy and reliability of the classification is assured. 
The composite cover classes represent the appropriate level of generalization. 

The data-driven approach also means that the objects are described and classified in terms 
of characteristics of the material used (e.g. size of faces and composite land cover). A final 
step is needed in which semantic content is ascribed to the classes defined (Fig. 5.2). This 
is called the mapping of the data classes (e.g. composite land cover classes) to the infor­
mation categories (e.g. land use pattern). This phase in the inventory process refers to the 
mapping of the model entities to the real world. It is the subject of Chapter 3, Part 1. In this 
final phase, the relevance of the distinction between the LUZs is evaluated. The translation 
of the data classes is an additional source of error and should be evaluated independently. 
The classification process is thus divided in two parts: 

1. The first part concerns the definition of the data classes and the classification of the 
LUZs in terms of these classes. This is the more quantitative part, in which sources of 
errorcan be assessed quantitatively and accounted for. 

2. The second part concerns the definition of the relevant information categories and the 
mapping of the data classes to these information categories. It involves context-
dependent reasoning, which is often difficult to express in formal and quantitative 
terms. 

A different approach to handling error and uncertainty is associated with each part. Much 
has been written on the reliability of information (e.g. Richards, 1986, with respect to remote 
sensing) and many authors have dealt with the problem of error in spatial databases) 
(Openshaw, 1989; Chrisman, 1989; Heuvelink et al., 1989). Much of this work concerns the 
description of error and uncertainty (purity measure and other, Marsman and De Gruijter, 
1986; Bregt et al, 1987). 

This chapter deals not as much with the description of error and uncertainty. Rather it 
adresses the question of how the error and uncertainty pertaining to the basic data affect the 
composite object characteristics and henceforth the classification of the aggregated objects. 
Errors are associated with all steps in the classification process (e.g. registration and 
classification, aggregation, see Fig. 5.2). 

The aggregated nature of the object allows for a probabilistic approach in handling error 
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satellite imagery aerial photo photo interpretation 

registration Classification 

aggregation 

classification 

mapping 

overlay 

overlay 

I $ 
Data extraction, quality 
control; Definition of LUZ 
attribute characteristics 

Statistical analysis; 
Definition of data class 
boundaries 

LUZ classification 
data classes 

Mapping of data classes to 
information categories; 
Def. of production rules 

LUZ classification 
informational cat. 

geometr ic 
transform. 

Fig. 5.2 Scheme of the Land Use Zone Classification process. 

and uncertainty (both this chapter and Chapter 4 are examples). This is because each object 
can be regarded as a subset of the total set of picture elements (the total pixel population) or 
of other elementary objects (agricultural fields). When the error and uncertainty are described 
by a probabilistic model, quantitative (statistical) criteria can be defined for the class 
definition. There is always a trade-off between accuracy and relevance. This is demonstrated 
by Ioka (1986), who shows the monotonous increase of classification accuracy with 
decreasing number of classes (corresponding to levels of generalization). The method 
presented in this chapter aims to provide a solution with respect to the selection of the 
appropriate level of generalization, as far as the data classes are concerned. 

As a tool for handling uncertainty, evidence reasoning (see Lee, 1987; Srinivasan, 1990; 
Kenk, 1988 for application hereof in the field of remote sensing) suffers from subjectivity 
(Middelkoop et al., 1989). A probabilistic approach is therefore preferred whenever possible. 
The application of evidence reasoning is considered more appropriate with respect to this last 
phase of the classification process. At this point context-dependent reasoning is applied for 
the mapping of the data classes to the information categories. 
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The data-driven approach will provide the appropriate land use information, given the 
scale and quality of the material used. The land use information will be appropriate assuming 
that land cover and spatial characteristics reflect relevant differences in land use and provided 
that adequate methods for information extraction are applied. The adoption of a data-driven 
approach might be suitable if materials are not widely available and when exact information 
requirements are not known. The data-driven approach then assures reliable information on 
land cover and land use. Further use of this information will then depend on the level of 
generalization it represents. The data-driven approach is the strategic answer to the classifi­
cation problem of land cover and land use in the Atlantic Zone of Costa Rica. 

5. CONCLUSIONS 

1. Hierarchical cluster analyses provides a quantitative method for the definition of distinct 
classes to describe characteristic compositions of objects, that consist of elements with each 
a specific nominal value (e.g. class value). It fulfills the requirement that the set of classes 
must be exhaustive, 

2. The appropriate level of generalization of class definition, can be ascertained by taking 
several factors into account. One of these is the geometric accuracy of the material used to 
extract data for the description of the objects. Maximum alowed error in determining the 
object characteristics as consequence of geometric inaccuracy is translated into minimum size 
required for the objects. The other is the quality of the input data used to characterize the 
objects (accuracy of the per pixel land cover classification). These factors are pertinent to the 
definition of a threshold value to indicate distinction or no distinction between objects. 
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1. INTRODUCTION 

The land use zones (LUZs), corresponding to evident spatial patterns, are assumed to 
represent relevant geographic units as carriers of land use information. The LUZ displays 
a number of characteristics (attributes). These are described in the previous chapters. Chapter 
4 and 5 gvie the class definition for two important characteristics. The resulting classes 
reflect the degree of discrimination between LUZs, that can be obtained on the basis of the 
single object attribute. This might correspond to a multi-dimensional feature, such as 
composite land cover. In this chapter, many object characteristics are considered for the 
classification of the LUZs. The LUZ classification is a multi-source classification problem 
(e.g. the LUZ map, aerial photo characteristics and land cover data derived from satellite 
imagery). 

Aside from its multi-source aspects, the classification has to consider the semantic content 
of its geographic units and its classes. The data classes alone do not provide the required land 
use information. Accordingly, the data classes have to be mapped to the information 
categories that do provide relevant land use information. This involves the interpretation of 
the data with respect to land use. And that interpretation is context-dependent. An example 
of this mapping procedure was presented in Chapter 4. It refers to the interpretation of size 
of faces (through field size) relative to farm size. This relation is specific for the region and 
only valid under certain conditions (for specific LUZs). 

Two aspects of the classification of the LUZs should be noted: 
1. This is a complex classification problem, involving many object characteris­

tics (multi-source or multi-feature). 
2. It involves context-dependent decisions, as mapping involves the interpretation 

of the object characteristics for land use information. 
The multi-source classification problem is the subject of many studies concerning the 
integration of remote sensing and geographic information systems. With respect to the multi-
source analytical procedure, Lee et al. (1987) mention, the need for a method by which 
inferences about information classes can be drawn from the collection of data classes. 
Wilkinson and Mégier (1988) propose contextual rules, which might refer to likelihood of 
higher level entities in a taxonomy, rather than just the lowest level classes. For a discussion 
of the application of spectral and spatial rules in a hierarchical classification approach see 
Ton et al. (1991). Hierarchical classifiers or decision tree classifiers have long been 
recognised as a powerful classification tools (Swain and Hauska, 1977). 

This chapter reviews the possibilities for application of a hierarchical decision model. In 
that model the attributes are evaluated at different levels of the classification hierarchy. There 
are two main questions: how to structure such a complex classification problem, and how to 
structure the use of context- dependent knowledge. The structure has to enable the transfer 
of the keys for the interpretation of the data (classes). The use of contextual evidence 
requires the specification of the context in spatial and thematic terms. And the associated 
rules must be specified as well. The context should be understood in the sense of a semantic 
context determined by way of obj-ect relations. However, given the geographic nature of the 
objects, a spatial dimension is associated with the contextual infofttiation. 

Most of the studies mentioned concern the per pixel classification. They employ contextual 
evidence to improve reliability of the class label assignment. The LUZ classification refers 
to another level of aggregation. Yet, context information is equally relevant to the classifi-
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cation of the LUZ. The regional context, e.g. whether the LUZ belongs to the agricultural 
area or to the area of agricultural penetration, determines the interpretation of the land cover 
class (LCC) composition of the LUZ relative to the LUZ land use characteristics. 

2. CONTEXT INFORMATION 

With respect to the LUZ classification, the use of geographic context information is used 
to improve the interpretation of object features in order to obtain reliable land use infor­
mation. The context rules encode facts relating land use to a certain geographic context. The 
geographic context itself refers to an area with certain thematic characteristics. In the present 
case, these provide information on the occurrence of land utilization types or farming 
systems. The geographic and thematic characteristics of the context need to be specified. 
Then the context can be identified and the context rules can be triggered. 

Let us define a set A, representing the data classes and attribute values, and a set B, 
representing the information categories. Then the mapping of data classes to the information 
categories can be written as the mapping from A into B. This is written as: 

f.A->B 

In this expression A is called the domain of the mapping and B the co-domain. The context 
can be seen as specifying a subset of B or limiting the range of ƒ. This means that the 
contextual knowledge can be described in terms of spatial objects with geometric and 
thematic characteristics and the associated image of/. 

LUZs represent a relevant context with respect to the mapping of the size of faces classes 
to the farm size classes, as well to the interpretation of the spectral classes in terms of 
specific land cover classes and to interpretation of the composite land cover classes relative 
to the land use patterns (LUPs). Land cover composition may provide important evidence for 
the interpretation of the size of faces. For instance, land cover information might indicate the 
cultivation of ornamental crops; consequently, no relation between field size and farm size 
would be expected. On the other hand, the information on field size may provide evidence 
for the occurrence of a specific land cover type. For example, cacao is predominantly grown 
on small and medium-sized farms. The field size, as an indicator of farm size, might 
provide evidence for the mapping of the cover class 'wooded area' to the specific land cover 
type 'cacao'. Also land use information might be inferred from the percentage of land the 
LCC occupies. For example, very high percentages for 'wooded area' indicate the presence 
of tree crops (cacao, macadamia or other), if the LUZ belongs to the agricultural region. In 
contrast smaller proportions of the LUZs occupied by 'wooded area' are generally attributed 
to wooded river bank, homesteads, wooded pastures and other. 

Two problems emerge in using context information: 
- One concerns the definition of the context rules itself. This is treated in Chapter 3 

of Part 1. 
- The other concerns the design of the system that triggers the rules. This is the 

subject of current chapter. 

Field size may aid in the interpretation of LCC and, vice versa, land cover might aid in 
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the interpretation of field size. Therefore, it is important to define rules for the classification 
at the different levels in the classification hierarchy (defining backward loops which allow 
for a stepwise refinement of the classification). Doing so will prevent circular reasoning. 

3. THE TREE CLASSIFIER 

The production rules (or decision rules) for the label assignment have the following 
structure: 

IF {condition} THEN {conclusion} fi 

Such rules have been widely applied in the field of remote sensing (Desachy, 1990; Wu et 
al, 1988). Janssen (1990), for instance, assigns agricultural field objects a land cover label 
on the basis of a majority rule. He reports a substantial increase in classification accuracy. 

In the LUZ classification, the rules are of a more complex nature. A set of conditions have 
to be fulfilled before a class label is assigned. The conditions may refer to characteristics 
associated with the land cover classification. Otherwise, they refer to the data obtained by 
aerial photo interpretation and sampling of the aerial photographs. These conditions concern: 

- land cover class percentages; 
- type of LUZ boundary; 
- pattern of faces; 
- size of the faces; 
- type of boundary of the faces; 
- presence of trees dispersed over the area. 

Several rules are applied when assigning a class label. The application of the rules is 
hierarchically structured, corresponding to the classification hierarchies (taxonomie levels). 
Wilkinson and Mégier (1988) describe the use of production rules in a hierarchical classifi­
cation system. The procedure proposed in this chapter is a step-wise specialization of the 
object class. Theclass value at a specific hierarchical level (the superclass) defines the context 
for the classification step on the next lower level. It allows for the application of context 
specific (object class dependent) production rules. The different types of objects have specific 
attribute structures and therefore require different production rules for their classification. 
For instance, for the further sub-division of banana plantation other decision rules apply (they 
only consider the percentage of banana cover) than for the further subdivision of forested 
area (for which the subdominant LCC is considered). The class structure of objects can be 
schematically represented as in Figure 6.1 (Molenaar, 1989). The classification procedure 
is illustrated in figure 6.2. 

SUPER CLASS 

f 
CLASS 

t 
OBJECT 

CLASS ATTRIBUTE LIST 

CLASS ATTRIBUTE VALUES 
ATTRIBUTE LIST 

ATTRIBUTE VALUES LIST 

Fig. 6.1 Class structure of objects. 
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Fig. 6.2 Structure of the classification tree as related to 
class hierarchies. 

4. A DECISION TREE FOR THE CLASSIFICATION OF LUZS: EXAMPLES. 

This section introduces the decision tree as applied to the classification of LUZs. At the 
highest level, a distinction is made between LUZs corresponding to water bodies, artificial 
constructions, and the remaining LUZs. Information on water bodies, towns and villages can 
be obtained from maps. In this case, it is derived from the aerial photo. 

Decision rule Al: 
IF 
('presence of faces' equals 'no') OR ('changes' equals 'gradual') OR 
('LUZ boundary' not equals 'rectilinear') 
THEN 
('LUZ label 1 ' equals 'Natural and Semi-natural vegetation'). 

Water bodies and cities or villages are easily recognized on the aerial photos scale at a scale 
of 1:80,000. For the remaining LUZs, a distinction is made between areas with natural and 
semi-natural vegetation and the (partly) cultivated areas. The decision is based on spatial 
characteristics. These concern: the homogeneity of the LUZ, the presence of faces and, if 
present, the type of transition and type of LUZ boundary. (See decision rule Al.) 

4.1. Natural and semi-natural vegetation 

Figure 6.3 depicts the decision tree for the classification of the LUZs with natural and 
semi-natural vegetation. The decision at the highest level (Al) has just been discussed. At 
the next level (A2 and A3) the dominant LCC is the criterion for class label assignment. This 
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attribute distinguishes between the forested areas and the natural grass vegetation in and 
around the lagoons in the north of the Atlantic Zone. The predominant LCC was determined 
on the basis of the land cover percentages. This was calculated with the ILWIS software1. 

^LUZ (non-waterbodies; non artificial) 

A1 

Natural/Semi-natural vegetation 

• Natural grassland 
area 

Forest area 

„ Forest 

For/Su For/SV For/WA 

Fig. 6.3 Decision tree for the classification of natural and semi-
natural vegetation. 

The natural grassland area can be distinguished from other grassland area exhibiting the 
same vegetation type and structure and showing similar spectral response. This is possible 
because of the different context as defined by the spatial characteristics. The second decision 
rule is given on the next page. 
Pas2 is the name for the LCC characterized by grass vegetation up to 3 meters in height, 
often with presence of shrubs or herbs. The other natural and semi-natural vegetation areas 
all show forest as the dominant LCC. Subdivision is done according to the percentage of the 
area classified as forest. 

1. With more than 75 percent forest (the threshold value being based on the results of 
the hierarchical cluster analysis, see Chapter 5), the larger forested areas in the 
coastal plain and on the slopes and footslopes of the volcanos are differentiated and 
labelled as 'lowland and submontane humid tropical forest'. 

1 Integrated Land and Watershed Management Information System, developed at the 
International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede, The 
Netherlands. 
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Decision rule A2: 
Given the classification of the LUZ at the first level of classification as 'n-
atural and semi-natural vegetation ' the following decision rule (Ä2) applies 

IF 

THEN 
('dominant LCC'equals 'Pas2') 

('LUZ label 2' equals 'area with natural grass-land 
vegetation with or without open water'). 

2. Areas where 50 to 75 percent of the land cover is classified as forest were further 
differentiated. The subdivision was based on the value for the sub-dominant LCC 
(see decision rule A8). 

A. The entire entire coastal area was mapped as 'lowland tropical humid forest 
incorporating peat and swamp area'. That decision was based on 'swamp 
vegetation' as the sub-dominant cover class. This is in agreement with the many 
swampy parts and peat areas actually present. 
B. When 'wooded area' represents the sub-dominant cover class, the smaller 
forested areas within the agricultural regions are identified. The 'wooded area' 
percentage might be (partly) explained by the boundary effects. That is, it could 
be a result of mixed pixels at the forest limit, classified as 'wooded area'. 
'Wooded area' in this case should not be construed as a different vegetation 
structure; rather it is related to the size of the forested areas. 

3. The area with parts classified as secondary vegetation corresponds to forest area of 
which parts have been cleared in the past and on which secondary regrowth has 
occurred. It refers to only one LUZ. 

IF the LUZ belongs to an area with natural and semi- natural vegetation and 
IF the dominant land cover equals 'forest' and IF 50 to 75 % of the area is 
classified as forest, THEN: 

Decision rule A8: 
IF 

THEN 
('sub-dominant LCC' equals 'wooded area ') 

('LUZ label 4' equals 'remnant forest area, disturbed and 
partly cut forest') 

4.2 Plantations 

Within the (partly) cultivated areas, four categories are differentiated: 
1. Wastelands, identified by the absence of faces and the presence of wooded area (WA) 
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and forest (For) in conjunction with secondary vegetation (SV) or secondary (aban­
doned) grassland (Pas2); 

2. Partly cultivated lands corresponding to areas of agricultural penetration, exhibiting 
a characteristic pattern of deforested patches. Forest covers more than thirty per cent 
of the area; 

3. Plantations, showing a homogeneous cover of the LUZ, with medium to coarse 
texture (referring to photo characteristics); 

4. Area in agricultural use, where certain conditions, such as the presence of faces, 
should be fulfilled. 

The structure of the decision tree is given in Figure 6.4. 

(partly) cultivated areas 

Area 
without 
agricult. 
use 

• Area of 
agricultural 
penetration 

i Plantation > Area with 
agricultural 

use 

PUWA 

PL1 

PL/BAN 1 • PL/BAN2 

Fig. 6.4 Decision tree for the classifcation of plantations. 

The plantations are subsequently differentiated according to their dominant land cover. 
This can have the value of: 

1. Wooded Area. In the land cover classification, no distinction could be made 
between the different use and cover types that involved a high density of trees. 
However, within the context of 'plantations', the cover class 'wooded area' can 
only correspond to cover types like Macadamia (Macadamia integrifolia), citrus 
or cacao. Yet, of the latter two, no larger plantations were encountered in the 
area under consideration. 

2. Bamboo, corresponding to a few large groves that exist in the zone; 
3. Banana, referring to the many banana plantations present in the zone. 
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Based on the result of the hierarchical cluster analysis (Chapter 5), two classes of banana 
plantations were defined. One class correspondings to more than 60 percent of the LUZ 
being classified as banana. The other class corresponds to between 40 and 60 percent of the 
area classified as banana. Two plantations belonged to the latter class. Many pixels within 
both plantations were classified as secondary vegetation. 

Both plantations showed rather deviant characteristics as regards the production of 
bananas. One of the plantations (the finca Santa Maria) had the lowest production in boxes 
per hectare per year in the northern Atlantic Zone in 1986 (corresponding to the year of the 
satellite image on which the land cover classification was based). Its production amounted 
to 1494 boxes/ha./year compared to an average production in the zone of 2122 
boxes/ha./year2. A detailed study was carried out in this plantation to explain variation in 
yields by spectral reflectance data and soil data (Veldkamp et al., 1990). The other plantation 
(one of the three plantations belonging to the 'Hacienda Bremen', also showed a rather low 
production (1769 boxes/ha./year). Furthermore it was traversed by roads, to transport the 
fruits. At the other plantations, the fruit is transported by cable, allowing a much more 
efficient use of the area. Also, Hacienda Bremen was one of the few plantations at that time 
to cultivate a dwarf variety of banana (gran nain), used. In case of Hacienda Bremen the 
combination of these characteristics explains the low percentage of the plantation area 
classified as banana. The examples illustrate that a low percentage of the plantation area 
being classified as 'banana' can be an expression of different phenomena. This should be 
taken into account in interpreting the data classes. It illustrates also the need for separate 
classifications phases: one for the assignment of data class labels and one for the mapping 
of the data classes to the information categories. 

IF the LUZ belongs to the 'cultivated area', and IF the area is classified as 
'plantation ', and IF the dominant cover class equals 'Banana ', THEN the 

following decision rule applies: 

Decision rule PL1.2: 

IF ('%ban ' larger than '60') 
THEN ('LUZ label 4' equals 'PL/BAN1 ') 
ELSE 

IF ('%ban' between '40 and 60') 
THEN ('LUZ label 4' equals 'PL/BAN2') 
ELSE ('error') 

The two composite land cover classes for banana plantations are defined on the basis of 
results of the hierarchical cluster analysis. The classes prove to provide relevant distinction 
between the banana plantations. However, this distinction does not refer to the actual 
percentage of the plantation in use for the cultivation of banana (between 40 to 60 percent 
and respectively more than 60 percent). The low percentages of the area classified as banana 

Source: ASociación BAnanera NAcional (ASBANA) of Costa Rica. 
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might be seen as the result of poor management (as in the case of Santa Maria) or deviating 
varieties (as is the case for Hacienda Bremen). 

4.3 Classification of agricultural areas 

Figure 6.5 presents part of the decision tree for the classification of agricultural areas. 

i Area with agricultural use 

Small farms &. 
settlements 

> Mixed land • Coloniza-
cover tion area 

Medium size • Large farms & 
farms commercial ent 

> Pred. grass­
land area 

ß Wooded 
area 

SF4.1 

• SF/WA1 

Fig. 6.5 Decision tree for the classification ofLUZs in agricultural 
areas, with only the branch of small farms and settlements fully 
described. 

The first distinction between the LUZs is based on the size of the faces. This allows for the 
distinction on mean farm size between LUZs. The rule 'SF' therefore is formulated as 
follows: 

Decision rule SF: 
IF ('mean size of faces' less than '3.9') 
THEN ('LUZ label x' equals 'small farms') 
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See Chapter 4, for the determination of the correct threshold value. Instead of using the size 
of the fields as the criterion also the class values can be used when LUZs have already been 
classified for their mean size for faces. The rule is expressed as follows: 

IF ('Class size effaces' equals 'I') 
THEN ('LUZ labelx' equals 'smallfarms'). 

The resulting classes are further subdivided, according to conditions concerning the land 
cover composition: 

1. Small farm area with a mixed land cover (i.e. presence of the cover classes bare 
soil, grassland and wooded area). It indicates areas with an agricultural use invol­
ving well arable cropping (predominantly maize), animal husbandry and perennial 
crops. A variety of crops is generally found. 

2. Areas with presence of forest (15 to 30 percent of the LUZ should be classified as 
such) indicate the colonization areas. In some cases the areas correspond to recent 
state- controlled settlement schemes. 

3. Area with grassland as dominant LCC, although considerable parts are classified 
as 'wooded area' and to a lesser extent as 'bare soil'. Animal husbandry is the most 
important agricultural activity. This land use pattern is not very common among 
LUZs where small farms are found. 

4. A few LUZs show very high percentages for 'wooded area', due to which they 
form a separate subclass. A high concentration of small cacao plantations is found 
in all these areas. 

See Chapter 3 of Part 1 for a more detailed description of the land use categories. The 
definition of the fourth class clearly illustrates how context information can be used for the 
interpretation of a rather general cover class. 'Wooded area' can correspond to a number of 
cover types or land utilization types like macadamia, citrus and cacao. Furthermore, tree 
plantations (for instance, Laurel (Cordia alliodora)) are likely to be classified as 'wooded 
area'. Also wooded areas along streams and rivers are classified as such. Other densely 
wooded cover types like wooded grasslands and homestead gardens are identified as 'wooded 
area'. Therefore, in most agricultural areas the percentage of 'wooded area' can vary 
considerably. It sometimes covers 45 per cent of the area. 

The cluster analysis revealed a few LUZs with very high percentages for 'wooded area'. 
The 'wooded area' class is interpreted as 'macadamia' when the LUZs represent a plantation 
and as 'cacao fields' when the LUZ corresponds to small farms. It does not exclude the 
occurrence of other cover types related to 'wooded area'. These, however, explain only part 
(25 to 35 percent) of the total area classified as 'wooded area'. Indeed, all three LUZs, that 
have small farms and more than 40 % classified as 'wooded area' showed high percentages 
of cacao plantations. Moreover, all the existing areas in which land use was characterized 
by the presence of cacao were identified by the procedure. The condition for deciding on the 
presence of cacao is that the areas pertain to the older agricultural regions, because the cacao 
plantations are often found as a remanant of former agricultural activities. 
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Within the context of small farms and a differentiated land use, the 'bare soil and built-up 
area' is interpreted as corresponding to the area for the cultivation of maize. This inter­
pretation is based on the date of scene recording of the scene and the period of field 
preparation. The area used for the cultivation of maize occupies only part of the LUZs. 
Therefore, very high percentages of 'bare soil and built-up area' are not reached. Where high 
percentages are found, the cover class should be interpreted differently. For instance, it could 
be identifeid as recently (in comparison to the date of scene recording) deforested area, when 
forest occupies part of the LUZ. Or the area may be cleared for the planting of banana, 
which can sometimes be inferred from the spatial pattern. In all these case the high percen­
tage 'bare soil' denotes change in land use. 

5. DISCUSSION. 

This chapter presents a conceptual model of a decision tree for the classification of LUZs. 
The decision tree is described for a number of cases. This approach makes use of quan­
titatively verifiable criteria for the class assignment. A computer program has been written 
to perform an automated classification. It improves the flexibility. New insights the regional 
land use can be easily incorporation and other requirements for the presentation of the data 
(categorization) can be easily fulfilled. It allows also for checking the consistency of the 
decision rules. 

The appendix presents the LUZ classification map and the associated classification system 
for the Guacimo-Rio Jeménez-Siquirres study area is given. The reader will recognize that 
structure of the classification system as corresponds to the structure of the decision tree 
depicted here. 

An important objective of the design of a decision tree for classification purposes, is to 
provide a structure for the transfer of the interpretation keys and the context rules. It forces 
the interpreter to specify the link between observed object characteristics (such as field size 
and land cover percentages) to real phenomena in the field. 

At this stage only the satellite image-derived LUZ characteristics and aerial photo charac­
teristics are considered in the decision model. At a later date it might be useful to incorporate 
information concerning neighboring LUZs as additional contextual information or ancillary 
data (for example, soil data) in the decision model as additional evidence. 
Also in future work the aspects of error and uncertainty with respect to the mapping process 
deserves attention, especially because of the context dependent nature of the decision 
involved. In Chapter 3 of Part 1 the classification of the agricultural area is further com­
mented upon. This represents the most complex area for the classification of LUZ. Also in 
that chapter the method we employ is validated to the extent that the actual land use corres­
ponding to the categories defined is investigated. 
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CHAPTER 1 

EVALUATING LAND USE AT SUB REGIONAL LEVEL IN THE 
ATLANTIC ZONE OF COSTA RICA, CONSIDERING BIOPHYSICAL 
LAND POTENTIALS. 
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1. INTRODUCTION 

Inadequate land use causing land degradation and empoverishment of rural populations is 
becoming a worldwide concern and stresses the importance of a land use policy which leads 
to viable and sustainable land use scenarios. The new land use code, adopted by the costari-
can government, is an example of such a policy. Credits will be granted to farmers only if 
their land falls within the correct land class (The Tico Times, 1991). The code is intended 
to develop a more sustainable use of land resources. 

Procedures for the definition and selection of sustainable land use alternatives require an 
analysis of actual land use in relation to land characteristics in order to identify problem areas 
and to formulate viable alternatives. The present study in the Atlantic Zone of Costa Rica is 
an example of such a land use analysis. Soils and land use were mapped independently at a 
scale of 1:100.000 (reconnaissance). GIS techniques were used to process and combine the 
information. Such an analysis would fail if information on either land use or soils were 
lacking, which is often the case. 

The purpose of the evaluation was to investigate to which degree agricultural use corre­
sponds with land capability, indicating areas where land use has a degrading effect on land 
qualities (over-use) and also areas with opportunities for more intensive use of the land 
(under-use). In the evaluation only biophysical aspects are considered. 

When evaluating land use with respect to land capabilities it is important that the level of 
aggregation of both the soil information and the land use information corresponds. E.g., 
evaluating yield at field level is not realistic when soil data are obtained from a recon­
naissance soil map. Due to the variability of the terrain such a small scale map presents the 
information on soil types in an aggregated or associated form so that the map does not 
provide a decisive answer as to the particular soil type of the field concerned. 

Which statements can be made on land use with respect to soil and land suitability 
depends, of course, on the accuracy and the detail of information provided by both the soil 
and land use map. The type of statements is strongly related to the level of aggregation (scale 
level, see also the levels of detail defined by Bouma, 1989). Aggregation level and its 
implication for the statements on land use, are therefore also a topic of discussion in this 
paper. 

2. TERRAIN UNITS, LAND USE PATTERNS AND LAND CAPABILITY CLASSES 

Soil information of the Atlantic Zone of Costa Rica 
In the Atlantic Zone of Costa Rica a reconnaissance soil survey has been carried out at a 

scale of 1:100000 (Wielemaker and Oosterom, 1992). For the storage and retrieval of maps 
and associated data, the SIESTA soil information system was designed (Oosterom et al., 
1992). 

The data structure 
The 162 mapping units are physiographic in nature and are referred to hereafter as Physio­

graphic Mapping Units (PMU). The mapping units generally have a composite character, 
because within one mapping unit up to five terrain units (TUs) may occur, corresponding to 
the physiographic elements of the PMU. The PMU composition table gives the PMU-ident-
ifier, the TU identifiers and estimated area percentages of the terrain units for each PMU. 
The terrain unit table lists for all the terrain units identified, the terrain properties and the 
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soil type. Properties refer to major and minor physiography, lithology, parent material, 
slope, stoniness and soil type. The soil types and associated data are stored in a separate table 
(SU). The data structure is illustrated below. 

Table 1.1. The data base structure of the soils data base 

PMU-ID TUl-ID TUl % TU5-ID TU5 % 

TU-ID Physiogr. Soil Land Capability class 

SU-ID Depth pH 

For every terrain unit an associated land capability class is defined. The land capability 
classes serve to group the terrain units in a limited number of classes on the basis of the 
terrain unit characteristics (a data reduction process). The land capability classes are also 
stored in a separate table. 

Land capability classes 
In order to reduce the amount of data, nutrient status, depth and drainage and slope and 

stoniness were used to group soils in land capability classes, as listed below. The land 
capability classes denote general agricultural potential. It decreases from class 1 (LCI) to 
class 5 (LC5) as follows: 

Class 
1 
2 

Potential for agriculture 
Deep, fertile soils, suitable for all land use types of the zone; 
Moderately fertile soils, moderately suitable for nutrient demanding 
crops; 
Nutrient poor soils, only suitable for acid tolerant and little nutrient 
requiring crops; 
Shallow or sandy soils, with severely restricted use; 
Steep (5.1), poorly drained (5.2) or soils with extreme stoniness (5.3), 
soils not suitable for agriculture use. 

The first three classes are subdivided according to: 
1. Soils with no further limitations; 
2. Soils with impeded drainage (requiring artificial drainage); 
3. Soils on slopes from 0 - 8 % and stony; 
4. Soils on slopes from 8 - 30 96. 

Class four is subdivided in soils less than 30 cm (4.1) and less than 10 cm deep (4.2). Class 
5 is subdivided as indicated in the description. 
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The study was conducted for the GRS area. From southwest to northeast three landscape 
types can be distinguished: 
(1) Sloping areas on the Turrialba volcano with lava and lahar deposits of andesitic 

composition. Higher up the volcano, volcanic ash mantles those deposits. Near the coast 
and in the Tortuguero national park, the Tortuguero hills occur, remnants of Tertiary 
to early Quaternary volcanism. 

(2) Gently sloping plains at the foot of the volcano where rivers and lahar flows deposited 
fine grained material from the same volcano. 

(3) Very gently sloping to flat areas near the coast with fine textured to peaty deposits 
especially further away from rivers where areas become swampy. Sandy deposits occur 
alongside rivers. 

LC5.-(16.1%) 

LC4.-(1.0%) 

LC3.4 (14.6%) 

LC3.1+LC3.2 (2.5%) 

LC2.4 (4.5%) 

LC2.1+LC2.3(13.3%) 

LC1.1+LC1.3(22.4%) 

LC1.2(22.4%) 

LC1.4(3.3%) 

Fig. 1.1 Area percentages of land per suitability class for the study area. 

The distribution of the land capability classes is illustrated in Figure 1.1. Fertile soils 
(class 1) dominate with an area percentage of 48, but half of it suffers of impeded drainage 
(class 1.2), particularly in the lower part of landscape 2 in transition to landscape 3 near the 
coast. Fertility status as reflected by classes 1 to 3, is directly linked to the age of the 
deposits which varies greatly particularly in landscapes 1 and 2. The younger deposits there 
are covered with nutrient-rich and non-acid soils, but older deposits are covered with 
nutrient-poor and acid soils (Wielemaker and Oosterom, 1992). The last ones occupy in 
landscape 2 the sloping remnants of older lahar deposits. The combination with strong slope 
(class 5.1) makes them unsuitable for agricultural purposes, because erosion is too great a 
risk just as on the steeper parts of the Turrialba Volcano in landscape 1 and the Tortuguero 
volcano near the coast. Younger lava and lahar deposits on or near the Turrialba volcano can 
be extremely stony which makes agriculture impractical (class 5.3); further away from the 
volcano some soils on very recent deposits are so shallow and sandy (class 4) that agricul­
tural production is marginal due to droughtiness and lack of foothold for the plants. 

The swamps and peat areas of landscape 3 near the coast should be protected because the 
peat and clay soils have no bearing capacity and would degrade on reclamation (class 5.2). 
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Land use information. 

For the mapping of land use at reconnaissance level, Land Use Zones (LUZ) are defined. 
The land use zones represent geographical units, which are classified on the basis of charac­
teristics like form and shape of fields and land cover composition. Table 1.2 presents a 
generalized version of the classification system. 

Table 1.2. The Atlantic Zone land use classification system. 

1. NATURAL VEGETATION 
1. Forest land (FOREST) 
Lowland and premontain humid tropical forest. 
2. Natural grassland vegetation. 

2. AREA OF AGRICULTURAL PENETRATION 
(AP/GRASS) 

1. Small farms; forest covering more than 30 % of 
the area. 
2. Medium sized and large farms; forest covers 
more then 50 % of the area. 

3. AGRICULTURAL LAND (AL) 
1. Small farms 

1. Mixed land cover 
1. Homesteads. 
2. Annual crops (predominantly maize) in 
combination with perennial crops and grass­
land. (AL/MIXED1) 
3.Perennial crops (fruit) and livestock, less 
annual crops. (AL/MIXED2) 

2. Mixed land cover and forest (AP/MKED) 
Perennial crops and cattle breeding, some 
arable cropping. 

3. Predominant grassland area (AL/GRASS) 
Grazing in combination with tree crops. 

4. 'Wooded area' as dominant land cover 
tyjei(AL/SFOV) 

Cacao, in cases with livestock production 
and cropping for home consumption. 

5. With 'Bare Soil' as dominant cover 
type^AL/SFOV) 

Annual and perennial crops (maize, beans, 
cacao, etc.) or recently deforested area. 

2. Medium sized farms 
1. Mixed land cover(AL/MIXED3^ 

Livestock production and arable cropping 
(maize) in cases perennial crops and timber 
production. 

2. Predominant grassland cover. (AL/GRASS) 
Cattle breeding, in cases perennial and 
annual cropping. 

3. Large farms 
1. Grassland cover(AL/GRASS) 

Cattle breeding, different types of pastures 
occurring (improved, degraded) 

2. With 'Bare soil' cover. 
1. Arable crop production. 
2. Ornamental crop production. 

3. With forest cover. 
4. PLANTATIONS (PL) 

1. Banana plantations (PL/BAN) 
2. Macadamia plantation. 
3. Tree plantation/Reforestation 
4. Bamboo. 
5. Other. 

5. TOWNS AND VILLAGES 
6. WETLAND 

1. With forest cover, peat and swamp areas, with 
high concentration of yolillo and other palm veg­
etation. 
2. Mixed cover; Wooded area, cultivated grassland 
and bare soil. Areas for parts of the year inundated 
and very poorly drained areas with yolillo and 
grass vegetation. 

7. OTHER, WASTELAND. (WL) 
1. Forest and wooded area. 
2. Mixed land cover composition. 

Wooded area, non-cultivated and/or secondary 
vegetation, in cases some cultivated grassland 
or bare soil. 

The 'area of Agricultural Penetration'(AP) represents areas, partly forested and character­
ized by a process of agricultural expansion: The colonization areas. The colonization of the 
Atlantic Zone started at the end of the last century but gained momentum especially in the 
last three decades (Waaijenberg, 1990; Hall, 1984). 
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With regard to agricultural land (category 3), land use is described by the Land Use 
Pattern. The land use pattern reflects characteristics of the occurring farming system(s), such 
as farm size, most important crops, presence of livestock and other. It is in fact a specific 
combination of land utilization types, occurring within a particular land use zone (the land 
utilization types themselves refer to a lower level of aggregation). Considering the mapping 
scale of 1:100.000, individual farms (except for the larger ones), let alone fields, cannot be 
mapped. The fact that land use zones are represented by specific land use patterns is 
explained by the occurrence of farms of a specific size class and by their agricultural history. 

For evaluation of land use at reconnaissance level we refer to the land use pattern. The 
recognition of different aggregation levels implies the definition of a hierarchy in agricultural 
systems (Fresco et al., 1990) as is also reflected in the data structure, presented in Table 1.3. 

Table 1.3. The structure of the land use data. 

LUZ identifier Land cover composition Average field size Land Use Pattern 

LUZ identifier Farm identifier 

Farm-Id Farm size Capital items Labour Farming system 

1 

Crop type Farm Id Area Inputs Cropping system 

n 
Husbandry type Farm_Id Herd composition Livestock system 

Figure 1.2 shows that the areas corresponding to the land use categories are not equally 
distributed over the study area. Agricultural land (AL), excluding the plantations, occupies 
slightly more than 50 percent of the area, equally spread between areas dedicated purely to 
livestock production (AL/GRASS) and areas in which we find a combination of arable 
cropping, tree cropping and pastures for grazing (AL/MIXED). Banana plantations occupy 
only a small part of the area, but banana production is most important in economic terms. 

The land use zone map also provides information on the distribution of farm size, but only 
for the agricultural areas (Fig. 1.3), because for the area of agricultural penetration (AP) and 
the forest area no indication of the size of the properties could be obtained. In nineteen 
percent of the area very small farms occur, corresponding mostly to (former) settlement 
schemes or areas distributed by the government. The farm size in this class ranges from 10 
to 15 hectares with a maximum of 29 hectares. The category small farms comprises farms 
up to 60 hectares. The large farms are generally a few hundred hectares in size and some­
times up to a few thousand hectares. Noteworthy is the high percentage of the area corres­
ponding to large farms. It indicates the skewed property distribution pattern. 
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OTHER (9.2%) 
WASTE LANDS (2.3%) 

BANANA PLANTATION (6.8%) 

AL/GRASS (26.8%) 

FOREST (10.1%) 

AP/GRASS (18.0%) 

AP/MIXED(5.5%) 

AL/MIXED (244%) 

Fig. 1.2 Area percentage of land per land use category for the 
study area. 

LARGE (41.9%) 

VERY SMALL (19.1 %) 

SMALL (25.3%) 

MEDIUM SIZE (13.7%) 

Fig. 1.3 Are precentage of farm size classes of the agricultural 
area. 

3. METHODS FOR COMPARING LAND AND LAND USE 

Combining soil and land use information 

Overlaying the soil and land use map 
The overlaying (in ARC-INFO) of the land use zone map and the soil map resulted in 

nearly 1000 mapping units with each a specific LUP-PMU combination, despite the specifica­
tion of a rather high tolerance value of 100 meters for the union of line elements. (Fig. 1.4 
shows the result of the overlay for a part of the area.) The large number seems therefore, 
to a large extent, due to the mapping procedures: on the soil map the river valleys are 
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mapped to demonstrate the drainage pattern, while on the land use map the river valleys are 
drawn as lines, because their surface is small and the information considered irrelevant. 

hM/Wi ^WWd •IXXXXXI 
6 KM 

PMU Boundary LUZ Boundary 

Fig. 1.4 Part of the land use zone-physiographic map unit overlay. 

Upon automatic union, many small units result with a rather unreliable listing of the content. 
Through editing of the LUP-PMU map (correcting for the slivers) the number of polygons 
could be reduced to 566, corresponding to 314 unique combinations of LUP and PMU. 
Remarkable are then the many cases in which LUZ and PMU boundaries coincide, despite 
the difference in mapping procedure. Arrows in Figure 1.4 show where boundaries corres­
pond. A calculated estimate indicates that an average of 63 per cent of the land use zones 
contours corresponds to boundaries of physiographic mapping units. This shows that the land 
and soil characteristics are important in explaining the geographical distribution of the land 
cover and land use patterns. 
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Matrix calculations 
The LUP-PMU map data can be organized in a m * p matrix A^ with m = 43 rows 

representing the LUP's and p = 62 columns representing the 62 PMU's, with the elements 
indicating the area in hectares. For every PMU the land capability class distribution can be 
calculated, given its composition of TUs and associated land capability class. These data can 
also be ordered in a p * n matrix Bij; with p = 62 corresponding to the number of PMU's 
and n = 17 corresponding to the 17 Land Capability Classes (LCs). The elements of the 
matrix denote the fraction of MPU i with land capability class j . 

Multiplying both matrices A and B yields a m * n matrix C with information on the area 
of LC i for LUPy. The data structure as implemented in the SIESTA soil information system 
did not allow for retrieval of the required information through a data base queries operation. 
A programme was therefore written in ARC-INFO programming language to obtain the 
necessary information. 

The latter matrix 'C' was used for further calculations with respect to the evaluation of 
the land use. Based on the matrix C not only the distribution of LUP or associated charac­
teristics per suitability class can be determined, but also the distribution of the land capability 
class per specific land use pattern. 

Matching land use requirements with land capabilities 

Soil suitability rating 
A land suitability class in the FAO (1976) land evaluation procedure, reflects the degree 

to which land can satisfy the requirements of a particular land utilization type. In this case 
study the requirements of a number of land utililization types were compared with land 
qualities as reflected by the land capability classes. The rating is based on expert judgement. 
Results are presented in Table 1.4, where Class 1 means very suitable, Class 2 suitable and 
Class 3 not suitable for the particular LUT considered. 
The selected Land Utilization Types considered are relevant for the area; for evaluation of 
their suitability only soil and terrain characteristics were taken into account. Climate was not 
considered although the high annual rainfall of 3000-5000 mm, plays a role in depressing 
yields of certain crops through a high desease incidence, occurrence of pests and storage loss. 
Also economic criteria were left out of consideration. 

Evaluating actual versus potential use 
To judge whether land is used in accordance with its potential, actual land use per 

capability class is compared with its potential use (Table 1.4). Two conditions are specified 
namely (1) over-use and (2) under-use of the land. 

Over-use is defined as land where the requirements of a particular land utilization type 
exceeds the particular land quality of a land unit, as such presenting a risk of degrading that 
particular land type and its vegetative cover because requirements of that particular land use 
type can not be met by the land qualities of the land type. In the suitability rating it is 
indicated as not suitable. 

To illustrate what is meant by risk for degradation of the vegetative cover, the improved 
grasslands on poor soils might serve as an example. In the suitability rating, distinction is 
made between improved pastures and 'natural' grasslands. The first consist of improved grass 
species like Estrella (Cynodon nlemfuensis), Tanner (Brachiaria sp.) and Guinea (Panicum 
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Table 1.4. Suitability rating of the land for specific land utilization types. 
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maximum). Especially on the less fertile soils they are easily suppressed by species more 
adapted to these poorer circumstances. Therefore, the improved grasslands do not represent 
a suitable use on these soils. 

Under-use is defined as land offering possibilities for more intensive or more requiring use, 
because requirements of present land use are more than satisfied by the land qualities of this 
particular land type. 
To decide whether land is over- or under-used, a ranking order was established which reads 
as follows: 
- Annual crops, banana plantations and some ornamental crops are considered most 

requiring as regards soil fertility and to represent the most intensive use of the soil; 
- Perennial crops like palmheart, some ornamental crops, cacao and coffee are judged 

second in requirements with respect to soil and management; 
- Grassland is considered third, although there need not be much difference with perennial 

crops. Improved grassland which requires fertile soils, is demanding as regards Pasture 
management. 

- Reforestation and tree plantations are considered fourth with respect to the level of land 
use intensity; 

- Forest, swamp vegetation and waste lands are least requiring. 
When indicating possibilities for more requiring use, socio-economic conditions were also 
taken into account; for example in the case of areas with small farms banana production was 
not considered a viable option. 
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Evaluating land use at sub-regional scale 
The evaluation procedure, as presented above, refers to land utilization types in relation 

to soil and terrain conditions. At sub-regional level, land use is described in terms of land 
use patterns, usually referring to a combination of land utilization types. Therefore, to apply 
the above described procedure for the evaluation of land use patterns, the following pro­
cedure is followed: 
- The most demanding land utilization type is used to assess whether the land use pattern 
represents an over-use of the land. 
- To evaluate possibilities for more intensive use the least demanding land utilization type of 
the land use pattern at issue is considered. 
E.g. in case of an LUP consisting of maize in combination with grassland, maize is used for 
the evaluation of a possible over-use and grassland for the evaluation of a possible under-use. 

Based on the above mentioned considerations, the soil suitability matrix is translated in 
two matrices D, and D2; the first indicating LUP-LC combinations with over-use, and the 
second indicating combinations with under-use. The elements of the matrix can only have two 
values (1 or 0). The two matrices represent expert knowledge. 
Data on under- or over-used areas (in hectares), are obtained by multiplying the matrix C 
with the matrix D, or D2 respectively. 

4. RESULTS AND DISCUSSION 

Over-used areas 

The Land Use Zones with over-use cover an area of 13977 Ha, corresponding to 17.5 % 
of the total area. Figure 1.5 shows the distribution of land use patterns for the over-used 
areas. Of those areas 37 % is explained by the area of Agricultural Penetration (AP), both 
with grazing (AP/GRASS) and with a combination of grassland and perennial crops 
(AP/MIXED) as most important use. 

The area of AP/GRASS is found in the coastal plain as well as on the slopes of the 
Turrialba volcano. However, a large proportion of the latter area in the south western part 
of the study area (Fig. 1.6) has slopes of over 30 % which makes the soils very vulnerable 
to erosion and degradation under any type of agricultural use. 
The area of AP/GRASS indicated as over-used, represents 25 % of the total area of 
AP/GRASS. In the coastal plain the areas of AP/GRASS cover some peat and swamp areas 
(appr. 400 Ha.), which also represent over-use. Further agricultural penetration would 
involve the colonization of peat and swamp areas. 

The 31 percent of the area of AP/MIXED also represents a risk of degradation; such areas 
are found in the central part of the study area (Fig. 1.6) where perennial crops are grown on 
acid and poor soils (LC3.4) on the sloping remnants of old lahar deposits. It corresponds to 
15 % of the total over-used area. 

In the agricultural areas with a combination of LUT's (AL/MIXED2 and AL/MIXED3) 
over-use is due to the growth of maize, which is a very requiring crop, on soils with low 
fertility (Class 3), on sloping land (LC2.4 and 3.4), on very shallow (Class 4) and very 
poorly drained soils (Class 5). It accounts for 19 % of the total over-used area. Evaluation 
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is, however, difficult, given the composite nature of the units. Figure 1.6 shows therefore 
only the most evident cases. 

FOREST (».2%) 

OTHER (20.4%) 

AU/GRASS (14.3%) 

AL/MIXED2 (7.5%) 

A17MIXED3(11.3%) 

AP/QRASS (22.9%) 

APJMIXED (14.5%) 

TOTAL NON-SUSTAINABLE: 13977 HA.; TOTAL AREA: 79775 HA. 

Fig. 1.5 Area percentages of land with non sustainable use. 

An important percentage of the area with over-use is due to grassland used for grazing in 
areas with slopes of over 30 %. These are areas to be protected because of a great risk of 
erosion. The presented figures show that the area where actual land use presents a severe and 
acute danger for land degradation, is relatively small. It occurs in areas of agricultural 
penetration (AP) on the middle slopes of the volcano, posing a severe risk of erosion but also 
in the recently colonized land on old lahar deposits in the central part of the area and in the 
area of AP containing swamp and peat areas. Those areas are not suitable for any type of 
agriculture and should be protected. 

Under-used areas 

A large part of the study area is indicated as having potential for more intensive use of 
the land (under-use). In total 40673 hectares, or 51 % of the total area, is labelled as such. 
The percentage distribution of the Land Use Patterns (LUPs) in the under-used area is 
presented in Figure 1.7. The following categories are concenred: 
Grassland. This occupies 50 % of the under-used area of which 24 % (AP/GRASS) is on 
fertile soils with drainage problems (LCI.2) and 26 % (AL/GRASS) on fertile soils without 
drainage problems. They are found in the northeastern and northern part of the study area 
(Fig. 1.8). 
Mixed land cover (Al/Mixedl). This LUP consists of small farms with crops such as maize, 
root and tubers, perennials and grassland used for cattle breeding and grazing (usually with 
various kinds of fruit trees). Soils belong to the best of the area. Under-use is especially 
obvious on the grasslands in these areas. 
Cacao (AL/SFOV). Cacao with a low level of management predominates. The plantations 
are often neglected. Soils could be used more profitably for crops such as roots and tubers. 

In summary the under-used areas consist for the major part of fertile land used for 
grazing; they usually have a young land use history or experience active colonization. 
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Areas of which the land properties allow for a more intensive use of the land 
than that is represented by the actual land use. 

Areas with forest cover 

Areas of agricultural penetration, with deforested parts used for grazing 

Agricultural land, used predominantly for grazing purposes 

Agricultural land used for perennial crops (Cacao) and grazing 

Agricultural land; land use directed to arable cropping (maize) and 
livestock production 

Fig. 1.6 Areas of which the land properties allow for a more intensive use of the land (only 
those areas referring to the listed land use patterns). 



156 Chapter 1, Part 3 

OTHER (8.5%) 

WASTE LAND (3.9%) A^~ 

AUGRASS (27.3%) Ë 5 ^ = = i 

AL/SFOV<11.2%) 

TOTAL AREA FOR IMPROVEMENT: 40673 HA.; 

FOREST (7.5%) 

É ^ S $ $ ^ AP/GRASS (23.8%) 

W V \ W S / AP/MIXED (S.7%) 

l - ^ A L f l / I I X E D I (12.1%) 

TOTAL AREA: 79775 HA. 

Fig. 1.7 Distribution of the land use categories for the areas indi­
cated as having potential for more intensive use of the land. 

Evaluating land use per land use zone 

While the former section evaluated present land use and possible alternatives for the whole 
area, this section focusses on land use zones with one particular land use type. Compare 
individual land use zones when they represent the same land utilization type, with respect to 
land capability allows for the evaluation of yield levels in relation to land capability charac­
teristics. In this case an evaluation is provided by four land use zones representing banana 
plantations. The analysis supplies information on one or more attributes of the land use 
category one is interested in, in this case management of the plantation and yield level in 
relation to land capability class. 

Figure 1.9 shows that the proportions of capability classes, LC1.1 and LCI.2, can differ 
considerably. This is, however, not reflected in the yields (given in boxes/ha/year, corre­
sponding to the year 1986). The yield levels of 'Rio Frio' and 'St. Clara' are comparable, 
while the first has the highest percentage of first class soil and the second the lowest of the 
four. 'St. Maria' has the lowest yield level. It indicates that the St. Maria farm possesses 
potential for higher yields, given the present socio-economic conditions, because its soil 
suitability is similar to that of the other plantations. I.e. managerial factors explain the poorer 
peformance. In 1986 the plantation was put under new management and by 1988 yields had 
increased from 1494 to 1935 boxes/ha/year (source: ASBANA, Dirección Estudios Económi-
cos, 1990). A detailed study of this plantation with respect to yield in relation to soil type 
was published by Veldkamp et al. (1990). 

Land capability class and farm size distribution 

Although economic data are crucial in the evaluation of land use for sustained use, it was 
not possible to use them because they were lacking for the region. 
However, there are some parameters, provided by the land use map which can be used to 
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Areas with land use that represents risk of degradation of the land or of the 
vegetative cover. 

Fig. 1.8 Areas representing land use with higher demands than can be met by the land 
properties. 

analyze land use in socio-economic terms. One of those is farm size (Fig. 1.3). Farm size 
distribution in relation to land use and land capability classes, provides information on how 
economic opportunities in the area are divided. Fertile soils in the area offer a wide range 
of land use alternatives for virtually any type of farmer. The less fertile soils are, however, 
more restricted as regards viable land use alternatives, while the more profitable ones like 
Macadamia require large investments without any profit in the first years of growth. This 
implies that economically attractive land use alternatives on less fertile soils are only within 
reach of larger and/or economically strong farmers. 
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PARTITIONING OF FOUR BANANA PLANTATIONS AS REGARDS THE LAND CAPABILITY 

III 
<3 

^ 

LC1.1 LC3-6 LCI .2 

LAND CAPABILITY CLASS 

I / I Rb Frio-2254 boxea/ruL/year l \ I Impark» - 2802 boxaa/ha/yaar 
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Fig. 1.9 Suitability class distribution of four banana plantations with their 
yields (Boxes/Ha./Year). 

A comparison of data from Figure 1.10 and 1.3 shows that the area percentage of large 
farms is bigger on first class soils (Fig. 1.10) than when considering all capability classes 
(Fig. 1.3). For small farms the reverse is true. It illustrates how opportunities are divided 
for both farm size classes. 

URSE (4S.9) 

VERY SMALL (14.1%) 

SMALL (28.1%) 

MEDIUM SIZE (13.9%) 

Fig. 1.10 Area percentage of farm size class on fertile soils 
(suitability class 1.-). 
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Banana is an example of a land use type almost exclusively found on first class land (Fig. 
1.11). All land for banana production is artificially drained so that impeded drainage (class 
1.2) does not present a limitation. The strong expansion of the area under banana cultivation 
in the recent years is observed in areas indicated in this study as having potential for more 
intensive use. These areas are characterized by the presence of larger farms dedicated to 
cattle breeding and first class soils, however suffering from impeded drainage. Improving 
the drainage conditions is not a viable option for the existing cattle farms. It is one factor 
which explains the penetration of the banana plantation in this area. The other factor is 
related to the larger size of the farms encountered in the area, which make it possible for the 
banana plantations to acquire larger tracks of land. It illustrates how the evaluation of land 
use considering biophysical as well as socio-economic factors might be used to predict and 
evaluate land use change. 

OTHER (4.7%) 
LC 3.4 (3.S %) 

LC 2.4(1.2%) 

LC 1.2 (32.0%) 

LC 1.1 +LC 1.3 (58.7%) 

Fig. 1.11 Distribution of the suitability classes for the total of 
banana plantations. 

Evaluating sources of error and uncertainty 

As explained in the introduction, maps were used in which information is aggregated. 
Overlaying of such information leads to complications as regards the accuracy and validity 
of data. It is important to discuss this because such data might be used in a GIS for land use 
planning with consequences for farmers in the area. 
The following sources of error and uncertainty upon overlaying might occur: 
(1) Inaccuracy due to matching and reduction of the PMU-LUZ combinations. This pro­
cedure helped to minimize the number of combinations. It concerns here a relatively small 
area so that we may neglect this source of inaccuracy. 
(2) Uncertainty as consequence of working on different levels of aggregation. 
Over use and under use refers to land utilization types in combination with terrain units. The 
determination of the corresponding areas of over- and under-use refers to combinations of 
land use zones and physiographic mapping units; both composite entities either in terms of 
LUTs or TU's. This has certain consequences: 

A) In case of a composite LUZ, over- or under-use is decided on the basis of either 
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the most exigent or least demanding LUT, constituting only a part of the LUZ of 
concern. The results, as such, over estimate the area of over- or under-use. 
B) The PMU are described in terms of percentages of the constituting terrain units. In 
calculating the area of over use or under use, these percentages are accounted for. The 
percentages might be very accurate for the PMU as such. This need not be true for that 
part of the PMU intersecting with a specific LUZ (illustrated by Fig. 1.12, where A 
D B represents the intersection of PMU A and LUZ B), since there is no information 
on the location of the TU within the PMU. 

Fig. 1.12 Intersecting Physiographic Map­
ping Unit and Land Use Zone. 

This implies that the figures denoting the percentages of the different TU's represent 
probabilités or predicted values in case of the intersection. It introduces uncertainty 
with regard to the statements on the area of non-appropriate use. 
The following might illustrate this. Suppose a mapping unit of the physiographic soil 
map consists of 50 % swamp soils and of 50 % well drained soils. After overlaying 
the land use map, 50 % of the mapping unit is covered by commercial forest and 50 
% by grass vegetation. Overlaying then automatically creates PMU-LUZ units in which 
both land use types would grow for 50 % on well drained and for 50 % on swamp 
soils. In reality it could also be that forest would grow exclusively on the well drained 
soils and the grass vegetation in the swamps. 

This type of uncertainty can not be eliminated and will always exist when aggregated 
information is combined. The percentages, and corresponding hectares, indicating over- or 
under-use of the soil, should then be read as areas corresponding to LUP-PMU units, which 
possibly represent inadequate use. The degree of error or uncertainty depends on the number 
of components of the PMU or LUZ and on the degree to which the Land Uze Zones and the 
Physiographic Mapping Units correspond. This allows for excluding units with a strong 
composite character in order to exclude less reliable results. For the area of over- and under-
use, as presented in figure 1.6 and 1.8, this was indeed done. 

Given the 63 % of the land use zone boundaries corresponding to PMU boundaries and given 
the in general rather homogeneous character of the mapping units (by majority the PMU 
consist of one or two Terrain Units), the results are thought to give a reliable indication of 
the area of over-use and under-use in the area of concern. 
The presented procedure serves to identify possible problem areas, indicating their relative 
importance. It draws attention to areas where the magnitude of the problem should be studied 
in more detail. 
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6. CONCLUSIONS 

- Nearly twenty per cent of the area is classed as over-used. These areas are predominantly 
found on poor soils in the colonization areas and in areas colonized during the last 10 years. 
The agricultural frontier reached a point where its further extension will mean a severe risk 
of degradation for the land, because the surrounding forest areas are not suitable for more 
intensive use. The colonization area has reached a limit, beyond which no appropriate 
agricultural use is possible. 

- The land use in the area is not as much characterized by over-use as by not using the land 
and soils to its full potential (under-use). In 51 % of the area more intensive use of the land 
is possible, predominantly because fertile soils are now used for grazing which is considered 
under-use. 

- A comparison of farm size distribution with land capability classes shows that the area 
percentage of large farms or plantations is bigger on first class land as compared to other 
land capability classes. For small farms the reverse is true. 

- The aggregation level of the different sources has to be comparable to allow for meaningfull 
comparison. In this regional study, Physiographic Mapping Units were therefor copared with 
Land Use Patterns within Land Use Zones. 
When aggregated information from two sources is overlain as in this study on land and land 
use (i.e. when the units are composite in nature) the information serves to indicate areas 
where more detailed studies are likely to be relevant when comparing soils or Terrain Units 
with Land Utilization Types. 
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Abstract. Variation in yield was studied on an 370 ha banana plantation in Costa Rica. Yield for 42, 
6-12 ha large sections, were expressed in terms of: number of bunches/ha, weight/bunch, gross 
production/ha. Yield variation was explained by readily accessible soil and thematic mapper (TM) 
information, using three models. First, a TM image was used. A number of band combinations 
(vegetation indices) and Near Infrared Band (TM4) were tested to characterize each section. The TM4 
band and the "Greenness" band combination appeared to be the best estimator with 46% of the variation 
explained. Second, yield variation was explained on the basis of a detailed soil map that was analyzed 
for each section. Of the variance in gross production, 67% could be explained by production per soil 
unit. Gross production of the units varied from 504 to 896 kg/ha/week. In the third model, the TM and 
soil data were combined. The explained part of the variation in a combined model remained 67% or 
was even lower. The study indicates that the soil map of this area was a good estimator for banana 
yields in terms of gross production. Since the production figures were only available per section, i.e., 
for relatively large rectangular areas, the averaged TM image for a section did not provide extra 
information. Site specific, stratified sampling per soil map unit is proposed to improve results of the 
type of models used in this study. 

INTRODUCTION 

Bananas are a major cash crop in Costa Rica. The banana crop is grown on large plan­
tations with uniform management. Nevertheless, large variations in yield exist within various 
parts of the plantations. Difference in soil conditions are considered to be the main cause of 
these variations. 

Soil surveys have been used to relate yields to soil conditions. Variation in soil units may 
differ from that in others. Soil map delineations can therefore, be relevant when preparing 
predictive maps (Stein et al., 1988). Since delineated areas on soil maps may have an internal 
variability up to 40% (e.g. Marsman and de Gruijter, 1986), the first objective of this study 
was to test the feasibility of relating actual banana yields with soil map units. The soil map 
used in this study, was prepared in a traditional way, using borings and interpreting physio­
graphic features. 

Yields can not only be measured, they can also be estimated by using remote sensing data. 
Considerable experience has been gained by using spectral data for the estimation of canopy 
biomass and leaf area index (LAI) of grain crops and rangelands (e.g, Tucker, 1979; 
Williamson, 1988; Plummer, 1988). Estimating green canopy biomass, using spectral infor­
mation, had been most successful for wheat and other grains (e.g. Gardner et al., 1985). The 
periodic mapping of green canopy biomass has been used as a basis for forecasting yields of 
grains crops, as yields of these crops are a function of the development curve of the green 
canopy. The second objective of this study was therefore the estimation of yields in a banana 
plantation, using TM images. As the banana crop differs considerably from a grain crop, a 
different approach was required. 

Most studies relating spectral information to plant parameters of various kinds have used 
field spectrometry and very specific information such as LAI and biomass (e.g., Richardson 
et al., 1983; Tucker, 1977, 1979). In this study only information was used that can be easily 
obtained for any banana plantation (i.e. actual yields and spectral information from TM 
images). For management purposes, most plantations keep records of the yields per section. 

The third objective of this study was to test whether a combination of remote sensing and 
soil survey data would improve the regression models of each of these variables separately. 
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MATERIALS AND METHODS 

The study area 

The study was carried out on the plantation "Santa Maria" which covers 370 ha and is 
located in the Guacimo district of the Atlantic Zone of Costa Rica. The climate is tropical 
and humid with a mean annual temperature of about 27 °C (isohyperthermic) and an average 
precipitation of about 3300 mm (perudic) (Soil Survey Staff, 1975). 

The Atlantic Zone consists of a broad alluvial plain. The deposited sediments originate 
from the Central Cordillera, a mountain range mainly consisting of volcanic rocks. The study 
area is at the footslopes of the Turrialba volcano. The sediments in the study area have been 
deposited by the river Jimenez. 

The soils 

During the soil survey five different soil units were distinguished (Fig. 2.1), which are 
briefly described below, classifications are according to ICOMAND (1988) and Soil Survey 
Staff (1975). 

Milano soil. Classification: Andic Humitropept. This soil, located at the highest positions 
of the study area, is considered to be developed in the remnants of Pleistocene fluvio-laharic 
deposits. The Milano soil is a deep, moderately well to well drained soil with dark reddish-
brown colours and slightly andic properties. Structure is moderately strong to strong crumb 
and sub-angular blocky. The Milano soil is very porous and the texture class is very fine. 

Santa Maria soil. Classification: Aquic Tropudalf. This soil is situated on the younger 
river terrace than the terrace remnants on which the Milano soil occurs. The Santa Maria soil 
is a deep, moderately well drained soil with dark-brown to brown colours and no andic 
properties. Structure is moderate to strongly developed angular blocky. Texture class is fine 
to very fine. 

La Lucha soil. Classification: Aquic Hapludand. This soil has been developed in recent 
alluvial material. The La Lucha soil is moderately deep and moderately to poorly drained, 
with clearly expressed andic properties. The colour is brown to greyish brown. Structure is 
weak angular blocky and the porosity is high. Texture is sandy loam to loam. 

Dos Novillos soil. Classification: Melanie Udivitrand. This soil is situated on the recent 
natural levees of the Rio Jimenez. The Dos Novillos soil is deep and well drained with 
clearly expressed andic properties. The colour is dark brown to brown. The structure is weak 
sub-angular blocky and the porosity is high. The soil has a loamy texture with a sandy sub­
soil. 

Bosque soil. Classification: Fluventic Tropaquept. This soil is situated in the backswamps 
of the Rio Jimenez. The Bosque soil is a deep, poorly drained soil with no andic properties. 
The colour is yellowish grey to dull brown. The structure is strong angular blocky and the 
porosity is high. The texture is very fine. 

Yield data 

The banana grown on the plantation is the clone "Valéry". Throughout the year fruit 
bunches are produced at a rather constant rate. All possible stages of development can be 
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Fig. 2.1 Soil map of the study area. Below right, section map of the study area. Shaded 
areas were excluded. 

found within the same plantation. Fruit are produced about 10 months after the pseudostem 
starts to grow (Soto, 1985). The total fruit production depends on: (1) the number of fruit 
bunches per ha; (2) the weight per bunch; (3) the time lapse between subsequent bunches 
from the same plant (stool). 

The plantation is divided into 47 sections (Fig. 2.1), varying from 6 to 12 ha. Yield data 
were collected per section. The following yield data were used in the study: 

(I) The number of bunches produced per ha per week for each section during the period 
of May 1987-May 1988. 

(II) The average bunch weight per section. This was collected in May 1988 by counting 
the "hands" per bunch (one hand consists of a number of bananas attached to the bunch at 
the same place) and using the relation between bunch weight and number of hands as found 
by Jaramillo (1979): W=5.107HB-18.043, Where HB=the number of "hands'Vbunch and 
W=mean bunch weight (kg). 

(III) The gross production, calculated from the previous two data. 
In the study only 42 sections have been used (Fig 2.1). For two sections yields data were 

incomplete and the area of three sections has been enlarged since the TM image had been 
recorded. 
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The TM image 

The TM image used was recorded in February 1986. Band 4, hereafter referred to as TM4 
and a number of TM band combinations which are commonly used to estimate biomass and 
LAI were included in this study. The "raw" data, available in bytes (0-255), were trans­
formed into reflection percentages using the method as described by Markham and Baker 
(1987). In order to rearrange the available spectral information, a principal component 
analysis was performed. The first principal component was also included in the study. Table 
2.1 provides an overview of ratios and band combinations being used. 

Combining data with a geographic information system 

The interpretation of TM images and geographic information was done with the ERDAS 
system (ERDAS Inc., 1987). To compare TM information, soil and yield data maps were 
digitized and transformed geometrically to fit the TM image. For the classification use was 
made of supervised pattern recognition. Four training samples were selected, covering the 
entire range of banana crop reflectance characteristics. Mean, covariance and standard 
deviation were calculated to test homogeneity of the training samples. The classification of 
the picture elements (pixels) was done by means of a minimum distance classifier. Only the 
pixels classified as banana pixels were further considered. The classified TM image was 
overlain by the digitized soil and section maps. A routine was developed to calculate the 
mean and standard deviation of the pixels of each digitized polygon (sections or units). 
Pixels, situated on the boundary of the two polygons were discarded. 

The following data were extracted: (a) the area of each section; (b) the fraction of the area 
of each soil unit per section; (c) the average value of TM4, band combination or principal 
component per section; and (d) the average value of TM4, band combination or principal 
component per soil unit per section. 

Interaction of spectral radiance and banana leaves 

Gardner et al. (1985) have summarized the interaction of the wavelengths of the Thematic 
Mapper with a vegetation canopy. The TM1, TM2 and TM3 can be considered to contain 
information concerning the chlorophyll and pigment concentration in the first layer of leaves 
near the top of the canopy. The TM4 responds to multiple leaf layers. Reflectance continues 
to increase non-linearly, with increasing number of layers, up to a value which is 85% higher 
than the reflectance from a single leaf (Myers, 1970). The TM5 and TM7 both respond to 
changes in leaf area or water content. The TM5 interacts with more than one leaf layer, 
though not with as many layers as the TM4, and the TM7 responds to the first layer of 
leaves only. 

Since the TM4 is the most important TM waveband which responds to multiple leaf 
layers, Gardner et al. (1985) considered this band to be the principal vegetative response or 
leaf area indicator. Since the canopy of a banana crop is nor closed, a considerable amount 
of the TM4 reflectance originates directly from the soil. In order to minimize the soil effect, 
various combinations of TM4 with other bands were tested. 

Only biomass and LAI can be directly estimated on the basis of spectral information (e.g. 
Tucker, 1979; Williamson, 1988; Plummer, 1988). Yields must be estimated indirectly, using 
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correlations with biomass, LAI (leaf area index) or other crop characteristics. For banana it 
is assumed that the LAI and biomass were also correlated with yield. 

Statistical procedures 

The central question in this study is how to explain variations in yield data by readily 
available information like soil map delineations and TM images. As the number of available 
yield data was too limited to apply geostatistical methods, use was made of statistical 
methods on the assumption that observation were independent. Several regression analyses 
were carried out, depending upon the sets of explanatory variables. 

(1) To explain variations in yield on the basis if TM data, a simple linear regression 
model was used. This approach seemed justified, given the rather small range of reflectance 
values in spite of the non-linear relationship between radiance 
and biomass (Tucker, 1979; Plummer, 1988). The regression model was applied to the TM4 
band and several band combinations and is formulated as: 

K=a0+«iSPEC, (1) 

where SPEC, is the mean pixel value of a spectral band or band combination for section 
i(i=1,... ,42), Y,; is the actual yield for section i and a0 and a, are parameters, to be estimated 
by the model. 

(2) To explain yield variations on the basis of soil units a multiple linear regression model 
was used: 

^.=/t+/31B01.+ftDN,.+ftLL1+/34MI1.+^SM,. (2) 

where BO„ DN„ LL„ MI„ SM, (i=1 42) denote the fraction of the area of the soil units 
"Bosque", "Dos Novillos", "La Lucha", "Milano" and "Santa Maria", respectively, in the 
ith section. Yt represents the actual yield for section i, n is the mean value, and the 0's are 
parameters. Because the fractions for every section sum up to 1, contrasts of the parameters 
(e.g., n+ßj) provide an estimate for the average yield production in they'th soil unit. 

(3) To explain yield by soil map units and TM data, two different multiple linear 
regression models were used. The first model is a combination of eqs. 1 and 2, where the 
reflectance, in the band combination as obtained from eq. 1, for section i is included as an 
extra explanatory variable: 

Yi=a0+alSVECi+ßlBOi+ß2DN!+ß}LLi+ß4Ml+ß5SMi (3) 

where the names of the variables correspond with the names mentioned above. However, 
different coefficients will be obtained. In fact, this model was applied only with the TM4 
band, being the most promising variable of the first model. The extra variable was included 
to detect additional information from TM4. This model can be interpreted to be an analysis 
of how much variation in the residuals from eq. 2 can be explained by the TM4 band. 

In the second model the explanatory variables are obtained by multiplying the average 
TM4 value per soil fraction with the fraction of the soil units per section: 

y(=70+7,TMBO<+72TMDN,+73TMLL/+74TMMI/+75TMSM/ (4) 
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Where TMBO„ TMDN,, TMLL,., TMML, TMSM,. (i=l,...,42) correspond with the fraction 
of the soil types Bosque, Dos Novillos, La Lucha, Milano and Santa Maria, respectively, in 
the z'th section, multiplied by the TM4 value within this fraction. Again, 7, represent the 
actual yield for section i and the y' s are parameters to be estimated by the model. 

RESULTS AND DISCUSSION 

Banana yields and thematic mapper data 

The regression results (Table 2.1) indicate that there are substantial difference among the 
R2 for gross production, bunch weight and bunch number on the basis of spectral reflectance 
values. The best explanatory variables for the actual yield appear to be the TM4 and 
'Greenness'. In Fig. 2 TM4 is plotted against gross production. 

Table 2.1 Tested ratios and combinations ofTM bands and results of spectral estimation on 
actual yield 

Name 

TM4 

NIR/red' 

ANIR/red)1 

NIR-red' 

VI1 

l/VI' 

TVT 

NIR/MIR2 

Greenness3 

Brightness3 

Wetness3 

PCI 

Formula 

TM4/TM3 

v/(TM4/TM3) 

TM4-TM3 

(TM4-TM3)/(TM4+TM3) 

(TM4+TM3)/(TM4-TM3) 

7(VI+0.5) 

TM4/TM5 

(TM4-TM5)/TM4+TM5) 

(TM4-TM3)/(TM5+TM7) 

-.27TM1 -.22TM2-.55TM3 + .72TM4+.07TM5- .17TM7 

.29TM1 + .25TM2 + .48TM3 + .56TM4+.44TM5 + .17TM7 

. 15TM1 +. 18TM2 + .33TM3 + .34TM4 

-. 12TM1 -.08TM2-. 19TM3 + .73TM4-. 

-.62TM5 -.42TM7 

56TM5-.31TM7 

R2 

gr. prod. 

.46* 

.42* 

.42* 

.45* 

.41* 

.40* 

.40* 

.27* 

.25* 

.32* 

.46* 

.04 

.21* 

.34* 

#bunch 

.30* 

.28* 

.28* 

.30* 

.27* 

.26* 

.26* 

.20* 

.19* 

.23* 

.30* 

.02 

.16* 

.24* 

weight 

.24* 

.22* 

.22* 

.24* 

.22* 

.22* 

.22* 

.13 

.12 

.15 

.24* 

.03 

.10 

.25* 

NIR=Near Infrared; MIR=Middle Infrared; VI=Vgetation Index; TVI=Transformed Veg. Index; PC=Principal 
Component 
1 See Tucker, 1979; 2 See Williamson, 1988; 3 See Crist and Cicone, 1984; 
* Significant at a=0 .1 . 

In all cases the regression model explaining variation in gross production has the highest 
R2, followed by number of bunches and average bunch weight. It can be concluded that gross 
production is the best estimable yield characteristic. 

A considerable part of the observed variation could not be accounted for, because 
interpretation of the TM image was restricted to a particular day and the yields were whole 
year averages. Also, soil reflectance may have a disturbing contribution in the total 
reflectance. However, band rations, normally used to minimize soil influence, did not lead 
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to an increase in the R2 when compared with the sole use of TM4. an explanation might be 
that the variation in reflectance values within some TM bands is very small. Even the TM4 
band has a coefficient of variation of only 0.06, with values ranging from 33.5 to 42.6. 

Gross Production (kg/ha/week) 
Thousands 

1.1 

33 34 35 36 37 38 39 40 41 42 43 
Reflection % TM4 

Fig. 2.2. Gross production plotted against % reflection ofTM4. Results of the best model 
obtained with eq. 1 (see text). 

Banana yields and soil survey data 

Results (Tables 2.2 and 2.3) indicate that the sol survey data explain as much as 67% of 
the variation in banana yields. Moreover, there are large differences in production among the 
five soil units. Gross production, bunch number and bunch weight are the highest on the Dos 
Novillos Soil. The largest difference in gross production (392 kg ha'week1) and weight (5.7 
kg/bunch) are encountered when comparing this soil with the Bosque soil, whereas the largest 
difference in the number of bunches (11.5 ha'week1) is encountered when comparing this 
soil with the Milano soil. Production on the other sol units is intermediate and differences 
are not significant. 

Table 2.2 Estimates and standard error of estimate (SEE) of the yields based on eq. 2 
Soil unit 

Milano 

Santa Maria 

La Lucha 

Bosque 

Dos Novillos 

Gross prod. (kg 

estimate 

621 

783 

710 

504 

896 

ha'week') 

SEE 

137 

58 

59 

58 

68 

Bunches (nr.ha''week 

estimate 

28.3 

37.9 

35.4 

30.1 

39.8 

') 
SEE 

5.0 

2.1 

2.1 

2.1 

2.5 

Weight (kg/bunch) 

estimate SEE 

22.4 1.5 

20.6 1.5 

20.1 1.5 

17.0 1.5 

22.7 1.7 
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The regression model explains variation in gross production best, followed by bunch number 
and bunch weight. A model based on soil units provides better estimates for yield than a 
model based on the TM image (Table 2.3). Considering the internal variability of soil maps 
(up to 40%, Marsman and De Gruijter, 1986) the soil survey data are rather successful in 
explaining the differences in production. This stresses the relevance of soil survey informa­
tion when explaining banana yields. 

Table 2.3 R2 of yield estimation by different equations 

Eq. 1 

Eq. 2 

Eq. 3 

Eq. 4 

Gross production 

0.46 

0.668 

0.672 

0.409 

Bunches 

0.30 

0.516 

0.516 

0.246 

Weight 

0.24 

0.368 

0.372 

0.355 

Banana yields and both thematic mapper and soil survey data 

The results of the regression analysis (Table 2.3) emphasize that no variation in the 
residuals of eq. 2 is explained by TM4 values with eq. 3. Of interest is the high degree of 
collinearity between TM4 and the soil unit values. This implies that the TM4 data are 
strongly linked with the soil survey data, when explaining yield variation. 

Although eq. 4 is promising as such, the R2 did not increase (e.g. R2=QAQ9) for gross 
production. This could be due to the often small number of 30m x 30m pixels per fraction 
of a soil unit in a section. Images with a higher resolution are potentially attractive to be 
applied in this type of study. 

The above results lead to the conclusion the eq. 2 is the best linear model to explain 
variation in actual yield. 

In the present study was compared at the level of sections because yield data were not 
available for smaller areas. However, both soil and TM data had a much smaller resolution. 
The average reflectance within a section, or within the fraction of a soil unit within a section, 
has to be used to compare TM data with yield data. Thus, variation of the TM image within 
a section could be accounted for. This may partly explain why only a small part of the 
variation in yield could be explained by the TM image. 

Implications for future research 

In this study a simple relation was assumed between LAI and yield or between biomass 
and yield. Until now, information on this relation is not available for a banana crop. 
Research to define this relation is necessary to allow use of remote sensing techniques for 
the estimation of banana yields. However, this explanatory study showed that yield differen­
ces can be related to reflectance data using published relations derived for other crops. 

The TM image showed very clear spectral differences within the banana plantation. 
However, due to the scale at which yield data were available, average reflectances per 
section or per soil unit within sections, had to be used. In future, more site specific yield 
data should be obtained. Observations within the different soil units should be made and this 
does not present a problem since yields from individual plants can easily be recorded. The 
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necessary number of measurements within each soil unit is a function of the internal 
variation, which can be characterized by geostatistical techniques, and of the complexity of 
the TM image. 

Furthermore, crop characteristics like biomass, LAI and plant density need to be con­
sidered separately to explain the variation of the spectral response within sections. 

Finally, eqs. 1-4 relate, of course, only to the study area. Independent tests will be made 
in other plantations were the same soil units occur to establish the predictive quality of the 
regression equations obtained in this study. 

ACKNOWLEDGEMENTS 

We thank the personnel of the Santa Maria plantation, where the study was carried out 
and the National Banana Growers' Association (ASBANA) of Costa Rica for their active 
cooperation in the collecting the necessary data. The cooperation of M.A. Mulders, W.G. 
Wielemaker, A. Otten and P.G.M. Versteeg is highly appreciated. 



CONCLUDING CHAPTER 



174 E.J. Huising 

LAND USE ZONES TO DESCRIBE LAND USE AT SUB-REGIONAL LEVEL. 

The LEFSA sequence (Fresco et ah, 1990) defines the sub-regional level as one of the 
hierarchies in agricultural systems. LEFSA is a conceptual model; It does not give an ope­
rational definition of land use at the sub-regional level. In the introduction we mentioned the 
lack of appropriate tools for the inventory and description of land use at this level. We also 
pointed out the possible application of land use and vegetation maps. These aim at the 
identification of vegetation types and crops, but lack information on farms (see, for example, 
the USGS land cover-land use classification system for use with remote sensor data 
[Anderson, 1976] or the CORINE land use classification [CORINE, 1989]). Farm infor­
mation from statistical sources or limited field work has to be added. The LUZ approach, 
presented in this thesis, adopts such a strategy. The intention to explicitly describe land use 
at the sub-regional scale has been expressed earlier by Van Wijngaarden and Kooiman 
(1988). However they did not further elaborate the idea. 

The land use zone (LUZ) and its associated land use pattern (LUP) give an operational 
definition of land use at sub-regional scale. The LUZ provides the geographical basis for the 
inventory of land use. The LUZs prove to represent stationary spatial features in the area of 
study, when they belong to the agricultural land. The stability of the LUZ boundaries in time 
do indicate that the LUZs are spatial objects representing meaningful entities in reality, in 
stead of LUZs being more or less arbitrarily defined units, having relevance only for the 
purpose of mapping. The permanent geometric characteristics also indicate that the LUZ may 
serve as a geographic reference units for monitoring land use change. 

Land use is described in terms of the LUP. In case LUZ refers to one farm or part of a 
farm, the LUP may denote a single land utilization type (LUT) (e.g. cultivation of banana 
as a plantation crop) or a combination of LUTs. In case LUZ refers to an area comprising 
many farms, the LUP may denote a single farming system (e.g. large cattle farms) or a 
combination of farming systems. The LUZ approach has been applied to the Guacimo-Rio 
Jiménez-Siquirres (GRS) region, a representative part of the Atlantic Zone of Costa Rica. 
LUZs provided relevant insight in the sub-regional land use structure in this region. A total 
of 43 distinct LUPs were defined, distributed among the major land use categories (area of 
natural vegetation, area of agricultural penetration, agricultural area, plantation area, 
residential area, and other). 

For LUZs that comprise many farms, the farming systems were investigated. Clear 
differences in farming system composition were observed. The investigation also showed that 
there is always a clear dominance of one farming system. The dominant farming system, 
sometimes in combination with the sub-dominant system, is generally sufficient to describe 
the LUP. In doing so, the description would comply with 80 to 90 percent of the farms in 
a LUZ (see Chapter 3, Part I). 

Also land use change could be described adequately on the basis of LUZs. The LUZs 
satisfactorily indicated the place and type of land use change. Changes in land use were 
consistent for LUZs that showed comparable land use patterns (Chapter 4, Part I). It means 
that certain trends in land use change could be observed. These trends could be explained by 
change in market prices or were confirmed by production figures. 

We conclude that the LUZ represents a relevant entity for the inventory and description 
of land use and land use change at the sub-regional scale. However, some aspects of the 
application of the concepts LUZ and LUP require further investigation: 

1. The farming systems were described in somewhat general terms, since the 
objective was to prove that differences in farming system composition existed 
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between sub-regions. The definition of farming systems, especially with reference 
to the appropriate level of detail, deserves further attention. The farming system 
should express the correspondence between the farms within one sub-region, 
while the specific farm characteristics should be treated at farm level. 
LUZ has been described mainly as a compilation of elementary objects. How­
ever, an LUZ also represents a single entity. The independent role of the LUZ 
(with its associated LUP) in the analysis of land use should be further investi­
gated. Also, attention should be devoted to the justification of the LUZ as an 
agricultural system. The investigation should give an explanation as to why spe­
cific LUPs occur and why LUZs exhibit a particular dynamic behavior. 
The LUZ approach is expected to be of general interest for applications that 
require information on sub-regional land use (e.g. for agricultural statistics). The 
LUZ represents a unit of observation for land use inventory. Its application as 
a functional unit for sub-regional land use analyses and planning has been 
addressed in Part III, though only with respect to bio-physical land potentials. 
The functional aspects of the LUZ require further attention (e.g. the relevance 
of the LUZ in view of developing alternative land use scenarios). 

OBJECT-ORIENTED DATA MODELING 

In recent years much attention has been devoted to object-structured data bases. The 
application hereof in a GIS environment has been investigated (Gahegan, 1988; Roberts et 
al., 1991). The object-oriented approach has been developed for applications whose data are 
naturally viewed as a collection of objects. This is less evident for applications like the inven­
tory of land cover, land use or soils. The inventory traditionally focuses on the demarcation 
of areas of land to describe specific land characteristics, rather than on the recognition of 
objects in the terrain. The basic model underlying the traditional approach to mapping is that 
of the attribute value linked to a specific location. The observations are grouped (or clus­
tered) to form mapping units with associated thematic classes. The clustering (referring to 
spatial grouping of observations as well as the definition of thematic classes) makes use of 
intuitive and associative knowledge (e.g. by means of interpretation of aerial photos). Criteria 
for clustering are often not made explicit. The 'land unit' concept (Van Gils et al., 1987) is 
illustrative in this respect. The 'land unit' represents a "holistically defined tract of land that 
is ecologically homogeneous". With holistic is meant that the land unit integrates the 
description of the terrain, soil, land cover and land use. An example of the application of 
land units for the mapping of agrotopoclimates is given by Zuviria (1992). The 'holistic' 
view is also expressed by Meijerink (1985) and van Wijngaarden and Kooiman (1988). 

The object-oriented approach starts from a different concept, namely from objects that 
exist in reality of which the geometric and thematic characteristics can be determined 
independently. The relations between objects are defined through classification, aggregation 
and association, and the objects have a dynamic behavior. 

We successfully modeled land use in the GRS area, by applying an object-oriented 
approach: the LUZ represents the basic spatial object of which the geometric (the LUZ 
boundaries) and thematic characteristics (land use pattern) were determined independently; 
relations between LUZs are defined by classes of corresponding land use patterns; LUZs and 
agricultural fields are related by aggregation and it is assumed that LUZs can be aggregated 
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to land use regions (to be investigated still); LUZs and farms define an association; and we 
could identify the LUZs at the different points in time, which enabled us to investigate the 
dynamic behaviour of the LUZs. 

The application of an object-structured data model implies that the data are stored per 
object. This provides opportunities to integrate data from different sources, dates, scale or 
resolution in a structured manner. In the conventional approach no structure for the integra­
tion of data is provided. We use data of different periods to determine the object characteris­
tics of these periods. This means that we can compare or integrate the data from these 
different periods at object level. In the same way we can integrate data related to different 
scales by using this data for description of objects and relating the objects through aggrega­
tion. Also at the object level that we can integrate different data types or data from different 
data sources, because the different sources are used to describe the characteristics of the same 
object. The combined use of aerial photos of different type, scale and date, of remote sensing 
data of different dates and of tabular data (like farm survey data) to describe the LUZs might 
illustrate the opportunities for data integration. The opportunities for data integration, 
especially with respect to scale levels in land use inventory, should be further investigated 
and verified through implementation of the model. 

The object-oriented approach also provides opportunities for methodological improvement, 
by making use of the mutual character of the relations between objects. For example, the 
composite objects inherits the attribute values of its elementary objects. Vice versa, does the 
composite object define a context of the elementary object. The context information can be 
used to better (more reliable) interpret phenomena related to the elementary object level. For 
example, the LUZ serves as a context for the interpretation of the land cover classes with 
respect to land utilization types. In the same way may the general LUZ class define a context 
for the classification of the LUZs at the lower level in the classification hierarchy. Think of 
the differentiated classification of LUZs that belong to the agricultural area and to the area 
of natural vegetation. The use of context information in this manner and the opportunities it 
offers for structuring the land use inventory process deserves additional attention. 

With respect to describing land use change by means of object dynamic behaviour some 
difficulties were encountered. These pertain especially to the interdependent nature of the 
object characteristics and the intricate relation between the classification, aggregation and 
association structure of objects. The following observations were made: 
1. In the FDS the object class defines a relation between objects on the basis of a 

common attribute structure. These can often be related to classes defined on the basis 
of corresponding attribute values. For example, the LUZ can be seen as an object 
class, such as the physiographic mapping unit, the farm, road and river. Each of these 
objects classes has its own attribute structure. All LUZs are described by the land 
cover composition. However, we can distinguish characteristically different land cover 
patterns and on that basis we can classify the LUZs. The classes refer to LUZs with 
corresponding values for land cover composition. However, the classes also denote 
specific LUPs (e.g. agricultural land, area of natural vegetation). The description of 
land use for each of these categories will require distinct attribute structures. They 
might therefore be considered to represent object classes. More so, because the ag­
gregation structure (e.g. agricultural fields being present or not) and dynamic behavior 
of objects belonging to these different classes is also be characteristically different. The 
inclination to treat all LUZs as belonging to the same object class will hamper the 
adequate description (or modeling) of land use. 
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The distinction, in this case, must be sought in the different contexts the object 
characteristics refer to. The land cover data has relevance within the context of the 
system to the description of object characteristics, while the land use data has relevance 
within the users' context. 

2. Change in object geometry has implications for the object thematic characteristics. 
This has to be taken into account in evaluating object dynamic behavior. For example, 
change in the LUZ boundary will affect the land cover composition. Therefore, change 
in the land cover composition can only be evaluated effectively if no change occurs in 
the object boundaries or if the effect of the change in LUZ boundary on the cover 
composition can be accounted for. 
Stationary characteristics are required to evaluate change. The object class determines 
which particular characteristics might be assumed to be stationary. The LUZs per­
taining to the agricultural areas tend to exhibit stationary boundaries. This is not the 
case in areas of agricultural penetration, for instance. In the agricultural areas land use 
change can consequently be inventoried through change in the LUZ land cover compo­
sition. For monitoring change in the area of agricultural penetration, other procedures 
should be adopted. These examples demonstrates that the object dynamic behavior is 
related to the object class. 

3. Object dynamic behavior, referring to existing objects, does not adequately provide 
for the description of changes as a consequence of new objects appearing or old objects 
disappearing. Split and merge (also called change in association structure) has been 
added to the types of change already defined (see Chapters 1 and 2, Part 1). 

4. Different types of aggregation can be defined at the same level of aggregation. When 
these different types refer to the same class of elementary objects, than an association 
between composite objects of these different types can be defined through common 
elementary objects. An association of two or more elementary object classes is denoted 
by the composite objects class that contains these elementary object classes. The 
composite object in such case represents an association. 

For example, the relation between LUZs and farms is modeled through association. 
Both entities refer to the same level of aggregation; both are an aggregation of agricul­
tural fields. Many farms may belong to one LUZ and vice versa many LUZs may 
belong to one farm. A LUZ may then be associated to a farm by the agricultural fields 
they have in common. 
LUZs that belong to the "area of agricultural penetration" are an example of objects that 
represent an association. The areas of agricultural penetration consist, on the one hand, 
of grasslands with the elementary objects referring to fields and, on the other hand, of 
forest and other areas of natural vegetation in which case the elementary objects refer to 
areas with homogeneous land cover. 

The relations that exist between the object classes (of both composite and elementary 
objects), types of aggregation, types of association and object dynamic behavior, and the 
opportunities this offers for modeling of land use should be further investigated. 

A DATA DRIVEN, KNOWLEDGE-BASED APPROACH TO THE RECOGNITION 
OF LAND USE PATTERNS 

A third theme in this thesis is the use of satellite imagery (SI) and aerial photos (APs) for 
the inventory of land use and land use change. Because we adopted an object-based strategy, 



178 EJ . Huising 

these materials are used to identify and classify objects: LUZs in this event. The iden­
tification and classification of the LUZs on the basis of these materials involves pattern 
recognition. With respect to the identification and classification of LUZs e.g. spatial patterns 
(or field patterns) and the land cover patterns were investigated. 

The LUZs, however, were not defined at the beginning of the investigation. Only a generic 
object model was defined. Because the object definition is context-dependent, insight in the 
context is required. As regards to the object definition for land use inventory, insight is 
required in sub-regional land use and in the role of the objects in land use analysis and 
planning. These insight were lacking at the beginning. 

The use of SI or APs seems conflicting. The conflict is due to the fact that these materials 
serves to provide the insights in the regional context, while these insight are required for its 
proper interpretation. This leads to an iterative procedure with feedback loops. This is 
illustrated by the procedure for land use inventory in the GRS area. First, the aerial photos 
were used to investigate spatial patterns. On the basis hereof the LUZs were identified. The 
LUZ characteristics are subsequently determined, which provides some insight in the sub-
regional land use structure. This information is than again used to improve the aerial photo 
interpretation. Another example of an iterative procedure with feed back loops is given by 
the land cover classification.1 

Our results demonstrate that remote sensing and aerial photography can be employed 
successfully as tools in land use inventory at the sub-regional level. However, equally 
important is the structuring and description of the land use inventory process. The process 
structure or logic is defined by the sequence of steps in the inventory process. We identified 
the following steps (see Part II): 

1. Identification of the LUZ, i.e. delineation of the land use zones on the basis of 
the spatial (field) pattern. The land use pattern is assumed to be expressed in the 
field pattern. The AP interpretation serves to make an inventory of the occurring 
field patterns. On this basis the LUZ are delineated. 

2. Land cover classification. The land cover classification serves to enable the 
quantitative description of the land cover characteristics of the LUZs. 

3. Determination of the LUZ image characteristics (data extraction). This step con­
cerns the land cover composition and field size distribution, both assumed to 
express the LUPs. The specific land use characteristics associated with the land 
cover composition and the field distribution are still to be determined. 

4. Quality check. Statistical evaluation of the discrimination between land use zones 
as regards the characteristics mentioned under step 3 (analysis of variance, clus­
ter analysis). Acceptance or rejection of the land use zone interpretation; in case 
of rejection, adaptation of the land use zone delineation if indeed interpretation 
error is concluded. 

5. Definition of the data classes (e.g. composite land cover classes, mean field size 
classes) on the basis of the results of the cluster analysis conducted in step 4. To 
define the clusters, homogeneity criteria and criteria for separability (minimum 
distance) are specified. 

1 Information on land cover is inferred from spectral data: general information on land cover is 
obtained by using the SI; this information is aggregated to LUZ level; the land cover composition of the LUZ 
tells something about the occurring land cover types (or land utilization types); and this information is fed back 
to the original land cover classification to obtain information on the specific land cover. 
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6. Field and farm survey; definition of the farming systems and classification of 
farms. 

7. Evaluation of the relation between measured image characteristics and field data. 
Specification of the information categories (land use patterns); specification of the 
mapping rules; land use zone classification. 

8. Evaluation of results. 

Much attention is devoted to class definition, being a very important element in the pro­
cedure. A "data-driven" approach is adopted to object classification. Also, a clear distinction 
is made between data classes and information categories in order to structure the classifi­
cation process. The data-driven approach provides a solution to the classification of objects 
when classes are not a-priori defined. It is a strategic answer to the problem of the use of SI 
and AP stated earlier, namely that these materials are used to obtain insight in the context 
while this insight is also required for its proper interpretation. The classes are inductive: they 
result from the inventory process. 

First, the LUZs are categorized in terms of data classes. The data classes refer to the 
image characteristics of the LUZ. The definition of the data classes is based on statistical 
analysis of differences between the objects (LUZs). As such, the classes reflect the degree 
to which objects can be distinguished on the basis of their characteristics (the classes 
represent the appropriate level of generalization). The quality of the input data has been taken 
into account, especially in determining minimum required distances between groups.2 The 
set of data classes fulfils the two requirements: it must be exhaustive and the classes must 
be separable (see Chapters 4 and 5, Part II). 

Secondly, the land use characteristics of the LUZs with corresponding data class values 
are investigated, and the LUPs (the information categories) are defined accordingly (Chapter 
3, Part I). Finally, all LUZs are assigned an LUP on the basis of their data class values. The 
approach yielded LUPs that provided specific and accurate information on land use on a sub-
regional scale. The assumption that field pattern and land cover composition are an express­
ion of the land use pattern is confirmed. 

In the literature little attention is devoted to the problem of defining appropriate classes, 
while this is necessary to obtain reliable and accurate classification results. The subject of 
class definition is generally not elaborated in reports. A data-driven (or unsupervised) 
approach to classification is applied in the field of remote sensing, where it concerns a per 
pixel classification. Such an approach has not yet been used to classify complex spatial 
objects. 

By making a clear distinction between data classes and information categories, the context-
dependent decisions could be made explicit. These decisions refer to the rules for mapping 
of the data classes to the information categories. The definition of these mapping rules is 
based on observations of whether objects belonging to the same data class represent meaning­
ful information categories (Chapter 3, Part I). The rules in fact denote how the data (classes) 
are to be interpreted in the given regional and application context (e.g. interpretation of the 
spectral classes in terms of land cover; interpretation of the composite land cover in terms 
of land use pattern). Because we are not able, as yet, to describe this context formally and 

For example, the reliability of the land cover classification is expressed in the width of the composite 
land cover classes; The quality of the AP interpretation will influence the difference in field size characteristics 
between LUZ and herewith the definition of the mean field size classes. 
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adequately, expert knowledge is required to make these context-dependent decisions. In our 
case, expert knowledge is applied to the following tasks: 

The photo interpretation for the delineation of the LUZ; 
The definition of the appropriate land cover classes and the interpretation of the 
spectral classes with respect to land cover; 
The definition of land use patterns and the interpretation of the LUZ characteris­
tics with respect to land use. 

This expert knowledge is expressed by the mapping rules. These rules guide the condi­
tional assignment of class labels to the objects. We could define a decision tree to structure 
a complex decision process in which many criteria need to be evaluated, such as the classifi­
cation of LUZs. The decision tree imposes a hierarchical order on the application of the 
decision rules. Thus, what is provided is a strategy to support the expert in making decisions 
in complex situations for which no standard solutions are available. 

The use of such decision rules is typical for knowledge-based (expert) systems. In recent 
years there has been increasing interest in developing knowledge-based systems to help 
automate remote sensing image interpretation or to analyze geographical data in general. 
Robinson and Frank (1987) provide an overview of expert systems for GIS. An example in 
the field of land evaluation is ALES (Rossiter, 1990). For the expert system approach to 
imagery interpretation, see Goodenough et al. (1987), Hadipriono et al. (1991), Skidmore 
et al. (1989), Srinivasan and Richards (1990), Wilkinson and Mégier (1990) and Wu et al. 
1988. The approach generally consists of the application of context rules (also called decision 
rules, belief functions, or otherwise) for the interpretation of imagery, whereby information 
about the context is obtained from a GIS. Most of these approaches concern a per pixel based 
classification. Again, the application of an object-oriented approach to land use inventory is 
new. It is important to realize that different classification strategies exist and that there are 
different concept of data modeling. Attention should be devoted to criteria for selection of 
a particular strategy or concept, which will depend on the situation. 

This thesis demonstrates that the process of inference of land use information from satellite 
imagery and aerial photos can be structured and effectively described. A clear process struc­
ture improves reproducibility of the results and enables the transfer of the methodology 
applied. Parts of the inventory process, namely the use of spectral data and aerial photo-
derived data for the characterization and classification of the LUZs, can be described 
quantitatively (Chapters 4 and 5, Part II). Parts that concern the context-dependent classifica­
tion of LUZs require expert knowledge; these parts are more difficult to formalize or 
describe quantitatively (Chapter 3, Part I). These parts involves the interpretation of data. 
The decisions can be described by mapping rules (Chapter 6, Part II) This, in turn, enables 
the transfer of knowledge and the verification of the decisions. The rules can be easily 
adapted, which will improves the flexibility of the system. In applying the LUZ approach to 
other regions, the mapping rules will need adaptation and tuning. The structure provided 
might also serve to evaluate existing land use inventories. 

In this thesis, an onset is given to a knowledge-based system for land use inventory and 
analysis on a sub-regional scale. It provides an operational definition of land use, a data 
structure for the description of sub-regional land use, and an a method for the inventory of 
land use and land use change employing satellite imagery and aerial photos. The viability, 
flexibility and efficiency of the LUZ approach is to be proven by the implementation of the 
data model and land use inventory procedure. 
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1. INTRODUCTION 

Chapter 3 of Part 2 discussed the spectral and spatial complexity of second generation 
satellite imagery. It is the source of the difficulty and tediousness of the task of locating and 
delineating training statistics with statistical properties suitable to the maximum likelihood 
classification. Reduction of the number of spectral features and parameters to describe the 
land cover would facilitate the definition of training classes. The question is, of course, 
whether the reduced set of spectral features allows discrimination between the cover classes 
and whether the features are related to relevant cover characteristics. The selection of the 
spectral features as well as the relevant parameters to describe land cover requires insight in 
cause-effect relationships concerning spectral response. 

For the investigation of the spectral characteristics of remotely sensed imagery one should 
review the work done in the field of feature extraction. Various studies indicate that the 
spectral reflectance pattern of land cover in Landsat-TM is basically three dimensional. The 
application of indices representing these three spectral dimensions is tested for general-
purpose land cover mapping in the Atlantic Zone of Costa Rica. 

As regards the factors explaining spectral response, much work has been done on 
modeling canopy reflectance. This work pertains to the development of vegetation indices, 
e.g. for crop monitoring, as well as to the strides made in modelling vegetation canopies to 
predict spectral response. The models developed so far require too much specific information 
to be of use for general purpose mapping. Furthermore, the description of agricultural crops 
in optical and microwave remote sensing studies, proposed by Cihlar et al. (1987), is too 
detailed for general-purpose mapping. However, the insights developed in these disciplines 
could be used to improve existing procedures for land cover classification. 

The aim of the present study is to investigate ways to use indices (or spectral features) 
for general-purpose land cover mapping. Study site is the Atlantic Zone of Costa Rica. The 
spectral data are from the Landsat Thematic Mapper (TM) satellite data. The scene recoding 
date was February 6, 1986. 

2. FEATURE EXTRACTION AND SPECTRAL CORRELATION 

For an explanation of the spectral variation, one should refer to work on feature extraction 
and spectral correlation. Feature extraction is done to transform the spectral data into spectral 
features in order to obtain a better descriptive basis for the spectral signatures (Mulder, 
1988). Mulder shows that the spectral variation can be decomposed into intensity variation 
and two mixing factors: the spectral mixing of bare soil and vegetation, and the equivalence 
of mixing water and bare soil spectral reflectance (equivalent to the three principal com­
ponents, or PCs). The intensity relates to structural information, mainly through shadow and 
shades (Mulder mentions geomorphology for example). The color picture (defined by hue 
and saturation) contains 'spectral reflectance' information. 

Kauth and Thomas (1976) and Crist and Cicone (1984) define three spectral features 
which can be directly associated with physical scene characteristics. They are defined as 
brightness, greenness and wetness. Brightness is responsive to changes in total reflectance 
and to the physical processes which influence the total reflectance. Soil brightness is 
measured by the brightness index. Particle size and soil surface roughness are mentioned as 
factors affecting the soil brightness. 
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Greenness (determined by the reflection in the MR in contrast to the sum of the visible 
bands) is reported to be correlated to canopy closure, green leaf area index (GLAI) and fresh 
biomass. GLAI can also be estimated from the spectral mixture of the vegetation and the 
underlying soil (Mulder, 1988). 

Crist and Cicone (1984) mention that soil moisture status was found to be the primary 
characteristic expressed in wetness, which seems to be in agreement with Mulder (1988), 
who mentions the spectral mixing of water and bare soil as the second mixing factor. Given 
the high weights of the middle infrared bands and the sensitivity of these bands for leaf water 
content (Tucker, 1980), the wetness index will also be responsive to leaf water content and 
plant water stress, aside from being responsive to soil moisture alone. 

The spectral reflectance patterns of land cover are thus basically three dimensional. This 
is also indicated by the first three principal components. These often explain more than 95 
% of the spectral variance and show clear correspondance with the three indices mentioned. 
However, the principal components are highly dependent on the scene characteristics and the 
proportion of different cover types in the scene. 

The above suggests a correlation between indicés and specific cover characteristics. 
Brightness, intensity, or the first principal component all reflect intensity phenomena. The 
intensity is determined by structural properties, like relief for terrain and surface roughness 
for soils. Structural properties can also be defined for vegetation canopies, e.g. canopy 
surface roughness as determined by the size and spacing of the vegetation elements. 

Greenness, the bare soil vegetation mixing factor, and often the second principal compo­
nent (depending on the scene characteristics) reflect the amount of green vegetation. Aside 
from greenness, many indices have been developed expressing the same type of phenomena. 
Linear combinations of red and photographic infrared have been denoted to correspond to 
green leaf area index (GLAI) or biomass, generally referring to a specific crop or vegetation 
type (Tucker, 1979; Curran, 1983; Clevers, 1986; Plummer, 1988). Other authors report 
better correspondence with the GLAI when the middle infrared (MIR) is included in the band 
combination (Curran and Williamson, 1978; Williamson, 1988). However, the MIR does not 
contribute to greenness or to the second PC in general, but it has a strong weight in the 
wetness index and generally in the PC3. This means that greenness or vegetation indices 
based on only the red and NIR bands are not exclusive indicators of green biomass. The 
significance of both indices as such is still undetermined. 

There are not many examples of indices being used for classification purposes. Haas 
(1985) used brightness and greenness values instead of the original spectral bands to represent 
cover types. The vegetation types were not defined in terms of properties explicitly related 
to the brightness and greenness values. The use of indices is then more for the purpose of 
data reduction. 

3. MODELLING VEGETATION CANOPIES 

Models of vegetation canopies have been made for predicting spectral response. The 
objective is to estimate biophysical parameters from reflectance data through model inver­
sion. Initially optical models for homogeneous vegetative canopies were developed (Suits, 
1972). The parameters of the model can be related to solar zenith angle and canopy para­
meters such as leaf area index (LAI), leaf angle distribution (LAD), and hemispherical leaf 
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reflectance and leaf transmittance. Variation in directional reflectance of vegetative canopies 
is also a function of azimuthal viewing angle. 

For forest canopies, similar properties are considered to determine the interception and 
reflection of solar radiation. Peterson (1987) lists the following six structural properties: 

- Leaf area index; 
- Vertical distribution of foliage; 
- Distribution of leaf inclination angles; 
- Leaf transmittance, reflectance and scattering properties; 
- Grouping or dumpiness of the foliage; 
- Distribution of the leaf azimuthal angles. 

These parameters are far too specific to described land cover classes for general-purpose 
mapping. Distribution of leaf angles will be specific to plant species or vegetation types. The 
vegetation type might, therefore, serve as a general indicator of LAD as well as the vertical 
distribution of foliage. Leaf transmittance and reflectance properties have proven to be 
dependent on internal leaf structure. In this respect discrimination between monocotyledons 
(grasses and cereals) and dicotyledon plants and vegetation types is relevant (Clevers, 1992). 

Franklin (1986) names basal area and leaf biomass as the structural parameters for forest 
canopies. She concludes that these characteristics are expressed primarily in the visible 
LANDSAT-TM bands 2 and 3, rather than in the TM band 4. She also states that the mid-
infrared channels do not show a relationship with varying stand densities, whereas Butera 
(1986) concludes that the Thematic Mapper bands 1, 5 and 7 (the blue and mid-infrared 
bands) are most significant in relating canopy closure to spectral response. 

Three-dimensional models for heterogeneous canopies describe vegetation elements as 
discrete objects. A geometrical optical model of a conifer forest canopy with snow as 
background was presented by Li and Strahler (1985). The canopy is modeled as an assem­
blage of large solid three-dimensional objects. Size and spacing of the objects and reflectance 
of sunlit and shadowed parts of the object and the background determine total reflectance. 
The spectral characteristics are expressed in brightness and greenness values. Brightness 
values decrease as trees are added, until a certain density is reached. Thereafter, overlapping 
occurs and the proportion of shadowed parts increases no further. Greenness values rise with 
increasing tree density. A similar approach is followed by Jupp et al. (1986) in modelling 
the vegetation structure of semi-arid eucalypt woodlands. 

Goel and Grier developed a model for heterogeneous three-dimensional canopies, which 
is in fact based on Suits' canopy reflectance model. The model is most applicable to canopies 
whose architecture can be described by a repetitive pattern and to homogeneous fully covered 
canopies. Parameters are related to vegetation canopy spacing and size of the elliptical 
subcanopy, in addition to earlier-mentioned parameters of the Suits' model. 

In general terms, these properties related to size and spacing might be described by the 
height (and variation therein) of the vegetation and by density of vegetation elements. The 
following general characteristics are proposed for the description of vegetation types: 

- Cover type: This denotes whether the cover class belongs to vegetated area, non-
vegetated area (bare soil, rock, built-up area) or water bodies, with reference to the 
associated characteristic shapes of the spectral curve. 

Concerning vegetative cover, further subdivisions are made according to 
vegetation type as defined by the characteristic geometry and with reference to the 
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internal leaf structure. Thus, general vegetation types such as woody (or tree-like) 
vegetation, grass, herb and shrub vegetation are differentiated. For example, banana 
and banana-like vegetation (plants belonging to the family of the Musaceae, which 
is abundant in Costa Rica) is to be considered a separate cover, type due to the 
specific geometric characteristics (leaves of more than 2 meters in relation to plant 
height of 4 to 5 meters). Also palm trees, because of their specific geometry and 
internal leaf structure (a monocotyledon), constitute a separate cover type. 

- Surface roughness: This relates to the variation in height of the surface (surface 
relief). It is relevant both to the non-vegetated surfaces and to the vegetative sur­
faces. It is intended as a measure for the amount of shadowing present. The vari­
ation in height should be evaluated in relation to the distance over which the change 
present itself. 

- Density aspects: For homogeneous canopies, density can be interpreted as GLAI or 
biomass. For heterogeneous land cover types (e.g. woodlands), it can be interpreted 
as canopy closure. Density determines the influence of the background reflectance 
(e.g. bare soil or grass vegetation) on the spectral response. It is related to the spa­
tial distribution of the elements within a composite land cover class. 

The way in which the above properties, i.e. roughness and density, are measured depends 
on the cover type. For forest cover types, a measure of the surface roughness can be 
measured in terms of the distribution in stem diameter, rather than through the difficult 
estimation of crown heights. For grass vegetations, an indication of surface roughness can 
be obtained through direct measurement of maximum and minimum height of the vegetation. 

A measure of vegetation density can be obtained by simply counting the number of trees 
or shrubs per unit of area. Measuring crown diameters and calculating the relative area 
(projection of the crown area) of the vegetative layers is less relevant to general inventories. 
For grass vegetation, biomass could be measured as an indication of the vegetation density; 
alternatively simple measurement of the height of the vegetation might suffice. 

In the present study, the spectral values of the cover types are obtained through sampling 
of the image for known location and averaging for the corresponding pixel. The interpixel 
spectral variance, as an expression of spatial phenomena, is not considered. The average 
values are assumed to denote the reflectance of the cover type, representing the sum of 
reflectance of the individual cover components weighted according to their respective 
proportion in the area. 

4. METHODS: BAND COMBINATIONS TESTED 

The band combination listed in Table A.l are evaluated for their discriminative power 
concerning the land cover classes, as well as for their correspondance with cover characteris­
tics. The different band combinations were taken from the literature. 

They constitute a brightness index, being the simple sum of bands and the first principal 
component, which will be discussed later. Furthermore, they form combinations expressing 
either the contrast between the NIR with the visible (like the second principal component, 
the ratio of TM3 and TM4 or the normalized difference of these two TM bands [the nor­
malized vegetation index, NVI]) or the contrast between the MIR and the sum of the visible 
and the NIR (like the third principal component, the ratio of TM4 and TM5, or the nor-
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malized difference of TM band 4 and TM band 5 [NORMDIF4-5]). 

Table A.l. Band combinations tested for informative value as regards to the mapping of 
vegetative cover classes 

Name TM Band or Band Combination 

Sum Bands 
Red 
MR 
Red/NIR 
NVI 
MIR 
NIR/MIR 
ND NIR-MIR 

PCI 
PC2 
PC3 

TM1+TM2+TM3+TM4+TM5+TM7 
TM3 
TM4 
TM3/TM4 
(TM4-TM3)/(TM4+TM3)! 

TM5 
TM4/TM5 
(TM4-TM5)/(TM4+TM5)2 

(TM4-TM3)/(TM5 +TM7)3 

For 66 locations corresponding to various cover types, the spectral values were deter­
mined through sampling of the Landsat-TM scene. The values for the linear combinations 
are derived from these. In general, multiple samples were taken for the same cover type, 
representing small differences in canopy structure or density of the vegetation. 
Testing was subsequently done by: 

Listing the cover samples in order of increasing index values for each of 
the band combinations to see whether a logical order was induced; 
Visual interpretation of the scatter plots; and 
Cluster analysis. 

The index or set of indices should permit discrimination between the cover types as 
defined above. It should also provide for discriminative power within the cover type for 
differences in surface roughness and vegetation density. For example, the grasslands should 
be recognizable by their index values as a separate cover type, but the indices should also 
portray the differences between the grassland vegetation types. Whether indices reflect 
differences between grasslands is evaluated by listing the index values for all the samples 
belonging to the same general cover type and investigating the corelation with general 
vegetation parameters. 

1 Tucker, 1979 

2 Williamson, 1988 
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5. RESULTS AND DISCUSSION 

5.1. Principal component transform 

The first three principal components (PCs) corresponding to the Landsat TM scene of 
the Atlantic Zone of Costa Rica are shown in table A.2. The principal components transform 
is calculated on basis of the covariance matrix. 

For calculation of the principal components, part of the scene was selected, excluding the 
Atlantic Ocean. The area is predominantly flat, with forest covering about 40 % of the area. 
Wooded area and grassland each covered about 15 %. The remaining part was divided 
among bare soil or sparsely vegetated area (and built-up area to a limited degree), banana 
plantations and land cover categories. Water bodies represent only a small percentage of the 
area. 

The first principal component explained 68.8 % of the total spectral variation of the 
scene. That is most of the spectral variation corresponds to brightness phenomena, being a 
weighted summation of the spectral bands. The second principal component explained 22.8 
%. It is a contrast between the near infrared band and the visible and middle infrared bands. 
It deviates from the greenness of the tasseled cap by the negative load of the middle infrared 
bands. The third principal component explains 6.1 % and is a contrast between the middle 
infrared bands and the NIR and visible bands. This is more or less in agreement with the 
wetness index of the tasseled cap transformation. 

Table A.2. Eigenvectors corresponding to the first, second and third principal component 
(PC). 

TM band no. 

1 
2 
3 
4 
5 
6 
7 

Eigenvalues 
Variance % 

PCI 

0.176 
0.150 
0.193 
0.598 
0.686 
0.094 
0.269 

780.8 
68.8 

PC2 

-0.327 
-0.159 
-0.315 
0.749 

-0.307 
-0.098 
-0.321 

258.8 
22.8 

PC3 

0.671 
0.322 
0.338 
0.248 

-0.507 
-0.072 
-0.150 

69.1 
6.1 

5.2 Significance of indices for the discrimination of land cover classes 

Brightness shows characteristic values for the different vegetative covers (see Figure A. 1), 
which seems to be related mainly to the form or structure of the vegetative surface: 

- The forest training samples show low brightness values; 
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- Secondary forest, tree plantations and densely wooded areas show increased bright­
ness values; 

- Banana plantations and dense scrubland have intermediate brightness levels; 
- Shrub/grasslands and secondary vegetation with little variation in the height of the 

vegetative surface have medium to high brightness values; 
- Pasture with very smooth vegetative surfaces show the highest values. 

Brightness does not differentiate vegetation types with more or less the same charac­
teristics for the vegetative surface roughness, such as certain grasslands, secondary vegetation 
and semi-perennial crops like yucca (Manihot esculenta). Other band combinations should 
permit discrimination of these classes. 

The combinations which contained only the NIR and/or the red reflectance band did not 
give satisfactory results. Vegetated and non-vegetated areas could clearly be distinguished, 
but within the vegetated areas discrimination was poor. The index values for vegetation 
classes like bamboo, banana, ornamental crops, grassland and secondary vegetation could be 
found within the same range. 

This is explained by the indices responsive to the mixing of bare soil and vegetation. 
Vegetation indices like TM band 4 or the normalized vegetation index (NVI) provide the best 
discrimination in the low range of the LAI or at low biomass levels. This can be concluded 
from the reflection curves of the red and NIR reflectance in relation to LAI (Curran, 1983). 
Investigation of the spectral variance for the cover classes showed that the variation of NIR 
reflectance within the classes is too high in comparison to the overall variation in NIR 
reflectance (or to the between-group variance) to allow discrimination of the cover types. 

In the Atlantic Zone, areas are either bare or completely covered with vegetation. Mixed 
forms are of minor importance. For complete vegetative covers, factors other than LAI or 
biomass obviously play an important role in determining the reflectance in the NIR. LAI or 
biomass have not been measured, but clear differences are expected between the cover 
classes defined. 

With respect to a specific crop or vegetation type (i.e. with invariable geometric characte­
ristics), the NIR might denote clear difference in vegetation characteristics. This was shown 
in a study concerning the yield prediction of banana, where the NIR proved to be the best 
predictor of yield (Veldkamp et al., 1990). 

This suggests that a hierarchical approach should be followed, in which the cover type 
should first be identified before LAI or biomass can be estimated. It leaves the problem of 
the identification of the cover types unresolved. 

Better results were obtained when the MIR spectral bands were included in the band 
combination. TM band 5 differentiates between the vegetated and non-vegetated areas, as 
well as between grasslands and other vegetation types (e.g. secondary vegetation and (semi-
)perennial crops). The TM band 5 is less sensitive to internal leaf structure and possibly to 
differences in plant geometry, given the high absorbance of energy associated with leaf water 
content. The differences between grassland and the other vegetation types as regards their 
reflectance in the MIR might be explained by several factors: the grasslands are more suscep­
tible to drier climatic circumstances due to the influence of the direct incident radiation, the 
more direct influence of winds, and the limited rooting depth; all these characteristics 
influence leaf water content. But another possible explanation might be the inclusion of dry 
grass in the grassland vegetation types. 

The MIR in combination (or in contrast) with the NIR might then reflect the geometric 
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characteristics of the vegetation and density aspects of the vegetation. Combinations of NIR 
and MIR differentiate between the following (see the scatterplot in Figure A.I.): 

- Vegetated and non-vegetated areas (as do the TM band 1,2 and 3 or the vegetation 
indices, though not so the brightness index); 

- Grassland vegetation and woody and shrub vegetation, (which also reflects the 
gradual changes in proportion between the two); 

- Different types of woody and shrub vegetation (based on the geometric aspect of the 
vegetation). 

With respect to the woody and shrub vegetation, clear distinction is found between: 
- Vegetation types with a closed and smooth canopy and relatively large leaves (like 

banana and the ornamental crop Draceana massangeana) which show a high reflec­
tance in the NIR and low reflectance in the MIR; 

- Forest vegetation types showing low values in both the NIR and MIR reflectance; 
- Woody and shrub vegetation like secondary vegetation and bamboo, which show a 

large variation from medium to high response in the NIR but have medium values 
for MIR reflectance. 

- Grassland vegetation also reveals marked differences in the NIR (varying from 
medium to high values) but shows high reflectance in the MIR. 

The scatterplot in Figure A.l shows the brightness values and the values for the NORM-
DIF4-5 of the land cover samples. The correlation between the brightness values and 
NORMDIF4-5 is very low: an R-square equal to 0.09, which confirms the independence of 
both dimensions. 

The importance of incorporating TM band 5 in the band combination is obvious. This is 
in agreement with Williamson (1988), who stresses the importance of TM band 5 for 
vegetation monitoring. However, the data does not suggest a correspondence of green leaf 
area index (GLAI) or biomass to spectral features incorporating TM band 5, irrespective of 
the cover type. The data seems to confirm findings of the Butera (1986), who found that the 
MIR bands were most significant in relating canopy closure to spectral response. 

The relevance of different combinations to the mapping of land cover was tested by means 
of a hierarchical cluster analysis, based on the normalized Z-values for Brightness and the 
different band combinations. The results were considered satisfactory when the analysis 
resulted in the grouping of related land cover types according to type and structure of the 
vegetation. For the following band combinations, satisfactory and comparable results were 
obtained: 

- The NIR divided by the MIR (TM4/TM5); 
- The NORMDIF of the NIR and the MIR [(B4-B5)/(B4+B5)]; 
- The NIR minus the Red divided by MIR [(B4-B3)/(B5+B7)]. 

5.3 Differentiation within the major cover types 

Forest cover 
Clearly deviant vegetation characteristics also exist within the major cover types. For 

forest vegetation types, a difference is found with respect to the canopy structure. It is 
reflected in the deviating values for the estimated height of the vegetation and in the values 
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Fig. B.l Scatterplot showing the brightness values (summation of the six spectral TM 
bands) and the values for the band combination (TM4-TM5)/(TM4+TM5) of the 
vegetative land cover classes. 

Explanation of the symbols: 
0 Forest area 

Forest with dominance of palm vegetation 
Secondary forest 
Pejivalle plantation (Bactris gasipaës) 
Densely wooded area 
Banana 
Plantain (Musa AAB) 
Ornamental crop (cana india, Dracaena massangeana) 
Palm heart plantation 
Coconut plantation (dwarf variety) 
Secondary regrowth (herbs and shrubs) 
Secondary woody vegetation 
Pasture ('estrella','ratana','natural', etc.) 
Neglected pasture 
Grass vegetation in and near lagoons 
Pasture (guinea) both well kept and neglected 

X 
X' 
X " 
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for stem diameter (see Table A.3.a). The TOR329 sample represents a primary forest type, 
periodically inundated. It is characterized by the presence of high emergent trees. Given the 
stem diameter of 120 cm, the maximum height of the vegetation might be somewhat under­
estimated. TOR429 represents a forest type with a more evan canopy structure. The emergent 
trees have been cut in the past. For3 represents a secondary forest with a rather smooth 
canopy surface. 

Table A.3.a. Listing of the values for brightness, PCI, normalized difference of band 4 and 
band 5, and PCS for the forest areas. 

Species Training 
samples 

FOREST AREAS 
TOR 329 

FOR 1 
TOR 428 
TOR 429 

FOR 3 
TOR 228 
TOR 328 

Height of 
canopy(m) 

15 -35 
15 -35 
10-35 
15 -25 
12-20 
9 - 10 
8 - 10 yolillo 

Diameter 
stem (cm) 

10 - 120 

19- 80 
10- 35 
12- 20 
8- 15 

Sum 
bands 

232 
250 
259 
273 
281 
268 
265 

PCI 

107.7 
119.7 
121.9 
130.7 
137.2 
122.8 
123.3 

TM4-TM5/ 
TM4+TM5 

0.23 
0.22 
0.21 
0.21 
0.22 
0.20 
0.30 

PC3 

40.6 
37.0 
40.0 
39.1 
36.5 
44.4 
47.6 

The different vegetation characteristics seem to be reflected in the brightness values 
presented in Table A.3.a. The best correspondence is found between PCI and the maximum 
height of the canopy (R-square equals 0.77). A similar correlation is obtained using the 
brightness values (R-square equals 0.75). Taking the difference between minimum and 
maximum height of the vegetative surface as a measure for surface roughness, a lower 
correlation was found (R-square equals 0.53). The minimum height varies little and is a 
rather arbitrary measure. It is therefore better to leave this out. Given the small sample 
population, the figures should be considered as a mere indication of possible correspondence. 

The lower brightness values in this case are thought to be related to increased shadowing 
as a consequence of uneven canopy surface. The optical depth of the canopy of these forest 
cover types is assumed not to vary signifanctly. 

Two samples (TOR328 and TOR228) deviate from the pattern, showing lower brightness 
values than expected on the basis of the small difference between maximum and minimum 
vegetation height. Both samples represent cover types, deviating in density and type of 
vegetation and may therefore not be compared to the other forest samples. Both vegetation 
types are found in peat areas. TOR328 is a rather open vegetation of palm trees (yolillo, 
Raphia taedigera). TOR228 corresponds to a stand of poorly developed trees (Anacardium 
excelsum) with a very open canopy structure. The open structure will increase the amount 
of shadowing and therefore reduce total reflectance. Both forest types have a grass cover as 
understory. Strong absorbance of the infrared radiation by a water-logged soil in comparison 
to the other forest types, which might explain the lower brightness values, is not observed. 

The relevance of the NORMDIF of TM4 and TM5 or the PC3 to denote differences in 
type of vegetation is illustrated by the deviant values obtained for TOR228 and especially for 
TOR328 in comparison to the other forest types. The far more open and thin vegetation of 
TOR228 is reflected in lower values for the NORMDIF4-5. 
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The yolillo vegetation of TOR328 is characterized by relatively high values for the PC3 and 
the NORMDIF4-5. In this respect, the high value of the NORMDIF4-5 for the mature stand 
of pejivalle trees (0.24, denoted as A" in Figure A.l) is remarkable in comparison to the 
other wooded areas with comparable density of trees (index values of 0.08, 0.14 and 0.15, 
samples denoted as A in the figure). Pejivalle (Bactris gasipaës) is also a palm tree (mono­
cotyledon). 

In general the transition of forest area to the less dense wooded area is reflected in lower 
values for the NORMDIF4-5 and lower values for the PC3. 

Grassland vegetation 
For grass vegetation a good correspondence was also found between brightness and height 

of the vegetation. The following sequence shows increasing brightness values: 
- Wooded grasslands; 
- Grasslands invaded by shrubs and herbs with height of vegetation up to 3.50 meter; 
- Clumped grasslands (grasses growing in tussocks) reaching up to 2 meters as a 

result of poor maintenance and under grazing; 
- Grasslands of medium height with somewhat irregular vegetation surfaces; 
- Grasslands of short grasses and well-grazed pastures. 

The grassland cover samples and their corresponding values are listed in Table A.3.b. The 
brightness shows a slightly better correlation with the maximum height of the vegetation than 
with the PCI (R-square of 0.79 versus 0.74). Also here the difference between maximum and 
minimum vegetation height shows a lower correlation (R-square of 0.68). The fact that 
brightness decreases with increasing height of the vegetation might be explained as a possible 
effect of shading. The lower brightness values might also be explained as an effect of 
increasing optical depth of the canopy being associated with the height of the vegetation. 

For grasslands, the NORMDIF4-5 provides more information than the PC3 with regard 
to the differentiation based on the dominant grass species. Guinea (Panicum maximum) 
clearly shows lower values than the other species. Taller grass species like 'king grass' and 
'cola de venado' {Pennisetum purpureum and Andropogon bicornis - Pas 20, Pas 21, Pas 12 
and Pas 06) show higher values than pastures characterized by the presence of 'estrella' 
(Cynodon nlemfluensis) or 'ratana' (Ischaemum ciliare) and 'natural' (Axonopus compressus). 
There is no explanation for the high value of Pas04. It might be due to the influence of soil 
background reflectance. 

6. FINAL REMARKS 

This investigation took the initiative to use indices for general land cover classification 
purposes, with the aim to make the process of training statistics more profitable. As regards 
the application of indices in the Atlantic Zone of Costa Rica, the following conclusions or 
remarks can be made: 

1. Spectral differences between land cover classes are best expressed by the brightness 
index and the band combinations based on the contrast between the near infrared 
(and visible TM bands) and the middle infrared bands. 

2. Vegetation indices discriminate between vegetated and non-vegetated cover types. 
They serve less to discriminate between the general vegetation land cover classes. 
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Table A.3.b. Listing of the values for brightness, PCI, normalized difference of band 4 and 
band 5, and PC3 for the forest and grassland training samples. 

Training 
samples 

Height 
(cm) 

5S VEGETATION 
Pas 23 
Pas 19 
Pas 20 
Pas 21 
Pas 12 
Pas 06 
Pas 18 
Pas 02 
Pas 22 
Pas 11 
Pas 08 
Pas 01 
Pas 15 
Pas 10 
Pas 03 
Pas 14 
Pas 07 
Pas 24 
Pas 05 
Pas 04 

25 - 150 
230 - 300 
50-200 

100 - 250 
50-200 
25 - 150 

100 - 150 
. . . 

- - 100 
40- 70 
40- 80 
20- 60 
17- 40 
65 - 80 
10- 15 
3 - 25 

50- 90 
. - . 
4 - 25 
- - 10 

Species 

guinea (neglected) 
jamalote 

king grass 
cola de venado 

king grass 
king grass 

jamalote 
guinea 
guinea 

natural/ratana 
estrella 

natural/ratana 
natural/ratana 

estrella 
natural/ratana 

estrella 
estrella 

natural/ratana 

Sum of 
bands 

309 
309 
327 
329 
318 
336 
339 
340 
342 
359 
361 
362 
362 
364 
365 
366 
367 
374 
380 
384 

PCI 

141.9 
143.8 
157.0 
157.0 
151.6 
160.0 
155.4 
157.8 
161.9 
168.0 
166.6 
173.2 
174.3 
170.5 
178.3 
170.8 
172.1 
178.2 
184.2 
188.2 

TM4-TM5/ 
rM4+TM5 

-0.03 
0.06 
0.16 
0.10 
0.11 
0.13 
-0.03 
-0.02 
0.03 
0.08 
0.03 
0.09 
0.09 
0.07 
0.16 
0.05 
0.08 
0.09 
0.10 
0.18 

PC3 

32.0 
36.4 
37.7 
34.5 
35.3 
37.8 
34.4 
32.0 
32.2 
38.0 
38.2 
35.9 
33.8 
39.2 
37.6 
38.0 
39.3 
37.2 
34.0 
39.5 

Differences in index values cannot be correlated with the general cover class. 
3. Of the total spectral variation 68 % corresponds to brightness phenomena. The 

intensity of the total reflectance is governed by structural properties of the canopies 
or of the land surface. The difference in brightness values between the cover classes 
suggests a correlation with the structure of the vegetation. One can think of the 
shadowing induced by difference in size and height of the vegetation elements 
(vegetative surface roughness) as well as of the optical depth of the vegetation 
canopies. Brightness values were shown to be related to height of the vegetation for 
grasslands. The existence of such a relationship was also suggested for forest cover 
types. 

4. The explanation for the response concerning the band combinations of TM band 4 
and TM band 5 (or related feature combinations) proves to be complex. The data 
give some indication of dependence on vegetation or plant type (i.e. difference 
between palm trees and other trees, between grasses and other herbs, as well as 
between different grass species). One would also expect a relation with biomass or 
LAI, given the results of earlier studies. The general description of land cover types 
in relation to their spectral expression, in the context of the general-purpose land 
cover classification, should be investigated further. In this respect, attention should 
also be devoted to a hierarchical approache to the classification of land cover (i.e. 
the use of different spectral features at different levels of detail, corresponding to 
classes of different generalization level). 
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1. INTRODUCTION 

In the initial phase of a classification process, spectral bands are selected for the produc­
tion of color composites for visual interpretation and selection of training fields. The bands 
should be selected a priori. The feature selection aims at minimizing the loss of information 
while reducing the number of features. In the case of image classification, the aim of feature 
selection is to find a subset of bands which will provide an optimal trade-off between 
probability of error and cost of classification (Swain and Davis, 1978). When the spectral 
classes are known, the effectiveness of the separate sets of spectral bands can be evaluated 
by measuring the statistical distance between the spectral classes. However measures, such 
as the average pairwise transformed divergence (Swain et al, 1971) might not be permitted 
by the available image processing software or statistical packages. 

Measures for the estimation of the information content of band combinations are then 
derived from the spectral characteristics of the scene, i.e. from the variance-covariance 
matrix (hereafter simply called covariance matrix), corresponding to the total scene or a 
representative part of it. 

2. THE INFORMATION CONTENT OF INDIVIDUAL SPECTRAL BANDS 

Sadowski (1985) used the variance of a spectral band as a measure of information 
content. He assumed that a wide range of data values will occur in bands which are particu­
larly responsive to variation in land cover. More recently, Mulders (1992) used standard 
deviation as a measure for single band information content. 

The band variance might be a poor estimator when based on digital numbers (DN), since 
the digital values are obtained by calibrating and scaling spectral radiance measured at the 
satellite for each wave bands. When using the standard deviation as a measure of information 
content, the ranking of the individual wave bands with respect to information value would 
depend on whether the reflectance phenomena are expressed in DN, spectral radiance (SR), 
or planetary reflectance (PR) (see Table B.l). TM band 5 would have the highest informa­
tion content when determined on the basis of digital numbers, but it would rank fifth when 
the values are expressed as spectral radiance, while ranking second when using planetary 
reflectance. The thermal band (TM band 6) was excluded from the analyses. 

Irrespective of the type of image data, the question remains whether standard deviation 
(or variance) serves as an appropriate measure of information value. The information value 
of a spectral band for classification purposes is determined by the ability of the band to 
discriminate between land cover classes (discriminative power or single band class 
separability). It can be expressed by the 'within group sum of squares (WGSS) divided by 
the between group sum of squares (BGSS)', whereby the group stands for a spectral class. 
Lower ratio values indicate better separability. The values are listed in Tabel B. 1 for the 50 
spectral classes corresponding to vegetated and non-vegetated cover types, and for a reduced 
set of 44 classes corresponding only to vegetated cover types. 

For the correlation between standard deviation and WGSS/BGSS ratio, a R-square of 0.81 
was obtainedusing DN. An R-square of 0.90 was found when the reflectance was expressed 
in PR. The rather high correlation between the standard deviation (SD), expressed in both 
DN and PR, on hte one hand, and the discriminative power (DP), on the other, seems to 
confirm the assumption that variance is an appropriate measure of information content. 



A priori selection of spectral features 197 

Table B.l. Statistical data on spectral bands and spectral classes 

Bandl Band2 Band3 Band4 Band5 Band7 

Image data 
Digital Numbers (DN) 
Mean 
St. Dev. 

Spectral Radiance 
Mean 
St. Dev. 

Planetary Reflectance 
Mean 
St. Dev. 

Coeff. of Variance 

Spectral classes 
Mean St.Dev.(DN) 

WGSS/BGSS (N=50) 
WGSS/BGSS (N=44) 

67.97 
6.17 

3.928 
0.370 

8.7E-2 
0.82E-2 

0.09 

2.00 

0.123 
0.268 

26.73 
4.51 

2.847 
0.486 

6.7E-2 
1.25E-2 

0.17 

1.36 

0.127 
0.107 

24.44 
6.93 

1.860 
0.561 

5.1E-2 
1.55E-2 

0.28 

1.73 

0.098 
0.134 

89.33 
18.79 

7.086 
1.522 

29.4E-2 
6.32E-2 

0.21 

5.44 

0.055 
0.083 

70.27 
18.88 

0.736 
0.208 

14.2E-2 
4.02E-2 

0.27 

4.21 

0.081 
0.072 

21.84 
9.06 

0.116 
0.054 

6.3E-2 
2.99E-2 

0.41 

1.92 

0.098 
0.085 

However, the WGSS/BGSS ratio is not a very accurate measure for single band 
discriminative power. First of all, because the ratio is an average value. Secondly, the 
WGSS/BGSS value will decline with increasing distance between groups, also beyond the 
point where complete separation of the spectral classes is obtained. At that point it contrib­
utes no further to the improvement of discriminative power. The outcome of the 
WGSS/BGSS ratio is strongly influenced by the spectral difference between the vegetated and 
non-vegetated areas. The latter is represented by classes like 'built-up areas' and 'bare soil' 
and 'water bodies'. The classes represent widely deviating spectral patterns (large distances 
between groups). Moreover, the latter cover classes represent only a minor part of the area. 
They are the less relevant categories of the land cover in the Atlantic Zone of Costa Rica. 

Therefore, attention is devoted to the discrimination of the land cover classes within the 
vegetated areas. When classes like 'built-up area','bare soil' and 'water bodies' were discar­
ded, a considerably different outcome was obtained for the WGSS/BGSS (see the outcome 
for the reduced set of 44 observations). For the vegetated areas, TM band 5 proves to 
contain the most information instead of TM band 4; the relative importance of TM band 7 
and TM band 2 is also greater. The correlation between SD and the WGSS/BGSS ratio drops 
considerably (R-square = 0.29). This is explained by the fact that a higher spectral variance 
for the total pixel population coincides with a higher spectral variance for the spectral classes 
corresponding to the cover classes. The standard deviation (or overall variance) is therefore 
not considered a reliable indicator of single band discriminative power. 

The above suggests adopting the coefficient of variation as a measure to evaluate spectral 
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band information value. Considering the reflectance measurement in the separate bands as 
independent, the coefficient of variation would be the appropriate measure for comparison 
of the spectral features. The coefficient of variance is also shown in table B. 1. 

The coefficient of variance does yield a higher correlation with the WGSS/BGSS than 
was obtained with the variance. But the variation in the WGSS/BGSS values explained by 
the coefficient is rather low (R-square = 0.45, N=44). The low correlation is the result of 
a rather deviant coefficient of variance obtained for TM band 7. The coefficient of variance 
does not provide an appropriate measure for single band discriminative power. This is 
because the WGSS and the BGSS are both correlated with the value level of the spectral 
band. 

3. POTENTIAL INFORMATION CONTENT OF BAND COMBINATIONS 

Measures and methods 
The difficulty of selecting the optimum band combination lies in evaluating the infor­

mation content of the individual spectral features in combination with the correlation between 
the features. Sheffield (1985) demonstrates that the total variance contained in the band 
combination is not an adequate measure of information content. 

Ranking methods, based on the variance present in each feature and the degree of 
correlation between features, have been applied to select feature combinations (Lillesand and 
Kiefer, 1987, who mention using such an approach for the selection of band ratios). Mulders 
et al. (1992) uses only a 'correlation index' to select the feature combination with the highest 
discriminating potential. This 'correlation index' consists of the average correlation of the 
band pairs constituting a feature combination. 

The discriminative power of feature combinations can be evaluated in terms of the 
average pairwise divergence (APD) or the average pairwise transformed divergence (APTD). 
The pairwise divergence between class pairs "i" and " j " is determined as follows (Swain et 
al. 1971): 

Dij=0.5tr[(CrCj)(Cj-'-Ci-
,)]+0.5trt(Ci

1+Cj-
1)(MrMj)(Mi-Mj)

T] 

where C is the class covariance matrix, C1 is the inverse of the covariance matrix, M is the 
mean vector, T refers to the transpose of matrices, and tr is the trace of the matrices. 

The transformed divergence is defined as: 

TDij=2000[l-exp(-Dij/8)] 

The measure reaches 2000 when the probability of correct classification saturates at 1. 
See Singh (1984) for a discussion on the pairwise divergence measure. The APD and APTD 
are obtained by calculating the mean over all possible class pairs for each feature com­
bination. The APD and APTD values denote the relative importance of the feature combina­
tions with respect to their information content. Therefore, these will be used as reference 
values. The following band combinations provide the best discrimination, in order of 
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descending importance: 2-4-5, 3-4-5, 2-4-7 and 3-4-7 (see Table B.2). Note the drop in value 
for the reduced sample set, which corresponds to vegetative cover classes. Only values for 
the most relevant band combinations are presented. 

For the sake of convenience and because color composites generally consist of three 
bands, the discussion is presented in terms of selection of sets of three bands. The method, 
however, is not specific for the number of bands to be selected. In general, the APTD values 
are high, indicating high probabilities of correct classification as far as the training samples 
are concerned. This is not surprising, because the sample set used in this study had been 
tested previously to see whether the classes jointly covered the total spectral range and 
whether the set of classes incorporated redundant spectral information (see Chapter 3, Part 
2). 

Table B.2. The average pairwise divergence and average pairwise transformed divergence 
for the nine band combinations 

Sub matrix 

1-4-7 
2-4-7 
3-4-7 
1-4-5 
2-4-5 
3-4-5 
2-3-4 
3-5-7 
4-5-7 

APD 
(N=50) 

186 
205 
230 
234 
250 
282 
206 
222 
224 

A P T D 
(N=50) 

1922 
1948 
1939 
1936 
1955 
1949 
1922 
1885 
1920 

APD 
(N=44) 

97 
117 
112 
145 
161 
160 
98 

117 
150 

APTD 
(N=44) 

1900 
1933 
1922 
1919 
1943 
1935 
1900 
1853 
1898 

Several measures can be derived from the covariance matrix for the information content of 
band combination. The band combinations are depicted as sub-matrices of the covariance 
matrix for the total number of bands. 

The sum of the eigenvalues of the sub-matrices represents the total variance within the 
corresponding feature combination. When divided by the total variance of the entire scene, 
it gives the percentage of the variance explained by the band combination. However, the aim 
of eigenvalues does not account for the correlation between the bands. The determinant, used 
by Sheffield (1985) as a measure of information content, does account for the correlation 
between the spectral bands. Yet it is influenced by the proportion of the variance in the 
independent dimensions (i.e. proportion of the length of the principal axes defining the sub-
space spanned by any particular band combination). It is therefore considered a biased 
measure. 

What is needed is a measure taking account of both the total variance of a combination and 
the proportionality in the variance explained by the eigenvectors. Measures like X^-X^, 
Xnux/EX and (Xmax-XmJ/(Xm,x+\mill), where X denotes the eigenvalue, do not fulfil this 
requirement. Therefore, we adopted another measure of information content of band 
combinations that is based on the variance of difference (VOD) between two populations (i.e. 



200 Appendix B 

two bands). A measure for combinations of more than two bands can be obtained by first 
summing the VOD of the band pairs that are part of the multi-band combination, and then 
dividing the result by the number band pairs. 

N N 

£ £ [VAR{i) +VAR(j) -2COV(i,j) 

Q.5N(N-1) 

whereby i=l . . .N and j= i + l...N and j > i , N is the number of features 

The determinant, the sum of eigenvalues and VOD for the sub- matrices is shown in Table 
B.3. 

Table B.3. Determinant, eigenvalues and variance of difference of the sub-matrices 
corresponding to three-band combinations, based on the covariance matrix. 

Sub-matrix 
1-4-5 
3-4-5 
4-5-7 
2-4-5 
1-4-7 
3-4-7 
2-4-7 
3-5-7 
2-3-4 

Total image 

Determinant 
1368249 (1) 
1108682(2) 
613025 (3) 
534346 (4) 
312892 (5) 
216141 (6) 
127451 (7) 
37215 (8) 
30404 (9) 

^eigenvalues 
745.012(83%) 
754.959 (84%) 
789.047 (88%) 
727.638(81%) 
473.579 (53%) 
483.527 (54%) 
456.207(51%) 
482.249 (54%) 
422.119(47%) 

894.423 

Var. of Diff. 
485.458 (89%) 
493.671(91%) 
475.481 (88%) 
476.551 (88%) 
389.869 (72%) 
402.962 (74%) 
375.069 (69%) 
163.048 (30%) 
351.906 (65%) 

542.692 

Results and discussion 
The 3-4-5 band combination shows the highest score for the VOD measure, followed by 

the 1-4-5, 2-4-5 and 4-5-7 combinations. The sum of eigenvalues lists the 4-5-7 combination 
as most important. The determinant would indicate the 1-4-5 combination as most important. 
This is in agreement with Sheffield, who mentions that the 1-4-5 band combination usually 
ranks first using the determinant measure. 
The VOD partially corresponds to the order generated by the APD (N=50, see table B.2). 
The combination 3-4-5 has the highest APD, followed in decreasing order by 2-4-5, 1-4-5 
and 3-4-7 combinations, with the combination 4-5-7 ranking fifth. The other measures give 
lower performance, especially because of the low ranking of the 2-4-5 band combination. All 
measures rank the 1-4-5 band combination too high. 
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The reduced set of 44 spectral classes yields the following order for APT values: 2-4-5 and 
3-4-5 show the highest scores for APD, followed by 4-5-7 and 1-4-5, and subsequently by 
combinations with markedly lower APDs. This corresponds to the four-band combinations 
indicated by the VOD measure, with some difference in ranking order. The VOD measure 
indicates the feature combinations which provide the highest average divergence between 
class pairs. The determinant and sum of eigenvalues are considered less accurate estimators 
because of the clear difference in ranking order. 

The correspondence of the VOD measure with the APTD, reflecting probability of correct 
classification, is less than with the APD. Based on the APTD, the 2-4-5 combination is 
designated the best feature combination, followed with a slightly lower score by the 
combinations 3-4-5 and 2-4-7, and, in fourth position, by 3-4-7. The order of the com­
binations is the same, whether based on the set of 50 spectral classes and based on the 
reduced set of 44 classes. 

Neither of the band combinations 3-4-7 or 2-4-7 are indicated by the VOD measure, nor 
by the other measures, as belonging to the four most relevant feature combinations. The 
VOD measure does not serve as a reliable estimator of the information content of band 
combinations as regards classification performance. 

This is explained by the fact that the spectral variance, and as such the variance of 
difference, does not provide a reliable estimate of the single band discriminative power. This 
was discussed in the second section of this appendix. The contribution of TM band 7 is 
underestimated. 

We investigated the use of the coefficient of variation as an alternative to the variance as 
a measure for the information content of single spectral bands. That required recalculation 
(scaling) of the covariance matrix and the determination determinant, eigenvalues, and VOD 
for the individual band combinations on the basis of the adjusted covariance matrix. 
Using the scaled VOD values, higher priority is given to the combinations 2-4-7 and 3-4-7. 
In fact, this would give priority to these two combinations over the combinations 3-4-5 and 
2-4-5. This priority reflects the overestimation of the informational value of TM band 7 and 
an underestimation of TM band 5, as consequence of the application of the coefficient of 
variation as single band information content. The highest ranking combination based on the 
scaled VOD measure proves to be 1-4-7, while ranking only sixth on the basis of the APTD 
score. Therefore, we may conclude that measures based on the coefficient of variation do not 
perform better in indicating band combinations with a high probability for correct 
classification. 

4. CONCLUSIONS 

1. With respect to the single bands, the variance serves as a measure for the average 
distance between land cover spectral classes. This does not apply to single band 
discriminative power. 
Use of the variance as a measure of information content over-estimates the importance 
of TM band 4. The contribution of TM band 5 and TM band 7 is underestimated, while 
in fact TM band 5 is most powerful in discriminating between the cover types. TM 
band 4 and TM band 7 are equally important. The importance we ascribe to TM band 
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5 is in agreement with the conclusions of Sheffield (1985). 
The coefficient of variance does not provide an alternative to the variance measure, due 
to the overestimation of information content of TM band 7. 

2. More or less the same applies with respect to the band combinations. The variance 
of difference measure serves to indicate band combinations showing high scores for the 
average pairwise divergence. The VOD performs better than the determinant or the 
eigenvalues in this case. 
The VOD, determinant, and eigenvalues are less suitable as indicators for classification 
performance of band combinations (given by the average pairwise transformed diver­
gence). They failed to indicate the combinations including TM band 7, while of the four 
spectral band combination with highest APTD values two inlcuded TM band 7. The 
four combinations with the highest APTD score were 2-4-5, 3-4-5, 2-4-7 and 3-4-7. The 
limited suitability of the VOD and other measures is explained by the low accuracy of 
the variance as estimator of single band information value. Two of the four relevant 
spectral band are indicated by the VOD measure. 
The VOD measure, based on the scaled covariance matrix (i.e. adjusted for the average 
value level), overestimates the information value of band combinations which include 
TM band 7. On the other hand, band combinations including TM band 5 are under­
estimated. Also the adjusted VOD did not correctly indicate the most relevant band 
combinations. 

3. The fact that the same ranking applies to band combinations for the complete set and 
the reduced set of 44 cover classes, on the basis of their APTD value, suggests that the 
same band combinations serve to discriminate between general cover classes (like 
vegetated area, built-up area and bare soil, and waterbodies) as between vegetated cover 
classes. 

It is concluded that exact measures of information content for specific applications cannot 
be inferred from general image variance characteristics. 
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FARMING SYSTEM CLASSIFICATION. 

For the classification of the farms two labels are attributed; One for the composition of the 
farm with respect to crops and land uses (the farm land use types), one for the scale of 
production and management level. 

The following farm land use types are defined: 

1. Mixed farms. As well crops as grassland is encountered on the farms. 
1A. Besides to animal husbandry, are the farms dedicated to the production of crops 

like maize, rice, yucca or other root and tuber crops. 
IB. The farm activity is directed to the cultivation of tree crops (Cacao, Citrus, 

Guanabana) and/or other perennial crops like plantain, papaya and to animal 
husbandry. 

1C. As well annual crops as perennial crops are cultivated and livestock is kept on 
the farm. 

2. Farms dedicated to livestock production. More than 90 percent of the farm area is used 
for grassland. 
2A. Farms dedicated to animal husbandry, with less than 10 percent of the farm 

area is dedicated to the production of predominantly annual crops with some 
times a limited area with perennial crops. 

2AP. Cattle farms with less than 10 percent of the farm area used for perennial 
crops, predominantly tree crops. 

2B. Farms dedicated to animal husbandry only. 
3. Farms dedicated to crop production. Mostly annual crops like maize, rice or root and 

tuber crops like yucca and chamol. Often perennial crops are found, sometimes for he 
larger part of the farm area (plantain, cacao, etc.). 

4. Plantations and orchards. 
4A. Macadamia 
4B. Citrus and/or other fruit trees (Guanabana), sometimes parts of the farm are 

used for pastures. 
4C. Coffee or Cacao, in cases both. Sometimes annual crops are grown in smaller 

amounts. 
4D. Ornamental plants. 
4E. Combination of the different (semi-)perennial plantation crops like plantain, 

banana and yucca. Also sometimes annual crops are grown mostly for home 
consumption. 

4F. Banana. 
4G. Reforestation (plantings of f.e. Laurel and Eucalyptus) or forest reserves. 
4H. Palm heart plantations. 

5. Non farm area. 
5A. Homestead gardens 
5B. Non cultivated pastures, neglected areas. 

6. Farms with a considerable part under forest cover and with pastures. Income is obtained 
for a -sometimes important- part derived from the exploitation of the forest. 

7. Farms with considerable parts under forest cover and a parts of the farm area dedicated 
to a variety of crops and pasture. Crop production is meant for home consumption. 
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8. With part of the area under forest cover and a part dedicated to plantation crops like 
macadamia, cardamon, vanilla and other. 

9. Areas with parts dedicated to reforestation and parts for livestock production. 

Codes referring to scale of production and management levels: 

1. Commercial enterprises with a high level of capital investment (machinery and buildings) 
and high level of inputs (materials and labour). Scale of production is large. Production 
of commercial crops generally export oriented. 
(Banana plantation, larger ornamental crop plantation, larger macadamia plantations, 
etc.) 

2. Intermediate level 
Large scale, extensive stock breeding. Larger farms dedicated to livestock 
production. Generally a few persons are employed for the current activities. 
Level of mechanization is very low; the use of horses is common. A coral is 
present and often improved pastures are found. 
Production on intermediate level with intensive use of the land. Intermediate level 
of capital investment and use of hired labour. Machinery is used for field prepara­
tion, irrigation and/or other farm activities. The production goods are generally 
owned. This type of management is applicable to enterprises, intermediate in size, 
which produce ornamental crops, the smaller macadamia plantations and also the 
farms with larger areas for the commercial production of maize other arable crops 
are attributed this management class. 

3. Farms which largely depend on the family for the labour inputs, sometimes temporal 
workers are hired. A tractor is in cases hired for the ploughing of maize plots. Generally 
only traditional tools are used. The scale of production and level of capital investment 
is low. 
3B. Only part of the income is generated at the farm. The owner is employed off 

farm. 
3D. Owner does not live at the farm. The management of the farm is in hands of 

a hired person. 
4. Areas without agricultural use or on marginal levels only. 

4A. With agricultural production on very limited scale and predominantly intended 
for home consumption; not to be considered as an economic activity. The 
areas concern homestead gardens or other plots of very limited dimensions. 

4B. Abandoned or severely neglected area. Generally pastures. 
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LAND COVER CLASSIFICATION OF THE GRS AREA 

For the land cover classification of the Guacimo-Rio Jiménez-Siquirres 
area see the attached poster. 

KEY TO LAND COVER CLASSES. 

1. FOREST AREA 
2. SWAMP AND PEAT VEGETATION. (Consisting mainly of 

Yolillo (Raphia Taedigera)) 
3. SECONDARY FOREST 
4. SECONDARY VEGETATION. (Comprising dense woody 

regrowth as well as scrubby vegetation. Young tree planting 
and e.g. cassave might also be classified as secondary ve­
getation.) 

5. PASTURE. 
6. (SEMI-) NATURAL GRASSLANDS AND DEGRADED 

GRASSLANDS. (Also comprising Guinea pastures (Panicwn 
maximum), not to be considered a degraded grassland). 

7. WOODED AREA. (Comprising cacao lots, orchards, macada-
mia plantations, wooded pastures, reforested area, wooded 
river banks and other densily wooded areas). 

8. PLANTAIN 
9. BANANA 
10. BAMBOO 
11. ORNAMENTAL CROPS. (Especially referring to Yuca (Dra-

caene massangeana)). 
12. PEJIVALLE (Bactris gasipaës), PALMITO (Bactris gasipaës, 

harvested as young plants) or COCONUT PLANTATION. 
13. BARE SOIL AND BUILT-UP AREA. 
14. RIVERBEDDING, SAND & BOULDERS. 
15. RIVER. 
16. LAGOONS, SHADOW OF CLOUDS. 
17. CLOUDS. 
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LAND USE PATTERNS IN THE GRS AREA 

KEY TO LAND USE PATTERNS 

1. FOREST LAND 

01/Fl Lowland and promontory humid tropical for­
est. 

02/F2 Forested areas within cultivated lands. 
03/f3 Disturbed forest. Small forested parts within 

cultivated lands 

2. AREA OF AGRICULTURAL PENE­
TRATION 

11/APl Forest covers > 30 % of the area. Land 
use: timber wood extraction and cattle 
farming. 

12/AP2 Forest cover > 50 % of the area. Use: Tim­
ber wood extraction and cattle farming. 

3. AGRICULTURAL LANDS, FARM 
LAND 

SMALL FARMS 

Area with mixed land cover 
31/M1 Area with residential and agricultural func­

tion. Very small properties, homestead gar­
dens, annual cropping and grazing. Produc­
tion for home consumption. 

32/M2 Very small mostly mixed farms. Most impor­
tant: annual crop production, perennial crops 
and livestock less important. 

33/M3 Very small to small farms. Dominant use: an­
nual cropping, perennial cropping and grazing 
are less important 

34/M4 Very small to small farms, dedicated to annu­
al crop (maize,cassava) livestock production. 
Fruit trees are generally found within the 
pastures. 

35/M5 Very small to small farms. Use: annual and 
perennial crops. 

Mixed land cover and forest 
36/F1 Are partly covered with forest. Very small to 

small farms. Annual, perennial and tree 
crops. 

37/F1 Small farms. Land is used for grazing someti­
mes in combination with perennial crops 

Area with predominant grassland cover 
38/P1 Very small farms. Cattle farming and peren­

nial crop production (e.g. palmito) 
39/P2 Very small to small farms. Land used for 

grazing and tree crops (e.g. fruit, macadamia) 

Area with Wooded Area as dominant cover 
40/W1 Very small to small farms. Cacao plantations 

and pastures (mostly with trees). 

Area with Bare Soil as dominant cover 
45/B1 Very small farms. Land use: annual cropping 

(e.g. maize, cassava) 
46/M1 Land cover of bare soil and forest. Recently 

cleared area 

MEDIUM SIZED FARMS 

Are with mixed land cover 
51/M1 Land use for Grazing or grazing in combi­

nation with crop production 
52/M2 Farms dedicated to annual cropping or combi­

nation of annual and perennial cropping and 
grazing. 

53/M3 Small to medium sized farms, land use 
directed to perennial and annual crop pro­
duction. 

Area with grassland cover 
56/P1 Cattle farming 
57/P2 Parts of the area is classified as degraded 

grassland. Land use for grazing, to lesser 
extend for annual and perennial cropping. 

LARGE AND VERY LARGE FARMS 

Area with grassland cover 
61/P1 Livestock production. Often improved grass 

species is used. No trees scattered over the 
fields. 

62/P2 Parts classified as degraded pastures. Cattle 
farming. 

63/P3 Land cover for a large part composed of 
degraded grasslands. Cattle farming 

64/P4 Land cover consists of Wooded Area, culti­
vated pasture, degraded grasslands and forest 
or secondary vegetation. Large farms dedi­
cated to livestock breeding and reforestation. 
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Area with Bare Soil as dominant cover 
66/B1 Land cover classified as bare soil, wooded 

area and secondary vegetation. Large com­
mercial farms dedicated to (arable) crop 
production for export. 

67/B2 Part of the area is classified as ornamental 
crop. Commercial enterprise dedicated to pro­
duction of ornamental crops. 

68/B3 Land cover consists of bare soil and pasture. 
Land use in process of change. 

69/64 Bare soil as result of clearing. 

Area with forest cover 
70/F1 Part of large farm with forest cover. 

4. PLANTATIONS 

Banana plantations 
81/B1 Banana plantation 
82/B2 40 to 60 % of the area is classified as 

banana. Parts of the plantation area not cove­
red with banana (low plant densities, open 
spots due to unsuitable soils and roads tra­
versing the plantation. 

7. OTHER, WASTE LANDS 

With forest as dominant cover. 
13/F3 Land cover consists of Forest and Wooded 

Area. Reforested area, parts used for exten­
sive grazing. 

Area with mixed land cover. 
16/P1 Land cover: Wooded Area, degraded gras­

slands and pastures. Medium to large farms, 
land use for very extensive grazing. 

17/W2 Land cover: Wooded Area, Forest and (to 
lesser extend) bare soil and secondary vege­
tation. Large farms. Land not used or very 
extensively. 

19/W5 Land cover: Wooded Area an Forest and (sub 
dominant) cultivated and non-cultivated grass­
lands. Small farms, land partly used, partly 
waste land. 

Dominant land cover : Wooded Area 
85/W1 Macadamia plantation 

Land cover partly consisting of bamboo 
87/BM1 Land cover consists of bamboo, forest, 

secondary vegetation. Area used for produc­
tion of bamboo. 

Area with mixed land cover 
86/M1 Land cover: Wooded Area, Secondary ve­

getation, grassland and/or forest. Different 
kinds of crops: E.g. coffee, cardamon. In 
cases parts forested. 

5. TOWNS AND VILLAGES. 

91/Bl Area classified as non vegetated: Residential 
area. 

6. WETLAND 

04/F4 Dominant land cover: Forest. Parts classified 
as swamp vegetation (Yol'Ho)-

18/W4 Land cover consists of Wooded Area, non -
cultivated grassland and bare soil. Areas with 
semi-natural grass and woody vegetation, for 
part of the year inundated. 
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Samenvatting 

Deze dissertatie beschrijft de landgebruiksinventarisatie op sub-regionale nivo in de 
Atlantische Zone van Costa Rica. Hiertoe wordt het concept van de "landgebruikszone" 
(LGZ) geïntroduceerd. De LGZ speelt een centrale rol in de definitie van een methodo­
logie ter waarneming van landgebruik en landgebruiksverandering. Het landgebruik wordt 
beschreven a.d.h.v. landgebruikspatronen (LGP). Het LGP geeft aan welke bedrijfssys­
temen en landgebruikstypen voorkomen in een LGZ. 

Een "object-georiënteerde" en "gegevens-gedreven" benadering wordt gehanteerd voor 
de landgebruiksinventarisatie. "Object-georiënteerd" betekent in dit geval dat het landge­
bruik wordt beschreven als een verzameling objecten (de LGZ) met hun specifieke 
geometrische en thematische karakteristieken. Een klassificatiesysteem wordt ontwikkeld, 
zodat elke klasse LGZ's bevat met een kenmerkende thematische inhoud, geometrie, 
aggregatie structuur en dynamiek. De verwerking van dergelijke complexe object 
informatie vereist aandacht voor de definitie van een gegevens model. 

Satelliet beelden en luchtfoto's worden aangewend om informatie over het landgebruik 
te verkrijgen. Dit gebeurt d.m.v. patroon herkenning. De "gegevens-gedreven" benade­
ring houdt in dit geval in dat de patronen (of klassen) niet a priori geven zijn, maar 
inductief bepaald worden. D.w.z. ze vloeien voort uit het inventarisatieproces. De 
gegevens-gedreven benadering is een strategie om inzicht te krijgen in het landgebruik op 
sub-regionaal nivo. Het inventarisatieproces is opgedeeld in een aantal sequentieel geor­
dende stappen, die in afzonderlijke hoofdstukken beschreven worden. 

Het eerste gedeelte van deze dissertatie gaat in op de LGZ als middel voor de 
inventarisatie van landgebruik en landgebruiksverandering. De vergelijking van luchtfoto's 
van de periode 1948-1952 met die van 1984, voor het Guacimo-Rio Jiménez-Siquirres 
(GRS) studiegebied, toont dat de LGZ stabiele grenzen hebben, mits deze tot de land­
bouwgebieden behoren. Dit impliceert dat we dezelfde LGZ's op de verschillende 
tijdsmomenten kunnen herkennen aan hun geometrie en waarmee registratie van landge­
bruiksverandering d.m.v. de thematische kenmerken mogelijk wordt gemaakt. 

Informatie omtrent bedrijfsgrootte en bedrijfssystemen is verkregen d.m.v. een enquête 
onder boeren. De gegevens laten significante verschillen in samenstelling van de LGZ's. 
Op grond van deze verschillen zijn de landgebruikspatronen gedefinieerd. Dat de LGZ's 
geassocieerd zijn met een verscheidenheid aan landgebruikspatronen geeft aan dat de 
LGZs relevante ruimtelijke eenheden vertegenwoordigen voor de beschrijving van het 
landgebruik op sub-regionale schaal. De verschillen in landgebruikspatroon blijken gerela­
teerd te zijn aan verschillen in samenstelling van de landbedekking en aan de veldgrootte 
verdeling, zoals deze verkregen zijn d.m.v. classificatie en interpretatie van de satelliet-
beelden en luchtfoto's. Deze materialen geven dus informatie over het landgebruik, mits 
mits de geëigende interpretatieregels gehanteerd worden. 

Bovenstaande impliceert eveneens dat verandering in het landgebruikspatroon afgeleid 
kan worden uit verandering in landbedkkingssamenstelling, onder de voorwaarde dat de 
geometrie van de LGZ niet verandert, en mits ook hier de geëigende interpretatieregels 
worden toegepast. Veranderingen in landbedekkingssamenstelling van de LGZ's tussen 
1986 en 1990 zijn onderzocht m.b.v. satellietbeelden. Duidelijke trends in verandering 
van landgebruik werden waargenomen. Deze trends waren: een afname in maïs- en 
graslandareaal, een toename in het areaal voor de produktie van banaan en macadamia en 
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toename van land bestemd voor herbebossing. Naast toe- of afname in areaal van een 
bepaald gewas konden bijvoorbeeld ook verandering van type grasland en verbetering van 
bananaplantages waargenomen worden. 

Het tweede gedeelte beschrijft identificatie en Massificatie van de LGZ d.m.v. 
patroonherkenning. Allereerst wordt de stratificatie van het GRS studiegebied beschreven. 
Sub-regio's worden geïdentificeerd waarbij het ruimtelijk patroon, bepaald door de 
grootte, vorm en ordening van de velden, het belangrijkste criterium is. 
Wanneer de LGZ's eenmaal vastgesteld zijn, kunnen de veldgrootte en landbedekkingska-
rateristieken bepaald worden. Een procedure voor de per pixel landbedekkingsklassificatie 
wordt besproken. Deze procedure begeleidt de beeldanalist in de complexe taak een 
verzameling trainingsklassen voor de 'maximum likelihood' Massificatie te definiëren. 
Nadruk wordt gelegd op de 'training' fase. De methode maakt gebruik van 'gecontroleer­
de' (supervised) en ongecontroleerde (unsupervised) Massificatie methoden. 
De classificatie van de LGZ's wordt in aparte hoofdstukken behandeld. Op grond van 
statistische evaluatie van verschillen in gemiddelde veldgrootte zijn 5 relevante klassen 
gedefinieerd. De klassen om verschillen in landbedekkingssamenstelling te beschrijven 
worden gedefinieerd a.d.h.v. een hiërarchische clusteranalyse. Hierbij wordt een kritische 
afstand bepaald, die aangeeft of twee LGZ's (of groepen van LGZ's) significant van 
elkaar verschillen. Deze kritische afstand weerspiegelt de betrouwbaarheid van de 
gegeven landbedekkingssamenstelling, die op zijn beurt bepaald wordt door de nauw­
keurigheid van de landbedekkingsklassificatie (verwijzend naar zowel thematische als 
geometrische nauwkeurigheid). 

De veldgrootteklassen en de klassen van landbedekkingssamenstelling worden gege-
vensklassen genoemd. Uit deze klassen wordt informatie over het landgebruik afgeleid 
d.m.v. projectie van de gegevensklassen op informatiecategorieën. Dit gebeurt a.d.h.v 
beslisregels, die een conditioneel klasselabel toe kennen aan een LGZ. De conditie 
refereert aan een bepaalde context. Inzicht in de ingewikkelde beslisstructuur wordt 
verkregen door ordening van de regels in een hiërarchische structuur, hetgeen resulteert 
in een beslisboom. De beslisboom geeft een stapsgewijze specificatie van het landge­
bruikspatroon van een LGZ. 

In het derde gedeelte wordt het landgebruik geëvalueerd m.b.t. het bio-fysische 
potentieel van het land. Voor het studiegebied zijn hiertoe de landgebruikskaart en de 
bodemkaart over elkaar gelegd. Het blijkt dat de grenzen van de landgebruikseenheden en 
de fysiografische-bodemeenheden in grote mate overeenkomen. Dit betekent niet dat het 
landgebruik in overeenstemming is met de bio-fysische capaciteit van de bodem. Resulta­
ten geven aan dat in 18% van het gebied een gevaar voor degradatie van het land bestaat. 
In 51% van het gebied bestaan mogelijkheden voor meer intensief gebruik van de bodem. 
Gezien het samengestelde karakter van de eenheden kunnen combinaties van landgebruiks­
type en bodemtype niet met zekerheid vastgesteld worden. De studie heeft als zodanig een 
verkennend karakter. 

In het laatste hoofdstuk wordt de opbrengstvariatie van banaan in één bepaalde plantage 
onderzocht. De plantage vertegenwoordigt een LGZ. Gegevens van de bodeminventarisa­
tie verklaarden 67% van de variatie in opbrengst. Het gebruik van Landsat-TM gegevens 
als een additionele verklarende factor resulteerde niet een beter resultaat. 
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